
Charith Perera
PhD, MBA

Lab Book

Internet of Things
Systems Design

Charith Perera (Eds.)

PhD, MBA

PUBLISHED BY IOT GARAGE

Brand names, logos and trademarks used herein remain the property of their respective owners. This listing of any firm

or their logos is not intended to imply any endorsement or direct affiliation with the author.

How to cite this book
Charith Perera (Eds.), Internet of Things: Systems Design Lab Book, IOT Garage, 2023

Contributing Authors (alphabetical order)
Hakan Kayan, Michal Malecki, Yasar Majib

Version 1.5 (Latest), September 2022
Version 1.4, March 2022
Version 1.3, February 2022
Version 1.2, January 2022
Version 1.1, January 2021
Version 1.0, January 2020

Contents

Preface 5

IoT Kit 6

IoT Extension Pack 14

1 Micro-Controller Programming . 17

2 Single-board Computer Programming . 21

3 Posting Data to an IoT Cloud Platform . 27

4 Connecting an IoT Gateway to an IoT Cloud 33

5 Connecting a Sensor Node to IoT Gateway 37

6 End to End Full Stack IoT Development . 43

7 Introduction to Wireshark on Raspberry Pi . 45

8 Programming Arduino with Blockly . 55

9 Programming Raspberry Pi with Python . 61

10 Bluetooth Low Energy (BLE) Based Systems 65

11 RFID and NFC Based Tracking . 71

12 Multimedia Communication . 77

13 Microcontroller Programming Simulator . 81

14 Advance Sensors, Actuators, Components 85

15 3D Objects Designing and Printing . 89

16 Getting Started with Raspberry Pi Camera 93

Debugging The Raspbery Pi . 103

5

Preface
This IOT LAB BOOK is primarily compiled to support the university courses on ‘Internet of Things:
Systems Design’ at both undergraduate and postgraduate levels. If you are taking either of these
modules, please make sure you follow this lab book. It is compulsory to complete labs marked
for both undergraduate and postgraduate level modules. The labs marked are compulsory for the
postgraduate level.

This lab book guides you through a series of labs. Each lab has its objectives. It is expected that
you should be able to complete each lab session within two hours (most of the time, much less). This
lab book does assume that you have some amount of networking knowledge. Further, it is important
to mention that IoT, by nature, is a broad subject. Therefore, in a few lab sessions, we cannot
teach you all the topics in-depth. For example, Arduino programming use C/C++ programming
languages. However, we do not expect you to be an expert on C/C++ to follow the lab session.
However, if you have some background, you will find some known concepts in action and feel
comfortable. If you have never seen C/C++ before, you will, of course, feel nervous and sometimes
will feel lost.

Throughout the lab book, we provided explanations, external links, and references to reading
material. Especially if you do not understand certain programming tasks such as C/C++ it may be
worth reading those links. Further, these links will guide you to explore the universe of IoT on
your own, beyond the labs we have provided here. Finally, we want to emphasise that this is not a
programming course. Therefore, we do not try to teach you a particular programming language
(though we try to provide as many links and references to develop your skills). It is up to you to
develop the gaps in your knowledge by referring to the links we provided.

— Further information, links and references. We will use this structure throughout this lab
book to provide you with additional information and references. They are marked in orange
colour bar on the left-hand side. If you are not interested in exploring further, you are more than
welcome to skip these small sections.

6

IoT Kit
In order to follow all the labs in this lab book, you need the following components. The component
requirement for each lab is presented at the beginning of each chapter. You can also see the lab
numbers that we use the items on figure captions.

Raspberry Pi The Raspberry Pi is a series of small single-board computers. We have tested the
labs with both Raspberry Pi3B+ and Raspberry Pi 4.

Figure 1: Raspberry Pi - Labs (2, 3, 4, 5, 6)

Research Challenges We have provided the Raspberry Pi 4 version with 4GB RAM
• Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
• 1GB, 2GB or 4GB LPDDR4-3200 SDRAM (depending on model)
• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
• Gigabit Ethernet
• 2 USB 3.0 ports; 2 USB 2.0 ports.
• Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previ-

ous boards)
• 2 x micro-HDMI ports (up to 4kp60 supported)
• 2-lane MIPI DSI display port
• 2-lane MIPI CSI camera port
• 4-pole stereo audio and composite video port
• H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)
• OpenGL ES 3.0 graphics
• Micro-SD card slot for loading operating system and data storage
• 5V DC via USB-C connector (minimum 3A*)
• 5V DC via GPIO header (minimum 3A*)
• Power over Ethernet (PoE) enabled (requires separate PoE HAT)
• Operating temperature: 0 – 50 degrees C ambient

■

7

GrovePi Plus GrovePi+ is an add-on board with 15 Grove 4-pin interfaces that brings Grove
sensors to the Raspberry Pi. GrovePi+ is an easy-to-use and modular system for hardware
hacking with the Raspberry Pi, no need for soldering or breadboards: plug in your Grove
sensors and start programming directly. Grove is an easy-to-use collection of more than 100
inexpensive plug-and-play modules that sense and control the physical world. Connecting
Grove Sensors to Raspberry Pi empowers your Pi in the physical world. With hundreds of
sensors to choose from, Grove families, the possibilities for interaction are endless.

— Grove Ecosystem. Most of the Grove components can be connected to Raspberry Pi
through GrovePi+ and can be connected Arduino micro-controller through Base Shield for
Arduino. Most components are interchangeable between two platforms (i.e.,g Raspberry
Pi and Arduino).

• Sensors: http://wiki.seeedstudio.com/Sensor/
• Actuators: http://wiki.seeedstudio.com/Actuator/
• Displays: http://wiki.seeedstudio.com/Display/
• Communications: http://wiki.seeedstudio.com/Communication/

Figure 2: GrovePi+ - Labs (2, 3, 4, 6)

Arduino Expansion Shield for Raspberry Pi B+ (V2.0) With the Arduino Adapter For Rasp-
berry Pi, there’s a way for the Raspberry Pi GPIO interface to adapt to Arduino pinouts,
it is now possible to use the Pi together with vast Arduino shields and hardware/software
resources: (i) Raspberry Pi GPIO interface to adapt to Arduino pinout, (ii) Compatible
with Arduino UNO, Leonardo, easy to connect with various Arduino shields, (iii) XBee
connector for connecting various XBee modules, and (iv) Sensor interface for connecting
various sensors.

Figure 3: Arduino - Labs (1, 5, 6)

http://wiki.seeedstudio.com/Sensor/
http://wiki.seeedstudio.com/Actuator/
http://wiki.seeedstudio.com/Display/
http://wiki.seeedstudio.com/Communication/

8

Base Shield for Arduino Arduino Uno is the most popular Arduino board so far; however, it is
sometimes frustrating when your project requires many sensors or LEDs, and your jumper
wires are in a mess. The Base Shield’s purpose is to help you eliminate breadboard and
jumper wires. With the rich grove connectors on the base board, you can conveniently add all
the grove modules to the Arduino Uno! The pinout of Base Shield V2 is the same as Arduino
Uno R3.

Figure 4: Base Shield - Labs (1, 5, 6)

Loudness (Sound) Sensor Sound Sensors can detect the sound intensity of the environment. The
main component of the module is a simple microphone based on the LM386 amplifier and an
electret microphone. This module’s output is analogue and can be easily sampled and tested
by a Seeeduino.

Figure 5: Loudness Sensor - Labs (6)

Light Sensor The light sensor integrates a photo-resistor (light-dependent resistor) to detect light
intensity. The resistance of the photo-resistor decreases when the intensity of light increases.
A dual OpAmp chip LM358 on board produces a voltage corresponding to light intensity (i.e.
based on resistance value). The output signal is an analogue value. The brighter the light is,
the larger the value. This module can be used to build a light-controlled switch, i.e. switch
off lights during daytime and switch on lights during nighttime.

Figure 6: Light Sensor - Labs (1, 6)

PIR Motion Sensor This sensor allows you to sense motion, usually human movement in its range.
Simply connect it to Grove-Base shield and program it. When anyone moves in its detecting
range, the sensor will output HIGH on its SIG (signal) pin.

9

Figure 7: PIR - Labs (1, 5, 6)

Temperature and Humidity This is a powerful sister version of our Grove - Temperature and
Humidity Sensor Pro. It has a complete and more accurate performance than the basic
version. The detecting range of this sensor is 5% RH - 99% RH, and -40C-80C. And its
accuracy reaches up to 2% RH and 0.5C. A professional choice for applications that have
relatively strict requirements.

Figure 8: Temperature&Humidity - Labs (2, 3, 4, 6)

Servo Motor Servo is a DC motor with a gearing and feedback system. It is used in the driving
mechanism of robots. The module is a bonus product for Grove lovers. We regulated the
three-wire servo into a Grove standard connector. You can plug and play it as a typical Grove
module now, without jumper wires clutter.

Figure 9: Servo Motor - Labs (1, 6)

LED Button LED Button is composed of Grove-Yellow Button, Grove-Blue LED Button and
Grove-Red LED Button. This button is stable and reliable with a 100 000 times long life.
With the built-in LED, you can apply it to many interesting projects. It is really useful to use
the LED to show the status of the button. We use a high-quality N-Channel MOSFET to
control the LED, ensuring high switching speed and low consumption.

Figure 10: LED Button - Labs (2)

10

Ultrasonic Ranger The Ultrasonic Distance Sensor is an ultrasonic transducer that utilizes ultra-
sonic waves to measure distance. It can measure from 3cm to 350cm with an accuracy of up
to 2mm. It is a perfect ultrasonic module for distance measurement, proximity sensors, and
ultrasonic detectors. This module has an ultrasonic transmitter and an ultrasonic receiver, so
you can consider it an ultrasonic transceiver. Familiar with sonar, when the 40KHz ultrasonic
wave generated by the transmitter encounters the object, the sound wave will be emitted back,
and the receiver can receive the reflected ultrasonic wave. It is only necessary to calculate
the time from the transmission to the reception and then multiply the speed of the sound in
the air (340 m/s) to calculate the distance from the sensor to the object.

Figure 11: Ultrasonic Ranger - Labs (2, 6)

Buzzer The buzzer module has a piezo buzzer as the main component. The piezo can be connected
to digital outputs and emit a tone when the output is HIGH. Alternatively, it can be connected
to an analogue pulse-width modulation output to generate various tones and effects.

Figure 12: Buzzer - Labs (2, 3, 4, 6)

LCD RGB Backlight Display This Grove enables you to set the colour to whatever you like via
the simple and concise Grove interface. It takes I2C as a communication method with your
microcontroller. So the number of pins required for data exchange and backlight control
shrinks from 10 to 2, relieving IOs for other challenging tasks. Besides, Grove - LCD RGB
Backlight supports user-defined characters. Want to get a love heart or some other foreign
characters? Just take advantage of this feature and design it.

Figure 13: LCD - Labs (2, 6)

Serial Bluetooth v3.0 Serial Bluetooth is an easy-to-use module compatible with the existing
Grove Base Shield and designed for a transparent wireless serial connection setup. The serial
port Bluetooth module is fully qualified Bluetooth V2.0+EDR(Enhanced Data Rate) 2Mbps
Modulation with a complete 2.4GHz radio transceiver and baseband. It uses a CSR Bluecore

11

04-External single chip Bluetooth system with CMOS technology and AFH(Adaptive Fre-
quency Hopping Feature). It has the smallest footprint of 12.7mm x 27mm. Hope it will
simplify your overall design/development cycle.

Figure 14: Serial Bluetooth - Labs (5)

Raspberry Pi Camera v2 The Raspberry Pi Camera Module 2 can take hide definition videos and
photographs. It allows connecting attachments such as lenses. While we can attach different
cameras to Raspberry Pi, if case is not very specific, this camera should be preferred as there
are libraries already available. We can do live image processing on Raspberry Pi via this
camera as well.

Figure 15: Camera - Labs (16)

SD Card Sandisk Class 10 Micro SD card reinstalled with the Raspberry Pi operating system.

Figure 16: SD Card - Labs (2, 3, 4, 5, 6)

Micro HDMI to HDMI Cable Connect a device that has a micro HDMI port to an HDMI com-
patible TV or monitor to share music, video or images up to 1080p resolution. Connect
Monitor to Raspberry Pi.

12

Figure 17: Cable - Labs (2, 3, 4, 5, 6)

USB Keyboard and Mouse The keyboard has three in-built USB 2.0 type-A ports for powering
other peripherals (such as the official Raspberry Pi mouse).

Figure 18: Keyboard - Labs (2, 3, 4, 5, 6)

Software Requirements

Arduino IDE The Arduino integrated development environment (IDE) is a cross-platform appli-
cation (for Windows, macOS, and Linux) that is written in the programming language Java.
It is used to write and upload programs to Arduino-compatible boards and, with the help of
3rd party cores, other vendor development boards (https://www.arduino.cc/en/main/
software).

Figure 19: Arduino - Labs (1, 5, 6)

Node-RED Node-RED is an open source flow-based development tool for visual programming
developed originally by IBM for wiring together hardware devices, APIs and online services
as part of the Internet of Things. Node-RED provides a web browser-based flow editor, which
can be used to create JavaScript functions. Elements of applications can be saved or shared
for re-use. The runtime is built on Node.js. The flows created in Node-RED are stored using
JSON. Node-RED can be used both on edge on in the cloud. We will use Node-RED as the
edge IoT platform in our labs. (https://nodered.org/).

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://nodered.org/

13

Figure 20: Node-RED - Labs (2, 3, 4, 5, 6)

Thingsboard ThingsBoard is an open-source IoT platform for device management, data collection,
processing and visualization for your IoT projects. ThingsBoard can be used both on edge
on in the cloud. In our labs, we will be using Thingsboard as the cloud IoT platform
(https://thingsboard.io/).

Figure 21: Thingsboard - Labs (3, 4, 6)

To Work From Home

Monitor You will need an external monitor to connect your Raspberry Pi to complete the labs. If
you are an experienced user, you can SSH into your Pi and do the labs. According to your
monitor’s input, you may need a micro-HDMI to HDMI, DVI, or VGA (for older monitors)
cable.

https://thingsboard.io/

14

IoT Extension Pack

LED Bar LED Bar is a 10-segment LED gauge bar with a built-in LED controlling chip. We use
LED bars when we want to demonstrate a level of something. For example, we can show
the remaining battery capacity, temperature level, distance, sound level etc. The bar colours
range from red to green, while red indicates the highest level.

Figure 22: LED bar - Labs (8, 9, 14)

Rotary Angle Sensor Rotary Angle Sensor v1.2 is a potentiometer. We can set the resistance up
to 10k Ohm. Thus, according to the input voltage potentiometer will generate an output. We
can use potentiometers when we want to divide voltage to a certain degree. Thus we can use
sensors that require 5V and 3.3V within the same setup.

Figure 23: Rotary Angle - Labs (8)

EMG Sensor We use electromyography sensors (EMG) to measure signals generated by our
muscles. They are useful for detecting any behavioural anomalies in our muscles. Also, they
are used to model the muscle behaviour of professionals such as athletes and footballers.

Figure 24: EMG - Labs (14)

Speaker Grove Speaker has a built-in potentiometer where we can set the sound level thus it offers
power amplification. We can also set the frequency to generate a different tone. Speaker are
useful when building alarm systems or distance indicators.

15

Figure 25: Speaker - Labs (12)

LED Socket Kit Grove - LED Socket Kit allows us to control brightness of the LEDs via the
built-in potentiometer. We might like to set the LED brightness in several cases such as
reading a book, driving a car, or using a phone.

Figure 26: LED Socket Kit - Labs (10, 11)

Thumb Joystick Joystick modules generate analogue signals that simulate the movements of the
cartesian coordinate system. It also has a push button that we can use as input. Its output
range is smaller than common joysticks. Thus, most of the time, we map the output to a
certain range.

Figure 27: Thumb Joystick - Labs (12)

LED Light-emitting diodes are one of the most efficient light sources. We currently have them in
our phones, TVs, monitors, and simply anywhere we have a screen.

Figure 28: LED - Labs (10, 11)

1. Micro-Controller Programming

Objective
• Learn how to program a Micro-controller.
• Learn how to read data from different types of sensors.
• Learn how to handle events.

Lab Plan
In this lab, you will learn how to connect three different sensors into a microcontroller (i.e., Arduino)
through a Grove compatible base shield.

18 Chapter 1. Micro-Controller Programming

Required Hardware Components

• Microcontroller board (e.g., Arduino)
• Grove HAT (Base Shield for Arduino)
• Sensor 2 (Light Sensor)
• Sensor 3 (Passive Infrared (PIR) Motion)
• Actuator 1 (Servo Motor)
• Event-Driven (LED Button)
• USB Cable (Arduino to PC)

Tasks

We are going to use Arduino IDE for the first time to program the Arduino, at the end of this lab
you’ll be able to read data and produce outputs from several sensors.

1. First, open Arduino IDE on the lab. machine. All lab. machines have Arduino IDE
already installed. If you are using your own computer you will need in install it by yourself.
Instructions on how to install Arduino IDE on you computer is out of scope of this lab
document. However, you may find following link useful on how to install Arduino IDE on
you computer.

— How to Install the Arduino Desktop IDE on your own computer. The Arduino
Software (IDE) allows you to write programs and upload them to your board. At the
Arduino website: "https://www.arduino.cc/en/Main/Software", you will find two
options:
Online IDE If you have a reliable Internet connection, you should use the online IDE

(Arduino Web Editor). It will allow you to save your sketches in the cloud. Also,
you will always have the most up-to-date version of the IDE.

Desktop IDE If you would rather work offline, you should use the latest version of the
desktop IDE.

2. Open Arduino IDE. Connect your Arduino to the computer and wait for few seconds. Then in
Arduino IDE click Tools → Board → Arduino Leonardo as shown in Figure 14.1. Finally
set the correct PORT from the same section as shown in Figure 14.2

3. Now place Base Shield for Arduino on top of Arduino microcontroller.
4. Then we can start connecting sensors and actuator to our Arduino. Plug them in accordingly:

• LED Button → D3 port
• Motion Sensor (PIR) → D2 port
• Light Sensor → A3 port

5. Before starting coding in Arduino IDE, upload the empty sketch (by clicking the top left
arrow icon) to verify that you set up the Arduino correctly.

6. Get the related sketch from https://gitlab.com/IOTGarage/iot-lab-book.git. The
code is pretty simple and comes with explanations. Please do not copy paste but type the
code by yourself and read it carefully to understand how does it work.

7. Now verify (the top left tick icon) and upload the given code. After you upload it the
LED button should start blinking. When you press and hold the button, the LED should stop
blinking. Your final setup should be as in Figure 1.3.

8. Then open your Serial Monitor from the top right the magnifying glass icon . The serial
monitor is the tether between the computer and Arduino.

9. According to the code, when the button is pressed the motion sensor is working, otherwise
the light sensor is working. So, you can switch between sensors by pressing the button.

https://www.arduino.cc/en/Main/Software
https://gitlab.com/IOTGarage/iot-lab-book.git

19

Figure 1.3: Final Setup

10. Now push the button to get different outputs. If you have done everything correctly, you
should have a similar output in your serial monitor as in Figure 1.4.

Figure 1.4: Serial Monitor

11. Congratulations, now we should have working Arduino operating in two different modes
with button indicating in what mode or program is running.

12. Now we will learn how to run Grove Analog Servo.
13. First connect your servo motor to D5 port. Then get the code from https://gitlab.com/

IOTGarage/iot-lab-book.git. Upload the code and push the button to run the servo. Try
to understand what the code does.

14. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine that servo
motor is controlling your door of your private room. You want to close the door when there
is dark or there is any movement. The servo will close your door when the shaft of the servo

https://gitlab.com/IOTGarage/iot-lab-book.git
https://gitlab.com/IOTGarage/iot-lab-book.git

20 Chapter 1. Micro-Controller Programming

moves back and forth across 180 degrees. You will write your own code.

— Further Reading.

• To learn more about Grove Sensors visit http://wiki.seeedstudio.com/Sensor/
• To learn more about Arduno Programming visit https://www.arduino.cc/en/Tutorial/
HomePage?from=Main.Tutorials

http://wiki.seeedstudio.com/Sensor/
https://www.arduino.cc/en/Tutorial/HomePage?from=Main.Tutorials
https://www.arduino.cc/en/Tutorial/HomePage?from=Main.Tutorials

2. Single-board Computer Programming

Objective

• Learn how to program a Single-board Computer (Raspberry Pi model 4B with 4GB RAM)
• Learn how to read data from few different sensors
• Learn how to program actuators
• Learn how to program a display

Lab Plan

22 Chapter 2. Single-board Computer Programming

Required Hardware Components
• SD Card with OS installed on it (we’ll work on the Raspberry Pi OS)
• Display and HDMI cable
• Keyboard and mouse
• Power supply

Additionally we’ll use:
• Grove Pi+
• Grove sensors: Ultrasonic Ranger, Temperature and Humidity sensor
• Buzzer
• LCD Backlight display

Setup of the RaspberryPi
1. Start by plotting the SD card into the SD card slot.
2. Next plug in peripherals into the USB ports and connect Raspberry Pi to the monitor using

the necessary (i.e., micro HDMI - DVI) cable. DO NOT power up the Pi.
3. Connect your Grove Pi+ to your Raspberry Pi.
4. Now we can connect our sensors to Grove Pi+. Connect sensors as shown in below:

• LCD Backlight → I2C-2 port
• Temperature & Humidity Sensor (DHT) → D4 port
• Ultrasonic Ranger → D3 port
• Buzzer → D8 port

5. Power up your Raspberry Pi. You should see the red LED light turn on. As the device is
booting you’ll see raspberries displayed on your monitor.

6. After the OS configured connect to the Wi-Fi network.
7. Check if Raspberry Pi shows the correct time and date. If not, set the correct date and time

(check Chapter 16).
8. Check if I2C is enabled by clicking on the Raspberry icon(top left corner). Then from

Preferences choose Raspberry Pi Configuration and then Interfaces.
9. The Raspberry Pi is already preconfigured to run Node-RED without any issues. Run the

below code to confirm that your Pi works fine:
1 sudo i 2 c d e t e c t −y 1

If you can see 04 in your output as shown in Figure 2.1, it means that Raspberry Pi is able
to detect GrovePi+ which means you can move to the next section (Programming with
Node-RED).

Figure 2.1: Verifying GrovePi+ Connection

10. If you DON’T see 04 please reconnect your GrovePi+ and try again. If you still do not see it,
run the following codes and try again. This step might take around 10 minutes.

1 bash <(c u r l −sL h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / node − r e d / l i n u x −
i n s t a l l e r s / m a s t e r / deb / upda te − node j s −and − node red)

23

2 c u r l −kL d e x t e r i n d u s t r i e s . com / u p d a t e _ g r o v e p i | bash
3 sudo r e b o o t

Programming with Node-RED

11. Download the dht.py python script to your /home/pi from GitLab.
12. Open your terminal (Ctrl + Alt + T) and run the following to make your python script

executable.

1 sudo chmod 755 d h t . py

13. Check if npm version is 6+, if not, redo the above steps:

1 npm −v

14. Everything should be ready to start programming with Node-RED. Open the applications
menu by clicking on the Raspberry icon in top left corner. Then from programming tools
choose Node-RED as shown in Figure 2.2.

Figure 2.2: Starting the Node-RED service

15. You can ignore any warning messages.
16. New terminal named Node-RED console should be opened. Now open the browser and type

in the address http://localhost:1880 to access the Node-RED local server.
17. Delete if there are any nodes on the workspace, delete them all and click on deploy once.
18. Click on the top right corner . Select Manage Palette as shown in Figure 2.3. Then from

the install section, install the following package node-red-node-daemon if it is already
NOT installed. This may take more than a minute.

19. Drag the daemon node from the sidebar to the workspace area. Double click on it, this will
open the properties window, configure it as you see in Figure 2.4.

20. Now let’s see if our sensor works correctly. Choose output node called debug from the
sidebar. This node is primarily used to check outputs of flows. Connect debug node to the
daemon node (if you configure it as given above, name should be changed into python) as
shown in Figure 2.5.

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2002%20-%20Single-board%20Computer%20Programming/dht.py
http://localhost:1880

24 Chapter 2. Single-board Computer Programming

Figure 2.3: Manage Palette

Figure 2.4: Node Settings

Figure 2.5: Simple Flow Example

21. We’ve created the most basic flow, to make it work now click Deploy from top right corner.
Then in the right window click on the debug icon to open debug window. If everything
setup correctly it should look like as in Figure 2.6.

22. After you observe your sensor data in Node-RED, close it by removing the connection
between nodes, then deploy again.

Creating termometer with display

23. This time fetch lcd.py from GitLab to your /home/pi.

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2002%20-%20Single-board%20Computer%20Programming/lcd.py

25

Figure 2.6: Debug window that shows temperature and humidity values

24. Open your terminal (Ctrl + Alt + T) and run the following to make python script executable.

1 sudo chmod 755 l c d . py

25. Then configure your daemon node by changing dht.py to lcd.py

26. Then deploy again.
27. You should be able to see the temperature value on your LCD screen.

Programming Buzzer and Ranger
28. In this section, we will learn how to program buzzer and ultrasonic ranger. It is a simple

device that we can use to respond to the sensor readings.
29. Fetch buzzerRanger.py from GitLab to your /home/pi.
30. Open your terminal (Ctrl + Alt + T) and run the following command to make your python

script executable.

1 sudo chmod 755 b u z z e r R a n g e r . py

31. Then configure your daemon node by changing lcd.py to buzzerRanger.py

32. Then deploy again.
33. You should be able to see distance on Node-RED debug space, if the distance is below 10 cm

the buzzer will ring.
34. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine you are

cooking some dinner in your kitchen and you also have a cat (a really curious one). You
want to leave the kitchen but also know if the cat gets closer to the oven. Change your setup
accordingly.
Hint: The buzzing sound should indicate how far is your cat. Discrete means far, continous
means close. Also display the temperature and the distance on your LCD. You need to write
your own python script to complete this task.

— Further Reading. .

• To learn more about Node-RED see: https://nodered.org/docs/
• To learn more about RaspberryPi visit https://www.raspberrypi.org/

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2002%20-%20Single-board%20Computer%20Programming/buzzerRanger.py
https://nodered.org/docs/
https://www.raspberrypi.org/

3. Posting Data to an IoT Cloud Platform

Objective

• Learn how to post IoT data the a cloud IoT platform

Lab Plan

This lab explains how to configure Thingsboard in a way that we can send data from Rasberry Pi
via MQTT node that we install to Node-RED. We will observe a live data on Thingsboard and
create customized widgets on the Thingsboard dashboard.

28 Chapter 3. Posting Data to an IoT Cloud Platform

Required Hardware Components

• SD Card with OS installed on it (we’ll work on the Raspberry Pi OS)
• Display and HDMI cable
• Keyboard and mouse
• Power supply

Additionally we’ll use:

• Grove Pi+
• Grove sensor: Temperature and Humidity sensor
• LCD Backlight display

Posting Data to Thingsboard Dashboard

1. To do this lab. you need to be at the end of 20th step of lab. 2 first. However, this time
you only need the connect the temperature&humidity sensor. Please do all the required
steps and get data from your sensor in Node-RED before starting this lab.

2. In this lab. we will once again use Node-RED. But this time we will use both Watson IoT
node and MQTT node. MQTT is a lightweight messaging protocol which enables fast and
reliable communication between different devices. This is why it’s so vastly popular in IoT
solutions.

3. To begin we have to configure our Thingsboard. Go to Thingsboard website
https://thingsboard.cs.cf.ac.uk/login and login via the given group username and password.

4. Now we have to add a new device. Go to the Devices page by selecting from left the panel
. Click the plus icon from top right and select Add new device.

5. Then, configure your device as gateway as seen in Figure 3.1.

Figure 3.1: Adding New Device

6. Then click on Next: Credentials button to provide access token.
7. Provide your own random access token as shown in Figure 3.2

29

Figure 3.2: Random Access Token

8. Now select (click on the name) your device and copy the access token as show in Figure 3.3.
Please note this token to somewhere as we will need it later on.

Figure 3.3: Copy Access Token

Node-RED Programming
9. Drag the mqtt out node (see Figure 3.4) to the workspace. Then, connect the daemon node

to the MQTT node as in Figure 3.5.

Figure 3.4: MQTT out node.

Figure 3.5: Node-RED setup.

10. Now we will configure the mqtt node.
11. First, double-click on mqtt node.
12. Then, click on the pen icon which is next to the server input.

30 Chapter 3. Posting Data to an IoT Cloud Platform

13. Configure it as it is shown in Figure 3.6.

Figure 3.6: MQTT Configuration

14. Click on the security tab and provide the access token of the device as username that you
have copied from the ThingsBoard website as in Figure 3.7. Click Update in top right corner
of window.

Figure 3.7: Providing Access Token

15. Lastly in Topic window, enter v1/devices/me/telemetry as in Figure 3.8. This will provide
Thingsboard with where data sent from Raspberry Pi has to exactly go. Click Done in top
right corner of window and deploy your project/flow via top right Deploy button.

Figure 3.8: MQTT Topic

Observing Live Data in ThingsBoard
16. Now, we need to create a dashboard to use built-in ThingsBoard widgets to observe our live

data. In the left panel select Dashboards . Then create a new dashboard in a similar way
that creating a device. Name your dashboard as RaspPiDashboard.

17. After creating your dashboard, select your created device. Then click on Latest telemetry.
Tick both temperature and humidity variables as shown in Figure 3.9.

18. Then, click on Show on widget. Here, we will leave the widget type as default (which should
be Cards). Then click on Add to dashboard configure as shown in Figure 3.10.

19. Finally, click on Add to add that widget to your dashboard.
20. Now, you should be able to observe your live sensor data in ThingsBoard as it is shown in

Figure 3.11. We have selected the default widget, you might want to try other widgets and
select the one that you desire.

31

Figure 3.9: Latest Telemetry

Figure 3.10: Dashboard Settings

Figure 3.11: Observing Live Data

32 Chapter 3. Posting Data to an IoT Cloud Platform

21. If you would like to test yourself further, go for the final task. Otherwise, remove all nodes
from the workspace and deploy one more time. Then, in the terminal type the following:

1 node −red − s t o p
2 sudo shutdown now

Now, you can safely unplug your Pi after 5 seconds, if you will not do the final task.
22. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine a meteor is

approaching to the Earth. You would like the measure how it will effect the temperature of
the earth. If temperature rises above a certain degree the buzzer will ring. You will visualize
all the process via ThingsBoard.
Hint: Your one hand will be a meteor, while the other one will hold the temperature sensor
to increase the temperature value.

— Further Reading.

• https://thingsboard.io/iot-use-cases/

https://thingsboard.io/iot-use-cases/

4. Connecting an IoT Gateway to an IoT Cloud

Objective

• Learn how to configure an IoT cloud platform
• Learn how to connect a gateway (Raspberry Pi) to IoT cloud platform (ThingsBoard)
• Learn how to send data from edge gateway to cloud
• Lean how to send commands/data from cloud to edge gateway

Lab Plan

34 Chapter 4. Connecting an IoT Gateway to an IoT Cloud

Required Hardware Components
• Raspberry Pi 4
• SD Card with OS installed on it (we’ll work on the Raspberry Pi OS)
• Display and HDMI cable
• Keyboard and mouse
• Power supply

Additionally we’ll use:
• GrovePi+
• Grove sensors: Temperature&Humidity Sensor (DHT11)
• Buzzer

Connecting to ThingsBoard Cloud Platform via Python Script
1. We learnt how to send telemetry data to cloud, now, in this lab, we will establish a dual-way

communication with the cloud.
2. We will be sending temperature and humidity data to ThingsBoard, while controlling our

buzzer from there.
3. To do this lab, you MUST have completed the lab ??. So, please be sure that you can send

your temperature and humidity data to the ThingsBoard without any issues.
4. Check if your sensors/actuators connected to the correct ports.

• Temperature & Humidity Sensor (DHT) → D4 port
• Buzzer → D8 port

5. After testing it you can close Node-RED, because we will be using a Python 3 script. If
Node-RED is running, stop it via running the following in the Pi’s terminal:

1 node −red − s t o p

6. Now, get the Python 3 script named cloud.py from GitLab and place it to /home/pi.
7. Now, run the following to provide required permissions:

1 sudo chmod 755 c l o u d . py

8. We need a Python MQTT package to establish a communication with ThingsBoard. Hence,
install one via running the following:

1 p ip3 i n s t a l l paho − mqt t

9. Now, go to https://thingsboard.cs.cf.ac.uk/, create a new device and name it as Buzzer
Demo Device.This time, do NOT declare your device as gateway. Do not provide any access
token, this token will be generated automatically.

1 ACCESS_TOKEN = ’KV8ua9VXNu9cOQ8Op4DS ’ # <== I n s e r t your own a c c e s s t o k e n
h e r e .

10. Now run the code, via entering the following to Pi’s terminal:
1 python3 c l o u d . py

11. You should see the following output that is shown in Figure 4.1
12. The {'session present': 0} means that communication is established without any prob-

lem. The two Success messages mean that you successfully have sent the temperature,
humidity, and state of the buzzer (either true (on) or false (off)).

13. Observe these data on the ThingsBoard as well. You data should be similar as in Figure 4.2.
14. Add a widget for the temperature and humidity data as you have done in the previous lab.

This time, add a time-series chart.
15. Now, we will control our buzzer via ThingsBoard. First, please terminate (CTRL + C) the

Python Script.

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2003%20-%20Connecting%20an%20IoT%20Gateway%20to%20an%20IoT%20Cloud

35

Figure 4.1: Cloud.py Output

Figure 4.2: Cloud.py Output

16. Then, go to your dashboard, from click-on the pen icon on the bottom right. Then, click
on the plus icon. Finally, select the file icon to create a new widget. We will send Remote
Procedure Calls (RPC) from server side (ThingsBoard in this case) to our client (Raspberry
Pi) to control the buzzer.

17. Control widgets are the widgets that can send RPC. So, select control widgets as shown in
Figure 4.3.

Figure 4.3: Control Widget

18. Now add the switch control widget to your dashboard as shown in Figure 4.4.
19. Select the Buzzer Demo Device as your target device. If you can’t find that, add yourself.

The type should be set to Device Type. Then you can add your widget. After adding, it can
generate a Request Timeout error which you can ignore.

20. If you have done everything correct, your dashboard should look like as in Figure 4.5.
21. Now, we are ready to run our script. Run the cloud.py again.
22. Use the switch, to turn on and off your buzzer. If you can hear the BEEP! congratulations!

You can control your buzzer from ThingsBoard.
23. Use Case Scenario(Optional): Think this as it is your FINAL TASK. You are curious about

36 Chapter 4. Connecting an IoT Gateway to an IoT Cloud

Figure 4.4: Switch Control

Figure 4.5: Dashboard

the humidity of your house due to previous mold problems. However you can’t check it due
to being super busy. So, deploy your application to cloud, print humidity to your LCD, and
ask your friend to check the humidity of the house via another PC. Control the backlight of
the LCD via switch widget on ThingsBoard.

— Further Reading.

• To learn more about IoT Cloud: https://thingsboard.io/docs/user-guide/rpc/.

https://thingsboard.io/docs/user-guide/rpc/

5. Connecting a Sensor Node to IoT Gateway

Objective

• Learn how to connect a sensor node (microcontroller-based) to an edge gateway node (single
board computer)

• Learn how to send data from sensor node to edge gateway
• Learn how to Bluetooth for short range communication

Lab Plan

38 Chapter 5. Connecting a Sensor Node to IoT Gateway

Required Hardware Components

• SD Card with the Raspberry Pi OS installed
• Microcontroller board (e.g., Arduino)
• Grove HAT (Base Shield for Arduino)
• Display and HDMI cable
• Keyboard and mouse
• Power supply

Additionally we’ll use:
• Grove sensor: PIR (Motion) sensor
• Grove - Serial Bluetooth v3.0 or Serial Bluetooth v3.01

Raspberry Pi Setup

1. Raspberry Pi already has a connection module that enables us to make Wi-Fi and Bluetooth
connections. However, as the Arduino is quite simple device we’re going to use Grove
Bluetooth module that will enable us to create a Bluetooth connection. In our case, Arduino
will act as a slave while the Pi is master.

2. In this lab. you will need two computers, one is for Raspberry Pi and the other one is to
program Arduino.

3. First, connect your Raspberry Pi to your monitor then power up the Pi. Then connect to the
eduroam\Wi-Fi.

4. Next, we need to make sure our the Node-red is ready to use for serial communication. Type
to following commands:

5. Raspberry Pi comes with already installed Bluetooth package. The Bluetooth should be
active by default. Check the status by typing the following in Pi’s terminal:

1 s y s t e m c t l s t a t u s b l u e t o o t h

You should see that the service is active just as in Figure 5.1.

Figure 5.1: Bluetooth Status

6. Now we need to program Arduino so we can pair it with Raspberry Pi and establish a
Bluetooth connection.

Arduino Programming

7. Connect your sensors to Arduino according to the following:
• Grove Bluetooth Module v3.0 → D8 port
• PIR → D2 port

8. Now plug your Arduino to PC and open Arduino IDE. Select correct board and port from
Tools tab. Upload the empty code to verify Arduino is working without any issues.

39

9. Then get to the required code to program your Arduino from here.
10. Change the Slave to something else so you distinguish your Bluetooth id from others:

1 b l u e T o o t h S e r i a l . p r i n t ("AT+NAMESlave") ;

11. Finally upload your code to Arduino. Open the Serial Monitor. Your Bluetooth module
LED should blink slowly which means it is waiting for connection.

12. Now we will pair and connect to our module from Raspberry Pi.

Pairing Raspberry Pi to Arduino

13. Go back to Raspberry Pi and type to following command to find your Bluetooth’s 48 bit
MAC address as shown in Figure 5.2:

1 h c i t o o l s can

Figure 5.2: Finding the MAC Address of the Bluetooth

Note that address to somewhere. From now on whenever you see MAC ADDRESS HERE
you will write that address.

14. Now type to following in order. When you type pair it may ask for the pin code. It is either
0000 or 1234:

1 b l u e t o o t h c t l
2 a g e n t on
3 d e f a u l t − a g e n t
4 s can on / / w a i t u n t i l you s e e your MAC a d d r e s s
5 s can o f f
6 p a i r MAC ADDRESS HERE
7 t r u s t MAC ADDRESS HERE
8 q u i t

If you have done all the steps successfully you should have a similar output as shown in
Figure 5.3.

Figure 5.3: Pairing Bluetooth

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2004%20-%20Connecting%20a%20Sensor%20Node%20to%20IoT%20Gateway/arduino_bluetooth/arduino_bluetooth.ino

40 Chapter 5. Connecting a Sensor Node to IoT Gateway

15. Now that we have paired, we can connect to the Arduino from Pi. Enter the following to your
terminal:

1 sudo rfcomm c o n n e c t h c i 0 MAC ADDRESS HERE

Then you should have a similar output as in Figure 5.4. Also, your bluetooth module should
give continuous green light.

Figure 5.4: Connecting Bluetooth

16. You can also check your connection from the top right Bluetooth icon . Now we will read
the data that is sent by Arduino via Node-RED. If you encounter any problems remove your
Bluetooth device via bluetoothctl command and redo everything.

Node-RED Programming

17. Open Node-RED.
18. Drag down the serial in node to the work space. Then add debug node and connect it to the

Serial Node.

19. Before deploying the project, we need to configure the Serial node. Double click on the node
and configure it as in Figure 5.5.

Figure 5.5: Serial Node Settings

41

20. Be sure that the Serial Monitor of Arduino is open. Then, deploy the project in Node-RED.
Check your debug messages. You should receive data from the PIR(motion sensor) of
Arduino. Congratulations!

21. If you have followed all the steps successfully you should get the final output as in Figure
5.6.

Figure 5.6: Final Output

22. Use Case Scenario (Optional): Think this as it is your FINAL TASK. A thief entered to
your house at night. You want to detect it via motion and light sensors. Configure your
system according to this use case scenario.
Hint: When the light density is below certain level and there is a movement, you should get
an output in Node-RED as "There is a thief!".

— Further Reading.

• To learn more about software serial on Arduino see: https://www.arduino.cc/
en/Reference/softwareSerial

https://www.arduino.cc/en/Reference/softwareSerial
https://www.arduino.cc/en/Reference/softwareSerial

6. End to End Full Stack IoT Development

Objective
• Learn how to connect sensor node to an edge gateway node
• Learn how to send data from sensor node to Edge / Gateway
• Learn how to develop an end to end IoT stack

Lab Plan
This lab explains how to develop and end-to-end IoT stack that contains edge, fog, and cloud nodes.
You will combine what you have learned during the previous labs. The data from edge to fog will
be sent over Bluetooth Serial. Then, Raspberry Pi will send the data to Thingsboard cloud where
you will observe via dashboard.

Required Hardware Components
• All Hardware components except Grove-Servo required in Lab 1, 2, 3, and 4.

44 Chapter 6. End to End Full Stack IoT Development

End to End Full Stack IoT Development
1. In previous labs. we’ve learned how to program Arduino and Raspberry Pi, then how to

create an Edge Gateway with Raspberry Pi and finally how to communicate Arduino and Pi
using Bluetooth. We’ve learned all of this steps so we can finally create end-to-end IoT stack.
In this lab. we will focus on applying knowledge that we’ve gained previously by creating
solution that with small changes could be implemented into the real life.

2. To start you may want to perform previous labs first. However, you do not need to use Grove
- Servo motor.

3. First task will be creating temperature monitoring system. Using DHT sensor, Buzzer
and LCD, create system that will monitor and display Temperature and Humidity. If the
temperature will get too high i.e. 25°C, the system will display new, warning message on
the LCD. Additionally the buzzer will work as an alarm after the humidity has reached level
of 80 percent. If both the temperature and humidity are above said levels both display and
buzzer should react to that. Ensure that the data is sent to the ThingsBoard using the required
node so later it can be processed.

4. Second task will be creating Home Security System. Using PIR and Sound (loudness) sensors
create system that will respond to any suspicious activities i.e. movement or loud noises.
Use the LED Button connected to the Arduino to program two modes of the system. First
one will be waiting, second - armed just as in regular security systems which we arm after
we leave the building. Waiting mode should just display message about it’s current state
using LCD Back-light display for example: "Waiting". Armed mode will wait for any sensor
readings that could mean breaking in. This would activate the Buzzer and would send the
message to the Thingsboard. Sensors that could be used in this project are: PIR, Sound
Sensor, Ultrasonic Ranger - be creative! The extra feature that you could create would be the
uploading Node-RED flow to cloud to disable the system after it’s been activated and would
stop the buzzer. That way you could remotely check the state of your system and disable it.

— Further Reading.

• https://www.arm.com/glossary/iot-cloud

https://www.arm.com/glossary/iot-cloud

7. Introduction to Wireshark on Raspberry Pi

What is Wireshark?

Wireshark is one of the most common network protocol analyzers. It presents all the captured data
that goes through the network in detail in real time. It is an open-source software available on most
of the platforms including Linux, Window and IOS etc. It is even used by big companies such as
Verizon and Boeing.

Some of the main features that we will be using are mentioned in their website (https://www.
wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroWhatIs)
summarised below:

• Capture live packet data from a network interface.
• Open files containing packet data captured with tcpdump/WinDump, Wireshark, and many

other packet capture programs.
• Import packets from text files containing hex dumps of packet data.
• Display packets with very detailed protocol information.
• Save and export packet data captured.
• Filter and search for the packets depending on your criteria.
• Create various statistics.
In this guide, you will be learning how to use Wireshark on the Raspberry Pi OS which is based

on Debian in detail.

Installing Wireshark

There are 2 common ways of installing a package to Raspberry Pi (I will just refer as RPi from now
on):

• Installing the package from the source.
• Installing the package from repository.
Installing the package from the repository should be your first option. This prevents lots of

possible problems such as version incompatibility or lack of dependencies etc. However sometimes,
the the repository package may not be updated. Then you may choose to install newer version from

https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroWhatIs
https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html#ChIntroWhatIs

46 Chapter 7. Introduction to Wireshark on Raspberry Pi

the source.
To install the package from the repository, first we should check if the package is available there or
not. Before doing this, we need check which repository that our RPi is based on. Do the following
in order:

• Open your terminal (ctrl+alt+T). Type the following:
1 sudo nano / e t c / a p t / s o u r c e s . l i s t

This will give you the repository name that you are looking for. The text written in orange is
your repository name. In this case, it is buster as you can see in Fig. 7.1.

Figure 7.1: Repository Name

• Then, go to the following website http://archive.raspbian.org/raspbian/dists/

buster/main/binary-armhf/ and download the file named Packages. Open the file with
the any text editor you like such as Geany. Then search for package: wireshark. You will
see a detailed documentation if the package is available. In this case, package is available so
we can find the package details as in Fig. 7.2.

Figure 7.2: Wireshark Package

• This means we can install the wireshark package via the following line:
1 sudo a p t i n s t a l l w i r e s h a r k

It will ask for permission to install dependencies, just enter y then continue. It may also ask
a permission for non-super users. You may just select YES and wait for installation to finish.

• After the installation is finished, you may run the Wireshark from the Internet section as you
see in Fig. 7.3.

http://archive.raspbian.org/raspbian/dists/buster/main/binary-armhf/
http://archive.raspbian.org/raspbian/dists/buster/main/binary-armhf/

47

Figure 7.3: Running Wireshark

• Another option is running Wireshark from terminal. Running applications from terminal
should be more preferable, because if you get an error when you use the application, you may
see the error log on your terminal. Type the following to run the application via terminal:

1 sudo w i r e s h a r k

Normally you do not need give admin privileges by writing sudo to run the applications.
However, as we are working in a safe environment, running with sudo makes more sense to
prevent warnings related to privileges.
Also if you use terminals you may select different options to run Wireshark. To see all the
options type the following to the another terminal:

1 w i r e s h a r k −h

48 Chapter 7. Introduction to Wireshark on Raspberry Pi

Capturing and Analysing Packets

We have successfully installed Wireshark. Now we will run it. When you run the Wireshark, you
will see the main window as you can see in Fig. 7.4.

Figure 7.4: Wireshark Main Window

You can see there are different interfaces such as eth0 and wlan0. You also may realize from
the graphic there is data going through the wlan0.

Now, to capture the network traffic in real time, click on the blue shark fin icon as you see in
Fig. 7.5.

Figure 7.5: Capture Icon

Now you will see a live feed of captured packets belonging wlan0 interface as in Figure 7.6.
The GUI of the wireshark interface is summarized below:

49

Figure 7.6: The Wireshark GUI

• 1st bar is the window name that indicates which network is captured. In this case it is wlan0.
• 2nd bar is the menu that is used to start actions.
• 3th bar is main toolbar provides quick access to some commonly used functions in the

menu.
• 4th bar is the filter toolbar that lets you filter the displayed packets.
• 5th part is the packet list pane that shows the summary of the captured packet.
• 6th part is the packet bytes pane shows the data of the selected packet in a hexdump style.
• 7th bar is the status bar.

Now click on the red stop icon next the blue shark fin to stop live capture so we can examine it
in details.

In the packet list panel each line belongs to a one packet. The items in this pane are summarised
below:

• No : Packets are numbered when the live capture is started. You can see the order of the
packets.

• Time : The timestamp of the packet.
• Source : The address where the packet is coming from.
• Destination : The address where the packet is going to.
• Protocol : The network protocol name.
• Length : The length of the packet in terms of bytes.
• Info : Detailed information about the packet.

When you select an packet you will see an symbol in the No section. In Fig. 7.7, you can see
there is a tick on packet 3. Which means that, the 4th packet acknowledges the 3th packet. To
see all the symbols and their meanings, please visit https://www.wireshark.org/docs/wsug_
html_chunked/ChUsePacketListPaneSection.html.

https://www.wireshark.org/docs/wsug_html_chunked/ChUsePacketListPaneSection.html
https://www.wireshark.org/docs/wsug_html_chunked/ChUsePacketListPaneSection.html

50 Chapter 7. Introduction to Wireshark on Raspberry Pi

Figure 7.7: Related Packet Symbol

You can save your captured network by clicking File then Save As... in many formats including
pcap as you see in Fig. 7.8. This helps you to analyse your network as you want. You can simulate
your network traffic by replaying those files. In case of unusual traffic such as cyberattacks, these
pcap files are examined in detail to understand the behavior of the attack.

Figure 7.8: Saving Pcap File

You can also open and analyse any pcap files that you have from the same section.

You can filter the captured traffic via filter bar. Let’s say you want to see DNS traffic. You can
type dns to the filter and see all the packets belongs to that traffic. The filter bar has its own syntax.
If you type something wrong, the bar will turn to a red. It should be green as in Fig. 7.9 to apply a
filter. You can apply the filter by the arrow at the end of the filter bar.

51

Figure 7.9: Applying Filter

As you see in above figure, only DNS packets are shown which means the filter is applied
successfully. Let’s say you want to observe the traffic that includes specific IP address. In this case
you need to type the following to the filter:

1 i p . add r == 1 9 4 . 1 3 . 1 2 . 1 2

In this case Wireshark will display all the packets that includes 194.13.12.12 as an source
or destination address. You can reach the whole syntax list from the following address: https:
//www.wireshark.org/docs/dfref/.

The timestamp shows how many seconds are passed since the capture is began. However, this
information is moslty useless. You can set the timestamp from View then Time Display Format as
you want.

Wireshark has packet colorization. This is a very useful mechanism when observing a live
traffic as in Fig. 7.10. If there are some unexpected colored packets you can immediately react to
an event.

https://www.wireshark.org/docs/dfref/
https://www.wireshark.org/docs/dfref/

52 Chapter 7. Introduction to Wireshark on Raspberry Pi

Figure 7.10: Packet Colorization

Coloring rules are also customisable. Click on View and then Coloring Rules. You will see a
similar window as in Fig. 7.11. You can add a new color rule by clicking the + icon on bottom left.

Figure 7.11: Color Rules

Another useful feature of Wireshark is Statistics tool in the menu. Here you can generate
graphs and get many detailed information about your captured file. You can select the first option
to see the main statistics of the pcap file as shown in Fig. 7.12.

53

Figure 7.12: Statistics

— Further Reading.

• To learn more about Wireshark: https://www.wireshark.org/docs/

https://www.wireshark.org/docs/

8. Programming Arduino with Blockly

Objective
• Learn how to program an Arduino via Blockly
• Learn how to read data from various sensors
• Learn how to use a LED Bar

Lab Plan

This lab explains how to program Arduino via Blockly. We will control LED bar via rotary angle
sensor while using drag and drop nodes which are built-in in Blockly.

Required Hardware Components
• Grove - Rotary Angle Sensor v1.2
• Grove - LED Bar v2.1

56 Chapter 8. Programming Arduino with Blockly

• Grove - Light Sensor v1.2
• Grove - Ultrasonic Ranger v2.0
• Arduino Expansion Shield for Raspberry Pi B+ (V2.0)
• Grove - Base Shield

Setting Up Codecraft
1. Navigate to the www.tinkergen.com.
2. Then from Codecraft select Programming Online from the header bar.
3. You will see lots of different hardware options.
4. Select Arduino(Uno/Mega/BeginnerKit).
5. Now, you should see a workspace as shown in Figure 8.1.

Figure 8.1: Codecraft Workspace

6. Now, we will setup our Arduino Leonardo.

Setting Up Arduino
7. Connect your Grove Base Shield on top of Arduino.
8. Then connect the sensors accordingly:

• LED Bar → D4 port
• Rotary Angle Sensor → A3 port
• Ultrasonic Ranger → D3 port
• Light Sensor → A0 port

9. On your base shield, there is a voltage switch. There are 2 options: 3V3, and 5V. Make sure
5V is set.

10. Now, connect your Arduino to PC.
11. Run Arduino IDE.
12. From, File select New, then save the file.
13. From Tools, set your Board to Arduino Leonardo and select the correct port.
14. Your Tools settings should be similar as shown in Figure 8.2.
15. First we will run ultrasonic ranger.
16. Download the required library from our GitLab. The library file is named as:

Seeed_Arduino_UltrasonicRanger-master.zip.

www.tinkergen.com
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2008%20-%20Programming%20Arduino%20with%20Blockly

57

Figure 8.2: Arduino Settings

17. From Sketch, select Include Library, then select Add .ZIP Library..., and upload the
library then you have downloaded.

18. Now we will generate our code in Codecraft.

Programming Ultrasonic Ranger via Codecraft
19. Set up your workspace as it is shown in Figure 8.3. You can easily find the correct nodes via

looking at their colors.

Figure 8.3: Codecraft Ultrasonic Ranger Setup

20. Then from top right, click on the workspace switch icon that looks as in Figure 8.4.

Figure 8.4: Workspace Switch

21. Now, copy the code from the workspace to Arduino IDE. Upload the code, and open the serial
monitor. You should be seeing the distance generated by ultrasonic ranger in centimeters.

22. Now, we will get light data via light sensor.

58 Chapter 8. Programming Arduino with Blockly

Programming Light Sensor via Codecraft
23. Set up the Codecraft workspace as shown in Figure 8.5.

Figure 8.5: Codecraft Light Sensor Setup

24. Then again switch the workspace, copy the code to your Arduino IDE, and upload.
25. Open the serial monitor to observe the light data. If you hold the sensor in your hand, you

will see that, the light density will decrease.
26. Now, we will program the rotary angle sensor.

Programming Rotary Angle Sensor via Codecraft
27. Set up the Codecraft workspace as shown in Figure 8.6.

Figure 8.6: Codecraft Rotary Angle Sensor Setup

28. Then again, as you have done before, copy the code to your Arduino IDE. However, now,
we need to do a slight change in the code to make it properly working. Remove the outer
parenthesises when defining the voltage as shown below:

1 v o l t a g e = ana logRead (A3) * 5 / 1023 ;

59

29. Now, we can upload the code to our Arduino.
30. Open serial monitor and rotate the actuator on the rotary angle sensor to observe the change

in the angle value.
31. Now, we will learn how to program the LED Bar.

Programming Grove LED Bar via Codecraft
32. We already have learnt how to use Codecraft to generate Arduino code. Now we will do the

reverse.
33. First download and install the library named "Grove_LED_Bar-master.zip" from our GitLab.
34. Then again copy the code from groveLEDBar.ino to your own Arduino script and upload

the code. That file is also located in our GitLab. Then observe the behavior of the LED Bar.
35. Now, you will develop a similar code via using Codecraft.
36. You can find the LED bar node in Grove Digital section. The required node is shown in

Figure 8.7.

Figure 8.7: Codecraft LED Bar Node

37. Now build your own setup in Codecraft that provides the similar behavior of the previously
deployed Arduino code.

38. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine that you
would like to build a smart window. The LED Bar indicates the level of the window. When
the amount of light is above certain level, you will close the window via using rotary angle
sensor. You will do the opposite as well.

— Further Reading. .

• To learn more about Codecraft see official documentation https://www.yuque.

com/tinkergen-help-en/codecraft?language=en-us

• To learn more about Arduino visit https://www.arduino.cc/

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2008%20-%20Programming%20Arduino%20with%20Blockly
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2008%20-%20Programming%20Arduino%20with%20Blockly
https://www.yuque.com/tinkergen-help-en/codecraft?language=en-us
https://www.yuque.com/tinkergen-help-en/codecraft?language=en-us
https://www.arduino.cc/

9. Programming Raspberry Pi with Python

Objective

• Learn how to execute Python scripts on Raspberry Pi
• Learn how to read data via Python scripts
• Learn how to utilize a speaker and LCD display together

Lab Plan

This lab explains how use grove sensors via Python scripts. Python comes pre-installed with
Raspberry Pi OS. We will connect Grove sensors to Raspberry Pi via GrovePi+. Then we will run
Python scripts and program several sensors including ultrasonic ranger.

Required Hardware Components

• Raspberry Pi 4
• SD Card with OS installed on it (we’ll work on the Raspberry Pi OS)
• Display and HDMI cable

62 Chapter 9. Programming Raspberry Pi with Python

• Keyboard and mouse
• Power supply

Additionally we’ll use:
• GrovePi+
• Grove Loudness Sensor v0.9b
• Grove - LED Bar v2.1
• Grove Ultrasonic Ranger V2.0
• Grove - Buzzer v1.2

Setting Up Pi
1. Connect your Raspberry Pi to GrovePi+.
2. Then, connect the sensors/modules accordingly to your GrovePi+.

• Buzzer → D8 port
• LED Bar → D5 port
• Loudness Sensor → A2 port
• Ultrasonic Ranger → D4 port

3. Now power up your Raspberry Pi.
4. Then open your terminal and enter the following:

1 sudo i 2 c d e t e c t −y 1

5. If you can see 04 in your output, it means that Raspberry Pi is able to detect GrovePi+.

Programming Buzzer
6. Buzzer is an audio signaling device that beeps. Hence, we can utilize it as an indicator or

alarm. Now, we will run our Buzzer via Python script.
7. First create buzzer.py in your home directory from your terminal (CTRL + ALT + T):

1 cd ~
2 t o u c h b u z z e r . py

8. Then from our GitLab, copy the content of buzzer.py to your own script. To do this, you can
double-click to file and paste it. Then save the file and close it.

9. Now we will run the file via:

1 python3 b u z z e r . py

10. After hearing them most beautiful beep in the world, you can terminate the script via CTRL
+ C.

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2009%20-%20Programming%20Raspberry%20Pi%20with%20Python/buzzer.py

63

Programming LED Bar

11. Now we will program our LED bar in Python.
12. This time we will use built-in Python IDE named Thonny.
13. Open Thonny Python IDE from the main Rasspery Pi panel as shown in Figure 9.1.

Figure 9.1: Opening Thonny Python IDE

14. Then, create a new script by clicking on the + icon as shown in Figure 9.2.

Figure 9.2: Creating Thonny Python IDE Script

15. Copy the content of an ledBar.py from our GitLab and paste it to your own script.
16. Then, save the script, name as ledBar.py.
17. Now, run the script by clicking on a Run button.
18. You will observe 18 different behaviours on the LED bar, each behaviour will be printed on

shell as well as shown in Figure 9.3.

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2009%20-%20Programming%20Raspberry%20Pi%20with%20Python/ledBar.py

64 Chapter 9. Programming Raspberry Pi with Python

Figure 9.3: Thonny Python IDE Shell Output

19. Then click on the stop icon, to terminate the script.
20. Now you know two different ways to create and run a Python script on Raspberry Pi. For the

upcoming two examples, you can pick the way you like.

Programming Loudness Sensor
21. Loudness shows you the magnitude of sound.
22. You can find the required code to read data via loudness sensor in our GitLab.
23. Analog sensors tend to be sensitive, so feel free to try, other analog ports if you are not able

to read any data. Don’t forget to edit your code accordingly.
24. Clap your hands, or make noise in some other way to observe the change in the

Programming Ultrasonic Ranger
25. Ultrasonic rangers show the distance.
26. You can find the required code to read data from ultrasonic ranger in our GitLab.
27. Move your hand closer to the sensor and observe the data generated by the sensor.
28. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine that you

would like a house intrusion detection system. The LED Bar indicates the level of sound.
Ultrasonic ranger is a detector that observes the house door. Buzzer will beep if there is a
sudden change in the sound. Based on your imagination, write your own script and show it
to your friends.

— Further Reading. .

• You can find more examples in the following GitHub link. https://github.com/
DexterInd/GrovePi/tree/master/Software/Python

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2009%20-%20Programming%20Raspberry%20Pi%20with%20Python/loudness.py
https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2009%20-%20Programming%20Raspberry%20Pi%20with%20Python/ultrasonicRanger.py
https://github.com/DexterInd/GrovePi/tree/master/Software/Python
https://github.com/DexterInd/GrovePi/tree/master/Software/Python

10. Bluetooth Low Energy (BLE) Based Systems

Objective
• Learn how to configure a BLE module.
• Learn how to use BLE application
• Learn how to transmit data over BLE
• Learn how to display received data

Lab Plan
This lab explains how to establish a Bluetooth Low Energy (BLE) connection between the edge de-
velopment board and mobile phone via application. We will utilize AT commands to communicate.

Required Hardware Components
• Arduino Shield for Raspberry Pi
• Grove Base Shield
• Grove BLE v1.0
• Grove Ultrasonic Ranger V2.0
• Grove LED Socket Kit v1.5
• LED

66 Chapter 10. Bluetooth Low Energy (BLE) Based Systems

Setting Up Arduino Shield for Raspberry Pi
1. Arduino Shield for Raspberry Pi has an Arduino Leonardo chip, hence we can treat it as an

Arduino. I will mention as Arduino from now on.
2. First, connect your Grove Base Shield to Arduino.
3. Then, connect your LED to Grove LED Socket Kit.
4. Finally, connect the sensors below accordingly to your shield.

• BLE → UART
• LED Kit → D5 port
• Loudness Sensor → A2 port
• Ultrasonic Ranger → D4 port

5. Now, connect your Arduino to PC.
6. Check if the port and board (Leonardo) is correct.
7. Upload an empty sketch to make sure everything is fine.
8. If you do not get any errors, you may proceed to next part.

Understanding the BLE Code
9. Arduino Leonardo has two serial ports. Hence, we can utilize the Universal asynchronous

receiver-transmitter (UART) port of base shield. You can find more detailed information in
the following link: https://www.arduino.cc/reference/en/language/functions/

communication/serial/.
10. Instead of master and slave devices, we have central and peripheral in BLE connections.

While peripheral device acts like a server, central acts like a client.
11. In this case, the Arduino is a peripheral device while the mobile phone is a central device.
12. Copy the code from our GitLab and paste it to your sketch.
13. Upload the code.
14. In this code, we have the following section:

1 w h i l e (! S e r i a l) ;

Thanks to this code, our sketch will hang the device until we open the serial monitor. This
is useful during development. However, if you use Arduino Leonardo for production, you
would like to delete this part.

15. Now, open the serial monitor. As soon as you open, you should see the following.
1 OKOK+ S e t : 0OK+ S e t : R a t a t a

16. This is the reply coming from the BLE module. At the end of the code, we have the following
section:

1 S e r i a l 1 . p r i n t ("AT") ;
2 d e l a y (4 0 0) ;
3 S e r i a l 1 . p r i n t ("AT+ROLE0") ; / / s e t t h e r o l e a s p e r i p h e r a l .
4 d e l a y (4 0 0) ;
5 S e r i a l 1 . p r i n t ("AT+NAMERatata ") / / s e t t h e name as R a t a t a .

17. Whatever we print to Serial1 are sent to BLE module. These are called as Hayes command
set. It is the most common way to talk to these modules.

18. Set your communication format to No line ending as shown in Figure 10.1.

Figure 10.1: Communication Format

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2010%20-%20Bluetooth%20Low%20Energy%20(BLE)%20Based%20Systems/BLE.ino

67

19. Now type AT and send. You should get OK in return from the module which means that
your communication with the module is healthy.

20. Each AT command set per module is different. You should check the source document
to find out what are the commands that you can use. The source document of our module
is available in the following link: https://files.seeedstudio.com/wiki/Grove-BLE_
v1/res/Bluetooth4_en.pdf.

21. Now we will communicate with the module via mobile phone.

Connecting to BLE Module via Mobile Phone

22. Download the Serial Bluetooth Terminal application from Google Play Store.
23. Install the app and provide the required permissions.
24. Open the app and click on the adapter icon on the top right to turn on your Bluetooth if

closed.
25. Then from the hamburger menu (an icon with 3 straight lines) select Devices.
26. You will see two options: Bluetooth Classic and Bluetooth LE.
27. As we are using a BLE module you need to select Bluetooth LE.
28. Now before scanning for BLE devices I would recommend changing the name of your

module to something unique. Edit to following line in the code to change the name into
something else:

1 S e r i a l 1 . p r i n t ("AT+NAMERatata ") / / s e t t h e name as R a t a t a .

29. Now, click on the SCAN button. You will see lots of other devices as shown in Figure 10.2.

Figure 10.2: Scanned Device List

30. Find your own device in that list and click on it to connect. After you connect, the green
LED on BLE module will stop blinking and be on all the time which means it is connected.

31. Now, you should be able to send data via your phone. Type "Hello World!" and click on the
arrow icon to send your data. You should see "Hello World!" on your serial monitor.

32. Now, lets utilize the sensors.

https://files.seeedstudio.com/wiki/Grove-BLE_v1/res/Bluetooth4_en.pdf
https://files.seeedstudio.com/wiki/Grove-BLE_v1/res/Bluetooth4_en.pdf
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal&hl=en_GB&gl=US

68 Chapter 10. Bluetooth Low Energy (BLE) Based Systems

Sending Sensor Data Over BLE

33. Now we will simulate an alarm system that warn us when there is a storm.
34. The LED will be on if the storm is very close, will blink if the storm is coming, will be off if

there are no signs regarding the storm.
35. Create a new Arduino sketch. Copy the code from our GitLab and paste it to your sketch.
36. Then, upload the code and open serial monitor. You should see the following output as shown

in Figure 10.3:

Figure 10.3: Distance on Serial Monitor

37. Now connect to your BLE via mobile phone again.
38. Move your hand accordingly to change the distance read by the ultrasonic ranger. Check

what kind of messages your are getting in your app. These messages are sent over BLE by
BLE module. You should see similar readings as shown in Figure 10.4.

Figure 10.4: Reading Data via App

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2010%20-%20Bluetooth%20Low%20Energy%20(BLE)%20Based%20Systems/bleSensor.ino

69

39. Congratulations, now you have learnt how to send data over BLE.
40. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Imagine that we need

a more detailed representation of the storm warning system. The blinking rate of the LED
will indicate how close the storm is. You will observe the distance via your app. You will
print 5 different warning messages on serial monitor based on the location of storm.

— Further Reading. .

• You can learn more about BLE on the following link: https://www.oreilly.

com/library/view/getting-started-with/9781491900550/ch01.html

• More learn about the Hayes command set: https://en.wikipedia.org/wiki/
Hayes_command_set

https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html
https://en.wikipedia.org/wiki/Hayes_command_set
https://en.wikipedia.org/wiki/Hayes_command_set

11. RFID and NFC Based Tracking

Objective
• Learn how to establish NFC communication
• Learn how to use NFC tags
• Learn how to use RFID reader

Lab Plan
This lab explains how to utilize NFC and RFID sensors. We will learn how to connect both RFID
and NFC modules via UART port. We will turn on the LED in case of there is a successfull
communication.

Required Hardware Components
• Arduino Shield for Raspberry Pi
• Grove Base Shield
• Grove-LCD RGB Backlight V4.0
• Grove LED Socket Kit v1.5

72 Chapter 11. RFID and NFC Based Tracking

• LED
• Grove - NFC Tag v1.1
• Grove - 125 KHz RFID Reader
• NFC Tags

Setting Up Connections and Testing LED Kit

1. Arduino Shield for Raspberry Pi has an Arduino Leonardo chip, hence we can treat it as an
Arduino. I will mention as Arduino from now on.

2. First, connect your Grove Base Shield to Arduino. Make sure that the power switch on base
shield is set to 5V.

3. The longer leg is the positive side of LED, hence connect your LED to your LED kit in a
way that the same sides match.

4. Finally, connect the sensors below accordingly to your shield.
• LCD → I2C Port
• LED Kit → D4 port
• NFC → UART Port
• RFID → UART Port - This will be done, after completing NFC part.

5. Now you can connect your Arduino to your PC.
6. Let’s first test the LED kit to confirm it works fine.
7. Run Arduino IDE.
8. Open a new sketch and copy paste the following code:

1 # d e f i n e LED 5 / / we c o n n e c t LED k i t t o D5 of Grove S h i e l d
2 vo id s e t u p () {
3 / / i n i t i a l i z e t h e d i g i t a l p in2 as an o u t p u t .
4 pinMode (LED, OUTPUT) ;
5 }
6 vo id loop () {
7 d i g i t a l W r i t e (LED, HIGH) ;
8 d e l a y (5 0 0) ;
9 d i g i t a l W r i t e (LED, LOW) ;

10 d e l a y (5 0 0) ;
11 }

9. You can also download the sketch from our GitLab as well.
10. The LED should blink in certain intervals. If it does not blink, make sure that you connected

the LED tightly. Also check the polarity.
11. Now, let’s confirm if the LCD works fine.

Setting Up LCD

12. Now we will check if our LCD works fine.
13. First download the LCD library from our GitLab and install it.
14. Download the labTest.ino Arduino script from our GitLab and upload it to Arduino.
15. You should see that the screen color of LCD will change between green, red, and blue while

acting as a timer.
16. Now we will learn how to

Setting Up Grove NFC Module

17. First, download the "Seeed_Arduino_NFC-master.zip" from our GitLab.GitLab.
18. Run Arduino IDE.

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2011%20-%20RFID%20and%20NFC%20Based%20Tracking
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2011%20-%20RFID%20and%20NFC%20Based%20Tracking
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2011%20-%20RFID%20and%20NFC%20Based%20Tracking

73

19. Install the library via Sketch -> Include Library -> Add .ZIP Library.
20. Then either download the nfc.ino or copy the contents of the file to your own Arduino script.

The code is available in our GitLab repository.
21. Before running the code let’s learn what it does. First we include the required libraries via

the following:

1 # i n c l u d e < NfcAdapte r . h>
2 # i n c l u d e <PN532 / PN532_HSU / PN532_HSU . h>
3 # i n c l u d e < r g b _ l c d . h>

22. Then we define our initial parameters:

1 PN532_HSU pn532hsu (S e r i a l 1) ;
2 NfcAdap te r n f c (pn532hsu) ;
3 r g b _ l c d l c d ;
4 / / c o n n e c t l e d k i t t o D4
5 # d e f i n e LED 4

Here we can use Serial1 because our device is Arduino Leonardo which has an additional
serial port. Check the following link for further information: https://www.arduino.cc/
reference/en/language/functions/communication/serial/.

23. Then, in setup we have the following line:

1 w h i l e (! S e r i a l) ;

This line hangs the code until the serial monitor is open. This is very useful for developing
while should be avoided for production.

24. Then, in the loop we have the following condition:

1 i f (n f c . t a g P r e s e n t ()) {
2 S e r i a l . p r i n t ("NFC TAG FOUND") ;
3 d i g i t a l W r i t e (LED, HIGH) ;

This means that if NFC tag is detected by the Grove - NFC Tag module, the LED on the LED
kit will turn on.

25. Then we write a message ("Hello World") to our NFC tag and verify that the process is
completed successfully:

1 / / w r i t e a message t o t a g
2 NdefMessage message = NdefMessage () ;
3 message . addUr iRecord (" H e l l o World ") ;
4 boo l s u c c e s s = n f c . w r i t e (message) ;
5 i f (s u c c e s s) {
6 S e r i a l . p r i n t l n (" S u c c e s s . ") ;
7 } e l s e {
8 SERIAL . p r i n t l n (" Wr i t e f a i l e d . ") ;
9 }

26. Finally, we read the message and other parameters and print them on serial monitor, while
printing the UID to LCD screen:

1 / / r e a d t h e message from t h e t a g
2 NfcTag t a g = n f c . r e a d () ;
3 / / p r i n t UID t o s c r e e n
4 S t r i n g UID = t a g . g e t U i d S t r i n g () ;
5 S t r i n g f i r s t H a l f = UID . s u b s t r i n g (0 , UID . l e n g t h () / 2) ;
6 S t r i n g s e c o n d H a l f = UID . s u b s t r i n g (UID . l e n g t h () / 2) ;
7 l c d . c l e a r () ;
8 l c d . s e t C u r s o r (0 , 0) ;
9 l c d . p r i n t ("UID : ") ;

10 l c d . p r i n t (f i r s t H a l f) ;
11 l c d . s e t C u r s o r (0 , 1) ;

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2011%20-%20RFID%20and%20NFC%20Based%20Tracking
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

74 Chapter 11. RFID and NFC Based Tracking

12 l c d . p r i n t (s e c o n d H a l f) ;
13 / / show t a g p a r a m e t e r s
14 t a g . p r i n t () ;

27. Now, run the code and put the NFC tag on the reader of the NFC module as shown in Figure
11.2.

Figure 11.1: The NFC Setup

28. Then open your serial monitor. You should have a similar output as shown in Figure ??.

Figure 11.2: The NFC Setup

You can see our message on the Payload line.

75

Setting Up RFID Reader
29. Now remove the NFC module from UART port, and plug Grove - RFID reader.
30. As this is a reader module, we will only read data from the card.
31. RFID cards are heavily used in control access as each card has an unique tag.
32. Now copy the code from our GitLab repository, and upload to Arduino.
33. Open the serial monitor.
34. Now bring your RFID card to closer (around 2.5cm) to your RFID reader.
35. The tag of the card will be printed to serial monitor as shown in Figure 11.3.

Figure 11.3: The RFID Tag

36. Swap cards with other groups to see if the cards have an unique identifier.

— Further Reading. .

• To learn more about NFC https://nfc-forum.org/

• To learn more about RFID https://en.wikipedia.org/wiki/Radio-frequency_

identification

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2011%20-%20RFID%20and%20NFC%20Based%20Tracking/rfid_reader
https://nfc-forum.org/
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Radio-frequency_identification

12. Multimedia Communication

Objective
• Learn how to display data on LCD
• Learn how to program and control joystick
• Learn how to generate sound on speaker
• Learn how to display received data

Lab Plan
This lab explains how to utilize thumb joystick and speaker. We will see how thumb joystick
generates coordinate as we see in game controllers. We will control the colours of LCD via joystick.

Required Hardware Components
• Arduino Shield for Raspberry Pi
• Grove Base Shield
• Grove - LCD RGB Backlight

78 Chapter 12. Multimedia Communication

• Grove - Thumb Joystick v1.1
• Grove - Speaker v1.1

Setting Up Arduino

1. First, connect your base shield to Arduino.
2. Then, connect your modules accordingly:

• LCD → I2C port
• Thumb Joystick → A0 port
• Speaker → D4 port

3. Now we can connect our Arduino to PC.
4. Run Arduino IDE.
5. Install the following library if not installed.

• Grove LCD RGB library.
6. Ensure the voltage switch on the base shield is set to 5V.
7. Select the correct port and board from Tools section.
8. Upload an empty sketch. If everything works well, move to the next section.

Programming the Thumb Joystick

9. Copy the code from our GitLab and paste it to your sketch.
10. Upload the code.
11. Now open the serial monitor and play with the joystick. You should see X and Y values

change as you play with the joystick as shown in Figure 12.1.

Figure 12.1: Arduino Settings

Programming the Speaker

12. The speaker is an actuators that generates a sound.
13. Create a sketch and copy the code from our GitLab and paste it to your sketch.
14. Upload the sketch and observe the behaviour of the speaker.
15. Change the variables of following section to generate different sound.

1 i n t BassTab [] = { 1 9 1 1 , 1 7 0 2 , 1 5 1 6 , 1 4 3 1 , 1 2 7 5 , 1 1 3 6 , 1 0 1 2 } ; / / b a s s 1~7

https://github.com/Seeed-Studio/Grove_LCD_RGB_Backlight
https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2012%20-%20Multimedia%20Communication/joystick/joystick.ino
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2012%20-%20Multimedia%20Communication/speaker

79

Combining Modules
16. In this section we will combine these three modules and make a mini application.
17. Create a sketch and copy the code from our GitLab and paste it to your sketch.
18. Do not upload the code as it will make a noise. Let’s first breakdown the code a little bit.
19. These are the initial values that determine the bass level and the color of the backlight. Feel

free to change and observe their behaviours.

1 i n t c o l o r R = 123 ;
2 i n t co lo rG = 123 ;
3 i n t c o l o r B = 123 ;
4 i n t b a s s = 1000 ;

20. Joystick generates data in IDLE position as well. In our case default X is 509, and default Y
is 510. We print the default values via the following:

1 i n t s e n s o r V a l u e 1 = ana logRead (A0) ;
2 i n t s e n s o r V a l u e 2 = ana logRead (A1) ;
3 S e r i a l . p r i n t (" The X and Y c o o r d i n a t e i s : ") ;
4 S e r i a l . p r i n t (s e ns o r Va lu e1 , DEC) ;
5 S e r i a l . p r i n t (" , ") ;
6 S e r i a l . p r i n t l n (s e ns o r Va lu e2 , DEC) ;
7 S e r i a l . p r i n t l n (" ") ;

21. Hence, we define the conditions based on these default values. We add an additional condition
to prevent any unwanted changes from happening while the joystick is IDLE.

1 i f (s e n s o r V a l u e 1 < j o y s t i c k X D e f && s e n s o r V a l u e 1 != 510) { / / module n o t
c a l i b r a t e d , h i t s 510 randomly .

2 / / b a s s down
3 b a s s = b a s s − 200 ;
4 } e l s e i f (s e n s o r V a l u e 1 > j o y s t i c k X D e f && s e n s o r V a l u e 1 != 510) {
5 / / b a s s up
6 b a s s = b a s s + 200 ;
7 }
8 i f (s e n s o r V a l u e 2 > j o y s t i c k Y D e f && s e n s o r V a l u e 2 != 520) { / / module n o t

c a l i b r a t e d , h i t s 520 randomly
9 / / c o l o r up

10 co lo rR = 255 ;
11 co lo rG = 0 ;
12 co lo rB = 0 ;
13 } e l s e i f (s e n s o r V a l u e 2 < j o y s t i c k Y D e f && s e n s o r V a l u e 2 != 520) {
14 co lo rR = 0 ;
15 co lo rG = 255 ;
16 co lo rB = 0 ;
17 }

22. What is happening under which condition is pretty clear.
23. Use Case Scenario (Optional): Think this as it is your FINAL TASK. We would like to

match color level with the bass level. As the level of bass increases, the color gets darker.
Use joystick to increase the bass. Also the display should only be on when there is a sound.
Configure your script accordingly.

https://gitlab.com/IOTGarage/iot-lab-book/-/blob/master/LAB%2012%20-%20Multimedia%20Communication/bassControl/bassControl.ino

13. Microcontroller Programming Simulator

Objective

• Learn how to use a simulator.
• Learn how to design a circuit.
• Get familiar with Tinkercad circuits interface.

Required Hardware Components

• PC with internet connection

Setting up an Initial Circuit with Tinkercad

1. Go to www.tinkercad.com.
2. Click on Start Tinkering button.
3. Login to your Tinkercad account. Create one if you do not have any.
4. After that select Circuits from left and click on Create new Circuit as shown in Figure 13.1.
5. Then from right side change component selection to all as shown in Figure 13.2.
6. Now add three components which are Arduino Uno R3, Breadboard Small, and LED via

dragging.
7. Connect them as shown in Figure 13.3 via left clicking with your mouse. You can set the

cable color from top left. We use red for positive and black for ground. Then from top right
click on the Start Simulation.

8. Hover your mouse over LED and examine the warning.
9. Basically, LED is drawing more current than it should do. In real world, we would burn the

LED if we had the exact same setup.
10. Very simple solution to that is adding a resistor to system. By this way, we allow some of

the potential difference to be used on resistor.
11. Add a resistor of 1kΩ (which is the default). Connect them as shown in Figure 13.4. Then,

start simulation. Now you should have a healthy working LED.

www.tinkercad.com

82 Chapter 13. Microcontroller Programming Simulator

Figure 13.1: Create New Circuit

Figure 13.2: Component Selection

Figure 13.3: Initial Setup

Figure 13.4: Adding a Resistor

83

Using the Code Editor
12. When you run the previous setup, you should see that the built-in LED of Arduino is blinking.
13. Click on the Code editor which is next to the Start Simulation. You should see a similar

setup as shown in Figure 13.5.

Figure 13.5: Code Editor

14. On the left, we see the blocks that we can use. On the right we see the workspace.
15. Change the delay and run the simulation. Then observe the behaviour of the built-in LED.

Printing Temperature to the LCD
16. Now we will do a little bit more complex setup. This time we will print the temperature value

that we get from analog temperature sensor (TMP36).
17. Set your workspace as you shown in Figure 13.6. The resistor value is 220Ω. Be careful

about the connection locations.

Figure 13.6: Printing Temperature to LCD

18. Now we can either use blocks or we can write our code from the scratch. This time we will

84 Chapter 13. Microcontroller Programming Simulator

write from scratch. Open the code editor and select text from drop-down menu.
19. Copy paste the following code to your sketch.

1 # i n c l u d e < L i q u i d C r y s t a l . h>
2 L i q u i d C r y s t a l l c d (1 2 , 11 , 5 , 4 , 3 , 2) ;
3 vo id s e t u p ()
4 {
5 l c d . b e g i n (1 6 , 2) ;
6 }
7 vo id loop ()
8 {
9 i n t r e a d i n g = ana logRead (0) ;

10 f l o a t v o l t a g e = r e a d i n g * 5 . 0 ;
11 v o l t a g e /= 1 0 2 4 . 0 ;
12 f l o a t t e m p e r a t u r e C = (v o l t a g e − 0 . 5) * 100 ;
13 l c d . s e t C u r s o r (0 , 0) ;
14 l c d . p r i n t (" Tempera tu r e : ") ;
15 l c d . s e t C u r s o r (2 , 1) ;
16 l c d . p r i n t (S t r i n g (t e m p e r a t u r e C)) ;
17 d e l a y (1 0 0 0) ;
18 }

20. Now run the simulation. If you have done everything correct, you should see the temperature
value on LCD.

— Further Reading. .

• You can learn more about how we are calculating the temperature value from the
following link: https://learn.adafruit.com/tmp36-temperature-sensor/
using-a-temp-sensor

https://learn.adafruit.com/tmp36-temperature-sensor/using-a-temp-sensor
https://learn.adafruit.com/tmp36-temperature-sensor/using-a-temp-sensor

14. Advance Sensors, Actuators, Components

Objective
• Learn how to map one sensor to another.
• Learn how to use advanced sensors.
• Get familiar with EMG Sensor.

Lab Plan
This lab explains to utilize Electromyography Sensor (EMG) Sensor via Arduino. We will generate
signals via moving our arm muscles.

Required Hardware Components
• PC with internet connection
• Arduino Shield for Raspberry Pi
• Grove Base Shield
• Grove LED Bar v2.1
• Grove EMG Sensor v1.1

86 Chapter 14. Advance Sensors, Actuators, Components

Setting up an Arduino
1. First, open Arduino IDE on the lab. machine. All lab. machines have Arduino IDE

already installed. If you are using your own computer you will need in install it by yourself.
Instructions on how to install Arduino IDE on you computer is out of scope of this lab
document. However, you may find following link useful on how to install Arduino IDE on
you computer.

2. Open Arduino IDE. Connect your Arduino to the computer and wait for few seconds. Then in
Arduino IDE click Tools → Board → Arduino Leonardo as shown in Figure 14.1. Finally
set the correct PORT from the same section as shown in Figure 14.2

Figure 14.1: Configuring Arduino IDE Board

Figure 14.2: Setting The Port

3. Now place Base Shield for Arduino on top of Arduino microcontroller.
4. Then we can start connecting sensors and actuator to our Arduino. Plug them in accordingly:

• LED Bar → D8 port
• EMG Detector → A0 port

5. Before starting coding in Arduino IDE, upload the empty sketch (by clicking the top left
arrow icon) to verify that you set up the Arduino correctly.

87

Setting up the LED Bar
6. The LED bar is a good indicator which can be used in many different scenarios such as

indicating temperature, proximity, humidity, sound level etc.
7. First add the LED bar library to your setup. You can download the library from our GitLab

repository.
8. To add the library, click on Sketch, then Include Library, and finally Add .Zip Library....

Select the correct library and wait for Arduino to install it.
9. From File tab, select Examples. Then select Bounce.

10. Set the following line as below as we are using the D8 port:
1 Grove_LED_Bar b a r (9 , 8 , 0 , LED_BAR_10) ;

11. Observe the behaviour of LED bar. You can several parameters to understand how the code
works.

Setting up the EMG Detector
12. Our muscles generate EMG signals. We use EMG detectors to interpret those signals.
13. Do not remove covers of electrodes yet.
14. Get the required code from our GitLab repository.
15. Upload the code to your Arduino.
16. Now remove the cover of your electrodes and stick them to your arm.
17. First, let your arm relax and observe the LED bar.
18. Then move your muscles. When your muscles move they generate EMG signals. The way

we code our Arduino is that the level of LED bar indicates the magnitude of those signals.
19. The example experiment is shown in Figure 14.3.

Figure 14.3: Example Experiment.

20. Use Case Scenario (Optional): Think this as it is your FINAL TASK. Try to print EMG
values to RGB LCD. Set the color of RGB as same as your LED bar.

— Further Reading. .

• You can learn more about the EMG detector from the following link: https:

//wiki.seeedstudio.com/Grove-EMG_Detector/

https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2025%20-%20Advance%20Sensors%2C%20Actuators%2C%20Components
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2025%20-%20Advance%20Sensors%2C%20Actuators%2C%20Components
https://gitlab.com/IOTGarage/iot-lab-book/-/tree/master/LAB%2025%20-%20Advance%20Sensors%2C%20Actuators%2C%20Components/EMG
https://wiki.seeedstudio.com/Grove-EMG_Detector/
https://wiki.seeedstudio.com/Grove-EMG_Detector/

15. 3D Objects Designing and Printing

Objective
• Learn how to design 3D models
• Learn how to use Tinkercad
• Learn how to Generate STL files.

Required Hardware Components
• PC with internet connection

Setting up Tinkercad
1. Go to www.tinkercad.com.
2. Click on Start Tinkering button.
3. You can create an Tinkercad account with your google account.
4. If you have done everything correct, you should have a similar workspace as shown in Figure

15.1.

Figure 15.1: Tinkercad Workspace

www.tinkercad.com

90 Chapter 15. 3D Objects Designing and Printing

5. Now we can start Tinkering!
6. Click on create new design that you will see under My recent designs.
7. Now you should see a 2D workplace as in Figure 15.2.

Figure 15.2: Tinkercad Workplane

8. Use your mouse wheel and right click to control the workplane.

Creating Objects in Tinkercad

9. Let’s create our first object.
10. Drag and drop a box from the right object panel.
11. Set its height and length to 80, and set its width to 200.
12. Now, you should see a box as shown in Figure 15.3.

Figure 15.3: Tinkercad Box

13. Now create another box.
14. Set its height and length to 75, and set its width to 120.
15. Then place it inside the other box. To do that, put the box to far left corner.
16. Press right arrow 5 times to move 5mm right, then place down arrow 2 times, and finally

press CTRL + UP arrow 5 times to set 5mm above the workplane.
17. If you look at from left, you should see a similar setup as shown in Figure 15.4.

91

Figure 15.4: Tinkercad Box Placement

18. Imagine that is a place to store our staff.
19. Now drag and drop 1 cylinder.
20. Set its width and length to 55mm, set its height to 75mm.
21. Place it next to the inner box and set it 5mm above from the plane. Make outer box solid.

Now your setup should be similar to as shown in Figure 15.5.

Figure 15.5: Tinkercad Cylinder Placement

22. Imagine we will use that to store pens/pencils.
23. Oh no! We do not have any space to store our IoT components.
24. Now that you now how to create and shape objects, create something as shown in Figure

15.6 by yourself.

92 Chapter 15. 3D Objects Designing and Printing

Figure 15.6: Tinkercad Final Setup

25. Now we have a well built IoT box. We can store Pi and Arduino on left side, while we stone
smaller Grove components (e.g., temperature and humidity sensor) on 6 small boxes. we can
store our cables at the bottom long box, while we can store our pens/pencils at 3 cylinder
boxes.

26. We can export our model in STL format. STL means Standard Triangle Language which
is the common file format of CAD software.

27. To export the 3D design as STL, click on Export from top right.
28. Then you should see a similar output as shown in Figure 15.7.

Figure 15.7: Exporting as STL

— Further Reading. .

• You can learn more about Tinkercad on the following link: https://www.tinkercad.
com/learn/designs

https://www.tinkercad.com/learn/designs
https://www.tinkercad.com/learn/designs

16. Getting Started with Raspberry Pi Camera

Objective
• Learn how to connect a camera to Raspberry Pi
• Learn how to view camera’s output using Python
• Learn how to save images and video from camera using command line
• Learn how to save images and video from camera in python
• Learn how to apply basic effects on camera source

Lab Plan
This lab explains how to connect a Raspberry Pi camera to Raspberry Pi to take images and record
video. We will also learn how to apply some basic image filters.

Figure 16.1: Raspberry Pi Camera connected to a Raspberry Pi

Required Hardware Components
• SD Card with OS installed on it (we’ll work on the Raspberry Pi OS)
• Display and HDMI cable
• Raspberry Pi Camera V2

94 Chapter 16. Getting Started with Raspberry Pi Camera

• Keyboard and mouse
• Power supply

Getting Started with Raspberry Pi Camera

Connecting the Camera with Raspberry Pi

All current models of Raspberry Pi have a port for connecting the Camera Module. Note: If you
want to use a Raspberry Pi Zero, you need a Camera Module ribbon cable that fits the Raspberry Pi
Zero’s smaller Camera Module port.

Figure 16.2: Raspberry Pi Camera Module Connector

Figure 16.3: Raspberry Pi Camera Module

There are two versions of the Camera Module:
1. The standard version, which is designed to take pictures in normal light
2. The NoIR version, which does not have an infrared filter, so you can use it together with an

infrared light source to take pictures in the dark

95

Connect the Camera Module

Ensure your Raspberry Pi is turned off.
1. Locate the Camera Module port as shows in Figure 16
2. Gently pull up on the edges of the port’s plastic clip
3. Insert the Camera Module ribbon cable; make sure the connectors at the bottom of the ribbon

cable are facing the contacts in the port.
4. Push the plastic clip back into place

Figure 16.4: Raspberry Pi Camera Connection

Enable Camera Interface

After connecting the cameras, you need to enable camera interface in Raspberry Pi Configuration
tool. Follow these steps to complete this operation.

1. Start up your Raspberry Pi
2. Go to the main menu and open the Raspberry Pi Configuration tool as shows in Figure

16.5.

Figure 16.5: Raspberry Pi Configuration Menu

3. Select the Interfaces tab and ensure that the camera is enabled as shown in 16.6.
4. Reboot your Raspberry Pi

96 Chapter 16. Getting Started with Raspberry Pi Camera

Figure 16.6: Raspberry Pi Interface Configuration

How to control Camera Module via the command line
Now your Camera Module is connected and the software is enabled, try out the command line tools
raspistill and raspivid.

• Open terminal window by clicking on terminal icon in the taskbar or by selecting from menu
• Type "raspistill -o Desktop/image.jpg" in terminal window without "" and press Enter key.

When the command runs, you can see the camera preview open for five seconds before a still
picture is taken.

• Look for the picture file icon on the Desktop, and double-click the file icon to open the
picture.

By adding different options, you can set the size and look of the image the raspistill command
takes.

• For example, add -h and -w to change the height and width of the image
• Type "raspistill -o Desktop/image-small.jpg -w 640 -h 480" in terminal window without ""

and press Enter key.
• Now record a video with the Camera Module by using the following raspivid command
• Type "raspivid -o Desktop/video.h264" in terminal window without "" and press Enter key.
• In order to play the video file, double-click the video.h264 file icon on the Desktop to open it

in VLC Media Player.
For more information and other options you can use with these commands, read the documentation
for raspistill and the documentation for raspivid.

How to control the Camera Module with Python code
The Python picamera library allows you to control your Camera Module and create amazing
projects.

• Open a Python 3 editor, such as Thonny Python IDE
• Open a new file and save it as camera.py (DO NOT SAVE THE FILE AS picamera.py)
• Enter the following code

1 from p i c a m e r a i m p o r t PiCamera
2 from t ime i m p o r t s l e e p
3 camera = PiCamera ()
4 camera . s t a r t _ p r e v i e w ()
5 s l e e p (5)
6 camera . s t o p _ p r e v i e w ()

97

• Save and run your program. The camera preview should be shown for five seconds and then
close again

Note: the camera preview only works when a monitor is connected to your Raspberry Pi. If you
are using remote access (such as SSH or VNC), you won’t’ see the camera preview.

• If your preview is upside-down, you can rotate it by 180 degrees with the following code
1 camera = PiCamera ()
2 camera . r o t a t i o n = 180

You can rotate the image by 90, 180, or 270 degrees. To reset the image, set rotation to 0
degrees.

• Make the camera preview see-through by setting an alpha level
1 camera . s t a r t _ p r e v i e w (a l p h a =200)

The alpha value can be any number between 0 and 255.

Take still pictures with Python code
Now use the Camera Module and Python to take some still pictures.

• Amend your code to add a camera.capture() line
1 camera . s t a r t _ p r e v i e w ()
2 s l e e p (5)
3 camera . c a p t u r e (’ / home / p i / Desktop / image . j p g ’)
4 camera . s t o p _ p r e v i e w ()

Note: it’s important to sleep for at least two seconds before capturing an image, because this gives
the camera’s sensor time to sense the light levels.

• Run the code.
You should see the camera preview open for five seconds, and then a still picture should be captured.
As the picture is being taken, you can see the preview briefly adjust to a different resolution.
Your new image should be saved to the Desktop.

• Now add a loop to take five pictures in a row
1 camera . s t a r t _ p r e v i e w ()
2 f o r i i n r a n g e (5) :
3 s l e e p (5)
4 camera . c a p t u r e (’ / home / p i / Desktop / image%s . j p g ’ % i)
5 camera . s t o p _ p r e v i e w ()

The variable i counts how many times the loop has run, from 0 to 4. Therefore, the images get
saved as image0.jpg, image1.jpg, and so on.

• Run the code again and hold the Camera Module in position.
The camera should take one picture every five seconds. Once the fifth picture is taken, the preview
closes.

• Look at your Desktop to find the five new pictures.

Recording video with Python code
• Amend your code to remove capture() and instead add start_recording() and stop_recording()

Your code should look like this now:
1 camera . s t a r t _ p r e v i e w ()
2 camera . s t a r t _ r e c o r d i n g (’ / home / p i / Desktop / v i d e o . h264 ’)
3 s l e e p (5)
4 camera . s t o p _ r e c o r d i n g ()
5 camera . s t o p _ p r e v i e w ()

• Run the code.
Your Raspberry Pi should open a preview, record 5 seconds of video, and then close the preview.

98 Chapter 16. Getting Started with Raspberry Pi Camera

How to change the image settings and add image effects
The Python picamera software provides a number of effects and configurations to change how your
images look.
Note: some settings only affect the preview and not the captured image, some affect only the
captured image, and many others affect both.

Set the image resolution
You can change the resolution of the image that the Camera Module takes.
By default, the image resolution is set to the resolution of your monitor. The maximum resolution
is 2592×1944 for still photos, and 1920×1080 for video recording.

• Use the following code to set the resolution to maximum and take a picture.
Note: you also need to set the frame rate to 15 to enable this maximum resolution.
The minimum resolution is 64×64.

1 camera . s t a r t _ p r e v i e w ()
2 camera . s t a r t _ r e c o r d i n g (’ / home / p i / Desktop / v i d e o . h264 ’)
3 s l e e p (5)
4 camera . s t o p _ r e c o r d i n g ()
5 camera . s t o p _ p r e v i e w ()

• Try taking a picture with the minimum resolution.
Add text to your image

You can add text to your image using the command annotate_text.
• Run this code to try it

1 camera . s t a r t _ p r e v i e w ()
2 camera . a n n o t a t e _ t e x t = " H e l l o wor ld ! "
3 s l e e p (5)
4 camera . c a p t u r e (’ / home / p i / Desktop / t e x t . j p g ’)
5 camera . s t o p _ p r e v i e w ()

Change the look of the added text

• Set the text size with the following code

1 camera . a n n o t a t e _ t e x t _ s i z e = 50

You can set the text size to anything between 6 to 160. The default size is 32.
It’s also possible to change the text colour.

• First of all, add Color to your import line at the top of the program

1 from p i c a m e r a i m p o r t PiCamera , Co lo r
2

• Then below the import line, amend the rest of your code so it looks like this

1 camera . s t a r t _ p r e v i e w ()
2 camera . a n n o t a t e _ b a c k g r o u n d = Colo r (’ b l u e ’)
3 camera . a n n o t a t e _ f o r e g r o u n d = Colo r (’ ye l l o w ’)
4 camera . a n n o t a t e _ t e x t = " H e l l o wor ld "
5 s l e e p (5)
6 camera . s t o p _ p r e v i e w ()

Change the brightness of the preview
You can change how bright the preview appears. The default brightness is 50, and you can set it to
any value between 0 and 100.

• Run the following code to try this out

1 camera . s t a r t _ p r e v i e w ()
2 camera . b r i g h t n e s s = 70

99

3 s l e e p (5)
4 camera . c a p t u r e (’ / home / p i / Desktop / b r i g h t . j p g ’)
5 camera . s t o p _ p r e v i e w ()

• The following loop adjusts the brightness and also adds text to display the current brightness
level

1 camera . s t a r t _ p r e v i e w ()
2 f o r i i n r a n g e (1 0 0) :
3 camera . a n n o t a t e _ t e x t = " B r i g h t n e s s : %s " % i
4 camera . b r i g h t n e s s = i
5 s l e e p (0 . 1)
6 camera . s t o p _ p r e v i e w ()

Change the contrast of the preview
Similarly to the preview brightness, you can change the contrast of the preview.

• Run the following code to try this out:

1 camera . s t a r t _ p r e v i e w ()
2 f o r i i n r a n g e (1 0 0) :
3 camera . a n n o t a t e _ t e x t = " C o n t r a s t : %s " % i
4 camera . c o n t r a s t = i
5 s l e e p (0 . 1)
6 camera . s t o p _ p r e v i e w ()

Add cool image effects
You can use camera.image_effect to apply a particular image effect.
The image effect options are:

• none
• negative
• solarize
• sketch
• denoise
• emboss
• oilpaint
• hatch
• gpen
• pastel
• watercolor
• film
• blur
• saturation
• colorswap
• washedout
• posterise
• colorpoint
• colorbalance
• cartoon
• deinterlace1
• deinterlace2

The default effect is none.
• Pick an image effect and try it out

1 camera . s t a r t _ p r e v i e w ()
2 camera . i m a g e _ e f f e c t = ’ co lo r swap ’
3 s l e e p (5)

100 Chapter 16. Getting Started with Raspberry Pi Camera

4 camera . c a p t u r e (’ / home / p i / Desktop / c o l o r s w a p . jpg ’)
5 camera . s t o p _ p r e v i e w ()

• Run this code to loop over all the image effects with camera.IMAGE_EFFECTS
1 camera . s t a r t _ p r e v i e w ()
2 f o r e f f e c t i n camera . IMAGE_EFFECTS :
3 camera . i m a g e _ e f f e c t = e f f e c t
4 camera . a n n o t a t e _ t e x t = " E f f e c t : %s " % e f f e c t
5 s l e e p (5)
6 camera . s t o p _ p r e v i e w ()

Figure 16.7: Raspberry Pi Interface Configuration

Set the image exposure mode
You can use camera.exposure_mode to set the exposure to a particular mode. The exposure mode
options are:

• off
• auto
• night
• nightpreview
• backlight
• spotlight
• sports
• snow
• beach
• verylong
• fixedfps
• antishake
• fireworks

The default mode is auto.
• Pick an exposure mode and try it out:

1 camera . s t a r t _ p r e v i e w ()
2 camera . exposure_mode = ’ beach ’
3 s l e e p (5)
4 camera . c a p t u r e (’ / home / p i / Desktop / beach . jpg ’)
5 camera . s t o p _ p r e v i e w ()

101

• You can loop over all the exposure modes with camera.EXPOSURE_MODES, like you did
for the image effects.

Change the image white balance
You can use camera.awb_mode to set the auto white balance to a preset mode. The available auto
white balance modes are:

• off
• auto
• sunlight
• cloudy
• shade
• tungsten
• fluorescent
• incandescent
• flash
• horizon

The default is auto.
• Pick an auto white balance mode and try it out:

1 camera . s t a r t _ p r e v i e w ()
2 camera . awb_mode = ’ s u n l i g h t ’
3 s l e e p (5)
4 camera . c a p t u r e (’ / home / p i / Desktop / s u n l i g h t . jpg ’)
5 camera . s t o p _ p r e v i e w ()

• You can loop over all the auto white balance modes with camera.AWB_MODES, like you
did for the image effects.

102 Chapter 16. Getting Started with Raspberry Pi Camera

Debugging The Raspbery Pi

Setting Correct Time and Date
One of the known issues of Raspberry Pi OS (previously called Raspbian) is the incorrect time and
date. You need to set them right to continue to work on Raspberry Pi. Follow the below steps to set
the correct time and date:

• Open the Terminal (CTRL-ALT-T).
• Type the following by changing the values with current time and date to manually set:

1 sudo d a t e −s " 1 9 / 0 9 / 2 0 2 0 11 :00 "

• Then go into settings via:

1 sudo r a s p i − c o n f i g

and select the Localization Options then Change Time Zone to set the correct date and
time as seen in Figure 16.8.

Now your Raspberry Pi should show the exact time and date.

Updating The Raspberry Pi
You may encounter variety of errors due to utilizing old packages. Then updating the Pi may fix
your error. However ONLY APPLY THIS if you encounter an error during the labs and CLOSE
all other applications while updating the system:

1 sudo a p t u p d a t e && sudo a p t f u l l − upgrade
2 sudo r e b o o t

Know The Difference: While update command updates the package listings the full-upgrade
installs the latest version of the available packages. This is why these two are usually run in
order. Then you need to reboot the Pi in order for the changes to take effect.

104 Chapter 16. Getting Started with Raspberry Pi Camera

Figure 16.8: Set The Time Zone

	Preface
	IoT Kit
	IoT Extension Pack
	1 Micro-Controller Programming [LimeGreen, fill=LimeGreen]4pt
	2 Single-board Computer Programming [LimeGreen, fill=LimeGreen]4pt
	3 Posting Data to an IoT Cloud Platform [LimeGreen, fill=LimeGreen]4pt
	4 Connecting an IoT Gateway to an IoT Cloud [LimeGreen, fill=LimeGreen]4pt
	5 Connecting a Sensor Node to IoT Gateway [LimeGreen, fill=LimeGreen]4pt
	6 End to End Full Stack IoT Development [LimeGreen, fill=LimeGreen]4pt
	7 Introduction to Wireshark on Raspberry Pi [LimeGreen, fill=LimeGreen]4pt
	8 Programming Arduino with Blockly [purple, fill=purple]4pt
	9 Programming Raspberry Pi with Python [purple, fill=purple]4pt
	10 Bluetooth Low Energy (BLE) Based Systems [purple, fill=purple]4pt
	11 RFID and NFC Based Tracking [purple, fill=purple]4pt
	12 Multimedia Communication [purple, fill=purple]4pt
	13 Microcontroller Programming Simulator [purple, fill=purple]4pt
	14 Advance Sensors, Actuators, Components [purple, fill=purple]4pt
	15 3D Objects Designing and Printing [purple, fill=purple]4pt
	16 Getting Started with Raspberry Pi Camera [purple, fill=purple]4pt
	Debugging The Raspbery Pi

