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preface
When I first entered the industry, I had the training of a theoretician but was pre-
sented with the tasks of an engineer. As a theoretician, I had worked with models
using pen-and-paper or simulation. Where the model had a parameter, I—the theore-
tician—would try to understand how the model would behave with different values of
it. But now I—the engineer—had to commit to a single value: the one to use in a pro-
duction system. How could I know what value to choose?

 The short answer I received from more experienced practitioners was, “Just try
something.” In other words, experiment. This set me off on a course of study of experi-
mentation and experimental methods, with a focus on optimizing engineered systems.

 Over the years, the methods applied by the teams I have been on, and by engineers
in trading and technology generally, have become ever more precise and efficient.
They have been used to optimize the execution of stock trades, market making, web
search, online advertising, social media, online news, low-latency infrastructure, and
more. As a result, trade execution has become cheaper and more fairly priced. Users
regularly claim that web search and social media recommendations are so good that
they worry their phones might be eavesdropping on them (they’re not).

 Statistics-based experimental methods have a relatively short history. Sir R. A.
Fisher published the seminal work, The Design of Experiments, in 1935—less than a cen-
tury ago. In it he discussed the class of experimental methods in which we’d place an
A/B test (chapter 2). In 1941, H. Hotelling wrote the paper “Experimental determina-
tion of the maximum of a function,” in which he discussed the modeling of a response
surface (chapter 4). Response surface methodology was further explored by G. Box
xii



PREFACE xiii
and K. P. Wilson. In 1947, A. Wald published the book Sequential Analysis, which stud-
ies the idea of analyzing experimental data measurement by measurement (chapter 3),
rather than waiting until all measurements are available (as you would in an A/B test).

 While this research was being done, the methods were being applied in industry:
first in agriculture (Fisher’s methods), then in chemical and process industries (response
surface methods). Later (from the 1950s to the 1980s) experimentation merged with
statistical process control to give us the quality movements in manufacturing, exempli-
fied by Toyota’s Total Quality Management, and later, popularized by Six Sigma.

 From the 1990s onward, internet companies have experienced an explosion of
opportunity for experimentation as users have generated views, clicks, purchases,
likes—countless interactions—that could be easily modified and measured with soft-
ware on centralized web servers. In 2005, C.-C. Wang and S. R. Kulkarni wrote “Bandit
problems with side observations,” which combined sequential analysis and supervised
learning into a method now called a contextual bandit (chapter 5).

 In 1975, J. Mockus wrote “On the Bayes methods for seeking the extremal point,”
the foundation for Bayesian optimization (chapter 6), which takes an alternative
approach to modeling a response surface and combines it with ideas from sequential
analysis. This method was developed over the decades since by many researchers,
including D. Jones et al., who wrote “Efficient global optimization of expensive black-
box functions,” which, in 1998, applied some modern ideas to the method, making it
look much more like the approach presented in this book.

 In 2017, Vasant Dhar asked me to talk to his Trading Strategies and Systems class
about high-frequency trading (HFT). He was gracious enough to allow me to focus
specifically on the experimental optimization of HFT strategies. This was valuable to
me because it gave me an opportunity to organize my thoughts and understanding of
the topic—to pull together the various bits and pieces that I’d collected over the years.
Slowly, those notes have grown into this book.

 I hope this book saves you some time by putting all the bits and pieces I’ve col-
lected in one place and stitching them together into a single, coherent unit.
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about this book
Experimentation for Engineers teaches readers how to improve engineered systems using
experimental methods. Experiments are run on live production systems, so they need
to be done efficiently and with care. This book shows how. 

Who should read this book
If you want to build things, you should also know how to evaluate them. This book is for
machine learning engineers, quantitative traders, and software engineers looking to mea-
sure and improve the performance of whatever they’re building. Performance of the sys-
tems they build may be gauged by user behavior, revenue, speed, or similar metrics. 

 You might already be working with an experimentation system at a tech or finance
company and want to understand it more deeply. You might be planning or aspiring
to work with or build such a system. Students entering industry might find that this
book is an ideal introduction to industry practices. 

 A reader should be comfortable with Python, NumPy, and undergraduate math
(including basic linear algebra).

How this book is organized: A road map
Experimentation for Engineers is loosely organized into three pieces: an introduction
(chapter 1), experimental methods (chapters 2–6), and information that applies to all
methods (chapters 7 and 8).

 Chapter 1 motivates experimentation, describes how it fits in with other engi-
neering practices, and introduces business metrics.
xvi
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 Chapter 2 explains A/B testing and the fundamentals of experimentation.
 Chapter 3 shows how to speed up A/B testing with multi-armed bandits.
 Chapter 4 focuses on systems with numerical parameters and introduces the

idea of a response surface.
 Chapter 5 uses a multi-armed bandit to optimize many parameters in the spe-

cial case where metrics can be measured very frequently.
 Chapter 6 combines the concepts of a response surface and multi-armed ban-

dits into a single method called Bayesian optimization.
 Chapter 7 talks more deeply about business metrics.
 Chapter 8 warns the reader about common pitfalls in experimentation and dis-

cusses mitigations.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code. In many cases, the original source code has
been reformatted; we’ve added line breaks and reworked indentation to accommo-
date the available page space in the book. In rare cases, even this was not enough, and
listings include line-continuation markers (➥). Additionally, comments in the source
code have often been removed from the listings when the code is described in the text.
Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/experimentation-for-engineers. The
source code for all listings as well as generated figures is available on GitHub (https://
github.com/dsweet99/e4e) inside Jupyter notebooks. You can always find your way
there from the book’s web page at www.manning.com/books/experimentation-for-
engineers. The code is written to Python 3.6.3, NumPy 1.21.2, and Jupyter 5.4.0.

liveBook discussion forum
Purchase of Experimentation for Engineers includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can
attach comments to the book globally or to specific sections or paragraphs. It’s a snap
to make notes for yourself, ask and answer technical questions, and receive help from
the author and other users. To access the forum, go to https://livebook.manning.com/
book/experimentation-for-engineers/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We

https://livebook.manning.com/book/experimentation-for-engineers
https://github.com/dsweet99/e4e
https://github.com/dsweet99/e4e
https://livebook.manning.com/book/experimentation-for-engineers/discussion
https://livebook.manning.com/book/experimentation-for-engineers/discussion
https://livebook.manning.com/discussion
http://www.manning.com/books/experimentation-for-engineers
http://www.manning.com/books/experimentation-for-engineers
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suggest you try asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.
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Optimizing systems
by experiment
The past 20 years have seen a surge in interest in the development of experimental
methods used to measure and improve engineered systems, such as web products,
automated trading systems, and software infrastructure. Experimental methods
have become more automated and more efficient. They have scaled up to large sys-
tems like search engines or social media sites. These methods generate continuous,
automated performance improvement of live production systems.

 Using these experimental methods, engineers measure the business impact of
the changes they make to their systems and determine the optimal settings under
which to run them. We call this process experimental optimization.

 This book teaches several experimental optimization methods used by engi-
neers working in trading and technology. We’ll discuss systems built by three spe-
cific types of engineers:

 Machine learning engineers
 Quantitative traders (“quants”)
 Software engineers

This chapter covers
 Optimizing an engineered system

 Exploring what experiments are

 Learning why experiments are uniquely valuable
1



2 CHAPTER 1 Optimizing systems by experiment
Machine learning engineers often work on web products like search engines, recom-
mender systems, and ad placement systems. Quants build automated trading systems.
Software engineers build infrastructure and tooling such as web servers, compilers,
and event processing systems.

 These engineers follow a common process, or workflow, that is an endless loop of
steady system improvement. Figure 1.1 shows this common workflow.

The common workflow creates progressive improvement of an engineered system. An
individual or a team generates ideas that they expect will improve the system, and they
pass each idea through the workflow. Good ideas are accepted into the system, and
bad ideas are rejected:

1 Implement change—First, an engineer implements an idea as a code change, an
update to the system’s software. In this stage, the code is subjected to typical
software engineering quality controls, like code review and unit testing. If it
passes all tests, it moves on to the next stage.

2 Evaluate offline—The business impact of the code change is evaluated offline,
away from the production system. This evaluation typically uses data previously
logged by the production system to produce rough estimates of business metrics
such as revenue or the expected number of clicks on an advertisement. If these
estimates show that applying this code change to the production system would
worsen business metrics, then the code change is rejected. Otherwise, it is
passed to the final stage.

3 Measure online—The change is pushed into production, where its impact on
business metrics is measured. The code change might require some configura-
tion—the setting of numerical parameters or Boolean flags. If so, the engineer
will measure business metrics for multiple configurations to determine which is
best. If no improvements to business metrics can be made by applying (and
configuring) this code change, then the code change is rejected. Otherwise,
the change is made permanent and the system improves.

Pass Pass

Fail Fail Fail

Accept

Reject

Pass

Fail

Measure onlineEvaluate offlineImplement change

Figure 1.1 Common engineering workflow. (1) A new idea is first implemented as a code change to the 
system. (2) Typically, some offline evaluation is performed that rejects ideas that are expected to negatively 
impact business metrics. (3) The change is pushed into the production system, and business metrics are 
measured there, online. Accepted changes become permanent parts of the system. The whole workflow 
repeats, creating reliable, continuous improvement of the system.



31.1 Examples of engineering workflows
This book deals with the final stage, “measure online.” In this stage, you run an exper-
iment on the live production system. Experimentation is valuable because it produces
a measurement from the real system, which is information you couldn’t get any other
way. But experimentation on a live system takes time. Some experiments take days or
weeks to run. And it is not without risk. When you run an experiment, you may lose
money, alienate users, or generate bad press or social media chatter as users notice
and complain about the changes you’re making to your system. Therefore, you need
to take measurements as quickly and precisely as possible to minimize the ill effects of
ideas—call them costs for brevity—that don’t work and to take maximal advantage
of ones that do.

 To extract the most value from a new bit of code, you need to configure it opti-
mally. You could liken the process of finding the best configuration to tuning an old
AM or FM radio or tuning a guitar string. You typically turn a knob up and down and
listen to see whether you’re getting good results. Set the knob too high or too low and
your radio will be noisy, or your guitar will be sharp or flat. So it is with code configu-
ration parameters (often referred to as knobs in code your author has read). You want
them set to just the right values to give maximal business impact—whether that’s reve-
nue or clicks or some other metric. Note that the need to run costly experiments is
what specifies experimental optimization methods as a subset of optimization methods
more generally.

 In this chapter, we’ll discuss engineering workflows for each of the engineer types
listed earlier—machine learning engineer (MLE), quant, and software engineer
(SWE). We’ll see what kinds of systems they work on, the business metrics they mea-
sure, and how each stage of the generic workflow is implemented.

 In your organization, you might hear of alternative ways of evaluating changes to a
system. Common suggestions are domain knowledge, model-based estimates, and sim-
ulation. We’ll discuss the reason why these tools, while valuable, can’t substitute for an
experimental measurement.

1.1 Examples of engineering workflows
While the engineers listed earlier may work in different domains, their overall work-
flows are similar. Their workflows can be seen as specific cases of the common engi-
neering workflow we described in figure 1.1: implement change, evaluate offline,
measure online. Let’s look in detail at an example workflow for an MLE, for a quant,
and for an SWE.

1.1.1 Machine learning engineer’s workflow

Imagine an MLE who works on a web-based news site. Their workflow might look like
figure 1.2.

 The key machine learning (ML) component of the website is a predictor model
that predicts which news articles a user will click on. The predictor might take as input
many features, such as information about the user’s demographics, the user’s previous
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activity on the website, and information about the news article’s title or its content.
The predictor’s output will be an estimate of the probability that a specific user will
click on a given news article. The website could use those predictions to rank and sort
news articles on a headlines-summary page hoping to put more appealing news
higher up on the page.

 Figure 1.2 depicts the workflow for this system. When the MLE comes up with an
idea to improve the predictor—a new feature or a new model type—the idea is sub-
jected to the workflow:

1 Implement change—The MLE fits the new predictor to logged data. If it produces
better predictions on the logged data than the previous predictor, it passes to
the next stage.

2 Evaluate offline—The business goal is to increase revenue from ads that run on
the website, not simply to improve click predictions. Translating improved pre-
dictions into improved revenue is not straightforward, but methods exist that
give useful estimates for some systems. If the estimates do not look very bad, the
predictor will pass on to the next stage.

3 Measure online—The MLE deploys the predictor to production, and real users
see their headlines ranked with it. The MLE measures the ad revenue and com-
pares it to the ad revenue produced by the old predictor. If the new predictor
improves ad revenue, then it is accepted into the system.

A news-based website may have many other components besides a click predictor.
Each of those components would be exposed to the same workflow as the predictor,
ensuring that the system steadily produces more ad revenue.

 MLEs work on many kinds of systems. Sorting news headlines by click probability is
an example of a broader class of system called a recommender system. Recommender sys-
tems are used to rank videos, music, social media posts, consumer goods, and more.
Search engines are a similar ML system, in that they may rank search results specifi-
cally for the user. Targeted advertising, which chooses ads specifically for the user, is

Pass Pass

Fail Fail Fail

Accept

Reject

Pass

Fail

Measure ad revenue

in production

Estimate ad revenue

from logged data

Fit new predictor

of clicks

Implement change Evaluate offline Measure online

Figure 1.2 Example workflow for a machine learning engineer building a news-based website. The site 
contains an ML component that predicts clicks on news articles. (1) The MLE fits a new predictor. (2) An 
estimate of ad revenue from the new predictor is made using logs of user clicks and ad rates. (3) The new 
predictor is deployed to production and actual ad revenue is measured. If it improves ad revenue, then it is 
accepted into the system.



51.1 Examples of engineering workflows
another type of MLE system. Now let’s turn to finance and see how quants follow the
same workflow pattern.

1.1.2 Quantitative trader’s workflow

A quant’s workflow is very similar to the MLE’s workflow. Only the details change.
There’s a different prediction to be made, for example. See figure 1.3.

This quant is building an automated trading strategy. It is a piece of software that
issues BUY and SELL orders to an exchange hoping to, as they say, buy low and sell
high. A key component is a model that predicts change in the price of the financial
instrument (e.g., a stock) being traded. If the price is predicted to increase, it’s a good
time to issue a BUY order. Similarly, if the price is predicted to decrease, it’s a good
time to SELL. The business metric for this system is profit. But it’s also risk. Quants
want both higher profit and lower risk. It is not uncommon (in practice, it’s the norm)
to be concerned with more than one business metric when optimizing a system. Chap-
ter 7, section 3 will discuss this important practical point in detail.

 Figure 1.3 shows the quant’s workflow. Changes to the trading strategy pass
through these stages:

1 Implement change—The quant fits the new price-change predictor to historical
market data and verifies that it produces better predictions than the previous
predictor.

2 Evaluate offline—Better price predictions do not guarantee higher profits (or
lower risk). The full trading strategy—predictor, BUY/SELL orders, and so
on—is run through a simulation (also called a backtest) on historical market
data. The simulation generates predictions and mimics buying and selling to
estimate profit and risk. Sufficient improvement in the strategy will allow the
predictor to pass to the next stage.

3 Measure online—The predictor is deployed to live trading, where orders are
placed and money and stock shares change hands. Only live trading can tell the

Pass Pass

Fail Fail Fail

Accept

Reject

Pass

Fail

Measure

profit and risk

in live trading

Estimate

profit and risk

from simulation

Fit new price-

change predictor

Implement change Evaluate offline Measure online

Figure 1.3 Example workflow for a quant designing an automated trading strategy. The strategy contains a 
price-change predictor. (1) The quant produces a new predictor. (2) Profit and risk estimates come from a 
simulation using historical market data. (3) Live trading measures the true profit and risk. If the new predictor 
increases profit and/or reduces risk, then it is accepted into the system.
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true profit and risk of the strategy. The change to the predictor will be reverted
if it worsens the strategy’s profit or risk.

Quants typically work on one of two types of trading systems: principal or agency. A
principal strategy trades directly for the profit of the operator (the quant, or the com-
pany employing the quant). An agency strategy trades on behalf of customers as a ser-
vice, helping customers reduce their trading costs.

 There are many variations to these two types of strategies. They may trade stocks,
futures contracts, options, or many other financial products. Each product type typi-
cally has multiple exchanges around the world on which to trade.

 Also, a key defining component of a strategy is its timescale. A principal strategy
owns a stock (or other instrument) for some amount of time before selling it. That
amount of time may be on the order of minutes, hours, days, or weeks. Sometimes
even as long as months or as short as seconds. Each timescale requires a different pre-
dictor and a different understanding of risk.

 The MLE and quant workflows are similar because their systems are similar. They
typically consist of a predictive model fit on data and some decision-making code that
determines how the prediction is used. A software engineer’s workflow is somewhat
different and is the next topic.

1.1.3 Software engineer’s workflow

SWEs work on a broad range of systems. In this text, we’ll define SWE problems as
those that do not involve building models from data (thus differentiating them from
MLEs and quants). SWEs build compilers, caching systems, web servers, trading sys-
tem infrastructure (on which trading strategies run), and much more.

 As an example, let’s consider the problem of improving the response time of a
search engine with the goal of lowering the “bounce rate,” which is the probability
that a user will navigate away from a website after seeing just one page. Figure 1.4
shows the SWE’s workflow.

Pass Pass

Fail Fail Fail

Accept

Reject

Pass

Fail

Measure bounce

rate online

Time new code

offline

Implement code

change

Implement change Evaluate offline Measure online

Figure 1.4 Example workflow for a software engineer building a search engine server. The server queries, 
aggregates, and transforms relevant data before sending the user a response. (1) The SWE changes the 
transformation portion of the code. (2) They time the code offline, verifying that it takes less time than the old 
code to transform several test data sets. (3) Running in production, the SWE measures whether the use of this 
new code results in a lower bounce rate, the business-relevant metric. If so, the new code is accepted as a 
permanent part of the system.
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This SWE has built a search engine. It is a web server that responds to a user’s request
by querying internal sources for a data set, transforming that data set, and delivering a
formatted response to the user. Users are very sensitive to the time it takes for a web
server to respond. If it takes too long, a user may navigate away from the web page
before the response is delivered.

 While there are many ways to slow down a web server’s response (slow browser,
slow network, cache misses, etc.), this SWE has a hypothesis that it’s the data transfor-
mation step that is too slow. To fix the problem, they subject their hypothesis to the
workflow:

1 Implement change—The SWE implements a code change that they expect to
speed up the transformation step. 

2 Evaluate offline—This code is run and timed offline on many samples of the
internal data sets that resulted from previous user requests. If it proves to be
faster, it passes to the next stage.

3 Measure online—The code change is deployed to production where responses
are served to real users. The SWE measures the bounce rate and compares it to
the bounce rate before the code change. If the new code lowers the bounce
rate, it is accepted as a permanent part of the system.

Engineering teams tend to generate many creative ideas for improving the system
they work on. If these ideas are the raw material, the workflow is the factory that pro-
cesses them—steadily and reliably—into system improvements.

 Each pass through the workflow ends with an online measurement of business
metrics. That measurement is taken via an experiment on a live production system.

1.2 Measuring by experiment
The engineered systems encountered in trading and technology are complex. This
complexity can make it difficult to measure the impact of changes made to them.
Consider a website that sells a product. A useful business metric might be daily reve-
nue, the total number of dollars paid to the company by customers each day. That
number depends on the quality of the product, its competition, how many people
know about the product, how many people have already bought it, whether people
are more inclined to shop on a given day (e.g., is it a weekend? Is it Black Friday?),
how easy it is to navigate and understand the website, and so on. Many, many factors
affect daily revenue, and many of them are not under the control of the company.

 If you were to make a change to this website and record a day’s revenue, how could
you say whether the change improved that revenue? Would you have made more or
less on the day you measured if you hadn’t made the change? More importantly,
would you expect to make more or less in the future if you left the change in or took it
out? These questions can be answered by running experiments.
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1.2.1 Experimental methods

Experimental methods ignore all the other factors that affect a business metric and
tease out just the impact of the change you made to the system. Surprisingly, satisfy-
ingly, experiments even account for the impact of the factors that are unknown to
you, the engineer (chapter 2 discusses this in detail). It’s this ability to isolate the
impact of your system change and ignore everything else that makes an experiment
the right tool for the job of measuring business impact.

 Experiments are indeed valuable, but that value comes at a cost. Experiments take
time to run, and they risk generating suboptimal system performance (e.g., if the
change the engineer just implemented makes things worse instead of better) or dam-
aging it (e.g., due to a bug in the new code). To get the most out of experimentation,
we’ll try to minimize these costs. Chapter 2 presents the idea of experiment design,
where we minimize the amount of time an experiment will take to run while still giv-
ing the results we need. The subsequent chapters on experimental methods, chap-
ters 3 through 6, all discuss ways to reduce these costs further in specific situations.
Chapters 3 and 5, which cover bandit algorithms, make the experiment design adap-
tive, so that while the experiment is running and collecting measurements, the design
steadily improves.

 Recall that some system changes require the measurement of business metrics for
multiple configurations to discover which is best. This induces a high measurement
cost. The methods of chapters 4 and 6—response surface methodology and Bayesian
optimization, respectively—use statistical inference to make good guesses about which
system configurations are most promising, thus reducing the total number of mea-
surements needed to find the best configuration.

 These methods have been used in industry anywhere from 10 to 70 years (depend-
ing on the method) and are popular in the fields in which I work—quantitative trading
and social media. What makes trading and technology so amenable to experimenta-
tion is that systems in these industries have many interactions with the world. Trading
systems can send thousands or tens of thousands of orders per day. Websites may have
from thousands to billions (for the largest websites) of requests per day. Each interac-
tion provides an opportunity to experiment. 

 Drawing on personal experience, discussions with colleagues, and interviews spe-
cifically for the preparation of this book, I have tried to limit the material to a set of
methods proven to work well in practice. Along with explanations of methods and
real-world examples, I’ve also collected practical problems and pitfalls.

1.2.2 Practical problems and pitfalls

All these experimental methods assume you know your business metric. Chapter 7 dis-
cusses how to define one and how there’s usually more than one to consider. It also
looks more closely at how to interpret experiment results and how that may be com-
plicated when there are multiple metrics and multiple decision-makers involved.
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 Finally, chapter 8 lists ways in which real-world data can deviate from the assump-
tions made in the development of the experimental methods and common sources of
error in interpretation of results.

 One practical problem worth addressing before even getting into the details of
experimentation is the question of whether you should experiment at all. It takes time
and effort to build the tools needed to design, measure, and analyze changes to your sys-
tem. You should get something in return for all that work. The next section discusses
some common arguments against experimentation and presents counterarguments.

1.3 Why are experiments necessary?
Any SWE is likely familiar with the admonition, attributed to Donald Knuth, that “pre-
mature optimization is the root of all evil”—that is, rather than implement ideas that
you expect will make your code run faster (or better in some other way) at the outset,
first write simple code to solve the problem, devise a way to time the code, then test
your ideas one at a time to see which ones actually speed things up. It’s too difficult to
reason about everything that could affect speed—the whole code base, the computer
architecture, the operating system, and so on—all at once, so you rely on a test.

 Similar reasoning applies to improving business metrics. There are too many fac-
tors that could affect business metrics for a web product, including all the software
engineering factors listed above, as well as data quality, model quality, changes in user
sentiment, changes in browser technology, news of the day, and much more. This is
the case for any engineered system: many factors affect business metrics, and they do
so in complicated ways. Experimentation is necessary to accurately measure the
impact on business metrics of a change to the system.

 There are other tools available to assess the business-metric impact of a system
change. Some examples are

 Domain knowledge
 Offline model quality
 Simulation

These tools are discussed in detail below. You’ll see that they have two things in com-
mon: (1) they are cheaper (less resource-intensive) to use, and (2) they are less accu-
rate than an experimental result. These tools may be useful supplements to your
decision-making, but they can’t replace experiments.

1.3.1 Domain knowledge

Domain knowledge is the specialized knowledge of a field, a market, or a business that
people acquire through education and experience. You might think this kind of
knowledge would make people good at predicting which new ideas will make a posi-
tive business impact. But for the past 10 years, I’ve given an informal survey to my
quant coworkers. I’ve asked, “Of the ideas you’ve implemented and tested, how many
have actually worked?” The answer every single time has been 1 in 10. And it’s always
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been said with a chuckle and an air of resignation. That survey isn’t exactly scientific,
but similar stories come from elsewhere, too. Microsoft reports that only one-third of
experiments improve metrics. Amazon reports a success rate below 50%. Netflix says
only 10% (see http://mng.bz/Xao6). Even though the people generating the ideas
had domain knowledge, most experiments failed to produce the expected results.
There seem to be aspects of the world that keep most good ideas from working.

 One aspect is complexity. Your system is likely made up of many components: hard-
ware components like computers and network switches, software components (both in-
house and third-party), and human elements—operators, suppliers, customers. These
components interact with each other, with the physical environment, and with society at
large. Computers interact via networks. Humans interact with each other online and in
person. They also interact with your servers through a browser or an API.

 The physical environment includes the temperature of a data center—which,
when too high, adversely impacts computer performance or causes failure. It also
includes the weather, which affects people’s behavior. When the weather’s bad, do
people use your product more because they can’t engage in outdoor activities? Do
their posts or comments reflect their mood, which is in turn affected by the weather?
There is evidence (D. Hirshleifer, T. Shumway, “Good Day Sunshine: Stock Returns
and the Weather,” at www.jstor.org/stable/3094570) that sunshine in the morning in
New York City is correlated with increased stock returns on that day on the New York
Stock Exchange. The proposed causal mechanism is that sunshine makes the traders
more optimistic. No engineer—or anyone, for that matter—could be expected to
anticipate effects like this just from experience or reasoning.

 To put a finer point on it, if you have N components in your system, you have ~N 2

pair-wise interactions. In other words, if your system has many components, then it
has a huge number of interactions. That’s too much for a person to consider when try-
ing to guess the impact a system change will have on business metrics.

 Generally, we’ll ignore most of that complexity when reasoning about a system in
order to make things more manageable. We’ll create a mental model or even a mathe-
matical model. In either case, the model of how your system operates contains the
information about the system that you deemed important enough to include. In
some models, this information might be called the signal. You leave out irrelevant
details, which you might call noise. There’s a third category of things that affect your
system’s performance: the things you didn’t even consider, because you don’t know
about them. The “unknown unknowns,” they’re sometimes called (perhaps Donald
Rumsfeld said it best: https://papers.rumsfeld.com/about/page/authors-note). These
things could affect experimental results by any amount, either positively or negatively.
You won’t anticipate them or have intuition about them because they’re missing from
your model.

 It’s plausible that the “unknown unknowns” of your system might include its most
valuable aspects. A Harvard Business Review article (http://mng.bz/yaAq) tells the story
of a proposed change to Microsoft’s Bing search engine. A domain knowledge–based

http://mng.bz/yaAq
http://mng.bz/Xao6
https://papers.rumsfeld.com/about/page/authors-note
http://www.jstor.org/stable/3094570
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decision made the change a low priority for implementation, but when it was finally
coded up and put into production, it had a tremendous positive impact on revenue
(over $100 million per year). It was simply the case that no one could understand the
system—the code, the design, the users, and so on—completely enough to predict the
dramatic impact of that change. Not because they weren’t smart. Not because they
weren’t knowledgeable. Just because Bing, the user base, and the world they interact
with are collectively just too complex.

 If your company is competitive and surviving, there’s a good chance your “unknown
unknowns” overlap with your competitors’. (My reasoning for this claim is that if your
competitor discovered something valuable enough, it would either find its way into
your product, too, or your company would be competed away.) If that’s the case, then
to do something novel—to find value where your competitors haven’t—you’ll need to
make changes to your system that you can’t evaluate with your existing domain knowl-
edge. You’ll need to run experiments instead.

 Domain knowledge is valuable. It will help you generate ideas and prioritize
them—to make good bets. But domain knowledge won’t tell you outcomes. To under-
stand impact on business metrics, you need to take experimental measurements. In
addition, I posit that the most valuable changes you make to your system may come as
surprises, creating impact unpredicted by domain knowledge.

1.3.2 Offline model quality

It is common practice among MLEs to include a prediction model (e.g., a classifier) as
a component in a system. It is not an uncommon experience to improve a model’s fit-
quality metric (e.g., cross-entropy) and yet not see the business metric improve when
the model is deployed.

 Let’s say you build a model that predicts whether a user will click on news articles
about sports. You gather a data set from production logs. It contains examples of
sports articles that were presented to a user along with a record of which articles the
user clicked on. Your model analyzes each article’s headline and predicts clicks very
well. When you’re done building your model, you test it on out-of-sample data—data
that wasn’t used in the fitting process—just to be sure you didn’t overfit. The model
works great.

 Next you put your model into production like this: Every time a user loads the
sports news page, you sort the articles by your model’s prediction, hoping to show
the articles the user is more interested in nearer to the top of the list. You find that the
user isn’t more likely to click on the articles near the top. In fact, your model no lon-
ger seems to predict clicks very well. The model wasn’t overfit. You checked for that.
It’s something different. The data used to fit your model was missing counterfactuals—
events that happen in your system after you deploy a change but that didn’t happen
before deployment.

 The historical data you used to fit the model was generated by the system without
your model in it. The articles were sorted some other way (perhaps sorted by date, or
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maybe using a different click-prediction model). When you fit your model, you
were teaching it how users responded to that old system, the one with the old sort-
ing method. Users responded differently to the new sorting method. It is difficult,
if not impossible, to predict exactly how users will respond to the deployment of a
new model.

 The same experience might be had by a quant. They could build a new price-
change prediction model using a regression, find that it has a higher R 2 (a common
measure of the quality of a fit) than their old model, and works well out-of-sample, but
still, when deployed, the profit of the strategy does not improve. The market is made
up of traders—some algorithmic, some human—and they will respond differently to
the new model’s presence in the market than they did to the old model’s. In this case,
during fitting, the quant taught the new model about the old market, the one in
which the new model was not a participant.

 This is such a common experience that most quants and MLEs will (eventually) be
familiar with it. The Facebook ML Field Guide, episode 6 (http://mng.bz/M07n) refers
to this problem as the “online-offline gap.” The only way to be sure you’ve improved
the system is to run the final stage of the workflow, the online measurement.

1.3.3 Simulation

Simulations are tools that estimate a system’s business metrics offline. They might com-
bine logged data, models of users or markets, scientific models, or heuristics. They
can vary considerably in their form from domain to domain.

 Simulations differ from the simple fitting metrics (cross-entropy or R 2) discussed
in the previous section. Simulations typically account for all components of a system
and aim to produce numbers like revenue or user engagement that may be compared
to the numbers that come from experimental measurements.

 For example, a standard quant’s tool is a trading simulation. Offline, it runs his-
torical market data—trades and quotes—through the same trading strategy code
that is used in production. When that strategy asks to execute a trade, the simulator
mimics the behavior of the market using heuristics or a model of the market. From
this simulation, a quant can estimate profit, risk, shares traded, and other useful
business metrics.

 Simulations can give more precise answers—meaning numbers with smaller error
bars—than experiments because they can use much more data. For example, a single
simulation might process 1 month to 10 years of data, depending on the timescale
over which the strategy trades, in a single run. This simulation might take minutes to
hours to run, depending on the complexity of the strategy. An experiment, on the
other hand, that takes a measurement with 1 month of data needs to run for 1 month.
Want 10 years of experimental data? You’ll wait 10 years.

 Simulations may also be run multiple times on the same data set. Each run could
try slight variations on the same strategy and allow the quant to choose the best one—
the one with the best profit-to-risk tradeoff, for example—to trade in production.

http://mng.bz/M07n
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With experiments multiple runs are impossible. You can’t trade for a month, say, then
“rewind” real life and trade again with a different strategy. There are effective ways to
compare different strategies experimentally, but the process is orders of magnitude
faster in simulation.

 Simulations may be more precise and faster, but experiments are more accurate.
Simulations might be biased (inaccurate) because of missing counterfactuals, just like
prediction models. What happens, for example, when a trading strategy sends an
order to an exchange? It might show up in the market, and other traders will see and
respond to it. This changes future market data, which is then seen by the trading strat-
egy and used for its decisions, and so on. Other traders’ real responses to our actions
simply don’t exist in simulation.

 MLEs use simulation, too. Engineers working on Facebook Feed use a simulator
that replays logged data through the Feed code that estimates users’ responses. In
“Combining online and offline tests to improve News Feed ranking” (http://mng.bz/
aPgB), they note that their offline simulations are biased. While the simulation results
are related to real results, they don’t match exactly and the relationship between them
is nontrivial. (The blog post goes on to design a model-based mapping from simula-
tion results to experimental results.)

 Researchers who study a field called evolutionary robotics design robot controllers—
pieces of code that take in sensor information and output commands to a robot’s
actuators—using algorithms inspired by evolution. The evolutionary algorithms search
for controller parameters that optimize the performance of the robot as measured
by a simulation. The researchers notice so often that controllers designed in simu-
lation don’t work on real robots that they have coined a term for this effect: the
reality gap.

 In a live-streamed event, Tesla Autonomy Day (https://youtu.be/Ucp0TTmvqOE,
2:02:00–2:06:00), CEO Elon Musk is asked why Tesla relies so much on data col-
lected from real drivers instead of training their autonomous driving controller via
simulation. He says that they do use simulation, but that since they “don’t know what
they don’t know”—and all of what they don’t know would be missing from the simu-
lation—they invest effort and money into collecting lots of real data. In the same
video, AI director Andrej Karpathy gives several examples of rare, unanticipated
images from around the world that need to be interpreted by their vision system.
Without appealing to real-world data, their system would never learn to deal with
these images.

 Simulation is a powerful offline design tool. Simulations can be used in the second
stage of the workflow to generate estimates of business metrics. Because they tend to
be biased, and you can never know exactly how, it is always necessary to test changes to
your system with an experiment.

http://mng.bz/aPgB
http://mng.bz/aPgB
http://mng.bz/aPgB
https://youtu.be/Ucp0TTmvqOE
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Summary
 Experimental optimization is the process of improving an engineered system

using measurement-based design decisions.
 Experimental methods minimize the time and risk associated with experimen-

tal measurements.
 Experiments are the most accurate way to measure the impact on business met-

rics of changes to an engineered system.
 Domain knowledge, prediction models, and simulation are powerful supple-

ments to experiments but are not replacements for them.



A/B testing: Evaluating
a modification to

your system
In chapter 1, you saw that the final step in the engineer’s workflow is to measure
how business metrics are impacted by a modification of your system. You do this by
running an experiment on the modified production system. Experiments are the
most accurate way to measure changes in business metrics.

 In this chapter, you’ll learn how to run an A/B test, the simplest and most
widely used type of experiment. An A/B test measures the business metric for each
of version A and B. If you find that B has a better business metric, you make the
modification permanent; otherwise you leave the system as is.

 An A/B test has three stages (figure 2.1):

 Design—You prepare for the experiment by determining how many mea-
surements to take. Taking multiple measurements, called replication, reduces

This chapter covers
 Randomizing to remove measurement bias

 Replicating to reduce measurement variation

 Determining how many measurements to take

 Deciding whether to accept or reject your system 
change
15
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natural variation in your final estimate of the business metric for A and B (see
section 2.2).

 Measure—When you measure the business metric, you’ll take care to measure
only the effect of switching from version A to version B by using a technique
called randomization. Without randomization, it’s easy to inadvertently include
the impact of other factors that affect your business metric—time of day, user
demographics, location of a data center, and so on.

 Analyze—Finally, you’ll compare the business metric estimates for A and B and
decide whether to switch to B or not.

There’s a saying in engineering circles: “In God we trust. All others bring data.” It
means that you should make decisions based on measurements of business metrics
rather than on intuition or other soft criteria. An A/B test is the gold standard for
acquiring the data you need to make good-quality decisions. By the end of this chap-
ter, you should be able to execute the three stages of an A/B test—design, measure,
and analyze—to decide whether to modify your system.

2.1 Take an ad hoc measurement
To understand A/B testing, we need to first understand the problems it solves. One
way to do that is to, for a moment, ignore A/B testing methods and, instead, proceed
simply and intuitively and see what problems we run into. Specifically, let’s reconfig-
ure a trading system and see if that reduces trading costs.

 Imagine you’re a quant, and you’re developing an agency trading system. The sys-
tem takes in customer orders like “Buy 1,000 shares of AAPL stock over the next
hour,” and after buying the shares on behalf of the customer, it reports the cost of exe-
cuting the trade. Customers, of course, prefer lower costs, so you use execution cost as
your business metric. Your job as a quant is to find ways to modify the trading system
that result in lower execution cost.

 A simple change you can make to the system is to buy the shares on a different
exchange. An exchange is a third-party service that facilitates anonymous trading between
any two trading systems. Your system sends trading commands to the exchange’s
server. A command might be “Buy 100 shares of AAPL right now.” If, for example, it
sends that command ten times over the course of an hour, it will have purchased 1,000
shares of AAPL stock for one of your customers.

Decide whether to

accept or reject

B version

Take multiple

measurements of

business metric

Determine number

of measurements

to take

Design Measure Analyze

Figure 2.1 Three stages of an A/B test: Design, Measure, and Analyze.
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 At present, your system trades on an exchange run by a company called ASDAQ
(version A of your system). You suspect it might be cheaper to trade on the exchange
BYSE (version B of your system). You’ll measure execution cost on each exchange and
compare to see if your suspicion is correct.

 First, we need to take a brief detour. In this section, we’re discussing the idea of
taking measurements on a trading system that doesn’t actually exist. For the purpose
of exposition and teaching in this book, we’ll create a simulator and take measure-
ments on it. The simulator is a stand-in for the real trading system.

 We’ll write a Python function that returns a simulated execution cost for each
exchange. We’ll take measurements on that function and treat them as if they were
measurements on the trading system. Let’s build the simulator, then move on to the
measurements.

2.1.1 Simulate the trading system

A simulation is a bit of code that mimics the behavior of some real-world system. The
following listing simulates a measurement on your trading system. It returns the exe-
cution cost for a single trade.

def trading_system(exchange):
    if exchange == "ASDAQ":
        execution_cost = 12
    elif exchange == "BYSE":
        execution_cost = 10
    execution_cost += np.random.normal()    
    return execution_cost 

The function takes an exchange name as an argument so that we can measure the cost
of trading on each exchange and compare. Notice that the cost varies randomly from
trade to trade. The randomness is meant to represent all the factors that might
change from trade to trade: the stock being traded, the number of shares, the direc-
tion (i.e., buy or sell), natural market costs induced by the set of traders who happen
to be in the market at the same time as you, and so on.

 As a rule, let’s not look too closely at what’s going on inside our simulator. In a
real-life situation, you won’t know in detail the process that generates your business
metric values. The business metric will be a result of the interactions between your
trading system, the exchanges, the other traders, and your customers—each of which
is complex in its own right. When we don’t know what’s happening inside a function,
and we just know its inputs (here, exchange) and outputs (here, execution_cost), we
say the function is a black box. This simulator—and any real-life system you work on as
an engineer—may be treated as a black box. Try out the simulator:

 

Listing 2.1 Simulate the trading system

The cost varies 
randomly from 
trade to trade.
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np.random.seed(17)
trading_system("ASDAQ")
12.28

You just ran a simulated trade on ASDAQ and measured the execution cost to be
12.28 mips. (Trading costs may be measured in various units, most with silly-sounding
names. We’ll call ours mips for the sake of conversation.)

 Note that the first line—np.random.seed(17)—is there so that when you run the
code, you get the same answer as is written above (i.e., 12.28). Without it (or with an
argument other than 17), the call to np.random.normal() will return a different
value, and thus trading_system() will return a different value. Feel free to run with-
out a call to seed() or with a different seed argument. The seed is there to make it
possible to discuss the behavior of the code in precise terms. You’ll see calls to seed()
appear throughout the book for that reason. Now let’s get to the work of comparing
the costs of trading on the two exchanges.

2.1.2 Compare execution costs

Your task is to compare the execution cost of trades on ASDAQ to that of trades on
BYSE. You’ll start with the simple, intuitive approach of executing one trade on each
exchange, recording the cost of each, and comparing:

np.random.seed(17)
print (trading_system("ASDAQ"))
print (trading_system("BYSE"))
12.28
8.14

The trade on ASDAQ cost 12.28 mips, and the trade on BYSE cost 8.14 mips. It was
cheaper to trade on BYSE. Try that again:

np.random.seed(18)
print (trading_system("ASDAQ"))
print (trading_system("BYSE"))
12.08
12.19

This time it was cheaper to trade on ASDAQ, which contradicts your first measure-
ment. The measured value varies from measurement to measurement.

VARIATION

If you keep running measurements, you’ll find that sometimes ASDAQ will be cheaper
and sometimes BYSE will be. Figure 2.2 shows a histogram of 1,000 measurements on
each exchange.

 This sort of variation from measurement to measurement is typical, and it makes your
decision about which exchange to use unreliable. A/B testing uses a technique called
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replication—averaging over multiple measurements—to increase the reliability of your
decision. To get a feel for how this works, let’s take an average over 100 measurements:

np.random.seed(17)
print(np.array([trading_system("ASDAQ")
        for _ in range(100)]).mean())
print(np.array([trading_system("BYSE")
        for _ in range(100)]).mean())
12.11
10.01

This measurement reports ASDAQ’s average execution cost as 12.11 and BYSE’s as
10.01, indicating that BYSE is the better choice. Try that again:

print(np.array([trading_system("ASDAQ")
        for _ in range(100)]).mean())
print(np.array([trading_system("BYSE")
        for _ in range(100)]).mean())
11.88
10.00

Again, the average-of-measurements approach suggests that BYSE is the better choice.
If you repeat this procedure, you’ll find that BYSE is reliably measured to have lower
execution cost than ASDAQ.

BIAS

Since you need to take many measurements, you’ll need to do a little planning to get
them all done. You’ll take all the BYSE measurements in the morning, go get lunch,

Execution cost (mips)

Figure 2.2 Execution costs of 1,000 trades on ASDAQ and 1,000 trades on 
BYSE. BYSE is usually cheaper to trade on than ASDAQ.
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then take the ASDAQ measurements in the afternoon. What you aren’t aware of is the
fact that all trading—regardless of exchange—is cheaper in the afternoon (for rea-
sons that have to do with natural market dynamics). The following listing simulates
this effect; let’s call it the time-of-day effect.

def trading_system_tod(exchange, time_of_day):
    if time_of_day == "morning":
        bias = 2.5                    
    elif time_of_day == "afternoon":
        bias = 0                      
    return bias + trading_system(exchange)    

This simulator captures the effect of switching between exchanges by calling trading_
system(), but it adds an extra cost in the morning, making all trading more expen-
sive in the morning (cheaper in the afternoon). This extra cost is called a bias. Specifi-
cally, it’s a sampling bias, indicating that taking a measurement (also called sampling)
under different conditions will consistently yield different results. For example, let’s
measure a single exchange—ASDAQ—many times in the morning and many times in
the afternoon. (Notice that we’re taking many measurements to combat variation.)

np.random.seed(17)
print(np.array([trading_system_tod("ASDAQ", "morning")
        for _ in range(100)]).mean())
print(np.array([trading_system_tod("ASDAQ", "afternoon")
        for _ in range(100)]).mean())
14.61
12.01

This measurement says that ASDAQ is cheaper to trade in the afternoon. If we repeat
it, we’ll get the same qualitative result: cheaper in the afternoon. Now, if we follow
the proposed plan of measuring BYSE before lunch and ASDAQ after, we’ll get a
result like

np.random.seed(17)
print(np.array([trading_system_tod("BYSE", "morning")
        for _ in range(100)]).mean())
print(np.array([trading_system_tod("ASDAQ", "afternoon")
        for _ in range(100)]).mean())
12.61
12.01

If we were unaware of the time-of-day effect, we would conclude from this measure-
ment that ASDAQ’s trading costs were lower than BYSE’s. This is the opposite result of
the previous section, and it is wrong. Also, it persists. If you rerun this measurement,
you’ll usually get the result that ASDAQ is cheaper.

Listing 2.2 A simulator that accounts for time of day

Cost is lower in 
the afternoon.

ost is still
 function
xchange.
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 This incorrect result comes from applying the time-of-day bias differently—and
consistently—to ASDAQ than to BYSE. When a bias is applied differently and consis-
tently (to the two versions of the system being compared) like this, it’s called con-
founder bias. Confounder bias can lead to incorrect decisions about whether to make
changes to your system.

 A simple trick to remove confounder bias is randomization. You still run your exper-
iment in both morning and afternoon, as you planned, but every time your system
makes a trade, it should flip a coin. If the coin comes up heads, send the orders to
ASDAQ. If it comes up tails, send them to BYSE. You’ll find that about half of your
ASDAQ orders happen in the morning and half happen in the afternoon. The same
will hold true for BYSE. The following listing shows how to do this explicitly.

def randomized_measurement():
    asdaq_measurement = []
    byse_measurement = []
    for tod in ["morning", "afternoon"]:    
        for _ in range(100):   
            if np.random.randint(2) == 0:     
                asdaq_measurement.append(trading_system_tod("ASDAQ", tod))
            else:
                byse_measurement.append(trading_system_tod("BYSE", tod))
    return (np.array(asdaq_measurement).mean(),
            np.array(byse_measurement).mean()) 

Note that np.random.randint(2) evaluates to zero 50% of the time and to one 50%
of the time, similar to a coin flip coming up heads 50% of the time and tails 50% of
the time.

 Running randomized_measurement() produces the result

np.random.seed(17)
randomized_measurement()
(13.39588870623852, 11.259639285763223)

These measurements show that ASDAQ is more expensive than BYSE, which is cor-
rect. If you run randomized_measurement() again, you’ll find that ASDAQ is more
expensive. Randomization removed the time-of-day bias from your measurement.

 The amazing thing is that you don’t have to know about the time-of-day effect to
remove it from your measurements. Put another way, the randomization logic (i.e.,
flipping a coin) does not use any information about the biases in your system. Ran-
domization removes all confounder biases without you having to know they even exist.
But beware, they do exist, and if you don’t randomize, you’ll often end up making bad
decisions about how to improve your trading system.

 Variation and bias are the two problems that experiments aim to solve. Variation
causes measurements to be sometimes too high and sometimes too low, although on

Listing 2.3 A randomized measurement

Measure before 
and after lunch.

Take 100
measures in

each time
period.

Flip a coin to choose 
the exchange.
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average they’ll be correct. Bias causes measurements to be consistently too high or too
low, no matter how many measurements you average over.

 A/B testing uses replication to reduce variation and randomization to remove bias.
In section 2.2, we’ll look a little more closely at replication.

2.2 Take a precise measurement
Variation is both unpredictable and out of your control, but that doesn’t mean you
can’t make a meaningful decision about which exchange to trade on. The key point
to understand is that once you make that decision, you’ll trade on that exchange
over and over—perhaps thousands of times per day for months or maybe years. (You
will only stop if you come up with an even better way to trade.) If you were to trade
on ASDAQ for that whole time, you’d usually achieve lower execution costs than if
you traded on BYSE. Even though sometimes BYSE would have been a better choice,
usually ASDAQ is.

 A concept that captures this idea is expectation. The expectation of the execution cost
of ASDAQ is 12 mips. You can see in figure 2.2 that the dark histogram is centered on 12
mips and varies about that number. The tendency of execution costs to always be
around 12 mips is what makes measurements useful. Your measurements now—during
experimentation—will lie near the expectation, and your measurements in the future—
during normal system operation—will also lie near the expectation.

 The expectation is predictable, even if the variation is not. It’s this predictability
that makes experiments useful. It enables you to imagine that your measurement of
expectation will hold in the future, after the experiment is over. Variation just gets
in the way. We’ll see in the next section how A/B testing copes with variation in
measurements.

2.2.1 Mitigate measurement variation with replication

You saw in the previous section that simply taking a measurement of execution cost on
each exchange and comparing them wasn’t sufficient to enable you to make a good
decision about which exchange to trade on. You tried this method twice and got two
different answers, which is unacceptable. You’d prefer to use a procedure that pro-
duces reliably good decisions. Since your decisions are based on your measurements,
you need to take reliably good measurements. The solution is to take many measure-
ments and average them. Comparing averages is more reliable than comparing single
measurements. We know a few facts about expectation:

 Measurements of a business metric are reliably near their expectation.
 Future system performance is measured by expectation.
 Expectation is predictable.

Here’s one more useful fact: an average over multiple measurements is typically closer
to the expectation than is any single measurement. Putting these facts together yields
an improved procedure for deciding which exchange to trade on: 
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1 Take multiple measurements of execution cost on each exchange.
2 Take an average of the measurements for each exchange.
3 Use whichever exchange has a lower average cost.

The process of taking multiple measurements is called replication in experimentation
parlance.

NOTE To make our discussion clearer, I’m going to refer to a single measure-
ment of execution cost as an individual measurement and an average over mul-
tiple individual measurements as an aggregate measurement. This is not standard
terminology, but standard terminology may refer to each of them as “mea-
surements,” which can get confusing. You may also see individual measure-
ments referred to as observations or samples in other texts. In these new
terms, we’ll say that the procedure is to compare aggregate measurements of
execution cost to decide whether to use exchange ASDAQ or BYSE.

To see how aggregate measurements are closer to the expectation, focus, for a moment,
on ASDAQ. Take three measurements:

np.random.seed(17)
measurements = np.array([trading_system("ASDAQ") for _ in range(3)])
print(measurements) 
[[12.27626589 10.14537192 12.62390111]

These values are all near the expectation, 12 mips. Now take the average (the mean):

measurements.mean()
11.681846307513723

The mean, 11.68, is closer to 12 (the expectation) than two of the three values in the
array c. We can quantify how much closer by computing deviations from the expecta-
tion for all the individual measurements

print (measurements - 12)
[ 0.27626589 -1.85462808  0.62390111]

and similarly for the aggregate measurement

measurements.mean() - 12
-0.3181536924862769

The mean is only about .32 from expectation, whereas the individual measurements
are as far as 1.85 away.

 We normally describe the size of deviations by the standard deviation: SD=np
.sqrt(((measurements - 12)**2).mean()). In this special situation where we have a
simulator available, we can simply read from trading_system() (listing 2.1) that
the expected cost is 12 mips, so we can compute deviations from that. When dealing
with real-life data—from a black box system—we won’t know the expectation. Instead



24 CHAPTER 2 A/B testing: Evaluating a modification to your system
we’ll estimate the expectation by the mean and write sd=np.sqrt(((measurements -
measurements.mean())**2).mean()).

 You can simplify all that by using NumPy’s built-in standard deviation function:
sd=measurements.std(). The standard deviation of the individual measurements is
about sd=1.1.

 If we repeat this little three-measurement experiment multiple times, we’ll get
multiple answers, but the mean will in general be closer to the expectation than an
individual measurement. Figure 2.3 shows 1,000 individual measurements and 1,000
aggregate measurements.

Notice in figure 2.3 that the aggregate measurements are typically closer to the expec-
tation than the individual measurements (i.e., the histogram of aggregate measure-
ments is narrower). If we add more individual measurements to the aggregate, the
histogram will get even narrower. See figure 2.4.

 This is powerful. While the variation in an individual measurement is not control-
lable, the variation in an aggregate measurement is. If you want a single aggregate
measurement to be closer to the expectation, you just need to add more individual
measurements to it. We say that an aggregate measurement is more precise if the histo-
gram of multiple aggregate measurements is narrower. Replication reduces the varia-
tion in—or, alternatively put, increases the precision of—the aggregate measurement.

 To really appreciate the power of replication, recall that any system you experi-
ment on is a black box, so you never get to know the expectation. (We knew it was

Execution cost (mips)

Individual

Aggregate of 3

Figure 2.3 Histogram of 1,000 aggregate measurements of ASDAQ cost overlaid 
on histogram of 1,000 individual measurements. Notice that the aggregate 
measurement histogram is narrower.
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12 mips here only because we could read the code for trading_system(), and that
code was very simple.) By replicating, you can take more precise measurements of the
expectation, even though the true expectation is unknowable.

 Back to your task of deciding between ASDAQ and BYSE. Compare measurements
of execution cost again, but this time compare aggregate measurements of, say, 300
individual measurements each. The following listing shows a function that takes an
aggregate measurement.

def aggregate_measurement(exchange, num_individual_measurements):
    individual_measurements = np.array([
        trading_system(exchange)              
        for _ in range(num_individual_measurements)   
    ])
    return individual_measurements.mean()     

A comparison of aggregate measurements

np.random.seed(17)
print (aggregate_measurement("ASDAQ", 300))
print (aggregate_measurement("BYSE", 300))
12.000257642551059
10.051095649188758

Listing 2.4 Aggregate measurement

Execution cost (mips)

Individual

Aggregate of 3

Aggregate of 30

Aggregate of 300

Figure 2.4 As more individual measurements are added to the aggregate, the 
aggregate measurements fall closer to the expectation of 12 mips (i.e., the 
histogram gets narrower as the number of individual measurements in the 
aggregate increases).

Take an individual 
measurement...

...multiple times...

...then average.
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suggests that we use BYSE instead of ASDAQ. Trying again

print (aggregate_measurement("ASDAQ", 300))
print (aggregate_measurement("BYSE", 300))
11.987318214094266
10.021053044438455

results in the same decision—use BYSE.
 Figure 2.5 repeats these aggregate measurements 1,000 times and displays them as

histograms.

If you were to compare any aggregate measurement from ASDAQ’s histogram (the
dark one) in figure 2.5 to any aggregate measurement from BYSE’s histogram, you’d
decide that ASDAQ was more expensive than BYSE. This shows that an aggregate of
300 individual measurements would produce a very reliable decision. Next up, we’ll
estimate the standard deviation in an aggregate measurement and call it the stan-
dard error.

STANDARD ERROR

We can see exactly how much replication reduces variation by calculating the standard
deviation of the aggregate measurements, just like we did with the individual measure-
ments. For example, we can collect 1,000 aggregate measurements consisting of three
individual measurements each with

Execution cost (mips)

Figure 2.5 Aggregate measurements of execution costs incorporating 300 
individual measurements each, repeated 1,000 times on ASDAQ and 1,000 times 
on BYSE. The aggregate measurements for BYSE are always lower (which is 
better) than those for ASDAQ.
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np.random.seed(17)
agg_3 = np.array([aggregate_measurement("ASDAQ", 3)
               for _ in range(1000)])

and similarly for aggregate measurements consisting of 30 or 300 individual
measurements:

agg_30 = np.array([aggregate_measurement("ASDAQ", 30)
                for _ in range(1000)])
agg_300 = np.array([aggregate_measurement("ASDAQ", 300)
                 for _ in range(1000)])

The standard deviation of each is

print (agg_3.std(), agg_30.std(), agg_300.std())
0.5721786019484487 0.18071680926647693 0.05808839858239513

You can see that the standard deviation—the width of the histograms in figure 2.4—
decreases as the number of individual measurements in each aggregate measure-
ment increases.

 Note that we usually refer to the standard deviation of an aggregate measurement
as the standard error. If we know the standard error, written SE, then we know how far,
in some sense, the aggregate measurement could be from the true expectation of the
business metric. When we run an experiment, the resultant aggregate measurement is
a single number. In the preceding code, we generated 1,000 such numbers, and in the
figures, we plotted those numbers as histograms. Imagine the following:

 The aggregate measurement produced by your experiment is a single value in a
histogram.

 The center of the histogram is the expectation of the execution cost (the busi-
ness metric).

 The width of the histogram is SE.

Based on this, it’s reasonable to say that the expectation—the true execution cost—is
probably within SE mips of your aggregate measurement’s value.

 The “catch” in all of this is that when you run an experiment, you produce only
one aggregate measurement value (the average of many individual measurements).
Since you can’t calculate the standard deviation of a single value, you can’t calculate
the SE directly.

 Fortunately, you can estimate SE. If you take num_ind individual measurements
and collect them in an array, costs, then

 The aggregate measurement is costs.mean().
 The standard deviation of the individual measurements is sd_1 = costs.std().
 The standard error of the aggregate measurement is se = sd_1/np.sqrt(num_

ind).



28 CHAPTER 2 A/B testing: Evaluating a modification to your system

mea
We often denote the number of individual measurements as N and sd_1 as σ and write

SE = σ/

This suggests that a more complete aggregate measure might look like the following
listing.

def aggregate_measurement_with_se(exchange, num_individual_measurements):
    individual_measurements = np.array(
        [trading_system(exchange) for _ in 

range(num_individual_measurements)]
    )                     
    aggregate_measurement = individual_measurements.mean()    
    sd_1 = individual_measurements.std()                   
    se = sd_1 / np.sqrt(num_individual_measurements)       
    return aggregate_measurement, se 

This new function reports SE along with the aggregate measurement:

np.random.seed(17)
print (aggregate_measurement_with_se("ASDAQ", 300))
print (aggregate_measurement_with_se("BYSE", 300))
(12.000257642551059, 0.060254756364981225)
(10.051095649188758, 0.05714189794415452)

You can look at these numbers—from a single experiment, with no histograms avail-
able—and claim that BYSE is very likely the better choice by reasoning like this:
BYSE’s expectation might be higher than the aggregate measurement; perhaps it’s
10.05 + 0.057 = 10.107. Similarly, ASDAQ’s expectation might be lower than the aggre-
gate measurement; perhaps it’s 12.00 – .060 = 11.94 mips. Even if both of those were
true, BYSE would still be cheaper than ASDAQ.

 An aggregate measurement gives a more precise estimate of the expectation of a
business metric than an individual measurement, which, in turn, produces a more
reliable decision. Furthermore, you can increase precision (lower SE) by taking more
individual measurements.

Listing 2.5 Aggregate measurement with SE

Standard error and 
The standard deviation of the aggregate measurement, which we call the standard
error, is

While writing this book, I was asked where the  comes from.

N

Collect 
individual 
measurement.

Calculate
aggregate
surement.

Calculate 
standard error.
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Your measurement procedure has improved a great deal by switching from individual
measurements to aggregate measurements, but it can get even better. Since it takes
time to collect individual measurements, it’s in your interest to take no more of them
than you really need to make a good decision.

First, recall that for random variables X and Y

i. VAR(X) = STD2(X)

ii. VAR(X + Y) = VAR(X) + VAR(Y)

iii. For any number a,  

These properties follow directly from the definitions of variance (VAR) and standard
deviation (STD).

Point ii only holds if X and Y are independent. We’ll discuss this in some detail in
chapter 8, section 8.1. For now, assume they’re independent.

Let’s say we take N individual measurements. Then the aggregate measurement is

The variance of the aggregate measurement is, by (ii) and (iii) (taking a = N), above

All the individual measurements are taken from the same system, so they all have
the same standard deviation. Name it σ = STD(X).

By (i), the variance is just the standard deviation squared, VAR(X) = σ 2. Substituting
that into the previous equation gives

or

“Standard error” (SE) is just another name for the standard deviation of the aggregate
measurement, so by (i) 

That’s where the  comes from. 
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 There’s a tradeoff, however. As you decrease the number of individual measure-
ments, the standard error of the aggregate measurement will increase, which will
make the histograms of ASDAQ’s and BYSE’s costs wider and, thus, more likely to
overlap. Then it will be less clear which exchange has the lower cost. A/B test design
determines the smallest number of individual measurements you can take without
making your uncertainty about which exchange to choose too large. The next section
explains this further.

2.3 Run an A/B test
You’ve seen how replication reduces variation, so you want to take multiple individual
measurements of execution cost. But these measurements aren’t free:

 The process (the measurement stage) will take some of your time. You might
have to configure software, monitor the system for safety reasons, or even
explain to customers or other members of your firm why system behavior is dif-
ferent than usual.

 When measuring both ASDAQ and BYSE, half of your trades are going to the
one with the higher cost. The sooner you stop the experiment, the sooner you
can send all trades to the better exchange.

 The less time a single experiment takes, the more experiments you can run.
You have lots of ideas, and they each need to be A/B tested.

These are all experimentation costs. There’s clearly motivation to limit the number of
individual measurements, but if you take too few of them, your SEs will become so
large that you won’t be able to make a reliable decision about which exchange is bet-
ter. There is a tradeoff between reducing experimentation costs and making reliable
decisions.

 To make this tradeoff successfully, it’s helpful to “begin with the end in mind.”
First, understand how you’ll analyze the measurements in the final stage of an A/B
test (the analyze stage, shown in figure 2.6). Once you know that, you’ll be able to
determine—in the design stage, at the very start—the right number of individual mea-
surements to take.

In section 2.3.1, we’ll discuss the details of the analyze stage. Then, in section 2.3.2,
we’ll see how to use this new information to design an A/B test.

Decide whether to

accept or reject

B version

Take multiple

measurements of

business metric

Determine number

of measurements

to take

Design Measure Analyze

Figure 2.6 Begin with the end in mind. Understanding what happens in the analyze 
stage will help you to design an A/B test.
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2.3.1 Analyze your measurements

When you reach the analyze stage, you’ll have collected all the individual measure-
ments. Your goal will be to decide whether future trades should be on ASDAQ or BYSE.
Ideally, you’d know the true expected execution cost for each exchange and just choose
the exchange with the lower expected cost. In practice you have, instead, some number
of individual measurements with which to make the best decision you can.

 The A/B testing approach to making this decision is to try to be “probably not
wrong.” We say “probably” instead of “definitely” because you don’t know the expecta-
tions. Instead, you know a single aggregate measurement taken (randomly) from a
histogram (or distribution) of potential values (figure 2.7).

To make the analysis a little simpler, let’s define a quantity delta, the difference
between the aggregate measurement of BYSE and ASDAQ. Explicitly:

np.random.seed(17)
num_individual_measurements = 10
agg_asdaq, se_asdaq = aggregate_measurement_with_se("ASDAQ",
                    num_individual_measurements)
agg_byse, se_byse = aggregate_measurement_with_se("BYSE",
                    num_individual_measurements)
delta = agg_byse – agg_asdaq
se_delta = np.sqrt(se_byse**2 + se_asdaq**2)

Since delta = agg_byse – agg_asdaq, if we were to find that delta was positive, then
we’d conclude that ASDAQ had a lower execution cost and that we should send all

Potential ASDAQ

aggregate measurement

values (mips)

Figure 2.7 In an A/B test, you take and analyze a single aggregate measurement 
drawn from a histogram of potential values.
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trades to ASDAQ. Notice that we can estimate the SE of delta with se_delta =
np.sqrt(se_byse**2 + se_asdaq**2). The quantity delta can also be thought of as
being drawn randomly from a distribution of possible values, just like the BYSE and
ASDAQ values. The A/B testing decision logic works like this:

1 Assume the true value—the expectation—of delta is zero. In other words, that
BYSE and ASDAQ have the same expected execution costs.

2 If your measurement of delta is so far from zero that there’s less than a 5%
chance the statement in step 1 is right, then act as if step 1 was wrong and the
true delta is not zero.

Step 2 says that you’re going to act as if the true delta is not zero. That means that if
you measure delta much lower than zero, you’ll start sending all trades to BYSE.
You’ll never know for sure if this was the right decision, since you can’t observe the
true, expected value. What you’ll be doing is taking a bet—with at most a 5% chance
of being wrong—that BYSE is better.

 For convenience, we usually work with z = delta/se_delta. This value, called the z
score, is convenient because dividing by se_delta makes z’s standard deviation equal
to one. Following step 1, we assume z has an expectation of zero.

 To make step 2 work, we need to be able to reason about the probability of delta
taking on some value—equivalently, of z taking on some value. Figure 2.8 shows the
intuition behind that.

Figure 2.8 The distribution of z scores has mean zero (by assumption) and 
standard deviation one. The shaded area to the left of the vertical line is 5% of the 
total shaded area. The probability of a measurement of z having a value to the left 
of the vertical line is 5%.
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Your aggregate measurement can now be represented as a single value drawn from
the distribution plotted in figure 2.8. There is a 5% chance that value will fall to the
left of the dashed vertical line. If it does, you should bet that your assumption in step 1
was incorrect. You should bet that the expectation of z is truly less than zero, which
means that the expectation of delta is less than zero, which means that BYSE has
lower costs than ASDAQ. When z is to the left of the vertical line, we say that the
aggregate measurement is statistically significant.

 When your bet is wrong—when z falls to the left of the vertical line, but the expec-
tation of z isn’t truly negative—we say that the A/B test has yielded a false positive. False
positives will occur 5% of the time by design. Placement of the vertical line sets the
rate of false positives at 5%. Move it to the right, and you’ll get more false positives.
Move it to the left, and you’ll get fewer.

 One more thing: the exact location of the vertical line in figure 2.8 is z = -1.64.
We know this because the shape of the distribution of z is always normal (aka, Gauss-
ian or “bell curve”), and for a normal distribution with mean zero and standard devia-
tion one (a unit normal), 5% of the distribution falls below –1.64. (This number is
available in any google-able cumulative unit normal distribution table.) We know that
z is normal because that’s guaranteed by the central limit theorem. 

 Okay, that’s a lie. More accurately, a normal distribution becomes a better and bet-
ter approximation of z (usually, but almost always) as we add more and more individ-
ual measurements to the aggregate measurement. The good news is that in practice,
quants, SWEs, and ML engineers are usually working with enough measurements for
this approximation to be a good one.

 In other words, use 1.64 unless you have a good reason not to. And use it like this:
If z<-1.64, act as if BYSE is better and start trading there. Otherwise, act as if BYSE
isn’t any better than ASDAQ and keep trading on ASDAQ. But always remember—in
the back of your mind, at least—that you’re really making a bet on which is better.
There is no certainty in these decisions.

 There’s another consideration in your decision about whether ASDAQ or BYSE is
better. It’s not a statistical one, but a practical, business-oriented one: How big of a dif-
ference in execution costs do you actually care about? If your system were trading on
ASDAQ before the A/B test and you found that BYSE were 1 mip cheaper than
ASDAQ, would you bother to switch over to BYSE? Switching everything over to BYSE
might take some effort. It might incur some risk. It might negatively impact your rela-
tionship with the ASDAQ exchange. Would 1 mip be enough to make the switch
worthwhile? What about 0.1 mip? 0.01 mip? Surely at some small-enough number
you’d answer, “No, it’s not worth switching.” That is the level we could call practical sig-
nificance, which we’ll denote prac_sig. For example, maybe prac_sig = 1.0 mip for
your agency trading system. Even if a measurement is statistically significant, if you
find that -0.1 < delta < 0.0 (i.e., if delta >= - prac_sig), you should still act as if
delta = 0 and not change your system.
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 Now that you know how you’ll use the measurements in the analysis stage, you are
ready to make a good plan about what measurements to collect. You are ready to
design an A/B test.

2.3.2 Design the A/B test

In an A/B test design (figure 2.9), you determine the number of individual measure-
ments that you’ll take in the measure stage. You want to take enough measurements
so that if ASDAQ and BYSE have different execution costs, you’ll be able to tell. More
precisely, if the difference between execution costs is large enough to be practically
significant, you want your aggregate measurement to be statistically significant.

The phrase statistically significant means, as defined in the previous section, that
z <-1.64. Starting from there, we can derive an expression for the required number
of individual measurements, num_ind. Recall that z = delta / se_delta and se_delta
= np.sqrt(se_byse**2 + se_asdaq**2). Let’s look more closely at se_delta.

 The standard error of an aggregate measurement, generally, may be estimated by
se = sd_1/np.sqrt(num_ind), where sd_1 is the standard deviation of the individual
measurements. Similarly, we can write se_delta = sd_1_delta / np.sqrt(num_ind),
where sd_1_delta = np.sqrt(sd_1_asdaq**2 + sd_1_byse**2). The variables sd_1_
asdaq and sd_1_byse are the standard deviations of the individual measurements on
their respective exchanges. We’ll make this all more explicit in listing 2.6, but for now
the point to focus on is that we can rewrite the statement z = delta / se_delta as

z = np.sqrt(num_ind) * delta / sd_1_delta

Finally, we rewrite z < -1.64 as 

np.sqrt(num_ind) * delta / sd_1_delta < -1.64

or, equivalently,

num_ind > (1.64 * sd_1_delta / delta)**2

This expression is the A/B test design. It says you must take at least this many individ-
ual measurements for your analysis stage to give a statistically significant result.
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Figure 2.9 In A/B test design, you determine the minimum number of individual 
measurements needed so that a practically significant difference in execution costs 
(the business metric) will also be statistically significant.
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 To be clear: this says that you’ll make num_ind trades on BYSE and num_ind trades
on ASDAQ; then you’ll compute two averages, agg_byse and agg_asdaq, from which
you’ll compute delta = agg_byse – agg_asdaq. That means you’re making 2*num_ind
trades in total.

 The problem with this expression is that, at design time, you don’t know delta or
sd_1_delta. They are summary statistics of the individual measurement that you
have yet to take. The good news is that you can find good design-time substitutes for
these numbers.

 First, in place of delta, substitute your practical significance level, prac_sig. By
doing this, you are saying that you want to be able to measure—to make statistically
significant—delta values that are at least as large (in magnitude) as prac_sig. Since
the value of prac_sig is based on business considerations, you may specify it at design
time without taking any measurements. In the previous section, we decided that a dif-
ference of prac_sig = 1.0 mips would be large enough to warrant switching your trad-
ing from ASDAQ to BYSE. Next, you can estimate sd_1_delta in one of two ways:

1 Take the standard deviation of existing measurements of your business metric
from logged data. For example, since your system was trading on ASDAQ
before you had the idea to test BYSE, you will have ASDAQ cost data in your
production logs. From that, you can calculate sd_1_asdaq directly. Then you
can guess that sd_1_byse = sd_1_asdaq. Usually this is a good guess. When you
are A/B testing a change to a production system, you’ll usually find that the
variation in a business metric doesn’t change much from version A to version B.
This is likely because you are changing only one isolated aspect of the system,
and the business metric variations are due to all aspects of the system (plus vari-
ations in the market). You can approximate sd_1_delta = np.sqrt(sd_1_
asdaq**2 + sd_1_byse**2) = np.sqrt(2*sd_1_asdaq**2).

2 Alternatively, in cases where you suspect that your change from version A to ver-
sion B is dramatic enough to make the variations (the sd_1s) different, you can
run a small-scale measurement just to measure sd_1. This is called a pilot study.
You could estimate sd_1_asdaq and sd_1_byse directly from logged costs col-
lected during a pilot study, then compute sd_1_delta from those estimates.

With these two substitutions—prac_sig for delta and an approximation for
sd_1_delta—you can complete your A/B test design with a function like the follow-
ing listing.

def ab_test_design(sd_1_delta, prac_sig):
    num_individual_measurements = (1.64 * sd_1_delta / prac_sig)**2     
    return np.ceil(num_individual_measurements)   

Listing 2.6 A/B test design

Ensure z < -1.64
when delta

< -prac_sig.
Round up to the
nearest integer.
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To complete your design, you estimate sd_1_asdaq from 100 samples collected from
your production logs:

np.random.seed(17)
sd_1_asdaq = np.array([trading_system("ASDAQ") for _ in range(100)]).std()

Then estimate sd_1_delta

sd_1_byse = sd_1_asdaq
sd_1_delta = np.sqrt(sd_1_asdaq**2 + sd_1_byse**2)

and specify prac_sig

prac_sig = 1

Finally, find the minimum number of individual measurements to take:

ab_test_design(sd_1_delta, prac_sig)
7.0

If you take seven individual measurements, you’ll have a 5% chance of a false posi-
tive—of incorrectly acting as if BYSE is better than ASDAQ.

 There’s one more adjustment you need to make. What happens if BYSE really is
better than ASDAQ, but you incorrectly conclude that it isn’t, and so you don’t switch
your trading to BYSE? That’s called a false negative. Contrast that with a false positive,
defined in section 2.3.1, where BYSE isn’t better, but you do switch. Just like you
adjusted num_ind to limit the rate of false positives, you’d like a way to limit the rate of
false negatives, too.

FALSE NEGATIVES

You just designed an A/B test that would limit the rate of false positive to 5%. You can
use a similar approach to also limit the rate of false negatives. By convention, we usu-
ally limit false negative occurrences to 20% of the time. (We discuss why the limits are
different in the sidebar.) We can adjust the number of individual measurements to
account for the 20% limit on the false-negative rate.

 Note that you may see the false-positive rate labeled as α and the false-negative rate
as β. The convention is then expressed as α = 0.05 and β = 0.20. 

Asymmetric limits on false positives and false negatives
The conventional limit on the false-positive rate in A/B test design is 5%. The conven-
tional limit on the false-negative rate is 20%. You aren’t required to use these values,
of course, but they’ve been accepted over time as good default values. Also, when
you communicate results to other people, you might find that their intuition about A/B
test results is calibrated to 5% and 20%.

But why are they different?



372.3 Run an A/B test
Assume that we run an A/B test and apply the rule developed in the previous section:
“If z < -1.64, switch from ASDAQ to BYSE.” We’d limit the false-positive rate to 5%.
Let’s extend that rule to also limit the false-negative rate to 20%. The approach is visu-
alized in figure 2.10.

The left panel, figure 2.10a, repeats figure 2.8 and depicts the rule for deciding whether
an aggregate measurement is statistically significant, which limits false positives. In
figure 2.10b, we simultaneously require that if the true distribution has a nonzero

When you run an A/B test, you start with a system running version A. If you make a
false-positive error, you switch your system over to version B, even though B is worse
than A. You have reduced the quality of your system. Your costs will go up or revenue
will go down, or what have you. It’s worse than having done nothing at all.

When you make a false-negative error, on the other hand, you leave the system run-
ning version A. You have done no harm. You’ve missed out on an opportunity to
improve the system by switching to B—which is better than A in this case—but you
haven’t made the system any worse.

You might say that a false positive incurs an explicit cost and a false negative incurs
an opportunity cost. Alternatively, you could say that a false positive damages the
system, whereas a false negative does not.

The asymmetry in the false positive and false negative rates reflects a generally greater
aversion to doing damage (a 5% limit) than to missing an opportunity (a 20% limit).

Figure 2.10 (a) The shaded area to the left of the vertical line contains 5% of the 
histogram. (b) The shaded area to the left of the vertical line contains 5% of the 
right-hand histogram. The shaded area to the right of the vertical line contains 20% 
of the left-hand histogram. A/B test design sets the location of the vertical line, 
which in turn determines the number of individual measurements.
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expectation—if BYSE really is cheaper than ASDAQ—that the probability of the z
value falling to the right of the vertical line would be only 20%. If the z value were to
fall to the right of the vertical line, we’d act as if delta = 0 and keep trading on
ASDAQ, which would be the wrong decision. That would be a false negative.

 Since z is normal and has standard deviation one, we can look up the fact that
placing the vertical line at a distance of 0.84 from the expectation of z would leave
20% of the distribution to the right of the line. Call the expectation of z in this case
-z0. (I’m saying that z0 > 0, so -z0, a negative number, is the center of the left-hand
histogram in figure 2.10b.)

 The two requirements on the vertical line—which we use to decide whether to
switch to BYSE or stick with ASDAQ—are:

1 It must be at 1.64 to the left of z = 0, where z = 0 is the expectation of the hypo-
thetical distribution where BYSE and ASDAQ have the same cost. This limits the
false-positive rate to 5%.

2 It must be 0.84 to the right of -z0, where -z0 is the expectation of the hypothet-
ical distribution where BYSE is cheaper than ASDAQ. This limits the false-negative
rate to 20%.

For both statements to be true, we must have 0 - 1.64 = -z0 + .84 or z0 = 2.48. This is
the design criterion.

 To use the design criterion to specify the number of individual measurements, you
need to express num_ind in terms of z0. First, recall that z = delta / se_delta. We can
write z0, a specific value of z, in terms of delta0, a specific value of delta: z0 = delta0
/ se_delta.

 We choose delta0 to be the smallest difference in costs that we care to detect; the
smallest difference where, if we erred and didn’t switch to BYSE, we’d feel like we
missed an opportunity. That difference is prac_sig = 1.0 mip, the practical signifi-
cance level. Thus, delta0 <= - prac_sig. Since z0 = delta0 / se_delta, it’s true that
z0 <= - prac_sig / se_delta. Consideration of false-negative rates in this way, in A/B
test design, is called power analysis.

 Solving for num_ind

z0 <= - prac_sig / se_delta = np.sqrt(num_ind) * (-prac_sig) / sd_1_delta

and recalling that z0 = 2.48, and rewriting in terms of num_ind

np.sqrt(num_ind) * (-prac_sig) / sd_1_delta >= 2.48

yields a new A/B test design:

num_ind >= (2.48 * sd_1_delta / prac_sig)**2

This is shown in listing 2.7. Comparing to listing 2.6, you’ll notice that we’ve simply
changed the value 1.64 to 2.48.
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def ab_test_design_2(sd_1_delta, prac_sig):
    num_individual_measurements = (2.48 * sd_1_delta / prac_sig)**2    
    return np.ceil(num_individual_measurements)

A new design, using ab_test_design_2(), demands more individual measurements
to meet the additional requirement of a low false-positive rate:

np.random.seed(17)
sd_1_asdaq = np.array([trading_system("ASDAQ") for _ in range(100)]).std()
sd_1_byse = sd_1_asdaq
sd_1_delta = np.sqrt(sd_1_asdaq**2 + sd_1_byse**2)
prac_sig = 1.0
ab_test_design_2(sd_1_delta, prac_sig)
16.0

Your A/B test design is now complete. You need to take 16 individual measurements.

Now you can take the 16 individual measurements and analyze them.

2.3.3 Measure and analyze

You proceed to the measure stage (figure 2.11) and take at least 16 individual mea-
surements of the execution cost of BYSE trades and at least 16 individual measure-
ments of the execution cost of ASDAQ trades.

You randomize to remove any biases from these measurements. See the following listing.

Listing 2.7 A/B test design with power analysis

Number of individual measurements in practice
In a real agency trading system, the standard error of the cost of a single trade would
be much higher, relative to the practical significance, than was used in the scenario
in this chapter. Therefore, the number of individual measurements required to run an
A/B test would be much larger. A real-world agency trading A/B test might take hun-
dreds to thousands of individual measurements each day and take from 1 to 4 weeks
to complete.

Use 2.48 instead
of 1.64.

Decide whether to

accept or reject

B version

Take multiple

measurements of

business metric

Determine number

of measurements

to take

Design Measure Analyze

Figure 2.11 Take (at least) the number of individual measurements prescribed by the 
design stage. Randomize to remove bias.
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meas
def measure(min_individual_measurements):
    ind_asdaq = []
    ind_byse = []
    while (
        len(ind_asdaq) < min_individual_measurements
        and len(ind_byse) < min_individual_measurements    
    ):
        if np.random.randint(2) == 0:                  
            ind_asdaq.append(trading_system("ASDAQ"))
        else:                                          
            ind_byse.append(trading_system("BYSE"))
    return np.array(ind_asdaq), np.array(ind_byse)

The function measure() collects at least min_individual_measurements individual
measurements for each of ASDAQ and BYSE. It randomly chooses which exchange to
trade on (and to measure) as each new trading order arrives.

 You can collect the measurements with

np.random.seed(17)
ind_asdaq, ind_byse = measure(16)

In the final stage, you analyze the measurements you’ve collected. First, you estimate
the difference in estimated expected costs, the aggregate measurement:

ind_byse.mean() – ind_asdaq.mean()
-2.7483767796620846

BYSE was about 2.7 mips cheaper than ASDAQ in this experiment. That’s a practically
significant result, since its magnitude is greater than prac_sig = 1.0 mip. BYSE has, so
to speak, passed the first test. However, maybe that value is 2.7 mips because of varia-
tion in the aggregate measurements and BYSE is not actually cheaper than ASDAQ. In
other words, maybe this is a false positive. You check for this error using the test for
statistical significance discussed in section 2.3.1. You ask whether z = delta / se_delta
< -1.64. See the following listing.

def analyze(ind_asdaq, ind_byse):
    agg_asdaq = ind_asdaq.mean()     
    se_asdaq = ind_asdaq.std() / np.sqrt(len(ind_asdaq))   
    agg_byse = ind_byse.mean()       
    se_byse = ind_byse.std() / np.sqrt(len(ind_byse))      

    delta = agg_byse - agg_asdaq
    se_delta = np.sqrt(se_asdaq**2 + se_byse**2)

    z = delta / se_delta    
    return z

Listing 2.8 Measure stage

Listing 2.9 Analyze stage

Collect at least 
min_individual_
measurements.

Randomize to 
remove bias.

aggregate
urements SE of 

aggregate 
measurements

z score
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The function analyze() calculates and returns the z score:

analyze(ind_asdaq, ind_byse)
-6.353995237966593

Because z is well below the threshold of -1.64, this result is statistically significant.
BYSE has passed the second test.

 Since BYSE’s aggregate measurement is both practically and statistically signifi-
cantly lower than ASDAQ’s, you decide to reconfigure your production trading system
to direct all trades to BYSE. You’re fairly confident this is a good idea, but you recog-
nize that, unavoidably, there’s still a 5% chance BYSE is not better than ASDAQ.

2.3.4 Recap of A/B test stages

In the scenario just presented, you aimed to decide whether to reconfigure your
agency trading system to trade on BYSE instead of on ASDAQ. You compared them by
their execution cost (your business metric), proceeding as follows:

 Design—You determined the minimum number of individual measurements
needed to ensure that you could detect—with statistical significance—a differ-
ence between ASDAQ and BYSE as small as 1 mip, the smallest improvement
that would be of practical significance to your business. That number was given
by (2.48 * sd_1_delta / prac_sig)**2.

 Measure—You took the prescribed number of individual measurements, being
sure to randomize between ASDQ and BYSE to remove confounder bias.

 Analyze—You asked whether the difference in costs between BYSE and ASDAQ
was (1) practically significant (delta < - prac_sig) and (2) statistically signifi-
cant (delta / se_delta < -1.64).

Ultimately, you measured lower execution costs on BYSE and reconfigured your sys-
tem to trade there.

Summary
 The goal of an A/B test is to decide whether to switch from version A to version B.
 Replication of individual measurements increases the reliability of your final

decision.
 Randomization removes confounder bias from your measurements.
 An A/B test design prescribes the minimum number of individual measure-

ments to take.
 Switch to version B if its business metric is both practically and statistically sig-

nificantly better than that of version A.



Multi-armed bandits:
Maximizing business

metrics while experimenting
In the previous chapter, we learned how to use A/B testing to evaluate changes to
the system your engineering team is building. Once the tooling is in place to run
A/B tests, the team should see a steady increase in the quality of the system as new
changes follow the engineering workflow: implement a change candidate, evaluate
it offline, and evaluate it online with an A/B test.

 As the use of A/B testing increases, you’ll spend more time evaluating “B” ver-
sions that underperform the current system, “A.” (Recall from chapter 1 that most
Bs underperform As.) Every time an underperforming B is measured, you pay a
cost equal to the value of the business metric you would have achieved with A
minus that achieved with B. If, for example, the business metric is revenue, then
the cost of measuring B is “revenue of A – revenue of B.” It will make sense to look

This chapter covers
 Defining the multi-armed bandit (MAB) problem 

 Modifying A/B testing’s randomization procedure 

 Extending epsilon-greedy to simultaneously 
evaluate multiple system changes 

 Evaluating system changes even more quickly 
with Thompson sampling
42
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for ways to reduce this cost. You can’t just stop an A/B test early if it looks good
because, although a shorter test would yield a lower cost, stopping early would pro-
duce false positives (see chapter 8, section 8.2).

 We can, however, make A/B testing cheaper by reframing the problem just a bit.
We can ask, “While evaluating a change candidate in production, how can we maxi-
mize the number of times we measure the better of A and B?” This question is the
multi-armed bandit (MAB) problem. If, for example, A produced higher revenue
than B, we’d like to measure A more often than B. The challenge is that we don’t
know at the outset which is better, A or B. 

 In this chapter, we’ll first modify A/B testing to use summary statistics of individual
measurements to better choose which change candidate to run. The resulting algo-
rithm is called epsilon-greedy, and it solves the MAB problem. Then we’ll see how, with a
small tweak, epsilon-greedy enables us to evaluate multiple versions at once, which
can make your workflow even faster. Finally, we’ll see how using more detailed statis-
tics of the measurements can create an even more efficient MAB algorithm called
Thompson sampling.

3.1 Epsilon-greedy: Account for the impact of evaluation 
on business metrics
In industry, proposed system changes are likely to be rejected by an A/B test. This is
not a quirk of A/B testing but rather is evidence that most of our good ideas simply
don’t improve complex engineered systems. Since an A/B test runs the A version half
the time and the B version half the time, the overall system’s business metric will lie
halfway between that of A and that of B. If a B version underperforms the A version,
then performance during an A/B test will be worse than just running A. Chapter 1,
section 1.3.1 points out that B versions underperform the base system—the A ver-
sion—as often as 90% of the time.

 The good news is that the other 10% of the time B will be better, will be accepted
into the system, and will produce value for a long time afterward. The “long time”
improvement covers the cost of A/B testing.

 In a mature system developed by a large enough team, we should expect to be run-
ning A/B tests all the time. “Mature” means that A/B tests may be run and analyzed
effectively. By “large-enough,” I mean a team that produces new versions quickly
enough so that there’s always something new that needs A/B testing. At this stage, the
cost of A/B testing could be significant and worth investing some engineering effort
to reduce. MAB algorithms help reduce that cost.

 To help motivate and explain our first MAB algorithm, epsilon-greedy, we consider
the following scenario: Imagine you’re an ML engineer responsible for placing ban-
ner ads on a website. Each time a user arrives at your home page, your system queries
an ML model for its estimates of the probability that the user will click on each of the
ads in the ad inventory. Let’s say the ad inventory contains 1,000 ads. The system
serves the ad with the highest predicted click probability to the user. Figure 3.1 depicts
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the system. We’ll refer to the component of the system responsible for selecting which
ad to serve as the ad selector.

 If the user does click on the ad, your company will be paid $1, the cost per click
(CPC), by the advertiser. Given that financial incentive, the A/B tests you run on this
system measure the business metric called click-through rate (CTR):

The total revenue per day, which is the broader business concern, is CPC*CTR*[num-
ber of visitors to the home page]. You can let the ad-space salespeople try to increase
the CPC from $1, and the marketing team can focus on getting more users to visit the
home page. As the ad-serving ML engineer, you want to increase CTR by building an
ML model that better estimates the probability a user will click on an ad. We’ll call this
the click model. In the following, you’ll be comparing two click models: version A, the
current click model, and version B, a new model you’ve just built.

Ad inventory

Click model

Ad with highest

estimated click

probability

clicked = 0 or 1

Web page

Ad selector

Ad

Figure 3.1 An ad-serving system. The ad 
selector pulls ads from the ad inventory, then 
asks the click model to estimate the 
probability that the user will click on each ad. 
The ad selector sends the ad with the highest 
estimated click probability to the user. The 
page tells the server whether the user 
clicked on the ad, shown here as a variable 
clicked taking a value of either 0 (not 
clicked) or 1 (clicked). The rest of the web 
page is delivered to the user by a web server, 
not shown here.
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3.1.1 A/B testing as a baseline

We developed A/B testing in chapter 2 with the goal of taking the fewest measure-
ments possible under the constraints that the probability of a false positive stay below
0.05 and the probability of false negative stay below 0.20.

 These limits—0.05 and 0.20—became standard values long ago in practical exper-
iment design. They are convenient because, as probabilities, they are unitless—that is,
they don’t reference any domain-specific quantities like CTR, dollars of revenue, etc.—
and so may be applied across experiments from a broad range of fields. Additionally,
the standardization of these probability limits makes it easier to communicate results
from one experimenter to another, as all experimenters build an intuition for the
quality of results that is implied by 0.05 and 0.20.

 When optimizing an engineered system, we want to increase a business metric, like
CTR. An A/B test would increase CTR by

1 Determining via experiment whether version A of your click model has a better
or worse CTR than version B does, then

2 Running the better version from now on

Step 2 produces a high CTR—the maximum of A’s CTR and B’s CTR. We won’t
change that.

 Taking a measurement of version A or B (in step 1) means exposing real users to it
and getting or losing their clicks, so what you choose to measure has real impact on
your bottom line. Knowing that, let’s modify step 1 so that during the experiment we
more often measure whichever version (A or B) has a higher CTR. Our goal is to take
as many measurements of the better version as we can while still taking enough mea-
surements of the worse version to be sure it’s worse.

 To get started, let’s create a simulation of the ad-selection system. We’ll call the cur-
rent version of the click model A (as usual) and simulate it so that the system pro-
duces a CTR of 0.005 (one half of 1%). According to the stats reported by LinkedIn
(http://mng.bz/gRzE) for 2019, a CTR of 0.0050 for banner ads is a bit below the
average of 0.0060 (0.60%). Knowing that, we propose a new click model, B, that we
hope is better. For the purpose of presentation, we’ll simulate the system with B so
that it produces a CTR of 0.0070, above the industry average. See the following listing
for the Python code that implements the simulation.

def measure_click(ctr):
    return 1 if np.random.uniform(0,1) < ctr else 0   

def measure_a():
    return measure_click(ctr=0.005)    

def measure_b():
    return measure_click(ctr=0.007)    

Listing 3.1 Simulate measurement of click on an ad

With probability ctr, 
return 1, indicating that 
user clicked on the ad.

System version A has CTR 
0.0050 and version B has 
CTR 0.0070.

http://mng.bz/gRzE
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si

.0
The function measure_click() returns the value 1 to simulate the event “the user
clicked on the ad” or the value 0 to simulate “the user didn’t click on the ad.” It returns
1 with probability ctr. The expectation of measure_click(ctr) is the value ctr—that is,
if we could take the average of infinitely many return values of measure_click(ctr),
that average would be ctr. As such, the expected value of measure_A() is .0050 and the
expected value of measure_B() is .0070. Or we could say, “The expected CTR of version
A is .0050” (and similarly for B).

 Next, let’s simulate an A/B test following the steps summarized at the end of chap-
ter 2, section 2.3.4:

1 Run a pilot study to measure sd_1_delta, which we’ll abbreviate as sd_1 here.
2 Define a practical significance level, prac_sig.
3 Calculate the number of individual measurements to take, num_ind.

An individual measurement consists of displaying a single ad and recording whether it
was clicked on. See the following listing for the A/B test design. Let’s take prac_sig =
0.001. Given that 0.0050 is our current CTR, an improvement of 0.001 would mean
20% more revenue per day.

def design_ab_test():
    def pilot_study(num_pilot_measurements):
        clicked_pre_a = np.array([measure_a() for _ in 

range(num_pilot_measurements)])
        clicked_pre_b = np.array([measure_b() for _ in 

range(num_pilot_measurements)])
        sd_1 = np.sqrt( clicked_pre_a.std()**2 + clicked_pre_b.std()**2 )  
        return sd_1
    

    sd_1 = pilot_study(1000)   
    prac_sig = 0.001    
    num_ind = (2.48 * sd_1 / prac_sig) ** 2    
    return int(num_ind) 

The design of an A/B test comes down to the prescription of how many individual
measurements to take. For this scenario, we need

  np.random.seed(17)
  num_ind = design_ab_test()

This produces num_ind = 91561, nearly 100,000, individual measurements. If you
don’t work in online advertising, that might seem like a lot of measurements, but con-
sider that if 0.5% of 100,000 users clicked on an ad, your site would earn only $500.
Since CTRs are small, you need to show lots of ads to sustain a business. For example,

Listing 3.2 Design an A/B test

Run a pilot study 
to measure sd_1.

Define a
practical

gnificance
level of

01 (.1%).

Calculate the number of 
individual measurements, 
num_ind.
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at a CTR of .0050 and a CPC of $1, to earn just $100,000 per year (a small amount of
revenue for a big tech company), how many ads would you need to run?

or

A business that could support itself through advertising would thus have many times
the capacity needed to run this A/B test.

 Simulating the A/B test is straightforward: For each individual measurement, we’ll
randomize between A and B. See listing 3.3 for the code. The randomization is taken
care of by the condition np.random.uniform(0,1) < 0.5, where a random number
chosen with uniform probability between 0 and 1 is less than 0.5 with probability 0.5.
In other words, choose A half the time and choose B half the time.

def run_ab_test(num_ind):
    clicked_a = []
    clicked_b = []
    for n in range(num_ind):
        # Randomize between A and B.
        if np.random.uniform(0,1) < 0.5:   
            clicked = measure_a()       
            clicked_a.append(clicked)     
        else:
            clicked = measure_b()       
            clicked_b.append(clicked)     

    clicked_a = np.array(clicked_a)
    clicked_b = np.array(clicked_b)
    
    return clicked_a, clicked_b 

Figure 3.2 depicts this same randomization logic in the ad-serving system. The proba-
bility of choosing model A is p(A) = 0.5, and similarly for B. Once the click model is
chosen, it is applied to all the ads in the inventory, and the ad with the highest esti-
mated click probability is served to the user. The response from the user, clicked, is
returned to the ad selector in the figure to be logged for later analysis. Listing 3.3 sim-
ulates this logging by appending clicked to either clicked_a or clicked_b, depend-
ing on which model was used.

 To complete the experiment, we would run an analysis like listing 3.4, where we
compute the z score from the logged data, clicked_a and clicked_b.

Listing 3.3 Simulate a run of an A/B test

Choose A or B 
with probability 
.5 each.

Run A or B,
taking an
individual

measurement.

Log the individual 
measurement for 
later analysis.



48 CHAPTER 3 Multi-armed bandits: Maximizing business metrics while experimenting
def analyze_a_b_test(clicked_a, clicked_b):   
    mean_a = clicked_a.mean()
    mean_b = clicked_b.mean()
    std_a = clicked_a.std()
    std_b = clicked_b.std()
    m = mean_b - mean_a       
    se = np.sqrt( (std_a**2 + std_b**2) / num_ind )
    z = m / se      
    
    return z

The complete experiment—design, measure, and analysis—looks like

np.random.seed(17)
num_ind = design_ab_test()
clicked_a, clicked_b = run_ab_test(num_ind)

Listing 3.4 Analyze the A/B test data

Click Model A

Ad with highest

estimated click

probability

clicked = 0 or 1

Ad selector

p(A) = .5

p(B) = .5 Click Model B

Ad inventory

Web page

Ad

Figure 3.2 A/B testing click models in 
the ad-serving system. This figure 
focuses on the ad selector component 
from figure 3.1. To effect an A/B test, 
the ad selector first chooses randomly 
between click model A and click model 
B. The probability of choosing model A is 
0.5, as indicated by p(A) = 0.5, and 
similarly for model B. Note that once the 
model is chosen, it is used to estimate 
click probabilities for the entire ad 
inventory before selecting an ad to 
serve. The individual measurement 
clicked is logged for later analysis.

Calculate the 
difference of mean 
click rates, m, and the 
standard error, se.

Calculate the z score, which 
determines whether we accept 
or reject version B.
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z = analyze_a_b_test(clicked _a, clicked _b)
print (num_ind, z)
91561 2.95

This yields z = 2.95. Since z > 1.64, we would accept the change and replace model A
with model B.

 Before the A/B test ran, the production system used model A, which produced a
CTR of 0.0050. After the A/B test completed, the system would have used B, which
produces CTR = 0.0070. During the A/B test, however, the system was randomizing
between A and B, using each version half of the time. The CTR achieved by the system
during the A/B test is, thus, just the average of A’s and B’s CTRs, or (0.0050 +
0.0070)/2 = 0.0060.

 We couldn’t have known B was better than A until after we ran the A/B test, but
now that we know, we can look back and say that if we had run B instead of running an
A/B test, we could have earned CTR = 0.0070 instead of the A/B test’s CTR = 0.0060.
The term used in multi-armed bandit literature to describe this lost opportunity is
regret. We say that the A/B test produced a regret of 

CTR of model B – CTR of the A/B test = 0.0070 – 0.0060 = 0.0010

We missed out on 0.0010 CTR by running the A/B test instead of running model B.
 Let’s delve deeper to understand how the CTR evolves while the A/B test is run-

ning. Listing 3.5 runs the A/B test again but instruments it to count the number of
ads displayed and the number of ads that are clicked on. clicked_a and clicked_b
have been removed in favor of counting the number of ads and clicks for A and B
separately.

def ab_test(num_ind):
    sum_clicks = 0.0
    num_ads = 0.0
    sum_a = 0.0
    num_a = 0
    sum_b = 0.0
    num_b = 0

    ctr_vs_n = []
    ctr_a = []
    ctr_b = []
    for n in range(num_ind):
        if np.random.uniform(0,1) < 0.5:
            clicked = measure_a()
            sum_a += clicked         
            num_a += 1               
        else:
            clicked = measure_b()
            sum_b += clicked         
            num_b += 1               

Listing 3.5 Trace the CTR as the A/B test runs

Count ads and clicks 
separately for versions 
A and B.
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        sum_clicks += clicked        
        num_ads += 1   
        if num_a > 0 and num_b > 0:
            ctr_a.append(sum_a/num_a)             
            ctr_b.append(sum_b/num_b)             
            ctr_vs_n.append(sum_clicks/num_ads)   
    
    return ctr_vs_n, ctr_a, ctr_b 

This function’s first output, ctr_vs_n, is the CTR achieved “so far”—up through the
nth individual measurement. A plot of ctr_vs_n is shown in figure 3.3.

The trace of CTR in figure 3.3 fluctuates wildly initially—when fewer samples are
included in it—then settles down to a final value of about 0.0058, which is close to the
expected value of 0.0060. Running ab_test() 100 times produces final CTR values
with mean 0.0060 and standard deviation 0.0002. Figure 3.4 shows the mean and
standard deviation of all 100 traces.

 The second and third outputs for ab_test()—ctr_a and ctr_b—trace the CTR
up through measurement n for A and B separately. For example, ctr_a traces the
CTR only for ads selected using click model A, and similarly for ctr_b. These two
traces, plotted in figure 3.5, let us see how each version’s CTR measurement evolves
over time and how they compare.

 The dark line in figure 3.5, A’s trace, appears above the light line, B’s trace, early in
the run. This indicates that the measured CTR for A was higher than that for B, even
though B’s expected CTR is better than A’s. This can happen just due to the variation

Count the number 
of ads clicked.Count the

number of
ads displayed. CTR so far for A, 

for B, and overall

Figure 3.3 The CTR measured up through individual measurement n in a 
simulated A/B test. The final CTR is 0.0058, about halfway between the CTR 
of A (0.0050) and the CTR of B (0.0070).
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in the individual measurements. Eventually, however, the lines settle down close to the
expected CTRs, and it appears easy to tell that B outperforms A.

 If I were running this A/B test and monitoring CTR A and CTR B, I might be
tempted to stop around n = 100.000 or so. Seeing B consistently outperform A would

Figure 3.4 Distribution of 100 runs of ab_test(). The mean of all 100 
traces is in black. The gray area is one standard deviation tall. The final mean 
is 0.0060, which is the average of CTR A (0.0050) and CTR B (0.0070).

Figure 3.5 CTR for each of model A and model B. Early on, the dark line (A) 
is above the light line (CTR A > CTR B), but eventually it falls below (CTR A 
< CTR B) and stays there for the rest of the run.
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make me want to accept B so that the system would earn B’s CTR of 0.0070, rather
than the blended CTR of 0.0050 shown in figure 3.3. But I know stopping an A/B test
early generates false positives (see chapter 8, section 8.2).

 This tension between wanting to capitalize on the higher-performing B version as
soon as possible and the desire to avoid a false-positive acceptance can be resolved by
modifying A/B testing’s randomization procedure to preferentially choose the better
of A and B. This proposal is the epsilon-greedy algorithm, and it is one solution to the
multi-armed bandit problem.

3.1.2 The epsilon-greedy algorithm

Instead of choosing between A and B with equal probability, p(A) = p(B) = 0.5, epsilon-
greedy assigns a higher probability to whichever version, A or B, has produced a higher
CTR so far.

 Epsilon-greedy works like this: With probability 1-epsilon, use whichever version
has a higher CTR so far. Otherwise, with probability epsilon, act like an A/B test and
just choose between A and B with equal probability.

 To convert A/B test logic to epsilon-greedy logic, we just need to change the ran-
domization portion of ab_test()from

    if np.random.uniform(0,1) < 0.5:
        # Run A
    else:
        # Run B

to

if np.random.uniform(0,1) < 1-epsilon:
    # Run version with higher CTR so far
else:
    if np.random.uniform(0,1) < 0.5:
           # Run A
       else:
           # Run B

Notice that if we set epsilon = 1, then the first branch is never executed because
np.random.uniform(0,1) is never less than 1 - epsilon = 0. Similarly, if we set
epsilon = 0, the second branch is never executed. The value of epsilon determines
how strongly epsilon-greedy’s randomization is biased toward the higher-CTR version
of the system. In addition, epsilon is a parameter of the epsilon-greedy algorithm, not
a parameter of the system itself. To make that distinction clear, we refer to epsilon as
a metaparameter. 

 Figure 3.6 depicts the ad selector using the epsilon-greedy algorithm to decide
between click models A and B. It now implements the epsilon-greedy algorithm rather
than A/B test’s randomization.
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The following listing shows an implementation of epsilon-greedy. Notice that if you
were to pass in the argument epsilon = 1, this function would behave the same as
ab_test().

def epsilon_greedy(num_ind, epsilon):
    sum_clicks = 0.0
    num_ads = 0.0
    sum_a = 0.0
    num_a = 0
    sum_b = 0.0
    num_b = 0
    ctr_vs_n = []
    used_b = []
    for _ in range(num_ind):     
        select = "Randomize"

Listing 3.6 The epsilon-greedy algorithm

Higher-CTR

click model

Ad with highest

estimated click

probability

clicked = 0 or 1

Ad selector

p(better) =

p(randomize) =

epsilon
Randomize

A, B

Calculate

CTRs so far

Web page

Ad

Ad inventory

1 - epsilon

Figure 3.6 Using epsilon-greedy to 
test a click model. With probability 
1 - epsilon, epsilon-greedy chooses 
the click model with the higher CTR 
so far. Otherwise, with probability 
epsilon, it randomly chooses 
between A and B.

Take num_ind 
individual 
measurements.
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        if np.random.uniform(0,1) < 1-epsilon:     
            ctr_a = sum_a/num_a if num_a>0 else 0
            ctr_b = sum_b/num_b if num_b>0 else 0
            if ctr_a > ctr_b:     
                select = "A"
            elif ctr_b > ctr_a:   
                select = "B"
            # else, if they're equal, randomize
            

        if select == "Randomize":    
            if np.random.uniform(0,1) < 0.5:
                select = "A"
            else:
                select = "B"
                

        if select == "A":
            clicked = measure_a()
            sum_a += clicked
            num_a += 1
            used_b.append(False)
        else:
            clicked = measure_b()
            sum_b += clicked
            num_b += 1
            used_b.append(True)
        sum_clicks += clicked
        num_ads += 1

        

        ctr_vs_n.append(sum_clicks / num_ads)

    

    return ctr_vs_n, used_b 

As shown, epsilon_greedy() computes summary statistics—ctr_a and ctr_b—and
uses them to make a better decision about which version, A or B, to use for each indi-
vidual measurement. In this way, epsilon-greedy is adaptive (i.e., it modifies its deci-
sions based on the data it has seen so far). In contrast, A/B testing does not adapt to
the data. It always randomizes between A and B equally.

 Compare a run of epsilon_greedy(num_ind, epsilon=0.10) to one of ab_test()
in figure 3.7. Figure 3.7 shows a single trace of epsilon-greedy outperforming A/B
testing in CTR by about 0.0067 - 0.0058 = 0.0009 and underperforming, by only
0.0003, the upper bound that would be achieved if we selected version B the entire
time. In other words, the regret is 0.0003, which is smaller than the A/B test regret of
0.0010. Running epsilon_greedy() 100 times produces final CTR values with mean
0.0067 and standard deviation 0.0004. Figure 3.8 compares the distribution of 100
runs of ab_test() to that of 100 runs of epsilon_greedy()—epsilon_greedy() con-
sistently achieves higher CTR.

 

Shows “with probability 
1-epsilon”

Calculate CTR up through this 
measurement and collect in ctr_vs_n.

Otherwise, if 
ctr_A == ctr_B, 
just randomize.
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Figure 3.9 compares the percentage of the 100 runs in which B is selected for mea-
surement to that in which A is selected.

A/B test

Epsilon-greedy

Figure 3.7 The epsilon-greedy algorithm achieves a higher CTR (about .0067) 
than an A/B test (about .0058) by using whichever version—A or B—has 
better realized performance 90% of the time and only 10% of time randomly 
choosing between A and B.

A/B test

Epsilon-greedy

Figure 3.8 100 runs of ab_test() compared to 100 runs of epsilon_
greedy(): epsilon_greedy() consistently achieves higher CTR. The 
final, mean CTR of epsilon_greedy() is 0.0068, which is close to the 
maximum of 0.0070, the CTR of B.
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Following figure 3.9, we see that, at the beginning of a run, A and B are selected at
equal rates—50% each, like an A/B test. By the end of a run, epsilon_greedy()
chooses B with probability 1-epsilon = 0.90. The steady increase in the rate of select-
ing B accounts for the steady increase in CTR that we observed in figure 3.8. To
understand how the epsilon-greedy algorithm selects B more often over time, we need
to think about how the standard errors of the aggregate measurements evolve over
the course of the experiment.

 First, note that epsilon_greedy() compares the aggregate measurements –ctr_a
and ctr_b – at each iteration, n. Then it runs whichever version, A or B, has a higher
measured CTR. Early in the experiment the standard errors (SEs) of ctr_a and ctr_b
are large because few individual measurements have been taken.

 When the SEs are large, we may measure ctr_a to be less than or greater than
ctr_b, regardless of what the expectations (true values) of the CTRs are. As more indi-
vidual measurements are collected, the SEs decrease, and it becomes more and more
likely that if A’s CTR is truly greater than B’s, then we will measure ctr_a > ctr_b, and
vice versa.

 The exploratory measurements, taken 10% of the time, ensure that more individual
measurements will be collected for both versions, regardless of which one has a better
aggregate CTR right now. The exploitative measurements, taken 90% of the time,
ensure that most of the experiment’s measurements will be devoted to the version
that is probably better.

 The function epsilon_greedy() with epsilon = 0.10 explores 10% of the time
and exploits 90% of the time. An A/B test, by contrast, explores only for a predeter-
mined num_ind measurements and exploits thereafter. We say that epsilon_greedy()

Figure 3.9 Percentage of runs selecting B or A for each individual measurement. 
B is selected more and more frequently as the epsilon_greedy() runs progress. 
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“balances exploration with exploitation” to achieve a good CTR during the course of
an experiment.

3.1.3 Deciding when to stop

In our formulation of the epsilon-greedy algorithm so far, there is no prescription to
stop exploring. In the preceding simulations, we chose num_ind, the number of mea-
surements, using A/B test design so that we could compare A/B testing to epsilon-
greedy. But if you chose to use epsilon-greedy in practice, there would be no natural
point at which you’d make an acceptance/rejection decision. The A/B test-designed
num_ind value doesn’t apply here, because it was chosen to limit false positives and
negatives. Instead, the goal with epsilon-greedy is to maximize a business metric,
like CTR.

 We can get epsilon-greedy to stop with a slight modification to the algorithm. Set
epsilon at each iteration, n, to

The value of BMmax is the largest plausible value of the business metric (CTR)—say
0.01. It’s there to provide a scale for PS (the practical significance, prac_sig) so that
epsilon remains unitless.

 Since epsilon is proportional to 1/n, it decays toward zero. You can stop the algo-
rithm when epsilon is very small, say 0.01, at which point the algorithm is rarely
exploring and, instead, usually running the system version it thinks is best. The sensi-
tivity of epsilon-greedy’s CTR to your choice of the stopping threshold is low, meaning
that if you chose to stop at epsilon = 0.02 or epsilon = 0.005, you’d achieve a similar
CTR. The lower the threshold, the longer the algorithm will run.

 Whenever epsilon is 1 or larger, the epsilon-greedy code will randomly choose
between A and B—it’ll be doing pure exploration. Because epsilon decreases over
time (i.e., as n increases), it will eventually fall below 1, and the algorithm will start
exploiting, too. The metaparameter c controls the amount of time epsilon spends
above 1, in pure exploration. Larger values of c will induce longer pure-exploration
times. We’ll use c = 5 throughout this text, but you should consider c to be a metapa-
rameter of epsilon-greedy that may be different for different systems. Setting c too
low will limit exploration, increasing the risk that epsilon-greedy will choose the
wrong version (A or B). Setting c too high will just increase the running time with
no benefit.

 When the algorithm stops, if B has a higher mean CTR than A, you can accept B
into the system. Otherwise, you can reject it. A modified version of epsilon_greedy(),
with this new formula for epsilon, is in the following listing.
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def epsilon_greedy_decay():
    bm_max = 0.01
    prac_sig = 0.001
    c = 5      
    
    epsilon_0 = 2*c*(bm_max/prac_sig)**2     
    epsilon_stop = 0.01
    
    sum_clicks = 0.0
    num_ads = 0.0
    sum_a = 0.0
    num_a = 0
    sum_b = 0.0
    num_b = 0
    ctr_vs_n = []
    epsilons = []
    
    n = 0
    selected = None
    while True:
        epsilon = min(1.0, epsilon_0 / (1.0 + n))   
        epsilons.append(epsilon)
        if epsilon < epsilon_stop:    
            break
        select = "Randomize"
        if np.random.uniform(0,1) < 1-epsilon:
            ctr_a = sum_a/num_a if num_a>0 else 0
            ctr_b = sum_b/num_b if num_b>0 else 0
            if ctr_a > ctr_b:
                select = "A"
                selected = "A"
            elif ctr_b > ctr_a:
                select = "B"
                selected = "B"
        if select == "Randomize":
            if np.random.uniform(0,1) < 0.5:
                select = "A"
            else:
                select = "B"

        if select == "A":
            clicked = measure_a()
            sum_a += clicked
            num_a += 1
        else:
            clicked = measure_b()
            sum_b += clicked
            num_b += 1
        sum_clicks += clicked
        num_ads += 1
        
        ctr_vs_n.append(sum_clicks / num_ads)
        n += 1

Listing 3.7 Epsilon-greedy with decaying epsilon

Set c, the new 
metaparameter.

Implement the formula 
for decaying epsilon.

Since n starts 
counting from zero, 
divide by 1+n.

Stop when epsilon 
is very small.
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    if selected == "B":
        accept_reject = "Accept"
    else:
        accept_reject = "Reject"
    return ctr_vs_n, epsilons, accept_reject     

Figure 3.10 shows how epsilon decays during a single run. Note that the value of epsi-
lon is unaffected by the individual measurements taken during the experiment. In the
expression for epsilon

all quantities (2, c, BMmax, PS) are constant except for n. Thus, epsilon decays on a
fixed schedule regardless of the performance of A or B.

Note also that this run ends after only 100,000 measurements, which is fewer than the
A/B test’s recommendation of around 200,000.

 To make a fair comparison between epsilon_greedy_decay() and epsilon_
greedy(), let’s run epsilon_greedy_decay() until epsilon falls below 0.01, then run
B if it is accepted (or A if B is rejected) until the number of measurements equals that
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Figure 3.10 In a run of epsilon_greedy_decay(), epsilon decays with 
time until it is below the threshold of 0.01, at which point the algorithm stops. 
This algorithm takes fewer measurements than the comparable A/B test from 
figure 3.1.
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used in figures 3.3–3.5, 3.7, and 3.8. Running this 100 times gives the results shown in
table 3.1, where they are compared to the A/B test and epsilon-greedy results from
earlier in this section.

As table 3.1 shows, epsilon_greedy_decay() outperforms A/B testing in this system.
In fact, epsilon_greedy_decay() is proven to have lower regret than both ab_test()
and epsilon_greedy() over a broad range of systems.

FALSE POSITIVES, FALSE NEGATIVES

Recall that A/B test design specifies a maximum false-positive rate of 5% and a maxi-
mum false-negative rate of 20%. This creates an asymmetry between A and B. It says
staying with A when B is better (false negatives) is more acceptable (up to 20% of the
time) than switching to B when A is better.

 There’s nothing like this in epsilon_greedy_decay(). In fact, there’s nothing
fundamental about this in A/B testing either. For example, you could set the false-
positive and false-negative rate limits to be equal if you so desired, but the asymme-
try is conventional, and likely wise: It biases the engineer away from making
changes, accounting for the fact that change itself has a cost (a risk). Your business
needs and subjectivity will determine how biased for or against change your deci-
sions should be, but in order to implement that bias accurately, it’s important to be

Table 3.1 epsilon_greedy_decay() outperforms ab_test() in terms of the CTR obtained during
the evaluation of a candidate system change. Its advantage over epsilon_greedy() is that it has a
prescribed stopping time.

Algorithm Mean CTR Std. Dev. CTR

ab_test() 0.0060 0.0002

epsilon_greedy() 0.0068 0.0002

epsilon_greedy_decay() 0.0068 0.0005

Optimal regret
The algorithm epsilon_greedy_decay() has provably optimal asymptotic regret. In
1985, Lai and Robbins (see T. Lai and H. Robbins, “Asymptotically efficient adaptive
allocation rules. Adv. Appl. Math., vol. 6, pp. 4–22, 1985) proved that multi-armed
bandit algorithms could at best have a regret that increases with O(log(n)), where
n is the number of measurements taken. In 2002, Auer, Cesa-Bianchi, and Fischer
(see P. Auer, N. Cesa-Bianchi, and P. Fisher, “Finite-time analysis of the multiarmed
bandit problem,” Mach. Learn., vol. 47, 235–256, 2002) proved that epsilon_
greedy_decay() achieves this best case regret. (In contrast, epsilon_greedy()
and ab_test() have regret like O(n), which is much worse). The “catch,” if you will,
is that to use epsilon_greedy_decay(), you need to tune c.
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aware that some bias is built into A/B testing in its standard form but is not built
into epsilon-greedy.

 In the runs in table 3.1, epsilon_greedy_decay() accepted version B 98% of the
time, yielding a false-negative rate of 2%. Since this algorithm is symmetric with
respect to A and B, it also has a false-positive rate of 2%. This rate will vary from system
to system and with your choice of the metaparameter c, but it won’t be controlled, like
in an A/B test. Instead of controlling false positives and negatives, a multi-armed ban-
dit algorithm tries to achieve the best business metric while evaluating the different
versions of the system (A and B).

 In summary, an epsilon-greedy experiment can be carried out by

 Design—Determine PS and BMmax from business considerations, and set a value
for c (e.g., c = 5).

 Measure—Select between versions A and B using epsilon-greedy’s biased ran-
domization, which “explores” with a rate

Stop when epsilon falls below 0.01.

 Analyze—Accept B if it has a higher realized business metric than A, or else
reject it.

3.2 Evaluating multiple system changes simultaneously
So far in this book, we’ve learned how to evaluate a single system change candidate—
that is, the “B” in “A/B test.” Epsilon-greedy is preferable to A/B testing when we want
to obtain a higher business metric during an evaluation of a change candidate.

 In practice, you’ll often need to evaluate multiple versions to make a single deci-
sion about how to improve the system. In the context of the ad-selection scenario, this
need might result, for instance, from (1) competing click models, (2) tunable param-
eters, or (3) interactions between versions:

 Competing click models—It’s possible for a team of engineers to produce multiple
click models all with similar offline estimates of CTR. Since the models all have
the same offline quality, you must evaluate them in production to determine
which one actually produces the highest CTR (see chapter 5, section 5.2).

 Tunable parameters—The ad selector queries the click model for its estimate of
the click probability for each of the ads in the inventory; then it serves the ad
with the highest click probability. A realistic ad selector might also decide not to
show any ad at all if all of the ads have a click probability below some threshold.
Why clutter a page with an ad that the user very probably isn’t interested in?
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The user just gets a worse experience, and likely no revenue is earned anyway.
The probability threshold used to make that decision is a parameter that
needs to be tuned in production. You might tune it by postulating several val-
ues and evaluating each of them in production. A realistic system might have
multiple “business logic” rules like this, and each one would have associated
tunable parameters.

 Interactions between versions—Imagine two engineers work independently where
one produces a new click model and one produces new business logic. In this
case, you need to test three (not two) system versions: (1) the new click model,
(2) the new business logic, and (3) the new model plus the new business logic.
Case (3) is sometimes called an interaction effect or just an interaction if its CTR is
not equal to the sum of the CTRs of (1) and (2). 

If this seems unintuitive, consider an example: The new business logic says,
“Don’t show a user the same ad two visits in a row.” This change might show an
improved CTR—case (2)—if users tend to not notice an ad they’ve just seen.
The new click model might identify a small subset of great ads that users love so
much that they click on them even if they’ve already seen them. That would
improve CTR in case (1). These two improvements are not mutually exclusive
because case (2) is a result of a small improvement for most ads, and case (1) is
a large improvement for a small subset of ads.

The interaction happens when you run the new business logic and the new click
model together and the business logic prevents the model from showing those few
great ads too frequently. The CTR for case (3) would then be less than the sum of the
CTRs for cases (1) and (2). The business logic might be damaging enough to make
case (1) the right choice.

 Let’s modify epsilon-greedy to evaluate multiple system changes, like the ones just
described. Recall how epsilon-greedy chooses between A and B for each individual
measurement: With probability epsilon, select A or B at random; otherwise, use whichever ver-
sion has realized a higher business metric (e.g., CTR) so far.

 This can be straightforwardly modified to test multiple changes simultaneously.
Let’s call the versions B, C, D, and so on, then: With probability epsilon, select A or B
or C or D or . . . at random; otherwise, use whichever version has realized the highest
business metric (e.g., CTR) so far.

 Recall (or notice in the preceding statement) that epsilon-greedy has no prefer-
ence for A, the current system version. All of A, B, C, and so on are treated equally. As
such, they are given a common name: arms. Each candidate version of the system
(including A) is an arm in the multi-armed bandit problem.

 Figure 3.11 depicts the ad selector testing multiple click models: A, B, C, . . . Little
needs to be changed in the system or the testing logic to extend epsilon-greedy to
more than two arms.
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Multi-armed bandit nomenclature
An old-fashioned nickname for a slot machine is “one-armed bandit,” so-called
because (1) it is a tall rectangular box that has a long handle on the side that kind
of looks like a torso with a single arm, and (2) it takes your money, like a bandit (a
robber).

The MAB problem is imagined as a slot machine with multiple handles (or maybe just
imagine multiple slot machines, each with one handle, it doesn’t matter), where each
handle results in a different probability of payout. Your goal is to make as much
money (or lose as little money) as possible. Ideally, you’d just pull the highest-paying
arm. But you don’t know which arm that is, so you need a strategy to simultaneously
learn which arm is best while maximizing your payout.

Recast in terms of experimental optimization: you want to simultaneously learn which
change candidate (arm) is best while maximizing a business metric (payout).

Highest-CTR

click model

Ad with highest

estimated click

probability

clicked = 0 or 1

Ad selector

Randomize

A, B, C, ...

Calculate

CTRs so far

Web page

Ad

Ad inventory

p(better) =

p(randomize) =

epsilon

1 - epsilon

Figure 3.11 The ad selector testing 
multiple click models—or “arms”—
using epsilon-greedy. With probability 
1-epsilon, the system chooses the 
model with the highest mean CTR so far. 
Otherwise (probability epsilon) the 
system chooses with equal probability 
from the available models. 
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Listing 3.7 modifies epsilon_greedy_decay() to handle more than two arms. Note
that there is a small change to the expression for epsilon:

The variable K is the number of arms being evaluated. The previous version of this
expression had a coefficient of 2 instead as we were evaluating two arms, A and B.

 Note that the time needed to run the experiment grows linearly with K, the num-
ber of arms since the stopping time, nstop is determined by the condition

which yields

For our scenario where BMmax = 0.01, PS = 0.001, c = 5, and K = 4, we get nstop =
200,000. (Recall from section 3.1.3 that c is a metaparameter that controls the
amount of time epsilon spends above 1, and that c = 5 was a reasonable choice.)

def epsilon_greedy_decay_multi():
    bm_max = 0.01
    prac_sig = 0.001
    k = 4    
    c = 5
    
    epsilon_0 = k*c*(bm_max/prac_sig)**2
    epsilon_stop = 0.01
    
    sum_clicks = 0.0
    num_ads = 0.0
    sum_arm = [0.0]*k
    num_arm = [0.0]*k
    ctr_vs_n = []
    
    n = 0
    arms_selected = []
    while True:
        epsilon = min(1.0, epsilon_0 / (1.0 + n))

Listing 3.8 Epsilon-greedy with four arms

Run with 
four arms.
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        if epsilon < epsilon_stop:
            break
        i_selected = None
        if np.random.uniform(0,1) < 1-epsilon:
            max_ctr = None
            for i in range(k):
                if num_arm[i] > 0:
                    ctr_arm = sum_arm[i] / num_arm[i]
                else:
                    ctr_arm = 0
                # break ties by randomizing
                ctr_arm += 1e-9 * np.random.normal()    
                if max_ctr is None or ctr_arm > max_ctr:
                    max_ctr = ctr_arm
                    i_selected = i
            i_best_arm = i_selected
        else:
            i_selected = np.random.randint(k)
                
        arms_selected.append(i_selected)
        clicked = measure_arm(i_selected)
        sum_arm[i_selected] += clicked 
        num_arm[i_selected] += 1
        sum_clicks += clicked
        num_ads += 1
        
        ctr_vs_n.append(sum_clicks / num_ads)
        n += 1

    return ctr_vs_n, arms_selected     

Also, we’ll simulate a user’s response to each arm’s model with the function in the fol-
lowing listing.

def measure_arm(i_arm):
    return measure_click(ctr=.005 + i_arm*0.002)

This function models the arms’ CTRs as linearly increasing in the index i_arm to
make the presentation concrete and aid in discussion. However, there is no required
relationship between the CTRs (or any business metric values) of the arms to use a
multi-armed bandit algorithm.

 We use epsilon_greedy_decay_multi() to simulate the simultaneous evaluation
of K = 4 arms, where the best arm has CTR=.0050 + 3*0.0020 = 0.0110. Similarly, to the
two-armed case in the last section, this algorithm produces a CTR close to that of the
best arm—the mean of .0106 and standard deviation of .0006 over 100 runs—and
selects the best arm 81% of the time. The trace of a single run is shown in figure 3.12.

 Figure 3.13 shows the percentage of 100 runs selecting each of the four arms. At
the beginning of a run, the arms are equally likely to be chosen—25% each—but as a
run progresses, the best arm—arm 3—is increasingly preferred.

Listing 3.9 Simulate several click models

Break ties 
randomly by 
adding a tiny, 
zero-center value.

Return a trace of the 
arms selected along 
with ctr_vs_n.



66 CHAPTER 3 Multi-armed bandits: Maximizing business metrics while experimenting
In this section, we extended epsilon-greedy to evaluate multiple candidate system
changes, also called arms. The need to evaluate multiple arms in order to make a sin-
gle system-change decision may arise due to competing models, parameters in busi-
ness logic, and interactions between multiple simultaneously developed changes.

Figure 3.12 Epsilon-greedy evaluates K = 4 arms, indexed 0, 1, 2, 3. It 
learns that arm 3 is the best while achieving a CTR of 0.0108, close to arm 
3’s CTR of 0.0110.

Figure 3.13 The percentage of 100 runs that selected each arm at each 
measurement, n. Arm 3 has the highest CTR, 0.0110, so as n increases, 
epsilon_greedy_decay_multi() selects it increasingly more often.
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3.3 Thompson sampling: A more efficient MAB algorithm
Epsilon greedy is simple to implement, has optimal asymptotic regret, and does a
good job of demonstrating the crux of the solution to the multi-armed bandit prob-
lem: the need to trade off exploration with exploitation.

 But we can do better. With a little effort, we can construct an MAB algorithm that
produces higher CTR while it runs, stops sooner, and doesn’t have a system-dependent
metaparameter like c.

 Thompson sampling calculates the probability that each click model (each arm)
will be the best one, call it pbest(arm). The rule of Thompson sampling is that when it’s
time to take an individual measurement, you randomize over the arms such that the
probability of measuring an arm is equal to the probability that it is the best arm.

This rule is a randomized probability matching rule. The choice of arm to measure is ran-
domized (so that we explore), but better-seeming arms get run more often (so we also
exploit). This is an elegant way to effect the exploration-exploitation tradeoff. Estima-
tion of the probability that an arm is the best, pbest(arm), is the core calculation of
Thompson sampling and is detailed in section 3.3.1. Randomized probability match-
ing is discussed in section 3.3.2.

 As more individual measurements are collected, the estimates of pbest(arm) become
more certain (have lower error), and we become more likely to run the best arm. Put
another way, Thompson sampling explores a lot at the beginning of an experiment,
then transitions to exploiting a lot at the end—just like epsilon-greedy. Thompson
sampling stops when any pbest(arm) is large enough, say larger than pstop = 0.95 (a
metaparameter).

 Section 3.3.3 compares Thompson sampling to epsilon-greedy on our ad-selection
system and shows that Thompson sampling achieves better CTR and stops experi-
menting sooner.

A NOTE ON METAPARAMETERS

Recall the metaparameter, c, from section 3.1.2. It affects both the initial rate of
exploration and the stopping time of epsilon-greedy. The value of c that is optimal for
the ad-selection system we’re studying here might not be optimal for any other system
you work with. The optimal c must be determined by trial and error. Unfortunately, I
can give you no generic guidance for choosing the best value of this metaparameter.

 This situation is quite different from A/B testing. Recall that an A/B test’s stop-
ping condition—the number of individual measurements to take, num_ind—was
determined by limits on the probability of false positives (α) and false negatives (β ).
These probability limits are metaparameters, but they are easier to work with than c
because they aren’t system-dependent. No trial-and-error was required, for example,
to choose a false-positive limit of 5% (i.e., α=0.05). Once this limit is chosen, an A/B
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test that respects it may be run on any system. Because these limits are not system-
specific, we can learn useful values from our and others’ experience experimenting
on various systems. Indeed, we learned that the commonly used values α=0.05 and
β=0.20 may be applied to any system we work on.

 Thompson sampling’s metaparameter, pstop, is not system-dependent, so it may be
set to the same value for many experiments on many systems. In that respect, it is more
like α and β than it is like c, and thus an easier metaparameter to work with than c.

3.3.1 Estimate the probability that an arm is the best

The measure of quality of a click model is the CTR it produces when running in pro-
duction. Epsilon-greedy used this metric to pick the best arm and run it with probabil-
ity 1-epsilon. Thompson sampling, by contrast, will run each arm in proportion to
pbest(arm). This section explains how to compute pbest(arm) using a technique called
bootstrap sampling.

 To start, recall the definition of CTR:

Or, equivalently

where Iclicked is a vector with length equal to the number of ads shown. The ith ele-
ment of Iclicked contains a 1 if the ith ad shown was clicked by a user and 0 if not.

 CTR is an aggregate measurement. In chapter 2, we quantified the uncertainty of
an aggregate measurement by the standard error:

For example, let’s say you collected 10 individual measurements:

Then CTR = mean(Iclicked) = 4/10 = 0.4. In NumPy, we would write

I_clicked = np.array([0,0,1,0,1,1,0,0,1,0])
CTR = I_clicked.mean()

The SE is then

    SE = I_clicked.std() / np.sqrt(len(I_clicked))
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which has a value of about SE = 0.16.
 Recall that SE estimates the standard deviation of the aggregate measurement,

CTR. We can’t calculate the standard deviation directly—with something like
“CTR.std()”—because there is only one value for CTR. CTR is not a vector. We collect
only one aggregate measurement value per experiment.

 Now, if we ran, say, 30 experiments, collecting 10 individual measurements per
experiment, then we could calculate 30 different CTR values. If we took the standard
deviation of those 30 CTR values, it would be about equal to SE.

 If we really ran 30 experiments, then we could also estimate the probability that an
arm was best by

For example, if your new click model had higher CTR than the old model in 20 out of
30 of the experiments, we’d say that pbest(new model) = 20/30 = 0.66.

 This is all fine to consider, but we don’t want to really run 30 experiments. We just
want to run one.

 In the next section, we’ll see how to generate (sort of) many experiments’ worth of
individual measurements using just the data from a single experiment. That way we
can use the straightforward technique above to calculate pbest(arm) without having to
run more than one experiment.

BOOTSTRAP SAMPLING

In the previous sections, we collected one set of 10 individual measurements, Iclicked,
from which we computed the mean—the aggregate measurement, CTR—and the
standard error. If we had many such sets—say 1,000 sets of 10 measurements each—we
could compute the mean of each set, giving us 1,000 aggregate measurements. Having
such a set of aggregate measurements in hand would be powerful. From that set, we
could compute the probability that each arm is the best arm, pbest(arm), as we’ll see in
the next section. Bootstrap sampling generates synthetic measurement sets from a sin-
gle, real measurement set—it makes a fake Iclicked vector from a real Iclicked vector.

 As an introduction to bootstrap sampling, let’s generate some synthetic measure-
ment sets and compute the aggregate measurement, CTR, for each set. Here’s how we
generate the first set:

1 Choose a value at random from the 10 Iclicked values.
2 Choose a value at random from the 10 Iclicked values.
3 Choose a value at random from the 10 Iclicked values.

... ...

10 Choose a value at random from the 10 Iclicked values.

When you’re done, you’ll have a new data set with 10 values in it. Note that in each
step, you are sampling with replacement—that is, each time you take a value from Iclicked,



70 CHAPTER 3 Multi-armed bandits: Maximizing business metrics while experimenting
you “put it back.” That means that some values may be chosen more than once, and
some may be chosen not at all.

 Since each value was drawn at random from Iclicked, the new data set has the same
distribution as Iclicked. It looks almost as if you ran another experiment and measured
10 more Iclicked values. You didn’t, but you can pretend you did. If you don’t like to
pretend, say that you simulated another run of the experiment. See the following list-
ing for a NumPy implementation of bootstrap sampling.

def bootstrap_sample(data):
    n = len(data)   
    return data[np.random.randint(n, size=(n,))]  

If we run the following a few times

np.random.seed(17)
print (bootstrap_sample(I_clicked))
print (bootstrap_sample(I_clicked))
print (bootstrap_sample(I_clicked))

we can get a feel for how the bootstrap-sampled data sets look:

[0 0 0 0 0 0 1 0 1 0]
[0 0 0 1 1 0 0 0 0 0]
[0 1 0 0 1 0 0 1 0 0]

Each bootstrap sample looks similar to the original data set in that there are mostly
zeros and some ones. The bootstrap samples don’t all have exactly four 1s in them,
like Iclicked did, but on average they do. As evidence, I’ve generated 1,000 bootstrap
data sets and computed the CTR of each. A histogram is plotted in figure 3.14.

 The mean of the CTRs is, as claimed, 0.40, which was the CTR of the original data
set, Iclicked. Also, the standard deviation of CTRs computed from these 1,000 boot-
strap data sets is 0.16, which matches the SE of the CTR of Iclicked. The histogram in
figure 3.14, therefore, approximates the distribution of CTR measurements we might
get if we ran an experiment consisting of 10 individual measurements 1,000 times. We
can use these samples to estimate pbest. But first, a quick note about small samples.

WORKING WITH FEW INDIVIDUAL MEASUREMENTS

Recall from chapter 2, section 2.3.1 that the mean of a large number of individual mea-
surements follows a normal distribution to good approximation. The more measure-
ments you include in the mean (i.e., CTR), the better the approximation. Figure 3.15
shows bootstrap histograms like the one in 3.14, except in 3.15 we vary the number of
individual measurements in Iclicked: First we use 10, then 100, then 1,000, then 10,000.
The distribution looks more and more like a normal distribution (aka, gaussian distri-
bution or “bell curve”) as the number of individual measurement increases.

Listing 3.10 Generate a bootstrap sample from a data set

Shows size of the data 
set (10 for I_clicked)

Selects n random 
elements of data
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Figure 3.14 Histograms of CTR computed from 1,000 bootstrap data sets 
generated from Iclicked. The mean of these CTRs is 0.40, the CTR of Iclicked. 
The standard deviation is 0.16, which is the SE of the CTR of Iclicked.

Figure 3.15 Histograms of CTR computed from the mean of 1,000 bootstrap data sets with varying 
numbers of individual measurements in Iclicked. (a) 10 measurements. (b) 100 measurements. (c) 1,000 
measurements. (d) 10,000 measurements; this looks very much like a normal distribution.
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We might be tempted to model the distribution of CTR by a normal distribution and
avoid the extra work required to compute bootstrap samples. But when running an
MAB (or any experiment, for that matter), we’re trying to minimize the number of
individual measurements we take. The fewer measurements the experiment takes, the
lower the cost of running it. Certainly, when an MAB experiment is in its early stages,
it will have fewer individual measurements and the aggregate measurement distribu-
tion will be non-normal. Creating a bootstrap sample lets us skip the step of modeling
the distribution. Now, let’s get back to the subject of pbest.

PROBABILITY OF BEING THE BEST ARM

Imagine again that we’re comparing two click models—two arms—and for each arm
we’ve collected 10,000 individual measurements:

I_clicked_1 = np.array([measure_click(ctr=.005) for _ in range(10000)])
I_clicked_2 = np.array([measure_click(ctr=.007) for _ in range(10000)])

The first arm has a CTR of 0.005 and the second has a CTR of 0.007. The histograms
of their bootstrap CTR estimates are shown in figure 3.16.

From the data (CTRs, aggregate measurements) displayed in figure 3.16, it looks like
Arm 2 is probably better than Arm 1. To quantify that intuition, define “the probabil-
ity that Arm 2 is better than Arm 1”—that is, pbest(Arm 2), with the statement: If we ran
a single experiment with 100 individual measurements, the estimated CTR of Arm 2
would be better than the CTR of Arm 1 with probability pbest(Arm 2). Equivalently, if

Figure 3.16 Histograms of bootstrap CTR estimates for two arms. Arm 1 has 
expected CTR=0.0050, and Arm 2 has expected CTR=0.0070. Because of 
the uncertainty in the measurements of CTR, it is not 100% certain from the 
data that Arm 2 is better than Arm 1.
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we ran M experiments, about M × pbest(Arm 2) of them would show the CTR of Arm 2
being better than that of Arm 1. That definition is encoded in the following listing.

def estimate_pbest(I_clicked_1, I_clicked_2):
    counts = [0, 0]     

    num_samples = 100
    for _ in range(num_samples):
        ctr_1 = bootstrap_sample(I_clicked_1).mean()    
        ctr_2 = bootstrap_sample(I_clicked_2).mean()    
        if ctr_1 > ctr_2:
            counts[0] += 1
        elif ctr_2 > ctr_1:
            counts[1] += 1
        else:
            pass   
          
    p_best = np.array(counts)/ num_samples
    return p_best

We see that estimate_pbest() returns [pbest(Arm 1), pbest(Arm 2)]—the probability
that each arm is the better—estimated from 100 bootstrap samples. (Note: estimate_
pbest() is comparing CTRs, the aggregate measurements. It is not comparing Iclicked
values, the individual measurements.)

 The output of np.random.seed(17); estimate_pbest(I_clicked_1, I_clicked_2)
is an array containing [0.04, 0.95]. The probability that Arm 2 is better than Arm 1 is
0.95. The probability that Arm 1 is better is 0.04. (These probabilities don’t add to 1
because for a few of the samples, the measured CTRs were equal.) The logic in esti-
mate_pbest() is extended to multiple arms in the following listing.

def estimate_pbest(I_clickeds):
    counts = [0] * len(I_clickeds)   
    num_samples = 100
    for _ in range(num_samples):
        ctrs = [bootstrap_sample(I_clicked).mean()   
                for I_clicked in I_clickeds]         
        ctrs = np.array(ctrs)
        i = np.where(ctrs == ctrs.max())[0]
        if len(i)==1:   
            counts[i[0]] += 1
            
    return np.array(counts)/num_samples

Running estimate_pbest() on some sample data

np.random.seed(17)
I_clickeds = [None]*4
I_clickeds[0] = np.array([measure_click(ctr=.003) for _ in range(10000)])

Listing 3.11 Estimate the probability of each arm being the better arm

Listing 3.12 Estimate the probability that each arm is best

Count the number of times CTR of 
I_clicked_1 is better and the number 
of times CTR of I_clicked_2 is better.

Each CTR is sampled 
from a distribution of 
possible CTRs, as in 
figure 3.16.Ignore

cases
where they
are equal.

Count the number of 
times each arm has the 
best CTR.

Each CTR is sampled 
from a distribution of 
possible CTRs, as in 
figure 3.16.

Only count
cases where

there are
no ties for
best CTR.
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I_clickeds[1] = np.array([measure_click(ctr=.005) for _ in range(10000)])
I_clickeds[2] = np.array([measure_click(ctr=.007) for _ in range(10000)])
I_clickeds[3] = np.array([measure_click(ctr=.009) for _ in range(10000)])
estimate_pbest(I_clickeds)

produces the probabilities [0, 0, 0.04, 0.94]. The estimate of the probability that
Arm 4 has the best CTR is pbest (Arm 4) = 0.94.

 We’ve defined the quantity pbest(arm) and developed a method of estimating it,
the bootstrap, from both small and large numbers of individual measurements. We
use pbest(arm) in Thompson sampling to decide when to stop and to choose which
arm to run for an individual measurement. Thompson sampling stops when any
arm’s pbest(arm) > pstop, where pstop is a metaparameter(e.g., pstop = 0.95). In the next
section we’ll see how pbest(arm) is used to choose which arm to run for an individual
measurement.

3.3.2 Randomized probability matching

Imagine we’re evaluating two click models—A and B—in production and it’s time to
decide which click model to use to serve an ad. Using estimate_pbest(), we might
calculate pbest (A)= 0.75 and pbest (B)= 0.25. A/B testing would say to choose A or B
at random (50% probability each). Epsilon-greedy would say to choose the one that
has the better CTR so far with probability 1-epsilon (e.g., 1.0 - 0.10 = 0.90). An
alternative lies somewhere in between: Run model A with probability 0.75 and model
B with probability 0.25. This approach is called randomized probability matching.

 In principle, since we have already learned to estimate pbest(arm), we are ready to
try randomized probability matching. In practice, however, estimate_pbest() can be
too slow to run effectively. It is slow because it needs to create and compute the means
of many bootstrap samples. But if we just want to know which arm to use for the next
randomization, there’s a trick that makes it simple and efficient:

1 Create one bootstrap sample for each arm.
2 Estimate the CTR (i.e., the business metric) from each bootstrap sample.
3 Measure the arm with the highest estimated CTR.

The trick lies in the fact that the probability that an arm’s bootstrap-estimated CTR is
higher than the other arms’ is just pbest(arm). This fact is what makes estimate_
pbest() work, after all. Note that these three steps don’t estimate pbest(arm). Rather,
they just select an arm to measure in a way that obeys this rule:

More-probably-better arms are more likely to be measured, exploiting their good
CTR. Less-probably-better arms still get run sometimes (exploration), which improves
the quality of our estimate of their pbest(arm), which improves the quality of future
decisions about which arm to measure.
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Borrowing code from the inner loop of estimate_pbest(), we can write randomized
probability matching as in the following listing.

def rpm_select_arm(I_clickeds):
    ctrs = [bootstrap_sample(I_clicked).mean()   
        for I_clicked in I_clickeds]             
    ctrs = np.array(ctrs)                        
    i = np.where(ctrs == ctrs.max())[0]          
    if len(i)!=1:              
        return np.random.randint(len(I_clickeds))
    return i[0]

The function in listing 3.13 performs the required task of selecting an arm with prob-
ability proportional to pbest with only one call to bootstrap_sample() for each arm.
That’s much better than the 100 calls that would be needed if we used estimate_
pbest().

 However, rpm_select_arm() is still not as efficient as it could be. Each call to
bootstrap_sample() accesses the entire collected data set. Since the function call
happens on every arm-selection decision, and the data set grows linearly with these
decisions, the running time of the algorithm will scale like [number of calls to rpm_
select_arm()] x [data set size] = O(T2), where T counts the number of randomization
decisions (which is proportional to time). That means that the longer the algorithm
(your experiment) runs, the longer each additional decision will take. Eventually, ran-
domization decisions will be too slow for production use. (Also, the simulations we’re
using in this book will take too long to run.)

ONLINE BOOTSTRAP

One solution is to construct an incremental (e.g., online) bootstrap sampler that doesn’t
need to access the entire data set but, instead, just accesses the latest measurement. It
works like this: With probability ½, add each new measurement to a running sum.
When you need to know the bootstrap mean, just divide that sum by the number of
measurements added so far. The drawback is that we only have access to a single, fixed
bootstrap sample. To remedy that, track B of these incremental bootstrap means. Then
the running time decreases from O(T2) to O(TB). The duration of a single randomiza-
tion decision does not grow with time. (See https://arxiv.org/pdf/1410.4009.pdf.) List-
ing 3.14 implements this online bootstrap technique.

Bootstrap Thompson sampling
Randomized probability matching is what defines Thompson sampling. In this chapter,
I’m presenting a specific type of Thompson sampling called bootstrap Thompson sam-
pling. There are other, non-bootstrap, ways to compute pbest(arm), but I find the boot-
strap to be robust and flexible in practice. (See this nice tutorial for other approaches
to Thompson sampling: https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf.)

Listing 3.13 Randomized probability matching

This code is 
borrowed from 
listing 3.12.

Only count cases 
where there are no 
ties for best CTR.

https://arxiv.org/pdf/1410.4009.pdf
https://web.stanford.edu/~bvr/pubs/TS_Tutorial.pdf
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tot
tim
class OnlineBootstrap:
    def __init__(self, num_bs_means):     
        self._sums = np.zeros(shape=(num_bs_means,))    
        self._n = np.zeros(shape=(num_bs_means,))       
        self._count = 0    
        

    def append(self, clicked):
        i = np.where(np.random.randint(2, size=(len(self._n,))) == 0)[0]
        self._sums[i] += clicked
        self._n[i] += 1
        self._count += 1

    def CTR_estimate(self):
        i = np.random.randint(len(self._n))     
        if self._n[i] == 0:
            return np.inf         
        return self._sums[i] / self._n[i]    
    

    def count(self):
        return self._count 

The functions rpm_select_arm() (listing 3.13) and estimate_pbest() (listing 3.11)
are both made more efficient by use of OnlineBootstrap. See listings 3.15 and 3.16
for the online bootstrap versions.

def rpm_select_arm_ob(obs):
    ctrs = [ob.CTR_estimate() for ob in obs]     
    ctrs = np.array(ctrs)
    i = np.where(ctrs == ctrs.max())[0]
    return np.random.choice(i)    

def estimate_pbest_ob(obs):
    counts = [0] * len(obs)
    num_samples = 100
    for _ in range(num_samples):
        ctrs = [ob.CTR_estimate() for ob in obs]   
        ctrs = np.array(ctrs)
        i = np.where(ctrs == ctrs.max())[0]
        if len(i)==1:    
            counts[i[0]] += 1
    return np.array(counts)/num_samples

Listing 3.14 Online Bootstrap

Listing 3.15 Randomized probability matching with the online bootstrap

Listing 3.16 Estimate pbest with the online bootstrap

Track num_bs_means 
bootstrap means for 
a single arm.

Track sum and number 
of samples for each CTR 
(each bootstrap mean).

Count the
al number of
es append()

is called.

Choose one of 
the CTRs at 
random.

Induces a measurement of 
this arm when no data has 
been collected yetEstimate CTR from

one of the tracked
bootstrap means.

OnlineBootstrap 
provides a CTR 
estimate for each arm.

Randomize among arms tied for 
best CTR, or just return the best 
arm if only one arm is best.

OnlineBootstrap 
provides a CTR estimate 
for each arm.

Ignore cases where 
multiple arms are 
tied for best.
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Randomized probability matching is a method of selecting which arm to measure at
each randomization decision in an experiment. It falls between the two extremes of
A/B testing (select between arms A and B with equal probability) and epsilon-greedy
(choose the best arm most of the time, with probability 1-epsilon). Online bootstrap
sampling is more computationally efficient than plain bootstrap sampling, and it
prevents the time required to make a randomization decision from steadily growing
throughout the lifetime of an experiment.

3.3.3 The complete algorithm

In the preceding sections, we explained all of the components of a Thompson sam-
pling algorithm:

 estimate_pbest_ob()—A technique to calculate pbest(arm) efficiently
 rpm_select_arm_ob()—Randomized probability matching for arm selection,

which uses pbest

 A stopping rule, which also uses pbest(arm)

To fully implement it, we need to clean up two more loose ends. First, there’s the
question of how many bootstrap means to collect in the online bootstrap. I have
needed at least 100 in practice. There’s a tradeoff when choosing this number: the
larger that number is, the more exact (i.e., like a full bootstrap) the online bootstrap
will be. But the smaller that number is, the faster the online bootstrap will be.

 Finally, we need to ensure that our estimates of CTR are precise enough to detect
differences at the level of practical significance. Please see the sidebar on discretiza-
tion error.

Discretization error
Recall that CTR is estimated with

where Iclicked is either 1 (user clicked on ad) or 0 (user didn’t click).

Consider two CTR measurements based on n individual measurements of Iclicked:

and 
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The following listing puts this all together into the Thompson sampling algorithm.

def thompson_sampling():
    k = 4
    num_bs_means = 100
    p_stop = 0.95       
    smallest_sum_difference = 1
    prac_sig = 0.001

    min_samples_per_arm = smallest_sum_difference / prac_sig    
    
    obs = [OnlineBootstrap(num_bs_means) for _ in range(k)]    
    sum_clicks = 0.0
    num_ads = 0.0
    ctr_vs_n = []

    n = 0
    while True:
        num_samples_per_arm = [ob.count() for ob in obs]
        i_too_few = np.where(np.array(num_samples_per_arm) < 

min_samples_per_arm)[0]

(continued)

The least those two CTRs could differ is if a single Iclicked was different. Let’s say the
first Iclicked (it doesn’t matter which one we choose) was 1 instead of 0 for CTRB. 

The smallest difference in the sums is 1, so the smallest difference between the two
CTRs is

We’d like to have enough Iclicked values in those means so that the smallest differ-
ence is no larger than PS:

Or n = [smallest difference in sums]/PS=1/PS.

This source of imprecision—due to the discrete nature of the quantity being mea-
sured—is distinct from the natural variability that we quantified with SE. Both sources
of imprecision need to be considered to take a good measurement.

Listing 3.17 Thompson sampling

Stop when the probability 
of an arm being best has 
reached 0.95. Take enough

samples to overcome
imprecision due to

discretization.

Create one
OnlineBootstrap

object for each arm.
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        if len(i_too_few) > 0:     
            i_selected = np.random.choice(i_too_few)
        else:
            i_selected = rpm_select_arm_ob(obs)
        i_clicked = measure_arm(i_selected)
        obs[i_selected].append(i_clicked)
        sum_clicks += i_clicked
        num_ads += 1
        ctr_vs_n.append(sum_clicks / num_ads)

        n += 1
        if len(i_too_few) == 0 and n % 100 == 0:   
            p_bests = estimate_pbest_ob(obs)
            i_best_arm = np.where(p_bests == p_bests.max())[0]
            if (len(i_best_arm) == 1     
                and p_bests.max() >= p_stop):    
                break
                

    return ctr_vs_n, i_best_arm        

In listing 3.17, estimate_pbest_obs() is made more efficient by use of the online
bootstrap, but it still takes much longer than the other parts of the inner loop because
it generates 100 (online) bootstrap samples. To compensate for the relative slowness,
estimate_pbest_obs() is called only once every 100 iterations. Figure 3.17 shows how
Thompson sampling integrates into the ad selector.

 The implementation of Thompson sampling in listing 3.17 evaluates K = 4 arms
simultaneously, just like epsilon_greedy_decay_multi(). We’ll compare the two
algorithms, but please note that we didn’t tune c for this simulated system, so the
results for epsilon_greedy_decay_multi() are likely suboptimal.

The function thompson_sampling() completes much more quickly than epsilon_
greedy_decay_multi(). While the latter takes 200,000 iterations for every run,
thompson_sampling() takes on average 20,616 iterations and at most 103,500 over
100 runs.

Thompson sampling performance
Thompson sampling has a long history as a useful heuristic algorithm. It has been
shown to have asymptotic optimal regret, just like epsilon-greedy. Also, Thompson
sampling has shown empirical performance superior to epsilon-greedy and other
MAB algorithms (O. Chapelle and L. Li, “An empirical evaluation of Thompson sam-
pling,” in Proc. 24th Int. Conf. on Neural Information Processing Systems, 2011,
pp. 2249–2257).

Be sure all arms have 
enough samples before 
using RPM.

Only check the stopping condition 
occasionally because estimate_pbest_obs() 
is relatively slow.

If there is a 
single best arm 
(no ties) . . .

. . . and the probability 
that it’s the best is 
greater than p_stop, 
then stop.
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The function thompson_sampling() accepted the correct arm 96% of the time, con-
sistent with the stopping condition pbest ≥ 0.95.

 To make a fair comparison between thompsom_sampling() and epslion_greedy_
decay_mutli(), I modified thompson_sampling() to switch to the best arm after com-
pletion and then continue until 200,000 iterations were complete. Figure 3.18 displays
100 runs of each of epsilon_greedy_decay() and thompson_sampling().

 Table 3.2 summarizes the final values of the same 100 runs shows in figure 3.18—
thompson_sampling() performs slightly better than epsilon_greedy_decay().

 
 

Click Model A

Ad with highest

estimated click
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clicked = 0 or 1

Ad selector
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CTRs

Click Model B

Click Model C
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Figure 3.17 The ad selector testing 
multiple click models using Thompson 
sampling. The server chooses a click-
probability model using randomized 
probability matching (listing 3.13)—
that is, the selection with probability 
proportional to the probability (p_best, 
listing 3.16) that the model has the 
highest CTR. Randomized probability 
matching is made efficient by the online 
bootstrap (listing 3.15), which tracks 
100 bootstrap-sampled CTRs for each 
click model.
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In summary, to evaluate multiple system versions (arms) with Thompson sampling,
perform the following:

 Design—Choose a stopping threshold for pbest(arm)—for example, pstop = 0.95.
 Measure—Use randomized probability matching to choose an arm at each ran-

domization step. The online bootstrap makes this computationally efficient.
 Analyze—Accept the arm that has the highest pbest(arm).

Thompson sampling is an MAB algorithm that produces better business metrics while
running than epsilon-greedy or A/B testing. It gets its advantage by computing and
adapting to more detailed statistics (i.e., many online bootstrap means) than epsilon-
greedy (a single mean) or A/B testing (none at all). It has no system-dependent
metaparameter to tune, like epsilon-greedy.

Table 3.2 On the example problem with K = 4 arms, thompson_sampling() performs similarly to
epsilon_greedy_decay() but it completes much earlier on average and does not require one to
tune the system-dependent parameter c.

Algorithm Mean CTR Std. Dev. CTR

epsilon_greedy_decay() 0.0106 0.0006

thompson_sampling() 0.0107 0.0006

Epsilon-greedy

Thompson sampling

Figure 3.18 100 runs of epslion_greedy_decay_mutli() compared to 
100 runs of thompson_sampling(). Thompson sampling improves CTR slightly 
over epsilon-greedy. Thompson sampling was forced to always run the best arm 
from the time it stopped experimenting until n = 200,000 just to enable us to 
compare the two algorithms over the same range of n. Under normal operation, 
Thompson sampling stops experimenting much earlier—around n = 20,000 
individual measurements, on average. 
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Summary
 Multi-armed bandit algorithms reduce the cost of experimental optimization by

trading off business metric improvement (exploitation) with evaluation of sys-
tem versions (exploration).

 Epsilon-greedy is an MAB algorithm that is simple to implement and has
optimal asymptotic regret but requires the engineer to tune a system-specific
metaparameter.

 MAB algorithms make it easy to evaluate multiple versions—also called arms—
simultaneously.

 Thompson sampling produces better business metrics during operation than
epsilon-greedy and has no system-dependent metaparameter to tune.



Response surface
methodology: Optimizing

continuous parameters
A/B tests are straightforward and reliable. They are the “gold standard” of experi-
ments, but there is a cost—that is, the time, money, or risk involved in obtaining
experimental results—to running them. Each of chapters 3–6 presents a method
that aims to reduce that cost. For example, multi-armed bandits (MAB) adapt the
experiment design continuously as new individual measurements are taken, and
this reduces the time spent running the inferior version—A or B—of the system.

 Response surface methodology (RSM) is specifically designed to optimize con-
tinuous parameters. RSM takes advantage of properties of continuous parameters
to reduce experimentation cost compared to a more general method, like A/B test-
ing. Both A/B testing and RSM help the engineer optimize a system by experiment-
ing on it, but RSM has a narrower scope than A/B testing.

This chapter covers
 Designing experiments to optimize continuous 

parameters

 Modeling your business metric as a function 
of system parameters

 Optimizing over the model

 Validating the optimal parameter settings
83
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 The RSM procedure requires the experimenter to make decisions based, in part,
on visualization of the business metric. These visualizations help make the procedure
more transparent. We believe that learning RSM will lay a solid foundation for under-
standing Bayesian optimization, which incorporates ideas from RSM.

 In section 4.1, we’ll discuss what’s special about continuous parameters and how
RSM takes advantage of their properties to improve efficiency. We’ll also walk through
the RSM procedure for optimizing a single parameter. RSM has the design, measure,
and analyze stages familiar from A/B testing. Compared to A/B testing, though,
RSM’s analyze stage is more sophisticated.

 In the analyze stage, you build a model that interpolates between measurements;
then you optimize over that model to find good estimates of the optimal parameter set-
tings. The optimal parameter settings are those at which your system achieves its best
business metric. This process of optimizing over a model is the core innovation of RSM. 

 Section 4.2 presents another RSM walk-through, but this time for optimizing two
parameters. Most stages in the RSM procedure require some modification to handle
the extra parameter. The section also contains some discussion of how to extend RSM
to more than two parameters. Let’s get started and optimize a single continuous
parameter.

4.1 Optimize a single continuous parameter
As a first step, you’ll see how to optimize a single continuous parameter using RSM.
An overview of the RSM procedure is shown in figure 4.1.

The RSM procedure is broken into four stages:

1 Design—The design stage is mainly concerned with choosing which values of the
parameter to measure. We’ll see how to choose these values using (1) prior
knowledge of the system, and (2) and understanding of the requirements of the
analyze stage. In the design stage, we’ll apply knowledge from A/B testing to
determine how many individual measurements to take at each parameter value.

Choose parameter

values to measure

Optimum

not found

Interpolate
Measure

business metric
Optimize

Measure

optimum

Design Measure Analyze

Measurement

≠ estimate

Accept

optimal

parameter

Validate

Figure 4.1 Overview of response surface methodology (RSM). RSM is an iterative process. First, in the design 
stage, we choose parameter values to measure. Next, we run the experiment to measure the business metric 
at those parameters. In the analyze stage, we use RSM techniques—interpolation and optimization—to 
estimate which parameter value is optimal. If the analysis fails, we return to the design stage. Otherwise, we 
validate the estimated optimal parameter value by measuring its business metric. If the measurement does not 
match the estimate, we return to the design stage. Otherwise, RSM has produced an optimal parameter value.
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2 Measure—Next, we measure the business metric at each parameter value by col-
lecting the prescribed (by the design stage) number of individual measure-
ments in production. This is the same as the measure stage of an A/B test
(which we’ll review in section 4.1.2).

3 Analyze—Analyzing RSM measurements takes two steps:
– Interpolate measurements—First, we’ll build a model, called a surrogate function,

of the measurements that we can use to estimate the business metric at unmea-
sured values of the parameter. We say that the model interpolates between mea-
sured values. We can take many such estimates very quickly without running
new experiments. In practice, estimating a business metric with a model
could take a few milliseconds, whereas measuring it via experiment could
take from hours to weeks.

– Optimize parameters—We’ll search through values of the parameter to find the
one that gives the highest business metric, as estimated by the surrogate
function. If the analysis fails to find an optimum, we’ll restart the procedure
and design a better experiment.

4 Validate—We run a final experimental measurement of the business metric of
the optimal parameter to see whether it agrees with the estimate from the previ-
ous step. If so, we accept the optimal parameter as the new setting for the sys-
tem. If not, we need to return to the design stage, adjusting for the new
information we’ve gathered. Details on this appear in section 4.2.

Let’s look at each stage in detail, starting with the design stage.

4.1.1 Design: Choose parameter values to measure

The RSM design stage uses both domain knowledge and an anticipation of the needs of
the analyze stage to choose which parameter values to measure. 

 First, we’ll see how to use domain knowledge to restrict the range of parameter
values. Domain knowledge is any business or engineering knowledge you possess
about your system. For example, you might know that the weights in your ML model
must never be negative. As such, you would restrict the weights to only positive val-
ues in RSM experiments.

 Next, we’ll see how to determine where, exactly, inside the parameter range to
measure the business metric. Choosing the right parameter values in this stage will
lead to a good surrogate function in the analyze stage.

 To get a feel for how to make use of domain knowledge, we’ll consider the case of
optimizing a proprietary trading strategy of the kind a quant might build at a bank or
hedge fund. 

 As a quant trader at a hedge fund, you’ve been given the task of optimizing a propri-
etary strategy—or “prop” strategy. A prop strategy buys and sells shares of a stock in an
automated way. The strategy makes its buy and sell decisions using something called a
signal. A signal is a prediction of price changes of a stock and is a function of public
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market data. When the signal is positive (resp. negative), the stock price is expected to
move up (resp. down).

 Figure 4.2 shows this prop strategy containing a signal and connected to an
exchange. The prop strategy sends BUY and SELL orders to the exchange, and the
exchange sends market data (the term for all the public data emitted by an exchange)
to the strategy. The strategy uses the market data to compute the signal that is the
basis for making buy-or-sell decisions. When the signal is strong enough—when it
crosses a threshold—the strategy will place an order to trade.

Your prop strategy buys low and sells high automatically, many times per day, in hopes
of earning a profit. If, for example, it bought 100 shares of XYZ at $5.00/share and
sold them at $7.00/share, your strategy’s profit would be

100 shares * ($7.00/share – $5.00/share) = 100 shares * $2.00/share = $200

Each time the strategy trades, it pays a small cost per share, making the profit look
more like

100 shares * ($7.00/share – $5.00/share) – 100 shares * $.01/share = 
100 shares * $1.99/share = $199

if, for example, the cost was $.01/share. (The cost could be some combination of
exchange fees, broker fees, the bid-ask spread, adverse selection, and market impact.)

 To find the setting of threshold that maximizes profit, we could use A/B testing.
We could call one value of threshold “A” and one value “B” and use an A/B test to
compare their profitability. But we’d be left wondering whether we’d found the best
value of threshold. How should we proceed? Using a process of haphazard guessing
might produce a lucky result or might not.

 We could be more systematic and test many closely spaced values of threshold—
for example, 0.0, 0.01, 0.02, 0.03, . . . , 1.0—and measure them (to high
enough precision) to be certain we’d found a value very near the optimum. This
would require many A/B tests. Running an MAB instead, using all the proposed
threshold values as arms, would be more efficient but would still require a long
experiment because of the large number of arms.

Exchange

BUY, SELL

orders

If signal > threshold: BUY

If signal < -threshold: SELL

Market data

Prop strategy

Figure 4.2 A proprietary trading 
strategy. The strategy computes 
a signal from public market data. 
If signal > threshold, the 
strategy sends a BUY order to the 
exchange. Similarly, if signal < 
-threshold, the strategy sends 
a SELL order; threshold is a 
parameter.
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 RSM measures only a small number of threshold values. The surrogate function
estimates profitability at all in-between values, and then we find the threshold that
maximizes the surrogate’s estimated profit. Maximizing the surrogate makes it unnec-
essary to experimentally measure the many in-between threshold values, as we would
have had to with A/B testing or MAB, saving us time and other experimentation costs.

 In the sections that follow, you’ll use RSM to optimize threshold to the value that
maximizes profit. Before we begin, however, we’ll write a simulator, a Python function,
of the prop trading strategy. We’ll apply the RSM procedure to this simulator. In prac-
tice, you’d apply the same procedure to your production trading system.

SIMULATE AN INDIVIDUAL MEASUREMENT OF PROFIT

The prop strategy’s profit depends on (1) the signal that predicts the direction of the
price, (2) the parameter threshold, and (3) the trading cost. We’ll simulate these
three features in a Python function that produces an individual measurement. Just as
in previous chapters, we can run experiments on the simulator since we don’t have a
real trading system available. Then you’ll learn how to optimize the simulator’s
threshold parameter with RSM to the value that maximizes profit.

 When evaluating a prop strategy, quants sometimes track a metric called the mark-
out profit. Markout profit is a measure of the profit of a single trade. It compares the
traded price and the market price at some fixed time—say 1 minute—after the trade.
For example, if we bought 100 shares at $5.00/share, then 1 minute later the market
price was $6.50/share, we’d log a markout profit of

100 shares * ($6.50/share – $5.00/share) = 100 shares * $.050/share = $50

We’ll take it one step further and subtract the cost, too. (If the cost was $0.01/share,
then the markout profit would be 100 share * $.49/share = $49.)

 Markout profit will serve as the business metric for your prop strategy. To construct
a simulator in Python, we’ll model markout profit, profit, like this:

profit = pps × |signal | – cost + ε

The (expected) profit increases linearly with the signal at a rate of pps, the “profit per
signal.” The cost, cost, is the trading cost, and ε represents the unpredictable portion
of the fluctuations of the market, which we model as normal (Gaussian). This just says
that our signal predicts market moves and that trading in the direction of the signal
(i.e., buying when the signal is positive or selling when it is negative) will tend to earn
us some profit. 

 The vertical bars around signal are the absolute value notation. They make the
point that since we’re going to buy when the signal is positive and sell when the signal
is negative, we’re going to profit regardless of the sign of the signal. For example, if
signal is -1.3, we’ll sell and earn pps × 1.3 – cost + ε in profit.

 We’ll model the signal as a unit normal, a normal distribution with mean zero and
standard deviation 1, which (I’ll state here without justification) is not unreasonable
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for a quant’s signal. The following listing puts all this together to simulate the mark-
out profit of a single trade.

def markout_profit(threshold):
    cost = 1    
    pps = 1    
    signal = np.random.normal()    
    eps = 2*np.random.normal()     
    if (signal > threshold   
        or signal < -threshold):     
        profit = pps*np.abs(signal) - cost + eps
    else:
        profit = 0     
    return profit

Note that cost, pps, and thus profit are dimensionless—not necessarily dollars or
euros or yen. If it helps to think in terms of your favorite currency, that’s fine.

 You can imagine the prop strategy functioning as a sequence of events, where a sin-
gle event is the arrival of new market data from the exchange. When that happens, the
prop strategy recomputes the signal and decides whether to buy, sell, or, if the signal
isn’t strong, just do nothing. With each event, the strategy would log its decision (buy,
sell, do nothing), the price at which it traded, and the market price 1 minute later. A
single call to markout_profit() simulates one of these events and returns the mark-
out profit computed from the logged values. In our usual terminology, the output of
markout_profit() is an individual measurement.

 To get a feel for the output of markout_profit() and build some “domain knowl-
edge” of the simulator, I called markout_profit() 10,000 times with threshold=1 and
found the following:

 With that threshold, 68% of the time markout_profit() didn’t trade and
returned profit=0. In other words, the strategy is usually waiting patiently for a
trading opportunity to arise.

 The markout profit has mean = 0.17 and standard deviation = 1.2. Notice that
the mean markout profit is less than the cost to trade (cost=1). This is not
unrealistic for very short-term trading strategies.

 Of the calls to markout_profit() that resulted in a trade (100% – 68% = 32%),
the mean markout profit was 0.53 and the standard deviation of markout profit
was 2. A histogram of the markout profit for the 32% of calls that resulted in
trades is shown in figure 4.3.

In the experiment we design in this chapter, markout_profit() will serve as the indi-
vidual measurement. Figure 4.3 shows that markout_profit()’s output varies from
call to call (characterized by the standard deviation) but that it has some expectation
(estimated by the mean). The goal of RSM is to find the value of threshold that yields
the highest expectation for markout_profit().

Listing 4.1 Simulate a markout

Indicates the 
cost of a trading

ows the
rofit per

signal
signal and eps (ε) 
are unit normal.

Buy when
the signal
is strong
positive.

Sell when the 
signal is strong 
negative.

There is no profit 
if we don’t trade.
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Now that we’ve defined the business metric, we need to choose which values of
threshold to measure. First, we’ll use domain knowledge to limit the range of thresh-
old values. Afterward, we’ll make sure we’re measuring enough values of threshold to
meet the needs of the analyze stage.

LIMIT THE RANGE OF PARAMETER VALUES WITH DOMAIN KNOWLEDGE

While you can’t know which value of threshold is optimal (maximizes the business
metric) before trading your strategy, as an experienced quant trader, you will have
both general trading knowledge and information specific to your strategy that tell you
what range of threshold values is reasonable. This domain knowledge sets bounds on
the threshold values over which RSM will search for an optimum.

 We already possess some knowledge of this prop trading system that we can use to
limit the range of values of threshold. We know that signal is a standard normal—
mean zero and standard deviation 1. (In a real system, you will know characteristics of
your signal, such as mean and standard deviation, because they will be part of your sys-
tem’s design.) Knowing that the signal is unit normal and that it is used by the strat-
egy in the statements

if signal > threshold: BUY
if signal < -threshold: SELL

we can draw a couple of useful conclusions.

Markout profit

C
o

u
n

t

Figure 4.3 Histogram of markout profit of simulated trades. Sixty-eight percent 
of calls to markout_profit(threshold=1) result in no trade, so markout 
profit=0. The other 32% of calls—about 3,200—do trade and have mean profit 
0.53 and standard deviation 2. This figure shows a histogram of the 3,200 calls 
that traded.
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 First, we must have threshold >= 0. If we didn’t, then both BUY and SELL actions
could be valid at the same time. For example, if threshold=-1 and signal=0, both if
statements would evaluate to True. Our strategy must choose one action—buy, sell, or
wait—at a time. See figure 4.4 for an illustration.

Second, since signal is normal with standard deviation of 1, it will very rarely take a
value greater than 2 (5% of the time). Therefore, we can limit threshold to
threshold < 2.

 We just used domain knowledge to limit threshold to 0 < threshold < 2. When
optimizing a parameter of any system, you will typically be able to reason in a similar
way to determine a range of values for the parameter.

 We need to delve a little more deeply into the properties of continuous parameters
in order to understand how the RSM analyze stage takes advantage of them. With that
knowledge, you’ll be able to choose exactly how many and which values of threshold
to measure in the first run on your trading strategy.

CONTINUOUS PARAMETERS IN RSM
The analyze stage can make estimates of markout_profit() at unmeasured values of
threshold because threshold is continuous. We’ll take some time to understand how

-thresholdthreshold

BUY
SELL

t < 0hreshold

0

threshold-threshold

BUYSELL

threshold > 0

0

(a)

(b)

signal

signal

Figure 4.4 The strategy cannot function with threshold < 0. The horizonal 
axis represents signal value. (a) threshold > 0. The region of signal values 
where a BUY (resp. SELL) order is issued is far to the right (resp. left). In 
between, the strategy does not issue an order. (b) threshold < 0. The region 
of signal values where a BUY would be issued overlaps the region where a SELL 
would be issued. It is unclear which order should be issued in the center (overlap) 
region where threshold < signal < -threshold. (Note: -threshold > 0 
since threshold is negative.)
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to make these estimates; then we’ll use this new knowledge to choose values of
threshold that will make the analyze stage’s estimation process effective.

 RSM’s goal of finding the optimal threshold differs from the goal of the last two
chapters. In chapter 2, our experiments were designed to learn whether a modified
system, version B, was better than the current system, version A. Using A/B testing, we
could, in principle, compare a system with threshold=1 to a system with threshold=2,
thus selecting from two possible values of threshold. We could even use multi-armed
bandits from chapter 3 to compare multiple values—for example, threshold=0.5,
threshold=1, threshold=1.5, and threshold=2—to see which would produce the high-
est markout profit. RSM takes things a step further and searches the full range of val-
ues, 0 < threshold < 2, for the optimum.

 RSM more precisely locates the optimal threshold than A/B testing or multi-armed
bandits. To do this, we take advantage of the fact that threshold is a continuous param-
eter. The definition of a continuous parameter is best understood by contrasting it with
the two other parameter types you might find in any engineered system.

 Categorical parameter—A parameter that takes one of a few arbitrary values. For
example, a parameter exchange in a trading system could take a value NASDAQ
or NYSE (two different exchanges). In an ad-serving system, a parameter position
(of an ad on a web page) could take a value top of page or side of page.

 Discrete (ordinal) parameter—A parameter that takes an integer value. Unlike a
categorical parameter, discrete parameter values are ordered—that is, it makes
sense to say that one value is greater than or less than another. For example, a
trading-system parameter num_orders might take a value 1, 2, or 3. In a list of
search results on a web page, a parameter num_items might determine how
many items to display.

 Continuous parameter—A continuous parameter takes real (in the mathemati-
cal sense) values. It is ordered, like a discrete parameter, but, unlike a discrete
parameter, between any two values of a continuous parameter there is
another valid value: If 1 and 2 are valid parameter values, then 1.5 is also (as
are 1.25, and 1.333 . . . , and, in fact, any other real value between 1 and 2).
We’ll call these interior values. Another continuous parameter is threshold, as
it can take any real value in the interval 0 < threshold < 2. Another example
of a continuous parameter is a weight in a linear combination of features in
an ML model, like w in x1 + w * x2, which might take any value in the interval
[-1,1].

Table 4.1 summarizes the properties of the three types of parameters.
 The metric markout_profit is also continuous. We say it varies continuously with

threshold. This means that if threshold_1 is close to threshold_2, then markout_
profit(threshold_1) is close to markout_profit(threshold_2). This property
makes it possible to form reasonable estimates of markout_profit for unmeasured
values of threshold—as long as those unmeasured threshold values are close to
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measured ones. Forming estimates like this is called interpolation, and it is discussed in
the next section.

 Real-world business metrics tend to vary continuously with continuous parameters,
so you can expect response surface methodology to be useful in optimizing a continu-
ous parameter for almost any system you work on.

INTERPOLATION OVER CONTINUOUS PARAMETERS

First, we’ll take a look at how a simple interpolation between two measurements works.
Then we’ll see that we need at least three measurements to create a surrogate func-
tion that has a maximum at an unmeasured threshold value. Finally, we’ll decide how
many aggregate measurements to take to be prepared for the analysis stage.

 Assuming markout_profit varies continuously with threshold, then if we know
markout_profit for both threshold_1 and threshold_2, we could interpolate to
make a reasonable approximation at some value between threshold_1 and thresh-
old_2. Let’s say that

threshold_1 = 1
threshold_2 = 2
markout_profit(threshold_1) = 5
markout_profit(threshold_2) = 6

Since markout_profit varies continuously with threshold, we can estimate mark-
out_profit at a nearby threshold value, threshold_mid

threshold_mid = (threshold_1 + threshold_2)/2

with an estimated markout profit of

(markout_profit(threshold_1) + markout_profit(threshold_2))/2 = 5.5

Figure 4.5 depicts this graphically.
 Figure 4.5 shows a line segment interpolating markout_profit(threshold) between

two measured values. Were you to take only these two measurements, you would con-
clude that the optimal parameter was threshold_2, because that is where markout_
profit(threshold) is largest.

Table 4.1 Properties of parameter types. Consider any two parameter values, a and b. If it makes
sense to say a > b or a < b, then the parameter is ordered. If you can always find more parameter values
between a and b, then the parameter has interior values. Continuous parameters are both ordered and
have interior values. Discrete parameters are ordered but don’t have interior values. Categorical
parameters are unordered (and so cannot have interior values).

Parameter type Ordered Interior values

Categorical X X

Discrete √ X

Continuous √ √
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When interpolating between only two measurements, we should always just draw a
line segment because it’s the simplest way to “connect the dots.” That means that the
maximum markout_profit(threshold) will always be at one end (left or right) of the
line segment as depicted in figures 4.6(a) and 4.6(b). This, in turn, means that we’ll
always choose one of the measured values—which are at the ends of the line segment—
as our optimal threshold.

 Choosing between measured values of threshold is something we could have
done with A/B testing or MAB. The power of RSM’s surrogate function (the model of
the response surface) comes to the fore when we find an optimum at an unmeasured
threshold, via interpolation. To find a maximum at an unmeasured threshold, we’ll
need to take a third measurement.

 Adding a third measured value, as in figures 4.6(c) and 4.6(d), allows the surrogate
to take a “hump” shape—a parabola. Figure 4.6(c) and 4.6(d) show measurements at
the filled dots but have their maximum at the open dots—at unmeasured thresholds.

 If we were to measure even more values of markout_profit(threshold), we might
find a way to refine the interpolation of the function markout_profit(threshold),
but three is the minimum number needed to model a parabola. Since experiments
take time and cost money to run, we’ll measure markout_profit(threshold) at not
more than the minimum number necessary: three.

threshold_1

markout_profit(threshold_2)

threshold_2

markout_profit(threshold_1)

threshold_mid

Estimated markout profit

at threshold_mid

Figure 4.5 Interpolation of a continuously varying business metric over a continuous parameter. 
If we know markout_profit(threshold_1) and markout_profit(threshold_2), the 
values at the solid dots, we can estimate profit at threshold_mid = (threshold_1 + 
threshold_2)/2 as (markout_profit(threshold_1) + 
markout_profit(threshold_2))/2.
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Be aware that a parabola makes a good model only when you take measurements close
to the optimal threshold value. Although the function markout_profit(threshold)
may take an arbitrary shape, close to the maximum it will look something like a parab-
ola, similar to figures, 4.6(c) and (d). The resemblance is simply because a maximum
is the top of a hump in the function, and a parabola is a hump. If you go too far from
the top, though, the resemblance will break down.

 This caveat tells us that we need to keep the three threshold values close
together. We say that we are interpolating locally (in a small range of thresholds)
rather than globally (over a large range). How do you know if the range of thresh-
olds is small enough to be considered “local”? Well, if approximating markout_
profit as a parabola works well, then the range can be considered local. Yes, that’s
circular reasoning. No, I can’t offer better reasoning. The point is simply that if the
approximation doesn’t give good results, you might have to shrink the range of
threshold values.

 Knowing that we need to measure three values in a small range of threshold and
that domain knowledge limits the range to 0 < threshold < 2, let’s measure threshold
at values 0.5, 1.0, and 1.5. We’ll stay clear of lower values at the outset, so we don’t
risk trading too quickly, thus losing money to trading costs (e.g., at threshold < 0.5).

threshold
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Figure 4.6 Measured values of markout_profit(threshold) and 
interpolations between them. When we interpolate between only two measured 
values, shown as filled dots in (a) and (b), the maximum profit occurs at one of 
the measured values. When a third measured value is added, as in (c) and (d), 
the maximum profit may occur at an interpolated value, shown as an unfilled dot 
in (c) and (d). Thus, for interpolation to be useful in estimating an optimum at an 
unmeasured value of threshold, at least three points must be measured.
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 In this section, we learned that continuous parameters are special in that they
enable you to interpolate between measured values to find at which parameter value
the business metric is maximized. To find an optimum at an unmeasured parameter
value, we need to measure the business metric at three values of the parameter. We
also need to keep those values in a small range so that the function (business metric
versus parameter) is well-modeled by a parabola. In the next section, we’ll discuss how
many individual measurements to take at each of the three threshold values to get
good estimates of markout_profit(threshold).

DETERMINE THE NUMBER OF INDIVIDUAL MEASUREMENTS

You just learned that you need to measure profit at three or more threshold values to
make it possible to use interpolation to find the optimal threshold. Before that, we used
domain knowledge to limit the range of threshold to 0 < threshold < 2 and decided to
measure markout_profit(threshold) at threshold = 0.5, 1.0, 1.5. Now you’ll learn
how to design an experiment to take those measurements. Next we’ll discuss running
the experiment. Analysis of the experiment will consist of interpolating and finding the
optimal threshold and will be presented in the subsequent two sections. 

 Recall that A/B test design teaches us to use randomization to remove bias from
our measurements. When A/B testing an agency execution system in chapter 2, you
randomly assigned each incoming customer order to either version A or version B of
the system’s trading strategy. Similarly, when measuring markout_profit(threshold)
at each of three values of threshold, you’ll need to randomly assign each trading deci-
sion to threshold=0.5, threshold=1.0, or threshold=1.5.

 A/B test design also teaches us to use replication to reduce the standard error, SE,
of a measurement to an acceptably low value. We can apply the A/B approach for
determining the number of replications to use by treating each value of threshold
like a “B version” of the system.

 First, we measure sd_1_delta, the standard deviation in an individual measurement
using either previously logged measurements of the business metric or by running a
pilot study to collect such measurements. We effectively did that when constructing
the histogram shown in figure 4.3. The standard deviation of the 10,000 trades was
sd_1_delta = 1.2.

 Next, we specify a practical significance level, prac_sig, which is determined by
business considerations for the system at hand. If we treat the construction of figure
4.3 as “prior business experience” with this system, we could take some percentage of
the observed markout profit, 0.17, as a practical significance. We’ll use 20% of mark-
out profit, prac_sig = 20% × 0.17, which is about prac_sig = 0.03.

 In practice, you might be building a brand-new trading strategy and have no expe-
rience running the system in production and, thus, no data from which to estimate
sd_1_delta or to get a sense for a meaningful prac_sig. In this case you could use val-
ues estimated from simulated trading, also called backtesting, to produce a distribution
of markout profit. Simulation is a valuable tool used by quants to develop trading
strategies, but it isn’t a substitute for measurements from production trading.
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 Finally, we can calculate the number of individual measurements needed to take
an aggregate measurement with

num_ind = (2.48 * sd_1_delta / prac_sig)**2

giving num_ind = (2.48*1.2/.30)**2, or about N=10,000 individual measurements.
 There’s a difference between this experiment and an A/B test that’s worth high-

lighting. In an A/B test, we only compare two different system versions. In this experi-
ment, we’re comparing three versions—that is, each threshold is a different version of
the system. The analysis of false positives changes slightly when we compare multiple
versions. We’ll discuss the details in chapter 8, section 8.3, but for now suffice to say we
need to increase num_ind to (3.08 × 1.2/.03) 2 ≈ 15,000.

 If your proprietary trading strategy trades 1,000 stocks and makes an average of 10
trades/stock/day, it can take 50,000 individual measurements per week. To take
num_ind = 15,000 individual measurements for each of the three parameter values,
you’d need 3 parameter values × 15,000 individual measurements per parameter value
= 45,000 individual measurements. It would take about 5 days—one business week—to
run the experiment.

 This completes the design of the experiment. We know for which threshold values
we want to measure profit, and we know how many individual measurements to take. In
the next sections, we’ll run the experiment using simulation and analyze the results.

4.1.2 Take the measurements

Now that we’ve chosen which settings of threshold to measure—0.5, 1.0, and 1.5—
and calculated the number of individual measurements to take, num_ind = 15,000,
we’re ready to take the measurements. See figure 4.7.

Now it’s time to trade the prop strategy and take measurements. You’ll run an experi-
ment to measure the business metrics, markout_profit(threshold), at each of the
threshold values chosen in section 4.1.1, the design stage.

 In this section, we’ll simulate the experiment with the function run_experiment(),
so we have something concrete to discuss. See the following listing 4.2.

Choose parameter

values to measure

Maximum at

edge of range

Interpolate
Measure

business metric
Optimize

Validate

optimum

Design Measure Analyze

Invalid

measurement

Optimal

parameter

value

Validate

Figure 4.7 Measure stage. First, run an experiment to measure markout_profit(threshold) at the 
threshold values chosen in the design stage.
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def run_experiment(num_ind, thresholds):    
    individual_measurements = {
     threshold: [] for threshold in thresholds   
    }
    done = set()
    while True:
        threshold = np.random.choice(thresholds)   
        profit = markout_profit(threshold)    
        individual_measurements[threshold].append(profit)
        if (len(individual_measurements[threshold])
            >= num_ind):    
            done.add(threshold)     
        if len(done)==len(thresholds):
            break
    

    aggregate_measurements = []
    standard_errors = []
    for threshold in thresholds:
        ims = np.array(individual_measurements[threshold])
        aggregate_measurements.append( ims.mean() )             
        standard_errors.append( ims.std()/np.sqrt(len(ims)) )   
        
    return aggregate_measurements, standard_errors 

The experiment runs similarly to an A/B test, in that we use randomization and rep-
lication. At each trading decision time, you randomly choose a threshold value to
use for the decision. You run the strategy like this until num_ind individual measure-
ments have been taken for each threshold. We can simulate the run of the first
experiment with

np.random.seed(17)
thresholds = np.array([0.5, 1.0, 1.5])
aggregate_measurements, standard_errors = run_experiment(15000, thresholds)

Are we taking measurements?
You might look at num_ind = 15,000 and be surprised that it is such a large number.
After all, our goal is to keep the number of measurements small.

The resolution to this contradiction is that RSM is minimizing the number of aggregate
measurements; N = 15,000 is the number of individual measurements. We take many
individual measurements so that the SE of each aggregate measurement (the error
bars in figure 4.8) is small enough.

Our goal is to take fewer aggregate measurements—that is, measure fewer thresh-
old values—than we would have using A/B testing or MAB to achieve the same final
markout profit.

Listing 4.2 Simulate the experiment

num_ind is from our 
experiment design.

Store one list of individual 
measurements for each 
threshold.

Randomization: randomly
select a threshold for each
trading decision.

Make the
trade and

record the
markout

profit. Replication: ensure enough 
individual measurements have 
been taken for each threshold.

End the experiment when 
all thresholds are done.

Calculate the
aggregate

measurement
and standard

error for each
threshold.
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Figure 4.8 plots the aggregate measurements and their standard errors.

There appears to be a maximum profit somewhere between threshold = 0.5 and
threshold = 1.5. While the best measured parameter value is threshold = 1.0, there
might be an even better threshold among the unmeasured values elsewhere in the
range [0.5, 1.5]. To find it, you’ll interpolate. You’ll estimate and plot the parab-
ola—a model of the function markout_profit(threshold)—that fits the three points
in figure 4.8; then find the value of threshold that maximizes that parabola.

4.1.3 Analyze I: Interpolate between measurements

In this stage, we’ll build a model to interpolate between the measured values of mark-
out_profit(threshold). Also, we’ll optimize to find the threshold that gives the
highest interpolated value of markout_profit(threshold). See figure 4.9.

threshold

Figure 4.8 Measurements of markout_profit at threshold=0.5, 
1.0, 1.5, along with error bars showing ±SE
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Figure 4.9 Analyze stage. In this stage, you build a model to interpolate between the measured values 
of markout_profit(threshold) and find the value of threshold that optimizes (maximizes) the 
interpolated value of markout_profit(threshold).
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The model, called the surrogate function, is a function of profit versus threshold. It esti-
mates the true, underlying function from the aggregate measurements. The true,
underlying function is called the response surface. Just like an aggregate measurement
estimates the true expectation of a business metric, a surrogate function estimates the
true response surface.

 To find the equation for the parabola that passes through the three points in fig-
ure 4.8, we’re going to use linear regression. (Please see appendix A for a short intro-
duction to linear regression.) First, we’ll specify this model, a parabola:

where y is the aggregate measurement of profit, x is the threshold, and β 0, β 1, and β 2
are parameters of the model that need to be determined by linear regression. The
final term, ε, is the approximation error, the difference between the interpolation esti-
mate,   and the measured value, y. (Note: The circumflex over a
variable is usually read as “hat,” so, , would be read as “y hat.”)

Expressed in terms of the values from experiment two, y is the vector of aggregate
measurements of profit:

The right-hand side can be expressed compactly by writing

and a matrix, capital X

Then the model becomes

Approximation error term
It so happens that when the number of aggregate measurements (three in this exper-
iment) is equal to the number of parameters (three in this model), the model will fit
the data exactly—that is, . Later, in section 4.2, we’ll take more measurements
than we’ll use in the surrogate function, and we’ll find that . The case  is
the usual one, so for now we’ll just carry ε along in the calculations for the purpose
of exposition.

ŷ
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which has a solution given by the normal equations (see appendix A):

We can calculate β using the normal equations as in the following listing.

def linear_regression(thresholds, aggregate_measurements):
    x = thresholds                          
    y = aggregate_measurements              
    X = np.array([np.ones(len(y)), x, x**2]).T     
    beta = np.linalg.inv(X.T @ X) @ (X.T @ y)    
    return beta

The model is fit with beta = linear_regression(thresholds, aggregate_measure-
ments), which yields the vector of coefficients

If you’d like a review of the matrix operations we’ll use in this chapter (and in later
chapters), please see the sidebar “Matrix operations in NumPy.”

Finally, we get to the heart of RSM, the interpolation and optimization steps of the
analyze stage. We use the model we just fit with linear regression to estimate values of
profit, y, at thresholds, x, where we did not actually take measurements. Listing 4.4
contains the code that does that. The function, interpolate(), implements the surro-
gate function. It creates an array of threshold values between the minimum and max-
imum measured thresholds and estimates markout profit at each of those values.
Following the model notation, the array of thresholds is called x̂, or xhat. The inter-
polated values are computed with  = X̂β, or yhat = XHat @ beta.

Listing 4.3 Fit a one-parameter model using linear regression

Matrix operations in NumPy
Matrix operations in NumPy mirror fairly well the mathematics they represent.

If we let A and B be matrices and x and y be vectors, then we can write

 Transpose—AT as A.T and xT as x.T
 Matrix product—AB as A @ B
 Matrix-vector product—Ax as A @ x
 Dot product—x · y or xTy as x.T @ y
 Matrix inverse: A-1 as np.linalg.inv(A)

For example, the normal equation  is expressed in NumPy as
beta = np.linalg.inv(X.T @ X) @ (X.T @ y).

Use familiar linear regression 
variable names.Compact

form of
model,

capital X Calculate beta vector 
using normal equation.

ŷ
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def interpolate(thresholds, beta):
    xhat = np.arange(thresholds.min(),
                     thresholds.max()+1e-6, .01)    
    XHat = np.array([np.ones(len(xhat)), xhat, xhat**2]).T   
    yhat = XHat @ beta   
    return xhat, yhat

The extra +1e-6 in the expression for xhat just tells np.arange() to include the value
thresholds.max() in the array as np.arange() creates an interval that is open on the
right-hand side.

 The output of interpolate() is plotted in the dashed line in figure 4.10, overlaid
on the measured points from figure 4.9.

The results of this experiment, plotted in figure 4.10, suggest a maximum inside the
measured threshold interval [0.5, 1.5]. Even more to the point, the maximum is
between the measured values at threshold = 1.0 and threshold = 1.5.

 Using the model of markout_profit(threshold), interpolate(), you can find
the value of threshold that maximizes the estimated markout profit. We say you’re
optimizing the surrogate function.

 Note that for some business metrics (e.g., the cost of execution from chapter 2),
it’s better to minimize than to maximize. All the reasoning in this chapter applies to
minimization, too. The only differences are that for minimization, the parabola would

Listing 4.4 Interpolate between measurements

The array of 
threshold values 
is spaced by .01.

The capital 
X matrix is 
constructed at 
the xhat values.

Shows the 
interpolated profit 
values, yhat
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Figure 4.10 A surrogate function, an interpolation (dashed line) between 
measurements (dots) of profit. The curve, a parabola, estimated using linear 
regression, estimates the true response surface.
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be upside down and the optimal parameter would correspond to the smallest rather
than the largest value of the business metric.

4.1.4 Analyze II: Optimize the business metric

Optimizing over the model you just fit is the highlight of RSM. Optimization quickly
searches through many candidate values of threshold for the one that maximizes the
estimate of the markout profit, estimated with interpolate(). This procedure will
take a few milliseconds to evaluate hundreds of thresholds. Contrast this with the
measure stage, which experimentally measured only three threshold values and
would, on a real trading system, take about a week.

 Optimization is straightforward for this experiment. In the language of interpo-
late(), we find the value of xhat at which yhat is a maximum. The following listing
shows the code for this.

def optimize(thresholds, beta):
    xhat, yhat = interpolate(thresholds, beta)    
    i = np.where(yhat==yhat.max())[0][0]   
    return xhat[i], yhat[i]    

Put into code, the full analysis is

beta = linear_regression(thresholds, aggregate_measurements)
threshold_opt, estimated_max_profit = 

➥ optimize(thresholds, aggregate_measurements, beta)

The optimal value, threshold_opt = 1.09, is plotted as an X in figure 4.11. The
estimated_max_profit at threshold_opt is estimated_max_profit=.173. Figure 4.11
visualizes the completed analysis of this RSM experiment: interpolation of markout_
profit(threshold) via linear regression and optimization of threshold using the
interpolate() function. 

 You just used an RSM procedure to design, measure, and analyze an experiment
on your trading strategy. After choosing which parameter values to measure in the
design stage, you then completed the measure and analyze stages:

1 Measure stage—Took aggregate measurements of the business metric at each
parameter value.

2 Analyze stage
a Interpolate step—Fit a model (a parabola) of the business metric as a function

of the parameter—for example, markout_profit(threshold) using linear
regression. The model estimates the business metric at parameter values at
which you haven’t taken any measurements.

b Optimize step—Find the value of the parameter that maximizes the model’s
estimate of the business metric. This is called the optimal parameter value.

Listing 4.5 Optimize the surrogate function

Get arrays of xhat and
yhat from interpolate(). Locate the maximum 

element of yhat.

Return the xhat (threshold) that maximizes 
yhat (profit) and estimated profit.
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You should think of the optimal parameter value as an estimate of the parameter at
which the system will function at its best. It’s an estimate because it is derived from the
model rather than from a direct measurement of the production system. To have con-
fidence that this parameter value is a good one, you need to take an experimental
measurement. Consider the estimate produced by RSM to be an educated guess about
where to set threshold for good performance. The only way to know for sure whether
it works in production is to run it in production—that is, you need to take a measure-
ment. The next section shows how.

4.1.5 Validate the optimal parameter value

You just saw how to estimate the optimal threshold at which to run the prop trading
strategy. Before committing the production trading system to the new threshold,
however, you’ll take one final measurement to validate that the system works well
when set to that value. See figure 4.12.

 For the validation measurement, you’ll set the threshold to the optimal value you
estimated in the analyze stage. It was the first output of optimize(), called thresh-
old_opt. Along with this output, you also got an estimate of the optimized profit at
the optimal threshold, estimated_max_profit.

A SIMPLE VALIDATION MEASUREMENT

You take the validation measurement the same way as you took the measurements in
the measure stage: You take num_ind = (3.08 × 1.2/.03)2 ≈ 15,000 individual mea-
surements of the production system with the threshold set to threshold_opt. Next,
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Figure 4.11 Visualization of full analysis of an RSM experiment. The 
experimental measurements with error bars are plotted as filled circles. The 
dashed curve is the surrogate function, fit by linear regression. The optimal 
threshold and associated estimated profit are plotted as an X.
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compute the aggregate measurement (the mean of the individual measurements),
call it a. m., and the standard error of the aggregate measurement

You can consider the estimated optimal threshold, threshold_opt, valid if a. m. - 2 ×
SE < estimated_max_profit < a. m. + 2 × SE. Let’s see why.

 The aggregate measurement is well-approximated by a normal distribution with
standard deviation SE It just so happens that 95% of the time a sample of a normal dis-
tribution lies within two standard deviations of the mean. This is roughly equivalent to
saying, “If estimated_max_profit was outside the range a.m. ± 2 × SE, then there
would be only a 5% chance that we were incorrectly declaring the interpolation
invalid.” This is a common criterion for declaring a single value (in this case, esti-
mated_max_profit) as plausibly coming from a given distribution (in this case, the
aggregate measurement).

 We say that the value lies in the 95% confidence interval of the distribution. The inter-
val [a.m. – 2 × SE, a.m. + 2 × SE] is called the 95% confidence interval of the aggregate
measurement distribution. We can simulate the validation procedure like this:

np.random.seed(17)
aggregate_measurement, standard_error = run_experiment(15000, 

➥ [threshold_opt])
print (aggregate_measurement[0]-2*standard_error[0], 

➥ aggregate_measurement[0]+2*standard_error[0])
0.14048962175141153 0.17627270610659548

This code simulates an experiment of N = 15,000 individual measurements taken at
threshold_opt. The value estimated_max_profit = 0.173 falls within two standard
errors (i.e., standard deviations) of the aggregate measurement—that is, in the range
[0.140,0.176], so we can say that the interpolation’s estimate and the aggregate mea-
surement agree.
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Figure 4.12 Validate stage. In this final stage, you’ll run the production prop trading system at the optimal 
value of threshold that you estimated in the analyze stage. If the measured markout profit at that 
threshold is close enough (see the next section for discussion) to the estimated markout_profit
(threshold), then you may accept the optimal threshold as the result of the RSM process.
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 If the estimate and measurement do not agree, then you need to investigate. It
may be that a parabola was not a good approximation of the shape of markout_
profit(threshold) in the interval of thresholds you chose. (Recall that the parabola
was a model that was only expected to work over a limited range of parameters, and
we couldn’t be sure a priori what that range would be.) In that case, you need to shrink
the interval and return to the measure stage on figure 4.12.

 If the estimate and measurement do agree, then the result, threshold_opt, is valid.
Sort of.

A MORE ROBUST VALIDATION MEASUREMENT

The short procedure I just described for validating the optimal threshold is sound in
general, but for the system we’re discussing (a prop trading system), as well as for the
other systems discussed in this book (advertising, execution trading, recommender
systems), you will generally find that the measurements can drift over time. This is
called nonstationarity and will be discussed in more detail in chapter 8, section 8.1.
That drift can make is so that noncontemporaneous measurements might not be com-
parable. In particular, the validation measurement of profit at threshold_opt might
be higher or lower than it would have been had you measured it earlier, at the same
time as you measured the profit at threshold = 0.5, 1.0, and 1.5.

 Additionally, the RSM process is rather complicated compared to, say, an A/B test.
It is, therefore, easier to make an error using RSM. We take on this risk of error
because RSM holds the promise of reducing the number of experiments we need to
run to find an optimal parameter value.

 To cope with nonstationarity and the error risk induced by the added complexity
of RSM, a better way to validate the optimal threshold would be to design an A/B test
from scratch that compares the current, pre-RSM, production system (version A) to
the system tuned to the optimal threshold estimated by RSM (version B). This A/B
test will take contemporaneous measurements of profit for versions A and B and will
be simpler to set up and run than RSM, so you will likely find that you have more con-
fidence in the final answer.

 When designing an A/B test, you need to specify prac_sig, the practical signifi-
cance. Given a measurement of the markout profit for the current production system,
markout_profit_A, a good value of prac_sig for this validation measurement would
be prac_sig = estimated_max_profit – markout_profit_A. This says that you want to
design an A/B test sensitive enough to detect the difference in profit the RSM process
suggests you’ll see. If the A/B test says you should accept B, then the RSM result is
valid and you may run your production system at the optimal threshold.

 We just saw all the steps of response surface methodology—design, measure, ana-
lyze, validate—applied to a system with a single continuous parameter. The procedure
as depicted in figure 4.12 is the same when there are more parameters, but each step
must be modified to account for the extra parameters. The next section will explore
those modifications.
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4.2 Optimizing two or more continuous parameters
In any real prop trading system—or any engineered system, for that matter—you will
have more than one parameter to tune. RSM is capable of optimizing more than one
parameter with the same stages described in the previous section; however, each stage
must change in its details to handle the extra parameters.

 As a first step, we’ll expand the prop trading strategy to have two parameters. Then
we’ll proceed to modify each stage of the RSM process to handle those two parame-
ters. The intent of each stage and the organization of the stages remains the same (fig-
ure 4.13). The modifications will apply to more than two parameters as well, although
we’ll see that RSM is best suited to optimizing three or fewer parameters.

The outline of the RSM procedure in figure 4.13 is familiar from section 4.1, where
you optimized a single parameter. We’ll need to modify some of the stages to deal with
more parameters. Before we get into the details, though, let’s see how your prop strat-
egy can be improved by adding a second tunable parameter.

 In the previous section, you optimized and traded a prop strategy with a single
parameter, the threshold. The threshold determined how strong the trading signal
needed to be for the strategy to send an order (BUY or SELL) to the exchange. Let’s say
you followed the single-parameter procedure in the previous section and found a
good value of threshold at which to trade. Let’s also say that you ran all those experi-
ments sending orders to the market for $1,000 worth of stock each. (If a stock has
price/share p, then $1,000 worth of stock is 1000/p shares.) You chose $1,000 (a small
size), say, because this is a new strategy, and you didn’t want to take too much risk. But
since you’ve proven in production that the strategy works, you’re eager to take more
risk for the possibility of generating more profit. 

 How much more risk should you take? One’s initial intuition might be that raising
the size of the orders to $2,000 would double the profit. Raising it to $3,000 would tri-
ple it, and so on. In practice, however, you’ll find this problem: You won’t always be
able to trade at the size you ask for. You might ask to buy $3,000 worth of a stock but
only actually get executed on $2,000 worth because there was no one willing to sell the

Choose parameter

values to measure

Optimum

not found

Interpolate
Measure

business metric
Optimize

Measure

optimum

Design Measure Analyze

Measurement

≠ estimate

Accept

optimal

parameter

Validate

Figure 4.13 RSM for two or more parameters. The process remains the same, but some stages will change 
from their single-parameter version described in the previous section. Specifically, the design stage will 
introduce special parameter choices for two- and three-parameter systems. The interpolate stage will apply 
linear regression to models with more parameters. The optimize stage may use a more sophisticated numerical 
optimization technique.
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extra $1,000 worth to you. In a situation like this, you would say that there isn’t
enough “liquidity.” Generally speaking, you’ll find more liquidity when the market is
about to move against you. In other words, it’s easier to trade when the trade will ulti-
mately be unprofitable. This problem is called adverse selection, and the profit lost to it
is called the adverse selection cost.

 In summary, if you keep your order size too low, you’ll miss out on the opportunity
to make extra profit. If you make it too high, you’ll face high adverse selection (lower
profit, or even losses). Somewhere in between is the optimal, highest-profit order size.
In this section, we’ll see how to optimize both the order size and the trading threshold
(which you optimized in section 4.1).

 First, let’s update the function markout_profit() to be a function of both thresh-
old and order size. For simplicity, we’ll express the order size in thousands of dollars.
So a variable, order_size = 1, indicates that we’re placing orders of size $1,000. We’ll
model the adverse selection cost, asc, as the function

This expression for adverse selection cost is stylized—that is, based on a qualitative
understanding rather than a model of data. It’s based on a common quant trader
observation that you can increase your order size a bit with a barely noticeable impact;
then, as you continue to increase the size, adverse selection becomes severe. The coef-
ficients 0.001 and 2 were chosen to make the values of asc compatible with the other
values (e.g., cost, pps, signal) we have been using in markout_profit().

The updated version of markout_profit() is in listing 4.6. Sometimes the number
of tunable parameters in an experiment or optimization is referred to as the number of
dimensions. For example, if we’re optimizing two parameters, we’ll say there are two
dimensions in the optimization or that the optimization is two-dimensional or “of
dimension two.”

def markout_profit_2D(threshold, order_size):
    cost = 1   
    pps = 1     
    asc = .001*np.exp(2*order_size)     
    signal = np.random.normal()    
    eps = 2*np.random.normal()     

What does asc look like?
If the function for asc seems a bit opaque, that’s all right. When working with a real
system, you can’t observe its internal dynamics anyway. Instead, you develop tech-
niques to get the answers you need in spite of that opacity. RSM is one of those
techniques.

Listing 4.6 Markout profit as a function of threshold and order size

This is
the cost
 a trade.

Shows the profit 
per signal

This is the stylized 
adverse selection cost.l and eps (ε)

 unit normal.
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    if (signal > threshold    
        or signal < -threshold):    
        profit = order_size*(pps*np.abs(signal) - cost + eps) – asc    
    else:
        profit = 0    
    return profit

Since we’re optimizing two parameters in this example system, we’ll say there are two
dimensions and, where appropriate, append 2D—for two-dimensional—to function
names to differentiate them from their (implicitly) 1D counterparts in the previous
section.

 In markout_profit_2D(), there is a tension between the profit (desirable) earned
from the signal and the adverse selection cost (undesirable). They both increase with
order_size but at different rates. This tension creates an optimal order_size at an
“in-between” value—not too large or too small. You could potentially apply the 1D
RSM procedure (described in the previous section) to locate this optimal order_size,
just as you used it to locate the optimal threshold, but we want to know the opti-
mum values of both order_size and threshold simultaneously. We’ll use RSM to
find the pair of values, threshold_opt and order_size_opt, that maximize markout_
profit_2D(threshold, order_size).

 You might be wondering whether you could just use the one-parameter procedure
from the previous section to optimize threshold, then use it again to optimize order_
size and consider the problem solved. You could. It’s reasonably effective in some
cases, but it’s generally less effective than optimizing the two parameters simultane-
ously. In you’re curious, see appendix B for a discussion. With the simulator in place,
markout_profit_2D(), we’ll now proceed to modify the design stage of figure 4.13 to
optimize both parameters, threshold and order_size.

4.2.1 Design the two-parameter experiment

The RSM design stage (regardless of the number of parameters) consists of two parts:
(1) using domain knowledge to decide which parameter values to measure, and (2)
determining how many individual measurements (per parameter value), N, to take.
We’ll need to decide on values of both threshold and order_size. The number of
individual measurements will be the same as in the 1D case.

 In the previous section on 1D RSM, you measured threshold at three values, 0.5,
1.0, and 1.5. The domain-knowledge argument was that much lower values could
lead to frequent, money-losing trades, and much higher values would prevent the
strategy from trading very much at all.

 All of your 1D experiments were run at order_size = 1. Although markout_profit()
didn’t specify order_size = 1 explicitly, the expression pps*np.abs(signal) - cost +
eps from markout_profit() is replaced by order_size*(pps*np.abs(signal) - cost
+ eps) in markout_profit_2D(), and the two expressions are equivalent when order_
size = 1. Since we’re looking to increase profit, we’ll try larger values of order_size.

Buy when
the signal
is strong
positive.

Sell when the signal is strong negative.

Profit is offset by
adverse selection.There is no profit 

if we don’t trade.
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It’s not immediately obvious how large order_size can get. To be conservative, we’ll
at most double it.

 We measured threshold at three values—0.5, 1.0, and 1.5—because we needed
at least three values to interpolate (to fit a parabola) and find a maximum somewhere
between 0.5 and 1.5. If we had only measured two values—0.5 and 1.5—our interpo-
lation would have always been a straight line. The straight line could have estimated
maximum profit at either threshold=0.5 or threshold=1.5 only. We paid the experi-
mentation cost of measuring a third threshold to get the benefit of a more precise
interpolation.

 When deciding which threshold values to measure, we again need to consider the
ability of the subsequent interpolation to locate the threshold that gives maximum
profit and to be as frugal as we can with number of aggregate measurements to avoid
increasing experimentation cost unnecessarily.

 The same rationale applies in 2D that applied in 1D: We’ll need three values of
threshold in order to interpolate a maximum profit at a threshold value lying
between the upper and lower limits. Similarly, we’ll need to measure three values of
order_size. See figure 4.14 for a visualization of the parameter values.

Figure 4.14(c) shows a design to measure five combinations of the parameters
(threshold, order_size): (0.5, 1.5), (1.0, 1.5), (1.5, 1.5), (1.0, 1.0), and (1.0, 2).
With measurements of markout_profit_2D(threshold, order_size) and each of
those points, you’ll be able to interpolate well near any of the four edges and near the
center and use that interpolation to seek the optimize parameter combination
(threshold_opt, order_size_opt).

threshold threshold threshold

Figure 4.14 Design for a two-parameter (2D) experiment. (a) You need a minimum of 
three threshold values, (0.5, 1.0, and 1.5) to be able to interpolate the maximum 
markout_profit_2D(threshold, order_size) at a threshold between the left 
and right edges, threshold = 0.5 and threshold = 1.5. (b) Similarly, you’ll measure 
three values of order_size (1, 1.5, and 2) to ensure that we can interpolate between 
the top and bottom edges. (c) In a single experiment, you can measure these five values 
simultaneously. When you analyze the experiment, you’ll be able to interpolate 
markout_profit_2D(threshold, order_size) from the edges to center.
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 You’re not done yet, though. There’s more space in the square in figure 4.14(c) to
interpolate over than the edges and the middle. Since the optimum could be any-
where in this box, it’s possible that the optimum you seek is in a corner. To be sure the
interpolation is accurate near the corners, you should pay the extra experimentation
cost and add four points in the corners of the design. The result is a face-centered central
composite design (CCD), depicted in figure 4.15.

The kind of geometric reasoning we’ve used to devise the designs for our RSM exper-
iments in this and the preceding section (the 1D case) is intuitive and useful for only
these simplest cases. Designs may be made more efficient and can be extended to
three or more dimensions. Such methods are beyond the scope of this book. (For
additional reading, see NIST Engineering Statistics Handbook, section 5.3.3.6, www.itl
.nist.gov/div898/handbook/pri/section3/pri336.htm.) The design of figure 4.15 is
implemented in the following listing.

def design_ccd(thresholds, order_sizes):
    parameters = [
        (threshold, order_size)     
        for threshold in thresholds      
        for order_size in order_sizes    
    ]
    return parameters

Listing 4.7 Face-centered central composite design
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Figure 4.15 Central composite design (CCD), a design for a 2D RSM 
experiment. Adding four corner points enables the interpolation to work well 
across the full area of the square.

Each parameter 
combination is 
held in a tuple.

Generate a parameter 
combination for every 
pair of threshold and 
order_size.

http://www.itl.nist.gov/div898/handbook/pri/section3/pri336.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri336.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri336.htm
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You can generate a list of parameter combination tuples using

parameters = design_ccd(thresholds=[0.5, 1.0, 1.5], order_sizes=[1, 1.5, 2])
print (parameters) 
[(0.5, 1), (0.5, 1.5), (0.5, 2), (1.0, 1), (1.0, 1.5), (1.0, 2), (1.5, 1), 

(1.5, 1.5), (1.5, 2)]

These nine tuples are the settings for which you’ll measure markout profit in produc-
tion. For example, the tuple (1.0, 2.0) represents setting threshold = 1.0 and
order_size = 2.0.

 You now know at which parameter combinations you will run your prop strategy to
take aggregate measurements of markout profit. Next, you need to determine how
many individual measurements to take for each aggregate measurement. In designing
the 1D experiment in the previous section, we measured markout profit at threshold =
1.0 and order_size = 1.0 (order_size was not explicit in markout_profit(threshold)
but was effectively 1) to have a mean of 0.17 and standard deviation of sd_1_delta =
1.2. We decided that domain knowledge (for the sake of presentation) of this prop
strategy indicated that we should use 20% of the mean markout profit as a practical sig-
nificance level, prac_sig = 0.20 * 0.17 ≈ 0.03. Combining sd_1_delta and prac_sig
(with a slight modification to the standard formula for num_ind, which will be explained
in chapter 8), the number of individual measurements is num_ind = (3.08×1.2/0.03)
**2 ≈ 15,000.

 This trading system can generate about 10 trading opportunities per day in each of
1,000 stocks, or about 10,000 individual measurements per day. In this 2D experi-
ment, we need to measure N = 15,000 individual measurements for each of nine
parameter combinations. This would take approximately 9×15,000 / 10,000 ≈ 14 days,
or three business weeks. While this is not an unreasonable amount of time to spend
on an experiment on a stock-trading system, there are ways to reduce the number of
individual measurements required. (See, for example, P. Whitcomb and M. Anderson,
“Right-sizing designs via fraction of design space plots,” in RSM Simplified: Optimizing
Processes Using Response Surface Methods for Design of Experiments. Boca Rotan, FL, USA:
CRC Press, 2017.)

 You now know how to design an RSM experiment to optimize two parameters by
(1) creating a face-centered central composite design and (2) determining the num-
ber of individual measurements to take.

 Note that it is possible to extend RSM to optimize more parameters (extend it to
higher dimensions), but this book recommends you use Bayesian optimization for
three or more parameters; we cover the topic in chapter 6. For now, let’s see how to
take measurements and analyze the 2D experiment we just designed.

4.2.2 Measure, analyze, and validate the 2D experiment

The procedure for taking measurements and analyzing a two-parameter (2D) RSM
experiment follows the same steps as in the one-parameter case, except that the steps
of the analyze stage—interpolation and optimization—are modified slightly to handle



112 CHAPTER 4 Response surface methodology: Optimizing continuous parameters
two parameters. Figure 4.16 reminds us where in this procedure the measure and ana-
lyze stages fall.

First, let’s run the experiment to collect the aggregate measurements.

TAKE THE MEASUREMENTS

The experiment will be simulated by run_experiment_2D(), shown in the following
listing.

def run_experiment_2D(num_ind, parameters):    
    individual_measurements = {
      parameter: [] for parameter in parameters     
    }
    done = set()
    while True:
        parameter = random.choice(parameters)    
        threshold, order_size = parameter
        profit = markout_profit_2D(threshold, order_size)   
        individual_measurements[parameter].append(profit)
        if (len(individual_measurements[parameter])
            >= num_ind):
            done.add(parameter)
        if len(done) == len(individual_measurements):   
            break
    
    aggregate_measurements = []
    standard_errors = []
    for parameter in parameters:   
        ims = np.array(individual_measurements[parameter])
        aggregate_measurements.append( ims.mean() )
        standard_errors.append( ims.std()/np.sqrt(len(ims)) )
        
    return aggregate_measurements, standard_errors

Listing 4.8 Run a 2D experiment
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Figure 4.16 Measure and analyze a 2D RSM experiment. In the measure stage, you measure the business 
metric for each of the parameter values chosen in the design stage, just as you did for the 1D RSM. To execute 
the analyze stage, you need to use a more complex model for interpolation and search more parameter values 
during optimization.
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standard error for 
each parameter 
setting.
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There is nothing fundamentally new in run_experiment_2D(). It takes an aggregate
measurement consisting of num_ind individual measurements at each of the parameter
settings supplied. We’ll supply the nine parameter tuples returned by design_ccd(),
and set num_ind = 15000, as determined in the previous section. You can design and
run the simulated experiment with

np.random.seed(17)
parameters = design_ccd(thresholds=[1, 1.5, 2], order_sizes=[1, 1.5, 2])
aggregate_measurements, standard_errors = run_experiment_2D(
    15000, parameters)

The return values from run_experiment_2D contain aggregate measurements and SEs
for each of the nine parameter tuples in parameters. It’s useful to have them tabu-
lated, but it can be easier to compare them visually, as in figure 4.17.

Figure 4.17 is a good start. It shows us the aggregate measurements of markout profit
and their SEs.

 From this plot, we could tell which measured parameter setting is a good candidate
for the optimal setting—(1.0,2.0) looks promising to me—but since the parameter
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Figure 4.17 The aggregate measurements from the first 2D RSM experiment—th abbreviates threshold, 
and os abbreviates order_size. The nine parameter settings are along the x-axis. It is easy to visually 
compare the measured markout profits and their SEs. However, since the parameter settings on the x-axis 
are unordered, it is not possible to intuit where the optimal parameters setting might be.
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settings in this plot along the x-axis are unordered, it’s not possible to interpolate
between them to unmeasured parameter settings. Indeed, since there are two parame-
ters, there is no intuitive ordering along the x-axis. Therefore, it won’t be possible to
overlay the 2D interpolation of markout_profit(threshold, order_size) on top of
figure 4.17 like we overlaid the 1D interpolation of markout_profit(threshold) on
figure 4.8. Nevertheless, we’ll see in the next section an alternative way to visualize the
2D interpolation.

 We’ve taken the measurements and looked at the results. Now let’s analyze the
data by interpolating (via linear regression) between the measurements and optimiz-
ing over the surrogate function.

ANALYZE THE EXPERIMENT

Following the RSM procedure, we’ll use linear regression to build a model of the
(aggregate) measurements of markout profit we collected in the experiment we just
ran. Then we’ll find the parameter settings that yield the highest markout profit as
estimated by that model.

 The form of the model for a two-parameter system is a little more complex than
that for a 1D system. In 1D, we modeled markout_profit(threshold) like this:

where y was markout_profit, x was threshold, ε was approximation error, and the β i
were the coefficients that were found by linear regression.

 In the present experiment, we have two parameters affecting markout_profit_2D,
threshold and order_size. If we name threshold x1 and order_size x2, we can
model markout_profit_2D(threshold, order_size) with

It’s helpful to compare the 2D model to the 1D model, as in table 4.2.

Table 4.2 Comparison of terms in the 1D and 2D models. The linear and quadratic (univariate) 
terms translate to 2D simply by adding a second term for x2. The cross term is new in 2D. It 
helps model behavior along the diagonals of the experiment design (CCD).

Terms 1D model 2D model

Constant

Linear

Quadratic (univariate)

Quadratic (cross) N/A
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The term β 0 appears in both the 1D and 2D models. It is a constant offset to the mark-
out profit, y. The linear term, β 1x, in the 1D model is expanded to two linear terms,
one for each parameter: β 1x1 + β 2x2. The quadratic term, β 2x

2, is expanded even
more. The first two quadratic terms in the 2D model, β 3x1

2 and β 4x2
2, enable interpo-

lation of a maximum between the edges of the box containing the parameters. The
final term, β 5x1x2, the cross term, enables interpolation in the areas between the center
measurement and the corner measurements (along the diagonals) of the central-
composite design.

 The form of the model will be similar when there are three or more parameters—
let’s say d parameters. There will be one constant term (β 0) and d linear terms.
There will be one quadratic term—of the form xixj —for every pair of parameters.
That’s d(d – 1)/2 quadratic terms, a number that grows rather quickly with d. While
it’s certainly possible to manage the larger models that result from larger d in RSM
(perhaps up to d = 5 is practical), in this book I’ll stop at d = 2 and refer you to chap-
ter 6 on Bayesian optimization for the handling of larger d in a more automated way.
We’ll find the βi values that fit the aggregate measurements using the linear regres-
sion in the following listing.

def linear_regression_2D(parameters, aggregate_measurements):
    parameters = np.array(parameters)    
    x0 = parameters[:,0]  
    x1 = parameters[:,1]   
    y = aggregate_measurements
    X = np.array([np.ones(len(y)), x0, x1, x0**2, x1**2, x0*x1]).T
    beta = np.linalg.inv(X.T @ X) @ (X.T @ y)     
    return beta

The function linear_regression_2D() uses the same normal equation to find the
beta values that we used in the 1D case, but the form of the model has changed. The
normal equations apply no matter what the form of the model or the number of
parameters. You can compute the beta values with

beta = linear_regression_2D(parameters, aggregate_measurements)

With the betas in hand, we can now proceed to interpolate over the model, as shown
in the following listing.

def interpolate_2D(parameters, beta):
    parameters = np.array(parameters)    
    x0_values = np.arange(parameters[:,0].min(),
        parameters[:,0].max()+1e-6, .01)       
    x1_values = np.arange(parameters[:,1].min(),
        parameters[:,1].max()+1e-6, .01)   

Listing 4.9 Linear regression for two parameters

Listing 4.10 Surrogate function for two parameters

Create a NumPy 
array for use in 
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reshold
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settings
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Create a NumPy array 
for use in calculations.

Shows the array of threshold 
values, spaced .01 apart

Shows the array of order_size 
values, spaced .01 apart
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    x0hat_2d, x1hat_2d = np.meshgrid(x0_values, x1_values)    
    x0hat = x0hat_2d.flatten()        
    x1hat = x1hat_2d.flatten()        
    XHat = np.array([np.ones(len(x0hat)),
        x0hat, x1hat, x0hat**2, x1hat**2, x0hat*x1hat]).T    
    yhat = XHat @ beta    
    yhat_2d = np.reshape(yhat, (len(x1_values), len(x0_values)))   
    return x0hat_2d, x1hat_2d, yhat_2d

Listing 4.10, interpolate_2D(), follows the same pattern as the 1D interpolate(). It
computes the surrogate function’s estimate of markout_profit_2D() at a bunch of
parameter values. The NumPy code is a little more involved because of the extra
dimension (the extra parameter). In particular, it generates a 2D grid of values over
which to interpolate instead of just a 1D interval. The 2D grid is created by np.mesh-
grid(), which generates pairs of threshold, order_size values covering the box
defined by 0.5 < threshold < 2.0, 1.0 < order_size < 2.0. About 20,000 parameters
pairs are generated in total.

 Note that we can interpolate over many parameter pairs because interpolation is
cheap—it takes less than 5 ms of computer time to generate all 20,000 estimates. In
the design stage, we covered this same box with a grid of only nine parameter pairs
(the CCD design), because each of those nine measurements incurred the high cost
of an experiment. The disparity between the number of measurements and the num-
ber of estimates is what makes RSM so powerful: the more estimates we search
through, the more precisely we can locate the maximum of markout_profit_2D().
Figure 4.18 visualizes the interpolation and highlights this disparity.

 The nine dots in figure 4.18 mark the parameter settings where we measured
markout profit. The rest of the box is filled with estimates from the interpolation. The
power of RSM is the interpolation.

 This procedure of interpolating a business metric between measured values is not
unique to RSM. It finds use in other experimental optimization methods, such as
Bayesian optimization (covered in chapter 6).

 You can probably guess that the optimum parameter settings are near the top-mid-
dle just by looking at figure 4.18. Let’s verify that by running an optimization. The
optimization code is in the following listing.

def optimize_2D(parameters, beta):
    x0hat, x1hat, yhat = interpolate_2D(parameters, beta)   
    i = np.where(yhat==yhat.max())   
    return x0hat[i][0], x1hat[i][0], yhat[i][0]    

Listing 4.11 Optimize the 2D surrogate function

A 2D grid of all threshold, 
order_size pairs

Represent the grid as an array.
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terms at each grid point.

Shows the estimated markout_profit 
at each grid point

Turns the array back into a grid

Get grids of value from
interpolate_2D().cate the
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ment of

yhat.
Return optimal parameters 
and estimated markout profit.
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Putting it all together, the analyze stage is

beta = linear_regression_2D(parameters, aggregate_measurements)
threshold_opt, order_size_opt, estimated_max_profit = optimize_2D(parameters, 

beta)

The optimal parameters are threshold_opt = 1.15 and order_size_opt = 2.00, with
estimated_max_profit = 0.30. The optimum is, indeed, near the top-middle of fig-
ure 4.18.

 Since the optimum is near the edge, you don’t know whether the true optimum
could lie outside the box. The next step it to recenter the box on the optimum and
start again: design a new experiment, take measurements, then analyze them.

 Notice that the range of estimated markout profits was large—from about 0.05 to
about 0.30. To recenter, let’s choose the set of threshold values to measure to be 0.5,
1.0, 1.5, and the set of order_size values to be 2.5, 3.0, 3.5. First, we’ll design the
experiment with

parameters = design_ccd(thresholds=[0.5,  1.0,  1.5], order_sizes=[2.5, 3.0, 3.5])

then run it:

aggregate_measurements, standard_errors = run_experiment_2D(15000, parameters)
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threshold

markout_profit_2D

Figure 4.18 A two-dimensional surrogate function, an interpolation of 
markout_profit_2D over settings of threshold and order_size. The 
filled dots mark the parameter settings where markout profit was measured in 
the experiment. In this figure, there are many more estimates of markout profit 
(around 20,000 interpolation estimates) than measurements (only nine). 



118 CHAPTER 4 Response surface methodology: Optimizing continuous parameters
Analyze the results:

beta = linear_regression_2D(parameters, aggregate_measurements)
threshold_opt, order_size_opt, estimated_max_profit = optimize_2D(parameters, 

beta)

The results of the experiment are shown in figure 4.19.

The measurements in figure 4.19 exhibit a strange feature, unlike any of the results
we’ve looked at so far: The markout profit for threshold = 0.5, order_size = 3.5 is
much lower (-0.40) than that of all the other measurements. When one measurement
is far from all the others, the shape of the function is likely too complex to be fit well by
the simple (quadratic) model we proposed. (And we like using simple models because
they require fewer measurements to fit and give more reliable estimates.) The solution
is to shrink the parameter ranges while keeping the center in place and iterate. We’ll
use the threshold values 0.75, 1.0, 1.25, and order_size values 2.75, 3.0, 3.25.

parameters = design_ccd(thresholds=[.75,  1.0, 1.25], order_sizes=[2.75, 3.0, 
3.25])np.random.seed(17)
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Figure 4.19 The results of the second iteration of the 2D RSM. Notice that one measurement, at 
threshold=0.5, order_size=3.5, has a markout profit far from the others. Outlying measurements 
like this violate our assumption that we’re fitting a model near an optimum.
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aggregate_measurements, standard_errors = run_experiment_2D(15000, parameters)
beta = linear_regression_2D(parameters, aggregate_measurements)
threshold_opt, order_size_opt, estimated_max_profit = optimize_2D(parameters, 

beta)

The results are shown in figure 4.20, along with the results of the previous iteration.

This set of measurements looks much better: Figure 4.20 shows that there are no out-
liers this time. I would like to give you a hard-and-fast rule for identifying outliers, but
there aren’t any. Outlier rules exist, but they usually have a threshold that needs to be
set by you. That being said, there are ways to automatically determine whether individ-
ual data points are “bad” for your regression, and such techniques would be useful
here, but they are beyond the scope of this book. For now—and often in practice—
judging by eye isn’t so bad, especially when using a method like RSM, which is, overall,
a manual (not automated) method. The final interpolation and optimization are
shown in figure 4.21.

 Our analysis is now complete. The optimal parameter settings suggested by RSM
are threshold_opt = 1.12 and order_size_opt = 3.0. The estimated markout profit
at these settings is 0.41. The next—and possibly final—step in the procedure is to val-
idate this estimate by measuring markout profit at the optimal settings.
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Figure 4.20 The results of the third, and final, iteration of the 2D experiment. There are no outlying 
measurements in this iteration, so we’ll proceed to optimization.
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VALIDATE THE INTERPOLATION ESTIMATE

This stage works the same as in 1D: we’ll check to see whether the estimated maximum
markout profit falls within the 95% confidence interval of the validation measurement.

aggregate_measurement, standard_error = run_experiment_2D(
    num_individual_measurements=15000,
    parameters=[(threshold_opt, order_size_opt)]
)

Figure 4.22 reminds us of where we are in the RSM procedure.
 The validation measurement results are aggregate_measurement = 0.37, standard_

error = 0.026. These values translate to a 95% confidence interval of [aggregate_
measurement - 2*standard_error, aggregate_measurement + 2*standard_error] =
[0.32, 0.43].
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Figure 4.21 The third, and final, iteration of the 2D experiment. The optimum 
(X) is at threshold_opt = 1.12, order_size_opt = 3.0 and has an 
estimated_max_profit of 0.41.
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Figure 4.22 The validation stage in 2D is the same as in 1D. Measure the markout profit and its SE. If the 
estimate is not within the measurement’s 95% confidence bounds, then return to the design stage; otherwise 
the RSM procedure is complete.
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 The estimated maximum markout profit of 0.41 falls within the 95% confidence
interval from the validation measurement, so the result is validated.

Summary
 Business metrics generally vary continuously with continuous parameters, and

this makes interpolation possible.
 Response surface methodology (RSM) reduces experimentation cost by inter-

polating—via a surrogate function—to estimate a business metric at unmea-
sured parameter settings.

 You optimize over the surrogate function to estimate both the optimal parame-
ter settings and the business metric at those settings.

 RSM prescribes iteration over multiple measurements and analyses to locate a
system’s optimal parameter settings.

 Since RSM’s output is an estimate of the optimal parameters, a final measure-
ment is required to validate that estimate.



Contextual bandits:
Making targeted

decisions
Thus far we’ve conducted experiments that compared two or more different ver-
sions of a system: A/B testing and multi-armed bandits evaluated arbitrary changes,
and RSM optimized a small number of continuous parameters. Contextual ban-
dits, in contrast, use experimentation to optimize multiple (potentially millions
of) system parameters—but they can do so only for a narrowly defined type of sys-
tem. Specifically, the system should consist of (1) a model that predicts the short-
term, business-metric outcome of a decision and (2) a component that makes
decisions based on the model’s predictions. A contextual bandit is at the heart of
any personalized service you might regularly use: news, social media, advertise-
ments, music, movies, podcasts, and so on. Tuning these systems’ parameters with-
out experimentation can lead to suboptimal results and “feedback loops” (see
section 5.2.1).

This chapter covers
 Predicting the business metric outcome of a 

decision

 Exploring decisions to reduce model bias

 Exploring parameters to reduce model bias

 Validating with an A/B test
122



1235.1 Model a business metric offline to make decisions online
 In this chapter, we’ll develop an intuitive (“greedy”) contextual bandit (CB) for a
simplified social media recommender system (section 5.1). We’ll see how the absence
of information about the things we didn’t recommend (missing counterfactuals)
curses the greedy CB and how epsilon-greedy exploration of decisions (section 5.2
and from chapter 3, section 3.1) breaks that curse. Next, we’ll optimize the system
even more quickly by exploring the model parameters with Thompson sampling (sec-
tion 5.3, and from chapter 3, section 3.3). Finally, since a CB is a relatively complex
method, we’ll take a step back and validate the whole thing with an A/B test (section
5.4), similar to how we validated our RSM results in chapter 4, section 4.1.5.

5.1 Model a business metric offline to make 
decisions online
As a first step toward understanding the contextual bandit, we’ll build a simple one
using a typical first-pass strategy: (1) fit a prediction model from logged data, and (2)
make decisions in production based on the model’s predictions. This is called a greedy
contextual bandit (for reasons explained later). Before we start, let’s get an overview of
a contextual bandit system.

 The contextual bandit (CB) is typified by a recommender system. A recom-
mender system suggests content—for example, social media posts—to a user, and
the user responds by engaging with or ignoring the content. A generic CB is shown
schematically in figure 5.1.

The system logs the content shown and the user’s response. That logged data then
becomes the input to an offline routine that fits a prediction model. In a recom-
mender system, the model would take (features representing) the user and the con-
tent as input and produce a prediction of whether or how much the user will engage
with the content. Notice that the prediction depends on both the user and the con-
tent since we expect different users to prefer different content. 

Fit business metric

predictor

Make decisions

using predictor

Iterate periodically

Offline Online

Make decisions

randomly

Explore

Exploit

Contextual bandit

Figure 5.1 A generic contextual 
bandit (CB). A CB consists of offline and 
online parts. In the offline part, you fit a 
model that predicts the business metric. 
Online, the system usually makes 
prediction-based decisions that exploit 
the model to increase the business 
metric. Sometimes it makes decisions 
randomly—it “explores”—to collect 
novel data for the next offline fit.
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 We’ll set the notion of exploration (see “Explore” in figure 5.1) aside, but we’ll
come back to it in section 5.2. In the rest of section 5.1, we’ll build a greedy contex-
tual bandit—a simple, intuitive CB with no exploration. We observe that the logged
data it generates is incomplete and then propose exploration as a way to expand
the logged data.

5.1.1 Model the business-metric outcome of a decision

To have something concrete to discuss, let’s imagine you’re an ML engineer working
on a small social media app. In the interest of starting simple, your app shows just a
single piece of content—call it a “post”, a short piece of text, possibly accompanied by
an image—to a user when they open the app. That single post is selected from a larger
set of available posts called the inventory. We won’t concern ourselves with the origin of
the posts but will take them as given by some other part of the company.

 Our goal is to show posts that users would prefer to see. A typical way of measuring
users’ preferences is through engagement. Did they “like” the post by clicking a
thumbs-up, heart, plus sign, or up arrow? Did they repost? Leave a comment? Share
with a friend? As your new social media app possesses Zen-like simplicity, you’ll eschew
engagement buttons. Instead, you’ll just measure how long it took for the user to close
the app after seeing the post. In your app, users engage with a post simply by viewing
it. Your assumption is that a user who likes a post more will take longer to close the
app. Call this metric viewing time. Viewing time is the business metric outcome of
your system’s decision about which post to display.

 The model we need to build, then, will output a prediction of viewing time given,
as input, a user, and a post. The model is the function

viewing time = f(user, post)

The model will run on your server. When a user opens the app, it will connect to the
server and download the content of a single post. We’ll refer to the server and the app
together as “the system.”

 In CB-speak, the user is called the context, the act of displaying the post is the
action, and the viewing time is the reward. When the system displays a post, it has
taken one of many possible actions because there are many posts from which to
choose. The action the system takes depends on the context (i.e., different users
prefer to see different posts). Finally, the system is “rewarded” for taking better
actions with more viewing time. Next, as we have in previous chapters, we’ll build a
simulator of the system we’re discussing and perform experiments on it.

SIMULATE THE VIEWING TIME

For the sake of exposition, we’ll simulate the measurement of viewing time. Then
we’ll fit a prediction model to its output. See the following listing.
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def measure_viewing_time(context, action_weights):
    return np.exp( (context*action_weights).mean()    
                    + 0.1*np.random.normal()) 

We simulate the viewing time as a random number with mean depending on both
context and action_weights (described below). Beyond this, the details of the simu-
lation aren’t important to us since we’ll be treating measure_viewing_time() as a
black box and learning about it by taking measurements of it—just as we would with
any real-life system.

 The argument context is a vector containing the features that describe the user.
These features might represent the user’s demographic (age, zip code, etc.), reported
interests (e.g., results of a survey they took when signing up for your app), how often
they use the app, and so on. The context features were designed by you, the ML engi-
neer, and they will be inputs to your reward-prediction model.

 The argument action_weights are something completely different. They model
how a user (the context) responds to different posts. We can’t observe action_
weights—they’re part of the black box—and we won’t try to measure them. They’re
just here to make a simulator on which we can practice our experimental method. As
such, we set action_weights to the output of np.random.normal() and leave it
unchanged for all of the examples in this chapter.

 To get a feel for the output of measure_viewing_time(), see figure 5.2, which
shows a histogram of output values for 1,000 randomly chosen context vectors.

Listing 5.1 Simulate viewing time

action_weights is 
a constant vector.

This is a positive, slightly noisy number that
depends on the context and the action.

C
o
u
n
ts

Viewing time

Figure 5.2 A histogram of 1,000 output values generated by 
measure_viewing_time(). Note that the values are all positive.
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d

These are the values your model will try to predict. The system will use the predictions
to select posts that users will hopefully spend more time viewing. Let’s fit a prediction
model now.

FIT THE PREDICTION MODEL

You fit the prediction model offline, periodically (e.g., every day or every week) using
logged data as the source. The logged data contains one sample for each user interac-
tion event: When a user opens the app, the system displays a post, and the user views it
for some amount of time. When that event completes, the system logs a sample con-
taining three values: context, action, reward. We’ll represent that with the structure
in the following listing.

class Sample:
    def __init__(self, context, action, reward):
        self.context = context    
        self.action = action    
        self.reward = reward    

The production system logs one Sample for every user interaction event. For a small
app, there might be hundreds per day. For a large social media site, there might be
hundreds of millions or even billions of such events per day.

 We’ll say that there are a fixed number of posts, num_actions, available in the sys-
tem. Then Sample.action can take values 0, 1, 2, ... num_actions-1. In a real sys-
tem, the number of posts might change with time, necessitating a more sophisticated
model. Fixing the number of posts allows us to build one model for each post.

 For each post, we’ll model the reward—viewing time—as a linear function of the
context vector, like so:

or, if we write y = reward and X=context, then

Ultimately, you’ll run a linear regression to find the vector β. In fact, you’ll run one
linear regression for each of the num_actions posts and, thus, calculate num_actions
β vectors. But first you need to process the logs.

 First, collect the logs for each action (post) from the log of the whole day, which
consists of all events, regardless of the action. See the following listing. (Note: The
logs for the day, logs, are a Python list of Sample objects.)

 

Listing 5.2 A logged sample

context is an ndarray (a vector) 
of features describing a user.action is an

index to the
isplayed post. reward is the viewing time.
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def collect_logs_by_action(num_actions, logs):
    samples_y = [[] for _ in range(num_actions)]
    samples_x = [[] for _ in range(num_actions)]
    for sample in logs:
        samples_y[sample.action].append(sample.reward)    
        samples_x[sample.action].append(sample.context)    
    return samples_y, samples_x

The values returned from collect_logs_by_action()—samples_y and samples_x—
are each a list of num_actions lists (yes, that’s a “list of lists”) of samples for a single
action (post). For example, samples_x[3] is a list of all the samples where the val-
ues of action is 3.

 Also note that collect_logs_by_action() will take all of the logs collected by the
system to date—not just the logs from the previous day. Logged data is valuable to the
regression, so we’ll make sure to use all the data we can get.

 In the variable Sample.context, you’ll find the features representing the user.
Let’s say there are num_features of them so that len(context)==num_features. The
function build_models() in the following listing performs one linear regression on
each of the num_actions sets of samples.

def build_models(num_features, samples_y, samples_x):
    betas = []
    for y, x in zip(samples_y, samples_x):
        y = np.array(y)    
        x = np.array(x)    
        if len(y) > 0:   
            beta = np.linalg.pinv(x.T@x) @ x.T@y    
        else:
            beta = np.zeros(shape=(num_features,))
        betas.append(beta)    
    return betas

Listing 5.3 Collect logs for each action

Listing 5.4 Build a model for each action

Pseudoinverse
A keen observer might notice that the linear regression in build_models() uses
np.linalg.pinv() instead of np.linalg.inv() (note the p before inv) to perform
the matrix inverse. The p stands for “pseudo.” The pseudoinverse (the Moore-
Penrose pseudo-inverse) is a generalization of the matrix inverse that is defined for
special cases where the inverse is undefined but is otherwise equal to the inverse.
The inverse may not be defined when there are too few samples or the regressors
are very similar to each other. You can think of pinv as a more “robust” inv for doing
linear regression in practice.

Sort samples into buckets 
indexed by sample.action.

Transform lists
to ndarrays. We need some 

samples to fit.
Perform linear 
regression.

Collect num_actions 
betas.
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Now you have the components needed to build a model for each post (action) that
can predict the viewing_time (reward) for each user (context). The final piece of
the contextual bandit puzzle is the online decision-maker that chooses posts for users.

5.1.2 Add the decision-making component

To complete the recommender system, you need to pair your prediction model with
an online component, a decision-maker, that chooses the best post to display to a
user (figure 5.3).

In CB lingo, the decision-making component is called a policy. For the social media
app we’re discussing, which shows only one post to a user, the policy should find the
post that maximizes the model’s prediction of viewing time. According to your com-
pany’s marketing researchers, maximizing user’s viewing time is the company’s goal.

 You’ll refit the viewing_time models every day. The code for the policy is in the
method Recommender.policy() in the following listing.

class RecommenderGreedy:
    def __init__(self, num_features, num_actions):
        self._num_features = num_features
        self._num_actions = num_actions
        
    def reset(self):    
        self._betas = [np.random.normal(size=(num_features, ))
            for _ in range(self._num_actions)]
        
    def fit_offline(self, logs):    
        samples_y, samples_x = collect_logs_by_post(num_actions, logs)
        self._betas = build_models(self._num_features, samples_y, samples_x)
        

Listing 5.5 A greedy recommender

Fit one

viewing-time

predictor

for each post

Display post with

maximum

estimated viewing time

Iterate daily

Offline Online ( )policy

Make decisions

randomly

Explore

Exploit

Greedy contextual bandit

Figure 5.3 The greedy recommender 
“exploits” the model by displaying the 
post with the maximum expected 
viewing time. The online decision-maker 
is called the policy. The recommender 
will refit the models daily.

Initialize betas to 
random values.

Fit the model offline 
to logged samples.
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    def policy(self, context):    
        viewing_max = -np.inf
        for action in range(self._num_actions):
            viewing_hat = context @ self._betas[action]    
            if viewing_hat > viewing_max:    
                action _best = action
                viewing_max = viewing_hat
        return action_best

RecommenderGreedy is a complete contextual bandit. The method fit_offline() col-
lects the logs by post and builds the models. The method policy() runs online (in
production) and decides which post to display to a user (context). A real-world policy
would likely be more complex. It could include safety checks or manually designed
decision logic that works in tandem with the model’s predictions.

 There’s one more method, reset(). This method solves a problem we haven’t
yet discussed, the “cold start” problem. A cold start is when the system hasn’t yet
run and, thus, no logged data exists. How can you fit a model with no samples?
How can you run the policy to log samples without a model? It’s a chicken-and-egg
problem.

 A common solution, in practice, is to create a manually designed policy. A man-
ually designed policy can use domain knowledge to decide what to show users.
Maybe you suspect users like to see the latest posts, so you’ll show everyone the
most recently created post, for example. Or maybe you’ll just choose one at ran-
dom, because you know that all the posts in your inventory have been vetted by in-
house moderators and thus are good enough to show anyone without fear of dis-
couraging them from coming back.

 The solution we’ll use here is to initialize the betas to random values. This is not
quite the same as choosing a random post; instead you’re picking a random model
and then using it repeatedly to choose posts. Either way, the system will run and the
policy will produce some samples in the logs. Now you’re ready to run the greedy rec-
ommender system and evaluate its performance.

5.1.3 Run and evaluate the greedy recommender

Your greedy recommender is complete and ready to run. It’ll start on day 1 with ran-
dom betas just so that the policy has a model to work with. The policy will display posts
to users and log samples consisting of context, action, reward.

 Since with each action the recommend is trying to maximize the user’s viewing
time, a natural metric to evaluate the system each day is the mean viewing time per
post. We’re taking the mean over a day since that’s the period over which we’re
refitting the model. This way the evaluation metric is produced once per model.

 We’ll run a simulation of the greedy recommender system for 30 days and see how
it performs. The simulation uses num_features = 5 and num_actions = 30 and is
shown in figure 5.4.

Decide,
online,
which

post to
display.

Estimate 
viewing time.

Track post with 
maximum estimated 
viewing time.
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The first thing to notice in figure 5.4 is that the system starts, on day 1, with relatively
poor performance. This is because the model was initialized with random betas. After
the first day, the recommender builds a model from the collected data. That model runs
on day 2 with much better performance. Finally, by day 4, the system has “learned” all it
can and reaches maximum performance, around mean viewing time = 1.67.

Short-term rewards only
Contextual bandits work only in cases where the rewards are short-term. Short-term
rewards are metrics that are caused by a single action. For example, a click on an ad
is a reward for showing (the action) a relevant ad, and a user clicking play is a reward
for suggesting (the action) a desirable song.

In contrast, a multistep metric, usually called a “return,” is the sum of the rewards
for a sequence of actions, each of which depends on the actions that came before
it. For example, imagine this sequence: 

1 The system suggests a horror movie to a user.
2 The user declines it.
3 The systems suggest another horror movie to a user.
4 The user declines it.
5 The system suggests a bland documentary.
6 The user watches—but only because they need some relief from the fright of

seeing the trailers for the horror movies. Normally they would not watch a doc-
umentary.

Asymptote, mean viewing time = .671
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Figure 5.4 Performance of the greedy recommender. The system starts with random 
model parameters, achieves poor performance, then improves quickly—in 2 days—
until it reaches its asymptotic performance level (dashed line) at around 4 days.
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The greedy recommender works: it optimizes the model parameters via regression to
logged data and, as a result, improves the business metric (the viewing time). This
type of system works well with linear regression models, logistic regression models,
deep neural networks, and so on. It is robust and has been proven in practice many
times over.

 It can be improved, however. A common problem that crops up with systems like this
is that since no data is logged for the actions not taken by the policy, the model can’t
make a good prediction about them. For example, if the system never shows me a post
about cooking, how will it learn that I like cooking? On the other hand, if it doesn’t know
that I like cooking, why would it show me a post about cooking? The next section dis-
cusses this problem in more detail and provides a solution: exploration.

5.2 Explore actions with epsilon-greedy
You’ve built a greedy recommender. It’s been quite a bit of work already: You’ve had
to build a supervised learning model (the linear regressions), deploy it to production
in a policy, and log the decisions along with their rewards. The mean viewing times
your system achieved weren’t bad, but they could have been better. Let’s take a
moment to understand how, and then begin working on the fix, which is exploration.

 When your system recommends a post to a user, it makes a tradeoff, if only implic-
itly. When it decides to display the post that it predicts will garner the most viewing
time from the user, it is also deciding not to display any of the other posts. Would the
user have viewed any of the other posts for a longer time than the one displayed?
You’ll never know. It’s the counterfactual: the knowledge of what would have happened
had the system made a different decision.

The above interaction tells us that suggesting horror movies is a good setup for get-
ting a user to watch a documentary. The whole sequence needs to play out to get the
final reward, which is that the user watches the documentary.

Because a contextual bandit deals with only one-step rewards, it would, given this
interaction with the user, log the three samples:

 context=user, action=suggest horror movie, reward=0
 context=user, action=suggest horror movie, reward=0
 context=user, action=suggest documentary, reward=1

From this data set, a CB would (1) learn not to suggest horror movies (since the
reward was 0 when it suggested horror movies) and (2) learn to suggest documenta-
ries (since the reward was 1 when it suggested a documentary).

It would be wrong on both counts. The right thing to do is to follow the full suggestion
sequence: horror, horror, documentary. But the model builder (the regression) con-
siders the samples independently, and so it misses the dependence between the
three samples.
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 In this section, we’ll see how missing counterfactual data can degrade a model’s
predictions. We’ll also see how to systematically collect counterfactual data for the
purpose of improving the model’s predictions. We’ll collect the data using epsilon-
greedy exploration, a technique we first discussed in chapter 3, section 3.1.

 We’ll see later that exploration is a short-term cost (an experimentation cost) that
pays off by creating a better prediction model in the future. The “greed” in the name
RecommenderGreedy is that it takes a short-term view of reward and doesn’t pay the cost
of exploration. First, let’s look more closely at the problem of missing counterfactuals.

5.2.1 Missing counterfactuals degrade predictions

To clearly see the effect of missing counterfactual data on a model, imagine the rec-
ommender system logged the following three samples from displaying post #1 three
times, which we’ll denote by action = 1:

contexts = [
    [1, 0, 0],
    [0, 1, 0],
    [0, 0, 1]
]
rewards = [
    0.6,
    0.9,
    1.3
]

In this example, there are three contexts (rows), each containing three features (col-
umns). For each context sample, there is a corresponding reward. For example, the first
sample can be described as this: the system received a reward = 0.6 (viewing time) when
it showed post #1 to a user modeled by the feature vector context = [1,0,0].

 We can fit a predictive model, just as we did in the previous section, using linear
regression:

x = np.array(contexts)
y = np.array(rewards)
beta_1 = np.linalg.pinv(x.T @ x) @ (x.T@y)

In this case, beta_1 = [0.6, 0.9, 1.3], where the length of beta (three) matches the
number of features (which is the number of columns in the context matrix).

 Let’s consider a user, call them User A, modeled by the context context_a =
[0,0,1]. This happens to be the context of the third sample, earlier. When running
with the model we just fit, the system would predict that the user’s viewing time
(reward) would be context_a @ beta_1 = 1.3. This matches the reward value in the
third sample, making it a good prediction.

 Imagine, instead, that the system hadn’t shown post #1 to a user modeled by the
third context, context = [0, 0, 1], but instead had shown the user, say, post #2. The
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samples for post #1 would be missing that counterfactual data—that is, the sample
answering the question, “What would have happened if it had shown post #1?”

 In short, the third sample would be missing

contexts = [
    [1, 0, 0],
    [0, 1, 0]
]
rewards = [
    0.6,
    0.9
]

and the model would have beta_1m = [0.6, 0.9, 0]. (I have appended m to the name of
beta to indicate that it is derived from a sample with a missing counterfactual.)

 This model, call it “Model 1m,” predicts that User A would view post #1 at a level of
context_a @ beta_1m = 0.0. This is a very strongly biased (read: bad) prediction,
because we know from the earlier data set that User A would have viewed for a time of
1.3. Of course, Model 1m didn’t have a chance of making a good prediction because
it didn’t have any data about the case of User A viewing post #1 to fit on.

 This is a stark example of how missing counterfactuals can create model bias. In
practice, the biases induced by them may be milder. Also, the biases may span multi-
ple features or combinations of features. In some cases, simply collecting more data
can reduce the bias—if the new data happens to have the requisite samples. In other
cases, the bias could remain or get worse, as explained next.

FEEDBACK LOOPS

Let’s pause for a moment and think about what would happen if Model 1m ran in pro-
duction. Since Model 1m predicts 0 reward (viewing time) for displaying post #1 to
User A, the policy would always choose to show User A some other post. This would
cause the logged data to, again, be missing a sample of “context=User A, action=post
#1,” which would in turn cause the next, refit model to predict a reward of 0 for dis-
playing post #1 to User A.

 This is a vicious cycle: the biased predictions prevent the policy from logging the
very samples required to improve the predictions, leading to a suboptimal model and,
thus, a suboptimal policy. Figure 5.5 depicts such a feedback loop.

Biased model

Biased policyBiased samples
Log

Refit Deploy

Figure 5.5 Feedback loop caused by refitting on 
logged samples. If the logged samples are biased, 
the fit will produce a biased model. If the model is 
biased, the policy will make biased decisions. The 
logs record samples of those biased decisions, and 
the bias is perpetuated.
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Feedback loops may be more subtle in practice. Rather than missing all data for a spe-
cific combination of an action and a feature, logged samples might simply be biased to

 Include fewer samples of a certain feature.
 Contain fewer samples of some combination of features.
 Contain rewards that don’t accurately represent the behavior of users modeled

by certain features or combinations of features.

Feedback loops, and model bias in general, are insidious and thus difficult to intuit,
so you should always proceed as if they are present. Did you happen to notice that
the model in section 5.1 was biased? (Neither did I.) The next section shows how to
use exploration to reduce prediction-model bias and break contextual bandit feed-
back loops.

5.2.2 Explore with epsilon-greedy to collect counterfactuals

Missing counterfactuals may bias model predictions, sometimes severely. The solution
is to collect the counterfactual data by running some sort of experiment. A simple way
to collect the counterfactual data would be to run a policy that showed every post to
every user. Then you’d never have to ask, “What would have happened if I showed post
P to user U?” because you’d have a sample in your logged data that told you. The
problem is that users might not want to look at every post. In fact, the value your rec-
ommendation service promises to provide is to show users only the posts they will like.
Put another way, the experimentation cost of showing every post to every user is too
high. We need to lower that cost.

 This section proposes a middle-ground solution between (1) showing all users all
the posts and (2) showing only the posts your model predicts to be best—that is, to
have maximum expected viewing time. The idea is to show users a few posts chosen at
random interspersed among the predicted-best posts. This approach is called epsilon-
greedy. It adds exploration to the greedy policy discussed in section 5.1 (figure 5.6).

Fit one

viewing-time

predictor

for each post

Display post with

maximum

estimated viewing time

Iterate daily

Offline Online ( )policy

Make 10% of

decisions randomly

Explore

Exploit

Figure 5.6 Epsilon-greedy 
adds exploration to the greedy 
recommender policy. Exploration 
collects counterfactual data by 
sometimes taking actions randomly 
instead of following the policy’s 
prediction-based decision.
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Epsilon-greedy is a straightforward modification that you can apply to any policy.
Despite its simplicity, it’s very effective. You choose a random action some small frac-
tion of the time, say 10%, and use the original greedy policy the rest of the time (90%).
The full policy, then, is 10% exploration and 90% exploitation.

We’ll see below that the greedy recommender we constructed in section 5.1 was biased,
and adding exploration with epsilon-greedy improves the average viewing time. See
the following listing for the full epsilon-greedy recommender.

class RecommenderEpsilonGreedy:
    def __init__(self, num_features, num_actions, epsilon=0.1):
        self._num_features = num_features
        self._num_actions = num_actions
        self._epsilon = epsilon
        
    def reset(self):
        self._betas = [np.random.normal(size=(num_features, )) for _ in 

range(self._num_actions)]
        

Contextual bandit terminology
The contextual bandit may be understood from various perspectives. In this book, we
view it as a powerful experimental method that may be used to optimize many (thou-
sands, millions) parameters of a decision-making system, provided each decision
can be directly associated with a short-term reward (see earlier sidebar, “Short-term
rewards only”).

Alternatively, you could describe a contextual bandit as an enhancement of a multi-
armed bandit. The available decisions are the arms of the bandit. The enhancement
is the addition of a context for each pull of an arm (each decision).

A contextual bandit can also be seen as a special case of reinforcement learning
(RL). A reinforcement learning system makes a sequence of decisions. In an RL prob-
lem, the goal is to optimize the mean of all the rewards. In a full RL problem, it may
be that each decision affects the context for the next decision. In the special case
where each decision is independent (doesn’t affect the next context), then the RL
problem is the contextual bandit problem.

Finally, it’s important to distinguish the contextual bandit problem from a pure super-
vised learning (SL) problem. In an SL problem, you are given samples of features (X,
in this book’s terms) and targets (y) that are assumed to be sampled at random. In
the contextual bandit, the samples are not collected at random. They are collected
by a policy that samples based on the output of the SL model—the SL model that
was built on previous policy samples! In CB terms, X = (state, action) and y =
reward, and the unsampled actions, the counterfactuals, are missing. When y has
these properties, it is sometimes called bandit feedback to make it clear that you’re
not dealing with a pure SL data set.

Listing 5.6 Epsilon-greedy recommender
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    def fit_offline(self, logs):
        samples_y, samples_x = collect_logs_by_action(num_actions, logs)
        self._betas = build_models(self._num_features, samples_y, samples_x)
        
    def policy(self, context):
        viewing_max = -np.inf
        if np.random.uniform(0,1) < self._epsilon:    
            action _best = np.random.randint(
                           0, self._num_actions
                           )   
        else:    
            for action in range(self._num_actions):
                viewing_hat = context @ self._betas[action]
                if viewing_hat > viewing_max:
                    action _best = action
                    viewing_max = viewing_hat
        return i_post_best

Very little of the original RecommenderGreedy needed to be modified to create Recom-
menderEpsilonGreedy. Nevertheless, the average viewing time increases, as shown in
figure 5.7.

It appears that adding exploration improved the recommender, but how exactly? The
randomness in the actions—the exploration—cause the system to take actions (in
contexts) the model would not have prescribed (i.e., the counterfactual data). The
next time the model was fit, it had the data (in the logs) needed to make predictions

Some fraction of the 
time (randomly)...

...choose an action 
at random.
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policy.
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Figure 5.7 Epsilon-greedy exploration improves mean viewing time by showing posts 
to users that the original, greedy policy would not have. This counterfactual data 
reduces the bias of the prediction model. Better predictions make for a better policy.
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about the rewards that would be received if those (previously counterfactual) actions
were to be taken. The next day the system explored some more, further increasing the
set of actions and contexts available in the logged data, refit again, and so on.

 Over time, the logged data covered more and more actions and contexts, and the
model became less and less biased. Thus, the predictions improved and so did the
mean viewing time (the reward received).

 Exploration is a tradeoff: invest some amount today and reap the benefits every
day after. This begs the question of how much to invest—in other words, how large
should epsilon be? It depends on how useful the unexplored actions are in improv-
ing the prediction model and how useful better predictions are in improving the
selection of the best post. You, the engineer, need to tune the metaparameter epsilon
to the system you’re building. You might err on the side of caution and choose a small
epsilon, knowing that the system will improve, if not at an optimal rate, or you might
construct an A/B test where you compare two values of epsilon. The need to tune
this parameter is a (minor) drawback of epsilon-greedy. That being said, epsilon-
greedy is robust and simple to implement, so it’s a good first choice for exploration.

 It is known that epsilon-greedy has a regret of , where T is the number of
periods (days for the recommender example in this chapter) the contextual bandit
has been running (see J. Langford and T. Zhang, “The epoch-greedy algorithm for
contextual multi-armed bandits.” NIPS, 2007). It is also known that the optimal regret
is , so epsilon-greedy is suboptimal. For reference, I’ll repeat the definition of
regret here. Recall, regret is the amount of business metric (e.g., viewing time) for-
feited by not making the best possible decision every time.

 One final thing to notice about epsilon-greedy is that it never stops exploring. It
continues to pay the exploration cost even if there is no more business metric
improvement to be had. You can see from figure 5.7 that at some point the average
viewing time stops improving. If you had confidence that improvement had stopped,
it would make sense to turn off exploration (i.e., switch to RecommenderGreedy, or,
equivalently, set epsilon=0) to avoid paying the continued exploration cost.

 Epsilon-greedy exploration reduces model bias, which in turn causes a contextual
bandit to collect larger rewards. On the one hand, it is robust and simple to imple-
ment; on the other hand, it (1) has suboptimal regret, (2) has a tuning parameter,
and (3) never stops exploring, even though it should. In the next section, we’ll
address all those objections with Thompson sampling, an exploration technique first
introduced in chapter 3, section 3.3.

5.3 Explore parameters with Thompson sampling
Your users will appreciate the higher-quality posts that your system delivers after you
add epsilon-greedy exploration. More precisely, they’ll appreciate the posts that are
displayed 90% of the time, when exploiting the predictions. They likely won’t enjoy
the exploratory posts that the system delivers the other 10% of the time. This section
details Thompson sampling, which explores more efficiently than epsilon-greedy and
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steadily reduces the rate of exploration so that your users see fewer exploratory posts
and more “exploitative” posts, making for an overall higher-quality experience on
your social media app.

 Epsilon-greedy is easy to implement and a great place to start with exploration,
but with some added effort you can achieve optimal regret by using Thompson sam-
pling. Unlike in the last section on epsilon-greedy, we won’t apply Thompson sampling
directly to the actions. Instead, we’ll apply Thompson sampling to the parameters of the
prediction model. Borrowing again from chapter 3, section 3.3, we’ll use bootstrap
sampling to make the implementation simple and usable across a wide range of
model types. Thompson sampling is more complex than epsilon-greedy, in part
because it requires changes to both the offline and online components of the system
(figure 5.8).

You integrate Thompson sampling into your recommender like this:

 Each day, build a varied set of models (say, 10), called an ensemble, instead of just
one model (section 5.3.1 will discuss this in detail).

 Put the entire ensemble of models online.
 For each decision, the policy randomly selects a model (section 5.3.2) from the

ensemble, then displays the post predicted by that model to have the highest
viewing time. 

Notice how, at decision time, a Thompson sampling policy randomly chooses a model
rather than randomly choosing an action, as did the epsilon-greedy policy. For a single
input, the set of all models’ outputs forms a distribution of predictions. We’ll see in
the next section that the models in the ensemble differ only by their parameter values.
Thus, we view Thompson sampling as exploration over parameters and epsilon-greedy
as exploration over actions.

Fit an ensemble of

viewing-time

predictors

for each post

Randomly select

model from ensemble;

then display post with

maximum

estimated viewing time

Iterate daily

Offline (fit) Online (policy)

Exploit and explore

Figure 5.8 Thompson sampling 
alters both the fit and the policy. 
You fit several models—called an 
ensemble—instead of just one. The 
policy uses a different, randomly 
selected model for each decision 
it makes.
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 In the next section, we’ll see how to generate multiple, varied models from a single
set of logged samples using bootstrap sampling. Next, we’ll see how the policy of ran-
domly selecting a model is equivalent to a heuristic called randomized probability match-
ing. Thompson sampling is randomized probability matching applied to a bandit
problem, and it achieves optimal regret, , where T is the number of days the rec-
ommender has run (S. Agrawal, et al. “Thompson sampling for contextual bandits
with linear payoffs,” Proc. 30th ICML, 2013, pp. 127–135).

5.3.1 Create an ensemble of prediction models

If you run two fits using two different sets of samples, you will find different values of
the betas, the parameters to the prediction model. In principle, if you wanted to cre-
ate 10 different prediction models, all for the same recommender system, you could
run the system for 10 days, put one day’s worth of logged samples into each of 10
sample sets, then run one fit per set. The problem with that approach is that you’d
need to wait 10 days before doing a fit. Fortunately, there’s a cheat you can use:
bootstrap sampling.

 We first saw bootstrap sampling in chapter 3, section 3.3.1, where we applied it to
individual measurements taken for each arm being evaluated by a multi-armed ban-
dit. It’s a great technique to have in your toolkit, and we’ll be applying it differently
here than we did in chapter 3, so let’s take a minute to reintroduce it.

 The idea behind bootstrap sampling is that of simulating an individual measure-
ment by randomly sampling from real individual measurements that you already have
on hand. You’ll sample with replacement, meaning that if you simulate another indi-
vidual measurement, you’ll do it by sampling from the full set of real measurements.

 For example, say you have num_ind = 4 individual measurements collected from an
experiment, with business metric values {1, 3, 2.5, 1.5}. Taking a random sample
from this set might yield the number 2.5. Another sample might yield 3. Since you’re
sampling with replacement, the next sample might be 2.5 again. Then, maybe, you
sample 1.5. By this process, you have created a new set of four simulated individual
measurements: {2.5, 3, 2.5, 1.5}. This set is called a bootstrap sample. A bootstrap
sample will have roughly the same summary statistics—for example, mean, standard
deviation—as the original measurements of which it is comprised.

 As another example, imagine you measured the number of times each of a set of
100 users checked your app in a day. Say the measurements were uniformly distrib-
uted between 3 and 7 visits:

np.random.seed(17)
visits = np.array([3 + int(5*np.random.uniform()) for _ in range(100)])

You could simulate an individual measurement using

  i = np.random.randint(len(visits))
  visits[i]
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where i is a random index to one of the entries of visits. To create a bootstrap sam-
ple with size equal to that of visits, generate len(visits) indices:

i = np.random.randint(len(visits), size=(len(visits,)))
bs_visits = visits[i]

Notice that each entry in i may take any value in 0 <= i < len(visits). Sampling this
way is called sampling with replacement. Significant facts about this type of sampling are

1 The bootstrap data set may contain duplicate value from visits.
2 bs_visits may be any size—even larger than visits.

Figure 5.9 compares the distributions of visits and bs_visits.

The two sample sets are similar but not precisely the same. For example, the mea-
sured sample set has mean 5.01 and standard deviation 1.45, but the bootstrap sam-
ple set has mean 4.95 and standard deviation 1.49. The values are close but not exact
due to the randomness of bootstrap sampling.

 We can apply bootstrap sampling to the recommender’s offline fitting routine to
build an ensemble of models. To create a single model for the ensemble, take a
bootstrap sample from the logged sample set; then run a linear regression on the
bootstrap sample to find the beta values. Repeat this process for each model you’d
like to add to the ensemble.

Ensembles and ensemble learning
We call a set of models an ensemble, especially if the models are designed for a sim-
ilar purpose.

Figure 5.9 The measured and bootstrap sample sets. The two sets do not contain 
the same values, but their summary statistics are approximately the same. For 
example, their means are 5.01 (measured) and 4.95 (bootstrap). Their standard 
deviations are 1.45 and 1.49, respectively.
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All the models in the ensemble will have similar beta values and give similar outputs,
but there will be some variation between them. This variation will give rise to explora-
tion in the Thompson sampling policy. The policy will choose one model at random,
then take the action that model predicts to have the highest reward (viewing time).
The following listing shows the full recommender with bootstrap sampling and the
Thompson sampling policy.

class RecommenderThompsonSampling:
    def __init__(
        self, num_features, num_actions,
        num_bs_samples
    ):
        self._num_features = num_features
        self._num_actions = num_actions
        self._num_bs_samples = num_bs_samples
        

    def reset(self):
        self._betas = []
        for _ in range(self._num_actions):    
            self._betas.append([
                np.random.normal(size=(num_features,))
                for _ in range(self._num_actions)    
            ] )
        

    def _bs_sample(self, samples_y, samples_x):
        bs_samples_y = []
        bs_samples_x = []
        for action in range(self._num_actions):
            y = np.array(samples_y[action])
            x = np.array(samples_x[action])
            if len(y)>0:
                i = np.random.randint(0, len(y), size=(len(y),))
                y = y[i]
                x = x[i,:]
            bs_samples_y.append(y)
            bs_samples_x.append(x)
        return bs_samples_y, bs_samples_x
        

    def fit_offline(self, logs):
        fit_logs = logs

One way to make use of an ensemble of models is to average their predictions
together to make a single, better prediction. That’s not what we’re going to do here.

Instead, we’ll be randomly choosing a prediction from the collection of predictions of
the models in the ensemble.

I mention this here for disambiguation only.

Listing 5.7 Thompson sampling recommender

Create num_bs_
samples beta vectors 
for each action.
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        samples_y, samples_x = collect_logs_by_action(
            num_actions, fit_logs
        )
        self._betas = []
        for _ in range(self._num_bs_samples):    
            bs_samples_y, bs_samples_x = self._bs_sample(
                samples_y, samples_x
            )
            self._betas.append(build_models(
                self._num_features, bs_samples_y, bs_samples_x
            ))
        
    def policy(self, context):
        i_beta = np.random.randint(0, len(self._betas))  
        beta = self._betas[i_beta]    
        viewing_max = -np.inf
        for action in range(self._num_actions):    
            viewing_hat = context @ beta[action]
            if viewing_hat > viewing_max:
                action _best = action
                viewing_max = viewing_hat
        return i_post_best

RecommenderThompsonSampling modifies fit_offline() to build an ensemble of
num_bs_samples models. Also, policy() now randomly selects a model from the
ensemble from which to take predictions. Figure 5.10 compares the performance of
RecommenderThompsonSampling to the other two recommenders, greedy and epsilon-
greedy. RecommenderThompsonSampling clearly outperforms the other two.

Create an ensemble 
of models.

Randomly choose one model 
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...then choose the best 
action according to 
that model.

M
e
a
n
 v

ie
w

in
g
 t
im

e

Day

Figure 5.10 Thompson sampling achieves higher mean viewing time than the 
greedy or epsilon-greedy recommenders and does so sooner.
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Thompson sampling not only outperforms epsilon-greedy on this problem but also
outperforms it generally. Thompson sampling has proven-optimal regret (S. Agrawal,
et al. “Thompson sampling for contextual bandits with linear payoffs,” Proc. 30th
ICML, 2013, pp. 127–135), whereas epsilon-greedy has suboptimal regret. In practice,
bootstrap Thompson sampling is straightforward to implement, has excellent perfor-
mance, and works with a wide variety of supervised learning (SL) methods. In this
chapter, we used linear regression as the supervised learning method, but you could
just as well use logistic regression, a deep neural network, or some other method.

 In this section, we made the case that bootstrap sampling causes variation in the
parameters of the models in the ensemble, and that variation, in turn, causes variation
in the policy’s choice of action. This approach produces a higher business metric than
adding variation directly to the actions, as epsilon-greedy does. In the next section,
we’ll build some intuition for what makes Thompson sampling so effective in a con-
textual bandit problem.

5.3.2 Randomized probability matching

A Thompson sampling policy achieves higher viewing times (the business metric)
than epsilon-greedy because its exploration method is more nuanced. Instead of
always allocating 10% of its decisions to random, arbitrary exploration, it (1) biases
decisions toward those more likely to improve viewing times, and (2) targets explora-
tion toward decisions that will improve the models’ predictions. It achieves both of
these ends by making the probability of making a decision equal to the probability
that the decision is best. This decision-making heuristic is called randomized probability
matching (first discussed in chapter 3, section 3.3.2).

 When the bootstrap Thompson sampling policy makes a decision, it first selects a
model from the model ensemble completely at random, not preferring any one
model over another. Then it displays the post that the selected model predicts will
have the longest viewing time (figure 5.11).

Since each model in the ensemble was created in the same way (same sample set,
same regression), each model is equally valid or equally “believable.” Yet, the models
may give different predictions about which post is best for the current user. Looking at
figure 5.11, we see 7 models picked post #1 as best and 3 models picked post #2 as
best. Since all the models are equally believable, we could interpret the disagreement

Best post

Model ensemble

Model number

1 1 2 1 1 2 2 1 1 1

1 2 3 4 5 6 7 8 9 10

Figure 5.11 Each of 10 models in an ensemble predicts which post will result in the longest 
viewing time (i.e., recommending the post as the best one to display). Seven out of 10 
models recommend post #1, and 3 out of 10 models recommend post #2.
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probabilistically and say that the probability that post #1 is best is 7/10, and the proba-
bility that post #2 is best is 3/10. The probability a post (action, more generally) is best
is proportional to the fraction of models in the ensemble that select it as best:

Notice, also, that since a model is chosen at random from the ensemble by the policy,
7/10 of the time the policy will decide to display post #1, and 3/10 of the time to dis-
play post #2. In other words, the probability of taking an action, p(action), is equal to
the probability that it is the best action:

This equality is the “probability matching” portion of the randomized probability
matching heuristic. (Randomized just means that you draw a new model at random for
each decision.) Thompson sampling is randomized probability matching applied to
bandit (contextual or not) problems.

 This heuristic says that if more models in the ensemble say a post is best, then that
post is more likely to be displayed (exploitation). As a result, the system will be more
likely to achieve higher viewing time. Nevertheless, the posts that are liked by fewer
models will still get displayed sometimes (exploration). The heuristic, thus, balances
exploration with exploitation.

 Note that since users and posts are represented by features (e.g., user demo-
graphics, key words in a post), the model can generate a prediction of any user and
any post—even ones that haven’t been displayed before. The predictions won’t nec-
essarily be good (i.e., they might have high uncertainty, leading to disagreement
across models in the ensemble). That disagreement drives exploration: some dis-
agreeing models will predict a long viewing time, making a post more likely to be
shown to a user. When that post is shown to that user, the actual viewing time will be
measured and recorded in the log. The next time the models are refit, they will
include that measurement, resulting in lower uncertainty about that same predic-
tion (and about similar predictions, since the model will generalize to some extent).
Less uncertainty in the predictions means less disagreement among the models,
which means less exploration in the future.

 Note that exploration depends upon disagreement about a given context. If there are
many samples for User A (a frequent visitor), the sample set might show clearly that
User A prefers gardening posts to posts about cooking. There’s no need to explore User
A further: just show them a gardening post. User B, however, might have generated
fewer samples. Perhaps half the model ensemble suggests a gardening post and half sug-
gests a cooking post. In this case the system will explore both options equally.
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 As time goes on, the system strategically collects samples to improve the model
ensemble until disagreement disappears and exploration ceases. Let’s rerun
RecommenderThompsonSampling and monitor the disagreement between models in
the ensemble. One way to do this is by plotting the average (over each day) of
pbest(action) of the post the was displayed to the user (figure 5.12).

At first, pbest(action) of the displayed posts are low. As the recommender progresses,
pbest(action) increases. The models in the ensemble learn the preferences of the
users and gradually come to a consensus about which post would be the best one to
display to each user.

 Bootstrap Thompson sampling applies the randomized probability matching heu-
ristic to bandit problems. This heuristic balances the desire to make a decision that
will achieve a good business metric (exploitation of the current models) with the
desire to make a decision that will collect the samples needed to improve future mod-
els (exploration). Improved models lead to an even better future business metric. As
always, an investment in experimentation in the short-term returns improved perfor-
mance in the long-term.

5.4 Validate the contextual bandit
In chapters 2–4, we met experimental methods that could be used to optimize param-
eters of an engineered system. With A/B testing, for example, you could compare the
performance of a system using two different values of a parameter. With multi-armed

Day

Figure 5.12 Average pbest(action) of the posts displayed to the user. Each 
day the Thompson sampling recommender becomes more certain of its decisions. 
As pbest(action) increases, exploration decreases.
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bandits, you could compare several values (each expressed as an “arm” of the MAB).
With response surface methodology, you could optimize perhaps two to five continu-
ous parameters simultaneously. A contextual bandit might seem like an amazing leap
beyond these other methods because it can optimize thousands or even millions of
parameters of the prediction model.

 This amazing ability comes at a cost—complexity. A CB adds complexity to both
the offline and online portions of the system:

 Offline—A CB requires you to fit a prediction model, or, in the case of bootstrap
Thompson sampling (BTS), an ensemble of prediction models. You’ll need to
employ all your supervised learning skills here: feature engineering, feature
selection, regularization, model selection, architecture design, and so on.

 Online—The policy will need to explore the space of decisions. For BTS, that
will mean managing an ensemble of models—having them all “live” and ready
to make a decision at any time. There will likely be other policy subcomponents
that might interact with exploration, such as manually designed safety, business,
or design constraints (whereby “manually designed” I mean code written to
directly express domain knowledge or engineer preferences rather than code
that is parameterized and optimized by experiment).

When you change any part of a complex system like this, it can be hard to tell what the
effect will be. You should validate any changes to a CB system by running an A/B test
to measure the effect of the change. Changes you might make while working with a
contextual bandit include

 Switching from a manually designed policy to a prediction model-based policy
 Adding epsilon-greedy exploration
 Upgrading from epsilon-greedy to Thompson sampling
 Adding new features to the prediction model
 Adding or changing safety checks in a policy

It can take a new contextual bandit some time to “learn”—that is, to reach its maximal
business metric. For example, see how in figure 5.10 it takes a few days for the average
viewing time to rise to its maximum. Knowing that, you should discard the first few
days from your A/B test. A fair comparison of the long-term performance of two CBs
should compare them at “peak performance”—that is, after the performance has lev-
eled off. How many days should you drop? That depends on your system. You’ll need
to monitor the performance over time to judge.

Summary
 You can experimentally optimize a very large number of parameters in a system

where the business metric is a short-term reward.
 Exploration reduces model bias and breaks feedback loops that hamper perfor-

mance improvement in contextual bandit systems.
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 Epsilon-greedy exploration is simple and effective, but it requires the tuning of
a metaparameter and achieves suboptimal regret.

 Bootstrap Thompson sampling has no metaparameter, achieves optimal regret, and
may be used in conjunction with a broad range of supervised learning methods.

 Contextual bandits are complex, so changes to them should be validated with
an A/B test.



Bayesian optimization:
Automating experimental

optimization
Before we begin, let’s review:

 In chapter 2 (A/B testing), we talked about how to take a measurement of a
business metric.

 In chapters 3 (multi-armed bandits) and 5 (contextual bandits), we saw that
if you adapt your experiments based on uncertainty estimates, you can
improve your business metric while your experiment is running. We said we
were “balancing exploration with exploitation.”

 In chapter 4 (response surface methodology), we showed how to use esti-
mates of a business metric—a surrogate function—to reduce the number of
measurements required to optimize parameters.

This chapter covers
 Combining ideas from RSM and MAB into one 

optimization method

 Automating response surface modeling with 
Gaussian process regression

 Automating experiment design by optimizing over 
an acquisition function
148
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Bayesian optimization (BO) integrates all these ideas—taking measurements, build-
ing a surrogate, and balancing exploration with exploitation—into one optimization
method that automatically designs a sequence of experiments that optimizes system
parameters.

 BO removes the subjectivity found in the RSM procedure. RSM designs are sub-
jective because the choice of which parameter to measure is left to the engineer.
RSM analysis is also subjective because the engineer chooses the form of the surro-
gate model. These manual steps can cause results to vary, depending on which engi-
neer is executing the procedure. In addition, these steps take time. A better
procedure (i.e., BO) executes the optimization procedure reliably (independent of
the engineer) and quickly.

 In this chapter, you will optimize the parameters of a source-code compiler. To
get started, we’ll walk through the entire procedure for a single parameter in a
visual, intuitive way (section 6.1). Then we’ll develop the components of the proce-
dure in more detail: Gaussian process regression in section 6.2 and acquisition func-
tions in section 6.3. Finally, section 6.4 will run a Bayesian optimization over all the
compiler’s parameters. We refer to the procedure as “automated” since the experi-
ments are designed and analyzed by the Bayesian optimization algorithm without
engineer intervention.

 Bayesian optimization is a rich field with many applications, such as hyperparame-
ter tuning of neural networks (http://mng.bz/gRzE). In this chapter, we’ll explore an
application to software engineering.

6.1 Optimizing a single compiler parameter, 
a visual explanation
Let’s jump right in and apply Bayesian optimization to the problem of speeding up
web server code compiled by a JIT (just-in-time) compiler. Your job is to make the
resulting code execute as quickly as possible so that users don’t get impatient and
abandon the website while waiting for a page to load. To that end, we’ll search for the
JIT parameter values that minimize the CPU time it takes for the complied web server
code to handle user requests (figure 6.1).

The JIT compiler is configured with seven parameters. You’ll use Bayesian optimiza-
tion to find the parameter values that minimize the CPU time used by the compiled web
server. The Bayesian optimizer will suggest a set of JIT parameters. You will configure

JIT

compiler
Parameters

Web server

source code

Compiled

web server

Figure 6.1 The JIT compiles 
web server source code. The 
speed (conversely, CPU time) of 
the compiled web server depends 
on the parameters used to 
configure the JIT.

http://mng.bz/gRzE
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the JIT with the suggested parameters, compile the web server code, then measure the
CPU time used by the web server. The whole process will be repeated several times
until you find the set of parameters that minimizes the CPU time.

 The seven parameters control aspects of the JIT, such as how it lays out code in
memory, how long it monitors the code (while executing in an uncompiled, inter-
preted way) before initiating the JIT compilation, and how aggressively it inlines
(replaces a function call with a copy of function code). For presentation purposes,
we’ll simply represent the parameters as seven numbers, each between zero and one.

 To find out how quickly the web server runs, you’ll experimentally measure the
CPU time offline by replaying user web requests that were logged by the production
system. Since you’ll use real requests and run the JIT and web server on the same
hardware as is used in production, you’ll get measurements of CPU time that faith-
fully reproduce their production values. Running such an experiment will take
about an hour.

 If you think this sounds like a problem to which we could apply RSM (chapter 4),
you’re right. The goal here is to optimize continuously valued parameters, just like we
did with RSM. Unfortunately, RSM becomes cumbersome when optimizing more than
three or four parameters, and this JIT has seven. Also, it can be difficult to define and
fit the linear regression-based surrogate model of CPU time versus parameters when
there are so many parameters. Finally, we like to visualize the surrogate function when
manually designing the next iteration’s experiment. Such visualization is difficult in
dimensions greater than two or three. Bayesian optimization is not only capable of
optimizing a system with seven parameters, but it also automates the entire procedure.

 To get a feel for how Bayesian optimization works, let’s walk through the optimiza-
tion of a single JIT parameter. To build intuition, we’ll visualize and discuss each step
in this section, then in section 6.2 we’ll delve into the details. The full procedure is
depicted in figure 6.2.

Measure

Measure at

parameter

Model

response surface

with GPR

Analyze

Optimize

acquisition

function

Design

Define

center-point

parameter

CPU time

unchanged

Accept

parameter

CPU time

changed

Figure 6.2 Bayesian optimization. After initialization at the center point, BO iterates through 
design, run, and analyze stages until the measured business metric stops changing. What 
makes BO so powerful is that the analyze and design stages are automated, freeing the 
engineer to devote more of their time to generating and implementing new ideas rather than 
to optimizing parameters.
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The lower half of figure 6.2 shows the main loop: design, measure, analyze. To kick-
start the process (upper-left bubble), we take a measurement at the center of the
parameters’ ranges. Since each parameter takes values in [0,1], each center value is
at 0.5. This measurement will be used by the analyze stage to build the first surro-
gate model using something called Gaussian process regression (GPR; details in sec-
tion 6.2).

 The design stage runs a numerical optimization that seeks the parameter value
that maximizes the acquisition function. This function determines how BO balances
exploration and exploitation when designing an experiment (details in section 6.3).

 On each iteration through the loop, the design stage chooses which parameter
value to measure in the next measure stage. After some number of iterations, the mea-
sured CPU time stops changing. At that point, we say that BO has converged to an
answer, the optimal parameter setting, and the process is complete. To get started,
we’ll build a Python simulation of the JIT + web server combination.

6.1.1 Simulate the compiler

As we’ve done in each of the chapters so far, we’ll build a simulator (a Python func-
tion) of the system we’re experimenting on. In this case, we’ll simulate the offline
CPU time measurement. The measurement works like this: You configure the JIT with
a given set of parameters. Next, you compile the web server code. Then you send a
battery of user requests to the web server, where the user requests are taken from pro-
duction logs. Using the logs allows you to run this process offline and to repeat it for
different parameter values.

 The function simulating the entire process—the JIT plus the server running over
the logs—takes a set of parameters as input and returns a single number, the average
CPU time. The simulator is shown in the following listing.

def jit_plus_server(parameters):
    x = np.array(parameters)    
    d = len(x)
    x1 = x - 0.15*np.ones(shape=(d,))    
    x2 = x - 0.85*np.ones(shape=(d,))    
    cpu_time = 2 - np.exp(-10*x1**2) - 0.5*np.exp(-10*x2**2)   
    return cpu_time.mean() + .005*np.random.normal()   

The variable cpu_time is a complicated function of parameter values. Also, due to
the presence of other processes (e.g., the operating system) running on the web
server, fluctuations in caching, and possibly other factors, the CPU time may vary a
bit from measurement to measurement. This variation is simulated in listing 6.1 by
a random number.

Listing 6.1 JIT CPU time simulator

Put parameters in 
a NumPy array.

This is a 
complicated 
function.

Shows random
variation
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 As usual, we won’t use any information about the simulator’s internal workings
when running our experiments. We’ll just supply parameter values to it and accept the
returned measurements. Let’s get started and run the first experiment.

6.1.2 Run the initial experiment

Bayesian optimization will model the response surface from measurements of the
CPU time. Then, based on the model, it prescribes a parameter value at which to take
the next measurement. But what should you do when you start out and have no mea-
surements? Without a measurement, BO can’t build a model, and without a model, it
can’t prescribe a parameter value.

 The answer is to just measure the CPU time at any parameter value you like. We’ll
start at the center parameter value. Each of the parameters lies in [0,1], so we’ll mea-
sure at 0.5 (the center). For ease of presentation, in this section we’ll just pretend the
JIT has only one parameter. This will make it easier to visualize the BO procedure. In
section 6.4, we’ll optimize all seven parameters. Simulating the first measurement is
straightforward:

np.random.seed(17)
jit_plus_server([0.5])

which produces a CPU time of

1.5607447789648075

Black box optimization
Bayesian optimization is what is called a black box optimizer. This term refers to opti-
mization algorithms that seek global optima of measurements of systems whose
internal dynamics are unknown (or, at least, are not important). The term black box
is meant to evoke the image of an object inside of which you cannot look. Thus, you
cannot reason about its inner workings.

A JIT compiler with many parameters may be treated as a black box, as all of the sys-
tems we have considered in this book may be, except perhaps the social media app
of chapter 5, to which we applied the contextual bandit. In that case we understood
that the policy took an action (to show a certain post) based on a known context (fea-
tures representing the user and the post) and received a short-term reward as a direct
result of the action taken. This extra information about the step-by-step workings of
the system enabled us to optimize many (up to millions) parameters by combining
offline supervised learning with online exploration.

The JIT compiler is very different. All we know are the parameter values and the cor-
responding measurement (CPU times). We don’t have a notion of actions or contexts
or rewards to aid the optimization process.

Note that A/B testing, RSM, and multi-armed bandits, while they can be applied to
optimize black box systems, are generally not considered optimizers because they
are not automated like Bayesian optimization is.
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(Note that we seed the random number generator, as usual, for reproducibility.) Now
that we’ve completed the initialization experiment, let’s move on to analyze it and
design the second experiment.

6.1.3 Analyze: Model the response surface

To design an experiment, BO first builds a surrogate, a model of the response surface,
the function CPU time versus parameter; then it searches for a “good” parameter
value to measure next. We’ll defer the definition of good until section 6.1.4. Here we’ll
focus on the response surface model.

 Building a model from only one measurement seems like a lot to ask, but let’s
give it a try. First off, we know that (1) the parameter takes a value in [0,1], and (2)
the CPU time is 1.56 when the parameter is 0.5. We can eke out a little more of a
model by assuming that (3) our uncertainty in the value of the CPU time is smallest
(let’s just say 0) where we measured, at parameter 0.5, (4) increases to its largest
value (let’s call it 1) when the parameter is farthest from 0.5 (i.e., at 0 and 1), and
(5) both CPU time and its uncertainty vary continuously (more on that in a minute)
with the parameter.

 That’s actually quite a bit of information to work with—even though we only have
a single measurement. Figure 6.3 combines all of these points into a sketch of the
response surface.

Parameter

Figure 6.3 A surrogate model coaxed from a single measurement. The 
measurement (black dot) is at parameter = 0.5, CPU time = 1.56. The 
uncertainty in CPU time, depicted by the gray areas, is 0 at the point of the 
measurement and one at the left and right edges.
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Since we know nothing more about CPU time than its value at parameter = 0.5, we
can just assume it’s constant across the parameter range. The assumption of continu-
ity (point 4) means that we draw the dashed line and the boundaries of the gray area
without any breaks or kinks.

 Please take a careful look at the estimated response surface in figure 6.3. If it were
your job to choose which point to measure next, which would you choose? That ques-
tion is worth pondering for a bit before moving on to the next section, where we’ll dis-
cuss how Bayesian optimization answers it.

6.1.4 Design: Select the parameter value to measure next

We’ve taken the initialization measurement at the central parameter value and mod-
eled the response surface based on it. The next step is to use the information in that
model to decide which parameter value should be measured next. Making that deci-
sion is what it means to design the next experiment.

 One consideration that goes into that decision is what measurement would give us
the most information about the shape of the response surface. Put another way, we
should measure the parameter that would most reduce the uncertainty in our model.
Thus, the right parameter value is the one where uncertainty is highest.

 Because the surrogate function in figure 6.3 is symmetric about the center point,
there are two parameter values where the uncertainty is maximized: 0 and 1 (i.e.,
the left and right edges). We could measure either. I’ll arbitrarily choose the left
edge, parameter = 0.

 That’s it. We just designed the next experiment by saying, “Measure parameter = 0
since that’s where the uncertainty in the model is maximized.”

 Running that experiment (that measurement) yields:

np.random.seed(17)
parameter = 0
cpu_time = jit_plus_server([parameter])
print (cpu_time)
1.2025010344211848

The CPU time of parameter = 0 is 1.20. We can estimate the response surface from
the first two measurements, as shown in figure 6.4.

 At this point we’ve completed most steps of the BO procedure, originally pre-
sented in figure 6.2 and shown again in figure 6.5, for reference.

 The steps we’ve taken so far are

 Define an initial parameter value to measure, the center-point value.
 Run an experiment to measure its CPU time.
 Analyze the result by building a response surface model from one measurement.
 Design the second experiment based on that model.
 Run the second experiment, measuring CPU time at the second parameter.
 Analyze the second result by building a response surface model from two

measurements.
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We’re going to design the next experiment, run it, analyze it, and keep repeating until
the response surface model stops changing. Since our experiment design is based on
the response surface model, our design will also stop changing from iteration to itera-
tion. When that happens, we’re done. The system is optimized.

 There’s one more point to discuss before we move on, though. The design of the
third experiment is a little different from the design of the second. We’ll talk about
that next, in section 6.1.5. The good news is that every design afterward follows the
same pattern as the third.

Parameter

Figure 6.4 Response surface model based on two measurements. The 
uncertainty (gray area) in the estimate of CPU time is small at the measurement 
parameters (black dots). The CPU time (dashed line) varies smoothly across the 
parameter range and intersects the measured values.
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Figure 6.5 Bayesian optimization, as applied to JIT configuration in this section



156 CHAPTER 6 Bayesian optimization: Automating experimental optimization
6.1.5 Design: Balance exploration with exploitation

When designing the second experiment, our goal was to improve the surrogate
function, the model of the response surface, since, with only one measurement as
its basis, it was a pretty poor model. We could continue to design experiments with
this goal and always choose to measure the parameter where the model had the
largest uncertainty. This would be a good strategy for building a high-quality surro-
gate. In fact, if we took that approach, once we were satisfied with the quality of the
model, we could stop experimenting and ask, “At which JIT parameter value would
the web server achieve the lowest CPU time?” We’d read the answer right off the
plot of the surrogate (i.e., we’d look for where the dashed line had a minimum).

 This approach is reminiscent of A/B testing in that we first collect all the mea-
surements we need to be confident that we can make a good decision about how to
configure the system; then we run the system with that configuration. In A/B test-
ing we run a long experiment to determine whether version A or B is better; then
we run the system with the better version. The way we just described Bayesian opti-
mization, we’d repeatedly design and run experiments to produce a high-quality
surrogate function, then run the system with the parameter value that would mini-
mize CPU time.

 When we discussed the multi-armed bandit (MAB) in chapter 4, we looked for
ways to achieve a better business metric while running the experiment. The MAB does
this by taking more measurements of the version (A or B) that it expects will give
better performance. As its confidence in its measurements grows, it spends more
and more time running the better version and less and less time on the worse ver-
sion. We said that the MAB was balancing exploration (measuring the worse ver-
sion to verify that it’s genuinely worse) with exploitation—measuring the better
version to capitalize on its higher business metric.

 We can borrow this idea from MAB to improve the design of experiments in
Bayesian optimization. When we chose the parameter that maximized the uncer-
tainty of the model we were exploring, we were aiming to increase our confidence
in the model. The “exploitation” of the model comes at the end, when we look for
the parameter value that minimizes CPU time. Instead of separating these phases—
first exploring, then exploiting—let’s combine them into a single decision made
during each experiment design at each iteration. Examine figure 6.6.

 Given the model in figure 6.6, we could imagine designing an experiment
purely to explore, as we did for the second experiment, or purely to exploit, as we
expect to do when the optimization process is complete. Alternatively, we could
balance these two competing objectives by looking for a parameter value that pro-
vides a “pretty good” CPU time and a “pretty uncertain” model estimate. In terms
of the preceding plot, we want the dashed line to be low and the gray area to be
large. A heuristic approach is to find the minimum of “CPU time minus model
uncertainty.” Graphically, that’s the lowest point of the lower boundary of the gray
area in figure 6.6. See figure 6.7.
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The lower boundary of the gray area is traced with a thick line in figure 6.7. Its minimum
is around parameter = 0.11. This would be a good parameter value to measure next.

 Notice that to design an experiment, we optimized over either the model uncertainty
(previous section) or the CPU time—model uncertainty (this section). In Bayesian

Maximize
model
uncertainty

Minimize
CPU time

Parameter

Figure 6.6 Exploration versus exploitation. To create a purely exploratory design, we 
would choose parameter = 1.0, which maximizes model uncertainty. To create a purely 
exploitative design, we would choose parameter = 0.0, which minimizes CPU time.

Balance CPU
time and model
uncertainty

Parameter

Figure 6.7 The parameter value around 0.11 balances exploration (maximizing 
model uncertainty) with exploitation (minimizing CPU time)
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optimization, the function you optimize to design the next experiment is called an
acquisition function. There are many forms for this function. They are all heuristics
intended to strike a balance between exploration and exploitation.

DEFINITION We optimize an acquisition function over the parameter values to
design the next experiment. Many forms of this function have been pro-
posed. Each balances exploration with exploitation in a slightly different way.

The practical implication of using one of these “balancing” acquisition functions is
that we’ll be more likely to run experiments that use less CPU time during the process
of finding the optimal parameters. This means that the experiment will end sooner.

 More generally, if we use Bayesian optimization in production, we’ll achieve a
higher business metric while running the experiment. That could mean you see more
revenue, more clicks, or a better user experience while optimizing your system.

 Continuing with our visual Bayesian optimization procedure, we’ll keep picking
the parameter that marks the lowest point of the gray area and run a few more exper-
iments (figure 6.8).

Figure 6.8 shows the surrogate after four more iterations. Notice how the parameter
that minimizes the gray region settles down to a value around 0.15. We say that the
optimization has converged at this point. We can stop designing new experiments and
just keep the parameter set to 0.15, its optimal value.

Figure 6.8 Four more iterations of a Bayesian optimization. In frames (a)–(d) we 
run four more iterations of the optimization. By frame (d), the parameter value 
(black dots) has stopped changing.
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 We just took a short, visual tour of Bayesian optimization. We found the parameter
of a JIT compiler that minimized the CPU time taken by a JIT-compiled web server
using an intuitive visualization of Bayesian optimization.

 In the next section, we’ll look at Gaussian process regression, the procedure used
to model the response surface. After that we’ll examine acquisition functions in detail
and write a simple routine to optimize them. Once that’s complete, we’ll have all the
knowledge and code needed to run a Bayesian optimization completely automatically.

6.2 Model the response surface with Gaussian process 
regression
Our task in this section is to write the code that produced the response surface visual-
izations in section 6.1 (see, for example, figure 6.8). We’ll write Gaussian process
regression (GPR) code to both estimate the expected CPU time for a given parameter
value and to report the uncertainty in that estimate. Then we’ll query the GPR code at
many values of the parameter to produce a visualization like in figure 6.9.

The CPU time estimates are visualized by the dashed line, and the reported uncer-
tainty is the height of the gray area. Let’s start by reproducing the dashed line in sec-
tion 6.2.1; then we’ll work on the gray area in section 6.2.2.

Parameter

Expected CPU time

Uncertainty in estimate

Figure 6.9 A visualization of the response surface produced by Gaussian process 
regression based on two measurements (black dots) at parameter = 0.5 and 
parameter = 0.0



160 CHAPTER 6 Bayesian optimization: Automating experimental optimization
6.2.1 Estimate the expected CPU time

Let’s say we’ve just completed the first two measurements of CPU time. Recall their
values were 1.56, at parameter = 0.5, and 1.21 at parameter = 0.0. Now we want to
create a function that will estimate CPU time at parameter values other than 0.0
and 0.5—at any value in the interval from 0.0 to 1.0. The function will take a
parameter value as input and return a CPU time estimate. Let’s start with a simple
function and then refine it.

TAKE AN AVERAGE OF ALL MEASUREMENTS

The simplest way to generate an estimate of CPU time is just take the average (the
mean) of the measurements taken so far: mean CPU time = (1.54 +1.21)/2 = 1.375.
Let’s start there; see the following listing.

class GPR1:
    def __init__(self, parameters, measurements):        
        self.x = parameters
        self.y = np.array(measurements)
        self.mean_y = self.y.mean()    
        
    def estimate(self, query_parameter):    
        return self.mean_y

We’ll name the parameters and measurements x and y inside the class. That’ll make
the code a little cleaner in the long run.

 In listing 6.2, the method estimate() returns self.mean_y for any value of the
argument query_parameter. This is simple and reasonable, but we can do better.

WEIGHT NEARER MEASUREMENTS MORE

We can improve the estimates a bit with the intuition that if two parameters are closer
to each other, then their CPU time measurements should be more similar. That would
mean that if we wanted to estimate CPU time at, say, parameter = 0.4, we should form
an estimate that’s more similar to the measurement at parameter = 0.5 (i.e., CPU
time = 1.56) than to the one as parameter = 0.0 (CPU time = 1.21).

 One way to express that intuition is through a weighted average. In the preceding
estimate, we used a simple average, which we could write as .5 × 1.54 + .5 × 1.21 =
1.365. A weighted average would replace the .5’s with different numbers, which we
call weights. The larger the weight, the more similar the estimate will be to the mea-
surement. Forming an estimate for parameter = 0.4, we might use .8 × 1.54 + .2 ×
1.21 = 1.458, which places more weight on the measurement at parameter = 0.5, the
one nearer to parameter = 0.4.

 Notice, by the way, that the weights add up to 1. In the first case, .5 + .5 = 1, and
in the second case .8 + .2 = 1. This ensures that the resulting estimate has the cor-
rect scale. Imagine if we let the weights add up to 100 (to be extreme, to make the
point): 50 + 50 = 100, then the estimate would be 100 times too large: 50 × 1.56 +
50 × 1.21 = 136.5.

Listing 6.2 Beginnings of Gaussian process regression

A simple estimate 
of CPU time

Return an estimate for 
a query parameter.
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 In NumPy, we’d write the estimate as a weighted average like weights @ y and spec-
ify each weight as a function of the distance from the measured parameters (x) to the
query parameter. A typical measure of distance between numbers is the absolute dif-
ference: np.abs(x – parameter). We want the weight to decrease as this distance
increases. There are many functions we could concoct that would do that, but the one
typically used in GPR is

weight = np.exp(-np.abs(x–parameter)**2)=np.exp(-(x–parameter)**2)

This weight function is displayed in figure 6.10.

This function is called a squared exponential kernel. Other shapes—other kernel func-
tions—may be used, but this one is the most common.

DEFINITION The kernel function tells how much to weight a measurement, as
a function of distance to that measurement.

There’s one more thing to mention about this kernel function. To use it well, you
need to answer the question, “How far is far?” If two parameters differ by 0.1, is that
far? Maybe they need to differ by 100 to be far away. In our problem, the parameter
only varies from 0 to 1, but the kernel function doesn’t “know” that. The way to deal
with this is to divide the distance by a length scale, called sigma:

weight = np.exp(-((x – parameter)/(2*sigma))**2 )

Also, there’s a 2 in there, by convention. The best choice of sigma can be determined
from the measurements being modeled (see sidebar), but we’ll just leave it as an argu-
ment to the class GPR for now.

Distance = np.abs(x – parameter)

W
e
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Figure 6.10 The weight on a measurement decreases with the distance to the measurement.
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The following listing shows GPR with the kernel-function-based weights.

class GPR2:
    def __init__(self, parameters, measurements, sigma):        
        self.x = parameters
        self.y = np.array(measurements)
        self.sigma = sigma
        
        self.mean_y = self.y.mean()
        self.y -= self.mean_y    
        
    def kernel(self, x1, x2):    
        distance_squared = ((x1-x2)**2).sum()
        return np.exp( -distance_squared/(2*self.sigma**2) )

    def estimate(self, query_parameter):
        weights = [
            self.kernel(x, query_parameter)
            for x in self.x
        ]    
        weights = np.array(weights)
        weights = weights / weights.sum()    
        return self.mean_y + weights @ self.y    

Listing 6.3 implements the weighted average we just discussed. The first thing we do is
subtract the average (the mean) of all measurements (self.y -= self.mean_y). Since
we decided in the previous section that the mean was a good start for a model, we just
have to worry about modeling the residuals. Residuals are the parts of the data that a
model doesn’t explain, roughly “measurements minus estimates.” We’ll apply the
weighting just to the residuals from the mean.

 The weights are proportional to the kernel function. Notice that we divided
weights by their sum, ensuring that they sum to 1. We can try it out with the sample
measurements at 0.5 and 0.0:

parameters = [0.5, 0.0]
measurements = [1.52, 1.21]
gpr = GPR(parameters, measurements, sigma=0.25)
print (gpr.estimate(0.25))
print (gpr.estimate(0.4))

Selecting the hyperparameter sigma
The argument to the class GPR, sigma, is a hyperparameter that controls how smooth
the GPR surrogate function is. Larger sigma values yield smoother surfaces.

One way to select the best value for sigma, given a set of measurements, is leave-one-
out cross validation (LOOCV). We won’t cover this technique in depth, but suffice to say
the procedure seeks the value of sigma that maximizes the accuracy of a prediction of
each measured value when the prediction is derived from all other measurements.

Listing 6.3 GPR with a weighted average

Remove average, 
model residuals.

Shows the squared 
exponential kernel 
function

There’s one 
weight for each 
measurement.Weights

must sum
to 1. Combine mean and 

weighted residuals.
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This yields

1.365
1.448

The first value matches the simple-average value just calculated because 0.25 is exactly
halfway between 0.0 and 0.5, so the two weights are equal. The second value differs
slightly from the value estimated above (1.458) because the weights used in the calcu-
lation in the text (0.8 and 0.2) were chosen by hand to make the presentation clear.
The weights computed by GPR in listing 6.3 are 0.77 and 0.23.

 To form estimates, GPR takes a weighted average of measurements and uses a ker-
nel function for the weights. This is the core of GPR’s approach to modeling, but
there is one more point to make before we have the complete picture of GPR.

DON’T OVERWEIGHT CLUSTERED MEASUREMENTS

Since we know (or, more accurately, require) that neighboring measurements have sim-
ilar values, it must be that taking a second measurement very near an existing mea-
surement doesn’t improve the quality of the estimates very much. To see what that
means and why it matters, suppose we took a third measurement at parameter = 0.4,
then tried to use all three measurements (at parameters 0.5, 0.0, and 0.4) to esti-
mate CPU time at parameter = 0.25.

 The simplest model would say to just average all three measurements together. The
weighted-average model would weight the measurement at 0.4 a little more than the
other two measurements because 0.4 is nearest to 0.25, like the triangle in figure 6.11.

measurements

distance weights

and cluster downweighting

distance weights

Figure 6.11 Estimates without and with cluster downweighting. Starting with the 
measurements (filled dots), we form an estimate (triangle) using GPR from listing 
6.3, where a measurement’s weight is based only on its distance to the estimate. 
A second estimate (x) reduces the weight of the two measurements on the right 
(at 0.4 and 0.5) since they are close to each other (clustered).
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Our engineer’s preference for simplicity (or Occam’s razor, if you like) would put the
estimate on a line passing through all three measurements. The triangle-marked esti-
mate is above that line because the two measurements at parameters 0.4 and 0.5
have high CPU times, and each measurement is given the same weight by GPR in
listing 6.3. We can compensate for clustering of measurements by reducing the
weight on—call it “downweighting”—any measurement that has other measure-
ments nearby.

 In concrete terms, we’ll downweight using the same kernel function that we
used to downweight by distance, with two differences: (1) We’ll apply it to the dis-
tance between pairs of measurements instead of the distance from a measurement
to an estimate, and (2) we’ll use it in the denominator since we want to lower the
weight when measurements are nearer to each other. The whole procedure is shown
in the following listing.

class GPR3:
    def __init__(self, parameters, measurements, sigma):        
        self.x = parameters
        self.y = np.array(measurements)
        self.sigma = sigma

        self.mean_y = self.y.mean()
        self.y -= self.mean_y
        
    def kernel(self, x1, x2):
        distance_squared = ((x1-x2)**2).sum()
        return np.exp( -distance_squared/(2*self.sigma**2) )

    def estimate(self, query_parameter):
        kernels_x_query = np.array([    
            self.kernel(x, query_parameter)
            for x in self.x
        ])
        kernels_x_x = np.array([   
            [
                self.kernel(x1, x2)
                for x1 in self.x
            ]
            for x2 in self.x
        ])

        weights = kernels_x_query.T @ np.linalg.inv(kernels_x_x)   
        return self.mean_y + weights @ self.y

In listing 6.4, we moved the previous expression for weights to kernels_x_query.
Recall that this term gives higher weight to measurements that are nearer to the esti-
mate. A new expression, named kernels_x_x, appears in the “denominator” (okay,
it’s actually a matrix inverse, but let’s wave our hands for a moment) of the weights

Listing 6.4 Full Gaussian process regression

kernels_x_query 
is a vector.

kernels_x_x is 
a matrix.

weights increases with
kernels_x_query and

decreases with kernels_x_x.
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and causes a weight on a measurement to decrease if the measurement has other mea-
surements nearby. This is the cluster downweighting term. It serves a second purpose,
too, in that it lets us skip the step of dividing by the sum of the weights.

 Note, also, that since we need to compare all pairs of measurements, kernels_x_x
is a matrix. Compare this to kernels_x_query, which is a vector because in it we com-
pare each measurement to just a single number, query_parameter.

 If you think of the weights elements as the relevance of each measurement, y,
then you could say weights @ self.y is the relevance-adjusted estimate of CPU time at
the query parameter.

 At long last, we can reproduce the estimates (the dashed line) in the visualizations
of the previous section. For example, to re-create figure 6.4, we do the following:

parameters = [0.5, 0.0]
measurements = [1.52, 1.21]
gpr3 = GPR3(parameters, measurements, sigma=.15)
x_hats = np.linspace(0,1,100)
y_hats = [gpr3.estimate(x_hat) for x_hat in x_hats]

Figure 6.12 shows the CPU time estimates, y_hats versus a range of parameter values,
x_hats.

The dashed line in figure 6.12 is the response surface, as estimated by GPR3. Other
examples of GPR estimates are shown in figure 6.13 to give you a feel for how GPR3
estimates business metrics. As you look them over, keep in mind that the only input to
GPR3 is the measurements (black dots) and the output is the entire dashed curve.

Parameter

Figure 6.12 The CPU time estimates (dashed line) created with GPR3 from listing 
6.4 using the measurements at parameters 0.5 and 0.0 (black dots) as input
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COMPARE TO RSM
GPR differs from linear regression, used in RSM (chapter 4, section 4.1.3), in a couple
important ways:

1 Linear regression requires the engineer to specify which terms to include in the
model. GPR has a hyperparameter, sigma, instead.

2 Linear regression has a fitting step, where the beta values are determined. Once
the betas are known, you may use the model to estimate the response surface.
GPR estimates directly from data without a fitting step.

Point 1 removes the manual effort of selecting terms. A procedure (LOOCV, see ear-
lier sidebar) for finding sigma, by contrast, may be simply and reliably automated.
Point 2 may make GPR run more slowly, as estimating directly from data (rather than
from a fitted, linear model) requires more computation. But the burden of this com-
putation is generally dwarfed by the time taken to run an experiment that measures
your business metric.

REVIEW
An estimate of a business metric (e.g., the CPU time), from measured values, consists
of three parts:

 The mean of all measurements plus a relevance-weighted sum of measurement
residuals, where relevance decreases with distance to a measurement

 The relevance decreases with clustering of measurements.

In the next section, we’ll see how to get our GPR class to report how uncertain it is in
its estimates of CPU time.
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Figure 6.13 GPR estimates of various other business metric functions created with GPR3
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6.2.2 Estimate uncertainty with GPR

In the overview in section 6.1, we used both the expectation and the uncertainty of
the surrogate to design an experiment when we looked for the lowest point of the gray
area. In the previous section (6.2.1), we learned to model the expectation (i.e., to esti-
mate the CPU time). Now we’ll estimate the model uncertainty.

 Before we begin, I want to distinguish between measurement uncertainty—that
is, the standard error (as defined in chapter 2, section 2.2.1), and GPR’s model
uncertainty. Measurement uncertainty is a variation in the value of repeated mea-
surements (e.g., many individual measurements of CPU time at the same parameter
value). GPR estimates are uncertain because they are made at parameters where we
haven’t taken a measurement.

 From that simple description—estimates are uncertain at parameters where we
haven’t taken a measurement—we can derive two features of GPR uncertainty: (1) It’s
zero at a measured parameter, and (2) it’s maximized far from all measurements. If
we, for a moment, think in terms of certainty instead of uncertainty, then these condi-
tions might suggest a familiar functional form: Certainty is maximized at a measured
parameter, and zero is far from all measurements. This is what the squared exponen-
tial kernel looks like (figure 6.14).

Figure 6.14 makes the maximum certainty 1.0, which is as good a value as any. The
model uncertainty is only a relative measure. We can ask it, “How much more cer-
tain are you of this estimate than of that estimate?” but we can’t compare model
uncertainty from one GPR regression to another. This is in contrast to standard
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Figure 6.14 Certainty in a GPR estimate is maximized at a measured parameter 
and tends to zero as we move farther from a measurement.
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error—that is, measurement uncertainty. Standard error has the same units (dimen-
sions) as the measurement, and so you can compare SE from one experiment to SE
from another.

 Since model uncertainty is based on the same measurements as the estimates are,
it is subject to the same considerations of “relevance” as the estimates were in the pre-
vious section. Namely, nearer measurements are more relevant, and clustered mea-
surements are less relevant. We can express certainty as a weighted average and use
the same weights as we used in listing 6.4:

weights = kernels_x_query.T @ np.linalg.inv(kernels_x_x).

For technical reasons (since variances add but standard deviations don’t; see appen-
dix C), we prefer to write an expression for squared certainty rather than certainty.
We’ll model the squared certainty associated with a single measurement by the kernel
function, specifically, kernels_x_query. Then we’ll combine the certainties contrib-
uted by each measurement using a relevance-weighted average: 

certainty_squared = weights @ kernels_x_query

One more thing: we were looking to model uncertainty, not certainty. To do that, just write

uncertainty_squared = 1 – certainty_squared

or

uncertainty_squared = 1 - weights @ kernels_x_query

Since the maximal certainty is 1.0 (right on top of a measurement), the maximal
squared certainty is also 1.0 (because 1.02 = 1.0). The leading “1 -” in the equa-
tion transforms a maximal squared certainty of 1 into a minimal squared uncer-
tainty of 0.

 Finally, while the model uncertainty is only a relative measure, it is conventional to
report the uncertainty on a scale that matches the overall scale of the residuals of the
measurements. This rescaling will make it easier to construct a generic acquisition
function (section 6.3) that works across business metrics of varying scales. The full
GPR class, which reports estimated CPU time and estimated model uncertainty, is in
the following listing.

class GPR4:
    def __init__(self, parameters, measurements, sigma):        
        self.x = parameters
        self.y = np.array(measurements)
        self.sigma = sigma
        

Listing 6.5 Complete Gaussian process regression
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        self.mean_y = self.y.mean()        
        if len(self.y) > 1:    
            self.std_y = self.y.std()
        else:
            self.std_y = 1
            
        self.y -= self.mean_y
        

    def kernel(self, x1, x2):
        distance_squared = ((x1-x2)**2).sum()
        return np.exp( -distance_squared/(2*self.sigma**2) )

    def estimate(self, query_parameter):
        kernels_x_query = np.array([
            self.kernel(x, query_parameter)
            for x in self.x
        ])
        kernels_x_x = np.array([
            [
                self.kernel(x1, x2)
                for x1 in self.x
            ]
            for x2 in self.x
        ])

        weights = kernels_x_query.T @ np.linalg.inv(kernels_x_x)
        expectation = self.mean_y + self.std_y*weights @ self.y
        uncertainty_squared = 1 - weights @ kernels_x_query    
        uncertainty = np.sqrt(uncertainty_squared)    

        return expectation, self.std_y*uncertainty    

The standard deviation of the measurements (the y’s) is stored in the class construc-
tor for use later, in the return line of the estimate() method. That line rescales the
uncertainty to match the scale of the measurements. Note also that estimate()
returns uncertainty rather than its square.

 You can re-create the visualization of the response surface, complete with uncer-
tainty estimates, using

parameters = [0.5, 0.0]
measurements = [1.52, 1.21]
gpr4 = GPR4(parameters, measurements, sigma=.15)
x_hats = np.linspace(0,1,100)
y_hats, sigma_y_hats = zip(*[gpr4.estimate(x_hat) for x_hat in x_hats])

The variable sigma_y_hats holds the uncertainty estimates. Figure 6.15 plots y_hats
versus x_hats with a dashed line and shows sigma_y_hats with a gray area. To fur-
ther develop an intuition for GPR, please see some examples of GPR4 in action in
figure 6.16.

 

Need at least 2 
y’s to compute 
std dev.

Shows relevance-
weighted squared

uncertainty

We want
uncertainty,
not squared
uncertainty.

Scale uncertainty to 
match measurements.



170 CHAPTER 6 Bayesian optimization: Automating experimental optimization
The uncertainty in the CPU time estimates produced by a GPR regression

 Is distinct from measurement uncertainty (standard error)
 Is a relative measure of uncertainty
 Increases with distance from a measurement, and increases with clustering of

measurements

Parameter

Expected CPU time

Uncertainty in estimate

Figure 6.15 The estimates of expectation and uncertainty produced by GPR4 
from listing 6.5
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Figure 6.16 Four independent examples of GPR4 regressions. The measurements 
(black dots) in each panel are the input to GPR4.
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We’ll see in section 6.3 how the GPR output is used with the acquisition function to
design an experiment.

6.3 Optimize over an acquisition function
Section 6.2 showed us how to create a surrogate function from measurements of CPU
time at different parameter values. The next step in Bayesian optimization is to design
an experiment by finding the parameter value that corresponds to the lowest point of
the gray area, as in figure 6.17.

The minimum of the gray area is determined by both the expectation (the dashed line)
and the model uncertainty (the height of the gray area). The lower black curve in
figure 6.17 is expectation minus uncertainty, as returned by GPR4, from section 6.2.2.

 The lower black curve is the acquisition function. Let’s look a little more closely at
it in the next section, then move on to minimize it.

6.3.1 Minimize the acquisition function

In Bayesian optimization parlance, “expectation minus uncertainty” is a specific acqui-
sition function called the lower confidence bound (LCB). The function is given some
flexibility by adding a parameter, k, like this: LCB = expectation – k × uncertainty.

 In concrete terms, we could compute LCB, the lower black curve in figure 6.17, with

parameters = [0.5, 0.0]
measurements = [1.52, 1.21]
gpr4 = GPR4(parameters, measurements, sigma=.15)
x_hats = np.linspace(0,1,100)

Design of next experiment

Parameter

Figure 6.17 Design an experiment—that is, decide which parameter to 
measure next. The parameter minimizes the lower boundary of the gray area.
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y_hats, sigma_y_hats = zip(*[gpr4.estimate(x_hat) for x_hat in x_hats])
k = 1
lcb = np.array(y_hats) - k*np.array(sigma_y_hats)

Recall from section 6.2.2 that in GPR4, we multiplied the uncertainty by std_y
before returning it. This gives the uncertainty the same scale as the measurements.
Because of this, we can compare uncertainty to measurements in lcb and make k a
number around 1.

 By minimizing lcb, you’re trading off (1) exploitation, a desire to compile web
server to have the lowest CPU time (the y_hats term), with (2) exploration, the desire
to take a measurement at a parameter where the model is uncertain (the sigma_y_hats
term). You want (1) because that’s the point of optimizing—to minimize CPU time. You
want (2) because your model, as it stands, may not be giving you very good estimates.

 Recall that model uncertainty is zero at parameter values that were measured.
When you take a measurement at a parameter where model uncertainty is high, you
know that the next time you run GPR, uncertainty will be zero at that parameter. Also,
uncertainty will be reduced at nearby parameters.

 If we used a large value of k, we’d be saying that we cared more about reducing
uncertainty. A smaller value of k would say we cared more about reducing CPU
time. The coefficient k is a metaparameter, like epsilon in the epsilon-greedy ban-
dit (chapter 3, section 3.1.2). In fact, it serves the same purpose: to quantify the
tradeoff between exploration and exploitation. Finding a good value requires expe-
rience with many optimizations. Unfortunately, there is no straightforward way to
choose it. Fortunately, the overall experimental method seems to be robust to your
choice of it. For now, we’ll stick with k = 1. Several other acquisition functions have
been studied (see the following sidebar). We’re using LCB because it offers a good
balance of simplicity and performance.

Acquisition function forms
There is no ideal acquisition function, only heuristics. Because of that, there are sev-
eral acquisition functions in general use. Two interesting ones are expected improve-
ment and Thompson sampling.

Expected improvement (EI) asks, which parameter would be expected to reduce
the CPU time the most, compared to the so-far-best measured value? EI is conve-
nient because it does not have a metaparameter. This is a commonly used acqui-
sition function.

Thompson sampling takes a novel approach. Instead of looking at the surrogate func-
tion in terms of expectation and uncertainty, it treats it as a distribution of functions.
In other words, the gray area contains many possible realizations of the function CPU
time versus parameter. To design an experiment, you draw a single function from the
distribution and minimize it. The advantage of Thompson sampling is that if you draw
multiple realizations, you get multiple experiment designs. This is helpful if your sys-
tem permits you to take measurements at multiple parameters simultaneously.
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Now that we have the code for the acquisition function, optimization of it is straight-
forward:

i = np.where(lcb == lcb.min())
print (x_hats[i])
[0.11111111]

You can verify by looking at figure 6.17 that parameter 0.11 is the minimum of the black
curve. We’ve now developed the components needed to run a Bayesian optimization:

 Gaussian process regression (section 6.2) for modeling the response surface
 An acquisition function (section 6.3) to balance exploration and exploitation
 A method of optimizing the acquisition function (np.linspace and np.where)

This works fine when optimizing a single parameter but will need a little revising to
extend to all seven JIT parameters. The good news is that only the final point—the
optimization of the acquisition function (AF)—needs to change. We’ll see how in the
next section.

6.4 Optimize all seven compiler parameters
To find the AF-minimizing parameter, we evaluated the surrogate function at 100
parameter values and chose the parameter value where lcb==lcb.min(). This simple
technique works great with only one parameter but generates too many evaluations
for larger numbers of parameters. Let’s see why (hint: it’s the curse of dimensional-
ity again).

 Say we generated 100 values of the first parameter, parameter_1. If we added a sec-
ond parameter, parameter_2, we’d want to know which pair of values parameter_1,
parameter_2 was best. For each of the 100 values of parameter_1, we’d generate 100
values of parameter_2, leading to 100 × 100 = 1002 = 10,000 parameter pairs and, thus,
1002 evaluations of the surrogate function. Extending that reasoning to seven parame-
ters implies we’d need 1007, or 100 million million surrogate evaluations. That’s too
many. There’s a simple and efficient way to find the AF-minimizing parameter.

6.4.1 Random search

The simplest way to optimize over multiple parameters without doing impossible
amounts of computation is a technique called random search. Random search first eval-
uates some random set of seven parameters—call it the “current parameter vector.”
Then it does the following:

1 Generates a new parameter vector by adding a small random number to each
element of the vector to create a new parameter vector.

2 Evaluates the new parameter vector.
3 If the new parameter vector has a lower LCB than the current one, it makes the

new parameter vector the current parameter vector; otherwise, the current vec-
tor stays current.
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The following listing shows the code.

def evaluate(gpr, x):
    x = np.mod(x, 1)    
    y, sigma_y = gpr.estimate(x)    
    lcb = y - sigma_y    
    return x, lcb
    
def random_search(gpr, num_parameters, num_iterations=1000):
    step_size = 0.1
    x_current = np.random.normal(size=num_parameters)    
    x_current, lcb_current = evaluate(gpr, x_current)    
    for _ in range(num_iterations):
        x_test = (
            x_current
            + step_size*np.random.normal(size=num_parameters)
        )    
        x_test, lcb_test = evaluate(gpr, x_test)
        if lcb_test < lcb_current:    
            lcb_current = lcb_test   
            x_current = x_test   
    return x_current

After repeating these three steps many times, it halts and returns the current param-
eter vector. Because of step (3), the LCB can only improve or stay the same from
iteration to iteration. Although it’s simple, random search is rather (perhaps sur-
prisingly) effective.

 You can try out random_search() on the single-parameter surrogate we’ve been
studying for the past few sections:

np.random.seed(17)
parameters = [ np.array([0.5]), np.array([0.0]) ]
measurements = [1.52, 1.21]
gpr4 = GPR4(parameters, measurements, sigma=.15)
random_search(gpr4, num_parameters=1)
[0.11096591]

It reports 0.11096591 as the LCB-minimizing parameter, the same value (to three dec-
imal places) we found in section 6.3.1 using np.linspace and np.where. Figure 6.18
plots the variable lcb_current versus the iteration number. The function random_
search() finds the minimizing parameter value in just under 200 iterations. (Okay, so
it’s not better than np.linspace when optimizing one parameter—but for seven
parameters it’s incomprehensibly faster.)

 The final component needed to write a Bayesian optimization routine for the full
seven-parameter JIT optimization problem is random_search(). In the next section,
we’ll use random_search() to design experiments that we’ll run on the JIT simulator.

Listing 6.6 Random search

Ensure the parameter 
values are in [0,1].

Evaluate a 
parameter vector.

Initialize the current 
parameter vector.

Generate
a new, test

vector.
If the test vector 
has better lcb...

...make it the new 
current vector.
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6.4.2 A complete Bayesian optimization

The “inner loop” of a complete Bayesian optimization consists of the design, run, and
analyze steps:

1 Design—Minimize LCB over the surrogate function to find the next parameter
value to measure by random_search().

2 Run—Measure the CPU time using jit_plus_server(), the JIT and web server
simulator.

3 Analyze—Build a surrogate using GPR4.

These steps are depicted in the diagram redisplayed, for reference, in figure 6.19.

Iteration

Figure 6.18 One run of random_search(). The parameter value that minimizes 
lcb_current is found in under 200 iterations.

Measure

Measure CPU time

at parameter

Visualize

response surface
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Find minimum
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Design

Define

initial parameter,

parameter=0.5

CPU time

unchanged

Accept

parameter

CPU time

changed

Figure 6.19 The inner loop of Bayesian optimization—design, run, analyze—is repeated until 
the measured CPU time stops changing.
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Iterations through this inner loop will form the bulk of the work of optimizing the
parameters. The other two stages—defining the initial parameter and accepting the
final one—occur only once. See the following listing for the code.

class BayesianOptimizer:
    def __init__(self, num_parameters):
        self.num_parameters = num_parameters
        self.parameters = []
        self.measurements = []
        self.x0 = np.array([0.5]*num_parameters)    
            
    def ask(self):    
        if len(self.measurements)==0:               
            return self.x0
        return self.new_parameter()
        
    def new_parameter(self):    
        gpr = GPR4(
            self.parameters,
            self.measurements,
            sigma=0.15,
        )
        return random_search(gpr, self.num_parameters)[0]

    def tell(self, parameter, measurement):    
        self.parameters.append(parameter)
        self.measurements.append(measurement)

To make use of BayesianOptimizer, you’d call ask(), then take a measurement, then
call tell(). You’d repeat this process several times:

np.random.seed(7)
bo = BayesianOptimizer(num_parameters=7)
for _ in range(48):
    parameter = bo.ask()
    cpu_time = jit_plus_server(parameter)
    bo.tell(parameter, cpu_time)

You’d stop when the measurements of CPU time stop changing. You could judge
whether they’d stopped changing by monitoring a plot of CPU time versus iteration
through this loop. See figure 6.20.

 You may recall from section 6.1 that a single measurement of the CPU time was
expected to take about an hour. The optimization procedure in figure 6.20, then,
would have taken about 2 days to complete using BayesianOptimizer.

 You just completed the optimization of seven parameters using experiments that
each took an hour to run. All the work of experiment design and analysis was handled
by Bayesian optimization.

Listing 6.7 Bayesian optimizer

Initialize at
the center

parameter. Get the next experiment 
parameter to measure.

Search for the 
LCB-minimizing 
parameter.

Add the latest 
measurement.
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Summary
 Bayesian optimization automates the design and analysis stages of experimental

optimization.
 Gaussian process regression creates a surrogate function that models a response

surface without requiring the engineer to specify the form of the model.
 Bayesian optimization designs experiments by running an optimizer, such as

random search, relieving the engineer of the task of manually choosing param-
eters to measure.

 By optimizing over an acquisition function, you balance exploration (the desire
to collect data to improve the surrogate) with exploitation (the desire to improve
the business metric).
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Figure 6.20 CPU time measured by jit_plus_server() at parameters 
suggested by BayesianOptimizer



Managing
business metrics
Up to this point in the book, we have described experimental methods that you can
use to improve your business metrics. Since the decision to accept or reject a
change to your system ultimately hinges on the values of those metrics, it is worth
spending some time discussing how to define and employ them effectively. This is
the subject of the present chapter.

 Section 7.1 starts us out by contrasting metrics that are directly relevant to a
business with other, more technical metrics. In section 7.2, we’ll see how business
metrics are derived and how they evolve, and we’ll see how metrics have an inher-
ent timescale that affects your ability to measure them. Finally, in section 7.3, we’ll
talk about how to use multiple business metrics to evaluate and experiment.

This chapter covers
 Identifying metrics that directly impact your 

business

 Growing a collection of company-specific 
business metrics

 Engaging stakeholders when developing metrics

 Conducting experiments using multiple metrics
178
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7.1 Focus on the business
We have used the term business metrics many times throughout this book without get-
ting into detail about how they are defined. We’ll do that in this chapter. Most impor-
tantly, the metrics should be directly relevant to your business. This may sound trivial,
so to help make the point clear, let’s contrast business metrics with other metrics that
engineers use. This section warns of a trap for engineers: It is very easy to become
focused on optimizing technical, engineering metrics (prediction quality, goodness-
of-fit, etc.) and lose sight of the business in which you are engaged. Let’s discuss this
problem in the context of you as an engineer at a startup developing a new app-
based product.

7.1.1 Don’t evaluate a model

You are an engineer at a startup company that is developing an app that shows short
videos to users. To survive at this stage, your company needs operating capital,
which it intends to raise from investors. Your company has found that investors are
very interested in how many daily active users (DAU) a product like yours has.
Higher DAU implies a higher probability of investment. It seems like DAU is the
right metric to optimize (at least for now).

 You instrument your system to measure DAU. You find that your DAU is not bad,
but it needs to be better for you to persuade investors. Currently, when a user opens
the app, they see the most recently uploaded video. You surmise that if you could
identify which videos a user likes and show those, then the user would be more likely
to use the app again tomorrow, which would increase your DAU.

 How can you tell whether a user likes a video? Well, at any point while the video is
playing, a user can swipe up and the app will switch to the next video. You presume
that if a user is swiping up, they probably aren’t interested in the video. Bingo! You
scan the production logs and see which videos each user swipes up on. You build an
ML model that predicts the probability of an up-swipe, P{swipe}, based on features of
the video like the video’s author, the length of the video, and some other summary sta-
tistics you happen to already have computed for each video.

 You now run your first A/B test. In the “B” version, you use your ML model to gen-
erate an estimate of P{swipe} for each video and show the video with the lowest
P{swipe} first, the next-lowest P{swipe} second, and so on. The A/B test is a smash-
ing success. DAU is dramatically better for version B than for version A.

 Inspired by that success, you create more features and improve the model’s predic-
tions. Your measure of prediction quality is out-of-sample cross-entropy (an ML mea-
sure derived from the log data). You run another A/B test. Success. You get some
investment capital, hire a small team of engineers, and task them with improving out-
of-sample cross-entropy as much as possible.

 After a few more rounds of model improvement, you find something surprising—
and disappointing. Even though the cross-entropy keeps improving with each new
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model version, the DAU has improved by less and less (figure 7.1) and, in the last A/B
test, hasn’t improved at all. What happened?

The short answer is that your team was focused on the wrong metric. They were
improving cross-entropy, a generic, technical measure of model quality, rather than
the specific, business metric—DAU. The connection between the two was hypothe-
sized by you at the start, but there was no guarantee of a connection between them.
You can reason this way: there are many possible business metrics (DAU, time
spent/session, number of videos watched/session, etc.), and there are many possible
prediction targets (probability of a swipe, probability of tapping “like,” probability of
sharing a video, etc.). Why should an improvement in predictions of any of those tar-
gets guarantee improvement in any one of the business metrics?

 In practice, your intuition about a correlation between improvements in a certain
model and improvements in a certain business metric might be right (if you are
knowledgeable about the domain), but it’s very hard to guess how strong that correla-
tion will be. There are many aspects of your system that influence the value of a busi-
ness metric—the code, the models, the hardware, the users (each of whom is complex
on their own!), competitors, and so on. You can’t hope to predict, measure, or even
identify every one. Your prediction of P{swipe}—even if very good—is only one deter-
minant of the DAU.

 A useful analogy might be one of optimizing the running time of computer code.
The tried-and-true approach is (1) profile the code to find the “hot spot” (i.e., where
the code spends most of its time), (2) speed up the hot spot, and (3) repeat. If the

Prediction quality

Figure 7.1 As the quality of the predictions, P{swipe}, produced by your ML 
model increases, the DAU increases, too, but at an ever-slower rate.
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speed of the code is analogous to a business metric, then improving the P{swipe}
model is like removing a hot spot: once it’s good enough, it’s no longer the hot spot.
Improving it further doesn’t impact overall performance.

 Also, it is common to find that as a system matures, the correlation decreases—that
is, further improvements in a technical metric like P{swipe} don’t lead to as large
improvements in the business metric (e.g., DAU). Perhaps it’s the case that no matter
how good your predictions are, there will be other limits to users’ behavior. Per-
haps you have an excellent prediction of P{swipe}, but the best video you have has
P{swipe} = 0.75. In other words, just because you can predict whether a user will
watch a video doesn’t mean you’ll have watchable videos in your inventory. Even if you
did, a user might not swipe. They might instead just close the app to go do something
else. There are many factors that affect DAU that are independent of P{swipe} and
cannot be controlled by improving the prediction.

 However, this doesn’t mean that you shouldn’t have built the P{swipe} model. It’s
valuable, but optimizing it shouldn’t have taken the focus away from improving the
DAU. In the next section, we’ll discuss a better approach.

7.1.2 Evaluate the product

We saw how it is easy to have one’s focus drawn to a technical, nonbusiness, metric.
The fix for this is simple to prescribe but requires some diligence to execute: With
each pass through the engineer’s workflow (see chapter 1, figure 1.1, and figure 7.2
here), you must return your attention to the business metric when you run your
experiment, restart and consider all the ways you could improve the business metric,
and choose the most promising thing to work on. It’s what engineers call a context
switch: you need to stop thinking about the last thing you worked on and refocus on
the business needs. 

You might consider predicting targets other than P{swipe}. Maybe you could predict
the probability that the user will click “like” or will share the video. Maybe you could
combine multiple predictions into a single ranking system.

Pass Pass
(1) Implement change

Fail

(2) Evaluate offline

Fail

(3) Measure online

Fail

Accept

Reject

Pass

Fail

(a)
(b)

Figure 7.2 The engineer’s workflow. (a) Return your attention to the business metric when you run an 
experiment, and (b) consider all the ways you could increase the business metric.
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 Maybe users get bored because the lowest-P{swipe} videos are all very similar. For
example, maybe a user opens the app and sees several videos containing guacamole
recipes. Even if the user likes guacamole and wants to make some to have with dinner,
they might not want to watch several videos in a row about it. Maybe you need to find
a way to add variety.

 Maybe users appreciate the good videos only when they can contrast them with
bad ones. (Or, at least, videos of moderate quality. You don’t want to drive users away
with bad videos.) Perhaps you save the very lowest P{swipe} videos to show only occa-
sionally and intermittently.

 There are infinite possible ways to modify your product beyond simply improving
the quality of a prediction. If you take the time to consider the whole product and the
business metric with each pass through your workflow, you may see a steadier improve-
ment over time.

 In this section, the business metric, DAU, was motivated by the demands of
investors. In the next section, we’ll look more deeply into the process of defining
business metrics.

7.2 Define business metrics
Just as DAU was specific to the needs of the startup in the last section, business met-
rics will always be tailored to the business you are in and to the environment in
which you are using the metric. You need to consider the broader goals of the busi-
ness, the current market for your product, and the interests of all stakeholders—
investors, employees, and so on. You should also consider how difficult it will be to
measure the business metric, and this will determine how quickly and reliably you
can improve your system using the experimental optimization methods presented
in this book.

7.2.1 Be specific to your business

Your business is unique. Even if you have competitors, their businesses are only sim-
ilar to yours. They’re not the same. Your uniqueness should be reflected in your
business metrics.

 All short-video social media startups might be interested in higher DAU. After all,
they are each building their product to attract users. But maybe your startup wants to
foster positive interactions between users and so encourages commenting on videos
that users enjoy. A business metric that measures “sentiment and quantity of com-
ments per video” might be appropriate. Another short-video startup—a competitor—
might just want people glued to their phones with their app open, and so it uses “time
spent per day” as a business metric. Yet another competitor might cater to advertisers,
and so it might use ad revenue as a business metric. Whatever your business metric is,
it should measure your business’s goals as specifically as possible.

 To determine these goals, you will need the input of all stakeholders. That includes
(but is not limited to)
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 Investors—Those who want to profit in the long run and (increasingly) might
want to avoid businesses that adversely affect society or the environment.

 Users—Those who want a product that serves them well. That could mean that
the product is easy to use, cheap, conveys status, and so on.

 Your team members—Those who know what kind of objectives are possible to
achieve and know well what problems the system is currently facing.

 Other teams—Those whose work might depend on changes that your team
makes to the system.

 Regulators—Those who represent the public’s interest in safety and the usage of
public resources.

 Advertisers—Those who want users to see and respond to their ads.

Let’s say that your company’s business has matured a bit; DAU is high and stable. You
are now ready to show advertisements. This pleases investors, who see an opportunity
to earn a return on their investments. It also pleases advertisers, because they would
like to sell products to your users. Users aren’t happy about it, though, because they
feel that the ads will detract from the videos and degrade the overall experience. The
team responsible for the design of the app see an ad as a blemish of the thing of
beauty they have created.

 Each of the stakeholders might ideally optimize a different business metric—one
that represents their interests. Your job is to find a metric, or a set of metrics (see sec-
tion 7.3), that offers a good compromise. You might consider, for example, measuring
both ad revenue and DAU. If, in your next A/B test, you can both increase revenue
without decreasing DAU, that might indicate that users aren’t unhappy, and neither
are the advertisers or investors. If the designers can incorporate the ads into the app
to their satisfaction without causing a decrease in DAU or revenue, then perhaps
everyone will be satisfied.

 Notice how the business metric shifted when your company graduated from
“startup” mode and wanted to run ads. This won’t be the last time it changes.

7.2.2 Update business metrics periodically

As your business evolves, so will your business metrics. You should reevaluate your
business metrics periodically and update them to reflect changes in your business.

 Your company changes. Employees turn over. Investors come and go. Users’ tastes
change. Users get older, and their needs change. Societal norms change. The econ-
omy changes. Since stakeholder interests determine your business metrics, your busi-
ness metrics will change as your stakeholders do.

 In the last section, you started showing ads and needed to update your business
metrics correspondingly. Let’s say your app gets very popular, and many people
start paying attention to your business as a result. You find that parents are writing
angry letters and blog posts complaining that their children are spending too
much time on your app. Your app seems addictive. Regulators are calling you, ask-
ing you to defend your business. Advertisers are getting uncomfortable about being
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associated with your app because of the bad press. How can you adapt your app to
help improve the situation? There might be many changes you could make, but
first you need to define the objective of those changes—that is, the business metric.
You could, for instance, measure the amount of time spent per user per session, or
time spent per user per day. When you evaluate an A/B test, you could aim to
decrease these metrics to below some reasonable threshold. By reducing the average
time spent using your app, you might please your stakeholders: advertisers, inves-
tors . . . and society at large.

 It is common to reevaluate business metrics quarterly. All stakeholders within the
company weigh in to decide whether and how to change the metrics.

 When considering a business metric update, in addition to stakeholder input, you
should consider how hard it would be to measure a business metric. The main deter-
minant of difficulty is the metric timescale, which we’ll discuss next.

7.2.3 Business metric timescales

It would be fruitless to choose a business metric that you cannot measure via exper-
iment. While it’s possible that a business metric can be unmeasurable simply because
it’s poorly defined (e.g., “average beauty of the videos,” “average charm of the post-
ers”), more commonly a metric will be more difficult to measure because it takes
longer to measure.

 Recall that when we run an A/B test, we take an aggregate measurement, which
is an average over num_ind individual measurements, given by num_ind >= (2.48 *
sd1_delta / prac_sig)**2 (see chapter 2, section 2.3.2). The key points here are

 The longer it takes to take a single individual measurement, the longer it will
take to run an experiment.

 The larger num_ind is, the longer it will take to run an experiment.
 Num_ind increases with the standard deviation of the individual measurement

(sd1_delta). The “noisier” the individual measurement, the longer the
experiment takes.

 Num_ind increases as prac_sig, the practical significance level, decreases. If you
need to take a more precise measurement, it will take longer.

 These effects are best illustrated with examples.

TIMESCALE FOR AN INDIVIDUAL MEASUREMENT

Individual measurements come in many forms. You might, at a short timescale,
record the latency of a web server’s response, or at a long timescale, record how
many unique users see your app in a month. Table 7.1 shows a variety of business
metrics and their timescales.

 Recall that each of the individual measurements would need to be taken many
times to construct the aggregate measurement needed for an experiment. The met-
rics nearer to the bottom of the table would necessitate long experiments, potentially
impractically long for rapid iteration on a product.
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EFFECT OF NOISE IN THE INDIVIDUAL MEASUREMENT

The number of individual measurements, N, required by an A/B test increases with
the square of sd1_delta. If sd1_delta doubles, N quadruples. Qualitative, we can say
that num_ind is sensitive to the noise level.

 The noise level of an individual measurement depends on many factors. All the fol-
lowing can introduce noise into a measurement:

 Thermal noise (a cold computing device operates more reliably than a warm
one)

 Dependence on network communication
 Dependence on a human being’s actions
 Dependence on financial instrument dynamics

You would expect the noise level of, say, a cold FPGA to be lower than that of a user’s
decision about whether to click on an ad, and it is.

Table 7.1 Various business metrics ordered by timescale

Business Individual measurement Timescale

High-frequency trading 
(HFT)

Time through an FPGA (field-programmable gate 
array; a highly configurable hardware device 
used for some HFT applications)

10s of nanoseconds

HFT Time through a trading engine Microseconds

HFT Time through a trading message processor 10s of microseconds

HFT Long-haul microwave transmission Milliseconds

Web/app product Response time of a web server 10s of milliseconds

Website Page load time Seconds

Advertising CTR 10s of seconds (e.g., from 
time of page load)

HF market-making Holding time of a trade Minutes

Social media Time spent per session 10s of minutes

Social media Time spent per day Hours (no, really: 
http://mng.bz/09e6)

Web/app product Daily active users Day

Trading Daily profit Day

Advertising Purchase of product seen in ad Weeks

Web/app product Monthly active users Month

Web/app product Results of a survey of users Months

http://mng.bz/09e6)
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EFFECT OF THE PRACTICAL SIGNIFICANCE

More precise measurement requirements (i.e., smaller practical significance) will
make for longer experiments. N is sensitive to decreases in PS the same way it is sensi-
tive to increases in sd1_delta.

 You will typically require smaller and smaller PS as your business matures and you
find it harder to find ways to make big improvements to your system. Also, as your
business grows to a large user base, the impact of small changes to metrics like “time
spent on our app” can have a large long-term impact on other metrics like ad revenue.
Therefore, it might be worth taking a precise measurement of “time spent on our
app” and be careful not to inadvertently decrease it.

 You might also find that you require smaller PS values when you face strong com-
petition. In high-frequency trading, for example, very small changes in latency can
translate into large changes in profit as you outrun your competitors. In online adver-
tising, click-through rates are typically measured in single-digit percentages, so even
changes of less than 0.1% could be enough to get a meaningfully better ad response
for your advertisers.

 Now you know how to define a business metric that is specific to your business,
satisfies stakeholders, and is measurable in a reasonable amount of time. Now it’s
time to use your metrics—likely multiple, simultaneously—in experiments. The next
section tells how.

7.3 Trade off multiple business metrics
This book has presented experiments designed to optimize a single business metric.
This is an idealization. In practice, you will need to make tradeoffs between multiple,
competing metrics. This might be to satisfy multiple stakeholders or to address safety
or ethical concerns, or simply because it is difficult to describe your business’s objec-
tive with a single metric. You may even forgo some improvement due to the high cost
of experimentation—some things are better done than perfect. Next we’ll motivate
these tradeoffs and present pragmatic ways to implement them.

7.3.1 Reduce negative side effects

There’s a saying, “Be careful what you wish for because you just might get it.” In engi-
neering terms, optimization of a single, simple metric often causes negative side
effects. Using multiple metrics to evaluate experiments can alleviate these side effects.

 Engineering lore is filled with examples of unexpected behaviors of systems that
have been optimized for a single objective. A paper by J. Lehman et al. (https://
arxiv.org/abs/1803.03453) collects many amusing examples from reinforcement learn-
ing. Here are some more mundane examples.

 In trading, a good first guess at a business metric is “profit”—that is, you should
engineer a trading system to maximize profit. If you pursue this objective, you will
likely (and quickly) find that you are taking on too much risk. So, really, you want to
maximize profit but also minimize risk. If you are trading at high frequency, you

https://arxiv.org/abs/1803.03453
https://arxiv.org/abs/1803.03453
https://arxiv.org/abs/1803.03453
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might also find that if you send orders to an exchange too quickly, they ask you to stop
trading. Thus, orders/second becomes another metric. There are many more metrics
you’d likely want to monitor.

 When you run an ad-serving system, you might start out using revenue as your busi-
ness metric. You are running a business, after all. If you show ads more often, you
might find that revenue increases, at least in the short-term. Over the long-term, users
might dislike using the product because it contains too many ads and spend their time
elsewhere. This would result in lower revenue. Thus, you should also monitor DAU,
or time spent/user/day, or other similar metrics to take care that you’re not annoying
users with your attempts to increase ad revenue.

 If you’re engineering a social media ranking system, you might use “posts
viewed/session” as a business metric. In your attempts to increase that metric, you
might build a complex, difficult-to-interpret ML model to drive the ranking algo-
rithm. What if the model downranks posts about suicide? This might increase “posts
viewed/session” because seeing posts about suicide might be so unpleasant as to
cause users to close the app. A friend who sees the post might reach out to the
poster and offer help. If those posts get downranked, could an opportunity to help a
suicidal person be missed?

 Another good metric for social media is “number of likes/user/day.” If users are
clicking “like” (or “up” or “+” or “heart” etc.) more often, then they must be seeing
more likeable content, right? Maybe. Instead, maybe they are clicking “like” on
posts that shock them or express a strong, emotion-based opinion. Upranking this
kind of content (via an ML model that simply notices what kind of content gets
liked) might increase your business metric—“number of likes/user/day”—but it
could fill your product with anger and outrage, making for a genuinely unpleasant
experience for users. You might also consider metrics such as “interactions with
remote social connections,” “percentage of harsh/profane words in comments,” and
so on.

 In general, increasing any one metric will decrease some other metric. You may
please one stakeholder but displease another. A solution is to measure multiple busi-
ness metrics and use them all for evaluating each experiment. In the next section, we
show how to perform a multiple-metric evaluation in practice.

7.3.2 Evaluate with multiple metrics

At the analysis stage of your experiment, you will have measured multiple metrics.
Now you need to combine them to make a single decision: Accept the new version of
the system (e.g., “B” in an A/B test, or the best parameter set in a Bayesian optimiza-
tion) or reject it and stay with the current version of the system.

 One way to approach this decision is to make one business metric the optimizing
metric and all the others constraining metrics (or “guardrails”). For example, choose
revenue as the optimizing metric and DAU and time spent/day as the constraining
metrics for an ad-server A/B test. If version B has higher revenue than version A but
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does not have lower DAU or time spent/day, then you can accept B. In general, if you
can improve the optimizing metric without disimproving the constraint metrics, then
you should accept the new version of the system.

 An alternative—but difficult-to-use—approach is to combine multiple metrics into
a single ubermetric by making a linear combination, like C1 x revenue + C2 x DAU + C3
x [time spent/day], where C1, C2, and C3 are constants that determine the relative
importance of each of the metrics. It is very hard to figure out good values for the con-
stants. The values will depend on all stakeholders’ opinions and are completely sub-
jective. You need to answer questions like “Is it worth losing 1 user per day if I receive
C1/C2 dollars more per day?” and it just gets harder as you combine more metrics.
Moreover, you are again optimizing a single metric (the ubermetric) and thus are
open to negative side effects.

 Needless to say, I don’t recommend optimizing a linear combination of metrics. In
fact, I don’t really recommend optimizing at all. Instead, specify a threshold for each
metric. For example, you could say that your goal is to increase revenue by $1,000/day
and to get that you’re willing to lose 5m of time spent/day but not willing to lose any
DAU. You specify the decision criteria like this:

 revenue/day >= $1000
 time spent/day >= current value – 5m
 DAU >= current value

Then, if B meets all the criteria, you accept it.
 Notice that you must specify just as many numbers—the three thresholds—as you

did when creating the ubermetric, where you specified C1, C2, and C3. Thresholds are
much easier to specify, however. That’s because each threshold applies to only a single
metric, whereas the C’s compare each metric to all the others. It’s easy to answer a
question about a single metric, like, “Do I want revenue to increase by $1,000/day?” It
is hard to compare metrics. For example, it would be hard to determine how many
dollars/day you’d pay to gain 1 DAU plus 30s of time spent/day.

 Finally, thresholds let you know when you’re done. If, for example, you’ve found a
version of the system that improves revenue/day by $1,000, you can stop this task and
spend your time on something else. If your task was specified as “make revenue/day as
high as possible” (i.e., to optimize), then even when you improved revenue/day by
$1,000, you’d keep working on improving revenue.

 This idea of improving until “good enough” instead of improving until optimal is
called satisficing. The idea behind satisficing is that when you make your decision
(accept/reject B), you’re acknowledging both the value of your business metric and
the cost of measuring it.
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Summary
 Focus on business metrics instead of technical metrics.
 Create bespoke metrics for your business.
 Update your business metrics periodically, accounting for all stakeholders’

interests.
 Define and use multiple business metrics.
 Specify thresholds for all business metrics as criteria to accept a new version of

your system.



Practical considerations
The experimentation methods presented in this book are powerful tools that you
can use to improve your engineered system. They are powerful but not foolproof.
We can make subtle or simple mistakes that can cause these methods to fail.

 This chapter discusses various ways in which your author—and colleagues kind
enough to sit for interviews for this book—has seen these methods fail. You could
read this chapter as a set of warning labels for experimental optimization.

 Section 8.1 shows how the analysis of an experiment can fail if the measure-
ments do not meet the assumptions of the analysis. Perhaps you’ve heard the phrase
“garbage in, garbage out.” This is that. In sections 8.2 and 8.3, we look at early stop-
ping and family-wise error, both sources of increased false positives. Section 8.4

This chapter covers
 Dealing with data that does not match statistical 

assumptions

 Identifying biases that may creep into 
experiments

 Avoiding behaviors that generate false positives

 Replicating experiments to validate that their 
results are robust
190
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discusses common psychological and methodological biases of which you should
beware. Finally, section 8.5 explains how replicating experiments boosts confidence in
their results.

 Experimentation requires nothing if not humility. Chapter 1 (section 1.3.1) pointed
out that most experiments will demonstrate that your new idea isn’t any good. This
chapter tells us that if you’re not careful, your experimental results won’t be any good,
either. Take heart. If you’re aware of these problems and use sound methods to deal
with them, then when you finally put a new idea into production, you will be confi-
dent that it belongs there.

8.1 Violations of statistical assumptions
A common assumption in any statistical procedure is that measurements are indepen-
dent and identically distributed, usually referred to as iid. Indeed, we implicitly
assumed iid when developing the design and analysis stages for A/B testing. A second
assumption, stationarity, is that the process that is generating the measurement does
not change over time. This allows us to claim that the results of the experiment we’re
running right now will be applicable later on. Both of these assumptions—iid and sta-
tionarity—are routinely violated in practice. This section discusses ways to detect and
cope with violations of these assumptions. First, let’s dig into the iid assumption.

8.1.1 Violation of the iid assumption

The design and analysis stages of an A/B test (see chapter 2) rely on an estimate of
the standard error of the aggregate measurement: se_delta = sd/np.sqrt(N), where
sd = np.sqrt(sd_A**2 + sd_B**2) is the (effective) standard deviation of an individ-
ual measurement (and sd_A and sd_B are the standard deviations of the individual
measurements of A and B, respectively).

 They also rely on the z score, z = delta/se_delta, following a normal distribution.
For the estimate of se_delta to be valid and for z to be normal, the individual mea-
surements must be iid. The term iid is two conditions: independent and identically
distributed. We’ll address them separately.

INDEPENDENT

When individual measurements are not independent, our estimate of the standard error
of the aggregate measurement, se_delta, is too small. If we’re unaware of this, then we’ll
overestimate the magnitude of z, because z = delta/se_delta. A larger-magnitude z will
be more likely to cross the threshold for acceptance—z > 1.64—and make us more likely
to accept the B version being tested. Thus, underestimating se_delta leads us to more
often incorrectly accept B versions (i.e., to generate a false positive).

 Let’s see how the SE is too small by looking at the most extreme example of nonin-
dependence. Say you intend to collect some individual measurements, but you inad-
vertently collect the same measurement multiple times. The standard deviation of
these measurements would be zero, thus the standard error of the mean of these mea-
surements would be zero. Put concretely
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ind_meas = np.array([1.5]*10)
print (ind_meas)
print (ind_meas.mean())
print (ind_meas.std())
[1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5]   
1.5
0.0   

How could this happen? Perhaps there was a bug in the measurement code. Alterna-
tively, there could be a flaw in the measurement methodology. Imagine the methodol-
ogy was implemented as “Periodically wake up, pull the latest value (of a
measurement) from a server, and save it to a file.” If the period was small enough that
no new values were yet generated on the server, you could get repeated values, similar
to ind_meas earlier.

 In a less extreme (and, in fact, totally realistic) case, you might see an occasional
run of repeats resulting from sampling too quickly, like

ind_meas = np.array([1.5]*8 + [2.3, 3.1])
print (ind_meas)
print (ind_meas.mean())
print (ind_meas.std() / np.sqrt(10)) 
[1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.3 3.1]    
1.74
0.16    

This time we compute the standard error—ind_meas.std() / np.sqrt(10)—and find
that it’s 0.16. If you were to sample correctly (i.e., only once per independent mea-
surement), you’d collect the values 1.5, 2.3, 3.1, which has a standard error of 0.38,
which is higher than the estimate of 0.16, earlier. The run of 1.5’s is an example of
nonindependence, and it caused the estimate of standard error to be too low.

 Apart from measurement errors, this kind of serial dependence can arise in any mea-
surements due to the dynamics of the system, unrelated to how you take your mea-
surement. For example:

 The cost of executing a trade in a stock market might be correlated to the last
executed trade if customers tend to send batches of similar orders (e.g., “buy
$10,000 of each of these three energy stocks”).

 The click indicator for an ad system might show runs of zeros when recording
the behavior of a user who engages in long sessions (thus seeing many ads) but
is generally disinclined to click on any ads.

 A music streaming service might see runs of “skips” as a user uses the skip but-
ton to search for a song or a run with no skips as a user listens to music while
engaged in another activity.

Whenever you can predict the value of an individual measurement—even partially,
even if they’re not sequential—from other individual measurements, your measure-
ments are not independent.

Collect the same 
value multiple times.

SE is 0.

Shows a run of 
repeats of 1.5

SE is still 
too small.
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 A simple mitigation for serial dependence, which is also called auto-correlation, is to
take measurements less frequently. By doing that you’ll be more likely to avoid collect-
ing the same measurement (or correlated measurements) more than once. For exam-
ple, if it takes 3 seconds for the serial dependence to decay away, you should sample
less often than every 3 seconds. The downside is that you’ll throw away some poten-
tially useful measurements. A more refined approach would be to build a model of
the serial dependence.

 Generally speaking, if your measurements are dependent (i.e., not independent),
you can effectively remove the dependence by building a model of it. That, however, is
beyond the scope of this book. See, for example, Time Series Analysis: Forecasting and
Control (Wiley, 2015) by Box et al.

IDENTICALLY DISTRIBUTED

Two individual measurements are identically distributed if they can be viewed as being
drawn from the same distribution—same shape, same mean, same variance, and so on.
Generally speaking, your individual measurements will not be identically distributed.

 Individual measurements might take different means or variances on different days,
for different users, for different stocks, for different advertisers, and so on. The differ-
ences might be large, or they might be small enough not to matter. Rather than taking a
black-and-white, matters-or-doesn’t-matter approach, you can take an iterative approach.
(This is good advice for experimentation, modeling, and engineering in general.)

 Start out by acting as if your individual measurements are identically distributed.
Then see if you can find cases where that’s untrue. Test hypotheses like

 “The click-through rate is much higher in the evening.”
 “Revenue has higher variance on Saturday mornings.”
 “Trading profit has lower variance for more liquid stocks.”
 “Users from location X click ‘like’ more than users from location Y.”

If a hypothesis proves useful, you can use an experimental design technique called
blocking to account for the effect at measurement time. You can also use ANOVA to
account for the effect at analysis time. It might also be helpful to build a linear model
of all the relevant effects at analysis time. Such methods are beyond the scope of this
book. See, for example, Design and Analysis of Experiments (Springer, 2017) by Dean et. al.

 The iid assumption is a powerful simplifier of experiment design and analysis.
Alas, it is usually violated to some extent. Techniques are available to deal with viola-
tions of this assumption.

8.1.2 Nonstationarity

A stationary system is one whose dynamics do not change over time. When we run an
experiment (e.g., an A/B test or a Bayesian optimization), we implicitly assume sta-
tionarity of our engineered system. It’s what gives us confidence that the result of our
experiment will hold into the future, that the optimal parameters today will be the
optimal parameters tomorrow.
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 In practice, everything’s changing all the time—it’s nonstationary. A trading sys-
tem capitalizes on small predictive correlations, but in the process decreases the mag-
nitude of those same correlations. The more companies that compete, the faster the
correlations decay away.

 An ad-serving system will see new products and services being created and adver-
tised. It will also see users’ tastes and tolerances (e.g., for ad types) change over time.
Additionally, the products on which the ads are being run will deliberately be changed
(through normal engineering) over time.

 Some aspects of most systems change slowly enough that we can capitalize on our
experimental results for some amount of time into the future. Maybe for weeks,
maybe for months, maybe for quarters. It depends on the system and on what you’re
measuring.

 The way engineers cope with these changes is to keep updating. Periodically
update models with recent data (e.g., in a contextual bandit), periodically retune
parameters (e.g., with Bayesian optimization), and continually generate new ideas to
A/B test into the system.

TRANSIENT EFFECTS

It’s possible that the act of starting a new experiment impacts the system in a tempo-
rary way. For example, if you run an A/B test on new feature of your web app, users
might initially be intrigued. Many might try out the new feature. But after a few days,
the novelty wears off and users ignore it. Permanently.

 Remember that we run experiments with the hope that our results will hold in the
future, that if we modify the system to get some benefit (e.g., high revenue), we’ll real-
ize that benefit for some time into the future.

 In the preceding example, any benefit created by the new feature evaporated after
a few days. So how should we interpret the measurements from this experiment? It
would be wise to exclude all individual measurements taken in the first several days.
You’ll still collect the prescribed N individual measurements, but they’ll all be taken
after the first several days—after the transient effect has gone away.

 The violations of statistical assumptions discussed in this section are well known,
and we’ve seen that there are techniques available to cope with them. Because of this,
in practice, any adverse impact (in this author’s experience) seems to be mild. The
next two sections, in contrast, cover what seem to be the worst two offenders in indus-
trial experiments. Learning to avoid them might be the highest value-to-effort-ratio
thing you could learn about experimentation.

8.2 Don’t stop early
Imagine you’re running an A/B test comparing the profit of two versions of a high-
frequency trading strategy. You’ll monitor the aggregate measurements of the profit
of A and B. Likely you’ll have a dashboard showing their current values, along with
their standard errors, the z score, and guardrail metric values. If you see that B is los-
ing a lot of money (compared to A), you’ll probably want to halt the experiment for
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safety reasons. But what if B is only somewhat worse than A? Or maybe it’s better than
A (delta > PS) and the z score is larger than 1.64? Should you stop?

 It’s not unreasonable to answer yes. After all, the conditions for accepting B are
z > 1.64 and delta > PS. The correct answer, however, is no. It is a harmful action that
causes false positives, yet it’s common enough that it has a name: early stopping. 

Sometimes early stopping is referred to as peeking, as in, “Don’t peek at your A/B test
while it’s running.” I prefer not to use that term. It’s fine to monitor your A/B test
while it’s running. It’s preferable, in fact. Monitoring will help you detect severe prob-
lems earlier. It’s just a bad idea to stop the experiment based on the conditions z > 1.64
and delta > PS.

 The z score is a function of measurements that have some variation over time. As a
result, the z score has variation. That variation makes it possible for the z score to
cross the threshold 1.64 during the A/B test and then cross back before the A/B test
is done. In such a situation, if you stopped the A/B test when the t statistic crossed the
threshold and accepted the system change, you would have generated a false positive.
Had you waited until the A/B test completed and the z score crossed back to below
1.64, you would have instead rejected version B.

 To see how this could be possible, let’s simulate an A/B test and monitor the z
score using the code in the following listing. For simplicity, we’ll ignore the condition
delta > PS in this discussion. Similar reasoning applies to it.

def z_score_vs_n():
    def profit_A():   
        return np.random.uniform(0,1)
    def profit_B():   
        return np.random.uniform(0,1)

    z_scores = []
    ind_measurements_A = []
    ind_measurements_B = []
    for n in range(1, 100):
        ind_measurements_A.append(profit_A())
        ind_measurements_B.append(profit_B())
        a = np.array(ind_measurements_A)

Early stopping is an overloaded term
To avoid any confusion, I’ll point out that the term early stopping is used in two ways:

 It refers to stopping an A/B test early and producing invalid results.
 It also refers to a regularization technique used in fitting neural networks, a

type of machine learning model.

The two ideas are unrelated. The fact that they have the same name is a coincidence.

Listing 8.1 Simulate an A/B test and monitor the z score

Shows the individual 
measurements of profit
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m

        b = np.array(ind_measurements_B)
        delta = b.mean() - a.mean()   
        se_delta = np.sqrt(a.std()**2 + b.std()**2) / np.sqrt(n)
        z_scores.append(delta / se_delta)    
    return np.array(z_scores) 

We’re simulating the individual profit measurements using profit_A() and profit_B().
Versions A and B produce the same profit, so this A/B test would ideally tell us not to
switch from A to B.

 The function z_score_vs_n() calculates the z score after each individual mea-
surement based on all of the individual measurements collected so far. If we were
to monitor this A/B test, we would see progressively computed z scores like those
in figure 8.1.

Notice how the z score rises above the threshold 1.64 when n is approximately in
the range [10,40]. Had we stopped the A/B test early, in response to seeing z > 1.64,
we would have switched to version B, generating a false positive. Had we waited
until the end, we would have correctly rejected B. Figure 8.2 shows another simula-
tion, where early stopping would have caused a false positive at individual measure-
ment 30.

 Early stopping will increase the rate of false positives—dramatically. Intuitively, this
is because the more chances you have to make a mistake, the more likely you are to
make one. In this case, the “mistake” is accepting B when z > 1.64. By allowing your-
self to stop early, you give yourself many chances to make that mistake and generate a

This is the
aggregate

easurement. Calculate the z score after 
each ind. measurement.

Individual measurement number (n)

Figure 8.1 The z score of a monitored A/B test. The z score is recomputed at 
each individual measurement, n, from all measurements taken so far.
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false positive. If you wait until the end of the A/B test, however, you only have one
chance to generate a false positive. (Recall that you expect a 5% false-positive rate
even when you wait until the end of the A/B test.)

 Figure 8.3 plots the false-positive rate when running z_score_vs_n() for longer
and longer A/B tests (i.e., larger N). You can imagine that each N corresponds to a dif-
ferent choice of PS. For smaller PS, you’d run a longer A/B test (use larger N).

Individual measurement number (n)

Figure 8.2 Early stopping would generate a false positive at n=30.

Waiting until end

Early stopping
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Figure 8.3 The false-positive rate increases dramatically when we allow early 
stopping. Note that the lower line is around 5% for all N. This is the designed-for 
false positive rate.
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Early stopping is a common mistake. I have witnessed it multiple times. The scenario
is usually like this: A team introduces A/B testing and appreciates having the measure-
ments it produces to make their acceptance decisions. But system changes that need
to be tested queue up, and they want to speed up the testing process. Early stopping
seems like an intuitive solution until one or more performance-reducing changes are
accepted into the system, and people start noticing the dip in business metrics in reg-
ular reports. The resolution is to back out all the suspect changes and start over. Early
stopping results in a lot of wasted time.

 Early stopping is one type of p hacking. If we were to measure, in an A/B test, that
the business metric for version B was better than version A, then p would be the prob-
ability that we got a false positive. It’s just a function of the z score: A higher z score
means a lower p value. When we say, z > 1.64, we’re equivalently saying p < .05. Any-
way, that’s the “p” in the phrase p hacking. The idea is that you’re making a mistake
that causes your result to look statistically significant (z > 1.64) when it isn’t.

 The use of the verb hacking seems to imply some malicious intent, or at least an
experimenter bias. As in, you’re either doing it on purpose or you’re at least happy
about it because you are able to report (albeit incorrectly) more positive results. But,
in practice, p hacking seems (to this author) to mostly be due to the misuse of statisti-
cal methods.

 If early stopping is p hacking in time—choosing a favorable time to stop an exper-
iment and report the results as a “win”—then family-wise error is p hacking in space:
at one point in time, you examine many business metrics to find one that you can
report (albeit incorrectly) as statistically significant. Let’s see how that works.

8.3 Control family-wise error
When you run an A/B test, you’ll typically monitor more metrics than just the one
you’ll use for the final evaluation (see chapter 7, section 7.3.2). If we refer to this col-
lection of metrics as a family, then a family-wise error is when you look over all the met-
rics to find one that has moved in a favorable direction by a statistically significant (z >
1.64) amount. In this section, we’ll understand how family-wise errors increase the
false-positive rate and how to control this kind of error. First, let’s see how looking
across many metrics for a “win”—called cherry-picking—increases the false-positive rate.

8.3.1 Cherry-picking increases the false-positive rate

Imagine you built a fancy new million-parameter neural network predictor to replace
the old predictor in a social media recommender system. You run an A/B test compar-
ing the system running with the old model (A) to the system running with the new
model (B). The system shows to users short textual posts. Users may give the posts a
thumbs-up—or mute the author, or scroll past it quickly, or linger for a while reading
it, or write a comment, or even just close your app. There are many actions a user can
take and, thus, many metrics to monitor and be concerned about.



1998.3 Control family-wise error
 Your team’s main goal for this quarter is to increase the number of thumbs-ups users
give out per day. Therefore, you run an A/B test with “thumbs-ups per user per day” as
the business metric. At the same time, you monitor all the other metrics (muting rate,
linger time, comment rate, etc.) to make sure you don’t adversely affect them.

 When the A/B test is complete, you find that the rate of thumbs-ups has not
changed by a statistically significant amount. However, you notice that one of the
other metrics—comment rate—has increased. You measure its z score as 2.1, which
is greater than the significance threshold of 1.64. Now, even though comment rate
isn’t the focus for this quarter, your team is certainly not unconcerned with it. In some
quarters, it actually is the focus. So, increasing comment rate is a good thing. Maybe
your new model does add some value, even if it’s not the value you’d originally
intended. It would be a shame to throw away all your hard work just because you
didn’t improve the thumbs-up rate. You decide to change the business metric for
your A/B test to “comment rate,” and you recommend that your model be put into
production.

 This is seductive reasoning, but it’s misguided. Here’s why. Let’s say you examine
M metrics for statistical significance (i.e., for z > 1.64). The threshold 1.64 was cho-
sen so that you’d have a 5% false-positive rate—for a single metric. But now you’re
examining M metrics and asking, “Are any of them statistically significant?” Let’s
compute the probability of a false positive with this new question. (Spoiler: It’s a lot
higher than 5%.)

 For simplicity, let’s say all the metric values are independent, and none of them
truly are better for version B than for version A. We know that each one has a proba-
bility of 0.05 of showing a false positive, which equates to a probability of 0.95 of not
showing a false positive. The probability of any one of them showing a false positive is
“1 – probability of none of them showing a false positive”:

To understand this intuitively, imagine rolling a single (six-sided) die, and asking the
probability that you roll a 1. It’s improbable—only 1/6. If rolling a die is analogous
to running an experiment, then rolling a 1 is analogous to getting a false positive
(although 1/6 is larger than 0.05, but let’s not quibble about such details).

 A family-wise comparison, then, is analogous to rolling many dice and asking
whether any one of them comes up 1. That’s highly probable.

 In case that analogy is not intuitive, the probability of any die coming up 1 is
1-5/6)**D, where D is the number of dice, just like p_any. Figure 8.4 shows p_any for
a range of M values.

 You can see in figure 8.4 that when M=1 (i.e., for a single business metric), the
probability of a false positive is p_any = 0.05, as expected. As M increases, however, the
probability of a false positive increases dramatically.
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What’s to be done about this? You can’t avoid looking at other metrics altogether
because you need to be sure you don’t adversely affect them while trying to improve
your main metric. There are two straightforward solutions: (1) Only accept B if your
main metric is improved (according to the usual statistical and practical significance
criteria), or (2) consider multiple metrics using a correctly computed false-positive
rate. The next section shows how.

8.3.2 Control false positives with the Bonferroni correction

If you decide that you’re willing to use your new model if any of M metrics are moved
by a significant (statistical and practical) amount, then you’ll need to modify your
A/B test’s design and analysis to accommodate that. The simplest way to do this is to
use the Bonferroni correction to the false-positive rate.

 In the A/B test design stage, we constrained the false-positive rate to 0.05 by
choosing the threshold 1.64. We found 1.64 by looking up 0.05 in a z-score table.
The Bonferroni correction says to look up 0.05/M instead and use whatever threshold
the table reports. Call it z_table(0.05/M). As M increases, the threshold increases.
Note also that you’ll need to account for the false-negative rate (power analysis) and
compute N for each of the metrics individually. For each metric, i, write

N_i >= ( (z_table(0.05/M) + .84) * sd1_delta_i / PS_i)**2

Note that each metric has its own sd1_delta_i and PS_i. Finally, you should run your
A/B test with the largest N_i.

Figure 8.4 The probability of any one of a family of metrics generating a false 
positive versus the number of metrics, M, in the family
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 At analysis time, you’ll again use the Bonferroni correction, 0.05/M. For each met-
ric, i, you’ll compute the aggregate measurement, delta_i, and a z score, z_i. Then
you’ll check to see whether

z_i > ztable(0.05/M)
delta_i > PS_i

If any of the metrics meets these conditions, you can switch the production system
to version B.

 For more information about the Bonferroni correction, see https://mathworld
.wolfram.com/BonferroniCorrection.html and references therein.

 The Bonferroni correction keeps the false-positive rate for this kind of test—a
family-wise test—under 0.05. Figure 8.5 compares a corrected test to the uncor-
rected test from figure 8.4.

Note that since this correction increases the z score threshold, it increases N, the number
of individual measurements you’ll need to take. The effect is, fortunately, not dramatic
(figure 8.6).

 Figure 8.6 shows that the number of individual measurements increases about two-
fold when the number of metrics increases from M=1 to M=15. The plot assumes, for
simplicity, that all metrics have the same sd1_delta and PS.

 

Family-wise false-positive rate

Family-wise false-positive rate,

with Bonferroni correction

Figure 8.5 The Bonferroni correction controls the false-positive rate when 
comparing across a family of metrics.

https://mathworld.wolfram.com/BonferroniCorrection.html
https://mathworld.wolfram.com/BonferroniCorrection.html
https://mathworld.wolfram.com/BonferroniCorrection.html
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The problems we’ve discussed so far in this chapter have been measurable and fairly
correctable:

 Model any correlations.
 Update your models.
 Drop the transient.
 Don’t stop early.
 Don’t make uncorrected family-wise comparisons.

The next section looks at several biases that affect experiments. We know they’re there;
we can try to account for them, but we can never tell if we’ve made them go away.

8.4 Be aware of common biases
Biases can subtly guide your experiment toward one result or another without you
being aware—even if you carefully design and conduct your experiment. Your best
defense against these insidious troublemakers is to be aware of them and constantly
be on the lookout for them. This section will discuss a few common biases, but many
more (for an ever-expanding list, see catalogofbias.org) are known, and (presumably)
even more are unknown.

 We’ll cover confounder bias, small-sample bias, optimism bias, and experimenter
bias. I’ve chosen to highlight these biases out of the many possible biases because I’ve
witnessed them in action enough to believe that you may, with high probability,
encounter them.

Figure 8.6 As the number of metrics in the family increases, the Bonferroni correction 
causes the number of individual measurements, N, in the A/B test to increase. The 
number N is plotted as relative to the uncorrected (single-metric) case. For M=15 
metrics, about twice as many individual measurements will need to be collected.

http://catalogofbias.org
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8.4.1 Confounder bias

In chapter 2 we emphasized the point that confounders are removed by randomiza-
tion. They are, indeed—assuming you really randomize over them.

 Consider the following: You write some code implementing a version B. In the pro-
cess you do some refactoring of existing code so that the new code cleanly interfaces
with it. When you deploy that code, you’re not just deploying version B. You’re also
deploying the refactored code.

 It might be that your B code is some business logic that picks an ad from your ad
inventory in a way that you think might be better than the existing A code. Let’s say that
it’s not better, but the refactoring you did substantially decreased the time between a
user request and the appearance of the ad. You might measure, in an A/B test, that the
click-through rate on the ad increased significantly and attribute that improvement to
the B code when, in fact, it was due to the speedup caused by the refactor.

 The refactored code was a confounder that biased your result even though you
randomized during the A/B test. The reason the confounder affected your result was
that you were randomizing between the old A code and a new version that was “B +
the refactored code.”

 You could encounter the same problem if you, say, configured B to connect to an
alternate database. You might do this to protect the existing production system from any
risk that B’s database requests might interfere. But then you’d be comparing A to “B +
alternate database.” Examples like this are endless in large, complex engineered systems.

 The mitigation is to simply watch out for confounders like this and keep A and B as
similar as possible. Unfortunately, I can’t tell you how to know for certain that you do
not have such a confounder.

8.4.2 Small-sample bias

Small-sample bias is due to taking a small number of individual measurements. It causes
the error in an aggregate measurement to be larger than you’d like. In that situation,
you’re more likely to incorrectly measure B being better than A or vice versa (i.e., to
get a false positive or false negative).

 We solved this with replication (chapter 2, section 2.2). When we design the A/B
test, we calculate the minimum number of individual measurements, N, we’ll need to
limit the false-positive and false-negative rates to acceptable levels. The catch is there
are different kinds of N. Allow me to explain.

 You might say that each day users open your app and look at content items. It
might be, if your business metric is “items viewed per day” that you calculate N in your
A/B test in terms of the overall number of items served. But maybe, just by chance,
your experiment interacts with only a small number of users. A result for a small num-
ber of users might not apply to the whole user base. Your experiment uses a large N for
items but a “small N for users.”

 Alternatively, say you collect N individual measurements of items. It might be that
some sessions consist of very many item views. If you collect them, then your collection
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of individual measurements could consist of a small number of sessions, even though
it contains a large number of items. Your experiment is now “small N for sessions.” You
could imagine similar problems for other aspects of the system.

 The mitigation is to randomly choose items to measure from all the possibilities
available: across users, sessions, items, and so on. Again, there is no test to validate that
you don’t have this type of small-sample bias.

8.4.3 Optimism bias

“Optimism,” in the sense of optimism bias, refers to a quality of a statistic, not of a
person. Optimism happens whenever you apply a threshold to a statistic that has
some variation.

 Consider the rule that we use when analyzing an A/B test: “Switch to B if delta >=
PS.” Say the measured value, delta, is a distribution with expectation delta_exp and
standard deviation delta_se. With high probability, delta will lie in the interval
[delta_exp – 2*delta_se, delta_exp + 2*delta_se]. That means that values of
delta_exp that may (not “must”) meet the inequality delta >= PS are in the interval
[PS – 2*delta_se, infinity].

 Put another way, the B versions that pass this test don’t all have delta_exp >= PS
because sometimes variation causes you to measure delta higher than delta_exp.
The problem arises when, after the A/B test is done, over the long-term, you measure
delta close to delta_exp, which may be less than PS.

 Put yet another way, some B’s just get lucky and pass your test, but they’ll show
poor performance over the long run.

 This effect is called regression to the mean. For intuition, consider rolling a die as
an analog of an experiment. In this experiment, the value on the die is analogous to
delta. The expected value is delta_exp = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. You set
PS=5.

 You roll a die and get a 5 (i.e., delta = 5), so this die passes your test: delta >= PS.
Then you roll it 100 more times—analogous to putting into production and letting it
run for a long time—and on average you roll about 3.5. Randomness of the rolls means
that sometimes you’ll roll higher than expectation. Independence of the rolls means that
rolling higher now doesn’t mean you’ll roll higher later.

 When you apply a threshold acceptance rule to a noisy measurement, you should
expect your future measurements to be worse, on average, than your thresholded
measurements due to regression to the mean.

 Regression to the mean is commonly reported by teams that use experimental
optimization methods. Note that this effect may be induced by the rule z > 1.64, too,
since z is proportional to delta.

 There is no way to remove this effect. You could, in principle, decrease it by taking
more precise (larger N) aggregate measurements, but that would come at the cost of
running longer experiments.
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8.4.4 Experimenter bias

The final bias we’ll discuss is the experimenter. It’s me. It’s you. It’s your teammate,
your intern, your manager. While we may be aware of good experimental technique,
we are only human. Our biggest flaw is that we want our new idea—our version B—to
go into production. We want our idea to be right. Alas, recall from chapter 1, sec-
tion 1.3.1 that we’re usually wrong. Companies that use A/B tests at large scale consis-
tently report that most A/B tests do not result in a switch to version B. The problem
typically generated by experimenter bias, therefore, is a false positive. An experi-
menter accepts their version B even though it’s not better than A.

 Experimenters may express (or fall victim to?) their bias in many ways. If they are
unaware of the problems presented in this chapter so far, they might

 Underestimate standard errors by using non-iid measurements and generate
a false positive (section 8.1).

 Analyze a transient response and report it as the long-term expectation (sec-
tion 8.1).

 Stop an experiment early because z looks good (section 8.2).
 Hunt around for a metric that makes their version B look good (section 8.3).
 Ignore any of the biases in this section when designing or analyzing their

experiment.

There are two aspects to dealing with experimenter bias. One is combating your own,
by relentlessly trying to prove yourself wrong, being perversely comfortable with usu-
ally being wrong, and cultivating the stubborn optimism required to keep trying.

 The other aspect is dealing with other experimenters’ bias. People don’t like being
wrong. They don’t like when “math” tells them their intuition is wrong. They don’t
like people who tell them that math said that their intuition was wrong. Most people
are not comfortable expecting to be wrong. It’s doesn’t come naturally to anyone.

 So how do you tell someone that their great new idea doesn’t work? You don’t.
Instead, create an experimentation process that everyone has to follow. That way
nothing feels personal, and no one gets assigned the task of “delivering the bad news.”
Also, run the process publicly so that everyone can see that everyone else gets
defeated by the A/B tests at about the same rate.

 In addition, group discussions—also called peer review—of experiment design and
analysis will be very helpful in detecting and excising experimenter bias. It turns out
that people often have an “inverse” bias about other people’s experiments, especially
in competitive environments. That inverse bias helps each person find the flaws in
other people’s experiments.

 So far, this chapter may have felt like a lot of bad news. A Pandora’s chapter. Fortu-
nately, like Pandora’s box, in the end you’ll receive something to combat all the prob-
lems presented so far—independent replication.
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8.5 Replicate to validate results
A common thread in the previous sections of this chapter has been that you can nei-
ther rid your experiments completely of flaws, nor can you often even detect them.
Our recourse is independent replication. We take the results from our experiments,
and we try to reproduce them in later experiments. This chapter discusses a few ways
to implement replication: run an A/B test to validate a more complex experiment,
run a reverse A/B test for a long period of time, and measure the net effect of several
experiments with a holdout test. Let’s talk about validation first.

8.5.1 Validate complex experiments

The idea of running an A/B test after a complex experiment was first discussed in
chapter 4, section 4.1.5, when presenting response surface methodology (RSM). RSM
can take multiple iterations to complete, and each iteration requires multiple steps
(modeling, optimization, recentering). That’s a lot of complexity. The more complex
a procedure is, the more likely an error may creep in. The same applies to a Bayesian
optimization or any other complex experimental procedure you might encounter.

 To reduce errors, you can take the result of your complex procedure, label it “ver-
sion B,” and run an A/B test to compare it to the production version that was running
before you started the complex experiment.

 To increase the informativeness of a validation, you might consider running an
experiment under conditions that differ from the ones under which the original
experiment was run. That could mean

 A different set of users (web apps)
 A different set of stocks (trading)
 Different servers, databases, data center, and so on
 After some meaningful amount of time has passed (to address nonstationarity)

Once you’re convinced that your new version B is ready, you can apply it to the entire
production system. Or you could be a little cautious and run a reverse A/B test.

8.5.2 Monitor changes with a reverse A/B test

Experiments have the unfortunate characteristic that they are run in a small period of
time. This is a virtue in that the faster an experiment runs, the less time and risk you
spend on it and the more time you have to experiment on other ideas. The problem is
nonstationarity. The dynamics of your system change over time. You’d like to measure
and capitalize on dynamics effects that last a long time (so you can capitalize on them
for longer). The shorter an experiment is, the less confidence you’ll have that its
result will apply for the long-term.

 One way to deal with this is to run a “reverse A/B test.” In a normal (not reverse) A/B
test, you’ll typically dedicate a small amount of flow—flow could be users, impression,
trades, and so on—to version B. You don’t want to dedicate more than necessary because
of the risk of running new code, so B’s flow is generally small compared to the entire flow.
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 In a reverse A/B test, you scale B up to almost all the flow, but dedicate a little to
the old version, version A. Then you can monitor the difference in business metric
between A and B over a longer period of time—which still capitalizes on the effect you
think B has on the system.

 The reverse A/B will give you confidence that you made the right decision in mov-
ing to B, or, occasionally, it will point out nonstationarity, where B is no longer better
than A, and save you from the negative impact of B. If that occurs, you might consider
designing and running another A/B test—since the small reverse A/B test might not
have the statistical significance you desire—or just reverting to A.

 A reverse A/B test is great, but when you’re running experiments frequently,
the Bs that need to be tracked might pile up, making their reverse A/B tests use up
too much of the flow. In that case you might consider batching results by time (i.e.,
creating a holdout).

8.5.3 Measure quarterly changes with holdouts

When you run experiments at high throughput, you’ll have many results that need to be
monitored over time. Also, your team might be evaluated on a periodic (e.g., quarterly,
yearly) basis. To address both of these needs, you can run a holdout measurement. It will
tell you whether a set of system upgrades (version Bs from multiple experiments) is work-
ing, and it’ll report their net improvement on one or more business metrics.

 To run a holdout, at the beginning of a quarter (or other evaluation period), make
a snapshot of the system code, and run a small amount of flow through it. As the quar-
ter progresses, run your experiments on the rest of the flow, and deploy good B ver-
sions to all the flow except the holdout. As the quarter progresses—and especially at
the end—you can compare the net effect of deploying all your good B versions to the
A version from the beginning of the quarter. This will give you confidence that your
deployments were good decisions (in aggregate, at least), and yield business metric
improvement values for you to report when evaluating your team’s work.

 Note that a common observation is that the sum of all the measured business met-
ric improvements over the quarter is less than the net improvement measured by the
holdout. This may be due to optimism in the original measurements, nonstationarity,
or other reasons.

8.6 Wrapping up
We’re nearing the end of Experimentation for Engineers. Over the past eight chapters,
we’ve discussed

 The need to measure business metrics
 Experimental methods to measure business metrics
 Tips to integrate experimentation into your organization

Business metric measurements should be the ultimate arbiter of system modification—
not prediction quality, simulations, or domain knowledge. Chapter 1 made the case
for this.
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 The experimental methods presented in chapters 2–6 were ordered to show how
each method is built upon the previous ones. Additionally, they are all explained from
the perspective of experimental optimization. My hope is that by presenting all of
these methods as a single, coherent subject, you will have found it easier to learn them
and will find it easier to apply them (than if you had studied them independently).

 Finally, chapters 7 and 8 connected the methods to the “real world,” where cir-
cumstances are not ideal and where people (not mathematical rules) are making
the decisions.

 I hope you’ve taken as much away from this as I’ve put into it. It’s been my pleasure
writing for you.

Summary
 Verify that the iid and nonstationarity assumptions apply to your measurements.
 Don’t stop early or cherry-pick or you’ll generate many false positives.
 Incomplete randomization may leave confounder bias in your measurements.
 Replicate broadly to remove small-sample bias.
 Expect regression to the mean because of the optimism bias in your decision rule.
 Apply a standardized process, including peer review, to combat experimenter bias.
 Validate experimental results using reverse A/B tests and holdouts.



appendix A
Linear regression

and the normal equations

Linear regression is used in chapter 4 in the RSM analyze stage, as well as in chap-
ter 5 in the contextual bandit’s map from context and action to reward. It appears
in many contexts in experimentation, machine learning, and quantitative trading.
In this appendix, you’ll learn about the core component of the solution to a linear
regression problem, the normal equation. 

A.1 Univariate linear regression
In chapter 4, section 4.1.3 we sought a model that could interpolate a function of
the business metric—which, in chapter 4, was markout_profit(threshold)—
between three measured values of the system’s parameter (which was threshold).
While there are simpler linear algebraic methods tailored to the specific problem
of finding a parabola passing through exactly three points, we used linear regres-
sion because it continues to work as the number of aggregate measurements grows
and the number of system parameters grows.

 Linear regression estimates the weights (i.e., the betas) of a linear model. We
say it fits the model to some measurements. The model we use in chapter 4, section
4.1.2 for 1D RSM is . In this model y varies linearly in each
of β 0, β 1, and β 2. (Linear dependence on the betas gives rise to the name linear
model. It doesn’t matter that there’s an x2 term, which makes y nonlinear in x. Lin-
ear regression means “linear in the betas”.)

 For the moment, though, let’s focus on a simpler model with one beta, called a
univariate model: . We’ll show how to find β, then come back to the more
complex model afterward.
209
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 The first term in the model, , is an estimate of y, and  is the error in the
estimate. We want to choose the value of β that results in the best fit. A fit is consid-
ered better if it has smaller-sized errors. 

 While ε may be positive or negative, and ε = 0 would be ideal, we could say that we
want the size of the errors, |ε |, to be as small as possible. It turns out, for technical rea-
sons, that absolute values are inconvenient to work with, but ε2 is not, so we work with
ε2. We seek the value of β that makes the sum of ε2 as small as possible. Figure A.1
depicts the univariate linear regression problem for five measurements.

Given a set of aggregate measurements indexed by n, yn, each taken at a different
parameter value, xn, and some choice for β, would give an error . If we
took five measurements in an experiment, for example, we could tabulate all the
information as in table A.1.

 In other words, for every measurement n = 1,2,3, . . .  we have a single value of ε,
εn. In the notation of table A.1, the total error over the set of measurements is
defined as . We want to find the value of β that minimizes
E. This value is called the ordinary least squares (OLS) estimate of β. “Squares” because
we’re squaring the ε’s, “least” because we’re going to find the β that minimizes E, and
“ordinary” to differentiate from the many variations of this procedure that have been
invented.

ɛ

x

y
y = ßx

Figure A.1 Depiction of five measurements, filled dots, with values yN taken at 
parameter values xn. A model, , is shown as a dashed line. Each 
measurement’s true value is the y value at its filled dot. The model’s estimate 
of y, given beta , is the point on the dashed line vertically nearest to it. The 
vertical distance is ε, the error.
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The minimization of E can be performed analytically using a little calculus. Just differ-
entiate E with respect to β, and set that expression equal to 0:

This is the normal equation. Equivalently,

or

This is the OLS estimate of β. This result is significant because it can be expressed ana-
lytically. Often, in engineering, parameters for models or systems are found only
approximately, using iterative guess-and-check-style optimization algorithms or labori-
ous experimental methods (e.g., as taught in this book). Linear regression, by con-
trast, is fast and exact. Use it wherever you can! You can experiment with a small data
set in Python:

x = np.array([1, 2, 3, 4])
y = np.array([.5, 1.1, 1.4, 2.1])

The solution for β is written in NumPy as

beta = (x*y).sum() / (x**2).sum()

You may write this more compactly using NumPy’s @ (dot product) notation as

beta = (x@y) / (x@x)

Table A.1 Defining an error term, ε, for each of five measurements given a value for β

Index, n Parameter, x Measurement, y Error, ε

1 x1 y1

2 x2 y2

3 x3 y3

4 x4 y4

5 x5 y5
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Written either way, you should find that beta = 0.51.

A.2 Multivariate linear regression
Finding the βi for the original multivariate (i.e., more than one βi ) model,

, follows a similar path. To make the steps clear and concise,
one typically uses matrix notation. Define a single vector, β, containing all of the βi :

Define a matrix X where each row contains [1, xn, xn
2], where n indexes the measure-

ments:

You should convince yourself that if you multiply Xβ, each row of the resulting column
vector is just β0 + β1 xn + β2 xn

2. With this new notation, the multivariate model may be
written to look very similar to the simpler, single-beta model we just worked with:

However, in this case, X is a matrix and β is a vector.
 The solution—the best-fit value β—is the one that minimizes the error,

, where I’ve created a vector ε, the elements of which are εn , so that
the error may be written compactly as , or E = (y – Xβ)T(y – Xβ) = yTy – yTXβ –
(Xβ)Ty + (Xβ)T(Xβ) = yTy – yTXβ – βTXTy + βTXTXβ.

 Again, differentiate E with respect to β, and set that expression equal to 0 to get
the normal equation:

where the notation ∇bf(b) = [df / db1, df / db2, df / db3, . . .]. Going term by term,

using the identify ∇bATb = A,
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using ∇bbTA = A, and

using ∇bbT AT Ab = 2AT Ab. Putting it all together you get

Whew. If that seems like a lot of notation, rest assured that it’s all there to make the
process of juggling multiple betas and all your measurements tidier. In the end, we get
a nice, compact expression for β:

Please take a moment to convince yourself that if X was just a column vector of xn and
β was a scalar (a number), then this would be exactly the expression , the
solution to the univariate model.

 You can experiment with the multivariate model using a small data set:

x = np.array([1, 2, 3, 4])
y = np.array([.5, 1.1, 1.4, 1])

First construct X:

X = np.array([
  [1, x[0], x[0]**2],
  [1, x[1], x[1]**2],
  [1, x[2], x[2]**2],
  [1, x[3], x[3]**2]
])

Then write the solution for β in NumPy as

beta = np.linalg.inv(X.T @ X) @ (X.T @ y)

You should find that beta = [-0.7 1.43 -0.25].
 An excellent reference for linear regression in the ML context is chapter 3 of

Hastie et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(Springer, 2017). 
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One factor at a time

An enticing approach to optimizing multiple parameters using RSM (see chapter 4,
section 4.2) might be to use the 1D RSM procedure on each parameter in turn.
For example, when optimizing two parameters, threshold and order_size, you
could have first optimized only threshold, frozen its value, and then optimized
only order_size.

 This approach, called one factor at a time (OFAT), can be effective at improving
the business metric of a system. In general, however, optimizing one parameter
(aka, “factor”) at a time will not find the optimal parameter settings. Let’s walk
through an example to see how that can be the case.

 Suppose you have a system with two parameters x0, and x1 (these two parameters
could represent threshold and order_size, for example). You want to find the set-
tings of x0 and x1 that maximize y (the business metric, such as markout_profit).
Also, imagine that you were handed the system already running with the settings
tuned manually by an operator to x0 = –0.4 and x1 = 0.8. Let’s say that at these set-
tings y = 6.84.

 First, you optimize x0 with x1 fixed at x1 = 0.8. Figure B.1(a) depicts the horizon-
tal line along which you run a 1D RSM. Figure B.1(b) shows how y varies with x0. So
y is maximized at , where y* = 4.08. Returning to figure B.1(a), note that
the X marks the value  that is optimal along that line.

 Next, in OFAT style, we’ll fix  and vary just x1 in a 1D RSM; see
figure B.1(c). This 1D RSM finds that y is maximized at , where y = 7.40.
Thus, the OFAT optimization suggests running the system at , ,
and estimates that the business metric will be y = 7.40. This is an improvement over
the original, manually tuned parameters that ran at y = 6.84, but is it optimal?

 Let’s look at the full function y(x0, x1). Figure B.2 shows that OFAT did not find
the optimal settings.
214
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Figure B.1 Optimize a two-parameter system using OFAT. (a) First, optimize over 
x0 at a fixed x1. (b) A 1D RSM chooses x0

* = –0.18, which maximizes y at y = 4.08. 
(c) Next, optimize over x1 at the just-chosen optimum x0 = x0

* = –0.18. (d) (Note 
that the x-axis is now x1.) A 1D RSM chooses x1

* = 0.00, which maximizes y at 
y = 7.40.

Figure B.2 The full function y(x0, x1) reveals that the true maximal y is y** = 10.1, which 
is significantly greater than the value found by OFAT, y* = 7.4. The dark dashed lines 
show where we ran 1D RSM in OFAT—first on the horizonal line, then on the vertical line. 
OFAT suggested using the parameter settings marked with the X, even though the 
optimum is at the circle.
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In a real system, you won’t have access to the full function y(x0, x1), but chapter 4 (spe-
cifically, section 4.2.1) shows how to estimate it with a 2D RSM procedure.

 No discussion of OFAT would be complete without pointing out that in any real,
sufficiently complex system you’ll have many parameters available to set. You generally
won’t be able to optimize all of them at once. Even if you optimize two, or three, or
more parameters, you’ll still be leaving most of the system’s parameters fixed. Maybe
the best you can hope for (typically, in practice) is “a few factors at a time.”
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Gaussian process regression

Gaussian process regression (GPR) is a method of estimating function values
directly from a set of measurements. In the context of Bayesian optimization, we
imagine there exists a true function, business metric versus parameter, from which
we take a few measurements. GPR estimates the value of the business metric at
parameters for which we haven’t taken measurements. It forms these estimates
from the measurements we have already taken.

 Let’s call the parameter x (a vector of all the system parameters) and the busi-
ness metric y (a scalar, a number). Let’s say we’ve already taken N measurements.
We’ll index them by i and call the measurements xi, yi. Note that each xi is a vector.

 Our task is to estimate the business metric at one or more parameter vectors for
which we haven’t taken measurements. Call these parameter vectors  and the
estimates  and say there are M of them.

 GPR is distinctly different from linear regression in that there is no fitting stage.
GPR has no betas to estimate. Instead, it estimates the expectations of  directly
from the yi—as a weighted average of them. GPR goes further than that, though. It
also estimates the covariance matrix of the . The covariance matrix tells us how
uncertain GPR is about its own estimates, . It also tells us how similar any two esti-
mates, say  and , need to be to each other for them to be consistent with the
set of measurements. This measure of similarity makes it so that the GPR estimates
vary smoothly from parameter value to parameter value.

 In what follows, we’ll explain the GPR equations first presented in chapter 6,
section 6.2 and summarized here:
217
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where  is a vector of all .  is a matrix whose i, j-th element is the kernel
function

 and  are similarly defined. The model uncertainties of the  are the
(square roots of) the diagonal entries of S, .

 What makes GPR “Gaussian” is that we model each unmeasured y as a draw from a
Gaussian distribution with mean  and variance . Actually, we go further than
that. We model all N measurements, , and M estimates, , as a single, multivariate,
M + N-dimensional Gaussian distribution, . Treating this all as a single distribu-
tion means that

1 When we make a batch of estimates, , we’ll preserve the property that nearby
(in ) estimates will have similar values.

2 We can state the estimation process as one of computing , or, “What is the
multivariate probability distribution of all of the  given that we know the exact
values of the measurements ?”

Note that a Gaussian distribution is defined completely by its expectation and covari-
ance. For a univariate Gaussian distribution—for a scalar z—we’d write

The probability is proportional to the exponential. If we wanted to compute the con-
stant of proportionality, we could integrate over all values of z and insist that the inte-
gral equal 1 (i.e., the total probability possible is always 1). But we won’t. We don’t
care about the constant here. We just want to know the expectation and variance. For
a multivariate distribution—for a vector z—we write

In the GPR estimation problem, we imagine a distribution over the collection of N + M
dimensions, the y and  together. To make it clear that we’re dealing with two differ-
ent sets of numbers, we’ll write

and
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This is called block matrix form. The vector z comprises two column vectors stacked on
top of each other. The matrix S comprises the four K(·,·) matrices arranged as shown.

 To simplify presentation, we’ll assume the overall expectation is 0 (µ = 0). Finally,
to make this all easier to read (in my opinion), I’m going to define some working
variables:

Then we can write  and . Note that .

 The multivariate probability distribution becomes

and the task of estimation, “find ”, is now “find ”.
 Believe it or not, there’s not much left to do. We need to invert the matrix, S (see

sidebar), multiply out, and collect terms and we’ll find that

Inverting S
The inverse of 

is

Where I is the identity matrix.

This is long and complicated, but at least it’s already known. You can convince your-
self that it’s true by verifying that SS–1 = S–1S = I, which is just the definition of the
matrix inverse.
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Before we decipher this, note that b = y is measured already, so they’re constants. We
said we don’t care about constants because the real information is in the expectation
and covariance, so we can simplify by dropping the second (constant) exponential,

:

This is also the distribution , since the b’s are constant (fixed values), and we’re
only interested in how  varies.

 From the form of the distribution above, we can read off the expectation of a,

and the covariance:

Translating these working variables back into the original ones yields

and

which are the GPR estimation formulae.

(continued)
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Feedback loop caused by refitting on logged samples. If the logged samples are biased, the 
fit will produce a biased model. If the model is biased, the policy will make biased decisions. 
The logs record samples of those biased decisions, and the bias is perpetuated.
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A two-dimensional surrogate function, an interpolation of markout_profit_2D over settings of 
threshold and order_size. The filled dots mark the parameter settings where markout profit 
was measured in the experiment. In this figure, there are many more estimates of markout profit 
(around 20,000 interpolation estimates) than measurements (only nine).
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