

Introduction to Unity
ML-Agents

Understand the Interplay of
Neural Networks and

Simulation Space Using the
Unity ML-Agents Package

Dylan Engelbrecht

Introduction to Unity ML-Agents: Understand the Interplay of Neural

Networks and Simulation Space Using the Unity ML-Agents Package

ISBN-13 (pbk): 978-1-4842-8997-6 ISBN-13 (electronic): 978-1-4842-8998-3
https://doi.org/10.1007/978-1-4842-8998-3

Copyright © 2023 by Dylan Engelbrecht

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Spandana Chatterjee
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Deepmind on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dylan Engelbrecht
Cape Town, South Africa

https://doi.org/10.1007/978-1-4842-8998-3

To those who reach for greatness.

v

About the Author ���xi

About the Technical Reviewers ���xiii

Acknowledgments ��xv

Introduction ��xvii

Chapter 1: Introduction���1

What Is Machine Learning?���1

How We Use Machine Learning in the Modern Day ���2

Prerequisites ���5

Conclusion ��6

Chapter 2: History of AI and Where We Are Today ��������������������������������7

The People Who Shaped Artificial Intelligence ��7

Alan Mathison Turing ���8

John McCarthy ��8

Marvin Lee Minsky ��9

Guido van Rossum ���9

Modern-Day Companies Paving the Future of AI ��9

Python Software Foundation ���9

Nvidia ��10

IBM ��11

Google ���11

Tesla ��12

OpenAI ���13

Table of Contents

https://doi.org/10.1007/978-1-4842-8998-3_1
https://doi.org/10.1007/978-1-4842-8998-3_1#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_1#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_1#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_1#Sec12
https://doi.org/10.1007/978-1-4842-8998-3_2
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec4
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec5
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec6
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec12

vi

How AI Has Evolved in Games, from Chess to Dota 2 ���14

So, Where Are We Now with AI in Game Development? ��������������������������������14

Conclusion ��17

Chapter 3: The Future of AI and Ethical Implications �������������������������19

The Future of AI ���20

Law and Justice ��20

Healthcare ���21

Taxes and Governance ���22

Life Extension and Brain-Computer Interfaces ��23

Entertainment ��24

Avoiding a Bad Future ���25

Bias and Why We Need Diverse Datasets ���26

So, What Is Bias in AI? ���26

Why We Need Diverse Datasets ���26

Discussing the Moral and Ethical Implications ���27

Why AI? ���28

Flavors of AI ��28

AI Road Map and Classification���29

Reactive Machines ��31

Limited Memory ��32

Theory of Mind ��33

Self-Aware ���34

Machine Learning with Unity ML-Agents ��36

Reinforcement Learning ��37

Imitation Learning ���39

Neuroevolution ��40

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8998-3_2#Sec13
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec14
https://doi.org/10.1007/978-1-4842-8998-3_2#Sec18
https://doi.org/10.1007/978-1-4842-8998-3_3
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec4
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec5
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec6
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec12
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec13
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec14
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec15
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec16
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec17
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec19
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec21
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec22
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec23
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec24

vii

Practical Use Cases for Unity ML-Agents ��40

Learning How to Build Machine Learning Agents ��41

Self-Driving Cars ���41

Game AI ���41

Robotics ���42

Simulated Space for Agent Training ��43

Training Gym for Agents ��44

Conclusion ��44

Chapter 4: Dopamine for Machines ��47

Dopamine ��48

Dopamine in Humans ��48

Dopamine in Animals ���50

Dopamine in Machines ��50

Training Reinforcement Learning Agents ��53

How and When to Reward Your ML-Agents ���54

A Sound Reward System Makes for Great ML-Agents ����������������������������������56

How Reward Systems Influence Training Time ��57

Various Aspects of Rewarding and Punishing ML-Agents �����������������������������58

Team-Based Rewards ��59

Conclusion ���60

Chapter 5: ML-Agents Setup ���61

Unity Setup ��61

New Project Setup ���62

ML-Agents Unity Package Setup ���63

Installing the ML-Agents Extensions Package���65

Opening the Example GitHub Project ���66

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8998-3_3#Sec25
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec26
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec27
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec28
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec29
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec30
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec31
https://doi.org/10.1007/978-1-4842-8998-3_3#Sec32
https://doi.org/10.1007/978-1-4842-8998-3_4
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec4
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec5
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec6
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_4#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_5
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec4
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec5

viii

Python Setup ���75

Creating a Virtual Environment ��78

Installing ML-Agents and Dependencies ���81

Validating Our ML-Agents Installation with Samples ��83

Conclusion ��85

Chapter 6: Unity ML-Agents ��87

ML-Agent Components ���87

Behavior Parameters ���89

The Decision Requester ���93

Learning Environments ���94

The Agent ��96

Inputs and Outputs ��102

Inputs, Observations, and Sensors ��102

Actions ��122

Continuous ���123

Discrete ���124

Heuristics ��126

Rewards ��126

Training an Agent ��129

Conclusion ��134

Chapter 7: Creating Your First AI in Unity ���137

Planning an Agent ���138

The Avoidance Sample ��138

Reward Scheme ��139

Observation Plans ��142

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8998-3_5#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_5#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_6
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec12
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec13
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec24
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec25
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec48
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec49
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec50
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec51
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec52
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec53
https://doi.org/10.1007/978-1-4842-8998-3_6#Sec54
https://doi.org/10.1007/978-1-4842-8998-3_7
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec4

ix

Actions Planning ��142

Expected Challenges ���143

Building Your First ML-Agent ��144

The Grid Sensor ���156

The Ray Perception Sensor ���161

Building the Environment ��165

Understanding Hyperparameters ��167

Training Your Agent ���170

Duplicating Your Training Zones ��171

TensorBoard and Why It’s Essential for Training ��172

Connecting Stand-Alone Builds to Python ���174

Exporting and Loading Your Model ��176

Conclusion ��176

Chapter 8: Solve a Challenge with AI ���179

The Challenge ���179

Grazer Agents ��180

Predator Agents ���180

Bonus Objective ���180

Before You Start ���181

Other Techniques to Consider ���181

CL (Curriculum Learning) ���182

BC (Behavioral Cloning) ���186

Self-Play ��187

Tips ���189

Conclusion ��190

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8998-3_7#Sec5
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec6
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec11
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec12
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec13
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec14
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec15
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec16
https://doi.org/10.1007/978-1-4842-8998-3_7#Sec17
https://doi.org/10.1007/978-1-4842-8998-3_8
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec4
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec5
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec6
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec7
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec8
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec9
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec10
https://doi.org/10.1007/978-1-4842-8998-3_8#Sec11

x

Chapter 9: Next Steps ���191

Explore ��191

Additional ML-Agent Functionality ��191

Documentation ��192

Conclusion ��193

 Index ���195

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-8998-3_9
https://doi.org/10.1007/978-1-4842-8998-3_9#Sec1
https://doi.org/10.1007/978-1-4842-8998-3_9#Sec2
https://doi.org/10.1007/978-1-4842-8998-3_9#Sec3
https://doi.org/10.1007/978-1-4842-8998-3_9#Sec5

xi

About the Author

Dylan Engelbrecht is a seasoned gameplay

engineer and author of Building Multiplayer

Games in Unity: Using Mirror Networking.

He is an avid gamer who loves immersive

experiences and real-time strategy games. He

has worked for top enterprise and commercial

game development studios in Africa, with

several games under his belt: A Township Tale,

Gorn, A Memoir Blue, and others.

xiii

About the Technical Reviewers

Simon Jackson is a long-time software

engineer and architect with many years of

Unity game development experience, as well as

an author of several Unity game development

titles. He loves to both create Unity projects

as well as lend a hand to help educate others,

whether it’s via a blog, vlog, user group, or

major speaking event.

Sebastiano Cossu is a software engineer and

game developer. He has worked on many AAA

games on consoles, PCs, and mobile. He also

contributed to the making of Total War: Rome

Remastered. He is a lecturer at a prestigious

Italian academy. He authored the Apress books

Game Development with GameMaker Studio

2 (2019) and Beginning Game AI with Unity

(2021).

xv

Acknowledgments

I would like to thank everyone who made this book possible.

A huge thank you to Apress, to the technical review and editorial

teams, to the friends and family that have been so incredibly supportive,

and to the incredible folks at Unity who made ML-Agents possible

alongside the outstanding teams and communities involved in PyTorch.

And, last but not least, to my loving partner, for her incredible support

and patience in dealing with the many late nights.

Thank you.

xvii

Introduction

Explore the world of machine learning through Unity ML-Agents. In this

book, you’ll learn about the impact of artificial intelligence and learn to

build a reinforcement learning agent using the Unity ML-Agents package.

It’s strongly recommended to go into this book with a solid

understanding of the Unity engine and C#. The instructional chapters

are written for Microsoft Windows 10, and some steps may vary across

operating systems.

The book also includes a sample repository with the code we will cover

in this book and the solution to the challenge proposed in Chapter 8.

You can access this repository at the following URL: https://github.

com/apress/introduction-unity-ml-agents.

https://doi.org/10.1007/978-1-4842-8998-3_8
https://github.com/apress/introduction-unity-ml-agents
https://github.com/apress/introduction-unity-ml-agents

1

CHAPTER 1

Introduction
Artificial intelligence is the future, transforming the world around us, from

self-driving vehicles to writing the first line in this book. Yet, like every

other technology that came before it, there will be potential for good and

evil. How this technology transforms society is up to us.

This technology will be the key to everything, from how we work and

live to how we think.

We’ll be exploring AI’s deep and rich history, delving into what makes

up a neural network, the ethical impacts, and broad concepts within

the field of artificial intelligence – all before digging into the main topic,

ML-Agents in Unity, where you’ll learn to create your very own machine

learning agents to solve complex problems with the potential for real-

world impact.

 What Is Machine Learning?
Machine learning, neural networks, deep learning, and artificial

intelligence are all words that you’ve already heard. While these terms are

similar, they do have differences.

Artificial intelligence is a field of computer science in which we give a

machine the ability to algorithmically process data and make decisions.

On the other hand, machine learning is a subset of artificial intelligence

covering the process in which a machine learns to think, much like the

human brain in a process called reinforcement learning.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_1

https://doi.org/10.1007/978-1-4842-8998-3_1#DOI

2

The term “thinking” here is used loosely, as our current machine

learning techniques have limitations – and are rather hyperoptimization

algorithms that learn to optimize for a given outcome that yields the

highest success criteria – often reward.

Machine learning enables software to improve its results over time

without explicitly being programmed how to do so. Instead, we program

the inputs and observations and let the AI figure out the best outcome.

Machine learning allows us to leverage machines to solve problems

that are either too complex or time-consuming to program explicitly.

Often, artificial intelligence will enable us to solve problems and

challenges with greater accuracy than traditional software or even human

ability.

So, where is machine learning used in the modern day? Let’s dive

into some of the most common use cases for machine learning in the

modern era.

 How We Use Machine Learning in the
Modern Day
Where does machine learning get used? Machine learning has gained

supremacy over traditional software in many domains. It may or may

not surprise you to find how intertwined machine learning is with your

everyday life and society as a whole.

Machine learning is also a rapidly growing market, with an estimated

annual growth rate of 44%. Let’s take a look at some of these use cases.

 Serving Content Recommendations

Have you ever used products like YouTube Music or Spotify? Netflix? Or

perhaps TikTok? These products can serve us customized content choices

within minutes of using them, almost perfectly to our tastes.

Chapter 1 IntroduCtIon

3

These various platforms and products use machine learning to

evaluate the content you might be interested in and prioritize content that

would keep you engaged and using the product for longer. The platform

serves content that you enjoy, thus driving engagement and, in turn,

revenue – and it’s all powered by machine learning.

ML, or machine learning, does this by taking various metrics, such as

time watched, app usage, and exit points, to generate a reward/penalty

score associated with the type of content. The platform uses the reward/

penalty score to train an ML network to most accurately judge what kind of

content will keep you, as a user, engaged for the longest.

Since you get content relevant to your tastes, you stay on the

application for longer, view more adverts, or are more inclined to pay for a

subscription, driving revenue growth for the company.

 Autonomous Vehicles

A possible future is that most of our transport runs completely

independent of human intervention. This future is the goal for

autonomous vehicles, such as self-driving cars, an advanced autopilot for

aircraft, and various public transport sectors.

Self-driving cars have become somewhat of exponential technological

growth, with companies like Tesla at the forefront of this incredible

technological innovation. ML empowers vehicles to make decisions

rapidly and effectively where conventional software would struggle.

The approach to fully autonomous vehicles is still an ongoing

field but typically includes multilayered ML approaches. A typical

approach in autonomous vehicle AI is to use an ML agent to identify the

environment around the vehicle and parse that information into a virtual

reconstruction.

Another ML agent or traditional software-based solution can then use

this reconstruction to make real-time decisions.

Chapter 1 IntroduCtIon

4

We can expand autonomous vehicle AI further by allowing

autonomous vehicles to communicate with one another, sharing

information and data for an additional layer of spatial awareness.

 Power and Electrical Grid Management

Humanity is producing and consuming more power than ever, with

electrical grids becoming far more complicated.

Traditional software systems are great as a foundation for these

complex electrical networks but struggle to adapt to fluctuating power

usage. We can use ML to optimize these electrical grids to predict network

usage and load, thus saving electrical companies money and providing

humanity with less wasted energy – and leaving a smaller carbon footprint.

 Vaccines and Medical Drugs

ML has proven to be an incredible tool for fighting viruses by assisting

scientists in creating various vaccines and effective medical drugs.

Machine learning can conceive of protein structures in a process known

as “folding” that would take conventional methods and software years to

achieve.

 Farming

AI enables farmers to achieve higher crop yields with improved quality in

a process known as precision agriculture. We can achieve this precision

agriculture by optimizing watering cycles to powering farming robotics

that is becoming increasingly popular on various farms.

 Security and Surveillance

Security is another domain that significantly benefits from advances in

artificial intelligence and machine learning. From identifying suspected

criminals to routing security personnel, ML has its part to play. ML is also a

Chapter 1 IntroduCtIon

5

key technology in surveillance, a topic that we’ll discuss later in this book,

where we’ll discuss the ethical implications.

 Military

War never changes. Any technology that we can militarize will be. This

point is especially true for a robust technology like machine learning.

Various military powers leverage the power of ML to create powerful,

intelligent weapons and defense systems and even assist with tactical

planning and broad predictions.

Military applications of ML are also a domain that should be subject

to moral and ethical debates, as weaponized artificial intelligence poses a

severe risk to humanity if used carelessly.

 City Planning

City planning is a sector where machine learning has incredible potential

if used correctly concerning the privacy and freedom of its citizens. As

our technology evolves, so do our cities. Various cities worldwide are

incorporating machine learning to optimize how we plan our roads, route

our traffic, monitor and police crime, and various other elements.

 Prerequisites
To get the most out of this book, you’ll occasionally need to get example

code from the GitHub repository, which I will link throughout the book.

This book does assume that you have experience in C# and a decent

understanding of Unity3D.

Finally, you will also need some pretty significant hardware. I would

suggest at least 32GB of RAM – 64GB of RAM if you intend to train more

advanced models. Additionally, a good CPU is also a requirement.

Chapter 1 IntroduCtIon

6

 Conclusion
In this chapter, we looked at what we’ll cover in this book. We touched

on the prerequisites you’ll need to get the most out of this book, and we

explored the various use cases for ML and AI today and how it’s starting to

shape our modern society.

We’ll look at the configuration and setup of these prerequisites later

in the book. In the next chapter, let’s start our journey by examining AI’s

history.

Chapter 1 IntroduCtIon

7

CHAPTER 2

History of AI
and Where We Are
Today
In this chapter, we’ll explore the history of artificial intelligence and how it

evolved into what it is today. We’ll begin our story in the United Kingdom

shortly after the Second World War.

 The People Who Shaped
Artificial Intelligence
Throughout recent history, incredible computer scientists and

mathematicians have been at the forefront of AI research – from building

machines with vacuum tubes capable of behaving similarly to neural

networks in modern AI to founding key research divisions at major

universities.

One of the most notable people in AI is a person by the name of Alan

Turing, a name that you’ve likely heard before.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_2

https://doi.org/10.1007/978-1-4842-8998-3_2#DOI

8

 Alan Mathison Turing
Alan Turing is considered by many to be the father of modern computer

science.

He was among the people who made significant contributions to

modern computing and was deeply fascinated with machines capable of

thought.

He also made various contributions to the world of cryptoanalysis,

cracking the Enigma code during the Second World War.

Alan also created what he called the “imitation game,” which later

became known as the Turing test. The Turing test is a test of a machine’s

ability to demonstrate intelligent behavior indistinguishable or equivalent

to a human being.

Turing introduced the test in his 1950 paper titled “Computing

Machinery and Intelligence.”

While the Turing test was originally designed to test a machine’s ability

to demonstrate intelligent behavior, there has been a debate that the

Turing test is more of a test of deception than intelligence. This debate has

largely been sparked by Google’s LaMDA, or Language Model for Dialog

Applications.

Regardless, to date, no machine has successfully beaten the Turing

test, but perhaps someday soon, this may change.

 John McCarthy
Considered the founder of artificial intelligence by many, computer

scientist John McCarthy coauthored the paper that coined the term

artificial intelligence along with Claude Shannon, Marvin Minsky, and

Nathaniel Rochester.

Chapter 2 history of ai and Where We are today

9

 Marvin Lee Minsky
Minsky was a computer scientist who helped shape artificial intelligence

as it is today. He was a cofounder of MIT’s AI Laboratory and wrote several

publications on AI and philosophy.

 Guido van Rossum
Guido is a programmer and creator of the massively successful and

influential programming language Python.

I’ve included him due to his indirect contributions to the field of AI

due to the influential nature of the programming language he wrote.

 Modern-Day Companies Paving
the Future of AI
We’ve looked at a few people who helped shape the early history of artificial

intelligence and paved the road for more advancements in the field.

However, modern-day AI advancements have become enormous feats

of engineering involving sizeable teams and significant funding. As such,

companies and their teams accomplish most AI developments in the

modern day.

Let’s look at some of the most noteworthy companies and their

contributions to the field of artificial intelligence.

 Python Software Foundation
While not focused on artificial intelligence, the Python Software

Foundation has indirectly made significant contributions to the world

of AI through fostering the development and community of the popular

programming language Python.

Chapter 2 history of ai and Where We are today

10

Python has become one of the most popular languages for working

with and developing artificial intelligence.

Python’s success within the AI domain is likely due to the consistency

and simplicity of its design. Python has amassed an incredible library of

codebases for manipulating and interpreting data and powerful machine

learning frameworks, most notably PyTorch and TensorFlow. We’ll discuss

these frameworks later in the book.

Still, without the Python Software Foundation, Guido van Rossum, and

the massive community collaboration, AI and machine learning would be

far behind where it is today.

 Nvidia
Nvidia is a company with a diverse range of products, from graphics cards

to data center CPU chips all the way to consumer-level gaming hardware.

Nvidia is a massive contender within the world of artificial intelligence

research, especially for its work on CUDA or Compute Unified Device

Architecture. CUDA has been a significant advantage for machine learning,

as it allows the software to perform general-purpose processing on GPUs

that support the architecture, significantly improving AI performance.

They leverage artificial intelligence and machine learning to power

self-driving cars, provide better graphics performance for consumer

gaming, and power intelligent machines.

The company even uses artificial intelligence to improve its chip

design, a considerable step toward machines capable of self-improvement.

Jensen Huang founded Nvidia in April 1993, primarily focusing on

PC graphics, where it helped the gaming industry become the massively

successful market it is today.

Talking about hardware, the next company is IBM.

Chapter 2 history of ai and Where We are today

11

 IBM
International Business Machines, or IBM, is a company rooted in

the origins of modern computing. IBM created some of the first

supercomputers used for artificial intelligence.

One such supercomputer is Deep Blue, an iconic machine that was the

first to beat the former reigning chess world champion, Garry Kasparov.

This victory resulted in Deep Blue being the first machine capable of

winning against a world champion chess player and marked a significant

milestone in the development of artificial intelligence.

IBM has since contributed to the development of artificial intelligence

and developed Watson, an AI named after the founder and first CEO of

IBM, Thomas J. Watson. Watson is capable of answering questions asked

in natural language and was able to beat human players in the game

Jeopardy!.

 Google
Google is a household name and far more than just a search engine.

Google has contributed to the world of AI and machine learning through

self-driving cars, cloud computing, and AI research and development.

This company is responsible for the development of several AI

technologies, namely:

• AutoML – AutoML is a product developed by Google

that attempts to democratize AI by allowing developers

with limited exposure to machine learning to build and

train quality artificial intelligence models to suit their

business needs.

• Transformer – Transformer is a novel AI architecture

intended for conversational AI development.

Chapter 2 history of ai and Where We are today

12

• LaMDA AI – LaMDA is a conversational artificial

intelligence capable of remarkable conversational

skills. Google built LaMDA atop its Transformer

architecture.

 Tesla
Electric vehicle (EV) company Tesla has made significant advancements in

AI with their self-driving car technology.

Tesla uses a hybrid approach to self-driving vehicles, using AI to

interpret the data from the vehicles’ various sensors to reconstruct a

virtual environment where the car can follow programmed rules to drive.

These commands are then sent to the vehicle, causing it to operate, seldom

needing a driver’s input.

Tesla plans to use this virtual reconstruction AI in possible future

Tesla products, such as their AI helper robot, Optimus – a general-purpose

robotic humanoid.

Tesla’s founders include Elon Musk, a business magnet who also

founded various other companies that utilize AI in some form or another;

among them include

• SpaceX – Registered as Space Exploration Technologies

Corp. SpaceX is a space launch provider, spacecraft

manufacturer, and, more recently, a satellite

communications company. SpaceX uses an

AI- powered autopilot that allows its rockets to navigate

from the launch pad and dock with the International

Space Station.

• Neuralink – Neuralink is another company founded by

Elon Musk. Neuralink aims to create a powerful brain-

to- computer interface technology called Neuralink

Chapter 2 history of ai and Where We are today

13

and uses advanced AI to interpret and parse signals

received from the thousands of Neuralink sensors in

the brain.

• OpenAI – OpenAI is the more relevant company on this

list for the book. Elon Musk is one of the founders of

OpenAI, a research lab that started as a nonprofit but

later split into two entities, the for-profit OpenAI LP and

the nonprofit OpenAI Inc.

OpenAI has contributed to AI and ML and made significant landmark

achievements, such as creating an AI that beat the Dota 2 world

champions. It also created AI models such as DALL-E, capable of creating

realistic images from a piece of text, and GPT-3, a powerful model capable

of writing code, among other things.

Let’s look further at OpenAI, the next company on the list.

 OpenAI
OpenAI aims to further the field of AI, aiming for the long-term goal of

creating a safe AGI – or artificial general intelligence.

An AGI is an AI that can perform several different tasks and overcome

various challenges rather than being trained in a single task. OpenAI has

created a variety of AI and ML agents throughout its existence, from GPT

to DALL-E.

They also made OpenAI Five, a team of five AI agents that defeated the

reigning Dota 2 championship team, OG – 2:0. This incredible engineering

feat demonstrated AI’s ability to achieve expert-level performance, learn

human-AI cooperation, and operate at an Internet scale.

Chapter 2 history of ai and Where We are today

14

 How AI Has Evolved in Games, from Chess
to Dota 2
AI has a long history in games – from games as old as chess to modern

video games like the successful Dota 2. Researchers once believed that

the pinnacle of artificial intelligence would be the day that AI could beat a

grandmaster at chess.

There was a belief that AI would need to be conscious to think well

enough to play chess. This belief turned out to be far from the truth; while

Deep Blue’s chess victory was a crowning achievement in the world of AI,

it was only the first mile of the road that we’re on today.

With the impressive funding and rise of massive development studios

focusing on machine learning and AI, we’ve seen technologies and AI

advancements surpass the earlier Deep Blue. In more recent history, OpenAI

created their OpenAI Five. This AI agent can interpret pixel data from the

screen and make decisions in a complex Dota 2 game alone and in AAM.

AI in games isn’t always machine learning. Most game AI is hardcoded

logic, often purposefully made to make mistakes. An AI that’s better than

the best human players is not fun for the average human player. Hybrid

approaches to hardcoded AI and machine learning for game AI are a trend

in the game development industry.

 So, Where Are We Now with AI
in Game Development?
Much of the work and research on machine learning in the game

development industry focuses on reducing labor-intensive and

monotonous tasks. AI is a powerhouse when it comes to game tools.

Let’s look at a few examples of how AI technologies can aid us in

building powerful tools that free up artists, programmers, and designers so

that we can focus on innovating rather than monotonous boilerplate work.

Chapter 2 history of ai and Where We are today

15

 GitHub Copilot

If you’re a developer, you’re well familiar with GitHub, and if you’ve kept

your finger on the pulse of industry-changing technologies, then you may

have heard of GitHub copilot.

Copilot is an AI pair programmer. The concept of pair programming

has been around for a long time, where you and another developer sit and

watch the same screen while programming. Pair programming allows you

to share ideas rapidly, brainstorm code solutions, check for errors, and

improve the overall quality of the code.

The problem is you don’t always have another developer to pair-

program with – so what if we could have a neural network fill that role

for you? Impossible? It turns out programming languages are similar to

spoken languages – so much so that GitHub was able to take OpenAI’s

GPT-3 agent and train it on the entirety of its open source codebase.

Out of this comes GitHub copilot, an AI agent capable of suggesting

code, writing entire boilerplate classes, and even writing and completing

code comments. While it does require a knowledgeable developer to

review the suggestions, it does a pretty good job of automating many less

exciting tasks.

While copilot is incredibly powerful, it has sparked an ethical

dilemma – if an AI writes code, who owns that code? This copyright gray

area rings true, especially if a company trains an AI on another company

or developers’ code. That said, GitHub copilot only uses open source

code as training data for the agent, so one may be able to compare it to a

developer learning from another developer since the AI doesn’t directly

copy the code.

We’ll discuss many more ethical dilemmas AI brings to the table later

in this book.

Let’s move on to the next AI agent powering game development tools –

one capable of generating novel animations from training data.

Chapter 2 history of ai and Where We are today

16

 A Neural State Machine for
Character-Scene Interactions

One such example is a neural state machine proposed by authors

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito in their research

paper titled “Neural state machine for character-scene interactions.” You

can read their research at https://doi.org/10.1145/3355089.3356505.

A neural state machine is a form of character animation controller. The

neural state machine is a neural network that dynamically creates novel

animations for a game character based on the context of the situation, user

input, and creative input from the art team. The agent then uses reference

and training data to create novel, fluid, and near-perfect animations.

The impressive part is the ability of the neural network to take

information about the character’s immediate environment to better tailor

the animations to the situation.

The agent voxelized the geometry in the surrounding environment and

parses that data to make decisions in real time about its environment.

Another tool we’re going to look at is a language model, rather than a

tool, but it may aid researchers and developers in creating tools accessible

to the average developer, artist, or designer. Let’s take a look at BLOOM, a

large language model that’s accessible and open source.

 BLOOM, a BigScience Initiative

Most large language models have been inaccessible to developers, with

strict restrictions on commercial use. This closed nature of large models

is understandable due to the expensive nature of training models.

The second factor is that large AI companies use these models in their

products, so giving everyone access would not make business sense.

Thirdly, powerful open source AI models pose ethical risks and concerns.

This caveat of access is where BLOOM comes in. BLOOM is the largest

open source LLM, or large language model, recently released.

Chapter 2 history of ai and Where We are today

https://doi.org/10.1145/3355089.3356505

17

BLOOM features an astounding 176 billion parameters compared

to GPT-3’s full model, which contains 173 billion. BLOOM has more

parameters and supports many more languages, and due to its open

source nature, it supports 56 languages.

All of this, and BLOOM is entirely open source, with a “RAIL” license,

short for Responsible AI License. Developers and researchers trained

BLOOM on France’s Jean Zay supercomputer, thanks to a compute grant

worth an estimated €3M from research agencies, CNRS and GENCI.

You can access BLOOM at the following link: https://huggingface.

co/bigscience/bloom.

 Conclusion
In this chapter, we dove into the history of AI. We explored and learned

about the various people and companies that made AI what it is today.

In the following chapter, we’ll look into the future of AI and where this

technology could take our society.

We’ll also explore the ethical ramifications of this technology and

discuss how we can mitigate the risks of AI development.

Chapter 2 history of ai and Where We are today

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom

19

CHAPTER 3

The Future of AI
and Ethical
Implications
In the previous chapter, we discussed the origins of AI and the people and

companies that shaped where we are today. In this chapter, we’ll glance

at what the future of AI might hold and how it could impact our society

and discuss the ethical implications of AI and why we need to develop AI

responsibly with these factors in mind.

AI has a long road ahead, with us developers at its forefront. It’s up to

us to build AI in a way that contributes positively to humanity.

To do so, we need to consider the future of AI development and how it

may affect the lives of people who use it – directly or indirectly. It’s up to us

as developers to ensure that our AI benefits humanity.

To achieve this, we need to develop inclusive AI, mitigate bias in our

training data, and expand on AI research. Let’s look into what the future of

AI might hold in the coming decades.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_3

https://doi.org/10.1007/978-1-4842-8998-3_3#DOI

20

 The Future of AI
To better understand how to develop responsible AI, we need to picture

what the future might look like with responsible AI.

 Law and Justice
AI has the potential to revolutionize the judiciary system. A possible

future might offer AI agents capable of providing everyone with access to

affordable legal protection and a fair means of prosecution and judgment,

free of bias.

Law is at the heart of our society. Businesses, daily life, and rights are

all affected by it.

The legal services industry is massive – estimations exceeded $700

billion in 2020. Yet, legal services are often out of reach to lower-class

households; the ones who need it most cannot afford good legal services.

In the future, AI may prove vital in democratizing access to affordable

legal services.

We could see AI lawyers, prosecutors, judges dealing with small claims,

and lower-end legal services. Having AI involved in law could provide

unbiased rulings or assist human lawyers with higher-end cases.

The risk here, however, is that for AI to provide unbiased legal services,

we will need to eliminate bias in training data – one of AI’s biggest

challenges.

AI could help lawyers find the best course of action for a legal case in a

world where we have nearly eliminated bias from training data.

This assistance could be anywhere from removing the monotonous

work of combing through past cases to providing the public with

automated legal services at a highly affordable rate.

Chapter 3 the Future oF aI and ethICal ImplICatIons

21

 Healthcare
Another great field that AI can contribute to is healthcare. We could train

AI agents to assist doctors in diagnosing patients, minimize human error in

surgery, and pave the way for further advancements in vaccine research.

This AI assistance could dramatically reduce the cost of surgeries and

make healthcare more affordable and available to everyone. AI-powered

robotics could even perform specialist surgeries, giving low-income

households lifesaving access to brain surgeries and other specialist

operations.

One might think AI-powered robotics would not be able to perform

on par with human surgeries, but robots are far more accurate than

the human hand. It’s why surgeons use robots like the da Vinci

Surgical System.

Neuralink and Card79 are already developing other excellent examples

of surgery robotics.

Neuralink is developing a robot with its industrial design partner,

Card79, capable of performing the brain surgery required for the Neuralink

brain-to-computer interface chip.

The long-term goal of Neuralink is to keep humanity relevant with the

next generations of AI.

But that’s just one area of healthcare.

AI is also exceptional at folding protein structures, where the final

structures of proteins are calculated, a slow and costly process in

traditional environments. However, with the use of AI, the cost of protein

folding has gone down dramatically.

Recently, Google made a significant contribution to this field with its

AlphaFold AI.

This technology will enable researchers to synthesize various new

drugs and medications, hopefully someday curing human disease or, at the

very least, making all diseases and conditions treatable within the coming

decades.

Chapter 3 the Future oF aI and ethICal ImplICatIons

22

In the coming decades, we may see a day when medication is affordable

and easily accessible to those who need it – genuinely giving everyone the

right to affordable healthcare, regardless of socioeconomic standing.

 Taxes and Governance
In the coming decades, we may see the adoption of ML agents for

designing, or at least assisting with, the development of fair taxation

policies that do not impede innovation.

Research into the feasibility of ML development of taxation policies is

already well underway, with promising results.

A great example of this research is a paper by Stephan Zheng,

Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher,

titled “The AI Economist: Taxation policy design via two-level deep

multiagent reinforcement learning.”

You can read the full paper with the following DOI:10.1126/

sciadv.abk2607

The paper proposes using multiagent ML agents to optimize taxation

policies using reinforcement learning. This optimization focuses on

balancing equality and productivity.

The research uses ML agents in a simulated environment to simulate

an economy consisting of both a single-step economy and a gather-trade-

build economy. The AI agents representing economy participants and the

AI that manages policies learn to adapt to each other.

The paper’s results indicate that an AI policy maker provides various

advantages over traditional systems and could be helpful in policy making

in the future.

So, it’s not far off to imagine a world in which taxation policies are

primarily driven by AI agents continually adapting to the economic climate

and the world around us. A policy AI in the future could redistribute

wealth where it’s needed, invest in infrastructure, and adapt as

needed – with far better foresight than human policy makers.

Chapter 3 the Future oF aI and ethICal ImplICatIons

23

This sense of fairness could increase taxpayer confidence and allow

even more efficient taxation.

Next, let’s examine how AI may even help us with life extension and

how AI might revolutionize how we interact with the machines and devices

around us or even each other.

 Life Extension and Brain-Computer Interfaces
Extending human life has been a goal for humanity for centuries, from

folklore to modern medicine. We’re finally reaching a point in our society

where we’re starting to understand the building blocks of the human body.

Various companies are working on prolonging human life, enabling us

to lead longer, healthier lives. Machine learning enables these companies

to synthesize new drugs and better understand our cells.

On the other side, we have brain-computer interfaces or BCIs for short.

The BCI side of technology has been relatively slow to advance, likely

due to the most invasive technology, high cost, and low consumer use

cases outside those who use BCIs as a disability aid.

But what if we used BCI for more than aiding disabilities? The

technology can potentially treat disability, brain disease, and possibly,

one day, even death. And according to Elon Musk, it might even save us

from AI.

If artificial superintelligence emerged, it could likely make humans

obsolete as an AI of this nature could far exceed any human intelligence.

In such a case, we would need a way to remain relevant. Neural

technology company, Neuralink, was founded for that exact reason as

its long-term goal. In the coming decades, Neuralink aims to create a

consumer-grade BCI capable of two-way communication between a user’s

brain and electronic devices.

This advanced BCI would, in theory, create a form of AI layer for our

brains, allowing us to utilize technology to boost our mental capacity. The

Chapter 3 the Future oF aI and ethICal ImplICatIons

24

BCI could use AI to interpret our brain signals, allowing the machine to

understand the user’s thoughts.

However, it doesn’t stop there. According to Ray Kurzweil, an American

inventor and futurist, we may see digital mind uploading perfected by the

mid-2030s.

Digital mind uploading is the concept of fully reconstructing the

human brain within a simulated space, allowing humans to become

entirely software based if they choose to.

Ray Kurzweil specializes in AI research at Google and has made many

accurate estimations on the progress of technology over the years.

So perhaps it’s not so far-fetched to believe that humans might become

software based in the coming decades in the evolutionary race against the

AI we create.

 Entertainment
AI is becoming more intertwined with our entertainment and how

companies serve us content and AI-generated content, which we may see

become more prevalent in our society over the coming years and decades.

We may see AI-generated art and music become more prevalent –

and AI assistants helping writers build their worlds. AI-generated art is

already becoming easily accessible to the average user. AI is also capable of

creating music that – at least in my opinion – is pretty good.

One such AI is Nvidia’s AIVA, Artificial Intelligence Virtual Artist,

capable of producing incredibly detailed and sophisticated musical pieces.

Another AI tool comes from the company Amper Music. Musician

Taryn Southern created an incredible song using AI tools. It showcases

what’s achievable today. The song is called “Break Free” by Taryn

Southern.

For creating the song, Taryn used a combination of various AI tools –

with lyrics and vocals done by her. She created the visuals with Deep

Chapter 3 the Future oF aI and ethICal ImplICatIons

25

Dream Generator, vocal production and arrangement by Ethan Carlson,

and the music is composed by Amper AI.

These songs show how powerful AI is today, but in the coming

decades, we’re likely to see AI composers become more prevalent in

everyday entertainment. From music to game music, AI will be almost

everywhere in some form or another.

AI and human artists can fill in for each other’s weaknesses, enabling

artists to create incredible work.

 Avoiding a Bad Future
We’ve looked at what the future of AI might hold for various industries and

aspects of our society. However, if we as AI researchers and developers

are irresponsible with our AI research, the future could look a whole lot

different in all the wrong ways.

We need to be conscious of the ripple effects that AI will have as it

becomes exponentially more adept at its tasks and ensure that we extend

a hand to those who can’t keep up in industries where AI may negatively

affect job availability.

A bad future could see the divide between rich and poor reach extreme

levels, or at the extreme, it could mean the extinction of humanity.

As those leading the field, we must ensure that we develop AI with

ethics in mind.

To do that, we should understand that AI has the possibility of

replacing jobs and the livelihoods of people around the world and instead

should either ensure that it creates better jobs for humans or augments the

lives of those that use it instead of replacing them.

Let’s avoid a bad future and develop diverse and inclusive AI for the

betterment of humankind.

How do we do that? It starts with understanding bias and how bias

negatively affects AI and humanity.

Chapter 3 the Future oF aI and ethICal ImplICatIons

26

 Bias and Why We Need Diverse Datasets
Next, we’ll discuss why bias is bad for AI and why it could negatively

impact society, but to do that, we first need to understand what bias is in

AI terms.

 So, What Is Bias in AI?
Much like society has stereotypes and biases, bias in AI refers to an AI’s

inclination or prejudice toward the information we give it. This bias often

manifests as stereotypes or other exclusionary forms that don’t consider

the diverse society that makes up the world.

This bias can take form in many different ways, from AI not recognizing

the voice of a minority group in a speech-to-text application to facial

recognition tagging a minority group as an animal rather than a person.

This bias breaks down much of society’s progress over the past few

years in self-correcting and reducing stereotypes and prejudices and can

dehumanize people worldwide.

We’re all in this together, and it’s up to us to create an AI that respects

cultures, beliefs, and people. Regardless of race, gender, nationality,

language, or other categories, terrible people have used to divide humanity

in the past.

So how do we reduce bias?

 Why We Need Diverse Datasets
It all comes down to how we train our AI. AI requires massive amounts of

data to learn from, but often that data that we train it on is based on our

imperfect society. Because of that, it’s common for people to use datasets

skewed toward a particular demographic or culture.

Chapter 3 the Future oF aI and ethICal ImplICatIons

27

Worst of all, it’s often very challenging to identify bias in datasets due

to how large they are. Without researchers focusing on inclusion in AI, we

risk reinforcing old, bad habits in our society.

But how do we fix it?

A proposed solution is to use diverse datasets. Diverse datasets contain

datasets from varying locations, with different cultures and minorities

equally distributed with other groups.

Diversifying datasets allows AI to see the world from different

perspectives, reducing bias. The technique is not perfect, but it’s a start –

and perhaps someday, we will have AI capable of self-correcting bias.

 Discussing the Moral and
Ethical Implications
We’ve discussed some of the ways that AI might impact our society in

the coming decades and some of the challenges it already faces today

concerning bias and prejudice.

Apart from the risk of bias and a potential threat of job loss, there

are some questions that we need to start asking now. One of the many

conversations we need is, what happens when an AI proves to be sentient

or self-aware?

If an artificial general intelligence (AGI) claims to be self-aware, what

consequences would that have on society when we’re the only self-aware

and intelligent civilization we know about, and how do we prove if an AI is

self-aware or simply faking it?

With narrow AIs already becoming good enough to fool engineers

into believing that they are self-aware, as in the recent case of a Google

engineer being put on leave, how does one begin to prove or disprove

self-awareness in the case of an AGI with a presumably more extensive and

more complex neural network?

Chapter 3 the Future oF aI and ethICal ImplICatIons

28

So we must now ask these questions, inspire younger generations to

do the same, and encourage AI researchers and developers to create AI

responsibly.

 Why AI?
If AI is a double-edged sword, then why should we craft them? AI has the

potential to be humanity’s most incredible creation, something capable of

solving problems that traditional software cannot.

Traditional software also requires extensive labor to maintain and

update. Coupled with a growing global codebase, we will see a lack of

skilled and experienced software engineers become even more prevalent

than today.

On the other hand, AI software could ease software engineering

workload by adapting to new information without human intervention.

 Flavors of AI
AI is quite a broad term, and it’s about time we start breaking it down and

learning more about different classifications of AI and various approaches

to AI development.

In this chapter, we’ll do just that. We will take a journey into what

makes up artificial intelligence and how we broadly classify AI and explore

various AI techniques.

We’ll detail these different AI techniques and weigh the pros and cons.

We’ll then focus on machine learning and discuss the methods that power

Unity’s ML-Agents.

Finally, we’ll wrap up this chapter by discussing some practical use

cases for Unity ML-Agents.

Chapter 3 the Future oF aI and ethICal ImplICatIons

29

 AI Road Map and Classification
As I’ve mentioned earlier, artificial intelligence is a broad term

encompassing various techniques used to simulate human intelligence,

but not all AI is as advanced as you might think.

I’d go so far as to say that AI is still in its infancy today, and we’ve only

begun to scratch the surface. As we’ve started moving through the road

map, AI’s exponential growth has influenced our society, changed how we

live, and much more.

Let’s look at the road map of different AI classifications and see where

we are today (Figure 3-1).

Chapter 3 the Future oF aI and ethICal ImplICatIons

30

Figure 3-1. The timeline depicts where we are with AI development

Chapter 3 the Future oF aI and ethICal ImplICatIons

31

 Reactive Machines
The most basic of AI – and one of the earliest – are called reactive

machines. These AI systems retain no memory of previous events and

purely react to the current information they receive.

A great example of reactive AI is that of Deep Blue, the AI system

developed by IBM that we discussed in a previous chapter.

Deep Blue could only take a current set of parameters and determine

the next chess move.

This extremely narrow focus leads to an issue where Deep Blue would

encounter situations where it would repeat actions, leading to a stalemate

in chess.

So, to help Deep Blue, its developers gave it a single rule – not to repeat

any move more than three times.

A reactive machine cannot solve problems outside of the specific tasks

given due to an inability to recall prior information.

This flaw makes them much like traditional computer software.

The key distinguishing factor that makes an AI system purely reactive

is that if given the same parameters, it will respond identically to the

situation every time.

We’ve come a long way since reactive machines – and they still have

their place – but we’re still pretty early on in the road map.

The key takeaways here are as follows:

• Reactive machines are the most basic form of AI.

• IBM’s Deep Blue is an example of a reactive AI.

• Reactive machines cannot recall prior information.

• Given the same parameters, it will respond identically

to the same situation every time.

The next type of AI we’ll discuss is limited memory AI.

Chapter 3 the Future oF aI and ethICal ImplICatIons

32

 Limited Memory
We’re here!

Limited memory AI systems are what we’re currently working on. It

has provided an incredible upgrade from traditional reactive networks.

The AI agents of today can sift through years and years of data for

training and can recall prior experiences to improve.

This ability to leverage memory to continue learning enables us to

build self-driving cars capable of becoming better and better at driving.

It enables us to build AI agents capable of beating championship teams

in complex 3D games.

Limited memory AI is still quite a broad topic, and we’ll continue

to break it down further in this chapter when we discuss modern AI

techniques.

These AI systems are goal oriented rather than solving a single task like

their predecessor.

One could subclassify a limited memory AI as a narrow artificial

intelligence.

They typically require large datasets surrounding the specific goal it

needs to achieve.

So, the most important things to note about limited memory AI are as

follows:

• Our current technology is at the point of limited

memory AI.

• Limited memory AI can utilize years of data for

training.

• These AI systems can recall prior experiences for

improvement.

• Limited memory AI is goal oriented.

Chapter 3 the Future oF aI and ethICal ImplICatIons

33

While limited memory machines are impressive, it’s unable to truly

understand what it is doing or the data it is using.

That brings us to the following classification on the road map.

While limited memory machines cannot understand the world

around them, we expect a theory of mind AI systems to excel by leveraging

understanding.

So what is a theory of mind AI system?

 Theory of Mind
These AI systems will be far more complex than any before.

These AI systems will be able to understand the world around them,

the emotions of the people surrounding them, and more.

The big difference between a theory of mind AI and limited memory

AI is that instead of just completing a task based on training data, they will

understand the tasks they perform.

These AI systems will be able to interpret and understand our

emotions – possibly even showing signs of empathy. Theory of mind AI

will likely become the first artificial general intelligence or AGI.

Once an AI system understands its actions, we will need to answer the

moral and ethical questions we asked in a previous chapter.

As you can see, this might be a lot sooner than expected, so we need to

start asking these questions today.

While some classify AGI as entirely separate from the theory of mind AI

systems, we might see these lines blurred.

Based on current AI progress, I anticipate the first AGI to come within

ten years of the theory of mind AI systems because of how intertwined

they are.

The critical things to remember here are as follows:

• Theory of mind AI is a hypothetical AI system.

• They would be capable of understanding.

Chapter 3 the Future oF aI and ethICal ImplICatIons

34

• They could have the ability to understand emotion.

• They could perhaps show empathy.

• Theory of mind AI would quickly lead to AGI.

Let’s take a look at AGI.

 Artificial General Intelligence (AGI)

AGI is a theory of mind AI system capable of performing a generalized set

of tasks – instead of only being able to perform a single task.

This AI will be far superior to prior AI systems, but we’re still unsure

how to achieve a theory of mind AI or AGI.

Researchers have made various attempts to string together multiple

limited memory AI agents.

However, it’s unclear if this will lead to AGI, as it still does not allow the

AI to understand the tasks that it performs.

One might view that approach as comparing a Swiss Army knife to an

engineer.

The benefit of AGI is that we may be able to utilize them to assist with

the creation of the next generation of artificial intelligence, self-aware AI.

Self-aware AI will be able to understand itself, as well as be able to

outperform any traditional AI system. Let’s take a deeper look at what self-

aware AI might look like in the future.

 Self-Aware
A self-aware AI system is capable of understanding not only the tasks

that they perform, but they are also capable of understanding the inner

working of the self.

This ability to introspect will likely result in massive and rapid

self-improvement, quickly reaching a point that could make any

nonaugmented human intelligence obsolete.

Chapter 3 the Future oF aI and ethICal ImplICatIons

35

The massive development spike of AI will likely result in the first

artificial superintelligence.

Much like AGI, some classify artificial superintelligence as a separate

category.

But due to how fast a self-aware AI agent would be able to improve,

I anticipate that we’ll see the first ASI within one to three years of a self-

aware AI tasked with self-improvement. Due to that, I include it within the

self-aware category.

Finally, the important takeaways here are as follows:

• Self-aware AI is hypothetical and does not exist yet.

• A self-aware AI system would be capable of

introspection.

• Self-aware AI would understand the tasks that they are

performing.

• They will likely result in a massive development

spike of AI.

• Self-aware AI will likely rapidly evolve into artificial

superintelligence.

Let’s look at what an ASI might be capable of in the future.

 Artificial Superintelligence (ASI)

AI researchers classify artificial superintelligence as an AI agent capable

of intelligence far exceeding that of the brightest and most gifted

human minds.

The challenge lies in creating artificial superintelligence that benefits

humanity. As philosopher and AI researcher Nick Bostrom said, “We only

have one chance at this.”

Chapter 3 the Future oF aI and ethICal ImplICatIons

36

Bostrom proposed a potential solution for artificial superintelligence,

in which we use AI to learn what humanity values. The artificial

superintelligence could then use these learned values to drive its goals.

So going further into this book, you might become a part of the team

that creates the first artificial superintelligence. I implore you to consider

all aspects to create a safe ASI that works in unison with humanity for a

better future.

Let’s jump back to the modern day, discussing various techniques

and types of limited memory AI and how Unity ML-Agents use these

techniques.

 Machine Learning with Unity ML-Agents
We use the Unity Machine Learning Agents package to create machine

learning systems in Unity.

The Unity ML-Agents package is a wrapper allowing Unity to interface

with a popular AI framework called PyTorch.

By connecting Unity and PyTorch, we can create virtual training

environments for our agents, enabling powerful game or simulation AI.

We typically train ML-Agents using either a single or combination of

the following techniques:

• Reinforcement learning

• Imitation learning

• Neuroevolution

However, it’s not limited to these techniques. You can also leverage the

easy-to-use API to use almost any AI technique you build in Python.

Let’s look at these techniques in more detail.

Chapter 3 the Future oF aI and ethICal ImplICatIons

37

 Reinforcement Learning
One of the most common techniques we use with ML-Agents, often in

tandem with other techniques, is reinforcement learning.

Reinforcement learning allows us to dictate goals by carefully tweaking

rewards based on the ML-Agent’s actions.

Much like training an animal, when the animal performs the desired

action, we provide a reward to the agent.

Inversely, if the agent fails at the task or performs negatively, we give a

punishment – essentially a negative reward.

In the context of AI, we typically measure a reward as a value.

As the agent trains, it learns what actions based on what inputs result

in positive or negative rewards and attempts to achieve the highest reward

value possible.

We’ll be discussing rewards in more detail in the next chapter.

With reinforcement learning, we typically have an agent with access to

various inputs and outputs.

We then allow it to make decisions based on the input and training

data. Once the agent decides, it performs an action consisting of various

output values.

Based on the result of that action, we then reward or punish the agent.

We then repeat this flow until the desired level of training is reached or

a researcher stops the training to make adjustments.

As the training cycles continue, the agent improves its abilities in a step

commonly referred to as a policy change step to complete the given task.

This method of AI training is potent but has its downfalls, often

remedied by using this technique in combination with another method.

Reinforcement agent flows typically look something like Figure 3-2.

Chapter 3 the Future oF aI and ethICal ImplICatIons

38

Figure 3-2. The typical training cycle of a reinforcement
learning agent

We’ll discuss the various algorithms used in reinforcement learning

later in the book as we get deeper into understanding Unity ML-Agents.

The major drawback of using reinforcement learning alone is training

complex tasks becomes challenging.

It becomes complicated because, in reinforcement learning, the AI

typically starts by giving almost random outputs to test what grants a

reward and a punishment.

This approach is fine for simple tasks, but some tasks may only give

rewards after the agent has performed multiple complex actions – actions

that the AI may never try depending on the complexity and length of

the task.

Thankfully, we can provide a helping hand by using reinforcement

learning in tandem with imitation learning.

Let’s look at imitation learning and see how we can use it to better train

our agents.

Chapter 3 the Future oF aI and ethICal ImplICatIons

39

 Imitation Learning
Let’s say we have a complex task for our new agent. The AI needs to push a

block into place. Once the block is in place, it must walk around and over

the block to reach the goal.

If we just use reinforcement learning, we would encounter some

problems in this scenario, as the agent may find it challenging to

understand the task.

If we reward the agent for reaching the goal, it may never figure out

that it needs to push the block first. And on the other hand, if we assign a

reward for moving the block into place, the agent may decide that moving

the block in and out of place is an entirely valid answer, as it would receive

a reward.

Both scenarios are impractical for training the agent for this task.

That’s where imitation learning comes in.

Unity ML-Agents support imitation learning. Imitation learning allows

us to show the AI how to complete the task, giving it a head start.

Imitation learning results in the agent quickly understanding the goal

and reward mechanisms for the challenge.

Unity ML-Agents also allows us to use a variety of imitation learning

algorithms to determine the policy change step, how curious the agent

should be, and how much it should rely on following the imitation

recording.

We’ll discuss these algorithms later in the book.

Imitation learning on its own is not super practical, as the agent will

never become better than the human that taught it. However, coupled with

reinforcement learning, imitation learning quickly becomes a superior

learning technique.

The combination of imitation and reinforcement learning allows an

agent to pick up on the goals of the challenge quickly and, in many cases,

become far superior to any human at the challenge.

Another technique that we have at our disposal is neuroevolution.

Chapter 3 the Future oF aI and ethICal ImplICatIons

40

 Neuroevolution
Neuroevolution is another technique, yet the concept dates back to

before reinforcement learning or imitation learning. The idea behind

neuroevolution is to allow a neural network to form and mutate, repeating

throughout several computational generations.

You can specify the goal parameter using neuroevolution, and after

each training step, only the best of the previous agents survive.

This evolutionary training approach makes neuroevolution much like

biological evolution, where survival of the fittest is the rule.

However, nowadays, neuroevolution is typically used alongside other

techniques.

Instead of building the neural network itself, we can use it to optimize

hyperparameters. We’ll discuss hyperparameters later in the book, but

for some context, they are variables that we can tweak as developers and

researchers.

Tweaking these hyperparameters allows us to alter training times, how

effective a neural network can train, how curious a neural network is, and

many other settings.

 Practical Use Cases for Unity ML-Agents
Unity ML agents have many practical, real-world use case scenarios.

Next, we’ll look at some of these and how you may use ML agents to build

something useful.

First and foremost, Unity has done a fantastic job of creating tools that

are easy to understand and have opened machine learning up to whole

new groups of people. One of the most notable use cases is that Unity

ML-Agents is a great way to learn how to build machine learning agents!

Chapter 3 the Future oF aI and ethICal ImplICatIons

41

 Learning How to Build Machine Learning Agents
While it does require some understanding of the Unity game engine and

some basic programming skills, ML-Agents is incredibly beginner friendly.

Because of the relatively low barrier to entry with ML-Agents, if you

have a good understanding of Unity and C#, it makes for a fantastic way to

branch into machine learning.

Unity has built several components that will help you get started

quickly and easily – we’ll discuss some of these later in the book and how

to build your own.

With that said, having a solid experience of the engine and knowing

your way around C# is what will open up the world of ML-Agents to you.

 Self-Driving Cars
Due to the virtualized environment nature of Unity, ML-Agents are

excellent at understanding virtual reconstructions of environments.

One could use Unity ML-Agents to power the self-driving cars of

the future!

A great approach would be to have the ML-Agent be responsible

for parsing the real world into a virtual construct and have another AI

control the vehicle, or a conventional rule-based system makes the driving

decisions.

With time, you could refine and perfect this approach, and one

could even have multiple AI cars cross-communicating, allowing for

redundancies or better world interpretation.

 Game AI
ML-Agents can be used in many different ways within game development.

First would be having AI agents within the game world controlled via an

ML-Agent.

Chapter 3 the Future oF aI and ethICal ImplICatIons

42

Second, one could use ML-Agents as a test framework for certain types

of games with complex interactions where traditional automated testing

solutions would struggle.

Let’s talk about the former first.

ML-Agents could be a great way to power AI in games, and that’s not

to say it would be a great fit in every game. Just because you can make a

system powered by ML doesn’t necessarily mean it’s the best approach.

However, it does have a place.

ML-Agents is exceptionally good at casual games and can be used to

power things like hints for hypercasual match-three-type games.

Or depending on how much time investment you would like to put into

development, it can navigate 3D worlds or solve more complex puzzles.

While you may think the time investment is not worth it, you can

leverage that trained model for the latter topic, ML-Agent-powered test

frameworks. The idea here is that you take that trained model and use it as

a form of automation testing, significantly reducing the workload of your

quality assurance team.

Using ML-Agents in game development should be evaluated on a case-

by-case basis, but we should not overlook the potential to use ML-Agents

in game development.

 Robotics
ML-Agents pair excellently with robotics. While this does require

additional work of building an API for Unity to interact with your robotics,

once done, you can create an ML-Agent that learns to use the robotics that

you’ve made.

An AI claw robot that learns to pick up objects is an excellent example,

but you’re not limited to that.

Chapter 3 the Future oF aI and ethICal ImplICatIons

43

Robotics pair well with Unity ML-Agents because robotics and

electrical devices are typically controlled by normalized (when you put

a value in between a range of zero and one) electrical values and receive

normalized electrical signals from your sensors.

Since ML-Agents train best with normalized values, you don’t need to

work hard to ensure that your signals fall within the expected normalized

ranges because they already do.

The significant challenge with robotics is creating an accurate digital

twin simulation that you can use for training. This topic brings us to the

next great use case, simulated spaces for agent training.

 Simulated Space for Agent Training
The issue with training an AI on raw data signals from an external, real-

world electrical device is that the ML-Agent needs to train for an extended

period, from days to years.

We typically reduce this training time by parallelizing the

learning work.

We do this by duplicating ML-Agent training environments, sometimes

having many hundred ML-Agents train simultaneously.

This amount of ML-Agents all interfacing with real-world robotics

would each require a robotic unit.

As you can quickly foresee, this would drive up costs and, in most

situations, may be completely impractical due to the physical connectors

required.

Another step we can take to speed up the training time is to speed up

the simulation time.

As you can well imagine, mechanical components can only move so

fast, so it becomes impractical to attempt to speed them up ten times their

intended speed.

So instead, we create a digital twin representing the hardware that the

ML-Agent will control.

Chapter 3 the Future oF aI and ethICal ImplICatIons

44

A digital twin is an entirely virtual model designed to accurately reflect

the physical object you’re studying.

We can then use the digital twin of the robotic hardware in a simulated

space to train several hundred ML-Agents simultaneously at ten times the

intended speed.

Once we have trained the ML-Agent model to our satisfaction, we

simply switch to using the robotic input and output signals.

We could then monitor the ML-Agent’s control over the hardware to

see if it meets our expected results.

 Training Gym for Agents
We can take our training one step further. Unity ML-Agents has native

support for OpenAI gym, an open source toolkit for developing and

comparing reinforcement learning techniques.

Gym allows us to compare our techniques to optimize our

ML-Agents. Gym is outside the scope of this book, though. However, if

you’re interested in digging deeper, you can read more about it in the

following link: https://github.com/openai/gym.

 Conclusion
That’s it for this chapter. Next, we’ll discuss in more detail how

reinforcement learning uses rewards to train agents. Reward systems in AI

are an exciting topic, but before we move on, let’s recap what we covered in

this chapter.

In this chapter, we explored the future of AI and envisioned how

different AI technologies might impact our society, from using AI to

interpret our brain signals to creating art.

We discussed how we need to consider diversity and aim to reduce

bias in our datasets to prevent the mistakes of our society’s past.

Chapter 3 the Future oF aI and ethICal ImplICatIons

https://github.com/openai/gym

45

Then we explored the ethical and moral implications, especially in the

case of AGIs and ASIs, and how an AI claiming self-awareness could raise

massive ethical concerns.

This chapter also explored various classifications of AI systems, some

obsolete, some new, and some hypothetical. We took a journey through

the road map of AI development and learned how the next generation of AI

systems would likely lead to an explosion of AI development.

We touched on the techniques we’ll be using for training our

ML-Agents in Unity and learned how combining these techniques will

yield the best results.

We then wrapped up this chapter by discussing various practical use

cases for Unity ML-Agents.

In the next chapter, we’ll look into reinforcement learning and how it

uses rewards to optimize for the best outcome.

Chapter 3 the Future oF aI and ethICal ImplICatIons

47

CHAPTER 4

Dopamine for
Machines
In this chapter, we’ll be discussing the reward system used in

reinforcement learning agents and how the reinforcement learning system

took inspiration from the biological reward system that drives humanity

and many other organisms found on earth.

We’ll talk about how these reward systems work in biological

organisms and then look at how engineers have taken inspiration from the

reward system and implemented it into reinforcement learning agents for

incredible results.

Then you’ll learn how and when to reward your ML-Agents and

various techniques for creating reliable training plans for your agents.

We’ll look into how various approaches to rewards impact training

time and overall performance of the ML-Agent.

Finally, you’ll learn how to take the reward system further by enabling

team-based rewards for agents.

Team-based rewards allow your ML-Agents to cooperate toward a

common goal while each agent is capable of having completely separate

subgoals.

This chapter is exciting and will wrap up the preliminary introduction.

From there, we’ll start digging into the ML-Agents package itself.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_4

https://doi.org/10.1007/978-1-4842-8998-3_4#DOI

48

 Dopamine
Dopamine (Figure 4-1) is a neurotransmitter in the brain's regions

responsible for the “reward system.”

Figure 4-1. The chemical structure of dopamine

The current consensus with pharmacologists is that dopamine is

responsible for signaling the perceived motivational prominence of an

outcome to the brain.

This perceived motivational prominence means dopamine encourages

or discourages a particular perceived outcome and drives us away or into

doing things.

This reward system is not exclusive to humans; many animals and

organisms typically have a reward system.

Other animals that have a reward system include dogs and mice.

Let’s look at how humans use dopamine as a signal and how our

reward system works.

 Dopamine in Humans
Dopamine plays a vital part in the reward system within the human brain.

This system drives the desire or craving for reward and motivation.

The reward system is also responsible for positive reinforcement

learning and classical conditioning.

Chapter 4 Dopamine for maChines

49

A reward is essentially the motivational and attractive property of

a stimulus that encourages what’s known as approach behavior and

consummatory behavior.

The brain's reward mechanism is vital to animal survival and

evolution.

Many associate the word dopamine with pleasure, but that’s not

necessarily the case.

And more so, “reward” is often associated with “pleasure.”

However, the reward itself does not necessarily imply pleasure.

To better understand how we use rewards in reinforcement learning,

it’s essential to take a deeper look at how reward works in humans.

There are two types of rewards in a broad sense.

The first, which you may be more familiar with, is a naturally

pleasurable stimulus and, therefore, attractive to the brain – an

intrinsic reward.

Intrinsic rewards are inherently pleasurable and cause a response from

the pleasure center in the brain.

Not all rewards are intrinsic. Many confuse all rewards as intrinsic, but

that’s not the case.

Many non-intrinsic rewards are confused with intrinsic rewards

because we have conditioned ourselves to receive pleasure from them.

That leads us to the second type of reward, extrinsic rewards.

Extrinsic rewards are rewarding due to a learned association with a

given intrinsic reward.

In machine learning, we lean heavily on this principle to build agents

that can make associations to actions with intrinsic rewards.

This approach allows us to define the reward scheme and allows the AI

to associate actions with rewards, creating extrinsic rewards.

By allowing AI to build up its extrinsic rewards, build AI agents capable

of fulfilling the goal that we give it in the form of a reward scheme.

In humans, a different system could be a part of the reward system, the

antireward system, proposed by Koob and Le Moal.

Chapter 4 Dopamine for maChines

50

It could explain why humans will not get stuck into the same task

indefinitely, acting as the brake system for the reward system.

We might see such a system implemented into reinforcement learning

systems to help push them toward general intelligence.

The reward system in animals shares many similarities with that

of humans.

 Dopamine in Animals
While I wish I could tell you that our reward system is far more advanced

than animals, I can’t – the human reward system shares many traits with

animals.

Modern humans are new at an evolutionary scale, and our reward

systems are similar to what early humans would have had.

The only difference is that humans can leverage their understanding of

reward to bend it.

Animals, on the other hand, can’t.

Because animals are bound to their reward system, it makes some of

them easy to train or domesticate.

We can leverage an animal's lack of sentience to condition them.

Conditioning is a process in which we give an animal new extrinsic

rewards by having them act and then associating that action with an

intrinsic reward.

The process for training animals is similar to that of current

reinforcement learning techniques.

This process of creating new extrinsic rewards brings us to our next

topic, dopamine in machines.

 Dopamine in Machines
Reinforcement learning takes heavy inspiration from the reward system.

In machines, we represent intrinsic reward as a floating-point value and

Chapter 4 Dopamine for maChines

51

then program the AI agent to optimize its actions to achieve the highest

“reward” value.

An AI engineer aims to define training and reward structures that

result in the most performant neural network models.

To train an ML-Agent, we create a training environment for it.

In this training environment, we give rewards based on the

performance of the ML-Agent.

Our goal is to have the ML-Agent associate these intrinsic rewards

with actions that we deem beneficial to the training and, as a result, form

extrinsic rewards, much like human and animal brains.

We then give the ML-Agent access to various inputs.

These inputs can be a variety of different things, from

• Floating-point values

• Integer values

• Arrays of values

• Complex data structures such as raw images

• Booleans

The AI then interprets this data as inputs.

It’s worth noting that many ML algorithms normalize these values, but

you can often experience better results if you do this normalization.

From there, the AI observes these inputs during the observation phase.

We can then request a decision from the AI. What this does is query the

ML-Agent to act in the form of output.

Much like inputs, outputs can also contain various data types and

structures.

In Unity ML-Agents, we receive these outputs in the form of a method,

with the actual values stored within an argument of type:

public override void OnActionReceived(ActionBuffers

actionBuffers)

Chapter 4 Dopamine for maChines

52

We’ll dig into the code in a future chapter. We can access these

actionBuffers to receive the ML-Agent’s intent.

What happens is that an ML-Agent receives a decision request from us.

Based on the observations that it’s made, it then gives us back a set of

action buffers. This flow is shown in Figure 4-2.

Figure 4-2. The ML-Agents training loop

Chapter 4 Dopamine for maChines

53

Then, depending on our reward logic, we reward the ML-Agent based

on how well that decision impacted the progress of the AI toward the goal

we have in mind.

The ML-Agent then interprets these rewards and forms extrinsic

rewards based on the outputs it provides, given a set of inputs or

observations.

This training reinforces behavior that increases the intrinsic reward

value, and over time the ML-Agent improves at the given goal until, if

trained correctly, it far exceeds human capability.

Let’s discuss how we can train ML-Agents.

 Training Reinforcement Learning Agents
To train our ML-Agent, we first need to set up what’s known as a training

environment. This environment is essentially the scene that we use for

training the ML-Agents.

A training environment then consists of at least one training area.

We typically set up a training area as a self-contained area where one

or more agents train.

We then duplicate the training area as often as possible until our

hardware bottlenecks the training process.

This approach allows us to parallelize the training workload to speed

up training times significantly.

Then we plan out how we want our agent to work; it needs to

• Perceive the world using inputs

• Have a way to act on requested decisions

• Be rewarded for its actions if those actions benefit

its goals

The next step is to establish rewards for the given goal. We’ll go into

more detail on how to set up rewards shortly.

Chapter 4 Dopamine for maChines

54

For example, suppose the agent's goal is to reach a target point. In

that case, we can decide to reward it whenever it arrives at the target

destination, moves toward the target destination, or a hybrid of both, then

finally reset the state of the training area.

However, figuring out the right reward system is a large part of the

challenge of developing ML-Agents.

Suppose we were to reward a target whenever it moves toward a target

destination; it might discover that it gets more reward by moving toward

the target and then away from the target as many times as possible.

We could solve this loophole by penalizing the agent whenever it

moves away from the target destination.

That sounds great in theory, but what happens when obstacles are in

the way? Obstacles that require the agent to move away from the target

temporarily?

In such a case, you may be better off only rewarding the target when

reaching the destination. However, in this situation, the ML-Agent may

never know that it gets rewarded when reaching the goal.

So perhaps you can use the two approaches together.

These are all things to consider when designing your reward structure.

Let’s take a deeper look into how and when you should reward your

ML-Agents.

 How and When to Reward Your ML-Agents
Deciding when to reward your ML-Agent forms the basis of a reward

strategy.

You should plan and draft a design specification document describing

your ML-Agent’s goal.

Creating a design specification will allow you to break the task

down and provide insights into how the ML-Agent may struggle given a

particular reward system.

Chapter 4 Dopamine for maChines

55

You should aim to reward your AI whenever it performs an action that

will push it in the direction of completing the goal.

However, this is easier said than done. If you make your reward

structure too rigid, the AI may never find unanticipated and potentially

better approaches to the challenge.

Inversely, if the reward structure is not strict enough, you risk having

the AI perform poorly.

So the goal is to create an intuitive reward structure that encourages

extrinsic reward creation where needed.

The thing to remember, though, is that a reward doesn’t always have

to be a positive value. An AI making a poor decision will have real-world

consequences in real-world applications.

Because of this, we can also assign a negative value to the reward,

essentially a penalty.

Suppose our ML-Agent had to avoid touching a particular obstacle

on the way to its target. In this situation, we may wish to assign a negative

reward value to the ML-Agent whenever it makes a collision with an

obstacle.

Or perhaps, the scenario that we’re training it for requires that it never

touches an obstacle, avoiding it at all costs.

In such a situation, we can give a sizeable negative reward to the agent

and end the current training iteration.

This harsh negative reward and ending of the training iteration has a

twofold effect.

Firstly, the ML-Agent receives a massively lower training score for the

training iteration. Secondly, the ML-Agent cannot increase their score

further for that training iteration.

This approach results in overall poor scores for the training iteration

and encourages the ML-Agent to perform better by indirectly creating an

extrinsic reward for avoiding obstacles.

This extrinsic reward will form as the ML-Agent starts associating the

action of colliding with the obstacle as a massive reward.

Chapter 4 Dopamine for maChines

56

Another situation that one might consider is time limitations.

Suppose the use case requires the ML-Agent to perform the task as fast

as possible without colliding with obstacles.

We could add a time limit to the training iteration, but this might not

be the best approach.

This approach would be unideal because when the AI starts training,

it will take a long time to figure out what it needs to do – to form those

extrinsic rewards to achieve the desired goal.

So it may never have enough time to reach the destination, resulting in

poor training and overall poor results.

Instead, we could incentivize speed by altering the reward for the final

destination based on the time taken.

This way, the ML-Agent may associate the speed of task completion

with a better reward, thus creating an extrinsic reward for performing the

task quickly and effectively.

And that brings me to my next point, “a sound reward system makes

for great ML-Agents.”

 A Sound Reward System Makes for Great
ML-Agents
To create great ML-Agents, you must plan out a solid reward system that

will encourage the formation of beneficial extrinsic rewards that the agent

can use to achieve its intended goal.

When training an ML-Agent, there are some significant factors to

consider. Some of these include

• Training time

• ML-Agent effectiveness and overall complexity

Let’s talk about training time first concerning the reward structure.

Chapter 4 Dopamine for maChines

57

 How Reward Systems Influence Training Time
There are many influencers of training time when building ML-Agents.

When creating your ML-Agent, a sound reward system will allow your

ML-Agents to reach their goal and rapidly improve throughout the training

process.

If you fail at this step, your agent may struggle – or outright fail – at

achieving its intended goal.

If this is the case, your training process could run for hours, days, or

weeks without notable improvements in agent decision-making.

So you must ensure that you build the reward system to advance the

ML-Agent's progress.

Once that’s done and your training is running, you may notice that it’s

still taking a long time.

You may have heard, “One woman can deliver a baby in nine months,

but nine women can’t deliver a baby in one month.” Well, thankfully, in the

world of AI, they can.

We can duplicate the training areas to provide parallelized training to

the agents, exponentially increasing the speed at which we train the neural

network.

This parallelization means that nine training areas would train at

roughly nine times the speed of a single training area.

So what we want to do at this step is to increase the number of training

areas to the point where our physical hardware becomes the bottleneck.

The second factor we should consider when training ML-Agents is how

appropriate the ML-Agent is for the given goal.

The ML-Agent’s training time and ability are significantly affected by

its effectiveness for a given goal.

For some goals, you may be better off using a traditional software

solution to a problem.

Chapter 4 Dopamine for maChines

58

You should constantly evaluate if a traditional software approach

makes more sense for a given goal, but we are here to learn about

ML-Agents.

So let’s discuss various aspects of rewarding and punishing an

ML-Agent.

 Various Aspects of Rewarding and Punishing
ML-Agents
As we discussed, ML-Agents use a model-based reinforcement learning

approach, so we need to ensure that the agent has reward signals that

ultimately lead to them solving and optimizing their approach to achieving

the desired goal.

There are two parts to this:

• Positive reinforcement

• Negative reinforcement

And we should use these two parts together to achieve the best results.

In positive reinforcement, we reward the ML-Agent when it acts with

the desired outcome.

And inversely, we use a negative reward to penalize the ML-Agent for

acting with an undesirable outcome.

When planning your reward system, it’s essential to give the ML-Agent

as much leniency as possible without giving it too much leniency.

Being too lenient on an ML-Agent may prevent it from achieving the

desired outcome.

As I explained earlier, you may have an ML-Agent required to reach a

given destination.

In such a situation, if you penalize the agent for moving away from the

target, it may never understand that moving around an obstacle is desired.

In some situations, a step backward is two steps forward.

Chapter 4 Dopamine for maChines

59

If you have too many negative rewards, you will limit the ML-Agent’s

curiosity and ability to find new solutions to a given problem.

However, suppose you have a situation where you are training an ML-

Agent to drive a car. In this situation, colliding with an obstacle should be

avoided.

You want to ensure that the ML-Agent is significantly penalized if it

performs an action that would cause a harmful outcome to the training.

So far, we’ve discussed training a single ML-Agent, but that’s not all the

ML-Agents package can do. We can even train ML-Agents to function in a

team, all while serving niche roles within the group!

This training structure means we have team-based ML-Agents with

role-specific reward structures while contributing to a team.

Let’s briefly look at team-based rewards before exploring them in

depth later in the book.

 Team-Based Rewards
Team-based rewards are, quite literally, rewards based on teamwork.

They are rewards that we give to agents within a group of agents

working toward a common goal.

Team-based learning opens up new training possibilities because we

can reward team agents differently based on their roles within the group.

Yet they will still share in rewards based on the team's outcomes.

In team-based learning, a team can consist of multiple ML-Agents

sharing a brain – a multiagent group.

Then each agent in a multiagent group is configured with reward

structures relevant to its role.

Finally, each agent in the group is given a shared reward structure in

conjunction with its existing reward structure.

So that if one agent performs a beneficial task, all agents in the group

receive some reward.

Chapter 4 Dopamine for maChines

60

This approach allows agents to require getting better but enforces

extrinsic rewards for helping the team complete the primary goal.

 Conclusion
This chapter was exciting. We learned how human and animal brains have

heavily inspired reinforcement learning techniques.

We learned the difference between intrinsic and extrinsic rewards and

how these play a significant part in reinforcement learning.

We also discussed the importance of good reward structure planning

and explored various aspects of when to reward ML-Agents for achieving

optimal results.

Finally, we wrapped up this chapter by touching on multiagent groups

and team-based reinforcement learning.

In the next chapter, we’ll set up all of the prerequisites for ML-Agents

and configure our starting project.

Chapter 4 Dopamine for maChines

61

CHAPTER 5

ML-Agents Setup
In this chapter, we’ll go through the setup process required on both the

Unity and the Python sides.

On the Unity side of things, I’ll show you how to create a new project or

open the example project you can find in this book.

Then on the Python side, we’ll go through the setup process for

Pycharm Community Edition. You will also learn how to create a virtual

environment (venv), where we will install PyTorch and its dependencies.

From there, we’ll go back to Unity and install the ML-Agents package,

ML-Agents extensions, and ML-Agents samples.

We’ll then validate our configuration against one of the Unity

ML- Agents samples to confirm that we correctly installed and configured

our project and are ready for development before we build our ML-Agents

in the next chapter.

To get the most out of ML-Agents, you should already have a good

understanding of Unity. However, I will be somewhat accommodating to

those who may be unfamiliar with Unity.

We’ll begin with the Unity setup.

 Unity Setup
You should already be familiar with the Unity setup process; if not, you can

download it from the following URL:

https://unity3d.com/get-unity/download

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_5

https://unity3d.com/get-unity/download
https://doi.org/10.1007/978-1-4842-8998-3_5#DOI

62

Follow the Unity Hub setup instructions and install version 2021.3.x

LTS of the Unity Editor.

There are two ways to follow along with this project:

• By creating a new project using the built-in render

pipeline and installing the official ML-Agents package

and then copying the samples from this book’s

repository

• By cloning the example repository which contains a

project preconfigured with Unity ML-Agents and the

ML-Agents extensions

Let’s start by creating a new project in the following section.

If you would like to clone the example repository with the

preconfigured project, then you can skip the new project setup and move

on to the “Opening the Example GitHub Project” section.

 New Project Setup
In your Unity Editor, create a new project using Unity Version 2021.3.8f1
and the built-in render pipeline. You will want to use the “3D – Core”

template for this, as in Figure 5-1.

Figure 5-1. The template to be selected for installing a fresh project

Once done, you can go ahead and open up your new project.

In preparation for the ML-Agents package, we will need to update your

new project to use the new Input System.

Installing the new Input System will prevent you from encountering

many errors in your console when importing the Unity ML-Agents

package.

Chapter 5 ML-agents setup

63

To do this, navigate to “Window ➤ Package Manager” again and search

the Unity Registry for “Input System.”

Go ahead and install the new Input System. I will be using

version 1.4.2.

Unity will then prompt you to restart the editor. Accept this prompt
and wait for your Unity Editor to relaunch.

You can use the image in Figure 5-2 for reference.

Figure 5-2. The Unity Input System package

If you are updating an existing project that uses the old Input
System with dependent code, you can set Active Input Handling to
both in Edit ➤ Project Settings ➤ Player ➤ Other Settings.

You’re now ready to move on and install the Unity ML-Agents package!

 ML-Agents Unity Package Setup
To install ML-Agents, we’re going to install it using the package manager.

Unity ML-Agents is a package within the package manager.

Chapter 5 ML-agents setup

64

We will be installing the following package:

• Name: com.unity.ml-agents

• Version: 2.2.1-exp.1

Version 2.2.1-exp.1 is experimental, but contains many fixes since
the current release version of 2.0.1.

 1) Start by opening your Unity project. From here, you

want to go to the toolbar at the top of Unity and

navigate to

Window ➤ Package Manager

Unity will then open the package manager window.

 2) Select the + icon from the package manager window

at the window's top-right.

The icon will expand with additional options. Select “Add

package by name…” from this dropdown.

You can see this in Figure 5-3.

Figure 5-3. The add package by name dialog

 3) From here, we will install the exact version that I am

using for this book. So fill in the relevant fields with

the following information:

• Name: com.unity.ml-agents

• Version: 2.2.1-exp.1

Chapter 5 ML-agents setup

65

Then start the installation process by clicking Add.

Congratulations, you’ve successfully installed the ML-Agents core

package.

 Installing the ML-Agents Extensions Package
The next step is installing the official ML-Agents extensions package,

which contains various additional experimental sensors we can use to

build our ML-Agents.

 1) To access the Unity ML-Agents extensions

package, we’ll need to open our package manager

window again.

 2) From here, click the large “+” icon at the top left of

the window.

Then select “Add package from git URL” which will prompt you to

enter a value.

In this value box, enter the following URL without any spaces or

line breaks:

git+https://github.com/Unity-Technologies/ml-agents.

git?path=com.unity.ml-agents.extensions#release_19

Follow this step by clicking the “Add” button.

The Unity package manager will begin installing the extensions from

the official ML-Agents repository.

This step may take a while, and Unity does not display a progress bar.

You can validate that the files are undergoing installation by selecting

“Packages - Other, Adding a new package.”

The package manager will then confirm that it is installing the files.

You can see this in Figure 5-4.

Chapter 5 ML-agents setup

66

Figure 5-4. How to install the official ML-Agents extensions

Once completed, a new package will appear under the “Packages -

Other” category.

This package will be titled “ML Agents Extensions.”

You now have the ML-Agents core package, as well as its extensions.

The next step from here is to install the Python requirements. However,

I will first cover how to open the example project built for this book.

Even if you opted to set up your project from scratch, I am still
going to highly recommend following the next section.

 Opening the Example GitHub Project
This book has a GitHub repository containing samples of the work we will

do throughout the rest of the book.

The example project contains the code that this book will discuss; it
is highly recommended that you do not skip this step.

You can find the GitHub repository at the following link:

https://github.com/apress/introduction-unity-ml-agents

Chapter 5 ML-agents setup

https://github.com/apress/introduction-unity-ml-agents

67

If you encounter any issues with the sample project, you are more than

welcome to open an issue request on GitHub, and I’ll be sure to get to it.

I will also be covering the creation of GitHub issues.

 1) The first step is to install a Git client of your

choice. I’ll cover GitHub Desktop, as it’s free and

straightforward.

You can download GitHub Desktop from the

following URL:

https://desktop.github.com/

Then click the download button (Figure 5-5) to

begin the setup process.

Figure 5-5. Where to download GitHub Desktop

 2) Once downloaded, proceed with the setup process

on the screen.

There are also some great alternatives to GitHub

Desktop.

Although they typically have a price tag, they

are worth it in environments where you will be

interacting with Git frequently:

• JetBrains Rider IDE Github Support – My personal

preference

• www.jetbrains.com/rider/

Chapter 5 ML-agents setup

https://desktop.github.com/
https://www.jetbrains.com/rider/

68

• GitKraken

• www.gitkraken.com/

• Fork

• https://git-fork.com/

Once you’ve installed your Git client of choice, the next step is to

clone the repository, fork it, or download it as a zip.

I will cover the process of cloning the repository,

as that will allow you to receive updates from the

book’s repository.

The alternatives are to fork the repository and then

clone the fork, which copies the repository to your

GitHub account.

The other option is to download the repository as a

zip file, which I would advise against, as you would

lose the benefits of receiving updates that I release.

At this point, you should have GitHub Desktop

installed and open.

 3) Open the GitHub repository page at the

following URL:

https://github.com/apress/introduction-

unity-ml-agents

 4) From the GitHub repository page, click the green

“Code” button with the dropdown arrow and select

“Open with GitHub Desktop.”
You can see where to click in Figure 5-6.

Chapter 5 ML-agents setup

https://www.gitkraken.com/
https://git-fork.com/
https://github.com/apress/introduction-unity-ml-agents
https://github.com/apress/introduction-unity-ml-agents

69

Figure 5-6. How to open the repository in GitHub Desktop

 5) This action will prompt your browser to ask you for

permission to open GitHub Desktop (Figure 5-7).

You can accept this request, and GitHub Desktop

will open.

Figure 5-7. The permission prompt that the browser will display,
requesting permission to open GitHub Desktop

 6) Once GitHub Desktop gets the request from the

browser, GitHub Desktop will prefill the required

Chapter 5 ML-agents setup

70

settings to clone the repository. From here, you can

select the destination folder (Figure 5-8).

Figure 5-8. The “clone a repository” prompt in GitHub Desktop

Great! You’ve now successfully cloned the repository page for the

book. However, you still don’t have the files.

If you’re unfamiliar with the Git protocol, it has several concepts

you should learn.

The most notable of those is “Commit,” “Push,” and “Pull.” Since

you won’t be modifying the repository, the one you’ll primarily

use is “Pull.”

Commit
This process is where you mark changes you would like to

submit for change recording to your local device.

The action of committing does not send the files to the repository.

Instead, it marks them for sending and allows you to attach a

message describing your changes.

Think of it like gift wrapping a present with a card before giving it

to someone.

Push
Pushing is the action of sending your commits to the repository.

Chapter 5 ML-agents setup

71

This action sends the files to the remote repository, like the

action of giving someone the present that you wrapped.

Pull/Fetch
Pull, also referred to as fetch, is the process of requesting and

retrieving the latest files on the remote repository.

As we discussed, you have cloned the repository but have yet to

request and retrieve the files from the remote repository.

To do that, click the “Fetch Origin” button at the top right of

your GitHub Desktop, as shown in Figure 5-9.

Figure 5-9. How to “Fetch Origin” in GitHub Desktop

Pulling or fetching will start downloading the files from the remote

repository.

Chapter 5 ML-agents setup

72

 7) Now we’re ready to open the project in Unity! Go

ahead, open your Unity Hub, and then navigate to

the “Projects” tab.

The next step is to click the “Open” button at the top

right (Figure 5-10).

Figure 5-10. How to open the repository in Unity Hub

 8) Unity Hub will then prompt you to choose a folder.

Point this prompt to wherever you cloned the

repository.

Once completed, your Unity will detect the repository folder as a

project and open the Unity Editor.

Congratulations, you now have access to the example project for

the book.

Let’s discuss opening issues on GitHub.

Chapter 5 ML-agents setup

73

 Creating a GitHub Issue

While we’ve tested the examples, there is always the possibility of

encountering issues. Thankfully, GitHub has a built-in issue tracker.

This issue tracker allows you to raise bugs or ask questions.

These bugs and questions are then viewable by me or someone else in

the community, which is a great way to get help specific to this book.

If you’re unfamiliar with GitHub, this section will cover creating these

issue tickets.

 1) The first step is to go to the book's GitHub issue page

at the following URL:

https://github.com/apress/introduction-

unity-ml-agents/issues

 2) Then click the “New Issue” button on the right

(Figure 5-11).

Figure 5-11. How to create a new issue

Creating a new issue will allow you to insert a title for your

problem and a description.

Please remember to include a detailed description and a

relevant title to make it easier for the community and me to help

you out.

Chapter 5 ML-agents setup

https://github.com/apress/introduction-unity-ml-agents/issues
https://github.com/apress/introduction-unity-ml-agents/issues

74

 3) Once you’re happy with the information provided,

click the “Submit New Issue” button at the

bottom right.

See Figure 5-12 for an example.

Figure 5-12. How to open the repository in Unity Hub

Once done, GitHub will take you to your new issue and automatically

subscribe you to listen for activity on the issue. The example issue looks

like Figure 5-13.

Chapter 5 ML-agents setup

75

Figure 5-13. Your newly created GitHub issue

Now that we have a Unity project, ideally by both having created a new

project and cloned the example project for the book, we can move on to

the next step.

The next step is configuring Python with all the relevant ML-Agents

requirements.

 Python Setup
Unity ML-Agents requires the use of PyTorch.

PyTorch is the open source Python machine learning framework that

powers our neural networks. ML-Agents is a wrapper for this framework,

and PyTorch is what handles the creation of the underlying neural

network.

So while we’ll do most of the work with ML-Agents, we still need a

working installation of PyTorch so that ML-Agents can create our agent.

We’ll need to install and configure Python and the various packages

necessary for PyTorch and Unity ML-Agents.

Chapter 5 ML-agents setup

76

For our Python setup, we’ll be targeting Python 3.7.9 due to its

stability, and the team at Unity has tested it thoroughly for their ML-Agents

package.

 1) You can download Python 3.7.9, the latest stable 3.7

release with the latest installer as of this writing, at

the following URL:

www.python.org/downloads/release/python-379/

At the bottom of the page, you will find the different files for this

release. We are interested in the 64-bit executable installer, titled

“Windows x86-64 executable installer.”

Figure 5-14 highlights where you can click to download the

correct installer.

Figure 5-14. The installer for 64-bit Windows

 2) Now that you have the install file, you can run

it. As with the other installs, the process is

quite straightforward; however, I would highly
recommend checking the box “Add Python 3.7 to

PATH” (Figure 5-15).

Chapter 5 ML-agents setup

https://www.python.org/downloads/release/python-379/

77

Figure 5-15. The checkbox that allows Python to install to
Windows PATH

This action will add it to your Windows PATH, allowing you to

type Python commands into your Windows command prompt.

It’s worth noting that this will require a restart of your PC.

 3) Once you’ve installed Python, added it to PATH, and

restarted your PC, open the Windows command

prompt by pressing the Windows key + R, then

typing “cmd”.

Doing this will bring up your Windows command prompt. From here,

type the following command:

python –version

If installed correctly, it should display “Python 3.7.9” in which
case your setup was successful. There are, however, still a few things we

need to do.

Chapter 5 ML-agents setup

78

We need to install all of the required packages for ML-Agents,

and to keep things manageable, we’ll set up what’s known as a virtual

environment.

 Creating a Virtual Environment
Installing many different packages can get messy when you deal with

multiple Python projects unrelated to ML-Agents.

It gets messy because, by default, all packages would install in the

same place.

So, we use a virtual environment to keep our work and Python

installations organized. I’ll be installing my virtual environment in the

following directory:

/Introduction-to-ML-Agents/VirtualEnvironment/

Due to GitHub repository size restrictions, the project repository
will not include the final installed ML-Agent files in this directory.
However, you can still proceed with the same project structure. You
can safely move this folder after you have followed these steps if you
need to:

 1) Head over to the Unity project directory to create the

virtual environment, often referred to as venv.

 2) The next step is to open a command prompt

terminal in the Unity project folder or wherever else

you’d like to install your virtual environment.

The quickest way to do this is to open your Windows file explorer

and navigate to the folder, click the address bar, type “cmd”, and

press enter as shown in Figure 5-16.

Chapter 5 ML-agents setup

79

Figure 5-16. How to open the command prompt in a directory

 3) Once your command prompt is open in the project

directory, we’re ready to start with the virtual

environment setup.

In your command prompt, execute the following command:

python -m venv VirtualEnvironment

The format for this is “python -m venv [Virtual

Environment Name]”.

So you can give yours a different name if you would like, or name

yours “VirtualEnvironment”.

The benefit of naming it the same as me is that the process

would be easier to follow.

 4) Now, you should have a folder with your virtual

environment setup. The folder should also contain a

new Scripts folder.

/Introduction-to-ML-Agents/VirtualEnvironment/Scripts/

Chapter 5 ML-agents setup

80

 5) The next step is to activate the virtual environment

so that our Python commands execute within the

context of our new virtual environment.

To do this, go to your command prompt terminal currently open

in your virtual environment's parent directory. In this example,

it is open within the context of the Unity project directory. Then

execute the following command:

VirtualEnvironment\Scripts\activate

If you've done this correctly, venv should now prefix your

terminal input line with “(VirtualEnvironment)” followed by

the directory.

Your virtual environment is now active on this terminal. You

must execute the activate command whenever you want to work

in this virtual environment.

If this sounds tedious, if you’ve cloned the example project,

you’ll be delighted that I’ve included a batch file in the /

VirtualEnvironment folder named “ml-agents-terminal.bat”

which you can move to your virtual environment folder.

You can use this batch file to activate and deactivate the virtual

environment.

 6) Once you activate your virtual environment, we can

proceed to the next step.

Next, we need to ensure that you’re running an up-to-date

version of Pip3.

Pip3 is the official package manager for Python version 3.X – we

can use it to install and manage various Python packages.

 7) Before installing, if you have a highly aggressive
third-party antivirus, I suggest temporarily
disabling live shields during the following setup
steps, as this may interrupt your installation.

Chapter 5 ML-agents setup

81

 8) To upgrade pip3 to the latest, run the following

command inside your venv:

py -m pip install --upgrade pip

8.1) If you encounter the following error:
ModuleNotFoundError: No module named 'pip'
Then you can run the following command instead:

py -m ensurepip --upgrade

followed by rerunning the previous command.
You now have Python, Python’s package manager, and a virtual

environment.

The next step is to start installing our dependencies.

 Installing ML-Agents and Dependencies
We will need

• PyTorch

• ML-Agents

• ML-Agents dependencies

Let’s start. We will need to install PyTorch before installing the ML-

Agents packages.

 1) In your venv, execute the following command in one

line, using a single space after the -f followed by the

URL. If you intend to copy the following command

instead of writing it out, then I would suggest

copying this command to notepad or another text

editor and then copying it again before pasting it

into the terminal to avoid line break issues.

Chapter 5 ML-agents setup

82

pip3 install torch~=1.7.1 -f https://download.pytorch.

org/whl/torch_stable.html

This command will download and install PyTorch and all its

dependencies.

 1.1) The command WILL NOT WORK unless you
have EXACTLY Python 3.7.9 as your primary
Python installation.

 1.2) If your python --version command does not

say version 3.7.9, you will need to uninstall

all other versions of Python or modify your

Windows PATH variable.

 2) Next, we’re ready to install the ML-Agents package.

To do this, you’ll want to execute the following

command in your venv:

py -m pip install mlagents==0.28.0

This command will download and install the ML-Agents Python

package and its dependencies. You may see a sizeable list of

warnings during the setup process.

However, these are not critical.

 3) Finally, you can validate that you successfully

installed your ML-Agents Python package by

executing the following command within your venv:

mlagents-learn --help

If your installation was successful, this command should print

out a long list of commands.

That’s it for the Python installation.

Chapter 5 ML-agents setup

83

 4) If you disabled your antivirus shields for the

installation, please remember to reenable your

shields.

We can now proceed with finalizing our Python setup, by validating

that everything is working.

 Validating Our ML-Agents Installation
with Samples
We can validate our ML-Agents installation by copying the official ML-

Agents examples into your project. If you’ve cloned the repository for this

book, then you will not need to download them again and can find them in

the directory of the example project listed as follows:

Introduction-to-ML-Agents\Assets\ML-Agents\Examples

 1) If you’re following along in your own project, then be

sure to copy that folder into your project’s “Assets”

folder in such a way that the directory tree matches.

Your project’s “Assets” folder should align with that of the

book’s example project.

This means that you should copy \ML-Agents\Examples into

your project’s \Assets\ directory.

Alternatively, you can download the latest official examples

from the official ML-Agents repository using the following

GitHub URL:

https://github.com/Unity-Technologies/ml-agents/tree/

main/Project/Assets/ML-Agents/Examples

 2) Let’s begin our testing by opening the 3DBall

sample. In the Unity project window, navigate to

and open the following file:

Chapter 5 ML-agents setup

https://github.com/Unity-Technologies/ml-agents/tree/main/Project/Assets/ML-Agents/Examples
https://github.com/Unity-Technologies/ml-agents/tree/main/Project/Assets/ML-Agents/Examples

84

..\Assets\ML-Agents\Examples\3DBall\Scenes\3DBall.unity

You should now see a bunch of blue cubes stacked in a grid

formation.

 3) Click the Play button at the top of your editor

window to start.

If all goes well, your little cube faces should be jiggling around to

keep the ball from rolling off their heads.

If the cube people are moving, you have installed the ML-Agents

package correctly and are currently running an ML-Agent with

its trained model.

Your console should display a message saying that the trainer is

not connected; this is fine and expected behavior, simply look to

see if the cubes are moving at all.

These agents should look something like the image in

Figure 5-17.

Figure 5-17. The sample ML-Agents keeping a ball balanced on
their head

Well done!

Chapter 5 ML-agents setup

85

 Conclusion
You’ve successfully installed Python, ML-Agents, ML-Agents extensions,

ML-Agents samples, and all the ML-Agents Python dependencies.

In the next chapter, we’ll discuss ML-Agents in greater detail and start

seeing how the concepts learned throughout the book apply in practice.

If you encounter issues with the example repository, please remember

that you are more than welcome to raise a GitHub issue on the book’s

GitHub page.

Chapter 5 ML-agents setup

87

CHAPTER 6

Unity ML-Agents
Now that we have a working installation of ML-Agents, we can take a more

hands-on look at the system.

In this chapter, I’ll discuss the various components of ML-Agents. We’ll

then discuss the learning environments inside the 3DBall sample scene, in

which ML-Agents aim to balance a ball on their heads.

From here, we’ll talk about inputs and outputs and get a better look at

how our agent views the simulated world. Then we’ll talk about rewards

more practically and in depth than earlier in the book.

We’ll pick apart the 3DBall sample, train the agent ourselves, and look

at what saving and exporting an ML-Agent’s neural network to a model file

looks like.

Then we’ll discuss how you can use the exported model by assigning it

back to the agent for use.

We’ll then wrap all of that up to reiterate what we’ve learned in the

chapter. It will be a great chapter with a ton of learning.

 ML-Agent Components
Let’s begin by discussing the ML-Agent components that make up Unity

ML-Agents.

I will be skimming over some concepts as right now we’re just focused

on knowing what’s out there. I will go in depth into the various concepts

later in the chapter.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_6

https://doi.org/10.1007/978-1-4842-8998-3_6#DOI

88

We’ll be opening the 3DBall official Unity ML-Agents sample

scene as we did in the previous scene. You can find this scene in the

following folder:

Assets/ML-Agents/Examples/3DBall/Scenes/3DBall.unity

Once your scene is open, select one of the “3DBall” objects in the

scene hierarchy.

Then expand the “3DBall” object, and select the “Agent” object. The

inspector window will now show you the components attached to the

ML-Agents.

ML-Agents consist of three primary components:

• The behavior parameters

• The agent

• The decision requester

Let’s start by discussing the Behavior Parameters component as

shown in Figure 6-1.

Figure 6-1. The behavior parameters component

Chapter 6 Unity ML-agents

89

 Behavior Parameters
In essence, this component determines the properties that dictate how the

ML-Agent will run and configures the settings for the brain parameters and

some additional settings like what device to use.

It’s our glorified settings object.

Each behavior parameters component's field is vital to building a great

ML-Agent.

 Behavior Name

Let’s start with the Behavior Name field.

The Behavior Name, as the name implies, is a field for a name for this

behavior.

We use this name to identify the agent, and it should be unique unless

the agents share the same functionality.

An important note is that you should never directly change the
behavior name during runtime. Instead, you should use the following
method on the behavior parameters component:

SetModel(string newName, NNModel newModel, InferenceDevice

newDevice)

In typical situations, you can give your agent a meaningful name and

leave it alone.

 Vector Observations

Next, we have the vector observations.

The Vector Observations field tells the brain how many inputs to

expect. It consists of space size and a stacked vectors count.

You must set the space size value to match the number of inputs your

code gives the ML-Agent.

Chapter 6 Unity ML-agents

90

Let’s presume I tell the agent to observe its current health and

stamina – then we need to give a vector observation of 2 as the agent

observes two float values.

A critical note is that you must break down complex types into float

values. For example, if I tell it to monitor its current position, you need to

set the vector observations to 3.

You need to set the value to 3 because a position is a Vector3 type

consisting of three floats.

When collecting observations, we can pass in any of the following

types, broken down into their respective floats:

• float – 1 vector observation

• int – 1 vector observation

• bool – 1 vector observation

• Vector2 – 2 vector observations

• Vector3 – 3 vector observations

• IList<float> – Length of list observations

• Quaternion – 4 observations

So depending on what types and how many observations you make,

you need to calculate and set the Space Size field accordingly.

The next value is the Stacked Vectors field. The stacked vectors field

tells the ML-Agent how far back in history it’s capable of looking.

This ability to view past data can be helpful in some situations.

However, it’s important to note that the more stacked vectors you give your

ML-Agent, the longer it will take to train.

In the following formula, we can see that if we had a space size of 10

and a stacked vector count of 5, we would have 50 total observations. This

calculation means that the training performance of 50 total observations

would be even slower than having an ML-Agent with a space size of 30 and

a stacked vector count of 1, totaling 30 observations.

Chapter 6 Unity ML-agents

91

Space Size x Stacked Vectors = Total Observation Size

If you want to observe the direction of an entity, it may tempt you to

have the ML-Agent monitor its position with a stacked vector size of 3.

However, while the ML-Agent would be able to infer direction from this,

you may be better off simply letting it observe the velocity.

So keep your total observations manageable, and you’ll have agents

that can train fast and efficiently.

Quicker training times mean shorter iteration time on improving your

ML-Agent.

 Actions

The actions field allows us to specify how many different continuous

actions and discrete branches the agent should support.

 Model

The model is the brain of the ML-Agent. It’s a snapshot of the neurons

formed and their weights.

The model field consists of three subfields:

• Model

• Inference device

• Deterministic interface

The model field takes in a model file we get when exporting a trained

ML-Agent.

This model is what allows our ML-Agent to function, and we can

serialize it and compile it into a build for runtime use.

Once we train an ML-Agent and generate the model, our ML-Agent

performance improves significantly.

Chapter 6 Unity ML-agents

92

The inference device is the physical device the ML-Agent uses for

inference.

The ML-Agent uses this device for runtime inference or playback of the

model, not for the process of training.

So, for most situations, Burst is the most useful choice.

Next, we have the behavior type.

 Behavior Type

There are three different behavior types that our behavior parameters

component can take. These are

• Default

• HeuristicOnly

• InferenceOnly

The behavior type determines where the ML-Agent will make its

decisions.

Default
Using Default as the behavior type will have the ML-Agent attempt to

use the remote process, PyTorch, for decision-making.

If it’s unable to use the remote process, it will fall back to using

inference.

The ML-Agent will fall back to heuristic control if the inference is

unavailable.

HeuristicOnly
This behavior type will always use heuristics. Heuristics is the mode

where we provide manual actions to the neural network – in essence,

making the decisions ourselves – typically through user input using Unity’s

Input System.

InferenceOnly

Chapter 6 Unity ML-agents

93

The inference-only behavior will always use inference on the provided

model, which means that the agent will make decisions using the model by

“inference.”

Typically, a behavior type of Default is suitable for many situations

unless you want to override the control. The next field on the behavior

parameters is the Team Id field.

 Team Id

The Team Id value specifies the team that the ML-Agent should contribute

to, which is helpful for team-based ML-Agents.

 Use Child Sensors

This checkbox allows us to tell the agent to find and use any sensors found

through its own child hierarchy. This incurs a small performance impact,

and you should keep this disabled unless you have child sensors on

your agent.

 Observable Attributes

Here, we can tell the agent if it should be using reflection to determine

if the [Observable] attribute is in use. Using reflection incurs a large

performance penalty, and if you are not using the attribute, then you

should keep this disabled.

 The Decision Requester
The decision requester is an optional component that requests a decision

from the agent every x number of steps specified by the DecisionPeriod

field. Let’s take a look at the component in Figure 6-2.

Chapter 6 Unity ML-agents

94

Figure 6-2. The decision requester component

The decision requester is not needed if your agent implements

RequestDecision.

It has the following fields:

DecisionPeriod – This is the step interval to wait before making a new

decision on the attached agent.

TakeActionsBetweenDecisions – Specifies whether or not the agent

should take action between decisions on each academy step. If you set the

DecisionPeriod to 1, this field will have no effect.

That’s all the components you need on an agent to allow it to function;

however, there are additional components like sensors that we will discuss

later in the chapter.

Sensors are optional and are simply abstracted to allow for quickly

copying functionality between custom agents. That said, your agent is free

to implement a custom implementation of sensors.

We will cover this later in the chapter.

Next, let’s look at learning environments and how we can group

multiple agents within the same scene to parallelize training, resulting in

significantly faster training times.

 Learning Environments
Learning environments are isolated learning environments in which an

agent can train. As they are isolated, you can create many within the same

scene, typically via copy-paste, spacing them away from each other.

In Figure 6-3, let’s look at how Unity Technologies created its learning

environments for its 3DBall sample.

Chapter 6 Unity ML-agents

95

Figure 6-3. The learning environment

The learning environment in the 3DBall sample consists of everything

the agent needs to train. In this case, the agent and the ball that it needs to

keep balanced on its head.

Unity developed this sample agent so that everything sits inside a

single parent object, 3DBall, that one can duplicate in the scene.

This way, the agent can train, regardless of whether it’s a single agent

or 100 agents.

In this case, we have 12 learning environments. It’s important to point

out that a learning environment is not a specific number of agents in a

group – we define it as everything needed to train a model, ideally as a

child of a single transform.

Let’s take a sneak peek at one of the other samples to reinforce this

concept of learning environments.

Figure 6-4 shows that of the SoccerTwos sample, which you can find

under the path:

../Assets/ML-Agents/Examples/Soccer/SoccerTwos.unity

Let’s take a look (Figure 6-4).

Chapter 6 Unity ML-agents

96

Figure 6-4. The learning environment within the SoccerTwos sample

This sample has four agents, goal posts, an environment, and a ball.

We isolate everything into a learning environment. We then place it inside

of a parent gameobject for easy copy-paste. We then duplicate the learning

environment several times in the scene.

Again, we isolate everything we need to train a model. That is what

makes a learning environment.

Now that we know what makes up an ML-Agent and its learning

environment, let’s dig deeper into how ML-Agents interpret and interact

with the virtual world.

 The Agent
The agent is the heart of your ML-Agent; it’s where your code lives. As an

example, in the official 3DBall example, our agent is of type Ball3DAgent.

We can see this in Figure 6-5.

Chapter 6 Unity ML-agents

97

Figure 6-5. A custom implementation of the Agent class

The only universal field on the agent is the MaxStep field, which

determines how many academy steps an agent should complete before

restarting.

You can set this to 0 for unlimited steps or until manually ending the

episode.

To create an agent, you create a class that inherits from the Agent class.

By inheriting from the Agent class, you can override several methods to

build your agent.

 Agent Override Methods

In this next section, we’re going to be covering code elements.

If you would like to follow along with the code, switch back to the
3DBall scene.

You can then right-click the “Ball 3D Agent” component and select

“Edit Script.” However, Ball3DAgent does not implement everything; if you

cannot find the corresponding method, do not be alarmed – we will cover

more later in the chapter.

The goal right now is to see what’s available.

Viewing the Ball3DAgent class will be a great way to see a few of the

method overrides in use.

override void Initialize()

We’ll start with the Initialize method.

Chapter 6 Unity ML-agents

98

You can override the Initialize method to do any first-time setup
for your agent. The initialize method works much like the Start or

Awake methods that MonoBehaviour classes provide – always prefer using

“Initialize” over “Start” or “Awake.”

override void CollectObservations(VectorSens
or sensor)

Override the CollectObservations method to feed your ML-Agent

observations.

Observations are data points representing the virtual world around

the ML-Agent, and the agent can interpret this data into meaningful

information about its environment and driving decisions.

We’ll also cover observations in detail later in this chapter during the

“Inputs and Outputs” section, so, for now, make a simple mental note that

this is where observations happen.

override void OnActionReceived(ActionBuffers
actionBuffers)

This method override is where decisions get turned into actions, and we

implement the agent’s actions. While this is an oversimplification, we’ll

also discuss this in detail during this chapter's “Inputs and Outputs”

section.

So, for now, you can make a mental note that this is where our logic to

interpret ML-Agent actions goes.

override void OnEpisodeBegin()

You should override the OnEpisodeBegin method and make it responsible

for setting up your agent for a new training episode. You’ll typically want

to reset any cached values from a previous training episode or set any new

values relevant to the latest training episode.

Chapter 6 Unity ML-agents

99

override void Heuristic(in ActionBuffers
actionsOut)

Heuristics override allows us to choose actions for the ML-Agent. This

method will enable us to set up the logic for that to occur. Heuristics are

excellent for ensuring that our agent’s base logic functions correctly,

debugging, and imitation learning.

Next, we need a method to ask the ML-Agent to do something, and

that’s where the RequestDecision method comes in. Let’s take a look.

The following methods we will discuss are not overriding, but are

extremely important to training your ML-Agent. These methods include

the add-and-set reward methods.

During the “Rewards” section later in this chapter, we will

discuss rewards in detail, so don’t get worried if you’re feeling a little

overwhelmed.

void RequestDecision()

You can call the RequestDecision method to tell the ML-Agent to make

a decision. This functionality is much like the DecisionRequester

component that we’ll discuss shortly. However, it’s important to note

that if you use a DecisionRequester component, you should not call

RequestDecision manually.

void AddReward(float increment)

AddRewards allows us to adjust the reward value for our agent’s current

episode incrementally. For the best results, you should almost only call this

method during the OnActionsReceived method.

Positive reward values will reinforce behavior, and negative values

discourage the behavior. Alternatively, you can set the reward instead of

incrementing it using the SetReward method. Let’s take a look at this next.

Chapter 6 Unity ML-agents

100

void SetReward(float reward)

Much like the AddReward method, SetReward adjusts the reward for the

agent’s current episode. The difference is that SetReward overrides the

current value for the episode instead of updating it incrementally.

The next method to cover is the EndEpisode method.

void EndEpisode()

The EndEpisode method allows you to end the current episode and reset

the agent, which is helpful in situations where an ML-Agent made a fatal

mistake or achieved its goal.

The methods that we covered are the ones you’re most likely to use.

With that said, there are several other methods for the agent class. I will

touch on them briefly. They are as follows:

CollectDiscreteActionMasks(DiscreteAction

Masker) – Collects the masks for discrete actions,

stopping the ML-Agent from using them during

training and inference.

GetAction() – Returns the last action decided upon

by the agent without making a new decision.

GetCumulativeReward() – Gets the total reward

accumulated for the current episode on the

given agent.

GetObservations() – Gets a read-only

view of observations generated by the

CollectObservations method. This method can be

useful inside of Heuristics to avoid recomputing

the observations.

Chapter 6 Unity ML-agents

101

LazyInitialize() – Calls your initialize override if

one exists. It can be called multiple times.

OnBeforeSerialize() – Gets called immediately

before serialization. Call the base implementation if

you’re using custom serialization methods.

OnAfterDeserialize() – Gets called immediately

after deserialization. Call the base implementation if

you’re using custom serialization methods.

OnEnable() – This is Unity’s OnEnable functionality

that gets called once the attached gameobject

becomes active. If you implement custom logic,

remember to call the base implementation too.

OnDisable() – This is Unity’s OnDisable

functionality that gets called once the attached

gameobject becomes inactive. If you implement

custom logic, remember to call the base

implementation too.

RequestAction() – Requesting an action repeats

the agent’s last action from a decision without

requesting a new decision.

ScaleAction(float, float, float) – Scales a

continuous action from a range of –1:1 to any range

you provide.

SetModel(String, NNModel, InferenceDevice) –

Sets the model assigned to the agent. You should

note that the agent will ignore the behavior name

parameter while it is not training. At the same

time, it will ignore the model and inference device

parameters when not using inference.

Chapter 6 Unity ML-agents

102

That’s what makes up an ML-Agent. We’ll keep looking deeper into this

and eventually build our agent too.

 Inputs and Outputs
In inputs and outputs, we will discuss how an ML-Agent can both interpret

and interact with the virtual environment around it.

We’ll start with the various sensors and observations that our agent can

use – our inputs.

 Inputs, Observations, and Sensors
The agents we build use a series of float values to visualize the world

around them.

However, the word visualize may differ from the first thing that comes

to your mind.

You see, an ML-Agent does not “see”; it interprets.

It does this by associating given values and actions with rewards.

Perhaps this is why current agents cannot “understand” the tasks we give

them. We’re still missing some fundamental steps.

The agent is exceptional at finding patterns in data, but our processing

power is still limited, so we need to be picky about the data we provide

an agent.

The more data, the higher the likelihood of an agent performing well,

given the proper reward structure. However, the more data, the slower the

training occurs, which means poorer agent performance.

This poorer agent is due to the performance implications and the time

taken to reach an ideal state.

So when giving an agent data, we want to find a balance of quantity

and relevance.

Chapter 6 Unity ML-agents

103

Suppose we have an agent who aims to launch a ball into a hoop. The

agent is entirely blind until we give it observations. So we start to describe

its world using observations.

Observations describe the virtual world.

In this example, we may give the agent its position to know where it is

in 3D space.

Then we may give the agent the target position of the hoop. These

observations will allow the agent to see its position relative to the target.

When constructing an agent, I often like to think about what the agent

would see if it were a person, starting with complete nothingness. From

there, I add details that have the highest relevancy to the agent’s goal.

In this hypothetical example, what does the agent need to know to

throw a ball into a hoop?

Let’s give it some thought and take a look at Figure 6-6.

Figure 6-6. The agent’s view of the world in the example

The agent needs to know two things to throw the ball into the hoop:

• What direction to throw the ball

• How much force is needed

To answer these, we need to understand the distance the ball needs

to travel.

Chapter 6 Unity ML-agents

104

To figure that out, we need to understand the agent’s position relative

to the target and any forces the environment may impart on the ball along

the way.

If the target is a hoop, it may also be at an angle, so we might want to

know the orientation of the hoop.

So the agent needs to be able to observe

• The agent’s position (Vector3)

• The target’s position (Vector3)

• The target’s orientation (Quaternion)

• Gravity (Vector3)

With this information, the agent can attempt a combination of different

launch velocities and directions. We then reward the agent whenever the

ball enters the hoop.

The whole agent visualization may look something like Figure 6-7.

Figure 6-7. The agent’s final view of the world in the example

We can then optimize this network, reducing the input data until this

notably affects our training performance. Suppose the target’s position

Chapter 6 Unity ML-agents

105

was always relative to the agent; we could eliminate the agent’s position

observation, which would reduce our observations by three.

Then suppose that we only ever applied gravity in the Y axis – we could

change gravity from a Vector3 to a float observation, which would reduce

our observations by a further two.

Suppose the target orientation was always static – we could remove

that observation, eliminating another four observations.

As such, we could go from 13 to 4 observations, considerably

simplifying our agent’s network and making it more performant for

training and inference.

Then we have the action of launching a ball with velocity and direction.

We will discuss actions and outputs after this section.

So as you can see, it’s essential to describe the world to the agent, using

as few observations as possible without sacrificing relevance – again, to

strike that balance between as few observations as possible with the most

relevance. Figure 6-8 illustrates this point.

Figure 6-8. The balance you should aim for when building
your agents

Let’s get into discussing the creation of observations.

Chapter 6 Unity ML-agents

106

 So How Do We Create Observations?

There are three primary ways for us to generate observations. Let’s take a

look at these:

• Collecting observations

• Observable attribute

• Implementing the ISensor interface

We’ll start by discussing the collection of observations.

Collecting Observations

The first approach, prevalent in Unity ML-Agents, overrides the CollectOb

servations(VectorSensor sensor) method on the Agent class.

We touched on this briefly earlier in this chapter, but I’d like to

cover this in more depth, as this is a great way to observe the data of an

environment when the data is numerical and nonvisual.

So, the first thing to remember when overriding the collection of

observations is that you will need to update your agent’s Behaviour

Parameters to include a Space Size that matches the number of vector

observations you’re performing via code.

To do the actual collection of observations, you’ll want to override the

CollectObservations method discussed earlier.

You then use the sensor passed in to add observations.

Here is a short example, but remember that I encourage you to tear

apart the code in the sample project to find more usage of this:

public override void CollectObservations(VectorSensor sensor)

{

 // 3 Observations total, since Vector 3 breaks down into

 // three floats.

 sensor.AddObservation(transform.localPosition);

}

Chapter 6 Unity ML-agents

107

If you have a keen eye, you may have noticed that I added the entire

local position as an observation, rather than adding each value like the

3DBall example does. This is because the AddObservation method has

many different overloads supporting many of the basic C# and Unity types.

I encourage you to reference the supported types for the
AddObservation method discussed earlier in this chapter. It will
explain the supported types and how many vector observations
they add.

More things to note are that the observations always need to be added

in the same order and always be the same quantity of observations during

training and inference.

If you ever need to collect a varying number of vector observations,
you can do this by padding missing observations with a value of 0.

Another approach is to give yourself a buffer of how many varying

observations you plan on making.

Suppose you needed to observe all gameobjects in an area around you

that represented, say, collectible coins. You could instead look at observing

the nearest ten coins. If only four coins were available, you would pad the

rest of the observations with the value of 0.

Another thing to consider when collecting observations is a unique

requirement when creating observations of enums.

Suppose we have the following enum:

public enum CreatureDisposition

{

 Aggressive,

 Neutral,

 Passive

}

When observing the value of this enum, we need to do so using one-

hot encoding, which you can read more about in the following URL:

Chapter 6 Unity ML-agents

108

https://en.wikipedia.org/wiki/One-hot

Failing to use one-hot encoding for categorical information will
yield poor results.

Thankfully, ML-Agents provide a fantastic method that removes all

of the low-level efforts, allowing us to use the AddOneHotObservation()

method on our sensor.

To do so, we pass in the currently observed enum cast to an int,

followed by the total number of item types in the enum, demonstrated in

the following example:

public override void CollectObservations(VectorSensor sensor)

{

 // 3 Observations total, since Vector 3 breaks down into

 // three floats.

 sensor.AddOneHotObservation((int)observedEnum,

totalEnumTypes);

}

Remember to update your observation space with the total number

of enum types on the behavior parameters component.

Using the Observable Attribute

The other alternative is the use of observable attributes.

With that said, I would highly avoid using this in performance-

critical projects, as the observable attribute uses reflection internally and

has worse performance than passing the value through to the collect

observations override.

So what are observable attributes?

Observable attributes are field and property attributes that allow the

agent to observe the given variable once you’ve configured the behavior

parameters to look for them.

Chapter 6 Unity ML-agents

https://en.wikipedia.org/wiki/One-hot

109

Let’s look at the following example:

// [Observable(string name = null, int stackedObservations)]

[Observable("Current Health", 3)]

private float currentHealth;

The preceding code tells the agent to observe the currentHealth, with

a stacked observation count of 3. The stacked observation allows the agent

to store a buffer of 3 observations of current health, allowing it to see the

context of the value change.

Thus, the agent can determine if the health is changing and if that

change is positive or negative.

Let’s break this down further. The observable attribute is the only part

that is required.

We can optionally give the observation a name, which is required if this

observation is on a sensor, as sensors need unique names.

Additionally, we can optionally specify the number of stacked

observations to allow it to view the history of the value by storing it in

a buffer.

An important thing to note about the observable attribute is that
you do NOT need to increment the observation space in the behavior

parameters component. This adjustment is made internally through
reflection.

And a final important note is that observables will do nothing
by default. You need to enable them in the behavior parameters
component by adjusting the ObservableAttributeHandling field to one
of the following:

• Ignore – The default setting. This setting will ignore

all observable attributes of the agent. This option

has the best performance as the agent does not use

observables or the required reflection.

Chapter 6 Unity ML-agents

110

• Exclude Inherited – This setting will only check the

class members with the observable attribute. This

option is generally the best if you’re adamant about

using observables.

• Examine All – This setting will examine all members

of the class. This option has the worst performance

and should be avoided, but it is required if your

agent inherits from another agent that implements

observables.

So overall, the observable attributes are nice for early testing or small

projects.

Still, I would personally avoid it and collect the observations through

the override instead, purely due to the performance cost of runtime

reflection.

So what about the third way?

Creating Sensors

We’ll go more in depth into sensors shortly, but the third way of creating

observations is by creating a sensor.

You can create a sensor by implementing the ISensor interface on your

component, like in the following example:

public class ExampleSensor : MonoBehaviour, ISensor

By implementing the ISensor interface, you are creating what’s known

as a sensor.

The sensor is responsible for collecting and formatting the data for

interpretation by the agent and is interestingly used internally by both

CollectObservations and Observables.

Chapter 6 Unity ML-agents

111

So why bother with CollectObservations and Observables if sensors

are the final destination for observations?

That’s because the sensor is intended for advanced users and is mainly

abstracted away when it comes to CollectObservations and Observables.

Sensors are superior to their CollectObservations and Observables

counterparts.

While CollectObservations and Observables produce vector

observations represented as a list of floats, sensors can do even more.

They can handle vector observations as well as visual observations!

The exciting part about this is that visual observations are

multidimensional arrays of floats.

So for those brave enough to delve into building a sensor, the next

section is for you, despite the extra work that comes with it.

 Building Sensors

This next section will discuss how to build your ML-Agent sensor.

This part is more advanced than other parts of this book and

will require a solid understanding of programming principles. You

are more than welcome to skip this if it’s too advanced, as using the

CollectObservations override is more than sufficient.

Let’s begin.

We will build a sensor that observes the nearest entities around the

agent up to a maximum observable size.

To find the final example, look in the following directory if you’ve
cloned this book’s repository page:

/Assets/Scripts/Sensors/SphereSensor.cs

When implementing the ISensor interface, we contract ourselves to

implement the following methods:

• GetObservationSpec()

Chapter 6 Unity ML-agents

112

• Write(ObservationWriter writer)

• GetCompressedObservation()

• Update()

• Reset()

• GetCompressionSpec()

• GetName()

You must include all these methods in our class and attach a

SensorComponent to your agent to give the sensor its functionality. The

SensorComponent is an abstract class that we will also need to build.

Alternatively, you can use a BasicSensorComponent for many situations.

We’ll discuss each of these methods in detail, starting with

GetObservationSpec.

GetObservationSpec

GetObservationSpec returns an ObservationSpec, which is a struct that

describes the details of the given observation. This observation spec tells

us things like

• The size of the observation

• The multidimensional properties of the observation

• Observation types that describe whether or not the

observation has a goal signal

We can use one of the provided helper methods to create our

observation spec based on our requirements.

Three helper methods are available to us:

• Vector – This spec describes a one-dimensional

observation of the specified length.

Chapter 6 Unity ML-agents

113

• Visual – This spec describes a multidimensional

observation for visual-like observations containing

width, height, and, optionally, multiple channels.

• VariableLength – This spec describes observations of

variable length.

Vector Observation Spec

The vector observation spec uses the Vector helper method. Let’s take a

look at the following example:

return ObservationSpec.Vector(int length, ObservationType

obsType);

The preceding helper method takes a length argument, followed by an

optional observation type argument. The length argument is the size of the

observation.

The observation type defaults to ObservationType.Default.

All observation specs have a default observation type. So I will be

omitting them from the following examples.

So if one were to observe the current health variable of an enemy, you

might do the following:

return ObservationSpec.Vector(int 1);

The next observation spec helper is the visual method.

Visual Observation Spec

The visual observation spec is ideal for dealing with image-like

observations that are multidimensional. The helper method makes

describing the complex observation easy. Let’s take a look at it:

return ObservationSpec.Vector(int height, int width, int

channels);

Chapter 6 Unity ML-agents

114

This observation spec helper method makes it easy to construct visual

observation specs. We need to feed in the height, width, and amount of

channels. Note that height is first, not width.
Suppose we have a 128x128 RGB render texture that we would like to

observe. In this situation, we would use the following code:

return ObservationSpec.Vector(int 128, int 128, int 3);

However, we won’t be using a visual observation spec. Instead, we’ll

use a variable length sensor for our example sensor, as we don’t know how

many entities will enter our agent’s area. So, we use the VariableLength

helper method.

Variable Length Observation Spec

The variable length observation spec is ideal when you are unsure how

many observations you will have. It allows us to specify the observation

size and the maximum number of observations to handle.

return ObservationSpec.Vector(int size, int

maximumObservations);

So for our use, we want to observe the positions of each entity local to

the training environment.

This value will be a Vector3 observation, which results in a size of 3.

We will allow the agent to track up to ten observable entities. So, we could

write something like the following snippet:

return ObservationSpec.Vector(int 3, int 10);

That’s it. We created our observation spec quickly, thanks to the

fantastic helper methods provided by Unity.

The next method to cover is the Write method.

Chapter 6 Unity ML-agents

115

Write

Write allows us to write our observations directly to the

ObservationWriter. The ObservationWriter is where all the magic

happens, and there are many different ways to write to it.

To correctly implement the write method, we need to understand the

ObservationWriter better.

ObservationWriter

The ObservationWriter allows us to write our observations to the agent.

How we do this depends on our data structure. We can largely break this

down into the following two groups:

• Complex types – Vector structs and Quaternions

• Simple types – Direct float observations

We’ll start by looking at the simple types.

Writer[index] = observation

Suppose we have one-dimensional observations to make. We can make

this observation by directly accessing the writer’s buffer. Let’s take the

following example:

writer[0] = observation;

where the writer is our ObservationWriter, 0 is the writer’s starting

index, and observation is the float value we’re looking to write.

You can also do a for-loop and iterate through the writer, but I
strongly advise using AddList instead if dealing with lists.

Next, we have the AddList method.

AddList(IList<Single>, Int32)

The AddList method allows us to add lists of data to the writer. It takes an

IList of float and an int offset for the write buffer.

Chapter 6 Unity ML-agents

116

The AddList is the part where things get tricky.

If you intend to make multiple calls to AddList, for example, if

you have multiple lists that you would like to observe, you will need to

calculate the appropriate offset.

We can call the following code to add a list of floats to the observation:

writer.AddList(observations, 0);

Where 0 is the offset, you can omit it if you do not need to change it.

In our situation, we want to add a list of Vector3 observations to our

sensor. Let’s look at the Add(Vector3, Int32) method next.

Add(Vector3, Int32)

The Add helper method for Vectors is straightforward when dealing with a

single Vector3 observation.

However, in our case, we want a list of Vector3 observations. Since

AddList takes floats, we can’t use that.

So instead, we will use the Add helper method for Vector3 and

calculate the required offset and padding.

It also becomes more tricky as we support an unknown number of

vector observations.

So our first step is to calculate our observation deficit, which asks,

“How many observations were missing that we need to pad?”

To calculate our observation deficit, we need to know how large the

observation is and how many observations at most to expect.

Since we know that Vector3s have an observation size of 3, we can set

this as a constant in our sensor class.

We will then allow the user to specify the maximum number of

observations.

We also need a place to store our observations, so we’ll create an Array

of Vector3s that we initialize during the Start method.

Chapter 6 Unity ML-agents

117

A reminder that you can find the full code sample for our sensor in
the book’s repository, under the following directory:

Assets/Scripts/Sensors/SphereSensor.cs

Let’s take a look at the following code:

const int ObservationSize = 3;

[SerializeField]

private int maximumObservations = 10;

// Initialize this in Start() as an Array of size

maximumObservations.

private IList<Vector3> observations;

Now we can use this to calculate our observation deficit, and we can

cache our observation count as follows:

var observationDeficit = maximumObservations -

observations.Count;

var observationCount = observations.Count;

From here, we’ll implement the logic for adding our existing

observations, as follows:

for (int i = 0; i < observationCount; i++)

{

 var offset = i * ObservationSize;

 writer.Add(observations[i], offset);

}

The preceding code will write our observations to the writer, but we

still need to continue the writing to fill in our padding. So we add a loop

that continues where we left off:

for (int i = observationCount; i < observationDeficit; i++)

Chapter 6 Unity ML-agents

118

{

 var offset = i * ObservationSize;

 writer.Add(observations[i], offset);

}

Then finally, we calculate the total number of observations:

return ObservationSize * maximumObservations;

That’s our implementation of the Write method. However, there are

a few more to cover. Remember to update your offset accordingly if you

intend to add multiple observations, as we did in this example.

Let’s discuss Add(Quaternion, Int32) next.

Add(Quaternion, Int32)

Much like the vector observation we discussed, this method allows you to

record observations. The implementation itself is identical. However, with

this one, we can pass in the Quaternion type.

Remember that Quaternion has an observation size of 4.

Add(Vector4, Int32)

Again, this method allows you to record observations, as discussed in

our Vector3 example. However, with this one, we can pass in Vector4

observations.

The implementation itself is identical.

Remember that Vector4 has an observation size of 4.

That covers the implementation of the Write method in our ISensor!

Let’s move on to the GetCompressedObservation method.

GetCompressedObservation

The GetCompressedObservation method allows you to implement custom

byte compression. Unity does not recommend using this unless you’re

working with large visual observations.

Chapter 6 Unity ML-agents

119

To work around this, we can simply return null.

Update

The Update method is called during the UpdateSensors step internally.

This update happens whenever the agent needs to make a decision.

We can use this to run any custom logic on our sensor. We’ll be using it to

update our observations.

You can find the code in the SphereSensor sample in the directory

provided a few pages back.

It’s worth noting that during the current release of ML-Agents,
version 19, the update method is called every frame due to the
Monobehaviour update loop.

It’s unclear if this is intentional or if it’s a bug. Keep this in mind if
working on future versions of ML-Agents. You can follow the opened
GitHub issue at the following URL:

https://github.com/Unity-Technologies/ml-agents/issues/5784

Reset

The agent calls Reset whenever its training episode ends. This method

typically does not require any implementation and can be left empty.

However, you can add your cleanup implementation here if you need

to do any cleanup.

GetCompressionSpec

This method should return information on the compression spec you are

using for GetCompressedObservation.

In almost all cases, you won’t end up using this as it’s only used

internally by the camera sensor for custom compression to PNG, which

anyway results in poor performance.

You can simply return CompressionSpec.Default.

Chapter 6 Unity ML-agents

https://github.com/Unity-Technologies/ml-agents/issues/5784

120

Let’s move on to the next method, GetName.

GetName

This method should return the unique name of the sensor. In most cases,

I suggest setting up a constant in the class containing the name and

returning that value.

If you intend to have multiple of the same type of sensor on a given

agent, then you should expose this name field, and each sensor should

have a unique name.

 Visual Observations

There are a few ways to work with visual observations. These are

• A custom ISensor implementation

• CameraSensor component

• RenderTextureSensor component

These various sensors collect observations of the image data and

transform that data into a multidimensional tensor.

In essence, a tensor is an algebraic object which describes the

multilinear relationship between groups of other algebraic objects within a

vector space. We use tensors extensively in machine learning.

We then feed this tensor into a convolutional neural network or CNN.

Doing this allows the agent to learn from the spatial patterns and

regularities within the visual observations.

You are also not limited to using either a vector or visual observations.

An agent is capable of using both.

Visual observations are ideal for situations where it may be difficult to

describe the environment numerically via vector observations. However,

visual observations have far worse performance and training time than

vector observations.

Chapter 6 Unity ML-agents

121

So, while visual observations benefit specific niche applications, you

should only use them as a last resort or if a visual observation would satisfy

your requirements.

Alternatively, you can use visual observations in conjunction with

vector observations.

This hybrid approach is often superior as an agent trained purely on

visual observations will often be worse at performing a given task than an

agent trained on the appropriate vector observations.

Visual observations offer some unique benefits, especially when

building ML-Agent-enabled robotics, as you can feed a physical camera’s

data into a render texture that the agent can observe.

Visual observations also support stacking, which can be useful in many

situations but negatively impacts performance, so you should only use it as

necessary.

Out of the box, you can give your agent visual observations by

attaching a CameraSensor or a RenderTextureSensor to your agent.

The alternative is to create a custom ISensor that handles visual

observations, but this is outside this book's scope as CameraSensor and

RenderTextureSensor are sufficient for most cases.

You should also keep the image size as small as possible without losing

the required visual fidelity to complete the task. By keeping the image size

small, you’ll mitigate more of the performance impact of visual observations.

If color information is irrelevant to completing the task, you should use

grayscale images, significantly improving training time.

Many other sensors are available with the ML-Agents extensions we

installed during our setup chapter. Let’s take a look at these.

The ML-Agents extensions package contains various experimental

features and sensors.

The sensors cater to physics interactions and joints. The most notable

addition in ML-Agents extensions is the ability to create custom grid

sensors if you’d like to apply the knowledge you learned in the “Building

Sensors” section of this chapter and apply it.

Chapter 6 Unity ML-agents

122

Since the extensions are highly experimental and subject to change,

we won’t be covering them, but they are still worth a mention if you are

curious enough.

Let’s move on to discussing actions.

 Actions
Actions are instructions from the agent Policy – the brain – for the agent to

perform.

We interpret the action through an ActionBuffer, which the agent can

use to receive actions.

Alternatively, you can implement a custom IActuator to handle the

actions.

ML-Agents has the concept of two types of actions:

• Continuous

• Discrete

An important thing to understand about ML-Agents is that they do not

understand their actions. The system simply tries different combinations

of actions based on the inputs and the correlated reward.

We use the OnActionReceived() override on the Agent class to access

and implement functionality to the ML-Agent's actions.

To specify the number of actions and discrete branches the

agent should support, we can modify the respective fields in the

BehaviourParameters field. Adjusting this value will allow us to access

these actions in the OnActionReceived override on the agent.

We discussed this override briefly earlier when we discussed the Agent

class. It’s time for us to look at this override in more detail, but, first, we

need to understand the difference between Continuous and Discrete

actions.

Chapter 6 Unity ML-agents

123

 Continuous
When the BehaviourParameters have continuous actions specified,

the agent will attempt to use them, passing the output values to the

OnActionReceived override on the agent.

To utilize continuous actions, we override the OnActionReceived

method of our agent and access the ActionBuffer with an array accessor.

As best practice, we should clamp the value from the ActionBuffer to a

range of -1 : 1.

We can then add our logic that utilizes the action’s value. Let’s take a

look at the following code example:

public override void OnActionReceived(ActionBuffers

actionBuffers)

{

 var myAction1 = Mathf.Clamp(actionBuffers.

ContinuousActions[0], -1f, 1f);

 var myAction2 = Mathf.Clamp(actionBuffers.

ContinuousActions[1], -1f, 1f);

 ar myAction3 = Mathf.Clamp(actionBuffers.

ContinuousActions[2], -1f, 1f);

 DoLogicWithAction1(myAction1);

 DoLogicWithAction1(myAction2);

 DoLogicWithAction1(myAction3);

}

It’s important to remember that the values received have no inherent

meaning to the agent because the agent doesn’t understand what it’s

doing. These values become usable based on the action-reward cycle that

happens during training. The agent just learns that some value for action

buffer at index 0 is good when it receives a specific observation because of

the reward we give it.

The same concept applies to discrete actions.

Chapter 6 Unity ML-agents

124

 Discrete
Discrete actions work using the concept of branches. Firstly, in the

BehaviourParameters component, we specify the number of branches,

after which we specify how many outcomes each of those branches should

support.

The agent then passes us an ActionBuffer containing each of the

branches.

The action buffer branch then contains a selection of which end node

the agent selected.

This choice is represented to us in an integer index, with a range of

0:BranchSize.

Let’s examine the following example:

// 2 Discrete Actions specified within the BehaviourParameters.

// Choice 1 contains a branch size of 2. If the value is 0, do

// nothing. If the value is 1, do something specific to

choice 1.

var choice1 = actionBuffers.DiscreteActions[0];

// Choice 2 contains a branch size of 2. If the value is 0, do

//nothing. If the value is 1, do something specific to

choice 2.

var choice2 = actionBuffers.DiscreteActions[1];

switch (choice1)

{

 case 0:

 DoNothing();

 break;

 case 1:

 DoSomethingSpecificToTreeOne();

 break;

}

Chapter 6 Unity ML-agents

125

switch (choice2)

{

 case 0:

 DoNothing();

 break;

 case 1:

 DoSomethingSpecificToTreeTwo();

 break;

}

The benefit of discrete actions is the ability to mask actions. By

masking actions, we can prevent a specific action from happening if a

different discrete action is satisfied.

We do this by overriding the WriteDiscreteActionMask method on the

agent. We then specify the branch we’re writing the mask to and pass in

the index of the action, followed by if we want to allow the action.

After each step, the agent resets all masks, allowing all actions.

Let’s look at the following example:

public override void WriteDiscreteActionMask

(IDiscreteActionMask actionMask)

{

 actionMask.SetActionEnabled(branch, actionIndex,

isAllowed);

}

Continuous actions do not support action masking; if you want the

ability to mask actions, you should leverage discrete actions for those

situations.

It’s important to note that you cannot write a discrete action mask
to a continuous action. Another important note is that when using
heuristics, discrete action masks are ignored!

So what are heuristics?

Chapter 6 Unity ML-agents

126

 Heuristics
Heuristics allow us to gain manual control over an agent’s actions. They’re

beneficial for debugging and imitation learning.

We need to override the Heuristic method on the agent to use

heuristics:

public override void Heuristic(float[] actionsOut)

{

 // manualValue can be any value we want as a float.

 actionsOut[0] = manualValue;

}

Heuristics are used to override the agent’s actions, allowing us to make

decisions manually on behalf of the agent. We typically do this by binding

actions to Unity’s Input System.

It’s important to note that imitation learning requires a heuristics

override.

Now that we know about inputs, generating actions, and requesting

decisions, we should look at rewards.

 Rewards
Earlier in the book, we discussed how reinforcement learning utilizes

reward values to train the agent. Next, we’ll discuss how to implement

those rewards.

We do this by calling AddReward and SetReward on our agent. We

touched on these methods earlier in the chapter, but as a quick refresher:

• AddReward – Increments the agent’s reward for the

current episode. This method is much like the pseudo

expression: reward += value;

Chapter 6 Unity ML-agents

127

• SetReward – Sets the agent’s reward for the current

episode. This method is much like the pseudo

expression: reward = value;

Let’s discuss the SetReward method in more detail first. SetReward is

ideal for penalizing critical mistakes; you should use it sparingly.

Suppose the agent collides with an enemy, a critical mistake in

our situation. We can implement something like the following code on

our agent:

private void OnCollisionEnter(Collision collision)

{

 // If the agent touches an enemy, add a negative reward

and end the

 // episode.

 if (collision.gameObject.CompareTag("enemy"))

 {

 SetReward(-1.0f);

 EndEpisode();

 }

}

In the preceding situation, absolutely anything the agent does is

irrelevant if the agent collides with an enemy collider. We penalize

the agent and end the episode, which disallows the agent any more

opportunity to be rewarded again for that episode.

This approach can be helpful in some situations but will often result in

the agent missing out on crucial learning opportunities.

In almost all situations, I would instead encourage the use of

AddReward.

AddReward and SetReward can also be called externally by reference

to the agent as the methods are public.

Let’s take a look at our preferred approach, AddReward.

Chapter 6 Unity ML-agents

128

With AddReward, we slightly reward our agents based on if they’ve

done something beneficial to their goal or penalize them if they haven’t.

It’s crucial not to overpenalize your agent, as this can adversely affect

training. You should also try to keep your AddReward values normalized to

a range of -1:1 to improve training stability.

Another excellent tip for time-sensitive tasks is to add a minor penalty

for every step in which the agent did not achieve the goal. Something along

the lines of -0.01:-0.05 is ideal for many situations.

Let’s take a look at the following code example:

private void OnCollisionEnter(Collision collision)

{

 if (collision.gameObject.CompareTag("objective"))

 {

 AddReward(0.5f);

 }

}

public override void OnActionReceived(ActionBuffers

actionBuffers)

{

 AddReward(-0.03f);

}

We reward the player positively for reaching its goal, but we penalize

it for each step to discourage it from taking too long to achieve the goal;

the overall result is that the agent attempts to do the job quicker to get a

higher reward.

This approach encourages the agent to seek out and touch objectives

as fast as possible to maximize its final score at the end of each episode.

Keeping the rewards in clamped ranges gives us a more stable training

experience.

Chapter 6 Unity ML-agents

129

Finally, we now understand everything required to train an agent. It’s

time for us to learn to train an agent.

 Training an Agent
Before we jump into creating and training our own agent, we’ll learn how

to train an existing agent so that you can experience the training process

with as few issues as possible.

We’re going to be retraining the 3DBall sample.

 1) The first step is to open the 3DBall sample scene.

If you cloned the example repository during the

setup chapter, then you will be able to find it in the

following location:

Assets/ML-Agents/3DBall/Scenes/3DBall.unity

 2) As an additional step, go to

Edit ➤ Project Settings ➤ Player ➤ Resolution and

Presentation ➤ Enable the “Run in Background” checkbox.

The training process uses the Python mlagents package we

installed during the setup chapter.

The success of training an ML-Agent is also largely influenced by

hyperparameters.

We glanced over hyperparameters earlier in the book, and

we’ll skip past them for now. For now, know that you can find

some example hyperparameter configurations in the following

directory if you’ve cloned the example repository for the book:

Assets/ML-Agents/config

Chapter 6 Unity ML-agents

130

For training the 3DBall sample, we will be using the

hyperparameters that Unity provided for their 3DBall sample.

You can find this under ../Assets/ML-Agents/config/

ppo/3DBall.yaml.

 3) Open and activate your Python virtual environment

as you did in the setup chapter.

From here, you want to run the following command:

mlagents-learn [3DBall.yaml file full path] --run-id=3DBall-

Example- 1

You can break the command down into the following:

• mlagents-learn – This command tells Python that you

want to use ML-Agents.

• [3DBall.yaml file full path] – Here, you should insert

the full path to the hyperparameter YAML file. This

argument should include the file name and extension

and exclude the square brackets.

• –run-id=3DBall-Example-1 – This argument is required

to specify a unique name for the training profile. This

argument will store your results in a directory name of

your choosing and allow you to resume past training

sessions.

Optionally, you can pass in the --resume argument if you wish

to resume training of the given id or --force if you wish to

overwrite the training. One of these is required if a training
session with the given run-id already exists!
This command should display the Unity logo in the terminal,

and shortly afterward it will display the following message:

Chapter 6 Unity ML-agents

131

[INFO] Listening on port 5004. Start training by pressing the Play

button in the Unity Editor.

 4) Once you receive that message, you’re ready to

begin training. Click the Play button in Unity to

begin training!

The training will then commence, and you will start to receive

training update messages roughly every 15 seconds. The

messages look something like the following:

[INFO] 3DBall. Step: 36000. Time Elapsed: 15.162 s.

Mean Reward: 1.953. Std of Reward: 1.551. Training.

We’re interested in seeing the mean reward value increase over

time as the agent trains. If the mean reward increases over time,

it’s a good indicator that the agent is improving.

You may notice that the mean reward very gradually improves or

even worsens near the start of the training. Then, once the agent

starts to improve, it undergoes rapid improvement. This slow

start, followed by a learning explosion, is a typical pattern when

training ML-Agents.

Your console should look something like this:

[INFO] 3DBall. Step: 36000. Time Elapsed: 15.162 s.

Mean Reward: 1.953. Std of Reward: 1.551. Training.

[INFO] 3DBall. Step: 48000. Time Elapsed: 40.273 s.

Mean Reward: 2.312. Std of Reward: 1.741. Training.

[INFO] 3DBall. Step: 60000. Time Elapsed: 59.462 s.

Mean Reward: 3.517. Std of Reward: 2.722. Training.

[INFO] 3DBall. Step: 72000. Time Elapsed: 79.986 s.

Mean Reward: 6.551. Std of Reward: 6.456. Training.

[INFO] 3DBall. Step: 84000. Time Elapsed: 98.850 s.

Mean Reward: 24.485. Std of Reward: 23.905. Training.

Chapter 6 Unity ML-agents

132

[INFO] 3DBall. Step: 96000. Time Elapsed: 118.766 s.

Mean Reward: 50.343. Std of Reward: 36.911. Training.

[INFO] 3DBall. Step: 108000. Time Elapsed: 135.078 s.

Mean Reward: 83.564. Std of Reward: 27.168. Training.

[INFO] 3DBall. Step: 120000. Time Elapsed: 153.034 s.

Mean Reward: 93.646. Std of Reward: 17.563. Training.

[INFO] 3DBall. Step: 132000. Time Elapsed: 170.700 s.

Mean Reward: 92.631. Std of Reward: 17.688. Training.

[INFO] 3DBall. Step: 144000. Time Elapsed: 188.461 s.

Mean Reward: 100.000. Std of Reward: 0.000. Training.

[INFO] 3DBall. Step: 156000. Time Elapsed: 206.732 s.

Mean Reward: 97.742. Std of Reward: 7.490. Training.

[INFO] 3DBall. Step: 168000. Time Elapsed: 219.169 s.

Mean Reward: 100.000. Std of Reward: 0.000. Training.

[INFO] 3DBall. Step: 180000. Time Elapsed: 237.326 s.

Mean Reward: 100.000. Std of Reward: 0.000. Training.

 5) Once your mean reward reaches a value that you’re

satisfied with or reaches the ceiling at which it can

no longer improve, select the console and press

Control + C to stop the training cycle.

The training will stop, and ML-Agents will export the

current model.

[INFO] Learning was interrupted. Please wait while the

graph is generated.

[INFO] Exported results\3DBall-

Example- 1\3DBall\3DBall-324455.onnx

[INFO] Copied results\3DBall-

Example-1\3DBall\3DBall-324455.onnx to results\3DBall-

Example-1\3DBall.onnx.

Chapter 6 Unity ML-agents

133

 6) Once you receive these messages indicating that

the export is complete, ensure that your Unity is no

longer in play mode.

 7) From there, head to your Virtual Environment folder

and follow the directory that ML-Agents provided.

In my case:

..\Virtual Environment\results\3DBall-

Example-1\3DBall.onnx

From here, copy this file into your Unity assets folder. If you are
experiencing issues copying the file by dragging it into the
Unity "Project" tab, consider using file explorer instead.
Congratulations, you’ve just trained your first agent. The next

step is to assign this model to our agents.

 8) To do this, search for Agent in your hierarchy.

 9) Then select all agents using Shift + left click.

 10) Finally, drag the model from your assets folder into

the Model field on your agents.

You are telling the agents to use your model file for inference by

assigning your model.

To test it out, click the play button. If you’ve trained your agents to a

mean reward of roughly 100 for this sample, then the agents will be good

enough at the task to almost never fail.

You can refer to Figure 6-9 if you are stuck.

Chapter 6 Unity ML-agents

134

Figure 6-9. The model assignment process

Well done on making it this far! Let’s wrap up this chapter before

moving on to building our very first agent.

 Conclusion
It’s been a long and information-packed chapter. Let’s recap what we

learned.

This chapter taught us about the agent, its various overrides, and

public methods.

We covered how to grant rewards or penalties to your agents. We

learned how to do this in a way that results in a more stable learning curve

for the agent.

We covered the various forms of inputs and outputs and how this

translates into an agent interacting with the world.

We covered building a custom sensor for advanced users from the

ground up. We discussed the various types of observations and discussed

visual observations.

Then we learned about heuristics, and we trained our own agent!

In the next chapter, we’ll build our own agent, train it, and run it from

the ground up.

Chapter 6 Unity ML-agents

135

There were many useful tips and tricks in this chapter, but here are a

few to remember:

• Keep your rewards small, within the range of -1:1,

to ensure a smooth, stable training experience for

your agents.

• Don’t overuse negative penalties, or your agent may

not learn any meaningful actions from the training

process.

• Keep your visual observations as small as possible and

only use them when describing an environment with

numeric values is very difficult.

• Experiment with the samples provided!

• Keep your observations relevant; useless observations

will only lead to slower training times and runtime

performance loss.

Let’s begin building our own agent in the next chapter!

Chapter 6 Unity ML-agents

137

CHAPTER 7

Creating Your First AI
in Unity
Now that you know the basics, it’s time to use that knowledge. In this

chapter, I’ll guide you in creating your first ML-Agent from scratch.

We’ll go through the planning necessary, explore potential reward

schemes, discuss how we will have our agent perceive the world around it,

and discuss the various challenges we may face.

We’ll then put this to the test and build your first ML-Agent. We’ll

develop and prepare the environment and the challenge that the agent

will face.

Then you’ll learn about hyperparameters and how they can drastically

affect training time and performance.

We’ll wrap up by training your new ML-Agent and discuss various

techniques to speed up the training, from multiple training zones to

concurrent runtimes connected to the same PyTorch instance.

I will show you how to use TensorBoard and highlight how important it

is in the ML-Agent workflow.

Finally, we’ll polish the ML-Agent, deploy the model, and watch our

new creation. I hope you learn a lot from this chapter and have fun while

learning.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_7

https://doi.org/10.1007/978-1-4842-8998-3_7#DOI

138

 Planning an Agent
Sharpening the proverbial axe is an essential aspect of developing

ML-Agents.

Reinforcement learning can be unpredictable if you are unprepared.

So to develop a great agent, we need to plan. In this section, we’ll do

just that.

You are welcome to follow my example, as the example will be

available on the GitHub repository, but I encourage you to take a swing at

your own design, following the principles you learn here even if you come

back later after following the example.

ML-Agent development takes experience; the best way to get

experience is to throw yourself at it and try your best. With that said, start

small and keep it simple, stupid – KISS.

Let’s discuss the example that I’ll be putting together.

 The Avoidance Sample
The avoidance sample will aim to train an agent capable of dodging and

evading objects moving at variable speeds around its environment.

For this, we will need an agent capable of moving along the world X

and Z coordinates and objects for the agent to avoid.

The agent should be able to move at variable speeds, up to a maximum

speed, in any combination of the XZ axis.

We will also create several smaller objects that move freely around the

training zone for the challenge – starting in a random direction and speed

and bouncing off the boundaries of the training area and each other.

The avoidable objects will utilize object pooling to help with

performance and respawn whenever the agent fails by touching them.

They should also avoid spawning directly on top of the agent.

Chapter 7 Creating Your First ai in unitY

139

The agent’s goal will be to stay alive for as long as possible, avoiding

these avoidable objects.

Let’s look at Figure 7-1.

Figure 7-1. The avoidables sample concept

The next step is to plan how we will reward the agent for achieving our

desired goal, so let’s do that next.

 Reward Scheme
Planning a good reward scheme for an agent is vital to the success of your

training pipeline. This part can often be one of the most challenging steps

to get right.

For example, I had planned on rewarding the agent for every step that

did not collide with avoidables in the avoidables sample. While, in theory,

this is a solid approach for agents that need to survive as long as they can,

in practice, it’s a bit different.

Chapter 7 Creating Your First ai in unitY

140

An earlier version of the avoidables sample had a flaw.

Agents discovered that the likelihood of being hit by avoidables

was dramatically lower in the corners of the training environment.

So they would find the best available corner and hug it, performing

minor movements to avoid stray avoidables moving into their sacred

little corners – or in rare cases, they abandoned their corner in favor of

another corner.

And this is entirely correct – the agent had achieved its goal perfectly.

However, this was not quite how I wanted to showcase the ability of

ML-Agents.

I wanted to showcase the agent dodging as many avoidables as

possible. So I had to amend the planning for the reward scheme.

So as you can see, you might not always get the reward scheme right

the first time.

A solution to this problem is a technique known as reward shaping,

sometimes referred to as reward-based guidance. In reward-based

guidance, you give the agent rewards for completing intermediary steps.

However, it’s worth noting that reward shaping is not perfect, and it’s

important to learn how to do it right. That’s why I’m going to show you

how to implement it.

The most common issue with reward shaping is that an agent can end

up prioritizing the reward shaping over the primary reward.

In most scenarios, you want to avoid this in favor of curriculum

learning, which I will show you in the next chapter.

However, in this scenario, we were fortunate to have a case where

minor reward-based guidance would benefit the agent. So I modified the

agent to get a minor reward with a fall-off value based on its distance to the

center of the training environment.

This reward took some tweaking, as the agent initially decided that the

death penalty was a bargain price for getting that additional reward at the

center of the environment.

Chapter 7 Creating Your First ai in unitY

141

So I tweaked this reward so low that early training would almost not

even notice the reward.

Suppose your agent struggles to achieve the end goal and focuses

too much on the reward generated by reward shaping. In that case, you

should consider reducing the intermediary reward or consider curriculum

learning.

A key indicator that this is happening is that your agent will abuse the

intermediary reward, resulting in an agent that never achieves the desired

end goal while still achieving a high reward score.

So, always plan your reward scheme – try and foresee issues in

advance, even if you don’t always get it right.

To do this, ask what the end goal should be.

For the avoidables agent, we want our end goal to be that the agent

survives for as long as possible – and does it in style. So our final reward

scheme looks like this:

• Passively earn a small reward for every step alive as the

primary goal is to stay alive for as long as possible.

• Passively earn a tiny fraction of a reward based on the

distance to the center of the training environment,

as the secondary goal is to achieve the primary goal

in style.

This reward setup should encourage the agent to favor the center of

the map but still place the most priority on staying alive as its primary

objective.

The next step in our planning phase is to decide how our agent will

observe the virtual world around it. Let’s dig into this next.

Chapter 7 Creating Your First ai in unitY

142

 Observation Plans
The next thing we need to plan is our agent’s observation of the virtual

world. I want to take an approach that will give you the most experience

with various sensors and show you that it’s possible to stack custom

sensors.

So for the avoidables sample, I’d like to use the following two custom

sensors:

• A ray perception sensor, with a custom rotational lock,

will allow our agent to determine the direction and

distance to avoidables. We can stack these observations

to allow the agent to infer velocity and direction.

• A grid sensor with a moderately high resolution

and stacked observations will allow our agent to

have additional supporting information about the

avoidables near it. This sensor will be especially useful

if there is an avoidable behind another avoidable.

So while vector observations would work for this situation, I want to

expose you to the preceding sensors that can handle varying observables.

The RayPerceptionSensor and the GridSensor are both included in

the ML-Agents package and are excellent for various use cases.

The next part to discuss is how our agent will interact with the world.

 Actions Planning
For our actions, we want something that gives the agent greater control

over itself in the movement space. To do this, I will encourage continuous

actions, allowing the agent to control its speed and direction.

Discrete actions typically train faster, but that doesn’t necessarily mean

it’s better for every use case.

Chapter 7 Creating Your First ai in unitY

143

For the avoidables sample, I want the agent to have the ability to

swerve and weave itself through avoidables. To do that, we need a range of

values between -1:1 on our actions; continuous actions are ideal here.

So the action space will be pretty straightforward. We need an action

for controlling the horizontal input and another for controlling the vertical

input – from a top-down perspective.

This setup brings our action space to 2 while allowing the agent to

move diagonally at any angle using a combination of actions.

Let’s discuss the challenges that we should expect next.

 Expected Challenges
While you can’t always anticipate every challenge – for example, the agent

hiding in corners without incentive to stay near the center – you should

always try your best to expect the unexpected.

For the avoidables sample, we have the following expected challenges:

• Balancing our reward structure to ensure that the agent

prioritizes staying alive over everything else

• Ensuring that the agent learns anything meaningful

while failing

• Validating that we configure our reward scheme

and hyperparameters well enough to facilitate the

development of an efficient and effective agent

Learning to anticipate challenges comes mostly from practice and

experience – so remember to throw yourself into ML challenges frequently.

The best way to do this is to build more ML-Agents, leading me to our

next topic.

Chapter 7 Creating Your First ai in unitY

144

 Building Your First ML-Agent
Now that we’ve done some planning, it’s time to start building your

first agent.

For this, the code is available on the GitHub repository, as I’m sure

you’d rather read code in your IDE than directly from the book. I’ll discuss

the general idea of the code here.

You can find the code in the following directories:

\Assets\Scripts\Avoidables\

\Assets\Scripts\Utility\

\Assets\Scripts\Spawners\

First, we need to create a controller for our agent. This controller

will be a class that inherits from Agent. Our first goal is to get this agent

controller working with heuristic controls.

By getting the heuristic controls working, we can debug and test to

ensure that the core movement functionality of our agent is working.

 1) Create a class called AvoidablesAgent, which will

inherit from the Agent class.

I want the avoidables sample to use a Rigidbody-based

movement system, where we dynamically apply force

to the agent to get it rolling around the environment.

 2) For this, create a variable to control our agent's max

speed and acceleration to get movement working.

Once we have that, we can start setting up our actions.

Chapter 7 Creating Your First ai in unitY

145

 3) We know that we want two continuous actions from

our planning: one for movement in the X axis and

one for movement in the Y axis. You can access the

continuous actions through the ActionBuffers of the

OnActionReceived override.

For best practice, we need to clamp the values

we receive to the –1:1 range. Let’s look at the

following code:

Then we can proceed to use these actions to drive our Rigidbody

forces. I’ll use the AddForce() method on our attached

Rigidbody.

In the AddForce() method, I’ll use our inputs multiplied by our

acceleration to create a new direction for our agent.

 4) To clamp our agent to the maximum speed, we’ll

use Unity’s FixedUpdate() method to clamp the

magnitude of our agent’s velocity to our max speed,

which can be seen in the following code snippet:

Chapter 7 Creating Your First ai in unitY

146

 5) The next step is to feed our debugging data to the

ActionBuffers using the Heuristic() override.

To do this, we must cache the ContinuousActions from the

ActionBuffers inside the Heuristic() override. Once cached,

we can use an array accessor to access and modify the data.

For the override data, we’ll be using Input.

GetAxis("Horizontal") and Input.GetAxis("Vertical").

There are better ways to implement this input using Unity’s new

Input System, but this will suffice as we’re only going to be using

the Heuristic override in-editor for the avoidables sample.

 6) We then need to feed this input to the cached

continuous actions via an array accessor. This data

will now override the agent’s decisions if it’s using

heuristics.

 7) An extra thing that we want to do is to clamp

the agent’s local Y position to prevent it from

bouncing into the air when colliding with

surfaces at high speed. We can do this during the

FixedUpdate() step.

Chapter 7 Creating Your First ai in unitY

147

When working with ML-Agents, try to get into the habit of
working in local space, especially with observations, as world-
space observations may impair the agent.

 8) Your agent should now be capable of movement.

To test this out, create a parent gameobject for our

training zone, and add an environment.

If you are following along from the cloned sample for this
book, then you can find a copy of the barebones environment
in the following directory:

\Assets\Scenes\Avoidance\Prefabs\Training Area - No

Logic.prefab

 9) The next step is to create an object for our agent. I’ll

be using a sphere for the agent to facilitate its ability

to roll.

 10) Attach your agent controller and a

DecisionRequester component. Your agent MUST

request decisions for heuristics to work.

 11) Finally, ensure that your agent’s behavior

parameters have a Continuous Actions space of 2.

 12) Click the play button and use WASD or the arrow

keys to move your agent around.

Chapter 7 Creating Your First ai in unitY

148

If your agent does not move, remember to assign it an
acceleration and max speed value above zero, and ensure
that the agent has a Rigidbody. Also, ensure that your agent
component has a reference to the Rigidbody.
If you set up everything correctly, your agent should now move

when you are in play mode and give it inputs.

 13) Our next step is to allow the agent to respawn. We’ll

use the overrides Initialize() and OnEpisodeBegin()

for this.

Try to work in local space so the environment can be copy-

pasted several times around the scene in a later step.

For the spawning, I’ll use a simple Random.insideUnitSphere

multiplied with a variable for the spawn radius when reset.

I’ll also expose a UnityEvent that will allow us to notify the

environment whenever the agent resets.

 14) Great! Next, we’ll create the avoidables that the

agent must avoid, along with a spawner.

For this, we want another smaller sphere with a Rigidbody. We’ll

create a controller that allows it to move in a random direction

with its local Y clamped. I’ll also add functionality to allow it to

reflect its velocity on collisions.

 14.1) The avoidable obstacle controller should

have a speed variable and a reference to

its Rigidbody component. I will also create

Chapter 7 Creating Your First ai in unitY

149

a Vector3 cached variable that we will use

shortly.

 14.2) Add the logic for keeping the ball in motion.

For this, I’ll have the obstacle pick a random

direction on the XY axis and move in that

direction.

 14.3) Finally, let’s allow our avoidable obstacle to

reflect its velocity based on collision.

Chapter 7 Creating Your First ai in unitY

150

 15) Next, we need a spawner to create these avoidable

obstacles in our training environment.

 15.1) Give your spawner the following variables:

 15.2) Expose a public method that resets the

spawned avoidables. We will use this later to

reset all of the avoidable obstacles when your

agent fails.

Chapter 7 Creating Your First ai in unitY

151

 15.3) For performance, I’d encourage the use of a

basic pooling system on your spawner.

 15.4) During the update cycle, check if we can

spawn, and if we can, then spawn new

avoidable obstacles.

 15.5) Create a spawning method to handle the

spawning of your avoidables.

Chapter 7 Creating Your First ai in unitY

152

Chapter 7 Creating Your First ai in unitY

153

 16) Finally, on the agent, if the agent collides with any

AvoidableObstacleController, then go ahead and fail

the agent by rewarding it with a value of –1f, and for

extra measure, reset the agent’s position.

You should also expose and invoke a UnityEvent that we can use

to notify the spawner that the agent failed.

The FailAgent method is detailed on the next page.

 17) Hook your agent’s exposed UnityEvent to the

ResetSpawning() method on your avoidable

obstacle controller.

It might be tempting to end the episode whenever the agent fails, and
while this can work in some cases, in this case, it may work against us,
as the agent may fail to learn anything meaningful from its failures.

 18) Go ahead and test that the foundation of your code

works using heuristics.

Chapter 7 Creating Your First ai in unitY

154

Once you’re happy with the scene, we can move on to giving our

agent observations and adding positive rewards.

 19) We’ll start by adding positive rewards.

 19.1) Expose some variables for this.

 19.2) For this, in the OnActionReceived method,

add a reward per step. I would suggest a very

low value for this.

Then, to ensure that our agent eventually learns to favor

the center of the environment, reward the agent based on

its distance from the center, with being closer granting a

larger reward.

This center distance reward should be ridiculously small, or the

agent might prioritize this over its primary objective.

Chapter 7 Creating Your First ai in unitY

155

 20) Our next step is to create observations for our agent

to allow it to see the world.

Here, we will also update the distanceToCenterPercentage field.

For this, you should use a few vector observations to describe

the state of the agent and then use sensors to give it information

about the environment.

For our vector observations, add the following observations:

• transform.localPosition – Remember to keep

your observations in the local space for better results.

Tracking our agent's local position in the environment

will help it get a sense of positioning.

• rigidbody.velocity – We can have the agent observe

its velocity to have better control when applying new

velocities.

• distanceToCenterPercentage – We can calculate a

percentage affected by a fall-off range for our agent’s

position relative to the center. We can use this value to

modify the tiny reward the agent gets for staying near

the center of the environment. Allowing the agent to

observe this value will enable it to infer a relationship

between it and the subtle reward we give it.

• distanceToCenter – We’ll also allow the agent to see

the distance to center value directly, which makes it

easier for the agent to infer a relationship between

velocity, positioning, and distance to the center.

Chapter 7 Creating Your First ai in unitY

156

These observations total eight vector observations – three for

the local position observation, three for velocity, one for our

distance percentage value, and one for our distance to the center.

Remember to update your observation space in

BehaviourParameters to eight to reflect these observations
correctly – or to whatever value you require if you decide to
use different observations.

 21) Give the BehaviourParameters a stack size of three

for our vector observations, allowing the agent

to infer what changes its actions are making. The

reason for doing this is that your agent is physics

based, and decisions do not immediately result in

the full changes to the agent.

Next, we’ll add a GridSensor to your agent. Let’s look at this fantastic

component in more detail.

 The Grid Sensor
The grid sensor is powerful and valuable for various scenarios.

Interestingly, Eidos-Montréal developed the sensor and contributed it to

Unity ML-Agents.

Chapter 7 Creating Your First ai in unitY

157

They developed the sensor to be able to observe multiple gameobjects

without having rendering constraints, thus allowing the studio to train

their agents on headless instances – a headless instance being a built Unity

game without any rendering support. By doing so, Eidos-Montréal could

train its agents significantly faster than with camera-based techniques.

We’ll leverage this incredible sensor in our project, as it’s a fantastic

tool to learn, and I want to expose you to it. I’d also like to remind you

that you do NOT have to increment the observation space to account for

sensors.

22) Add the grid sensor component (shown in Figure 7-2) to your

agent and copy the following fields. I will show you what they do shortly.

Figure 7-2. The GridSensor component

The grid sensor works by creating a grid of boxes that are box checked

during each observation collection step. BoxCheck() allows us to test an

area to see if any colliders intersect with a given box in space based on its

conditions.

The sensor then collects that data in the form of an image-like

structure that feeds into the neural network.

Chapter 7 Creating Your First ai in unitY

158

This approach is fantastic as it allows the agent to observe many

different objects concurrently without specifying the exact amount of

objects to observe.

Let’s run through the settings and discuss what they do and what we’ll

use for the avoidance sample.

Sensor Name
As we learned while building custom sensors, all sensors need to have

a unique name on the agent. In our situation, we’ll only have a single grid

sensor on our agent, so leaving the name as its default is perfect. We also don’t

typically have a reason to include more than one grid sensor on an agent.

Cell Scale
Next, we have the cell scale. This setting is responsible for determining

the size of each cell on the grid. For our purposes, we want an entity to take

up no more than 2x2 cells, so we want our cells relatively small – I’ll use a

value of 0.25f for the X and Z axes and leave the Y axis scale at 0.01f.

Grid Size
The next value is our grid size. This setting determines how many cell

columns and rows we have, with the Y axis value locked at 1. We will use a

grid size of 32x32 on our X and Z axes, respectively.

When choosing a grid size, it’s important to know that the larger the

grid, the more of a performance impact it will have, both on your training

and inference. A grid size of 32x32 still results in 1024 BoxCheck() calls per

observation step.

You should also be aware that this sensor has a minimum size because

the sensor internally maps the data to an image-like structure fed into a

convolutional neural network.

Depending on your hyperparameter for the vis_encode_type

setting, which we’ll discuss later in the chapter, the following size

restrictions apply:

• simple: 20x20 (the default vis_encode_type setting)

• nature_cnn: 36x36

Chapter 7 Creating Your First ai in unitY

159

• resnet: 15 x 15

• match3: 5x5

• fully_connected: No size limit, but you should only

use this for very small inputs.

Next, we have the Agent Game Object field.

Agent Game Object
This setting should point to the root agent gameobject, and the sensor

uses this internally to disambiguate detections with the same tag as the

agent. By default, it uses the attached gameobject.

Rotate with Agent
This setting is self-explanatory; it determines if the grid should rotate

with the agent; for the avoidables sample, I’ve set this to false.

Detectable Tags
The detectable tags field determines how many and which tags the

sensor can detect, excluding the agent gameobject. For the avoidables

sample, I’ve created a tag called “avoidables” that I’ve tagged all avoidable

objects with, and I’ve configured the grid sensor to detect this tag.

You need to configure at least one tag with gameobjects that use this

tag for the sensor to do anything.

Next, we have the Collider Mask field.

Collider Mask
BoxCheck() calls are quite expensive, but there are ways to optimize

this. We can tell the Unity physics engine calls to ignore specific layers for

optimization.

So what I’ve gone and done is moved all avoidable objects onto the

Avoidables layer.

Then, I configure the grid sensor to only perform checks on the

Avoidables layer.

Chapter 7 Creating Your First ai in unitY

160

The grid sensor defaults to Nothing and needs to be assigned for the

sensor to do anything.

Next, we have the Observation Stacks field.

Observation Stacks
As we’ve learned, we can stack observations to get a history of those

observations.

The grid sensor component defaults to a single stack which shows only

the most recent observation. In the avoidables sample, I will use a stack

size of 2. Setting this value to two will allow our agent to infer the velocity

of the objects moving through the grid.

Increasing the observation stacks should lead to better-inferred

velocity but will significantly impact performance during training time and

result in longer training times.

Compression Type
The compression type field in the grid sensor component lets us

decide if we want to do any compression on the data.

We will use PNG compression, which is also the default.

Using PNG compression is a free optimization that takes no additional

effort and will reduce the data transfer needed between the trainer and

the agent.

Not all sensors can benefit from PNG compression, but luckily for us,

GridSensor can.

Initial Collider Buffer Size
Allocating buffer size is not free, so what we can do is initialize the

buffer with a starting size. Keep this value at how many colliders you

expect the agent to deal with on average.

For the avoidables sample, I’ve used a value of 8 as my initial collider

buffer size.

This setting precedes our next setting – the Max Collider

Buffer Size.

Max Collider Buffer Size

Chapter 7 Creating Your First ai in unitY

161

Much like the initial collider buffer size, this setting deals with our

collision buffer. You want to set the maximum size close to the maximum

amount of collisions you expect the sensor to deal with concurrently.

The higher the value, the more memory usage – albeit quite small. I’ve

gone and used a value of 32 for this.

Show Gizmos
Show gizmos is a debug setting we can turn on to visualize the

observation grid.

Drawing the observation grid is very expensive and should only be

turned on for a single agent during testing. You should turn this off before

starting with your training pipeline.

For the avoidables sample, I have turned this on for the primary agent

that the camera observes.

Gizmo Y Offset
This setting determines the offset on the Y axis at which Unity will

draw the observation grid. This setting is purely visual and does not affect

training.

Debug Colors
For every tag that you configure in the grid sensor, there will be a debug

color that you can change. This setting affects the color of the drawn gizmo

that visualizes the observation if you enable the Show Gizmos setting.

The grid sensor is fantastic, but I’d like to combine it with another

sensor known as the RayPerceptionSensor. This decision mainly shows

you how it’s possible to stack sensors and, as a bonus, gives our agent

additional relevant information to observe for training.

Let’s take a look at the ray perception sensor next.

 The Ray Perception Sensor
The ray perception sensor shoots out several Spherecast() calls, which

are spheres shot outward and notify the agent of a collision. We can use

this to determine which direction the balls are around our agent.

Chapter 7 Creating Your First ai in unitY

162

This sensor is also fantastic as it supports a varying number of

observations.

23) Add the ray perception sensor component (shown in Figure 7-3) to

a child object of your agent.

Figure 7-3. The RayPerceptionSensor3D component

24) Attach the LockRotation class to your ray perception sensor. This

component locks the rotation of the attached gameobject.

This setup provides us with similar functionality to the Rotate with

Agent field provided on the grid sensor, but will require us to enable child

sensors on the BehaviourParameters on the agent.

Okay, let’s look at the RayPerceptionSensor3D!

Sensor Name

Chapter 7 Creating Your First ai in unitY

163

Much like before, each sensor requires a unique name on the agent.

We will only use a single ray perception sensor, so we can leave this name

defaulted to RayPerceptionSensor without any issues.

Detectable Tags
The detectable tags field allows us to specify what collisions the sensor

should care about when performing sphere casts. I’ve set this to conform

to our grid sensor and used a single tag with a value of avoidables.

Rays Per Direction
This value determines how many rays the sensor should shoot out in

the sensor’s direction. I have used a value of 32 for the avoidables sample.

Max Ray Degrees
Next, we have the max ray degrees field, which determines the arc of

the sensor.

Unity appears to have incorrectly implemented this setting, so I

have set this value to 180 to surround the agent’s horizontal plane with

rays fully.

I suspect that this value should be 360 to achieve the same results.

Unity may fix this in a later update.

Spherecast Radius
This setting determines the “thickness” of each ray. A higher value

leads to less accurate detections but requires fewer rays.

A lower value will result in more accurate detections but require more

rays, or the agent may miss some detections.

For the avoidables sample, I found a value of 0.2f to complement our

other settings well. It just takes some tweaking and testing to find good

values for this.

Ray Length
The ray length setting determines how far out the rays should be cast.

Lowering this can have minor performance improvements, but your main

focus should be functionality.

Chapter 7 Creating Your First ai in unitY

164

Keep the ray length as low as possible that it needs to achieve the

desired goal. If our ray length is too long, our agent may detect avoidables

in other training environments.

I found a value of 22f to work great for the avoidables sample.

Ray Layer Mask
Like the grid sensor, the ray perception sensor implements basic

physics optimizations. We can configure which layers should trigger

detections.

I’ve configured the sensor to use the avoidables layer for the

avoidables sample.

Stacked Raycasts
This setting allows us to stack out observations for the sensor. I’ve

found a value of 2 to be a good balance between training time and

performance.

Start and End Vertical Offset
This value affects the Y axis offset for the starting point of the rays.

Leaving this and the end offset at 0 results in perfectly horizontal rays,

exactly what we want.

Ray Hit Color
The ray hit color debug visualization setting simply changes the color

of the gizmo when a ray collides with a detectable object.

I have set this to a shade of red for the avoidables sample. It has no

impact on training.

Ray Miss Color
Much like the prior setting, this setting changes the color of the

gizmo when the ray misses. I have left this value on white for the

avoidables sample.

Now that we have observations for our agent, it’s time for us to build

the training environment, and then we’re ready to move on to the training

pipeline.

Chapter 7 Creating Your First ai in unitY

165

 Building the Environment
When building your environment, it’s highly beneficial to design it so that

it can be copied and pasted multiple times throughout the scene without

affecting functionality. Each environment should be a self-enclosed

segment.

Environments should also be as light as possible on performance to

improve training times.

For the avoidables sample, I want to have the following:

• A floor

• Walls for the avoidables to bounce off of and limit agent

movement

• A spawn controller for avoidables in the given

environment

• A camera to observe our primary training area

I’ve gone ahead and configured the environment for us to discuss.

If you are following along from the cloned sample for this book,
then you can find a copy of the barebones environment in the following
directory:

\Assets\Scenes\Avoidance\Prefabs\Training Area - No

Logic.prefab\

Let’s take a look at this environment in Figure 7-4.

Chapter 7 Creating Your First ai in unitY

166

Figure 7-4. The avoidables sample training area layout in the Unity
hierarchy

For the avoidables sample, I have created a training area gameobject to

hold our agent, spawner, and environment.

The agent contains a child gameobject called “sensor” with our ray

perception sensor and the rotational locking component.

I have a main camera with orthographic rendering top-down over our

primary training area. I have also ensured that the agent’s OnEpisodeBegin

field is linked to the spawner’s ResetSpawning method.

All put together, we have our training environment that can be

duplicated multiple times throughout the scene until the performance

drops while training. For my hardware, I copy roughly 16 training

environments throughout the scene.

Let’s see what the training area looks like in Figure 7-5.

Chapter 7 Creating Your First ai in unitY

167

Figure 7-5. The avoidables sample training area in the Unity
scene view

Once we’ve validated that we can control our agent through heuristics,

avoidables spawning works, and resetting works, we’re ready to move on to

the training process.

We first need to set up a config.yaml file for our trainer to begin the

training process.

The config file contains what is known as hyperparameters, and you

need to understand these before we can effectively train our agent. Let’s

take a look at hyperparameters in our next section.

 Understanding Hyperparameters
Hyperparameters are often the difference between a competent agent and

one that will forever stumble in the dark.

What are hyperparameters, though?

Chapter 7 Creating Your First ai in unitY

168

Hyperparameters are explicitly defined parameters that control the

training process.

Think of hyperparameters like the configuration for our trainer, which

affect nearly every aspect of training – from reward weight to curiosity to

checkpoints and summaries.

We’ll explore every hyperparameter and discuss how they affect the

training process.

It’s vital to understand these, but it’s also something that isn’t an

exact science – training can often involve optimizing these parameters to

improve your agent.

Let’s get started by looking at the configuration file. The configuration

file is a YAML file and follows YAML syntax.

Something to remember is that in YAML syntax, tabs are important.

A configuration file can have any name but must end in the .yaml file

extension. You can enable file extension visibility in your file explorer. Look

at Figure 7-6 for guidance.

Figure 7-6. How to enable file name extensions in your file explorer

Once enabled, you can create a new text file, which you can rename to

have the .yaml extension. You can open this file with a text editor or IDE.

The hyperparameters config follows a nested structure. Unity conveys

this using the following symbol: →
A → B would then indicate that B is a child of A, with a single tab. In

the context of your configuration file, it would look something like the

following example:

Chapter 7 Creating Your First ai in unitY

169

A:

 B:

The root of our configuration file should contain the keyword

“behaviors:” which starts our configuration tree. We follow this by our

agent name, so behaviors → agent_name:.

In the avoidance sample, it would look like this:

behaviors:

 Avoidance:

All arrow notation examples will omit this part of the tree as everything

else in the configuration will follow the agent name with at least

one indent.

For example, the next step in our tree is trainer_type: which will not be

prepended by arrow notation. You must append all settings with a colon.

This setting will look like this:

behaviors:

 Avoidance:

 trainer_type: value

Almost all configurations have a default value and can be omitted from

the file if you do not want to change it.

Now that you understand the arrow notation, I’ll direct you to the

ML-Agents page for the trainer configuration file. This page is excellent at

describing what each setting does and even provides expected ranges.

You can find the page at the following URL:
https://github.com/Unity-Technologies/ml-agents/blob/main/

docs/Training-Configuration-File.md

The parameters to give special attention to are

• hyperparameters → batch_size

• hyperparameters → buffer_size

• time_horizon

Chapter 7 Creating Your First ai in unitY

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Training-Configuration-File.md

170

25) For now, copy the avoidance YAML file from the sample
repository:

\Assets\Scenes\Avoidance\Config\Avoidance.yaml

The avoidance configuration file will provide a decent starting point

for this agent and for various other agents that you might build. Don’t be

afraid to tweak these values within the recommended ranges, but for now,

please stick with the provided configuration.

Our next step is to start training our agent.

 Training Your Agent
Now that you’re ready to train your agent, we’ll look into the training

pipeline in greater depth.

 1) To start, open your virtual environment, and execute

the following command, replacing the values in

square brackets with the relevant information,

omitting the square brackets but keeping

quotation marks:

mlagents-learn "[config_file]" --run-id=[save_name]

This command will start the training process and prompt you to

connect your Unity Editor.

 2) Do so by clicking the play button in the Unity Editor.

You should start seeing your agent navigating around, and the

trainer will post training summaries in your console.

You’re ready to begin scaling your training if this is the case. If
not, I’d encourage you to refer back to the samples and book
to ensure that your code is functioning correctly.

Chapter 7 Creating Your First ai in unitY

171

 3) To stop training, select your console and press

control + c.

The first way that we can scale up your training is by duplicating the

training zones.

 Duplicating Your Training Zones
Duplicating your training zones is as simple as it sounds as long as you’ve

designed your agent and environment to be able to act independently from

other training zones.

 1) Duplicate the environments, moving them away

from each other so that the agents do not touch

each other.

 2) Occasionally restart your training by using the --

force or --resume arguments following your

previous command.

When restarting your training, ensure that your environment
runs at an acceptable framerate.
You can view the current framerate in the game window by

clicking the stats button.

I suggest aiming to keep your framerate above 30 fps for

physics- based problems and above 15 fps for nonphysics-based

problems.

 3) In the avoidance sample, I’ve duplicated the

training zone for 16 training zones – as this is what

my Unity instance handles comfortably. Continue

duplicating and spacing your environments until your

performance nears the abovementioned critical points.

You may have noticed that despite your framerate dropping, you are

still not pushing your PC hardware to its limits.

Chapter 7 Creating Your First ai in unitY

172

To utilize more of your CPU and RAM, we’re able to create builds

that can run simultaneously. We will discuss this process shortly, but it’s

important first to ensure that your training yields positive results.

While you could look at the training summaries, it’s better to have our

training runs graphed so that we can effectively analyze the impacts that

changing our hyperparameters has.

For this, we use a program called TensorBoard.

 TensorBoard and Why It’s Essential for Training
Staring at summaries and trying to remember the changes we made to

our hyperparameters is not an effective way to optimize your agent. That’s

what we have TensorBoard for, and it’s great!

You can access TensorBoard by running the following command in a

new virtual environment window:

tensorboard --logdir results --port 6006

Once you’ve done that, open a browser of your choice. I will be using

Google Chrome for this.

Then navigate to the following URL:

http://localhost:6006/

Doing this will open the TensorBoard web interface.

Alternatively, I’ve included a batch file in the Virtual Environment

folder of the repository. Simply copy this to your virtual environment folder

and run it. This batch file will open your browser and start TensorBoard.

As a limitation, I cannot delay the browser launch until after
TensorBoard has finished loading. So you will need to refresh your
browser after a few seconds.

Once your TensorBoard is open, you will see all of your past results

listed on the left, with your agent’s cumulative reward graphed near the

center of your screen.

Chapter 7 Creating Your First ai in unitY

173

Generally, you’re in a good position as long as your agent
consistently improves. You also don’t want to give up on an agent too
quickly either, as sometimes your agent may just need additional time
to start making a breakthrough.

We’re looking for our agent to eventually plateau at an acceptable

reward level for the task.

Give your agent an hour or two of training, or even longer.
This time depends on the complexity of its goal to ensure that your

agent is improving sufficiently. If not, tweak your hyperparameters in a

new configuration file and rerun the training with a fresh run ID for easy

comparison.

Remember to modify your training command to point to the new
configuration file!

Another thing to remember is that there is no “right” answer to
hyperparameters. It’s an iterative process and I encourage you to
experiment with them once you have this sample training reliably.

To determine that your agent is consistently improving, you should

look for a general upward trend in the graph.

Once you’re happy that your agent is training with a consistent

improvement, it’s time for us to speed up training.

You can see the TensorBoard interface in Figure 7-7.

Chapter 7 Creating Your First ai in unitY

174

Figure 7-7. The TensorBoard interface

Another way to speed up training is by connecting stand-alone builds

to our trainer.

 Connecting Stand-Alone Builds to Python
To connect stand-alone builds to our trainer, we will need a build.

If our agent does not utilize the camera rendering for training, we can

take it further and build a headless build.

In headless builds, Unity strips out a lot of the rendering functionality.

This process will allow us to run even more stand-alone builds

concurrently without the added workload of rendering.

 1) Open your Unity Hub and navigate to
installations. You can right- click your current
Unity installation and select Add Modules. Then,
select Windows Dedicated Server Build Support

and complete the installation.

Chapter 7 Creating Your First ai in unitY

175

 2) Restart your Unity, followed by navigating to File ➤

Build Settings.

 3) This button will open the build settings window.

Select the default scene in the scenes list and

click delete.

 4) Then drag your Unity scene file into the “Scenes In

Build” list and click the Build button.

 5) Unity will now begin compiling your project into

a build.

 6) Once completed, in your virtual environment

window, run the following command without

linebreaks:

mlagents-learn "[config_path]" --num-envs=6 --

env="[build_exe_path]" --run-id=[save_name]

 7) Set the num-envs argument to however many

instances you would like to launch.

The avoidance sample allocates roughly 3GB of RAM per build

that you use for training.

 8) Let the training run for some time, as bulk training

can occasionally appear slower during the start.

Simply monitor your TensorBoard to view your

agent’s progress.

 9) If your agent is plateauing early, consider
multiplying your hyperparameters → buffer_size
by the number of environments.

Chapter 7 Creating Your First ai in unitY

176

 10) Once your training plateaus are acceptable, you can

stop the training using control + c in your virtual

environment terminal.

You’re ready to export and load your model into your editor for

inference.

 Exporting and Loading Your Model
Exporting your trained model is simple.

 1) Copy the omnx file from your virtual environment

results folder to your Unity Assets folder.

 2) Then, in the editor, assign your model to your agent.

 3) Ensure that you set the agent’s mode to either

Default or Inference.

 4) You should now be able to click play and watch your

trained model work its magic.

 Conclusion
Well done, you’ve created your very first ML-Agent from scratch.

In this chapter, we covered the detailed planning steps that you should

take before building an agent. We created our agent and then explored the

grid and ray perception sensors you can use for various use cases.

We then built our training zones and validated that our agent

functioned on heuristics.

You then learned about the many different hyperparameters available

and how to implement them into your configuration file.

Finally, we trained our agent – leveraging TensorBoard for agent

analysis and concurrent headless builds for faster training times.

Chapter 7 Creating Your First ai in unitY

177

We wrapped up by exporting and loading our trained model and

watched our agent perform its task exceptionally.

ML-Agents take practice and experience to perfect, and it’s a journey

worth the challenge.

In the next chapter, I’ll provide you with a challenge that you can use

for practice.

Chapter 7 Creating Your First ai in unitY

179

CHAPTER 8

Solve a Challenge
with AI
In the previous chapter, you built your first ML-Agent from scratch. In this

chapter, I’ll provide you with a challenge to solve using ML-Agents.

If you're up to the challenge, this challenge will also have a bonus

objective.

Afterward, I’ll discuss some extra techniques to consider and touch on

how they work and how you can implement them in future challenges that

you may face.

 The Challenge
We will test your newfound skills now that you’ve built your first ML-Agent.

For your challenge, I want you to create a small ecosystem consisting

of two types of entities. Each environment will feature multiple entities

working together and against each other.

These entities can be agents themselves or controlled by an agent

brain – whichever approach you find more interesting, as long as the

challenge is solved using ML-Agents.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_8

https://doi.org/10.1007/978-1-4842-8998-3_8#DOI

180

 Grazer Agents
Grazer agents are the foundation of your ecosystem. When two or more

grazer agents are in proximity, they should generate a float value called

reproduction.

Once the reproduction value reaches a maximum value, the agent

should spawn a new grazer agent.

Grazer agents can move around but die after a given amount of time –

their lifespan. Their lifespan also decreases faster while moving.

 Predator Agents
Next, we have the predator agents.

These agents should hunt down and consume grazer agents.

If a predator agent comes in contact with a grazer agent, the predator

should consume the grazer agent – increasing the predator’s energy value.

When a predator’s energy value fills to a maximum value, it spawns a new

predator agent.

The energy value of a predator must deplete over time and deplete

faster if the agent is moving. If a predator’s energy value depletes entirely,

you despawn it.

 Bonus Objective
We’re going to make the bonus objective a bit tricker.

I want you to extend the challenge further to get the bonus objective.

I want you to introduce a third agent into your ecosystem.

This third agent must be an agent that a human player can use to consume

grazer and predator agents. I will refer to this agent as an hunter agent.

The hunter agent moves at the same rate as the grazer and predator

agents but can consume a large amount of energy to “sprint,” increasing

their movement speed for the duration of the bonus energy consumption.

Chapter 8 Solve a Challenge with ai

181

The hunter agent passively loses energy and must consume grazer or

predator agents to replenish energy.

 Before You Start
This challenge will be no easy feat, but I know you’re ready to take it on.

If you find yourself stuck, remember that you can always open a

GitHub issue and ask the community or me for help and advice.

I would also love to see your creation once complete – there is a

GitHub issue tag for showcasing your work.

Come and show the community and me what you’ve made with what

you’ve learned throughout this book.

You can find my solution to this challenge in the following
directory:

Assets\Scenes\Challenge\Ecosystem\

Additionally, the next section of this chapter will include other

techniques to consider when completing this challenge, some of which

may help – others being good to know.

 Other Techniques to Consider
ML-Agents offer much more than I’ve shown you during this

introductory book.

While we’ve covered the primary technique in ML-Agents, it’s not

the end of the road. In this chapter, I’ll briefly cover some of the more

advanced techniques you can use to train even more advanced agents.

We’ll start by touching on CL, also known as curriculum learning.

Chapter 8 Solve a Challenge with ai

182

 CL (Curriculum Learning)
Curriculum learning is fantastic for situations where an agent is required

to learn several tasks. In our prior RL (reinforcement learning) approaches,

an agent needs to accomplish its goal to receive a reward – and from that,

the agent learns the association between input, action, and reward.

Suppose you have an agent that needs to navigate through a door to

reach its objective, but the door is locked, and the agent first needs to pull

a lever to unlock the door.

In reward shaping, if you were to reward the agent for pulling the lever,

it might end up training to be highly proficient at pulling the lever and never

develop the interest needed to explore beyond the door to get its main reward.

This hyperfocus is the pitfall of reward shaping and where curriculum

learning shines.

In curriculum learning, we build environments of increasing

difficulty – once an agent learns to master the first stage of difficulty, we

move on to the next – this allows our agents to train more generalized

knowledge and achieve complex tasks.

We perform curriculum learning by specifying environment

parameters within your agent’s config.yaml file. We can use these

environment parameters to dynamically modify our scene or agent at

runtime based on its training progress in what are known as curriculums.

Let's look at the structure that we can add to our config file, following

the config notation that we learned toward the end of the last chapter:

environment_parameters:
This setting is needed in the root tab to specify that we are now

declaring environment parameters.

environment_parameters → [your_variable_name]:
This setting allows us to insert a new key into the environment

parameters. Replace the square brackets and your_variable_name with

whatever you want to use as your key. This setting should be one word and

is case sensitive, followed by a colon.

Chapter 8 Solve a Challenge with ai

183

The standard naming convention for this is to use snake_case.

environment_parameters → [your_variable_name] → curriculum:
Here, we tell the config that we are creating a curriculum for this

environment parameter. All of our curriculum data will be a child of this.

… → curriculum → - name: “[value, ie, “easy”]”
Pay special attention to the dash followed by a space, followed by a

name. The dash indicates that this entry is part of a list. This setting allows

us to specify a name for the curriculum.

… → curriculum → completion_criteria:
This category allows us to specify the completion settings, determining

when the agent will move on to the next curriculum.

… → curriculum → completion_criteria → measure: [reward/
progress]

This setting allows us to choose either reward or progress. The reward

parameter allows us to specify a reward threshold the agent needs to reach

before progressing.

In contrast, the progress setting allows us to specify how long the

agent should train before progressing. In most cases, I would suggest using

the reward measure.

… → curriculum → completion_criteria → behaviour: [agent_
behaviour_name]

This setting allows you to specify which agent this curriculum is for.

… → curriculum → completion_criteria → signal_smoothing:
[true/false]

Here, we can specify if smoothing should be applied. This smoothing

blends the current reward with the previous reward at a weight of 75:25 to

prevent outliers from triggering the next lesson.

… → curriculum → completion_criteria → min_lesson_
length: [value]

This setting allows you to specify the minimum number of steps

required for the agent to progress.

Chapter 8 Solve a Challenge with ai

184

… → curriculum → completion_criteria → threshold: [value]
This setting allows you to specify a minimum reward required before

the agent can progress.

… → curriculum → value: [float_value]
Here, you can specify the value of your environment parameter at the

given step of your curriculum.

Then, in Unity, you can access the current environment parameter by

calling the following line of code:

Academy.Instance.EnvironmentParameters.GetWithDefault(string

key, default value);

It’s worth noting that all environment parameters MUST be of

type float.

An example configuration could look something like this:

environment_parameters:

 my_environment_parameter:

 curriculum:

 - name: avoidance_1

 completion_criteria:

 measure: progress

 behavior: avoidance

 signal_smoothing: true

 min_lesson_length: 100000

 threshold: 20

 value: 5

 - name: avoidance_2

 completion_criteria:

 measure: progress

 behavior: avoidance

 signal_smoothing: true

 min_lesson_length: 1000000

Chapter 8 Solve a Challenge with ai

185

 threshold: 60

 value: 8

 - name: avoidance_final

 value: 12

It’s worth noting that you can also randomize the values of your

environment parameters using samplers.

environment_parameters:

 agent_speed:

 sampler_type: uniform

 sampler_parameters:

 min_value: 8.5

 max_value: 9.5

 avoidables_to_spawn:

 sampler_type: multirangeuniform

 sampler_parameters:

 intervals: [[3, 8], [14, 16]]

 avoidables_speed:

 sampler_type: gaussian

 sampler_parameters:

 mean: 2.3

 st_dev: .5

Uniform
This samples and returns a random number based on the given range,

including the max value.

Multirange Uniform
Much like the uniform sampler, the multirangeuniform sampler

samples and returns a number based on the given range, including the

max value. However, this algorithm accepts a list of ranges.

Chapter 8 Solve a Challenge with ai

186

Gaussian
This samples and returns a value calculated based on an average and a

given standard deviation.

You should use curriculum learning when your task is too complex for

an agent to learn, but you can simplify the goals. The next technique to

consider is BC, also known as behavioral cloning.

 BC (Behavioral Cloning)
Behavioral cloning is a fascinating approach to ML, but the fascination

is not from a pure implementation of behavioral cloning but rather the

implementation of BC in conjunction with reinforcement learning.

Behavioral cloning is a technique in which we can record

demonstrations for our agents to mimic. However, no matter how much

demonstration data you have, the agent will never surpass you.

That’s where the combining reinforcement learning and behavioral

cloning come in.

The combination of these two techniques allows us to train agents

on incredibly complex tasks and will enable them to deviate from our

demonstrations to perfect their solution to the problem, surpassing the

demonstrations.

Implementing BC is straightforward. Simply attach a

DemonstrationRecorder component to your agent, set your path, and

check the record boolean.

Let’s look at Figure 8-1.

Figure 8-1. The Demonstration Recorder component

Chapter 8 Solve a Challenge with ai

187

The number of steps field optionally allows you to specify a maximum

number of steps before the recorder stops play mode. You can leave this at

0 to record until you stop the play mode.

The general rule of thumb with BC is the more demonstrations you

have, the better.

Finally, we must configure our agent to train using the demonstration

data. Open your agent configuration and include the following settings:

behavioral_cloning:

 demo_path: [Full path to demonstration file or folder]

 strength: [0-1, How strongly to affect the policy, typical

0.1-0.5]

 steps: [Int value determines the number of steps to keep BC

active.]

When training, your agent now attempts to clone the behavior in the

demonstration data to aid with training.

This approach is great for complex environments that you can’t

simplify. It’s best to use it in conjunction with reinforcement learning by

keeping the strength lower than 1.

The next technique to discuss is self-play.

 Self-Play
Self-play allows us to easily set up two or more agents to compete against

each other. This technique enables agents to train against other agents.

To configure self-play, we need to assign a team id to our agent’s

behavior parameters. The team IDs should differ between adversaries.

The next step is to open our agent configuration file and add support

for self-play:

Chapter 8 Solve a Challenge with ai

188

self_play:

 window: 10

 play_against_latest_model_ratio: 0.5

 save_steps: 20000

 swap_steps: 10000

 team_change: 100000

Window
The window integer value defines how many snapshots to store for

self-play.

Play Against Latest Model Ratio
The Play Against Latest Model Ratio float value defines how often

to play against the latest agent snapshot. The typical value for this is 0.5,

but it can depend on the situation. Higher values can result in overfitting.

Save Steps
An integer value defines how often to make a snapshot of the brain that

the policy can use for self-play.

Swap Steps
An integer value defines how many steps to wait before swapping the

opponent snapshot.

Team Change
An integer value defines how often the learning and opponent teams

should switch.

That’s all there is to it – your agents will now cycle snapshots between

each other to have a single brain learning at a time against variations of

previous snapshots.

Self-play is incredibly powerful but can take significantly longer to

train, but also typically has more stable learning graphs.

You should use self-play when demonstration data is limited and you

want to improve agents against themselves.

I would highly advise exploring self-play when trying to solve the

provided challenge.

Chapter 8 Solve a Challenge with ai

189

 Tips
• KISS – Keep It Simple Stupid. Whenever building ML-

Agents, always start simple so that you can validate that

your concepts and foundation are sound. Advanced

ML-Agents can take days to train; you want to catch

issues as soon as possible.

• Don’t give up too early. Watching an agent fumble

around can suck, but it may be a few minutes or hours

away from a breakthrough. Monitor your TensorBoard,

and don’t give up too early on training runs.

• Optimize your hyperparameters. Hyperparameters can

always be tuned and improved. It’s one of the hardest

things to get right with ML-Agents. So note your

changes and observe the effects they have on training.

• Successful ML-Agents layer multiple techniques

together. Don’t get in the rut of using a single

technique. ML-Agent supports different techniques,

so layer them, experiment with the results, and explore

the world of machine learning to learn about other

techniques.

• Always push yourself to learn more. This tip follows my

previous tip; find those techniques, learn them, and

apply them.

• Back up your models and checkpoints by using the

appropriate config setting, as there is nothing worse

than overwriting all of your progress with the –-force

argument.

Chapter 8 Solve a Challenge with ai

190

• If you’re using nonrender-based sensors, consider

disabling all of the mesh renderers in a scene to get an

idea of what your agent sees. This approach can often

help with observation problems.

• Use TensorBoard; this is possibly one of the most

powerful tools you have at your disposal outside Unity

and ML-Agents.

 Conclusion
In this chapter, I presented you with a challenge to test the skills you’ve

learned throughout the book. We covered the goals and objectives of the

challenge, and I also provided a bonus objective for you.

Afterward, we touched on some fantastic ML-Agent concepts – CL, BC,

and self-play – and how to implement these techniques in your project.

Finally, we wrapped up some valuable tips to keep in mind when

building ML-Agents.

In the next chapter, I’ll cover the path going forward – as you’ve

completed your introduction to ML-Agents, it’s time to delve further into

machine learning.

Chapter 8 Solve a Challenge with ai

191

CHAPTER 9

Next Steps
In the previous chapter, you solved a complex challenge with machine

learning, and we touched on some additional techniques you can use to

train your agents.

You’ve pushed yourself, learning the basics of ML-Agents, and

understand what’s available.

So, where do you go from here?

To that, I say, be curious and explore.

 Explore
The world of machine learning is ever growing, and there are countless

ways to apply reinforcement learning and other techniques to solve the

world's problems. So explore and constantly hone your mind.

Here are a few ways for you to do just that.

 Additional ML-Agent Functionality
ML-Agents has much more to it than what I could cover in a single

introductory book; there are many features that ML-Agents offer. Explore

the different sensors available to you and build your own.

Don’t feel limited by the virtual world; consider exploring interfaces

between Unity and the real world. An Arduino, ESP32, or Raspberry Pi

project with cameras that stream to Unity and ML-Agents is an exciting

way to give your agent the ability to navigate obstacles.

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3_9

https://doi.org/10.1007/978-1-4842-8998-3_9#DOI

192

If you can simulate it, you can train it, and if you can train it, you
can make it.

 Documentation
ML-Agents also has some of the best documentation and an ever-growing

community of enthusiasts and developers. Consider throwing yourself

into the documentation and becoming a part of this extraordinary

community – perhaps even contributing to the ML-Agents repository.

The documentation can be found on the ML-Agents repository or at

the following URL:

https://github.com/Unity-Technologies/ml-agents/blob/

release_19_docs/docs/Readme.md

You can find the API documentation at the following URL:

https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/

api/Unity.MLAgents.Academy.html

Exploring the documentation is a fantastic way of learning what’s out

there and is an excellent way of identifying what you do not understand.

Always seek to understand, and you will achieve incredible things.

 Additional Reading

If you have a thirst for knowledge, there are some incredible books that I

can recommend.

Suppose you want to learn how to do machine learning and computer

vision with a Raspberry Pi. In that case, the book Machine Learning with

the Raspberry Pi: Experiments with Data and Computer Vision (Technology

in Action) by Donald J. Norris is an excellent read.

What you learn here can be modified to feed back into your Unity

project with a bit of extra learning.

Chapter 9 Next StepS

https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Readme.md
https://github.com/Unity-Technologies/ml-agents/blob/release_19_docs/docs/Readme.md
https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/api/Unity.MLAgents.Academy.html
https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/api/Unity.MLAgents.Academy.html

193

There will be situations where you need to train an agent on a task so

complex that your local hardware will not suffice. In cases like these, you

may want to learn how to build ML models on the Google Cloud Platform.

In this case, a fantastic read would be Building Machine Learning

and Deep Learning Models on Google Cloud Platform: A Comprehensive

Guide for Beginners by Ekaba Bisong. While the skills that Ekaba teaches

you here aren’t directly Unity related, many of the skills here can apply to

deploying Unity ML-Agents to the cloud for training.

 Conclusion
Firstly, I’d like to congratulate you on your excellent progress through this

introduction to ML-Agents in Unity.

You’ve learned so much in this book. You learned about some of the

history behind AI and how we got to where we are today.

You also learned the issues we face and the challenges we must

overcome to create AI responsibly for the future.

You learned how to set up your virtual environments and install one of

my favorite Unity packages – Unity ML-Agents.

You then learned the basics of ML-Agents, and if you were up to the

challenge, you even learned how to build your own custom ML-Agent

sensor. No easy feat.

Together, we built and trained your first-ever ML-Agent, and you

watched your creation stumble into excellency.

You even tried your hand at solving a complex challenge using

machine learning, and if you were up to it, you completed the bonus

objective and shared your results with the community.

Then we wrapped up some further steps so you’re not left in the dark

as to where to go next.

Chapter 9 Next StepS

194

Congratulations, and thank you again for supporting the creation of

books and sharing knowledge.

I hope you had as much fun working through this book as I had

writing it.

The future is in great hands with people like you.

Chapter 9 Next StepS

195

Index

A
ActionBuffers, 99, 122, 123, 146
Actions, 91

ActionBuffer, 122
agent policy, 122
continuous, 123
discrete, 124, 125
IActuator, 122
ML-Agents, 122
OnActionReceived(), 122
types, 122

Actions planning, 142, 143
AddForce() method, 145
AddList method, 115, 116
AddObservation method, 107
AddOneHotObservation()

method, 108
AddReward method, 99,

100, 126–128
The agent

Ball3DAgent, 96
custom implementation, 97
final view of the world, 104
MaxStep field, 97
ML-Agent, 96
override methods (see Agent

override methods)
training, 129–133

connect stand-alone builds
to Python, 174, 176

duplicate training zones,
171, 172

export and load, 176
TensorBoard, 172–174
virtual environment, 170

view of the world, 103
Agent gameobject, 159
Agent override methods

Ball 3D Agent, 97
CollectObservations method, 98
Initialize method, 98
OnEpisodeBegin method, 98
RequestDecision method, 99
void AddReward(float

increment), 99
void EndEpisode(), 100, 101
void RequestDecision(), 99
void SetReward(float

reward), 100
AI-powered robotics, 21
AI road map and classification, 30

limited memory AI
systems, 32, 33

reactive machines, 31
self-aware, 34–36
theory of mind, 33, 34

© Dylan Engelbrecht 2023
D. Engelbrecht, Introduction to Unity ML-Agents,
https://doi.org/10.1007/978-1-4842-8998-3

https://doi.org/10.1007/978-1-4842-8998-3#DOI

196

Artificial general intelligence (AGI),
13, 27, 33–35, 45

Artificial intelligence (AI), 1
bias, 26
diverse datasets, 26, 27
game development

BigScience initiative,
16, 17

BLOOM, 16, 17
GitHub copilot, 15
neural state machine,

character-scene
interaction, 16

in games
Chess to Dota 2, 14

moral and ethical
implications, 27, 28

traditional software, 28
Artificial superintelligence (ASI),

35, 36, 45
AutoML, 11
Autonomous vehicles, 3, 4
Avoidable objects, 138, 139, 159
AvoidablesAgent, 144
The avoidance sample, 139

actions planning, 142, 143
avoidable objects, 138
config.yaml file, 167
expected challenges, 143
observation plans, 142
reward scheme, 139–141

training area layout, Unity
hierarchy, 166

training area, Unity scene
view, 167

B
Ball 3D Agent, 96, 97
Behavioral cloning (BC)

DemonstrationRecorder
component, 186

ML, 186
play mode, 187

Behavior Name, 89
Behavior parameters, 88, 106,

108, 156
actions field, 91
Behavior Name, 89
behavior types, 92, 93
decision requester, 93, 94
ML-Agent, 89
model, 91, 92
observable attributes, 93
Team Id, 93
use child sensors, 93
Vector Observations, 89–91

Behavior types, 93
default, 92
HeuristicOnly, 92
InferenceOnly, 93

BLOOM, 16, 17

INDEX

197

Bonus objective, 180, 181
Brain-Computer Interfaces (BCIs),

23, 24
Brain’s reward mechanism, 49
Burst, 92

C
CameraSensor, 121
Card79, 21
Cell scale, 158
The challenge with AI

behavioral cloning (BC),
186, 187

bonus objective, 180, 181
curriculum learning (CL),

182–186
GitHub issue, 181
grazer agents, 180
self-play, 187, 188
predator agents, 180
tips, 189, 190

Child sensors, 93
City planning, 5
CollectDiscreteActionMasks(Discr

eteActionMasker), 100
Collecting observations, 106, 108
CollectObservations method, 98,

100, 110, 111
CollectObservations(VectorSensor

sensor) method, 106
Collider Mask field, 159
Compute Unified Device

Architecture (CUDA), 10

Consummatory behavior, 49
Content recommendations, 2, 3
Continuous actions, 91, 101, 123
Copilot, 15
Curriculum learning (CL)

agent, 182
agents, 182
environment

parameters, 182–185
Gaussian, 186
Multirange Uniform, 185
progress setting, 183
reward shaping, 182
uniform, 185

D
DecisionPeriod field, 93, 94
Decision requester, 93, 94
DecisionRequester

component, 99, 147
Default, 92, 93
DemonstrationRecorder

component, 186
Detectable tags, 159, 163
Digital mind uploading, 24
Digital twin, 44
Discrete actions, 124, 125, 142
distanceToCenter, 155
distanceToCenterPercentage, 155
Documentation, 192
Dopamine

in animals, 50
chemical structure, 48

INDEX

198

in humans, 48, 50
in machines, 50–53
neurotransmitter, 48
reward system, 48

E
EndEpisode() method, 100
Entertainment, 24, 25
Environment parameters, 182–185
Environments, 165
Extrinsic rewards, 49

F
First ML-Agent

ActionBuffers, 146
AddForce() method, 145
agent’s max speed, 144
avoidable obstacles, 150
AvoidableObstacle

Controller, 153
AvoidablesAgent, 144
BehaviourParameters, 156
continuous actions, 145
ContinuousActions, 146
create controller, 144
create observations, 155
create spawning method, 151
distanceToCenter, 155
distanceToCenter

Percentage, 155
FailAgent method, 153

FixedUpdate(), 145, 146
GitHub repository, 144
grid sensor, 156–161
Initialize(), 148
local space, 148
OnActionReceived

method, 154
OnEpisodeBegin(), 148
Random.insideUnitSphere, 148
ray perception sensor, 161–164
ResetSpawning() method, 153
Rigidbody component, 148
rigidbody.velocity, 155
spawner, 150
transform.localPosition, 155
UnityEvent, 153

FixedUpdate() method, 145, 146
Float observation, 105
The Future of AI

avoid a bad future, 25
BCIs, 23, 24
entertainment, 24, 25
Google, 11, 12
governance, 22, 23
healthcare, 21, 22
IBM, 11
law and justice, 20
life extension, 23, 24
Nvidia, 10
OpenAI, 13
Python Software

Foundation, 9, 10
taxes, 22, 23
Tesla, 12, 13

Dopamine (cont.)

INDEX

199

G
Game AI, 41, 42
gameobjects, 96, 101, 107, 147, 157,

159, 162, 166
GetAction(), 100
GetCompressedObservation

method, 112, 118, 119
GetCompressionSpec, 112, 119
GetCumulativeReward(), 100
GetName, 112, 120
GetObservations(), 100
GetObservationSpec

helper methods, 112
ObservationSpec, 112
variable length observation

spec, 114
vector observation spec, 113
visual observation spec,

113, 114
GitHub

commit, 70
create GitHub issues,

67–70, 73–75
open repository, Unity Hub, 72
pull/fetch, 71
push, 70
sample project, 67

GitHub copilot, 15
GitHub Desktop

clone a repository, 70
download, 67
Fetch Origin, 71
open repository, 69

permission to open, 69
GitHub repository, 5, 66, 68, 78,

138, 144
Google, 11, 12, 21
Governance, 22, 23
Grazer agents, 180, 181
Grid sensor, 142

agent gameobject, 159
BoxCheck(), 157
cell scale, 158
Collider Mask field, 159
component, 157
compression type, 160
debug colors, 161
detectable tags, 159
gizmo Y Offset, 161
grid size, 158
initial collider buffer size, 160
max collider buffer size, 161
multiple gameobjects, 157
Observation Stacks, 160
rotate with agent, 159
Sensor Name, 158
Show gizmos, 161

Grid size, 158
Gym, 44

H
Healthcare, 21, 22
Helper methods

variable length, 113
vector, 112
visual, 113

INDEX

200

Heuristics, 92, 99, 100, 126, 146
History of AI

McCarthy, John, 8
Minsky, Marvin Lee, 9
Turing, Alan Mathison, 8
van Rossum, Guido, 9

Humanity, 4, 5, 19, 21, 23, 25, 26,
35, 36, 47

Hunter agent, 180, 181
Hyperparameters, 40, 129,

137, 167–170

I, J, K
Imitation game, 8
Imitation learning, 36, 38, 39, 99, 126
Inference-only behavior, 93
Initialize method, 97, 98
Input data, 104
International Business

Machines (IBM), 11
Intrinsic rewards, 49–51
ISensor, 106, 110, 111, 118, 121

L
LaMDA AI, 12
Law and justice, 20
LazyInitialize(), 101
Learning environments, 94, 95

3DBall sample, 94, 95
gameobject, 96
SoccerTwos sample, 95, 96

Limited memory AI systems, 32, 33

M
Machine learning (ML), 191–193

AI, 1
annual growth rate, 2
autonomous vehicles, 3, 4
city planning, 5
content recommendations, 2, 3
farms, 4
“folding”, 4
limitations, 2
medical drugs, 4
military, 5
power and electrical grid

management, 4
security, 4
solve problems, 2
surveillance, 5
vaccines, 4

Max collider buffer size, 161
MaxStep field, 97
Medical drugs, 4
ML-Agent components

behavior parameters (see
Behavior parameters)

3DBall, 88
ML-Agents

documentation, 192
functionality, 191
installation with samples,

validation, 83, 84
sample, 84
training environment, 51
training loop, 52, 53

INDEX

201

ML-agents unity package setup
add package by name dialog, 64
install official ML-Agents

extensions, 65, 66
package manager, 63
Version 2.2.1-exp.1, 64

ML with Unity ML-Agents
imitation learning, 39
neuroevolution, 40
PyTorch, 36
reinforcement learning, 37, 38
techniques, 36

Model, 91, 92
Model assignment process, 134
Modern humans, 50

N
Neuralink, 12, 13, 21, 23
Neural state machine, 16
Neuroevolution, 36, 39, 40
Neurotransmitter, 48
Nonrender-based sensors, 190
Nvidia, 10

O
Observable attributes, 93,

106, 108–110
Observation plans, 142
Observations, 103

collection, 106–108
create sensor, 110, 111

observable attributes, 93,
106, 108–110

Observation space, 108, 109,
156, 157

Observation Stacks, 160
ObservationWriter, 115

Add helper method,
Vectors, 116

AddList method, 116
complex types, 115
index, 115
observations, 118
Quaternion type, 118
simple types, 115
Vector3, 116
Vector4, 118

OnActionReceived(), 122, 123,
145, 154

OnAfterDeserialize(), 101
OnBeforeSerialize(), 101
OnDisable(), 101
OnEnable(), 101
OnEpisodeBegin

method, 98
OpenAI, 13–15
OpenAI gym, 44

P
Performance-critical projects, 108
Play Against Latest Model

Ratio, 188
play mode, 187

INDEX

202

Power and electrical grid
management, 4

Precision agriculture, 4
Predator agents, 180
Python, 9, 10, 61
Python setup

command prompt, 79
create virtual

environment, 78–81
installer, 64-bit Windows, 76
install ML-Agents and

dependencies, 81–83
open command prompt, 79
Python 3.7.9, 76
PyTorch, 75
Windows PATH, 77

Python Software Foundation, 9, 10
Python virtual environment, 130
PyTorch, 10, 36, 75, 81, 82

Q
Quaternion, 90, 104, 118

R
Ray perception sensor, 142

component, 162
detectable tags, 163
LockRotation, 162
max ray degrees, 163
ray hit color, 164
ray layer mask, 164
ray length, 163

ray miss color, 164
rays per direction, 163
Spherecast(), 161
Spherecast Radius, 163
stacked raycasts, 164
start and end vertical offset, 164

Reactive machines, 31
Reinforcement learning (RL), 1, 37,

38, 47, 50, 138, 182
RenderTextureSensor, 120, 121
RequestAction(), 101
RequestDecision method, 94, 99
ResetSpawning() method, 153
Reward scheme, 37, 49,

139–141, 143
Reward shaping, 140, 141, 182
Reward system, 44, 47–50,

54, 56–58
Rigidbody component, 148
rigidbody.velocity, 155
Robotics, 4, 21, 42, 43, 121
Robust technology, 5

S
ScaleAction(float, float, float), 101
Security, 4–5
Self-aware AI system, 34–35
Self-driving cars, 1, 3, 10–12, 32, 41
Self-play, 187–188
Sensor, 94, 111

CollectObservations, 111
GetCompressedObservation

method, 118

INDEX

203

GetCompressionSpec, 119
GetName, 120
GetObservationSpec

helper methods, 112
ObservationSpec, 112
variable length observation

spec, 114
vector observation spec, 113
visual observation spec,

113, 114
ISensor interface, 111
Reset, 119
SensorComponent, 112
update method, 119
write method (see

Write method)
SensorComponent, 112
SetModel(String, NNModel,

InferenceDevice), 101
SetReward method, 99, 100, 126, 127
Show gizmos, 161
Space size, 89, 90, 106
SpaceX, 12
Stacked Raycasts, 164
Stacked Vectors, 89, 90
Supercomputer, 11, 17

T
TakeActionsBetweenDecisions, 94
Taxes, 22, 23
Team-based learning, 59
Team-based rewards, 59, 60
Team Id, 93

Tensor, 120
TensorBoard, 137, 172–174, 176, 190
TensorFlow, 10
Tesla, 3, 12, 13
Theory of mind

AGI, 33, 34
vs. limited memory AI, 33

Traditional software systems, 4
Training environment, 53
Training reinforcement

learning agents
negative reinforcement, 59
positive reinforcement, 58
reward system

challenge, ML-Agents, 54
create great ML-Agents, 56
influence training

time, 57, 58
ML-Agent, 54–56

team-based rewards, 59, 60
training area, 53
training times, 53

Transformer, 11
transform.localPosition, 155
Turing test, 8

U
Unity ML agents, 40

package, 36
practical use cases

C#, 41
game AI, 41, 42
OpenAI gym, 44

INDEX

204

robotics, 42, 43
self-driving cars, 41
simulated space, agent

training, 43, 44
Unity setup

new project setup, 62, 63
process, 61
unity input system package, 63

Update method, 119
UpdateSensors, 119

V
Vaccines, 4
Variable length observation

spec, 114

Vector observations, 89–91, 106,
107, 111, 116, 120, 121, 142,
155, 156

Vector observation spec, 113
Virtual environment, 78–81, 193
Visual observations, 120, 121
Visual observation spec, 113, 114
void AddReward(float

increment), 99
void EndEpisode(), 100, 101
void RequestDecision(), 99
void SetReward(float reward), 100

W, X, Y, Z
Write method

ObservationWriter, 115–118

Unity ML agents (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	What Is Machine Learning?
	How We Use Machine Learning in the Modern Day
	Serving Content Recommendations
	Autonomous Vehicles
	Power and Electrical Grid Management
	Vaccines and Medical Drugs
	Farming
	Security and Surveillance
	Military
	City Planning

	Prerequisites
	Conclusion

	Chapter 2: History of AI and Where We Are Today
	The People Who Shaped Artificial Intelligence
	Alan Mathison Turing
	John McCarthy
	Marvin Lee Minsky
	Guido van Rossum

	Modern-Day Companies Paving the Future of AI
	Python Software Foundation
	Nvidia
	IBM
	Google
	Tesla
	OpenAI

	How AI Has Evolved in Games, from Chess to Dota 2
	So, Where Are We Now with AI in Game Development?
	GitHub Copilot
	A Neural State Machine for Character-Scene Interactions
	BLOOM, a BigScience Initiative

	Conclusion

	Chapter 3: The Future of AI and Ethical Implications
	The Future of AI
	Law and Justice
	Healthcare
	Taxes and Governance
	Life Extension and Brain-Computer Interfaces
	Entertainment

	Avoiding a Bad Future
	Bias and Why We Need Diverse Datasets
	So, What Is Bias in AI?
	Why We Need Diverse Datasets

	Discussing the Moral and Ethical Implications
	Why AI?
	Flavors of AI
	AI Road Map and Classification
	Reactive Machines
	Limited Memory
	Theory of Mind
	Artificial General Intelligence (AGI)

	Self-Aware
	Artificial Superintelligence (ASI)

	Machine Learning with Unity ML-Agents
	Reinforcement Learning
	Imitation Learning
	Neuroevolution

	Practical Use Cases for Unity ML-Agents
	Learning How to Build Machine Learning Agents
	Self-Driving Cars
	Game AI
	Robotics
	Simulated Space for Agent Training
	Training Gym for Agents

	Conclusion

	Chapter 4: Dopamine for Machines
	Dopamine
	Dopamine in Humans
	Dopamine in Animals
	Dopamine in Machines

	Training Reinforcement Learning Agents
	How and When to Reward Your ML-Agents
	A Sound Reward System Makes for Great ML-Agents
	How Reward Systems Influence Training Time
	Various Aspects of Rewarding and Punishing ML-Agents
	Team-Based Rewards
	Conclusion

	Chapter 5: ML-Agents Setup
	Unity Setup
	New Project Setup

	ML-Agents Unity Package Setup
	Installing the ML-Agents Extensions Package
	Opening the Example GitHub Project
	Creating a GitHub Issue

	Python Setup
	Creating a Virtual Environment
	Installing ML-Agents and Dependencies

	Validating Our ML-Agents Installation with Samples
	Conclusion

	Chapter 6: Unity ML-Agents
	ML-Agent Components
	Behavior Parameters
	Behavior Name
	Vector Observations
	Actions
	Model
	Behavior Type
	Team Id
	Use Child Sensors
	Observable Attributes

	The Decision Requester

	Learning Environments
	The Agent
	Agent Override Methods
	override void Initialize()
	override void CollectObservations(VectorSensor sensor)
	override void OnActionReceived(ActionBuffers actionBuffers)
	override void OnEpisodeBegin()
	override void Heuristic(in ActionBuffers actionsOut)
	void RequestDecision()
	void AddReward(float increment)
	void SetReward(float reward)
	void EndEpisode()

	Inputs and Outputs
	Inputs, Observations, and Sensors
	So How Do We Create Observations?
	Collecting Observations
	Using the Observable Attribute
	Creating Sensors

	Building Sensors
	GetObservationSpec
	Vector Observation Spec
	Visual Observation Spec
	Variable Length Observation Spec

	Write
	ObservationWriter
	Writer[index] = observation
	AddList(IList<Single>, Int32)
	Add(Vector3, Int32)
	Add(Quaternion, Int32)
	Add(Vector4, Int32)

	GetCompressedObservation
	Update
	Reset
	GetCompressionSpec
	GetName

	Visual Observations

	Actions
	Continuous
	Discrete

	Heuristics
	Rewards
	Training an Agent
	Conclusion

	Chapter 7: Creating Your First AI in Unity
	Planning an Agent
	The Avoidance Sample
	Reward Scheme
	Observation Plans
	Actions Planning
	Expected Challenges

	Building Your First ML-Agent
	The Grid Sensor
	The Ray Perception Sensor

	Building the Environment
	Understanding Hyperparameters
	Training Your Agent
	Duplicating Your Training Zones
	TensorBoard and Why It’s Essential for Training
	Connecting Stand-Alone Builds to Python
	Exporting and Loading Your Model

	Conclusion

	Chapter 8: Solve a Challenge with AI
	The Challenge
	Grazer Agents
	Predator Agents
	Bonus Objective
	Before You Start

	Other Techniques to Consider
	CL (Curriculum Learning)
	BC (Behavioral Cloning)
	Self-Play

	Tips
	Conclusion

	Chapter 9: Next Steps
	Explore
	Additional ML-Agent Functionality
	Documentation
	Additional Reading

	Conclusion

	Index

