

Machine Learning Simplified

An introduction to Supervised and Unsupervised Learning

Jose George

Copyright ©

All rights reserved. Except for the quotation of short passages for the
purposes of criticism and review, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or a license from the
Copyright Licensing Agency Limited.

Printed in the United States of America

KJ Publishing

USA

CONTENTS

CHAPTER ONE

WHAT IS MACHINE LEARNING

COMPONENTS OF MACHINE LEARNING

CLAY ANALOGY FOR MACHINE LEARNING

WHAT ARE MACHINE LEARNING MODELS?
MODEL TRAINING

CHAPTER TWO

INTRODUCTION TO THE FIVE MACHINE LEARNING STEPS

STEP ONE: DEFINE THE PROBLEM.
SUPERVISED AND UNSUPERVISED LEARNING

STEP TWO: BUILD A DATASET

STEP THREE: MODEL TRAINING

STEP FOUR: MODEL EVALUATION

STEP FIVE: MODEL INFERENCE

INTRODUCTION TO EXAMPLES

EXAMPLE ONE: HOUSE PRICE PREDICTION

EXAMPLE TWO: BOOK GENRE EXPLORATION

EXAMPLE THREE: SPILL DETECTION FROM VIDEO

CHAPTER THREE

MACHINE LEARNING WITH AWS
AWS ACCOUNT REQUIREMENTS

REINFORCEMENT LEARNING WITH AWS DEEPRACER

PUTTING YOUR SPIN ON AWS DEEPRACER:
INTRODUCTION TO GENERATIVE AI

GENERATIVE AI MODELS

GENERATIVE AI WITH AWS DEEPCOMPOSER

GANS WITH AWS DEEPCOMPOSER

TRAINING METHODOLOGY

AR-CNN WITH AWS DEEPCOMPOSER

BUILD A CUSTOM GAN MODEL (OPTIONAL): PART 1

CHAPTER FOUR

SOFTWARE ENGINEERING PRACTICES, PART I
CLEAN AND MODULAR CODE

REFACTORING CODE

WRITING CLEAN CODE

WRITING MODULAR CODE

EFFICIENT CODE

DOCUMENTATION

INLINE COMMENTS

DOCSTRINGS

MULTI-LINE DOCSTRING

VERSION CONTROL IN DATA SCIENCE

MODEL VERSIONING

CHAPTER FIVE

SOFTWARE ENGINEERING PRACTICES, PART 2
TESTING

LOGGING

CHAPTER SIX

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

PROCEDURAL VERSUS OBJECT-ORIENTED PROGRAMMING

CLASS, OBJECT, METHOD, AND ATTRIBUTE

OOP SYNTAX

FUNCTION VERSUS METHOD

NOTES ABOUT OOP
COMMENTING OBJECT-ORIENTED CODE

A GAUSSIAN CLASS

Introduction

Welcome to introduction to machining learning.

Machine learning is creating rapid and exciting changes across all levels of
society.

It is the engine behind the recent advancements in industries
such as autonomous vehicles.
It allows for more accurate and rapid translation of the text into
hundreds of languages.
It powers the AI assistants you might find in your home.
It can help improve worker safety.
It can speed up drug design

Machine learning is a complex subject area. Our goal in this lesson is to
introduce you to some of the most common terms and ideas used in
machine learning. I will then walk you through the different steps involved in
machine learning and finish with a series of examples that use machine
learning to solve real-world situations.

Outline

This lesson is divided into the following sections:

First, we'll discuss what machine learning is, common
terminology, and common components involved in creating a
machine learning project.
Next, we'll step into the shoes of a machine learning practitioner.
Machine learning involves using trained models to generate
predictions and detect patterns from data. To understand the
process, we'll break down the different steps involved and
examine a common process that applies to the majority of
machine learning projects.
Finally, we'll take you through three examples using the steps we
described to solve real-life scenarios that might be faced by
machine learning practitioners.

Section Objective
By the end of this section, you can do the following:

Differentiate between supervised and unsupervised learning
Identify problems that can be solved with machine learning
concepts
Describe commonly used algorithm including login regression,
linear regression, and k-means
Describe how model training and testing works
Evaluate the performance of a machine learning model using
metrics.

CHAPTER ONE

What is Machine Learning
Machine learning (ML) is a modern software development technique and a
type of artificial intelligence (AI) that enables computers to solve problems
by using examples of real-world data. It allows computers to automatically
learn and improve from experience without being explicitly programmed to
do so.

Machine learning is part of the broader field of artificial intelligence. This
field is concerned with the capability of machines to perform activities using
human-like intelligence. Within machine learning there are several different
kinds of tasks or techniques:

Supervised learning, is a type of machine learning technique in
which every training sample from the dataset has a
corresponding label or output value associated with it. As a
result, the algorithm learns to predict labels or output values. You
can use supervised learning to do things like, predict the selling
price of a house, or classify objects in an image. We will learn
more about supervised learning in this lesson.

In unsupervised learning, there are no labels for the training
data. The algorithm tried to learn underlying patterns or
distributions that govern the data. We will explore this in-depth
in this lesson.

In reinforcement learning, the algorithm figures out which
actions to take in a situation to maximize a reward (in the form of
a number) on the way to reaching a specific goal. This is a
completely different approach than supervised and unsupervised
learning. We will dive deep into this in the next lesson.

Different between machine learning and traditional programming-based
approaches

In traditional problem-solving with software, a person analyzes a problem
and engineers a solution in code to solve that problem. For many real-world
problems, this process can be laborious (or even impossible) because a
correct solution would need to consider a vast number of edge cases.

Imagine, for example, the challenging task of writing a program that can
detect if a cat is present in an image. Solving this in the traditional way
would require careful attention to details like varying lighting conditions,

different types of cats, and various poses a cat might be in.

In machine learning, the problem solver abstracts away part of their solution
as a flexible component called a model, and uses a special program called a
model training algorithm to adjust that model to real-world data. The result
is a trained model which can be used to predict outcomes that are not part
of the data set used to train it.

In a way, machine learning automates some of the statistical reasoning and
pattern-matching the problem solver would traditionally do.

The overall goal is to use a model created by a model training algorithm to
generate predictions or find patterns in data that can be used to solve a
problem.

Understanding Terminology

Machine learning is a new field created at the intersection of statistics,

applied math, and computer science. Because of the rapid and recent
growth of machine learning, each of these fields might use slightly different
formal definitions of the same terms.

Terminology

Machine learning, or ML, is a modern software development technique that
enables computers to solve problems by using examples of real-world data.

In supervised learning, every training sample from the dataset has a
corresponding label or output value associated with it. As a result, the
algorithm learns to predict labels or output values.

In reinforcement learning, the algorithm figures out which actions to take in
a situation to maximize a reward (in the form of a number) on the way to
reaching a specific goal.

In unsupervised learning, there are no labels for the training data. A machine
learning algorithm tries to learn the underlying patterns or distributions that
govern the data.

Components of Machine Learning
Models

In machine learning, all tasks are resolved with three primary components,
namely:

A machine learning model
A model training algorithm
A model inference algorithm

Clay Analogy for Machine Learning
You can understand the relationships between these components by
imagining the stages of crafting a teapot from a lump of clay.

First, you start with a block of raw clay. At this stage, the clay can
be molded into many different forms and be used to serve many
different purposes. You decide to use this lump of clay to make a
teapot.
So how do you create this teapot? You inspect and analyze the
raw clay and decide how to change it to make it look more like
the teapot you have in mind.
Next, you mold the clay to make it look more like the teapot that
is your goal.

Congratulations! You've completed your teapot. You've inspected the
materials, evaluated how to change them to reach your goal, and made the
changes, and the teapot is now ready for your enjoyment.

What are machine learning models?

A machine learning model, like a piece of clay, can be molded into many
different forms and serve many different purposes. A more technical
definition would be that a machine learning model is a block of code or
framework that can be modified to solve different but related problems
based on the data provided.

Important

A model is an extremely generic program (or block of code), made specific by
the data used to train it. It is used to solve different problems.

Example 1

Imagine you own a snow cone cart, and you have some data about the
average number of snow cones sold per day based on the high temperature.
You want to better understand this relationship to make sure you have
enough inventory on hand for those high sales days.

In the graph above, you can see one example of a model, a linear regression
model (indicated by the solid line). You can see that, based on the data
provided, the model predicts that as the high temperate for the day
increases so do the average number of snow cones sold. Sweet!

Example 2

Let's look at a different example that uses the same linear regression model,
but with different data and to answer completely different questions.

Imagine that you work in higher education and you want to better
understand the relationship between the cost of enrollment and the number
of students attending college. In this example, our model predicts that as
the cost of tuition increases the number of people attending college is likely
to decrease.

Using the same linear regression model (indicated by the solid line), you can
see that the number of people attending college does go down as the cost
increases.

Both examples showcase that a model is a generic program made specific by
the data used to train it.

Model Training
How are model training algorithms used to train a model?

In the preceding section, we talked about two key pieces of information: a
model and data. In this section, we show you how those two pieces of
information are used to create a trained model. This process is called model
training.

Model training algorithms work through an interactive process

Let's revisit our clay teapot analogy. We've gotten our piece of clay, and now
we want to make a teapot. Let's look at the algorithm for molding clay and
how it resembles a machine learning algorithm:

Think about the changes that need to be made. The first thing
you would do is inspect the raw clay and think about what
changes can be made to make it look more like a teapot.
Similarly, a model training algorithm uses the model to process
data and then compares the results against some end goal, such

as our clay teapot.
Make those changes. Now, you mold the clay to make it look
more like a teapot. Similarly, a model training algorithm gently
nudges specific parts of the model in a direction that brings the
model closer to achieving the goal.
Repeat. By iterating over these steps over and over, you get
closer and closer to what you want until you determine that
you’re close enough that you can stop.

Model Inference: Using Your Trained Model

Now you have our completed teapot. You inspected the clay, evaluated the
changes that needed to be made, and made them, and now the teapot is
ready for you to use. Enjoy your tea!

So what does this mean from a machine learning perspective? We are ready
to use the model inference algorithm to generate predictions using the
trained model. This process is often referred to as model inference.

Quiz

Which of the following are the primary components used in machine
learning? (Select Multiple Boxes)

A. A model integrity algorithm
B. A machine learning model
C. A model training algorithm
D. A preparation algorithm
E. A model inference algorithm

Think back to the clay teapot analogy. Is it true or false that you always need
to have an idea of what your’re making when you are handling your raw
block of clay?

A. True
B. False

Ans: B

Terminology

A model is an extremely generic program, made specific by the data used to
train it.

Model training algorithms work through an interactive process where the
current model iteration is analyzed to determine what changes can be made
to get closer to the goal. Those changes are made and the iteration
continues until the model is evaluated to meet the goals.

Model inference is when the trained model is used to generate predictions.

CHAPTER TWO

Introduction to the Five Machine
Learning Steps
Major Steps in the Machine Learning Process
In the preceding diagram, you can see an outline of the major steps of the
machine learning process. Regardless of the specific model or training
algorithm used, machine learning practitioners practice a common workflow
to accomplish machine learning tasks.

These steps are iterative. In practice, that means that at each step along the
process, you review how the process is going. Are things operating as you
expected? If not, go back and revisit your current step or previous steps to
try and identify the breakdown.

The rest of this book is designed around these very important steps. Check
through them again here and get ready to dive deep into each of them.

Step One: Define the problem
Step Two: Build the dataset
Step Three: Train the model
Step Four: Evaluate the model

Step Five: Inference (Use the model)

Step One: Define the Problem.
How do You Start a Machine Learning Task?

Define a very specific task.
Think back to the snow cone sales example. Now imagine that
you own a frozen treats store and you sell snow cones along with
many other products. You wonder, "‘How do I increase sales?" It's
a valid question, but it's the opposite of a very specific task. The
following examples demonstrate how a machine learning
practitioner might attempt to answer that question.

“Does adding a $1.00 charge for sprinkles on a hot fudge
sundae increase the sales of hot fudge sundaes?”
“Does adding a $0.50 charge for organic flavors in your
snow cone increase the sales of snow cones?”

Identify the machine learning task we might use to solve this
problem.

This helps you better understand the data you need for a project.

What is a Machine Learning Task?

All model training algorithms, and the models themselves, take data as their
input. Their outputs can be very different and are classified into a few
different groups based on the task they are designed to solve. Often, we use
the kind of data required to train a model as part of defining a machine-
learning task.

In this lesson, we will focus on two common machine-learning tasks:

Supervised learning
Unsupervised learning

Supervised and Unsupervised Learning
The presence or absence of labelling in your data is often used to identify a
machine learning task.

Supervised tasks

A task is supervised if you are using labeled data. We use the term labeled to
refer to data that already contains the solutions, called labels.

For example: Predicting the number of snow cones sold based on the
temperatures is an example of supervised learning.

In the preceding graph, the data contains both a temperature and the
number of snow cones sold. Both components are used to generate the
linear regression shown on the graph. Our goal was to predict the number of
snow cones sold, and we feed that value into the model. We are providing
the model with labeled data and therefore, we are performing a supervised
machine learning task.

Unsupervised tasks

A task is considered to be unsupervised if you are using unlabeled data. This
means you don't need to provide the model with any kind of label or
solution while the model is being trained.

Let's take a look at unlabeled data.

Take a look at the preceding picture. Did you notice the tree in
the picture? What you just did, when you noticed the object in
the picture and identified it as a tree, is called labeling the
picture. Unlike you, a computer just sees that image as a matrix
of pixels of varying intensity.
Since this image does not have the labeling in its original data, it
is considered unlabeled.

How do we classify tasks when we don't have a label?

Unsupervised learning involves using data that doesn't have a label. One
common task is called clustering. Clustering helps to determine if there are
any naturally occurring groupings in the data.

Let's look at an example of how clustering in unlabeled data works.

Identifying book micro-genres with unsupervised learning

Imagine that you work for a company that recommends books to readers.

The assumption: You are fairly confident that micro-genres exist, and that
there is one called Teen Vampire Romance. Because you don’t know which

micro-genres exist, you can't use supervised learning techniques.

This is where the unsupervised learning clustering technique might be able
to detect some groupings in the data. The words and phrases used in the
book description might provide some guidance on a book's micro-genre.

Initially, we divided tasks based on the presence or absence of labeled data
while training our model. Often, tasks are further defined by the type of
label which is present.

In supervised learning, there are two main identifiers you will see in
machine learning:

A categorical label has a discrete set of possible values. In a
machine learning problem in which you want to identify the type
of flower based on a picture, you would train your model using
images that have been labeled with the categories of flower you
would want to identify. Furthermore, when you work with
categorical labels, you often carry out classification tasks*, which

are part of the supervised learning family.
A continuous (regression) label does not have a discrete set of
possible values, which often means you are working with
numerical data. In the snow cone sales example, we are trying to
predict the number* of snow cones sold. Here, our label is a
number that could, in theory, be any value.

In unsupervised learning, clustering is just one example. There are many
other options, such as deep learning.

Quiz

Match the task with it’s corresponding data type

i. Supervised learning
ii. Unsupervised learning

Data Used Machine learning task

Labeled data

Unlabeled data

Terminology

Clustering. Unsupervised learning task that helps to determine if
there are any naturally occurring groupings in the data.
A categorical label has a discrete set of possible values, such as
"is a cat" and "is not a cat."
A continuous (regression) label does not have a discrete set of
possible values, which means possibly an unlimited number of
possibilities.

Discrete: A term taken from statistics referring to an outcome
taking on only a finite number of values (such as days of the
week).
A label refers to data that already contains the solution.
Using unlabeled data means you don't need to provide the model
with any kind of label or solution while the model is being
trained.

Additional Reading

The AWS Machine Learning blog is a great resource for learning
more about projects in machine learning.
You can use Amazon SageMaker to calculate new stats in Major
League Baseball.
You can also find an article on Flagging suspicious healthcare
claims with Amazon SageMaker on the AWS Machine Learning
blog.
What kinds of questions and problems are good for machine
learning?

Quiz: Define the Problem

1. Which of the following problem statements fit the definition of a
regression-based task?
A. I want to detect when my cat jumps on the dinner table, so I set

up a camera and write a program to determine if my cat is in the
frame or is not in the frame.

B. I want to determine the expected reading time for online news
articles, so I collect data on my reading time for a week and write
a browser plugin to use that data to predict the reading time for
new articles.

C. I believe my customers fall into one of many customer segments,
but I don’t know what those segments are in advance. After

asking for permission, I collect a bunch of data on their actions
when they use my product and try to determine if there are any
collections of users that behave in similar ways

D. I work for a show company and want to provide a service to help
parents predict their children’s shoe sizes for any particular age.
Within this system, I represent shoe size as a continuum of values
and then round to the nearest shoe size.

Answer: B, D
2. As a machine learning practitioner, you’re working with stakeholders

on music streaming app. Your supervisor asks, “How can we increase
the average number of minutes a customer spends listening on our
app”?

This is a broad question (too broad) with many different potential factors
affecting how long a customer might spend listening to music.
How might you change the scope or redefine the question to be better
suited, and more concise, for a machine learning task?

A. Will changing the frequency of when we start playing ad affect
how long a customer listens to music on our service.

B. Will creating customer playlist encourage customers to listen to
music longer?

C. Will creating artist interviews about their songs increase how long
our customers spend listening to music?

Answer: All of the Above

Step Two: Build a Dataset
The next step in the machine learning process is to build a dataset that can
be used to solve your machine learning-based problem. Understanding the
data needed helps you select better models and algorithms so you can build

more effective solutions.

The most important step of the machine learning process

Working with data is perhaps the most overlooked—yet most important—
step of the machine learning process. In 2017, an O’Reilly study showed that
machine learning practitioners spend 80% of their time working with their
data.

The Four Aspects of Working with Data

You can take an entire class just on working with, understanding, and
processing data for machine learning applications. Good, high-quality data is
essential for any kind of machine learning project. Let's explore some of the
common aspects of working with data.

Data collection

Data collection can be as straightforward as running the appropriate SQL
queries or as complicated as building custom web scraper applications to
collect data for your project. You might even have to run a model over your
data to generate needed labels. Here is the fundamental question:

Does the data you've collected match the machine learning task and problem
you have defined?

Data inspection

The quality of your data will ultimately be the largest factor that affects how
well you can expect your model to perform. As you inspect your data, look
for:

Outliers
Missing or incomplete values
Data that needs to be transformed or preprocessed so it's in the
correct format to be used by your model

Summary statistics

Models can assume how your data is structured.

Now that you have some data in hand it is a good best practice to check that
your data is in line with the underlying assumptions of your chosen machine
learning model.

With many statistical tools, you can calculate things like the mean, inner-
quartile range (IQR), and standard deviation. These tools can give you insight
into the scope, scale, and shape of the dataset.

Data visualization

You can use data visualization to see outliers and trends in your data and to
help stakeholders understand your data.

Look at the following two graphs. In the first graph, some data seems to
have clustered into different groups. In the second graph, some data points
might be outliers.

Terminology

Impute is a common term referring to different statistical tools which can be
used to calculate missing values from your dataset.

Outliers are data points that are significantly different from others in the
same sample.

Additional reading

In machine learning, you use several statistical-based tools to better
understand your data. The sklearn library has many examples and tutorials,
such as this example demonstrating outlier detection on a real dataset.

Quiz: Build A Dataset

Use this series of True / False questions to test your knowledge of different
parts of building your dataset. Some questions are asking you to think just a
little bit deeper about some of the content you just learned.

1. True or false: Your data requirements will not change based on the
machine learning task you are using.
A. True
B. False

Answer: B
2. True or false: models are universal, so date is not relevant.

A. True
B. False

Answer: B
3. True or false: data needs to be formatted so that is compatible with

the model and model training algorithm you plan to use
A. True
B. False

Answer: A
4. True or false: Data visualizations are they only way to identify

outliers in your data.
A. True
B. False

Answer: B
5. True or false: After you start using your model(performing

inference), you don’t need to check the new data that it received.
A. True
B. False

Answer: B

Step Three: Model Training
Splitting your Dataset

The first step in model training is to randomly split the dataset. This allows
you to keep some data hidden during training, so that data can be used to
evaluate your model before you put it into production. Specifically, you do
this to test against the bias-variance trade-off. If you're interested in
learning more, see the Further learning and reading section.

Splitting your dataset gives you two sets of data:

Training dataset: The data on which the model will be trained.
Most of your data will be here. Many developers estimate about
80%.
Test dataset: The data withheld from the model during training,
which is used to test how well your model will generalize to new
data.

Model Training Terminology

The model training algorithm iteratively updates a model's parameters to
minimize some loss function.

Let's define those two terms:

Model parameters: Model parameters are settings or
configurations the training algorithm can update to change how
the model behaves. Depending on the context, you’ll also hear
other more specific terms used to describe model parameters

such as weights and biases. Weights, which are values that
change as the model learns, are more specific to neural networks.
Loss function: A loss function is used to codify the model’s
distance from this goal. For example, if you were trying to predict
a number of snow cone sales based on the day’s weather, you
would care about making predictions that are as accurate as
possible. So you might define a loss function to be “the average
distance between your model’s predicted number of snow cone
sales and the correct number.” You can see in the snow cone
example this is the difference between the two purple dots.

Putting it All Together

The end-to-end training process is

Feed the training data into the model.
Compute the loss function on the results.
Update the model parameters in a direction that reduces loss.

You continue to cycle through these steps until you reach a predefined stop
condition. This might be based on a training time, the number of training
cycles, or an even more intelligent or application-aware mechanism.

Advice From the Experts

Remember the following advice when training your model.

Practitioners often use machine learning frameworks that already
have working implementations of models and model training
algorithms. You could implement these from scratch, but you
probably won't need to do so unless you’re developing new
models or algorithms.

Practitioners use a process called model selection to determine
which model or models to use. The list of established models is
constantly growing, and even seasoned machine learning
practitioners may try many different types of models while
solving a problem with machine learning.
Hyperparameters are settings on the model which are not
changed during training but can affect how quickly or how
reliably the model trains, such as the number of clusters the
model should identify.
Be prepared to iterate.

Pragmatic problem solving with machine learning is rarely an exact science,
and you might have assumptions about your data or problem which turn out
to be false. Don’t get discouraged. Instead, foster a habit of trying new
things, measuring success, and comparing results across iterations.

Extended Learning

This information hasn't been covered in the above video but is provided for
the advanced reader.

Linear models

One of the most common models covered in introductory coursework, linear
models simply describe the relationship between a set of input numbers and
a set of output numbers through a linear function (think of y = mx + b or a
line on a x vs y chart).

Classification tasks often use a strongly related logistic model, which adds an

additional transformation mapping the output of the linear function to the
range [0, 1], interpreted as “probability of being in the target class.” Linear
models are fast to train and give you a great baseline against which to
compare more complex models. A lot of media buzz is given to more
complex models, but for most new problems, consider starting with a simple
model.

Tree-based models

Tree-based models are probably the second most common model type
covered in introductory coursework. They learn to categorize or regress by
building an extremely large structure of nested if/else blocks, splitting the
world into different regions at each if/else block. Training determines
exactly where these splits happen and what value is assigned at each leaf
region.

For example, if you’re trying to determine if a light sensor is in sunlight or
shadow, you might train tree of depth 1 with the final learned configuration
being something like if (sensor_value > 0.698), then return 1; else return 0;.
The tree-based model XGBoost is commonly used as an off-the-shelf
implementation for this kind of model and includes enhancements beyond
what is discussed here. Try tree-based models to quickly get a baseline
before moving on to more complex models.

Deep learning models

Extremely popular and powerful, deep learning is a modern approach based

around a conceptual model of how the human brain functions. The model
(also called a neural network) is composed of collections of neurons (very
simple computational units) connected together by weights (mathematical
representations of how much information to allow to flow from one neuron
to the next). The process of training involves finding values for each weight.

Various neural network structures have been determined for modeling
different kinds of problems or processing different kinds of data.

A short (but not complete!) list of noteworthy examples includes:

FFNN: The most straightforward way of structuring a neural
network, the Feed Forward Neural Network (FFNN) structures
neurons in a series of layers, with each neuron in a layer
containing weights to all neurons in the previous layer.
CNN: Convolutional Neural Networks (CNN) represent nested
filters over grid-organized data. They are by far the most
commonly used type of model when processing images.
RNN/LSTM: Recurrent Neural Networks (RNN) and the related
Long Short-Term Memory (LSTM) model types are structured to
effectively represent for loops in traditional computing, collecting
state while iterating over some object. They can be used for
processing sequences of data.
Transformer: A more modern replacement for RNN/LSTMs, the
transformer architecture enables training over larger datasets
involving sequences of data.

Machine Learning Using Python Libraries

For more classical models (linear, tree-based) as well as a set of common
ML-related tools, take a look at scikit-learn. The web documentation for this
library is also organized for those getting familiar with space and can be a
great place to get familiar with some extremely useful tools and techniques.

For deep learning, mxnet, tensorflow, andpytorch are the three most
common libraries. For the purposes of the majority of machine learning
needs, each of these is feature-paired and equivalent.

Terminology

Hyperparameters are settings on the model which are not changed during
training but can affect how quickly or how reliably the model trains, such as
the number of clusters the model should identify.

A loss function is used to codify the model’s distance from this goal

Training dataset: The data on which the model will be trained. Most of your
data will be here.

Test dataset: The data withheld from the model during training, which is
used to test how well your model will generalize to new data.

Model parameters are settings or configurations the training algorithm can
update to change how the model behaves.

Additional reading

The Wikipedia entry on the bias-variance trade-off can help you
understand more about this common machine learning concept.
In this AWS Machine Learning blog post, you can see how to train

a machine-learning algorithm to predict the impact of weather on
air quality using Amazon SageMaker.

Step Four: Model Evaluation
After you have collected your data and trained a model, you can start to
evaluate how well your model is performing. The metrics used for
evaluation are likely to be very specific to the problem you have defined. As
you grow in your understanding of machine learning, you will be able to
explore a wide variety of metrics that can enable you to evaluate effectively.

Using Model Accuracy

Model accuracy is a fairly common evaluation metric. Accuracy is the
fraction of predictions a model gets right.

Here's an example:

Imagine that you built a model to identify a flower as one of two common
species based on measurable details like petal length. You want to know

how often your model predicts the correct species. This would require you
to look at your model's accuracy.

Extended Learning

This information hasn't been covered in the above video but is provided for
the advanced reader.

Using Log Loss

Log loss seeks to calculate how uncertain your model is about the
predictions it is generating. In this context, uncertainty refers to how likely a
model thinks the predictions being generated are to be correct.

For example, let's say you're trying to predict how likely a customer is to buy
either a jacket or t-shirt.

Log loss could be used to understand your model's uncertainty about a given
prediction. In a single instance, your model could predict with 5% certainty
that a customer is going to buy a t-shirt. In another instance, your model
could predict with 80% certainty that a customer is going to buy a t-shirt.
Log loss enables you to measure how strongly the model believes that its
prediction is accurate.

In both cases, the model predicts that a customer will buy a t-shirt, but the
model's certainty about that prediction can change.

Remember: This Process is lterative

Every step we have gone through is highly iterative and can be changed or
re-scoped during the course of a project. At each step, you might find that
you need to go back and reevaluate some assumptions you had in previous
steps. Don't worry! This ambiguity is normal.

Terminology

Log loss seeks to calculate how uncertain your model is about the
predictions it is generating.

Model Accuracy is the fraction of predictions a model gets right.

Additional reading

The tools used for model evaluation are often tailored to a specific use case,
so it's difficult to generalize rules for choosing them. The following articles
provide use cases and examples of specific metrics in use.

This healthcare-based example, which automates the prediction

of spinal pathology conditions, demonstrates how important it is
to avoid false positive and false negative predictions using the
tree-based xgboost model.
The popular open-source library sklearn provides information
about common metrics and how to use them.
This entry from the AWS Machine Learning blog demonstrates
the importance of choosing the correct model evaluation metrics
for making accurate energy consumption estimates using Amazon
Forecast.

Step Five: Model Inference
Congratulations! You're ready to deploy your model.

Once you have trained your model, have evaluated its effectiveness, and are
satisfied with the results, you're ready to generate predictions on real-world
problems using unseen data in the field. In machine learning, this process is
often called inference.

Iterative Process

Even after you deploy your model, you're always monitoring to make sure
your model is producing the kinds of results that you expect. There may be

times when you reinvestigate the data, modify some of the parameters in
your model training algorithm, or even change the model type used for
training.

Introduction to Examples
Through the remainder of the lesson, we will be walking through 3 different
case study examples of machine learning tasks actually solving problems in
the real world.

Supervised learning
Using machine learning to predict housing prices in a
neighborhood based on lot size and number of bedrooms

Unsupervised learning
Using machine learning to isolate micro-genres of books by
analyzing the wording on the back cover description.

Deep neural network
While this type of task is beyond the scope of this lesson, we
wanted to show you the power and versatility of modern
machine learning. You will see how it can be used to analyze raw
images from lab video footage from security cameras, trying to
detect chemical spills.

Example One: House Price Prediction
House price prediction is one of the most common examples used to
introduce machine learning.

Traditionally, real estate appraisers use many quantifiable details about a
home (such as number of rooms, lot size, and year of construction) to help
them estimate the value of a house.

You detect this relationship and believe that you could use machine learning
to predict home prices.

Step One: Define the Problem

Can we estimate the price of a house based on lot size or the number of
bedrooms?

You access the sale prices for recently sold homes or have them appraised.
Since you have this data, this is a supervised learning task. You want to
predict a continuous numeric value, so this task is also a regression task.

Step Two: Building a Dataset

Data collection: You collect numerous examples of homes sold in
your neighborhood within the past year, and pay a real estate
appraiser to appraise the homes whose selling price is not known.
Data exploration: You confirm that all of your data is numerical
because most machine learning models operate on sequences of
numbers. If there is textual data, you need to transform it into
numbers. You'll see this in the next example.
Data cleaning: Look for things such as missing information or
outliers, such as the 10-room mansion. Several techniques can be
used to handle outliers, but you can also just remove those from
your dataset.

No of Rooms Lot Size (ft2) House Value ($)

4 10,454 339,900

3 9,147 239,000

3 10,890 250,000

10 25,877 877,000

Data Cleaning: removing outlier values

Data visualization: You can plot home values against each of your
input variables to look for trends in your data. In the following
chart, you see that when lot size increases, the house value
increases.

Step Three: Model Training

Prior to actually training your model, you need to split your data. The
standard practice is to put 80% of your dataset into a training dataset and
20% into a test dataset.

Linear model selection

As you see in the preceding chart, when lot size increases, home values

increase too. This relationship is simple enough that a linear model can be
used to represent this relationship.

A linear model across a single input variable can be represented as a line. It
becomes a plane for two variables, and then a hyperplane for more than
two variables. The intuition, as a line with a constant slope, doesn't change.

Using a Python library

The Python scikit-learn library has tools that can handle the implementation
of the model training algorithm for you.

Step Four: Evaluation

One of the most common evaluation metrics in a regression scenario is
called root mean square or RMS. The math is beyond the scope of this
lesson, but RMS can be thought of roughly as the "average error” across
your test dataset, so you want this value to be low.

In the following chart, you can see where the data points are in relation to
the blue line. You want the data points to be as close to the "average" line as
possible, which would mean less net error.

You compute the root mean square between your model’s prediction for a
data point in your test dataset and the true value from your data. This actual
calculation is beyond the scope of this lesson, but it's good to understand
the process at a high level.

Interpreting Results

In general, as your model improves, you see a better RMS result. You may
still not be confident about whether the specific value you’ve computed is
good or bad.

Many machine learning engineers manually count how many predictions
were off by a threshold (for example, $50,000 in this house pricing problem)
to help determine and verify the model's accuracy.

Step Five: Inference: Try out your model

Now you are ready to put your model into action. As you can see in the

following image, this means seeing how well it predicts with new data not
seen during model training.

Terminology

Continuous: Floating-point values with an infinite range of
possible values. The opposite of categorical or discrete values,
which take on a limited number of possible values.
Hyperplane: A mathematical term for a surface that contains
more than two planes.
Plane: A mathematical term for a flat surface (like a piece of
paper) on which two points can be joined by a straight line.
Regression: A common task in supervised machine learning.

Additional reading

The Machine Learning Mastery blog is a fantastic resource for learning more
about machine learning. The following example blog posts dive deeper into
training regression-based machine learning models.

How to Develop Ridge Regression Models in Python offers
another approach to solving the problem in the example from
this lesson.
Regression is a popular machine learning task, and you can use
several different model evaluation metrics with it.

Example Two: Book Genre Exploration
In this video, you saw how the machine learning process can be applied to
an unsupervised machine learning task that uses book description text to
identify different micro-genres.

Step One: Define the Problem

Find clusters of similar books based on the presence of common words in the
book descriptions.

You do editorial work for a book recommendation company, and you want
to write an article on the largest book trends of the year. You believe that a
trend called "micro-genres" exists, and you have confidence that you can
use the book description text to identify these micro-genres.

By using an unsupervised machine learning technique called clustering, you
can test your hypothesis that the book description text can be used to
identify these "hidden" micro-genres.

Earlier in this lesson, you were introduced to the idea of unsupervised

learning. This machine learning task is especially useful when your data is
not labeled.

Step Two: Build your Dataset

To test the hypothesis, you gather book description text for 800 romance
books published in the current year.

Data exploration, cleaning and preprocessing

For this project, you believe capitalization and verb tense will not matter,
and therefore you remove capitals and convert all verbs to the same tense
using a Python library built for processing human language. You also remove
punctuation and words you don’t think have useful meaning, like 'a' and
'the'. The machine learning community refers to these words as stop words.

Before you can train the model, you need to do some data preprocessing,
called data vectorization, to convert text into numbers.

You transform this book description text into what is called a bag of
wordsrepresentation shown in the following image so that it is
understandable by machine learning models.

How the bag of words representation works is beyond the scope of this
course. If you are interested in learning more, see the Additional Reading
section at the bottom of the section.

Step Three: Train the Model

Now you are ready to train your model.

You pick a common cluster-finding model called k-means. In this model, you
can change a model parameter, k, to be equal to how many clusters the
model will try to find in your dataset.

Your data is unlabeled: you don't how many microgenres might exist. So you
train your model multiple times using different values for k each time.

What does this even mean? In the following graphs, you can see examples of
when k=2 and when k=3.

During the model evaluation phase, you plan on using a metric to find which
value for k is most appropriate.

Step Four: Model Evaluation

In machine learning, numerous statistical metrics or methods are available
to evaluate a model. In this use case, the silhouette coefficient is a good
choice. This metric describes how well your data was clustered by the
model. To find the optimal number of clusters, you plot the silhouette
coefficient as shown in the following image below. You find the optimal
value is when k=19.

Often, machine learning practitioners do a manual evaluation of the model's
findings.

You find one cluster that contains a large collection of books you can
categorize as “paranormal teen romance.” This trend is known in your
industry, and therefore you feel somewhat confident in your machine
learning approach. You don’t know if every cluster is going to be as cohesive
as this, but you decide to use this model to see if you can find anything
interesting about which to write an article.

Step Five: Inference (Use the Model)

As you inspect the different clusters found when k=19, you find a
surprisingly large cluster of books. Here's an example from fictionalized
cluster #7.

As you inspect the preceding table, you can see that most of these text
snippets are indicating that the characters are in some kind of long-distance
relationship. You see a few other self-consistent clusters and feel you now
have enough useful data to begin writing an article on unexpected modern

romance microgenres.

Terminology

Bag of words: A technique used to extract features from the text.
It counts how many times a word appears in a document
(corpus), and then transforms that information into a dataset.
Data vectorization: A process that converts non-numeric data
into a numerical format so that it can be used by a machine
learning model.
Silhouette coefficient: A score from -1 to 1 describing the clusters
found during modeling. A score near zero indicates overlapping
clusters, and scores less than zero indicate data points assigned
to incorrect clusters. A score approaching 1 indicates successful
identification of discrete non-overlapping clusters.
Stop words: A list of words removed by natural language
processing tools when building your dataset. There is no single
universal list of stop words used by all-natural language
processing tools.

Additional reading

Machine Learning Mastery is a great resource for finding examples of
machine learning projects.

The How to Develop a Deep Learning Bag-of-Words Model for Sentiment
Analysis (Text Classification) blog post provides an example using a bag of
words–based approach pair with a deep learning model.

Example Three: Spill Detection from
Video
In the previous two examples, we used classical methods like linear models
and k-means to solve machine learning tasks. In this example, we’ll use a
more modern model type.

Note: This example uses a neural network. The algorithm for how a neural
network works is beyond the scope of this lesson. However, there is still
value in seeing how machine learning applies in this case.

Step One: Defining the Problem

Imagine you run a company that offers specialized on-site janitorial services.
A client, an industrial chemical plant, requires a fast response for spills and
other health hazards. You realize if you could automatically detect spills
using the plant's surveillance system, you could mobilize your janitorial team
faster.

Machine learning could be a valuable tool to solve this problem.

Step Two: Model Training (and selection)

This task is a supervised classification task, as shown in the following image.
As shown in the image above, your goal will be to predict if each image
belongs to one of the following classes:

Contains spill
Does not contain spill

Step Two: Building a Dataset

Collecting
Using historical data, as well as safely staged spills, you quickly
build a collection of images that contain both spills and non-spills
in multiple lighting conditions and environments.

Exploring and cleaning
You go through all the photos to ensure the spill is clearly in the
shot. There are Python tools and other techniques available to
improve image quality, which you can use later if you determine a
need to iterate.

Data vectorization (converting to numbers)
Many models require numerical data, so all your image data
needs to be transformed into a numerical format. Python tools
can help you do this automatically.
In the following image, you can see how each pixel in the image
on the left can be represented in the image on the right by a
number between 0 and 1, with 0 being completely black and 1
being completely white.

Split the data

You split your image data into a training dataset and a test
dataset.

Step Three: Model Training

Traditionally, solving this problem would require hand-engineering features
on top of the underlying pixels (for example, locations of prominent edges
and corners in the image), and then training a model on these features.

Today, deep neural networks are the most common tool used for solving
this kind of problem. Many deep neural network models are structured to
learn the features on top of the underlying pixels so you don’t have to learn
them. You’ll have a chance to take a deeper look at this in the next lesson,
so we’ll keep things high-level for now.

CNN (convolutional neural network)

Neural networks are beyond the scope of this lesson, but you can think of
them as a collection of very simple models connected together. These
simple models are called neurons, and the connections between these

models are trainable model parameters called weights.

Convolutional neural networks are a special type of neural network
particularly good at processing images.

Step Four: Model Evaluation

As you saw in the last example, there are many different statistical metrics
you can use to evaluate your model. As you gain more experience in
machine learning, you will learn how to research which metrics can help you
evaluate your model most effectively. Here's a list of common metrics:

Accuracy False positive
rate

Precision

Confusion
matrix

False negative
rate

Recall

F1 Score Log Loss ROC curve

 Negative
predictive
value

Specificity

In cases such as this, accuracy might not be the best evaluation mechanism.

Why not? You realize the model will see the 'Does not contain spill' class
almost all the time, so any model that just predicts “no-spill” most of the
time will seem pretty accurate.

What you really care about is an evaluation tool that rarely misses a real
spill.

After doing some internet sleuthing, you realize this is a common problem
and that Precision and Recall will be effective. You can think of precision as
answering the question, "Of all predictions of a spill, how many were right?"
and recall as answering the question, "Of all actual spills, how many did we
detect?"

Manual evaluation plays an important role. You are unsure if your staged
spills are sufficiently realistic compared to actual spills. To get a better sense
how well your model performs with actual spills, you find additional
examples from historical records. This allows you to confirm that your model
is performing satisfactorily.

Step Five: Model Inference

The model can be deployed on a system that enables you to run machine
learning workloads such as AWS Panorama.

Thankfully, most of the time, the results will be from the class 'Does not
contain spill.

But, when the class 'Contains spill' is detected, a simple paging system could
alert the team to respond.

Terminology

Convolutional neural networks(CNN) are a special type of neural network
particularly good at processing images.

Neural networks: a collection of very simple models connected together.

These simple models are called neurons
the connections between these models are trainable model
parameters called weights.

Additional reading

As you continue your machine learning journey, you will start to recognize
problems that are excellent candidates for machine learning.

The AWS Machine Learning Blog is a great resource for finding more
examples of machine learning projects.

In the Protecting people from hazardous areas through virtual
boundaries with Computer Vision blog post, you can see a more
detailed example of the deep learning process described in this
lesson.

Lesson Review

Congratulations on making it through the lesson. Let's review what you
learning.

In the first part of the lesson, we talked about what machine
learning actually is, introduced you to some of the most common
terms and ideas used in machine learning, and identified the
common components involved in machine learning projects.
We learned that machine learning involves using trained models to
generate predictions and detect patterns from data. We looked
behind the scenes to see what is really happening. We also broke
down the different steps or tasks involved in machine learning.
We looked at three machine learning examples to demonstrate how
each works to solve real-world situations.

A supervised learning task in which you used machine learning to
predict housing prices for homes in your neighborhood, based
on the lot size and the number of bedrooms.
An unsupervised learning task in which you used machine
learning to find interesting collections of books in a book
dataset, based on the descriptive words in the book description
text.
Using a deep neural network to detect chemical spills in a lab
from video and images.

Learning Objectives

If you read through studied the images, and completed all the quizzes, then
you should've mastered the learning objectives for the lesson. You should
recognize all of these by now. Please read through and check off each as you
go through them.

Differentiate between supervised learning and unsupervised
learning

Identify problems that can be solved with machine learning
Describe commonly used algorithms including linear regression,
logistic regression, and k-means
Describe how model training and testing works
Evaluate the performance of a machine learning model using
matrices.

CHAPTER THREE

Machine Learning with AWS
Why AWS?

The AWS machine learning mission is to put machine learning in the hands
of every developer.

AWS offers the broadest and deepest set of artificial intelligence
(AI) and machine learning (ML) services with unmatched
flexibility.
You can accelerate your adoption of machine learning with AWS
SageMaker. Models that previously took months to build and
required specialized expertise can now be built in weeks or even
days.
AWS offers the most comprehensive cloud offering optimized for
machine learning.
More machine learning happens at AWS than anywhere else.

AWS Machine Learning offerings

When it comes to AI services, you don’t necessarily need to code ML
solutions from scratch. AWS pre-trained AI services provide ready-made
intelligence for your applications and workflows. You can just take the
services and apply them from your own use cases.

Amazon has different health AI offerings, which requires no machine
learning knowledge. One example of Amazon health AI offering is Amazon
Transcribe Medical, which turns medical speech into text. Conversations

between health care providers and patients provide the foundations of a
patient’s diagnosis and treatment. Its very important that they information
is accurate. Amazon Transcribe Medical is an automatic speech recognition,
short-form ASR service.

AWS AI services

By using AWS pre-trained AI services, you can apply ready-made intelligence
to a wide range of applications such as personalized recommendations,
modernizing your contact center, improving safety and security, and
increasing customer engagement.

Industry-specific solutions

With no knowledge in machine learning needed, add intelligence to a wide
range of applications in different industries including healthcare and
manufacturing.

AWS Machine Learning services

With AWS, you can build, train, and deploy your models fast. Amazon
SageMaker is a fully managed service that removes complexity from ML
workflows so every developer and data scientist can deploy machine
learning for a wide range of use cases.

ML infrastructure and frameworks

AWS Workflow services make it easier for you to manage and scale your
underlying ML infrastructure.

Getting started

In addition to educational resources such as AWS Training and Certification,
AWS has created a portfolio of educational devices to help put new machine
learning techniques into the hands of developers in unique and fun ways,
with AWS DeepRacer and AWS DeepComposer.

AWS DeepRacer: An autonomous race car designed to test reinforcement
learning models by racing on a physical track

AWS DeepComposer: A composing device powered by generative AI that
creates a melody that transforms into a completely original song

AWS ML Training and Certification: Curriculum used to train Amazon
developers.

AWS Account Requirements
An AWS account is required

To complete the exercises in this course, you need an AWS Account ID.

However, you are not required to complete the exercises in this lesson in
order to graduate from the foundations course. The exercises included in
this lesson are OPTIONAL ONLY, so if you cannot create an AWS account,
please simply read the exercise modules to understand how these tools are
meant to work.

To set up a new AWS Account ID, follow the directions in How do I create
and activate a new Amazon Web Services account?

You are required to provide a payment method when you create the
account. To learn about which services are available at no cost, see the AWS
Free Tier documentation.

Will these exercises cost anything?

This lesson contains many demos and exercises. You do not need to
purchase any AWS devices to complete the lesson. However, please
carefully read the following list of AWS services you may need in order to
follow the demos and complete the exercises.

Train your reinforcement learning model with AWS DeepRacer

To get started with AWS DeepRacer, you receive 10 free hours to
train or evaluate models and 5GB of free storage during your first
month. This is enough to train your first time-trial model, evaluate it,
tune it, and then enter it into the AWS DeepRacer League. This offer
is valid for 30 days after you have used the service for the first
time.
Beyond 10 hours of training and evaluation, you pay for training,
evaluating, and storing your machine learning models. Charges are
based on the amount of time you train and evaluate a new model
and the size of the model stored. To learn more about AWS
DeepRacer pricing, see the AWS DeepRacer Pricing

Generate music using AWS DeepComposer

To get started, AWS DeepComposer provides a 12-month Free Tier
for first-time users. With the Free Tier, you can perform up to 500
inference jobs translating to 500 pieces of music using the AWS
DeepComposer Music studio. You can use one of these instances to
complete the exercise at no cost. To learn more about AWS
DeepComposer costs, see the AWS DeepComposer Pricing.

Build a custom generative AI model (GAN) using Amazon SageMaker

(optional)

Amazon SageMaker is a separate service and has its own service
pricing and billing tier. To train the custom generative AI model, the
instructor uses an instance type that is not covered in the Amazon
SageMaker free tier. If you want to code along with the instructor
and train your own custom model, you may incur a cost. Please
note, that creating your own custom model is completely optional.
You are not required to do this exercise to complete the course. To
learn more about SageMaker costs, see the Amazon SageMaker
Pricing.

Please confirm that you have taken the necessary steps to complete this
lesson.

I have an AWS account ID
I understand that to finish this course, I do not need to purchase
AWS DeepRacer or AWS DeepComposer devices.
I understand that for 30 days after I first use AWS DeepRacer, I have
10 free hours of model training and evaluation to finish the demo
and exercise in the AWS DeepRacer section.
I understand that the AWS Free Tier provides me with 500 AWS
DeepComposer inferences jobs (500 pieces of music) at no cost.
I understand that the “Build a custom GAN” demo is optional and I
can watch the demo rather that completing it on my own, as I may
incur a charge for completing the exercise.
I understand that I may liable for any charge incurred on my AWS
account.

Reinforcement Learning and Its Applications

This section introduces you to a type of machine learning (ML) called

reinforcement learning (RL). You'll hear about its real-world applications and
learn basic concepts using AWS DeepRacer as an example. By the end of the
section, you will be able to create, train, and evaluate a reinforcement
learning model in the AWS DeepRacer console.

In reinforcement learning (RL), an agent is trained to achieve a goal based on
the feedback it receives as it interacts with an environment. It collects a
number as a reward for each action it takes. Actions that help the agent
achieve its goal are incentivized with higher numbers. Unhelpful actions
result in a low reward or no reward.

With a learning objective of maximizing total cumulative reward, over time,
the agent learns, through trial and error, to map gainful actions to
situations. The better trained the agent, the more efficiently it chooses
actions that accomplish its goal.

Reinforcement Learning Applications

Reinforcement learning is used in a variety of fields to solve real-world
problems. It’s particularly useful for addressing sequential problems with
long-term goals. Let’s take a look at some examples.

RL is great at playing games:
Go (board game) was mastered by the AlphaGo Zero software.
Atari classic video games are commonly used as a learning tool
for creating and testing RL software.
StarCraft II, the real-time strategy video game, was mastered by
the AlphaStar software.

RL is used in video game level design:

Video game level design determines how complex each stage of a
game is and directly affects how boring, frustrating, or fun it is to
play that game.
Video game companies create an agent that plays the game over
and over again to collect data that can be visualized on graphs.
This visual data gives designers a quick way to assess how easy or
difficult it is for a player to make progress, which enables them to
find that “just right” balance between boredom and frustration
faster.

RL is used in wind energy optimization:
RL models can also be used to power robotics in physical devices.
When multiple turbines work together in a wind farm, the
turbines in the front, which receive the wind first, can cause poor
wind conditions for the turbines behind them. This is called wake
turbulence and it reduces the amount of energy that is captured
and converted into electrical power.
Wind energy organizations around the world use reinforcement
learning to test solutions. Their models respond to changing wind
conditions by changing the angle of the turbine blades. When the
upstream turbines slow down it helps the downstream turbines
capture more energy.

Other examples of real-world RL include:
Industrial robotics
Fraud detection
Stock trading
Autonomous driving

New Terms

Agent: The piece of software you are training is called an agent. It
makes decisions in an environment to reach a goal.
Environment: The environment is the surrounding area with which
the agent interacts.
Reward: Feedback is given to an agent for each action it takes in a
given state. This feedback is a numerical reward.
Action: For every state, an agent needs to take an action toward
achieving its goal.

Reinforcement Learning with AWS
DeepRacer
Reinforcement Learning Concepts

In this section, we’ll learn some basic reinforcement learning terms and
concepts using AWS DeepRacer as an example.

This section introduces six basic reinforcement learning terms and provides
an example for each in the context of AWS DeepRacer.

Basic RL terms: Agent, environment, state, action, reward, and episode

Agent

The piece of software you are training is called an agent.
It makes decisions in an environment to reach a goal.
In AWS DeepRacer, the agent is the AWS DeepRacer car and its goal
is to finish * laps around the track as fast as it can while, in some
cases, avoiding obstacles.

Environment

The environment is the surrounding area within which our agent
interacts.
For AWS DeepRacer, this is a track in our simulator or in real life.

State

The state is defined by the current position within the environment
that is visible, or known, to an agent.
In AWS DeepRacer’s case, each state is an image captured by its
camera.
The car’s initial state is the starting line of the track and its terminal
state is when the car finishes a lap, bumps into an obstacle, or drives
off the track.

Action

For every state, an agent needs to take an action toward achieving
its goal.
An AWS DeepRacer car approaching a turn can choose to accelerate
or brake and turn left, right, or go straight.

Reward

Feedback is given to an agent for each action it takes in a given
state.

This feedback is a numerical reward.
A reward function is an incentive plan that assigns scores as rewards
to different zones on the track.

Episode

An episode represents a period of trial and error when an agent
makes decisions and gets feedback from its environment.
For AWS DeepRacer, an episode begins at the initial state, when the
car leaves the starting position, and ends at the terminal state, when
it finishes a lap, bumps into an obstacle, or drives off the track.

In a reinforcement learning model, an agent learns in an interactive real-
time environment by trial and error using feedback from its own actions.
Feedback is given in the form of rewards.

In a reinforcement learning model, an agent learns in an interactive real-
time environment by trial and error using feedback from its own actions.

Feedback is given in the form of rewards.

Putting Your Spin on AWS DeepRacer:
The Practitioner's Role in RL

AWS DeepRacer may be autonomous, but you still have an important role to
play in the success of your model. In this section, we introduce the training
algorithm, action space, hyperparameters, and reward function and discuss
how your ideas make a difference.

An algorithm is a set of instructions that tells a computer what to do.
ML is special because it enables computers to learn without being
explicitly programmed to do so.
The training algorithm defines your model’s learning objective,
which is to maximize total cumulative reward. Different algorithms
have different strategies for going about this.

A soft actor critic (SAC) embraces exploration and is data-
efficient, but can lack stability.
A proximal policy optimization (PPO) is stable but data-hungry.

An action space is the set of all valid actions, or choices, available to
an agent as it interacts with an environment.

Discrete action space represents all of an agent's possible actions for each
state in a finite set of steering angle and throttle value combinations.

Continuous action space allows the agent to select an action from a range of
values that you define for each sta te.

Hyperparameters are variables that control the performance of your
agent during training. There is a variety of different categories with
which to experiment. Change the values to increase or decrease the
influence of different parts of your model.

For example, the learning rate is a hyperparameter that controls
how many new experiences are counted in learning at each step.
A higher learning rate results in faster training but may reduce
the model’s quality.

The reward function's purpose is to encourage the agent to reach its
goal. Figuring out how to reward which actions is one of your most
important jobs.

Putting Reinforcement Learning into Action with AWS DeepRacer

This video put the concepts we've learned into action by imagining the
reward function as a grid mapped over the race track in AWS DeepRacer’s
training environment, and visualizing it as metrics plotted on a graph. It also
introduced the trade-off between exploration and exploitation, an
important challenge unique to this type of machine learning.

Each square is a state. The green square is the starting position, or initial
state, and the finish line is the goal, or terminal state.

Key points to remember about reward functions:

Each state on the grid is assigned a score by your reward function.
You incentivize behavior that supports your car’s goal of completing
fast laps by giving the highest numbers to the parts of the track on
which you want it to drive.
The reward function is the actual code you'll write to help your
agent determine if the action it just took was good or bad, and how
good or bad it was.

The squares containing exes are the track edges and defined as terminal
states, which tell your car it has gone off track.

Key points to remember about exploration versus exploitation:

When a car first starts out, it explores by wandering in random
directions. However, the more training an agent gets, the more it
learns about an environment. This experience helps it become more
confident about the actions it chooses.
Exploitation means the car begins to exploit or use information from
previous experiences to help it reach its goal. Different training
algorithms utilize exploration and exploitation differently.

Key points to remember about the reward graph:

While training your car in the AWS DeepRacer console, your training
metrics are displayed on a reward graph.
Plotting the total reward from each episode allows you to see how
the model performs over time. The more reward your car gets, the
better your model performs.

Key points to remember about AWS DeepRacer:

AWS DeepRacer is a combination of a physical car and a virtual
simulator in the AWS Console, the AWS DeepRacer League, and

community races.
An AWS DeepRacer device is not required to start learning: you can
start now in the AWS console. The 3D simulator in the AWS console
is where training and evaluation take place.

New Terms

Exploration versus exploitation: An agent should exploit known
information from previous experiences to achieve higher
cumulative rewards, but it also needs to explore to gain new
experiences that can be used in choosing the best actions in the
future.

Additional Reading

If you are interested in more tips, workshops, classes, and other
resources for improving your model, you'll find a wealth of resources
on the AWS DeepRacer Pit Stop page.
For detailed step-by-step instructions and troubleshooting support,
see the AWS DeepRacer Developer Documentation.
If you're interested in reading more posts on a range of DeepRacer
topics as well as staying up to date on the newest releases, check
out the AWS Discussion Forums.
If you're interested in connecting with a thriving global community
of reinforcement learning racing enthusiasts, join the AWS
DeepRacer Slack community.
If you're interested in tinkering with DeepRacer's open-source
device software and collaborating with robotics innovators, check
out our AWS DeepRacer GitHub Organization.

Exercise: Interpret the reward graph of your first AWS DeepRacer model

Instructions

Train a model in the AWS DeepRacer console and interpret its reward graph.

Part 1: Train a reinforcement learning model using the AWS DeepRacer
console

Practice the knowledge you've learned by training your first reinforcement
learning model using the AWS DeepRacer console.

If this is your first time using AWS DeepRacer, choose Get started
from the service landing page, or choose Get started with
reinforcement learning from the main navigation pane.
On the Get started with reinforcement learning page, under Step 2:
Create a model and race, choose Create model. Alternatively, on the
AWS DeepRacer home page, choose Your models from the main
navigation pane to open the Your models page. On the Your models
page, choose Create model.
On the Create model page, under Environment simulation, choose a
track as a virtual environment to train your AWS DeepRacer agent.
Then, choose Next. For your first run, choose a track with a simple
shape and smooth turns. In later iterations, you can choose more
complex tracks to progressively improve your models. To train a
model for a particular racing event, choose the track most similar to
the event track.
On the Create model page, choose Next.
On the Create Model page, under Race type, choose a training type.
For your first run, choose Time trial. The agent with the default
sensor configuration with a single-lens camera is suitable for this
type of racing without modifications.
On the Create model page, under Training algorithm and
hyperparameters, choose the Soft Actor Critic (SAC) or Proximal

Policy Optimization (PPO) algorithm. In the AWS DeepRacer
console, SAC models must be trained in continuous action spaces.
PPO models can be trained in either continuous or discrete action
spaces.
On the Create model page, under Training algorithm and
hyperparameters, use the default hyperparameter values as is. Later
on, to improve training performance, expand the hyperparameters
and experiment with modifying the default hyperparameter values.
On the Create model page, under Agent, choose The Original
DeepRacer or The Original DeepRacer (continuous action space) for
your first model. If you use Soft Actor Critic (SAC) as your training
algorithm, we filter your cars so that you can conveniently choose
from a selection of compatible continuous action space agents.
On the Create model page, choose Next.
On the Create model page, under Reward function, use the default
reward function example as is for your first model. Later on, you can
choose Reward function examples to select another example
function and then choose Use code to accept the selected reward
function.
On the Create model page, under Stop conditions, leave the default
Maximum time value as is or set a new value to terminate the
training job to help prevent long-running (and possible run-away)
training jobs. When experimenting in the early phase of training, you
should start with a small value for this parameter and then
progressively train for longer amounts of time.
On the Create model page, choose Create model to start creating
the model and provisioning the training job instance.
After the submission, watch your training job being initialized and
then run. The initialization process takes about 6 minutes to change
status from Initializing to In progress.
Watch the Reward graph and Simulation video stream to observe
the progress of your training job. You can choose the refresh button
next to Reward graph periodically to refresh the Reward graph until

the training job is complete.

Note: The training job is running on the AWS Cloud, so you don't need to
keep the AWS DeepRacer console open during training. However, you can
come back to the console to check on your model at any point while the job
is in progress.

Part 2: Inspect your reward graph to assess your training progress

As you train and evaluate your first model, you'll want to get a sense of its
quality. To do this, inspect your reward graph.

Find the following on your reward graph:

Average reward
Average percentage completion (training)
Average percentage completion (evaluation)
Best model line
Reward primary y-axis
Percentage track completion secondary y-axis
Iteration x-axis

Review the solution to this exercise for ideas on how to interpret it.

As you train and evaluate your first model, you'll want to get a sense of its
quality. To do this, inspect your reward graph.

Exercise Solution

To get a sense of how well your training is going, watch the reward graph.
Here is a list of its parts and what they do:

Average reward
This graph represents the average reward the agent earns during
a training iteration. The average is calculated by averaging the
reward earned across all episodes in the training iteration. An
episode begins at the starting line and ends when the agent
completes one loop around the track or at the place the vehicle

left the track or collided with an object. Toggle the switch to hide
this data.

Average percentage completion (training)
The training graph represents the average percentage of the track
completed by the agent in all training episodes in the current
training. It shows the performance of the vehicle while
experience is being gathered.

Average percentage completion (evaluation)
While the model is being updated, the performance of the
existing model is evaluated. The evaluation graph line is the
average percentage of the track completed by the agent in all
episodes run during the evaluation period.

Best model line
This line allows you to see which of your model iterations had the
highest average progress during the evaluation. The checkpoint
for this iteration will be stored. A checkpoint is a snapshot of a
model that is captured after each training (policy-updating)
iteration.

Reward primary y-axis
This shows the reward earned during a training iteration. To read
the exact value of a reward, hover your mouse over the data
point on the graph.
Percentage track completion secondary y-axis
This shows you the percentage of the track the agent completed
during a training iteration.

Iteration x-axis
This shows the number of iterations completed during your
training job.

Reward Graph Interpretation

The following four examples give you a sense of how to interpret the success
of your model based on the reward graph. Learning to read these graphs is
as much of an art as it is a science and takes time, but reviewing the
following four examples will give you a start.

Needs more training

In the following example, we see there have only been 600 iterations, and
the graphs are still going up. We see the evaluation completion percentage
has just reached 100%, which is a good sign but isn’t fully consistent yet, and
the training completion graph still has a ways to go. This reward function

and model are showing promise, but need more training time.

Needs more training

No improvement

In the next example, we can see that the percentage of track completions
haven’t gone above around 15 percent and it's been training for quite some
time—probably around 6000 iterations or so. This is not a good sign!
Consider throwing this model and reward function away and trying a
different strategy.

No improvement

A well-trained model

In the following example graph, we see the evaluation percentage
completion reached 100% a while ago, and the training percentage reached
100% roughly 100 or so iterations ago. At this point, the model is well
trained. Training it further might lead to the model becoming overfit to this
track.

Avoid overfitting

Overfitting or overtraining is a really important concept in machine learning.

With AWS DeepRacer, this can become an issue when a model is trained on
a specific track for too long. A good model should be able to make decisions
based on the features of the road, such as the sidelines and centerlines, and
be able to drive on just about any track.

An overtrained model, on the other hand, learns to navigate using
landmarks specific to an individual track. For example, the agent turns a
certain direction when it sees uniquely shaped grass in the background or a
specific angle the corner of the wall makes. The resulting model will run
beautifully on that specific track, but perform badly on a different virtual
track, or even on the same track in a physical environment due to slight
variations in angles, textures, and lighting.

Well-trained – Avoid overlifting

Adjust hyperparameters

The AWS DeepRacer console's default hyperparameters are quite effective,
but occasionally you may consider adjusting the training hyperparameters.
The hyperparameters are variables that essentially act as settings for the
training algorithm that control the performance of your agent during
training. We learned, for example, that the learning rate controls how many
new experiences are counted in learning at each step.

In this reward graph example, the training completion graph and the reward
graph are swinging high and low. This might suggest an inability to converge,
which may be helped by adjusting the learning rate. Imagine if the current
weight for a given node is .03, and the optimal weight should be .035, but
your learning rate was set to .01. The next training iteration would then
swing past optimal to .04, and the following iteration would swing under it
to .03 again. If you suspect this, you can reduce the learning rate to .001. A
lower learning rate makes learning take longer but can help increase the
quality of your model.

Adjust hyperparameters

Good Job and Good Luck!

Remember: training experience helps both model and reinforcement
learning practitioners become a better team. Enter your model in the
monthly AWS DeepRacer League races for chances to win prizes and glory
while improving your machine learning development skills!

Introduction to Generative AI

Generative AI and Its Applications

Generative AI is one of the biggest recent advancements in artificial
intelligence because of its ability to create new things.

Until recently, the majority of machine learning applications were powered
by discriminative models. A discriminative model aims to answer the
question, "If I'm looking at some data, how can I best classify this data or
predict a value?" For example, we could use discriminative models to detect
if a camera was pointed at a cat.

As we train this model over a collection of images (some of which contain
cats and others which do not), we expect the model to find patterns in
images which help make this prediction.

A generative model aims to answer the question,"Have I seen data like this
before?" In our image classification example, we might still use a generative
model by framing the problem in terms of whether an image with the label
"cat" is more similar to data you’ve seen before than an image with the label
"no cat."

However, generative models can be used to support a second use case. The
patterns learned in generative models can be used to create brand new
examples of data which look similar to the data it seen before.

Discriminative versus Generative algorithms

Generative AI Models
In this lesson, you will learn how to create three popular types of generative
models: generative adversarial networks (GANs), general autoregressive
models, and transformer-based models. Each of these is accessible through
AWS DeepComposer to give you hands-on experience with using these
techniques to generate new examples of music.

Autoregressive models

Autoregressive convolutional neural networks (AR-CNNs) are used to study
systems that evolve over time and assume that the likelihood of some data
depends only on what has happened in the past. It’s a useful way of looking
at many systems, from weather prediction to stock prediction.

Generative adversarial networks (GANs)

Generative adversarial networks (GANs), are a machine learning model

format that involves pitting two networks against each other to generate
new content. The training algorithm swaps back and forth between training
a generator network (responsible for producing new data) and a
discriminator network (responsible for measuring how closely the generator
network’s data represents the training dataset).

Transformer-based models

Transformer-based models are most often used to study data with some
sequential structure (such as the sequence of words in a sentence).
Transformer-based methods are now a common modern tool for modeling
natural language.

We won't cover this approach in this course but you can learn more about
transformers and how AWS DeepComposer uses transformers in AWS
DeepComposer learning capsules.

Generative AI with AWS
DeepComposer
What is AWS DeepComposer?

AWS DeepComposer gives you a creative and easy way to get started with
machine learning (ML), specifically generative AI. It consists of a USB
keyboard that connects to your computer to input melody and the AWS
DeepComposer console, which includes AWS DeepComposer Music studio
to generate music, learning capsules to dive deep into generative AI models,

and AWS DeepComposer Chartbusters challenges to showcase your ML
skills.

AWS DeepComposer

AWS DeepComposer keyboard

You don't need an AWS DeepComposer keyboard to finish this course. You
can import your own MIDI file, use one of the provided sample melodies, or
use the virtual keyboard in the AWS DeepComposer Music studio.

AWS DeepComposer music studio

To generate, create, and edit compositions with AWS DeepComposer, you
use the AWS DeepComposer Music studio. To get started, you need an input
track and a trained model.

For the input track, you can use a sample track, record a custom track, or
import a track.

Input track

For the ML technique, you can use either a sample model or a custom
model.

Each AWS DeepComposer Music studio experience supports three different
generative AI techniques: generative adversarial networks (GANs),
autoregressive convolutional neural network (AR-CNNs), and transformers.

Use the GAN technique to create accompaniment tracks.
Use the AR-CNN technique to modify notes in your input track.
Use the transformers technique to extend your input track by up to
30 seconds.

ML models

Demo: AWS DeepComposer

In this demo, you went through the AWS DeepComposer console where you
can learn about deep learning, input your music, and train deep learning
models to create new music.

AWS DeepComposer learning capsules

To learn the details behind generative AI and ML techniques used in AWS
DeepComposer you can use easy-to-consume, bite-sized learning capsules in
the AWS DeepComposer console.

AWS DeepComposer learning capsules

AWS DeepComposer Chartbusters challenges

Chartbusters is a global challenge where you can use AWS DeepComposer to
create original compositions and compete in monthly challenges to
showcase your machine learning and generative AI skills.

You don't need to participate in this challenge to finish this course, but the
course teaches everything you need to win in both challenges we launched
this season. Regardless of your background in music or ML, you can find a
competition just right for you.

You can choose between two different challenges this season:

In the Basic challenge, “Melody-Go-Round”, you can use any
machine learning technique in the AWS DeepComposer Music studio
to create new compositions.
In the Advanced challenge, “Melody Harvest”, you train a custom
generative AI model using Amazon SageMaker.

GANs with AWS DeepComposer
We’ll begin our journey of popular generative models in AWS
DeepComposer with generative adversarial networks or GANs. Within an
AWS DeepComposer GAN, models are used to solve a creative task: adding
accompaniments that match the style of an input track you provide. Listen
to the input melody and the output composition created by the AWS
DeepComposer GAN model:

Input melody
Output melody

What are GANs?

A GAN is a type of generative machine learning model which pits two neural
networks against each other to generate new content: a generator and a
discriminator.

A generator is a neural network that learns to create new data
resembling the source data on which it was trained.
A discriminator is another neural network trained to differentiate
between real and synthetic data.

The generator and the discriminator are trained in alternating cycles. The
generator learns to produce more and more realistic data while the
discriminator iteratively gets better at learning to differentiate real data
from the newly created data.

Collaboration between an orchestra and its conductor

A simple metaphor of an orchestra and its conductor can be used to
understand a GAN. The orchestra trains, practices, and tries to generate
polished music, and then the conductor works with them, as both judge and
coach. The conductor judges the quality of the output and at the same time
provides feedback to achieve a specific style. The more they work together,
the better the orchestra can perform.

The GAN models that AWS DeepComposer uses work in a similar fashion.
There are two competing networks working together to learn how to
generate musical compositions in distinctive styles.

A GAN's generator produces new music as the orchestra does. And the

discriminator judges whether the music generator creates is realistic and
provides feedback on how to make its data more realistic, just as a
conductor provides feedback to make an orchestra sound better.

An orchestra and its conductor

Training Methodology
Let’s dig one level deeper by looking at how GANs are trained and used
within AWS DeepComposer. During training, the generator and
discriminator work in a tight loop as depicted in the following image.

A schema representing a GAN model used within AWS DeepComposer

Note: While this figure shows the generator taking input on the left, GANs in
general can also generate new data without any input.

Generator

The generator takes in a batch of single-track piano rolls (melody) as
the input and generates a batch of multi-track piano rolls as the
output by adding accompaniments to each of the input music tracks.
The discriminator then takes these generated music tracks and
predicts how far they deviate from the real data present in the
training dataset. This deviation is called the generator loss. This
feedback from the discriminator is used by the generator to
incrementally get better at creating realistic output.

Discriminator

As the generator gets better at creating music accompaniments, it
begins fooling the discriminator. So, the discriminator needs to be
retrained as well. The discriminator measures the discriminator loss
to evaluate how well it is differentiating between real and fake data.

Beginning with the discriminator on the first iteration, we alternate training
these two networks until we reach some stop condition; for example, the
algorithm has seen the entire dataset a certain number of times or the
generator and discriminator loss reach some plateau (as shown in the
following image).

Discriminator loss and generator loss reach a plateau

New Terms

Generator: A neural network that learns to create new data
resembling the source data on which it was trained.
Discriminator: A neural network trained to differentiate between
real and synthetic data.
Generator loss: Measures how far the output data deviates from the
real data present in the training dataset.
Discriminator loss: Evaluates how well the discriminator
differentiates between real and fake data.

AR-CNN with AWS DeepComposer
Our next popular generative model is the autoregressive convolutional
neural network (AR-CNN). Autoregressive convolutional neural networks
make iterative changes over time to create new data.

To better understand how the AR-CNN model works, let’s first discuss how
music is represented so it is machine-readable.

Image-based representation

Nearly all machine learning algorithms operate on data as numbers or
sequences of numbers. In AWS DeepComposer, the input tracks are
represented as a piano roll**. *In each two-dimensional piano roll, time is
on the horizontal axis and pitch* is on the vertical axis. You might notice this
representation looks similar to an image.

The AR-CNN model uses a piano roll image to represent the audio files from
the dataset. You can see an example in the following image where on top is
a musical score and below is a piano roll image of that same score.

Musical score and piano roll

How the AR-CNN Model Works

When a note is either added or removed from your input track during
inference, we call it an edit event. To train the AR-CNN model to predict
when notes need to be added or removed from your input track (edit

event), the model iteratively updates the input track to sounds more like the
training dataset. During training, the model is also challenged to detect
differences between an original piano roll and a newly modified piano roll.

New Terms

Piano roll: A two-dimensional piano roll matrix that represents input
tracks. Time is on the horizontal axis and pitch is on the vertical axis.
Edit event: When a note is either added or removed from your input
track during inference.

Demo: Create Music with AWS DeepComposer

Below you find a video demonstrating how you can use AWS DeepComposer
to experiment with GANs and AR-CNN models.

Important

To get you started, AWS DeepComposer provides a 12-month Free Tier for
first-time users. With the Free Tier, you can perform up to 500 inference
jobs, translating to 500 pieces of music, using the AWS DeepComposer
Music studio. You can use one of these instances to complete the exercise at
no cost. For more information, please read the AWS account requirements
page.

In the demo, you have learned how to create music using AWS
Deepcomposer.

You will need a music track to get started. There are several ways to do it.
You can record your own using the AWS keyboard device or the virtual
keyboard provided in the console. Or you can input a MIDI file or choose a
provided music track.

Once the music track is inputted, choose "Continue" to create a model. The
models you can choose are AR-CNN, GAN, and transformers. Each of them
has a slightly different function. After choosing a model, you can then adjust
the parameters used to train the model.

Once you are done with model creation, you can select "Continue" to listen
and improve your output melody. To edit the melody, you can either drag or
extend notes directly on the piano roll or adjust the model parameters and
train it again. Keep tuning your melody until you are happy with it then click
"Continue" to finish the composition.

If you want to enhance your music further with another generative model,
you can do it too. Simply choose a model under the "Next step" section and
create a new model to enhance your music.

Congratulations on creating your first piece of music using AWS
DeepComposer! Now you can download the melody or submit it to a
competition. Hope you enjoy the journey of creating music with AWS
DeepComposer.

Exercise: Generate music with AWS DeepComposer

You have seen how the instructor generates a piece of music in AWS
DeepComposer. Now, it's your turn to create your very own piece of music.

To finish this exercise, you should complete the following steps.

Open the AWS DeepComposer console.
In the navigation pane, choose Music studio, then choose Start
composing.
On the Input track page, record a melody using the virtual keyboard,
import a MIDI file, or choose an input track. On the ML technique
page, choose AR-CNN. On the Inference output page, you can do the
following:

Change the AR-CNN parameters, choose Enhance again, and then
choose Play to hear how your track has changed. Repeat until you
like the outcome.
Choose Edit melody to modify and change the notes that were
added during inference.

Choose Continue to finish creating your composition.

You can then choose Share composition, Register, or Sign in to Soundcloud
and submit to the "Melody-Go-Round" competition. Participation in the
competition is optional.

If you get stuck, you can check out the demo videos on Demo: Create Music
with AWS DeepComposer page.

Build a Custom GAN Model (Optional):
Part 1
To create the custom GAN, you will need to use an instance type that is not
covered in the Amazon SageMaker free tier. You may incur a cost if you
want to build a custom GAN.

You can learn more about SageMaker costs in the Amazon SageMaker
pricing documentation.

Important: This is an optional exercise. You will not need to complete this
exercise in order to graduate from the foundation's course. If you are unable
to create an AWS account, please move to the next module.

Setting Up the AWS DeepComposer Notebook

Go to the AWS Management Console and search for Amazon
SageMaker.
Once inside the SageMaker console, look to the left-hand menu and
select Notebook Instances.
Next, choose Create notebook instance.
In the Notebook instance setting section, give the notebook a name,
for example, DeepComposerUdacity.
Based on the kind of CPU, GPU and memory you need the next step
is to select an instance type. For our purposes, we’ll configure a
ml.c5.4xlarge
Leave the Elastic Inference defaulted to none.
In the Permissions and encryption section, create a new IAM role
using all of the defaults.
When you see that the role was created successfully, navigate down
a little way to the Git repositories section

Select Clone a public Git repository to this notebook instance only
Copy and paste the public URL into the Git repository URL section:
https://github.com/aws-samples/aws-deepcomposer-samples
Select Create notebook instance
Give SageMaker a few minutes to provision the instance and clone
the Git repository
When the status reads "InService" you can open the Jupyter
notebook.

Exploring the Notebook

Now that it’s configured and ready to use, let’s take a moment to investigate
what’s inside the notebook.

Open the Notebook

Click Open Jupyter.
When the notebook opens, click on "gan".
When the lab opens click on GAN.ipynb.

Review: Generative Adversarial Networks (GANs).

GANs consist of two networks constantly competing with each other:

Generator network that tries to generate data based on the data it
was trained on.

Discriminator network that is trained to differentiate between real
data and data which is created by the generator.

A diagram of generator and discriminator.

Set Up the Project

Run the first Dependencies cell to install the required packages
Run the second Dependencies cell to import the dependencies
Run the Configuration cell to define the configuration variables

Note: While executing the cell that installs dependency packages, you may
see warning messages indicating that later versions of conda are available
for certain packages. It is completely OK to ignore this message. It should
not affect the execution of this notebook.

Click Run or Shift-Enter in the cell

Good Coding Practices

Do not hard-code configuration variables
Move configuration variables to a separate config file
Use code comments to allow for easy code collaboration

Data Preparation

The next section of the notebook is where we’ll prepare the data so it can
train the generator network.

Why Do We Need to Prepare Data?

Data often comes from many places (like a website, IoT sensors, a hard
drive, or physical paper) and it’s usually not clean or in the same format.
Before you can better understand your data, you need to make sure it’s in
the right format to be analyzed. Thankfully, there are library packages that
can help! One such library is called NumPy, which was imported into our
notebook.

Piano Roll Format

The data we are preparing today is music and it comes formatted in what’s
called a “piano roll”. Think of a piano roll as a 2D image where the X-axis
represents time and the Y-axis represents the pitch value. Using music as
images allows us to leverage existing techniques within the computer vision
domain.

Our data is stored as a NumPy Array, or grid of values. Our dataset
comprises 229 samples of 4 tracks (all tracks are piano). Each sample is a 32
time-step snippet of a song, so our dataset has a shape of:

(num_samples, time_steps, pitch_range, tracks)

or

(229, 32, 128, 4)

Each Piano Roll Represents A Separate Piano Track in the Song

Load and View the Dataset

Run the next cell to play a song from the dataset.

Run the next cell to load the dataset as a nympy array and output
the shape of the data to confirm that it matches the (229, 32, 128, 4)
shape we are expecting
Run the next cell to see a graphical representation of the data.

Graphical Representation of Model Data

Create a Tensorflow Dataset

Much like there are different libraries to help with cleaning and formatting
data, there are also different frameworks. Some frameworks are better
suited for particular kinds of machine learning workloads and for this deep
learning use case, we’re going to use a Tensorflow framework with a Keras
library.

We'll use the dataset object to feed batches of data into our model.

Run the first Load Data cell to set parameters.
Run the second Load Data cell to prepare the data.

Build a Custom GAN Model (Optional): Part 2

To create the custom GAN, you will need to use an instance type that is not
covered in the Amazon SageMaker free tier. You may incur a cost if you

want to build a custom GAN.

You can learn more about SageMaker costs in the Amazon SageMaker
pricing documentation.

Important: This is an optional exercise. You will not need to complete this
exercise in order to graduate from the foundation's course. If you are unable
to create an AWS account, please move to the next module.

Model Architecture

Before we can train our model, let’s take a closer look at model architecture
including how GAN networks interact with the batches of data we feed into
the model, and how the networks communicate with each other.

How the Model Works

The model consists of two networks, a generator and a discriminator (critic).
These two networks work in a tight loop:

The generator takes in a batch of single-track piano rolls (melody) as
the input and generates a batch of multi-track piano rolls as the
output by adding accompaniments to each of the input music tracks.
The discriminator evaluates the generated music tracks and predicts
how far they deviate from the real data in the training dataset.
The feedback from the discriminator is used by the generator to help
it produce more realistic music the next time.
As the generator gets better at creating better music and fooling the
discriminator, the discriminator needs to be retrained by using music
tracks just generated by the generator as fake inputs and an
equivalent number of songs from the original dataset as the real

input.
We alternate between training these two networks until the model
converges and produces realistic music.

The discriminator is a binary classifier which means that it classifies inputs
into two groups, e.g. “real” or “fake” data.

Defining and Building Our Model
Run the cell that defines the generator
Run the cell that builds the generator
Run the cell that defines the discriminator
Run the cell that builds the discriminator

Model Training and Loss Functions

As the model tries to identify data as “real” or “fake”, it’s going to make
errors. Any prediction different than the ground truth is referred to as an
error.

The measure of the error in the prediction, given a set of weights, is called a
loss function. Weights represent how important an associated feature is to
determining the accuracy of a prediction.

Loss functions are an important element of training a machine learning
model because they are used to update the weights after every iteration of
your model. Updating weights after iterations optimizes the model making
the errors smaller and smaller.

Setting Up and Running the Model Training

Run the cell that defines the loss functions
Run the cell to set up the optimizer

Run the cell to define the generator step function
Run the cell to define the discriminator step function
Run the cell to load the melody samples
Run the cell to set the parameters for the training
Run the cell to train the model!!!!

Training and tuning models can take a very long time – weeks or even
months sometimes. Our model will take around an hour to train.

Model Evaluation

Now that the model has finished training it’s time to evaluate its results.

There are several evaluation metrics you can calculate for classification
problems and typically these are decided in the beginning phases as you
organize your workflow.

You can:

Check to see if the losses for the networks are converging
Look at commonly used musical metrics of the generated sample
and compared them to the training dataset.

Evaluating Our Training Results

Run the cell to restore the saved checkpoint. If you don't want to
wait to complete the training you can use data from a pre-trained
model by setting TRAIN = False in the cell.
Run the cell to plot the losses.
Run the cell to plot the metrics.

Results and Inference

Finally, we are ready to hear what the model produced and visualize the
piano roll output!

Once the model is trained and producing acceptable quality, it’s time to see
how it does on data it hasn’t seen. We can test the model on these unknown
inputs, using the results as a proxy for performance on future data.

Evaluate the Generated Music

In the first cell, enter 0 as the iteration number.

run the cell and play the music snippet.

Or listen to this example snippet from iteration 0:

Example Piano Roll at Iteration 0

In the first cell, enter 500 as the iteration number:run the cell and
play the music snippet. Or listen to the example snippet at iteration
500.
In the second cell, enter 500 as the iteration number:run the cell and
display the piano roll.

Example Piano Roll at Iteration 500

Play around with the iteration number and see how the output changes over
time!

Here is an example snippet at iteration 950

And here is the piano roll:

Example Piano Roll at Iteration 950

Do you see or hear a quality difference between iteration 500 and iteration
950?

Watch the Evolution of the Model!

Run the next cell to create a video to see how the generated piano rolls
change over time.

Inference

Now that the GAN has been trained we can run it on a custom input to
generate music.

Run the cell to generate a new song based on "Twinkle Twinkle Little
Star". Or listen to the example of the generated music here:
Run the next cell and play the generated music. Or listen to the
example of the generated music here:

Stop and Delete the Jupyter Notebook When You Are Finished!

This project is not covered by the AWS Free Tier so your project will
continue to accrue costs as long as it is running.

Follow these steps to stop and delete the notebook.

Go back to the Amazon SageMaker console.
Select the notebook and click Actions.

Select Stop and wait for the instance to stop.

Select Delete

Recap

In this demo we learned how to setup a Jupyter notebook in Amazon
SageMaker, reviewed a machine learning code, and what data preparation,
model training, and model evaluation can look like in a notebook instance.
While this was a fun use case for us to explore, the concepts and techniques
can be applied to other machine learning projects like an object detector or
a sentiment analysis on text.

Glossary

Action: For every state, an agent needs to take an action toward
achieving its goal.
Agent: The piece of software you are training is called an agent. It
makes decisions in an environment to reach a goal.
Discriminator: A neural network trained to differentiate between
real and synthetic data.
Discriminator loss: Evaluates how well the discriminator
differentiates between real and fake data.
Edit event: When a note is either added or removed from your input
track during inference.
Environment: The environment is the surrounding area within which
the agent interacts.
Exploration versus exploitation: An agent should exploit known
information from previous experiences to achieve higher cumulative
rewards, but it also needs to explore to gain new experiences that
can be used in choosing the best actions in the future.
Generator: A neural network that learns to create new data
resembling the source data on which it was trained.
Generator loss: Measures how far the output data deviates from the
real data present in the training dataset.

Hidden layer: A layer that occurs between the output and input
layers. Hidden layers are tailored to a specific task.
Input layer: The first layer in a neural network. This layer receives all
data that passes through the neural network.
Output layer: The last layer in a neural network. This layer is where
the predictions are generated based on the information captured in
the hidden layers.
Piano roll: A two-dimensional piano roll matrix that represents input
tracks. Time is on the horizontal axis and pitch is on the vertical axis.
Reward: Feedback is given to an agent for each action it takes in a
given state. This feedback is a numerical reward.

CHAPTER FOUR

Software Engineering Practices, Part I
In this lesson, you'll learn about the following software engineering practices
and how they apply in data science.

Writing clean and modular code
Writing efficient code
Code refactoring
Adding meaningful documentation
Using version control

In the lesson following this one (part 2), you'll also learn about the following
software engineering practices:

Testing
Logging
Code reviews

Clean and Modular Code
Production code: Software running on production servers to
handle live users and data of the intended audience. Note that
this is different from production-quality code, which describes
code that meets expectations for production in reliability,
efficiency, and other aspects. Ideally, all code in production meets
these expectations, but this is not always the case.
Clean code: Code that is readable, simple, and concise. Clean
production-quality code is crucial for collaboration and
maintainability in software development.
Modular code: Code that is logically broken up into functions and
modules. Modular production-quality code that makes your code
more organized, efficient, and reusable.

Module: A file. Modules allow code to be reused by
encapsulating them into files that can be imported into other
files.

Refactoring Code
Refactoring: Restructuring your code to improve its internal
structure without changing its external functionality. This gives
you a chance to clean and modularize your program after you've
got it working.
Since it isn't easy to write your best code while you're still trying
to just get it working, allocating time to do this is essential to
producing high-quality code. Despite the initial time and effort
required, this really pays off by speeding up your development
time in the long run.
You become a much stronger programmer when you're
constantly looking to improve your code. The more you refactor,
the easier it will be to structure and write good code the first
time.

Why Refactor?

Reduce workload in the long run
Easier to maintain code
Reuse more of your code
Become a better developer

Writing Clean Code

Writing clean code: Meaningful names

Use meaningful names.

Be descriptive and imply type: For booleans, you can prefix with
is_ or has_ to make it clear it is a condition. You can also use parts
of speech to imply types, like using verbs for functions and nouns
for variables.
Be consistent but clearly differentiate: age_list and age is easier to
differentiate than ages and age.
Avoid abbreviations and single letters: You can determine when
to make these exceptions based on the audience for your code. If
you work with other data scientists, certain variables may be
common knowledge. While if you work with full stack engineers,
it might be necessary to provide more descriptive names in these
cases as well. (Exceptions include counters and common math
variables.)
Long names aren't the same as descriptive names: You should be
descriptive, but only with relevant information. For example,
good function names describe what they do well without
including details about implementation or highly specific uses.

Try testing how effective your names are by asking a fellow programmer to
guess the purpose of a function or variable based on its name, without
looking at your code. Coming up with meaningful names often requires
effort to get right.

Writing clean code: Nice whitespace

Use whitespace properly.

Organize your code with consistent indentation: the standard is
to use four spaces for each indent. You can make this a default in

your text editor.
Separate sections with blank lines to keep your code well
organized and readable.
Try to limit your lines to around 79 characters, which is the
guideline given in the PEP 8 style guide. In many good text
editors, there is a setting to display a subtle line that indicates
where the 79 character limit is.

For more guidelines, check out the code layout section of PEP 8 in the
following notes.

Writing Modular Code
Follow the tips below to write modular code.

Tip: DRY (Don't Repeat Yourself)

Don't repeat yourself! Modularization allows you to reuse parts of your
code. Generalize and consolidate repeated code in functions or loops.

Tip: Abstract out logic to improve readability

Abstracting out code into a function not only makes it less repetitive, but
also improves readability with descriptive function names. Although your
code can become more readable when you abstract out logic into functions,
it is possible to over-engineer this and have way too many modules, so use
your judgement.

Tip: Minimize the number of entities (functions, classes, modules, etc.)

There are trade-offs to having function calls instead of inline logic. If you
have broken up your code into an unnecessary amount of functions and
modules, you'll have to jump around everywhere if you want to view the

implementation details for something that may be too small to be worth it.
Creating more modules doesn't necessarily result in effective
modularization.

Tip: Functions should do one thing

Each function you write should be focused on doing one thing. If a function
is doing multiple things, it becomes more difficult to generalize and reuse.
Generally, if there's an "and" in your function name, consider refactoring.

Tip: Arbitrary variable names can be more effective in certain functions

Arbitrary variable names in general functions can actually make the code
more readable.

Tip: Try to use fewer than three arguments per function

Try to use no more than three arguments when possible. This is not a hard
rule and there are times when it is more appropriate to use many
parameters. But in many cases, it's more effective to use fewer arguments.
Remember we are modularizing to simplify our code and make it more
efficient. If your function has a lot of parameters, you may want to rethink
how you are splitting this up.

Efficient Code
Knowing how to write code that runs efficiently is another essential skill in
software development. Optimizing code to be more efficient can mean
making it:

Execute faster
Take up less space in memory/storage

The project on which you're working determines which of these is more
important to optimize for your company or product. When you're
performing lots of different transformations on large amounts of data, this
can make orders of magnitudes of difference in performance.

Documentation
Documentation: Additional text or illustrated information that
comes with or is embedded in the code of software.
Documentation is helpful for clarifying complex parts of code,
making your code easier to navigate, and quickly conveying how
and why different components of your program are used.
Several types of documentation can be added at different levels
of your program:

Inline comments - line level
Docstrings - module and function level
Project documentation - project level

Inline Comments
Inline comments are text following hash symbols throughout your
code. They are used to explain parts of your code, and really help
future contributors understand your work.
Comments often document the major steps of complex code.
Readers may not have to understand the code to follow what it
does if the comments explain it. However, others would argue
that this is using comments to justify bad code, and that if code
requires comments to follow, it is a sign refactoring is needed.
Comments are valuable for explaining where code cannot. For

example, the history behind why a certain method was
implemented a specific way. Sometimes an unconventional or
seemingly arbitrary approach may be applied because of some
obscure external variable causing side effects. These things are
difficult to explain with code.

Docstrings
Docstring, or documentation strings, are valuable pieces of documentation
that explain the functionality of any function or module in your code. Ideally,
each of your functions should always have a docstring.

Docstrings are surrounded by triple quotes. The first line of the docstring is a
brief explanation of the function's purpose.

One-line docstring

def population_density(population, land_area):

 """Calculate the population density of an area."""

 return population / land_area

If you think that the function is complicated enough to warrant a longer
description, you can add a more thorough paragraph after the one-line
summary.

Multi-line docstring

def population_density(population, land_area):

 """Calculate the population density of an area.

 Args:

 population: int. The population of the area

 land_area: int or float. This function is unit-agnostic, if you pass in values
in terms of square km or square miles the function will return a density in
those units.

 Returns:

 population_density: population/land_area. The population density of a

 particular area.

 """

 return population / land_area

The next element of a docstring is an explanation of the function's
arguments. Here, you list the arguments, state their purpose, and state what
types the arguments should be. Finally, it is common to provide some
description of the output of the function. Every piece of the docstring is
optional; however, doc strings are a part of good coding practice.

Version Control In Data Science
If you need a refresher on using Git for version control, check out the course

linked in the extracurriculars. If you're ready, let's see how Git is used in real
data science scenarios!

Scenario #1

Let's walk through the Git commands that go along with each step in the
scenario you just observed in the video.

Step 1: You have a local version of this repository on your laptop, and to
get the latest stable version, you pull from the develop branch.

Switch to the develop branch

git checkout develop

Pull the latest changes in the develop branch

git pull

Step 2: When you start working on this demographic feature, you create a
new branch called demographic, and start working on your code in this
branch.

Create and switch to a new branch called demographic from the
develop branch

git checkout -b demographic

Work on this new feature and commit as you go

git commit -m 'added gender recommendations'

git commit -m 'added location specific recommendations'

...

Step 3: However, in the middle of your work, you need to work on another
feature. So you commit your changes on this demographic branch, and
switch back to the develop branch.

Commit your changes before switching

git commit -m 'refactored demographic gender and location
recommendations '

Switch to the develop branch

git checkout develop

Step 4: From this stable develop branch, you create another branch for a
new feature called friend_groups.

Create and switch to a new branch called friend_groups from the
develop branch

git checkout -b friend_groups

Step 5: After you finish your work on the friend_groups branch, you
commit your changes, switch back to the development branch, merge it

back to the develop branch, and push this to the remote repository’s
develop branch.

Commit your changes before switching

git commit -m 'finalized friend_groups recommendations '

Switch to the develop branch

git checkout develop

Merge the friend_groups branch into the develop branch

git merge --no-ff friends_groups

Push to the remote repository

git push origin develop

Step 6: Now, you can switch back to the demographic branch to continue
your progress on that feature.

Switch to the demographic branch

git checkout demographic

Scenario #2

Let's walk through the Git commands that go along with each step in the

scenario you just observed in the video.

Step 1: You check your commit history, seeing messages about the changes
you made and how well the code performed.

View the log history

git log

Step 2: The model at this commit seemed to score the highest, so you
decide to take a look.

Check out a commit

git checkout bc90f2cbc9dc4e802b46e7a153aa106dc9a88560

After inspecting your code, you realize what modifications made it perform
well, and use those for your model.

Step 3: Now, you're confident merging your changes back into the
development branch and pushing the updated recommendation engine.

Switch to the develop branch

git checkout develop

Merge the friend_groups branch into the develop branch

git merge --no-ff friend_groups

Push your changes to the remote repository

git push origin develop

Scenario #3

Let's walk through the Git commands that go along with each step in the
scenario you just observed in the video.

Step 1: Andrew commits his changes to the documentation branch,
switches to the development branch, and pulls down the latest changes
from the cloud on this development branch, including the change I merged
previously for the friends group feature.

Commit the changes on the documentation branch

git commit -m "standardized all docstrings in process.py"

Switch to the develop branch

git checkout develop

Pull the latest changes on the develop branch down

git pull

Step 2: Andrew merges his documentation branch into the develop branch
on his local repository, and then pushes his changes up to update the

develop branch on the remote repository.

Merge the documentation branch into the develop branch

git merge --no-ff documentation

Push the changes up to the remote repository

git push origin develop

Step 3: After the team reviews your work and Andrew's work, they merge
the updates from the development branch into the master branch. Then,
they push the changes to the master branch on the remote repository.
These changes are now in production.

Merge the develop branch into the master branch

git merge --no-ff develop

Push the changes up to the remote repository

git push origin master

Note on merge conflicts

For the most part, Git makes merging changes between branches really
simple. However, there are some cases where Git can become confused
about how to combine two changes, and asks you for help. This is called a
merge conflict.

Mostly commonly, this happens when two branches modify the same file.

For example, in this situation, let’s say you deleted a line that Andrew
modified on his branch. Git wouldn’t know whether to delete the line or
modify it. You need to tell Git which change to take, and some tools even
allow you to edit the change manually. If it isn’t straightforward, you may
have to consult with the developer of the other branch to handle a merge
conflict.

Model versioning
In the previous example, you may have noticed that each commit was
documented with a score for that model. This is one simple way to help you
keep track of model versions. Version control in data science can be tricky,
because there are many pieces involved that can be hard to track, such as
large amounts of data, model versions, seeds, and hyperparameters.

The following resources offer useful methods and tools for managing model
versions and large amounts of data. These are here for you to explore, but
are not necessary to know now as you start your journey as a data scientist.
On the job, you’ll always be learning new skills, and many of them will be
specific to the processes set in your company.

CHAPTER FIVE

Software Engineering Practices, Part 2
In part 2 of software engineering practices, you'll learn about the following
practices of software engineering and how they apply in data science.

Testing
Logging
Code reviews

Testing
Testing your code is essential before deployment. It helps you catch errors
and faulty conclusions before they make any major impact. Today,
employers are looking for data scientists with the skills to properly prepare
their code for an industry setting, which includes testing their code.

Testing And Data Science

Problems that could occur in data science aren’t always easily detectable;
you might have values being encoded incorrectly, features being used
inappropriately, or unexpected data breaking assumptions.

To catch these errors, you have to check for the quality and accuracy of your
analysis in addition to the quality of your code. Proper testing is necessary to
avoid unexpected surprises and have confidence in your results.

Test-driven development (TDD): A development process in which you write
tests for tasks before you even write the code to implement those tasks.

Unit test: A type of test that covers a “unit” of code—usually a single

function—independently from the rest of the program.

Unit tests

We want to test our functions in a way that is repeatable and automated.
Ideally, we'd run a test program that runs all our unit tests and cleanly lets
us know which ones failed and which ones succeeded. Fortunately, there are
great tools available in Python that we can use to create effective unit tests!

Unit test advantages and disadvantages

The advantage of unit tests is that they are isolated from the rest of your
program, and thus, no dependencies are involved. They don't require access
to databases, APIs, or other external sources of information. However,
passing unit tests isn’t always enough to prove that our program is working
successfully. To show that all the parts of our program work with each other
properly, communicating and transferring data between them correctly, we
use integration tests. In this lesson, we'll focus on unit tests; however, when
you start building larger programs, you will want to use integration tests as
well.

To learn more about integration testing and how integration tests relate to
unit tests, see Integration Testing. That article contains other very useful
links as well.

Unit Testing Tools

To install pytest, run pip install -U pytest in your terminal. You can see more
information on getting started here.

Create a test file starting with test_.
Define unit test functions that start with test_ inside the test file.
Enter pytest into your terminal in the directory of your test file
and it detects these tests for you.

test_ is the default; if you wish to change this, you can learn how in this
pytest configuration.

In the test output, periods represent successful unit tests and Fs represent
failed unit tests. Since all you see is which test functions failed, it's wise to
have only one assert statement per test. Otherwise, you won't know exactly
how many tests failed or which tests failed.

Your test won't be stopped by failed assert statements, but it will stop if you
have syntax errors.

Logging
Logging is valuable for understanding the events that occur while running
your program. For example, if you run your model overnight and the results
the following morning are not what you expect, log messages can help you
understand more about the context in those results occurred. Let's learn
about the qualities that make a log message effective.

Log messages

Logging is the process of recording messages to describe events that have
occurred while running your software. Let's take a look at a few examples,
and learn tips for writing good log messages.

Tip: Be professional and clear

Bad: Hmmm... this isn't working???

Bad: idk.... :(

Good: Couldn't parse file.

Tip: Be concise and use normal capitalization

Bad: Start Product Recommendation Process

Bad: We have completed the steps necessary and will now proceed
with the recommendation process for the records in our product
database.

Good: Generating product recommendations.

Tip: Choose the appropriate level for logging

Debug: Use this level for anything that happens in the program. Error: Use
this level to record any error that occurs. Info: Use this level to record all
actions that are user driven or system specific, such as regularly scheduled
operations.

Tip: Provide any useful information

Bad: Failed to read location data

Good: Failed to read location data: store_id 8324971

Questions to ask yourself when conducting a code review

First, let's look over some of the questions we might ask ourselves while
reviewing code. These are drawn from the concepts we've covered in these
last two lessons.

Is the code clean and modular?

Can I understand the code easily?
Does it use meaningful names and whitespace?
Is there duplicated code?
Can I provide another layer of abstraction?
Is each function and module necessary?
Is each function or module too long?

Is the code efficient?

Are there loops or other steps I can vectorize?
Can I use better data structures to optimize any steps?
Can I shorten the number of calculations needed for any steps?
Can I use generators or multiprocessing to optimize any steps?

Is the documentation effective?

Are inline comments concise and meaningful?
Is there complex code that's missing documentation?
Do functions use effective docstrings?
Is the necessary project documentation provided?

Is the code well tested?

Does the code high test coverage?

Do tests check for interesting cases?
Are the tests readable?
Can the tests be made more efficient?

Is the logging effective?

Are log messages clear, concise, and professional?
Do they include all relevant and useful information?
Do they use the appropriate logging level?

Tips for conducting a code review

Now that we know what we're looking for, let's go over some tips on how to
actually write your code review. When your coworker finishes up some code
that they want to merge to the team's code base, they might send it to you
for review. You provide feedback and suggestions, and then they may make
changes and send it back to you. When you are happy with the code, you
approve it and it gets merged to the team's code base.

As you may have noticed, with code reviews you are now dealing with
people, not just computers. So it's important to be thoughtful of their ideas
and efforts. You are in a team and there will be differences in preferences.
The goal of code review isn't to make all code follow your personal
preferences, but to ensure it meets a standard of quality for the whole
team.

Tip: Use a code linter

This isn't really a tip for code review, but it can save you lots of time in a

code review. Using a Python code linter like pylint can automatically check
for coding standards and PEP 8 guidelines for you. It's also a good idea to
agree on a style guide as a team to handle disagreements on code style,
whether that's an existing style guide or one you create together
incrementally as a team.

Tip: Explain issues and make suggestions

Rather than commanding people to change their code a specific way
because it's better, it will go a long way to explain to them the consequences
of the current code and suggest changes to improve it. They will be much
more receptive to your feedback if they understand your thought process
and are accepting recommendations, rather than following commands. They
also may have done it a certain way intentionally, and framing it as a
suggestion promotes a constructive discussion, rather than opposition.

BAD: Make model evaluation code its own module - too repetitive.

BETTER: Make the model evaluation code its own module. This will simplify
models.py to be less repetitive and focus primarily on building models.

GOOD: How about we consider making the model evaluation code its own
module? This would simplify models.py to only include code for building
models. Organizing these evaluations methods into separate functions would
also allow us to reuse them with different models without repeating code.

Tip: Keep your comments objective

Try to avoid using the words "I" and "you" in your comments. You want to

avoid comments that sound personal to bring the attention of the review to
the code and not to themselves.

BAD: I wouldn't groupby genre twice like you did here... Just compute it once
and use that for your aggregations.

BAD: You create this groupby dataframe twice here. Just compute it once,
save it as groupby_genre and then use that to get your average prices and
views.

GOOD: Can we group by genre at the beginning of the function and then
save that as a groupby object? We could then reference that object to get
the average prices and views without computing groupby twice.

Tip: Provide code examples

When providing a code review, you can save the author time and make it
easy for them to act on your feedback by writing out your code suggestions.
This shows you are willing to spend some extra time to review their code
and help them out. It can also just be much quicker for you to demonstrate
concepts through code rather than explanations.

Let's say you were reviewing code that included the following lines:

first_names = []

last_names = []

for name in enumerate(df.name):

 first, last = name.split(' ')

 first_names.append(first)

 last_names.append(last)

df['first_name'] = first_names

df['last_names'] = last_names

BAD: You can do this all in one step by using the pandas str.split method.

GOOD: We can actually simplify this step to the line below using the pandas
str.split method. Found this on this stack overflow post:
https://stackoverflow.com/questions/14745022/how-to-split-a-column-
into-two-columns

df['first_name'], df['last_name'] = df['name'].str.split(' ', 1).str

Introduction to Object-Oriented
Programming

Procedural versus object-oriented
programming
Lesson outline

Object-oriented programming syntax
Procedural vs. object-oriented programming
Classes, objects, methods and attributes
Coding a class
Magic methods
Inheritance

Using object-oriented programming to make a Python package
Making a package
Tour of scikit-learn source code
Putting your package on PyPi

Why object-oriented programming?

Object-oriented programming has a few benefits over procedural
programming, which is the programming style you most likely first learned.
As you'll see in this lesson:

Object-oriented programming allows you to create large, modular
programs that can easily expand over time.
Object-oriented programs hide the implementation from the end
user.

Consider Python packages like Scikit-learn, pandas, and NumPy. These are all
Python packages built with object-oriented programming. Scikit-learn, for
example, is a relatively large and complex package built with object-oriented
programming. This package has expanded over the years with new
functionality and new algorithms.

When you train a machine learning algorithm with Scikit-learn, you don't
have to know anything about how the algorithms work or how they were
coded. You can focus directly on the modeling.

Here's an example taken from the Scikit-learn website:

from sklearn import svm

X = [[0, 0], [1, 1]]

y = [0, 1]

clf = svm.SVC()

clf.fit(X, y)

How does Scikit-learn train the SVM model? You don't need to know
because the implementation is hidden with object-oriented programming. If
the implementation changes, you (as a user of Scikit-learn) might not ever
find out. Whether or not you should understand how SVM works is a
different question.

In this lesson, you'll practice the fundamentals of object-oriented
programming. By the end of the lesson, you'll have built a Python package
using object-oriented programming.

Objects are defined by characteristics and actions

Here is a reminder of what is a characteristic and what is an action.

Objects are defined by their characteristics and their actions

Characteristics and actions in English grammar

You can also think about characteristics and actions is in terms of English
grammar. A characteristic corresponds to a noun and an action corresponds
to a verb.

Let's pick something from the real world: a dog. Some characteristics of the
dog include the dog's weight, color, breed, and height. These are all nouns.
Some actions a dog can take include to bark, to run, to bite, and to eat.
These are all verbs.

Class, object, method, and attribute
Object-oriented programming (OOP) vocabulary

Class: A blueprint consisting of methods and attributes.

Object: An instance of a class. It can help to think of objects as
something in the real world like a yellow pencil, a small dog, or a
blue shirt. However, as you'll see later in the lesson, objects can
be more abstract.
Attribute: A descriptor or characteristic. Examples would be color,
length, size, etc. These attributes can take on specific values like
blue, 3 inches, large, etc.
Method: An action that a class or object could take.
OOP: A commonly used abbreviation for object-oriented
programming.
Encapsulation: One of the fundamental ideas behind object-
oriented programming is called encapsulation: you can combine
functions and data all into a single entity. In object-oriented
programming, this single entity is called a class. Encapsulation
allows you to hide implementation details, much like how the
scikit-learn package hides the implementation of machine
learning algorithms.

In English, you might hear an attribute described as a property, description,
feature, quality, trait, or characteristic. All of these are saying the same
thing.

Here is a reminder of how a class, an object, attributes, and methods relate
to each other.

A class is a blueprint consisting of attributes and methods.

OOP Syntax
Object-oriented programming syntax

In this video, you'll see what a class and object look like in Python. In the
next section, you'll have the chance to play around with the code. Finally,
you'll write your own class.

Function versus method
In the video above, at 1:44, the dialogue mistakenly calls init a function
rather than a method. Why is init not a function?

A function and a method look very similar. They both use the def keyword.
They also have inputs and return outputs. The difference is that a method is
inside of a class whereas a function is outside of a class.

What is self?

If you instantiate two objects, how does Python differentiate between these
two objects?

shirt_one = Shirt('red', 'S', 'short-sleeve', 15)

shirt_two = Shirt('yellow', 'M', 'long-sleeve', 20)

That's where self comes into play. If you call the change_price method on
shirt_one, how does Python know to change the price of shirt_one and not
of shirt_two?

shirt_one.change_price(12)

Behind the scenes, Python is calling the change_price method:

 def change_price(self, new_price):

 self.price = new_price

Self tells Python where to look in the computer's memory for the shirt_one
object. Then, Python changes the price of the shirt_one object. When you
call the change_price method, shirt_one.change_price(12), self is implicitly
passed in.

The word self is just a convention. You could actually use any other name as
long as you are consisten, but you should use self to avoid confusing people.

Exercise: Use the Shirt class

Shirt class exercise

You've seen what a class looks like and how to instantiate an object. Now it's
your turn to write code that instantiates a shirt object.

You need to download three files for this exercise. These files are located on
this page in the Supporting materials section.

Shirt_exercise.ipynb contains explanations and instructions.
Answer.py containing solution to the exercise.
Tests.py tests for checking your code: You can run these tests
using the last code cell at the bottom of the notebook.

Getting started

Open the Shirt Exercise.ipynb notebook file using Jupyter Notebook and
follow the instructions in the notebook to complete the exercise.

Notes about OOP
Set and get methods

The last part of the video mentioned that accessing attributes in Python can
be somewhat different than in other programming languages like Java and
C++. This section goes into further detail.

The Shirt class has a method to change the price of the shirt:
shirt_one.change_price(20). In Python, you can also change the values of an
attribute with the following syntax:

shirt_one.price = 10

shirt_one.price = 20

shirt_one.color = 'red'

shirt_one.size = 'M'

shirt_one.style = 'long_sleeve'

This code accesses and changes the price, color, size, and style attributes
directly. Accessing attributes directly would be frowned upon in many other
languages, but not in Python. Instead, the general object-oriented
programming convention is to use methods to access attributes or change
attribute values. These methods are called set and get methods or setter
and getter methods.

A get method is for obtaining an attribute value. A set method is for
changing an attribute value. If you were writing a Shirt class, you could use
the following code:

class Shirt:

 def __init__(self, shirt_color, shirt_size, shirt_style, shirt_price):

 self._price = shirt_price

 def get_price(self):

 return self._price

 def set_price(self, new_price):

 self._price = new_price

Instantiating and using an object might look like the following code:

shirt_one = Shirt('yellow', 'M', 'long-sleeve', 15)

print(shirt_one.get_price())

shirt_one.set_price(10)

In the class definition, the underscore in front of price is a somewhat
controversial Python convention. In other languages like C++ or Java, price
could be explicitly labeled as a private variable. This would prohibit an object
from accessing the price attribute directly like shirt_one._price = 15. Unlike
other languages, Python does not distinguish between private and public
variables. Therefore, there is some controversy about using the underscore
convention as well as get and set methods in Python. Why use get and set
methods in Python when Python wasn't designed to use them?

At the same time, you'll find that some Python programmers develop object-
oriented programs using get and set methods anyway. Following the Python
convention, the underscore in front of price is to let a programmer know
that price should only be accessed with get and set methods rather than

accessing price directly with shirt_one._price. However, a programmer could
still access _price directly because there is nothing in the Python language to
prevent the direct access.

To reiterate, a programmer could technically still do something like
shirt_one._price = 10, and the code would work. But accessing price directly,
in this case, would not be following the intent of how the Shirt class was
designed.

One of the benefits of set and get methods is that, as previously mentioned
in the course, you can hide the implementation from your user. Perhaps,
originally, a variable was coded as a list and later became a dictionary. With
set and get methods, you could easily change how that variable gets
accessed. Without set and get methods, you'd have to go to every place in
the code that accessed the variable directly and change the code.

You can read more about get and set methods in Python on this Python
Tutorial site.

Attributes

There are some drawbacks to accessing attributes directly versus writing a
method for accessing attributes.

In terms of object-oriented programming, the rules in Python are a bit looser
than in other programming languages. As previously mentioned, in some
languages, like C++, you can explicitly state whether or not an object should
be allowed to change or access an attribute's values directly. Python does
not have this option.

Why might it be better to change a value with a method instead of directly?
Changing values via a method gives you more flexibility in the long-term.
What if the units of measurement change, like if the store was originally
meant to work in US dollars and now has to handle Euros? Here's an
example:

Example: Dollars versus Euros

If you've changed attribute values directly, you'll have to go through your
code and find all the places where US dollars were used, such as in the
following:

shirt_one.price = 10 # US dollars

Then, you'll have to manually change them to Euros.

shirt_one.price = 8 # Euros

If you had used a method, then you would only have to change the method
to convert from dollars to Euros.

def change_price(self, new_price):

 self.price = new_price * 0.81 # convert dollars to Euros

shirt_one.change_price(10)

For the purposes of this introduction to object-oriented programming, you
don't need to worry about updating attributes directly versus with a
method; however, if you decide to further your study of object-oriented
programming, especially in another language such as C++ or Java, you'll have
to take this into consideration.

Modularized code

Thus far in the lesson, all of the code has been in Jupyter Notebooks. For
example, in the previous exercise, a code cell loaded the Shirt class, which
gave you access to the shirt class throughout the rest of the notebook.

If you were developing a software program, you would want to modularize
this code. You would put the Shirt class into its own Python script, which you
might call shirt.py. In another Python script, you would import the Shirt class
with a line like from shirt import Shirt.

For now, as you get used to OOP syntax, you'll be completing exercises in
Jupyter Notebooks. Midway through the lesson, you'll modularize object-
oriented code into separate files.

Exercise: Use the Pants class

Now that you've had some practice instantiating objects, it's time to write
your own class from scratch.

This lesson has two parts.

In the first part, you'll write a Pants class. This class is similar to

the Shirt class with a couple of changes. Then you'll practice
instantiating Pants objects.
In the second part, you'll write another class called SalesPerson.
You'll also instantiate objects for the SalesPerson.

This exercise requires two files, which are located on this page in the
Supporting Materials section.

exercise.ipynbcontains explanations and instructions.
answer.py contains solution to the exercise.

Getting started

Open the exercise.ipynb notebook file using Jupyter Notebook and follow
the instructions in the notebook to complete the exercise

Commenting object-oriented code
Did you notice anything special about the answer key in the previous
exercise? The Pants class and the SalesPerson class contained docstrings! A
docstring is a type of comment that describes how a Python module,
function, class, or method works. Docstrings are not unique to object-
oriented programming.

For this section of the course, you just need to remember to use docstrings
and to comment your code. It will help you understand and maintain your
code and even make you a better job candidate.

From this point on, please always comment your code. Use both inline
comments and document-level comments as appropriate.

To learn more about docstrings, see Example Google Style Python
Docstrings.

Docstrings and object-oriented code

The following example shows a class with docstrings. Here are a few things
to keep in mind:

Make sure to indent your docstrings correctly or the code will not
run. A docstring should be indented one indentation underneath
the class or method being described.
You don't have to define self in your method docstrings. It's
understood that any method will have self as the first method
input.

class Pants:

 """The Pants class represents an article of clothing sold in a store

 """

 def __init__(self, color, waist_size, length, price):

 """Method for initializing a Pants object

 Args:

 color (str)

 waist_size (int)

 length (int)

 price (float)

 Attributes:

 color (str): color of a pants object

 waist_size (str): waist size of a pants object

 length (str): length of a pants object

 price (float): price of a pants object

 """

 self.color = color

 self.waist_size = waist_size

 self.length = length

 self.price = price

 def change_price(self, new_price):

 """The change_price method changes the price attribute of a pants
object

 Args:

 new_price (float): the new price of the pants object

 Returns: None

 """

 self.price = new_price

 def discount(self, percentage):

 """The discount method outputs a discounted price of a pants object

 Args:

 percentage (float): a decimal representing the amount to discount

 Returns:

 float: the discounted price

 """

 return self.price * (1 - percentage)

A Gaussian class
Resources for review

The example in the next part of the lesson assumes you are familiar with
Gaussian and binomial distributions.

Here are a few formulas that might be helpful:

Gaussian distribution formulas

probability density function

	CHAPTER ONE
	What is Machine Learning
	Components of Machine Learning
	Clay Analogy for Machine Learning
	What are machine learning models?
	Model Training

	CHAPTER TWO
	Introduction to the Five Machine Learning Steps
	Step One: Define the Problem.
	Supervised and Unsupervised Learning
	Step Two: Build a Dataset
	Step Three: Model Training
	Step Four: Model Evaluation
	Step Five: Model Inference
	Introduction to Examples
	Example One: House Price Prediction
	Example Two: Book Genre Exploration
	Example Three: Spill Detection from Video

	CHAPTER THREE
	Machine Learning with AWS
	AWS Account Requirements
	Reinforcement Learning with AWS DeepRacer
	Putting Your Spin on AWS DeepRacer:
	Introduction to Generative AI
	Generative AI Models
	Generative AI with AWS DeepComposer
	GANs with AWS DeepComposer
	Training Methodology
	AR-CNN with AWS DeepComposer
	Build a Custom GAN Model (Optional): Part 1

	CHAPTER FOUR
	Software Engineering Practices, Part I
	Clean and Modular Code
	Refactoring Code
	Writing Clean Code
	Writing Modular Code
	Efficient Code
	Documentation
	Inline Comments
	Docstrings
	Multi-line docstring
	Version Control In Data Science
	Model versioning

	CHAPTER FIVE
	Software Engineering Practices, Part 2
	Testing
	Logging
	Introduction to Object-Oriented Programming
	Procedural versus object-oriented programming
	Class, object, method, and attribute
	OOP Syntax
	Function versus method
	Notes about OOP
	Commenting object-oriented code
	A Gaussian class

