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Introduction

Explore the world of machine learning through Unity ML-Agents. In this 

book, you’ll learn about the impact of artificial intelligence and learn to 

build a reinforcement learning agent using the Unity ML-Agents package.

It’s strongly recommended to go into this book with a solid 

understanding of the Unity engine and C#. The instructional chapters 

are written for Microsoft Windows 10, and some steps may vary across 

operating systems.

The book also includes a sample repository with the code we will cover 

in this book and the solution to the challenge proposed in Chapter 8.

You can access this repository at the following URL:  https://github.

com/apress/introduction-unity-ml-agents.

https://doi.org/10.1007/978-1-4842-8998-3_8
https://github.com/apress/introduction-unity-ml-agents
https://github.com/apress/introduction-unity-ml-agents
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CHAPTER 1

Introduction
Artificial intelligence is the future, transforming the world around us, from 

self-driving vehicles to writing the first line in this book. Yet, like every 

other technology that came before it, there will be potential for good and 

evil. How this technology transforms society is up to us.

This technology will be the key to everything, from how we work and 

live to how we think.

We’ll be exploring AI’s deep and rich history, delving into what makes 

up a neural network, the ethical impacts, and broad concepts within 

the field of artificial intelligence – all before digging into the main topic, 

ML-Agents in Unity, where you’ll learn to create your very own machine 

learning agents to solve complex problems with the potential for real- 

world impact.

 What Is Machine Learning?
Machine learning, neural networks, deep learning, and artificial 

intelligence are all words that you’ve already heard. While these terms are 

similar, they do have differences.

Artificial intelligence is a field of computer science in which we give a 

machine the ability to algorithmically process data and make decisions. 

On the other hand, machine learning is a subset of artificial intelligence 

covering the process in which a machine learns to think, much like the 

human brain in a process called reinforcement learning.

© Dylan Engelbrecht 2023 
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The term “thinking” here is used loosely, as our current machine 

learning techniques have limitations – and are rather hyperoptimization 

algorithms that learn to optimize for a given outcome that yields the 

highest success criteria – often reward.

Machine learning enables software to improve its results over time 

without explicitly being programmed how to do so. Instead, we program 

the inputs and observations and let the AI figure out the best outcome.

Machine learning allows us to leverage machines to solve problems 

that are either too complex or time-consuming to program explicitly. 

Often, artificial intelligence will enable us to solve problems and 

challenges with greater accuracy than traditional software or even human 

ability.

So, where is machine learning used in the modern day? Let’s dive 

into some of the most common use cases for machine learning in the 

modern era.

 How We Use Machine Learning in the  
Modern Day
Where does machine learning get used? Machine learning has gained 

supremacy over traditional software in many domains. It may or may 

not surprise you to find how intertwined machine learning is with your 

everyday life and society as a whole.

Machine learning is also a rapidly growing market, with an estimated 

annual growth rate of 44%. Let’s take a look at some of these use cases.

 Serving Content Recommendations

Have you ever used products like YouTube Music or Spotify? Netflix? Or 

perhaps TikTok? These products can serve us customized content choices 

within minutes of using them, almost perfectly to our tastes.

Chapter 1  IntroduCtIon
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These various platforms and products use machine learning to 

evaluate the content you might be interested in and prioritize content that 

would keep you engaged and using the product for longer. The platform 

serves content that you enjoy, thus driving engagement and, in turn, 

revenue – and it’s all powered by machine learning.

ML, or machine learning, does this by taking various metrics, such as 

time watched, app usage, and exit points, to generate a reward/penalty 

score associated with the type of content. The platform uses the reward/

penalty score to train an ML network to most accurately judge what kind of 

content will keep you, as a user, engaged for the longest.

Since you get content relevant to your tastes, you stay on the 

application for longer, view more adverts, or are more inclined to pay for a 

subscription, driving revenue growth for the company.

 Autonomous Vehicles

A possible future is that most of our transport runs completely 

independent of human intervention. This future is the goal for 

autonomous vehicles, such as self-driving cars, an advanced autopilot for 

aircraft, and various public transport sectors.

Self-driving cars have become somewhat of exponential technological 

growth, with companies like Tesla at the forefront of this incredible 

technological innovation. ML empowers vehicles to make decisions 

rapidly and effectively where conventional software would struggle.

The approach to fully autonomous vehicles is still an ongoing 

field but typically includes multilayered ML approaches. A typical 

approach in autonomous vehicle AI is to use an ML agent to identify the 

environment around the vehicle and parse that information into a virtual 

reconstruction.

Another ML agent or traditional software-based solution can then use 

this reconstruction to make real-time decisions.

Chapter 1  IntroduCtIon
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We can expand autonomous vehicle AI further by allowing 

autonomous vehicles to communicate with one another, sharing 

information and data for an additional layer of spatial awareness.

 Power and Electrical Grid Management

Humanity is producing and consuming more power than ever, with 

electrical grids becoming far more complicated.

Traditional software systems are great as a foundation for these 

complex electrical networks but struggle to adapt to fluctuating power 

usage. We can use ML to optimize these electrical grids to predict network 

usage and load, thus saving electrical companies money and providing 

humanity with less wasted energy – and leaving a smaller carbon footprint.

 Vaccines and Medical Drugs

ML has proven to be an incredible tool for fighting viruses by assisting 

scientists in creating various vaccines and effective medical drugs. 

Machine learning can conceive of protein structures in a process known 

as “folding” that would take conventional methods and software years to 

achieve.

 Farming

AI enables farmers to achieve higher crop yields with improved quality in 

a process known as precision agriculture. We can achieve this precision 

agriculture by optimizing watering cycles to powering farming robotics 

that is becoming increasingly popular on various farms.

 Security and Surveillance

Security is another domain that significantly benefits from advances in 

artificial intelligence and machine learning. From identifying suspected 

criminals to routing security personnel, ML has its part to play. ML is also a 

Chapter 1  IntroduCtIon
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key technology in surveillance, a topic that we’ll discuss later in this book, 

where we’ll discuss the ethical implications.

 Military

War never changes. Any technology that we can militarize will be. This 

point is especially true for a robust technology like machine learning. 

Various military powers leverage the power of ML to create powerful, 

intelligent weapons and defense systems and even assist with tactical 

planning and broad predictions.

Military applications of ML are also a domain that should be subject 

to moral and ethical debates, as weaponized artificial intelligence poses a 

severe risk to humanity if used carelessly.

 City Planning

City planning is a sector where machine learning has incredible potential 

if used correctly concerning the privacy and freedom of its citizens. As 

our technology evolves, so do our cities. Various cities worldwide are 

incorporating machine learning to optimize how we plan our roads, route 

our traffic, monitor and police crime, and various other elements.

 Prerequisites
To get the most out of this book, you’ll occasionally need to get example 

code from the GitHub repository, which I will link throughout the book. 

This book does assume that you have experience in C# and a decent 

understanding of Unity3D.

Finally, you will also need some pretty significant hardware. I would 

suggest at least 32GB of RAM – 64GB of RAM if you intend to train more 

advanced models. Additionally, a good CPU is also a requirement.

Chapter 1  IntroduCtIon
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 Conclusion
In this chapter, we looked at what we’ll cover in this book. We touched 

on the prerequisites you’ll need to get the most out of this book, and we 

explored the various use cases for ML and AI today and how it’s starting to 

shape our modern society.

We’ll look at the configuration and setup of these prerequisites later 

in the book. In the next chapter, let’s start our journey by examining AI’s 

history.

Chapter 1  IntroduCtIon
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CHAPTER 2

History of AI 
and Where We Are 
Today
In this chapter, we’ll explore the history of artificial intelligence and how it 

evolved into what it is today. We’ll begin our story in the United Kingdom 

shortly after the Second World War.

 The People Who Shaped 
Artificial Intelligence
Throughout recent history, incredible computer scientists and 

mathematicians have been at the forefront of AI research – from building 

machines with vacuum tubes capable of behaving similarly to neural 

networks in modern AI to founding key research divisions at major 

universities.

One of the most notable people in AI is a person by the name of Alan 

Turing, a name that you’ve likely heard before.

© Dylan Engelbrecht 2023 
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 Alan Mathison Turing
Alan Turing is considered by many to be the father of modern computer 

science.

He was among the people who made significant contributions to 

modern computing and was deeply fascinated with machines capable of 

thought.

He also made various contributions to the world of cryptoanalysis, 

cracking the Enigma code during the Second World War.

Alan also created what he called the “imitation game,” which later 

became known as the Turing test. The Turing test is a test of a machine’s 

ability to demonstrate intelligent behavior indistinguishable or equivalent 

to a human being.

Turing introduced the test in his 1950 paper titled “Computing 

Machinery and Intelligence.”

While the Turing test was originally designed to test a machine’s ability 

to demonstrate intelligent behavior, there has been a debate that the 

Turing test is more of a test of deception than intelligence. This debate has 

largely been sparked by Google’s LaMDA, or Language Model for Dialog 

Applications.

Regardless, to date, no machine has successfully beaten the Turing 

test, but perhaps someday soon, this may change.

 John McCarthy
Considered the founder of artificial intelligence by many, computer 

scientist John McCarthy coauthored the paper that coined the term 

artificial intelligence along with Claude Shannon, Marvin Minsky, and 

Nathaniel Rochester.

Chapter 2  history of ai and Where We are today
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 Marvin Lee Minsky
Minsky was a computer scientist who helped shape artificial intelligence 

as it is today. He was a cofounder of MIT’s AI Laboratory and wrote several 

publications on AI and philosophy.

 Guido van Rossum
Guido is a programmer and creator of the massively successful and 

influential programming language Python.

I’ve included him due to his indirect contributions to the field of AI 

due to the influential nature of the programming language he wrote.

 Modern-Day Companies Paving 
the Future of AI
We’ve looked at a few people who helped shape the early history of artificial 

intelligence and paved the road for more advancements in the field.

However, modern-day AI advancements have become enormous feats 

of engineering involving sizeable teams and significant funding. As such, 

companies and their teams accomplish most AI developments in the 

modern day.

Let’s look at some of the most noteworthy companies and their 

contributions to the field of artificial intelligence.

 Python Software Foundation
While not focused on artificial intelligence, the Python Software 

Foundation has indirectly made significant contributions to the world 

of AI through fostering the development and community of the popular 

programming language Python.

Chapter 2  history of ai and Where We are today
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Python has become one of the most popular languages for working 

with and developing artificial intelligence.

Python’s success within the AI domain is likely due to the consistency 

and simplicity of its design. Python has amassed an incredible library of 

codebases for manipulating and interpreting data and powerful machine 

learning frameworks, most notably PyTorch and TensorFlow. We’ll discuss 

these frameworks later in the book.

Still, without the Python Software Foundation, Guido van Rossum, and 

the massive community collaboration, AI and machine learning would be 

far behind where it is today.

 Nvidia
Nvidia is a company with a diverse range of products, from graphics cards 

to data center CPU chips all the way to consumer-level gaming hardware. 

Nvidia is a massive contender within the world of artificial intelligence 

research, especially for its work on CUDA or Compute Unified Device 

Architecture. CUDA has been a significant advantage for machine learning, 

as it allows the software to perform general-purpose processing on GPUs 

that support the architecture, significantly improving AI performance.

They leverage artificial intelligence and machine learning to power 

self-driving cars, provide better graphics performance for consumer 

gaming, and power intelligent machines.

The company even uses artificial intelligence to improve its chip 

design, a considerable step toward machines capable of self-improvement.

Jensen Huang founded Nvidia in April 1993, primarily focusing on 

PC graphics, where it helped the gaming industry become the massively 

successful market it is today.

Talking about hardware, the next company is IBM.

Chapter 2  history of ai and Where We are today
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 IBM
International Business Machines, or IBM, is a company rooted in 

the origins of modern computing. IBM created some of the first 

supercomputers used for artificial intelligence.

One such supercomputer is Deep Blue, an iconic machine that was the 

first to beat the former reigning chess world champion, Garry Kasparov. 

This victory resulted in Deep Blue being the first machine capable of 

winning against a world champion chess player and marked a significant 

milestone in the development of artificial intelligence.

IBM has since contributed to the development of artificial intelligence 

and developed Watson, an AI named after the founder and first CEO of 

IBM, Thomas J. Watson. Watson is capable of answering questions asked 

in natural language and was able to beat human players in the game 

Jeopardy!.

 Google
Google is a household name and far more than just a search engine. 

Google has contributed to the world of AI and machine learning through 

self-driving cars, cloud computing, and AI research and development.

This company is responsible for the development of several AI 

technologies, namely:

• AutoML – AutoML is a product developed by Google 

that attempts to democratize AI by allowing developers 

with limited exposure to machine learning to build and 

train quality artificial intelligence models to suit their 

business needs.

• Transformer – Transformer is a novel AI architecture 

intended for conversational AI development.

Chapter 2  history of ai and Where We are today
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• LaMDA AI – LaMDA is a conversational artificial 

intelligence capable of remarkable conversational 

skills. Google built LaMDA atop its Transformer 

architecture.

 Tesla
Electric vehicle (EV) company Tesla has made significant advancements in 

AI with their self-driving car technology.

Tesla uses a hybrid approach to self-driving vehicles, using AI to 

interpret the data from the vehicles’ various sensors to reconstruct a 

virtual environment where the car can follow programmed rules to drive. 

These commands are then sent to the vehicle, causing it to operate, seldom 

needing a driver’s input.

Tesla plans to use this virtual reconstruction AI in possible future 

Tesla products, such as their AI helper robot, Optimus – a general-purpose 

robotic humanoid.

Tesla’s founders include Elon Musk, a business magnet who also 

founded various other companies that utilize AI in some form or another; 

among them include

• SpaceX – Registered as Space Exploration Technologies 

Corp. SpaceX is a space launch provider, spacecraft 

manufacturer, and, more recently, a satellite 

communications company. SpaceX uses an  

AI- powered autopilot that allows its rockets to navigate 

from the launch pad and dock with the International 

Space Station.

• Neuralink – Neuralink is another company founded by 

Elon Musk. Neuralink aims to create a powerful brain- 

to- computer interface technology called Neuralink 

Chapter 2  history of ai and Where We are today
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and uses advanced AI to interpret and parse signals 

received from the thousands of Neuralink sensors in 

the brain.

• OpenAI – OpenAI is the more relevant company on this 

list for the book. Elon Musk is one of the founders of 

OpenAI, a research lab that started as a nonprofit but 

later split into two entities, the for-profit OpenAI LP and 

the nonprofit OpenAI Inc.

OpenAI has contributed to AI and ML and made significant landmark 

achievements, such as creating an AI that beat the Dota 2 world 

champions. It also created AI models such as DALL-E, capable of creating 

realistic images from a piece of text, and GPT-3, a powerful model capable 

of writing code, among other things.

Let’s look further at OpenAI, the next company on the list.

 OpenAI
OpenAI aims to further the field of AI, aiming for the long-term goal of 

creating a safe AGI – or artificial general intelligence.

An AGI is an AI that can perform several different tasks and overcome 

various challenges rather than being trained in a single task. OpenAI has 

created a variety of AI and ML agents throughout its existence, from GPT 

to DALL-E.

They also made OpenAI Five, a team of five AI agents that defeated the 

reigning Dota 2 championship team, OG – 2:0. This incredible engineering 

feat demonstrated AI’s ability to achieve expert-level performance, learn 

human-AI cooperation, and operate at an Internet scale.

Chapter 2  history of ai and Where We are today
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 How AI Has Evolved in Games, from Chess 
to Dota 2
AI has a long history in games – from games as old as chess to modern 

video games like the successful Dota 2. Researchers once believed that 

the pinnacle of artificial intelligence would be the day that AI could beat a 

grandmaster at chess.

There was a belief that AI would need to be conscious to think well 

enough to play chess. This belief turned out to be far from the truth; while 

Deep Blue’s chess victory was a crowning achievement in the world of AI, 

it was only the first mile of the road that we’re on today.

With the impressive funding and rise of massive development studios 

focusing on machine learning and AI, we’ve seen technologies and AI 

advancements surpass the earlier Deep Blue. In more recent history, OpenAI 

created their OpenAI Five. This AI agent can interpret pixel data from the 

screen and make decisions in a complex Dota 2 game alone and in AAM.

AI in games isn’t always machine learning. Most game AI is hardcoded 

logic, often purposefully made to make mistakes. An AI that’s better than 

the best human players is not fun for the average human player. Hybrid 

approaches to hardcoded AI and machine learning for game AI are a trend 

in the game development industry.

 So, Where Are We Now with AI 
in Game Development?
Much of the work and research on machine learning in the game 

development industry focuses on reducing labor-intensive and 

monotonous tasks. AI is a powerhouse when it comes to game tools.

Let’s look at a few examples of how AI technologies can aid us in 

building powerful tools that free up artists, programmers, and designers so 

that we can focus on innovating rather than monotonous boilerplate work.
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 GitHub Copilot

If you’re a developer, you’re well familiar with GitHub, and if you’ve kept 

your finger on the pulse of industry-changing technologies, then you may 

have heard of GitHub copilot.

Copilot is an AI pair programmer. The concept of pair programming 

has been around for a long time, where you and another developer sit and 

watch the same screen while programming. Pair programming allows you 

to share ideas rapidly, brainstorm code solutions, check for errors, and 

improve the overall quality of the code.

The problem is you don’t always have another developer to pair- 

program with – so what if we could have a neural network fill that role 

for you? Impossible? It turns out programming languages are similar to 

spoken languages – so much so that GitHub was able to take OpenAI’s 

GPT-3 agent and train it on the entirety of its open source codebase.

Out of this comes GitHub copilot, an AI agent capable of suggesting 

code, writing entire boilerplate classes, and even writing and completing 

code comments. While it does require a knowledgeable developer to 

review the suggestions, it does a pretty good job of automating many less 

exciting tasks.

While copilot is incredibly powerful, it has sparked an ethical 

dilemma – if an AI writes code, who owns that code? This copyright gray 

area rings true, especially if a company trains an AI on another company 

or developers’ code. That said, GitHub copilot only uses open source 

code as training data for the agent, so one may be able to compare it to a 

developer learning from another developer since the AI doesn’t directly 

copy the code.

We’ll discuss many more ethical dilemmas AI brings to the table later 

in this book.

Let’s move on to the next AI agent powering game development tools – 

one capable of generating novel animations from training data.
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 A Neural State Machine for  
Character-Scene Interactions

One such example is a neural state machine proposed by authors 

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito in their research 

paper titled “Neural state machine for character-scene interactions.” You 

can read their research at https://doi.org/10.1145/3355089.3356505.

A neural state machine is a form of character animation controller. The 

neural state machine is a neural network that dynamically creates novel 

animations for a game character based on the context of the situation, user 

input, and creative input from the art team. The agent then uses reference 

and training data to create novel, fluid, and near-perfect animations.

The impressive part is the ability of the neural network to take 

information about the character’s immediate environment to better tailor 

the animations to the situation.

The agent voxelized the geometry in the surrounding environment and 

parses that data to make decisions in real time about its environment.

Another tool we’re going to look at is a language model, rather than a 

tool, but it may aid researchers and developers in creating tools accessible 

to the average developer, artist, or designer. Let’s take a look at BLOOM, a 

large language model that’s accessible and open source.

 BLOOM, a BigScience Initiative

Most large language models have been inaccessible to developers, with 

strict restrictions on commercial use. This closed nature of large models 

is understandable due to the expensive nature of training models. 

The second factor is that large AI companies use these models in their 

products, so giving everyone access would not make business sense. 

Thirdly, powerful open source AI models pose ethical risks and concerns.

This caveat of access is where BLOOM comes in. BLOOM is the largest 

open source LLM, or large language model, recently released.
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BLOOM features an astounding 176 billion parameters compared 

to GPT-3’s full model, which contains 173 billion. BLOOM has more 

parameters and supports many more languages, and due to its open 

source nature, it supports 56 languages.

All of this, and BLOOM is entirely open source, with a “RAIL” license, 

short for Responsible AI License. Developers and researchers trained 

BLOOM on France’s Jean Zay supercomputer, thanks to a compute grant 

worth an estimated €3M from research agencies, CNRS and GENCI.

You can access BLOOM at the following link: https://huggingface.

co/bigscience/bloom.

 Conclusion
In this chapter, we dove into the history of AI. We explored and learned 

about the various people and companies that made AI what it is today. 

In the following chapter, we’ll look into the future of AI and where this 

technology could take our society.

We’ll also explore the ethical ramifications of this technology and 

discuss how we can mitigate the risks of AI development.
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CHAPTER 3

The Future of AI 
and Ethical 
Implications
In the previous chapter, we discussed the origins of AI and the people and 

companies that shaped where we are today. In this chapter, we’ll glance 

at what the future of AI might hold and how it could impact our society 

and discuss the ethical implications of AI and why we need to develop AI 

responsibly with these factors in mind.

AI has a long road ahead, with us developers at its forefront. It’s up to 

us to build AI in a way that contributes positively to humanity.

To do so, we need to consider the future of AI development and how it 

may affect the lives of people who use it – directly or indirectly. It’s up to us 

as developers to ensure that our AI benefits humanity.

To achieve this, we need to develop inclusive AI, mitigate bias in our 

training data, and expand on AI research. Let’s look into what the future of 

AI might hold in the coming decades.
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 The Future of AI
To better understand how to develop responsible AI, we need to picture 

what the future might look like with responsible AI.

 Law and Justice
AI has the potential to revolutionize the judiciary system. A possible 

future might offer AI agents capable of providing everyone with access to 

affordable legal protection and a fair means of prosecution and judgment, 

free of bias.

Law is at the heart of our society. Businesses, daily life, and rights are 

all affected by it.

The legal services industry is massive – estimations exceeded $700 

billion in 2020. Yet, legal services are often out of reach to lower-class 

households; the ones who need it most cannot afford good legal services.

In the future, AI may prove vital in democratizing access to affordable 

legal services.

We could see AI lawyers, prosecutors, judges dealing with small claims, 

and lower-end legal services. Having AI involved in law could provide 

unbiased rulings or assist human lawyers with higher-end cases.

The risk here, however, is that for AI to provide unbiased legal services, 

we will need to eliminate bias in training data – one of AI’s biggest 

challenges.

AI could help lawyers find the best course of action for a legal case in a 

world where we have nearly eliminated bias from training data.

This assistance could be anywhere from removing the monotonous 

work of combing through past cases to providing the public with 

automated legal services at a highly affordable rate.
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 Healthcare
Another great field that AI can contribute to is healthcare. We could train 

AI agents to assist doctors in diagnosing patients, minimize human error in 

surgery, and pave the way for further advancements in vaccine research.

This AI assistance could dramatically reduce the cost of surgeries and 

make healthcare more affordable and available to everyone. AI-powered 

robotics could even perform specialist surgeries, giving low-income 

households lifesaving access to brain surgeries and other specialist 

operations.

One might think AI-powered robotics would not be able to perform 

on par with human surgeries, but robots are far more accurate than 

the human hand. It’s why surgeons use robots like the da Vinci 

Surgical System.

Neuralink and Card79 are already developing other excellent examples 

of surgery robotics.

Neuralink is developing a robot with its industrial design partner, 

Card79, capable of performing the brain surgery required for the Neuralink 

brain-to-computer interface chip.

The long-term goal of Neuralink is to keep humanity relevant with the 

next generations of AI.

But that’s just one area of healthcare.

AI is also exceptional at folding protein structures, where the final 

structures of proteins are calculated, a slow and costly process in 

traditional environments. However, with the use of AI, the cost of protein 

folding has gone down dramatically.

Recently, Google made a significant contribution to this field with its 

AlphaFold AI.

This technology will enable researchers to synthesize various new 

drugs and medications, hopefully someday curing human disease or, at the 

very least, making all diseases and conditions treatable within the coming 

decades.
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In the coming decades, we may see a day when medication is affordable 

and easily accessible to those who need it – genuinely giving everyone the 

right to affordable healthcare, regardless of socioeconomic standing.

 Taxes and Governance
In the coming decades, we may see the adoption of ML agents for 

designing, or at least assisting with, the development of fair taxation 

policies that do not impede innovation.

Research into the feasibility of ML development of taxation policies is 

already well underway, with promising results.

A great example of this research is a paper by Stephan Zheng, 

Alexander Trott, Sunil Srinivasa, David C. Parkes, and Richard Socher, 

titled “The AI Economist: Taxation policy design via two-level deep 

multiagent reinforcement learning.”

You can read the full paper with the following DOI:10.1126/

sciadv.abk2607

The paper proposes using multiagent ML agents to optimize taxation 

policies using reinforcement learning. This optimization focuses on 

balancing equality and productivity.

The research uses ML agents in a simulated environment to simulate 

an economy consisting of both a single-step economy and a gather-trade-

build economy. The AI agents representing economy participants and the 

AI that manages policies learn to adapt to each other.

The paper’s results indicate that an AI policy maker provides various 

advantages over traditional systems and could be helpful in policy making 

in the future.

So, it’s not far off to imagine a world in which taxation policies are 

primarily driven by AI agents continually adapting to the economic climate 

and the world around us. A policy AI in the future could redistribute 

wealth where it’s needed, invest in infrastructure, and adapt as  

needed – with far better foresight than human policy makers.

Chapter 3  the Future oF aI and ethICal ImplICatIons



23

This sense of fairness could increase taxpayer confidence and allow 

even more efficient taxation.

Next, let’s examine how AI may even help us with life extension and 

how AI might revolutionize how we interact with the machines and devices 

around us or even each other.

 Life Extension and Brain-Computer Interfaces
Extending human life has been a goal for humanity for centuries, from 

folklore to modern medicine. We’re finally reaching a point in our society 

where we’re starting to understand the building blocks of the human body.

Various companies are working on prolonging human life, enabling us 

to lead longer, healthier lives. Machine learning enables these companies 

to synthesize new drugs and better understand our cells.

On the other side, we have brain-computer interfaces or BCIs for short.

The BCI side of technology has been relatively slow to advance, likely 

due to the most invasive technology, high cost, and low consumer use 

cases outside those who use BCIs as a disability aid.

But what if we used BCI for more than aiding disabilities? The 

technology can potentially treat disability, brain disease, and possibly, 

one day, even death. And according to Elon Musk, it might even save us 

from AI.

If artificial superintelligence emerged, it could likely make humans 

obsolete as an AI of this nature could far exceed any human intelligence.

In such a case, we would need a way to remain relevant. Neural 

technology company, Neuralink, was founded for that exact reason as 

its long-term goal. In the coming decades, Neuralink aims to create a 

consumer-grade BCI capable of two-way communication between a user’s 

brain and electronic devices.

This advanced BCI would, in theory, create a form of AI layer for our 

brains, allowing us to utilize technology to boost our mental capacity. The 
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BCI could use AI to interpret our brain signals, allowing the machine to 

understand the user’s thoughts.

However, it doesn’t stop there. According to Ray Kurzweil, an American 

inventor and futurist, we may see digital mind uploading perfected by the 

mid-2030s.

Digital mind uploading is the concept of fully reconstructing the 

human brain within a simulated space, allowing humans to become 

entirely software based if they choose to.

Ray Kurzweil specializes in AI research at Google and has made many 

accurate estimations on the progress of technology over the years.

So perhaps it’s not so far-fetched to believe that humans might become 

software based in the coming decades in the evolutionary race against the 

AI we create.

 Entertainment
AI is becoming more intertwined with our entertainment and how 

companies serve us content and AI-generated content, which we may see 

become more prevalent in our society over the coming years and decades.

We may see AI-generated art and music become more prevalent – 

and AI assistants helping writers build their worlds. AI-generated art is 

already becoming easily accessible to the average user. AI is also capable of 

creating music that – at least in my opinion – is pretty good.

One such AI is Nvidia’s AIVA, Artificial Intelligence Virtual Artist, 

capable of producing incredibly detailed and sophisticated musical pieces.

Another AI tool comes from the company Amper Music. Musician 

Taryn Southern created an incredible song using AI tools. It showcases 

what’s achievable today. The song is called “Break Free” by Taryn 

Southern.

For creating the song, Taryn used a combination of various AI tools – 

with lyrics and vocals done by her. She created the visuals with Deep 
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Dream Generator, vocal production and arrangement by Ethan Carlson, 

and the music is composed by Amper AI.

These songs show how powerful AI is today, but in the coming 

decades, we’re likely to see AI composers become more prevalent in 

everyday entertainment. From music to game music, AI will be almost 

everywhere in some form or another.

AI and human artists can fill in for each other’s weaknesses, enabling 

artists to create incredible work.

 Avoiding a Bad Future
We’ve looked at what the future of AI might hold for various industries and 

aspects of our society. However, if we as AI researchers and developers 

are irresponsible with our AI research, the future could look a whole lot 

different in all the wrong ways.

We need to be conscious of the ripple effects that AI will have as it 

becomes exponentially more adept at its tasks and ensure that we extend 

a hand to those who can’t keep up in industries where AI may negatively 

affect job availability.

A bad future could see the divide between rich and poor reach extreme 

levels, or at the extreme, it could mean the extinction of humanity.

As those leading the field, we must ensure that we develop AI with 

ethics in mind.

To do that, we should understand that AI has the possibility of 

replacing jobs and the livelihoods of people around the world and instead 

should either ensure that it creates better jobs for humans or augments the 

lives of those that use it instead of replacing them.

Let’s avoid a bad future and develop diverse and inclusive AI for the 

betterment of humankind.

How do we do that? It starts with understanding bias and how bias 

negatively affects AI and humanity.
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 Bias and Why We Need Diverse Datasets
Next, we’ll discuss why bias is bad for AI and why it could negatively 

impact society, but to do that, we first need to understand what bias is in 

AI terms.

 So, What Is Bias in AI?
Much like society has stereotypes and biases, bias in AI refers to an AI’s 

inclination or prejudice toward the information we give it. This bias often 

manifests as stereotypes or other exclusionary forms that don’t consider 

the diverse society that makes up the world.

This bias can take form in many different ways, from AI not recognizing 

the voice of a minority group in a speech-to-text application to facial 

recognition tagging a minority group as an animal rather than a person.

This bias breaks down much of society’s progress over the past few 

years in self-correcting and reducing stereotypes and prejudices and can 

dehumanize people worldwide.

We’re all in this together, and it’s up to us to create an AI that respects 

cultures, beliefs, and people. Regardless of race, gender, nationality, 

language, or other categories, terrible people have used to divide humanity 

in the past.

So how do we reduce bias?

 Why We Need Diverse Datasets
It all comes down to how we train our AI. AI requires massive amounts of 

data to learn from, but often that data that we train it on is based on our 

imperfect society. Because of that, it’s common for people to use datasets 

skewed toward a particular demographic or culture.

Chapter 3  the Future oF aI and ethICal ImplICatIons



27

Worst of all, it’s often very challenging to identify bias in datasets due 

to how large they are. Without researchers focusing on inclusion in AI, we 

risk reinforcing old, bad habits in our society.

But how do we fix it?

A proposed solution is to use diverse datasets. Diverse datasets contain 

datasets from varying locations, with different cultures and minorities 

equally distributed with other groups.

Diversifying datasets allows AI to see the world from different 

perspectives, reducing bias. The technique is not perfect, but it’s a start – 

and perhaps someday, we will have AI capable of self-correcting bias.

 Discussing the Moral and 
Ethical Implications
We’ve discussed some of the ways that AI might impact our society in 

the coming decades and some of the challenges it already faces today 

concerning bias and prejudice.

Apart from the risk of bias and a potential threat of job loss, there 

are some questions that we need to start asking now. One of the many 

conversations we need is, what happens when an AI proves to be sentient 

or self-aware?

If an artificial general intelligence (AGI) claims to be self-aware, what 

consequences would that have on society when we’re the only self-aware 

and intelligent civilization we know about, and how do we prove if an AI is 

self-aware or simply faking it?

With narrow AIs already becoming good enough to fool engineers 

into believing that they are self-aware, as in the recent case of a Google 

engineer being put on leave, how does one begin to prove or disprove 

self-awareness in the case of an AGI with a presumably more extensive and 

more complex neural network?
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So we must now ask these questions, inspire younger generations to 

do the same, and encourage AI researchers and developers to create AI 

responsibly.

 Why AI?
If AI is a double-edged sword, then why should we craft them? AI has the 

potential to be humanity’s most incredible creation, something capable of 

solving problems that traditional software cannot.

Traditional software also requires extensive labor to maintain and 

update. Coupled with a growing global codebase, we will see a lack of 

skilled and experienced software engineers become even more prevalent 

than today.

On the other hand, AI software could ease software engineering 

workload by adapting to new information without human intervention.

 Flavors of AI
AI is quite a broad term, and it’s about time we start breaking it down and 

learning more about different classifications of AI and various approaches 

to AI development.

In this chapter, we’ll do just that. We will take a journey into what 

makes up artificial intelligence and how we broadly classify AI and explore 

various AI techniques.

We’ll detail these different AI techniques and weigh the pros and cons. 

We’ll then focus on machine learning and discuss the methods that power 

Unity’s ML-Agents.

Finally, we’ll wrap up this chapter by discussing some practical use 

cases for Unity ML-Agents.
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 AI Road Map and Classification
As I’ve mentioned earlier, artificial intelligence is a broad term 

encompassing various techniques used to simulate human intelligence, 

but not all AI is as advanced as you might think.

I’d go so far as to say that AI is still in its infancy today, and we’ve only 

begun to scratch the surface. As we’ve started moving through the road 

map, AI’s exponential growth has influenced our society, changed how we 

live, and much more.

Let’s look at the road map of different AI classifications and see where 

we are today (Figure 3-1).
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Figure 3-1. The timeline depicts where we are with AI development
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 Reactive Machines
The most basic of AI – and one of the earliest – are called reactive 

machines. These AI systems retain no memory of previous events and 

purely react to the current information they receive.

A great example of reactive AI is that of Deep Blue, the AI system 

developed by IBM that we discussed in a previous chapter.

Deep Blue could only take a current set of parameters and determine 

the next chess move.

This extremely narrow focus leads to an issue where Deep Blue would 

encounter situations where it would repeat actions, leading to a stalemate 

in chess.

So, to help Deep Blue, its developers gave it a single rule – not to repeat 

any move more than three times.

A reactive machine cannot solve problems outside of the specific tasks 

given due to an inability to recall prior information.

This flaw makes them much like traditional computer software.

The key distinguishing factor that makes an AI system purely reactive 

is that if given the same parameters, it will respond identically to the 

situation every time.

We’ve come a long way since reactive machines – and they still have 

their place – but we’re still pretty early on in the road map.

The key takeaways here are as follows:

• Reactive machines are the most basic form of AI.

• IBM’s Deep Blue is an example of a reactive AI.

• Reactive machines cannot recall prior information.

• Given the same parameters, it will respond identically 

to the same situation every time.

The next type of AI we’ll discuss is limited memory AI.
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 Limited Memory
We’re here!

Limited memory AI systems are what we’re currently working on. It 

has provided an incredible upgrade from traditional reactive networks.

The AI agents of today can sift through years and years of data for 

training and can recall prior experiences to improve.

This ability to leverage memory to continue learning enables us to 

build self-driving cars capable of becoming better and better at driving.

It enables us to build AI agents capable of beating championship teams 

in complex 3D games.

Limited memory AI is still quite a broad topic, and we’ll continue 

to break it down further in this chapter when we discuss modern AI 

techniques.

These AI systems are goal oriented rather than solving a single task like 

their predecessor.

One could subclassify a limited memory AI as a narrow artificial 

intelligence.

They typically require large datasets surrounding the specific goal it 

needs to achieve.

So, the most important things to note about limited memory AI are as 

follows:

• Our current technology is at the point of limited 

memory AI.

• Limited memory AI can utilize years of data for 

training.

• These AI systems can recall prior experiences for 

improvement.

• Limited memory AI is goal oriented.
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While limited memory machines are impressive, it’s unable to truly 

understand what it is doing or the data it is using.

That brings us to the following classification on the road map.

While limited memory machines cannot understand the world 

around them, we expect a theory of mind AI systems to excel by leveraging 

understanding.

So what is a theory of mind AI system?

 Theory of Mind
These AI systems will be far more complex than any before.

These AI systems will be able to understand the world around them, 

the emotions of the people surrounding them, and more.

The big difference between a theory of mind AI and limited memory 

AI is that instead of just completing a task based on training data, they will 

understand the tasks they perform.

These AI systems will be able to interpret and understand our 

emotions – possibly even showing signs of empathy. Theory of mind AI 

will likely become the first artificial general intelligence or AGI.

Once an AI system understands its actions, we will need to answer the 

moral and ethical questions we asked in a previous chapter.

As you can see, this might be a lot sooner than expected, so we need to 

start asking these questions today.

While some classify AGI as entirely separate from the theory of mind AI 

systems, we might see these lines blurred.

Based on current AI progress, I anticipate the first AGI to come within 

ten years of the theory of mind AI systems because of how intertwined 

they are.

The critical things to remember here are as follows:

• Theory of mind AI is a hypothetical AI system.

• They would be capable of understanding.
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• They could have the ability to understand emotion.

• They could perhaps show empathy.

• Theory of mind AI would quickly lead to AGI.

Let’s take a look at AGI.

 Artificial General Intelligence (AGI)

AGI is a theory of mind AI system capable of performing a generalized set 

of tasks – instead of only being able to perform a single task.

This AI will be far superior to prior AI systems, but we’re still unsure 

how to achieve a theory of mind AI or AGI.

Researchers have made various attempts to string together multiple 

limited memory AI agents.

However, it’s unclear if this will lead to AGI, as it still does not allow the 

AI to understand the tasks that it performs.

One might view that approach as comparing a Swiss Army knife to an 

engineer.

The benefit of AGI is that we may be able to utilize them to assist with 

the creation of the next generation of artificial intelligence, self-aware AI.

Self-aware AI will be able to understand itself, as well as be able to 

outperform any traditional AI system. Let’s take a deeper look at what self-

aware AI might look like in the future.

 Self-Aware
A self-aware AI system is capable of understanding not only the tasks 

that they perform, but they are also capable of understanding the inner 

working of the self.

This ability to introspect will likely result in massive and rapid 

self-improvement, quickly reaching a point that could make any 

nonaugmented human intelligence obsolete.
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The massive development spike of AI will likely result in the first 

artificial superintelligence.

Much like AGI, some classify artificial superintelligence as a separate 

category.

But due to how fast a self-aware AI agent would be able to improve, 

I anticipate that we’ll see the first ASI within one to three years of a self-

aware AI tasked with self-improvement. Due to that, I include it within the 

self-aware category.

Finally, the important takeaways here are as follows:

• Self-aware AI is hypothetical and does not exist yet.

• A self-aware AI system would be capable of 

introspection.

• Self-aware AI would understand the tasks that they are 

performing.

• They will likely result in a massive development 

spike of AI.

• Self-aware AI will likely rapidly evolve into artificial 

superintelligence.

Let’s look at what an ASI might be capable of in the future.

 Artificial Superintelligence (ASI)

AI researchers classify artificial superintelligence as an AI agent capable 

of intelligence far exceeding that of the brightest and most gifted 

human minds.

The challenge lies in creating artificial superintelligence that benefits 

humanity. As philosopher and AI researcher Nick Bostrom said, “We only 

have one chance at this.”

Chapter 3  the Future oF aI and ethICal ImplICatIons



36

Bostrom proposed a potential solution for artificial superintelligence, 

in which we use AI to learn what humanity values. The artificial 

superintelligence could then use these learned values to drive its goals.

So going further into this book, you might become a part of the team 

that creates the first artificial superintelligence. I implore you to consider 

all aspects to create a safe ASI that works in unison with humanity for a 

better future.

Let’s jump back to the modern day, discussing various techniques 

and types of limited memory AI and how Unity ML-Agents use these 

techniques.

 Machine Learning with Unity ML-Agents
We use the Unity Machine Learning Agents package to create machine 

learning systems in Unity.

The Unity ML-Agents package is a wrapper allowing Unity to interface 

with a popular AI framework called PyTorch.

By connecting Unity and PyTorch, we can create virtual training 

environments for our agents, enabling powerful game or simulation AI.

We typically train ML-Agents using either a single or combination of 

the following techniques:

• Reinforcement learning

• Imitation learning

• Neuroevolution

However, it’s not limited to these techniques. You can also leverage the 

easy-to-use API to use almost any AI technique you build in Python.

Let’s look at these techniques in more detail.

Chapter 3  the Future oF aI and ethICal ImplICatIons



37

 Reinforcement Learning
One of the most common techniques we use with ML-Agents, often in 

tandem with other techniques, is reinforcement learning.

Reinforcement learning allows us to dictate goals by carefully tweaking 

rewards based on the ML-Agent’s actions.

Much like training an animal, when the animal performs the desired 

action, we provide a reward to the agent.

Inversely, if the agent fails at the task or performs negatively, we give a 

punishment – essentially a negative reward.

In the context of AI, we typically measure a reward as a value.

As the agent trains, it learns what actions based on what inputs result 

in positive or negative rewards and attempts to achieve the highest reward 

value possible.

We’ll be discussing rewards in more detail in the next chapter.

With reinforcement learning, we typically have an agent with access to 

various inputs and outputs.

We then allow it to make decisions based on the input and training 

data. Once the agent decides, it performs an action consisting of various 

output values.

Based on the result of that action, we then reward or punish the agent.

We then repeat this flow until the desired level of training is reached or 

a researcher stops the training to make adjustments.

As the training cycles continue, the agent improves its abilities in a step 

commonly referred to as a policy change step to complete the given task.

This method of AI training is potent but has its downfalls, often 

remedied by using this technique in combination with another method.

Reinforcement agent flows typically look something like Figure 3-2.
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Figure 3-2. The typical training cycle of a reinforcement 
learning agent

We’ll discuss the various algorithms used in reinforcement learning 

later in the book as we get deeper into understanding Unity ML-Agents.

The major drawback of using reinforcement learning alone is training 

complex tasks becomes challenging.

It becomes complicated because, in reinforcement learning, the AI 

typically starts by giving almost random outputs to test what grants a 

reward and a punishment.

This approach is fine for simple tasks, but some tasks may only give 

rewards after the agent has performed multiple complex actions – actions 

that the AI may never try depending on the complexity and length of 

the task.

Thankfully, we can provide a helping hand by using reinforcement 

learning in tandem with imitation learning.

Let’s look at imitation learning and see how we can use it to better train 

our agents.
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 Imitation Learning
Let’s say we have a complex task for our new agent. The AI needs to push a 

block into place. Once the block is in place, it must walk around and over 

the block to reach the goal.

If we just use reinforcement learning, we would encounter some 

problems in this scenario, as the agent may find it challenging to 

understand the task.

If we reward the agent for reaching the goal, it may never figure out 

that it needs to push the block first. And on the other hand, if we assign a 

reward for moving the block into place, the agent may decide that moving 

the block in and out of place is an entirely valid answer, as it would receive 

a reward.

Both scenarios are impractical for training the agent for this task.

That’s where imitation learning comes in.

Unity ML-Agents support imitation learning. Imitation learning allows 

us to show the AI how to complete the task, giving it a head start.

Imitation learning results in the agent quickly understanding the goal 

and reward mechanisms for the challenge.

Unity ML-Agents also allows us to use a variety of imitation learning 

algorithms to determine the policy change step, how curious the agent 

should be, and how much it should rely on following the imitation 

recording.

We’ll discuss these algorithms later in the book.

Imitation learning on its own is not super practical, as the agent will 

never become better than the human that taught it. However, coupled with 

reinforcement learning, imitation learning quickly becomes a superior 

learning technique.

The combination of imitation and reinforcement learning allows an 

agent to pick up on the goals of the challenge quickly and, in many cases, 

become far superior to any human at the challenge.

Another technique that we have at our disposal is neuroevolution.
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 Neuroevolution
Neuroevolution is another technique, yet the concept dates back to 

before reinforcement learning or imitation learning. The idea behind 

neuroevolution is to allow a neural network to form and mutate, repeating 

throughout several computational generations.

You can specify the goal parameter using neuroevolution, and after 

each training step, only the best of the previous agents survive.

This evolutionary training approach makes neuroevolution much like 

biological evolution, where survival of the fittest is the rule.

However, nowadays, neuroevolution is typically used alongside other 

techniques.

Instead of building the neural network itself, we can use it to optimize 

hyperparameters. We’ll discuss hyperparameters later in the book, but 

for some context, they are variables that we can tweak as developers and 

researchers.

Tweaking these hyperparameters allows us to alter training times, how 

effective a neural network can train, how curious a neural network is, and 

many other settings.

 Practical Use Cases for Unity ML-Agents
Unity ML agents have many practical, real-world use case scenarios. 

Next, we’ll look at some of these and how you may use ML agents to build 

something useful.

First and foremost, Unity has done a fantastic job of creating tools that 

are easy to understand and have opened machine learning up to whole 

new groups of people. One of the most notable use cases is that Unity  

ML-Agents is a great way to learn how to build machine learning agents!
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 Learning How to Build Machine Learning Agents
While it does require some understanding of the Unity game engine and 

some basic programming skills, ML-Agents is incredibly beginner friendly.

Because of the relatively low barrier to entry with ML-Agents, if you 

have a good understanding of Unity and C#, it makes for a fantastic way to 

branch into machine learning.

Unity has built several components that will help you get started 

quickly and easily – we’ll discuss some of these later in the book and how 

to build your own.

With that said, having a solid experience of the engine and knowing 

your way around C# is what will open up the world of ML-Agents to you.

 Self-Driving Cars
Due to the virtualized environment nature of Unity, ML-Agents are 

excellent at understanding virtual reconstructions of environments.

One could use Unity ML-Agents to power the self-driving cars of 

the future!

A great approach would be to have the ML-Agent be responsible 

for parsing the real world into a virtual construct and have another AI 

control the vehicle, or a conventional rule-based system makes the driving 

decisions.

With time, you could refine and perfect this approach, and one 

could even have multiple AI cars cross-communicating, allowing for 

redundancies or better world interpretation.

 Game AI
ML-Agents can be used in many different ways within game development. 

First would be having AI agents within the game world controlled via an 

ML-Agent.
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Second, one could use ML-Agents as a test framework for certain types 

of games with complex interactions where traditional automated testing 

solutions would struggle.

Let’s talk about the former first.

ML-Agents could be a great way to power AI in games, and that’s not 

to say it would be a great fit in every game. Just because you can make a 

system powered by ML doesn’t necessarily mean it’s the best approach. 

However, it does have a place.

ML-Agents is exceptionally good at casual games and can be used to 

power things like hints for hypercasual match-three-type games.

Or depending on how much time investment you would like to put into 

development, it can navigate 3D worlds or solve more complex puzzles.

While you may think the time investment is not worth it, you can 

leverage that trained model for the latter topic, ML-Agent-powered test 

frameworks. The idea here is that you take that trained model and use it as 

a form of automation testing, significantly reducing the workload of your 

quality assurance team.

Using ML-Agents in game development should be evaluated on a case-

by-case basis, but we should not overlook the potential to use ML-Agents 

in game development.

 Robotics
ML-Agents pair excellently with robotics. While this does require 

additional work of building an API for Unity to interact with your robotics, 

once done, you can create an ML-Agent that learns to use the robotics that 

you’ve made.

An AI claw robot that learns to pick up objects is an excellent example, 

but you’re not limited to that.
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Robotics pair well with Unity ML-Agents because robotics and 

electrical devices are typically controlled by normalized (when you put 

a value in between a range of zero and one) electrical values and receive 

normalized electrical signals from your sensors.

Since ML-Agents train best with normalized values, you don’t need to 

work hard to ensure that your signals fall within the expected normalized 

ranges because they already do.

The significant challenge with robotics is creating an accurate digital 

twin simulation that you can use for training. This topic brings us to the 

next great use case, simulated spaces for agent training.

 Simulated Space for Agent Training
The issue with training an AI on raw data signals from an external, real-

world electrical device is that the ML-Agent needs to train for an extended 

period, from days to years.

We typically reduce this training time by parallelizing the 

learning work.

We do this by duplicating ML-Agent training environments, sometimes 

having many hundred ML-Agents train simultaneously.

This amount of ML-Agents all interfacing with real-world robotics 

would each require a robotic unit.

As you can quickly foresee, this would drive up costs and, in most 

situations, may be completely impractical due to the physical connectors 

required.

Another step we can take to speed up the training time is to speed up 

the simulation time.

As you can well imagine, mechanical components can only move so 

fast, so it becomes impractical to attempt to speed them up ten times their 

intended speed.

So instead, we create a digital twin representing the hardware that the 

ML-Agent will control.
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A digital twin is an entirely virtual model designed to accurately reflect 

the physical object you’re studying.

We can then use the digital twin of the robotic hardware in a simulated 

space to train several hundred ML-Agents simultaneously at ten times the 

intended speed.

Once we have trained the ML-Agent model to our satisfaction, we 

simply switch to using the robotic input and output signals.

We could then monitor the ML-Agent’s control over the hardware to 

see if it meets our expected results.

 Training Gym for Agents
We can take our training one step further. Unity ML-Agents has native 

support for OpenAI gym, an open source toolkit for developing and 

comparing reinforcement learning techniques.

Gym allows us to compare our techniques to optimize our  

ML-Agents. Gym is outside the scope of this book, though. However, if 

you’re interested in digging deeper, you can read more about it in the 

following link: https://github.com/openai/gym.

 Conclusion
That’s it for this chapter. Next, we’ll discuss in more detail how 

reinforcement learning uses rewards to train agents. Reward systems in AI 

are an exciting topic, but before we move on, let’s recap what we covered in 

this chapter.

In this chapter, we explored the future of AI and envisioned how 

different AI technologies might impact our society, from using AI to 

interpret our brain signals to creating art.

We discussed how we need to consider diversity and aim to reduce 

bias in our datasets to prevent the mistakes of our society’s past.
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Then we explored the ethical and moral implications, especially in the 

case of AGIs and ASIs, and how an AI claiming self-awareness could raise 

massive ethical concerns.

This chapter also explored various classifications of AI systems, some 

obsolete, some new, and some hypothetical. We took a journey through 

the road map of AI development and learned how the next generation of AI 

systems would likely lead to an explosion of AI development.

We touched on the techniques we’ll be using for training our  

ML-Agents in Unity and learned how combining these techniques will 

yield the best results.

We then wrapped up this chapter by discussing various practical use 

cases for Unity ML-Agents.

In the next chapter, we’ll look into reinforcement learning and how it 

uses rewards to optimize for the best outcome.
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CHAPTER 4

Dopamine for  
Machines
In this chapter, we’ll be discussing the reward system used in 

reinforcement learning agents and how the reinforcement learning system 

took inspiration from the biological reward system that drives humanity 

and many other organisms found on earth.

We’ll talk about how these reward systems work in biological 

organisms and then look at how engineers have taken inspiration from the 

reward system and implemented it into reinforcement learning agents for 

incredible results.

Then you’ll learn how and when to reward your ML-Agents and 

various techniques for creating reliable training plans for your agents.

We’ll look into how various approaches to rewards impact training 

time and overall performance of the ML-Agent.

Finally, you’ll learn how to take the reward system further by enabling 

team-based rewards for agents.

Team-based rewards allow your ML-Agents to cooperate toward a 

common goal while each agent is capable of having completely separate 

subgoals.

This chapter is exciting and will wrap up the preliminary introduction.

From there, we’ll start digging into the ML-Agents package itself.

© Dylan Engelbrecht 2023 
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 Dopamine
Dopamine (Figure 4-1) is a neurotransmitter in the brain's regions 

responsible for the “reward system.”

Figure 4-1. The chemical structure of dopamine

The current consensus with pharmacologists is that dopamine is 

responsible for signaling the perceived motivational prominence of an 

outcome to the brain.

This perceived motivational prominence means dopamine encourages 

or discourages a particular perceived outcome and drives us away or into 

doing things.

This reward system is not exclusive to humans; many animals and 

organisms typically have a reward system.

Other animals that have a reward system include dogs and mice.

Let’s look at how humans use dopamine as a signal and how our 

reward system works.

 Dopamine in Humans
Dopamine plays a vital part in the reward system within the human brain. 

This system drives the desire or craving for reward and motivation.

The reward system is also responsible for positive reinforcement 

learning and classical conditioning.
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A reward is essentially the motivational and attractive property of 

a stimulus that encourages what’s known as approach behavior and 

consummatory behavior.

The brain's reward mechanism is vital to animal survival and 

evolution.

Many associate the word dopamine with pleasure, but that’s not 

necessarily the case.

And more so, “reward” is often associated with “pleasure.”

However, the reward itself does not necessarily imply pleasure.

To better understand how we use rewards in reinforcement learning, 

it’s essential to take a deeper look at how reward works in humans.

There are two types of rewards in a broad sense.

The first, which you may be more familiar with, is a naturally 

pleasurable stimulus and, therefore, attractive to the brain – an 

intrinsic reward.

Intrinsic rewards are inherently pleasurable and cause a response from 

the pleasure center in the brain.

Not all rewards are intrinsic. Many confuse all rewards as intrinsic, but 

that’s not the case.

Many non-intrinsic rewards are confused with intrinsic rewards 

because we have conditioned ourselves to receive pleasure from them.

That leads us to the second type of reward, extrinsic rewards.

Extrinsic rewards are rewarding due to a learned association with a 

given intrinsic reward.

In machine learning, we lean heavily on this principle to build agents 

that can make associations to actions with intrinsic rewards.

This approach allows us to define the reward scheme and allows the AI 

to associate actions with rewards, creating extrinsic rewards.

By allowing AI to build up its extrinsic rewards, build AI agents capable 

of fulfilling the goal that we give it in the form of a reward scheme.

In humans, a different system could be a part of the reward system, the 

antireward system, proposed by Koob and Le Moal.
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It could explain why humans will not get stuck into the same task 

indefinitely, acting as the brake system for the reward system.

We might see such a system implemented into reinforcement learning 

systems to help push them toward general intelligence.

The reward system in animals shares many similarities with that 

of humans.

 Dopamine in Animals
While I wish I could tell you that our reward system is far more advanced 

than animals, I can’t – the human reward system shares many traits with 

animals.

Modern humans are new at an evolutionary scale, and our reward 

systems are similar to what early humans would have had.

The only difference is that humans can leverage their understanding of 

reward to bend it.

Animals, on the other hand, can’t.

Because animals are bound to their reward system, it makes some of 

them easy to train or domesticate.

We can leverage an animal's lack of sentience to condition them.

Conditioning is a process in which we give an animal new extrinsic 

rewards by having them act and then associating that action with an 

intrinsic reward.

The process for training animals is similar to that of current 

reinforcement learning techniques.

This process of creating new extrinsic rewards brings us to our next 

topic, dopamine in machines.

 Dopamine in Machines
Reinforcement learning takes heavy inspiration from the reward system. 

In machines, we represent intrinsic reward as a floating-point value and 
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then program the AI agent to optimize its actions to achieve the highest 

“reward” value.

An AI engineer aims to define training and reward structures that 

result in the most performant neural network models.

To train an ML-Agent, we create a training environment for it.

In this training environment, we give rewards based on the 

performance of the ML-Agent.

Our goal is to have the ML-Agent associate these intrinsic rewards 

with actions that we deem beneficial to the training and, as a result, form 

extrinsic rewards, much like human and animal brains.

We then give the ML-Agent access to various inputs.

These inputs can be a variety of different things, from

• Floating-point values

• Integer values

• Arrays of values

• Complex data structures such as raw images

• Booleans

The AI then interprets this data as inputs.

It’s worth noting that many ML algorithms normalize these values, but 

you can often experience better results if you do this normalization.

From there, the AI observes these inputs during the observation phase.

We can then request a decision from the AI. What this does is query the 

ML-Agent to act in the form of output.

Much like inputs, outputs can also contain various data types and 

structures.

In Unity ML-Agents, we receive these outputs in the form of a method, 

with the actual values stored within an argument of type:

public override void OnActionReceived(ActionBuffers 

actionBuffers)
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We’ll dig into the code in a future chapter. We can access these 

actionBuffers to receive the ML-Agent’s intent.

What happens is that an ML-Agent receives a decision request from us.

Based on the observations that it’s made, it then gives us back a set of 

action buffers. This flow is shown in Figure 4-2.

Figure 4-2. The ML-Agents training loop
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Then, depending on our reward logic, we reward the ML-Agent based 

on how well that decision impacted the progress of the AI toward the goal 

we have in mind.

The ML-Agent then interprets these rewards and forms extrinsic 

rewards based on the outputs it provides, given a set of inputs or 

observations.

This training reinforces behavior that increases the intrinsic reward 

value, and over time the ML-Agent improves at the given goal until, if 

trained correctly, it far exceeds human capability.

Let’s discuss how we can train ML-Agents.

 Training Reinforcement Learning Agents
To train our ML-Agent, we first need to set up what’s known as a training 

environment. This environment is essentially the scene that we use for 

training the ML-Agents.

A training environment then consists of at least one training area.

We typically set up a training area as a self-contained area where one 

or more agents train.

We then duplicate the training area as often as possible until our 

hardware bottlenecks the training process.

This approach allows us to parallelize the training workload to speed 

up training times significantly.

Then we plan out how we want our agent to work; it needs to

• Perceive the world using inputs

• Have a way to act on requested decisions

• Be rewarded for its actions if those actions benefit 

its goals

The next step is to establish rewards for the given goal. We’ll go into 

more detail on how to set up rewards shortly.
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For example, suppose the agent's goal is to reach a target point. In 

that case, we can decide to reward it whenever it arrives at the target 

destination, moves toward the target destination, or a hybrid of both, then 

finally reset the state of the training area.

However, figuring out the right reward system is a large part of the 

challenge of developing ML-Agents.

Suppose we were to reward a target whenever it moves toward a target 

destination; it might discover that it gets more reward by moving toward 

the target and then away from the target as many times as possible.

We could solve this loophole by penalizing the agent whenever it 

moves away from the target destination.

That sounds great in theory, but what happens when obstacles are in 

the way? Obstacles that require the agent to move away from the target 

temporarily?

In such a case, you may be better off only rewarding the target when 

reaching the destination. However, in this situation, the ML-Agent may 

never know that it gets rewarded when reaching the goal.

So perhaps you can use the two approaches together.

These are all things to consider when designing your reward structure. 

Let’s take a deeper look into how and when you should reward your 

ML-Agents.

 How and When to Reward Your ML-Agents
Deciding when to reward your ML-Agent forms the basis of a reward 

strategy.

You should plan and draft a design specification document describing 

your ML-Agent’s goal.

Creating a design specification will allow you to break the task 

down and provide insights into how the ML-Agent may struggle given a 

particular reward system.
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You should aim to reward your AI whenever it performs an action that 

will push it in the direction of completing the goal.

However, this is easier said than done. If you make your reward 

structure too rigid, the AI may never find unanticipated and potentially 

better approaches to the challenge.

Inversely, if the reward structure is not strict enough, you risk having 

the AI perform poorly.

So the goal is to create an intuitive reward structure that encourages 

extrinsic reward creation where needed.

The thing to remember, though, is that a reward doesn’t always have 

to be a positive value. An AI making a poor decision will have real-world 

consequences in real-world applications.

Because of this, we can also assign a negative value to the reward, 

essentially a penalty.

Suppose our ML-Agent had to avoid touching a particular obstacle 

on the way to its target. In this situation, we may wish to assign a negative 

reward value to the ML-Agent whenever it makes a collision with an 

obstacle.

Or perhaps, the scenario that we’re training it for requires that it never 

touches an obstacle, avoiding it at all costs.

In such a situation, we can give a sizeable negative reward to the agent 

and end the current training iteration.

This harsh negative reward and ending of the training iteration has a 

twofold effect.

Firstly, the ML-Agent receives a massively lower training score for the 

training iteration. Secondly, the ML-Agent cannot increase their score 

further for that training iteration.

This approach results in overall poor scores for the training iteration 

and encourages the ML-Agent to perform better by indirectly creating an 

extrinsic reward for avoiding obstacles.

This extrinsic reward will form as the ML-Agent starts associating the 

action of colliding with the obstacle as a massive reward.
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Another situation that one might consider is time limitations.

Suppose the use case requires the ML-Agent to perform the task as fast 

as possible without colliding with obstacles.

We could add a time limit to the training iteration, but this might not 

be the best approach.

This approach would be unideal because when the AI starts training, 

it will take a long time to figure out what it needs to do – to form those 

extrinsic rewards to achieve the desired goal.

So it may never have enough time to reach the destination, resulting in 

poor training and overall poor results.

Instead, we could incentivize speed by altering the reward for the final 

destination based on the time taken.

This way, the ML-Agent may associate the speed of task completion 

with a better reward, thus creating an extrinsic reward for performing the 

task quickly and effectively.

And that brings me to my next point, “a sound reward system makes 

for great ML-Agents.”

 A Sound Reward System Makes for Great 
ML-Agents
To create great ML-Agents, you must plan out a solid reward system that 

will encourage the formation of beneficial extrinsic rewards that the agent 

can use to achieve its intended goal.

When training an ML-Agent, there are some significant factors to 

consider. Some of these include

• Training time

• ML-Agent effectiveness and overall complexity

Let’s talk about training time first concerning the reward structure.
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 How Reward Systems Influence Training Time
There are many influencers of training time when building ML-Agents.

When creating your ML-Agent, a sound reward system will allow your 

ML-Agents to reach their goal and rapidly improve throughout the training 

process.

If you fail at this step, your agent may struggle – or outright fail – at 

achieving its intended goal.

If this is the case, your training process could run for hours, days, or 

weeks without notable improvements in agent decision-making.

So you must ensure that you build the reward system to advance the 

ML-Agent's progress.

Once that’s done and your training is running, you may notice that it’s 

still taking a long time.

You may have heard, “One woman can deliver a baby in nine months, 

but nine women can’t deliver a baby in one month.” Well, thankfully, in the 

world of AI, they can.

We can duplicate the training areas to provide parallelized training to 

the agents, exponentially increasing the speed at which we train the neural 

network.

This parallelization means that nine training areas would train at 

roughly nine times the speed of a single training area.

So what we want to do at this step is to increase the number of training 

areas to the point where our physical hardware becomes the bottleneck.

The second factor we should consider when training ML-Agents is how 

appropriate the ML-Agent is for the given goal.

The ML-Agent’s training time and ability are significantly affected by 

its effectiveness for a given goal.

For some goals, you may be better off using a traditional software 

solution to a problem.
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You should constantly evaluate if a traditional software approach 

makes more sense for a given goal, but we are here to learn about 

ML-Agents.

So let’s discuss various aspects of rewarding and punishing an 

ML-Agent.

 Various Aspects of Rewarding and Punishing 
ML-Agents
As we discussed, ML-Agents use a model-based reinforcement learning 

approach, so we need to ensure that the agent has reward signals that 

ultimately lead to them solving and optimizing their approach to achieving 

the desired goal.

There are two parts to this:

• Positive reinforcement

• Negative reinforcement

And we should use these two parts together to achieve the best results.

In positive reinforcement, we reward the ML-Agent when it acts with 

the desired outcome.

And inversely, we use a negative reward to penalize the ML-Agent for 

acting with an undesirable outcome.

When planning your reward system, it’s essential to give the ML-Agent 

as much leniency as possible without giving it too much leniency.

Being too lenient on an ML-Agent may prevent it from achieving the 

desired outcome.

As I explained earlier, you may have an ML-Agent required to reach a 

given destination.

In such a situation, if you penalize the agent for moving away from the 

target, it may never understand that moving around an obstacle is desired.

In some situations, a step backward is two steps forward.
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If you have too many negative rewards, you will limit the ML-Agent’s 

curiosity and ability to find new solutions to a given problem.

However, suppose you have a situation where you are training an ML- 

Agent to drive a car. In this situation, colliding with an obstacle should be 

avoided.

You want to ensure that the ML-Agent is significantly penalized if it 

performs an action that would cause a harmful outcome to the training.

So far, we’ve discussed training a single ML-Agent, but that’s not all the 

ML-Agents package can do. We can even train ML-Agents to function in a 

team, all while serving niche roles within the group!

This training structure means we have team-based ML-Agents with 

role-specific reward structures while contributing to a team.

Let’s briefly look at team-based rewards before exploring them in 

depth later in the book.

 Team-Based Rewards
Team-based rewards are, quite literally, rewards based on teamwork.

They are rewards that we give to agents within a group of agents 

working toward a common goal.

Team-based learning opens up new training possibilities because we 

can reward team agents differently based on their roles within the group.

Yet they will still share in rewards based on the team's outcomes.

In team-based learning, a team can consist of multiple ML-Agents 

sharing a brain – a multiagent group.

Then each agent in a multiagent group is configured with reward 

structures relevant to its role.

Finally, each agent in the group is given a shared reward structure in 

conjunction with its existing reward structure.

So that if one agent performs a beneficial task, all agents in the group 

receive some reward.
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This approach allows agents to require getting better but enforces 

extrinsic rewards for helping the team complete the primary goal.

 Conclusion
This chapter was exciting. We learned how human and animal brains have 

heavily inspired reinforcement learning techniques.

We learned the difference between intrinsic and extrinsic rewards and 

how these play a significant part in reinforcement learning.

We also discussed the importance of good reward structure planning 

and explored various aspects of when to reward ML-Agents for achieving 

optimal results.

Finally, we wrapped up this chapter by touching on multiagent groups 

and team-based reinforcement learning.

In the next chapter, we’ll set up all of the prerequisites for ML-Agents 

and configure our starting project.
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CHAPTER 5

ML-Agents Setup
In this chapter, we’ll go through the setup process required on both the 

Unity and the Python sides.

On the Unity side of things, I’ll show you how to create a new project or 

open the example project you can find in this book.

Then on the Python side, we’ll go through the setup process for 

Pycharm Community Edition. You will also learn how to create a virtual 

environment (venv), where we will install PyTorch and its dependencies.

From there, we’ll go back to Unity and install the ML-Agents package, 

ML-Agents extensions, and ML-Agents samples.

We’ll then validate our configuration against one of the Unity  

ML- Agents samples to confirm that we correctly installed and configured 

our project and are ready for development before we build our ML-Agents 

in the next chapter.

To get the most out of ML-Agents, you should already have a good 

understanding of Unity. However, I will be somewhat accommodating to 

those who may be unfamiliar with Unity.

We’ll begin with the Unity setup.

 Unity Setup
You should already be familiar with the Unity setup process; if not, you can 

download it from the following URL:

https://unity3d.com/get-unity/download
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Follow the Unity Hub setup instructions and install version 2021.3.x 

LTS of the Unity Editor.

There are two ways to follow along with this project:

• By creating a new project using the built-in render 

pipeline and installing the official ML-Agents package 

and then copying the samples from this book’s 

repository

• By cloning the example repository which contains a 

project preconfigured with Unity ML-Agents and the 

ML-Agents extensions

Let’s start by creating a new project in the following section.

If you would like to clone the example repository with the 

preconfigured project, then you can skip the new project setup and move 

on to the “Opening the Example GitHub Project” section.

 New Project Setup
In your Unity Editor, create a new project using Unity Version 2021.3.8f1 
and the built-in render pipeline. You will want to use the “3D – Core” 

template for this, as in Figure 5-1.

Figure 5-1. The template to be selected for installing a fresh project

Once done, you can go ahead and open up your new project.

In preparation for the ML-Agents package, we will need to update your 

new project to use the new Input System.

Installing the new Input System will prevent you from encountering 

many errors in your console when importing the Unity ML-Agents 

package.
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To do this, navigate to “Window ➤ Package Manager” again and search 

the Unity Registry for “Input System.”

Go ahead and install the new Input System. I will be using 

version 1.4.2.

Unity will then prompt you to restart the editor. Accept this prompt 
and wait for your Unity Editor to relaunch.

You can use the image in Figure 5-2 for reference.

Figure 5-2. The Unity Input System package

If you are updating an existing project that uses the old Input 
System with dependent code, you can set Active Input Handling to 
both in Edit ➤ Project Settings ➤ Player ➤ Other Settings.

You’re now ready to move on and install the Unity ML-Agents package!

 ML-Agents Unity Package Setup
To install ML-Agents, we’re going to install it using the package manager. 

Unity ML-Agents is a package within the package manager.
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We will be installing the following package:

• Name: com.unity.ml-agents

• Version: 2.2.1-exp.1

Version 2.2.1-exp.1 is experimental, but contains many fixes since 
the current release version of 2.0.1.

 1) Start by opening your Unity project. From here, you 

want to go to the toolbar at the top of Unity and 

navigate to

Window ➤ Package Manager

Unity will then open the package manager window.

 2) Select the + icon from the package manager window 

at the window's top-right.

The icon will expand with additional options. Select “Add 

package by name…” from this dropdown.

You can see this in Figure 5-3.

Figure 5-3. The add package by name dialog

 3) From here, we will install the exact version that I am 

using for this book. So fill in the relevant fields with 

the following information:

• Name: com.unity.ml-agents

• Version: 2.2.1-exp.1
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Then start the installation process by clicking Add.

Congratulations, you’ve successfully installed the ML-Agents core 

package.

 Installing the ML-Agents Extensions Package
The next step is installing the official ML-Agents extensions package, 

which contains various additional experimental sensors we can use to 

build our ML-Agents.

 1) To access the Unity ML-Agents extensions 

package, we’ll need to open our package manager 

window again.

 2) From here, click the large “+” icon at the top left of 

the window.

Then select “Add package from git URL” which will prompt you to 

enter a value.

In this value box, enter the following URL without any spaces or 

line breaks:

git+https://github.com/Unity-Technologies/ml-agents.

git?path=com.unity.ml-agents.extensions#release_19

Follow this step by clicking the “Add” button.

The Unity package manager will begin installing the extensions from 

the official ML-Agents repository.

This step may take a while, and Unity does not display a progress bar.

You can validate that the files are undergoing installation by selecting 

“Packages - Other, Adding a new package.”

The package manager will then confirm that it is installing the files. 

You can see this in Figure 5-4.
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Figure 5-4. How to install the official ML-Agents extensions

Once completed, a new package will appear under the “Packages - 

Other” category.

This package will be titled “ML Agents Extensions.”

You now have the ML-Agents core package, as well as its extensions.

The next step from here is to install the Python requirements. However, 

I will first cover how to open the example project built for this book.

Even if you opted to set up your project from scratch, I am still 
going to highly recommend following the next section.

 Opening the Example GitHub Project
This book has a GitHub repository containing samples of the work we will 

do throughout the rest of the book.

The example project contains the code that this book will discuss; it 
is highly recommended that you do not skip this step.

You can find the GitHub repository at the following link:

https://github.com/apress/introduction-unity-ml-agents
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If you encounter any issues with the sample project, you are more than 

welcome to open an issue request on GitHub, and I’ll be sure to get to it.

I will also be covering the creation of GitHub issues.

 1) The first step is to install a Git client of your 

choice. I’ll cover GitHub Desktop, as it’s free and 

straightforward.

You can download GitHub Desktop from the 

following URL:

https://desktop.github.com/

Then click the download button (Figure 5-5) to 

begin the setup process.

Figure 5-5. Where to download GitHub Desktop

 2) Once downloaded, proceed with the setup process 

on the screen.

There are also some great alternatives to GitHub 

Desktop.

Although they typically have a price tag, they 

are worth it in environments where you will be 

interacting with Git frequently:

• JetBrains Rider IDE Github Support – My personal 

preference

• www.jetbrains.com/rider/
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• GitKraken

• www.gitkraken.com/

• Fork

• https://git-fork.com/

Once you’ve installed your Git client of choice, the next step is to 

clone the repository, fork it, or download it as a zip.

I will cover the process of cloning the repository, 

as that will allow you to receive updates from the 

book’s repository.

The alternatives are to fork the repository and then 

clone the fork, which copies the repository to your 

GitHub account.

The other option is to download the repository as a 

zip file, which I would advise against, as you would 

lose the benefits of receiving updates that I release.

At this point, you should have GitHub Desktop 

installed and open.

 3) Open the GitHub repository page at the 

following URL:

https://github.com/apress/introduction-

unity-ml-agents

 4) From the GitHub repository page, click the green 

“Code” button with the dropdown arrow and select 

“Open with GitHub Desktop.”
You can see where to click in Figure 5-6.
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Figure 5-6. How to open the repository in GitHub Desktop

 5) This action will prompt your browser to ask you for 

permission to open GitHub Desktop (Figure 5-7). 

You can accept this request, and GitHub Desktop 

will open.

Figure 5-7. The permission prompt that the browser will display, 
requesting permission to open GitHub Desktop

 6) Once GitHub Desktop gets the request from the 

browser, GitHub Desktop will prefill the required 
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settings to clone the repository. From here, you can 

select the destination folder (Figure 5-8).

Figure 5-8. The “clone a repository” prompt in GitHub Desktop

Great! You’ve now successfully cloned the repository page for the 

book. However, you still don’t have the files.

If you’re unfamiliar with the Git protocol, it has several concepts 

you should learn.

The most notable of those is “Commit,” “Push,” and “Pull.” Since 

you won’t be modifying the repository, the one you’ll primarily 

use is “Pull.”

Commit
This process is where you mark changes you would like to 

submit for change recording to your local device.

The action of committing does not send the files to the repository.

Instead, it marks them for sending and allows you to attach a 

message describing your changes.

Think of it like gift wrapping a present with a card before giving it 

to someone.

Push
Pushing is the action of sending your commits to the repository.
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This action sends the files to the remote repository, like the 

action of giving someone the present that you wrapped.

Pull/Fetch
Pull, also referred to as fetch, is the process of requesting and 

retrieving the latest files on the remote repository.

As we discussed, you have cloned the repository but have yet to 

request and retrieve the files from the remote repository.

To do that, click the “Fetch Origin” button at the top right of 

your GitHub Desktop, as shown in Figure 5-9.

Figure 5-9. How to “Fetch Origin” in GitHub Desktop

Pulling or fetching will start downloading the files from the remote 

repository.
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 7) Now we’re ready to open the project in Unity! Go 

ahead, open your Unity Hub, and then navigate to 

the “Projects” tab.

The next step is to click the “Open” button at the top 

right (Figure 5-10).

Figure 5-10. How to open the repository in Unity Hub

 8) Unity Hub will then prompt you to choose a folder. 

Point this prompt to wherever you cloned the 

repository.

Once completed, your Unity will detect the repository folder as a 

project and open the Unity Editor.

Congratulations, you now have access to the example project for 

the book.

Let’s discuss opening issues on GitHub.
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 Creating a GitHub Issue

While we’ve tested the examples, there is always the possibility of 

encountering issues. Thankfully, GitHub has a built-in issue tracker.

This issue tracker allows you to raise bugs or ask questions.

These bugs and questions are then viewable by me or someone else in 

the community, which is a great way to get help specific to this book.

If you’re unfamiliar with GitHub, this section will cover creating these 

issue tickets.

 1) The first step is to go to the book's GitHub issue page 

at the following URL:

https://github.com/apress/introduction-

unity-ml-agents/issues

 2) Then click the “New Issue” button on the right 

(Figure 5-11).

Figure 5-11. How to create a new issue

Creating a new issue will allow you to insert a title for your 

problem and a description.

Please remember to include a detailed description and a 

relevant title to make it easier for the community and me to help 

you out.
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 3) Once you’re happy with the information provided, 

click the “Submit New Issue” button at the 

bottom right.

See Figure 5-12 for an example.

Figure 5-12. How to open the repository in Unity Hub

Once done, GitHub will take you to your new issue and automatically 

subscribe you to listen for activity on the issue. The example issue looks 

like Figure 5-13.
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Figure 5-13. Your newly created GitHub issue

Now that we have a Unity project, ideally by both having created a new 

project and cloned the example project for the book, we can move on to 

the next step.

The next step is configuring Python with all the relevant ML-Agents 

requirements.

 Python Setup
Unity ML-Agents requires the use of PyTorch.

PyTorch is the open source Python machine learning framework that 

powers our neural networks. ML-Agents is a wrapper for this framework, 

and PyTorch is what handles the creation of the underlying neural 

network.

So while we’ll do most of the work with ML-Agents, we still need a 

working installation of PyTorch so that ML-Agents can create our agent.

We’ll need to install and configure Python and the various packages 

necessary for PyTorch and Unity ML-Agents.
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For our Python setup, we’ll be targeting Python 3.7.9 due to its 

stability, and the team at Unity has tested it thoroughly for their ML-Agents 

package.

 1) You can download Python 3.7.9, the latest stable 3.7 

release with the latest installer as of this writing, at 

the following URL:

www.python.org/downloads/release/python-379/

At the bottom of the page, you will find the different files for this 

release. We are interested in the 64-bit executable installer, titled 

“Windows x86-64 executable installer.”

Figure 5-14 highlights where you can click to download the 

correct installer.

Figure 5-14. The installer for 64-bit Windows

 2) Now that you have the install file, you can run 

it. As with the other installs, the process is 

quite straightforward; however, I would highly 
recommend checking the box “Add Python 3.7 to 

PATH” (Figure 5-15).
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Figure 5-15. The checkbox that allows Python to install to 
Windows PATH

This action will add it to your Windows PATH, allowing you to 

type Python commands into your Windows command prompt. 

It’s worth noting that this will require a restart of your PC.

 3) Once you’ve installed Python, added it to PATH, and 

restarted your PC, open the Windows command 

prompt by pressing the Windows key + R, then 

typing “cmd”.

Doing this will bring up your Windows command prompt. From here, 

type the following command:

python –version

If installed correctly, it should display “Python 3.7.9” in which 
case your setup was successful. There are, however, still a few things we 

need to do.
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We need to install all of the required packages for ML-Agents, 

and to keep things manageable, we’ll set up what’s known as a virtual 

environment.

 Creating a Virtual Environment
Installing many different packages can get messy when you deal with 

multiple Python projects unrelated to ML-Agents.

It gets messy because, by default, all packages would install in the 

same place.

So, we use a virtual environment to keep our work and Python 

installations organized. I’ll be installing my virtual environment in the 

following directory:

/Introduction-to-ML-Agents/VirtualEnvironment/

Due to GitHub repository size restrictions, the project repository 
will not include the final installed ML-Agent files in this directory. 
However, you can still proceed with the same project structure. You 
can safely move this folder after you have followed these steps if you 
need to:

 1) Head over to the Unity project directory to create the 

virtual environment, often referred to as venv.

 2) The next step is to open a command prompt 

terminal in the Unity project folder or wherever else 

you’d like to install your virtual environment.

The quickest way to do this is to open your Windows file explorer 

and navigate to the folder, click the address bar, type “cmd”, and 

press enter as shown in Figure 5-16.
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Figure 5-16. How to open the command prompt in a directory

 3) Once your command prompt is open in the project 

directory, we’re ready to start with the virtual 

environment setup.

In your command prompt, execute the following command:

python -m venv VirtualEnvironment

The format for this is “python -m venv [Virtual 

Environment Name]”.

So you can give yours a different name if you would like, or name 

yours “VirtualEnvironment”.

The benefit of naming it the same as me is that the process 

would be easier to follow.

 4) Now, you should have a folder with your virtual 

environment setup. The folder should also contain a 

new Scripts folder.

/Introduction-to-ML-Agents/VirtualEnvironment/Scripts/
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 5) The next step is to activate the virtual environment 

so that our Python commands execute within the 

context of our new virtual environment.

To do this, go to your command prompt terminal currently open 

in your virtual environment's parent directory. In this example, 

it is open within the context of the Unity project directory. Then 

execute the following command:

VirtualEnvironment\Scripts\activate

If you've done this correctly, venv should now prefix your 

terminal input line with “(VirtualEnvironment)” followed by 

the directory.

Your virtual environment is now active on this terminal. You 

must execute the activate command whenever you want to work 

in this virtual environment.

If this sounds tedious, if you’ve cloned the example project, 

you’ll be delighted that I’ve included a batch file in the /

VirtualEnvironment folder named “ml-agents-terminal.bat” 

which you can move to your virtual environment folder.

You can use this batch file to activate and deactivate the virtual 

environment.

 6) Once you activate your virtual environment, we can 

proceed to the next step.

Next, we need to ensure that you’re running an up-to-date 

version of Pip3.

Pip3 is the official package manager for Python version 3.X – we 

can use it to install and manage various Python packages.

 7) Before installing, if you have a highly aggressive 
third-party antivirus, I suggest temporarily 
disabling live shields during the following setup 
steps, as this may interrupt your installation.
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 8) To upgrade pip3 to the latest, run the following 

command inside your venv:

py -m pip install --upgrade pip

8.1) If you encounter the following error:
ModuleNotFoundError: No module named 'pip'
Then you can run the following command instead:

py -m ensurepip --upgrade

followed by rerunning the previous command.
You now have Python, Python’s package manager, and a virtual 

environment.

The next step is to start installing our dependencies.

 Installing ML-Agents and Dependencies
We will need

• PyTorch

• ML-Agents

• ML-Agents dependencies

Let’s start. We will need to install PyTorch before installing the ML- 

Agents packages.

 1) In your venv, execute the following command in one 

line, using a single space after the -f followed by the 

URL. If you intend to copy the following command 

instead of writing it out, then I would suggest 

copying this command to notepad or another text 

editor and then copying it again before pasting it 

into the terminal to avoid line break issues.
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pip3 install torch~=1.7.1 -f https://download.pytorch.

org/whl/torch_stable.html

This command will download and install PyTorch and all its 

dependencies.

 1.1) The command WILL NOT WORK unless you 
have EXACTLY Python 3.7.9 as your primary 
Python installation.

 1.2) If your python --version command does not 

say version 3.7.9, you will need to uninstall 

all other versions of Python or modify your 

Windows PATH variable.

 2) Next, we’re ready to install the ML-Agents package. 

To do this, you’ll want to execute the following 

command in your venv:

py -m pip install mlagents==0.28.0

This command will download and install the ML-Agents Python 

package and its dependencies. You may see a sizeable list of 

warnings during the setup process.

However, these are not critical.

 3) Finally, you can validate that you successfully 

installed your ML-Agents Python package by 

executing the following command within your venv:

mlagents-learn --help

If your installation was successful, this command should print 

out a long list of commands.

That’s it for the Python installation.
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 4) If you disabled your antivirus shields for the 

installation, please remember to reenable your 

shields.

We can now proceed with finalizing our Python setup, by validating 

that everything is working.

 Validating Our ML-Agents Installation 
with Samples
We can validate our ML-Agents installation by copying the official ML- 

Agents examples into your project. If you’ve cloned the repository for this 

book, then you will not need to download them again and can find them in 

the directory of the example project listed as follows:

Introduction-to-ML-Agents\Assets\ML-Agents\Examples

 1) If you’re following along in your own project, then be 

sure to copy that folder into your project’s “Assets” 

folder in such a way that the directory tree matches.

Your project’s “Assets” folder should align with that of the 

book’s example project.

This means that you should copy \ML-Agents\Examples into 

your project’s \Assets\ directory.

Alternatively, you can download the latest official examples 

from the official ML-Agents repository using the following 

GitHub URL:

https://github.com/Unity-Technologies/ml-agents/tree/

main/Project/Assets/ML-Agents/Examples

 2) Let’s begin our testing by opening the 3DBall 

sample. In the Unity project window, navigate to 

and open the following file:
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..\Assets\ML-Agents\Examples\3DBall\Scenes\3DBall.unity

You should now see a bunch of blue cubes stacked in a grid 

formation.

 3) Click the Play button at the top of your editor 

window to start.

If all goes well, your little cube faces should be jiggling around to 

keep the ball from rolling off their heads.

If the cube people are moving, you have installed the ML-Agents 

package correctly and are currently running an ML-Agent with 

its trained model.

Your console should display a message saying that the trainer is 

not connected; this is fine and expected behavior, simply look to 

see if the cubes are moving at all.

These agents should look something like the image in 

Figure 5-17.

Figure 5-17. The sample ML-Agents keeping a ball balanced on 
their head

Well done!
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 Conclusion
You’ve successfully installed Python, ML-Agents, ML-Agents extensions, 

ML-Agents samples, and all the ML-Agents Python dependencies.

In the next chapter, we’ll discuss ML-Agents in greater detail and start 

seeing how the concepts learned throughout the book apply in practice.

If you encounter issues with the example repository, please remember 

that you are more than welcome to raise a GitHub issue on the book’s 

GitHub page.
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CHAPTER 6

Unity ML-Agents
Now that we have a working installation of ML-Agents, we can take a more 

hands-on look at the system.

In this chapter, I’ll discuss the various components of ML-Agents. We’ll 

then discuss the learning environments inside the 3DBall sample scene, in 

which ML-Agents aim to balance a ball on their heads.

From here, we’ll talk about inputs and outputs and get a better look at 

how our agent views the simulated world. Then we’ll talk about rewards 

more practically and in depth than earlier in the book.

We’ll pick apart the 3DBall sample, train the agent ourselves, and look 

at what saving and exporting an ML-Agent’s neural network to a model file 

looks like.

Then we’ll discuss how you can use the exported model by assigning it 

back to the agent for use.

We’ll then wrap all of that up to reiterate what we’ve learned in the 

chapter. It will be a great chapter with a ton of learning.

 ML-Agent Components
Let’s begin by discussing the ML-Agent components that make up Unity 

ML-Agents.

I will be skimming over some concepts as right now we’re just focused 

on knowing what’s out there. I will go in depth into the various concepts 

later in the chapter.
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We’ll be opening the 3DBall official Unity ML-Agents sample 

scene as we did in the previous scene. You can find this scene in the 

following folder:

Assets/ML-Agents/Examples/3DBall/Scenes/3DBall.unity

Once your scene is open, select one of the “3DBall” objects in the 

scene hierarchy.

Then expand the “3DBall” object, and select the “Agent” object. The 

inspector window will now show you the components attached to the 

ML-Agents.

ML-Agents consist of three primary components:

• The behavior parameters

• The agent

• The decision requester

Let’s start by discussing the Behavior Parameters component as 

shown in Figure 6-1.

Figure 6-1. The behavior parameters component
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 Behavior Parameters
In essence, this component determines the properties that dictate how the 

ML-Agent will run and configures the settings for the brain parameters and 

some additional settings like what device to use.

It’s our glorified settings object.

Each behavior parameters component's field is vital to building a great 

ML-Agent.

 Behavior Name

Let’s start with the Behavior Name field.

The Behavior Name, as the name implies, is a field for a name for this 

behavior.

We use this name to identify the agent, and it should be unique unless 

the agents share the same functionality.

An important note is that you should never directly change the 
behavior name during runtime. Instead, you should use the following 
method on the behavior parameters component:

SetModel(string newName, NNModel newModel, InferenceDevice 

newDevice)

In typical situations, you can give your agent a meaningful name and 

leave it alone.

 Vector Observations

Next, we have the vector observations.

The Vector Observations field tells the brain how many inputs to 

expect. It consists of space size and a stacked vectors count.

You must set the space size value to match the number of inputs your 

code gives the ML-Agent.
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Let’s presume I tell the agent to observe its current health and 

stamina – then we need to give a vector observation of 2 as the agent 

observes two float values.

A critical note is that you must break down complex types into float 

values. For example, if I tell it to monitor its current position, you need to 

set the vector observations to 3.

You need to set the value to 3 because a position is a Vector3 type 

consisting of three floats.

When collecting observations, we can pass in any of the following 

types, broken down into their respective floats:

• float – 1 vector observation

• int – 1 vector observation

• bool – 1 vector observation

• Vector2 – 2 vector observations

• Vector3 – 3 vector observations

• IList<float> – Length of list observations

• Quaternion – 4 observations

So depending on what types and how many observations you make, 

you need to calculate and set the Space Size field accordingly.

The next value is the Stacked Vectors field. The stacked vectors field 

tells the ML-Agent how far back in history it’s capable of looking.

This ability to view past data can be helpful in some situations. 

However, it’s important to note that the more stacked vectors you give your 

ML-Agent, the longer it will take to train.

In the following formula, we can see that if we had a space size of 10 

and a stacked vector count of 5, we would have 50 total observations. This 

calculation means that the training performance of 50 total observations 

would be even slower than having an ML-Agent with a space size of 30 and 

a stacked vector count of 1, totaling 30 observations.
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Space Size x Stacked Vectors = Total Observation Size

If you want to observe the direction of an entity, it may tempt you to 

have the ML-Agent monitor its position with a stacked vector size of 3. 

However, while the ML-Agent would be able to infer direction from this, 

you may be better off simply letting it observe the velocity.

So keep your total observations manageable, and you’ll have agents 

that can train fast and efficiently.

Quicker training times mean shorter iteration time on improving your 

ML-Agent.

 Actions

The actions field allows us to specify how many different continuous 

actions and discrete branches the agent should support.

 Model

The model is the brain of the ML-Agent. It’s a snapshot of the neurons 

formed and their weights.

The model field consists of three subfields:

• Model

• Inference device

• Deterministic interface

The model field takes in a model file we get when exporting a trained 

ML-Agent.

This model is what allows our ML-Agent to function, and we can 

serialize it and compile it into a build for runtime use.

Once we train an ML-Agent and generate the model, our ML-Agent 

performance improves significantly.
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The inference device is the physical device the ML-Agent uses for 

inference.

The ML-Agent uses this device for runtime inference or playback of the 

model, not for the process of training.

So, for most situations, Burst is the most useful choice.

Next, we have the behavior type.

 Behavior Type

There are three different behavior types that our behavior parameters 

component can take. These are

• Default

• HeuristicOnly

• InferenceOnly

The behavior type determines where the ML-Agent will make its 

decisions.

Default
Using Default as the behavior type will have the ML-Agent attempt to 

use the remote process, PyTorch, for decision-making.

If it’s unable to use the remote process, it will fall back to using 

inference.

The ML-Agent will fall back to heuristic control if the inference is 

unavailable.

HeuristicOnly
This behavior type will always use heuristics. Heuristics is the mode 

where we provide manual actions to the neural network – in essence, 

making the decisions ourselves – typically through user input using Unity’s 

Input System.

InferenceOnly
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The inference-only behavior will always use inference on the provided 

model, which means that the agent will make decisions using the model by 

“inference.”

Typically, a behavior type of Default is suitable for many situations 

unless you want to override the control. The next field on the behavior 

parameters is the Team Id field.

 Team Id

The Team Id value specifies the team that the ML-Agent should contribute 

to, which is helpful for team-based ML-Agents.

 Use Child Sensors

This checkbox allows us to tell the agent to find and use any sensors found 

through its own child hierarchy. This incurs a small performance impact, 

and you should keep this disabled unless you have child sensors on 

your agent.

 Observable Attributes

Here, we can tell the agent if it should be using reflection to determine 

if the [Observable] attribute is in use. Using reflection incurs a large 

performance penalty, and if you are not using the attribute, then you 

should keep this disabled.

 The Decision Requester
The decision requester is an optional component that requests a decision 

from the agent every x number of steps specified by the DecisionPeriod 

field. Let’s take a look at the component in Figure 6-2.
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Figure 6-2. The decision requester component

The decision requester is not needed if your agent implements 

RequestDecision.

It has the following fields:

DecisionPeriod – This is the step interval to wait before making a new 

decision on the attached agent.

TakeActionsBetweenDecisions – Specifies whether or not the agent 

should take action between decisions on each academy step. If you set the 

DecisionPeriod to 1, this field will have no effect.

That’s all the components you need on an agent to allow it to function; 

however, there are additional components like sensors that we will discuss 

later in the chapter.

Sensors are optional and are simply abstracted to allow for quickly 

copying functionality between custom agents. That said, your agent is free 

to implement a custom implementation of sensors.

We will cover this later in the chapter.

Next, let’s look at learning environments and how we can group 

multiple agents within the same scene to parallelize training, resulting in 

significantly faster training times.

 Learning Environments
Learning environments are isolated learning environments in which an 

agent can train. As they are isolated, you can create many within the same 

scene, typically via copy-paste, spacing them away from each other.

In Figure 6-3, let’s look at how Unity Technologies created its learning 

environments for its 3DBall sample.
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Figure 6-3. The learning environment

The learning environment in the 3DBall sample consists of everything 

the agent needs to train. In this case, the agent and the ball that it needs to 

keep balanced on its head.

Unity developed this sample agent so that everything sits inside a 

single parent object, 3DBall, that one can duplicate in the scene.

This way, the agent can train, regardless of whether it’s a single agent 

or 100 agents.

In this case, we have 12 learning environments. It’s important to point 

out that a learning environment is not a specific number of agents in a 

group – we define it as everything needed to train a model, ideally as a 

child of a single transform.

Let’s take a sneak peek at one of the other samples to reinforce this 

concept of learning environments.

Figure 6-4 shows that of the SoccerTwos sample, which you can find 

under the path:

../Assets/ML-Agents/Examples/Soccer/SoccerTwos.unity

Let’s take a look (Figure 6-4).
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Figure 6-4. The learning environment within the SoccerTwos sample

This sample has four agents, goal posts, an environment, and a ball. 

We isolate everything into a learning environment. We then place it inside 

of a parent gameobject for easy copy-paste. We then duplicate the learning 

environment several times in the scene.

Again, we isolate everything we need to train a model. That is what 

makes a learning environment.

Now that we know what makes up an ML-Agent and its learning 

environment, let’s dig deeper into how ML-Agents interpret and interact 

with the virtual world.

 The Agent
The agent is the heart of your ML-Agent; it’s where your code lives. As an 

example, in the official 3DBall example, our agent is of type Ball3DAgent.

We can see this in Figure 6-5.
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Figure 6-5. A custom implementation of the Agent class

The only universal field on the agent is the MaxStep field, which 

determines how many academy steps an agent should complete before 

restarting.

You can set this to 0 for unlimited steps or until manually ending the 

episode.

To create an agent, you create a class that inherits from the Agent class. 

By inheriting from the Agent class, you can override several methods to 

build your agent.

 Agent Override Methods

In this next section, we’re going to be covering code elements.

If you would like to follow along with the code, switch back to the 
3DBall scene.

You can then right-click the “Ball 3D Agent” component and select 

“Edit Script.” However, Ball3DAgent does not implement everything; if you 

cannot find the corresponding method, do not be alarmed – we will cover 

more later in the chapter.

The goal right now is to see what’s available.

Viewing the Ball3DAgent class will be a great way to see a few of the 

method overrides in use.

override void Initialize()

We’ll start with the Initialize method.
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You can override the Initialize method to do any first-time setup 
for your agent. The initialize method works much like the Start or 

Awake methods that MonoBehaviour classes provide – always prefer using 

“Initialize” over “Start” or “Awake.”

override void CollectObservations(VectorSens
or sensor)

Override the CollectObservations method to feed your ML-Agent 

observations.

Observations are data points representing the virtual world around 

the ML-Agent, and the agent can interpret this data into meaningful 

information about its environment and driving decisions.

We’ll also cover observations in detail later in this chapter during the 

“Inputs and Outputs” section, so, for now, make a simple mental note that 

this is where observations happen.

override void OnActionReceived(ActionBuffers 
actionBuffers)

This method override is where decisions get turned into actions, and we 

implement the agent’s actions. While this is an oversimplification, we’ll 

also discuss this in detail during this chapter's “Inputs and Outputs” 

section.

So, for now, you can make a mental note that this is where our logic to 

interpret ML-Agent actions goes.

override void OnEpisodeBegin()

You should override the OnEpisodeBegin method and make it responsible 

for setting up your agent for a new training episode. You’ll typically want 

to reset any cached values from a previous training episode or set any new 

values relevant to the latest training episode.
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override void Heuristic(in ActionBuffers 
actionsOut)

Heuristics override allows us to choose actions for the ML-Agent. This 

method will enable us to set up the logic for that to occur. Heuristics are 

excellent for ensuring that our agent’s base logic functions correctly, 

debugging, and imitation learning.

Next, we need a method to ask the ML-Agent to do something, and 

that’s where the RequestDecision method comes in. Let’s take a look.

The following methods we will discuss are not overriding, but are 

extremely important to training your ML-Agent. These methods include 

the add-and-set reward methods.

During the “Rewards” section later in this chapter, we will 

discuss rewards in detail, so don’t get worried if you’re feeling a little 

overwhelmed.

void RequestDecision()

You can call the RequestDecision method to tell the ML-Agent to make 

a decision. This functionality is much like the DecisionRequester 

component that we’ll discuss shortly. However, it’s important to note 

that if you use a DecisionRequester component, you should not call 

RequestDecision manually.

void AddReward(float increment)

AddRewards allows us to adjust the reward value for our agent’s current 

episode incrementally. For the best results, you should almost only call this 

method during the OnActionsReceived method.

Positive reward values will reinforce behavior, and negative values 

discourage the behavior. Alternatively, you can set the reward instead of 

incrementing it using the SetReward method. Let’s take a look at this next.
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void SetReward(float reward)

Much like the AddReward method, SetReward adjusts the reward for the 

agent’s current episode. The difference is that SetReward overrides the 

current value for the episode instead of updating it incrementally.

The next method to cover is the EndEpisode method.

void EndEpisode()

The EndEpisode method allows you to end the current episode and reset 

the agent, which is helpful in situations where an ML-Agent made a fatal 

mistake or achieved its goal.

The methods that we covered are the ones you’re most likely to use.

With that said, there are several other methods for the agent class. I will 

touch on them briefly. They are as follows:

CollectDiscreteActionMasks(DiscreteAction

Masker) – Collects the masks for discrete actions, 

stopping the ML-Agent from using them during 

training and inference.

GetAction() – Returns the last action decided upon 

by the agent without making a new decision.

GetCumulativeReward() – Gets the total reward 

accumulated for the current episode on the 

given agent.

GetObservations() – Gets a read-only 

view of observations generated by the 

CollectObservations method. This method can be 

useful inside of Heuristics to avoid recomputing 

the observations.
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LazyInitialize() – Calls your initialize override if 

one exists. It can be called multiple times.

OnBeforeSerialize() – Gets called immediately 

before serialization. Call the base implementation if 

you’re using custom serialization methods.

OnAfterDeserialize() – Gets called immediately 

after deserialization. Call the base implementation if 

you’re using custom serialization methods.

OnEnable() – This is Unity’s OnEnable functionality 

that gets called once the attached gameobject 

becomes active. If you implement custom logic, 

remember to call the base implementation too.

OnDisable() – This is Unity’s OnDisable 

functionality that gets called once the attached 

gameobject becomes inactive. If you implement 

custom logic, remember to call the base 

implementation too.

RequestAction() – Requesting an action repeats 

the agent’s last action from a decision without 

requesting a new decision.

ScaleAction(float, float, float) – Scales a 

continuous action from a range of –1:1 to any range 

you provide.

SetModel(String, NNModel, InferenceDevice) – 

Sets the model assigned to the agent. You should 

note that the agent will ignore the behavior name 

parameter while it is not training. At the same 

time, it will ignore the model and inference device 

parameters when not using inference.
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That’s what makes up an ML-Agent. We’ll keep looking deeper into this 

and eventually build our agent too.

 Inputs and Outputs
In inputs and outputs, we will discuss how an ML-Agent can both interpret 

and interact with the virtual environment around it.

We’ll start with the various sensors and observations that our agent can 

use – our inputs.

 Inputs, Observations, and Sensors
The agents we build use a series of float values to visualize the world 

around them.

However, the word visualize may differ from the first thing that comes 

to your mind.

You see, an ML-Agent does not “see”; it interprets.

It does this by associating given values and actions with rewards. 

Perhaps this is why current agents cannot “understand” the tasks we give 

them. We’re still missing some fundamental steps.

The agent is exceptional at finding patterns in data, but our processing 

power is still limited, so we need to be picky about the data we provide 

an agent.

The more data, the higher the likelihood of an agent performing well, 

given the proper reward structure. However, the more data, the slower the 

training occurs, which means poorer agent performance.

This poorer agent is due to the performance implications and the time 

taken to reach an ideal state.

So when giving an agent data, we want to find a balance of quantity 

and relevance.
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Suppose we have an agent who aims to launch a ball into a hoop. The 

agent is entirely blind until we give it observations. So we start to describe 

its world using observations.

Observations describe the virtual world.

In this example, we may give the agent its position to know where it is 

in 3D space.

Then we may give the agent the target position of the hoop. These 

observations will allow the agent to see its position relative to the target.

When constructing an agent, I often like to think about what the agent 

would see if it were a person, starting with complete nothingness. From 

there, I add details that have the highest relevancy to the agent’s goal.

In this hypothetical example, what does the agent need to know to 

throw a ball into a hoop?

Let’s give it some thought and take a look at Figure 6-6.

Figure 6-6. The agent’s view of the world in the example

The agent needs to know two things to throw the ball into the hoop:

• What direction to throw the ball

• How much force is needed

To answer these, we need to understand the distance the ball needs 

to travel.
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To figure that out, we need to understand the agent’s position relative 

to the target and any forces the environment may impart on the ball along 

the way.

If the target is a hoop, it may also be at an angle, so we might want to 

know the orientation of the hoop.

So the agent needs to be able to observe

• The agent’s position (Vector3)

• The target’s position (Vector3)

• The target’s orientation (Quaternion)

• Gravity (Vector3)

With this information, the agent can attempt a combination of different 

launch velocities and directions. We then reward the agent whenever the 

ball enters the hoop.

The whole agent visualization may look something like Figure 6-7.

Figure 6-7. The agent’s final view of the world in the example

We can then optimize this network, reducing the input data until this 

notably affects our training performance. Suppose the target’s position 
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was always relative to the agent; we could eliminate the agent’s position 

observation, which would reduce our observations by three.

Then suppose that we only ever applied gravity in the Y axis – we could 

change gravity from a Vector3 to a float observation, which would reduce 

our observations by a further two.

Suppose the target orientation was always static – we could remove 

that observation, eliminating another four observations.

As such, we could go from 13 to 4 observations, considerably 

simplifying our agent’s network and making it more performant for 

training and inference.

Then we have the action of launching a ball with velocity and direction. 

We will discuss actions and outputs after this section.

So as you can see, it’s essential to describe the world to the agent, using 

as few observations as possible without sacrificing relevance – again, to 

strike that balance between as few observations as possible with the most 

relevance. Figure 6-8 illustrates this point.

Figure 6-8. The balance you should aim for when building 
your agents

Let’s get into discussing the creation of observations.
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 So How Do We Create Observations?

There are three primary ways for us to generate observations. Let’s take a 

look at these:

• Collecting observations

• Observable attribute

• Implementing the ISensor interface

We’ll start by discussing the collection of observations.

Collecting Observations

The first approach, prevalent in Unity ML-Agents, overrides the CollectOb

servations(VectorSensor sensor) method on the Agent class.

We touched on this briefly earlier in this chapter, but I’d like to 

cover this in more depth, as this is a great way to observe the data of an 

environment when the data is numerical and nonvisual.

So, the first thing to remember when overriding the collection of 

observations is that you will need to update your agent’s Behaviour 

Parameters to include a Space Size that matches the number of vector 

observations you’re performing via code.

To do the actual collection of observations, you’ll want to override the 

CollectObservations method discussed earlier.

You then use the sensor passed in to add observations.

Here is a short example, but remember that I encourage you to tear 

apart the code in the sample project to find more usage of this:

public override void CollectObservations(VectorSensor sensor)

{

    // 3 Observations total, since Vector 3 breaks down into

    // three floats.

    sensor.AddObservation(transform.localPosition);

}
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If you have a keen eye, you may have noticed that I added the entire 

local position as an observation, rather than adding each value like the 

3DBall example does. This is because the AddObservation method has 

many different overloads supporting many of the basic C# and Unity types.

I encourage you to reference the supported types for the 
AddObservation method discussed earlier in this chapter. It will 
explain the supported types and how many vector observations 
they add.

More things to note are that the observations always need to be added 

in the same order and always be the same quantity of observations during 

training and inference.

If you ever need to collect a varying number of vector observations, 
you can do this by padding missing observations with a value of 0.

Another approach is to give yourself a buffer of how many varying 

observations you plan on making.

Suppose you needed to observe all gameobjects in an area around you 

that represented, say, collectible coins. You could instead look at observing 

the nearest ten coins. If only four coins were available, you would pad the 

rest of the observations with the value of 0.

Another thing to consider when collecting observations is a unique 

requirement when creating observations of enums.

Suppose we have the following enum:

public enum CreatureDisposition

{

      Aggressive,

      Neutral,

      Passive

}

When observing the value of this enum, we need to do so using one- 

hot encoding, which you can read more about in the following URL:
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https://en.wikipedia.org/wiki/One-hot

Failing to use one-hot encoding for categorical information will 
yield poor results.

Thankfully, ML-Agents provide a fantastic method that removes all 

of the low-level efforts, allowing us to use the AddOneHotObservation() 

method on our sensor.

To do so, we pass in the currently observed enum cast to an int, 

followed by the total number of item types in the enum, demonstrated in 

the following example:

public override void CollectObservations(VectorSensor sensor)

{

    // 3 Observations total, since Vector 3 breaks down into

    // three floats.

     sensor.AddOneHotObservation((int)observedEnum, 

totalEnumTypes);

}

Remember to update your observation space with the total number 

of enum types on the behavior parameters component.

Using the Observable Attribute

The other alternative is the use of observable attributes.

With that said, I would highly avoid using this in performance- 

critical projects, as the observable attribute uses reflection internally and 

has worse performance than passing the value through to the collect 

observations override.

So what are observable attributes?

Observable attributes are field and property attributes that allow the 

agent to observe the given variable once you’ve configured the behavior 

parameters to look for them.
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Let’s look at the following example:

// [Observable(string name = null, int stackedObservations)]

[Observable("Current Health", 3)]

private float currentHealth;

The preceding code tells the agent to observe the currentHealth, with 

a stacked observation count of 3. The stacked observation allows the agent 

to store a buffer of 3 observations of current health, allowing it to see the 

context of the value change.

Thus, the agent can determine if the health is changing and if that 

change is positive or negative.

Let’s break this down further. The observable attribute is the only part 

that is required.

We can optionally give the observation a name, which is required if this 

observation is on a sensor, as sensors need unique names.

Additionally, we can optionally specify the number of stacked 

observations to allow it to view the history of the value by storing it in 

a buffer.

An important thing to note about the observable attribute is that 
you do NOT need to increment the observation space in the behavior 

parameters component. This adjustment is made internally through 
reflection.

And a final important note is that observables will do nothing 
by default. You need to enable them in the behavior parameters 
component by adjusting the ObservableAttributeHandling field to one 
of the following:

• Ignore – The default setting. This setting will ignore 

all observable attributes of the agent. This option 

has the best performance as the agent does not use 

observables or the required reflection.
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• Exclude Inherited – This setting will only check the 

class members with the observable attribute. This 

option is generally the best if you’re adamant about 

using observables.

• Examine All – This setting will examine all members 

of the class. This option has the worst performance 

and should be avoided, but it is required if your 

agent inherits from another agent that implements 

observables.

So overall, the observable attributes are nice for early testing or small 

projects.

Still, I would personally avoid it and collect the observations through 

the override instead, purely due to the performance cost of runtime 

reflection.

So what about the third way?

Creating Sensors

We’ll go more in depth into sensors shortly, but the third way of creating 

observations is by creating a sensor.

You can create a sensor by implementing the ISensor interface on your 

component, like in the following example:

public class ExampleSensor : MonoBehaviour, ISensor

By implementing the ISensor interface, you are creating what’s known 

as a sensor.

The sensor is responsible for collecting and formatting the data for 

interpretation by the agent and is interestingly used internally by both 

CollectObservations and Observables.
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So why bother with CollectObservations and Observables if sensors 

are the final destination for observations?

That’s because the sensor is intended for advanced users and is mainly 

abstracted away when it comes to CollectObservations and Observables.

Sensors are superior to their CollectObservations and Observables 

counterparts.

While CollectObservations and Observables produce vector 

observations represented as a list of floats, sensors can do even more.

They can handle vector observations as well as visual observations! 

The exciting part about this is that visual observations are 

multidimensional arrays of floats.

So for those brave enough to delve into building a sensor, the next 

section is for you, despite the extra work that comes with it.

 Building Sensors

This next section will discuss how to build your ML-Agent sensor.

This part is more advanced than other parts of this book and 

will require a solid understanding of programming principles. You 

are more than welcome to skip this if it’s too advanced, as using the 

CollectObservations override is more than sufficient.

Let’s begin.

We will build a sensor that observes the nearest entities around the 

agent up to a maximum observable size.

To find the final example, look in the following directory if you’ve 
cloned this book’s repository page:

/Assets/Scripts/Sensors/SphereSensor.cs

When implementing the ISensor interface, we contract ourselves to 

implement the following methods:

• GetObservationSpec()
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• Write(ObservationWriter writer)

• GetCompressedObservation()

• Update()

• Reset()

• GetCompressionSpec()

• GetName()

You must include all these methods in our class and attach a 

SensorComponent to your agent to give the sensor its functionality. The 

SensorComponent is an abstract class that we will also need to build. 

Alternatively, you can use a BasicSensorComponent for many situations.

We’ll discuss each of these methods in detail, starting with 

GetObservationSpec.

GetObservationSpec

GetObservationSpec returns an ObservationSpec, which is a struct that 

describes the details of the given observation. This observation spec tells 

us things like

• The size of the observation

• The multidimensional properties of the observation

• Observation types that describe whether or not the 

observation has a goal signal

We can use one of the provided helper methods to create our 

observation spec based on our requirements.

Three helper methods are available to us:

• Vector – This spec describes a one-dimensional 

observation of the specified length.
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• Visual – This spec describes a multidimensional 

observation for visual-like observations containing 

width, height, and, optionally, multiple channels.

• VariableLength – This spec describes observations of 

variable length.

Vector Observation Spec

The vector observation spec uses the Vector helper method. Let’s take a 

look at the following example:

return ObservationSpec.Vector(int length, ObservationType 

obsType);

The preceding helper method takes a length argument, followed by an 

optional observation type argument. The length argument is the size of the 

observation.

The observation type defaults to ObservationType.Default.

All observation specs have a default observation type. So I will be 

omitting them from the following examples.

So if one were to observe the current health variable of an enemy, you 

might do the following:

return ObservationSpec.Vector(int 1);

The next observation spec helper is the visual method.

Visual Observation Spec

The visual observation spec is ideal for dealing with image-like 

observations that are multidimensional. The helper method makes 

describing the complex observation easy. Let’s take a look at it:

return ObservationSpec.Vector(int height, int width, int 

channels);
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This observation spec helper method makes it easy to construct visual 

observation specs. We need to feed in the height, width, and amount of 

channels. Note that height is first, not width.
Suppose we have a 128x128 RGB render texture that we would like to 

observe. In this situation, we would use the following code:

return ObservationSpec.Vector(int 128, int 128, int 3);

However, we won’t be using a visual observation spec. Instead, we’ll 

use a variable length sensor for our example sensor, as we don’t know how 

many entities will enter our agent’s area. So, we use the VariableLength 

helper method.

Variable Length Observation Spec

The variable length observation spec is ideal when you are unsure how 

many observations you will have. It allows us to specify the observation 

size and the maximum number of observations to handle.

return ObservationSpec.Vector(int size, int 

maximumObservations);

So for our use, we want to observe the positions of each entity local to 

the training environment.

This value will be a Vector3 observation, which results in a size of 3. 

We will allow the agent to track up to ten observable entities. So, we could 

write something like the following snippet:

return ObservationSpec.Vector(int 3, int 10);

That’s it. We created our observation spec quickly, thanks to the 

fantastic helper methods provided by Unity.

The next method to cover is the Write method.
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Write

Write allows us to write our observations directly to the 

ObservationWriter. The ObservationWriter is where all the magic 

happens, and there are many different ways to write to it.

To correctly implement the write method, we need to understand the 

ObservationWriter better.

ObservationWriter

The ObservationWriter allows us to write our observations to the agent. 

How we do this depends on our data structure. We can largely break this 

down into the following two groups:

• Complex types – Vector structs and Quaternions

• Simple types – Direct float observations

We’ll start by looking at the simple types.

Writer[index] = observation

Suppose we have one-dimensional observations to make. We can make 

this observation by directly accessing the writer’s buffer. Let’s take the 

following example:

writer[0] = observation;

where the writer is our ObservationWriter, 0 is the writer’s starting 

index, and observation is the float value we’re looking to write.

You can also do a for-loop and iterate through the writer, but I 
strongly advise using AddList instead if dealing with lists.

Next, we have the AddList method.

AddList(IList<Single>, Int32)

The AddList method allows us to add lists of data to the writer. It takes an 

IList of float and an int offset for the write buffer.
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The AddList is the part where things get tricky.

If you intend to make multiple calls to AddList, for example, if 

you have multiple lists that you would like to observe, you will need to 

calculate the appropriate offset.

We can call the following code to add a list of floats to the observation:

writer.AddList(observations, 0);

Where 0 is the offset, you can omit it if you do not need to change it.

In our situation, we want to add a list of Vector3 observations to our 

sensor. Let’s look at the Add(Vector3, Int32) method next.

Add(Vector3, Int32)

The Add helper method for Vectors is straightforward when dealing with a 

single Vector3 observation.

However, in our case, we want a list of Vector3 observations. Since 

AddList takes floats, we can’t use that.

So instead, we will use the Add helper method for Vector3 and 

calculate the required offset and padding.

It also becomes more tricky as we support an unknown number of 

vector observations.

So our first step is to calculate our observation deficit, which asks, 

“How many observations were missing that we need to pad?”

To calculate our observation deficit, we need to know how large the 

observation is and how many observations at most to expect.

Since we know that Vector3s have an observation size of 3, we can set 

this as a constant in our sensor class.

We will then allow the user to specify the maximum number of 

observations.

We also need a place to store our observations, so we’ll create an Array 

of Vector3s that we initialize during the Start method.
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A reminder that you can find the full code sample for our sensor in 
the book’s repository, under the following directory:

Assets/Scripts/Sensors/SphereSensor.cs

Let’s take a look at the following code:

const int ObservationSize = 3;

[SerializeField]

private int maximumObservations = 10;

// Initialize this in Start() as an Array of size 

maximumObservations.

private IList<Vector3> observations;

Now we can use this to calculate our observation deficit, and we can 

cache our observation count as follows:

var observationDeficit = maximumObservations - 

observations.Count;

var observationCount = observations.Count;

From here, we’ll implement the logic for adding our existing 

observations, as follows:

for (int i = 0; i < observationCount; i++)

{

      var offset = i * ObservationSize;

      writer.Add(observations[i], offset);

}

The preceding code will write our observations to the writer, but we 

still need to continue the writing to fill in our padding. So we add a loop 

that continues where we left off:

for (int i = observationCount; i < observationDeficit; i++)
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{

      var offset = i * ObservationSize;

      writer.Add(observations[i], offset);

}

Then finally, we calculate the total number of observations:

return ObservationSize * maximumObservations;

That’s our implementation of the Write method. However, there are 

a few more to cover. Remember to update your offset accordingly if you 

intend to add multiple observations, as we did in this example.

Let’s discuss Add(Quaternion, Int32) next.

Add(Quaternion, Int32)

Much like the vector observation we discussed, this method allows you to 

record observations. The implementation itself is identical. However, with 

this one, we can pass in the Quaternion type.

Remember that Quaternion has an observation size of 4.

Add(Vector4, Int32)

Again, this method allows you to record observations, as discussed in 

our Vector3 example. However, with this one, we can pass in Vector4 

observations.

The implementation itself is identical.

Remember that Vector4 has an observation size of 4.

That covers the implementation of the Write method in our ISensor! 

Let’s move on to the GetCompressedObservation method.

GetCompressedObservation

The GetCompressedObservation method allows you to implement custom 

byte compression. Unity does not recommend using this unless you’re 

working with large visual observations.

Chapter 6  Unity ML-agents



119

To work around this, we can simply return null.

Update

The Update method is called during the UpdateSensors step internally.

This update happens whenever the agent needs to make a decision. 

We can use this to run any custom logic on our sensor. We’ll be using it to 

update our observations.

You can find the code in the SphereSensor sample in the directory 

provided a few pages back.

It’s worth noting that during the current release of ML-Agents, 
version 19, the update method is called every frame due to the 
Monobehaviour update loop.

It’s unclear if this is intentional or if it’s a bug. Keep this in mind if 
working on future versions of ML-Agents. You can follow the opened 
GitHub issue at the following URL:

https://github.com/Unity-Technologies/ml-agents/issues/5784

Reset

The agent calls Reset whenever its training episode ends. This method 

typically does not require any implementation and can be left empty.

However, you can add your cleanup implementation here if you need 

to do any cleanup.

GetCompressionSpec

This method should return information on the compression spec you are 

using for GetCompressedObservation.

In almost all cases, you won’t end up using this as it’s only used 

internally by the camera sensor for custom compression to PNG, which 

anyway results in poor performance.

You can simply return CompressionSpec.Default.
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Let’s move on to the next method, GetName.

GetName

This method should return the unique name of the sensor. In most cases, 

I suggest setting up a constant in the class containing the name and 

returning that value.

If you intend to have multiple of the same type of sensor on a given 

agent, then you should expose this name field, and each sensor should 

have a unique name.

 Visual Observations

There are a few ways to work with visual observations. These are

• A custom ISensor implementation

• CameraSensor component

• RenderTextureSensor component

These various sensors collect observations of the image data and 

transform that data into a multidimensional tensor.

In essence, a tensor is an algebraic object which describes the 

multilinear relationship between groups of other algebraic objects within a 

vector space. We use tensors extensively in machine learning.

We then feed this tensor into a convolutional neural network or CNN.

Doing this allows the agent to learn from the spatial patterns and 

regularities within the visual observations.

You are also not limited to using either a vector or visual observations. 

An agent is capable of using both.

Visual observations are ideal for situations where it may be difficult to 

describe the environment numerically via vector observations. However, 

visual observations have far worse performance and training time than 

vector observations.
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So, while visual observations benefit specific niche applications, you 

should only use them as a last resort or if a visual observation would satisfy 

your requirements.

Alternatively, you can use visual observations in conjunction with 

vector observations.

This hybrid approach is often superior as an agent trained purely on 

visual observations will often be worse at performing a given task than an 

agent trained on the appropriate vector observations.

Visual observations offer some unique benefits, especially when 

building ML-Agent-enabled robotics, as you can feed a physical camera’s 

data into a render texture that the agent can observe.

Visual observations also support stacking, which can be useful in many 

situations but negatively impacts performance, so you should only use it as 

necessary.

Out of the box, you can give your agent visual observations by 

attaching a CameraSensor or a RenderTextureSensor to your agent.

The alternative is to create a custom ISensor that handles visual 

observations, but this is outside this book's scope as CameraSensor and 

RenderTextureSensor are sufficient for most cases.

You should also keep the image size as small as possible without losing 

the required visual fidelity to complete the task. By keeping the image size 

small, you’ll mitigate more of the performance impact of visual observations.

If color information is irrelevant to completing the task, you should use 

grayscale images, significantly improving training time.

Many other sensors are available with the ML-Agents extensions we 

installed during our setup chapter. Let’s take a look at these.

The ML-Agents extensions package contains various experimental 

features and sensors.

The sensors cater to physics interactions and joints. The most notable 

addition in ML-Agents extensions is the ability to create custom grid 

sensors if you’d like to apply the knowledge you learned in the “Building 

Sensors” section of this chapter and apply it.
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Since the extensions are highly experimental and subject to change, 

we won’t be covering them, but they are still worth a mention if you are 

curious enough.

Let’s move on to discussing actions.

 Actions
Actions are instructions from the agent Policy – the brain – for the agent to 

perform.

We interpret the action through an ActionBuffer, which the agent can 

use to receive actions.

Alternatively, you can implement a custom IActuator to handle the 

actions.

ML-Agents has the concept of two types of actions:

• Continuous

• Discrete

An important thing to understand about ML-Agents is that they do not 

understand their actions. The system simply tries different combinations 

of actions based on the inputs and the correlated reward.

We use the OnActionReceived() override on the Agent class to access 

and implement functionality to the ML-Agent's actions.

To specify the number of actions and discrete branches the 

agent should support, we can modify the respective fields in the 

BehaviourParameters field. Adjusting this value will allow us to access 

these actions in the OnActionReceived override on the agent.

We discussed this override briefly earlier when we discussed the Agent 

class. It’s time for us to look at this override in more detail, but, first, we 

need to understand the difference between Continuous and Discrete 

actions.
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 Continuous
When the BehaviourParameters have continuous actions specified, 

the agent will attempt to use them, passing the output values to the 

OnActionReceived override on the agent.

To utilize continuous actions, we override the OnActionReceived 

method of our agent and access the ActionBuffer with an array accessor. 

As best practice, we should clamp the value from the ActionBuffer to a 

range of -1 : 1.

We can then add our logic that utilizes the action’s value. Let’s take a 

look at the following code example:

public override void OnActionReceived(ActionBuffers 

actionBuffers)

{

      var myAction1 = Mathf.Clamp(actionBuffers.

ContinuousActions[0], -1f, 1f);

      var myAction2 = Mathf.Clamp(actionBuffers.

ContinuousActions[1], -1f, 1f);

      ar myAction3 = Mathf.Clamp(actionBuffers.

ContinuousActions[2], -1f, 1f);

     DoLogicWithAction1(myAction1);

     DoLogicWithAction1(myAction2);

     DoLogicWithAction1(myAction3);

}

It’s important to remember that the values received have no inherent 

meaning to the agent because the agent doesn’t understand what it’s 

doing. These values become usable based on the action-reward cycle that 

happens during training. The agent just learns that some value for action 

buffer at index 0 is good when it receives a specific observation because of 

the reward we give it.

The same concept applies to discrete actions.
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 Discrete
Discrete actions work using the concept of branches. Firstly, in the 

BehaviourParameters component, we specify the number of branches, 

after which we specify how many outcomes each of those branches should 

support.

The agent then passes us an ActionBuffer containing each of the 

branches.

The action buffer branch then contains a selection of which end node 

the agent selected.

This choice is represented to us in an integer index, with a range of 

0:BranchSize.

Let’s examine the following example:

// 2 Discrete Actions specified within the BehaviourParameters.

// Choice 1 contains a branch size of 2. If the value is 0, do

// nothing. If the value is 1, do something specific to 

choice 1.

var choice1 = actionBuffers.DiscreteActions[0];

// Choice 2 contains a branch size of 2. If the value is 0, do

//nothing. If the value is 1, do something specific to 

choice 2.

var choice2 = actionBuffers.DiscreteActions[1];

switch (choice1)

{

    case 0:

        DoNothing();

        break;

    case 1:

        DoSomethingSpecificToTreeOne();

        break;

}
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switch (choice2)

{

    case 0:

        DoNothing();

        break;

    case 1:

        DoSomethingSpecificToTreeTwo();

        break;

}

The benefit of discrete actions is the ability to mask actions. By 

masking actions, we can prevent a specific action from happening if a 

different discrete action is satisfied.

We do this by overriding the WriteDiscreteActionMask method on the 

agent. We then specify the branch we’re writing the mask to and pass in 

the index of the action, followed by if we want to allow the action.

After each step, the agent resets all masks, allowing all actions.

Let’s look at the following example:

public override void WriteDiscreteActionMask 

(IDiscreteActionMask actionMask)

{

     actionMask.SetActionEnabled(branch, actionIndex, 

isAllowed);

}

Continuous actions do not support action masking; if you want the 

ability to mask actions, you should leverage discrete actions for those 

situations.

It’s important to note that you cannot write a discrete action mask 
to a continuous action. Another important note is that when using 
heuristics, discrete action masks are ignored!

So what are heuristics?
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 Heuristics
Heuristics allow us to gain manual control over an agent’s actions. They’re 

beneficial for debugging and imitation learning.

We need to override the Heuristic method on the agent to use 

heuristics:

public override void Heuristic(float[] actionsOut)

{

    // manualValue can be any value we want as a float.

    actionsOut[0] = manualValue;

}

Heuristics are used to override the agent’s actions, allowing us to make 

decisions manually on behalf of the agent. We typically do this by binding 

actions to Unity’s Input System.

It’s important to note that imitation learning requires a heuristics 

override.

Now that we know about inputs, generating actions, and requesting 

decisions, we should look at rewards.

 Rewards
Earlier in the book, we discussed how reinforcement learning utilizes 

reward values to train the agent. Next, we’ll discuss how to implement 

those rewards.

We do this by calling AddReward and SetReward on our agent. We 

touched on these methods earlier in the chapter, but as a quick refresher:

• AddReward – Increments the agent’s reward for the 

current episode. This method is much like the pseudo 

expression: reward += value;
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• SetReward – Sets the agent’s reward for the current 

episode. This method is much like the pseudo 

expression: reward = value;

Let’s discuss the SetReward method in more detail first. SetReward is 

ideal for penalizing critical mistakes; you should use it sparingly.

Suppose the agent collides with an enemy, a critical mistake in 

our situation. We can implement something like the following code on 

our agent:

private void OnCollisionEnter(Collision collision)

{

     // If the agent touches an enemy, add a negative reward 

and end the

  // episode.

    if (collision.gameObject.CompareTag("enemy"))

    {

        SetReward(-1.0f);

        EndEpisode();

    }

}

In the preceding situation, absolutely anything the agent does is 

irrelevant if the agent collides with an enemy collider. We penalize 

the agent and end the episode, which disallows the agent any more 

opportunity to be rewarded again for that episode.

This approach can be helpful in some situations but will often result in 

the agent missing out on crucial learning opportunities.

In almost all situations, I would instead encourage the use of 

AddReward.

AddReward and SetReward can also be called externally by reference 

to the agent as the methods are public.

Let’s take a look at our preferred approach, AddReward.
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With AddReward, we slightly reward our agents based on if they’ve 

done something beneficial to their goal or penalize them if they haven’t.

It’s crucial not to overpenalize your agent, as this can adversely affect 

training. You should also try to keep your AddReward values normalized to 

a range of -1:1 to improve training stability.

Another excellent tip for time-sensitive tasks is to add a minor penalty 

for every step in which the agent did not achieve the goal. Something along 

the lines of -0.01:-0.05 is ideal for many situations.

Let’s take a look at the following code example:

private void OnCollisionEnter(Collision collision)

{

    if (collision.gameObject.CompareTag("objective"))

    {

        AddReward(0.5f);

    }

}

public override void OnActionReceived(ActionBuffers 

actionBuffers)

{

     . . . . . .

     AddReward(-0.03f);

}

We reward the player positively for reaching its goal, but we penalize 

it for each step to discourage it from taking too long to achieve the goal; 

the overall result is that the agent attempts to do the job quicker to get a 

higher reward.

This approach encourages the agent to seek out and touch objectives 

as fast as possible to maximize its final score at the end of each episode.

Keeping the rewards in clamped ranges gives us a more stable training 

experience.
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Finally, we now understand everything required to train an agent. It’s 

time for us to learn to train an agent.

 Training an Agent
Before we jump into creating and training our own agent, we’ll learn how 

to train an existing agent so that you can experience the training process 

with as few issues as possible.

We’re going to be retraining the 3DBall sample.

 1) The first step is to open the 3DBall sample scene. 

If you cloned the example repository during the 

setup chapter, then you will be able to find it in the 

following location:

Assets/ML-Agents/3DBall/Scenes/3DBall.unity

 2) As an additional step, go to

Edit ➤ Project Settings ➤ Player ➤ Resolution and 

Presentation ➤ Enable the “Run in Background” checkbox.

The training process uses the Python mlagents package we 

installed during the setup chapter.

The success of training an ML-Agent is also largely influenced by 

hyperparameters.

We glanced over hyperparameters earlier in the book, and 

we’ll skip past them for now. For now, know that you can find 

some example hyperparameter configurations in the following 

directory if you’ve cloned the example repository for the book:

Assets/ML-Agents/config
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For training the 3DBall sample, we will be using the 

hyperparameters that Unity provided for their 3DBall sample. 

You can find this under ../Assets/ML-Agents/config/

ppo/3DBall.yaml.

 3) Open and activate your Python virtual environment 

as you did in the setup chapter.

From here, you want to run the following command:

mlagents-learn [3DBall.yaml file full path] --run-id=3DBall- 

Example- 1

You can break the command down into the following:

• mlagents-learn – This command tells Python that you 

want to use ML-Agents.

• [3DBall.yaml file full path] – Here, you should insert 

the full path to the hyperparameter YAML file. This 

argument should include the file name and extension 

and exclude the square brackets.

• –run-id=3DBall-Example-1 – This argument is required 

to specify a unique name for the training profile. This 

argument will store your results in a directory name of 

your choosing and allow you to resume past training 

sessions.

Optionally, you can pass in the --resume argument if you wish 

to resume training of the given id or --force if you wish to 

overwrite the training. One of these is required if a training 
session with the given run-id already exists!
This command should display the Unity logo in the terminal, 

and shortly afterward it will display the following message:
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[INFO] Listening on port 5004. Start training by pressing the Play 

button in the Unity Editor.

 4) Once you receive that message, you’re ready to 

begin training. Click the Play button in Unity to 

begin training!

The training will then commence, and you will start to receive 

training update messages roughly every 15 seconds. The 

messages look something like the following:

[INFO] 3DBall. Step: 36000. Time Elapsed: 15.162 s. 

Mean Reward: 1.953. Std of Reward: 1.551. Training.

We’re interested in seeing the mean reward value increase over 

time as the agent trains. If the mean reward increases over time, 

it’s a good indicator that the agent is improving.

You may notice that the mean reward very gradually improves or 

even worsens near the start of the training. Then, once the agent 

starts to improve, it undergoes rapid improvement. This slow 

start, followed by a learning explosion, is a typical pattern when 

training ML-Agents.

Your console should look something like this:

[INFO] 3DBall. Step: 36000. Time Elapsed: 15.162 s. 

Mean Reward: 1.953. Std of Reward: 1.551. Training.

[INFO] 3DBall. Step: 48000. Time Elapsed: 40.273 s. 

Mean Reward: 2.312. Std of Reward: 1.741. Training.

[INFO] 3DBall. Step: 60000. Time Elapsed: 59.462 s. 

Mean Reward: 3.517. Std of Reward: 2.722. Training.

[INFO] 3DBall. Step: 72000. Time Elapsed: 79.986 s. 

Mean Reward: 6.551. Std of Reward: 6.456. Training.

[INFO] 3DBall. Step: 84000. Time Elapsed: 98.850 s. 

Mean Reward: 24.485. Std of Reward: 23.905. Training.
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[INFO] 3DBall. Step: 96000. Time Elapsed: 118.766 s. 

Mean Reward: 50.343. Std of Reward: 36.911. Training.

[INFO] 3DBall. Step: 108000. Time Elapsed: 135.078 s. 

Mean Reward: 83.564. Std of Reward: 27.168. Training.

[INFO] 3DBall. Step: 120000. Time Elapsed: 153.034 s. 

Mean Reward: 93.646. Std of Reward: 17.563. Training.

[INFO] 3DBall. Step: 132000. Time Elapsed: 170.700 s. 

Mean Reward: 92.631. Std of Reward: 17.688. Training.

[INFO] 3DBall. Step: 144000. Time Elapsed: 188.461 s. 

Mean Reward: 100.000. Std of Reward: 0.000. Training.

[INFO] 3DBall. Step: 156000. Time Elapsed: 206.732 s. 

Mean Reward: 97.742. Std of Reward: 7.490. Training.

[INFO] 3DBall. Step: 168000. Time Elapsed: 219.169 s. 

Mean Reward: 100.000. Std of Reward: 0.000. Training.

[INFO] 3DBall. Step: 180000. Time Elapsed: 237.326 s. 

Mean Reward: 100.000. Std of Reward: 0.000. Training.

 5) Once your mean reward reaches a value that you’re 

satisfied with or reaches the ceiling at which it can 

no longer improve, select the console and press 

Control + C to stop the training cycle.

The training will stop, and ML-Agents will export the 

current model.

[INFO] Learning was interrupted. Please wait while the 

graph is generated.

[INFO] Exported  results\3DBall- 

Example- 1\3DBall\3DBall-324455.onnx

[INFO] Copied results\3DBall-

Example-1\3DBall\3DBall-324455.onnx to results\3DBall-

Example-1\3DBall.onnx.
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 6) Once you receive these messages indicating that 

the export is complete, ensure that your Unity is no 

longer in play mode.

 7) From there, head to your Virtual Environment folder 

and follow the directory that ML-Agents provided.

In my case:

..\Virtual Environment\results\3DBall-

Example-1\3DBall.onnx

From here, copy this file into your Unity assets folder. If you are 
experiencing issues copying the file by dragging it into the 
Unity "Project" tab, consider using file explorer instead.
Congratulations, you’ve just trained your first agent. The next 

step is to assign this model to our agents.

 8) To do this, search for Agent in your hierarchy.

 9) Then select all agents using Shift + left click.

 10) Finally, drag the model from your assets folder into 

the Model field on your agents.

You are telling the agents to use your model file for inference by 

assigning your model.

To test it out, click the play button. If you’ve trained your agents to a 

mean reward of roughly 100 for this sample, then the agents will be good 

enough at the task to almost never fail.

You can refer to Figure 6-9 if you are stuck.

Chapter 6  Unity ML-agents



134

Figure 6-9. The model assignment process

Well done on making it this far! Let’s wrap up this chapter before 

moving on to building our very first agent.

 Conclusion
It’s been a long and information-packed chapter. Let’s recap what we 

learned.

This chapter taught us about the agent, its various overrides, and 

public methods.

We covered how to grant rewards or penalties to your agents. We 

learned how to do this in a way that results in a more stable learning curve 

for the agent.

We covered the various forms of inputs and outputs and how this 

translates into an agent interacting with the world.

We covered building a custom sensor for advanced users from the 

ground up. We discussed the various types of observations and discussed 

visual observations.

Then we learned about heuristics, and we trained our own agent!

In the next chapter, we’ll build our own agent, train it, and run it from 

the ground up.
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There were many useful tips and tricks in this chapter, but here are a 

few to remember:

• Keep your rewards small, within the range of -1:1, 

to ensure a smooth, stable training experience for 

your agents.

• Don’t overuse negative penalties, or your agent may 

not learn any meaningful actions from the training 

process.

• Keep your visual observations as small as possible and 

only use them when describing an environment with 

numeric values is very difficult.

• Experiment with the samples provided!

• Keep your observations relevant; useless observations 

will only lead to slower training times and runtime 

performance loss.

Let’s begin building our own agent in the next chapter!
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CHAPTER 7

Creating Your First AI 
in Unity
Now that you know the basics, it’s time to use that knowledge. In this 

chapter, I’ll guide you in creating your first ML-Agent from scratch.

We’ll go through the planning necessary, explore potential reward 

schemes, discuss how we will have our agent perceive the world around it, 

and discuss the various challenges we may face.

We’ll then put this to the test and build your first ML-Agent. We’ll 

develop and prepare the environment and the challenge that the agent 

will face.

Then you’ll learn about hyperparameters and how they can drastically 

affect training time and performance.

We’ll wrap up by training your new ML-Agent and discuss various 

techniques to speed up the training, from multiple training zones to 

concurrent runtimes connected to the same PyTorch instance.

I will show you how to use TensorBoard and highlight how important it 

is in the ML-Agent workflow.

Finally, we’ll polish the ML-Agent, deploy the model, and watch our 

new creation. I hope you learn a lot from this chapter and have fun while 

learning.

© Dylan Engelbrecht 2023 
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 Planning an Agent
Sharpening the proverbial axe is an essential aspect of developing 

ML-Agents.

Reinforcement learning can be unpredictable if you are unprepared. 

So to develop a great agent, we need to plan. In this section, we’ll do 

just that.

You are welcome to follow my example, as the example will be 

available on the GitHub repository, but I encourage you to take a swing at 

your own design, following the principles you learn here even if you come 

back later after following the example.

ML-Agent development takes experience; the best way to get 

experience is to throw yourself at it and try your best. With that said, start 

small and keep it simple, stupid – KISS.

Let’s discuss the example that I’ll be putting together.

 The Avoidance Sample
The avoidance sample will aim to train an agent capable of dodging and 

evading objects moving at variable speeds around its environment.

For this, we will need an agent capable of moving along the world X 

and Z coordinates and objects for the agent to avoid.

The agent should be able to move at variable speeds, up to a maximum 

speed, in any combination of the XZ axis.

We will also create several smaller objects that move freely around the 

training zone for the challenge – starting in a random direction and speed 

and bouncing off the boundaries of the training area and each other.

The avoidable objects will utilize object pooling to help with 

performance and respawn whenever the agent fails by touching them.

They should also avoid spawning directly on top of the agent.
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The agent’s goal will be to stay alive for as long as possible, avoiding 

these avoidable objects.

Let’s look at Figure 7-1.

Figure 7-1. The avoidables sample concept

The next step is to plan how we will reward the agent for achieving our 

desired goal, so let’s do that next.

 Reward Scheme
Planning a good reward scheme for an agent is vital to the success of your 

training pipeline. This part can often be one of the most challenging steps 

to get right.

For example, I had planned on rewarding the agent for every step that 

did not collide with avoidables in the avoidables sample. While, in theory, 

this is a solid approach for agents that need to survive as long as they can, 

in practice, it’s a bit different.
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An earlier version of the avoidables sample had a flaw.

Agents discovered that the likelihood of being hit by avoidables 

was dramatically lower in the corners of the training environment. 

So they would find the best available corner and hug it, performing 

minor movements to avoid stray avoidables moving into their sacred 

little corners – or in rare cases, they abandoned their corner in favor of 

another corner.

And this is entirely correct – the agent had achieved its goal perfectly. 

However, this was not quite how I wanted to showcase the ability of 

ML-Agents.

I wanted to showcase the agent dodging as many avoidables as 

possible. So I had to amend the planning for the reward scheme.

So as you can see, you might not always get the reward scheme right 

the first time.

A solution to this problem is a technique known as reward shaping, 

sometimes referred to as reward-based guidance. In reward-based 

guidance, you give the agent rewards for completing intermediary steps. 

However, it’s worth noting that reward shaping is not perfect, and it’s 

important to learn how to do it right. That’s why I’m going to show you 

how to implement it.

The most common issue with reward shaping is that an agent can end 

up prioritizing the reward shaping over the primary reward.

In most scenarios, you want to avoid this in favor of curriculum 

learning, which I will show you in the next chapter.

However, in this scenario, we were fortunate to have a case where 

minor reward-based guidance would benefit the agent. So I modified the 

agent to get a minor reward with a fall-off value based on its distance to the 

center of the training environment.

This reward took some tweaking, as the agent initially decided that the 

death penalty was a bargain price for getting that additional reward at the 

center of the environment.
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So I tweaked this reward so low that early training would almost not 

even notice the reward.

Suppose your agent struggles to achieve the end goal and focuses 

too much on the reward generated by reward shaping. In that case, you 

should consider reducing the intermediary reward or consider curriculum 

learning.

A key indicator that this is happening is that your agent will abuse the 

intermediary reward, resulting in an agent that never achieves the desired 

end goal while still achieving a high reward score.

So, always plan your reward scheme – try and foresee issues in 

advance, even if you don’t always get it right.

To do this, ask what the end goal should be.

For the avoidables agent, we want our end goal to be that the agent 

survives for as long as possible – and does it in style. So our final reward 

scheme looks like this:

• Passively earn a small reward for every step alive as the 

primary goal is to stay alive for as long as possible.

• Passively earn a tiny fraction of a reward based on the 

distance to the center of the training environment, 

as the secondary goal is to achieve the primary goal 

in style.

This reward setup should encourage the agent to favor the center of 

the map but still place the most priority on staying alive as its primary 

objective.

The next step in our planning phase is to decide how our agent will 

observe the virtual world around it. Let’s dig into this next.
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 Observation Plans
The next thing we need to plan is our agent’s observation of the virtual 

world. I want to take an approach that will give you the most experience 

with various sensors and show you that it’s possible to stack custom 

sensors.

So for the avoidables sample, I’d like to use the following two custom 

sensors:

• A ray perception sensor, with a custom rotational lock, 

will allow our agent to determine the direction and 

distance to avoidables. We can stack these observations 

to allow the agent to infer velocity and direction.

• A grid sensor with a moderately high resolution 

and stacked observations will allow our agent to 

have additional supporting information about the 

avoidables near it. This sensor will be especially useful 

if there is an avoidable behind another avoidable.

So while vector observations would work for this situation, I want to 

expose you to the preceding sensors that can handle varying observables.

The RayPerceptionSensor and the GridSensor are both included in 

the ML-Agents package and are excellent for various use cases.

The next part to discuss is how our agent will interact with the world.

 Actions Planning
For our actions, we want something that gives the agent greater control 

over itself in the movement space. To do this, I will encourage continuous 

actions, allowing the agent to control its speed and direction.

Discrete actions typically train faster, but that doesn’t necessarily mean 

it’s better for every use case.
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For the avoidables sample, I want the agent to have the ability to 

swerve and weave itself through avoidables. To do that, we need a range of 

values between -1:1 on our actions; continuous actions are ideal here.

So the action space will be pretty straightforward. We need an action 

for controlling the horizontal input and another for controlling the vertical 

input – from a top-down perspective.

This setup brings our action space to 2 while allowing the agent to 

move diagonally at any angle using a combination of actions.

Let’s discuss the challenges that we should expect next.

 Expected Challenges
While you can’t always anticipate every challenge – for example, the agent 

hiding in corners without incentive to stay near the center – you should 

always try your best to expect the unexpected.

For the avoidables sample, we have the following expected challenges:

• Balancing our reward structure to ensure that the agent 

prioritizes staying alive over everything else

• Ensuring that the agent learns anything meaningful 

while failing

• Validating that we configure our reward scheme 

and hyperparameters well enough to facilitate the 

development of an efficient and effective agent

Learning to anticipate challenges comes mostly from practice and 

experience – so remember to throw yourself into ML challenges frequently. 

The best way to do this is to build more ML-Agents, leading me to our 

next topic.
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 Building Your First ML-Agent
Now that we’ve done some planning, it’s time to start building your 

first agent.

For this, the code is available on the GitHub repository, as I’m sure 

you’d rather read code in your IDE than directly from the book. I’ll discuss 

the general idea of the code here.

You can find the code in the following directories:

\Assets\Scripts\Avoidables\

\Assets\Scripts\Utility\

\Assets\Scripts\Spawners\

First, we need to create a controller for our agent. This controller 

will be a class that inherits from Agent. Our first goal is to get this agent 

controller working with heuristic controls.

By getting the heuristic controls working, we can debug and test to 

ensure that the core movement functionality of our agent is working.

 1) Create a class called AvoidablesAgent, which will 

inherit from the Agent class.

I want the avoidables sample to use a Rigidbody-based 

movement system, where we dynamically apply force 

to the agent to get it rolling around the environment.

 2) For this, create a variable to control our agent's max 

speed and acceleration to get movement working.

 

Once we have that, we can start setting up our actions.
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 3) We know that we want two continuous actions from 

our planning: one for movement in the X axis and 

one for movement in the Y axis. You can access the 

continuous actions through the ActionBuffers of the 

OnActionReceived override.

For best practice, we need to clamp the values 

we receive to the –1:1 range. Let’s look at the 

following code:

 

Then we can proceed to use these actions to drive our Rigidbody 

forces. I’ll use the AddForce() method on our attached 

Rigidbody.

In the AddForce() method, I’ll use our inputs multiplied by our 

acceleration to create a new direction for our agent.

 4) To clamp our agent to the maximum speed, we’ll 

use Unity’s FixedUpdate() method to clamp the 

magnitude of our agent’s velocity to our max speed, 

which can be seen in the following code snippet:
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 5) The next step is to feed our debugging data to the 

ActionBuffers using the Heuristic() override.

To do this, we must cache the ContinuousActions from the 

ActionBuffers inside the Heuristic() override. Once cached, 

we can use an array accessor to access and modify the data.

 

For the override data, we’ll be using Input.

GetAxis("Horizontal") and Input.GetAxis("Vertical").

There are better ways to implement this input using Unity’s new 

Input System, but this will suffice as we’re only going to be using 

the Heuristic override in-editor for the avoidables sample.

 6) We then need to feed this input to the cached 

continuous actions via an array accessor. This data 

will now override the agent’s decisions if it’s using 

heuristics.

 7) An extra thing that we want to do is to clamp 

the agent’s local Y position to prevent it from 

bouncing into the air when colliding with 

surfaces at high speed. We can do this during the 

FixedUpdate() step.
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When working with ML-Agents, try to get into the habit of 
working in local space, especially with observations, as world-
space observations may impair the agent.

 8) Your agent should now be capable of movement. 

To test this out, create a parent gameobject for our 

training zone, and add an environment.

If you are following along from the cloned sample for this 
book, then you can find a copy of the barebones environment 
in the following directory:

\Assets\Scenes\Avoidance\Prefabs\Training Area - No 

Logic.prefab

 9) The next step is to create an object for our agent. I’ll 

be using a sphere for the agent to facilitate its ability 

to roll.

 10) Attach your agent controller and a 

DecisionRequester component. Your agent MUST 

request decisions for heuristics to work.

 11) Finally, ensure that your agent’s behavior 

parameters have a Continuous Actions space of 2.

 12) Click the play button and use WASD or the arrow 

keys to move your agent around.
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If your agent does not move, remember to assign it an 
acceleration and max speed value above zero, and ensure 
that the agent has a Rigidbody. Also, ensure that your agent 
component has a reference to the Rigidbody.
If you set up everything correctly, your agent should now move 

when you are in play mode and give it inputs.

 13) Our next step is to allow the agent to respawn. We’ll 

use the overrides Initialize() and OnEpisodeBegin() 

for this.

 

Try to work in local space so the environment can be copy-

pasted several times around the scene in a later step.

For the spawning, I’ll use a simple Random.insideUnitSphere 

multiplied with a variable for the spawn radius when reset. 

I’ll also expose a UnityEvent that will allow us to notify the 

environment whenever the agent resets.

 14) Great! Next, we’ll create the avoidables that the 

agent must avoid, along with a spawner.

For this, we want another smaller sphere with a Rigidbody. We’ll 

create a controller that allows it to move in a random direction 

with its local Y clamped. I’ll also add functionality to allow it to 

reflect its velocity on collisions.

 14.1) The avoidable obstacle controller should 

have a speed variable and a reference to 

its Rigidbody component. I will also create 
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a Vector3 cached variable that we will use 

shortly.

 

 14.2) Add the logic for keeping the ball in motion. 

For this, I’ll have the obstacle pick a random 

direction on the XY axis and move in that 

direction.

 

 14.3) Finally, let’s allow our avoidable obstacle to 

reflect its velocity based on collision.
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 15) Next, we need a spawner to create these avoidable 

obstacles in our training environment.

 15.1) Give your spawner the following variables:

 

 

 15.2) Expose a public method that resets the 

spawned avoidables. We will use this later to 

reset all of the avoidable obstacles when your 

agent fails.
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 15.3) For performance, I’d encourage the use of a 

basic pooling system on your spawner.

 

 15.4) During the update cycle, check if we can 

spawn, and if we can, then spawn new 

avoidable obstacles.

 

 15.5) Create a spawning method to handle the 

spawning of your avoidables.
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 16) Finally, on the agent, if the agent collides with any 

AvoidableObstacleController, then go ahead and fail 

the agent by rewarding it with a value of –1f, and for 

extra measure, reset the agent’s position.

You should also expose and invoke a UnityEvent that we can use 

to notify the spawner that the agent failed.

 

The FailAgent method is detailed on the next page.

 

 17) Hook your agent’s exposed UnityEvent to the 

ResetSpawning() method on your avoidable 

obstacle controller.

It might be tempting to end the episode whenever the agent fails, and 
while this can work in some cases, in this case, it may work against us, 
as the agent may fail to learn anything meaningful from its failures.

 18) Go ahead and test that the foundation of your code 

works using heuristics.
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Once you’re happy with the scene, we can move on to giving our 

agent observations and adding positive rewards.

 19) We’ll start by adding positive rewards.

 19.1) Expose some variables for this.

 

 

 19.2) For this, in the OnActionReceived method, 

add a reward per step. I would suggest a very 

low value for this.

Then, to ensure that our agent eventually learns to favor 

the center of the environment, reward the agent based on 

its distance from the center, with being closer granting a 

larger reward.

This center distance reward should be ridiculously small, or the 

agent might prioritize this over its primary objective.
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 20) Our next step is to create observations for our agent 

to allow it to see the world.

Here, we will also update the distanceToCenterPercentage field. 

For this, you should use a few vector observations to describe 

the state of the agent and then use sensors to give it information 

about the environment.

For our vector observations, add the following observations:

• transform.localPosition – Remember to keep 

your observations in the local space for better results. 

Tracking our agent's local position in the environment 

will help it get a sense of positioning.

• rigidbody.velocity – We can have the agent observe 

its velocity to have better control when applying new 

velocities.

• distanceToCenterPercentage – We can calculate a 

percentage affected by a fall-off range for our agent’s 

position relative to the center. We can use this value to 

modify the tiny reward the agent gets for staying near 

the center of the environment. Allowing the agent to 

observe this value will enable it to infer a relationship 

between it and the subtle reward we give it.

• distanceToCenter – We’ll also allow the agent to see 

the distance to center value directly, which makes it 

easier for the agent to infer a relationship between 

velocity, positioning, and distance to the center.
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These observations total eight vector observations – three for 

the local position observation, three for velocity, one for our 

distance percentage value, and one for our distance to the center.

Remember to update your observation space in 

BehaviourParameters to eight to reflect these observations 
correctly – or to whatever value you require if you decide to 
use different observations.

 21) Give the BehaviourParameters a stack size of three 

for our vector observations, allowing the agent 

to infer what changes its actions are making. The 

reason for doing this is that your agent is physics 

based, and decisions do not immediately result in 

the full changes to the agent.

Next, we’ll add a GridSensor to your agent. Let’s look at this fantastic 

component in more detail.

 The Grid Sensor
The grid sensor is powerful and valuable for various scenarios. 

Interestingly, Eidos-Montréal developed the sensor and contributed it to 

Unity ML-Agents.
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They developed the sensor to be able to observe multiple gameobjects 

without having rendering constraints, thus allowing the studio to train 

their agents on headless instances – a headless instance being a built Unity 

game without any rendering support. By doing so, Eidos-Montréal could 

train its agents significantly faster than with camera-based techniques.

We’ll leverage this incredible sensor in our project, as it’s a fantastic 

tool to learn, and I want to expose you to it. I’d also like to remind you 

that you do NOT have to increment the observation space to account for 

sensors.

22) Add the grid sensor component (shown in Figure 7-2) to your 

agent and copy the following fields. I will show you what they do shortly.

Figure 7-2. The GridSensor component

The grid sensor works by creating a grid of boxes that are box checked 

during each observation collection step. BoxCheck() allows us to test an 

area to see if any colliders intersect with a given box in space based on its 

conditions.

The sensor then collects that data in the form of an image-like 

structure that feeds into the neural network.
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This approach is fantastic as it allows the agent to observe many 

different objects concurrently without specifying the exact amount of 

objects to observe.

Let’s run through the settings and discuss what they do and what we’ll 

use for the avoidance sample.

Sensor Name
As we learned while building custom sensors, all sensors need to have 

a unique name on the agent. In our situation, we’ll only have a single grid 

sensor on our agent, so leaving the name as its default is perfect. We also don’t 

typically have a reason to include more than one grid sensor on an agent.

Cell Scale
Next, we have the cell scale. This setting is responsible for determining 

the size of each cell on the grid. For our purposes, we want an entity to take 

up no more than 2x2 cells, so we want our cells relatively small – I’ll use a 

value of 0.25f for the X and Z axes and leave the Y axis scale at 0.01f.

Grid Size
The next value is our grid size. This setting determines how many cell 

columns and rows we have, with the Y axis value locked at 1. We will use a 

grid size of 32x32 on our X and Z axes, respectively.

When choosing a grid size, it’s important to know that the larger the 

grid, the more of a performance impact it will have, both on your training 

and inference. A grid size of 32x32 still results in 1024 BoxCheck() calls per 

observation step.

You should also be aware that this sensor has a minimum size because 

the sensor internally maps the data to an image-like structure fed into a 

convolutional neural network.

Depending on your hyperparameter for the vis_encode_type 

setting, which we’ll discuss later in the chapter, the following size 

restrictions apply: 

• simple: 20x20 (the default vis_encode_type setting)

• nature_cnn: 36x36
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• resnet: 15 x 15

• match3: 5x5

• fully_connected: No size limit, but you should only 

use this for very small inputs.

Next, we have the Agent Game Object field.

Agent Game Object
This setting should point to the root agent gameobject, and the sensor 

uses this internally to disambiguate detections with the same tag as the 

agent. By default, it uses the attached gameobject.

Rotate with Agent
This setting is self-explanatory; it determines if the grid should rotate 

with the agent; for the avoidables sample, I’ve set this to false.

Detectable Tags
The detectable tags field determines how many and which tags the 

sensor can detect, excluding the agent gameobject. For the avoidables 

sample, I’ve created a tag called “avoidables” that I’ve tagged all avoidable 

objects with, and I’ve configured the grid sensor to detect this tag.

You need to configure at least one tag with gameobjects that use this 

tag for the sensor to do anything.

Next, we have the Collider Mask field.

Collider Mask
BoxCheck() calls are quite expensive, but there are ways to optimize 

this. We can tell the Unity physics engine calls to ignore specific layers for 

optimization.

So what I’ve gone and done is moved all avoidable objects onto the 

Avoidables layer.

Then, I configure the grid sensor to only perform checks on the 

Avoidables layer.
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The grid sensor defaults to Nothing and needs to be assigned for the 

sensor to do anything.

Next, we have the Observation Stacks field.

Observation Stacks
As we’ve learned, we can stack observations to get a history of those 

observations.

The grid sensor component defaults to a single stack which shows only 

the most recent observation. In the avoidables sample, I will use a stack 

size of 2. Setting this value to two will allow our agent to infer the velocity 

of the objects moving through the grid.

Increasing the observation stacks should lead to better-inferred 

velocity but will significantly impact performance during training time and 

result in longer training times.

Compression Type
The compression type field in the grid sensor component lets us 

decide if we want to do any compression on the data.

We will use PNG compression, which is also the default.

Using PNG compression is a free optimization that takes no additional 

effort and will reduce the data transfer needed between the trainer and 

the agent.

Not all sensors can benefit from PNG compression, but luckily for us, 

GridSensor can.

Initial Collider Buffer Size
Allocating buffer size is not free, so what we can do is initialize the 

buffer with a starting size. Keep this value at how many colliders you 

expect the agent to deal with on average.

For the avoidables sample, I’ve used a value of 8 as my initial collider 

buffer size.

This setting precedes our next setting – the Max Collider 

Buffer Size.

Max Collider Buffer Size
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Much like the initial collider buffer size, this setting deals with our 

collision buffer. You want to set the maximum size close to the maximum 

amount of collisions you expect the sensor to deal with concurrently.

The higher the value, the more memory usage – albeit quite small. I’ve 

gone and used a value of 32 for this.

Show Gizmos
Show gizmos is a debug setting we can turn on to visualize the 

observation grid.

Drawing the observation grid is very expensive and should only be 

turned on for a single agent during testing. You should turn this off before 

starting with your training pipeline.

For the avoidables sample, I have turned this on for the primary agent 

that the camera observes.

Gizmo Y Offset
This setting determines the offset on the Y axis at which Unity will 

draw the observation grid. This setting is purely visual and does not affect 

training.

Debug Colors
For every tag that you configure in the grid sensor, there will be a debug 

color that you can change. This setting affects the color of the drawn gizmo 

that visualizes the observation if you enable the Show Gizmos setting.

The grid sensor is fantastic, but I’d like to combine it with another 

sensor known as the RayPerceptionSensor. This decision mainly shows 

you how it’s possible to stack sensors and, as a bonus, gives our agent 

additional relevant information to observe for training.

Let’s take a look at the ray perception sensor next.

 The Ray Perception Sensor
The ray perception sensor shoots out several Spherecast() calls, which 

are spheres shot outward and notify the agent of a collision. We can use 

this to determine which direction the balls are around our agent.
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This sensor is also fantastic as it supports a varying number of 

observations.

23) Add the ray perception sensor component (shown in Figure 7-3) to 

a child object of your agent.

Figure 7-3. The RayPerceptionSensor3D component

24) Attach the LockRotation class to your ray perception sensor. This 

component locks the rotation of the attached gameobject.

 

This setup provides us with similar functionality to the Rotate with 

Agent field provided on the grid sensor, but will require us to enable child 

sensors on the BehaviourParameters on the agent.

Okay, let’s look at the RayPerceptionSensor3D!

Sensor Name

Chapter 7  Creating Your First ai in unitY



163

Much like before, each sensor requires a unique name on the agent. 

We will only use a single ray perception sensor, so we can leave this name 

defaulted to RayPerceptionSensor without any issues.

Detectable Tags
The detectable tags field allows us to specify what collisions the sensor 

should care about when performing sphere casts. I’ve set this to conform 

to our grid sensor and used a single tag with a value of avoidables.

Rays Per Direction
This value determines how many rays the sensor should shoot out in 

the sensor’s direction. I have used a value of 32 for the avoidables sample.

Max Ray Degrees
Next, we have the max ray degrees field, which determines the arc of 

the sensor.

Unity appears to have incorrectly implemented this setting, so I 

have set this value to 180 to surround the agent’s horizontal plane with 

rays fully.

I suspect that this value should be 360 to achieve the same results. 

Unity may fix this in a later update.

Spherecast Radius
This setting determines the “thickness” of each ray. A higher value 

leads to less accurate detections but requires fewer rays.

A lower value will result in more accurate detections but require more 

rays, or the agent may miss some detections.

For the avoidables sample, I found a value of 0.2f to complement our 

other settings well. It just takes some tweaking and testing to find good 

values for this.

Ray Length
The ray length setting determines how far out the rays should be cast. 

Lowering this can have minor performance improvements, but your main 

focus should be functionality.
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Keep the ray length as low as possible that it needs to achieve the 

desired goal. If our ray length is too long, our agent may detect avoidables 

in other training environments.

I found a value of 22f to work great for the avoidables sample.

Ray Layer Mask
Like the grid sensor, the ray perception sensor implements basic 

physics optimizations. We can configure which layers should trigger 

detections.

I’ve configured the sensor to use the avoidables layer for the 

avoidables sample.

Stacked Raycasts
This setting allows us to stack out observations for the sensor. I’ve 

found a value of 2 to be a good balance between training time and 

performance.

Start and End Vertical Offset
This value affects the Y axis offset for the starting point of the rays. 

Leaving this and the end offset at 0 results in perfectly horizontal rays, 

exactly what we want.

Ray Hit Color
The ray hit color debug visualization setting simply changes the color 

of the gizmo when a ray collides with a detectable object.

I have set this to a shade of red for the avoidables sample. It has no 

impact on training.

Ray Miss Color
Much like the prior setting, this setting changes the color of the 

gizmo when the ray misses. I have left this value on white for the 

avoidables sample.

Now that we have observations for our agent, it’s time for us to build 

the training environment, and then we’re ready to move on to the training 

pipeline.
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 Building the Environment
When building your environment, it’s highly beneficial to design it so that 

it can be copied and pasted multiple times throughout the scene without 

affecting functionality. Each environment should be a self-enclosed 

segment.

Environments should also be as light as possible on performance to 

improve training times.

For the avoidables sample, I want to have the following:

• A floor

• Walls for the avoidables to bounce off of and limit agent 

movement

• A spawn controller for avoidables in the given 

environment

• A camera to observe our primary training area

I’ve gone ahead and configured the environment for us to discuss.

If you are following along from the cloned sample for this book, 
then you can find a copy of the barebones environment in the following 
directory:

\Assets\Scenes\Avoidance\Prefabs\Training Area - No 

Logic.prefab\

Let’s take a look at this environment in Figure 7-4.
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Figure 7-4. The avoidables sample training area layout in the Unity 
hierarchy

For the avoidables sample, I have created a training area gameobject to 

hold our agent, spawner, and environment.

The agent contains a child gameobject called “sensor” with our ray 

perception sensor and the rotational locking component.

I have a main camera with orthographic rendering top-down over our 

primary training area. I have also ensured that the agent’s OnEpisodeBegin 

field is linked to the spawner’s ResetSpawning method.

All put together, we have our training environment that can be 

duplicated multiple times throughout the scene until the performance 

drops while training. For my hardware, I copy roughly 16 training 

environments throughout the scene.

Let’s see what the training area looks like in Figure 7-5.
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Figure 7-5. The avoidables sample training area in the Unity 
scene view

Once we’ve validated that we can control our agent through heuristics, 

avoidables spawning works, and resetting works, we’re ready to move on to 

the training process.

We first need to set up a config.yaml file for our trainer to begin the 

training process.

The config file contains what is known as hyperparameters, and you 

need to understand these before we can effectively train our agent. Let’s 

take a look at hyperparameters in our next section.

 Understanding Hyperparameters
Hyperparameters are often the difference between a competent agent and 

one that will forever stumble in the dark.

What are hyperparameters, though?
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Hyperparameters are explicitly defined parameters that control the 

training process.

Think of hyperparameters like the configuration for our trainer, which 

affect nearly every aspect of training – from reward weight to curiosity to 

checkpoints and summaries.

We’ll explore every hyperparameter and discuss how they affect the 

training process.

It’s vital to understand these, but it’s also something that isn’t an 

exact science – training can often involve optimizing these parameters to 

improve your agent.

Let’s get started by looking at the configuration file. The configuration 

file is a YAML file and follows YAML syntax.

Something to remember is that in YAML syntax, tabs are important.

A configuration file can have any name but must end in the .yaml file 

extension. You can enable file extension visibility in your file explorer. Look 

at Figure 7-6 for guidance.

Figure 7-6. How to enable file name extensions in your file explorer

Once enabled, you can create a new text file, which you can rename to 

have the .yaml extension. You can open this file with a text editor or IDE.

The hyperparameters config follows a nested structure. Unity conveys 

this using the following symbol: →
A → B would then indicate that B is a child of A, with a single tab. In 

the context of your configuration file, it would look something like the 

following example:
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A:

  B:

The root of our configuration file should contain the keyword 

“behaviors:” which starts our configuration tree. We follow this by our 

agent name, so behaviors → agent_name:.

In the avoidance sample, it would look like this:

behaviors:

    Avoidance:

All arrow notation examples will omit this part of the tree as everything 

else in the configuration will follow the agent name with at least 

one indent.

For example, the next step in our tree is trainer_type: which will not be 

prepended by arrow notation. You must append all settings with a colon. 

This setting will look like this:

behaviors:

    Avoidance:

        trainer_type: value

Almost all configurations have a default value and can be omitted from 

the file if you do not want to change it.

Now that you understand the arrow notation, I’ll direct you to the 

ML-Agents page for the trainer configuration file. This page is excellent at 

describing what each setting does and even provides expected ranges.

You can find the page at the following URL:
https://github.com/Unity-Technologies/ml-agents/blob/main/

docs/Training-Configuration-File.md

The parameters to give special attention to are

• hyperparameters → batch_size

• hyperparameters → buffer_size

• time_horizon
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25) For now, copy the avoidance YAML file from the sample 
repository:

\Assets\Scenes\Avoidance\Config\Avoidance.yaml

The avoidance configuration file will provide a decent starting point 

for this agent and for various other agents that you might build. Don’t be 

afraid to tweak these values within the recommended ranges, but for now, 

please stick with the provided configuration.

Our next step is to start training our agent.

 Training Your Agent
Now that you’re ready to train your agent, we’ll look into the training 

pipeline in greater depth.

 1) To start, open your virtual environment, and execute 

the following command, replacing the values in 

square brackets with the relevant information, 

omitting the square brackets but keeping 

quotation marks:

mlagents-learn "[config_file]" --run-id=[save_name]

This command will start the training process and prompt you to 

connect your Unity Editor.

 2) Do so by clicking the play button in the Unity Editor.

You should start seeing your agent navigating around, and the 

trainer will post training summaries in your console.

You’re ready to begin scaling your training if this is the case. If 
not, I’d encourage you to refer back to the samples and book 
to ensure that your code is functioning correctly.
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 3) To stop training, select your console and press 

control + c.

The first way that we can scale up your training is by duplicating the 

training zones.

 Duplicating Your Training Zones
Duplicating your training zones is as simple as it sounds as long as you’ve 

designed your agent and environment to be able to act independently from 

other training zones.

 1) Duplicate the environments, moving them away 

from each other so that the agents do not touch 

each other.

 2) Occasionally restart your training by using the -- 

force or --resume arguments following your 

previous command.

When restarting your training, ensure that your environment 
runs at an acceptable framerate.
You can view the current framerate in the game window by 

clicking the stats button.

I suggest aiming to keep your framerate above 30 fps for 

physics- based problems and above 15 fps for nonphysics-based 

problems.

 3) In the avoidance sample, I’ve duplicated the 

training zone for 16 training zones – as this is what 

my Unity instance handles comfortably. Continue 

duplicating and spacing your environments until your 

performance nears the abovementioned critical points.

You may have noticed that despite your framerate dropping, you are 

still not pushing your PC hardware to its limits.
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To utilize more of your CPU and RAM, we’re able to create builds 

that can run simultaneously. We will discuss this process shortly, but it’s 

important first to ensure that your training yields positive results.

While you could look at the training summaries, it’s better to have our 

training runs graphed so that we can effectively analyze the impacts that 

changing our hyperparameters has.

For this, we use a program called TensorBoard.

 TensorBoard and Why It’s Essential for Training
Staring at summaries and trying to remember the changes we made to 

our hyperparameters is not an effective way to optimize your agent. That’s 

what we have TensorBoard for, and it’s great!

You can access TensorBoard by running the following command in a 

new virtual environment window:

tensorboard --logdir results --port 6006

Once you’ve done that, open a browser of your choice. I will be using 

Google Chrome for this.

Then navigate to the following URL:

http://localhost:6006/

Doing this will open the TensorBoard web interface.

Alternatively, I’ve included a batch file in the Virtual Environment 

folder of the repository. Simply copy this to your virtual environment folder 

and run it. This batch file will open your browser and start TensorBoard.

As a limitation, I cannot delay the browser launch until after 
TensorBoard has finished loading. So you will need to refresh your 
browser after a few seconds.

Once your TensorBoard is open, you will see all of your past results 

listed on the left, with your agent’s cumulative reward graphed near the 

center of your screen.
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Generally, you’re in a good position as long as your agent 
consistently improves. You also don’t want to give up on an agent too 
quickly either, as sometimes your agent may just need additional time 
to start making a breakthrough.

We’re looking for our agent to eventually plateau at an acceptable 

reward level for the task.

Give your agent an hour or two of training, or even longer.
This time depends on the complexity of its goal to ensure that your 

agent is improving sufficiently. If not, tweak your hyperparameters in a 

new configuration file and rerun the training with a fresh run ID for easy 

comparison.

Remember to modify your training command to point to the new 
configuration file!

Another thing to remember is that there is no “right” answer to 
hyperparameters. It’s an iterative process and I encourage you to 
experiment with them once you have this sample training reliably.

To determine that your agent is consistently improving, you should 

look for a general upward trend in the graph.

Once you’re happy that your agent is training with a consistent 

improvement, it’s time for us to speed up training.

You can see the TensorBoard interface in Figure 7-7.
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Figure 7-7. The TensorBoard interface

Another way to speed up training is by connecting stand-alone builds 

to our trainer.

 Connecting Stand-Alone Builds to Python
To connect stand-alone builds to our trainer, we will need a build.

If our agent does not utilize the camera rendering for training, we can 

take it further and build a headless build.

In headless builds, Unity strips out a lot of the rendering functionality. 

This process will allow us to run even more stand-alone builds 

concurrently without the added workload of rendering.

 1) Open your Unity Hub and navigate to 
installations. You can right- click your current 
Unity installation and select Add Modules. Then, 
select Windows Dedicated Server Build Support 

and complete the installation.
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 2) Restart your Unity, followed by navigating to File ➤ 

Build Settings.

 3) This button will open the build settings window. 

Select the default scene in the scenes list and 

click delete.

 4) Then drag your Unity scene file into the “Scenes In 

Build” list and click the Build button.

 5) Unity will now begin compiling your project into 

a build.

 6) Once completed, in your virtual environment 

window, run the following command without 

linebreaks:

mlagents-learn "[config_path]" --num-envs=6 -- 

env="[build_exe_path]" --run-id=[save_name]

 7) Set the num-envs argument to however many 

instances you would like to launch.

The avoidance sample allocates roughly 3GB of RAM per build 

that you use for training.

 8) Let the training run for some time, as bulk training 

can occasionally appear slower during the start. 

Simply monitor your TensorBoard to view your 

agent’s progress.

 9) If your agent is plateauing early, consider 
multiplying your hyperparameters → buffer_size 
by the number of environments.
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 10) Once your training plateaus are acceptable, you can 

stop the training using control + c in your virtual 

environment terminal.

You’re ready to export and load your model into your editor for 

inference.

 Exporting and Loading Your Model
Exporting your trained model is simple.

 1) Copy the omnx file from your virtual environment 

results folder to your Unity Assets folder.

 2) Then, in the editor, assign your model to your agent.

 3) Ensure that you set the agent’s mode to either 

Default or Inference.

 4) You should now be able to click play and watch your 

trained model work its magic.

 Conclusion
Well done, you’ve created your very first ML-Agent from scratch.

In this chapter, we covered the detailed planning steps that you should 

take before building an agent. We created our agent and then explored the 

grid and ray perception sensors you can use for various use cases.

We then built our training zones and validated that our agent 

functioned on heuristics.

You then learned about the many different hyperparameters available 

and how to implement them into your configuration file.

Finally, we trained our agent – leveraging TensorBoard for agent 

analysis and concurrent headless builds for faster training times.
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We wrapped up by exporting and loading our trained model and 

watched our agent perform its task exceptionally.

ML-Agents take practice and experience to perfect, and it’s a journey 

worth the challenge.

In the next chapter, I’ll provide you with a challenge that you can use 

for practice.
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CHAPTER 8

Solve a Challenge 
with AI
In the previous chapter, you built your first ML-Agent from scratch. In this 

chapter, I’ll provide you with a challenge to solve using ML-Agents.

If you're up to the challenge, this challenge will also have a bonus 

objective.

Afterward, I’ll discuss some extra techniques to consider and touch on 

how they work and how you can implement them in future challenges that 

you may face.

 The Challenge
We will test your newfound skills now that you’ve built your first ML-Agent.

For your challenge, I want you to create a small ecosystem consisting 

of two types of entities. Each environment will feature multiple entities 

working together and against each other.

These entities can be agents themselves or controlled by an agent 

brain – whichever approach you find more interesting, as long as the 

challenge is solved using ML-Agents.
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 Grazer Agents
Grazer agents are the foundation of your ecosystem. When two or more 

grazer agents are in proximity, they should generate a float value called 

reproduction.

Once the reproduction value reaches a maximum value, the agent 

should spawn a new grazer agent.

Grazer agents can move around but die after a given amount of time – 

their lifespan. Their lifespan also decreases faster while moving.

 Predator Agents
Next, we have the predator agents.

These agents should hunt down and consume grazer agents.

If a predator agent comes in contact with a grazer agent, the predator 

should consume the grazer agent – increasing the predator’s energy value. 

When a predator’s energy value fills to a maximum value, it spawns a new 

predator agent.

The energy value of a predator must deplete over time and deplete 

faster if the agent is moving. If a predator’s energy value depletes entirely, 

you despawn it.

 Bonus Objective
We’re going to make the bonus objective a bit tricker.

I want you to extend the challenge further to get the bonus objective.  

I want you to introduce a third agent into your ecosystem.

This third agent must be an agent that a human player can use to consume 

grazer and predator agents. I will refer to this agent as an hunter agent.

The hunter agent moves at the same rate as the grazer and predator 

agents but can consume a large amount of energy to “sprint,” increasing 

their movement speed for the duration of the bonus energy consumption.
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The hunter agent passively loses energy and must consume grazer or 

predator agents to replenish energy.

 Before You Start
This challenge will be no easy feat, but I know you’re ready to take it on.

If you find yourself stuck, remember that you can always open a 

GitHub issue and ask the community or me for help and advice.

I would also love to see your creation once complete – there is a 

GitHub issue tag for showcasing your work.

Come and show the community and me what you’ve made with what 

you’ve learned throughout this book.

You can find my solution to this challenge in the following 
directory:

Assets\Scenes\Challenge\Ecosystem\

Additionally, the next section of this chapter will include other 

techniques to consider when completing this challenge, some of which 

may help – others being good to know.

 Other Techniques to Consider
ML-Agents offer much more than I’ve shown you during this 

introductory book.

While we’ve covered the primary technique in ML-Agents, it’s not 

the end of the road. In this chapter, I’ll briefly cover some of the more 

advanced techniques you can use to train even more advanced agents.

We’ll start by touching on CL, also known as curriculum learning.
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 CL (Curriculum Learning)
Curriculum learning is fantastic for situations where an agent is required 

to learn several tasks. In our prior RL (reinforcement learning) approaches, 

an agent needs to accomplish its goal to receive a reward – and from that, 

the agent learns the association between input, action, and reward.

Suppose you have an agent that needs to navigate through a door to 

reach its objective, but the door is locked, and the agent first needs to pull 

a lever to unlock the door.

In reward shaping, if you were to reward the agent for pulling the lever, 

it might end up training to be highly proficient at pulling the lever and never 

develop the interest needed to explore beyond the door to get its main reward.

This hyperfocus is the pitfall of reward shaping and where curriculum 

learning shines.

In curriculum learning, we build environments of increasing 

difficulty – once an agent learns to master the first stage of difficulty, we 

move on to the next – this allows our agents to train more generalized 

knowledge and achieve complex tasks.

We perform curriculum learning by specifying environment 

parameters within your agent’s config.yaml file. We can use these 

environment parameters to dynamically modify our scene or agent at 

runtime based on its training progress in what are known as curriculums.

Let's look at the structure that we can add to our config file, following 

the config notation that we learned toward the end of the last chapter:

environment_parameters:
This setting is needed in the root tab to specify that we are now 

declaring environment parameters.

environment_parameters → [your_variable_name]:
This setting allows us to insert a new key into the environment 

parameters. Replace the square brackets and your_variable_name with 

whatever you want to use as your key. This setting should be one word and 

is case sensitive, followed by a colon.
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The standard naming convention for this is to use snake_case.

environment_parameters → [your_variable_name] → curriculum:
Here, we tell the config that we are creating a curriculum for this 

environment parameter. All of our curriculum data will be a child of this.

… → curriculum → - name: “[value, ie, “easy”]”
Pay special attention to the dash followed by a space, followed by a 

name. The dash indicates that this entry is part of a list. This setting allows 

us to specify a name for the curriculum.

… → curriculum → completion_criteria:
This category allows us to specify the completion settings, determining 

when the agent will move on to the next curriculum.

… → curriculum → completion_criteria → measure: [reward/
progress]

This setting allows us to choose either reward or progress. The reward 

parameter allows us to specify a reward threshold the agent needs to reach 

before progressing.

In contrast, the progress setting allows us to specify how long the 

agent should train before progressing. In most cases, I would suggest using 

the reward measure.

… → curriculum → completion_criteria → behaviour: [agent_
behaviour_name]

This setting allows you to specify which agent this curriculum is for.

… → curriculum → completion_criteria → signal_smoothing: 
[true/false]

Here, we can specify if smoothing should be applied. This smoothing 

blends the current reward with the previous reward at a weight of 75:25 to 

prevent outliers from triggering the next lesson.

… → curriculum → completion_criteria → min_lesson_
length: [value]

This setting allows you to specify the minimum number of steps 

required for the agent to progress.
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… → curriculum → completion_criteria → threshold: [value]
This setting allows you to specify a minimum reward required before 

the agent can progress.

… → curriculum → value: [float_value]
Here, you can specify the value of your environment parameter at the 

given step of your curriculum.

Then, in Unity, you can access the current environment parameter by 

calling the following line of code:

Academy.Instance.EnvironmentParameters.GetWithDefault(string 

key, default value);

It’s worth noting that all environment parameters MUST be of 

type float.

An example configuration could look something like this:

environment_parameters:

  my_environment_parameter:

    curriculum:

      - name: avoidance_1

        completion_criteria:

          measure: progress

          behavior: avoidance

          signal_smoothing: true

          min_lesson_length: 100000

          threshold: 20

        value: 5

      - name: avoidance_2

        completion_criteria:

          measure: progress

          behavior: avoidance

          signal_smoothing: true

          min_lesson_length: 1000000
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          threshold: 60

        value: 8

      - name: avoidance_final

        value: 12

It’s worth noting that you can also randomize the values of your 

environment parameters using samplers.

environment_parameters:

  agent_speed:

    sampler_type: uniform

    sampler_parameters:

        min_value: 8.5

        max_value: 9.5

  avoidables_to_spawn:

    sampler_type: multirangeuniform

    sampler_parameters:

        intervals: [[3, 8], [14, 16]]

  avoidables_speed:

    sampler_type: gaussian

    sampler_parameters:

        mean: 2.3

        st_dev: .5

Uniform
This samples and returns a random number based on the given range, 

including the max value.

Multirange Uniform
Much like the uniform sampler, the multirangeuniform sampler 

samples and returns a number based on the given range, including the 

max value. However, this algorithm accepts a list of ranges.
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Gaussian
This samples and returns a value calculated based on an average and a 

given standard deviation.

You should use curriculum learning when your task is too complex for 

an agent to learn, but you can simplify the goals. The next technique to 

consider is BC, also known as behavioral cloning.

 BC (Behavioral Cloning)
Behavioral cloning is a fascinating approach to ML, but the fascination 

is not from a pure implementation of behavioral cloning but rather the 

implementation of BC in conjunction with reinforcement learning.

Behavioral cloning is a technique in which we can record 

demonstrations for our agents to mimic. However, no matter how much 

demonstration data you have, the agent will never surpass you.

That’s where the combining reinforcement learning and behavioral 

cloning come in.

The combination of these two techniques allows us to train agents 

on incredibly complex tasks and will enable them to deviate from our 

demonstrations to perfect their solution to the problem, surpassing the 

demonstrations.

Implementing BC is straightforward. Simply attach a 

DemonstrationRecorder component to your agent, set your path, and 

check the record boolean.

Let’s look at Figure 8-1.

Figure 8-1. The Demonstration Recorder component
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The number of steps field optionally allows you to specify a maximum 

number of steps before the recorder stops play mode. You can leave this at 

0 to record until you stop the play mode.

The general rule of thumb with BC is the more demonstrations you 

have, the better.

Finally, we must configure our agent to train using the demonstration 

data. Open your agent configuration and include the following settings:

behavioral_cloning:

  demo_path: [Full path to demonstration file or folder]

   strength: [0-1, How strongly to affect the policy, typical 

0.1-0.5]

   steps: [Int value determines the number of steps to keep BC 

active.]

When training, your agent now attempts to clone the behavior in the 

demonstration data to aid with training.

This approach is great for complex environments that you can’t 

simplify. It’s best to use it in conjunction with reinforcement learning by 

keeping the strength lower than 1.

The next technique to discuss is self-play.

 Self-Play
Self-play allows us to easily set up two or more agents to compete against 

each other. This technique enables agents to train against other agents.

To configure self-play, we need to assign a team id to our agent’s 

behavior parameters. The team IDs should differ between adversaries.

The next step is to open our agent configuration file and add support 

for self-play:
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self_play:

      window: 10

      play_against_latest_model_ratio: 0.5

      save_steps: 20000

      swap_steps: 10000

      team_change: 100000

Window
The window integer value defines how many snapshots to store for 

self-play.

Play Against Latest Model Ratio
The Play Against Latest Model Ratio float value defines how often 

to play against the latest agent snapshot. The typical value for this is 0.5, 

but it can depend on the situation. Higher values can result in overfitting.

Save Steps
An integer value defines how often to make a snapshot of the brain that 

the policy can use for self-play.

Swap Steps
An integer value defines how many steps to wait before swapping the 

opponent snapshot.

Team Change
An integer value defines how often the learning and opponent teams 

should switch.

That’s all there is to it – your agents will now cycle snapshots between 

each other to have a single brain learning at a time against variations of 

previous snapshots.

Self-play is incredibly powerful but can take significantly longer to 

train, but also typically has more stable learning graphs.

You should use self-play when demonstration data is limited and you 

want to improve agents against themselves.

I would highly advise exploring self-play when trying to solve the 

provided challenge.
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 Tips
• KISS – Keep It Simple Stupid. Whenever building ML- 

Agents, always start simple so that you can validate that 

your concepts and foundation are sound. Advanced 

ML-Agents can take days to train; you want to catch 

issues as soon as possible.

• Don’t give up too early. Watching an agent fumble 

around can suck, but it may be a few minutes or hours 

away from a breakthrough. Monitor your TensorBoard, 

and don’t give up too early on training runs.

• Optimize your hyperparameters. Hyperparameters can 

always be tuned and improved. It’s one of the hardest 

things to get right with ML-Agents. So note your 

changes and observe the effects they have on training.

• Successful ML-Agents layer multiple techniques 

together. Don’t get in the rut of using a single 

technique. ML-Agent supports different techniques, 

so layer them, experiment with the results, and explore 

the world of machine learning to learn about other 

techniques.

• Always push yourself to learn more. This tip follows my 

previous tip; find those techniques, learn them, and 

apply them.

• Back up your models and checkpoints by using the 

appropriate config setting, as there is nothing worse 

than overwriting all of your progress with the –-force 

argument.
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• If you’re using nonrender-based sensors, consider 

disabling all of the mesh renderers in a scene to get an 

idea of what your agent sees. This approach can often 

help with observation problems.

• Use TensorBoard; this is possibly one of the most 

powerful tools you have at your disposal outside Unity 

and ML-Agents.

 Conclusion
In this chapter, I presented you with a challenge to test the skills you’ve 

learned throughout the book. We covered the goals and objectives of the 

challenge, and I also provided a bonus objective for you.

Afterward, we touched on some fantastic ML-Agent concepts – CL, BC, 

and self-play – and how to implement these techniques in your project.

Finally, we wrapped up some valuable tips to keep in mind when 

building ML-Agents.

In the next chapter, I’ll cover the path going forward – as you’ve 

completed your introduction to ML-Agents, it’s time to delve further into 

machine learning.
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CHAPTER 9

Next Steps
In the previous chapter, you solved a complex challenge with machine 

learning, and we touched on some additional techniques you can use to 

train your agents.

You’ve pushed yourself, learning the basics of ML-Agents, and 

understand what’s available.

So, where do you go from here?

To that, I say, be curious and explore.

 Explore
The world of machine learning is ever growing, and there are countless 

ways to apply reinforcement learning and other techniques to solve the 

world's problems. So explore and constantly hone your mind.

Here are a few ways for you to do just that.

 Additional ML-Agent Functionality
ML-Agents has much more to it than what I could cover in a single 

introductory book; there are many features that ML-Agents offer. Explore 

the different sensors available to you and build your own.

Don’t feel limited by the virtual world; consider exploring interfaces 

between Unity and the real world. An Arduino, ESP32, or Raspberry Pi 

project with cameras that stream to Unity and ML-Agents is an exciting 

way to give your agent the ability to navigate obstacles.
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If you can simulate it, you can train it, and if you can train it, you 
can make it.

 Documentation
ML-Agents also has some of the best documentation and an ever-growing 

community of enthusiasts and developers. Consider throwing yourself 

into the documentation and becoming a part of this extraordinary 

community – perhaps even contributing to the ML-Agents repository.

The documentation can be found on the ML-Agents repository or at 

the following URL:

https://github.com/Unity-Technologies/ml-agents/blob/

release_19_docs/docs/Readme.md

You can find the API documentation at the following URL:

https://docs.unity3d.com/Packages/com.unity.ml-agents@2.3/

api/Unity.MLAgents.Academy.html

Exploring the documentation is a fantastic way of learning what’s out 

there and is an excellent way of identifying what you do not understand.

Always seek to understand, and you will achieve incredible things.

 Additional Reading

If you have a thirst for knowledge, there are some incredible books that I 

can recommend.

Suppose you want to learn how to do machine learning and computer 

vision with a Raspberry Pi. In that case, the book Machine Learning with 

the Raspberry Pi: Experiments with Data and Computer Vision (Technology 

in Action) by Donald J. Norris is an excellent read.

What you learn here can be modified to feed back into your Unity 

project with a bit of extra learning.
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There will be situations where you need to train an agent on a task so 

complex that your local hardware will not suffice. In cases like these, you 

may want to learn how to build ML models on the Google Cloud Platform.

In this case, a fantastic read would be Building Machine Learning 

and Deep Learning Models on Google Cloud Platform: A Comprehensive 

Guide for Beginners by Ekaba Bisong. While the skills that Ekaba teaches 

you here aren’t directly Unity related, many of the skills here can apply to 

deploying Unity ML-Agents to the cloud for training.

 Conclusion
Firstly, I’d like to congratulate you on your excellent progress through this 

introduction to ML-Agents in Unity.

You’ve learned so much in this book. You learned about some of the 

history behind AI and how we got to where we are today.

You also learned the issues we face and the challenges we must 

overcome to create AI responsibly for the future.

You learned how to set up your virtual environments and install one of 

my favorite Unity packages – Unity ML-Agents.

You then learned the basics of ML-Agents, and if you were up to the 

challenge, you even learned how to build your own custom ML-Agent 

sensor. No easy feat.

Together, we built and trained your first-ever ML-Agent, and you 

watched your creation stumble into excellency.

You even tried your hand at solving a complex challenge using 

machine learning, and if you were up to it, you completed the bonus 

objective and shared your results with the community.

Then we wrapped up some further steps so you’re not left in the dark 

as to where to go next.
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Congratulations, and thank you again for supporting the creation of 

books and sharing knowledge.

I hope you had as much fun working through this book as I had 

writing it.

The future is in great hands with people like you.
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