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Preface

The International Conference on Differential Equations and Applications was held at the 
Volksbildungshaus Retzhof in Leibnitz, Austria. It was a pleasurable and exciting conference, with 
participants from all over Europe (Czechoslovakia, Finland, France, Germany, Italy, Netherlands, 
Yugoslavia, Austria) as well as the United States, Canada and People’s Republic of China.

This volume provides an adequate record of this meeting. Since most of the papers are concerned with 
more than one aspect of differential equations, it is rather difficult to give a one-to-one correspondence 
between these papers and a catalogue of different areas in differential equations. In the following we 
attempt to overcome this difficulty partially:

Population Dynamics

C. Castillo-Chavez, S. Busenberg and K. Gerow analyse pair formation, which is an important aspect 
in modelling sexually transmitted diseases, in particular AIDS. J. Metz and 0. Diekmann address the 
question ’when do input-output maps corresponding to the infinite dimensional state linear system 
arising in modelling structured populations allow equivalent finite dimensional representations?’ A. 
De Roos and J. Metz clarify the numerics of the escalator boxcar train, a method used for numerical 
approximations.

Plate and Beam Equations

D. Ang, K. Schmitt and L. Vy study the problem of the contact of two elastic plates by formulating 
this problem as a system of noncoercive variational inequalites. H.T. Banks and D.A. Rebnord analyse 
the inverse problem for analytic semigroups describing the dynamics of flexible structures. The 
stabilization problem for structurally damped wave and
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plate equations with Neumann boundary control is investigated by A. Lunardi. J. Lagnese and G. 
Leugering prove uniform energy decay for a class of nonlinear beams.

General Theory

P. Charissiadis and R. Nagel investigate semigroups generated by operator matrices. In particular, they 
characterize positivity and stability of these semigroups. K. Engel applies the theory of polynomial 
operator matrices to a model for the transversal vibration of a string. Aspects of asymptotic 
convergence are also the main topic of the papers by W.W. Farr, W.E. Fitzgibbon, J.J. Morgan and S.J. 
Waggoner and R.H. Martin and H.L. Smith, respectively. A. Favini analyses a second order equation, 
G. Rieder establishes the existence of limit solutions for a degenerate diffusion problem. J. von Below 
derives a maximum principle for a semilinear parabolic network equation. In the paper by K. Ito and F. 
Kappel the semigroup approach is used to study a class of integrodifferential equations with a weakly 
singular kernel. Evolution equations with nondensely defined operators are treated in the contributions 
by G. da Prato and E. Sinestrari, who consider time dependent equations and R. Grimmer and H. Eiu, 
who develop an approach to Volterra integrodifferential equations.

Applications in Physics

Several aspects of problems associated with Schrodinger and/or Dirac equations are investigated in the 
papers by B. Najman, M. and T. Hoffmann-Ostenhof and B. Thaller. F. Gesztesy gives a 
comprehensive review of recent developments on the modified Korteweg-de Vries equation and H. 
Kaper and M. Kwong prove a result on the ground states of semilinear diffusion equations.

We gratefully acknowledge the financial support for the conference provided by the National Science 
Foundation of the United States, the Fonds zur Forderung der wissenschaftlichen Forschung of 
Austria, and the government of the state of Styria, Austria. The typing of this volume was done 
efficiently and expertly by Gerlinde Krois. Providing great help with the local arrangements were 
Wolfgang Desch, Michael Kroller, Gunther Peichl and Georg Propst. To these agencies and 
individuals we extend our deepest appreciation.

JEROME A. GOEDSTEIN
FRANZ KAPPEF
WIEHEFM SCHAPPACHER
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Variational Inequalities and 
the Contact of Elastic Plates

D.D. Ang
K. Schmitt
L.K. Vy

Department of Mathematics, Ho Chi Minh City University
Department of Mathematics, University of Utah
Department of Mathematics, Ho Chi Minh City University

1. Introduction
Khludnev [K] has considered the problem of contact of two thin elastic plates 

with clamped boundaries, placed one above the other, contacting each other. 
He reduces the problem to one involving coercive variational inequalities. He 
established existence and smoothness properties of the solution and furthermore 
established topological properties of the contact surface in the case that these 
plates have the same flexural rigidity.

It is the purpose of this paper to study the contact of two elastic thin plates 
subjected to various boundary conditions. The boundary conditions assumed 
are in a very general form to include unilateral boundary conditions, clamped 
boundary conditions, etc...........In the case of clamped boundaries, our results
give extensions of that of [K] in the sense that our plates need not have the same 
flexural rigidity.

The remainder of the paper consists of five sections. In sections 2, 3, 4, we 
shall formulate the problem as a variational inequality (which is not necessarily 
coercive) and investigate the problem of existence of solutions for the latter.

In section 5, we shall study smoothness properties of the solutions, and in the 
final section 6, we shall study partially the case of clamped boundaries, establish 
global smoothness properties and extend the result of [K] on the topological 
property of the contact surface.

2. Formulation of the problem
Consider two thin plates Pi, P? occupying a bounded horizontal domain Q

1



2 Variational inequalities and the contact of elastic plates

of R2 with smooth boundary and placed one above the other at a distance 8 > 0 
apart. Let D\ > 0, D2 > 0 be the respective flexural rigidities of the two plates.

It is assumed that P\, P% are subjected to the vertical forces F, G respectively. 
We denote by u, v be the vertical displacements of P2 and assume the 
following boundary conditions:

F^u) = -^i(u) on T = dQ,
Mr(u) = 0, (1)

= -g2(y) on T,
= 0. U

where the gfs are increasing, continuous functions with <jq(O) = 0(z = 1,2), and 
F^Mt are the normal Kirchhoff shear force and twisting moment respectively 
(see §2.3, chapter 4, [DL]).

In what follows, we shall formulate, the problem as a variational inequality. 
Call p the pressure exerted by P2 on Px. We have p > 0. Then u, v satisfy the 
equations

Di tfu = F + p on Q, (3)
D2A2v = G — p on Q. (4)

Put

I gi(£)d£, x e r, 
0

I i = 1,2.
r

Since gi is increasing, ifi is convex and

ipi(x) - > gt(y) (x - y),

Likewise v 1—> J;(v) is convex and

I gM (v — u)dr. 
r

(5)

(6)

(7)

(8)

We adopt the following notation

(u,v) = / uvdx, (u,

Let u',v' be given functions on fl such that

f uvdT. 
r



8 Variational inequalities and the contact of elastic plates

By (28) and (29), j is convex, and j < oo and is continuous on V. Let us 
calculate (cf. propositions 1, 2 of [ASV]),

7oo(p, ?) = ^l.oo(p) + ^2,oo(?), (42)

where

J ( x r «A(Ap) r [ V’i(Ap)
Ji,<xXP) = hm — ----= lim / ----- -----dr.

A—>oo A A —>OO Jp A

By proposition 1 of [ASV], ( 1 is an increasing family of functions (with
V /A

respect to A) .
We observe

V>i(Ap(a?)) .
------ r----------► W)

A

^(W) .---------------- > i/’i P{x)

Hence (since V’i(O) = 0)

for A —> oo, where p(z) > 0, 

for A —> oo, where p(z) < 0.
(43)

T J {i6F:p(i)^0}

-[ 'MMdr+[ <MMdr
J {z er:p(z)>0} J {i£F:p(i)<0}

-> [ p^tdr + [ p^i dr,

v'{i6F:p(i)>0} J {zer:p(z)<0}

as follows from the monotone convergence theorem. We thus obtain

f V’^Xpdr+ / V’lPXp dr = (p, + V’i Xp )r •

r Jr
(44)

Similarly we get

Joo(p, q) = (p, x? + V’i xP )r + (q, V’Jxt + ^2 x2 )• (45)

To prove necessity, let (26) have a solution. Then by theorem 1 of [ASV],

joo(p, q) > (F, p) + (G, 5), V(p, 5) G rcK n Ker A. (46)

But by (40), (41) we have rcK Pl Ker A = A. (38) follows then from (46) - (45).

Proof of sufficiency. Suppose (39) holds, then the resolvent set of (26) (cf. 
definition 2 of [ASV]) is
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^(F,G) = {(p,?) e rcK n Ker A : j^p.q) < (F,p) + (G,q)} = {(0,0)}.

Since by (39),

Joo(p, q) > (F,p) + (<7, q), V (p, q) G X\{(0, 0)},

it follows from theorem 2 of [ASV] that (26) has a solution .

We next consider the variational inequality (32). We shall denote by |T| the 
measure of T.

Theorem 2.
a) A necessary condition for (32) to have a solution is that

Wr + <l>2 )|r| < (F + g, I) < )|r|,

V’tiri >(r i), (47)

V2-|r|<(G,i).

b) A sufficient condition for (32) to have a solution is that

(V>r + </>2_)|r| < (F + g, I) < (V>+, +i/>2“)|r|, 

V>+|r|>(ri), (48)

V>2’|r|<(G,i).

Proof. For K' given by (33), we have

rcK' = < (u'v1) E V : —---- 1- = 0 on T and u' > v1 on Q >. (49)
cm on

Note that if p E V and = 0 on T then p E K. Hence

rcK1 fl Ker A = rcK' A(P x P) = {(/?, q) E R2 : P > q}- (50)

Let p, q E 1R, then

= lim f Mdr= lim ^M|r| 
A—>oo Jp A A—>oo A

(V’j*'  ?|r| if p > o

I V’fpiri if p<o

= (^tp+ - V,rp~1)|r|,
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,ip1 ) given by (36), and p+ = max(p, 0)p' = max( — p, 0). A similar calcula­
tion gives J2,oo(q)- We thus have

>oo(p,q) = |r|[(^P+ - q+ - ?/^\-)]. (51)

Let (32) have a solution. Then by (50), (51), theorem 1 of [ASV] gives

|r[[(V’ihp+ - V’fp-) + ^tq+ - Vhtf-)] > p(^i) + ?(£,i),
(52) 

Vp,^ G R,p > q.

Now in (52), we take various values of p, q and note the corresponding values 
for (52)

p = 9 = l :(^++^+)|r|>(J’ + G,l),

p = 1,9 = 0 :i/,+ |r| > (F, 1),

p = 9 = -1 :(V>r +^’)|r| < (F + G, 1), 
p = o,, = -i :t/,2-|n < (g, i).

This latter set of expressions is just (47).
Now for the sufficiency. Suppose (48) holds. We claim that the resolvent set 

for (32) is given by

^(F,G) = {(?,?) ER2 : p>q and joo(p,9) < (F,p) + (G,g)} = {(0,0)}. (53)

Indeed for p, q, G R with p > q and (p, q) =4 (0,0) it can be shown that

|T|[(V’+,p+ - '0-,p“) + ^tq+ -V’2-?-)] > p(F, 1) + 9(G,1). (54)

(This is shown by examining the various possibilites that occur if (p, q) G 
{R2\{(0, 0)} : p > q}). Since (53) holds, it follows from theorem 2 of [ASV] 
that (32) has a solution.

4. Some special cases
If the plates were subjected to unilateral boundary conditions, then the func­

tions ifi become

'ifi(x') = —gix+ — g\x~, p' < 0 < gi (constants), i = 1,2, (55)

(cf.(4.3), §4.1 chapter 4 [DL]). Then

and ^7=g\, (56)

Then theorems 1 and 2 assume the following special forms:
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Theorem 1'. Let ipi be given by (55) (z = 1,2). Then
a) A necessary condition for (26) to have a solution is that

(p,ffiXp +ff'iXp)r + (q,ff2Xq +^%7)r > (F,p) + (G,q)
V (p,q)tA.

b) A sufficient condition for (26) to have a solution is that

(p,giXp +g\xp)v + (q^gixli +^x7)r >
V (P,g) e X\{(0,0)}.

Theorem 2'. Let ipi be given by (55), i = 1,2. Then
a) A necessary condition for (32) to have a solution is that

(fih + < (F + G, 1) < (</i + <72(|r|),
<7i|r| > (F,1), 

^|r| < (G,i).

b) A sufficient condition for (32) to have a solution is that

(qi + g2m<(F + G,i)<(gi+g2)\r\, 
gi\T\>(F,l), 

g’2\T\<(G,l).

We next examine the cases ipi = 0, i = 1, 2. In this case j = 0 on V and the 
following holds.

Theorem 3. Let ipi = 0 (z = 1,2) then
a) A necessary condition for (26) to have a solution is that

(G,<j>)>o, VdeP,
(F + G, 1) = (F + G,X1) = (F + G,x2) = o. (57)

b) A sufficient condition (26) to have a solution is that

(G,«>0, V^6©\{0},
(F + G,1) = (F + G,x1) = (F + G,x2) = 0. ( )

Here
T> = {(/>€ V ■.</>> 0 on Q}.
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Proof. Note first that rcK A Ker A as defined in (35) can be rewritten

rcK A Ker A = {(p,p — : p G P, f G V} . (59)

A necessary condition for (26) to have a solution is

(F, p) + ((7, q) < 0, V (p, q) G rcK A Ker A.

From (59) follows

(F,p) + (G,p-^)>0, V pGP, V fev. (60)

Let f = 0 and p = ±1, p = ±Zi,p = ±a?2 in (60) to get

(F + G, 1) = (F + G,xx) - (F + G,x2) = 0.

Next let p = 0, f G F. Then (<7, </>) > 0, V</> G F, proving (57).
Next suppose (58) holds, then one also has

= {(p-,PV P G ?}■ (61)

Indeed one has

F-(f,G) = {(?,?) € rcK A Ker A : (F,p) + (G, q) > oj>.

(cf. proposition 2 of [ASV]).
In view of (59) and (58), one has

{(p,p): p G P} CP(f,G)- (62)

For if (p,p — </>) G rcK A Ker A and f =4 0 one has (F, p) + (G,p — </>) = 
-(£,</>) < 0. Hence (p,p - £ P(f,G)- Thus one has (61). Since P is a vector
space, so is 77(f,g)- By theorem 2 in [ASV], (26) has a solution.

Theorem 4. Suppose 'fi = 0, 
(32) to have a solution is

i = 1,2. Then a necessary and sufficient for

(F + G,l) = 0 
(G,l)>0. (63)

Proof. We already know that a necessary condition for (32) to have a solution 
is

(F,p) + (G,q) < 0, Vp,^GR, p < q. (63’)

Taking p = q = 1 and p = Q,q = — 1 we immediately have (63). Conversely 
suppose we have (63). We distinguish several cases. If (<7, 1) > 0 then

K(f.g) = {(p,p) : P e R} . (64)



Aug, Schmitt and Vy 13

Indeed since (F + G, 1) = 0, then clearly

{(?,?) : P e R} C F(f>g).

If
(F,^) + (G, q) = p(F + G,l) + (q- P) (G, 1) = (q - p) (G, 1) < 0 
for p,q E F and p > q,

then we have (64). Since {(p,p) ■ p G F} is a vector space, (32) has a solution. 
Next, if ((7, 1) = 1 then (F, 1) = 0. Put

W = {(u', v') E F2(if) x F2(if) : ~ = 0 on r) . (65)
( on on )

Then W is a Hilbert subspace of F2(if) x F2(if). Consider the variational 
inequality.

A((w,t), (u',F) - (w,t)) > (F,u' - w) + (G, v' - t), 

(w,t)GVP, V(F,F)gVF.

Let us consider the resolvent set of (66). Since rcW = W, one has

F = {« F) E W n Ker A : (F, u1) + (<7, F) > 0} , 

W n Ker A = W H (F + P) = R2.

By (65), we have at once F = R2. Hence (66) has a solution. If (w,t) is 
a solution of (66) then (w + X,t) G VP and is also a solution of (66). Since 
w,t E then we have (w + x) — t > —6 on if, if we pick A > ||w — t||G(n) — F 
Hence (w + A,t) G K'. Since K' C VP, (w + A,t) is a solution of (32) and we 
conclude that (32) always has a solution.

5. Smoothness properties of solutions of contact problems
Theorem 5. Let (u,v) be a solution of (26) (or of (32)). Then

u,v E C(Q)nH2+£(Q) Ve G (0,1).

Proof. Consider (26) for instance. To prove that u,v E Hfoc(£l), we use the 
method of finite differences (cf. [K]). For each precompact subset if2 C C if, 
we shall prove that the restrictions u|n2, v|q2 G Choose Qi so that
Q2 C C ifi CC if and (f) E Cq°(£1},Q < (j) < 1 and </> = 1 on if2 and </> = 0 
outside if!. It is then sufficient to prove that

</>u, (j)V E H3(Ll). (67)
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For small r G R, put h = r£i (z — 1, 2 Hi is a standard unit vector of R2). Put

dhw{x) = 7— [w(z + h) - w(z)], 
1 J (68)

A/lw(a?) = —— [w(.r + h) + w(x - h) - 2w(z)].

Let q = d(Qi, d£l) and let |t| < q. Choose 0 < x < t2/2 and put

u = u 4- A<^2A/yzz, 
, 2 (69)

v = v + A<^2A/yzz.

Then clearly (zz',v') G K. Substituting into (26) yields

D}a(u, Xf2Afru) + _Z?2 u(u, A<^2A/yv)

+ Ji(u + A^2A/tzz) - Ji(u) + J2(v + A^2A/tv) - J2(v) (70)

> (F,A^2A/ytz) + (G,A^2A/lzz).

Since f = 0 on T, one has

<7i(tz T Xf A/ytz) 4“ I V’l(tz 4- Xf /XhU^dV
r Jr (71)

= / f>i(u)dr = Ji(u), 
Jr

and similarly J2(v 4~ A<^2A/yzz) = J2(y). On the other hand, 

a(u, f2/Xhu) = (Au, A(<^2A/yzz)). (72)

Indeed, since <^2A/ltz G 77q(Q), we have

J
y in F2(Q),

vn > if A/ytZ J

since
«„ e C^(Sl),vn e C0“(fi).

By Green’s formula ((4.2), §4.1, chapter 4 [DL])

cz(tzn,vn) — (A un, vn) 4- (F3(tzn), vn)p (7V7r(tzn), — )p = (A tzn,vn). (73)
Cz i L

But
/ g \ / g \

(A tzn, vn) — (Atzn, Avn) 4- ( ;tznj IAtzn, — (^n) ) 
\an JT \ on J r (74)

= (Atzn,Avn).
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Comparing (73), (74) and letting n —> oo gives (72). From (70), (71), (72) and 
similar equalities involving v1, we deduce

Di(Au, A(^>2 Aau)) + O2(Av, > (F, <t>2+ (G, ^Aftv). (75)

The remaining part of this proof proceeds along similar lines as the proof of 
lemma 1 of [K]. For the sake of completeness, we give below a sketch of it.

By direct computation, it is verified that for the expressions to follow, each 
one either is equal to the preceding one or differs from it by a quantity

< c(IMI//2(q) + IMIh2Wl|4(^^)||w2(n))

(where c is constant depending only on Q and <^)

(Au, A(</>2A/lu)) -> (A(</>u), A/lA(</>u)) ->
-> —(A(</>u), d_/ld/lA(</>u)) ->
-> -(d/l(A(<^u)),d/l(A(</>u)).

Hence

l|A(d/l(</>u))||J2(fi) + (Au, A(<^2 A/jtt))

< c(IMIh2(Q) + HwllH2(Q)||^(</’/i(</’u)llH2(fi))-

Since
||cM</’w)IIh2(Q) — c||A(d/i(</>u)||£2(q), (4(<^u) G 7fo(Q)), 

we have
H4(<MIIh2(Q) + £>i(Au, A(</>2A/lu))

2 (76)
< c(IMIh2(Q) + IMI/Z2(SrillcWu)l|H2(n)),

and a similar inequality for u. Adding the two, we obtain using (75)

II4(<MIIh2 + IWWII 2h2
< <\\u\\2h. + 1M12P +11^1122 + ir22

+ IMIn2l|d/i(^u)||n2 + 1H1h2I|<4(<?M||h2)-

Applying Cauchy’s inequality to ||u||H2 ||d/l(^u)||//2 and to ||v||/j2 ||du(</>v)|| #2, 
we have

ll^/i(^w)llH2 + ||c?Zi(</»v)II2H2 < c,

where c is a constant independent of r. Hence </>u,</>u G /f3(Q) as claimed. We 
now turn to the proof of u,u G 7f2+e(Q) (Ve G (0,1)). Let G 7?(Q), <^ > 0 on 
Q. Then

(u', u') = (u + (/), u) G K.
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Call Ci the contact surface for (87).
Ci = {x G £7 : u1(a?) — v1(a?) = — . (88)

By results in [K], £7\Ci is connected.
Applying theorem 6 to (87), we see that wi = Ui — Vi is a solution of the 

variational inequality

(Awi, At - Awi) > (Fi - Gi, t - wi)
wi EM, Vt G M.

By the definition of Fi,Gi (89) is precisely (79). By uniqueness of solutions of 
(80), we have wi = w, that is Ui — tq = u — v on Q.

Whence Ci = [u G £7 : u(x) — v(x) = —6] is precisely the contact surface for 
(78). Hence Q\C, the complement of the contact surface for (78) is connected.

The next result provides some smoothness properties of solutions of (78).

Theorem 7. Let 8 > 0 and dLl G C3. Then the solution (u, v) of (78) satisfies 
u,v E 773(J7).

For the proof of this theorem, we rely on results in [A]. The computations 
and verifications are lengthy and therefore we shall not give them here.
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Analytic Semigroups: Applications to 
Inverse Problems for Flexible Structures
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1. Introduction
In this presentation we consider abstract inverse problems in a least squares 

formulation for parameter dependent partial differential equations. We are in­
terested in approximation ideas which lead to viable computational techniques 
for such problems. We pursue our investigations in the context of the general 
framework for convergence and stability developed by Banks and Ito in [BI]. 
Motivated by questions related to the use of accelerometer data to estimate pa­
rameters in flexible structures, we focus on second order (in time) systems with 
sufficient damping so that the system can be modeled by an analytic semigroup.

We state and prove a new approximation result (a Trotter-Kato type theorem) 
for analytic semigroups. This theorem gives conditions under which a family 
of approximating semigroups and all its time derivatives converges to a limit 
semigroup and all its time derivatives, respectively. These theoretical results are 
then stated in terms of simple, readily checked conditions on the sesquilinear 
forms defining “stiffness” and “damping” in the abstract second order systems.
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22 Analytic semigroups: applications to inverse problems

We discuss several examples which indicate clearly the practical importance of 
these new convergence results. In two of the examples presented (the damped, 
cantilevered Euler-Bernoulli beam and the “RPL experiment” structure), we 
can apply the abstract theorem to substantially sharpen results already found 
in the research literature. In a third example involving a two dimensional grid 
structure, we note that the theory can be applied to obtain new results for 
acceleration data convergence in the least squares inverse problems.

2. Abstract inverse problems
In this section we formulate a class of inverse problems as abstract least 

squares optimization problems constrained by evolution equations in a Hilbert 
space and summarize some of our previous results for such problems [B], [BI], 
[BK],

We assume we are given a parameter dependent system

h(t) = A(q)u(t) + F(t,q), Q<t<T, 
uW = Uo(q)

for states tz(f;g) in a Hilbert space H. The parameters q are to be chosen from 
an admissible parameter set Q contained in a metric space (Q1;d). We assume 
throughout that Q is a compact subset of Q1 (a “regularization” assumption).

We are given observations {zi), a set of points in the observation space Z, 
along with an observation map C : C'(0,T;Hr) —> Z from the states to the 
observations. The points zt are observations for Cu(ti\ g), : 0 < ti < T, and it is 
this “data” to which we wish to fit the model by a best choice of the parameter 
q. Formally, the problem can be stated as

Find q 6 Q to minimize over Q the

functional J(q) = |Cw(t2; q) - zi\z-
i

The observation operator C is of fundamental importance to the discussions 
in this paper. For parabolic systems (2.1), a typical example for C arises from 
pointwise evaluation in the spatial variables, e.g., Cu(t', q) = {u(t, Xj\q)}£j=1 
where Z = R(. For problems involving structures such as beams or plates, several 
examples arise in practice. If one takes measurements with a laser vibrometer, 
then one obtains measurements at specific points in space for the velocities 

q) so that the map C is a composite of time differentiation followed 
by pointwise evaluation. If the measuring devices are accelerometers, one has 
observations for the accelerations utt(ti, xj; q) and thus C is time differentiation 
(twice) followed by pointwise evaluation.

The inverse problems outlined here are generally infinite dimensional in both 
the states u(t) G H and the parameters q G Q and, moreover, involve un­
bounded operators related to the states (A(g)) and the observations (C). Thus 
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to develop efficient computational methods, one must make finite dimensional 
approximations for both the state and parameter spaces, H and Q, respectively. 
For the discussions of this paper, we shall restrict our considerations to approx­
imations of the state space. In some cases (where the parameter sets Q are 
finite dimensional, either naturally or through some a priori parameterization) 
no approximation of the parameter set is necessary. Methods for approximation 
of Q by sets QM have been fully discussed elsewhere (see [BK]) and these ideas 
could readily be incorporated in our presentation. Since this would add noth­
ing to either the difficulties or their resolution that are the focus here, to avoid 
considerable notational tedium we do not consider such approximation ideas in 
the discussions below.

Thus, we consider approximate (to be made precise below) state spaces HN C 
H with associated approximate states uN(t; q) G HN satisfying the approximate 
systems

uN(t) = ANMuN(t') + PNF(t,i)
«N(0) = pnm4) 2'2)

where AN is an approximation to A and PN is the orthogonal projection of H 
onto Hn . The corresponding approximate inverse problems are given by

Find qN G Q to minimize over Q the

functional JN(g) = ^2 g) — Zi|z.
j

Of course, there are a number of reasonable ways in which the approximations 
may be made to arrive at the problems (P^). In analyzing different methods 
and their behavior in the context of inverse problems, a number of questions 
related to parameter convergence arise naturally. For example, given a fixed set 
of data z = do optimal parameters qN of (Pw) converge in some sense to 
an optimal parameter q for (P)? More generally, one might also incorporate the 
continuous dependence of the estimates on the observations in the concept of 
method stability [B], [BK]. For this, one denotes by qN[zK ) optimal parameters 
obtained from (Pw) for observations and requires that qN> g(5°) in 
some sense as N —> oc and zK —> z° in Z, where q(z°) is an optimal parameter 
for (P) corresponding to observations z°. These issues are carefully discussed in 
[B], [BK] where it is shown that for both parameter convergence and method 
stability, it suffices to argue that

For arbitrary sequences {qN} in Q converging

to q G Q, we have CuN(t:, qN) —> Cu(t-, q) as N —> oc (2.3)
for each t G (0, T).

Thus, certain fundamental aspects of approximation in inverse problems can be 
reduced to the convergence statement in (2.3) and we shall deal with conditions 
under which (2.3) can be guaranteed in the subsequent discussions of this paper. 
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with ReA > Ao; indeed R\(A(q)) = (AZ — A^q))-1 exists as a bounded operator 
on H for all A in the complement of a sector with Ao as a vertex. The operator 
A(q) generates an analytic semigroup T(t; q) which can be used in defining mild 
solutions of the system (2.4) or (2.1); i.e.,

/«t
u(i;q) = T(t;q)u0(q)+ T(t - s;q)F(s,q)ds. (2.5)

Jo
Galerkin approximations (e.g., systems (2.2)) for (2.5) can be developed in 

the context of sesquilinear forms satisfying conditions (B) and (C). Let HN be a 
family of finite dimensional subspaces of H satisfying HN C V and the condition

For each (b G V, there exists J>N G HN such that
<C1)

\(p — (p | y —* 0 as TV —> oo.

(We note that many popular approximation schemes - e.g., linear splines and 
more generally, many finite element schemes - satisfy condition (Cl).) To define 
AN(q) : Hn —> HN, we restrict cr(q) to HN x HN and denote this restriction by 
crN(q). Then crN satisfies conditions (A), (B), (C) on HN x HN which implies 
existence of a bounded linear operator AN (q) on HN satisfying cN(q)((p, V’) = 
(—AN[q)(p, ip) for all (p,ip E HN. From (B) and (C) it follows that the AN(q) 
are uniformly dissipative (sectorial) and generate analytic semigroups TN(t\q) 
on Hn. Solutions of the systems (2.2) are then given by

uN(t;<l) = TN(t;«)PN«o(5)+ / TN(t -s-,q')PNF(s,<i')ds. (2.6)
Jo

It can then be established that under conditions (A), (B), (C) and (Cl), we 
have uN(t‘, qN) —> u(t; q) in V for arbitrary sequences with qN —> q in Q. 
Observe that this immediately yields (2.3) if the operator C possesses certain 
boundedness properties. The focus of this note involves cases where the operator 
C does not have such boundedness.

The arguments for the convergence uN(t; qN) —> u(t; q) for the situation here 
(complex Hilbert spaces V,H and complex valued sesquilinear form a) are es­
sentially the same as those in [BI], Slight changes in the arguments for Theorem 
2.2 of [BI] are necessary to treat the case of complex valued inner products and 
sesquilinear forms (essentially one need only use Re <?(•,•) and Re(-,-) in some 
of the inequalities). In these arguments one does not use directly the analyticity 
properties of the semigroups T(t; q),TN(t; q). Rather one relies heavily on resol­
vent estimates of Tanabe [T] depending on the V-coercivity of cr along with a 
resolvent convergence form of the Trotter-Kato approximation theorem of linear 
semigroup theory (see [BI] for details).

Our interest here is mainly in second order systems of the form

fi(t) + B(q)u(t) + A(q)u(t) = /(C?),
v(0) = vo, (2.7)
h(0) = v0,
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where A(q) is a generalized stiffness operator and B(q) is a generalized damping 
operator. Again we consider this equation in a weak or variational sense defined 
via parameter dependent sesquilinear forms in a complex Hilbert space V 
H = H*  <—»• V*.  We are given a stiffness sesquilinear form cr^^q) : V x V —> 
C that is symmetric and satisfies the boundedness condition (C). Then there 
exists A(q) 6 £(V, V*)  such that <Ti(g)(= (A(q)(f>, y:')v*  ,v- We also have a 
damping sesquilinear form cr^^q) : V x V —> C which satisfies (C) so that there 
exists B(q) G £(V, V*)  with cr^q')^,'1/’) = We then reformulate
the system (2.7) and seek solutions u(t) G V satisfying for all 0 G V

+ <T2(g)(u(t),0) + ai(?)(iz(t),0) = {f(t,q),(f>), 
u(0) = uo,u(0) - v0.

As is standard practice, we rewrite this in first order vector form on Th = V x H 
and V = V x V in the coordinates (u,u). To this end, define cr(q') : V x V —> C 
by

+ <7i(g)(u,0) + a2(?)(v,0) (2.9)

so that (2.8) may be rewritten as

(w(t),y) + a(?)(w(t),y) = (F(t,?),x)H, 
w(0)-(vo,vo) ( • 0)

for w(t) = (u(t),ii(t)) and y = (0,0) in T with F(t,q) = (0,/(£,<?)). Or, if as in 
the usual practice, we abuse notation and do not distinguish between row and 
column vectors, we may write this in equivalent operator form

w(/) = A(q)w(t) + F(t,q), 
w(0) = (u0, v0)

where cr(g)(x,£) = (-X(g)x,^) with

,, , [ 0 J

For our treatment here (as for that in [BI]) we assume that cri(q) satisfies 
conditions (A), (B), and (C). We further assume that cr2(<7) satisfies conditions 
(A) and (C). Then the strength of the coercivity assumption on cr2(<?) determines 
the properties of the semigroup generated by A(q). For example, if cr2(g) satisfies 
(B), then A(q) is strongly V-coercive and generates an analytic semigroup on Th. 
(Actually, A(q) is Vg-coercive with Vq = Vq x Vq where Vq is V taken with the 
equivalent inner product <Ti(g)(-,-)— see [BI].) In [BI], it is assumed only that 
cr2 is Tf-semicoercive: There exists b > 0 such that for all 0 6 V we have Re 
<r(g)(0,0) > b\(/>\2H . In this case one can argue only that A(q) generates a strongly 
continuous semigroup on Th. The theory for second order systems with this weak 
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damping is developed in [BI] in order to treat several forms of damping (spatial 
hysteresis, time hysteresis, bending rate damping) which are of physical interest 
and yet do not satisfy the strong V—coercivity assumption. The convergence 
theory obtained yields that uN(t;qN) —> u(t;q) in V norm, uN(t;qN) —> u(t;q) 
in H norm whenever qN —> q.

As opposed to [BI], we wish to consider in this paper the case where cr2(q) does 
satisfy the strong V—coercivity condition (B) and hence A(q) is the infinitesimal 
generator of an analytic semigroup. We obtain immediately that u(g) of (2.9) is 
V—coercive and the first order theory outlined above can be applied directly to 
the system (2.10). This yields the convergence statement in V - i.e., uN(t; qN) —> 
u(t; q) in V, uN(t; qN) —> u(t; q) in V. A natural question arises as to whether we 
can use the analyticity of the semigroups in this case to obtain stronger results. 
The next section is devoted to results that yield an affirmative answer to this 
question.

3. Analytic semigroups and approximation
We first give a general approximation theorem for analytic semigroups that 

is a generalization of the well-known Trotter-Kato theorem [BK].

Theorem 3.1. Suppose we have complex Hilbert spaces X and XN, N = 
1,2..., with XN C X. Let PN : X XN denote the orthogonal projection 
of X onto XN satisfying PN —> I strongly. Suppose that AN and A are the 
infinitesimal generators of analytic semigroups SN(t) and S(t) on XN and X 
respectively that satisfy the following:
There exists a region = ^6 = {A G C : |arg(A — Ao)| < f + <$}, where 8 > 0, 
such that 52u{Ao} C p(A) 0^=1 p(AN) and

(i) there exists a constant M independent of N such that

for all A G ^2 an<^ N = 1,2,...;
(ii) for some A G ^2 and each x E X we have R\(AN)PNx —> R\{A}x.

Then we have
(iii) for each x G X, SN(t)PNx —> S(t)x uniformly in t on compact subin­

tervals of [0, oo);
(iv) for each x E X and integer k > l,(A7V)fcSN(t)PNx —> AkS(t)x uni­

formly in t on compact subintervals of (0,oo).

Proof. The statement of (iii) under the given conditions is just a variant of 
the well-known Trotter-Kato theorem and follows immediately from Theorem 
II.1.14 of [BK]. To argue result (iv), we first note the convergence in (ii) for 
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some A G £ implies that the convergence holds for all A G . In light of the 
resolvent bounds of (i), this follows from the identity for ^z,A G £

Rf,(AN)PN - Ru(A) =[1 + (A - /VR>.(AN)pN}[R>SAN)PN - Rx(A)] 
x [/ + (A - ^(A)]

which is readily established using the standard resolvent identity Rx(A) — R^A) 
= ^ - A).

The analyticity of the semigroups SN(f) and S(t) allow us to write for t > 0 
(e.g., see [P])

AkS(t) = — [ XkextRx(A)dX
2ttz Jp 

and
N)kSN(t)PN = ~~i J XkextR\(An')PndX.

Here T is a positively oriented contour through Ao lying in with arg(A — Ao) = 
±z/ for A Ao where v is fixed in (-^ + <5 — e, y + <$). The desired convergence 
results follow immediately from the inequality

\(AN)kSN(t)PN x - AkS(t)x\ < [ \X\k\ext\ \RX(AN)PNx — Rx(A)x\dX

using the resolvent convergence of (ii) by noting that the integrand in this inte­
gral is dominated by an integrable function.

We now return to the second order systems of Section 2 - see (2.8), (2.9), 
(2.10) - and use Theorem 3.1 to obtain our main convergence results. As before 
we take R = V x H and V = V x V. Let HN = HN x HN and PN be the 
orthogonal projection of R onto RN.

Theorem 3.2. Let oy(q) and c^?) in (2.8) satisfy conditions (A), (B) and 
(C) and let HN C V satisfy condition (Cl). Let {(7'V } be arbitrary in Q with 
qN —> q. Then we have

(i) The sesquilinear form cr(q) given by (2.9) satisfies conditions (A), (B), 
(C) in the norms ofV and R and the operator A(q) defined via cr(q)(x,0 
= (—A(q)x, £)?y for x E dom(A(q)) is the infinitesimal generator of an 
analytic semigroup T(t; q) on R.

(ii) Let AN(q) denote the operator obtained by restricting cr(q) to RN x RN 
and let TN(t; q) denote the corresponding analytic semigroups on RN. 
Then we have

(a) For each y E R, ’■ TN(t; qN)PNy —> T(t; q)y in R uniformly in t 
compact subintervals of [0, 00);

(b) For each x E R and positive integer k, AN(qN)kTN(t; qN)PNy —> 
A(q)kT(t:, q)x in % uniformly in t on compact subintervals of 
(0,oo).
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one can differentiate twice, etc. (see [P]). Indeed, since we have analytic semi­
groups, we can weaken the conditions on f needed for this procedure by con­
sidering special regularity theorems for mild solutions of Cauchy initial value 
problems in the case of analyticity (e.g., see Chapter 4.3 of [P]). For example, it 
suffices to have f(-,q) E L1(0,T;F7) and locally Holder continuous in order to 
differentiate wN and w once in the above representations.

4. Examples
In this section we present briefly several examples to which the above theory 

can be readily applied. In some cases this sharpens the convergence and stability 
results currently available in the literature; in other cases it provides new results 
for the associated inverse problems.
Example 4.1. We consider a cantilevered Euler-Bernoulli beam with Kelvin- 
Voigt damping (i.e., stress proportional to a linear combination of the strain and 
the strain rate). The beam is assumed fixed at x = 0 and free at x = £, with the 
transverse displacement at time t and position x given by u(t, x). Typical obser­
vations consist of acceleration ««(/,£>) or velocity ut(t,Xj) at several locations 
Xj. Balance of forces and moments yield the following system (we assume the 
linear mass density p is normalized to unity):

d2u d2 d2u rd3u M
aW + + CdIE~TET^ = /(M) 0 < x <dt2 dx2 dx2 dx2dt

du 
u(h°) = —(t,°) = 0, (4.1)

rrirW r d3 a
dx2 dx2dt

r d , „Td2u d3u
+ = O’dx dx2 dx2dt

The parameters to be estimated in typical examples (see [BWIC], [BFWIC], 
[Bln]) are the stiffness and damping coefficients, El and cqI, respectively. For 
a parameter set we choose Q compact in

Qu = {q = (EJ,CjDI) : q E L°°(0,Q x Z°°(0, £), EI(x) >v> 0,cDI(x) > z/}.

For the state spaces H and V we take H = H°(0,€), V = = {</) E
H'2(0,£) : </>(0) = </>'(()) = 0}. Then in writing the system (4.1) in the form (2.8) 
we take

= (cdID'^D'2^
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where D2 = xyp- and is the inner product in #°(0,€) — £2(0,£). For real 
valued (j) in V we have at once

^i(?)(0,^) > ^|^20|o > Ci|^|y

which, as we have noted, implies

Re > ci|^|v

for complex valued </> in V. It is equally trivial to argue that conditions (A) 
and (C) of Section 2 hold for this CH (<?), (?2 (?)• For Galerkin schemes satisfying 
condition (Cl) we thus have Theorem 3.2 applicable, and hence parameter con­
vergence and method stability hold for the least squares problems (R) and (R'v) 
whenever one formulates these with pointwise observations of either velocity or 
acceleration.
Example 4.2 For this example we return to the so-called “RPL experiment” 
discussed in some detail in [BGRW]. The focus of our attention is a cantilevered 
Euler-Bernoulli beam with a flexible gas hose and thruster nozzle attached to 
the free end as depicted in Figure 2.2 of [BGRW]. The structure is modeled as 
a uniform cantilevered beam with Kelvin-Voigt internal damping and tip mass 
with a mass-spring-dashpot assembly attached at the tip. Along with the usual 
damped Euler-Bernoulli beam equation

d2u d4u d5u
p~dc + EId^ + CDld^dt = 0 < <e' (4'2)

we have the force balance equation at the tip

d2u d4u d3u
lmT-g^ ~ CdId^dt ~ EId^x=e (4 ox

du ‘
= - -—-(£/)) + ~ M(V)) + /(*)Cz L

and the hose assembly state equation
$

- “(V)) + kH(y(1d) - = 0. (4.4)

Here p,EI, and cjjl are the usual beam parameters whereas tut represents the 
tip mass, my is the hose mass, kn is the hose stiffness (the “spring” or restoring 
force constant), ch is the hose damping coefficient and f(t) represents an exter­
nally applied force at the tip (firing of the tip mounted thrusters). Boundary 
conditions for the coupled state equations (4.2) and (4.4) include the tip force 
balance equation (4.3), the tip moment balance equation (assuming that the 
hose assembly has negligible rotational inertia)

d2 u d3 u+ cDI-^-]x^ = 0, (4.5)
dx2 dx2dt
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and the zero displacement, zero slope conditions at the fixed end x = 0

du
u(i,0) = —(i,0) = 0. (4.6)

The structure is assumed initially at rest so that initial conditions are given by

u(0,z) = C/ L

y(0) = y(0) = 0.

The parameters to be estimated using accelerometer observations (see [BGRW]) 
include q = which is to be chosen from a compact
subset Q C R4..

To write the system (4.2)-(4.6) in weak or variational form, we use the state 
variable u(f) = (y(t\u(t, C), u(t, ■)) in the state space H = 1R2 x 77°(0,£) with 
inner product

((G W)>(A>Zb0))H = (A + 77^ + (0,0)o.

For the space V we choose V = {(£,??, 0) E H : (j> E 772(0,€), 0(0) = D</)(0) = 
O,?/ = 0(£)} with inner product

((Cm«,(M(<’),V>»v = (C- W)(A - V>(Q) + (O2^,o2v>)o.

The stiffness and damping sesquilinear forms are given for (f) = ((,0(£),0),0 = 
(A, V>(6),V’) >n V by

<7, = kH(( - <£(£))( A - ^(6)) + EI{D2<f,, D2^

^2(</)(.O) = cH(C - <W)(A - V-O + cd/(D2^,D2■</>)„.

We also need an operator AA(pq) E given by

M?)(G^,0) = (7nHCTnTT],p</)).

This operator can be extended to £(V*)  in an obvious manner. Then the system 
(4.2)-(4.6) can be written in variational form for the state «(/) 6 V to satisfy 
for all 0 6 V

(Af(7)fi<<(t),0) + a2(?)(fi<(f),0) + a1(?)(fi(t),0) = (F(t),0), 
fi(0) = ut(0) = 0, ( ‘

where F(t) = (0,/(f),0). Since, for tyihiTyit^p positive, the operator M.(q) is 
invertible, equation (4.7) is obviously equivalent to an equation of the form (2.8). 
Thus the theory of Sections 2 and 3 is applicable if cq and uq satisfy the requisite 
hypotheses. If Q is bounded below in R^_, it is readily seen that both oq and
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<72 satisfy conditions (A), (B), and (C). For example, we see immediately for 
^ = «,^);7r) 6 V

= ch(< - + CDll-D'^la

> C1{« ~ <W + |O2<} = <:il<-

Similar arguments hold for <71(7).
Application of the theory in Sections 2 and 3 substantially sharpens the results 

given in [BGRW]. In that paper the main results (see Lemma 3.1) yield

•T

qN) q)\ndt -» 0 (4.8)

as N —> 00. The arguments are rather tedious and require the assumption 
u(q) E H2(0,T-,V) on the limit function. Note also that (4.8) would require 
continuous time acceleration observations be used in the least squares criterion.

In contrast, the theory of this paper yields (since H2 embeds compactly in 
C) uN(t, x; qN) —» u(t, x; 7), uN(t, x\ qN) —> u(t, x; q) uniformly in x E [0, d\ for 
each t E [0, T] as well as u^(t;qN) —> uu(t;qN) in V for each t, which permits 
sampled time acceleration observations. The arguments are simple (given the 
theory developed above) and do not require the a priori smoothness assumption 
on u(q).
Example 4.3 As a final example, we briefly describe the models for two dimen­
sional grid structures (“plates with holes”) developed and investigated in [R] 
and [BR]. We use Love-Kirchoff plate theory with Kelvin-Voigt damping. The 
“plate” is rectangular, e.g., on (x,t/) E [0,-G] X [0,-G], with rectangular holes 
periodically placed to produce a thin planar grid. It is assumed to be hang­
ing vertically, clamped at the top, with the other three edges free. The basic 
equation for transverse displacements w(t,x,y) is given by 

d2w d2Mx 
ph~dE + dx2

d2Mxy 
dxdy

d2My 
dy2

+ 2

where h is the thickness of the plate, the bending moments Mx,My about the 
x and y axes, respectively, are given by

M 1 — z/2 dx2 +V dy2^ + l — v2^dx2dt +Z/ dy2dt^

El d2w d2w cdI d3w d3w
M = + U0E2^ + 1 — E2^dy2dt + ^dx2dt^

and the twisting moment is given by

El d2w d2w cdI ( d3w d3w
1 — v'2 dxdy dxdy 1 1 — v2 dxdydt, dxdydt
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Here z/ is Poisson’s ratio. For the boundary conditions at the top (clamped) 
we have the essential boundary conditions w = = 0 (the top corresponds to
the a?—axis). The plate is free on the other outer edges and on the edges of the 
holes, where the natural boundary conditions of zero moment and zero shear 
are required. For example, on a free edge parallel to the y—axis this results in 
the conditions

Mx = 0,
dMx dMxy
-p— + 2——— = 0.ox oy

As shown in [R], [BR], one can readily define the corresponding stiffness and 
damping sesquilinear forms cr],cr2 on V x V, where V — {$ E _H2(Q) : (f =

= 0 along y = 0}, Q is [0,^i] x [0,^2] less the holes, and argue the needed 
V—coerciveness along with conditions (A) and (C). In this case, the state space 
is H = #°(Q). The theory of Sections 3 and 4 can thus be shown to hold for 
this example.
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A Maximum Principle for Semilinear Parabolic 
Network Equations

Joachim von Below

Lehrstuhl fur Biomathematik, Universitat Tubingen

Reaction-diffusion equations and interaction phenomena on ramified networks 
with Kirchhoff type connecting operators have been investigated recently by sev­
eral authors, cf. [1-11]. In this paper we present a strong maximum principle 
and an a priori estimate for semilinear parabolic network equations with excita- 
toric Kirchhoff laws in the ramification nodes. The results presented here extend 
those of [3, Chap.2] and [6] and include the proofs of the Lemma and Theorem 2
in 6 
in [3

Existence results for semilinear parabolic network equations can be found 
and [7].

Let G denote a C2-network with finite sets of vertices E = {Efil < i < n} 
and edges K = {kj'tl < j < N} as defined in [2, Chap.l], Thus G is the union 
of Jordan curves kj in ]Rm with arc length parametrizations TTj E C2([0, 
The arc length parameter of an edge kj is denoted by x j. The topological graph 
T belonging to G is assumed to be simple and connected. Thus, by definition, 
T = (E,K) consists in a collection of N Jordan curves kj with the following 
properties: Each kj has its endpoints in the set E, any two vertices in E can 
be connected by a path with arcs in K, and any two edges kj =4 kh satisfy 
kj A kh C E and \kj A kh] < 1- The valency of each vertex is denoted by

= y^Ei). We distinguish the ramification nodes Int E = {Et E E'-.-ji > 1} 
from the boundary vertices dG = {Et E E-j; = 1}. The orientation of T is given

37
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by the incidence matrix D = (dij)nXN with

f 1 if = E,,
dtJ = < — 1 if 7Tj(0) = Ei, 

[ 0 otherwise.

Endowed with the induced topology G is a connected and compact space in Rm. 

We introduce t as the time variable and for T > 0

Q = Gx [0,T],
= [0,/j] x [0,7’],

(lp = (G\dG) x (0,T],

Cljp = (0,1,1 x (o,n
= (G x {0})U(5G x (0,T]),

= sijp u ({£ g [o,6 ME] x (0,U).

and use the abbreviations Uj = u o (717, ?d) : Qj —> R for u : Q —> R and 
Uj{E^t) = wj(7r71(-^'i),O etc- Set C2,1(Q) = {u E C(^)luj E C2,1(Elj'), 1 < 
j <N}.

On each edge kj we consider the semilinear equation

U jt ujxj x- d~ f j (x j A W j ; UJXj ) =-’ Dj [tt j], ( 1 )

subject to the strict parabolicity condition

3)Ui,^2 G R V j G {1, • • • ,N}, V (x,t,z,p) E £lj x R2 :

0 < Pi < a.j(x,t,z,p} < p2. (2)

At the ramification nodes Ei we impose continuity conditions and a classical 
Kirchhoff law

N

dijCij(t)ujXj (Ei,t) = 0 for 7i > 2 and 1 < i < n (K)
J=i

with positive conductivity functions Cjj, or more generally the excitatoric Kirch­
hoff condition with coefficient functions Cij,pi,at : [0,T] —> R

N

Vt(u,t) := pi(t)u(Ei,t) ~y2dlJctj(t)uJXj(El,t) - a^u^E^t) = 0
J==i (Gk)

for 7) > 2 and 1 < i < n
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subject to

> 0 for t E [0, T], i E {1,... ,n} and j E {1, • . • , N}

and
> 0 for fE[0, T] and zE{l,...,n}. (3)

Note that (3) plays the role of a parabolicity condition in Int > E. A max­
imum principle with respect to the parabolic boundary cup cannot hold, when 
(2) is violated. An easy example is given by the solution u E G2,1(Q) with 

f) = exp(t — Xj) of up = uJXjXj on the edges of a star graph T with {Ej } = 
IntE, N > 1, d\j = —1 for all edges, and the condition (GK} Nut(Ei,t} ~ 

d-ijUjx-(Ei,t} = 0- Furthermore, the coefficient of the flow term 
^2 dijcijujxj can be set equal to 1, since the condition = ppi corresponds 
to a Dirichlet boundary condition at 7; boundary vertices. For cq =4 0, (GK} 
is not well-posed in sense of Solonnikov, cf. [5, Chap.8], but, of course, it has 
a natural physical interpretation, cf. [4], [8]. For function spaces on fl' C Q let 
the indices K and GK indicate the validity of K and GK in fl', respectively.

The basic technique, analogous to the classical one for domains established 
in [12, Chap.24], is comprehended in the following

Lemma. Let E G(fl) A G2,1(flp) satisfy

Vi(ip,t} <Vi(p,t} for all t 6(0,7"] and for all E2ElntE, (4)

and the test point implication:

Ifipj = xpj, ipjx. = ipjx., tpJXjXj < ipjXjXj at a point in flp, then 
I J I 

Ejt < this point.

Then precisely one of the following cases holds:
(a) p < ip in flp
(b) There exists a maximal t  E [0,T) such that p < ip in (G\dG} x 

(0,1].  Thus there is a sequence {(yk,tk}\k E N} C with tk > 
t  and p(yk,tk} > V’(jZfc^fc) i°r all k G fl with limfc-^oo tk = t  and 
limfc

*
*
* *

—*-oo  (yk ? t^ e u)p.

Proof. In the case IntE = 0 the assertion is a special case of [12. Lemma 24.1]. 
Next, we consider the case

T is a star graph with |<9G| = N and IntE = {e}. (*)

Introduce
t*  = sup{r £ [0, T]':(p < ip on (G \ dG} x (0, r)}.
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Then (p < ip on H := £lp A (G x {/*}).  (Note that H = 0 is possible.) Suppose 
that <p(x, t* ) = ip(x, t* ) for some (x, t*)  E H. Then ip — (p attains a minimum at 
x as a function on H and, by definition of t* ,

r V>(5,r) - <^(5,r) - ^(5,^) + <^(x,^)
0> hm ------------- ---------- ~---------------------- = ipt(x,t ) - (pt(x,t ).

o-+t*  ,e<t*  t*  — v

If x is an interior point of some edge kj, then <pjt(x,t) < by condition
(5), which is a contradiction.
For x = e = Ei we have dij (ipjXj (e, t* ) — <pjXj (e,t*))  < 0 and by (4)

V’«(e,t*)  = <£t(e,f*)  and ipjxj (e, t* ) = (e,f* ) for all j.

Regarding ip — ip as a function on each pair of incident edges, ip—ip is continuously 
differentiable at x = e and q?jXjXj (e, t*)  < ipjXjXj(e,t*)  for all j. By (5) we 
conclude </?t(e,/*)  < ^f(e,f*),  which again is a contradiction.

Thus we have shown that ip < ip on H. Due to the maximality of t*  either 
case (a) or case (b) holds corresponding to t*  = T or t*  < T.

In the case \IntE\ > 2, we consider the stars

Si = kj for Ei E IntE.
dij #o

Applying the case (*)  to Si, t\t := x [0, T], |^t. and ip |a, , we find numbers 
t*  as obtained in (*)  and set

t*  = min{t*: ’7i >2}.

In the case t*  = T, (a) holds. For t*  < T there is a vertex E9 E IntE and a 
sequence {(j/fc,fc):A: E N} C Asp with

lim tk = t*  = f* and tk > t* , <p(yk, £*)  > ip(yk, **)  for all k E N, k—>00

such that limfc-+Oo(^fc,= (y,t*)  lies on the parabolic boundary Ssp of As. If 
t*  > 0, then the construction of H and the continuity of and ip imply that 
y cannot be a ramification node. Thus y has to be a boundary vertex of T. If 
t*  = 0, then (t/,0) E cop. In both cases the assertion (b) is shown.

0

Immediate applications are the comparison principle [6, Theorem 1] for gen­
eral parabolic network equations with condition (7) below and weak maximum­
minimum principles with respect to the parabolic boundary cup. Here we show 
the following strong maximum-minimum principle.
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Theorem 1. Suppose there is some constant c > 0 such that all fj : x R2 —>
R satisfy

fj(x,t,z,p) < c\p\ (jj(x,t,z,p) >-c\pty in fljXR2. (6)

2 1Assume that all pi in (GK) vanish. Let u E <7(Q) A CG’K(Clp) be a solution of

Ujt < Dj[uj] in Qjp — Dj[uj] in

for all j E {1,.. . , N }. Then

max u = max u (min u = min u )Q wp \ Q Wp J

More precisely: If u attains its maximum M (its minimum m) at some point 
(xo,to) in flp, then u = M(u = m) in G x [0,fo]-

Proof. Suppose u(a?o,io) = M at some point (zo,io) € G,p.
Case 1: xq $ E. Thus a?o is an interior point of some edge kj. Then by the 
strong maximum principle for domains [12, Chap. 26] we find

u3(xj,f) = M for all (xj,t) € [0, lj] x [□, io]-

For an arbitrary edge kh with kh Hkj = C E and for t E (0,io] we conclude
(a) Uh(Ept) = M, since u E C(Q).
(/) uhXh(Ept) = ujxj(Ept) == 0 by (GK).
(t) UhXhXh(Et,t) < 0 (By (a) and (/?) u is continuously differentiable at 

(£^,i) as a function on kj U kh.)
(6) uhXhXh(Ei,t) = 0- (Condition (6), u E G2’1(flp) and uht < Dh[uh] 

imply lim^o uhXflXfl ~ £dih,t) > 0-)

Define
t\ = I uJ^lj1±rL ~ forO<£<Zj,

I + £dih,t) for -lh < < 0.

Then z E C([—lh, lj] x [0, T]) A C2,1 (( — In, lj) x (0, T]) is a solution of the differ­
ential inequality

where a and f are defined with the same argument transformation in x by
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(Note that p is replaced by —djjp or d^p.)
At (0,io), z attains its maximum, so that U)t = M for t < to by the classical 
strong maximum principle. Since T is connected, the assertion is shown in the 
case 1.

Case 2: x0 — Et E IntE. If u = M in x [0, to] then we can proceed as in the 
case 1. Thus we may assume that there is ty E (0,io) such that w(zo,U) < M. 
Using the case 1 we conclude that u < M in U^LjQjp. We may assume dij = — 1 
for all edges kj with Ei E kj. Choose a > 0 with a < minj lj and introduce

E = {(7Tj(^j),t) E fh'U < t < to, Xj<a, dtj^0,
Ep = {(7Tj(xj),t) e Cl':t-i <t <to, Xj<a, dij^O,
<j p — S\Sp,

A(f) = «2-^2, a = max{;z2,c},

w(£,t) = A2(£)e-^

with B > max{l,4a-2a} sufficiently large such that

8/a^2 + #A2(O - 4A(£)<*(1  + £) > 0 for 0 < < a.

Then w satisfies the strict differential inequality

wt<aw^-a]w^ in [0,a]x[0,T]. (e)

Define ip = u |e and ip : S —* R via

UjOjW) = M + s - Cw(xj,t - tj).

2 1Then ip E CA’ (S) and dij ipjXj = 0 in {.Ei} x [ti, to]. Since u < M on ap, we can 
choose £ > 0 sufficiently small such that

ip > M — (pw > u on .

Then ip and ip satisfy (4)

U(V’A) = -Bai[t)a4e~B(t^ < 0 = U(yW) for all t E [U ,i0].

Next suppose tpj = ipj,ipjX} = and <pjXjXj < 'ipjX]X] at some point (y,s) E 
Ep. If y 0 then by (e)

Vjt(y,s) < Dj[uj](y,s) < p>2^pjxj xj(.y, ■s) + c\ipJXj(y,s)\
= -C(y2w^(y,s -U) - c\w^y,s - U)|)

< -(wt(y,s - U) = xpjt(y,s).
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For y = 0 we have

= BCa4e^B^^ > ^<J4a2e'B(-(1) = > 0.

In the nontrivial case 0 < tpjt(Ei, s), <PjXixj (xj,5) has to be positive near E{ due 
to E C2’1(Sp),(/?ja;> (E'i, s) = 0 and

Vjt(xj,s) < y.2VjxjXj(xj,s) + s)l f°r all rjG(0,/j),

and furthermore,

^Pjt^Ep s) < c^^jxj xj (Et, s) < onpjxj xj(Ep s) < <bjt(Ei,s).

Thus 9? and 0 satisfy the test point implication (5). Applying the Lemma to 
92,7/q and X yields < ?/-’ in Sp, and letting £ tend to zero shows

M — > u in Sp.

But at (E{, to) this leads to the contradiction M~> M. Therefore 
u cannot attain its maximum M at (a?0,fo) unless u = M in G x [0, to]-

The minimum case is shown similarly with </? = m — e (w.
0

In the case pt(to) > 0 (pz(to) < 0), u E CG’K(flp) cannot have a negative 
maximum or a positive minimum (a positive maximum or a negative minimum) 
at (Ez, to). More precisely: The following example shows that a maximum 
principle with respect to ivp cannot hold when pz(to) > 0, no matter what a, (to) 
or Pi(to)(cri(io))-3 amount to. On a star graph T with IntE = {Ei}, N > 
1, d\j = — 1 consider u E C2,1(fi) with Uj(xj,t) = exp(At — vxj). On the edges 
u satisfies Ujt = Az/ 2uJXjXj , and at E\ the condition

N
0 = [Nv + e)u(Ei,t) - - ^-u^E^t)

( Aj-1

for arbitrary A > 0, v > 0 and £ > 0. Nevertheless, for pdpto) < 0, the conclusions 
(u) — (6) remain valid in the case 1, and Vi(jjj,t) < 0 still holds in the case 2. 
Thus we can prove in the same way the following result.

Corollary. Under the assumptions of Theorem 1 except that all pi need only to 
be nonpositive, u cannot attain its positive maximum M (its negative minimum 
m) at some point (xo,to) E Ulp, unless all pi(to) = 0. In that case u = M (u = 
m) in G x [0, to].

Another classical estimate can be carried over to parabolic network equations 
with (GK) type connecting operators. Introduce the condition

3 b3 > OVE, 6 IntEMtE (0,T] : pt(t) < b3nz(t). (7)
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Theorem 2. Let u 6 C(£2) A be a solution of

U jt = 1 1 1 U'jxj )^jxj Xj 4" fj(ff j •> L Uj , Ujxj ) m ""JP

for all j E {1,..., TV}, where all fj : flj x R2 —> R satisfy the Osgood condition 

3b1,b2>OVj E {1,. .., N} V (x,t, z) EO-pxR: (8)

zfj(x, t, z, 0) < zl + b2.

Let condition (7) be fulfilled. Then the following estimate holds

I I • r f XT f । । / ^2
max u < mi e maxi max \u , \ ----- r~ f •Q x y z\ Of J J

Proof. Apply the Lemma to tp = u (<p = — u) and

if = if(xj,t) = (1 + e)ext max < max |u|, 
I

for A > &i and A > b% and £ > 0 in order to obtain the estimate from above 
(from below). By (7) we obtain Vi(if, t) < 0 = Vi(jp, t) in (0, T] and IntE. Using 
the differential equation, condition (8) and the inequality if2 < e2At52(A — 5] 
we conclude at a test point (a?o,to) as defined in (5)

ift - <pjt = A 4 - ttj(2:o,to,^j,O)</?jrjr. - /j(:ro,to,^j,O)

> V>(A - b, - 4) > V>(1 ~ e“2A')(z\ - b,) > 0.
4

Since e was arbitrary and ip < if on up, the desired estimate follows.

The proof shows that the assertion of Theorem 2 remains valid under the 
condition of weak parabolicity, i.e. pi > 0 in (2).
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1. Introduction
The grim scenario created by the AIDS epidemic has driven researchers to 

develop mathematical models to improve our understanding for the mechanisms 
responsible for HIV (the etiological agent for AIDS) transmission and of the 
evaluation of possible intervention measures. Recent reviews of the literature on 
models include those of [A1,A2], [CC1,CC2], and [SchCCH]. Some of the impor­
tant conclusions generated by mathematical models include the clear identifica­
tion of three key mechanisms which have the greatest effect on HIV transmission 
at the population level: variable infectivity, mixing or pair formation, and long, 
variable periods of infectiousness. For an extensive in depth study of some of 
the most recent mathematical and statistical work in these and other areas to 
AIDS epidemiology see [CC2].

This paper is organized as follows: in Section 2, we outline a unified axiomatic 
approach to the problem of mixing which extends and generalizes the one-sex 
framework of [BICCl] and [CCB1] and provide an expression for the general 
solution due to [BuCCl], as well as some numerical illustrations of particular 
mixing functions; in Section 3, we formulate a two-sex mixing or pair formation 
framework that is a natural generalization of the one-sex framework, and con­
struct some explicit solutions; in Section 4 we formulate a demographic model 
that follows pairs and provide some preliminary analysis of this model.

2. Mixing framework
The formulation described in this section can be used in the modeling of so-
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cial or sexual mixing interactions. The mixing or pair formation function can 
describe the proportion of “dates” between individuals in distinct groups, or it 
can represent the proportion of sexual partnerships or sexual contacts between 
these individuals. In addition, the mixing function can be generalized to in­
clude the geographical distribution or the geographical movement of individuals 
through the use of “localized” mixing functions, i.e., functions that represent 
the proportion of partnerships formed between individuals from clearly defined 
groups (social, demographic, etc.) at a particular geographical location. The 
local geographical heterogeneities can then be linked through the specification 
of migration or movement matrices (see [Sal,Sa2] and [SaSi]). Therefore, our 
approach allows from the specification of a spatial mixing framework. In this 
paper, however, we concentrate in the study of localized mixing functions.

Since our work has been motivated by HIV dynamics, we concentrate on the 
study of mixing functions in the context of SIR models where S represents the 
class of susceptible individuals, I the class of infected individuals, and R the 
class of removed or recovered individuals. We consider first the interactions of a 
single, socially-homogeneous group of individuals who are structured according 
to the following variables: a = age; r = time (or age) since infection, r = activity 
or risk level. We let 7V(r, a, r, t) denote the total population density per unit age, 
activity, and time since infection, at time t. This population is divided into the 
following epidemiological classes: S = susceptible; I = asymptotic or slightly 
symptomatic infective; A = highly symptomatic infective. This classification is 
fairly general and includes implicitly the traditional exposed, but not infected, 
class E (see [BuCCl]). In our dicussion, r is a hidden internal variable that 
does not distinguish individuals other than through their level of infectivity, 
and perhaps mortality. When modeling the sexual transmission of AIDS, we 
assume that A-individuals (i.e. individuals with severe symptoms or “full­
blown” AIDS) are sexually inactive (i.e. this class represents the “removed” 
individuals) and hence that

POO
T(r, a, t) = S(r, a, f) + / I(r,a,T,/)dr

Jo

represents the total age and activity-level density of a population active in dis­
ease transmission contacts. Sexual mixing (or pair formation) is defined through 
the mixing function p. Specifically,

p(r, a, r', a', f) = the proportion of partners of an (r, a) individual

(i.e., a person of activity level r at age a), with (rz, a) 
individuals at time t.

C(r, a, t) = the expected or average number of partners per unit time
of an (r, a) individual given at time t. We assume C > 0.
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The following natural conditions characterize the mixing function:

(i) P > 0,
(“) Jo°° f0°° p(r, a, r', a', t)dr'da' = 1,

(iii) p(r, a, r',a', t)C(r, a, t)T(r, a, t) = p(r’, a', r, a, t)C(r', a',t)T(r',
(iv) C(r, a, t)T(r, a, t)C(r' ,a' ,t)T(r', a'. t) = 0 => p(r, a,r', a' ,t) = 0.
Condition (ii) simply says that p is a proportion. Condition (iii) states that 

the total number of pairs of (r, a) individuals with (r1, a') individuals equals the 
total number of pairs of (r',a') individuals with (r,a) individuals (all this is per 
unit time, age, and time since infection). Condition (iv) says that there is no 
mixing in the age and activity levels at which there are not active individuals; 
i.e.; on the set

S = {(r,a,r', a') : C(r,a, t)T(r, a, t)C(r', a',t)T(r', a',t) = 0},

where there is no mixing. Condition (iv) arises naturally in the study of the 
solutions of the above framework (see [BuCC2]).

In some situations it is necessary to consider mixing functions p, which are 
Dirac delta functions or, more generally, distributions or generalized functions. 
Hence, we are forced to consider solutions to the axiomatic framework in the 
space of distributions or generalized functions (see [Schw], [GS]). To accommo­
date this possibility the following modification to the interpretation of axioms 
(i) and (iv) is necessary:

(i’) p > 0 in the sense of distributions; i.e.,

yy*  p(r,a,r' ,a ,a' ,t)dr'da' > 0 for all f > 0, and

(iv’) p(r, a, r', a', i) = 0 on a set F, means

yy p(r,a,r'.a' ,t)f(r,a',t)drda' — 0 for all f.

Pair formations can involve selectivity by individuals according to age or 
activity level, they can be random pairings without regard to these variables, 
or they can be any combination or mixture of the two extremes. A detailed 
discussion of these possibilities and of the restrictions they place on the mixing 
function p is found in [BuCC2].

A solution of critical importance to the mixing framework is that of total (i.e. 
in age and risk) proportionate mixing:

(1)p(r,a,r ,a ,f) rr00 i i t i .\j i j r JJo C(r',a,t)T(r,a',t)da'dr'

This solution plays an important role in the determination of all possible 
solutions to the mixing framework (i) - (iv). Note that proportionate mixing 



50 Pair formation in structured populations

vacuously satisfies condition (iv). This condition prevents us from accidentally 
dividing by zero, and hence prevents us from arbitrarily defining a mixing func­
tion for subpopulations that either are not sexually active or that have been 
depleted of individuals by disease dynamics. Further examples of specific mix­
ing functions can be found in [B1CC1] and [BuCC2]. We further observe that 
convex linear combinations of mixing functions are mixing functions. Specifi­
cally, if a?i,... , are positive constants such that <*»  = 1 and Pi, • • •, Pn 
are mixing functions, then c^iPi is a mixing function. This last obser­
vation provides a recipe for the construction of a variety of mixing functions. 
Furthermore, it clearly shows that preferred mixing (a convex combination of 
two mixing functions), contrary to the suggestions of some researchers, does not 
contain all reasonable possibilities. Specifically, (omitting age) preferred mixing 
is given by

p(s, r) = (1 - a) - r), (2)
Jo C{u)T(u)du

where 8 denotes the Dirac delta (see [B1CC1], i.e., it is the convex linear com­
bination of the Dirac delta (a mixing function) and proportionate mixing. The 
two extreme points of this particular convex linear combination (when a = 0 or 
1) do not obviously represent sociological or mathematical mixing extremes - 
this was pointed out to us by S. Gupta and R. Anderson.

A mixing function p is called separable if it can be written in the form

p(r,a,r',a',f) = px(r, a,t)p2(r', a', t). (3)

The total proportionate mixing function p is separable, and our first result states 
that there are no other separable pairing functions.

Theorem 2.1 . The only separable pairing function p satisfying conditions (i) 
- (ii) - (Hi) is the total proportionate mixing function p given by (1).

Proof. This result can be easily obtained by direct substitution of (3) into the 
mixing axioms. Since the proof of this result to that of Theorem 3.1 (included 
later) we omit the details.

All other solutions to the mixing framework are given by multiplicative per­
turbations of total proportionate mixing. The nature of the perturbations is 
specified in the following theorem:

Theorem 2.2 . Let </> : > R be measurable and jointly symmetric:
</>(r, a, r1, a') = </>(r', a', r, a), and suppose that

J J p(r', a,r' ,a')dr'da' < 1,

and r / r \
/ / p(r,a) I / / p(r', a')</>(r, a, a^dr'da1 I drda < 1.



Castillo-Chavez, Busenberg and Gerow 51

Let

pi(r,a) = 1 - p(r', d}d(r, a, r , a'}dr da , (4)

so that

p(r,a,r' o') = p(r',a')
pi(r,a)p1(r' ,a')

p(r', a')dr'da'
+ <f(r,a,r',d) (5)

is a mixing function. Conversely, for every mixing function p there exists a 
that satisfies the hypotheses of the theorem such that p is given by (5) with pi 
defined by (4).

Proof. That the expression given by equation (5) is a mixing function is im­
mediate. For the proof of converse, see [BuCC2].

The function <f> provides us with a measure of the deviation from proportionate 
mixing and therefore it is a measure of preference. We call this perturbation 
the structural covariance of preference function (note that this covariance is 
always positive). To illustrate the effects of </> on the shape of the mixing or 
pair formation function, we look at some examples for situations in which the 
mixing function is only a function of the age or risk (related to frequency and 
type of sexual activity) of the individuals but not of both. The version that is 
illustrated in our numerical corresponds to the following version of Theorem 2.2:

Theorem 2.3 . Let </> : be a measurable and jointly symmetric
function, and suppose that

and (u)<f(u)du 1.

Defining p\ (r) by

pi(r) = 1 - (6)u

we obtain the following representation formula for a two dimensional one-sex 
mixing function:

p(r,r) = p(r)
Pi^p^r1) 

Jo™ p(r)pi(r)dr + <Xr, (7)

where camo 
fycommia (8)

i.e., we have a multiplicative perturbation of proportionate mixing. Also for ev­
ery mixing function p, there exists a structural covariance or preference function
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</> satisfying the hypotheses of the theorem such that p is given by (7) with px 
defined by (6).

We now proceed to illustrate the effects of preference on the shape of the 
mixing function. As a model for the distribution of activity levels in a pop­
ulation, the lognormal distribution has appeal due to its flexibility. Formally, 
if ln(2?) has a normal distribution with mean p and variance cr2, then R has 
a two-parameter lognormal distribution with parameters p1 and <j. For conve­
nience, define b = eM. The probability density function for the lognormal may 
be written as

T(r) = = Prob [ln(.R) = r, ], r > 0.

The mean and variance of R are
2

E(R) = pR=b exp(y),

and
Var(#) = <j2r = b2aa\eff2 - 1).

A more natural parameterization for our modeling purposes is to describe the 
distribution in terms of pR and <j2r. Given values of these two population pa­
rameters (either arbitrarily, or as suggested by data), we can easily determine 
that

er2 = Infcr^/i^1 + 1], 

and
b = pr exp (— 0.5cr2).

We may further simplify our model prescription if we accept the empirical “power 
law” of [AM]:

a2R = 0.555/r3/31, (9)

whence
a2 = ln[0.555/4’231 + 1], 

and
b = P’R exp(—0.5cr2).

With C(r) = r, then (8) becomes

where the denominator is the expected value of a lognormal random variable, 
i.e.,



Castillo-Chavez, Busenberg and Gerow 53

T(r) is really a function of /, i.e. T = T(r, i), and its behavior is governed by 
an appropriate partial differential equation (see [BuCCl]). Note however, that 
the “power law” of [AM] suggests that the mean and variance of T(r, t) (regard­
less of how we model it) has to satisfy equation (9): Further, since our purpose 
is to illustrate the effects of the structural covariance or preference function on 
the shape of p(r,r',Z), we “bypass” the dynamic model and concentrate on the 
effects of (j) on p when pr and (Jr satisfy (9) (for a more orthodox procedure to 
test mixing frameworks is found in [CCB1]. We observe that a population that 
is experiencing a decrease in sexual activity will have to do it in a restricted 
fashion, i.e., by moving down along the line (in log-log scale) defined by equa­
tion (9). Finally, we remark that the “power law” of Anderson and May can be 
explained through the processes of pair formation and dissolution (for details 
see [B1CC2],

In our numerical illustrations we take a fairly general namely:

</>(r, r1) ~ exp [—(ci(r2 + r'2 + c2rr/))]- (10)

Recall that pi(r) = 1 — fQ°° p(r, r')dr' must be < 1; and note that for our 
current choices for T and </>, this condition is met for a wide range of pr, 
and c2, including values which may be reasonable for human populations. The 
denominator term of p(r,r') is fairly cumbersome, but can be cleaned up a little:

r , ,, r 1 [-(ln(r7W ,<1,Z = ^exp[—--------- (y)]*

*See pp. 61-65.

Cl 
2<72&27T

exp —
-(ln(r7b))2 

cr2
+ a2 + Ci(r2 + r'2) + c2rr' dr' dr.

The second term can be reduced to a one-dimensional integral by use of the 
change of variable defined by u = \/2cir + . Then we have

oo exp [-(W’W)*
4ci (1 -<D(

c2r' 
x/2c!

2 _ r/2 ))dr';

where $(•) is the standardized Gaussian cumulative distribution function.
In our set of simulations, we use all six combinations of two choices for T(r) 

(determined by the Anderson and May’s (1988) power law, with values of 2 and 
8 for pr) and three choices for </> : </>i with a well-defined narrow ridge along the 
line r = r' (determined by the pair (ci,c2) = (0.3,—0.6)), <f)2 with a somewhat 
broader profile ((ci,c2) = (0.05,-0.08)), and </>3 = 0, representing proportional 
mixing. We have plots also of the corresponding structural covariance functions 
<Zi and (f)2.

The plots*  illustrate the interaction between the structural covariance function 
and the degree to which the population exhibits proportionate mixing. For a 
given mean activity level (2 and 8 in these simulations) the preference function 
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exhibiting the sharpest degree of preference (<^i, plot 1) has the mixing function 
which is (visually, at least) furthest removed from proportionate mixing (plots 
2,3). As the preference function gets less sharply peaked (</>2, plot 4), the mixing 
function (plots 5,6) is more similar to proportionate mixing (plot 7,8). Also, for 
a given as the population mean activity level increases, the mixing function 
look more and more like a simple additive combination of f with proportionate 
mixing (plots 2 —> 3, 5 —> 6).

3. Two-sex mixing framework
In this section we provide an outline of our two-sex framework. Since an 

extensive account will be provided later (see [CCBu]), we look exclusively at 
our mixing framework in the context of a two-sex age-structured population. 
We further concentrate on a framework suitable for a two-sex demographic 
model. The modifications needed to transform this demographic model into an 
epidemiological model for sexually-transmitted diseases are straightforward and 
can be found in [CCBu],

We let M(a,t) denote the density of males of age a who are not in pairs at 
time f; and let F(a! ,t) denote the density of females of age a1 who are not in 
pairs at time t. Pairing is defined through the mixing functions:

p(a,a! , f) = proportion of partnerships of males of age a with

females of age a1 at time f,

<?( a, a ,t) = proportion of partnerships of females of age a1 with 
males of age a at time t,

and we let

C(a, t) = expected or average number of partners of a male of 
age a at time t per unit time,

D(a!, t) = expected or average number of partners of a female of 

age a1 at time t per unit time.

The following natural conditions characterize these mixing functions:
(a) p, q > 0,
(b) P^a^a' ^da' = Jo°° p(a',a,t)da = 1,
(c) p(a, a', t)C(a, t)M(a, t) = q(a', a,f)D(a',f)F'(a',f),
(d) C(a, t)D(a',t)F(a',t) = 0 => p(a, a', f) = q(a', a, t) =0.

Condition (ii) is due to the fact that p and q are proportions. Condition (iii) 
simply states that the total number of pairs of males of age a with females of 
age a' equals the total number of pairs of females of age a1 with males of age 
a (all per unit time and age). Condition (iv) says that there is no mixing in 
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the age and activity levels where there are no active individuals, i.e., on the set 
S(t) = {(a, a',t) : C(r, a,t)M(a,t)D(a',t) = 0}.

The pair (p, q) is called a two-sex mixing function iff it satisfies axioms (a-d). 
Further, a two-sex mixing function is called separable iff

p(a,a',f) = p1(a,t)p2(al ,t) and g(a,a',i) = g1(a,f)g2(a/,^)-

If we let
hp(a, t) = C(a, t) (11)

and
hq(a, t) = D(a, t)F(a, t), (12)

then, omitting t to simplify the notation, we establish the following result: 

Theorem 3.1. The only two-sex separable mixing function satisfying condi­
tions (a-d) is given by (p, q), where

, , ha(a1')
?(.« )= , (13)Jo hp(u)au

. hv(ad
9(0) = Too,/, (14)

Jo h,(u)du

Proof. It is clear that the expressions given by equations (13) - (14) satisfy 
the axioms (a - d), and hence, (p, q) is a two-sex mixing function. Let’s now 
assume that (p, g) is separable, then using axiom (b), we see that

Pi (a) = fOO \ . i = A (a constant)
Jo P2(a)du

and 1
g(a') = —, . , = (a constant);

Jo Q2(a)du 

therefore, 
p(a, a') = fp2(a) and q(a, a') = kq2(a).

If we substitute the above expressions into axiom (c) and integrate over all ages 
a, then we arrive at

OO
fp2(a') J hp{n)dn — hq(a) 

o
from which (13) follows. Equation (14) is obtained similarly.

Castillo-Chavez and Busenberg [CCBu] have established that all two-sex mix­
ing functions are multiplicative perturbations (with appropriate structural co­
variance functions) of the only separable two-sex mixing function given by (13)
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- (14). Although, the general solution may prove to be quite useful in theoret­
ical considerations, it is still of practical importance to provide modelers and 
theoreticians with flexible families of two-sex mixing functions. The following 
two-sex biased mixing familiy for 7V-interacting subpopulations may fulfill this 
need. To introduce it, we let U{ (vt) denote the proportion of partnerships by 
males (females) of group i reserved for mixing with females (males) in group z; 
necessarily 0 < Ui, Vj < 1. If Fi(t) (Mi(tf) denote the number of males (females) 
in group i at time t, and Ci (Df) denote the average number of female (male) 
sexual partners of males (females) in group i, and Pij(t) (qijtt)) denote the pro­
portion of partnerships of males (females) in group i with females (males) in 
group j. Then 

Pij(t) = UiSij + (1 - Ui)
(1 Vj)DjFj

- v^DkFk
(15)

?ji(^) — VjSji T (1 Vj)
(1

E"=1(i - uijcwt
(16)

where
if z = j 
if z ;— sJ I 0

The above family of two-sex biased mixing functions is easily incorporated 
into classical epidemiological models as well as into models that follow pairs. 
This is the topic of the next section where we introduce the simplest demographic 
model that follows pairs and that makes use of the framework of this section.

4. Demographic pair formation models
Demographic models that consider pairs and follow the dynamics of pairs 

have been studied by [K], [F], [DH], [D], [Hl], [H2] and [W]. Their approach 
is based on the use of a nonlinear function if to model the process (rate) of 
pair formation. This mixing/pair formation function is assumed to satisfy the 
Fredrickson/McFarland ([F],[McF]) properties:

(e) V’(O,F) = 0(M,O) = O.
In the absence of either males or females there will be no heterosexual 
pair formation.

(f) if^aM,aF} = aif{M,F} for all a,M,F > 0.
If the sex ratio remains constant, then the increase in the rate of pair 
formation is assumed to be proportional to total population size.

(g) if(M + u,F + v) > if(M, F) for all u, v,F,M > 0.
Increases in the number of males and/or females does not decrease the 
rate of pair formation.

Condition (f) implies that all mixing functions are of the form

F M
<F) = M9^ = Fh(-Y
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where h and g are functions of one-variable.
Mixing functions satisfying the above axioms, and that have been used in 

demographic studies, include:

= fcmin(Af, F), k is a constant 

^(Af, F) = kVMF,

and

MF

Let a denote the rate of pair dissolution, g denote the natural mortality rate, 
A denote the “recruitment” rate, and W denote the number of (heterosexual) 
pairs. Then a simple demographic model is given by the following set of equa­
tions:

~ = A - iiM + (a + g)W - ^(M, F)

dF
— = A - gF + (a + g)W - ^M,F) 
dt

dW
= -(<7 + 2/1)^+ V’«F).

dt
If A,/i, and cr, are constant, then there is always a globally stationary solution 
(M, F.W) and W is determined by the equation

■0 (- - W, - + W ) = (a + 2g)W.
\M V J

(for references to this and related results see [W]).
If we now let f(a!, f) and m(a,t) denote the age-specific densities for single 

males and single females respectively, and assume that D (as defined in Section 
3) and gm and g f are functions of age (the mortality rates for males and females), 
and assume that W(a, a1, t) denotes the age-specific density of heterosexual pairs 
(where a denotes the age of the male and a1 the age of the female), then using 
the two-sex mixing functions p and q of Section 3, we arrive at the following 
demographic model for heterosexual populations:

dm dm x x
= -C{a)m[a,t) /

ut Ud Jq

- gm(a\m(a,t) +

dt da' \ JJ\ ■> )

>
p(a, a! ,t}da!

(17)
/ [/ij(a') + a]W(a, a', t)da', 

Jo
o

q(a , a, t)da
(18)

/ [/im(a) + a]W(a,a',t)da, 
Jo
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dW dW dW ,.r, . . , ,
dt da da'

- + «■] w(a,
(19)

To complete this model we need to specify the initial and boundary conditions. 
To this effect we let Xm and Ay denote the female-age-specific fertility rates, 
and let mo, /o, and wq denote the initial age densities. Hence, the initial and 
boundary conditions are given by

oo
m(0, t) = / Xm(a')Nf(a' ,t)dd, (20)

Jo
pOO

f(0,t)= /
Jo

Xf(a')Nf(d ,t)da', (21a)

VF(0,0,i) = 0, (21b)

/(a,0) = f0(a ), m(a, 0) = mo(a), W(a, a', 0) = Wo(a, a'), (22)

where r OO
Nf(a',t) = I W(a,d ,t)da.

Jo
Further, we observe that Nf and f + Nf satisfy the following set of equations:

(f + + -^7] (23)

and
S + /l) Nf = 0 - IM«') + <Wf

v (X /
(24)

(a, a',t)da.

Note that if we let a —> oo (while fixing a, f, and contant) then Nf(a', f) —> 
0+ and (formally) equation (23) approaches the classical MacKendrick/Von Fo­
erster model. Further note that since in the model given by equations (17) - 
(22) only pairs reproduce we do not recover the classical boundary condition 
(nevertheless the boundary condition is consistent).

If we assume that p,m, fif and D are constants and look for solutions of the 
form

Nf(a',t) = eTtN(d),

and
/(a',f) = ert/(a), (25)

then in the usual fashion, we arrive at a characteristic equation for r of the form
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where

/>OO 7-)
H(r) = / Az(a)---------- ------e(--Wa[i _ e(~^+a+D)a]da. (26)

JO Um + D + <7

Since H(r) is decreasing, then (25) has a unique real root r*.  Clearly

H(0) > 1 O r*  > 0,

and if r = is a complex root then one easily sees that a < r*.  We observe 
further that the above analysis is independent of p, however, note that in order 
to recover W or to study the stability of product solutions we need to have 
specific knowledge of the mixing function p.

Although further analysis is possible, we will not present it here, as one of 
the main purposes of this article is to show an alternative approach to that 
of Fredrickson/McFarland/Dietz/Hadeler for the formulation of demographic 
models that follow the dynamics of pairs. Epidemiological models that fit into 
our framework are easily formulated and the appropriate details will be discussed 
elsewhere.

5. Conclusions
In this article we have presented a general solution to the one sex mixing/pair 

formation problem. Our representation theorem states that any mixing func­
tion can be represented as a multiplicative perturbation of proportionate mixing. 
This perturbation, through its structural covariance or preference function, pro­
vides us with a measure of divergence from proportionate mixing. Simulations 
based on the “power law” of [AM] were provided to illustrate the role of pref­
erence in the shape of the mixing function. Our discussion of the simulation 
results, combined with our previous studies (see [B1CC1, CCB1, BuCCl]), show 
that to understand the role of preference in disease dynamics we need to develop 
methods of estimating the effects to the structural covariance function on the 
shape of the basic mixing function (i.e. proportionate mixing). Knowledge of 
“realistic” mixing structures is needed in the evaluation of possible intervention 
programs aimed at disease prevention.

We have also introduced a two-sex mixing framework and constructed a va­
riety of solutions that may prove useful in applications. We have introduced 
a demographic model that follows pairs based on our mixing/pair-formation 
framwork, and have shown that this model has nontrivial solutions. Further 
analysis of this model is being carried out and will be published elsewhere.

Finally, we remark that in order for these results to be useful in applica­
tions we need to critically examine the assumptions behind our model (see 
[B1CC2],[B1CC4], [SaCC]), we need to be able to determine ways of estimat­
ing parameters from data (see [BICCCa]), and we need to be able to explain the 
available data (see [B1CC3]).
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Plot 1: g>, with cj = 0.3, C2 = —0.6.
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Plot 2: p, with p,R — 2, ci = 0.3, C2 = —0.6.

Plot 3: p, with pK = 8, = 0.3, cy — —0.6.
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PLOT 4: <f>, with ci = 0.05, C2 = —0.08.

Plot 5: p, with g/? = 2, ci = 0.05, C2 = —0.08.
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Plot 6:
with Ur, - ft™ ~ 8, C1 ~ 0.05s

c2 = -0.08.

Plot 7
with Z/ft = 2) = 0
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Plot 8: p, with pr = 8, <f> = 0.
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1. Introduction
Systems of linear evolution equations can be written as

u(t) = Au(t), u(O) = uo, (*)

(M-)\
where u(-) = '■ takes values in a product £ = E\ x ... x En of Banach

\ wn(’) /
spaces Ei and A = (Aij)nXn is a matrix whose entries Aij are linear operators 
from Ej into Ei (see [Be] or [Na 1], Sect. 3). In the one-dimensional case, i.e., 
if Ei = C for all we obtain a complex matrix A and linear algebra yields 
the appropriate tools for a detailed analysis of the initial value problem (*).  In 
the general case, i.e., for arbitrary Banach spaces Ei, the equation (*)  seems 
to be a notational trick with only few of the classical matrix results remaining 
true. In fact, since we have to allow (for resonable applications) unbounded 
and non-commuting entries Aij in the operator matrix A strange and difficult 
phenomena occur:

— It is not clear how to define an appropriate domain D(A) of A.
— There is no way to define some of the basic concepts from matrix theory 

such as "determinant”, ”trace”, etc.
In contrast to these difficulties, the more general framework gives new flexibility 
and allows to restrict attention to 2 x 2-matrices. In fact, the n x n-matrix 

67
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A = (Aij)nxn can be succesively built up by submatrices Ak '■= (Aij)kxk each 
of which is a 2 x 2-matrix

/ Aik \
where 13 k = I • I , Ck = ( ... —i ) and x.. .xEk is considered

as the product (E\ x ... x Ek-\) X Ek- Unfortunately many important properties 
of matrices are not inherited or characterized by submatrices.

1.1. Example. Let A be the generator of a strongly continuous semigroup on 
a Banach space E with spectrum equal to the left halfplane in C (e.g., A := 
on E := L2(R+)). Then

^4 _ ( a )

\-\ZU (i-’M/
is an operator matrix generating a strongly continuous semigroup on E x E 
(see [Na 1], Thm. 2.3 or [E 1]). But none of its submatrices (i.e., entries) is a 
generator on E.

In this paper we will show that positivity properties are extremly helpful in order 
to overcome this drawback. They allow to a large extend (and in particular for 
the investigation of stability properties) to concentrate on 2 X 2-matrices for 
which the so-called ’’Schur complements” yield appropriate tools even in the 
unbounded, non-commutative case. But let us first review the corresponding 
results for scalar matrices.

2. Positivity in the scalar case
We consider a complex matrix A = (aij)nxn and its generated semigroup 

(T(i))1>o = (e”-*),> 0. The following results can be found in most books on 
matrix theory (e.g., [Ga], [B-P], [L-T], [M]).

2.1. Characterization Theorem. The following assertions are equivalent:
(a) etA > 0 for all t > 0.
(b) an G 1R and atJ > 0 for i A j ■

In order to state the basic spectral properties of positive matrix semigroups 
and their generators we recall that the resolvent of A is denoted by R(X,A) := 
(A — X)-1 for A not in the spectrum cr(A) while the spectral bound of A is

s(.4) := sup{ReA : A G cr(.4)}.
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2.2. Perron-Frobenius Theorem. If the matrix A generates a positive 
semigroup then its spectral bound satisfies

s(X) = inf{A eR : A <t(4) and M) > 0} G cr(A').

The property most important for application is stability of the semigroup, i.e.,

lim etA = 0. t—>oo

By Liapunov’s theorem this is characterized by the negativity of the spectral 
bound s(M). But the special structure of positive matrices and their spectral 
properties mentioned above allow various other, quite useful characterizations.

2.3. Stability Theorem. If the matrix A generates a positive semigroup then 
the following assertions are equivalent:

(a) There exists e > 0 such that limt_oo eetetA = 0.
(b) s(M) < 0.
(c) 0 &(A) and A-1 < 0.
(d) ( — l)fc+1 detMjt < 0 for each 1 < k < n and each submatrix Ak-

We remark that in that case —A is called an M-matrix (see [M], Chap. VI, 
Sect. 6.4).

3. The characterization problem
We now tackle the problem of extending Theorem 2.1 to the infinite dimen­

sional situation. To that purpose we consider Banach lattices Ely... , En (such 
as C(X)-or Zf-spaces, see [S]) and an operator matrix A = (Aij)nXn with (pos­
sibly unbounded) linear operators Aij from Ej into Et. In addition we assume 
the reader to be familiar with the theory of strongly continuous semigroups of 
linear (see [Go]) and positive (see [Na 2]) operators. Our approach will be based 
on perturbation theory. More precisely we write A as the sum of the diagonal 
matrix Mo := diag(A^) and the matrix B containing the off-diagonal elements 
of A. Then Mo is simple to understand while we need appropriate assumptions 
on B in order to discuss the sum

A = Mo T B.

Since these assumptions prevail throughout this paper we state them explicitly.

3.1. Standard assumptions.
(Mi) The diagonal operators Ajj (with dense domain D(AjjJ) generate strong­

ly continuous semigroups (7j(t))t>o on E{.
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(A2) The off-diagonal operators Aij, i A j, are relatively bounded with re­
spect to Ajj, i.e. D(Aij) D D(Ajj) and At-jR(X, An) is bounded for 
A > s(Ajj).

(A3) The off-diagonal matrix B is ’’small” with respect to the diagonal Ao- 
More precisely, there exists Ao > s(Ao) (= max{s(A7j) : 1 < j< 
n}) such that the (bounded) operator BR(Xo, Ao) has spectral radius 
r(M(Ao,Ao)) < I-

A few comments on these assumptions might be helpful.

3.2. Comments.
(Ci) The diagonal matrix Ao with domain D(Ao) : = D(Au) x . .. x D(Ann) 

generates the semigroup (7o(i))t>o : = (diag(Tj(^)))t>o on £.
(C2) The assumption (A3) implies that A is a closed operator on the domain 

D(A) = D(Ao)- This follows from the decomposition

Ao - A = (1 - ZTR(A0, Ao))(Ao - Ao)

and the fact that a product of an invertible bounded operator with a 
closed operator remains closed.

(C3) If a certain off-diagonal matrix B satisfies (A3) then clearly all multiples 
eB for |e| < 1 do the same. The easiest example is obtained from 
bounded B, i.e., if all entries Aty, i A j, are bounded.

(C4) The assumptions (Ai)-(As) do not automatically imply that A gener­
ates a strongly continuous semigroup. For that one needs some extra 
condition (e.g. see [Go], Chap. I, Thm. 6.1) and we refer particularly 
to the results of Voigt [Vo] and Arendt-Rhandi [Ar-R] on perturbation 
of positive semigroups.

If we assume that A = Ao + B generates a semigroup on £ we are now ready to 
give a characterization for the positivity of the generated semigroup in terms of 
the entries of A.

3.3. Characterization Theorem. Let A = (Aty)nXn ^e an operator matrix 
on £ = Ei x ... x En satisfying (Ai )~(As) and generating a strongly continuous 
semigroup (T(i))t>o- Then the following conditions are equivalent:

(a) The semigroup (T(i))t>0 is positive.
(b) (i) The semigroups (T7(t))t>o generated by the diagonal operators A}j 

are positive for 1 < j < n.
(ii) The off-diagonal operators Aij, i A j, are positive from D(Ajj) into 
Ei.
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Proof. (b)=>(a): By decomposing A into the sum of Xo and B we see that 
Xo generates a positive semigroup while B is a positive perturbation. It follows 
from assumption (A3) and the identity in (C2) that R(Xq, A} is positive. As in 
[Ar], Thm. 3.1, this implies 2?(A, A) to be positive for all A > Ao, hence A has a 
positive resolvent and therefore generates a positive semigroup by [Na 2], B-II, 
Prop. 1.1.

(a)=>(b): We show first that (i) holds. For 1 < i < n consider the family Ff(i), 
£ > 0, of bounded positive operators on Ei given by

feEi,

where Pi : 8 —> Ei (resp., Ji : Ei —> 8) is the projection (resp., embedding). 
For f G D(Aa) we have F/(0)/ = Aaf. On the other hand, from the estimate

0< Fi(t)2f = Pie,A(JiPi)e,AJif<Pie2,AJif for 0 < f e E.

we obtain
IIWII < lie2’-4 II-

Proceeding by induction this yields

||Fl(f)fc|| < ||efcM|| for A; = 1,2,... and t > 0.

Thus ||Fi(f)fc | < Mektu for constants Al, w and all k = 1,2,... and we have 
shown that the family Fi(t), t > 0, satisfies the conditions of [Pa], Chap. Ill, 
Cor. 5.4. Therefore

lim F^f = e,A“f for all f e Ei. n—>oo

Since each 7^(-)n, n = 1,2,... , is positive the limit etA‘‘ is also positive and 
statement (i) in (b) is proved.

We now proceed with part (ii). For each f G -D(Ati)+ := D(Aa') 0 (Ei)+ we 
consider differentiable functions : H&+ —> 8^. defined by

€f(t) := etAJif and Tjf(t) := Fi(t)f.

Obviously, r//(0) = £/(0) and - since (et'4)<>o is positive - £/(i) > f°r 
t > 0 and 1 < i < n. Consequently we obtain the following estimate for the 
derivatives:

= £>(0) > rz>(0) =

/ 0 \

Aaf
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Since the order on £ is defined coordinatewise we conclude Ajif > 0 for f G 
_D(Au)+ and j 7^ i and the proof is complete. ■

The above theorem clearly generalizes in a natural and satisfactory way the 
scalar Characterization Theorem 2.1. Two more examples are presented to show 
its broad range of applicability.

3.4. Examples. (1) In the semigroup approach to Volterra integro-differential 
equations (see [D-S], [D-G-S]) the operator matrix

,= (a 60 \ 
ye D J

is considered on f := R x L2(R+) where a E R, D := D(D) := W'1 (R_|_),
Sq the Dirac measure in 0 and c G L2(R+) is understood as an operator from 
R into Z/2(R+). The diagonal operators a and D generate positive semigroups. 
From R(X, D^ftt) = ft°° e~^s~^f(s)ds it follows that ||60 o R(X, D)\\ = (2A)-2 
becomes small for large A. Hence A satisfies all the assumptions (Ai)-(A3) and, 
in addition, generates a strongly continuous semigroup by [Na 3], Sect. 3, Ex.
1. Our theorem shows that the following statements are equivalent:

(a) The semigroup generated by A is positive.
(b) The function c G T2(R_f.) is positive.

(2) Consider A to be an elliptic differential operator (such as the Laplacian) 
on E = Lp(fi), 1 < p < 00, Q C Rm. For many natural boundary conditions 
this operator generates a positive semigroup on E (see [Na 2], C-III, Ex. 2.14) 
but clearly is never positive itself. Take now the system given by the operator 
matrix

A = {aijA^nxn

on En with complex coefficient matrix (aty)nxn- From the results in [Na 1] (or 
more generally [E 1] and [E 2]) it can be decided when A is a generator on En. 
In that case this semigroup is positive if and only if aty = 0 for i 7^ j and a„ > 0 
for 1 < i < n. This explains the special case treated by [Ka], Thm. 2.1.

4. The stability problem
In this section we will show how the stability of the solutions of the Cauchy 

problem
u(£) = Au(t), u(0) = u0, (*)

for an n x n-operator matrix A on a product space £ E\ x ... x En generating 
a positive semigroup can be characterized by conditions for certain operators on 
the factor spaces Et. Our approach combines results from the abstract theory 
of positive semigroups on Banach lattices (see [Na 2], C-IV) with the analogue 
of the Schur-complement for operator matrices (see [Na 3], Sect. 2).
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We first recall the stability result for arbitrary positive semigroups on Banach 
lattices based on the (infinite dimensional) Perron-Frobenius theory as developed 
in [Na 2] (compare Thm. 2.2, 2.3 above).

4.1. Stability criterion (see [Na 2], C-III, Thm. 1.1). Let A with domain 
D(A) be generator of a strongly continuous semigroup (T(t))t>o of positive op­
erators on some Banach lattice E. Then the spectral bound s(A) := sup{ReA : 
A G cr(A)} satisfies

s(A) = inf{A G R : R(X, A) > 0} G cr(A). (*)

As a consequence (use [Na 2], C-IV, Cor. 1.4) the following assertions are 
equivalent:

(a) There exists e > 0 such that limt_oo eetT(t)f = 0 for every f G 7?(A), 
i.e., (T(t))t>o is exponentially stable.

(b) The spectral bound satisfies s(A) < 0.
(c) The generator A is invertible and its inverse A-1 is a negative operator.

We are now interested in adding to this list an equivalent condition (d) taking 
into account the matrix structure and generalizing condition 2.3.d. To that pur­
pose we again assume A = (AtJ)nXn to satisfy the assumptions (Ai)-(Aa) and, 
in addition, to generate a positive semigroup (T(t))t>o on the Banach lattice 
8 := Eq X...X En. Since we want to apply the concept of Schur complements for 
2 x 2-matrices we show first that these assumptions are preserved by considering 
certain submatrices.

4.2. Lemma. Let (7~(i))t>o, resp. (?o(^))t>o be the positive semigroups on 8 
generated by A = (Aij)nXn, resp. by Ao := diag(Att)nXn. Write A = Ao + B 
and take a matrix B satisfying 0 < Bf < Bf for all f G D(A)+- Then the 
operator matrix A '■= Ao + B generates a positive semigroup (T(t))t>o such 
that 0 < To(t) < T(t) < T(f) for all t > 0.

Proof. We have seen in (C2) how to compute the resolvent of the perturbed 
operator Ao + B. Our assumption on B implies BR(X, Ao) < BR(X, Ao) for A > 
Ao. Therefore r(M(A,A0)) < r(M(A,A0)) < 1 and 0 < i?(A,A) < 7?(A,A) 
for large A. But the domination of resolvents implies the domination of the 
semigroups by [Na 2], C-II, Prop. 4.1 . ■

This lemma shows in particular that A generates an exponentially stable, posi­
tive semigroup on 8 (i.e. s(A) < 0) if and only if each submatrix Ak '■= (A{j)kxk 
on 8k ■= Ei x ... x Ek, 1 < k < n, generates an exponentially stable, positive 
semigroup. In fact one has s(A) > s(Ajt) > s(Ajt-1) for k — 2,... ,n. Hence
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stability for positive semigroups is a property inherited by submatrices (compare 
Sect. 1) and we are able to concentrate on 2 x 2-matrices by decomposing each 
Ak into a 2 x 2- matrix of the form

Bk \
Akk J ’

/ A^k \
where Bk = I , Ck = ( Ajti

\-4fc-ifc /
Ek.

Akk-i ) and £k = (#i x ... x Ek-i) x

To all these 2 x 2-matrices we shall apply the invertibility criterion developed in 
[Na 3], Sect. 2 using (infinite dimensional) Schur complements. For the readers 
convenience we repeat the relevant formulas from [Na 3], Lemma 2.1 and Thm.
2.4.

4.3. Lemma. Let E, F be Banach spaces and A := D j an operator

matrix on S := E x F satisfying the assumptions (analogous to) (Ai)- (A3).

(1) If A is invertible on E the following assertions are equivalent:
(ai) The operator matrix A is invertible on £.
(bi) The Schur complement D — CA~1B is invertible on F.

In that case the inverse of A is obtained as

1 _ f A~x(Id, +B(D — CA~XB)~XCA~X) -A~XC(D - C A~x B)~x \
A “ -(£> - CA^Bj-^CA-1 (D-CA-’B)-1

(2) These facts applied to the matrix X — A = 

yield the following equivalence:
(a2) X^a(A).

(b2) Xf£a(D + CR(X,A)B).
In that case the resolvent of A is obtained as

P(\ A}=( R(\A + BR(X,D)C) B(A,A + BB(A,B)C)BB(A,B)
1 } \ R(A, D + CR(X, A)B)CR(X, A) R(X,D + CR(X, A)B)

With these concepts, applied to the submatrices Ak. we are now able to char­
acterize the operator matrices generating exponentially stable, positive semi­
groups.
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4.4. Theorem. Let A = (Aij)nXn be an operator matrix satisfying the as­
sumptions (A\)-(A3) and generating a positive semigroup (T(t))t>o on 8 := 
E\ x ... x En, Ei Banach lattices. The following assertions are equivalent:

(a) The semigroup (T(f))t>o is exponentially stable.

(&) The spectral bound of A satisfies s(X) < 0.

(c) The operator matrix A is invertible with negative inverse on 8.

(d) The spectral bounds of An and Akk — CkA^^Bk satisfy s(An) < 0 and 
s(Akk ~ CkA^Bk) < 0 for k = 2,... ,n.

(dz) The operators An and Akk ~ CkA^L^Bk are invertible with negative 
inverses on Ek for k = 2,... , n.

Proof. The equivalences (a) 4=> (&) 4=> (c) hold for each positive semigroup 
on any Banach lattice (see Stability Criterion 4.1).
In the next preparatory step we show that for any p > s(.4) > s(>ljt) > s(Ak-\) 
the operators Akk + CkR(p, Ak-i)Bk appearing in the Schur complement rep­
resentation of R(p,Ak) (compare Lemma 4.3 (2)) are resolvent positive (see 
[Ar]). All the matrices Akt '■ = ( €^k ), 0 < e < 1, satisfy the assump-

\ Lk -^-kk /
tions (>!])-(A3) and generate positive semigroups dominated by the semigroup 
(7]t(/))t>0 generated by Ak- The invertibility of p—Ajt-i implies by Lemma 4.3.2 
that the operators p — Akk ~ eCkR(p, Ak-i)Bk are invertible for all 0 < e < 1.
Moreover, the identity

p — Akk — cCkR(p, Ak-i )Bk = [1 — cCkR(p, Ak-i)BkR(p, Akk )](p — Akk) (*)  

shows that | is contained in the resolvent set of the positive (bounded) operator 
CkR(p, Ak-i)BkR(p, Akk) f°r all 0 < e < 1. Since the spectral radius of a 
positive operator is contained in its spectrum (see [S], Chap. V, Prop. 4.1) this 
implies that the spectral radius r(CkR(p, Ak-i)BkR(p, Akk)) is smaller than 1. 
For A > p we have R(X, Akk) < R(.P, Akk) (observe that Akk generates a positive 
semigroup and use [Ar], Sect. 2), hence

0 < CkR{p, Ak-i )BkR(X, Akk) < CkR(p, Ak-1 )BkR(p, Akk) (**)

and a similar inequality for the spectral radii. We now decompose A — Akk ~ 
CkR(p,Ak-i)Bk as in (*)  and obtain for its inverse

0 < R(X, Akk + CkR(p, Ak-i )Bk) < R(p, Akk + CkR(p, Ak-i)Bk) (*  * *)

for A > p, i.e. Akk+CkR(p, Ak-1 )Bk has a positive resolvent (see [Ar]). Since the 
assertion (★) and hence the equivalence of (&) and (c) in the Stability Criterion
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4 .1 hold for any resolvent positive operator (see [Na 2], C-III, Remark 2.15), we 
have shown that (d) and (d') are equivalent.

( &) => (d1). By assumption the operator matrix A and all submatrices Ak are 
invertible with negative inverses. If we take the matrix representation

a   A Ak—i \
Ak~\Ck Akk)

we obtain that the Schur complement Akk — CkAf.\xBk is invertible. Its inverse 
appears as the lower right entry of AfX (use Lemma 4.3.1), hence is a negative 
operator on Ek.

(d') => (c). Again it follows successively from Lemma 4.3.1 that each submatrix 
Ak is invertible. A careful inspection shows that this inverse has only negative 
entries. For k = n we obtain the assertion. ■

The above theorem extends Na 4], Thm. 3.3 and Cor. 3.4 to operator matrices 
with unbounded, off-diagonal entries. But clearly it contains the scalar Stability 
Theorem 2.3 as a special case (use the identity

det A = (akk - CkAf^Bk) det A-i

valid for scalar matrices Ak = (aij)kxk)-
More examples demonstrating the usefulness of the above theorem can be found 
in [Na 4], Sect. 4. Here we discuss an additional example with unbounded, 
off-diagonal entries.

4.5. Example. Let us go back to the matrix

= ( a d0 A 
\ c D /

on R x L2(R+) introduced in Example 3.4 (1). In order to obtain a positive 
semigroup we assume c G L2(R+) to be a positive function. Since D generates 
a contraction semigroup on L2(R_|_) with 5(D) = 0 it is clear that A will not 
satisfy 5(M) < 0. Therefore we consider the matrix

A (a ~ A
c D-pJ

for p > 0. Then s(D — /i) = — p < 0 and condition 4.4.d yields stability if and 
only if

0 > s(a — p + d0 o R(0, D — p) o c)
pOO

= a — p + 6o(R(p, D)c) = a — p + / e-/iSc(s)ds, or 
Jo

pOO

p > a + / e-/iSc(s)ds.
Jo
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In terms of the original operator A this means that for any /i > 0 the following 
statements are equivalent:

(a) s(X) < /i.
(b) a + fQ°° e~fJ'sc(s)ds < fj..

This extremely simple criterion allows estimates for the growth of the solutions 
of the corresponding Volterra integro-differential equation

x(t) = ax(t) + / c(s)z(s)ds 
Jo

(see [D-G-S], [Na 3]). Moreover it can be generalized easily to vector valued and 
even Banach space valued equations.

4.6. Concluding remark. Theorem 4.4 reduces the stability problem for 
an operator on a product space £ = E\ x ... x En to n stability problems on 
the factor spaces E^,... ,En. This is essentially based on the positivity of the 
generated semigroups. If this assumption is not satisfied one might change A 
into a matrix generating a dominating semigroup (see [Na 2], C-II, Sect. 
4). Since the stability of this dominating semigroup implies the stability of the 
original semigroup our Theorem 4.4 is applicable by, e.g., verifying conditions 
4.4.d for ./V. This will be worked out in detail in [Ch].
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1. Introduction
We consider two Banach spaces, (E, | ■ |) and (D, || ■ ||) with D continuously 

imbedded in E and denote by D the closure of D in E.
If L : D(L) C E —> E is a linear operator in E , we denote by p(L) the 

resolvent set of L, and set for A 6 p(Z),R(A,Z) = (A — L)~x. Moreover £(E) 
(resp.£(22)), resp. £(22; E)) represent the Banach space of all linear continuous 
operators from E into E (resp. from D into 22, resp. from D into E). The 
norms in £(2£), £(22) and £(22; E) are denoted by || ■ ||; if some confusion could 
happen we shall write the suitable sub-scripts.

Given a mapping :

A : [0, T] C(D-E),t A(t)

and chosen t E [0, T[ , we consider the Cauchy problem

u'(t) = A(t)u(t) + f(i); t < t < T, 
u(t) = X, (1-1)

where f E L1 (r, T; E) and x E E.
If A is independent of t and D is dense in E, problem (1-1) can be studied 

by the classical semigroups theory (see for instance [8]). If D E this theory 
was generalized in [3],[4]. When A depends on t, problem (1.1) was extensively 
studied by T. Kato ([5]-[7]), (see also [2]), under the hypothesis of density of D.

79
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The goal of this paper is to extend these results to the case in which D is not 
dense in E.

Our main hypotheses (?i) are the following :
(i) There exists C > 0 such that ^||z|| < |z| + |A(i)a?| < C||z|| for all x G D 

and t E [0, T].
(ii) There exist co < 0 and M > 0 such that p(A(t)) D]u?,oo[, for all t E 

[0, T]. In addition for n G N

n

i— 1

when T >t\ > • • • > tn > 0, A > u.
When necessary we shall write (7Y)c,w,m instead of (7d). We shall also suppose 

that (at least).

(in) Ae c([o,nw))-
But to get some of our existence results (see Theorems 3.3 and 4.1) we will 

require that A can be suitably approximated by more regular operators Ak: in 
future papers dedicated to the applications of this theory to partial differential 
equations we will show how this condition can be verified under mild regularity 
assumptions on the coefficients of the differential operator.

We say that u is a strict solution of (1.1) if

uEC\[t,T];E)QC([t,T]-D\

u'(t) = Aff)u(t) + /(/); t E [t,T] ; u(r) = x.

Let W1,1 (t, T\ E) denote the usual Sobolev space: u E L1 (t, T; E) is said to be 
a strong solution of (1.1) if there exists a sequence {u^} such that :

(i) uk E W^\t,T-E)HL\t,T-D).

(ii) ufc(-)->u(-) and u'k(ff) - Aff)ukff) -> f in L\r, T\E). (1.3)
(ii i) Ufc(r) —> x in E.

2. Uniqueness
It is useful to introduce two linear operators in 2?(t, T; E), by setting

Bu = — u';
D(B) =W01'’(r, T-,E)={u 6 u(r) = 0} (21)

and
(Au)(f) = A(f)u(f); fEfr,?1];

d(A) = l\t,t-d). (2’2)
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From (?Y) we deduce that

L^T'T'iD) = {u E L} (r,T', Ey u(t) E D,t E [r, T] a.e.
and A(-X-) E L\r,T-,E)} (2’3)

p(A) D]u?,oo[ and :

(E(A,A)u)(/) = E(A,A(/))u(Z), ZE[t,T], ueL\r,T-Ey (2.4)

It is known that B is the infinitesimal generator of a contractions semi-group in 
Lx(t, T', E). We shall consider the approximating problem

Bn(un - x) + hun + f = 0, (2.5)

where Bn = nBR(n, B) = n2R(n, B) — n are the Yosida approximations of B.
Equation (2.5) can be written as an integral equation :

E
n2 e~n^~s\un(s) — x)ds + n(x - + A(t)un(t) + f(ty = 0. (2.6)

J T

The following result can be found e.g. in Chapter 3 of [1].

Lemma 2.1. Let s E [0, T[, K E C([s, T]; £(E)), E H(s, T-,E), x E E. 
Then the initial value problem:

*'(*)  = W>(f) + <^(t); s < t < T
z(s) = X

has a unique solution z E T\ E), given by the formula :

z(t) = U(t, s)x + / U(t, a)(p(a)da (2.8)
J 3

where : 
oo

U(t,s)=I+^2 K(tk) • • • K(tE)dtk . • .dtx (2.9) 
}.=i d

and :

Ak(s,t) = {(ti,...,ffc) G s<tx<t2<--- <tk<t} . (2.10)

If, m addition, E Cfc([s, T]-E), K E Cfc([s, T]; £(E)) then z G Ck+\[s,T]; E).

We can now prove the following result :
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Proposition 2.2. Let x G E and L1(s,T; E) .Then problem (2.5) has a unique 
solution un E L1(s, T; D) and the following estimate holds for t G [r, T] , a.e. :

(2.U)

Moreover if A E C^T]; C(D- E)) and f G W^r, T; E), then 
un G W1,:1(t, T; E) and

un(r) = R(n, A(t))/(t) + nR(n, A(t))x. (2.12)

Proof. We follow here [4]. If un G Z?([t, T]; E) is a solution of equation (2.5), 
we deduce from (2.6) :

n2R(n, A(t)) J e-ni,-,>un(s)ds + ne“n('-r)R(n, A(())x - u„(i)
(2-13)

+R(n,A(t')')f(t') =0

and this implies (2.12) and

rtn2R(n, A(t)) / en3un(s)ds + nenrR(n, A(tY)x + entR(n, A(ty)f(f) = entun(t). 
J T

Setting :

ensttn(s)ds (2-14)

we have , wn E T;E) and :

w’n(t) = Kn(t)wn(t) + ¥>„(<) 
w„(t) = 0

(2-15)

where :

9?n(i) = E(n, A(t))(nenrx + entf(f)) Kn(t) = n2R(n, A(t)). (2.16)

Thus , by Lemma 2.1 , we know that wn must be given by the formula :

nt

wn(t) = / U(t, cr)R(n, A(ay)(nenr x + ena f(a))da (2-17)
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where

OO p
U(t,s) = I + / n2k R(n, A(ak))... R(n, A(ax))d<jk . .. do^ (2.18)

and Afc(s,i) is defined by (2.10). It follows that:

yt 
wn(t) = / {[#(n,A(s))

J T
OO p

+ / n2kR(ji,A(jJk))R(n,A(a1))dak...d<j1R(n,A(s))]} (2.19)
fc=1 J Afc(s,t)

x[nenrx + en3f(s)]ds

which implies :

un(t) = n2e~ntR(n, A(ty)wn(t) + nR(n, A(t))e-n^“r^ x + R(n} A(t))f{t)
ft

= nR(n, A(t))e~n^~r^ x + R(n, A(t))f(t) + ri2e~nt / {R(n, A(ty)R(n, A(s))
J T

OO p
+ / n2kR(n, A(f))R(n, A(ak))... R(ri, A(ai }}d<jk ■ ■ ■ d<j\R(n, A(s))}

= 1 J Afe(M)
x[nenrx + en3f(s)]ds. (2.20)

Since the measure of Afc(s,t) is , we deduce from (7-f)

l»n(*)l < -^Le-"(,-T,|x| + —1/(<)I + n2e~M (2.21) 
n — lu n — a?

and (2.11) follows. Conversely, given x G E and f G L1(t,T\ E) we get 
from Lemma 2.1 a solution wn G T; E) of (2.15)-(2.16): then un(t) =
e~ntw'n(t) is a solution of (2.5). □

We give now an a priori estimate for the solutions of problem (1.1).

Proposition 2.3. Let x G E,f G Ll(r, T^E), and let u be a strong solution of 
(1-1). Then the following estimate holds :

rt|u(t)| <Meu{t~r)\x\+M / ew(t“s)|/(s)|ds.
J r

(2.22)
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(2.27)

(2.28)

Moreover, (possibly modifying u in a set of Lebesgue measure zero) we have 

ueC(ffT]-,E), u(r) = x (2.23)

and u(t) 6 D for t G [r, T].

Proof. We first assume that u is a strict solution of (1-1). Then we have

Bn(u — x) + Au = hn (2.24)

where
hn = (Bn — B)(u — x) — f (2.25)

By (2.11) it follows :

\u(t)\ < |a?| + ———yy [ |fin(s)|ds
n — (n — wff JT

M I, / \l+ ^n(-s)|.
n — co

Since u — x E D(B), {hn} is bounded in Z?(t, T; .E). Thus (2.22) follows from 
(2.26) letting n tend to infinity.

Let now u be a strong solution of (1.1) and let {u^} be a sequence such that 
(1.3) hold. Setting

fk = u'k - Auk, xk = uk(r)

Uh — Uk is a strict solution of the problem :

(uh — Uk)' — Muh ~ uk) = fh ~ fk,
(uh - uk)(r) - xh - xk

and by (2.22) it follows

KW- MOI < M { [ e“(,“‘,|A(5)-A(5)l^ + e“('“r)^ft-^tlb (2-29) 
l J T J

Thus {uk} is a Cauchy sequence in C(r, T\ E) and so there exists u E C(t,T-,E) 
such that Uk —> u in C(r, T; E). Since, on the other hand, Uk —> u in ,ZA(t, T; E) 
we have u(t) = u(t) a.e. and Xk —> u(t) = x. This proves (2.23). As (2.22) is 
true for each Uk, it holds also for u. □

As an immediate consequence of Proposition 2.3 we obtain the main result 
of this section.

Theorem 2.4. Problem (1.1) has at most one strong solution.

The following result can be proved as theorem 4.2 of [3].

Theorem 2.5. If u is a strong solution of (1.1) then limn-.oo un = u in 
Lx(r,T',E), where un is the solution of (2.5).
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3. Existence of the strong solution
To prove the existence of the strong solution of problem (1.1), we will first 

make stronger assumptions, then we prove the general result.
We set for n G N

C”([r, T]; E) = {f 6 Cn[r, T]; E); f^tr) = 0, k = 0,1,.... n}.

Lemma 3.1. Assume that A G C3([0, T]; £(D; E)) and f G Cq ([0, T]; E)) . Let 
un be the solution of the equation

Bnun T Aun T f — 0. (3-1)

Then un 6 Cq([t, T];E) and, for k = 1,2,3, there exists G N and Ck > 0, 
depending on C,M,w,T — r and || A||Cfc({r,t];£(D;£?)) such that for n>rik :

ll«n llc‘(|r,T|;B) 5: Ct||/||c‘(|r,T];B)• (3-2)

Proof. From the proof of Proposition 2.2 one deduces that un G ^([r, T]; D). 
We set now vn = u'n; since un(r) = 0 we can write (3.1) as

—nE(n, B)vn + Aun + / = 0 (3.3)

so that
un = nA-1E(n, B)vn — A-1/. (3-4)

Now, differentiating (3.1) with respect to t and setting (A'u)(i) = A'(f)u(i) we 
have

Bnvn + Avn + A'un + f' = 0. (3.5)

Substituting un (given by (3.4)) into (3.5) we find :

Bnvn + Avn 4- Tnvn + g = 0 (3.6)

where
=nA'A~1B(n,B) (3.7)

and
g = f'-A'A-lf. (3.8)

By (2.11) we have

MMCI < m / {M)l + } ds + — {|ff(i)l + IMMCI) (3.9)
J -r n
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and so, if we denote by C and Cy functions of C,M,T — r and
ll^llc1 ([r,T}-,C(D-,E)), we get

IM*)I  < C | [ [ || || C( [r,s];£?) + \\f\\c' ([t,s];£)] ^S
1Ur (3-10)

+ “ (\\Vn ||c([t,s];£?) + ||/|| W1 ■1 (r,T,E) ) ?

From Gronwall’s lemma we deduce the existence of ny E N such that

\\u'n ||c([r,T];E) < C'l ||/||ci([r,T];E) (3-11)

for n > ny. By repeating the same argument for and a"' we obtain the other 
estimates of (3.2). □

Lemma 3.2. If A E C3([0, T]; £(Z); E')') and f E Cq([t,T]-,E) then problem 

u'(t) = A(t)u(t) + f(t); r<t<T- u(r) = 0 (3.12)

has a strict solution u and

IMIc’1([t,T];E) + ||w||c’([t,T];D) < ^4 11/11C3([7-,GT]-,£?) (3.13)

with Cy depending on the same variables of Cy.

Proof. If un denotes the solution of (3.1) given by lemma 3.1 we deduce from 
(33) for n,m > ny :

■Bn(ttn am) 4- A(ttn ^m) 4~ (Bn B m)u m — 0. (3.14)

Hence from (14) we obtain

||(wn - Wrn)||c’([r,7’];E) < C'||(-£?„ ~ Bm )um || C([r,7’];E) (3.15)

where C is independent on n and m. As um E Z)(B2), by virtue of (3.2) we have

\\(Bn - Bm)um\\c({r,T]-,E) = ll(m - ri)R(n, B)R(m, B)B2um\\c([r,T]-,E)

< M2C3
(3.16)m — n

(m — iff)(n — E) ll/llcS([r,T];E)

and so there exists u E C([t, T]; E) such that

lim l|u - Un||c([r,T];£) = °. (3-17)n—>oo 1 J

Starting from (3.6), with the same procedure we deduce the convergence of 
in C([t,T];E) and so u E C\[t,T]-E).

As Att) is a closed operator, u satisfies the equation (3.12) and so we have 
also u E C([t,T]; D). By using the convergence of un to u in T]; E) we 
deduce (3.13). □
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Theorem 3.3. Let us suppose that (Hi) holds and that there exists Ak E
C3([t,T]; E)) verifying and such that

lim ||A - Afc||C([r)T].C(D;E)) = 0, sup ||A'J|C(^)T].£(£>.#)) < oo.
K >oo fcgN

Then problem (1.1) has a unique strong solution for each given f E Lx(t,T-, E) 
and x E D.

Proof. Let us first suppose that f E Cq([t,T]\ E) and x = 0 : from lemma 
3.2 we deduce the existence of Uk E C^fr, T]; E) A C([t, T]; D), (k = 1,2,...) 
solution of

?4(7) = Ak(t)uk(t) + /(t); t < t < T
Uk(r) = 0.

Let us set

fk(f) = u'k(t) - A(t)uk(f) = (Ak(f) - A(t))uk(t) + /(t).

From estimate (3.13) we deduce that {u^} is bounded in C([t,T]; D\. and so

lim ||/ - A||c([t,T];£?) = 0 (3.19)
#—►00

By using (2.22) we deduce also the existence of u E C([t,T]; E) such that

lim ||u - Ujt||c([T,T];£:) = 0- (3.20)
#—►00

In conclusion u is a strong solution of problem (1-1). This result obtained 
for the case f E Cq ([t, T]; E) and x = 0 can be generalized by density when 
/ 6 L^TjT; E) and x = 0; then we can pass to the case / 6 Lx(ryT\E') and 
x E D by substituting f with / — A(-)a? and finally by density it is possible to 
prove the general result corresponding to f E L1 (t,T; E) and x E D. □

4. Existence of the strict solution
We are now in position of proving the existence and uniqueness of the strict 

solution of problem (1.1) under suitable regularity assumptions ; this result is a 
generalization of an analogous theorem proved in [3] for the autonomous case.

Theorem 4.1. Let us suppose that A G C^Qr, T]; £(D; .E)) and that there 
exist Ak G C4([t,T]; £(D; E)) verifying (hf)c,u,M and such that

lim ||A — ||ci([r,T1;ZL(D;£?)) = 0-
#—>OO

If f E W1’1^, T; E) and x E D satisfy the compatibility condition

a?i = A(r)x + /(t) G D (4-1)



88 Time dependent differential equations

then there exists a unique strict solution of (1.1).

Proof. Le u be the strong solution of (1.1) given by Theorem 3.3 and un E 
T; D) the solution of

Bn(un - x) + Aun + f = 0. (4.3)

We know from Theorem 2.5 that

lim ||tt - un\\Li(r T.E) = 0. (4.4)
n—>oo v

By using (2.12) we deduce from (4.3)

nR(n, B)u'n(f) + ne~n^~r^Rfft, A(r))a?! — A(ff)un(t) — f(t) = 0 (4.5)

and so
un(t) = A-1(/)(nJR(n,B)w'n)(Z)

+ ne-^-^A-^t^n.A^x^ - A~\t)f(t).

Differentiating (4.3) we get

Bn(u'n - a?i)(/) + A(t)u!n(t) + C(f)(mR(n,B)u'n)(i) + hn(f) = 0 (4.7)

where we have set

C(i) = A\t)A~\t)
h(t) = f'(t) - C(t)fft) (4.8)

hnff) = e~n^~T^n [A(r)i?(n, A(r))a?! + C(/)2?(n, A(r))a?! ] + h(f).

As C E C([r, T]; £(£?)), by using Theorem 5.2.3 of [8] we deduce that problem

4).(#) + C(#(t) + A(t), 
( A 4-9)z(r) = X-L

has a strong solution and Theorem 2.5 implies

lim ||2r - zn\\L^r T E) = 0 (4.10)
n—>oo

where zn is the solution of

Bnffn - Zl) + Azn + C(ffzn + h = 0. (4.11)

From (4.7) and (4.11) we obtain

Bn(u'n - Z») + A(uJ, - z„) + C(-)[nJ?(n,B)(u^ - z„)
nv. _ , . z (4-12)
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An application of the Gronwall’s lemma (as in the proof of lemma 3.1) and the 
use of condition (4.1) let us deduce

lim \\u'n - zn\\Li(T,T-,E) = 0- (4.13)
n—>oo

Now (4.4), (4.10) and (4.13) imply u E Wx,x{r,T', E) and u' = z : but z is 
continuous (see Proposition 2.3) hence u E C^Qt, T]; E).

Writing
Bnun — Bu = — nR(n, B)u'n + BnR(n, A(ry)xi + nR(n, B)u'+ (Bn — B)u (4.14) 

we get
lim \\Bu - Bnun\\Li,r T.E) = 0 (4.15)

n—>oo

and so from (4.3)
lim ||Au„ + Bu + /||Li(r T.E) = 0. (4.16)

n—>oo

As A is a closed operator we deduce u E Z)(A) and
Ku = -Bu + /, (4.17)

i.e. u is a strict solution of (1.1) . □
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Towards a Numerical Analysis of 
the Escalator Boxcar Train
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J.A.J. Metz
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Institute of Theoretical Biology, Leiden University

1. Introduction
Within a biological population individuals usually exhibit differences in their 

population dynamical behaviour. Here we use the term behaviour to refer to 
those processes that have an influence upon the dynamics of the total popula­
tion, as, for example, reproduction, mortality or the feeding on a limiting food 
resource. The differences can first of all arise from the fact that individuals 
occupy different positions in the space in which the population lives, and hence 
experience a different local environment. Another source of observed variation 
in behaviour is the fact that individuals are physiologically different. Finally, 
differences in behaviour are also observed between individuals that seem phys­
iologically identical. In recent years developments in the field of modelling the 
dynamics of biological populations have been largely aimed at accounting for 
this variation in behaviour.

In this paper we will only consider the general class of models that are devel­
oped to account for variation in behaviour which stems from differences in the 
physiological characteristics of an individual. These models are usually referred 
to as physiologically structured population models. The term structure refers 
to the subdivision of the population on the basis of traits that characterize the 
individuals. The physiological traits of an individual often have a strong influ­
ence upon its behaviour. Body size is one of the most prominent example in 
this respect [1], Physiologically structured population models are suitable tools 
to investigate the population dynamical impact of, for example, variations in 
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individual body size within the population and the processes that are related 
with it, such as growth. These models hence establish links between phenomena 
that are observed at the level of the population and behavioural processes at the 
level of the individual. An example of the type of insight gained from a detailed 
investigation of a structured population model can be found in [2].

The theoretical framework for physiologically structured population models 
has recently been described in some detail [3]. Physiologically structured pop­
ulation models always give rise to a first-order hyperbolic partial differential 
equation (PDE) for the distribution of the population over its “space”-domain 
(an exact description of this domain follows in section 2). The equations are 
usually non-linear as the coefficients may depend on, for example, the total pop­
ulation size. Moreover, the boundary condition contains a linear functional of 
the distribution itself, reflecting the reproduction process as a function of the 
individuals present. Together these characteristics constitute the quite specific 
nature of the equations.

Following the development of the theoretical framework, an efficient numerical 
method, the Escalator Boxcar Train, has been developed to integrate numeri­
cally this type of PDE [4,5,6]. This method fully exploits the biological nature 
of the equations and is hence rather unusual from a numerical point of view. 
It can be shown, however, that the method is biologically very relevant, since 
it links the class of continuously structured population models, as described by 
Metz & Diekmann [3] with the class of Leslie matrix models, which describe 
the dynamics of populations in a discrete fashion. Hence, the Escalator Boxcar 
Train can be seen as a generalization of the (in biology more popular) Leslie 
matrix models [5,6].

Despite its biological relevance, the numerical properties of the Escalator 
Boxcar Train are poorly understood. In this paper we will investigate to some 
extent the numerical properties of the method. After a short introduction to 
the class of physiologically structured population models and to the Escalator 
Boxcar Train itself, we will show that the method consistently approximates the 
original model equations in a weak sense. Subsequently, we will discuss some 
results on the convergence of the method for a specific physiologically structured 
model, for which an analytical solution can be obtained.

2. The model structure
2.1. The model on the individual level.

In physiologically structured population models individuals are characterized 
by a set of variables, the i-state variables, together unambiguously defining the i- 
state (here and below i- refers to individual properties). These variables contain, 
by assumption, the information about the past of the individual, necessary and 
sufficient to describe completely its future, as far as this is relevant for the 
dynamics of the population. Examples of frequently used i-state variables are: 
age, size, energy reserves, amount of foliage, etc. The i-state x = (x1,... , x9}1 of 
an individual takes its value in the reachable i-state-space fl C the set of all 
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states that an individual might attain (the superscript T indicates the transpose 
of a vector). In a similar way the environment, in which the population lives, 
is characterized by a set of variables, E(t) = (E°(t),... ,E3(tY)T 6 Rs, the 
environmental state variables. These variables can represent quantities like food 
availability or the density of predators in the environment.

On the individual level a model has to be specified which mathematically 
describes those processes that change the i-state and those which lead to creation 
or destruction of individuals. The processes that change the i-state smoothly are 
assumed to be completely deterministic. These smooth changes are described 
by means of an ODE:

a)

where v = (v1,... , vq)T: Rs x Q —> R7 describes the direction of and the velocity 
along the trajectory followed by an individual. Examples of such smooth changes 
are aging and growing. The processes which lead to the creation and destruction 
of individuals are usually stochastic, any individual having a certain chance to 
die or give birth. However, it will be assumed that the population is large 
enough to describe the consequences of these chance processes as deterministic 
rates. Examples of such stochastic processes are fission of unicellular organisms 
and death of individuals due to predation.

2.2. The model on the population level.
To describe the dynamics of the population, a density-function //(/,-) on Q 

is introduced. This density-function can be interpreted as the mathematical 
analogue of the biological population. More precisely:

J <%,
equals the number of individuals at time t with an i-state in Qz-, where Qj C Q. 
Following the lines set out by Metz & Diekmann [3] it is possible to derive the 
following hyperbolic partial differential equation (PDE) for a?) that summa­
rizes the impact of the processes on the individual level on the dynamics of the 
population:

+ V(v(E, x)q(t, a?)) = -d(E, x)q(t, a?), (2a)

V’-(v(E,a.-o)/?(/, x0)) = B(E,a?o,'/?(E •)) , x0 G d+Q. (2b)

Here denotes that part of <9Q, i.e., the boundary of the reachable i-state- 
space Q, where the vector v(E,.ro) points inwards, i.e., the inner product of v 
and the inward normal is positive. In this formulation V-(vt/), the divergence 
of the flux vq at ar, describes the convection of individuals through Q due to the 
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smooth changes in their i-state. B(E,ar0,-) is a linear functional acting on the 
density-function y and describes the entrance (creation) of individuals at the 
boundary of Q. We have assumed that the age of an individual is one of the 
i-state variables, which ensures that all individuals enter Q across its boundary. 
(Application of the Escalator Boxcar Train requires that all individuals enter 
Q across its boundary; the latter is, however, not required in general.) The 
product d(E, x)y(t, x) describes the removal (death) of individuals from Q. The 
function d(E, z):Rs x Q —* R denotes the death rate of individuals with i-state 
x.

The linear operator B describing the birth rate on the boundary of the i- 
state-space <9+Q, is generally expressed as:

B(E,y,^t,.)) = I

(3) 
with y E and (j) s(x, <j) da = 1, Vx E Q.

d+Q

In this formulation the function b(E, x): Rs x Q —> R denotes the reproduction 
rate of individuals with i-state x and s(x, y): Q x d+ Q —> R is a function describ­
ing the distribution of the offspring of parents with i-state x over the i-states 
y E d+Q.

The system of equations (2) is a general form of the PDE and boundary con­
dition occurring in structured population models. Note that (2a) represents the 
“convection” of individuals through Q along their trajectories, together with 
the deaths occurring during this convection. Equation (2b) represents the in­
flow of new individuals across due to birth processes. Note also that the 
trajectories of the individuals coincide with the characteristics of the hyperbolic 
PDE.

Non-linearities are always incorporated in (2) by means of the environmental 
variables E(t). The non-linearities occurring in structured population models 
belong generally to one of the two following classes. The first class may be 
referred to as direct density-dependence, in which case some population statis­
tics) directly influence(s) the coefficient functions. An example of a. biological, 
non-linear phenomenon that belongs to this category is cannibalism or intraspe­
cific predation. In this case the death rate depends, for example, on the total 
population size. The second class of non-linearities may be referred to as envi­
ronmental feed-back loops. In this case the population itself induces changes in 
its environment and hence indirectly in the behaviour of the individuals. An ex­
ample is the feeding of a population on an external food source, the abundance 
of which in turn influences individual growth and reproduction.

In the case of direct density-dependence one or more of the environmental 
variables E(t) can be conceived as a weighted integral of ri(t, x) over the i-state- 
space Q, representing the density-dependent effects. In case of the environmental
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feed-back loops the dynamics of the environmental variables E(t) are described 
by a separate system of ODEs, containing again one or more weighted integral 
of r](t,x). These integrals now represent the influence of the population on its 
environment.

3. The escalator boxcar train: A short derivation
To integrate the type of PDE and boundary condition (2), a special numerical 

method was developed, the Escalator Boxcar Tram or EBT-method [4]. This 
method relies on the biological interpretation of the PDE, rather than on its 
mathematical properties. The EBT-method only takes care of the discretiza­
tion of the “space”-domain Q and hence gives rise to a system of ODEs which 
subsequently have to be solved by a standard numerical method for ODEs. In­
stead of approximating the density-function at some nodal points in its 
domain, the EBT-method deals with moments of this density-function over small 
subdomains in Q. These moments have a biological interpretation as the total 
number of individuals with an i-state in the subdomain, the mean i-state of the 
individuals in the subdomain, the variance around this mean, etc. Another im­
portant aspect of the method is that it does not assume a certain smoothness 
of the density-function itself, but only assumes that the coefficient functions in 
the model (v(E’,a?), b(E,x) and s(x,z/)) are continuously differentiable
up to a desired order.

In the following we will first give a short derivation of the method. In the 
derivation we will implicitly make assumptions about the differentiability of the 
coefficient functions. These assumptions will be explicitly stated when we prove 
the consistency of the EBT-method in the next section. The EBT-method was 
derived in a second and a third order form [4], in which the neglected terms 
in the approximation contained, respectively, only terms that scaled with the 
square or the cube of the mesh width in Q. In the rest of this paper we will 
exclusively focus upon the second order version of the EBT-method. Since the 
EBT-method deals with the discretization of the i-state-space Q, we will study 
this part of the numerical solution of the system (2) only. Solving the resulting 
systems of ODEs can be done, using any ODE time integration method. The 
numerical properties of this time integration method will not be considered.

3.1. The internal subdomains.
Assume that equation (1), describing the smooth changes in the i-state gener­

ates a unique solution, such that ^o) represents the i-state of an individual 
at time t > to, whose i-state at time to was equal to xo- Assume that the interior 
of Q is subdivided into arbitrary domains at the initial time to and define 
Qj(/) as:

Q2(/) = {x(t,to,xo)\xo E Q^o)}. (4)

The definition of fl;(2) shows clearly that the domain is transported along the 
characteristics of the PDE in time and is thus effectively closed to transport 
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processes across its boundary. In the following we will focus for the time being 
on one subdomain in the interior of Q.

To describe the evolution of r](t,x) within Qj(/) the following quantities are 
defined:

(a) 0th moment of ??(/,•) within Q;(/):

A,(/) (5)

This moment equals the total number of individuals having an i-state 
within

(&) lst moment of the conditional distribution derived from z?(/, •) within

Mi(^) — A,(/) (6)

The quantity = (/i*(/),...  ,/r?(/))T equals the mean i-state of the 
individuals within

These quantities together can be used to approximate integrals of ri(t,x) with 
arbitrary, sufficiently smooth weight-functions ip over the i-state-space Q, which 
are the kind of output usually required from this type of models.

The dynamics of the quantities Ai(/) and p.i(t) within can approximately 
be described by the following system of ODEs [4]:

I. Second order EBT scheme: Internal subdomains

(dAi 
dt 

d/Xi 
dt

d(E, /ai^Xi,

Every subdomain Qt(tf) in Q is characterized by a set of variables as defined 
in equations (5) and (6). The dynamics of these set of variables (Aj(/), /^(Z)) 
characterizing every subdomain is hence described by a set of ODEs of the above 
form.

The system of ODEs I represents a second-order approximation of the original 
PDE (2a), when integrated for all the subdomains Q;(/) within the interior of 
Q. It is easily seen that scheme I exactly describes the dynamics of a group 
of identical individuals (usually called a cohort of individuals) in a population 
which is not continuously distributed over an i-state-space, but concentrated 
into discrete classes (e.g. fish-populations with definite year-classes). In this 
sense the discretization method, derived above, seems to be a very natural one.
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3.2. The boundary subdomains.
The system of ODEs I presented in the previous subsection only describes 

the dynamics of the quantities Xi and /ij in an internal subdomain in Q, z.e., 
a subdomain that is transported along the characteristics of the PDE (2a) and 
hence closed to transport processes across its boundary. These equations can 
not account for the boundary condition (2b). At the instream boundary of Q 
we have to carry out a different approximation procedure.

At the instream boundary of Q, a collection of subdomains cjj(f) is 
defined such that each cjj contains some portion of <9+Q, and C U,^ 
(throughout this section a subdomain bordering will be denoted with Wj(t) 
and a subdomain in the interior of Q with Q2(/)). These domains are treated 
as the domains in the interior of Q in the previous section except that the part 
of the boundary of cjy(f) that constitutes <9+Q, does not move along with the 
convection defined by the PDE (2a), but stays put, until u>7(i) has reached a 
certain threshold size. Upon reaching this threshold the subdomain cjj(f) takes 
off from the boundary <9+Q and becomes a subdomain Qz(/) in the interior. At 
the same moment a new subdomain cjj(f) is created, taking the place along 
which is left open by the leaver.

Within the subdomains iJ7(f) again a set of moments of the original density­
function 7](/,a;) is defined, though in a slightly different way. The reason for this 
modification is that at the empty (i.e., A = 0) start of a boundary subdomain 
the (now non-linear) system of ODEs needs to be carefully analyzed for the 
correct initial condition and time-derivative. This problem is circumvented by 
slightly modifying the definition of the moments. The analogues of equations 
(5) and (6) now are:

Aj (i) = y r)(i, 0^, (7)

^'(0 = y ~ (8)

w; (0

where a,j is some fixed point of the instream boundary of cjj(f).
Upon reaching the threshold the subdomain cjj(f) is closed and the following 

transformation of moments is necessary due to the difference in definition of the 
moments of an interior subdomain fU(tf) and of a boundary subdomain u>j(f):

Ap = Aw, (9)

= ~ + aj. (10)

The dynamics of the variables Aj(tf) and irj(t) characterizing a boundary sub­
domain can now approximately be described by the following set of ODEs 
[4]:
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II. Second order EBT-method: Boundary subdomains

dt

dt

d(E,aj)Xj - Dxd(E,aj)7Tj + b(E, p,p)XpS^p,p),
p

v(E, af)Xj + Dxv(E, ajfKj - d(E, 6(E, /ip)ApSJg(/ip)
p

in which Dx is the total derivative with respect to a?, he., if f(x) : IR.m —* 
Dxf is defined as:

df1 d/L \
' dx1 dx2 dxm ’

df2 df2 df2
Dxf(a) = dx1 dx2 dxm

. dfn ' dx1
dfn 
dx2

ah.) 
dxm ' x=a

The summation over p in the ODEs above refers to a summation over all inter­
nal and boundary subdomains that produce offspring. To determine the con­
tribution of a boundary subdomain to this sum, 7Tj(/), which characterizes the 
subdomain, should first be transformed using equation (10) into its equivalence 

characterizing an internal subdomain. (Obviously, if Xj(t) = 0 the repro­
ductive contribution of the boundary subdomain is 0 and the subdomain is not 
included in the sum.) Evaluation of the function b(E,x) at x = /ip(/) for both 
the internal and the boundary subdomains is necessary for the EBT-method to 
be a consistent approximation to the system (2), as can be inferred from the 
calculations in the next section.

The quantities and Sj in these sums are defined as follows:

5+w;

Sj(vP) = J> (o' - aj)s(p,p,a)da.

As opposed to the other coefficients appearing in the approximation equations 
which are all evaluations of known functions and derivatives of known functions 
at some point (cf. b(E,pi), d(E, the coefficients S represent moments 
of the (known) density-function s(/ip,z/) over the surface d+^j. The method 
to determine these coefficients heavily depends upon the exact nature of the 
density-function s(x, y f In some cases the moments can be determined analyti­
cally (see [4] for an example), but usually this has to be done by means of some 
numerical integration method.
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The system of ODEs II is analogous with the system of ODEs I and describes 
the time evolution of the moments (7) and (8) in a boundary subdomain u?j(f). 
The differences between the systems I and II are due to the slightly different 
definition of the moments within the subdomain, and to the fact that the system 
II also contains a second-order approximation of the boundary condition (2b).

Together the systems of ODEs I and II constitute a numerical approxima­
tion of the original set of equations (2). If we assume, as is done hereafter, 
that the initial distribution 77(6,2;) has bounded support, the i-state-space Q 
can initially be subdivided into a finite set of internal and boundary subdo­
mains. The dynamics of the local measures, characterizing the density-function 

in these subdomains, are now given by the systems of ODEs I and II 
for internal and boundary subdomains, respectively. These ODEs are subse­
quently solved on a time interval [0, t], where r is that time at which one of 
the boundary subdomains a>j(tf) has reached a certain threshold size a’max. The 
boundary subdomains are subsequently closed off and transformed into internal 
subdomains using the equations (9) and (10). Thereupon a new set of boundary 
subdomains is created and the described integration cycle starts anew.

The choice of the threshold size camax (or equivalently the threshold time t) is 
arbitrary, but ultimately determines the mesh width on Q. Smaller values of the 
threshold can be chosen to yield a better approximation of the original system of 
equations at the expense of increasing the number of subdomains and hence the 
number of ODEs to solve. (See [4] for an illustration of how the threshold affects 
the performance of the EBT-method.) At present we do not have a method to 
select an optimal threshold size (time) cjmax (T), comparable to the procedures 
for adapting the step size, which are used in some time integration methods.

It should be noted that the number of subdomains continuously increases 
during the integration. Given a finite set of initial subdomains, however, the 
total number of subdomains remains bounded over a finite time interval [6,T]. 
We will exploit this feature in the analysis in the next sections. For practical 
applications it is often desirable to restrict the total number of subdomains 
that make up the population. If the smooth changes in the i-state, described 
by equation (1), are such that the characteristics of the PDE (2a) converge, 
the width of a subdomain ultimately decreases. This can result in two internal 
subdomains having almost identical values of /i;(f). These subdomains can then 
be lumped into one new subdomain, with Xt(t) of the new subdomain equal to the 
sum of the old A;(f) values and /!;(/) °f the new subdomain equal to the weighted 
average of the old p.i(t) values (weighted with the old A2-(f)). Alternatively, the 
total number of subdomains can be kept within bounds by deleting subdomains 
with negligible values of A;(f). Based on our experience both methods seem to 
yield satisfactory results (see, for instance, [2]).

4. The consistency of the escalator boxcar train
As stated in the introduction, the EBT-method is rather unusual from a nu­

merical point of view and its properties are ill-understood. To prove that the 
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EBT-method yields a consistent approximation to the set of equations (2) is also 
not a standard procedure. First of all, the mathematical theory to provide a 
rigorous justification and interpretation of the general framework of physiolog­
ically structured population models is still in its infancy (see [7] for a survey). 
The existence and uniqueness of solutions to (2) cannot be proven in general and 
the precise interpretation of the equations (2) is still beset with problems. Fur­
thermore, the density-function rj(t,x') cannot, even approximately, be retrieved 
from the collection of its moments, without making further assumptions. Hence, 
conventional methods to prove the consistency of a numerical method for PDEs, 
which study the difference between the exact dynamics of the complete density­
function r}(t^x) and the discrete, approximate dynamics of rj(t,x) at a set of 
nodal points, are not applicable. We will therefore study the consistency of the 
EBT-method, using the concept of approximation in a “weak” sense, i. e., we 
will show that the exact dynamics of measures of the density-function 77(2,2;), 
as specified by equations (2), are consistently approximated, when we apply the 
EBT-method to these equations. (As an aside it should be noted that this weak 
concept of approximation fits in well with the functional analytic underpinning 
of the general framework [7].)

Our weak concept of approximation is inspired by the fact that the biologically 
relevant output quantities from a structured population model are (weighted) 
integrals of ?/(/, x) over the i-state-space Q. This output is thus generally of the 
form:

^(2) = / ip(xyr](t, x) dx (11)

where ^(z): Q —> R is some arbitrary weighing function over the i-state-space 
Q. These integrals usually have a clear biological interpretation, e.g. number of 
individuals, total biomass, etc.

In the following it will be shown that (A) the output quantity ^(2) can be ap­
proximated consistently to a certain order of accuracy by a quantity 'I'(Z), which 
is defined in terms of the local moments A and p of 77(2,2?) within the internal 
subdomains and the local moments A and 7r of r](t,x} within the boundary sub­
domains and (B) the dynamics of ^(2) as determined by the equations (2) are 
approximated to the same order of accuracy by the dynamics of *3?  (2), as governed 
by the numerical schemes I and II, which characterize the EBT-method. From 
these two observations we conclude that the EBT-method yields a consistent 
approximation of the set of equations (2) in the weak sense that we introduced 
in this section.

Let the total population size be denoted by

N = / 77(2, x) dx
Jn

and assume that N is bounded. Let 77(2,2?) at time t have bounded support in 
Q and let Q be subdivided into a finite set of m internal subdomains f2p(2), p =
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l,--- , m, with VpQp(/) A <9+Q = 0, and n boundary subdomains cjr(/), r = 
l,--- ,n, with A <9+Q = <9+ur, in which <9+Q denotes the instream
boundary of Q. Given the bounded support of rj(t,x) we may assume that 
77(2,2) = 0 for x U^=i ^p(^) (Here and in the following the
index p always refers to the subdomains Qp(f) in the interior of the Q, while the 
index r always refers to subdomains u?r(2) along the boundary <9+Q of fl.)

Let every internal subdomain f2p(2) now be characterized by quantities Ap and 
/ip, as specified by (5) and (6), and each boundary subdomain u?r(t) by quantities 
Xr and 7rr, given by (7) and (8). Moreover, let yr denote the transformed moment 
in a boundary subdomain i.e., after applying the transformation (10) to 
7rr. Obviously,

d[ir 1 (d,7rr dXr 1
ir = A?tir-(^-ar)irr (12)

The quantity ^(t) can be approximated by the quantity ^(2), defined as (see 
W): m n

= ^^Vp)XP + ^^r)Xr. (13)
p=l r=l

Let h denote the maximum width of a subdomain in the i-state-space fl, 
defined as:

h := max(max ||flp(2)||, max ||u?r(2)||)v p r '
= max(max sup ||.t - yW^, max sup ||a? - y^ ), 

p x,y€tlp(t) r z,y&r(t)

in which ||a? — z/||oo: = max; |z*  — yr \ is the maximum norm on fl.
If € C2 the following inequality can be derived for the difference between

(11) and (13) using the mean value theorem:

m-T(/)i (cr - /ip)TDxxV’(^((7)) (f - A* pMT da

a — pryq(t,a) da

< bl/WHATfe2.
Zu

(14)

Here, DxxiX is the (symmetric) q x q matrix with second order partial deriva­
tives of with respect to x and ||Dxxi/’|| := supxeQ ||DxxiX{x)||oo is the matrix 
norm of Dxx^(x) corresponding to the earlier defined maximum norm on fl. 
In the integrals above, £(<t) and r(a) are arbitrary points in flp(2) and u?r(t), 
respectively. These integrals represent the rest terms in the local expansion of 
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ip(x') around the points /ap and yr in every Qp(f) and cor(t), respectively, using 
Taylor’s formula.

The difference between 'l'(f) and 'l'(f) is hence O(h2), if the following assump­
tion holds:

ASSUMPTION 1: The width of the subdomains in the i-state-space Q and 
the total population size stay bounded away from infinity, z. e., h < oo and 
N < oo.

Because the internal subdomains are transported along the characteristics during 
the integration, the assumed boundedness of all u?r(t) and all f2p(t) requires that 
the characteristics of the PDE (2a) do not diverge unlimited.

In the following an ordinary differential equation (ODE) for the quantity 
'l'(f) will be derived using the equations (2) for y^t^xf Moreover, on the basis 
of the numerical schemes I and II an approximate ODE will be derived for the 
quantity 'P(f). It will be shown that the difference term between these two ODEs 
is <9(7i2). From this observation it is concluded that the numerical schemes I and 
II constitute a consistent approximation of the PDE and boundary condition (2) 
to the same order of approximation as the difference between the two quantities 
'l'(f) and 'l'(f). During the calculations also the basic assumptions underlying 
the Escalator Boxcar Train will come into play and will be stated explicitly.

Differentiation of expression (11) for the quantity ty(t) and using the equa­
tions (2) leads to:

v(E, rr)z?(U a?)) ■ V0(a?) dx — j 'ffx^d^E, xfq(t, x) dx

Q Q

+ y dy

d+Q
(v(E, a?)7/(U a?)) -V0(a?) dx — J 'ffx^d^E, xfqft, x) dx

Q Q

+ y V’(jz) J s(x,y)b(E,x)y(t,x)dxdy. 
d+Q Q

In this derivation is explicitly used:

ASSUMPTION 2: The i-state-space Q contains no exit boundary cUQ.

Differentiation of the quantity 'l'(f) (expression (13)) with respect to time 
results in:

V^/Z \^Ap

P=1

a dXr

r=l

m J
+ YD^r)f^.p 

P=1

+ y^jDX'f(p,r)-~xr. 
r=l
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If we substitute the expression (12) for dp,r/dt and the numerical schemes I 
and II that represent the EBT-method into the equation above, we obtain an 
ODE for 4' that represents the EBT-approximation of the ODE (15) for Here 
and in the following the simplifying assumption will be made that 6(E, x) equals 
0 in all boundary subdomains u>r(tf). (This assumption can easily be relaxed at 
the cost of introducing a few additional, though messy terms in the resulting 
formulas below.) The substitution yields:

7 t m nn UJ xx—-
TT = “ “ 52V’(/^r)d(E,ar)Ar

(JjL p=l r=l
n m

xd(E, ar) (/ir ar)Ar T fip^Xp
r=l p=l

n n
Tx^^P-r^^E, ar)Xr T ^Dx1/)(/1t-)Dxv(Ei, q?-) (/-^r cz^Ar 

r= 1 r= 1
m n m n

p=lr=l p=lr=l
m n

(Mr dr}Sr (p,p)b(E, jj.p^Xp T R^
p=lr=l

(16) 
in which is defined as:

n
R-iij — xV’C/^r) (/^r CLfd^Dxd(E, flr) (fJ,r Qr^Xp 

r=l (I?)
\R^\ <||DxVdll|7MI^2-

To show that the ODE (16) for T is a consistent approximation of the 
ODE (15) for T, we will now expand the integrals in (15) around specific points 
and determine the difference between the resulting expressions and the appro­
priate sums in equation (16). Each integral in the ODE (15) will be investigated 
separately.

Given the discretization of the i-state-space Q the first integral in the ODE (15) 
can be expressed as:

/(v(E, z)z?(E z))'W(z) dz = J Dxip(x)v(E,x)r](t,x)dx

Q Q

(18)

n p
Dx^(xyv(E,x')ri(t,x') dx.

r=1 J(t\w,(<)
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In the expression above, the product of the functions Dx f(x') and v(E,x) in 
the integral for every internal subdomain is subsequently substituted by Tay­
lor’s formula around the mean i-state fip within that subdomain, while in the 
integral for every boundary subdomain the function Dxif(E) is replaced by Tay­
lor’s formula around the mean i-state fir within the subdomain and the function 
v(El, a?) by Taylor’s formula around the fixed point ar on the boundary cEcor of 
the subdomain. These substitutions yield:

/m
(v(E, xfq(t, a?))-V0(a?) dx ='^Dx^p,p)v(E, p.p)Xp

Q P=1
n

+'^Dx-if(jir)v(E,ar')Xr (19)
r=l

n
+'^2/Dx'f{jir)Dxv{E, ar) (fir - ar)Xr + Rv 

r=l

in which Rv is defined as:
m

a - fj,p)r)(t, a) do­
P-1 Qp(t) 

n - A
er — aryq(t, cr) da

r=l wr(t)

n
Dxv(E, ar) (cr — ar) Wt, a) do- (20)

r= 1 wr(t)

n A

Dxxv(E,T(af)(a — ar)\r]ft ,cr) da
F=1 Wr(t)

n - «

El I / rrn \
2 \(a ~ Vr) - fir)yv(E,ar)T](t,a)da

r=1 M*)
n - «

Dxv(E, ar) (a — ar) ji^ft, a) da
r_1 M)

n r.

r-1 Wr(t)

'xxv(E,r(af) (a - ar))'q(t,a') da.

In the expression above ffa) and r(a) are again points within £lp(t) and a?r(t), 
respectively, that stem from the rest terms in Taylor’s formula. Note that the 
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summation terms that occur in expression (19) are exactly the same terms incor­
porating the function v, which occur in the ODE (16) for In the expression 
above Dxxxt[> denotes the q x q x q matrix with third order partial derivatives 
of with respect to x. Dxxv is also a q x q x q matrix containing, however, the 
second order partial derivatives of v with respect to a?, z.e., the element with 
index (i,j,k) in this matrix is . Dxx [Dr'0(a?)v(E', a?)] is the q x q matrix 
with second order partial derivatives of the product function Dx^v. Rs x Q —> R 
and hence comparable with 0, defined above.

If the following assumptions are made on the functions and v:

ASSUMPTION 3: V’ £ C3

and

ASSUMPTION 4: v e C2 

the quantity Rv satisfies the inequality:

11 + p„V’lll|r’I’'ll + |pIII'/’||||«l|}ArA2 + O(A3). (21) 
*

The assumptions 3 and 4 hence ensure that Rv is bounded and O(7i2). Moreover, 
these assumptions also imply that all previous conditions on the differentiability 
of and v are fulfilled.

In a similar way as was done above for the first integral in the ODE (15) the 
second integral can be expressed as:

(22)

Subsequently the product of the functions x/>(x) and d(E, a?) in the integral for 
every internal subdomain is again substituted by Taylor’s formula around the 
mean i-state fip within that subdomain, while in the integral for every bound­
ary subdomain the function ip(x) is replaced by Taylor’s formula around the 
mean i-state fir within the subdomain and the function d(E, x) by Taylor’s for­
mula around the fixed point ar on the boundary d\vr of the subdomain. These 
substitution yield:

/m
ip(x)d(E,x)ri(t,x)dx = -y^ip(p,p)d(E, /rp)Ap

q P=1
n

— y^V>(/2r)d(E', ar)Ar (23)
r—1

n
~^2^(fir)Dxd(E, ar) (fj.r - ar)Xr - Rd 

r=l
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of the density-function r)(t,x\ as defined by expression (11). More specifically, 
to study the convergence of the EBT-method we assume that 'I'(O) = M/(0) and 
compare the exact value of T(T) at some t = T with its approximation T(T), 
which results from applying the EBT-method during the time interval [0; T].

In the previous section it was proven that the difference between the exact 
ODE (15) for 'l'(t) and the EBT-approximation (16) for 'l'(t) is O(h2). Given 
that T(0) = T(0), this implies that the difference between 'l'(t) and 'F(f) would 
remain O(h2) on the time interval [0; t], if all the ODEs involved could be solved 
explicitly. Here t indicates the threshold time at which the first boundary sub­
domain reaches the threshold size <jJmax (see section 3). At t = r the boundary 
subdomains are transformed into internal subdomains, applying equations (9) 
and (10), and replaced by a new set of boundary subdomains. Hence, if all 
ODEs could be solved explicitly and if the (non-linear) transformation of the 
boundary subdomains would leave the order of approximation unchanged, the 
difference between T(T) and T(T) would still be O(ji2). This would imply that 
also the global discretization error at t = T would vanish if h —> 0, proving the 
convergence of the EBT-method.

We have not been able to prove the convergence of the EBT-method in such 
a general sense. First of all, we cannot show that the transformation of the 
boundary subdomains leaves the order of approximation unchanged. This is 
all the more important, since, if h —> 0, necessarily t —> 0 and the number of 
transformations on a finite interval [0;T] approaches oo. Moreover, the sets 
of ODEs I and II can usually not be solved explicitly and an additional time 
integration method should be used to solve these equations numerically. Solving 
the ODEs numerically could in principle interact with the errors, introduced by 
the discretization of Q, or with the transformation procedure of the boundary 
subdomains and cause the global discretization error to diverge.

As an alternative, we could focus on a model for which both T(T) and T(T) 
can be obtained and determine the global discretization error directly for such 
a particular case. In general it is impossible to find the analytical solution 
of (2) and hence the exact value of T(T), especially if the model incorporates 
non-linear interactions with the environment. For this reason, we will, as an 
example, focus on a simple, linear model, in which the i-state-space Q is one­
dimensional: Q := [l,oo). This implies that all individuals are born with an 
i-state x = 1. At the same time this value of x is the point at the boundary 
of Q that characterizes the boundary subdomain, z.e., eq: = 1. Because of the 
linearity, we will denote the coefficient functions describing the growth, death 
and reproduction rate of the individuals by v(z), d(a?) and b(x), respectively.
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The model can be described by the following equations:

(34a)

(34b)

A possible choice for the coefficient functions that constitute a model, for 
which we can obtain an analytical solution, can be derived from example 2 in 
the publication by Metz & Diekmann in this volume. The example is based 
upon the following assumptions about the individual behaviour: (1) Individuals 
acquire food at a rate ax, where x is the individual size. (2) The acquired food 
is partitioned into a fraction «(.r), which is spent on reproduction and a fraction 
1 — k(x) spent on basal metabolism and growth. (3) The costs of producing 
offspring biomass equals the costs of producing parent biomass, which means 
that growth is as expensive as reproduction. Here, these costs are arbitrarily set 
to unity without loss of generality. (4) Finally, metabolism is proportional to 
size with proportionality constant m and the death rate 7 is size-independent. 
The total biomass of the population will be the required output quantity of the 
model and hence i/>(z): = x.

The assumptions above lead to the following choice for the coefficient func­
tions in the model equations (34):

v(a?) = a(l — m — k(x))x 

b(x) = anfx'jx 
d(x) = y

'f(x) = x

and hence

xr/ft, a?) dx.

Differentiating the expression for 4/(2) and using the PDE (34a) to replace 
drj/dt it turns out that the dynamics of 4/ can be described by the following 
ODE:

^ = (a-m-7)’F =7 ’F(T) = 40e(a“m~7iT

The quantity 4/ grows or decays exponentially, depending upon the sign of (a — 
m — 7).
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Since cr(A) = 2ttzZ the operator G(A) is invertible by [El], Theorem 2.3 with 
bounded inverse G-1(A) E £(£). Thus by [EN], Proposition 2.1 the restriction 
Ag of A to Eg [79(G(A))] = [79(A)] x E is similar to

Ao : = G{A)AG~\A)

AA T aid 
yld

(did A 
pA + did )

(1)

with domain 79(Ao) := 79(A) x 79(A) on E where

Since A, p E IE and A generates a group on E the matrix Ao also generates a 
group on E by the bounded perturbation theorem (see [Go], Chapter 1, 6.4). 
Using that Ao and Ag are similar we obtain the following result.

Theorem 2. The restriction Ag of A to the Banach space Eg •= [79(A)] x E 
with domain

E(Ag) : = {z E Eg : G(A)r E 79(A0)}

= 79(A2) x 79(A)

is the generator of a strongly continuous group.

Once we have well posedness of (ACP) on Eg we are interested in the asymp­
totic behavior of the solutions of this problem. As known from general semigroup 
theory spectral theory yields the appropriate tools for this investigation (see e.g. 
[N2], A-III, A-IV). Thus we have to calculate the spectrum c(Ag) of Ag which 
coincides with cr(Ao) since Ag and Ao are similar. From the spectral mapping 
theorem for polynomial operator matrices applied to Ao (see [El], Theorem 2.8) 
we obtain the following result.
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Proposition 3. The spectrum of the operator matrix Ag is given by 

&(AG) = <r(A0)
= { —(w/i + &) ± a/(w2 + a)p2 + &2 — c + 2wbp : p E 27rzZ

Now a straightforward calculation using the fact that b2 — c < 0 shows that 
the function

R3,s Re y/(w2 + a)(zs)2 + b2 — c + 2wbis =: g(s) 

is even and strictly increasing for s > 0. Hence a short calculation yields

sup^(s) = lim g(s') = ~r== 
sez y/w2 + a

and we obtain the following corollary.

Corollary 4. The spectral bound of the operator matrix Ag is given by

s(Ag) =-b (1 --7=r=
\ V w2 + a

In a final step we show that the growth bound oj^Ag} coincides with the 
spectral bound s(.4g)- Since none of the usual results implying “s(A) = 
(see [N2], A-III, 6 and 7) is applicable in this situation we use the explicit formula 
for the semigroup generated by Xo given in [Nl], 5.1.

Lemma 5. The semigroup (To(t)) generated by the operator matrix

_ (XA + ald (did \
A° ~ V IId l1A + bld)

with domain D(Ao) = D(A) x D(A) is given by T0(t) := (Tij(t))2x2 where

Tn(t) : = S(t) — [ J\ (2y/bcs(s-t)} \ S(t - s)T(s)ds,
Jo ' ’ V s

[■t ,
T12(t) ■' = (3 Jo \ 2y/bcs{s — t)j S(s)T(t — s)ds,

\ ________ (2)
?2i(t) ■ = 7 / Jo (2y/bcs[s — t) \ S(s)T(t — s)ds,

Jo ' 2

T22(t) : = T(t) ~ [ J1 (2y/bcs(s - t)} S(sfT(t - s)ds.
Jo ' /Vs

Here Jv denotes the v-th Bessel function (v = 0,1) and S(t) :=
■= et(r-A+8Idf



124 Asymptotic convergence for a class of autocatalytic chemical systems

Thus we have two families of steady states for (2.2a - b), one of which lies 
along the Ai axis and the other which is a line penetrating the interior of the 
positive orthant R™. Consequently we will have no global attractor. However 
as the next result indicates we will have asymptotic convergence of solutions to 
steady states.

Theorem 2.7. If Ao,- > 0 and 1 < i < m and } Ao, = k then for all t >0, 
Ai(t) = k. Moreover if 0*  is such that 

m
^Q*/2ci  = k (2.7a)
2=1

and 
m / (y*  \ 2 m
y2ci(^o.--e*/2e,) 2< (i-A +E(e*) 2/4^. (2-7b)
2=1 ' ' 2 = 2

then for i = 1 to m
lim A;(f) = 0*/2 c2. (2.8)

t—<-oo

Proof. The first assertion is a direct consequence of the fact that the vector 
field is balanced, i.e., 53™^ f2(A) = 0. For the second assertion we construct 
the function m

V(A) = ^Ci(A-0*/2c,) 2
2=1

and argue that along solutions to (2.1a - b)

dV(A) Q 
dt ~

with strict inequality holding if (Ao,,..., Aom ) A (&, 0,..., 0) and (A0],..., Ao„,) 
A (0*/2ci ,.. . , 0*/2c m).

We point out that condition (2.7b) includes all points of the hyperplane 
j Ai = k which lie in the positive orthant except the point lying along the 

Ai axis. Thus the point (0*/2ci, ..., 0*/2c m) is an attractor for all solutions 
whose initial data does not lie on the Ai axis and satisfies ^2^=1 -^o,- = k.

3. Reaction diffusion systems
We first observe that there exist higher order Lyapunov functions for our vec­

tor field. For each positive integer p we introduce a separable convex functional 
.Hp(A) defined by the formula

m m

HP(A) = (3-1)
2=1 2=1

where the cfs are specified via (2.4). Direct computation yields the following 
result.
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Lemma 3.2. If A = (Ai,..., 6 R™ then VH(p, A) f (A) =
IZi h‘,(p,A.)f,(A) = Y^pcr'Ar'htA) < 0.

We add diffusion to each component of our 
consider the spatially dependent system:

system of kinetic equations and

dtAi — di&Ai + i = 1 to m, x E Q, t > 0, (3.3a)
dAi/dn = 0, i = 1 to m, x E dfl, t > 0, (3.3b)
At(r, 0) = AOi(r), i = 1 to m, x E Q. (3.3c)

We remark that Hp(A) will provide a generalized Lyapunov structure for the 
reaction system. The utility of such a structure was recognized in [16] and it has 
subsequently been exploited for elliptic systems in [6], [7], [8] and for parabolic 
systems in [15], [9], [10]. Geometrically Lemma 3.2 implies that reaction vector 
field f(A) = (fi(A))^h1 does not point out of the bounded convex region deter­
mined by level curves Hp(A) = constant and the coordinate hyperplanes of the 
positive orthant. Here we assume that 9 is a bounded Lipschitz domain with 
C2+£ boundary. The diffusivities dt- are distinct and positive. The initial data 
Ao(-) = is assumed to belong to C(Q,R™). We have the following
theorem.

Theorem 3.4. If Ao( •) E C(Q,R!p), then there exists a unique nonnegative 
classical solution to (3.3a c) for all t > 0. For each i, x £ fl and t > 0, 
Ai(r,t) > 0. Moreover, solutions to (3.3a - c) can be uniformly bounded in 
terms of the initial data.

Proof. Local well posedness follows from classical theory and global results 
therefore will be predicated upon the establishment of a priori bounds. The fact 
fi(A) > 0 when Ai = 0 and A E R™ implies that the positive orthant is an in­
variant region; hence solutions with nonnegative initial data remain nonnegative 
on their interval of existence.

In order to obtain a priori bounds we multiply the ith component of (3.3a) 
by h'^phAi) and integrate on fl to produce

d/dt I h'i(p,A')dx+ / dip(p — l)(c;)p 1(Ai(r,t))p 21VAj(a?,t)\2dx

< h’^p, A)fi(A). (3.5)

Summing from 1 = 1 to m and invoking Lemma 3.2 we have

(3-6)
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The above inequality can be integrated to produce a uniform bound for 
||and because the terms on the right hand side are polynomials 
in the Ads we can thereby produce Lq bounds for any integer power of the 
/i(A)’s. Straightforward adoption of Lemma 3.6, [15] yields the existence of 
TV > 0 so that for each i,

IIA(-,i)U,n <N. (3.7)

We further add that the constant N may be explicitly computed in terms of the 
initial data and the parameters Cj.

We are able to produce analogous convergence results for the spatially depen­
dent system (3.3a - c). If A = (A,) is a solution we denote the spatial average 
of the ith component by At(t), namely

A;(f) = / Ai(x,t)dx (3.8)
lszl Jn

where |Q| denotes the m dimensional volume of Q. We state the following 
theorem.

Theorem 3.9. For 1 < i < m, lirn^oo ||A(-, f) - A(t)||oo,Q = 0. If A(0) = 
k > 0 and 0*  > 0 is such that ©* l^ci = k and Cj(Ai(0) — 0*(2cj)) 2 <
(k — 0*/2) 2 + £™2(0*) 21^ci> then for 1 < i < m we have

lim ||A(-,t) - 0*/2c i||oo n = 0. t—>CXj

We point out that this result is consistent with thermodynamic reasoning 
which indicated that a balanced reaction diffusion system with no flux boundary 
conditions should converge to a constant solution. Moreover periodic solutions 
or more exotic behavior of reaction diffusion systems obtained from the kinetic 
mechanism (1.1) are artifacts of inhomogeneities arising from the boundary or 
acting as source terms.

The proof of Theorem 3.9 proceeds by a lengthy argument consisting of lem­
mas and estimates and will not be given here. It will appear in a subsequent 
paper by the authors which will deal with (3.3a - c) in greater generality.
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if Ai is positive and has bounded imaginary powers, [D(Ai),A]# = 
See, for example [T, p.103].

We conclude that under the preceding hypotheses on Ai, (4) holds if D(A^) Q 
D(C) for a certain £ (0,1).

Let us describe a concrete case.
If Q is a bounded domain in Rn, n > 1, with a smooth boundary d£l, it is 

well known that the operator Aiu = — (—A)mu, u E C’orn(Q), m E N, has a self- 
adjoint extension to X = L2(Q), which is positive and has _H2rn(Q) Pl as
its domain.

Let 0 < a < 1, ma a positive integer. Then [H, p.29]
D((-A)wa) c H2ma(Sl) n 770wa(Q).

More generally, one finds in [LM, p.117] that if Bj is a suitable differential 
operator on the boundary dCl, of order mj < 2m, 0 < j <v, and

H2Bm(Sl) = {uE H2m^/Bju = 0 on dtl, 0 < j < i/},
with 0 < 8 < 1, 2(1 — integer +1/2, then

[H^(Q),L2(Q)],=

{« E H^-^W/Bju = 0 on dtl, m, < 2(1 - 8)m - 1/2}.

It follows from Proposition 1 that we could take as C any generator of an 
analytic semigroup on L2(Q) for which {u E H2s(£T)/BjU = 0 on dQ,, mj < 
2s - 2/2} C D(C), 1 < s < m.

Analogously, one can generalize these considerations to the case Lp(Q)p 2, 
by means of the spaces H2™B.}, B2™ ^B [T. pp.320-321],

Let us go back to analyse the nonlinear equation in (1), seeking to make 
precise regularity assumptions of f.

If the concerned Banach spaces are real, the hypothesis that f = f(t, u, v) has 
Frechet-derivatives with respect to u and v doesn’t appear to be too onerous, 
as it may become if the spaces are complex.

We recall that, with regard to the first order problem analogous to (1), K. Ma- 
suda has studied its solvability, with an analytic f; see [M].

In order to avoid some complications, we shall suppose that our Banach spaces 
are real, we shall linearize the equation and study the corresponding linear pencil 
obtained by complexification.

Applying the definition itself of complexification of an operator, we shall 
return to an A-valued solution corresponding to an A-valued function f = /(•).

If our function f in (1) has the partial derivatives |£(t,u,v) and |^(f,u,v) 
for all 0 < t < T, u E To, v E Ti, that are bounded linear operators from YG 
into A and from Y[ into A, respectively, let us

df
— (O,uo,«i) = —Ao, Ou
df-x~(0, uq, «i ) = —Ai, 
ov
f(t,x,y) + Aox + Aiy = F(t,x,y).
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Then problem (1) takes the form

u"(t) + Aiu'(f) + Aou(t) = F(t,u(t),u'(ty), 0 < t < T* , 
. (5)

S = (27T?)-1 y P(xF\B ~ z^dz,

7
S2 = (27T?)-1 y zP(zT\B - z)~xdz,

7

and 7 is the contour in the complex plane given by Rez = a2 — &o|fmz|, a0 < 
a2 < at, oriented upwards.

For a proof of Theorem 1, we refer to [D,G]. We also note that Ao S' and 
A1S1 G£(M

u(0) = «o, u (0) = «i.

Assume for a moment that there exists a^ E C2[0,T;A"] such that p E 
C[O,T;B(Ao)] = C[O,T;yo], y>' G C[0, T- D(Ai)] = C[0,T;yi], p(0) = u0, 
<p'(0) = «1, 9?"(0) = F(O,uo,ui) - Aquq - A1«1 = /(O,uo,ui).

Putting u(t) — <p(t) = v(t), (5) becomes

v"(t) + Aiv'(t} + Aov(t) = G(t,v(t),v'(t)), 0 < t < T*,  
v(0) = v'(0) = 0, S 6 7

where G(t, v(t), i/(t)) = /(t,v(t) + p(t),v'(t) + </(t)) + Aov(t) + Aiv' —

Clearly it is then important to have an existence - uniqueness - regularity 
theorem for the solution of the linear problem.

B2u + A\Bu + Aqu = h, (7)

where B is a suitable linear operator (in our case, B = in a certain function 
space). This is achieved by the following

Theorem 1. Let Aq, Ai, B be closed linear operators in the complex Banach 
space X such that D(B) = X and

(A) B-1 P(z)-1 = P(z)-1 B-1, zES: Rez > ao — ^ol-fm^l, 60 > 0.
(B) ||(B — z)-1, >C(X)|| < C(1 + |z|)-1, Rez > «i — &i|Imz|, 0 < a0 < cq, 

&o > 7^ bi.
(C) P(^)~1;Z:(E)|| < C(1 + H)~ , G A p<a) = z  + ^1 + A.2 2
(D) AoP(A-1,Z1(E)|| <C,zGS.
Then for any 6 E (0,1) and all h E (BiB(B))^;00 = Vo there is a unique 

u E E such that (7) holds and Aqu, AiBu, B2u E Vq.
Moreover, u = Sh, Bu = Sih, h E Ve, where
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1. Introduction
In this paper we review our earlier results on the modified Korteweg-deVries 

equation in [Gesl], [Ge-Si], [GSS] and continue these investigations into sev­
eral directions. Specifically, in Section 2, we review the connections between the 
Korteweg-deVries (KdV) and the modified Korteweg-deVries (mKdV) equations 
based on Miura’s transformation [Miu], and commutation methods. Appendix A 
summarizes the necessary commutation formulas needed in Section 2. In Section 
3 we study soliton-like solutions of the mKdV-equation (i.e., solutions that tend 
to (time-independent) finite asymptotic values as x —> Too sufficiently fast). In 
particular, due to our more general Hypothesis (H.3.1), Theorem 3.2 consider­
ably extends our earlier findings in [GSS]. Section 4 reviews our derivation of 
pure soliton solutions in [GSS]. Both, Sections 3 and 4 are supported by Appen­
dix B which summarizes spectral and scattering properties of one-dimensional 
Schrodinger and Dirac operators with nontrivial spatial asymptotics in the cor­
responding potential terms. Section 5 is devoted to spatially periodic solutions 
of the mKdV-equation. While Theorem 5.3 summarizes our results on periodic 
solutions in [GSS], the rest of this section presents new material.

In order to keep Section 5 within a reasonable length we decided to put all 
necessary background material on periodic Schrodinger and Dirac operators into 
Appendices C-G: Appendix C summarizes basic Floquet theory, Appendix D 
treats spectra associated with various boundary conditions and the isospectral 
manifold of periodic potentials for Schrodinger operators, Appendix E recalls 
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trace relations, Appendix F utilizes the connection between the Schrodinger and 
an associated Riccati-type equation, and Appendix G collects various formulas 
in the special case where the Schrodinger operator has only finitely many simple 
periodic and antiperiodic eigenvalues.

Finally, we would like to point out that our methods are by no means confined 
to the mKdV-equation. In fact, they also have been successfully applied to the 
modified Kadomtsev-Petviashvili equation [GHSS], [Ge-Sc] as well as to the 
Kac-van Moerbeke system [GHSZ].

2. Connections between the KdV and mKdV-equation
In this section we review the main results of [Ges 1], [Ge-Si], [GSS] concerning 

links between the Korteweg-deVries (KdV) and the modified Korteweg-deVries 
(mKdV) equation based on Miura’s transformation [Miu].

We start by introducing the hypothesis

(H.2.1). f E C°°(R2) real-valued, d”f E L°°(R2fin = 0,1.
Then assumming that V, satisfy (H.2.1), the KdV and mKdV-equation are 

defined by
KdV(V): = V, - 6VVt +VIIX = 0, (I,#) € R2, (2.1)

mKdV(^) := <t>t - 6^2^I + = 0, (i,z)eR2, (2.2)

and Miura’s transformation and identity read [Miu]

v,(/,x); = ^t,xf + (-iy<MM-),) = i,2, (MeR1, (2.3)

KdV(V)) = [2^ + (-iyA] mKdV(^), j = 1,2. (2.4)

Evidently (2.4) implies that any solution </> of the mKdV-equation (2.2) yields 
by (2.3) two solutions Vi,V2 of the KdV-equation (2.1). In order to reverse 
that process, i.e., starting with a solution, say V?, of (2.1) and then construct a 
solution (resp. Ifi) of (2.2) (resp. (2.1)) such that (2.3) holds, we need some 
preparations.

First we recall

Theorem 2.2 . [Lax 1], [Tan]

(i) Suppose V satisfies (H.2.1), Vt(t,.) E L^fRfit E IE and KdV(V)=0. 
Define in Z,2(R) the one-dimensional Schrodinger operator H(t)

H(t) : = -d2 + V(t,.) on H2(R), t E R. (2.5)

Then there exists a family of unitary operators U(t), t E R, V(0) = 1, 
in jD2(R) such that

V(t)-17d(t)V(t) =77(0), t 6 R. (2-6)
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Next, supposing V2 satisfies (H.3.1)(i) and KdV(V2) = 0, we define

H2(f) := -d2x + V2(t,.) on 772(R), t G R, (3.1)

and assume
f2;=infKff2(0))] >0. (3.2)

Then, according to Theorem 2.7, we have to distinguish the cases £2 = 0 and 
S2 > 0. We start with the case

S2 = 0 (i.e., H2(t) is critical, t E R):
Since <jess(H2(tfi) = [V_,oo), V- > 0, £2 = 0 implies

0 G <jfiH2(tfi), t G R, (3.3)

and thus H2(t) is critical for all t G R [Ge-Zh]. This yields the existence of 
a unique (up to possibly t-dependent multiples of constants), positive distribu­
tional solution 0 < ■02,0 G C°°(R2) of

#2(i)02,o(i) = 0, 0 < 02)O(t,.) G H2(R), t G R. (3.4)

Without loss of generality we may assume that 02,o satisfies the time evolution 
(2.15) with k = 0, i.e.,

02,o,t(T^) = 2V2(t,a?)02)o,x(t,a?) - V2)I(t,a?)02iO(t,a?), (i,z) G R2, (3.5)

(otherwise multiply 02>o with an appropriate time-dependent factor). From (3.5) 
and (B.7) one infers that

i / i \
02)o(t,z) = eTV±2(r+2V±t) + o ( eTV±2;c ] , t G R, (3.6) 

x—>icxj \ )

since
M0) = ivj, W(/2^(t,0),/2.+ (t,0)) = 0, 

a (3-7)
’/’z.oC*,  a:) = eT2V> '/2,±(«,0,x), (t, x) e R2.

According to (2.29) we then define

0o(^,a;) := 02,o,z(T^)/02,o(T^), (i,r)GR2. (3.8)

Next we consider the case

£2 > 0 (i.e., H2(tfi is subcritical, t G R):
Then 0 cr(J72(t)) and hence H2(t) is subcritical for all t G R [Ge-Zh], This
guarantees the existence of two linearly independent, positive distributional so­
lutions 0 < 02)± G C°°(R2) of

#2 W02,± w = o, 0 < 02,±(t,.) G (R), t G R, (3.9)
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and again we may without loss of generality (cf. Lemma 2.3) assume that "02,± 
satisfy (2.15) with k = 0, i.e.,

^2,±,t(t,x) = 2V2(t,x)lp2,±,x(.t,x) - V2,x(t,x)'lp2,±(,t,x), (3.10)

From (3.10 and B.7) one infers

a
= eT2V±2V2,±(M), (3-11)

and

L \ 7 (3.12)
= ev±<I+2'/±‘) +o(ev±I).

’ x—>-±oo

In accordance with (2.29) we now define

^2,<x(t,x) := 2~1(1 - (j)^2-(t,x) + 2~1(1 + cr)V’2,+ (G^),

<t 6 [-1,1], (t,z) G 1R2, (3.13)

(where a is Gindependent) and

(f)a(t,x) := V’2,<7,z(G^)/V’2j(7(G2?), o' G [-l,l],(i,.r) G 1R2. (3-14)

Then we obtain the following characterization of soliton-like solutions of the 
mKdV-equation.

Theorem 3.2. Assume V2 satisfies (H.3.1) (i) and JCdV(V2) = 0- Moreover, 
suppose £2 = inf [c^-H^O))] > 0. Then <fa, defined in (3.8) resp. (3.14), satisfies 
(H.3.1) (ii) and Vi>a defined by

V,^(t,x) = - <t>„,x(t,x), <7=0 resp. <7 e [-1,1], (t, x) e R2, 

satisfies (H.3.1) (i). Moreover,

mKdV^a) = 0, KdVtVpa) =0, cr = 0 resp. a G [—1,1].

(3.15)

(3.16)

In addition,

<j = 0, fi2 = 0,
1

-V.2, <7 = 1, fi2 > o,
<t>v,± '■ = lim (/>a(t,x)=< 1 (3.17)Z—>±OO <7 = “I, fi2 > 0,

<7 €(-1,1) fi2 > 0,
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and
0 G ad(H2(tfip 0 £ fia>+ < 0 < ^CT)_,
0 £ ad(H2(ffi), 0 6 ad(Hlt<T(t)fi < 0 < ^CT,+,
0 {ad(H2(ffi) U afifitU><7(i))} , sgn(^CTi_) = sgn(<^)+),

<j = 0 resp. a G [—1,1], t G R,

(3.18)

where
Hpa(t) := -d2x + Vi)<7(f,.) on #2(R), t G R. (3.19)

In the special case, where w±(x) = 1 + a?2, Theorem 3.2 first appeared in 
[GSS]. Here, concentrating on that part in its proof that deviates from the one 
given in [GSS], we formulate

Lemma 3.3. Under the hypotheses of Theorem 3.2 we get

d'cr^t^ a?) — ficTji. T 0(w-f-(a?) )h(T!4;(t, a?),
z—>±oo

<7 = 0 resp. a G [—1,1], t G R, (3.20)

where
hcr,±(t,.) G /^((O,±oo)), <7 = 0 resp. a G [—l,l],f G R. (3.21)

Proof. It suffices to consider the case a = S2 = 0 and x —> Too. Then (B.7), 
(3.8) and (3.11) imply

co 1 1

g + d+ft)/ dx'[e2V+ I1” ) + 1] [V2(<, x') - V+] ev+ x’)
<t>0(t,x) = -V}------------- x-----------------rj,

1 - d+(t) f dx'[e2V+ <-’'>- 1] [V2(t, x') - V+] ev? ’’Mt, x')
X

(t,z)GR2, (3.22)

where
3. r

d+(t) := e2V+t/2Vfi, t G R. (3.23)

Since i
|ev+ x 'ip2to(t,xl'')\ < C(tfi x1 > 0, t G R,

4 (3.24)
|e2V+2(^)±1|<2; x<xly

OQ
the integral terms in (3.22) behave like J ... = o(l) as x —> Too and hence we

X
may expand the denominator in (3.22) to obtain

oo
Mt.x) = -0fl+2d+(<) / dx'e^h^O^t ') _v ,x')

x-^-oo L J ’
X

+ 0(w+(a?) 2)}, t G R. (3.25)
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Here we also used the monotonicity of w^. in order to arrive at the estimate

2

X
dx' e2'/+2<1-1') - 1 |V2(l/)-V+|e^'O*')

oo

c(f) [ dx,w+(x'y-1w+(jx')\V2(t,x') — V+\

X

~ co ~

< c(t)2w+(z)~2 / dx'w+(x') |V2(f, X1) — V+|

_x

Finally we use the elementary fact that

f G £1((2?, oo)), R G R implies ga e L\(R, oo)),

(3.26)

(3.27)

where

ga{x) := i
X

Then (3.25) together with £ L1

dx'e01^ x f(x') for some a > 0. (3.28)

oo

/ dx'e2Vx IV2(i, s') - V+| ev+*'  |</.2,o(i;x')l

(3-29)

< D(t)w+(x)~2 J dx'*? v+ l'x~x 'wq-(s') lUt^.s') — V+|, i6R,s>0, 
X

and (3.27) proves (3.20).
Given Lemma 3.3, one can now prove Theorem 3.2 in analogy to Theorem 

7.14 of [GSS].

Remark 3.4. A comparison of (3.17) and (3.18) shows that, whenever sgn(<^(Ti_) 
sgn(dcr)+) then £2 = 0 and fi)<7 := inf [<7(771^)] > 0 or f2 > 0 and = 0.

Hence either /f2(t) is critical and 77i;Cr(t) is subcritical or vice versa. In par­
ticular, Hi>cr(t) is critical for a G ( — 1,1), £2 > 0. Only in the case where 
sgn(^CTi_) = sgn(^CTi+) one gets £2 = fi)<7 > 0 and thus both H-> and are 
subcritical iff cr = ±1.

Remark 3.5. If Vj,j = 1,2 in Lemma 2.12 actually satisfy (H.3.1) (i) then (f) 
satisfies (H.3.1) (ii) and we obtain

dx' [V2(t x') — Vi(t, z')] , t G R, (3.30)
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±oo
(i)(t,x) = J dx'[V2(t,x') — Vi(f,a?')], (fix) G 1R2, (3.31)

X

in addition to (2.39).

4. Soliton solutions of the mKdV-equation
In this section we review the derivation of soliton solutions of the mKdV- 

equation. Originally, these solutions have been constructed implicitly in [Ji-Mi] 
(as a by-product of their study of the modified Kadomtsev-Petviashvili equation) 
using vertex operator techniques and explictly in [Gro] on the basis of inverse 
scattering methods. Here we follow [GSS] exploiting the commutation approach 
outlined in Appendix A.

We start with an IV-soliton solution V2(fix) of the KdV-equation (2.1) given 
by the familar formula [Hir], [Zak]

V2(t,x) = V00-2a2ln{det[l + C2)N)±(f,rr)]} , N G No, (t,x) G 1R2,
(4.1)

V2,± = lim V2(t,x) = Voo > 0, 
x—>±.oo

where Voo is /-independent,

^2,N,±( •̂> 2-) — [c2,±,/,m(G x 1 ’

= (^ + «m)-1C2i±/(0)c2i±im(0)e^^+'t-)(:c+6^z)e±4(^+<^, 

l<t,m<A, AgN, (tj)GR2, (4.2)

c2,±,^(0) >0, 1 < I < N, 0 < Kn < K/V-l < ■ ■ • < Ki, 

for N G N and
C2)o,±(/,^) = 0, (/,z)gR2, (4.3)

for N = 0. Define

H2(t) -=-91+ V2(t,.) on H2(R), t G R, (4.4)

and let f2,±(t, z,x) be the Jost functions associated with _H2(£) (cf. Appendix 
B). Then due to the fact that y2i+ = y2,- = some of the formulas in 
Appendix B simplify. In particular, we have

k(z) : = k±(z) = (z - Voq)2 , Imk(z) > 0, (4.5)

and
(u (t\\ _ f = V^~ «2}£i> N G N,

^ = 0. (4.6)
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As in Section 3 we need to distinguish between K = 0 and 8 > 0.

82 =0:
In this case we necessarily have N > 1, ^2,1 = 0 and hence

Vcx> = K\.

In order to construct J71)o(^) we note that

#2(2) = Ao(t)Ao(t)*,  t G R, 

where
Ao(i) ■'= dx + <^o(G •) on .EZ^R), t G R, 

and
<MM) = /2,±,i(G0,a?)//2,±(G0,a?), (t,x) G R2,

is uniquely defined since £[2(8) is critical (cf. (3.7), (3.8)). Moreover,
1

<^o,± = lim <^o(t, z) = x —>±oo

by (3.17) and (4.7). Thus

0 G ut/(J72(^)), 0 crd(#i)0(Z)), t G R,

by (3.18). Hence

„(/))= <rGff2,o(<))\{0},

_. ( TT (.\\ _ f {^2,^ ~ Ko — = N >2,
M#i,oG))-| 0, 7V = 1; ZGR.

Combining Remark B.6, (B.29) and (4.13), K,o(Z,z) must be a (N — 
solution of the KdV-equation explicitly given by

Vi,o(t,z) = Ko - 2d2 ln{det[l + Cii7V_ii±io(M')]} , N G N, (t.x) 

K,o,± = lim K,o(G x) = Ko,
x —>±oo

where

^1,N —l,±,o(Z, 2^) — [ci,i,0,hTO(C 3')]^rn—2 5

Cl ,±,0,^,m(G X) —
(^1 ± K^Kj ± Km) 2

(«i =F =p ) J
2 < £,m < N, N >2, (t,a?) G R2,

for N > 2 and
Ci,o,o,±(Gz) = 0, (t,x) G R2,

for N = 1. It remains to compute <^o(Ga;). Before doing so we need
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(4.7)

(4-8)

(4.9)

(4-10)

(4.H)

(4-12)

(4-13)

l)-soliton

G R2, 
(4.14)

(4-15)

(4-16)
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Definition 4.1. Assume (H.3.1) (ii). Then a solution of the mKdV-equation 
(2.2) is called an M-soliton solution, M G No iff fi(t, x) is a reflectionless poten­
tial for the Dirac operator Q(t) in (2.7) and Q(t} has M(discrete) eigenvalues 
for some (and hence for all) t G R.

Theorem 4.2 . Assume = 0 and let

— 2dx In \ det 1 Cy n
(4-17)

Fy,(O),± — V<x> —

be the N (resp. N — 1) soliton solutions (4.1) (resp. (4.14)) of the KdV-equation.
By construction, V2 and are related to fio by Miura’s transformation

Xr(0)(M) = <Mt,z)2 + (-ly^o^M), j = 1,2, (V)eR2, (4.18)

and one obtains

fio(t,x) = Tki - dx In {det[l + C2yN ,±(t,x)]/det[l + Ci,7v-i,±,o(C z)]} , 

(M)eR2, (4.19)

*̂o,±  = T«i •

Moreover, fio(t,x) is a (2N — l)-soliton solution of the mKdV-equation. In 
particular, up to an overall sign ambiguity, the solutions (4.19) represent all 
reflectionless potentials of the associated Dirac operator Q(t) in (2.7) under the 
assumption that Q(0) has a zero eigenvalue, i.e., 0 G crd(Q(O)).

For the proof one only needs to combine Remark 2.13, Theorem 3.2, Remark 
3.5, Theorem A.l (vi), (vii) and Remark B.6.

Finally we consider the case

> 0 :
In this case (4.7) turns into

Foo = A‘2,i + k2 = £2 + Ki- (4.20)

Combining Remarks 2.13 and 3.4 we may confine ourselves to the cases a = ±1 
in Theorem 3.2. Writing

H2(t) = A<7(t)A<7(t)* , er = ±1, t G R,
ACT(t) : = dx + .) on hf^R), a = ±1, t G R, (4.21)

we obtain
= lim <h(t,x) - -crVo^, a = ±1, (4.22)
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and

a(H1>a(t)) = a(H2(t)\ a = ±1, (4.23)

CTp(ff1,„W)=<Tp(H2(i)) = ^(2'' = V~“4}£l. ;CT = ±1, iSR

by (3.17) and (3.18). Combining Remark B.6, (B.29) and (4.23), K,<r(G z), cr = 
±1 now must be an IV-soliton solution of the KdV-equation explicitly given by

K,a(M) = Ko - 2d|lndet{[l + C1)7v,±,a(M)]},^ = ±1, N G No,

(Gz)GlR2, (4.24)

VS,<7,± = lim Vi,<t(Gx) = Ko, v = ±1,X—>±OQ

where

,7V,±,<t(G X) — [ci ,±,(7,^,m(G )]^,ni= 1 ’

Cl,±<T,^,m(C K —

(4.25) 

u = ±1, 1 < C,m < N, N G N,(f,z) G R2,

for N > 1 and
Ci,o,±,<7(Gx) = 0, a = ±1, (t,x) e R2, (4.26)

for N = 0. It remains to compute <fa(t,x), a = ±1.

Theorem 4.3 . Assume £2 > 0 and let

X7,(a)(M) = Ko - 2d2 ln{det[l + C/N)±j(<7)(f,a;)]},

j = 1,2, a =±1,AT G N0,(*,z)  G 1R2, (4.27)
Vji, (cr), i Ko &2 + ^1

be the N-soliton solutions (4.1) and (4.24) of the KdV-equation. By construction 
they are related to (f>a by Miura’s transformation

= </>a(t,x)2 + (-l)Ka,z(G^), j = 1,2, (t,z)GlR2, (4.28)

and one obtains

x) = —CTKo — dx ln{det[l + C2,n,±(G 2:)]/ det[1 + Cx^Nt±^(t, a?)]}, 

a = ±1, N G No, (t,x) G 1R2, (4.29)

^<7,± = —^VK, er = ±1.
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Moreover, <f)a(t,x), cj = ±1 is a 2N-soliton solution of the mKdV-equation. In 
particular, up to an overall sign ambiguity, the solutions (4.29) represent all 
reflectionless potentials of the associated Dirac operator Q(t) in (2.7) under the 
assumption that Q(0) has no eigenvalue zero, i.e., 0 crrf(Q(0)).

The proof of Theorem 4.3 is analogous to that of Theorem 4.2. We conclude 
with

Example 4.4. N = 1, <f2 — 0.

Vzft, x) = k2 — [cosh(Kiz + 2k^)]-2, (f, x) G R2,
Voo = «?, C2,±,l(0)2 = 2«1, Ki > 0.

Then
Vi)0(f,^) = K?,

,, 9 (4.31)
<f>o(t, x) = — «q tanh(Kia? + 2/qf); (f,.?) £ R .

5. Periodic solutions of the mKdV-equation
Here we apply Theorem 2.7 in the case where Vfit, x) is periodic with respect 

to x and construct periodic solutions </> of the mKdV-equation.
We start with hypothesis

(H.5.1). Let f E C°°(R2) be real-valued and suppose there is an 
a > 0 s.t. f(t, x + a) = f(t, xfi (f, x) g R2.

Assume that V satisfies (H.5.1) and define in L2(R)

H(t) := -d2 + Vfi,.) on H2(Rfi t G R. (5.1)

Then the Floquet theory sketched in Appendix C applies to H(t), t G R. In 
order to apply Theorem 2.7, we first need to clarify the time-dependence of 
the Floquet (Baker-Akhiezer) functions. Suppose V satisfies (H.5.1) and the 
KdV-equation (2.1). We then define c(t, z, x, x0), s(t, z, x, x0), A(z), m±(z), 
fi±(t, z, Xq), pn(t, x) and "fi±(t, z, x, zq) as in Appendix C replacing V(z) by 
V(t,x). Evidently A(z),m±(z) are independent of (t,xfi) by Theorem 2.2 (i), 
(C.6), C.22) and

fi±(t,z,x0,x0) = 1, (Ax0)gR2, 2 G n+(f,a?o) : = H+\{/i„(t, ,z0)}n6N. (5.2)

Since ip± are normalized by (5.2), they will not satisfy (2.15) (with z = k'2) in 
general. In fact, we have

Lemma 5.2. Suppose V satisfies (H.5.1) and KdV(V) = 0. Then

St(t,z,x,xo) = 2[V(f,z) + 2z]sJ-fi,z,x,x0)
~ [K-(M) + Vx(t,x0)]s(t,z,x,x0') (5.3)
- 2[Vr(t,.r0) + 2z]c(t,z,x,x0), z E C,
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ct(t,z,x,xQ) = 2\V(t,x) + 2z]cx(t.z.x,x0) - Vx(t,x)c(t,z,x,x0)

+ Vx(t,x0)c(t,z,x,x0) (5.4)
+ {Vxx(t,x0) - 2[V(f,zo) + 2z][V(t,x0 - z]}s(t,z,x,x0), z G C, 

<b±,t(t,z,xo') = 2[V(t,x0) + 2z][V(t, x0) - z] - Vxx(t,x0)

+ {2I4(f, xo) ~ 2[V(t, x0) + 2z](f>±(t, z, a?o)}^±(G z,x0),z G n+(f, z0),

ip±,t(i, z,x,x0) = 2[V(t, x) + 2z]-ip±jX(t, z,x,x0)
~{Vx(t,x) - Vx(t,x0) + 2[V(G x0) + 2z](f>±(t,z,xo)}4’±(t,z,x,xo), (5.5)

z G n+(f,a?o); (t,x,x0) G R3.

Proof. Since g := St — Bys satisfies Hg = zg by (2.10), we infer

g(t, z, x, x0) = A(t,z,x0)s(t,z,x,x0) (5.7)

+ B(t, z, x0)c(t, z, x, x0), z G C, (t, x, xq) G R3.

This equation and its ^-derivative taken at x = xq yield

A(t, z,xQ} = -Vx(t, x0), 
o (5.8)

B(t, z, x0) = — 2[V(t, xq) + 2z\ z G C, (t,r)eR2,

since
st(t,z,x0,x0) = stx(t,z,xo,xo) = 0, z G C, (f, x0) G R2, (5.9)

by (C.2). Similarly one proves (5.4). Equations (5.5) and (5.6) then follow from 
the definitions in (C.24), (C.26).

Thus equation (5.6) shows that a certain (f, z, Xq )-dependent multiple of V’-j- 
always satisfies (2.15).

Next we note that the Green’s function G(t,z,x,x') of H(t) (i.e., the integral 
kernel of (H(t) — ^)-1) is given by

G(/.z,x,x') = x>x'( *r  — \ t ■) Z X ,27ojly_|-(y,.2q27,27o >), X X , 
z G n+\u(i7(0))°, Imz > 0, (5.10)

(A° the interior of A C R) where we define ^±(^^5 ^,^0) on the cuts po = 
(-00, Eo], pZ = [#2n-i, E2n], n G I by

X, x, x0 ) := limV’±(t, A + ze, x, x0), A G pE, n G Io, (G x, xo) G R3, (5.11)
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in order to guarantee

^±(U-,*o)  G £2((0,±oo)), z £ n+\a(^(0)), Imz > 0, (f,z0)GR2 (5.12)

(see (C.32) and the paragraph following (C.15)). Introducing

pfifi z, x) := — 2[A(z)2 — 1] 2 G(fi z, x, x), z G C, (f, x) G 1R2, (5.13)

we obtain (see e.g., [Ge-Di])

pxx(fiz,x)p(fiz,x) - (l/2)px(fiz,x)2 - 2[V(fix) - z]p(fiz,x)2 
o (5-14)

= -2[A(z)2-1], zGC.

Taking into account (C.30) and (E.5) we get

p(fiz,x) = s(t,z,x0 + a,x0)VMM, A^o)Vt(At A-'M
= s(fiz,x -fi a,x) = a II [/zn(G ^) — z](a2/n2zr2), z G C, (f, x) G 1R2. (5-15) 

n-GN

Equations (5.14) and (5.15) imply

px(fipn(fix),x)2 = 4[A(pn(t, x))2 - 1], n G N, (/,a?)GlR2, (5.16)

and

/Jm(M = (2n27r2/a3)[A(/in(t, a?))2 - l]z 
{x -1

n [p.m(fi x) — pn(fi x-)](a2/m27T2) > ,n G I, (G^)GlR2. (5.17) 
J

Similarly, using (5.6), (5.15) and (E.ll)

pfit, fin(t,x),x) =

2[V(t,x)-V 2pn{t,x)]px{t, pn(t,x),x), n G 7, (M) G IE2, (5.18) 

and

pn>t(t,x) = 2[V(£,z) + 2pn(t,x)]pntX(t,x) (5.19)

2Eo 2 [^2771 — 1 “F E2m 2/1777(^5 2?)(1 ^7nn)J / /^n,r(A xfi
m&I )

nel, (t,x) G ]R2.

Moreover,
pn(t,x) = E2n-1 = E2n, n G N\/, (fix) G IE2. (5.20) 
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Now we are ready to apply Theorem 2.7. Suppose V2 satisfies (H.5.1) and 
KdV(V2) = 0 and add the index 2 to all quantities defined in (5.1)-(5.20). 
Assuming that

82 •= inf[u(i72(0))] > 0, (5.21)

we need to distinguish the cases 82 = 0 and 82 > 0 (cf. Remark 2.9). Similar to 
Section 3 we first start with the case

82 = 0 (i.e., 772(f) is critical, t G R):
In this case m±(0) = 1 and the Floquet solutions ip2,±(t, 0, z, ^0) of 772(t) are 
linearly dependent and periodic with respect to x with period a > 0 (see (C.27) 
and (C.30)). Since the second linearly independent solution of 772(t)i/»2(t) = 0 
is of the type

xp2,i(t, x) + p2>2(/,a?), P2,j(G X + a) = p2,j(t,x), j = 1,2, (t, x) G R2, (5.22)

(see (C.32)) we infer that 772(t) is critical [Ge-Zh]. Thus there exists a unique, 
positive distributional solution 0 < i/»2)0 G C°°(R2) of

H2W2M = 0, 0 < ^(A ■) G Z/°°(R), 
/ x x / 7 (5.23)^2,0^, x) = ^2,±(t,0,x,xo), (t,x) G R2,

satisfying the time-evolution (5.6). According to (2.29) we then define

<t>o(t,x) := X/V^XM'), (A^)GR2. (5.24)

Next we turn to the case

82 > 0 (i.e., 772(f) is subcritical, t G R):
In this case i72(Z) is subcritical [Ge-Zh] and Floquet theory (cf. (C.31)) guaran­
tees the existence of two linearly independent, positive distributional solutions 
0 < ^2,± G C°°(R2) of

= 0. 0 < V>2,±(i, ■) e £“e(R).

</>2,±(i,z) = lim</>2,±(i, it, x, x0) 
ej.0

satisfying the time-evolution (5.6). In particular, one has (cf. (C.32))

>/>2,±(M) = 0(6^“)
x—>±oo

for some k > 0. In accordance with (2.29) we now define

Xi.aXX :=(1/2)(1 - a)^2-(.t,x) + (1/2)(1 + a)^2,+ (t,x), 

a G [—1,1], (i, x) G R2,

(where a is /-independent) and

(/>a(t,x) := ^2,a,x(t.x)l^2,a(tyX)y (7 G [-1,1], X x) G R2.

By (C.32), only a = ±1 yield spatially periodic functions <Xi in (5.28) and 
hence we restrict ourselves to these cases for the rest of this section. We have

(5.25)

(5.26)

(5.27)

(5.28)
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Theorem 5.3. [GSS] Assume V2 satisfies (H.5.1) and KdV(V2) = 0. Moreover, 
assume = inf[^(^(O))] > 0- Then <7 = 0,±l (defined in (5.24) resp. 
(5.28)) and V1)<7 = cr = 0, ±1 satisfy (H.5.1) and

mKdV(fia) = 0i KdV(Vi>a) = 0, a = 0, ±1. (5.29)

(Here the fact that ^2,0, ^2,± satisfy the time-evolution (5.6) instead of (2.15) 
with k = 0 is irrelevant since by (5.6) a certain time-dependent multiple of 
^2,0, (which drops out in the definitions (5.24), (5.28) for fio,fi±i) does 
satisfy (2.15) with k = 0.)

Moreover, formulas (C.9), (F.10), (G.4) and (G.7) yield

Theorem 5.4. Assume V2 satisfies (H.5.1) and KdV(V2) = 0.
(i) If 82 = 0 then defined in (5.24), reads

fio(t,x) = (l/2)0x In n p2,n(t,x)(a2 /n27T2) 
nEl

(t, x) G ]R2. (5.30)

In the special case of finite genus g < 00, (5.30) simplifies to

fio(t,x) = (l/2)0x In n p2>n(t,x) n£I (t, x) G R2. (5.31)

(ii) If £2 >0 then defined in (5.28), read

Mt,x)= ±B(0)^ +(l/2)cfi n P2,n{t,xfia2/n27T2) 
nEl

( 1 -1
x< n P2,n(t, x)(a2/n27T2) > ,(t,x)GlR2.

I I
(5.32)

In the special case of finite genus g < oo, (5.32) becomes

fi±i(t,x) = < ±Bo(0)2 + (l/2)dr II p2,n(t,x) >
n£l J

{
x -1

II p2,n(t,x) > 
nEl I (t, x) G H^2. (5.33)

In (5.30)-(5.33), the pn’s satisfy the first order systems (5.17) and (5.19).

We conclude with the

Example 5.5. g = 1, £2=0.

V2(t, x) = 2P(x + 6P(cu)t + co1) + P(cP), (t, x) G 1R2,
Eo = 0, E. = P(uo) - P(co + co'), E2 = P(cu) - P(co’). ^’34)
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Then
( 1 AA+6W-M

, x) - 2 p^x + + _ p(^) ’ (t,x) G ]R2, (5.35)

where P(-) := P(-,lj,lj') denotes the WeierstraB P-function with halfperiods 
cj,lj'(l<; > 0, —uE > 0).

Formulas (5.31) and (5.33) may be expressed in terms of Riemann’s theta 
function associated with the hyperelliptic Riemann surface P. similar to the Its- 
Matveev formula in the KdV-case [It-Ma]. We shall report on that elsewhere. 
An approach to periodic solutions for the AKNS-system similar in spirit to 
Theorem 5.4 can be found in [De-Jo].

Appendix A. Commutation formulas
We recall some of the abstract results based on commutation needed at various 

places in Sections 2-5.
Throughout this appendix let Th be a separable, complex Hilbert space, A a 

densely defined, closed linear operator in Th and introduce

E\ := A*A,  H2 := AA*  (A.l)

in Th and
Q ■■= ( ° A ) on T>(A) ® (A.2)

\ jTL U /

in P ® ht. We state

Theorem A.l. [Dei] (see also [GSS])

(i)
(n)

(iii)

u(FG)\{0} = <t(P2)\{0}. (A.3)
#ipi = PiAi, Pi > 0, Ai G P(Pi)
implies]Aipi) E D(H2), P2(AAi) = Pi(AAi), (A.4)

H2ip2 = E2if2, E2 > 0,^2 G D{H2'}
implies (A*A 2) G P(Pi), H‘i(A*A 2) = E2]A^2). (A.5)

A*A|i<er(A) J- 1S unitarily equivalent to AA*  Ikb^a*) 1 •

(iv) Q2 = (A 2 ) = Hi ® H2. (A.6)
y u ±Z2 j

(v)
=-<5, <73 := Q _°A. (A.7)

i.e., the spectrum &]Q) of Q is symmetric with respect to zero on the 
real line.

(vi) =E^, E. >0, Ai GP(Fi)
impJie. (±£i-A40i) eW),

= ±Ef2l±Efi2A^) <A'8’

and



160 On the modified Korteweg-deVries equation

H2V2 — ^21^2, E2 > 0, E
implies (±£E/2^’>M eIW), q(±E~^A^\

\ ^2 / \ tA J
= ±E21/2 ( ±E2 1/2A*̂ 2 (A.9)

\ V»2 /
(vii) 0 6 <rp(Q) iff 0 € ^pilii) or 0 € ep(!ii ;. (A.10)

, ln_ vi _ ( <Hi - z2)-1(vin) (Q z) -\A(H1_z2y-x z^-z2)-1 J’

z2 (A.11)

Appendix B. Spectral and scattering properties for one-dimen­
sional Schrodinger and Dirac operators

We review basic spectral and scattering properties for one-dimensional Schro­
dinger operators needed in Sections 3 and 4.
We introduce hypothesis

(H.B.l).
(i) V E £°°(R) real-valued,

lim V(x) = V± E R, 0 < V- < V+,X—>±oo
±oo

± f dx(l + |a?|)|V(a?) — V±| < oo. 
o

(ii) fi, (f)' E £°°(R) real-valued,
lim fi(x) = E R, 0 < (f)2_ < fi2., X—>±oo '
ioo

± J dx(fi + |z|) [|<^(a?) - </)±\ + |<^(z)|] < oo. 
o

Assuming that V, (/) satisfy (H.B.l) (i) resp. (H.B.l) (ii) we define in Z,2(R)

d2
# + V ontf2(R) (B.l)dxA

9 C R, m E N the standard Sobolev spaces) and in Z,2(R) ® C2

Concerning spectral properties of H and Q we state

Theorem B.2. [Co-Ka], [Da-Si], [Ges 2], [Ru-Bo]
(i) Assume (H.B.l) (i). Then

<Tess(tf) = °ac(H) = [V_,oo), asc(H) = 0. (B.3)
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Moreover, H has simple spectrum in (V_, V+) (iff V_ < V+, ifV_ = V+ 
delete this assertion) and spectral multiplicity two in (Vq., oo). In addi­
tion, H has finitely many simple eigenvalues in ( — 00, V_) and there are 
no eigenvalues embedded into the essential spectrum and no threshold 
eigenvalues, i.e., 

up(H)n[P_,oo) = 0. (B.4)

(ii) Assume (H.B.l) (ii). Then

^ess(Q) = ^ac(Q) = (~OO, -1</>_ |] U [|</>_|,oo), Crsc(Q) = 0. (B.5)

Moreover, Q has simple spectrum in ( —U (\</>- |, |</>+|) (iff 
<P- < <P+, if (ff = <f>2+ delete this assertion) and spectral multiplicity two 
in ( — oo,—|<^+|) U (|</>+|,oo). In addition, Q has finitely many, simple 
eigenvalues in ( —|</>-|), symmetrically placed with respect to zero 
and there are no eigenvalues embedded into the essential spectrum and 
no threshold eigenvalues, i.e.,

ap(Q) n {(-oo, -IX1] U [|X1, oo)} = 0. (B.6)

Finally, (A.6)-(A.ll) hold for our concrete realization Q.
(Here cr(.), cress(-), crac(-), Crsc(-), ap(-) an(l crd(-) denote the spectrum, essential, 
absolutely continuous, singularly continuous, point and discrete spectrum re­
spectively.)

Part (i) of this theorem follows e.g. from Jost function techniques (see e.g. 
[Ges 2]) with

±oo
/±(*,z)  = e±lk±x - y dx'kif.1 sin[fc±(a? - a?')] XX) - V±] f±(z,x'), 

X
k±(z) := (z - V±)1/2, Imk±(z) >0, z £ C,x 6 R, (B.7)

the Jost functions associated with H and hence

= zf±, z e C, (B.8)

in the sense of distributions. The eigenvalues A^ of H in (—oo,V_) are then 
determined by

W-(M/+(M) = o. (B.9)
Part (ii) is a consequence of part (i) above and of Theorem A.l (iv)-(viii). 
Next we turn to scattering theory for H and Q. We start with H.
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Theorem B.3. [Co-Ka], [Da-Si], [Ges 2], [Ru-Bo] Assume (H.B.l) (i). Then 
the unitary scattering matrix Sh(X) in C2 for the triple (H, Ho + V-, Hq + V+), 

d2
Ho = —°n H2CR[ reads dxz

(i) A > V+ :
c (\\ — ( Rh(X[\ fB IO')
Sh^-{r^X) Th(X[ ) '

where

TH(X) = 2i [t+(A)M</2/W (/-(A), /+(A)), 

Rpx) = -W(<Z_(A),/+(A))/W(/_(A), /+(A)), 

7JrH(A) = -TV(/_(A), S+(A))/W(f-W, /+W), 

MA) = (A - Et)1/2 > 0, A > V+.

(ii) V_ < A < V+ (ifV_ < V+) :

MA) = -WMMA))/W-(A),MA)). (B.12)

Here f±(X,x) are given by (B.7) and g±(X,x[ are defined by

±oo
g±(z, x) = e^lk±x — y dx'k^.1 sin [fc±(z — a?')] [V(a?/) — V±] g±(z, x'fi

X

k±(z) = (z — V±) 2, Imk±(^) >0, z £ C, x 6 R. (B.13)

Next we turn to Q and assume (H.B.l) (ii). Then the unitary scattering ma­

trix Sq(E} in C2 for the triple (Q, Q0)-, Qo,+), Qo,± :=

on i?1(R) ® C2 reads

d
\ dx

(i) \E\> |<M

)~\R^E[ TQ(E[p (B.14)

where

Tq(E) = {2i[k+(E2)k_(.E2y /\E\}w ^nE), 4'+(£))-1,

RryE) = -W ($_(£). «■+(£)) /W' (<!/_(£), <J/+(E)), (B. 15)

^(B) = -W($_(£),4+(£;))/lV(<I-_(£),>)/+(£)), |E|> |^+|.
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(ii) |<M<|£| <1^+1 (if 1^-1 < |.M:

Sq(E) = -WfiJE), «'+(E))/lV«'_(£), «■+(£)). (B.16)

Here IF ((J), (')):= ad -be,

,T, /p A _/ *>.±(£.0.  £>I-M,
* ■ 1 *2,±(-.EM  fB17.

/rn . f <>i,±(£,z), E > |^_|,

Q*±(E)  = EV±(E), Q$±(E) = E$±(E\ \E\ > |<M, (B.18)

Z2 = z, z G C\{0}, x E R.

±(z,z), 9j,±(zjx) are the Jost functions associated with

H, : = --E + V) on ff2(R), j = 1,2,

V/a?) : = <Xz)2 + (-l)V(z), j = 1,2, x E R,
(B.20)

A := + <t> on (B.21)

such that
H{ = A*A,  H2 = AA*,  Q = (B.22)

Since is assumed to satisfy (H.B.l) (ii) we obtain

Vj,± •= hm Vjtx) = <f>±-
X—>±oo

(B.23)
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This in turn yields (cf. also (A.4), (A.5))

f2,±(z,x) = (±ik±(z) +

fi,±(z,x) = (Tik±(z) + /2,±O))O), (B.24)
z 6 C, x £ R.

Moreover, applying the elementary identity

W(Af(z), Ag(z)) = zW(f(z),g(z)), z e C, (B.25)

where f(z,xfi g(z,x) are any distributional solutions of Hi'ipi(z) = zipi(zfi we 
infer

Theorem B.4. [GSS] Assume </> satisfies (H.B.l) (ii) and denote by SfiX) : = 
Sri- (A) the scattering matrix associated with (Hj, Hf + Hq + </>+), j = 1, 2. 
Then

(i) A > y+ :

Fi(A) = + <£_] [^+(A) + ^+]-1T2(A),

7?f(A) = (tfc_(A) + ^_][-ifc_(A) + ^_]-‘7^(A), (B.26)

7J[(A) = HMA) + f>+P+W + t+yRzW-

(ii) ^_ < A < <g (if^_ < <t>2+) :

Si(A) = + <£_][-£&_ (A) + <^_]-IS2(A). (B.27)

In addition, let Ar := Zj2 — f. c.|_/ > 0, denote the nonzero eigenvalues of 17, 
and let

•= IIA,±(At,.)ll2“2. i = 1,2, (B.28)

be the associated norming constants. Then

ci,±,t = [(0± ± K±,«)W± T K±,r)-1]12 ci,±,i- (B.29)

Finally, taking into account the simple identities

W ($_(£),«■+(£)) = W (/^(S2),/^^2)) |Er1, 

w($_(£), $+(£)) = w(yyE2'l,g1,+(E2y) 

ir($_(£),'I>+(B)) = lV(J1,_(B2),/1,+(£2))|£'r1. (B.30)

IV(<M£), «■+(£)) = W (gi,_(E2),gi,+(E2)) ^r1,

E> loM,

and similarly for E < — |<A_. |, we obtain
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Theorem B.5. [GSS] Assume (H.B.l) (ii) and let Sq(E) be the scattering 
matrix introduced in (B.14)-(B.16). Then

Sq(E) = { Si(E2),
S2(E2),

(B.31)

Remark B.6. (B.26 and (B.31) prove, in particular, that if one of Vi,V2,</> 
is a reflectionless potential (i.e., if one of R^r^(A), vanishes
identically) then all three are reflectionless.

Appendix C. Floquet theory
We review some of the basic results in the theory of periodic, one-dimensional 

Schrodinger and Dirac operators. General references for this material are e.g. 
[Eas], [Lev], [Le-Sa], [Ma-Wi], [Mar], [Mc-Tr 1,2], [NMPZ], [RS III], 
Starting with Schrodinger operators we introduce 

(H.C.l). Suppose V E C°(R) is real-valued and periodic with period a > 0 
and define in L2(R)

J2
H:=-— + Voni?2(R). (C.l)

d;rE

A fundamental system of distributional solutions for = zi[g z E C is given 
by solutions of the Volterra integral equations.

c{z, x, xq) = cosh ^■\/—z(x — a?o)]
X

+ / dx'(yZ—z)-1 sinh [y/^z(x — a?')] V(x')c(z, x', a?o),

X0

s(z, x,x0) = (y/^—z)-1 sinh [y/^z(x — a?0)]
X

+ y da?(\/—z)-1 sinh [y/^(x — a?)] V^x'^s^z, x'xq ), 

x0

z EC, x E R.

(C.2)

The corresponding fundamental matrix $(z, x,xq) reads (/ =
dx

\ I , a^, xo) s(a?, a?o) A cr/o r- <0 (C*
§{z,x,x^ := < ) E SL(2,C), (C.3)

$(z, a?o, a?o) = 1, Z E C,
$(z,x,xo') = $(.?, a?, aq )$(.?, aq , a?0), z E C; a?,a?0,a?i 6 R, 

(C.4)
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and the discriminant (Floquet determinant) of H is defined by

Z V/.O J
= [c(z,z0 + a,x0) 4- s'(z,x0 + a,z0)] /2, z 6 C.

We note
4-Mz) = 0, zGC. (C.6)
dx§

One has the product representation

A(^)2 - 1 = a2(E0 - z} n [(E2„-i - zfiE2n - z)a4 /n4r4] ,zGC,
nGN (C.7)

-oo<E0<E1<E2<E3<E4<...,

where Eq, E4n-i, E4n,n E N are the zeroes of A(z) —1 and E4n+i, E4ny2, n E N, 
are the zeroes of A(z) + 1 counting multiplicities.
The spectrum (fiFF) of H is then characterized by

Theorem C.2. Assume (H.C.l). Then the spectrum of H is purely absolutely 
continuous of multiplicity two and has a band structure of the type

vUT) = = {A e R|A(A)| < 1} = |J <T„,
riGN

^:= [-E2(„-i),£2„-i], n£N, (C'8)

ap(H) = = 0.

Next we introduce the Riemann surface R associated with

R^z)1!2 : = [A(.z)2 — l]1/2 resp.
fi(?)1/! : = [(Bo -z) n (B2„-l -z)(B2n-z)(a4/n47r4)j5. <C'9)

n(E J

Denoting

( w \ ( (E2n_^E2nfi E2n_x < E2n zrimA
po = (-oo,Eo), pn := „ ,neK (C.10)

I vJ, -&2n-l = E2n

we collect the spectral gaps of H in

pH :=R\<7(ff)= J p„, (C.ll)
n-GZo

where Iq := I U {0}, I C N indexes the open spectral gaps of H, i.e., those pn’s 
such that pn 0 iff n E Io. Then R is realized as a branched Riemann surface 
in the canonical manner: Form two copies II4- of the cut plane

n := <C\pff (C.12)
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and paste them together such that the upper rims of the upper sheet 11+ are 
connected with the lower rims of the lower sheet II_ and vice versa. The genus 
g of R is then determined by

g = card (I) (0 < g < oo). (C.13)

If g = oo, 77. is punctured at oo and represents a noncompact Riemann surface. 
If g < oo one adds the point {oo} to R and obtains a compact (hyp er elliptic) 
Riemann surface. Let

B-.= {EQ,E2n^,E2n, nEl} (C.14)

then the set of branch points of R is given by B if g = oo and by B U {oo} if 
g < oo. Any point P oo of R is represented by

P ~ (z, R(z)1/2^ ,zeC, (C.15)

where z denotes the projection of P onto C and the value of R^z)1!2 (for P 6 
R\B) indicates on which sheet P is lying on. The upper sheet 11+ is characterized 
by the fact that we define R(z)1/2 and R(z)1/2 to be negative (resp. positive) 
on the upper rim (resp. lower rim) of the cut po = ( —oo,Eq) and analytically 
continue on 11+ (the signs of R^z)1!2, Rjz)1/2 on II_ are then just reversed).

The monodromy matrix M(z,xq) is defined by

M(z, x0) := $(z, r0 + a, x0) 6 SL(2, C), z 6 C, (C.16)

and hence

det[Af(z, xq )] = 1, Tr[M(z, .To)] = 2A(z), z G C, (C.17)

and
$(z, x + a, xq) = M(z, x)$(z, x, xq ), z 6 C, (C.18)

by (C.3)-(C.5). The so called Floquet multipliers m±(z), the eigenvalues of 
M(z,xq), are then solutions of

m2 - 2A(z)m + 1 = 0, z E C. (C. 19)

This yields an analytic map

m :R~*  Coo, m(P) = A(z)+R(z)1/2, P = (z,R(z)^2) (C.20)

(Cqo := C U {oo}, the one point compactification of C, homeomorphic to S2) 
and hence m±(z) are given by

m±(z) = f\(z) ± [A(.z)2 — l]1/2, z E 11+- (C.21)



168 On the modified Korteweg-deVries equation

(C.22)

(C.23)

(C.24)

(C.25)

We have
-—rn±(z') = 0, z G lip, 
dx$

m^z^m-^z} = 1, m+(gz) + m-(z') = 2A(z), z E lip

and

W,*o)  ( T \ ) = ™±(*)  ( rn\Y zE n+(x0),
\ ’rrtfA XOJ J \+±\-^,3'07 J

<^>±(^, ^o) := [m±(z) - c(z, x0 + a, z0)] s(z, x0 + a, a?0)-1,

z 6 n+(z0) := n+\{/in(z0)}nGN,

where (J,n(xo) are the zeroes of s(z, xq + a, z0), i.e.,

s(t-tn(xofi x0 + a, z0) = 0, n 6 N.

The Floquet solutions (resp. Baker-Akhiezer functions) of H are then defined 
by

fi±(z, x, a?0) := c(z, x, x0) + fi±(z, x0)s(z, x, x0), z 6 n+(x0), x,x0 6 R. (C.26)

They satisfy

i/>±(z,x + a, xfi) = m±(z')fi±(z, x,xofi z E n+(a?o), x, x0 E R, (C.27)

by (C.23). Moreover, we have

V’ilX ^o, zo) = 1, z E C, x0 E R, (C.28)

i/>+(A, x, a?0) = V’-(A ^0), A 6 cr(77), z,z0ER, (C.29)

(C.30)

(C.31)

W (V’-(^),-0+(^)) = [m+(r) - m_(z)]s(z, x0 + a,a?0) 1 

= 2,R(z)1/2s(z, x0 + a, z0)-1, z E fl+(a'o),

and
Hfi>±(z, x, a?0) = zip±(z, x, xfi), z E n+(a?0), a?,a?o€R,

in the sense of distributions. In particular, (C.30) shows that ip^(z,x,xo) and 
ip+^z, x, a?o) are linearly dependent precisely at the band edges, i.e., at the branch 
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points in B. Moreover, one can show that Hi[) = X'lpyX E R has two linearly 
independent solutions of the type

A(A) >1 (m±(A) = e±Ka, «GR\{0}): eKXP1(x\ e~KXp2(x),

A(A) <-l (m±(A) = -e4^, k 6 R\{0}) : eKXpi(x), e—xp2(x\
A(A) = 1 (m±(A) = 1) :

Pi(z), p2(x) if c'(X,x0 + a,x0) = 0 = s(A,a,'O + a,a?0),

pi(a?),a?pi(a?) + p2(x) if c'(A,a?0 + a,a?0) 0 or s(A,.r0 + a,x0) 0,
A(A) =-l (m±(A) = -1) :

eZ7rr/api(a?), ez7rx^(l p2(x) if c'(A, x0 + a, a?0) = 0 = s(A, x0 + a, a?0),

e'7rx'/ap1(a?), eZ7r:c/a[zpi(:r) + p2(E)] if c(X,x0 + a,a?0) 0

or s(A,a?0 + a,x0) 0,
(C.32)

where pj(x + a) = pj(x), x 6 R, j = 1,2.
Finally we briefly discuss periodic Dirac operators. We introduce

(H.C.3). Suppose </>, </>' 6 C°(R) are real-valued and periodic with period a > 0.
Assuming (H.C.3) we define in Z2(R)

A : = 4- +</) on ^(R), 
ax

H, : = AtA = -XX + V1, H2 := AA*  =-XL + V2, (C'33)
axz axz

Vj(x) = <^(a?)2 + (-i)V(a), ; = D2, x e R,

and
qW. A) on-ff’WSC2 (C.34)

in Z2(R)®C2. Denoting by Cj(z, x, x0), s-j(z,x,xo) the fundamental system 
(C.2) for j = 1,2, a fundamental matrix $q(F?, x, a?o) for Q is defined by

/ci(A,a?,a?0) - ^(a?o)si(A,a?,a?o) Esi(A,a?,z0) \ F n
Q ,;E’‘C0 \ E‘~’[A(ci - ^(a?o).Si](A,a?,a?o) (As2 )(A, x, x0) y’ ’

z Z-(A\s2)(A,a:,Xo) -E-1[A*(c 2 + ^(^o)-S2)](A,a?,a:o)\
Q Es2(A, x, ,r0) c2(A, a?, a?0) + <^(^o)-S2(A, a?, a?0) /

E < 0,

$q(E, xq,xo) = 1, E E R; A = E2, x,x0 E R.
(C.35)

The discriminant Aq of Q is then defined by

Aq(E) = 2-xTt[^q(E,xq +a, a?0)], E E R\{0}, (C.36)
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and both, (C.35) and (C.36) extend to all Z G C by analytic continuation. De­
noting the discriminant and fundamental matrix of Hj by Aj(z) and $j(z, x, xq ), 
j = 1,2 we infer that

c2(z,x,x0),
s2(z,x,x0),

(C 37) 
cfiz,x,x0) = A*{z -1^(zo)c2(z,z,zo) - [1 - z"1 (ffixQ)2]s2(z, x, a?o)},

51 (z, x, x0) = A*{^ -1c2(^, x,x0) + z~1</)(x0)s2(z, x, a?o)}; z G C\{0},

are satisfying

Hjcfiz) = zcfiz), HjSj(z>) = zsfiz), j = 1,2, z G C\{0}, (C.38)

and
4j(z,t0.x0) = 1, ,'eC\{0}. (C.39)

Thus (C.5) and (C.36) together with (A.3) and (C.8) (or Theorem A.l (iii)) 
imply

Theorem C.4. [GSS] Assume (H.C.3). Then Hi and H2 are isospectral

<t(^1) = <t(^2) (CAO)

and Theorem C.2 applies. Moreover,

&Q(Z) = &!«) = A2(0, Z2 = z, z G C. (C.41)

Finally, Theorem A.l and C.2 combined yield

Theorem C.5. Assume (H.C.3). Then the spectrum <r(Q) of Q is purely 
absolutely continuous, symmetric with respect to zero and of multiplicity two

T(Q) = <Tae(e) = {£eR||AQ(£)|<l}= U
nGZ\{0}

E_n = -E„.-6N, (Q42)

ap(Q) = ^sc(Q) = 0

with En, n G No,jFo > 0 the zeroes of A(^) ± 1, where A(z) := Aj(^), z G C 
(cf. (C.41) and (C.7)).

Appendix D. (Anti) periodic, Dirichlet, and Neumann spectra, 
Borg’s theorem, FIT-formula

d2
Here we first consider the operator------ - + V on the periodicity interval

(xo,xq + a) with various boundary conditions at xo,xq + a and then discuss 
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Borg’s theorem and the FIT-formula. In addition to the general references 
quoted at the beginning of Appendix C we refer to [Po-Tr],

Throughout this appendix we shall assume

(H.D.l). V £ Ca°°(R) real-valued.
(Here C£°(R) denotes the C,o°(R)-functions of period a > 0.)
Introducing Hp in L2((xo,xo + a)) with periodic boundary conditions by

©(TC) : = {» 6 H2((.x0,x0 + a)) | s((i0)+)
= j(((a:0 + a)_), g'((x0 )+) = j'((a:o +a)_)}

one obtains
= (Eo, J?4n}„eN- (D.2)

Similarly, HAP in _L2((z0, xo + a)) with antiperiodic boundary conditions defined 
by

V(Hap) ■. = {<? e H\(x0,xa + a))| <?(Cr0)+) '

= —»(Oo + a)_), j'((a:o)+) = ~g'((xa + a)-)}

has spectrum
= {E4n+1 , ^4n+2}neN, (0.4)

where En, n 6 No are given by (C.7). The corresponding Dirichlet and Neumann 
operators HD and HN in Z2((xo, xd + a)) are then given by

HD ■ = —— + V
dx2 ’ (D.5)

D(#D) : = {g G H2((x0,x0 + a)) | ^((a?0)+) = 0 = tf((z0 + a)-)} 

with simple spectrum

= {/ln(z0)}nGN, 6 [E2n-1, E2n], Tl 6 N, (D.6)

and

d2Hn . = _^_ + v
dx2^ ’ (D.7)

T)(Hn) : = {g E H2((x0,x0 + a)) | ^'((a?0)+) = 0 = g'((x0 + a)_)} 

with simple spectrum

(j(HN) = {Mn(x0)}nGNo , Vq(xq)<Eq, Vn(xQ) 6 [E2n-1 , ^2n], Tl 6 N. (D.8)
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Denoting the zeroes of y-A(^) by 
dz

{An } n(EN (D.9)

one obtains

-oo < i/0(s0) < Eo < Ei < /ii(s0), i/i(s0), Ai < E2 < E3 < /z2(s0), i/2(s0), 
A2 < E4 < E5 < ... ,

(D.10)

r0 + a
r- 7?. 7T 1 /*

* E( 2n \ =------ 1------- / dxV(x') + 0(n-3), (D.ll)V \2n-1J n-^ca a 2nn J
X0

X 0
V7zn(Ao), Ms0), An = — +-i- I dxV(x) + 0(n~3) (D.12)

n—co a Zmr J
Xo

and for the asymptotic widths of gaps [Hoc 1]

|E2n-E2n-i| = 0(n-p) for all p > 0. (D.13)n—>00

We also note the formulas

s(z,x0 + a,x0) = a H [/sn(s0) ~ ^](a2/n27r2), z E C, (D.14) nGN

c'(z, x0 + a, So) = a[z/o(^o) - II [i/n(x0) - z](a2/n27r2), z E C, (D.15) nGN

^-A(z) = -(a2/2) n [Xn-z](a2/n27r2), z E C, (D.16)
az nGN

—s(z,x0 + a,So) = az
00

— a (a2/m27r2) H [pn(x0) — 2r](a2/n27r2), z E C, (D.17) 
LnGN
m~1

d
3-s(/in(s0),s0 + a,x0) = 
az

-(a3/n27T2) n [/im(s0) - /in(s0)](a2/m27T2), n E N. 
mGN m^n

(D.18)
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The normalized Dirichlet gn(x,xo) and Neumann hn(a?,a?o) eigenfunctions of 
HD and HN are then given by

gn(x,x0) = c„(x0)s(/dn(x0),x,x0), n £ N, x £ R, (D.19)

hn(z,zo) = cr7(zo)c(z/n(zo),z,zo), n £ No, x £ R, (D.20)

with the norming constants

x0+a

[Cn(Xo)]~2 ■’ = / dxs(^n(x0),X,X0)2
Z (D-21)

= s'(nn(x0\x0 + a,x0)~s(fin(x0\x0 + a,xo), n £ N. 
az

x0 + a

[c^(a?0)]-2 ’■ = / dxc(yn(x0),x,x0)2
xJ0 (D.22)

= -c(z/n(a?o),^o + a,xo)-~c'(vn(xo),xo + a,x0), n £ No. 
az

Remark D.2. In addition to (C.7) one also has the formulas

A(z)-1 = a2(£0-z) n (£<„_!-z)(£4n-^)[a4/(2n)47r4], 2 e C, (D.23) 
nGN

A(z) + 1 = n (£,„+!-2)(£ln-2)[a4/(2n +1)4%4], zee, (D.24) 
nGN0

which together with
A(A) = cosh(|A|1/2a) (D.25)A J. — co

prove that A(z) is determined by a{Hp) or by a(HAP) alone.
At a Dirichlet eigenvalue we have

s(/zn(zo),zo + a,zo) = 0, n £ N, (D.26)

and hence

c(A* n(zo),zo + a,x0) = s'(fin(x0\x0 + a,a?0)-1, ri £ N, (D.27) 

since W(c(z), s(z)) = 1.
Given a fixed potential Vo satisfying (H.D.l), we define the isospectral manifold 
I(V0) of Vo by

W) := {V £ Cn^)l^n(V) = En(V0\ n £ No} ■ (D.28)

Borg’s theorem then reads
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Theorem D.3. [Bor] The map

1(VO) 9 V {p.n(xa), c”(^)}neI>i (D.29)

is injective, or equivalently, by (D.14), (D.21), the map

I(Vo) 9 V —> {hn(xofi s'(pn(xofixo + a,z0)}neN (D.30) 

is injective.

Remark D.4. Actually, s'(pn(xofixo + a,x0] is determined from A(//n(zo)) 
up to a sign ambiguity since (C.5) and (D.27) yield

2A(/in(z0)) = s'(pn(x0),x0 + a,a?o)-1 + s'(pn(xofixo + a, x0), n E N, (D.31) 

and thus

s'(pn(xofixo + a,x0) = A(/in(Ao)) ± |A(/in(Ao))2 - 1|1/2, n G N. (D.32)

It is precisely this sign ambiguity that is fixed by the norming constants c^(x0) 
since

s'(pn(xofixo + a,x0) =
-1

[cf(zo)]“2, neN (D.33)—s(pn(xofixo + a,x0) 
az

(cf. (D.21)). (However, this sign ambiguity is a genuine one only if /in(a?o) E Pn- 
In fact, if pn[x(fi) E = {^2n-i,-^2n}, this ambiguity vanishes since then 
A(/in(a?0))2 = 1-)

Thus one can rephrase Theorem D.3 as

Theorem D.5. Assume (H.D.l). Then the map

I(Vo) 9 V —> (/zn(a?0), an(zo)IA(/in(a?0))2 - 1|1/2} (D.34)
t ) nEI

is injective, where an(x0) = ± denotes the sign of R(/in(a?0))ly/2 = [A(/in(a?o))2 — 
1]1/2, i-e„

s'(fl„(xQ),xQ + a,xa) = A(^n(a?o)) + <Tn(xi))|A(^„(a:o))2 - 1|1/2, n e I (D.35)

and I C N indexes all open gaps pn, n > 1 of H (i.e., n E I iff pn = 
(^2n-l,^2n)^0)-

Remark D.6 Theorem D.5 implies in particular that the specification of 
a(HD) = {^n(^o)}neN alone is insufficient to determine V uniquely. In ad­
dition one must specify the sheet H+ or H_ on which the point Pn := (/in(z0), 
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R(pn(xo))1//2) € 77 lies (unless /i„(a?o) € &}■ By opening up the cuts pF, n £ I 
on C to circles S^(Vb), the right hand side of (D.34) may be realized as a g- 
dimensional torus (</ — card (7)) Tfi,(Vo)

T’(Vo) = X S‘(Vo), Sift) := £2„] x {+,-}, (D.36)ng I
Pn(V) : = (^n(^o), M-To)) G 5'i(Vo),un(.ro) = sgnR(pn(;ro))l/2, n 6 I,

and hence the map

I(vo) 9 v - {pn(V))neI G Tff(G)) (D.37)

is injective. Actually, it has been proven by [Mc-Tr 1] that the map (D.37) is 
bijective.

The torus T9(Vo) can be explicitly realized by the Finkel, Isaacson, Trubowitz 
(FIT) formula.

Theorem D.7. [FIT] (see also [Bu-Fi], [Iwa], [McKl]) Let V G I(Vo), Pj '■= 
(pJ(r0),dJ(r0)) G Sj(Vo), j G Jn T I, card (JN) := N < g. Define

d2
VN(x,pj, j G Jn] : = V(x] - 2 —

dxd (r o) ’ 9]n ) ■>

(D.38) 
where W(...) denotes the Wronskian, Jn = {ji,... < j n}, ji < 7’2 < • ■ ■ < 
jN, and ^n(ro) = and gJn = gjn (pJn (r0), z) are the
Floquet functions (C.26) and Dirichlet eigenfunctions (D.19) of H and HD. 
Then Vn is the unique point in I(Vo) with coordinates

Z-fr X f Pni n G JN 1 Pn(VN) =
I Pn{V), n G I\Jn-

If g = 00, VN(x,pj,j E Jn) and all its derivatives converge uniformly as N | 00 
to a potential V(x) with torus coordinates

p.(V) = i " e J’ ,J=\\JN.
I Pn(V), n e I\J U,

Consequently, (D.37) is bijective.

(D.39)

(D.40)

Remark D.8.
(i) If pno(xo) G {F?2n0-i,-^2n0} then the specification of <jno(zo) becomes 

superfluous (see Remark D.4) which is reflected in the fact that 
^+[pno{xo),x,xQ) = '0_(/lno(a?o),a?,a?o) (cf. (C.30)) in this case.

(ii) If pni(a?o) = /zni(^o), then ?/^ni (^(a x, x0 ) has a pole at z = pni(r0) 
and the right hand side of (D.38) is defined by a limiting process. (This 
case occurs if one simply wants to flip the sign of (a?o), or equivalently, 
if one changes Pj(V] from one sheet to the other keeping the projection 
p.j(x0] of pj onto C fixed.)
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Appendix E. Trace relations
In this section we recall trace relations for HD, i.e., the connections between 

V(a?o) and a(HD) = {/^n(zo)}nGN and present the first order differential system 
for /in(a?o + t) corresponding to V(x + t), t g R.
Assuming (H.D.l) throughout this section, we first consider translates of V

V\x) := V(z + f), (t,x) gR2, (E.l)

and add the suffix t to all the quantities associated with

HD-‘ -.= -y- + V(- + t) on V(HD), t e R, (E.2)
dx£

such ascz(z, x, Xq ), s*(z,  x, Xq ) etc. The following quantities are invari­
ant with respect to translations

E*n = En, nE No, 

A*(z) = A(z), z E C, (E.3)

m±(z) = m±(z), z E II+; t E R,

while
&\z,x,xq) = $(z,x + t,xQ + t),z E C, (t,a?,a?0) G l^3, (E.4)

implies, in particular,

s\z,xQ + a,x0) = s(z,x0 + a,xofi/>+(z,xo + t,xofi/>-(z,xo -ht,x0)

= s(z,x0 + t + a, x0 + f), z E C, (t, a?0) G R2.

Moreover,
/^(zo) = Vn(x0 + tfi n E I, 

E2n-1 = = E2n, n E N\I.

The /-dependence of /i^(a?0) is governed by

Theorem E.l. [Tru] Assume (H.D.l). Then the system

+ t) —
(2n2T7a3)[A(^n(^o + <))2 - 1]1/2

n [^(xo + O-^o+OKa2/?^2)’ fc ,nfc

jVn

(E.7)

with the initial conditions 

n E I, at t = 0 (E.S)
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has a unique solution pn(xo + ■) E C£°(R) that does not pause at the simple 
eigenvalues {E2n-i, E2n], n E I. The sign <Jn(x0) of [A(/in(z0))2 — l]1/2 in 
(E.8) is chosen according to (D.35), i.e.,

)) 1] 2 , ^(/-^n [x 0 ), Xq 4" U,2^o) 2cn(2?o) fh^Pn^XQ^dz (E.9)
= [s'(/zn(a?o),2ro + a,x0) - c(pn(x0),x0 + a,x0)]/2, n E I.

Remark E.2. As t runs through [0, a), pn(T) ;= (hn(^o + £)), &n(xo + f)), n E 
I runs clockwise through the circle S\(V\ changing sheets whenever it hits 
E2n-i, E2n, making n complete revolutions.

The trace relations for HD finally read

Theorem E.3. [Fla/, [Ge-Le], [Iwa], [Lev], [Le-Sa], [Mar], [Tru] Suppose V 
satisfies (H.D.l). Then

V(x) = dyV(y) + 2
n=l

oo
(n27r2/a2) X E R, 

(E.10)

V(x) = Eo + [E2n-i + E2n - 2pn(x)] , X € R. (E.ll)

Remark E.4. Theorems E.l and E.3 not only provide a solution of the in­
verse, periodic problem (i.e., to recover V(x) given (/in(a?o), fn(zo)) , n E 
I, Pn(xo\ri E N\I) but they also prove Theorem D.3 (resp. D.5) and the 
fact that the map (D.37) is bijective [Mc-Tr 1].

Appendix F. Connections with a Riccati-type equation
Here we summarize some of the results in [Da-Ta] and [Bu-Fi],

We assume (H.D.l) throughout this section.
Given the definitions of <^±(z, a?o) and V’±(^, x, xo) in (C.24) and (C.26), we also 
introduce

</>r(z,x0) ■ = 2~1s(z,x0 + a,a?o)-1 [s'(z,x0 + a,x0) — c(z,x0 + a,z0)] ,
(F.l) 

z E C(z0) := C\{/in(a?0)},iGN

<$>i{z,xG) := -zs(^,a?o + a,^o)-1 [A(^)2 - 1]1/2, z E H+(a?0) (F.2)
such that

</>±(^,a?o) = <])r(z,x0) ± z</>/(^,a?0), z 6 h+H, (F.3)

(/>r(z,xo) = ln[</>/(^,a?o)], z G C(z0). (F.4)
Zu Q
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This yields the Riccati-type equation

</>±(z,x)2 + </>'±(z,x) = V(x) ~ z, z E C(z). (F.5)

Since also -y- ln[i/>±(z, x, x0 )] satisfies (F.5) we obtain 
C4 viz

^±(z,x) = -fi ln[V>±(z,a:,;r0)], z 6 f[+(z), (F.6)

(since it holds at x = a?o) and hence

X
4>±(z,x,xo) = exp{y dy(/)±[z,y)}, z G fl+(a?o)- (F.7)

xo

Together with (F.3) and (F.4), (F.7) implies

/ z A/ z x <h(z,xo) s(z,x + a,x) ~^_(z,x,xofip+(z,x,xo) = ——----- -  = —-------- --------- z G C(a?0). (b .8)
([)fiz,x) s(z,x0 + a,x0)

We also note that

W(V’-(^),V’+(-2r)) = 2i(h(z,x0fi zEB.+(xofi (F.9)

by (C.30) and (F.2). Combining (F.1)-(F.4) and (F.8) we finally obtain

</>±(z,x) =
s(z,x0 + a,x0')4)-(z,x,x0)4)+(z,x,x0')

±[A(z)2 - l]1/2 + (a J hin(z) - z](a2/n27r2) 
2 ax f nGN

a nJ/in(a?)-z](a2/n27T2) nGN
±R(z)1/2 + |y- n Ln(a;) - z](a2/n27r2)
___________ Z ax n€I___________________

n [/in(a?) — z](a2/n27T2) 
n(zl

z e n+(z),
(F.10)

(cf. (D.14), (E.5) and (E.6)). It remains to study the behavior of </>±(^,zo) for 
z near Dirichlet eigenvalues fJ.n(xofi n E N.

Lemma F.l. [Bu-Fi] Assume (H.D.l) and let a G { + ,—}• Then </>a(z,xfi x G 
]R\{z/ G R|<7n(z/, a?o) — 0} is continuous at points z = /in(^o), n G N. In fact,

s’(pn(xofix,xo) 
hm ^(2r,a?) = —-----—--------- - (F.ll)

= -r~ ln[pn(a:,io)), " £ N,x e R\{^ £ R|<z„(i/, x») = 0}.
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Formula (F.10) together with (A.7), (C.42), (D.37) and Theorem E.l also 
settles the isospectral manifold 7(<^o)

I(<M := e C^R^E^2 ± <£,') = En(& ± ^), n e No} (F.12)

for periodic potentials (j) in the Dirac operator Q given by (C.34). In fact, for 
g > 1, the maps

9 </> ----* ({Pn(</>2 ± G ± A) X Z2
ifOG^Q), g>E ( }

and

WoW^ ({p„W2±On6/,<7,<r') eT’(^±^')xZ2xZ2
if o i a(Q), g > 1,

are bijective. Here a = ±1 describes the overall sign ambiguity in </> (i.e., 
±</>(z) are isospectral due to (A.7)) and a' = ±1 describes the ±-sign in (F.10). 
(For g = 0, I(</>0) = {0} for Eo(^) = </>o = 0 an(1 -H^o) = {l^o|, -|</>o|} for 
Eo(^) = > 0.)

Example F.2. [Ges 1], [GSS] g = 1.
Q has spectrum

a(Q) = (—oo,—E^2] U [-E^-El12] U [E* /2,Ej/2] U [E‘/2,oo), 

0 < Eq < El < E2 iff <^(z) = (<j/2)
P'(x + (V1 + o) — cr'P'(&o) 

P(x + co' + 0) — 7?(&o)

(F.15)

where

a' 6 R, cr = ±l,cr' = ±l, Eq = 7?(&o) — P(^),Ei =P(bn) — P(w + a/),
E2 = P(b0)-P(u') (F.16)

and P(.) := P(.,u?,lj') denotes the WeierstraB P-function with halfperiods lo,lo' 
(u? > 0, —iuj' > 0).

Example F.2 extends Hochstadt’s result (see Example F.3 below) in the con­
text of periodic Schrodinger operators H to the case of periodic Dirac operators 
Q-
Example F.3. [Hoc 3] (see also [Fla]) g = 1.
H has spectrum

u(tf) = [E0,Ei] U [E2,oo), Eo < Ei < E2,
iff V{x) = 2P(x + J + a) + C, 

where

a e R, Eo = C-P(u),Ei =C -P^ + u'\E2 = C-P(iE). (F.18)
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Appendix G. The case g < oo

Since many expressions in Appendices C-F considerably simplify in the case 
of finite genus 0 < g < oo, we list some of the relevant formulas in this appendix.

First of all (C.8) simplifies to

f U [^2n-2,^2n-l]U[F?2/Vo^), g > 1,

I [Eo,oo), g = 0, (G-1)

g = card (7) < oo, Nq := max(h)

and
po = (-oo,0), pn = 0, neN\l, (G.2)

E2n-1 = = ^n(^) = An = E2n, n 6 N\I, X £ R. (G.3)
The Riemann surface E becomes a hyperelliptic one of genus g < oo, denoted 
by Eg, associated with

(G.4)

by splitting off the double zeroes (G.3) in R(^)1/2 = [A(.z)2 — l]1/2 (cf. (C.7) 
and (C.9)). (F.2) and (F.8) turn into

<h(z, x) = -zRo(^)1/2 n - z]~', zen+(4 (G.5) 
nEI

i]>-(z,x,xofi]>+(z,x,xo) = II [/zn(z) - z][/zn(z0) --?] ’^GC^o). (G.6)
nEI

(G.5) and (G.6) together with (C.25) imply

Lemma G.l. [Dub], [It-Ma], [NMPZ] Assume (H.D.l) and g < oo. Then 
x, xq) : Eg —> Coo has g simple zeroes at {pn(x)}n£i and g simple poles at

{/^n(^'O )} n(zl ■

Combining (F.3), (F.4) and (G.5), (F.10) becomes

±R<fizfil2 + ( n Ln(z) - z]
2 UX InEl

z € n+(x). (G.7)n [/In(^) -z] 
nEI

The system (E.7) turns into

p~Pn(xo + ^) — 
dt

2R0(pn(x0 + t))1/2
II [pj(x0 + f) - pn(x0 + f)] ’ 

j€i 
j^n

(G.8)

(here II ... = 1 for I = 0, i.e., for g = 
jti j^n

Next we mention Hochstadt’s theorem.
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Theorem G.2. [Hoc 2] (see also [McK 2], [Mc-Mo]) Assume g = card (I)
oo and let := {Eq , E2n-i, E2n}n^i simple periodic and antiperiodic 
eigenvalues of Hp ,HAP (cf. (D.2), (D.4)). Then determines the double
periodic and antiperiodic spectrum of H (i.e., all degenerate eigenvalues of Hp

and HAP) as well as the roots {An}neN ~/h(z). In particular, V determines 
dz

A(z), z e c.

Finally, adopting the notation in (C.42), cr(Q) becomes

<KQ) = U u U(—oo, -E?ffo] U [E?ffo, oo). (G.9) 
nQl
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Integrodifferential Equations 
with Nondensely Defined Operators

Ronald Grimmer
Hetao Liu

Department of Mathematics, Southern Illinois University

1. Introduction

We are concerned with the equation

yt
X'(t) = AX(t) + / (F(t-s)A + K(t-s))X(s) ds + f(t), 

Jo (1-1)
X(0) = X

in a Banach space X with A a not necessarily densely defined linear closed 
operator defined on X, while F and K are bounded linear operators on X.

There are many studies of (1.1) when A generates a Co-semigroup, eg. [4], 
[6-9], [11-12], but [2] is the only previous study of an integrodifferential equation 
involving non-densely defined operators with which we are familiar. The initial 
value problem

X'(T) = AX(t) + f(t), 

X(0) = X (1-2)

with A not necessarily densely defined has been studied by Da Prato and Sines- 
trari [5], Arendt [1] and Thieme [14], Specifically, it was shown in [1] and in [5]

This work was partially supported by NSF.
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186 Integrodifferential equations with nondensely defined operators

that if A satisfies resolvent estimates of the Hille - Yosida type, then X € D(A) 
and AX + /(0) € D(A) implies that (1.2) has a unique classical solution.

Also, it is shown in [5] that if A satisfies the estimates of Hille - Yosida type 
then the equation

X(t) — X = A [ X(s) ds + i f(s) ds 
Jo Jo

(1-3)

has a unique D(A)-valued solution for any X E D(A) and f locally integrable. 
(Solutions of (1.3) are called integral solutions of (1.2)).

For more general integrodifferential equations of the form
/•«

U'(t) = / AU(t - s)drfis), 
Jo

<7(0) = X,
(14)

where i) is of bounded variation and is exponentially bounded, Arendt and 
Kellerman, [2], developed the theory of an n-times integrated solution family 
so that under some Hille-Yosida type conditions involving the generalized resol­
vent (A — 77(A)A)-1 (with fj being the Laplace transform of 77 ) it is proved that 
there is an n-times integrated solution family for (1.4). Hence for appropriate 
(X,f), (1.4) has a unique classical solution. Integral solutions of (1.4) were not 
studied in [2],

In this paper, we shall only consider n-times integrated semigroups with n = 1, 
that is integrated semigroups, and their application to (1.1). In Section 2, we 
recognize that the integral solution of (1.2) agrees in some sense with the weak 
solution of Ball [3]. This enables us to prove that the existence and uniqueness 
of solutions to (1.3) and that A||(A — A)-11| < C < 00, A > w, is also sufficient 
for A to satisfy the resolvent estimates of Hille - Yosida type. Thus one can 
get a generation theorem for integrated semigroups analogous to the generation 
theorem for semigroups. In Section 3, we look at (1.1) in the strong form. We 
assume that A satisfies the Hille - Yosida type estimates and that f is contin­
uously differentiable. Then we can prove under certain smoothness conditions 
on F(-) and K(-) that (1.1) has a unique classical solution iff

XeD(A), AX+f(Q) 6 D(A). (1.5)

That is, we get the same condition as required for (1.2). In doing this we use 
methods as in [12] and [8] to write (1.1) as

= A

F(-)A-fK(-) V 

(U(t)\ (f(t) 
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and prove that A generates an integrated semigroup in an appropriate product 
space .

Note that in case F(t) and K(t) are scalar functions, (1.4) is more general 
than (1.1). The difference is that for this particular problem (1.1), if we set it 
into the form of (1.4) and try to get the classical solutions, then we must check a 
Hille - Yosida type condition involving the generalized resolvent to see whether 
it generates an n-times integrated solution family. This is, in general, not easy. 
Also, the sufficient conditions on initial data and f for (1.4) to have a classical 
solution (when there is an n-times integrated solution family) in [2] are

xeD(An+1), f ecn+1([o,7’],x), /‘>(0) e
fc = 0,l,...,n — 1, n > 0.

We only impose resolvent conditions on the operator A, and require the condition 
(1.5) which is weaker than (1.7) with n = 1.

In Section 4, we look at (1.1) in the integrated form

pt pt ps
X(t) — X = A / X(s)ds+ / (F(t - s)A + K(t - s)) / X(u)duds

Jo Jo Jo
pt

+ / f(s)ds. (1-8)
Jo

Note that Thieme [14, section 6] studied the integrated solutions of (1.2) by 
integrating (1.2) twice to get

V(t) -tx = A V(s)ds + / (t-s)f(s)ds (1.9)
Jo Jo

and proved that if A generates a non-degenerate integrated semigroup S(f), then 
the unique solution of (1.9) for any X g X is given by

yZ

V(t)=S(t)X+ S(t-u)f(u)du.
Jo

In addition, Thieme has shown (taking f = 0) that A generates a non-degenerate 
integrated semigroup iff for any X g X,

yZ

V(t) = A V(s)ds+tX, t > 0, 
Jo

has a unique solution V(t) such that ||y(/)|| < C'(f)||A’|| with some C(t) > 0 
not depending on X. Since we consider the integral solution of (1.1), (that 
is only integrate (1.1) once), and we want our integrated semigroup to satisfy 
a Lipschitz condition in order to use a perturbation result we cannot use the 
results of [14] here. However, in Section 4 we will see that if the strong derivative
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F'(t) exists the results of Section 2 will show that A satisfies the Hille - Yosida 
estimates iff A||(A — A)-11| < C < oo, X>co, and (1.8) has a unique continuous 
7?(A)-valued solution for any X € D(A) and f locally integrable. (Solutions of 
(1.8) are called integral solutions of (1.1).) In doing this we write (1.1) as the 
system

( X(t) y (A F(0) W X(t)
\V(t)) \A 0 / VW

J0 \ o

/X(0)\ JX\
\ V(0) J \Q J 

F'(t — s)\f X(s) 
0 X y(5) ds +

(1.10)° /

and apply the results in Section 2 to (1.10).
Finally, in Section 5 we show that the one-dimensional wave equation with 

Dirichlet boundary conditions can be written as a 2 x 2 system considered on 
C[0,1] x C[0,1] and that when considered abstractly, the associated operator 
generates an integrated semigroup. Thus one can apply this theory to certain 
equations arising from problems in viscoelasticity. For further results concerning 
symmetric hyperbolic systems we refer to [10].

2. Generation of Integrated Semigroups
Consider now the equation

W'(t) = GW(t)+q(t) ,W(0) = W, (2.1)

in a Banach space K with q locally integrable and recall the following well known 
results (cf. Pazy [13] and Ball [3] ).

Theorem 2.1. Let G be a densely defined closed linear operator. Then the 
following statements are equivalent:

a) There exist M >1, and a g R such that A > a implies A € p( A) and

\\(X-Grn\\<M/(X-aff, VA > n, n = 1,2,3,...

b) G generates a Co semigroup.
c) (2.1) has a unique continuous weak solution W(t) for each W € K 

and q : [0,oc) —> K locally integrable. That is, for each V E D(Gfi  
(W(t), V) is absolutely continuous and

*

2^(0, V} = (W), GW)+ («(/), V), a.e., VF(0) = W

where G*  is the adjoint of G and (•, •) is the pairing between K and its 
dual K*.

We now must formally define integrated semigroups.
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Definition 2.2. A family S(t), t > 0, of bounded linear operators on a Banach 
space K is called an integrated semigroup iff the following properies are satisfied: 

a) S(t)S(r) = J0\S(t + r) - S(r))dr.
b) For any X € K, S(t)X is a continuous function of t > 0 with values in 

K.
c) S(0) = 0.

Definition 2.3. An integrated semigroup S is called non-degenerate if and only 
if S(t)X = 0 for all t > 0 implies that X = 0.

Definition 2.4. An integrated semigroup S is said to be of type (M,cF) iff for 
t, r > 0

Definition 2.5. The generator G of S is defined by: Let X,Y € K, then 
X € D(G) and GX = Y iff S(-)X € C^QO, oo), K) and S'(t)X - X = S(t)Y.

Definition 2.6. The part Go of G in D(G) is

Go =G on D(G0) = {W € D(G)\GW E D(G)}.

Remark. Note that the integrated semigroup as we have defined it is the once 
integrated semigroup of Arendt [1].

We now can state the result parallel to Theorem 2.1.

Theorem 2.7. The following three statements are equivalent:

a) G is a (not necessarily densely defined) linear closed operator and there 
exist constants M > 1, a E R, such that A > a => A E p(G), and

||(A-G')“n|| <M/(X-a)nyX> a, n = l,2,3,...

b) G generates a non-degenerate integrated semigroup S(t) of type (M, o).
c) For A sufficiently large, X E p(G) and lim sup^^ A||(A — G)-11| < oo.

In addition, for any W E D(G) and q : [0,oo) —* K locally integrable, 
(2.1) has a unique continuous D(G) -valued ‘integral solution’ W(t), 
i.e., for t > 0, W(t) E D(G) and

ds.
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Proof, (a) <=> (b) is proved in Arendt [1, Theorem 4.1 with n = 0]. (a) => 
(c) is proved in Da Prato and Sinestrari [5, Corollary 7.3]. Thus, we need only 
show (c) => (b).

Suppose that (c) is valid. For X G D(G),

||A(A-G)~1X-X|| = ||(A-G)-1GX||

so
IIA(A - Gff'X - X|| -> 0, as A -> oo.

As limsup^oo A||(A — G)-11| < oc, we conclude ||A(A — Gff[ X — X|| —> 0, as 
A —* oc, for X g D(G). Hence we see that Go is densely defined in D(G). Note 
that Go is a closed operator in D(G") so the adjoint Gq of Go is well defined on
WG))*-  ____ ____

Next, for W € -D(G), q : [0, oo) —* D(G) C K locally integrable, we may 
denote the unique D(G) - valued integral solution of (2.1) as PF(i) = W(t, W, q), 
then W(s)ds G D(Go) and, hence, for each V € -D(Gq),

pt p*

(W(tfiV) = (W,V) + (G W(s)ds,V} + ( q(s)ds,V) 
Jo Jo

pt P*
= {W,V} + / (VF(5),G*y)d5+ / (q(sfiV}ds. 

Jo Jo

Therefore (VF(f), V) is absolutely continuous and

V) = G-0V) + (</(/), V) a.e.,

VF(0) = W

so W(i) is the weak solution of (2.1) in D(G). To prove the uniqueness of W(tfi 
let V(i) = V(i, W, q) be another weak solution corresponding to (W,q), then

= ([\w(s)-v(S))ds,G‘V}, W6Z>(g;),
Jo

and, hence, [3], 

/•Z

Jo
(W(s)-V(s))ds gD(G0)

and

nZ
Go / (VF(s) - H(s)) ds = W(t) - V(tfi

Jo
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Thus, W(t) — V(t) = 0 by the assumption that (2.1) has a unique integral 
solution. Now it follows from [3] that Go generates a Co~semigroup on D(G). 
Therefore (b) is valid as we know that if Go generates a semigroup on D(G) and 
lim sup^-^ A||(A — G)-1|| < oc then (b) is valid, [15]. In particular, if 7o(t) is 
the semigroup generated on D(A) by Go then So(i) defined on Z)(A) by

So(t)= / To(s)ds 
do

can be extended to K by

S(i) = (A-Go)S0(i)(A-G)“I.

Remark. In D(G) ‘integral solution’ in the sense of Da Prato and Sinestrari 
[5] agrees with the ‘weak solution’of Ball [3]. Thus, Theorem 2.7 is an extension 
of Theorem 2.1 to the integrated semigroup setting.

Note that when G is densely defined , G = Go, so we have :

Corollary 2.8. Let G be a densely defined closed linear operator. Then the 
following are equivalent:

a) G generates a Co semigroup.
b) For any W G K and q : [0, oc) —> K locally integrable,

C C
W(t) — W = G W(s)ds+ q(s) ds 

Jo Jo

has a unique continuous solution in K.

3. Classical solutions of (1.1)
In this section we look at (1.1) in the strong form and write (1.1) as (1.6). We 

first prove that A generates an integrated semigroup so that with appropriate 
conditions on the initial data and function f, (1.6) has a classical solution. Next 
we build some equivalent relations between (1.1) and (1-6) which enable us to 
obtain classical solutions of (1.1).

Define F to be the space of bounded uniformily continuous functions on [0, oc) 
into X with the usual sup norm and define 2 = X x F with the usual norm. 
Also, define 6 : F —> X by 6/ = /(0), and the operators F and K on X into 
F by (F(.)-Y)(0) = F(0)X, (F(-)X)(0) = /<(0)X, 3 > 0, X G X. Finally, 
T) — jg is the generator of the Cq translation semigroup /(■)—> f(t + •) on F.

Assumption 3.1. A : D(A) C X —> X is linear and closed, (D(A) may not be 
dense in X), and there are ca G R and M > 1 such that X > tv => A G p(A) and

||(A — A)-n|| < M/(A — ca)“n, VA > ca, n = 1,2,3,...
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Assumption 3.2. For t > 0, F(t) and K(t) are bounded linear operators on 
X. For X e X, Fff)X € D(P), K(-)X € F.

Definition 3.3. We say that (U(t), (fit) is a classical solution of (1.6) if(U(t), (/>t) 
is continuously differentiable in t, ({/(£),</>*)  € D(A) and (1.6) is satisfied for 
t > 0.

Theorem 3.4. Let Assumptions 3.1 and 3.2 be satisfied and f : [0,oo) —* X 
be continuously differentiable. Then (1.6) has a classical solution iff

A\ o ) A eDI~A)-

Proof. Let Assumptions 3.1 and 3.2 be satisfied and consider

_ ( A 6\
-\F(-)A + Kff) FJ

(I 0 \( A 0 \( I 0\ / 0
VA) JA° PA-A) AA) + A) 0/

= e1+e2.

As P generates a Co semigroup, it’s easy to show that diag(A,P) satisfies 
Hille - Yosida type estimates. Thus, because F(-) is a bounded operator on 
X —> F by the Uniform Boundedness Principle, we see that Ei satisfies Hille 
- Yosida type estimates also. It follows from the Closed Graph Theorem that 
E2 is a bounded operator and so a standard argument from perturbation theory 
shows that A satisfies the Hille - Yosida estimates. It now follows from Theorem 
2.7 that A generates a non-degenerate integrated semigroup on Z. The result 
now follows from [1] and [5].

Next we define Y to be the Banach space formed from 79(A) with the graph 
norm and use the following definition of a classical solution of (1.1).

Definition 3.5. X(t) is a classical solution of (1.1) if X(-) € C([0,oo), Y) D 
C1([0, oo), X) and (1.1) is satisfied for t > 0.

Theorem 3.6. Let Assumptions 3.1 and 3.2 be satisfied and let f : [0, oo) —> X 
be continuously differentiable. Then (1.1) has a classical solution iff X g 79(A) 
and AX + /(0) € D(Afi Moreover, (1.1) is wellposed. That is, X 6 E(A) and 
AX + /(0) € D(A) implies that (1.1) has a unique classical solution X(t, X, f). 
For each T > 0, there is a constant M(T) so that for t € [0,T],

n^(i,^,nii <w*u+  f‘\\M\\dS).

Jo

Proof. One argues as in [9] that (1.6) has a classical solution iff (1.1) has a 
classical solution and invokes Theorem 3.4.
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4. Integral solutions of (1.1)
In this section we look at (1.1) in the integrated form (1.8). Using the results 

obtained in Section 2 and assuming that the strong derivative F'(t) exists, we 
will prove that A satisfies resolvent estimates of the Hille - Yosida type iff (1.8) 
has a unique continuous D(A) - valued solution for any X 6D(A) and f locally 
integrable. First we consider the case when F(-) = 0 and use (1.6) in this case. 
Then (1-8) and (1-6) become

/•Z ft fs ft
X(f) — X = A I X(s) ds + I K(t — s) I X(u) du ds I f(s)ds, (4.1) 

Jo Jo Jo Jo
and

a Hu(Sy\ f*  (q(Sy\
<h J \K(-) T>)Ja <t>. )aS + Ja t 0 Jas (4-2)

Definition 4.1. Let f : [0,oo) —> X be locally integrable and X 6 F(A). Then 
X(t) is said to be an integral solution of (1.1) if X(-) : [0, oo) —> X is continuous 
and satisfies (1.8) for t > 0.

Lemma 4.2. The following two statements are equivalent:
a) For X € D(A), f : [0,oo) —  X locally integrable, (4.1) has a unique 

continuous D(A) - valued solution.
*

b) For (X, </>o) € D(A) X F and (q, 0) : [0, oo) —> 2 locally integrable, (4.2) 
has a unique continuous D(A) x X - valued solution.

Proof. First assume b). For X € D(A), f : [0,oo) —> X locally integrable, we 
have (X,0) G D(A) x X, and (/, 0) : [0,oo) —* 2 locally integrable. By b) we 
know that (4.2) has a unique continuous D(A) x X - valued solution such that

ft ft ft
U(f) — X = A U(s)ds + 8 </>sds + / /(s)ds, 

Jo Jo Jo
ft C

fa = F fa ds + I K(-)U(s)ds.
Jo Jo

(4-3)

Note that F generates the Co translation semigroup T(t). Then from (4.3) and 
114],

ft ft ft —3
I <^gds = / (/ T(r)dr)K(-)U(s)ds 
o Jo Jo

K(r + ’)U(s) dr ds

Ufa) ds dr

/ K(t-p + -) Ufa) ds dp.
Jo Jo
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Also,

fis ds

dr ds

thus,
pt pt pS pt

U(t) — X = A U(s) ds + / K(t — s) / U(r) dr ds + / f(s)ds
Jo Jo Jo Jo

and therefore U(t) is a solution of (4.1).
If V (t) is another solution of (4.1) corresponding to (X, /), then W = U — V 

satisfies pt pt pS
W(t) = A W(s)ds + / K(t — s) W(r)drds.

Jo Jo Jo
Recall that P is the generator of a Co semigroup. Thus, there exists fit such 
that

pt pt
fit=T> fisds + K(-)W(s)ds

Jo Jo
pt pt

= T> fisds + K(-) W(s)ds.
Jo Jo

Thus, 
(W(ty\ ( A 
1 ) v<( ) \ )

and therefore by the uniqueness assumption for solutions of (4.2), VL(i) = U(t) —
V(t) = 0, t > 0, so the solution of (3.1) is unique.

Now assume (a). Let (X, </>0) € D(A) x X and q : [0,oc) —> Z be locally 
integrable. Then (a) implies that

pt pt pS
U(t)—X = A U(s)ds+ K(t—s) U(r)drds

Jo Jo Jo 

pt pt
fit — fio = P/ fisds + K(-)U(s)ds 

Jo Jo
has a solution (U(t), fit). Again, as P generates a Co translation semigroup T(i), 

pt pt pt pt — s
/ fisds= / T(s)fiods+ / (/ T(r) dr)K(-)U(s) ds

Jo Jo Jo Jo
pt pt pS

= / fio(s + -)dsl- / K(t — s + •) / U(r)drds
Jo Jo Jo
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and
pt pt pt pS

8 (f)s ds = </>o(s) ds + I K(t — s') U(r) dr ds
Jo Jo Jo Jo

and, hence, (Utt),^) is a solution of (4.2). The uniqueness of the solution 
follows easily.

Applying Theorem 2.7 to (4.2) we get

Theorem 4.3. The following three statements are equivalent:
a) A is a (not necessarily densely defined) linear closed operator and there 

exist constants a g R, M > 1, such that A > a =$> A € p(A) and

||(A — A)~n|| <M/(X—a)n, VA > o, n = l,2,3,...

b) A generates a non-degenerate integrated semigroup S(t) of type (M, a).
c) For A sufficiently large, A € p(A) and limsup^-^ A||(A — Ap11| < oc.

In addition, for any X g D(A) and f : [0, oo) —> X locally integrable,

pt pt pS pt
X(t) — X = A X(s)ds+ / K(t — s) X(r)drds + / f(s)ds 

Jo Jo Jo Jo

has a unique continuous D(A) - valued (integral) solution whenever A'(-) 
satiffes Assumption 3.2.

Proof. We know (a) <=> (b) already. Note that (c) => (a) by taking A'( j = 0 
and using Theorem 2.7. Thus we only need to prove that (a) => (c). Now assume 
(a) is valid. Then from the discussion in Section 3,

r _ ( A 8\ 
^K(-) T)J

satisfies condition (a) of Theorem 2.7. Hence, Theorem 2.7((a) => (c)) implies 
that (4.2) has a unique continuous D(A) x 8F - valued solution for each choice 
of initial data. Therefore (c) is true by applying Lemma 4.2.

Now we are in position to get the integral solution of (1.1), i.e., the solution 
of (1.8). We formally define V(t) by

V'(«) = AX(t), V(0) = 0,

and rewrite (1.1)

nZ pt
X(t)'=AX(f) + / F(t — s)V'(s)ds + / K(t — s)X(s) ds + f(t), 

Jo Jo
V'(t) =AX(t).
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As we assume that the strong derivative F'(t) exists for t > 0, integration by 
parts with Y(0) = 0 yields an equation whose integrated form is

We now build some relationships between (1.8) and (4.4).

Lemma 4.4. (1.8) has a unique D(A) - valued solution iff (4.4) has a unique 
D(A) x X - valued solution.

Proof. Integrate by parts.

Now assume that Assumptions 3.1 and 3.2 are valid and consider

. = (A 0A /0 F(0)A
A1 (a o) ’ (o Of

Then for A > cu, A > 0,
X(X-AY1-( 0\
A(A A1) “ (a(A - A)-1 - I l)

An easy estimate then shows that limsup^^ A||(A — Ai) 11| < oo. 
Now consider

A(Y(t)\ (fft)\
\W(t)) ^A 0/\W(t) J \q(t) J 

/ y(o) \ _ / y \ 
\^W(0)) y W ) ■

Its integrated form is

/ Y(t)\ _ (Y A (A 0A [' (Y(Y) A , ,
tud 1a o)J0 \W(s) J +J0 ■ (4.5)

Note that as A satisfies Assumption 3.1, the first equation of (4.5) has a unique 
79(A) - valued solution Y(f) so by setting

/.z
W(t) = W + A Y(s)ds+ q(s)ds

Jo Jo
we get a unique 79(A) x X - valued solution of (4.5). Now applying Theorem 2.7 
((c) => (a)) to (4.5) we see that Ai satisfies Hille - Yosida resolvent estimates.

Then from the discussion of Section 3, Ai + A^ also satisfies Hille - Yosida 
estimates as A2 is bounded. We next note that

Z7<(.) F'(-)\ 
\ 0 0 J

is bounded. Applying Theorem 4.3 ((a) (c)) we conclude that (4.4) has a
unique continuous 79(A) x X - valued solution and, hence, by Lemma 4.4 we 
have:
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Theorem 4.5. The following are equivalent:
a) A is a (not necessarily densely defined) linear closed operator and there 

exist constants a € R and M > 1, such that A > a => A € p(A) and

||(A-A)“n|| <M/(A-a)n, VA > a, n = 1,2,3,...

b) A generates a non-degenerate integrated semigroup S(t) of type
c) For A sufficiently large, A € p(A), and lim sup^-^ A||(A — A)-1 [[ < oc.

In addition, for any X 6 F(A) and f : [0, oc) —> X locally integrable,

ft ft fS ft

X(f) — X=A X(s)ds+ (F(t — s)A-}-K(t — s')) X(r)drds + f(s)ds 
Jo Jo Jo Jo

has a unique continuous D(A) - valued solution whenever F and K 
satisfy Assumption 3.2.

5. An example
In this section we shall examine a special case from [10]. Consider the wave 

equation
Utt(x,t) = Uxx(x,t), 0 < z < 1, t > 0,

with initial data given for U, Ut and Dirichlet boundary conditions. In order to 
apply the theory of integrated semigroups we define the new variables V = Ut 
and W = Ux then, we can write the system as

/ V \ / 0 dx\(V\
\W ) ~ \ dx 0 J\W J

with initial data and boundary conditions

V(z,0) = H(x), W(x,ti) = F(x),

V(x,t) = 0, t > 0, x = 0,1.

We now diagonalize to get the system

/ VA _ /dz 0 
\ W J ~ \ 0 —dx H W J

with initial data and boundary conditions

V(x, 0) = (#(z) + F(z))/2, W(x, 0) = (#(z) - F(.r))/2,

V(x, f) + W(x, t) = 0, t > 0, x = 0,1.
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We now define X to be C[0,1] x C[0,1] and

D(A) = {( ) e C1 x C1 : V(i) + W(x) = 0, ar = 0,1},

(9t 0 1
lo -dj (5.1)

It is clear that D(A) is not dense in X. To obtain a Hille - Yosida estimate for 
the resolvent of A consider

XV - V =/, 
AW + W' =g.

(5-2)

In order to fully take advantage of the diagonal form of A we define the norm 
on X by

|| (^) || = max{||V|U||Wq|~}.

Now suppose that |j ( ^ ) || = ||Y||oo- If the max of |V(.t)| occurs at an interior 

point z G (0,1), then V'(z) = 0 implies

*¥(?) = f(z) an(i IMloo < ll/lloo/A, A > 0.

If the max of |V| occurs at 0 we may assume V(0) > 0 (by considering — w J 
if necessary). Then W(0) < 0 and (5.2) yield AV(0) < /(0). Finally, if max 

| V(z)| occurs at x — 1 we make use of the boundary condition V(l) + W(l) = 0 
to see that we may consider ||W||oo instead of ||V||oo- In this case, we assume 
W(l) > 0 so W'(l) > 0. This and (5.2) give AW(1) < <?(1). In any case, we get

n(;>u(>-
The case where we must consider HWHoo is clearly the same and we have

Theorem 5.1. The operator A associated with the wave equation given by 
(5.1) generates a non-degenerate integrated semigroup of type (1,0) on X = 
C[0, 1] x C[0, 1],

One can actually show that much more general symmetric hyperbolic systems 
will lead to integrated semigroups and we refer to [10]. It is an easy thing now 
to construct an integrodifferential equation in X which fits our discussion and 
which can be easily related to problems in viscoelasticity, for example.

For additional examples the reader is referred to Da Prato and Sinestrari [5] 
and Thieme [14],
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We shall consider the behaviour of a real valued solution ip of a Schrodinger 
equation in the neighbourhood of a zero. Let

( — A + Vfip = 0 in Q,
where Q is a domain in n > 2 and V E C°°(n) with V real valued. (1) 

Without loss we assume O E U and V’(^) = 0>

Note that ip E C°°(Q) by elliptic regularity. Further let £ > 0, Be = {a? E 
Rn||z| < c} such that Be C Q. In the following we present some recent results 
on the behaviour of the nodal set and the nodal domains of ip in Be. Most 
of these results have just appeared in [9]. To prove some of these results we 
suitably adapt techniques which have been developed in [7] to investigate the 
nodal behaviour of local solutions of Schrodinger equations in a neighbourhood 
of infinity. Those aspects just indicated in [9] are given in detail here.

Let = {rr E Be\ip(jc) = 0}, a component D of Be \ will be called a local 
nodal domain (l.n.d.) of ip in Be and we define

Be = {l.n.d. D of ip in Be with O E dD}.

Let C£ = {x E Be\ip(x) = 0,X?ip(x) = 0}. It is known (see [2,3,5]) that under 
the above assumptions the manifold W£ \ Ce is as regular as the solution ip,

201
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and that the Hausdorff dimension of Ce < n — 2. So clearly the case O G C£ 
is the interesting one, and given D E T)e one may ask whether it satisfies an 
interior cone condition. Furthermore we shall also deal with the question of the 
cardinality of T)e. To investigate such problems we rely heavily on a result of 
Bers [1]:

Proposition 1. Let if satisfy (1). Then there exists a harmonic homogeneous 
polynomial Pm(x) 0 of degree M > 1 such that for 0 < v < 1

dx\' ...
O(|x|M-'+") for |x| —* 0 (2)

for f = 0,1,... M, where ij = f-

Using polar coordinates x = ry with r = |r| and y = r/|.r| 6 Sn~1, Sn-1 the 
n — 1-dimensional unit sphere, we can write PM(ry) = tMYm(ij} with Ym some 
surface harmonic, and (2) implies

r Mif(ry) —> Ym(ij) for r —> 0, for y E Sn 1. (3)

We denote the nodal set of Ym with W(Ym) and the set of nodal domains of 
Ym with U(Ym\ (The components of \ are called nodal domains
of rM.)

For dimension n — 2 Cheng [3] showed that the nodal lines of i/> look locally 
as the nodal lines of Pm, which are straight lines intersecting in O and forming 
an equiangular system. So for e small, Th and V((Ym) have the same number of 
elements.

For dimensions n > 3 the situation is more delicate as can be seen from the 
following harmonic function in R3

tf(xi,x2,xT) = XiX2 -b x^Xi - xl/3

which has a zero in O of order 2. The corresponding harmonic homogeneous 
polynomial is P2(x\, x2, z3) = x^x2, so obviously #U(Y2) = 4. On the other 
hand studying the intersection of the nodal set of if with planes x3 = c with 
c < 0, — 0 and > 0, it is easily seen that if has only 2 nodal domains.

To state our results we need the following definition: For D E Pg, D arbitrary 
but fixed, let

S(r) = {y E Sn~1 \ry E D} for 0 < r < e.

Further we denote |{-}| = da, with da the surface measure on Sn~1.
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Theorem 1. Let n > 3, suppose 0 satisfies (1), and let Ym denote the surface 
harmonic for which (3) holds. Let D 6 Pe, D arbitrary but fixed, with S(r), 
0 < r < £ given as above.

Let Ad C Sn~1 denote the union of all nodal domains U of Ym with the 
property that there exists a sequence {rmym} with rmym E D for all m, rm —* 0 
and ym —> y for m —> oo for some y E U.

Then Ad =4 0 and \ S(r) U S(r) \ A4| —* 0 for r —> 0.

This result, which implies |S(r)| —> |A4| 0 for r —> 0 in particular rules out
that S(r) “shrinks” for r —> 0 into a subset of AJ(Ym)- There are some rather 
immediate consequences:

Corollary.
(i) There exists a cone K with vertex O and K C D.

(ii) furthermore #T>£ is constant for e small enough.
(#{•} denotes the cardinality of {■}.)

(iii) Let </’?(’•) = Js(r) 4>2dcr and ifafr) = JS"-> ’l’2^, tllen

Yudn)1/2 >0
Jm

and

^o/ipav ( [ YMd(Jl [ for r -> 0.
Jm Jsn~r

These findings show that the local properties of -0 in the neighborhood of a 
zero are determined to a certain extent by global properties of the nodal set of 
the corresponding surface harmonic.

Of course it would be desirable to study the local behaviour of the nodal 
domains of 0 with weaker regularity assumptions on V. It would be also of 
interest to extend the foregoing results appropriately to the case where the 
Laplacian is replaced by more general elliptic operators.

Let us sketch the main idea of the

Proof of Theorem 1. (Compare also [7] and [9].) The difficult part of the 
proof is to verify that Ad 0. For this purpose we investigate the asymptotic 
behaviour of 0o(r) = (Js(r) V^dcr)1/2 for r —> 0 and proceed similarly as in [7] 
where we studied the asymptotics of a solution 0 of a Schrodinger equation for 
r —> oo. We suppose indirectly that Ad = 0, which implies

|S(r)| —> 0 for r —> 0. (6)

Let for 0 < r < e, e small

A2(r) = inf [ \Lp\‘2da/ [ |<z>|2da 
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where — L2 denotes the Laplace-Beltrami operator on Sn 1, then we obtain from 
(6)

A2(r) —> oo for r —* 0. (7)

The proof is essentially based on the following two lemmas:

Lemma 1. Let ipo = then ipo satisfies

d2 (n — l)(n — 3) A2(r) ~
(-7-7+ mf V + ------- —-------- H------< 0 for 0 < r < £ (8)

dr2 yes™-' 4r2 r2

in the distributional sense.

The proof of Lemma 1 is the same as of Lemma 3.1 in [7].

Lemma 2. For some C > 0

V’o > )27 for r < £
A(r) 1 0)

Tl — 1
with 27 = M + —-—.

The proof of Lemma 2 is analogous to that of Lemma 3.2 in [7] (where v(r) 
and A(y) must be replaced by rM and Ym resp.). Since it is rather involved we 
shall sketch the main idea here later on.

We take into account (7) and obtain from inequality (8) by standard com­
parison techniques that

V’o = O(rm) for r —> 0 for all m E N. (10)

On the other hand combination of (8) and (9) yields

+ < 0 for 0 < r < Ra (11)

for some a < (27)-1 and some Ra < e.
Define for R small

fR ~
</>(r) = with /i(r) = / ip0(t)~adt^

J r

then it is easily seen that for small r

-E +k!^ = <‘T^>o. (12)
(11) and (12) imply again via comparison techniques that VW-1 < const for 
r —> 0. Therefore

a !(e afa > const > 0 for small r.
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Integration finally implies

e > const ■ r for r small

which contradicts (10), hence M. 0.
We finally give the main ideas of the

Proof of Lemma 2. For convenience we assume that S(r) “shrinks” for r —> 0 
into a single point y E Sn~1. The general case which is a little more involved can 
be treated in a similar manner. (The techniques in [7] can be easily adapted.)

Let Be(y) denote the geodesic disk centered in y with radius e > 0 small. 
Then due to our assumption S(r) C Be(y) for r < re for re small enough. Using 
local coordinates £ = 0(?/), y E Be(y), £ 6 Rn-1 as introduced in section 2 of [7] 
and taking into account (6) it is easily seen that

'e inf ? for r <re
2(C(r)) ll/ll2 (13)

for some 0 < Ce < 1, where G(r) = 0(S(r)), and || • ||2 = fG(r) | • |2d£.
Next we apply a result of Davies (Theorem 1.5.3 in [4]) which tells us that

77 _  1
jnf (14)

/gw01>2(G(U) 4

Thereby ?oo(^’) denotes the Z°°-norm on G(r) of which is defined by

?(£)-2 = [
Js™-1

(//(e) denotes the normalized surface measure on Sn~2) and where

d((, e) = inf{|M G(r)} Ve E G(r), Ve E Sn~2.

Combining (13) and (14) we obtain

Proposition 2. For some c(n,e) > 0

A(r) > c(n,e)qoo(r)-1 for small r. (15)

Obviously this implies that it suffices to show

■00 > const(r700(r))2'y for small r (16)

instead of (9). To prove (16) we use the following one-dimensional inequality:
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Proposition 3. Let f E CM( J), M > 1, J C R a bounded interval with length 
\J\, f bounded in J and inftgj |/^M^(f)| = mm > 0, then

(17)

This inequality is an immediate consequence of Prop. 4.3 in [7], which itself is 
rather elementary.

Suppose without loss that if > 0 in D. Making use of Proposition 1 it can 
be shown that for v > 0 small and r < f small there exists £(r) 6 G(F) and 
JUjr C Sn~2 with |7p>r| > co(n) > 0 such that

g(r,t)=r M [ if{r<f 1 (£(r) + fe))dp(e) 
JjV,r

satisfies for t E [0, i/<Zoo(r)] and r < r

> const > 0 for some k < M.

(18)

dtk

Now we identify in Proposition 3 for each r, f with tn 2g(r, f) and J with 
[0, z/5oo(r)], and obtain

rvgoo (r)
/ tn~2g(r,t)dt > const qoo{r)k+n~1 ■ (19)

do
Let Cv>r = {£ E Rn-1|£ = f(r) + te,t E [0, iz^oo(r)], e E dp>r}, then |Cp,r| < 
const <7oo(r)n-1, and we conclude by Cauchy-Schwarz that

/ tn'2g(r,t)dt < constfl d>2(r^_1 (^))d^)1/2^oo(r)(n-1)/2. (20)
Jo JcVir

(19) and (20) together finally imply (16).
In connection with the results given here more detailed questions about the 

local behaviour of nodal sets arise in a natural way. For instance one might ask 
whether S(r) is connected for r > 0 sufficiently small. This we could not answer, 
but for dimension n = 3 we obtained more detailed results about the set Ad.

Theorem 2. Let n = 3 and suppose that the assumptions of Theorem 1 hold. 
Let {rmym} be a sequence with rmym E D, \/m and rm —> 0, ym —> y for m —> oo 
for some y E Sn~\ then y E Ad. Furthermore Ad is connected (Ad denotes the 
closure of Ad).

Proof of Theorem 2. The case Tm(v) 7^ 0 is trivial, so let Tm(?/) = 0, and 
without loss we assume if > 0 in D.

(a) VPw(y) 0
Using the fact that there are only finitely many zeros of order greater
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^V’(rm7m(^))

one of Ym we choose a geodesic disk Ue(y) C S2 centered in y with 
radius e, e small enough, where the nodal line of Ym can be represented 
by a C1-function f : J —S2, J a compact interval, with /'(s) 0, and

Ue(y) \A/'(Ym) = U+ U U~ with U+, U~ disjoint domains, 

Ym > 0 in U+ and YM < 0 in U~.

Clearly there is a unique D+ E De (and due to Theorem 1 a correspond­
ing Ad£>+), where U+ is a subset of A4]j+. So if D+ = D, then y 6 Ad. 
Now let D+ A D = 0: Define for 8 > 0 small

Z6 = {yEU£^\mi■\y-f(s)\ <8} S^J

and denote by ym, for rn > (mj large enough) the geodesic on 
S2 which hits the nodal line f orthogonally and passes through ym, 
with |7m(/)| = |7^O| = 1. Since ym 6 S(rm) A for m > mt and 
U+ \ C S+(P) for r < rm6, Rolle’s theorem implies for each m that 
for some ym = 6 S(rm) A A Zs

= 0.

This together with Proposition 1 leads to

7m(M • VPw(7m) = O(r"n) for large m.

Assuming that 7^(im) V for m —> oo for some y E S2 (otherwise 
choose a convergent subsequence) the above leads for m —> oo to

y-YPM(y) = 0- (22)

On the other hand it is not difficult to see from the above construction 
that y-y = y-f(s') = 0, where /(s) = y. Hence due to (21) y V Pm^v) 7^ 
0 contradicting (22). Therefore D+ = D and y E M.

(b)VPM(y) = 0 _
Suppose indirectly y AY Choose geodesic disks U^y). Ue(y) with 
0 < s' < £, with e so small that y is the only zero of Ym of order greater 
one in Ue(y) and U£(y) A Ad = 0. Further let y1 E M be arbitrary but 
fixed. Let Bm — {a- G 1R3||x| < rm] and suppose without loss rm J. 0 
for m —> 00. Since for m > me, m£ large enough, ym E S(rm) A Ue>, 
rmy' E D and Bm A D is connected, we can find a path in Bm-\ A D 
connecting rmym with rmy' with the property that for some pm < rm-i 
there is a ym E S(pm) A Ue \ Ue>. Choosing a subsequence {t/m(n)} 
which converges to some y E S2 for n —> 00 we obtain pm(n) 0 an(l 
y E Ue \ Ue>. But if Fm(^) 7^ 0 clearly y E Ad, and if Fm(^) = 0, then 
VPm(59 7^ 0 and (a) implies y E This is a contradiction.
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That A4 is connected is proven indirectly following essentially the idea of the 
proof of (b).

Though we could not prove it we believe that Theorem 2 holds also for di­
mensions > 3.

As already noted the methods for the main part of the proof of Theorem 1 
have been developed in [7] to investigate the asymptotic behaviour of nodes of 
solutions of Schrodinger equations in exterior domains for dimension n > 3. We 
remark that there the situation is much more complex than here, even for the 
2-dimensional case it is rather delicate (see [6]). For a survey on these results 
see also [8].
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1. Introduction
Consider the integro-different!al equation of the form

x(0) = 0 < 0,

where 0 < r < oo and f E £11oc(0, co). Equations of this type appear as models 
of certain aeroelastic systems [BCH], Also Abel’s equation can be written in this 
form [IT]. In this paper we develop a semigroup theoretic treatment for these 
equations (in case of Abel’s equation see [BHS] and [KZ]). In [BI] the case was 
considered when the kernel g satisfies

<7 > 0 on (—r, 0),

9 £ H\oc(~r,V) and g>Q on (-r,0), 
g E L\-r,Q).

(A.l) 

(A.2) 

(A.3)

If there is no danger of confusion we shall denote with D the operator of differ­
entiation. It has been shown in [BI] that the linear operator A in the Hilbert

Research supported in part by NSF under grant UINT-8521208 (K. I.) and by FWF 
(Austria) under grant P6005 (F. K.).
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space £2(—r, 0) (the weighted 1,2-space on (—r, 0) with weight g) defined by

A(f) = D</>, (/) G domA, 

domA = 6 L2(—r,0) | </> is locally absolutely continuous in (—r, 0)

Zo
g(ff)D</)(ff) dO = 0}

-r

generates a Co-semigroup S'(Z), t > 0, on L2(—r,ty.
The objective of this paper is twofold. First, we investigate the case when 

g(ff) = |0|~p, 0 < p < 1 and r < oo. We show that there exists a to > 0 
(depending on r and p) such that the semigroup is differentiable for t > to. 
Next, the case when r = oo and g 6 £1( —1,0) but g £1( —oo,0) is considered. 
We establish that A generates a Co-semigroup on £^(—oo,0).

2. Differentiability of the solution semigroup
Assume that g satisfies (A1)-(A3). In order to compute the resolvent we 

consider the equation

(Al — A)</> — f E L2, <f) 6 domA,

which is equivalent to

X(f) - D<f) = /,

g^D^dO = 0.

(2.1)

(2-2)

From (2.1) we get

#) = eA»+/ (2.3)
Je

For Re A > 0 we have g(0)|eA<?|2d# < f^rg(0)d0 < oo and

o 2 r° rO 2

e

' e(<,^)ReAS«)IM)|2<ie<ie 
e

I ' e(’-«)ReAd0W)|M)|2<ie
J —r
0

2
' d»<
e

r° / r°
< / ( / e(^)ReA

J — r J 0

< i r°
~ Re A J _

1
- (Re A)2

2



Ito and Kappel 211

Thus, <p £ L2. Substituting (2.3) into (2.2) we obtain

ZO pO
g(e)(D^e)de = / g(e)(j(e) - x^e)) de, (2.4)

-r J ~r

where

Zo 
exeg(9)d9 (2.5)

-r

and
/>°

W)= / (2.6)
Je

Hence, we can state

Lemma 2.1. A £ Cl C+ if and only if A(A) 0. Moreover, if r is finite, 
then cr(A) is only point spectrum and A G cr(A) if and only if A(A) = 0. If 
A E p(A),

(XI - Ayy = eA^(0) + </,((»), (2.7)

where </>(0) satisfies (2.4) and ip is given by (2.6).

Throughout the rest of the discussions in this section, we assume that r is 
finite and g(JP) = |0|~p, 0 < p < 1.

Lemma 2.2. If ip is given by (2.6), then for Re A < 0

\e\-p(Dipxe)de
< fLdLEA r(l-p)/2g-(rRe A)

- vT + p VI - pJ

Proof. First note that for e > 0,

f g(0)(Dip)(0) dd = -g(~r)ip(-r) + g(-e)ip(-e) - / g(9)ip(9)d9. (2.8) 
— r J —r

We have the estimate

/ r° pp \ 1/2 / r° \ 1/2 „ '
|j(-rM-r)| <9(-r)( (/ g(C)|M)|2de)

V-rtf(£)7 V-r 7

V 1 + P

and similarly,

^(i-p)/2
l?(-e)VO)l < AII/IIl? - 0 as S-.0+

V 1 + P
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Moreover,

J-r \h 9\ffr we '

Hence, the estimate follows from (2.8). □

Similarly, using Lemma 2.1, we have

Lemma 2.3. For Re A < 0,

Proof. Note that

9(6)|ei#|2^ < -------
1 -p

and

g(e)we)\2de
r° / r° d/= \ / r° ■.< »W(/ VhH/ a

J-r we 9\Q)' yJe '

2(1+p)
II ril^ 2rRe A

Thus, the estimate follows from (2.7). □

Next we calculate lower bounds for |A(A)|.

Lemma 2.4. For each p E (0,1) there exist positive constants cp and Cp such 
that

Rp A|A(A)| > Cp|ImA|p — c„e-rReA forReA<0, I 741 < ~ and |Im Al > —.
1 Im A 2-tt r

(2.9) 
and

|A(A)| > Cp|A| |Im A|p for Re A >0, I and |Im A| > —. (2.10)
'1mA 2tt r

Proof. For A = a + i<w with w > 0 we have
0 /«0

\e\~pexede= / (-effpeaeeiLued0

o
cosivOdO + i / F($) sin w0 d3, 
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where F(3) = (~3)~p e010. Since F'fF) = (—3}~x~p eae(p — a3), F is monotoni­
cally increasing on ( — 00, 0) in case a > 0. For a < 0 the function F is decreasing 
on (—00,^0) and increasing on (3q, 0), where 3q = Assume that 3G E (—r, 0) 
and let Zo ?e0 pO

F(3)sinu3d3 = / + =: + J2.
-r J —r J f)$

Let jo be the largest integer such that ivr > jo7r and ji be the smallest integer 
such that 7i7T > |- Then, we have

jo~ jl+l p
Ji = ak with ak = / F(F) sin u3 d3, 

k=o J Ik

where Io = [-r,-^7], h = [-(,Zfl7j±i)7r, M 1 < k < jo - Ji, and 
+ i = [—(^-)-7r, $o]- Observe that ( —l)fcajt, & > 0, have the same sign and 

that \ak I, k > 1, is monotonically decreasing. Thus it is not difficult to show 
that

|Ji| < max(|a0|, |«i I) < ~ r~pe~rReA. 
bJ

Similarly, one can show that Ji = F(3) cos u3 d3 satisfies

|Ji| < -r-pe~rReX. 
co

Next, we consider the integrals on (3q, 0),

pO Ji p
J2 = F(0) sincj# d3 = bk with bk = / F(&) sin w3 d3,

Jdo fc=1 Jlk

where Ik = [-(£>, -(k = 1,..., - 1, and I31 = [0O, -(Note 
that ( —k > 0, have the same sign and that \bk\, k > 1, is monotonically 
decreasing. Thus in case 3o < — 77

1^21 > |&o + bi | — sin cos ds = k-1

where p(x) = JQ27r a pe xa sinada. Since

p2tt P7T
f <j~p+1exa sin <7 d(j — I (cr1-p — (cr + tt)1 ~pexn^ exa sin a da,
0 Jo

we see that p'(x) < 0 certainly for x > (a sharper bound would be £-— ln2).
Thus p(x) is monotonically decreasing on (^~,oo).
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If #o < — r then we put = 0 and J? = J°_r F(ff) sin ivOdO. As long as
~ < r we obtain the same estimate for |J21-

We first consider A = a + ico with a < 0 and — and a? > ^. Then
0q = 2- < — — and — — > — r. Hence,

|J2| > CpllmAl”'1 forReA<0, < A
Im A 2-tt

where Cp = p(£). From |A(A)| > (| J21-(I-7112 +1 12)’/2 ) > M IAI -1 A| (| J. |2 +
I -Ai]2)1/2 we see that (2.9) holds with cp = 2\/2r-pyl + (^)2.

Next suppose that a > 0, and a? > ^. Then

Zo
F(0)sinu0d0\

-r

> |A| |J2| > p(0)|A| IlmAr1,
i.e., (2.10) holds because p(0) > Cp. □

Now, one can state

Theorem 2.5. There exist positive constants a, 7 and M such that 

||(A/-A)~7||Lj <M|ImAP||/||iS

provided that rRe A > a — pin |Im A| and Re A < 7. The semigroup S(t) gener­
ated by A is differentiable for t > to with to = r.

Proof. Let <f> = (Al — A) x/, f 6 L2. Then, by Lemma 2.1, </>(0) = 
— ZTa) J-r 9 dG- The estimates of Lemma 2.4 show that there exist constants 
7 > 0 and a > 0 such that

|A(A)| > — Cp|Im A|p for A with Re A < 7 and rRe A > a — pin |Im A|.

Thus we get from Lemma 2.2
l^(0)| < -^1+P r(1-rt/2e-rReX 2

yi+P 1 - p Op y

Therefore it follows from Lemma 2.3 that

||(AZ — A)"7||L2 < ( -.- -A^O'>77-e~,‘ + ^-=0^de~rR,!A
9 A \/l - p2 1 - Cp ^2(1 +pff

for some appropriately chosen constant M > 0.
Note that for A = a + ir satisfying ar = a — pin |r|

||AeAt(AJ- A)-1|| < M\r\p+1eat/r\r\-pt/r = Meat/r\T\1+p~ptlr
Hence, using the arguments in the proof of Theorem 2.47 in [P, p. 54-57] one 
can show that t —> S(f)^>, (/) E L2 is differentiable for t > to = r. □ y p
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3. A well-posedness result for non-integrable kernels
Throughout this section, we assume r = oo and that g satisfies the following 

assumptions:

g is locally absolutely continuous on (—oo,0),

(ii)

(iii)

g > 0 on (—oo,0), g > 0 a. e. on ( —oo,0),

lim g(0) = oo and 
0—0-

< oo.

We do not assume that g(0) d0 < oo. Consider the linear operator A on 
L*( —oo,0) defined by

Zo 
g(0)(D(/))(0)d0 = 0}, 

-oo
A(f) = D(f) for (f) 6 domA

Lemma 3.1. The operator A is dissipative.

Proof. We need to show that

r_(0,A0) < 0 for all 0 E domyl,

where t_(-, •) : x —> R is given by (see [M])

T_(^,V>)= lim t 1(|]^||z,i - 
t—+o+ 3 3

= / (sgn^(6'))V’(^)^(^)d6> - [ \il>(0)\g(0)d0,
dYi(</>) JyM

where

Y^) = {6 6 (-oo.O] | W) + 0),
Y„W = {0 e (-oo,0] | = 0}.

Since (f) E domd is continuous on ( —oo,0], hi(<^) is a countable union of open 
intervals (open with respect to (—oo,0]). These intervals are of the form (<a,/3) 
with —oo < a < /? < 0, (a, 0] or (a, 0) with —oo < a < 0, or ( — oo, 0) or ( —oo, 0]. 
For intervals of the form (a, /?) with —oo < a < /3 < 0 we have <^(<a) = </>(/?) = 0 
and

pp . rP
/ (sgn<£(0))<^(0)d0 = - / g(0)\(f)(0)\d0. (3.1)

J a J ot
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For intervals ( — 00,/?) with /3 < 0 we have = 0 and

r/3 . / M x
/ (sgn = lim (—22)|^(—2?)|— / ^(6>)|^(6>)| J. (3.2)

We will consider the following three cases for Yi (</>).
Case 1. Yi(</>) = ( — oo,0) or ( — 00,0]. In this case

Zo
g(ff)<f)(ff) d0 = 0.

-00

Case 2. Yi(</>) contains only intervals of the form (a, ff) with —00 < a < (d < 0 
or ( — 00,/?) with /? < 0. Then, obviously (because g > 0 a. e.) formulae (3.1) 
and (3.2) imply t_(</>,A) < 0.
Case 3. Yi(</>) contains an interval of the form (a, 0) or (a, 0] with —00 < a < 0. 
Since (f) E dom>l, we obtain

r° . r° .
/ (sgn^(0))^(%(6Qd0 = sgn(Q)0)<M <j>(O}g(0)d0

J ot J a

Zen
g(0)j>(0)d0

-00

=-sgn(a,o)<^ / ^0)g(0)d0 -sgn(Qi0)b / ^(0).9(0)d0.
-'Yo('A) dYi (</>)n(-oo,a)

Therefore,

T^,A^ = ~f (\4m±^))9mde
Jy«W

d Vi (g) o( — oa,a )

Here Yi(</>) Fl ( — 00, a) only contains intervals as considered under Case 2. Thus, 
we have

rP rP
/ (sgn^)±l)g0)9(0)<!0 = - / g(0)(\<W)\±W))dfl<0 
J Ot J Ct

and

/ (sgn<^>(0) ± l)<X0M0)d0
J — 0-0

= Rlimj(-!7(-.f?)(|<X-.R)| ± - / <zW(|^(9)| ± d0\ < 0.
J — R

Hence, we have shown that also in this case r_(^,A^>) <0. □
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M0) =

Lemma 3.2. domA is dense in Lg(—oo,0).

Proof. Obviously C°°-functions with compact support in ( — 00, 0] are dense in 
Ldg. Let be a C°°-function with supp<^> C [—r, — e]. Define, for n sufficiently 
large,

<K°) for0<-J, 
n(0+^)an for -£ < 6 < 0.

Obviously, </>n is locally absolutely continuous with G Lg. If we put

— e />0

g(0)<j>(0) d0 (n I g(0)d0j ,
-T V J-l 7n

then also g(0)$n(0) d0 = 0, and therefore £ domfi. We put a =
Then

r° 1 / 7° \ -1 aP - ^nlk1 = a / (0 + -) d0\ / g(0) d0 ) <----- > 0
3 J _x n ' n

n n

as n —> 00. □

Lemma 3.3. For all A > 0

(A/-A)dom>l = £j.

Proof. For A > 0 and f E Lg we get from (Al — D)<^> = f the representation

^(0) =eA^(0)+ / eA(8-T7(7-)dr, 6 < 0.
Je

Obviously, <f) is locally absolutely continuous. We shall prove that </) E Ldg( — oc., 0). 
Since A > 0, we have

and, by Fubini’s theorem,

/>0 cO
/ g(0)\ / ex(e-r>>f(T)dT\d0
J — <x> J 9

g(0)ex(e~r>> d0 dr < [ g(r)\f(r)\dr < co,



218 On integro-differential equations with weakly singular kernels

where we also have used the monotonicity of g. 
Df> = X(/> — /, we also get D<i> E L). Finally, 

= which leads to

This proves </> 6 Lg. Since 
<^(0) is determined so that

i r0</>(0) =------- 5----------------- /
A fL D

I - f(0)\d0.
e '

Here, J2^ g(ff)exed3 > 0 for A > 0. Thus, <f> E domd and (Al — A)<f> = f for 
given f E lAg. □

By Lemmas 3.1 - 3.3 the assumptions of the Lumer-Phillips theorem [P] are 
satisfied. Thus we have

Theorem 3.4. The operator A defined by (3.1) and (3.2) generates a strongly 
continuous semigroup S(t), t >0, on £*(  —oo,0).
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Ground States of Semi-Linear Diffusion Equations

Hans G. Kaper
Man Kam Kwong

Mathematics and Computer Science Division, Argonne National Laboratory

1. Statement of results
Let f be defined on [0,oo), such that f is continuous on [0,oo) and Lipschitz 

continuous on (0, oo), with /(0) = 0. We consider the boundary value problem

Atz + /(tz) = 0, x E > 2); lim tz(z) = 0. 
I—>oo (1)

A ground state solution of (1) is a nontrivial solution that does not change sign. 
(We assume that it is nonnegative everywhere.) We prove the following result.

Theorem 1. Let
ru

F(u) = / /(v)dv, u > 0, (2)
Jo

and
/3 = inf{tz > 0 : F(u) > 0}. (3)

If /3 > 0 and u t—> /(tz)/(tz — /?) is monotone nonincreasing on (/?, oo), then (1) 
admits at most one ground state solution.

This result generalizes and extends earlier results of McLeod and Serrin [1], 
Peletier and Serrin [2], and Peletier and Serrin [3].

This work was supported by the Applied Mathematical Sciences subprogram of the Office 
of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38.
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220 Ground states of semi-linear diffusion equations

In Section 2 we present a brief outline of the proof of the theorem; details 
can be found in our article [4], A further generalization for quasilinear diffusion 
equations of the type V • (a(|Vtz|)Vtz + /(w) = 0 can be found in our article [6].

The proof of the theorem generalizes to the case of a bounded radially sym­
metric domain in the following sense. If f satisfies the conditions of the theorem, 
then the boundary value problem

Atz + /(u) = 0, x E Br; u(x) = 0, n • Vtz(z) = 0, x E 9Br, (4) 

admits at most one ground state solution. Here, Br is the ball of finite radius 
R centered at the origin in KI7'7; dBR is its boundary, and n is the outward unit 
normal at the boundary. Notice that the zero normal gradient condition at the 
boundary must be specified in this case. (It is satisfied automatically in the 
unbounded case.)

2. Proof of Theorem 1
2.1. Preliminaries.

Any ground state solution of (1) is radially symmetric (see [5]), so u depends 
only on r = |z|. If ' denotes differentiation with respect to r, then u satisfies

N - 1
u" -|---------- u + f(u) = 0, r > 0; (5)

r

tz'(O) = 0; lim tz(r) = 0. (6)

Two identities play a crucial role in the following analysis. They are obtained by 
multiplying (5) by u' and r2(7V-1)w/, respectively, and integrating over (n,^),

1 r00 1-(u'(r))2 + F(u(r)) = (A — 1) / -(u'« ds, r > 0, (11)

(l(u-(r))2 + f(u(r)) 72 ft?
= 2(77—1)/ s2N-3F((u(s})ds. (8)

n J ri
One can show, using (7), that limr—oo u'(r) exists and

lim tz'(r) = 0; (9)
r—

and similarly, using (8), that lim^oo r2^N~1\|(tz'(r))2 + F(tz(r))) exists and

lim r2(7V~1) ^|(w'(r))2 q-F(tz(r))^ = K, (10)

where K = 0 if N = 2; if N > 2, then lim^oo rN-2u(r) = (TV — 2p1v/2A'. 
Letting r2 —* oo in (7), we obtain the identity
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and similarly, from (8),

(-1 \ poo
~(u'(r))2 + F(u(r)) = K - 2(7V - 1) / s27V~3ds, r > 0.

/ J r

(12) 
We observe that, whereas (9) follows from the definition of a ground state solu­
tion, the analogous condition u’(R') = 0 must be imposed if the domain under 
consideration is the ball Br; cf. (4).

Lemma 1. If u is a ground state solution of (1), then tz(O) > /?.

Proof. Taking r = 0 in (11), we find that F(u(0y) > 0; hence, u(0) > (3. □

Lemma 2. Any ground state solution of (1) is monotonically decreasing on its 
support.

Proof. Let u be a ground state solution of (1) and let R be the lowest upper 
bound (possibly oo) of the support of u.

Let a = inf{r G [0, R) : u'(s) < 0 for all s G (r, R)}. We have u(a) > 0 
and u'(a) = 0. Suppose a > 0 and u has a local maximum at a. Then there 
exists a point b G [0,a), such that u'(b} = 0 and u' > 0 on (&, a). Because 
limr_^/£ u(r) = 0, there must be a point c G («,-R) where u(c) = u(6).

Taking rx = b and r2 = c in (7), we arrive at a contradiction. We must 
therefore conclude that either a = 0 or, if a > 0, then u"(a) = 0. The latter 
configuration is impossible, because f is Lipschitz at u(a), so u(r) = u(a) is the 
(unique) solution of (5) that starts at u(a) with zero slope. It must therefore be 
the case that a = 0. □

2.2. Distinct solutions do not intersect.
We assume that u\ and U2 are two ground state solutions of (1) and show 

that, if the graphs of ui and U2 intersect, then ui and U2 are identical.

Lemma 3. If Uu(r) = t/2(r) > for some r > 0, then and U2 are identical.

Proof. The lemma follows from the sublinearity of f. Suppose that Ui(a) = 
^2(0) = t for some a > 0, where t > /?, and that Ui > U2 on [0, a). The equality 
^((a) = u2(a) is ruled out, because f is Lipschitz at tzi(a), so it must be the 
case that u\(a) < u'2{a). We have (m2 — /?)/(wi) — (wi — /5)/(tz2) < 0 on [0,a]. 
Since u\ and U2 satisfy (5), it follows that

(w2 - Z?)Oi' + ((AT - l)/r)t4) > (ui - /?)(u'2' + ((TV - 1)/t)u2), (13)

and therefore
««2 -/)yN-‘u'y > ((«, (14)

on [0,a]. Upon integration over [0,a], we find that u'-^a) > u'2(a), a contradic­
tion. □
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Lemma 4. If 0 < ui(r) = u2(r) < fl for some r > 0, then ui and u2 are 
identical.

Proof. We prove the lemma in two steps. In the first step we rule out the 
possibility that the graphs of ui and u2 have more than one point in common, 
once they are at or below the horizontal line u = fl. In the second step we show 
that they cannot even have a single point in common.

Suppose that there are two distinct points a and b (a < b) such that fl > 
uffa) = u2(a) > ui(&) = u2(&) > 0. Without loss of generality, we may assume 
that ui > u2 on (a, b). By continuity, there exists a pair of points (c, d), with 
a < c < d < b, such that ui(d) = u2(c) and u'ffrf) = ^(c). Applying (8) to ui 
on [a, d] and to u2 on [a, c] and subtracting the two expressions, we arrive at the 
identity

Zu

2^-n r(a)
1 U'M))I

(r2H)27V-3A
H(MW))I J F(u) du.

(15)
Here, r^ and r2 are the inverse functions for Uj and u2, respectively (i.e., 

= u l°r 0 < j = 1,2). The expression in the left member is
positive, while the right member is negative, a contradiction. The possibility of
two points of intersection is thus ruled out.

Suppose that there is a single point a > 0 where 0 < Ui(a) = u2(a) < fl.
Without loss of generality we may assume that uffrfl > u2(r) for r > a.

Let
Kj = lim r2(N-1) fi(u'.(r))2 + F(u(r))Y j = 1,2. (16)

r*—\ J J /

Applying (8) to u\ and u2 on [a, r] and subtracting the resulting equations, we 
obtain

la2'"-1*̂;^)) 2 - («'(

k k 9in n r(“7(nwr-3= Ki A2 2(A 1) /
Ju(r) \ K(rl(W))l

»)2]
(r2W)2W-3A Fl (17)
1,7 7 AA| F(U)dU-H(n(u))| J

The expression in the left member is negative. Under the integral sign, the 
expression inside the parentheses is positive, while F(u) is zero or negative, 
so the integral is certainly negative. Hence, if K\ > F2 (which is certainly 
true if N = 2), the expression in the right member is positive, and we have a 
contradiction.

It remains to investigate those cases where N > 2 and < K2. Take 
e < |(A2 — Ai) and choose r sufficiently large that

r2*"- 1’ (i(U;(r))2+F(Mr))) < J<1+£, 

\ Zu / (18)
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r2(N 1) ( l(^(r))2 _|_^U2(r)) ) > J<2 _£< 

\ Zu I

From (18) we obtain
■\/2(7<1 + e) + e 

(TV — 2)rN~2

(19)

(20)

By reducing e if necessary, we can certainly achieve that y2(A"i + e) + e 
a/2(A2 — e). Thus,

(TV — 2)rN~2’ (21)

On the other hand, it follows from (19) that

a/2(A~2 — e) 
(TV — 2)rN~2 '

These results imply that u^r) < u2(r) for r sufficiently large. But this conclu­
sion contradicts the earlier assumption that Ui(r) > u2(r) for all r > a. Thus, 
the possibility that the graphs of Ui and u2 intersect is ruled out. □

On the basis of Lemmas 3 and 4 we conclude that distinct ground state solutions 
of (1) do not intersect.

2.3. Distinct solutions must intersect.
According to Lemma 2, any ground state solution of (1) is (strictly) decreasing 

on its support. Thus, if r >—> u(r) is a ground state solution, the inverse u i—> r(u) 
is well defined on [0, u(0)] by the identity u(r(u)) = u. Let v be defined by the 
expression

v(u) = -(u'(r(u)))2, 0 < u < u(0). (23)
Zu

Thus, 
u'(r) = —\/2v(u(r)), r > 0. (24)

We now use the pair (u,v) as the coordinates for a phase plane analysis.
From (23) we obtain dv/du = u//(r(u)). As u satisfies (5), it follows that

dv N — 1 /—
— = ——— V%v - /(u), 0 < u < u(0).
du r(u)

Furthermore,
v(0) = 0, v(u(0)) = 0.

We prove the following lemma.

(25)

(26)
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Lemma 5. If ui and U2 are two distinct ground state solutions of (1), then 
uffr) = U2(r) for at least one value r > 0.

Proof. Let ui and U2 denote two distinct ground state solutions of (1). The 
graphs of ui and U2 do not intersect; without loss of generality we assume that 
Ui(r) > U2(r) for all r > 0. Denoting the inverse functions for and U2 by zq 
and r2, we then have ri(u) > r2(u) for all u £ (0,ti2(0)).

We now analyze the trajectories of the two solutions in the (u, u)-phase plane, 
distinguishing them by their respective indices.

Because ri(u) > r2^u} near 0, Vi and ti2 satisfy

< ------x/27q - f(u), u > 0; iq(0) = 0; (27)
du r2(7i)

and
di)') N — 1 __

u > 0; v2(0) = 0. (28)
du r2(u)

Notice that the right hand sides of the differential equations are not Lipschitz. 
Hence, it is only possible to compare the maximal solutions of these initial value 
problems, unless we can somehow guarantee that there are no other solutions. 
The condition /3 > 0 serves this purpose.

We refer to our article [7], where we investigated initial value problems of the 
type

x' = p(t}xa + q(t\ t > 0; z(0) = 0, (29)

where 0 < a < 1 and p and q are integrable near 0. We showed that (29) has at 
most one nontrivial nonnegative solution if (i) p and the first integral Q of q are 
nonnegative near 0; and (ii) for every t > 0, there is a point r £ (0,f), where 
Q(t) > 0.

In the case of (27) and (28), where a = |, p(f) = (TV — l)v/2/r(t), and 
q(t) = —f(t), the condition (i) is satisfied, and (ii) is satisfied if /3 > 0, unless f 
vanishes identically near 0. If f vanishes identically near 0, a trivial modification 
suffices to establish uniqueness, again provided that /3 > 0.

The direct comparison yields the inequality

vi(zi) < v2(u), u £ [0,u2(0)]. (30)

If ui(0) > ti2(0), then Vi(7i2(0)) > 0, while 772(712(0)) = 0. This would clearly 
contradict (30), so at this point we must conclude that 7^(0) = 712(0).

The inequality (30) implies that |ti(ri(?i))| < |t1£ (r2 (t* )) | • Furthermore, 
ri(7i) > r2(u), so

M(n(w))| |7i'(r2(7i))|
r1(u) - r2(u) ’ “el°’ “2(0)1' (31)
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Next, we apply (11) to U} and at r = 0 and subtract the resulting equations. 
We find eOO -i eOO -i

/ -W(r))2dr= / -(u'(r))2dr, (32)
Jo r Jo r

or, after a transformation of variables,

ro) - rm 
0 Jo

KW^))!
r2(u) (33)

We recall that Ui(0) = ^2(0) and conclude that the inequality (31) is compatible 
with the identity (33) if and only if u/1(ri(u)) = for all u G [0, Ui(0)].
This equality, in turn, implies that u\ and U2 coincide everywhere. But here 
we have arrived at a contradiction, since we had assumed that «i and U2 were 
distinct. Hence, if u\ and U2 are distinct, their graphs must intersect at some 
point r > 0. □

The Monotone Separation Lemma of Peletier and Serrin [2, Lemma 9] is an 
immediate consequence of Lemma 5. We formulate it as a corollary.

Corollary 1. If u-[ and U2 are two distinct ground state solutions of (1) and 
Ui(r) = U2(r) = t for some r > 0, then u > ri(u) — r2(u) is monotone nonin­
creasing on [0, t].

2.4. Completion of the proof of Theorem 1.
In Section 2.2 we found that if the graphs of two ground state solutions of 

(1) intersect at some point, then they coincide everywhere. On the other hand, 
according to Lemma 5, the graphs of two distinct ground state solutions must 
intersect at some point. Clearly, we have a contradiction, unless (1) admits no 
more than one ground state solution, as asserted.
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1. Problem formulation and statement of result
We begin by briefly describing a derivation of a thin, uniform nonlinear, 

dynamic beam model which is a prototype of the nonlinear equations to be 
considered in this paper. The derivation is adapted from ideas appearing in 
Rogers and Russell [3] and in Kane, Ryan and Banerjee [2].

Consider an elastic body whose points, in its reference state, are described in 
rectangular coordinates by

{(x,y,z)\0 <x < L, -1 < y < 1, -7i/2 < z < h/2}.

The line segment 0 < a? < Z, ?/ = z = 0 is called the centerline of the body, and 
the sets

A(z) = {(a?, y, z)\x = x, -1 < y < 1, -h/2 <z< h/2}

are its cross sections. We shall henceforth refer to this body as a beam since the 
assumptions that will be made below regarding the admissible motions of the 
body characterize a class of motions which depend on x and t only, t denoting 
the time variable.

Let r(a?,f) denote the position vector at time t of the particle which occupies 
position (a?, 0, 0) on the centerline in the reference configuration (so that r(a?, f) — 
{a?, 0,0} is the displacement vector of the particle).
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228 Uniform energy decay of a class of cantilevered nonlinear beams

Assumption 1. The cross-sections move rigidly, i.e., if p(x,y,z,t) is the vector 
describing the displacement of the point (a?, y, zf then p is determined by r(z, f) 
and two orthonormal vectors d2(^,i) and d3(z,t) through the formula

p(x,y,z,t) = [r(a?,t) - {a?,0,0}] + 7/d2(a?,t) + zd3(a?,t).

We set dj = d3 x d2. The orthonormal system (d!,d2,d3) may be visualized 
as a moving coordinate system with d2(a?,t) and d3(a?,t) in the plane of the 
deformed cross section A(a?); one has di = ei in the reference configuration, 
where (ei,e2,e3) is the natural basis for R3.

Assumption 2. The centerline is constrained to move in the zz-plane, i.e., 

r(a?, t) = [u(a?, t) + a?]e3 + w(z, t)e3.

The quantities u and w represent, respectively, longitudinal and vertical dis­
placement of the point 0,0,0)

The strains of the beam consist of six quantities. The first three are the 
components of dr in the dt basis (where d = d/dxf that is

Vi = dr • di.

Assumption 3. There is no shearing of cross sections, i.e., v2 = v3 = 0.
The remaining three components of strain are related to bending and twisting 

motions and are defined as follows. Introduce the vector q by

ddk = q x dfc.

q exists and is unique since the di’s form an orthonormal basis. The final three 
components of strain are the components of q in the di basis:

Qi = q • di.

Components q2 and q3 measure the amount of bending about d2 and d3, respec­
tively, while describes the amount of twist about dp Assumption 2 implies 
that 53 = 0.

Assumption 4. There is no twisting about dp 51 = 0.
We introduce the stretch at the point x of the centerline, induced by 

the deformation, through

/*  X “f- U ( X j t)
s(a?,t)= / [1 + (dw(£,t))2]1/2d£ - z. (1.1)

Jo

Any set of forces acting on the particular cross-section located at x in the 
undeformed state can be replaced by a couple of torque T and a resultant force 
R such that

T — Tidi + M2 d2 + M3d3
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R — Pidi 4- V2d2 + V3CI3.

Here is an axial torque, Mi is a bending moment about d2, and V{ are the shear 
components of R. Assumption 3 requires that V2 = V3 = 0, while assumptions 
2 and 4 require = M3 = 0. Following [2] we have

Pi = EA^(x,t), 
ox

M2 =
Ox2

where the physical constants are A, the area of a cross section, I its moment 
of inertia with respect to the z-axis, and Young’s modulus E. (These are as­
sumed to be constants only to simplify some of the computations below. This 
assumption is inessential.) Therefore, the strain energy 

2EI
dx

can be expressed as

U = - [ EA^dsfdx + - [ EI(d2w)2dx. 
2 Jo 2 Jo

From (1.1) we have

ds(x,t) = [1 + (dw(x + u( x, t), t ))2 ]1 /2 [1 + du(x,f)] — 1-

Assumption 5. The longitudinal deformation u(x,t) is small compared with 
x and du(x,t) is small compared to 1, i.e., ds(x,t) is well-approximated by

ds(x,t) = [1 + (dw(x, t))2]1/2 — 1.

With assumption 5, the strain energy of the deformation is given by

U =
1 fL- / {EA[(1 +(dw)2]1/2 - l]2 + EI(d2w)2]dx, 
2 Jo

The kinetic energy is given by

1 fL -2 
K = - / pAw dx,

2 Jo

where ' = d/dt, p (assumed to be a constant) is the mass density per unit 
volume of the beam in the reference configuration and where we have neglected 
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the rotational inertia of the cross sections (which would introduce the additional 
term pAI^dwf2 into K). The total energy is then

£ = U + K.

We may derive the equations of motion together with appropriate boundary 
conditions by requiring conservation of energy. The Lagrangian approach, of 
course, works equally well. We assume the beam to be fixed at the end x = 0 
and, if uncontrolled, to be free at x = L. Calculation of £(t) = 0 leads, after 
routine integration by parts and variation arguments, to the nonlinear partial 
differential equation

EA
pAw + EId4w-----—dg(dw) = 0, (0 < x < L), (1.2)Zu

where

(1'3)

and to the boundary conditions

w(0, f) = dw(0, t) = 0, (1-4)

EA
EId2w(L,t) = 0, EId3w(L,t)-—g(dw(L,t)) = 0. (1.5)Zu

In fact, the specific form of the function g will not be important in what 
follows, and we only assume (for the moment) that g : R —> R satisfies

g is continuous, nondecreasing and g(0) = 0. (1-6)

We define a strain energy functional for this g through

1 rL
U = - [EAG(dw) + EI(d2w)2]dx,

2 Jo

where
r3 G(s) = / g(&d£. 

Jo
Note that

sg(s) G(s) > 0, Vs 6 R.

Setting £ = U + K as before, the requirement that £(f) = 0 leads to the system 
(1.2), (1.4) and (1.5). In (1.2), dg(dw) may be interpreted in the sense of 
distributions on R if, say w 6 C^O,!/) in the x variable.
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We now introduce a feedback control into the system (1.2), (1.4), (1.5) through 
the boundary condition

EId3w(L,t) - EAg(dw(L,ty = f(w(L,tf). (1.7)

Physically, f represents a shear force (nonlinear friction) in the da direction 
applied at the free end of the beam. If £(/) is calculated with the boundary 
condition (1.7) in effect, it is found that

£(*)  = -w(£,f)/(w(£,f)).

Thus (1.7) will be a dissipative boundary condition if f satisfies

s/(s) > 0, Vs E HL

If we rescale the time variable by making the change t —> t\/ pA/El, the closed- 
loop system takes the form

w + d4w — "y2dg(dw) = 0, 72 = A/2I, (0 < x < L), (1.8)

w(0,t) = dw(0,t) = 0, (1.9)

52«(Z,t) = 0, &>w(L,t)-^g(dw{L,t)) = (1.10)

in which the notational change f —* Elf has been made. To complete the 
description of the system, initial data

w(0) = w°, w(0) = w1, (0 < x < £), (1.11)

should be prescribed. The energy for the system (1.8)-(1.10) is

1f(f) = - / [w2 + (d2w)2 + 272G(dw)]dx.
2 Jo

We now pose the problem to be considered in this paper.

Uniform Stabilization Problem. Determine those feedback laws

/ = /(«(£,<))

for which £(£) —> 0 as t —> oo, uniformly on each bounded set £(0) < M of 
initial data.

Remark 1.1. In the uniform stabilization problem, it is not only the decay of 
energy that is to be established but also the rate of decay of £(i) in terms of 
elastic parameters and parameters associated with the particular feedback law 
selected.

The result to be proved is as follows.
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Theorem. Assume that f and g are continuous, nondecreasing functions with 
/(0) = g(0) = 0. In addition, suppose that g satisfies

> (1 + a)G(s)

for some a > 0 and that f has the following growth properties:

c0|s|P< |/(5)| < C0|s|A if|s| < 1, 
cokl < |/(s)| < CcH’ if|s| > 1,

(1.12)

(1-13)

where X E (0,1], p > A and q > 1. Let w be a classical solution of (1.8)—(1.10) 
and let M > 0. There are constants C > 0 and co = co(M) > 0 such that the 
following estimates hold provided £(0) < M: (i) if p = A = q = 1,

8(t) < Ce“wff(0);

(ii) if p + 1 > 2A, then

8(t) < C[1 + cut(£(0))(p+1-2A)/2A]-2A/(p+1-2A)£(0).

Remark 1.2. The constant C may be chosen independent of £(0) but co —> 0 
as M —> oc at least as fast as M^p+1-2A)/2A. When p = q = X = 1, cu is 
independent of £(0).

Remark 1.3. It is easy to see that the function g defined in (1.3) satisfies (1.12) 
with o = l. (1.12) is also satisfied if, for example, g(s) = s|s|a-1 with a > 0.

Remark 1.4. In the case p = A < 1, Theorem 1 gives a decay rate £(£) ~ 
^-2p/(i-p)_ This is in agreement with asymptotic energy estimates obtained by 
Conrad, Leblond and Marmorat [1] for solutions of the Bernoulli-Euler beam 
equation (i.e., g = 0) subject to the boundary conditions (1.9), (1.10), where f 
satisfies (1.13) with p E [A, 1] and q = 1.

Remark 1.5. Existence of global weak solutions of (1.8)—(1.11) may be proved 
by the Faedo-Galerkin approximation method if, for example, f satisfies the con­
ditions of Theorem 1 and g satisfies (1.6) and is locally Lipschitzian. However, 
existence of classical solutions remains an open question.

2. Proof of Theorem 1
Let e > 0, (3 > 0 and define

F,(t) = £(t) + £/>«)(£(<))'’ (2.1)

where
rLp(t) = / xwdw dx. (2.2)

Jo
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We are going to prove that for £ sufficiently small and for the choice

P+1-2A
2 A

the function Fe(t) is a Lyapunov functional for the system (1.5)—(1.7), specifi­
cally that

A(«) < -£^W£)(£(<))(p+i)/2X. (2.3)
Zu

The choice of the particular functional Fe as an appropriate Lyapunov func­
tional, and the calculation of Fe, is based on the following energy identity, 
valid for classical solutions of (1.5) -(1.7) and arbitrary T > 0:

o

0 = p(T) — p(0) + - / / w2dxdt + - / / (d2w)2dxdt
2 Jo Jo 2 Jo Jo

fT fL + 72 / / [dwg(dw) —
Jo Jo 

L rT r
----- / w2(L, t)dt + 72L / 

2 Jo Jo

Identity (2.4) will be proved at the end of this section. Let us see why it implies 
(2.3).

From (2.1),

7(o = £(o+eM0(0(t))'’“1dn+ep(O(£(*»' ’.

From the definition of p(t), it is seen that

lp(t)l <

Therefore (since £(t) < 0)

7(«) < [1 - s/3Z2(f(0))'’]£(t) +

The quantity p(t) may be calculated from (2.4). One obtains

13
-w2 + -(52w)2 + ^[dwgtdw) — G(c?w)] dx
2 2

(2-5)

L

Jo

+ -w2(L,t) - y2 LG(dw(L,t)) - £/(w(£,t))dw(L,t) 
2
rL ’13

— w2 + -(c?2w)2 + ay2G(dw) dx
2 2JO

+ F2(L,t) - y2LG(dw(L,t)) - Lf(w{L,t))dw(L,t) 
Zu

< — min(l, n)f(t) + —w2(L,t) — Lf(w(L, t))dw(L, t).
Zu
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The last term on the right side of (2.6) will be estimated next. To abbreviate 
the notation, the argument (£,i) will be omitted.

If |w(Z, f)| < 1 we have

|/(w)5w| < C0|w|A|dw|

<^|w|“ + 6|aw|2
4o

<tf|w|2A + ^t/ (d2w)2dx
46 1 1 Jo

(2-7)

where 8 > 0 is arbitrary.
If, on the other hand, |w(Z,t)| > 1,

|/(w)5w| = /(^) -o
---- ;—WOW 

W
< —w/(w) + d——\dw) ■ 4d w

(2-8)

We assume that q > 1 and leave the simpler case q = 1 to the reader. The last
term in (2.8) is then bounded above by

^-1) + ^L(aw)?+1
+ 1 \ w J 9 + -*■

5 + 1 ’ V |w|? J q + V ’
< ^^11)Co2/(g-1)w/(w)+ -|^(2Z)(9+1)/2(£(t))^+1)/2

< - 1)C02/(9~1)w/(w) + -^-(2Z)(9+1)/2(£(0))(9"1)/28{t).

Use of this last estimate in (2.8) yields, for |w(Z, f)| > 1 and 8 < 1, 

|/(w)dw| < yw/(w) + 6c2(£(0))(9-1)/2£(t) (2.9)

for suitable constants ci and c2 which are independent of 8 and £(0). The 
combination of (2.7) and (2.9) gives the estimate

|/(w(Z,tY)dw(L,<)| < ^+|w(Z,i)|)|«(£,<)|2A

+ y[l - x(l>"(i,t)|)]w(£,t)/(w(Z,i)) (2-10)

+ 6{2L + C2(£-(0))<’-1>/2]£'(Z),
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where x denotes the characteristic function of the interval [0,1], If (2.10) is 
substituted into (2.6), the following estimate for p(f) is obtained:

p(i) < — {min(l,o) - L8[2L + c2(£(0))(9"1)/2]}£(t) 
r

+ -/X(|w(Z,t)|)|w(Z,t)|2A
4o

+ ^[1 -
0

+ yw2(Z,t). 
Zu

(211)

The inequality (2.11) is now used in (2.5), leading to the following estimate of 
Fe(t) [recall that = — w(L, t)f(w(L, £))]:

1 -e/3L2(f(O))'’ - ^(f(o)H f(<)

- £{min(l,o) - L8[2L + c2(£(0))(</-1)/2]}£(f/+1 
ft C

+ --/X(|»(L,l)|)|«(Z,t)|2i(f(t))'’ 
4o

F T
+ -w\L, <)(£(«))'’.Zu

(2.12)

The last two terms in (2.12) still have to be estimated.
We shall assume that p + 1 > 2A and leave the other possibility p = A = 1 to 

the reader. The inequality

M < 7“|a|r + or s (2-13)

(6 > 0, r > 1, s > 1, 1/r + 1/s = 1) will be needed.
We apply (2.13) with r = (p + 1)/2A and s = (p + l)/(p + 1 — 2A) in order to 

obtain, for every p > 0,

X(|»|)|w|2A(£(i))'’
< Iw|p+1 I P ^A 2A/(p+l-2A)/cz^\\/3(p+l)/(p+l-2A)

“ p(p + 1) p + 1
< „2A ,w/(w) + P + 1 ~ 2A^A/(p+1-2A)(£(<))<>(,+ 1)/(p+1 -2A)

p(p+l) p+1

(2.14)

To estimate the last term in (2.12), the two possibilities A < p < 1 and p > 1 
will be considered separately.

If A < p < 1 we simply use the estimate

«2(i, !)(£(*))' ’ < -w(Z,i)/(«(Z,i))(£(0))'’, (2.15)
Co
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(2.16)

which follows from our assumptions, since |£|2 < |£|p+1 for p < 1 and |£| < 1.
Suppose that p > 1. If |w| >1 then (2.15) continues to hold. If, on the other 

hand, |w| < 1 we apply (2.13) with r = (p + 1 )/2, s = (p+ l)/(p — 1) and obtain

w2(£(i))'’ < ■ 2 .-|w|',+1 +
<ilp+ I)1 p +1 ' v ”

< s. 2 w/(w) + P^16W-i)(£(0)Mp+i)/(p-i)
i){p + l)c0 p+1

Substitute (2.14)-(2.16) into (2.12) to obtain

Fc(t) < 1 - e/?Z2(£(0))'’ - ^■(f(O))'’

_ on/5 _ ._£.+.+
2c0V 2<5p(p+l) <5(p + l)c0

— e |min(l, o) — L8[2L + C2(^(0))^-1^2 

sZCo(p + 1 - 2A) 2A/(p+1_2A) ^(p+1)/(p+1_2A)
+ 4£(p+l) V

_|_ ~ 1) ^2/(p-l)(c^))/3(p+l)/(p-l)

sL +)
(2.17)

with the understanding that the last term on the right, and the last term in the 
bracket which multiplies £(£), are to be omitted if p < 1. To complete the proof 
of (2.3), we suppose that p > 1 and leave it to the reader to make the minor 
changes needed for the opposite case.

The inequality (2.17) is valid for every {3 > 0. We now choose /? so that 

++++ = /3+l, 
p + 1 - 2A ’

that is, /? = (p + 1 — 2A)/2A. Then /? + 1 = (p + 1)/2A and

(£(^))/?(p+1)/(p-1) < (£(^))/?+1(£(0)yi-A^p+1)/A(p_1)

The last three terms in (2.17) may therefore be combined to yield the estimate

Fc(t) < [1 - e/?£2(f(0))'’ - £+-(f(0))'»
0

eL p eL
2c0 ° 8(p + l)c0 2c0£p(p + 1)

— £ |min(l, a) — L8[2L + C2(^(0))^-1^2]

_ L(p - l)^2/(p-l)(£(0)j(l-A)(p+l)/A(p-l)

eXLC0 +)
(2.18)

ZC0(p + 1 - 2A) 2A/(p+l —2A) 1 
46(P+i) v ■
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Suppose that £(0) < M. We choose 8 as follows:

8L[2L + c2M(9"1)/2] + ^)^/(p-i)m(i-a)(p+i)/a(p < - min(l, a}.

With 8 selected, choose p so that

LC0(p + 1 ~ 2A) 2A/(p+i-2A) 1
4<5(p+l) 11 ~4

Having selected 8 and 77, choose £ so that

_ o Lc\ L \ ft L XLCq _
(3L + —- F - 1 M + — —— + — — "tt < 1.

8 2cQ J d(p+l)c0 2cod77(p + 1)J

Then we obtain from (2.18)

■ , . / xx min(l, a) p + 1Jl(t)<-M£(*))' ’+1. <? =----- /3 + l = £—. (2.19)
Z Z A

Since |p(t)| < L2E(t) we have

|Fe(«) - £(«)| < z2(f(/))'s+1

Therefore
(1 - < FS(V) < (1 + £L2M^E(t\

Consequently,

A(«) < -£<7(1 +£L2M'’)-'’-1(Fe(i))'s+1 

= : -A'(Fe(i))',+1.

This yields, upon integration,

( e( )) < ! + ^F^yKf3t- ( • )

Since
o < Fe(0) < (1 +ei2M'’)f(0),

and since the function £ —* £/(l + &2£) is strictly increasing on £ > 0, it follows 
from (2.20) that

(p < (1+^2M/W(oy
1 eU; - 1 + (1 + eMMiytEWyKpt

(1 +£L2Mpy(E(ti)Y
~ l + £u(l+£Z2M/?)-1(^(0))/?/3f
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Therefore 
(l+eI/W)£(0) =

eU - [1+w<(£(0))'3]1^’ l+eL2W>’

hence
f (f) < C[1 + a>t(£(0)/]-1//?£(0),

if £ < L~2M~^, where

l+eL2MP _ p + 1 — 2A 
"1-fiW ' 2A

Remark 2.1. Since £ < L~2M~V, it is seen that co —> 0 as M —> oo as least 
as fast as . On the other hand, by insisting that £ < (1/2)Z~2(for 
example), we may bound C independently of M.

Proof of (2.4). Multiply (1.5) by xdw and integrate the product over (0, £) x 
(0,T):

fT fL
/ / xdw[w + d4w -

Jo Jo

We have

rT I-L
I I xdww dxdt = p(T) — p(0) — /

Jo Jo Jo

= p(T) - p(0) - | /
2 Jo

= p(T) - p(0) + 1 /

- 'j2dg(dw')]dxdt = 0. (2.21)

rL
1 xwdwdxdt 

Jo
>T pL । pT pL

/ d(xw2)dxdt +~ 1 w2dxdt
) Jo 2 Jo Jo (2.22)

/ w2dxdt — — / w2(Z,t)dt,

and

/>T pL ,
/ / xdwd^w dxdt = L 1

Jo Jo Jo

= L / 
Jt

1
+ 2

= L / 
Jo

J 0 J 0 J 0

'T pT rL
dw(L,t)d3w(L,t)dt+ / / d2(xdw)d2w dxdt

) Jo Jo
'T n pT pL

dw(L,t)<93w(L,t)dt + - / / (d2w)2dxdt
’ 2 Jo Jo (2.23)

pT pL
/ / d[x(d2w)2]dxdt

Jo Jo
•T Q pT pL

dw(L, t)d3w(L, t)dt + - / / (d2w)2dxdt.
। 2 Jo Jo



Lagnese and Leugering 239

Finally,

r i'

0 Jo
—L C du

Jo
fT fL+ /

Jo Jo

0
T pL

+ ] /
JO Jo
fT fL

+
Jo Jo
rT

= L \G(dw(L,t)) -dw(L,t)g(dw(L,t))]dt 
Jo

rT rL+ I I [dwg(dw) — G(dw)]dxdt.
Jo Jo

(2.24)

Identity (2.4) follows upon substitution of (2.22)(2.24) into (2.21) and use of 
the boundary condition (1.10).
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Neumann Boundary Stabilization of Structurally 
Damped Time Periodic Wave and Plate Equations

Alessandra Lunardi*

Dipartimento di Matematica, Universita di Cagliari

(1.1)

1. Introduction
Let Q C be a bounded open set with C2 boundary d£l and exterior 

unit normal vector v . Let p be a T-periodic positive C1 function, and let 
A : D(A) = {<£>(= _ff2(Q) : = 0} —> L2(£V),A(p = A92 be the realization of
the Laplace operator in L2(Q) with homogeneous Neumann boundary condition. 
We shall study the stabilizability problem for the strongly damped wave equation 
and the proportionally damped wave equation in (0, +00) x A :

utt(t,x) = Au(t,a?) + p(t)Aut(t, z), t > 0,z £ S2, 
u(0,z) = uq(x), ut(0,z) = v0(z), r 6 Q,

~^u(t,x) = ($^i(f))(a?), t > 0, X E dQ-

utt(t, x) = Au(t, x) + x), t > 0, x E £2,
u(0,z) = u0(x), uf(0,z) = v0(z), x E S2, 

d
—u(t,x) = (<J>£2(2))(A)’ t >0, X E dfy

where ^1,^2 : [0, +oc[—> Z ( Z = Banach space of controls) are the controls, and 
$ is a linear bounded operator from Z into L2(cK2). Analogously, we consider

* The author is a member of G.N.A.F.A. of C.N.R., and was partially supported by the 
Italian National Project M.P.I. “Equazioni di Evoluzione e Applicazioni Fisico-Matematiche”.

(1-2)

241
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two damped plate equations:

utt(t, x) = — A2u(t, x) — p(t)A2ut(t, x), t > 0,x E Q 
u(0,z) = u0(x), ut(0,x) = v0(x), x e fl, 3)

-^-u(t,x) = 0, = (4>03(i))(z), t > 0, x E dQ-
ov ov

uu(t,x) = (-A)2u(t,z) + p(t)(-A)2uf(t, z), t > 0,x E fl 
u(0,z) = u0(x), ut(0,x) = v0(z), x E fl, 4)

~^u(t,x) = 0, ^Ati(f,r) = (#04(l))(z), t > 0, X E dfb,

In the case F = 0, systems (1-1),... , (1.4) are not stable, since they admit so­
lutions of the form = a + bt. Interior stabilization of system (1.1) was 
considered in [9] in the autonomous case p(t) = p, and in [4] in the nonau- 
tonomous case. Several regularity results concerning equations (1.3) and (1.4) 
(also with other boundary conditions) were given in [10]. Here we prove that sys­
tems (1-1), (1-2) (resp. (1.3), (1-4)) are exponentially stabilizable in the H1 x L2 
(resp. H2 x L2) norm if and only if

3 z E Z such that / ($z)(x)dax 0 (1-5)
J dQ.

The idea of the proof is the following. Setting ut = v, we reduce systems (1.1) 
and (1.2) to first order systems in the product space X = FF(£l) x Z2(Q) :

u'
v'

u(0)
v(0)_ 

du 
du

0 1 u
A p(i)A v

u0

t > 0

(1.6)

($pi(i)), t > 0;

u1
v'

u(0)
v(0)_ 

du 
dv

0 1
A p(t)(-A)i

u0

($p2(i)), t > 0;

and we study the evolution operators

At) =

u
v

u
v t > 0,

(1-7)

G(t,s) generated in X by the families 

, with domains D{A(t)) =1
p(t)(-A)^ _

0
A

0 1
A p(i)A

E H1^) x H1^) : u + p(t)v E D(A) k and £(£(*))  = D(A) x

and B(t) =
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respectively. Analogously, we reduce systems (1-3) and (1.4) to first order sys­
tems in the product space y = D(A} x A2 (9) :

(1-8)

u> _ 
v'

u(0) _ '
v(0) 

du 
du du

the evolution operators 
1 1

-p(t)A2_

G F2(9) x F2(9) : = O,fj = 0,u + p(t)v G F(A2) k and =

0 
-A2

Uq 
v° .

dAu

1 
p(t)A v

u , t > 0

= (^4^)), t > 0

and we study 
0

—A2£(*)  = and A4(f) =

G(t,s) generated in y by the families 
0 1

—A2 p(t)A , with domains D(£(f)) =

I u 
1 v 
D(A2) x D(A) respectively.

The theories developed in [9]—[10] and in [1]—[2] are applicable to our sys­
tems, provided we reduce them to homogeneous boundary problems. This is 
done in the usual way, by using the Neumann mapping N (defined by N£ = z, 
where z is the solution of the elliptic problem Az = z in 9, = £ in 59), and
introducing the new unknown w(f,a?) = u(f,a?) — (2V$^,(f))(a?) (i=l,2) in prob­
lems (1.1),(1.2), and the new unknown z(t,z) = u(t, x) — ((7 — A)-*1

(i=3,4) in problems (1.3),(1.4). Therefore, the couples

mogeneous systems, and they can be represented by the variation of constants 
formula, provided that the gjs are twice differentiable. Once a function W has 
a representation of the form W(f) = J*  G(t,s)F(s)ds + G(f,O)Wo, ( F being an 
exponentially decaying function), a necessary and sufficient compatibility condi­
tion between Wo and F is known ( [8], [5] ) in order that W decays exponentially 
as t —> oo. After some computation, we find that such a condition is satisfied if 
and only if conditions

w
™t

z
Zt

satisfy ho-

Puo - [ [5 - d(S^('S))]P,$ff-(.s)d.s,
Jo

/*OO

Fv0 = / Rs) - l]P'$gi^ds + p(0)P'<M0) 
Jo

(1-10)
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(z = 1,3) hold in the case of problems (1.1),(1.3), and conditions

pOO

Pu0 = / sP'$gJs)ds,
J° (1-11)

Pvq = — P'<bgi(s)ds
Jo

(i = 2,4) hold in the case of problems (1.2),(1.4). Here we have set

P£ = ( meas Q)-1 [ ^{x)dx^ E L2(Q);

(1.12)
P'ri = ( meas 5Q)-1 / r](x)dax, r] E L2(dQX).

Jdti

Therefore, the stabilization problem for systems (1.1) and (1.3) (resp. (1.2) and 
(1.4)) is reduced to the problem of finding a function gt satisfying (1.10) (resp. 
(1.11)). Of course, if either (1.10) or (1.11) are solvable for arbitrary initial 
values (uo,vo), then (1.5) is necessarily satisfied; it is not difficult to see that 
the converse is also true.

2. The abstract setting
Let Q C be a bounded open set with C2 boundary d£l and exterior 

unit normal vector z/, and set D(A) = {<£>£ Lf2(Q) : = 0}, A : D(A) —*
L2(Q), A<p = . Then the spectrum of A consists of a sequence of eigenvalues:

cr(A) = {-Afc}fcGN;A0 = 0, lim Xk = +oo (2.1)k—>-oo

so that the spectrum of —A2 : D(A2) = G H4(fl) : = 0} consists
of the sequence of eigenvalues

a(-A2) = {-Al}teN. (2.2)

Let {ekh} , be a complete orthonormal system spanning L2(Q)
and consisting of eigenvectors of A : Aekh = — ^k^kh for each k E N and 
h = 0,..,m(fc). We shall represent every function E L2(Q) in the form 

= ^khekh- The fractional power (-A) 2 ; D(J-A) 2) = H1 (Q) ->
L2(Q) is well defined by

oo m(fc)
(-A)2 ip = 5? (^k^VkhCkh Vy E ^(Q).

k=0 h=l

Set moreover
X = ff'iii) x L2(U),y = D(A) x L2(fi).

(2-3)

(2.4)
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If p : R —> R is a positive T- periodic C1 function, define

£W)) = G x : u + p(t)v G D(A)

A(t) : D(A(t)) -> X,A(t) = 0 1
A p(t)A

(2-5)

£>(/?(«)) = IV) x : £>(£(«)) - X,

B(«) = “ ' ,,i7 A p(t)(—A) ?
(2-6)

and
D(£(t)) = { G D(A) x D(A) : u + p(t)v G Z>(A2)

£(t) : P(£(t)) -» y, £(t) = 0 1
-A2 -p(t)A2

D(M(t)) = D(A2) x D(A) M(t) : D(M(t)) -> y,

M(t) = 0 1
-A2 p(t)A. '

(2-7)

(2-8)

It is well known that both A(t) : D(A(ty) —* X ,B(t) : D(B{t}) —> X generate 
analytic semigroups in X, and both £(t) : P(£(t)) —> y,Xl(t) : 7?(jM(t)) —>• y 
generate analytic semigroups in y (see e.g. [3] ) for every t E R. Since the 
operators B(t) and A4(i) have respective domains P = D(A) x hf1(Q) and 
£ = D(A2) x D(A) independent of t , and (as easily seen) t —» B(t) belongs 
to (^(R^P, A)),t M{t) belongs to C^R, L(£, ^)), then the family {B(t)} 
generates an evolution operator Gg(t,s) in X , and the family {A4(t)} generates 
an evolution operator Gwins') in y (see [9], [10] ). On the contrary, the domains 
of A(t) and £(£) depend on time, but it is easy to check that also the families 
{A(t)} and {£(£)} generate evolution operators in X and in y respectively, by 
applying either the result of [7] or the following one (a simplified version of the 
main theorem of [1] ):

Proposition 2.1. Let X be a Banach space, and let A(t) : P(A(t)) C X —* 
X(t G R) be linear operators such that there are w G R,0 > ^,c,£ > 0 with

(a) p(A(t)) 3{AgC: Re X > u}, ||A(A - A(t)-1 ||L(X) < M Vt G R,
(b) ||A(t)(A - Vr'K^t) - “)-’ - (^) - ^)-'IIl(X) < |i - s||A|-', 

V t, s G R.

Then the family {A(t)} generates an evolution operator UA(t,s) in X.

By using the representation formula

1
(A-xl(i))-1 __________  ’ (A - P(«M) 11, A2

Ap(t) + 1 _ A A_ ^Ap(t) + 1 - V1
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which holds for every A 0, A / -|[Ajtp(i) ± ((Afcp(i))2 “ 4Afc) 2 ],
and

(A-ro-1 1 [(A + ^M2) 11 A2
AX0 + 1 L ~a2 a]1A^) + 1

one can check easily that the assumptions of Proposition 2.1 are satisfied by both 
families {.4(7)} (with X = X ) and {£(£)} (with X = y ). We denote by U&(t, s) 
(resp. {/£(f,s) ) the evolution operator generated by the family {.4(£)} (resp. 
{£(£)} ) in X (resp. in y ). The asymptotic behavior of any evolution operator 
H(t, s) (under the assumptions of either [9]- [10] or [1]—[2]) is determined by the 
spectral properties of the families of operators {H(s +T,s') : s E R} (see [8] and 
[5] ). The following proposition holds:

Proposition 2.2. The spectra of Gb(s+T, s) ,G!m('S+T, s) and ofU^^+T, s), 
Uc(s + T, s) are independent of s E R. Moreover:

(i) If G denotes either G& or Gm , then a(G(T, 0)) = {0} U {rjk}£gn ,where 
r]o = 1, |?7fc| < 1 for k > 1, limjt_oo 7/jt = 0, and T]k is an eigenvalue for 
each k;

(ii) If U denotes either or Uc , then a(U(T, 0)) = {0,e-^° pMds} U 
{x±(k)}fcGN,where %±(k) are eigenvalues, lirn^oo X-(^) =
limfc_oo x+(fc) = ^ids, and x+(0) = 1, |X-(0)| < 1, |x±(0)| < 1 
for k > 1;

(ii i) For every s E R and for every sufficiently small circle y centered at 1, 
we have

4- [ (z — G(s+ T,s')')~1dz = j— hz-U(s + T,sy)-1dz = 
2tti 2iri

P 0
0 P

where P (defined in (1.12)) is the projection on the space of the constant 
functions.

Proof. Since P (resp.£) is compactly embedded in X (resp. in J7), then G(s + 
T, s) is a compact operator for every s, so that its spectrum (except the point 
0 ) consists of a sequence of eigenvalues converging to 0. It is independent of 
s because the eigenvalues of G(s + T, s) do not depend on s. To estimate the

eigenvalues of G(s + T, s), we recall that G(s + T, s) 

where u is the solution of (1.2) (resp. (1.4)) with initial

tto _ u(s + T, •) 
v0 _ _ut(s + T, •). ’ 
time s and $ = 0, and

Ukh(P)&kh-> where Ukh(t) is the solution of

ukh^) = ~^kUkh(t) - ^k)1/2p(tWkM,

Ukh(s) = {u0,ekh}, u'kh(s) = {v0,ekh},
(2.9a)
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or, respectively,
ukM = -^kukh(t) ~ Xkp(tykh(t\ 

Ukh(s) = (u0,ekh), u'kh(s) = {v0,ekh}.
(2.9b)

From (2.9)(a)(&) we deduce easily that 1 is a double eigenvalue of G(s + T, s), 
and the other eigenvalues have modulus smaller than 1. Therefore (i) is proved, 
(ii) is a consequence of Theorem 2.3 of [4]. Now we have

U(s + T,s) tt(s + T, •) 
ut(s + T, •)

where u is the solution of (1.1) (resp. (1-3)) with initial time s and $ = 0, and
w(i, ') - ukh(t)&kh, where ukh(t) is the solution of

ukh{t) = ~Xkukh(t) - Xkp(t)u'kh(t\ 

ukh(s) = {u0,ekh}, u'kh(s) = (v0, ekh),
(2.10a)

or, respectively,
u'khtt) = -X2kukh{t) ~ X2kp(t)ukh(t), 

ukh(s) = (w0,ejt/i), u'kh(s) = (v0,ekh).
(2.10b)

Let us show (iii). Set

G(s+T,s) u0
Vo

oo m(k)

22 22
k=0 h=l

(u0,ekh)
(v0,ekh)

and
oo m(k) r

U(s + T,s) =vy PthUk^ + T^)

. Moreover, Gkh(s+T, s) &kh^

where ukk is the solution of (2.9)(a)(resp. (2.9)(&)), and

where Pkh aekh 
bekh

ukh(s + T) 
u'kh(.s +

Ukh(s + T,s^ (uo,ekh) 
(vo,ekh)

vkh(s + T)

a 
b

where ukk is the solution of (2.10)(a) (resp. (2.10)(&)). From (2.9) and (2.10) 
we find

Goi(^,s) — (701(i,5) — 1 t — s
0 1 (2-11)
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Then we have

1 dz

-1 {uoekh} i

-1

oi \z - P'Uo] , dz,1
0

T
1 Pv0

and, analogously,

- G(s + T,s)y1dz =
------ [ Pol I Z —

27TZ L \

-1
Ptzo
Pv0 dz.

1
0

T
1

Statement (iii) follows now easily. □

For representing the solutions of (1.1),..,(1.4) by means of the evolution oper­
ators considered above, we introduce the Neumann mapping, defined by N£ = z, 
where z is the solution of

Az = z in fl

— =<C in 
dv

(212)

As well known, N is a bounded operator from L2(cKl) to and from
H 2 (cifl) to P2(fl). Moreover, AN = N. This implies that, if g^ E C2([0,+oo[, Z), 
uq E .H^fl), Vo E L2(fl), and u is a solution of (1.1), then, setting w = 
u(t,x) — N$gi(t)(x), w satisfies

wtt(t, x) = Aw(t, x) + p(t)Aw((l, x) + N^gi(t)(x)

+ g(t)N$g'1(t)(x) - N^g"(t)(x), t > 0,x E fl, 
w(0,z) = uq(x') — N^gi (0)(z), x E fl, 

Wt(0,a?) = vq(x') — N^g^O^x), x E fl, 
dw(t,x)
----^—L = 0, t > 0,x E dQ-

dv

(2-13)

so that for every t > 0 we have

u
ut

= UA(t,Q) uq — NQgttO) 1 NQg^t) 
jio-JW^O)] [a^(1)_

UA(t,s) 0
NQg^s) + p(s)A'$^'1(s) — N^g'^(s)

(2-14)
ds.
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Similarly, if u is a solution to (1.1), then w satisfies 

wtt(t, x) = Aw(t, x) + p(t)(-A) 2 wt(i, x) + N$g2(t)(x)+

+ pW-A^N^g'2(tXx) - N$g2(t)(x\ t > 0,x G fl,

w(0,z) = u0(x) — N$g2(0)(x), x E fl, wt(0,x) = v0(z) — N^g'2(0)(x),x E fl, 
dw(t,x)
..... ....... . =0, t > 0, X G dfl,

du
(2-15)

so that for every t > 0 we have

u
ut

u0 - 2V<J>#2(0) 
v0 - N$g'2(0)

N$g2(t)
N^g'M

0
N^g2(s) + p(s)(-A^N<S>g'2(s) - lV^''(s)

(2.16)
ds.

= t/^(l,0)

The functions defined in formulas (2.14) and (2.16) are in fact solutions of prob­
lems (1.1) and (1.2), as the following proposition shows.

Proposition 2.3. Let gt E C2([0, +oo[; Z), i = 1,2, and let uq G id1 (fl), 
Vo G Z2(fl). If $ belongs to L(Z, L2(dfl)), then the function u given by (2.14) 
(resp. (2.16)) belongs to C2(]0, +oo[; L2(fl)) A C([0, +oo[; 77’1(fl)), u + pu' be­
longs to C(]0, +oo[; 772(fl')) for every fl' CC fl (resp. u G C2(]0, + oo[; L2(fl)) A 
C([0, +oo[; id1(fl)) AC(]0, +oo[; id2(fl')) for every fl' CC fl), and u is a solution 
of problem (1.1) (resp. (1.2),). If $ belongs to L(Z, H 2 (dfl)) , then u T pu' 
belongs to C(]0, +oo[; ff2(fl)) (resp. u E C(]0, +oo[; ff2(fl)).

Proof. Let $ belong to L(Z, L2(dfl)) . Then the function

t -> F(t) = 0
NQg^t) + p(t)N<S>g'M - NQg'^t)

Q
belongs to C([0, +oo[; {0} x H 2 (fl)). Since D(A) x D(A) is contained in D(A(t)) 
for every t, then {0} xff 2 (Q) is contained in 2) for every 0 < | . Hence,
sup0<t<a 11^(1)||o^(t)(0,oo) < +°° f°r every a > 0 and 0 < |. Now, theorem 6.6 
of [2] ensures that the function

t->L71(t) = 0
N<bgi(s) + p^NQg'^s) - NQg'-^s)

+ L/(t,O) u0 - N^g1(Q') 
v0 - NQg1! (0)

belongs to C([0, +oo[; <T) A C1 (]0, +oo[; <T), U\ belongs to the domain of A(t) 
for each t > 0, and A(t)Ui(t) belongs to C([0,+oo[; A'). This implies that,
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then U1 e 
vl\t) J

setting Ui(t) =

tzi + pvi 6 C(]0,+oo[;772(Q)), and

u'i(*)  = Vi(f),
vj(i) = u"(t) = ^u^t) + p(t)Av\(t) + NQg^t) + p(t)N^g'M - N$g"(t) 

tzi(0) = u0 - 2V$^i(0), vi(0) = v0 - N^g'^0)

(2-17)

The function U2(t) = belongs to

C2([0,+oo[;ff?(«)) x C‘(]0, +oo[; H < («)),

U2G) and v2(t} belong to C'OO(Q') for every Q' C £2 , and, setting u2(t) = NQg\(t) 
and v2(t) = N<bg\(t) we have

w2(i) = v2(i), v'(t) = u”(t) = Wtfi'(t) 

u2(0) = N4>0i(O), v2(0) = v0 - W^(0) (2-18)

Summing up, we find that u belongs to C2(]0, +oo[; L2(Q)) AC([0, +oo[; J71(Q)), 
u + pu' G C(]0, +oo[; Tf2(Q')), for every Q' CC £2 , and u satisfies (1.1). 
If, in addition, $ belongs to L(Z, H 2 (Q)), then U2 6 C2(]0,+oo[; _H2(Q)) x 
C1([0, +oo[; _H2(Q)). Hence, u belongs to

C2(]0, +oo[; Z2(Q)) A C([0, +oo[; ^(Q)),

and u-\-pu' belongs to C(]0, +oo[; _ff2(Q)), and the statement concerning problem 
(1.1) is proved.

Let us consider now problem (1.2). If $ belongs to L(Zy L2(cK2)), then N$g2 
belongs to C2([0, +oo[; H 2 (Q)) c C2([0, +oo[; D( —A) 4-e) for every e G]0, |[,
so that the function

W [NQgM + p(tX-A^N^g'M - NSg'^t) 

belongs to C([0, +00[; {0} xB(-A)2-e) c C([0, +00[; —£,2)). The rest
of the proof is similar to the proof in the case of problem (1.1), the unique 
difference being that now Ui 6 C([0, +oo[; <T) A C1 (]0, +oo[; A) A C(]0, +oo[; P) 
(since _D(H(t)) = P for every f), so that

wi 6 C2(]0, +oo[; L2(Q)) A C([0, +oo[; A C(]0, +oo[; □
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Let us consider now problems (1.3), (1.4). If g3 G C2([0, +oo[, Z), u0 G 
D(A), vq G L2(Q), and u is a solution of (1.3), then, setting z = u(t3x) — (I — 
A)-1 N^g3(t)(x), z satisfies

Ztt(L x) = -A2z(t, x) - p(t)/\2zt(t, x) - [(I - A)-1 - 2\N<$>g3(t') 

+ p(t)N*g' 3(tyx) -(I- A'T'NQg'ytyxy t > 0, z G Q, 

z(0,x) = u0(x) - (I - A)~1N^g3(oyxyx G Q, 

Zt(0,z) = v0(x) - (I - A)-1 N^g'3(0)(xyx G £2, 
dz(t,x) d/\z(t,x) 

8v = °’ 

so that

(2-19)

_ = 0 t > 0,x G TQ,
w

u
Ut

= C£(t,O)
' u0 - (I - A)-1 N$g3(Qy 
_v0 - (/ - A)’1 NQg'yoy

0
-1(1 - A)’1 - 2][N4>g3(s) + p(s)N^g'3(s)] 

rt

(I - A)-1 N$g3(t) 
.{I-A^N^ft)

ds (2.20)

0 P + > A
(1 - A)-1 (s) ] ’ -

Similarly, if u is a solution to (1.4), then z satisfies

ztt(l, x) = -A2z(t, x) + p(t)Azt(t, x)

- [(I - A)’1 - 2]N*g' 4(t) + p(t)A(I - A^NQg'^tyx) 

z(0, x) = u0(x) — (I — A)-1 N$<74(0)(z), x G 

^t(O,a?) = vQ(x) - (I - A)-1 N^g'4(0)(xyx G Q, 
dz(t,x) dAz(t,x)---V--2 = 0,-----= 0 t > 0,x G dQ,

dv av

so that

(2.21)

u
ut

’ u0 - (I - A)’1 Ng4(0Y 
^-(i-A^Ng'yoy

0
-[(I - A)’1 - 2]N^g4(s) + p(s)A(I - A^1 N$g'4(s)

0 1 J f > n
-(I-A^NSg'^i as’l-u

— Gm(^, o)
rt r

■ Uo - (/ - A)-1 NJ4(o)’

ds

(2.22)

t

t

The functions defined in formulas (2.20) and (2.22) are in fact solutions of prob­
lems (1.3) and (1-4), as the following proposition states. Since the proof is very 
similar to the one of Proposition 2.3, we omit it.
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Proposition 2.4. Let gi G C2([0, +oo[; Z), i = 1,2. If belongs to L(Z, L2(fl)), 
then the function u given by (2.20) (resp. (2.22)) belongs to C2(]0, +oo[; Z/2(f7))A 
C([0, 4-oo[; ff2(Q)), u + pu' belongs to C(]0, 4-oo[; F4(Q')) J°r every fl' CC fl 
(resp. u G C2(]0, +oo[; Z2(Q)) A C([0, +oo[; F2(Q)) A C(]0, +oo[; H^fl')) for 
every fl' CC fl), and u is a solution of problem (1.3) (resp. (1.4),). If $ 
belongs to Z/(Z, ff 2 (dQ)) , then u + pu' belongs to C(]0, +oo[; ff4(Q)) (resp. 
u G C(]0,+oo[;F4(Q)).

Concerning asymptotic behavior, the following proposition holds true (see [8], 
[5])-

Proposition 2.5. Let X be a Banach space, and let {A(t)} be a T-periodic 
family of operators satisfying the assumptions of Proposition 2.1. Let H(t, s) be 
the evolution operator generated by {A(t)}, and assume that the circle {z G C : 
\z\ = e~Mt} does not intersect the spectrum of H(s 4- T, s) for every s. Fix any 
Vq E X , and any function F G C([0, oof; X) such that supt>0 ||F(t|| x < co. 
Then the function

N
V(t) = H(t,O)Vo + H(t,s)F(s)ds, t>0 (2.23)

Jo

is such that supt>0 || V(t)ewt || < +00 if and only if

r+00
P(O)Vo = - / F(O,s)P(s)F(s)ds, (2.24)

Jo

where P(s) = fy(z - H(s 4- T, s)) 1 dz, y being the circle centered at 0 with 
radius e~uT . If in addition F(t) belongs to Da(^,2) for some 6 G]0,l[, with 
supt>0 ||F(t')XT||Da(0)2) < +00 , and (2.24) holds, then V'(t) = A(t)V(t) + F(t) 
fort > 0, supt>a ||A(t)V(t)ewt||x <4-oo for every a > 0.

3. Stabilization
First we consider systems (1.2) and (1.4). We use notation from Section 1.

Proposition 3.1. Let $ G L{Z,L2(dfl)), and let 0 < cu < -^lnsup{|o| : z G 
ct(Gb(T, 0)) (resp. Gz yf 1}) .The following statements are equivalent:

(a) For each (u0, v0) G X ( resp.y) there is g G C2([0, 4-oo[; Z) such that

sup||tf(t)ewt||z + sup ||g'(t)ewt\\z + sup ||^"(t)ewt\\z < +00 
t>0 t>0 t>0

and

sup||ut(t, •)ewt||L2(Q) + sup||u(t,-)ewt||Hi(Q) < +00 
t>0 t>0
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( resp. sup \\ut(t, • )ewt ||L?(Q) + sup ||u(t, -)ewt||/p(q) < +oo), 
t>0 t>0

where u is the solution of (1.2) (resp. (1.4)).
(b) There exists z € Z such that fd^(^z)(y)day 0.

If, in addition, $ belongs to L(Z, H 2 (dQ)), and either (a) or (b) holds, then 
for every a > 0 we have:

sup ||ut(t, -)ewt||Hi(Q) + sup ||u(t, -)eWt||w2(Q) < +00 
t>a t>a

( resp. sup||ut(t,-)ewt||H2(Q) + sup ||u(t,-)ewt||//4(fi) < +00). 
t>a t>a

Proof. First we consider system (1.2). Since NQg and N^g' decay exponen- 
tially in the norm of F^fl), from Proposition 2.5 we get that

sup ||ut(t, •)ewt||L2(Q) +sup||u(f,-)ewt||Hi(fi) < +00 
t>0 t>0

if and only if

(3.2)

Now, it is easy to see that PN = P' and P( —A^N = 0 (recall that P and P' 
are defined in (1.12)). By using also (2.11), we find that (3.2) is equivalent to

Pu0 — P'$g(0)
Pv0 - P'#/(0)

—sP'$g(s) + sP'$^"(s) 
P'^(s) - P'^"(s) ds. (3-3)

Let us show now that also system (1.4) leads to equation (3.3). Since NQg 
and N<bg' decay exponentially in the norm of ff^Q), then (I — NQg and 
(I — A)~x N$g' decay exponentially in the norm of fp2(Q). From Proposition 
1.5 we get that

sup||ut(t,-)ewt||L2(Q) + sup ■)e^||H2(Q) < +00 
t>0 t>0

if and only if

P 0 1 [uo-(I-A)-1^^(O) 
0 P] [v0 -(I - A^NSg'^

0
P

P
0

(3-4)

22V$J4(s) ptsWS) + s"(3) 
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holds. Using now the equalities P(I — A)-1 N = P' and, together with (2.11), 
we find that also (3.4) is equivalent to (3.3).

After some integrations by parts, one can see that (3.3) is equivalent to (1.11). 
Of course, if (1.11) is solvable for every couple (u0, ^o), then condition (b) holds. 
Conversely, if (b) holds, for each (u0,v0) one can find easily a solution of (1.11) 
in the form <j(f) = 7(f)-?, where 7 is a scalar C00 function with compact support 
and <S>z has nonzero mean value. The equivalence of (a) and (b) is so proved.

If $ belongs to L(Z, H 2 (dfi)), then for every g G C1([0, oof; Z) such that 
suPt>o ll^)ewt||z + supt>0 ||^'(t)ewt||z < +00, the function 

2V<^(t)
WG)

resp. t (I - A)-1 ]\
(I -

belongs to

C1([0,+oo[;7d2(fi) x #2(Q)) (resp. to C^fO,+oo[; tf4(Q) x tf4(Q))

and decays exponentially in the _H2(P) x df2(P) (resp. H4(A) x _H4(Q) ) norm 
as t —> 00. If (a) or (b) holds, by Proposition 2.2 we get that

u-N$g(t)]( [ u -(I- A)-1 N<S>g(P)
u'-N^g'(t)\ reSp‘ [u1 - (I - A)~1N^g'(t')\j

decays exponentially in the P-norm (resp. in the f-norm). This implies that

sup\\ut(t, -)ewt f|+ sup \\u(t, • )ewt||H4(fi) < +00 
t>a t>a

for every a > 0 . □

Let us consider now systems (1.1) and (1.3).

Proposition 3.2. Let $ G L(Z, L2(cK2)), and let 0 < lo < —^Znsup{|^| : z G
<j(Ga(T, 0)) (resp. Gc(T, 0)), z 7^ 1} .The following statements are equivalent:

(a) For each (u0, v0) G A (resp. y) there is g G C2([0, +oo[; Z) such that

sup ||^G)ewt ||z + sup ||tf'(f)ewt||z + sup ||#"(f)ewt ||z < +00 
t>0 t>0 t>0

and

sup||ut(t,-)ewt||L2(Q) +sup||u(t,-)ewt||Hi(n) < +00 
t>0 t>0

(resp.

sup||ut(t, •)ewt||L2(Q) +sup||u(t, •)ewt||H2(Q) < +00), 
t>0 t>0

where u is the solution of’(1.1) (resp. (1.3) ).
(b) There exists z G Z such that Jg^(^z)(g)do-y 7^ 0.
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If, in addition, $ belongs to L(Z, H 2 (dfl)), and either (a) or (b) holds, then 
for every a > 0 we have:

sup||ut(h-)ewt||Hi(Q) + SUP llwG>-)eUtllw2(fl) < +00 
t>a t>a

SUp||ut(h-)eWt||H2(fi) + SUP IHL-)eWt II H4(fi) < +°°)- 
t>a t>a

Proof. First we consider system (1.1). For every g G C2([0, +oof; Z), NQg 
belongs to C2([0, +oo[; H 2 (Q)). Since {0} x D(A) is contained in T>, then {0} x 
7d2(Q) is contained in D^t^0,oo) for every 0 < | (see [6]). Therefore, the 
function

NQg(s) + p(s)NQg'(s — N^g"(s))

belongs to C(fO, oof; A') and supt>() ||ewV(i)lln^(t)(0,Oo) < oo- By Proposition 
2.5 we get that

sup ||ut(t, •)ewt||L2(Q) + sup ||u(t,-)ewt||h2(Q) < +00 
t>0 t>0

if and only if

P 0 Uq
0 P v0

P 0
0 P

N<bg(s) + p(s)lV^'(s) - lV$"(s)

holds. Due to (2.11) and to the fact that PN = P', (3.5) is equivalent to

Pu0 - P'$tf(0) 
Pv0 - P'$g, (0)

—sP'Qg(s) — sp(s)P'$^'(s) + sP'$^”(s) 
P'^(s) + p(s)P'^'(s) - P'^"(s) ds. (3-6)

Let us show now that also system (1.3) leads to equation (3.6). For every 
exponentially decaying g E C2([0, oof; Z), NQg belongs to C2([0, oof; P”^(Q)) , 
and (J— NI>g belongs to C2([0, oof; H 2 (Q)). Moreover, (J— A)-1 N<bg and 
(I — A)~lN^g decay exponentially in the norm of
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Since {0} x D(A2) is contained in £, then {0} x is contained in
_Z?4(t)(0, oo) for every 0 < | (see [6]). Therefore, the function

-[(/ - yl)"1 - 2][^3(s) +

belongs to C([0, +oo[; A) and supt>0 ||eutF(t)||}(0)Oo) < oo . By Proposition

2.5 we get that u
ut

decays exponentially in the H2(fl) x L2(Q) norm if and

only if

P
0

0
P

POO

= -/ ^(0,5)
Jo

p F(s)ds (3.7)

holds. Due to (2.11) and to the equalities PN = P(I — A)-1 N = P' , we find 
that also (3.7) is equivalent to (3.6).

After some integration by parts, one can see that (3.6) is equivalent to (1.10). 
In its turn, (1.10) is solvable if and only if condition (b) holds. Also in this case, 
for each (uq, Vq) one can find easily a solution of (1.10) in the form g(t) = "y(t)z , 
where $z has nonzero mean value, and 7 is a scalar C00 function with compact 
support, with 7(0) = 0. The equivalence of (a) and (b) is so proved. The proof 
of the last part of the proposition is the same as the last part of the proof of 
Proposition 3.1. □
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Convergence in Lotka-Volterra Systems 
with Diffusion and Delay

R.H. Martin
H.L. Smith

Department of Mathematics, North Carolina State University
Department of Mathematics, Arizona State University

In this note we establish a basic result on the behavior of solutions as t —> oo 
to the diffusion-reaction-delay system having the form

dtu\x, f) = di&u*(x,  f) + biU*(x,  t)Gi(u(x,-)t) on Qx(0,oo),

dlu\x,t) = 0 on d£l x (0,oo), = Xi(z,s) on Qx [—7,0].

where i = 1,... , n, u = (tz1,... , tzn), and Q is a bounded region in R^ with dCl 
smooth. Furthermore, A denotes the Laplacian on Q, dv denotes the outward 
normal derivative on and di and bi are positive constants. The initial 
functions y; : 9 x [—7, 0] —* R are assumed continuous and nonnegative. Also 
C[—r, 0]n denotes the space of continuous functions from [—7, 0] into Rn and for 
each x E D, u(z,-)t = (ul(x, •)<)? denotes the member of C[—r, 0]n defined by 
u(x,0)t = u(x,t + 0) for 6 E [—r, 0]. The functionals Gi in (1) map C[—r, 0]n 
into R and are assumed to have the form

— 1 QiCn^i <j)j(e)dvtj(0) (2)

for all (f) = E C[—r, 0]n and i = 1,... , n, where

(a) Cij, ri and a; are real constants with - < ai < 1,

(b) for i j, is a real-valued Borel measure with Vij ([-C 0]) = 1, 
(c) va is a positive Borel measure with v^([—7, 0]) = (1 — a;).

259
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Finally, for notational convenience define the n x n matrix C by

~ ( Cii — (2di — l)c;;C = (c2j) where <! . . (4)
I Cij = -\Cij| for i V J-

where 7^ = |v^[([—r, 0]) and |v^-| is the total variation of Vij. Under these 
circumstances we have the following result:

Theorem 1. Suppose that (2) and (3) hold and that each eigenvalue of the 
matrix C in (4) has positive real part (or, equivalently, C is an M-matrix). 
Then there is a unique q*  = (77*) ” E such that

n n
hi>0, ^2cipi*>ri and 77*(r; - ^^77-) = 0 for i = (5)

j=i j=i

Furthermore, the solution u = (u!)" to (1) exists on fl x [0,00) and if

sup{x2(a?,0) : z G Q} > 0 whenever rf*  > 0,

then
lim max{|uJ(a?, f) — q*\ : x E fl, i = 1,. .. , n} = 0. (6)

Remark 1. Since C is a nonsingular M-matrix, there is a matrix D = 
diag(<$i,... ,8n) such that 8Z > 0 for all i and CD is strictly diagonally domi­
nant (see Berman and Plemmons [1, M35, p. 137]). In particular from (4) we 
have

(2cq - l)c^ - > 0 for i = l,...,n. (7)
jV i

Since 1/2 < cp < 1 we see that cn > 0 and (2cq — l)c^ < cn. Also, yij > 1 by 
(3b) so

cn - > 0 for i = l,...,n
jVi

and it follows from [1, Theorem 2.3, p. 134, M35 => Aj that all of the principal 
minors of C = (0?) are positive. This implies in particular that the linear 
complementarity problem: given ( E there exists a unique 77 E such that

77 > 0, Cq — ( > 0 and (C77 — £) • 77 = 0 (LCP)

has a solution (see [1, Theorem 2.15, p. 274]). If Q = r, for all i and we let 
77*  be the solution 77 to (LCP), then it is clear that (5) holds. Therefore, the 
hypothesis of the theorem guarantees a unique solution 77*  to (5) and also the 
existence of 8i > 0, i'. = 1,.. . ,n, such that (7) holds. Furthermore, since (7) 
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continues to hold for small changes in the 5;’s, we may assume without loss of 
generality that

hri*  8jP*  if i j and 77*  > 0. (8)

Remark 2. The results in Dunbar, Rybakowski and Schmitt [3] have consid­
erable overlap with our Theorem, but the reaction terms in [3] have no delays. 
The crucial assumptions in [3] is that there is a diagonal matrix D with strictly 
positive diagonal entries such that DC + C*D  is negative semidefinite and that 
the equilibrium 77*  to (1) has strictly positive components. Since a,i = 1 is the 
non-delay case, the assumption that C be an M-matrix implies the existence of 
such a diagonal D so that DC + C*D  is negative indefinite [1, Theorem 2.3, p. 
134]. However, the equilibrium 77*  need not have strictly positive components 
in this case. In particular one can conclude from our theorem that if C is an 
M-matrix then the solution to (1) is persistent, that is

inf lim ul(x, f) > 0 for all i = 1,. .. , n rGQt-oo

if and only if

sup 0) > 0 for all i = 1,... , n and

77 = C~!p has strictly positive components

where p denotes the member of with the i-th component equal r[.
The result in Brown [2, Theorem 3.3], which considers system (1) without 

time delays, is included in these techniques. A criteria analogous to that used 
in [2] is 

n
Cij^Cjjdj'C'1 < 2 for 7 = 1,... ,72

J=1

(it is also assumed Cjj > 0 in [2]). Taking C = aica for i = 1,... 72, shows that 
this inequality implies that (7) holds, and Lemma 3.2 in [2] implies that 77*  > 0 
for all i = 1,.. . ,72. These ideas are expanded to the delay case in Martin and 
Smith [6]. The important connection between the global attractiveness of an 
equilibrium and the linear complementarity problem (LCP) was introduced in 
Hofbauer [4], where a system of ordinary differential equations is analyzed.

Local existence and nonnegativeness of (mild) solutions to (1) follows with 
standard techniques (see Martin and Smith [5]). If u = (ut')n, is a solution on 
£2 x [—r, T] and

Mi = sup{|Gi(u(a?, -)t| : (x,t) 6 Q x [0,T]}

then
d, Au*  — biMiUi < dtul < dit\ul + biMiUi
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and it follows by comparison and the maximum principle that

(a) Xi(z,0) = 0 implies ul(x,t) = 0 and

(b) Xi(xo,0) > 0 for some x0 6 £2 implies > 0 for all a? G Q, t > 0.
(9) 

In particular by our assumptions we have

uJ(a?,t) > 0 for all x 6 Q, t > 0 and all i such that y*  > 0. (10)

Let Si, i = 1,. . . , n, be as in (7) and for each £ E define

V[£] = max{^|^ - y*\  : i = 1,.. . ,n} and A<(£) = {i : V[£] = Si - zy*  |}.

Also let C(£l)n be the space of continuous functions y : fl —> Rn and define W 
and Ad on C(H)n by

VLfa/] = max{V[a/(a?)] : x 6 and A4[y] = {x : VL[a/] = V[?/(z)]}.

One may easily check that if

T„r x V W[y-hz]-W[y] D_W[y](z) H ----------

for all y, z 6 C(H)n, then for y{x) zy*  on Q,

D_W[y\(z) = min{<5isgn(7/i(z) - Zi(x) : x E M(y), i E y(y(x))} (11)

where sgn (r) is 1 if r > 0 and -1 if r < 0.
Now let C[—r, 0]n be the space of continuous functions </> : [—r, 0] —> C(Q)n 

and identify it with the space of continuous functions ^>:Ox [—r, 0] —> Rn. 
Therefore, if <f> E C[—r, 0]n then </>(•, 0} E C(Q)n for each 0 E [—r, 0] and (f)(x, •) E 
C[—r, 0]n for each x E R Let the linear operator A be the closure in C(Q)n of 
the linear operator B defined by

By = (di&yiW for all y = (y^ E D(B), 

D(B) — {y : y E C2(fi) and duy = 0 on d£l}.

Also, define the map F = (Ti)^ : C[—r, 0]n —> C(Q)n by

[F;(^)](a?) = bi(/)i(x, O^Gi^x, •)), x E Q, z = l,...,n, (12)

and observe that equation (1) can be written in the abstract form

dtu = Au + F(ut), u0 = x, (1)'
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where ut G C[—r, 0]n is defined by ut(x, 6) = u(xit + 6) for (z, 3) E fl x [—7,0], 
The results in Rothe [7, p.15] show that A is the generator of an analytic 

semigroup T = {T(i) : t > 0} on C(Q)n, and so by variation of constants (1)' 
can be integrated and written in the form

u(f) = T(t — s)u(s) + / T(t — r)F(ur)dr for t > s > 0. (1)"
J 3

Solutions to (1)" are called mild solutions to (1) and the results in [5] establish 
the existence of mild solutions as well as the comparison results necessary to 
show that (9) is valid (we may assume the solution to (1) is classical only when 
t > r for general initial values % E C[—r, 0]n). Noting that T(t)rj*  = y*  for t > 0 
and applying the maximum principle shows that

W[T(t)y] < for all t>0 and y E C(tyn.

If t > 0 and 0 < h < t, we have from (1)" and the continuity of T and F that

u(f) — hF(ut) = T(hf)u(t — A) + o(/z)

where h~1 |o(/z)| —> 0 as h —> 0+. Hence

W[u(f) - hF(ut)] < W[T(JT)u(t - A)] + o(/i)
< W[u(f — 7z)] + o(h)

and it follows that if d~/dt denotes the lower left Dini derivate, then

< D_Hqu(t)](F(ut)) (13)

for all t > 0 and all mild solutions u to (1).

Combining (13) and (11) gives the following:

Lemma 1. Suppose that t > 0 and u is a mild solution to (1) such that 
TV[u(t)] > W[u(t + 6>)] for all -r <3 < 0. Then

< 0. (14)

Moreover, if m E {1,... ,n} and x0 E fl are such that W[u(i)] = dm\um(x0,t) — 
> 0 and um(x0,t) > 0, then

^-lV[u(t)] < 0. (15)



264 Convergence in Lotka- Volterra systems

Proof. Assume W[u(f)] = dm\um(xo,t) — and define (f) 6 C[—r, 0]m by 
</>(#) = u(x0, t + 0) for — t < 0 < 0. Then

d*\n  ( (^o i ' )t ) — ^771(0) G'm (^)

and formulas (11) and (13) show that

^W[u(t)] < sgn (</>m(0) - ^)im^m(0)Gm(<^).

If <^>m(0) = 0 or if u(t) = r]*,  then clearly (14) must hold and so it suffices to 
show that if </>m(0) > 0 and </>m(0) rfa, then

sgn (</>m(0) - C)^m(^) < 0.

If ri™ = 0 we have sgn (<£m(0) - = 1 and £J=1 CmjVj > 1, and if Vm > 0
we have cmjrij = 1 [see (5)]. Thus (2) and (3b) imply

sgn (</>m(0) - C.)Gd)

I n
< sgn(<£m(0) - 77^) < CmjQj (0)

I J = 1

= sgn(^m(0) -C){- O“m, Cmm (^m(O) - C)

— Cmj / (^j(^) — 0j)dvmj(0) > 
J=1 J~T J

I, /nx * I J Z2j=l cmj f_r((/)j(0) — 1]j )dvmj(0)
= |<M°) - 0m\\ -anCmm ~    - _ «----------------  J[ ‘Pmt'JJ r]m J

However, the assumption VH[u(f + 0)] < VH[u(f)] for — r < 0 < 0 implies

~cmj f r((/)j(0) — T]j)dvmj < \cmj\f rdmdj (dj |0j(0) — I) d\vmj | 

(^m(O)-^) “ M<M°) - d
A , |A-1 jZr dd + dvmjl

-^1^1^. w[^

( dm | Cmj Imj if J 7^
I (1 OLm ) | Cm m | if J = m .

Substituting into the preceding inequality and using (7) establishes the lemma.
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Lemma 2. Suppose u is a (mild) solution to (1) and

W[ut] = max{lF[u(i + 0)] : — r < 6 < 0}

for all t > 0. Then u exists on [0, oo) and the map t —> W[ut] is nonincreasing 
on [0, oo).

Proof. Since W[ut] = W[u(f)] implies d~/dtW[u(t)] < 0 by Lemma 1, it fol­
lows from routine arguments that t —* W[ut] is nonincreasing so long as u exists. 
Since W[ut] < W[y] implies u remains uniformly bounded, the global existence 
assertion also follows using standard techniques.

Proof of the Theorem. By Lemma 2 set

c = lim W[ut]. t—>oo

It suffices to show that c = 0; so assume for contradiction that c > 0. Since the 
semigroup T in (1)" is compact, the u-limit set u>(y) of u is nonempty, compact 
and invariant for the dynamical system generated by mild solutions to (1). In 
particular, if ip E a>(x) and v is the mild solution to (1)' with £ replaced by V’, 
then

0 < c = W[vt] for all t > 0.

Now for each t > 0 select xt E fl and m(t) E {1,... ,m] so that

- *( ()i.
If t > 0 is such that W[v(f)] = c and > 0, then Lemma 1 implies

lim inf wqvft - ft)]- < 0
h—>0+ —h

But this implies that for some sufficiently small A,

> VL[v(f — A)] > VL[v(f)] = c.

Since this contradicts the fact that W[vs] = c, we have

if t > 0 and VL[v(i)] = W[vt], then
(16) 

vm{t\x,t) = 0, and hence c = .
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Because of (8) in Remark 1, there must exist exactly one m 6 {1,... , n} such 
that m(f) = m in (16). Noting that

yV[v2r] = max{VF[v(t)] : r < t < 2r} = c

shows there must exist some s 6 (r, 2r] such that vm(z,s) = 0, and hence 
vm(x,t) = 0 for all t > 0 [see (9)]. Therefore,

c = 6mr]m and vm(x, t) = 0 on fl x [0, oo). (17)

But (16) implies that

8i\v\x,t) - r)*\  < for all (z, t) 6 fl x [s - r, s]
and i = 1,... , n with i m

and so by continuity and compactness we have

max{^|vJ(a?,t) — : (a?,t) 6 fl x [s — r, s] and i m} < 6mri^. (18)

Also, vs E <^(x) and so there is a sequence tk —» oo such that utk —> vs in 
C[—r, 0]n. Therefore, (18) implies that there is a K such that

max{5i|uJ(a?,tfc - 0) - r]*\  : x E Cl, -r < 0 < 0} < 
ii^m

for all k > K. Also, W[utfc] | by Lemma 2, so

(19) <LnC( < = max{8m\um(x,tk - 0) - : x E fl, -r < 0 < 0}

for all k > K. But —> v™ = 0 as k —> oo, and so we may also assume K is 
sufficiently large so that 0 < um(a?,t^ — 0) < rf^ for all (x,0) E fl X [—r, 0] and 
k > K. Furthermore, > 0 so um(t, x) > 0 on fl x (0, oo) by (10) and we have 
an obvious contradiction to (19). This contradiction shows that c must equal 0 
and completes the proof.
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1. Prelude: A low dimensional representation of 
the population dynamics of generalized ectotherms

Suppose we want to model a population of ectothermic animals, e.g. the wa­
ter flea Daphnia magna. Experimentally it appears that reproduction depends 
on the size of the individual animals and this observation motivated KOOIJMAN 
& METZ (1984) to introduce a size structured model. As the biological assump­
tions underlying the model are described already in some detail, in METZ & 
Diekmann (1986; 1.3), Metz et al. (1988), De Roos et al. (preprint) and 
De ROOS & Metz (preprint), we restrict ourselves here to its mathematical 
formulation:

d d
= -/^(•s,^)n(t,£), 

C/v C/u
^max

v(s,£b)ri(t,£b) = / /3(s, £)n(t, (1-1)

Here £ denotes length and s substrate (more precisely: concentration of algae). 
The individual growth, death and reproduction rates are denoted by, respec­
tively, i/, p, and {3. The density n describes the concentration of Daphnia as well 
as their distribution with respect to length. All individuals are born with length 
£5 and £max is the maximal attainable length under abundant food conditions.
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270 Models for physiologically structured populations

To describe some experiments one should consider s as a given function of 
time but to describe others one has to specify the dynamics of s as well. In the 
latter case we take

^max 

ds f
M=h(s')- J (1.2)

h.

where h corresponds to the rate of change of the algae concentration in the 
absence of daphnids and 7 is the per capita consumption rate. Under appropriate 
assumptions on the ingredients 1/, /1, /?, 7 and A, (1.1) and (1.2) together generate 
an infinite dimensional nonlinear dynamical system.

Since daphnids are filters feeders it is reasonable to assume that the consump­
tion rate 7 is proportional to the surface area which in turn is proportional to 
£2. So we put

7(^^) = /(5X2. (1.3)

If a constant fraction of the ingested energy is allotted to reproduction we may 
put

= afc)? (1.4)

(at this point we deliberately ignore the experimental fact that daphnids don’t 
reproduce if they are still too small; see METZ & DlEKMANN, METZ et al. De 
ROOS et al. and De ROOS & METZ (op. cit.) for a formulation which does 
take into account a juvenile period characterized by £ < £y). If the remainder 
of the ingested energy is allotted to individual growth and maintenance and if 
maintenance is proportional to weight, which in turn is propertional to £3, we 
may take

^£3 = 38f(Sy2 -3e£3,

and therefore
= fe = Sf^-et. (1.5)

Finally we take
/i(s,£) = /1, a constant. (1-6)

To anyalze (1.1) together with (1.2) for the special constitutive relations (1.3) 
to (1.6) we introduce

f<max

Ni(t)= y Un(VM i = 0,1, 2, (1-7)

and find, using (1.1) - (1.7) and some straightforward integrations (by parts), 
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(1-8)

that (TV, s) satisfies the closed system of ODE’s

^2- = af(s)N-2 -

= etaf(s)N2 - 6f(s')NQ - + e)M,
CL v

- = e2baf(s)N2 + - (m + 2e)N2,
CL v 
ds 
~ = h^-f(s)N2. 
CL v

The powerful qualitative theory of finite dimensional dynamical systems now 
can be brought to bear on (1.8). Moreover one can choose from a multitude 
of well established schemes to study (1.8) numerically. As one example of the 
exploitation of these facts we point to De ROOS (1988), who uses the relationship 
between (1.8) and (1.1) to investigate the accuracy of the ‘escalator boxcar train’, 
a new, efficient method developed by him for the numerical solution of the usual 
combinations of first order PDE’s and non-local side conditions appearing in 
the theory of physiologically structured populations.

Of course neglecting the juvenile period has consequences, the main difference 
between the present model and the full one being that the latter not only allows 
the occurrence of predator prey oscillations due to the lag in recovery of the 
food population, but in addition oscillations related to the development lag (see 
Metz et al. 1988; De Roos et al. 1988; De ROOS et al. preprint, and De 
Roos & Metz, preprint).

2. Introduction
The Daphnia example shows that it is sometimes possible to faithfully rep­

resent a full physiologically structured population model in a low dimensional 
manner, provided an appropriate choice of the constitutive relations, viz. the 
velocity and mortality functions and birth kernel, is made. The idea to search 
specifically for modelling approximations allowing such low dimensional repre­
sentations is affectionately called ‘linear chain tickery’ by its practitioners. The 
name arose in the context of delay differential equations, where particular dis­
tributed delays can be represented as linear, i.e. unbranched, chains of coupled 
single ODE’s (see e.g. Mac DONALD, 1978).

The earliest references to a systematic use of linear chain tricks that we are 
aware of are by VOGEL and by REPIN (1965) who applied them in the context of 
respectively Volterra integral and delay differential equations. The first analysis 
of necessary and sufficient conditions for linear chain trickability in the context 
of systems with hereditary action seems to have been given by FaRGUE (1973, 
1974). Good general references in this context with a slant towards biological 
applications are Mac Donald (1978,1979). Gurtin & Mac Camy (1974, 
1979) were the first to use linear chain trickery for well specified age structured 
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population model. GURNEY et al. (1986) provided the extension to physiological 
age, and MURPHY (1983) and EDELSTEIN & Hadar (1983), to size.

Another, practically very useful, extension of the idea of linear chain trickery, 
which, however, is less amenable to an abstract characterization, is provided by 
the stage structured models pioneered by the University of Strathclyde group of 
ecological modellers. Basically these are physiologically structured population 
models which can be represented in a fairly straightforward manner as systems 
of delay differential equations with a few, though possibly variable, discrete de­
lays, and hence allow a rapid exploration of their dynamics using only slight 
extensions of the standard numerical techniques for ODE’s. The advantage of 
aiming at using delay instead of ordinary differential equations in one’s mod­
elling approximations is the greater flexibility allowed, in particular if one wishes 
to keep the number of differential equations involved fairly small. A good in­
troduction to the biological assumptions underlying the stage structure concept 
can be found in NlSBET & GURNEY (1986). The first papers on the subject are 
GURNEY et al. (1983), which treats the case of fixed delay only, and NlSBET & 
GURNEY (1983) which deals with the variable delay case (the symposium paper 
GURNEY & Nisbet (1983) provides a nice summary). Various useful further 
extensions can be found in BLYTHE et al. (1984), GURNEY et al. (1986), and 
Nisbet et al. (1985).

In the present contribution we report our attempts at elucidating for gen­
eral population models the structural properties underlying the machinery of 
deriving faithful finite dimensional representations. This work forms part of an 
ongoing program, started in METZ & DlEKMANN (1986), aimed at clarifying 
the abstract mathematical structure inherent in our ways of thinking about the 
mechanistic basis of population dynamics. Some of the results reported in the 
present paper, in particular the characterization results form subsection 5.1.2, 
already appeared in DlEKMANN & METZ (1988,89).

3. An abstract formulation of physiologically structured 
population models

Let the individuals of a population be characterized by finitely many variables, 
which together we call the z-state. So the set of feasible z-states is a nice subset 
of Rn, for some n. At the individual level a model amounts to a specification of 
(i) the rate of z-state change, z/, (ii) the death rate, /i, (iii) the birth rate, /3, and 
in particular how (i), (ii) and (iii) depend on the z-state x and the prevailing 
environmental conditions. The latter are described by a (possibly even infinite 
dimensional) variable E. In the case of the birth rate we have to specify the 
(distribution of the) state at birth as well.

Once we have a model at the individual level we can immediately derive 
balance laws doing the necessary bookkeeping. These balance laws generate the 
time evolution at the population level. There are two types of balance laws, 
related to each other by duality. We can use duality since for E a given function 
of time the equations are linear as a result of our previous assumption that 
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for a given course of E individuals are fully state-determined. The Kolmogorov 
backward equation is concerned with the clan mean of a continuous function on fl 
(see below). The Kolmogorov forward equation describes infinitesimal changes in 
the measure which assigns to every measurable subset of fl the concentration of 
individuals which have at that instant an z-state which belongs to that particular 
subset. This measure is called the p-state (p for population) and the space Af(fl) 
of regular Borel measures on fl is called the p-state space. Frequently (but not 
always) we can restrict our attention to densities, as we did in the case of the 
Daphnia example, and formulate the Kolmogorov forward equation for Li(fl).

Let for a particular course of E the population state at t deriving from an ini­
tial condition at to corresponding to a unit mass at xq be denoted as n(t, to, ll0). 
Then the clan mean of 0 : fl —> R is defined as

z/(to,L'0)(^o) := j 0(z)n(f,fo, lXo)({dz}).

The Kolmogorov backward equation of a general physiologically structured pop­
ulation model is

- —z/(W,0) = A(#(fo)MW,0) (3.1)

with ‘final’ condition
z/(f,f,0) = 0, (3.2)

where
A(E) = A0(E) + B(E) (3.3)

with
(Ao(E)0)(a?) = j^v(x, E) - p(z, E)0(z) (3.4)

ax
the z-state movement cum death operators, and

(B(E)0)(z) = I E- {dy}) (3.5)

with birth operator. To derive this equation from first principles one only has 
to consider what will and/or may befall an individual who at time to — dt has 
z-state xq, during the next short time interval to to, and then perform the usual 
averaging at t of 0, first within and then over the clans generated by (i) what 
by to has become of her and (ii) her offspring present at to-

The Kolmogorov forward equation can best be introduced as the formal ad­
joint of the backward equation:

dn
—-(t,to,no) = A(^(f))*n(f,fo,n o). (3.6)at
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The main use of the general decomposition (3.3) derives from the fact that for 
B = 0 we can write down explicit solutions to either (3.1) or (3.6) by the simple 
expedient of integration along characteristics. Biologically this is equivalent to 
the following of cohorts.

The description of our population is completed by specifying any outputs, 
such as total population size, total biomass, or total resources consumption, to 
be derived from it:

y(t,t0,n0) = C(E(t))n(t,to,^o)- (3.7)

When the range of y is finite dimensional, as is usually, but not always, the case, 
we can write

C(E)m = (T(E),m) = F(E)(z)m({d;r}) (3.8)

with T(£?) : Q —> Given any specific initial condition, to, ^o, the previous 
description should be such as to enable us in principle to calculate y as a function 
of t > to for any sufficiently well behaved environmental input E.

From an applied point of view the main usefulness as well as interest of the 
previous considerations derives from the fact that many environmental variables, 
like food, are in turn influenced by the population, e.g. through consumption. 
Thus nonlinear evolution problems arise in a natural manner through the spec­
ification of the feedbacks through the environment.

The mathematical theory of provide a rigorous justification and interpretation 
of the general framework embodied in equation (3.1) to (3.8) is still in its infancy. 
Some first steps towards a functional analytic underpinning have been made in 
CLEMENT et al. (1987, 1988, 1989a, 1989b; see DlEKMANN, 1989, for a survey), 
but much work remains to be done. In the present contribution we restrict 
ourselves to formal manipulations, ignoring all problems related to the existence 
and uniqueness of solutions and to the precise interpretation of the differential 
equations (3.1) and (3.6).

4. An abstract formulation of linear chain trickery
From now on we shall always assume that the required output from the popu­

lation model is finite (possible zero) dimensional, and that E itself is the output 
from a dynamical system allowing a finite dimensional state representation.

4.1. The most general case.
Since our population equations (3.6) and (3.7) are linear in the state we 

do not loose any generality by assuming that any potential finite dimensional 
representation of them is linear in the state as well, and that the full model and 
its finite dimensional representation are related by a linear map P : M(Q) —> 
In order that

N(t) = Pn(if) (4-1)
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provides us with a fully selfcontained description of the dynamical relationship 
between population input E and output y

dN
~ = K(E)N, (4.2)

y = Q(E)N, (4.3)

we should have
C(E) = Q(E)P (4.4)

and
PA« = 7<(E)P (4.5)

for some family of h x k matrices Q and some family of k x k matrices K.

Remark. It is not possible to attain greater generality by letting P depend on 
E as this will lead to a additional term [^P(P)^p]n in (4.2). □

If and only if (4.4) and (4.5) are fulfilled the dynamics of E and N can be de­
scribed by a coupled finite dimensional system of ODE’s. Once E is determined 
by solving this reduced system we can treat

(IT)

- = A(E)*n  (4.6)
at

as a non-autonomous (i.e. time dependent) but linear equation. If for example 
one can conclude from the (TV, P)-system that E approaches a limit (or a peri­
odic solution) for t —* oo, the linear equation for n is asymptotically autonomous 
(periodic) and one can base further conclusions on the known asymptotic be­
haviour for these special cases.

If we are willing to assume that

Pm = ($, m) (4.7)

for some vector $ with components which are continuous functions of Q we can 
reformulate (4.5) as

A(E)$ = /<(£)#, (4.8)

provided $ 6 7?(A(P)) for all E.

Remark. Actually A£;P(A(P)) may be empty. However, within the context of 
dual semigroups one can extend A(P) to an operator A(P)®*  which has its range 
in a larger space X®*  and therefore has larger domain as well (see CLEMENT et 
al. 1987, 1988, 1989a, 1989b, or DlEKMANN, 1989). One can then replace (4.8) 
by

A(E)®*£  = /<(£)£.
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In the following we shall not go into the distinction between this formulation 
and (4.8) (in fact we shall omit the precise definition of domains of unbounded 
operators). □

Furthermore we can use (3.8), to replace (4.4) by

T(E) = Q(E)£. (4.9)

(4.8) and (4.9) together provide us with an easy practical recipe for checking 
whether a particular combination of z/, /a, /3 and T allows a finite dimensional rep­
resentation. First of all it should be possible to write F(F?)(a?) as Qi(F?)$i(a?) for 
some vector = (c^,. .. ,y>ki)T of linearly independent functions fa and some 
h x k matrix family (fa. If this is the case our problem is linear chain trickable 
if and only if the space spanned by all possible combinations A(F?P)... A(F?i)^>2 
for z = l,...,fci,p = O,l,...,is finite dimensional.

4.2. Two examples.

Example 1. Consider a cell population with size structure and assume that a 
mother cell divides into two parts without any mass loss, (see HEIJMANS, 1984 
and Metz & DlEKMANN, 1986 (sub)section 1.4, III.3.3.1, and VI.5, and the 
references given there). Then

1
(B^Effafafa = d(x, E')[--if(x') + 2 y fafax)p(x, {d0})], 

o

where d is the division rate and p(z, ■) is the probability distribution of the sizes 
of the daughters relative to the size of their mother. The assumption of no mass 
loss implies that p(a?, •) is symmetrical about B = 1/2. Now assume that the 
uptake of nutrient E by a cell is proportional to its biomass. In that case

with </>(a?) = a?, i.e. (</>, •) is the total biomass functional. Next we observe that 
necessarily

B(E)<^> = 0

in accordance with the initial assumption that biomass is conserved in the divi­
sion process. Finally we observe that we get

= Aa(E)4> = ((/ - (£) - p.(E))<t>

if we make in additional assumptions that

fax, E) = ffafax and /a(a?, F?) =/i(_E).
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D E‘ - E) - g(E)N,

The first condition is i.a. fulfulled when basal metabolism is proportional to 
biomass, and cell growth is proportional to nutrient uptake minus loss through 
basal metabolism:

= a(g(E) - m).

The second condition is i.a. fulfulled when the only cause of cell loss is washout. 
If finally we assume chemostat dynamics, so that /i(E) = E, the dilution rate, 
we arrive at

dN
= a(g(E) - rri)N - DN, 

at 
dE 
dt

where El is the concentration of the limiting substrate in the inflowing nutri­
ent both. Under appropriate conditions on g the resulting ODE system has a 
globally stable steady state. □

Example 2. This example is more contrived. Assume again that individuals 
acquire food at a rate g(E)x where E is the surrounding food concentration 
and x is their size. Assume moreover that the acquired food is partitioned 
into a fraction k^x) which is spent on reproduction and a fraction 1 — k(x) 
spent on basal metabolism and growth, and that the cost of producing offspring 
biomass equals that of producing parent biomass. Finally assume agin that basal 
metabolism is proportional to size and that the death rate is size independent. 
In that case

(Ao(E)V’Xz) = (^(E)(l - k(x)) - m)x^'(x) - ^(E)^(x)

and
(B(E)V>)(z) =

where x^ is the size of the young. If we choose again to be equal to x we 
find

AfE^ = (g(E) - m - ^E)^. □

4.3. ‘Ordinary’ LCT.
Usually the term linear chain trickery if reserved for a special subclass of the 

general class of tricks discussed in the previous subsections, the restriction being 
that it should also be possible to calculate the birth rate into the population 
from the resulting finite-dimensional representation. The reason for the special 
importance of this smaller class of problems is that once we know the birth rate 
as a function of time we can easily construct the full population trajectory by 
using a variation of constants formula involving the explicit solution n of

dn(t, to, no) . . ~ .
—- ------  = A0(E(t)) n(t,t0,n0)

CZ> L with n(to,*o,no)  = n0.
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The ‘ordinary’ LCT problem is characterized by the conditions that there exist 
a map P : M(Q) —* a family of maps R(E) : —> Af(Q), and families of
k x k matrices H and h x k matrices Q such that

B(E)*  = R(E)P, (4.10)

PAo(E)*  = H(E)P, (4.11)

C(E) = Q(E)P. (4.12)

The resulting system of ODE’s is

dN
= H(E)N + PR(E)N. (4.13)

dt

If we may in addition make the special assumption (4.7), i.e P — ($, •), (4.10) 
to (4.12) may be replaced by

= (4-14)

A0(£;)$(x) = HfE'Mz), (4.15)

r(£)(;r) = Q(£W) (4.16)

for all x.

Remark. In the case of generalized LCT nothing can be said about the com­
ponent of the p-state in the kernel of the map P. This is unfortunate as a slight 
perturbation of the model usually brings it out of the LCT class. If unpleasant 
things happen in the kernel of P this would result is an extreme non-robustness 
of the conclusions derived from the LCT variants. It is clear from the discussion 
at the start of this subsection that the situation is much better for ordinary 
LCT as usually it is quite easy to prove that n(t,to,no) —* 0 for all riQ in a 
very fast manner. As a consequence for example the local linearisation about an 
equilibrium of a model in the ordinary LCT class always leads to a polynomial 
characteristic equation, corresponding to a decomposition of the p-state space 
into a finite number of (generalized) eigenvectors and a remaining component 
consisting entirely of ‘fast descenders’. □

5. Necessary and sufficient conditions for linear chain trickery
We shall in this section proceed from (4.14) - (4.16) on the assumption that 

z/, p, (3 and 7 are sufficiently smooth in x. Moreover, we shall only consider 
minimal representations, in the sense that k is as small as possible.

5.1. One dimensional i—state spaces.
Assume that the z-state space is one dimensional. Then (3.4) reduces to

((Ao(E))'0(^) = v(x, E)if\x) - pt(x, E')'if(x'). (5.1)
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5.1.1. The case of but one single resulting ODE. We first restrict our­
selves to the special case where P has one-dimensional range, i.e. our population 
model can be represented by just a single ODE. The question then is ‘Under 
which conditions on v and /i can we find a (continuous) function </>(z) and a 
function A(E) such that

z/(z, E)^'(z) — /i(z, E)^(z) = A(E)^(z)?’ (5.2)

If we rewrite (5.2) in the form we see that a necessary as
well as sufficient condition for the family Aq(E) to allow linear chain trickery 
population models is that there exists a function A(E) such that

^x,E) + A(g) = (5
z/(z, E)

independent of E. For the full population model to be linear chain trickable 
moreover (4.14) and (4.16) should apply with

X

= exp[ [ /(0^]> (5-4)

Example 1. Let z/(z,E) = v(E), i.e. x is physiological age. In the case Ao 
allows linear chain trickable population models iff

/i(z, E) = z/(E)/zi(z) + /i2(E). (5.5)

Moreover (f) should be of the form
X

</)(x) = exp[j /ii(£)dz] • exp[—az] (5-6)

where a still is a free parameter which can be chosen to comply with the condi­
tions on the birth and output operators. □

Example 2. Let /i(z,E) = /i(E), i.e. the z-state of an individual does not 
influence its chances of dying. In that case Ao(E) allows linear chain trickable 
population models iff

z/(z, E) = z/i(z)z/2(E), (5.7)

which after a rescaling of x brings us back to the previous example, or

</>(z) = 1 and A(E) = —[1(E). (5-8)

Note that in the latter case the conditions (4.14) and (4.16) imply that both 
the per capita birth rate and the ‘per capita resource consumption rate’ are 
independent of the z-state, i.e. the classification of individuals by x is population 
dynamically irrelevant. □
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5.1.2. Physiological age models. Let us now make the special assumption 
that v(x,E) = (a?)z>2Without loss of generality we may set = 1
for some (arbitrarily chosen) Eq, and z/i(z) = 1: Just rescale to physiological 
age

(5'9)

In this new variable condition (4.15) becomes (from now on we drop the index 2 
and the tilda)

z/(E)$'(z) - /i(z, E)#(z) = H(E)$(xf (5.10)

from which we deduce that $ should take the form

X

#(z) = exp[y /i(£, E0)df] ■ exp[H(Eo)a?] • 4>(0). (5.11)

o

Substitution of (5.11) and (5.10) gives

HE)/i(z, Eo) - n(x, E)]$(z) = [E(E) - z/(E)E(Eo)]$(z), (5.12)

i.e. $(a?) is an eigenvector of H(E) — z/(E)E(Eo). For fixed E the eigenvalues 
of H(E) — z/(E)E(Eo) form a discrete set. On the other hand it is reasonable to 
assume that the map x i—» z/(E)/i(z, Eo) — /i(z, E) is continuous. A continuous 
function taking values in a discrete set is constant. Therefore we can conclude 
that we should have

/i(z, E) = z/(E)/i(z, Eo) - A(E), (5.13)

where A(E) is only subject to the consistency condition A(E0) = 0, and

E(E) = z/(E)E(E0) + A(E)Z, (5.14)

where E(Eo) may still be chosen freely to comply with (4.14) and (4.16).
As a final consideration we note that a function </>(z) can be written as 

qT exp[E(Eo)a?]$(0) if and only if it can be written as a weighted sum of poly­
nomials times (complex) exponentials. This tells us what freedom we have in 
choosing birth and output operators.

5.1.3. Death rate independent of the z-state. If we try to generalize the 
approach from the previous subsection to z-states moving in a less restricted 
manner we end up with

[Eo) - £)] $(x) = [H(E) - H(E0)] 4(x) (5.15)
J., J^O / ‘'y'*'  ■> -‘-J0 )
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as the analogue of (5.10), and our argument breaks down since the matrix on the 
right hand side is no longer independent on x. The case of one resulting ODE 
discussed in the previous subsection and the Daphnia example from section 1 
make clear that this indeed makes an essential difference.

The results from subsection 5.1.1 indicate that there will always exist a pos­
sibility for a trade off between the rate of z-state change v and the death rate /i, 
mucking up any attempt at getting nice clean result. Except in certain special 
cases, like the one of physiological age, it is difficult to see which biological mech­
anisms could ever cause in general precisely the required relationships. Therefore 
we shall make our lives easy and stick here to the case where p, does not depend 
on x.

Result. If /i(z, E) = /i(P) the combinations

v(x, E) = v(E) with 
(5.16)

and

u(x, E) = f(E) + g(E)x with $(z) = (1, x,..., xk (5-17)

are, up to a scale change for x and a change of basis for the range of P (or 
rather a linear equivalence of the triples (P, R(E), Q(E)), the only one satisfying 
condition (4.15), with respectively

77(E) = z/(E)A - (1(E)! (5.18)

with

A = fci-1 Ai 
0

(5.19)
A2

kr — 1 Ar /

and

tf(E)

/ 0
/(£) 9(E)

- 11(E)!. □ (5.20)

(k-l)f(E) (k-l)S(E)/

Note that (5.16) corresponds to the physiological age case with which we 
dealt in the previous subsection, and that (5.17) is but a slight extension of 
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the Daphnia example from section 1. Note also that (5.20) definitely does not 
belong to the family (5.18), in accordance with the remark made at the start of 
this subsection.

To prove our result we first choose a environment value Eq and rescale x so 
that z/(ar, Eq) = 1 (we assume that a value of Eo exists such that v(x, Eq) > 0 
on the whole interior of Q). Next we rearrange (5.15) into

H(E)$(x) = v(x, E)H(E0)<S>(x) (5.21)

with
H(E) = H(E) + /i(E)J. (5.22)

Moreover
$(z) = exp[tf(EoM$(0). (5.23)

As a next step we observe that our choice of <f>i is to a large extent arbitrary 
as long as the set of ffs spans one and the same subspace of the continuous 
functions on Q. Therefore we may without loss of generality write

#(z) = (eA’x, xex'x, a?fcl-1eA,x, ex^x,.. ., xkr~1ex'x)T, (5.24)

where the A; are the eigenvalues of H(Eq). Note that (5.24) corresponds to the 
particular choice H(Eq) = A. Note also that all possible H(Eq) can be obtained 
from this particular choice by a change of basis for N = Pn. Restriction of our 
attention to minimal representations moreover guarantees that all the Aj are 
different.

Substitution of (5.24) into (5.21) yields
r k ,■ — 1

v(x, E)(qzi-' + (5.25)
2=1 j = 0

where the symbols (p, q) and (z, j) relate in an obvious manner to the indices 
characterizing the components of To proceed further we need several lemmas.

Lemma la. Let Xi 6 C for i = 1,..., r be all different and let Up := {Ap —A; |z = 
1,... ,r} then Dp=1Up = {0}.

Proof. Ap—jf/o =4 {0} iff there exists a complex number a 0 common to all 
Up. Assume that such an a exists. This allows us to define a relation —> on 
_Er := {1,..., r} by i —> p Aj — Ap = a. Under —> every element of Er connects 
in the forward and backward direction to at most one other element of Er since 
(1) Ai Xp> — A। Ap// —r' Xp> — Ap* * and (n) A Xp — cr — A j 2/ Xp —A— A. 
Since we have r sets Up we should have at least r connections under —As Er 
has but r elements this would mean that there has to exist as least one cycle. 
But this is inconsistent with the geometrical interpretation (in C) of the relation 
—>. (Note that the existence of a nonzero common element to only r — 1 of the 
Up implies that the Xt lie at fixed distance on a straight line in C.) □

Exactly the same argument yields
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Lemma lb. Let Xi E C for i = 1,..., r be all different and let Up : = {Ap — jz = 
1,... , r}. Assume Aj = 0. Then either

n u»=<°)
p=2

or, possibly after renumbering the Xi’s, 

r
Xi = (i - l)a and Qbp{0,+«}

p=2

for some a E C.

Lemma 2a. Let k > 1 be a given integer. Suppose there exist complex numbers 
A 0 and a]q, j,q E {0,... , k — 1} such that

k — 1 j
R(q,x) = ^2-—, q = o,... ,k -1, 

qxi 1 + XxiJ=o

is independent of q. Then R is independent of x as well.

Proof. By taking q = 0 we find that R is a polynomial in x of degree < k — 1. 
By taking q = k — 1 we obtain that ((h — l)rfc-2 + Arfc-1 }R(q, r) is a polynomial 
degree < k — 1. Therefore the degree of R is necessarily zero. □

Lemma 2b. Let k > 2 be a given integer. Suppose there exist complex numbers 
ajq , Lq £ {1, • • ■ ,k — 1} such that

k — 1 i

EOiigXJ
~h, ? = i,...-i,

•_0 qxq

is independent of q. Then R is necessarily of the form a + bx.

Proof. By taking q = 1 we find that R is a polynomial in x of degree < k — 1. 
By taking q = k — 1 we obtain that (h — l)xk~2R(q, r) is a polynomial of degree 
< k — 1. Therefore the degree of R is necessarily <1. □
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Lemma 3. Let for j,q E N, 0 E C

^(.7,<L/V) == ...qxq 1 + pxq

then a necessary condition for U(jo,qo, /?o,^o) to be in the linear span of 
{U(Ji,qi,0iM\i = 1, • • ■ ,k - 1} is that 30 E {0i\i = 1,. . ., k - 1}.

Proof. Suppose that U(j0, qo, /?o, #o) = ^=1 &U(ji,qi, PiXi)- Multiply both 
sides with (ynxq';-1 + 0iXqi}. At the left and right hand side we now only 
have polynomials times exponentials in x. Any collection of functions xm'e9i 
for which the pairs (m2-, are all different are linearly independent. Therefore 
the factor ee°x has to appear on both sides of the equal sign. □

If either Xp 0 or q 0 we can rewrite (5.25) in the form

r kf — 1 j

(5.26)
*—(/ vl ’ "T" X H A n 1=1 j=0 1 p

If for all p either Xp 0 or kp > 1 we thus find at least r (in fact k = k;)
expressions for v.

First assume that for all p either Xp 0 or kp > 1. In that case (5.26), 
Lemma 3 and Lemma la together imply that

%,g)(M)(E) = 0 for

and therefore that
kr — 1 j

v{x,E)= fyp>?)(p>j)(^) <7-1 , t?a ■ (5.27)
j=o y ' p

We can now apply Lemma 2a to conclude that v is independent of x provided 0 
is not the only A. We are then in the situation described by (5.16) and (5.19). 
When A = 0 is the only eigenvalue we apply Lemma 2b to conclude that v is 
linear in x. This brings us to the situation described by (5.17) and (5.20).

Next we assume that r > 2 and, say, Ai = 0, k^ = 1. We still obtain (5.26) 
for p = 2,..., r. When not Az = (i — l)o for some a 0 Lemma lb tells us that 
we are in the first of the two situations encountered before. When, on the other 
hand, Xt = (z — l)o we deduce from Lemma 3 together with Lemma lb that

fcp-i
v{x,E)= 2_^ ^(p,<?)(p,j)(^)' ?-i I T?\ qu f x s\p

kKp-1 1 —ax
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for p > 2. Applying Lemma 2a to each of the sums we infer that

v(x1E) = -(g(E) + f(E)e-aI) (5.29)
a

(the reason for this particular ‘parameterization’ with g, f and 1/a will become 
clear below). We claim that in this situation necessarily kp = 1 for all p. We 
proceed by induction. Suppose &2 > 1 then we can take p = 2, q = 1 in (5.28) 
to obtain

^2 1 7 — fir<■ 'J*  J ~
Z/(X,E)= /z(2)l)(2,j)(^)^ + + /Z(2)l)(l,0)(^)^7^-

Since A2 0 this is incompatible with (5.29). We conclude that &2 = 1- We 
then use the same argument for p = 3 etc.

Finally we transform to x = eQX. This yields z>(x,E) = f(E) + g(E}x and 
$(f) = (!,£,..., 2W1) which, modulo tilda’s and r —> k, is precisely (5.17). □

Remark 1. When judging the generality of the linear growth low (5.17) one 
should keep in mind that one can still employ an ^-independent change of 
z-state variable to bring a particular biological growth law in that form. For

(we thank Y. Iwasa for reminding us to (ii) and (iii)). □

example, the growth laws most commonly encountered in the literature
(i) von Bertalanffy: dy 

dt = ay2/3 - (3y
(ii) logistic: dy 

dt = ay - (3y2

(iii) Gompertz: dy 
dt = oty - (3y log y

can all be linearized:
(i) a? = 7/1/3 => dx 

dt = |(a- /Ar)
(ii) x = - => y

dx 
dt = 13 — ax

(iii) x = log?/ => dx 
dt = a — (3x

Remark 2. If we set p.(x,E) = z/(a?, E)/i1(a?) + p^E) the combinations (5.16) 
X

and (5.17) with the old $(z) replaced by 'I'(z) = exp( J /zi(£)d£)$(z) still satisfy
(4.15) with the same H(E) as when = 0. □ 

5.2. Higher dimensional z-state spaces.
We do not have any general results for the case where Q is higher dimensional. 

What we do have is a whole zoo of weird and wonderful examples. We just give 
three of them.

Example 1. Let fl be two-dimensional and let v be given by

z/(x,E) =
a(E) + &(E>i 

c(E)
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Define

and

L(E) =

l 

II
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।
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1

03 
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A straightforward calculation then shows that

-(x)-v(x,E) = L(E)<S>(x) 
ax

which is the required relation = H(E)Q for p = 0. When p is nonzero
but still independent of a?, L(E) has to be replaced by H(E) = L(E) — p(E)I.

The biological interest of this example is that we may interpret x-^ as size and 
x2 as physiological age. Moreover $ is chosen in such a way that we can choose

0(x,E) =

as an age and size dependent birth rate of individuals. □

The next two examples do not allow immediate biological applications. They 
do show, however, that in the case of higher dimensional z-state spaces there 
exist also cases with nonlinear z-state dynamics which are yet linear chain trick­
able.

Example 2. Let again fl be two dimensional, and let

a(E) + b(E)X1 
c(E)xl
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Example 3. Let Q be three dimensional and let

/ ai(E)
i/(x, E) = I 02(E)

\ci(E)eA1X1 + c2(E)e* 2X2 + c3(E)eA1X1+A2a:2

$(a?) =

/Aiai 0 0 0
0 A2a2 0 0
0 0 Aidi T A2cz2 0

\ Cl c2 C3 0

6. Discussion
Understanding the precise nature of the necessary and sufficient conditions for 

linear chain trickery to be possible is of interest of three reasons. First of all there 
is the intrinsic esthetic appeal of the problem. Secondly its solution amounts to a 
complete catalogue of cases for which a reduction of finite dimension is possible. 
No doubt this catalogue will contain useful cases which thus far escaped our 
attention (like the first example from section 5.2). Thirdly solving the general 
linear chain trickery problem will tell us which (classic) ODE models can be 
reinterpreted reduced structured models. (In our, admittedly somewhat biased, 
opinion the justification of any ODE population model should derive from the 
fact that such an interpretation is possible).

In this paper we to a large extent have solved the ordinary, or special, linear 
chain trickery problem for the case of a one-dimensional z-state space. A full 
characterization of linear chain trickable models with higher dimensional z-state 
spaces is still lacking. And we have only scratched the surface of the general­
ized linear chain trickery problem. However, we plan to keep working on these 
problems.

Acknowledgments. Hans Metz wishes to thank the Department of Physics 
and Applied Physics of the University of Strathclyde, Glasgow, for its hospitality 
during part of the research reported here.

Note added in print. In the meantime we have also solved the ‘ordinary’ LCT 
characterization problem for one dimensional z-state spaces in a general manner, 
i.e., without assuming any restrictions on either the rate of z-state change v or 
the death rate /1. The result is bizarre.
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The Nonrelativistic Limit of Klein-Gordon 
and Dirac Equations

Branko Najman

Department of Mathematics, University of Zagreb

The two linear equations of relativistic quantum mechanics to be considered 
are

1. the Klein-Gordon equation

1 lc2~
— V’ = A(i), (0.1)

and
2. the Dirac equation

zi/’t = —zcaVi/’ + c2/??/’ + Fc(t). (0-2)

In both equations c is the speed of light and the physical measurement scale 
has been adjusted so that both the Planck constant h and the mass m are equal 
to one. The functons fc and Fc have no physical meaning in the linear case; 
however, it is useful to consider them as a preparation for the nonlinear theory.

Throughout this note, all the functions are defined on Rn and t varies over 
R. In case of the Klein-Gordon equation n is arbitrary and in the case of the 
Dirac equation n = 3.

The nonrelativistic limit of the equations (0.1) and (0.2) is the limit c —> oo. 
It is known ([2],[8],[13]) that under appropriate assumptions on the initial data 
the solutions of these converge to the solutions of the appropriate Schrodinger 
equation; cf. also [3],[4],[7],[10],[11],[12] and the references therein for related 
results.

291
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The purpose of this note is twofold. First, by using the explicit solution 
operators from [2] we extend to convergence results to the spaces H2 (for any 
function space X stands for X(Rn)); in all the previous references only L2 (i.e. 
s = 0) convergence was proved. Moreover, the obtained results are useful in the 
treatment of the nonrelativistic limit of the nonlinear Dirac equation, which will 
be given elsewhere ([6]). We briefly mention the results in Section 3. It turns 
out that the nonrelativistic limit of the nonlinear Dirac equation is a coupled 
system of nonlinear Schrodinger equations.

For the nonrelativistic limit of the nonlinear Klein-Gordon equation, we refer 
to [5] (see also [9]).

1. The linear Klein-Gordon equation
Consider the equation (0.1); substituting £ = A = — ^A, /e(t) = 

e“2^/e(t), (^>(f) = e2?i/’(f), we find the equation for <p:

- ipt + Ap = f£(t) (1.1)

which we consider together with the initial conditions

<X°) = ^Oe, <^(0) = <fle. (1.2)

The formal limit as £ —> 0 of the initial value problem (1.1) and (1.2) is the 
initial value problem

i<?t = A^-f0(t) 

^(0) = ^oo.

In the next theorem a mild solution of an inhomogeneous initial value problem 
is the function given by the variation of parameters formula; it is a classical 
solution if the initial data and the inhomogeneous term are smooth enough. As 
mentioned before, H3 stands for _Hs(Rn).

Theorem 1.1. Let I C R be a bounded interval containing zero, A and s 
nonnegative numbers such that A < min{l,s}. Assume that

Vo, £ H2 (e > 0), Vi, e IJ’'' (e > 0), (1.4)

(1.5)

lim ^Oe = ^00 in H‘, (1.6)

lim = 0 in H3~\ (1-7)
e—>0

lim A = f0 in (1.8)
£—>0



Najman 293

Then the initial value problems (1.1), (1.2) and (1.3) have mild solutions and 
<po, respectively, which belong to C(I,H3). Moreover

= V’oinC(Z,ffI).lim <p£e—>0 (1-9)

Proof. The existence of ipe and <p0 is well known.

Let As — |(eA + j)1/2 with the domain H1 in the space L2. We define 
following bounded operators on L2:

Ie(t) = e2£ (cos— — As 1 sinMe,

Je(t) = A^1 sin Me,

ToW = e~1At.

Then (see [2] or [5])
5

^(«)-¥>oW = £4')(i), 
i=l

with

= I4(«) - Wm, 
42)(z) = - ¥>oo),

€?>(«) = 
t

44)(^) = y[~ s) - ^o(i - s)]f0(s)ds, 

0
t

45)(4 = | y ~ •s)[/e(5) - /o(-s)]ds. 

0

Instead of (1.9) it is sufficient to prove

lim 4° = 0 in C(I,7r) 
e—>0

for i = 1,..., 5. From

IRP’WIIh. < ||[4(«) - 4>(*)](-r  + 2</2^0(,||l!,
I|42,(«)Hh- < ||[Mi)U + 2A)»/2(^ - ^0)||LI;
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from the results of [2] and from the assumptions (1.4) and (1-6) it follows that 
(1.10,) holds for i = 1 and 2. Further

H43)(0IIh- < Ila + 2A)J/2 Je(i)llz:(M)ku||/7—

Since

. /o । (1 + Ai)Ay/2 sin + 1 .||(J + 2</2.7t(i)llw.’) = sup |------ W ----- 1,
M 2eV W + 1

supl2£(^±±t)i/2--------- h-~— I <2?“A/2sup|l±iZilV2
n 1 kl + 4e/V (1 + 4£/i)1“a/2 1 M 'I+4^'

the identity (I.IO3) is a consequence of (1.7). Further (I.IO4) follows directly 
from [2] and (1.5).

Finally || |<7e(i)||z:(L2) < C independently of e and t, hence (I.IO5) follows 
from (1.8).

Theorem 1.2. Let I C R be a bounded interval containing zero, X and s 
nonnegative numbers such that A < min{l,s}. Assume that in addition to (1.6) 
the following conditions are satisfied:

^lceff’(e>0), (1.11)

A 6 C(Z,ffs), 6 L'U.H’) (e > 0), (1.12)

-4<p0e - A(0) e H'~x (e > 0), (1.13)

lim <ple = -M<pOo + 2/0(0) in H3, (1-14)
e—.0

lim £A/2(<pie + iAtpoe - 2/e(0)) = 0 in Hs'x, (1-15)
e—*0

Then E C1^!,!!3). Moreover

lim <pe = <po in C1(I,HS). (1-17)
e—.0

Proof. Note that (1.12) and (1.13) imply <poe E H3~x, hence <poe E Hs+2'x. It 
follows that all the assumptions of Theorem 1.1 are fulfilled. The differentiability 
of <pe is well known, so we only have to prove (1.17). Let 3e = from (1.1), 
(1.2) and (1.3) it follows that 3e (e > 0) is the (mild) solution of the following 
initial value problem:

(i) if £ > 0 then 3e is the solution of

£0tt ~ + A3 = £e(t),
0(0) = 0O£; ^(0) = 3le (1-18)
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where ge(t) := 60e := ple, 0le := |(/e(0) - AtpOe + z<pie);
(ii) if £ = 0 then Oq is the solution of

i0t = A0 - go(t), 

0(0) = 0oo, (1-19)

where </0(i) := 0OO := -iAipm + i/o(0).

Now we can apply Theorem 1.1 to the initial value problems (1.18) and (1.19). 
Note that (1.11) and (1.13) reduce to (1.4), (1.12) to (1.5), (1.14) to (1.6), (1.15) 
to (1.7) and (1.16) to (1.8). From Theorem 1.1 we conclude that converge 
to ^2- in C(I,HS). Together with the convergence of <pe to <po (already proved 
in Theorem 1.1) this proves (1.17).

Remark. Without any additional effort we can treat the case of the Klein- 
Gordon equation with a potential V, replacing A = — by A = — |A + V. All 
the statements, as well as the proofs, hold true if Hs is replaced by 7?(AS/2). 
In particular, if V is bounded then 7?(AS/2) = H3 for s > 2; if V is smooth 
with bounded derivatives then this identity holds for large s too. Hence the 
convergence results hold as stated if a sufficiently smooth V is added into the 
equation.

2. The linear Dirac equation
Consider the Dirac equation (0.2); as mentioned in the introduction, we con­

sider it in R3 only. In (0.2) aV = &jdj, V’ is a function from R3 into C4 
and ay, {3 are 4x4 matrices satisfying the anitcommutation rules

Qjak + oiko^j = 28jkl, aj/3 + /3&j — 0, (32 = I.

1By substitution £ = and $ = 2e 2e (3^ we are led to consider the initial 
value problem

-^),= x —e e 
y 2£

$(0) = $Oe,

where Fs(t) = |e Z^i/vTeW- Differentiating (2.1) we obtain the initial value 
problem

ZuO I J

$(0) = $oe, #t(i) = #le

with Be(i) := — 2(3Fe(i3) — aVF^t) — 2iedtFe(t), $ie :=

- ?Fe(0).
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The limit (e = 0) problem is

2z/3A£ zF0(t), (2<3)

#(0) = $oo-

The space lds(R3)4 will be denoted Hs.

Theorem 2.1. Let I C R be a bounded interval containing zero, X and s 
nonnegative numbers such that X < min{l,s}.

Assume that
6 (e > 0), (2.4)

$oo 6 H', (2.5)
8F

Fe e e Ll(I,Hs) (e > 0), (2.6)
C/ V

Foez'f/.H1), (2.7)

lirn<I>„. = <toainH‘, (2.8)
>0

liras1"’ [ - iFe(0)] = 0 in H‘~\ (2.9)

lira F, = F„ in (2.10)
£—>0

lim?/2^ = OinZ^J,^^1), (2.11)e—>0

lim = o in L\I,HS). (2.12)

Then the initial value problems (2.1) and (2.3) have mild solutions $e 6C(J,H'). 
Moreover

lim $e = $o in C(j,7r). (2.13)

Proof. The existence part is easy; for £ > 0 one shows the existence of the 
mild solution of the initial value problem (2.2) and then shows that this solution 
actually solves (2.1). We shall not go into details here; we proceed to prove 
(2.13). Since /3 and A commute, the proof of Theorem 1.1 can be repeated. 
However, in estimation of £e , i = 1,...,4, we can not use the results from 
[2]. Instead we use a variation of Fattorini’s results: Let A be the “diagonal” 
operator — |A on Z2(R3)4; i.e. D(A) = _H2(R3)4, (Ai/>), = — |Ai/’i, i = 1,..., 4 
for if = (-01, if2, Vb , Vb) £ ^(A). Let Ze(t) and Je(i) be defined as in Section 1 
and let

Z0(i) = e~i/3At =
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Lemma 2.2. Let T > 0, I = [—T, T].
(a) If $ € L2 then

lim ||[7e(-) - l0(•)$IIc(i,L2) = °- e—>0 '

(b) Let f 6 L1(7, L2) and denote 

t
ge(t) = y - -s) - i/3I0^t - s)]f(s)ds.

o

Then
lim ge = 0 in C(I, L2).

We omit the standard proof.

Once we have this result, we can repeat the proof of Theorem 1.1 in the 
present situation. The assumptions (2.4) - (2.12) imply that the assumptions of 
Theorem 1.1 are satisfied: (2.4) and (2.5) imply (1.4) (noting that (2.6) implies 
Fe(0) 6 Hs), (2.6) and (2.7) imply (1.5) and finally the convergence assumptions 
(2.9) - (2.12) imply (1.6) - (1.8).

Remark. In a similar way, Theorem 1.2 can be applied to find sufficient con­
ditions in order that

lim =$0 in C\I, H3).€—►0

The details are left to the reader.

3. The nonlinear Dirac equation
The nonlinear Dirac equation

= —zcoVi/’+ c2/?’/’+ 2A(/?V’|V’)/^V’ (3.1)

was investigated in the physical literature; it was considered in mathematical 
literature only recently by L. Vasquez, T. Cazenave and their co-workers (see 
e.g. [1] and the references therein).

In (3.1) the parameter A is a positive constant.
Introducing £ = , $ = 2e^ /dip as in Section 2, we obtain the initial value

problem

St =
s(o) = SOe

— e * ctV<l>------ (/?$|$)/?$,
2e 2 (3.2)
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3.3)

3.4)

Differentiating we find the second order (Klein-Gordon type) initial value 
problem

$tt - ^-[A$ + 2i(3$t - A(/3$|$)$] = Fe(t, $), 
2e

$(O)=$o,e, $t(0) = $le,

where $u := y^a\7$Oe - y(/5$0e|$0e)/5$0e and

A2
Fe(t,$) :=--(/?$|$)2$ 

Zu
- -^e-1/2 {e^[^(/?$|$)]aJ$ + 2^e(/?$|e^aJ^$)/?$} .

a/ 2 j
The formal limit as £ —> 0 of the initial value problems (3.3) is the coupled 
system of nonlinear Schrodinger equations

$t = ii/3A$ - |iAGd$|$)/3$, 

Zu Zu

$(0) = $00.

We state without proofs the local existence result for the problems (3.3) and 
(3.4) and the convergence result for the solutions $e:

Theorem 3.1. Let e0 > 0. Assume $Oe 6 H2 (0 < £ < £0) and

sup ||$0£||h2 < oo.
e<eo

There exists T > 0 such that for every £ with 0 < £ < £o there exists a unique 
solution

$e G C2([-T,T],L2) A C1([—T,T],H1') A C([-T,T],H2)

of the initial value problem (3.2).

Theorem 3.2. Assume $00 £ H2. There exists T > 0 such that the initial value 
problem (3.3) has a unique solution $0 G Cx([—T, T], L2) A C([—T, T], H2).

Theorem 3.3. Let e0 > 0- Assume $Oe G H2 (0 < £ < e0) and

sup ||$oe||w2 < oo;
e<£o

moreover for some a G [0,1] it holds

lim $Oe = $oo in Ha.e—>0

Let T > 0 be such that there exist unique solutions $e of the initial value 
problem (3.3) for £ > 0 and $0 of the initial value problem (3.4). Then

lim $Oe = $o in C([-T,T],Ha).

The proof of these theorems can be found in [6].
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Spatially Degenerate Diffusion with 
Periodic-Like Boundary Conditions

Gisele Ruiz Rieder

Department of Mathematics, Louisiana State University

1. Introduction
We wish to study the following initial boundary value problem

ut = <p(t,x,u,ux)uxx + ip(t,x,u,ux), 0 < x < 1, 0 <t <T,

u(0) - u(l) = gi(ty, u'(0) - u'(l) = g2(t\ (1.1)

u(0, a?) = uq(x').

Here T > 0, <p, ip ’• [0, T] x [0,1] x R2 R are continuous, and gi : [0, T] —> R 
is continuously differentiable for i = 1,2. In addition we make the following 
assumptions on and ip:

(1) <p(t,x,p,q) > <p0(x) for 0 < x < 1 where <p0 6 C[0,1], <p0(G) > 0 for 
0 < x < 1 and 6 LdfO, 1].

(2) There exist constants K.L >0 and a continuous nondecreasing function 
H : [0, T] —  R such that*

Mt,z,P,4) - <p(s,x,p,q)\ < A>0(a?){|#(i) - H(s)\ + |p-p|} (1.2)

and

\ip(t,x,p,q) ~ ip(s,x,p,q)\ < L{\H(tP) - H(s)\ + \p - p\}. (1.3)

Partially supported by a LaSER grant.
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302 Spatially degenerate diffusion with periodic-like boundary conditions

(3) There exist nondecreasing nonnegative functions Ad and £ on [0,oc) 
with > 0 as r —> oc such that r

< MIpI)(i + (1>4)

If gilt) = 0 for i = 1,2, the solution, as a function of x, can be viewed as 
a periodic function of period one defined on all of R; for this reason we call 
such boundary conditions “periodic-like boundary conditions.” In this case the 
problem may be viewed as a nonlinear heat conduction problem (with a source 
as convection term in a circular rod).

The following theorem is the main result.

Theorem. Let <p> and ip be as above. Then the initial boundary value problem 
(1.1) has a unique solution (in the sense of a limit solution).

We actually study the Banach space version of (1.1) using the Banach space 
C[0,1] of real continuous functions on [0,1]. Define the operator A(f) on C[0,1] 
by

A(t)u = <p(t, •, u, u')u" + ip(t, •, u, rd)

with domain

7?(A(f)) = {u 6 C2(0,1) A C1 [0,1]:

A(f)u 6 C[0,1] ,u(0) - u(l) = ^i(f), u'(0) - u'(1) = g2(t)}.

Then for any uq E 7?(A(0)), (1.1) is equivalent to the problem

u'(f) = A(f)u(t), (
u(0) = u0.

We shall use techniques from the theory of nonlinear evolution equations in 
Banach spaces to solve (1.5); the work of Evans [5] and Dorroh and Rieder [4] 
will be crucial to many of our arguments.

Theorem 1 was proven by Goldstein and Lin [8] in the special case where 
is independent of t and the diffusion u, ip = 1, and time-independent boundary 
conditions, that is </i(f) = 92pt) = 0. In [4] Dorroh and Rieder solved the 
problem with the linear time-dependent boundary conditions

u(0) - au'(0) = gfft)-, u(l) + ^u'(l) = g2(t).

With the dependence of the diffusion coefficient on the function u, the techniques 
of [8] no longer apply; Apt) is not quasi-dissipative on all of T>(A(f)).
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We denote the Lp[0,1] norm by || • ||p for 1 < p < oc; the supremum norm is 
denoted by || • ||. For f 6 JD1 [0,1] we define

<^l(J,8) = sup {||/IIli(Q) ’• D is a subinterval of [0,1] with |Q| < <5}.

For 0 < 8 < 1 we define

^c{f-,8) = sup{|y(.r) - f(y)\ : x,y 6 [0,1], |z - y\ < £}.

Clearly, if f 6 C'1[0,1] AC2(0,l) and ||/"||i < oc, then uc(f',8) < uL(f',8}. 
We shall often use the following lemma proven by Dorroh and Rieder [4].

Lemma 1. Let f E C1 [0,1] l~l C2(0,1) and f" E [0,1]. Then for 0 < 8 < 1

iin<2ii/ii + iinii;
ll/'ll < |MII 

0

We denote the duality map on the Banach space X by J7, i.e. J : X —> 2*  
is defined by

J(x} = {a?*  E X*  : ||z*||  = = ||z||}.

For f E X = C[0,l], </(/) 3 ±6^ where |[/[| = ±7(£)- H, in addition, / 6 
Cl [0,1] n C2(0,l) f(0) = 7(1) and f'(0) = 7/(l) and we regard 7 as a periodic 
function on all of R with period one, every point is an interior point, and by the 
maximum principle.

7'(0 = ° and 7"(0<0

if ||7|| = f(C) and 0 < £ < 1. If £ = 0, we may conclude f'(0) = 0 and 7/(£) < 0 
for £ small, whence f'L(O) < 0. Similarly if 8 = 1, we have = 0 and 
7-(l) < 0- If II7II = we have

7'G?) = 0 and f"(y) > 0,

again with the second derivative replaced by the appropriate one-sided derivative 
if y = 0 or y = 1.

Finally, we define the sets

jyf) = K e [o.i]; Ml = M)}.

■/-(/) = {€ e [o,i] = ll/ll = -/(£)}•

Since f is a continuous function on [0,1], either J+(f) 0 or J~(f) 0-
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2. Reduction to a problem with time independent boundary 
conditions
Definition 2.1. Let {B(t) : 0 < t < T} be a family of multivalued operators 
in a Banach space X, and let f 6 Ljoc ([0, T]; X). A function u G C ([0, T]; X) 
is a limit solution of

u(O) = uo [ }

on [0, To], 0 < To < T if for every n E N and k = 0,1,.. . , N(n), (i) t^ = 0 <
< t” < • • • < t” (n)-1 < To < t”(n) < T and \imjnax(tnk - = 0, (ii)

N(n)
there exist xk, fkEX such that sup ||z£|| < oo, lim ^2 (^k ~ ^fc-i)ll/fc II = 0 

n,k n—>co k_^
and

(2.3)
Tk Tk-1

and (Hi) the sequence of functions {un(t)} defined by

Un(t) = { n .... „( Xq if t = 0

converges uniformly to u(t) on [0,To].

One can show that (1.1) has a limit solution if and only if

v'(t) G B(t)v(t) - uw(t), 
v(0) = uo - ^(0)

has a limit solution where

v(t) = e-w*u(t)  — z(t),

B(t)v(t) = £(t,+ i?(t, -,v,v'\

= ^(*,z,e wt(p + ^(t,z)),ewt(? + zx(t,x))y

= <p(t,a?,ewt(p + z(t,x)) (q + zx(t,x))^ z'^ffx)

+ + ^(t,z)),ewt(? + zx(t,x))^

- ^f(t,a?) - coz(t,x\

z(t) = zq + Z(^t, •) — Z(0, •), Z is the solution of

Z£fft,x) = 0,

Z(t,0)-Z(t,l) = e-^1(t),

Zfft,O)-Zfft,l) = e~^gfft), 
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and the function zq E 7?(A(0)) is arbitrary. The functions p and satisfy the 
same sort of conditions as <p and ip do, but with different K, L, Ad, C, and H. 
One can easily verify that the function v satisfies the homogeneous boundary 
conditions

v(t,0) = v(f,l), vx(f, 0) = vx(f, 1)

for each t > 0. Henceforth we replace ip by tp and ip by i/», i.e. we replace u and 
(1.1) by v and (2.4), but for typographical convenience we do not show it in the 
notation.

3. Quasidissipativity and properties of A(t).

The preceding section we showed that the boundary conditions in (1.1) may 
be replaced by the homogeneous boundary conditions

u(0) = u(l); u'(0) = u'(l). (3.1)

In this section we find sets on which the operators A(t) are quasidissipative and 
on which we have some control on the resolvents (This will be made more 
precise later.)

For each v E C[0,1] define the operator

Av(t)u = c^>(f, •, v, u')u" + ip(t,■jVjU1) (3-2)

with domain

P(Av(t)) = {uE C(1[0,1] AC2(0,l) :
Av(t)u E C[0,l], u(0) = u(l), u'(0) = u'(l)}.

We consider the initial value problem

u'(f) = Av(t)u
u(0) = u0

for u0 E T>(Av(0)).

Lemma 2. The operator Av(t) is dissipative.

Proof. Let ui, u2 E T)(Av(t)), and assume J+(ui —u2) 0. If £ E J+(ui —u2)
and 0 < £ < 1, then

(Av(t)u1 - Av(t)u2,8^ = ^(t,£w(£)w'i(0)wi(^)

+ ’/,(U^(0>u'](0) -
- •”(£), ^(0) < 0

since u'1(£) = u'2(£) and ?//(£) < w2(0- If £ £ {0,1}, we replace the second 
derivative by the appropriate one-sided second derivative, and the same proof 
works. A similar argument holds if — u2) 0. □
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Proposition 1. The operator Av(t) is m-dissipative.

We must show 'R.(l — XAv(t)} = C[0,1] for some A > 0. Let an = el2nnx. 
Clearly, {<an}^L_oo is an orthonormal basis for T2[0,1]. If we define Bu = u", 
then Ban = — (27rn)2<an, (J — AB)-1<an = (1 + 4A7r2n2)-1 <an and

OO

(I-XBy1f= (1+4AT2n2)-1 <f,an>a„

for f 6 C[0,1]. Define

OO

gx(x,y)= £ (1 + 47r2An2)-1ei2"’r<I-’». 
n= — oo

Then g\ is the Green’s function for

Cu = u — Ai/'nfO) = u(l), tz'(O) = tz'(l); (3.3)

that is, if Cu = f and u(0) = u(l), ^(O) = u'(l), then

r1u(x) = / g\(x,yff(ff)dy. (3.4)
Jo

From (3.4) it is clear that (/— XBff1 is continuous and compact on C[0,1] for 
A > 0.

For each h E C[0,1] and t E [0,T] we define the operator S^’v : C1[0,1] —> 
C1^,!] by

(Spu)(z) = /’ ■) b - (3-5)
Jo v(J,-,v,u’) J

Then — XAv(t)} = C[0,1] is equivalent to S^’v having a fixed point. Hence, 
Proposition 1 follows immediately from the next lemma.

2
Lemma 3. Choose A > 8(^- + 1)(1 + ||<p(^1||i). Then for each h, v E C[0,l] 
and t E [0,T], S^’v has a fixed point.

, OO 2
Proof. Let u E C1[0,1], and let w = S^’vu. Recall that n~2 = An

71= 1 2
elementary calculation shows ||^a|| < fy- Furthermore,

Ml < MIHM + (IM + IIAIDM’lli + AMIH)(i + M1 II.)MMII)} (3-6)
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and
u — h — Ai/’(i, •, v, u') 

X<p(t,-,v,u')
It follows that

IKI|1<A-1(||^|| + 1){|M| + (||W|| + ||/J||)|K-1||1
+ a^(|M|)(i + ||^0-1||1)z:(||w'||)}. (3.7)

Since cuc(w',^) < cul(w",^) < ||w||i, we have that {(S^u)' : u G A} is an 
equicontinuous collection for any bounded set A in C1 [0,1]. We seek a closed, 
convex bounded set A such that S^’W(A) C A. By the Arzela-Ascoli theorem 
it will follow that S^’W(A) is compact in C71 [0,1]; hence by the Schauder fixed 
point theorem we will conclude that S^,v fixes a point of A.

Choose No so large that No > 3||7i||, (^- + 1)A4(||v||)(1 + H^1 ||i)£(Ao) < 
|7Vo, and Mo = ||/z|| + Nq. We define the set A by

A = {uGC1[O,1]:||u||<Mo, ||u'|| < 2V0}.

Then A is closed, bounded and convex. Moreover, using (3.5) and (3.6) for u E A 
we have

7T2 1
IMI < A-1(— + 1)(1 + H^lliX^o + \\h\\) + -No O O

< ~(Mo + ||M) + -No = -Mo, o o 4
llw-'ll, < + ||h||) + N = -Mo.

O o 4
Hence, by Lemma 1 it follows that

||w'||<2||w|| + ||w"||1<-Mo

= j(l|A|| + No) < No.

Consequently w E A. □

By the dissipativity of Aw(f), we see that <7^(i) = (l — AAw(t)) is nonex­
pansi ve and onto for every A > 0.

Next we prove that for some h E C[0,l], we can solve the nonlinear elliptic 
problem

u — Xtf>(t, - ,u,u')u" — Xip(t, • ,u,u'} = h. (3.8)
This is a key step in the proof of local existence for the problem (1.1). We solve 
(3.8) via another fixed point argument. For each h E C[0,1] and t E [0,T], 
define the map S^’v : C[0,1] —> C[0,1] by

N = rx(t)h.

Then finding a fixed point of is equivalent to solving (3.8).
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Proposition 2. Let ro > 0, and let

\ < __________ r_2__________
° - 2jVt(ro)(l + Q(ro))£(O)

where Q(s) = sup{c^>(t, x,p, 0) : t E [0, T\, x E [0,1] and |p| < s}. Then for each 
t E [0, T] and 0 < X < Xq, has a fixed point in the ball of radius ro for each 
h satisfying \\h\\ < hff

Proof. Assume ||7i|| < ^, X E (0,Ao], t E [0,T], ||v|| < r0 and u = i.e. 
u = J£(t)h. Suppose J+(u) 7^ 0, say £ 6 7+(u) and 0 < £ < 1. Then

ll“ll = fc(£) + €>«(€)>“'(€))“"(€) + £</>(*.  6”(£),«'({))

< ||fc|| + A?Vt(r0)(l + <3(ro))£(O) < r0.

(If £ 6 {0,1}, we must replace u"(£) by the appropriate one-sided derivative in 
the preceding equality.) Let Ero be the closed ball of radius ro in C[0,1]; we 
have shown S^(Ero) C Ero. Moreover, u" = —, so that

+ + (3.9)
Z A

Choose N so large that
£(r) < r if r > N, (3.10)

and choose 6 > 0 so small that NjM(ro)(cuL(</?^’1,5) + <5) < |. Then

and by Lemma 1

IM < ||H + M«'U) < ^ + 
o o AX A

Hence {S^v : v E Ero} is a pointwise bounded equicontinuous set in C[0,1]. 
By Arzela-Ascoli it follows that this set is compact in C[0,1]. Hence, by the 
Schauder fixed point theorem, fixes a point of Ero • □

Let A(f) = , and let A(t) = (/— AA(f)). Then for each

A E (0, Ao] and t E [0,T], we have shown that J\(t) exists, B(vf-) C T>(ffx(t\) 
and 'R(ffx(t\) C B(r0). Here B( r) is the ball of radius r. We now seek a set 
on which Jx(t) is single-valued. Since A(f) and A(f) agree on P(A(t)) Pl Ero, 
we write A(t) for A(i) in the remaining portion of the paper. The remainder of 
the arguments in the paper follow closely those in Dorroh and Rieder [4]; hence 
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we do not include the details here. For the full proofs the reader may see the 
aforementioned paper.

Choose a > 0 so that
|V>(t,z,p,0)| < a (3.11)

for t E [0, T], x 6 [0,1] and p E [—r0, r0]. Next we choose b E R and a <50 > 0 so 
that

0<l<p (3.12)

< i (3.13)

where N is as in (3.10).

Lemma 4. Let h E T>(A(t)) nB(&) with ||<^oh"|| < M andu\ E J\(t)h. Choose 
iv > MK + L. Then for all X satisfying 0 < A < min{Ao, ai-1, ar^b — ||h||)}

(i) A(T)ux < (1 - Acj)~1||A(t)h||
(ii) ux|| < h\\ + Aa < b

(iii) IKH < 1 + + 2(1 - Aa;)-1||A(^|H(^-1^o).

Parts (i) and (ii) follow primarily from the maximum principle; part (iii) 
follows from (1.2), (1.4) and Lemma 1.

Let d > 0, and choose c so that 
4b 

c > 1 + ~ F 4dcv[J(p0 1,6q). (3.14)
<->0

Increase a (if necessary) so that

\4>(t,x,p,q)\ < a (3.15)

for t E [0,T], x E [0,1], p E [—&,&] and q E [—c,c]. Finally, choose M and a; so 
that

M > 2d + a and a; > MK + L. (3.16)

Lemma 5. Let h E T>(A(ty) r\B(b) with ||A(t)h|| < d, \\h’\\ < c and ux E JX(t)h 
for 0 < A < min{(2u)“1, Ao,a-1 (& — ||h||)}. Then ||<^oh"|| < M, ||ua|| < a, 

IHII < c, IKu'aII < M, and

IM(*)« aII < (1 - (3.17)

The proof of this lemma is a simple calculation using Lemma 4 and the choice 
of a, b, c and d. For t E [0,T] and 0 < A < min{A0,(2lj)~1 , |}, define

Dx(t) = {u E P(A(t)) : ||u|| < b - aA, ||u'|| < c, ||A(t)u|| < (1 - Au)d}.

By Lemma 4,
Jx(t)Dx(t) C P0(t). (3.18)

Let A(t) = A(t)|£)o(^ and JX(t) = (f — AA(t)) \ In particular, (3.18) holds 

with JX(t) replaced by JX(t) and Dx(t) C P(Ja(^))-
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Lemma 6. A(ff) is co-dissipative for co > MK + L.

This lemma is a simple consequence of the maximum principle and assump­
tions (1.2) and (1.3). It follows that Jx(ff) is single-valued, and for u, v 6 D\(t)

|| ~ A(i>|| < (1 - Alj)-1 ||u - v||.

Define

Aw(t) = A[t) -ul,

Clearly, Aw(t) is dissipative, and J\(t) is single valued, nonexpansive and a 
simple calculation shows that

J“(t) = JM(*)(i  + -M-1

for p = A(1 + Acu)-1. Choose

a(&-1 — K) — L d — ----------------------
27<

M = 2d + a, 
co = Mix T L.

Then co = and d > bco = a. Choose T small enough that

co(H(T') — 77(0)) < d-bco

and d > 0 so that
d + co(H(T)- 77(0)) <d-uob.

Combining the previous estimates and observations we obtain the next lemma.

Lemma 7. Let 0 < A < Ao and ||u|| < b. Then ||J^(t)u|| < b. If 0 < A < 
min{Ao,^-1}, ||u|| < &, ||u'|| < c and ||Aw(t)tz|| < d, then

||(A“(iH'||<c,

lIpq/MVll <m, 

M“(«)A“(«)u|| < IK(<)«|| < d.

We define the sets

D“(s) = {ue D0(t) : ||u|| < Mil'll < c, im/M < d + u(H(t)

for s < t < T}.
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If 0 < A < min{Ao,w x}, it is clear that

J^s) : D^r) —> D“(s) for 0 < r < s < T. (3.19)

Moreover, one can readily show that if 0 < A < min{Ao,^-1}, u 6 Dw(s) and 
v 6 Dw(r)

|| - FFM < ||« - i>|| + Aw|H(s) - (3.20)

if 0 < r < s < t < Ty then

F(%"W»II <d + ^H(t)~ (3.21)

4. Existence of a limit solution
By the discussion in section 2 it suffices to prove the existence of a limit 

solution for the transformed initial value problem

u'(t) = Aw(t)tz(t), 

u(0) = u0 — z(0).

The complication is that the operator Aw(t) is dissipative but not m-dissipative. 
However, as Dorroh and Rieder [4] proved the results of Evans [5] may be ex­
tended to obtain a limit solution in this more general case.

We briefly describe the construction of the limit solution. For each n we 
choose
(i) a partition {££,.. . , of [0, T(n)] for To < T(n) < T with 0 = <
■ • • — ^N(n) = ^(n) such that < Ao A a?-1 and lim max 6% = 0;
(ii) {a?o } C Dw(0) such that lim xfi = uq — z(0) = uq. n —

For n = 1,2,... and k = 0,1,. .. , N(n) define

= 4"rWK-i- f4-1)
Since Xq E Dw(0) and by (3.18), the mapping in (4.1) is well-defined. More­

over (4.1) is equivalent to

n _ n
k A~1 — Aw(+n\rn + n in - A ^k)xk- 

Lk Lk-1

By Lemma 7, ||;r£|| < b for all n, k. If we define the step functions
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we must show that lim un(t) = u(t) and that u(f) is continuous. n —
This part of the proof requires that we check several technical conditions 

which follow essentially from (3.19) and (3.20). The interested reader should 
refer to [4], [5]. Various properties of limit solutions, such as uniqueness, Lip­
schitz continuity, differentiability, continuous dependence, etc., are well known 
and can be found primarily in Benilan [1].

The author is very grateful to Bob Dorroh for many helpful conversations. 
The author gratefully acknowledges the partial support of Louisiana Education 
Quality Support Fund, contract number 86-LBR-01604.
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Scattering Theory of a 
Supersymmetric Dirac Operator

Bernd Thaller
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1. Introduction
We are interested in relativistic scattering theory for a spin-1/2 particle mov­

ing in an external magnetic field. One of the basic problems is proving the 
existence of the wave operators

£l±(H,H0) = s-lim eiHtPcont(Ho)y (1)
t—>±oo

where the self-adjoint operator Hy which is to be defined in a suitable Hilbert 
space, generates the quantum mechanical time evolution under the influence of 
the external field, and Hq generates the “free motion”. PCOnt(Ho) denotes the 
projection operator onto the subspace belonging to the continuous spectrum of 
Hq, which is usually assumed to be absolutely continuous. Existence of (1) says, 
that any free motion is for t —> ±oc asymptotic to the motion of an interacting 
particle.

In three space dimensions the magnetic field strength B is usually described 
by a vector field B(x) satisfying divB = 0. Hence we can write B = rot A 
with a “magnetic vector potential” A(x). We have to use this vector potential 
in order to set up a quantum mechanical description. The time evolution of a 
relativistic charged particle with mass m in a magnetic field is generated by the 
following Dirac operator

H(A) = a • (p — A) + /?m, m > 0, (2)

313
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where p — and where a = (a?i, #3) and are the famous 4x4 “Dirac
matrices”,

z = 1,2,3. (3)

The 2 x 2 “Pauli matrices” are defined by

/0 1\
<71 - \ 1 0 / O--2

0
i

f 1
CT3 = 0 (4)

If we assume that the fields B and A are infinitely differentiable functions on 
R3, then the Dirac operator (2) is essentially self-adjoint on C^°(R3)4 which is 
a dense subspace of the Hilbert space 7Y = £2(R3)4 [6]. This result is true even 
without restriction on the growth of B or A at infinity. We want to stress that 
the vector potential is not directly observable. If we replace A by A + Vg with 
g E C°°(R3), then the magnetic field strength remains unchanged and the new 
Dirac operator is unitarily equivalent to the original one. Eventually, we shall 
use this gauge freedom to make the formalism as simple as possible. Therefore 
we choose B(0) as the Dirac operator for a free particle, although the operator 
B’(V^) would also describe a free motion, but obviously in a more complicated 
way.

Calculating the square of the Dirac operator we find

with

B(A)2 = (p - A)2 - E • B + m2

= p2 + m2 — 2A ■ p + i div A + A2 — S • B, (5)
B’(O)2 = p2 + m2, (6)

= i = 1>2’3- W\ \J 'D i /

We see that B(A)2 and B(0)2 (apart from the trivial summand m2 describ­
ing the rest energy) are just the operators for the corresponding nonrelativistic 
scattering problem, which usually is easier to handle. B(A)2 is called “Pauli 
operator” in contrast to the Schrodinger operator (p — A)2 for a spinless particle. 
We want to use this close relation between Dirac and Pauli operators to obtain 
some information on the relativistic scattering problem.

2. Supersymmetry
The general structure of our problem is given by supersymmetric quantum 

mechanics. In the Hilbert space 7i of our system a unitary involution t is defined, 
i.e., a bounded operator satisfying

(8)* * 2 iT T = TT — T = 1.
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In our case r = /?. Moreover, there is a self-adjoint operator Q (here given by 
a • (p — A)) which anticommutes with t,

t D(Q) = D(Q), {t, Q} = tQ + Qt = 0 on D(Q). (9)

A supersymmetric Dirac operator is a self-adjoint operator H of the form

H = Q + mr, T>(H) = T>(Q\ m > 0. (10)

The square of a supersymmetric Dirac operator is simply given by H2 = Q2 -f-m2 
and commutes with r.

The unitary involution r can only have the eigenvalues ±1 and the Hilbert 
space decomposes into a direct sum of the corresponding eigenspaces

H = H+ © HL . (11)

With respect to this decomposition all operators in H with domain left invariant 
by r are most naturally represented by 2 x 2 matrices. We have

/1 0 \ o _ / 0 D*\
^0 -1J ’ ~\D 0 J ’

/ D*D  + m2 0
y 0 DD*  + m2

Here, D is a suitable closed operator, densely defined in H-|_ with range in H_. 
In fact, any densely defined closed operator D defines via (12) a self-adjoint 
operator Q in a larger Hilbert space.

The supersymmetric Dirac operator can be diagonalized by a suitable unitary 
“Foldy-Wouthuysen” transformation.

Theorem 1. Let H = Q + mr be a supersymmetric Dirac operator. The 
unitary transformation U given by

U = a+ + r (sgn Q)a_, a± = -y=\/l±m|H| \ (14)

brings H to the diagonal form

Proof. It is easy to verify the following formulas for the bounded operators a±

a2+ + a2_ = 1, a2+— a2_ = m\H\ \ 2a+a_ = |Q| \H\ L (16)
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Furthermore we note that \H\ = (Q2 -f-m2)1/2 commutes with t and Q, and the 
following commutation relations hold on D(H) = D(Q)

[H,a±] = [Q,a±], Hr (sgn Q) = -r (sgn Q) H. (17)

Now we can verify Eq. (14) in the following way

UHU^1 = (a+ + r (sgn Q) cm)H(a+ — r(sgnQ)a_) =
= (a^_ + 2t (sgn Q) aya_ — aL)77

= (m|77|-1 +r(sgnQ)|Q||^r1^
= (m + rQ^H^H = r(mr + Q)\H\~X H
= = r\H\. (18)

The matrix form of r |H| immediately follows from (12), (13) and \H\ = VH2.
This completes the proof of Theorem 1.

On KerQ = KerD ® KerD*  we have a+ = 1, a_ = 0, hence U is just the 
identity on KerQ. We also note that 17 4 is just the Cayley transform of iQr /m 
(see Ref. [12]), hence U can also be written in the form

JJ _ e | arctan(iQr/m) (19)

For some special examples of supersymmetric Dirac operators H the Foldy- 
Wouthuysen transformation has been known since the 1950’s [5], and has been 
studied intensively in the context of relativistic quantum mechanics (see, e.g., 
Ref. [1] for a review).

Since the operator D is densely defined and closed, D*D  and DD*  are both 
densely defined, self-adjoint, and positive by von Neumann’s theorem. By 
polar decomposition we may write D = S(D*D) 1/2 = (DD*) 1 !2S, where S 
is a partial isometry from (Ker D)1- to (KerD*) 1. Therefore we find easily 
DD*  = SD*DS*  which implies that D*D  and DD*  have the same spectrum 
except possibly at 0. From this we conclude immediately the following result

Corollary. The spectrum of any supersymmetric Dirac operator H is symmet­
ric with respect to 0 (except possibly at dim), has a gap from —m to +m, and 
is determined by the spectrum of the “nonrelativistic” operator D*D  (except at 
—m). The point -f-m (resp. —m) is an eigenvalue of H, iff 0 is an eigenvalue of 
D (resp. D* ).

We finally note that Dirac operators have supersymmetry in a number of cases 
including the neutron in an electric field, a particle in a Lorentz-scalar field or, 
most important, in case of the hydrogen atom in a subspace with fixed angular 
momentum, see Ref. [12]. Our results can be applied to all these examples.
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3. Supersymmetric scattering theory
Next we solve the problem of concluding existence of the relativistic wave 

operators from the existence of the corresponding nonrelativistic operators. The 
supersymmetric structure can be used to reformulate the existence problem in 
such a way that the invariance principle of wave operators ([10], p.49ff) can be 
applied (The calculation in [10] on p.53f does not take into account the negative 
energy subspace of the Dirac operator. In the standard representation the Dirac 
operator is not an admissible function of the Pauli operator). The following 
result is similar to Theorem 4 in Ref. [12], but is proved here under different 
assumptions, which are more convenient for the applications. By F we denote 
the projection operator to the subspace belonging to the indicated region of the 
spectrum of a self-adjoint operator.

Theorem 2. Let H = Q + mr, Ho = Qo + mT be two Dirac operators with 
supersymmetry. Assume that for all 0 < a < b < oc and for T in some dense 
subset of F(a < Qq < b)Ha.c.(Qo) following condition is satisfied with 
k = 1,2

ll(0‘ - Qo')e-Q«‘ 'I'H < const.(1 + lil)1-^4. (20)t

Then the wave operators fl±(H, Ho) exist, and

= fl±(Q2,Qi) F(H0 >0) + S2T(Q2,Q2o)F(Ho < 0). (21)

Proof. The assumption (20)2 implies existence of the “nonrelativistic” wave 
operators Q±r = D±(Q2, Qq) by the following argument due to Cook (see [10], 
p.20). First note that the. set of states T 6 77a.c.(Qo) f°r which there exist 
constants a and b such that T = F(a < Qq < 5)T is a dense subset of 'Ha.c.{Q'o)- 
For T in this subset we have

lim sup ||(ejQ2/e“jQ°z - ejQ2se~jQ°s) T|| 
t>o

= lim sup || / e^^XQ2 -Q^e-1^ ^\\dt’ 
QO Js

/•OO

< lim / ||(Q2-Q2o)e-i<3«,'>I'||<a' = O. (22)
3-^CXj J g

We have used that by (20)2, the integrand in the last expression decays inte- 
grably in time. But (22) is just the Cauchy criterion for the existence of 
A similar argument proves existence of D2r• The operators UHU*  = t|J7| and 
UqHqUq = t | Ho | are admissible functions of Q2 and Qq, respectively, if we re­
strict them to the subspaces |(1 ± r)7Y. Therefore, we can apply the invariance 
principle to conclude the existence of the wave operators

QJ' = fi±(r|H\,r|Ho|) = S1J4(1 + r) + Sl^l(1 - t). (23)
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It remains to show that for all T 6 77a.c.(J7o) we can find 6 hi such that

0= lim ||e* Hze~jHoZT - <P±||t—+±00
< lim ||ezr|H|ze“jr|Ho|zUoT - UT±|| 

Z^±oo
+ lim \\(UU*  - l)e-jr|Ho|zU0T||.

/—►ioo

(24)

(25)

(26)

From the existence of (23) we conclude that (25) vanishes, if we choose

<P± = U*tlr£lUo^. (27)

Using the explicit forms of U and Uq given in Eq. (14) we can estimate the term 
(26)

||(C - C0)e-iTlH’l' 4>|| (28)

< ||(a+ -ape-‘rl"«l,'I'|| + ||(a_ -a°_)e-ir|/;»l,'I<|| (29)

+ ||(sgnQ - sgnQ„)e-rl"«l' a°_ 4-||. (30)

The operators a± are bounded functions of \H\ = \UHU~1|, and a± are defined 
in the same way with |Ho |. Hence we can apply the intertwining relations ([10], 
p.17)

a±Qrel =Qrela°±, (31)

where Q,rel is either or fFeZ to conclude that (29) vanishes, as \t\ —> oo. 
Since in (30) the operator sgn Q is not simply a bounded function of t|J7|, we 
have to be a little bit more careful. First we note that for \ = |Qo|T

||(sgnQ-sgnQo)c_'C’'x|| (32)
< 11(0-Qo)e-'Q'°' *11 + IKIQI - |Q0|)e-«' (33)

Here the last summand of (33) vanishes for T G T>(|Qo |) in the limit |t| —> oo 
because of the intertwining relations for Q±r. The first summand vanishes by 
assumption (20)i for T 6 F(a < Qq < bfHac- The set of all vectors of the form 
X = |Qo|T, T 6 F(a < Qo < bfHac with arbitrary 0 < a < b < oo is dense in 
Hac, hence we have shown for all T G 77ac

0= lim ||(sgnQ - sgnQo) e~* Q°z T||
| t | -->OO

= ||(sgn<$ny - f4'sgnQ„)'I<|| (34)

or
sgnQfiJ’' = fiJrsgn<3(). (35)
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With the help of (23) we can express in terms of Taking into account

sgnQ|(l ± r) = |(1 -r)sgnQ (36)

and the same result with Qo, we obtain from (35)

sgnQQj' =fi"'sgnQt>. (37)

But this implies almost immediately for all % 6 Hac

lim ||(sgnQ - sgnQo) e-jr|Ho|zalx|| = 0. (38)
|t|—>oa

This completes the proof of existence of £l±(H, Ho). In order to show (21) we 
note that by (31) and (35)

= A^rU*. (39)

Now we calculate, using (27)

= ny!704(l + T)<70 + fi"’'<70*i(l-r)i7(). (40)

Finally, the relation

C0*|(l ± t)U0 = 1(1 ± ff/|ff|) = F(ff>0) (41)

completes the proof of Theorem 2.

Remark: Instead of assuming (20)i, it would have been sufficient to require 
vanishing of (32) in the limit of large times. In the applications, however, it is 
usually easier to verify (20)i-

4. Application
Now we apply Theorem 2 to the special case of the Dirac operator in an 

external magnetic field. The condition (20)i in Theorem 2 is not very restrictive. 
In case of the magnetic field scattering problem it just says that we have to 
choose a gauge in which the vector potential decays at infinity like |x|~s . Then, 
since H(A) — 77(0) = —a ■ A, (20)i simply becomes

|| A(x) e~ip2t T|| < const.(1 + |t|)~6 (42)

for suitable T. which can easily be shown by stationary phase arguments (see 
[10], Appendix 1 to XI.3, and [3]). The condition (20)2 is more restrictive. It 
can be satisfied by the following assumption [7].
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Let the magnetic field strength B decay at infinity, such that for some 6 > 0

B(x) < const.(1 + |x|)"3/2-6. (43)

Choose the transversal (or Poincare) gauge

Z* 1
A(x) = / sB(xs)hxcls. (44)

Jo

Then we have A(x) ■ x = 0, and A(x) decays like |x|_1/2_|5, as |.r| —> oc. Hence 
the expressions divA, A2, LB occurring in Q2 — Qg are all of short-range. Hence 
the crucial long-range term is A(x)-p. It can be written as A(x)-p = G(x)-(xAp), 
where />1

G(x) = / sB(xs)ds (45)
Jo

satisfies,
|G(x)| < const.(1 + |z|)~3/2-6) (46)

and since the angular momentum L = x Kp remains constant under the nonrel- 
ativistic free time evolution exp(— iQ^tf we easily obtain by a stationary phase 
argument for T in a suitable dense set

\\A(x)-pe~ip2t T|| < const.(1 + |f|)~3/2~6, (47)

so that all assumptions of Theorem 2 are satisfied. Hence we have proven the 
following theorem

Theorem 3. Let H(A) and 77(0) be given as in (2) and assume that the mag­
netic field strength B satisfies (43). Then both the relativistic and the non- 
relativistic wave operators exist in the transversal gauge, and are related by 
(2U

Remark: In order to appreciate the use of Theorem 2 let us briefly discuss the 
direct proof of the existence of relativistic wave operators in the magnetic field 
example, which has been given in Ref [8]. There is the following difficulty. In 
order to apply the Cook argument, which worked well in the nonrelativistic case 
(see Eq. (22), together with Eq. (47)), one would have to verify, that

|| o- A(z)e-jH(0)zT|| (48)

decays integrably in time for T in a suitable dense subset of 7Yac(7f(O)). But 
this is wrong, because A(x) decays only like |x|-1/2-<5, at least if we choose the 
transversal gauge. In general, A(x) cannot be made short-range by some other 
clever choice of gauge. This can be seen already in very simple cases. Consider, 
for example, in two dimensions a magnetic field which has compact support and 
nonvanishing flux. Now, apply Stoke’s Theorem to a large circle surrounding the 
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support of B to find that for this perfectly short-range situation A(x) cannot 
decay faster than |x|-1 (which is of long-range).

For a long range potential matrix of the form a ■ A the Cook argument does 
not work, because it cannot take into account an effect which is known as “Zit­
terbewegung”. This means that the operator a(t) = e1Hot a oscillates 
whithout damping around a mean value pH^ , which corresponds to the classi­
cal relativistic velocity v = p/E.

5. Asymptotic completeness
Asymptotic completeness is the statement that the range of the wave op­

erators RanQ.£ equals 7dac(17), the absolutely continuous spectral subspace of 
H. This means that every state T in the continuous spectral subspace of H is 
an asymptotically free scattering state. A consequence is that the continuous 
spectrum of H is purely absolutely continuous. By [10], p.19, asymptotic com­
pleteness is equivalent to the existence of the adjoint wave operators Q±(J70, H). 
Hence we simply have to exchange the roles of H and Ho in Theorem 2 in order 
to get conditions for the asymptotic completeness of the relativistic supersym­
metric system, which are formulated entirely in terms of the nonrelativistic time 
evolution.

Unfortunately, these conditions are of little use for long range magnetic fields. 
In particular, in order to verify condition (20)2 we would have to show decay in 
time of the expression

||A(x) ^|| = ||G(X) . Le-i(H(A)2-m2)t (49)

This cannot be done as before, because magnetic fields are usually not spheri­
cally symmetric (in three dimensions, a singularity free magnetic field is never 
spherically symmetric). Hence the angular momentum L does not commute 
with the time evolution exp(—zTf(A)f) in a magnetic field. In fact, the time 
decay of Eq. (49) is not at all obvious (see Ref. [7]). Nevertheless, the desired 
result can be obtained using a different method.

Theorem 4. Let H(A') and 77(0) be given as in (2) and assume that the mag­
netic field strength B satisfies

D"*B(x)  < const.(1 + |x|)~3/2~6”7, (50)

for some 8 > 0 and multiindices y with |-y| = 0,1, 2. Then the relativistic wave 
operators in the transversal gauge are asymptotically complete.

Proof. Since a detailed proof appeared in Ref. [8] we only give a sketch here 
and show how the Zitterbewegung can be controlled. To prove asymptotic com­
pleteness for fly it suffices to show for a sequence of times rn —> oo

lim sup || {e~lH(Ad - e-iH^} T || = 0, (51)
Tn —>OO (>Q
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For all T in the continuous spectral subspace ?-Zconf(J7). We write 'Hcont(H') as 
an orthogonal direct sum of 'H+ont and ?77ont, the subspaces of positive, resp. 
negative energy scattering states. It is sufficient to prove (51) on each subspace 
separately. Assume that T 6 'kt^onti the proof for completely anal­
ogous. In Ref. [8] it is shown that one can approximate exp—zW(A)rn 'P by 
a sequence of states $^(rn) with the following properties. $^(rn) consist of a 
finite sum of well localized states which have all positive kinetic energy, and an­
gular momentum slowly increasing with rn. More precisely, let Po+ denote the 
projection onto the positive energy subspace of the free Dirac operator 77(0), 
and let u(p) = p\J7(0)|~1 = Po+ <aP0+ be the velocity operator for a free particle 
with positive energy. Then we have the following result.

We can choose a sequence of times Tfc, k = 1,2,... such that for each T 6 
+there are N functions fi E each with support in a ball away from the 

origin, and N states </>fc(rn) with the following properties.
1. For any e > 0 there exists k = fc(e) such that for all rn >

N
||e-iHM)rn$_£$,(Tn)||5.£ (52)

2 = 1

where
{■UM = P+ /i(u(p)) fifl/Tn) (53)

2. Each component of the angular momentum L = x f\ p satisfies

ii£'H(t„)ii <ct1y2-s, 1 = (54)

where Ck is a constant which may depend on k. The functions f express a 
localization in phase space. Due to /(u(p)) each of the approximating states has 
velocities in a small region (away from the origin) around some mean velocity ut. 
Furthermore, the states are approximately localized in the support of f{x/Tn\ 
which is far away, if rn is large. The conditions on the derivatives of B are 
needed in the proof of 1 and 2. This proof uses the asymptotic observable 
theory, which has been developed for the Dirac equation in Ref. [4], and the 
idea of an approximating time evolution which has been applied to the case of 
long-range magnetic fields in Ref. [7]. By the asymptotic observable theory, one 
can replace a scattering state by a finite sum of well localized states. On each of 
these localized states one replaces the true time evolution by an approximating 
time evolution, which is similar to a Trotter product, but with increasing time 
intervals. The approximating time evolution leaves the states localized in phase 
space and allows to estimate the increase in time of the angular momentum 
operator with the help of the Gronwall lemma. See Refs. [7] and [8] for details.

Using (52) we can prove (51) by showing vanishing as n —> oo of

|| |e-2H(A)t _ e-2W(0)t| e-2W(A)rn || (55) 
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for all fc, z, and t > 0. Writing {... } in (55) as the integral of its derivative, we 
see that we have to estimate

nt
I dselH^3 A-ae~lHW3^k(Tn) . 
o

(56)

Next we choose a cut-off function g E C£° with g(x) = 1 for |x| > 1, and 
g(x) = 0, for |x| < Let u0 < dist(supp/), O), all z, and define

A*(x)  = A(x) g(x/uot). (57)

By the stationary phase method we can find a constant Dk for all positive 
integers K, such that

II {1 - 9(x/u0(t„ + s))} $1.(t„)|| < Oft-(1 + 5 + r„);<. (58)

Hence we can replace A in (56) by ATn+s. Next we write

a e~iH°3 = e~lH°3 F(s) + pH^e^03. (59)

The operator F(s) = exp(z'Hos) F exp(—zWqs), where

F = a — pHq1 (60)

describes the difference between the velocity operator a of free Dirac particles 
and the classical velocity operator pHq1 , which corresponds to the classical 
expression for the velocity of a relativistic particle. From FHq = — HqF we 
obtain

r3 1
F(s) = e2lH°s F. / F(s')ds' = —— {e2lH°3 -1}F. (61)

Jo 2iHq

These operators are all bounded uniformly in s. According to (59), Eq. (56) 
splits into two parts. The second summand is

nt
/ dselH3 Ar^+3 ■ pH-1 e-lH°3

Jo
pOO

< const. / ds ||Gr"+>|| ||Z^(r„) ||. (62)
Jo

Here we have used A ■ p = G ■ L, ||770~1|| = and LHqPq = |Ho |LP+ . Hence 
by (54) and (46) we can estimate (62) by C'mT~26 with some suitable constant 
C' . It remains to control

dsetH3 Ar-+s e~lHoS F{s)

(63)

J z \ r3
I ds — (elHs Ar"+s e~lH°3] / F(s')ds' 
o as \ / Jo (64)



324 Scattering theory of a supersymmetric Dirac operator

Since (61) is bounded, we can estimate (63) by

const.||Arn+t|| < const.rn 1/<2 S

for all t > 0. The term (64) is easily seen to be bounded by

const, f ds {||[ff0, >C"+>|| + ||a • AAT" +’|| + ||£>lr"+l||}
Jo 1 J
< const.r~2S.

(65)

(66)

Now, since 6 > 0, all the expressions (62), (65), and (66) vanish, as n tends to 
oc. This proves (51).

6. Discussion
The usual formalism of scattering theory is expected to hold for “short-range 

potentials”, where (each component of) the potential matrix V satisfies

|IZ(x)| < const(l + Itl)-1-6. (67)

A famous counter example is the electrostatic Coulomb potential, where | V(x)| 
decays like |x|-1. In this case the wave operators do not exist [2] and one has 
to introduce modifications of the asymptotic time evolution. For the magnetic 
fields in Theorem 4 the potential matrix -a-A has a much slower decay. Indeed, 
previous results in the literature have been obtained only by introducing mod­
ifications of the wave operators (see, e.g., Ref.[ll] and the references therein). 
Asymptotic completeness in the sense of Theorem 4 is obviously due to the 
transversality of A. In another gauge (e.g., if Vg is long-range), the unmodified 
wave operators (1) possibly do not exist. Instead, our considerations show that 
the correspondingly modified wave operators Q±(_H(A), _H( V</)) exist and are 
asymptotically complete. These remarks might be of importance, because in 
physics for time independent problems the Coulomb gauge div A = 0 is used 
almost exclusively instead of the transversal gauge, which is best adapted to 
scattering theory. Note that although the wave and scattering operators depend 
on the choosen gauge, the physically observable quantities like scattering cross 
sections are gauge independent.

In situations like the Aharonov Bohm effect one has used the free asymptotics 
(e.g., plane waves for the asymptotic description of stationary scattering states), 
together with the Coulomb gauge, although the vector potential is long-range. 
But in this case the calculations are justified, because in two dimensions and for 
rotationally symmetric fields the Coulomb gauge happens to coincide with the 
transversal gauge (see also Ref. [9], for a discussion).
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Under weaker decay conditions on the magnetic field strength the wave op­
erators would not exist in that form, because then the term A2 occurring in 
Q2 — Qq would become long-range. In this case one really needs modified wave 
operators, similar to the Coulomb case.

Asymptotic completeness is also true in relativistic and nonrelativistic quan­
tum mechanics, if one adds a short-range electric potential to the magnetic field 
[4]. Of course, the resulting Dirac operator has no supersymmetry, but the 
method of the proof in Theorem 4 still works.

The scattering problem is nontrivial even in classical mechanics. From special 
examples we know that classical paths of particles in magnetic fields satisfying 
our requirements even do not have asymptotes. It is easy to see that the velocity 
of the particles is asymptotically constant. But if we compare the asymptotic 
motion of a particle in a magnetic field with a free motion, one would have 
to add a correction which is transversal to the asymptotic velocity and which 
increases for 8 < 1/2 like Itp/2-6. Thus the situation seems to be worse than 
in the Coulomb problem. There the interacting particles also cannot be asymp­
totically approximated by free particles, but at least the classical paths do have 
asymptotes. (The correction in the Coulomb problem increases like In \t\ and is 
parallel to the asymptotic velocity). A discussion of classical scattering theory 
with magnetic fields is given in Ref. [7],
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