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A century ago, Lewis Fry Richardson introduced the concept of energy cascades 
in turbulence. Since this conceptual breakthrough, turbulence has been studied in 
diverse systems and our knowledge has increased considerably through theoret­
ical, numerical, experimental, and observational advances. Eddy turbulence and 
wave turbulence are the two regimes we can find in nature. So far, most attention 
has been devoted to the former regime, eddy turbulence, which is often observed 
in water. However, physicists are often interested in systems for which wave turbu­
lence is relevant. This textbook deals with wave turbulence and systems composed 
of a sea of weak waves interacting nonlinearly. After a general introduction which 
includes a brief history of the field, the theory of wave turbulence is introduced 
rigorously for surface waves. The theory is then applied to examples in hydrody­
namics, plasma physics, astrophysics, and cosmology, giving the reader a modern 
and interdisciplinary view of the subject.
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Preface

Ink, this darkness from which a light comes out
Victor Hugo, Derniere gerbe

Anyone who has ever flown in an aircraft knows how to define a turbulence zone: it 
is characterized by unpredictable, sometimes violent, often unpleasant jolts, which 
can even cause some anxiety in the passenger. For the physicist, on the other hand, 
turbulence is a pleasant, fascinating, and mysterious subject. This book proposes 
a journey into the world of turbulence in which we will gradually unveil the main 
fundamental laws governing the physics of turbulence where waves are omnipres­
ent. We will see that since Reynolds’ first historical experiment on liquids in 1883, 
turbulence has been studied in a wide variety of systems: from surface waves on 
the sea to gravitational waves, turbulence is now ubiquitous in physics.

Eddy turbulence and wave turbulence are the two regimes that we may 
encounter in nature. The attention of fluid mechanics being mainly focused on 
incompressible hydrodynamics, it is usually the first regime that is treated in books 
on turbulence. However, physicists are interested in much more diverse systems 
where waves are often present and for which the second regime (the subject of this 
book) is relevant. Wave turbulence offers the possibility of developing an analyt­
ical theory. Beyond its mathematical beauty, this spectral theory allows a deep 
understanding of weakly nonlinear systems and to develop a physical intuition on 
strong wave turbulence. Weak and strong wave turbulence are not independent 
of each other. On the contrary, one can emerge from the other during the cascade 
process; the two regimes can also coexist and be in permanent interaction. Without 
being exhaustive, this book offers a relatively broad overview on wave turbulence 
which should enable beginning researchers to acquire fundamental knowledge on 
subjects which are sometimes under development.

The theoretical framework chosen in this book will be that of statistically homo­
geneous turbulence for which a universal behavior is expected. In Chapter 1, a 

xi



xii Preface

general introduction to turbulence is given where we find a brief history of the evo­
lution of ideas, and the emergence of the main concepts and results. This history 
is of particular importance today, a century after Richardson (1922) introduced 
the concept of energy cascade. The fundamentals of turbulence are outlined in 
the physical (Chapter 2) and spectral (Chapter 3) spaces, which constitutes Part I. 
This first part focuses on incompressible hydrodynamics and thus on eddy tur­
bulence. With Part II, we enter into the core of the book. Wave turbulence is 
introduced in Chapter 4, with a brief history and a presentation of the multiple 
scale method for weakly nonlinear systems. In Chapter 5, the theory of weak 
wave turbulence is presented in great detail for capillary waves, which is one of 
the simplest systems (three-wave interactions, two-dimensional, Navier-Stokes 
equations). Various examples dealing with three-wave interactions are discussed 
in Chapters 6, 7, and 8. In Chapter 9, we conclude with anew topic - gravitational 
wave turbulence - which is far more complex and involves four-wave interactions.

This book is based on a course on turbulence that I have been giving for sev­
eral years at Ecole polytechnique to students of the Master’s degree in plasma 
physics (from the University of Paris-Saclay, Institut Polytechnique de Paris, and 
Sorbonne University). It is thus, in part, the result of fruitful interactions with my 
students, whom I would like to thank. I would also like to thank all my colleagues 
with whom I share my passion on this subject and who have contributed, in their 
own way, to the writing of this book; I would like to thank in particular Nahuel 
Andres, Supratik Banerjee, Amitava Battacharjee, Eric Buchlin, Pierre-Philippe 
Cortet, Vincent David, Eric Falcon, Stephan Fauve, Ozgur Gurcan, Lina Hadid, 
Romain Meyrand, Frederic Moisy, Sergey Nazarenko, Alan Newell, Helene 
Politano, Fouad Sahraoui, and, of course, Annick Pouquet, who introduced me 
to turbulence.
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General Introduction

Turbulence is often defined as the chaotic state of a fluid. The example that imme­
diately comes to mind is that of water: turbulence in water takes the form of eddies 
whose size, location, and orientation are constantly changing. Such a flow is char­
acterized by a very disordered behavior difficult to predict and by the existence 
of multiple spatial and temporal scales. There are many experiments of everyday 
life where the presence of turbulence can be verified: the agitated motions of a 
river downstream of an obstacle, those of smoke escaping from a chimney, or the 
turbulence zones that one sometimes crosses in an airplane.

Experiencing turbulence at our scale seems easy since it is not necessary to use 
powerful microscopes or telescopes. A detailed analytical understanding of tur­
bulence remains, however, limited because of the intrinsic difficulty of nonlinear 
physics. As a result, we often read that turbulence is one of the last great unre­
solved problems of classical physics. This long-held message, found, for example, 
in Feynman et al. (1964), no longer corresponds to the modern vision. Indeed, even 
if turbulence remains a very active research topic, we have to date many theoreti­
cal, numerical, experimental, and observational results that allow us to understand 
in detail a part of the physics of turbulence.

This book deals mainly with wave turbulence. However, wave turbulence is not 
totally disconnected from eddy turbulence, from which the main concepts have 
been borrowed (e.g. inertial range, cascade, two-point correlation function, spec­
tral approach). Moreover, very often, wave turbulence and eddy turbulence can 
coexist as in rotating hydrodynamics. This is why a broad introduction to eddy tur­
bulence is given (Part I) before moving on to wave turbulence (Part II), giving this 
book, for the first time, a unified view on turbulence. We will see that many results 
have been obtained since the first steps taken by Richardson (1922), a century ago. 
The many examples discussed in this book reveal that the classical presentation of 
turbulence, based on the Navier-Stokes equations (Frisch, 1995; Pope, 2000), is 
somewhat too simplistic because turbulence is found in various environments, in 
various forms. If we restrict ourselves to the standard example of incompressible 
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2 1 General Introduction

hydrodynamics, the simple introduction of a uniform rotation for describing geo­
physical fluids drastically changes the physics of turbulence by adding anisotropy. 
In astrophysics, 99 percent of the visible matter of the Universe is in the form of 
plasma, which is generally very turbulent, but plasma turbulence mixes waves and 
eddies. The regime of wave turbulence, described in Part II, can emerge from a 
vibrating steel plate; here, we are far from the classical image of eddies in water. 
Finally, recent studies reveal that the cosmological inflation that followed the Big 
Bang could have its origin in strong gravitational wave turbulence.

The objective of Part I, which follows this first chapter, is to present the funda­
mentals of turbulence. We will start with eddy turbulence, where the first concepts 
and laws have emerged. We will limit ourselves to the most important physical 
laws. The theoretical framework will be that of a statistically homogeneous turbu­
lence for which a universal behavior is expected. The problems of inhomogeneity 
inherent to laboratory experiments will therefore not be dealt with. Through the 
examples discussed, we will gradually reveal the state of knowledge in turbulence. 
To help us in this task, we begin with a brief historical presentation.

1.1 Brief History

1.1.1 First Cognitive Advances

Leonardo da Vinci was probably the first to introduce the word turbulence (tur- 
bulenza) at the beginning of the sixteenth century to describe the tumultuous 
movements of water. However, the word was not commonly used by scientists 
until much later.1

The first notable scientific breakthrough in the field of turbulence can be 
attributed to Reynolds (1883): he showed experimentally that the transition 
between the laminar and turbulent regimes was linked to a dimensionless num­
ber - the Reynolds number.2 The experiment, which can be easily reproduced in 
a laboratory, consists of introducing a colored stream of the same liquid as cir­
culating in a straight transparent tube (see Figure 1.1). It can be shown that the 
transition to turbulence occurs when the Reynolds number becomes greater than 
a critical value. An important step in this discovery is the observation that the ten­
dency to form eddies increases with the temperature of the water, and Reynolds 
knew that in this case the viscosity decreases. He also showed the important role 
played by the development of instabilities in this transition to turbulence.

World War I was a time of further important advances. The war efforts in 
Germany and, in particular, under the influence of Prandt in Gottingen, directed

1 For example, the book of Boussinesq (1897) still bears the evocative title: “Theory of the Swirling and 
Tumultuous Flow of Liquids in Straight Beds with a Large Section.”

2 The Reynolds number measures the ratio between the inertial force and the viscous force. We will come back 
to this definition in Section 1.3.
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Turbulent flow (observed with an electric spark)

Figure 1.1 Historical experiment of Reynolds (1883) (top) and his observations (bottom). 
The original device is kept at the University of Manchester.

the research in the field of aerodynamics to the study of the fall of bombs in 
air or water. It is a question here of studying, for example, the drag of a sphere; 
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this work was then used for the design of airplanes. After the war, research in 
turbulence increased: for example, we can mention the results on the inhomoge­
neous effects due to walls in wind tunnel experiments (Burgers, 1925). But it is 
with Richardson (1922) that a second major breakthrough in turbulence arrives: 
in his book on weather predictions and numerical calculation.3 Richardson intro­
duced the fundamental concept of energy cascade. Inspired by the Irish writer J. 
Swift, Richardson wrote “Big whirls have little whirls that feed on their velocity. 
Little whirls have lesser whirls and so on to viscosity - in the molecular sense” 
(page 66). We find here the idea of a cascade of eddies from large to small spatial 
scales.

It is probably with this idea in mind that Richardson (1926) formulated the 
empirical 4=3 law4 to describe the turbulent diffusion process. This law differs 
from the one proposed by Einstein in 1905 on the diffusion of small particles 
in a liquid (Brownian motion), which was in clear disagreement with turbulence 
experiments where a much higher diffusion was found.5 The proposed new law 
is characterized by a nonconstant diffusion coefficient D', which depends on the 
scale being considered, such that:

D' - '4/3. (1.1)

This relationship reflects the fact that in a turbulent liquid the diffusivity increases 
with the mean separation between pairs of particles. This scaling law is fundamen­
tal because we find there the premises of the exact four-fifths law of Kolmogorov 
(1941a), with which it is in agreement dimensionally.

It was during this interwar period that the first works based on two-point 
correlations emerged (Taylor, 1935),6 as well as works on the spectral anal­
ysis of fluctuations by Fourier transform, which have become the basis of 
modern research in turbulence (Motzfeld, 1938; Taylor, 1938). The correlation 
approach leads, in particular, to the Karman-Howarth equation (von Karman and 
Howarth,1938) for an incompressible, statistically homogeneous, and isotropic7 
hydrodynamic turbulence. This equation describes the fluid dynamics through 
correlators - two-point measurements in physical space. As we will see in Chap­
ter 2, this result is central for the establishment of the exact four-fifths law of 
Kolmogorov (1941a), which is not a dynamic equation but a statistical solution of 
Navier-Stokes equations.

3 “Numerical calculation” here means calculation carried out by hand with a method essentially based on finite 
differences.

4 This empirical law should not be confused with the exact four-thirds law which deals with structure functions 
(see Chapter 2).

5 It is known that a cloud of milk dilutes more rapidly in tea if stirred with a spoon.
6 It is the British Francis Galton (1822-1911) who seems to have been the first to correctly introduce the 

concept of correlation for statistical studies in biology.
7 This is the strong isotropy that is considered here, which we will return to in Section 1.4.
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1.1.2 Kolmogorov’s Law and Intermittency

In the 1930s and under the leadership of the mathematician Kolmogorov, the 
Soviet school became very active in turbulence. At that time, Kolmogorov was 
working on stochastic processes and random functions. It was therefore natural 
that he turned his attention to turbulence, where a pool of data was available. 
Based on some of the work described in the Section 1.1.1, Kolmogorov and his 
student Obukhov set out to develop a theory for the standard case of incompressi­
ble, statistically homogeneous, and isotropic hydrodynamic turbulence. Based, in 
particular, on the Karman-Howarth equation, Kolmogorov (1941a,b) established 
the first exact statistical law of turbulence - known as the four-fifths law - which 
relates a third-order structure function involving the difference of the component 
in direction ' of the velocity between two points separated by the vector ', the 
distance ', and the mean rate of dissipation of kinetic energy " (hi means the 
ensemble average):8

4
- 5"' Dh[U'(x C ') - U'(x)]3i. (1.2)

To establish this universal law, Kolmogorov assumes that fully developed turbu­
lence becomes isotropic on a sufficiently small scale, regardless of the nature of 
the mean flow. He also assumes that " becomes independent of viscosity within 
the limits of large Reynolds numbers (i.e. low viscosity); this is what is often 
referred to today as the zeroth law of turbulence. After several years of research, a 
first exact law was established for which it was possible to get rid of the nonlinear 
closure problem. The trick used to achieve this was to relate the cubic nonlin­
ear term to the mean energy dissipation in the inertial range, that is, in a limited 
range of scales between the larger scales where inhomogeneous effects can be felt, 
and the smaller scales where viscosity efficiently damps the fluctuations. We will 
return at length to the law (1.2) in Chapter 2. Kolmogorov’s law remained unno­
ticed for several years (outside the USSR). It was Batchelor (1946) who was the 
first to discover the existence of Kolmogorov’s articles:9 he immediately realized 
the importance of this work, which he shared with the scientific community at 
the Sixth International Congress of Applied Mathematics held in Paris in 1946 
(Davidson et al., 2011).

For his part, independently of Kolmogorov but inspired by the ideas of Richard­
son (1922), Taylor (1938), and the work by Millionschikov (1939, 1941), who was 
another student of Kolmogorov, Obukhov (1941b) proposed a nonexact spectral 
theory of turbulence based on the relationship:
8 Kolmogorov was probably the first to be interested in structure functions that are constructed from the differ­

ences and not from the products of a field (here the velocity field), as was the case with the Karman-Howarth 
equation.

9 The English version of the Russian papers had been received in the library of the Cambridge Philosophical 
Society.
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CDDT, (1.3)
@ E 
@tt

with E the energy spectrum, D the viscous dissipation, and T the energy transfer 
(in Fourier space). The artificial closure proposed is based on an average over 
small scales. He obtained as a solution the energy spectrum:10

E(k) - k“5=3, (1.4)

which is dimensionally compatible with Kolmogorov’s exact law. In extend­
ing this study, Obukhov was then able to provide a theoretical justification for 
Richardson’s (1926) empirical 4/3 law of diffusion. Later, Yaglom (1949) obtained 
a new exact law, applied this time to the passive scalar: this model describes how 
a scalar evolves, for example the temperature or the concentration of a product, in 
a turbulent fluid for which the velocity fluctuations are given.

For a short period of time Kolmogorov thought that the mean rate of energy 
dissipation was the key to establishing a more general exact law describing the sta­
tistics at any order in terms of a velocity structure function. This general law would 
have provided a complete statistical solution to the problem of hydrodynamic tur­
bulence. But in 1944, Landau11 pointed out the weakness of the demonstration 
(proposed by Kolmogorov during a seminar), which we will come back to in 
Chapter 2: it does not take into account the possible local fluctuations of ", a 
property called intermittency. It took about 20 years for Kolmogorov (1962) and 
Oboukhov (1962) to propose, in response to Landau, a model (and not an exact 
law) of intermittency based on a log-normal statistics which incorporates the exact 
four-fifths law as a special case. Kolmogorov’s answer was given (in French) at a 
conference held in Marseilles in 1961 to celebrate the opening of the Institut de 
Mecanique Statistique de la Turbulence. This conference became famous because 
it brought together for the first time all the major specialists (American, European, 
and Soviet) on the subject. It was also during this conference that the first energy 
spectrum in k“5=3 measured at sea was announced (Grant et al., 1962).

Basically, the notion of intermittency is related to the concentration of dissi­
pation in localized structures of vorticity. As mentioned by Kolmogorov, inter­
mittency may slightly modify the —5=3 exponent of the energy spectrum, but its 
most important contribution is expected for statistical quantities of higher orders 
(the exact law is of course not affected). This new formulation is at the origin of 
work, in particular, on the concept of fractal dimension as a model of intermittency 
(Mandelbrot, 1974; Frisch et al., 1978) - see Chapter 2. It is interesting to note 
that we already find the concept of fractional dimension in Richardson’s (1922) 
book, where the study of geographical boundaries is discussed.

10 In general, this solution is called the Kolmogorov spectrum, but it would be more accurate to call it the 
Kolmogorov-Obukhov spectrum. This spectrum was also obtained independently by other researchers, such 
as Onsager (1945) and Heisenberg (1948).

11 Landau’s remark (Landau and Lifshitz, 1987) can be found in the original 1944 book (Davidson et al., 2011).
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1.1.3 Spectral Theory and Closure

In this postwar period, the theoretical foundations of turbulence began to be estab­
lished. The first book exclusively dedicated to this subject is that of Batchelor 
(1953), which still remains a standard reference on the subject: it deals with sta­
tistically homogeneous turbulence. From the 1950s, a major objective seemed to 
be within the reach of theorists: developing a theory for homogeneous and iso­
tropic turbulence in order to rigorously obtain the energy spectrum. The work 
of Millionschikov (1941) (see also Chandrasekhar, 1955) based on the quasi­
normal approximation (QN) had opened the way: this approximation - a closure - 
assumes that moments of order four and two are related as in the case of a normal 
(Gaussian) law without making this approximation for moments of order three 
(which would then be zero, making the problem trivial). Kraichnan (1957) was 
the first to point out that this closure was inconsistent because it violated some 
statistical inequalities (realizability conditions), and Ogura (1963) demonstrated 
numerically that this closure could lead to a negative energy spectrum for some 
wavenumbers.

In this quest, Kraichnan (1958, 1959) proposed a sophisticated theory which 
does not have the defects we have just mentioned: it is the direct interac­
tion approximation (DIA), which is based on field theory methods, a domain 
in which Kraichnan was originally trained.12 The fundamental idea of this 
approach is that a fluid perturbed over a wavenumber interval will have its 
perturbation spread over a large number of modes. Within the limit L ! C1, 
with L being the side of the cube in which the fluid is confined, this inter­
val becomes infinite in size, which suggests that the mode coupling becomes 
infinitely weak. The response to the perturbation can then be treated in a sys­
tematic way. Under certain assumptions, two integro-differential equations are 
obtained for the correlation functions in two points of space and two of time, 
and the response function. The inferred prediction for the energy spectrum, in 
k“3=2, is, however, not in dimensional agreement with Kolmogorov’s theory, nor 
with the main spectral measurements. Improvements were then made (Lagrangian 
approach) to solve some problems (noninvariance by random Galilean transfor­
mation, Kolmogorov spectrum) (Kraichnan, 1966): this new theory can be seen 
as the most sophisticated closure model.13 This work has led, in particular, to 
the development of the EDQNM (eddy-damped quasi-normal Markovian) clo­
sure model (Orszag, 1970), still widely used today, to which we will return in 
Chapter 3.

12 Kraichnan became interested in turbulence in the early 1950s while he was Einstein’s postdoctoral fellow. 
Together, they searched for nonlinear solutions to the unified field equations.

13 In (strong) eddy turbulence, no exact spectral theory with an analytical closure has been found to date. 
This contrasts with the (weak) wave turbulence regime, for which an asymptotic closure is possible (see 
Chapter 4).
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1.1.4 Inverse Cascade

Two-dimensional hydrodynamic (eddy) turbulence is the first example where an 
inverse cascade was suspected. The motivation for the study of such a system may 
seem on the face ofit surprising, but several works showed that a two-dimensional 
approach could account for the atmospheric dynamics quite satisfactorily (Rossby 
and collaborators, 1939). We now know that the rotation, or stratification, of the 
Earth’s atmosphere tends to confine its nonlinear dynamics to horizontal planes.14 
The first work on two-dimensional hydrodynamic turbulence dates back to the 
1950s with, for example, Lee (1951), who demonstrated that a direct energy 
cascade would violate the conservation of enstrophy (proportional to vorticity 
squared), which is the second inviscid invariant (i.e. at zero viscosity) of the 
equations. Batchelor (1953) had also noted at the end of his book that the exist­
ence of this second invariant should contribute to the emergence, by aggregation, 
of larger and larger eddies. He concluded by asserting the very great differ­
ence between two- and three-dimensional turbulence. By using the two inviscid 
invariants, energy and enstrophy, Fj0rtoft (1953) was able on his part to demon­
strate, in particular with dimensional arguments, that the energy should cascade 
preferentially towards large scales.

It is in this context, clearly in favor of an inverse energy cascade, that Kraichnan 
became interested in two-dimensional turbulence. Using an analytical devel­
opment of Navier-Stokes equations in Fourier space, the use of symmetries, 
and under certain hypotheses such as the scale invariance of triple moments, 
Kraichnan (1967) rigorously demonstrated the existence of a dual cascade - that 
is, in two different directions - of energy and enstrophy (see Chapter 3). This 
prediction is in agreement with previous analyses and the existence of a direct 
cascade of enstrophy and an inverse cascade of energy for which the proposed 
(nonexact) spectrum is in k-5=3.

The existence in the same system of two different cascades was quite new in 
eddy turbulence. This prediction has since been accurately verified both experi­
mentally and numerically (Leith, 1968; Pouquet et al., 1975; Paret and Tabeling, 
1997; Chertkov et al., 2007). The second-best-known system where an inverse 
cascade exists is that of magnetohydrodynamics (MHD): using some arguments 
from Kraichnan (1967), Frisch et al. (1975) deduced in the three-dimensional case 
the possible existence ofan inverse cascade of magnetic helicity, a quantity which 
plays a major role in the dynamo process in astrophysics (Galtier, 2016). To date, 
we know several examples of turbulent systems producing an inverse cascade (see, 
e.g., the review of Pouquet et al., 2019).

14 Chapter 6 is devoted to inertial wave turbulence (i.e. incompressible hydrodynamic turbulence under a uni­
form and rapid rotation), for which it can be rigorously demonstrated that the cascade is essentially reduced 
to the direction transverse to the axis of rotation. However, it can be shown in this case that the energy cascade 
is direct.
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Kraichnan’s (1967) discovery was made at a period when the theory of wave 
turbulence, the regime that is the main subject of this book, was beginning to 
produce important results. The brief history presented in Chapter 4 allows us to 
appreciate the evolution of ideas on this subject, which finds a large part of its 
foundations in eddy turbulence (spectral approach, inertial range, cascade, clo­
sure problem). In this context, a problem that attracted a lot of attention was that 
of gravity wave turbulence (which is an example of surface waves). This prob­
lem deals with four-wave resonant interactions: in this case, there are two inviscid 
invariants, energy and wave action. The first is characterized by a direct cascade 
and the second by an inverse cascade. The study carried out15 by Zakharov and 
Filonenko (1966) (see also Zakharov and Filonenko, 1967) focused only on the 
energy spectrum. The authors obtained the exact solution as a power law asso­
ciated with energy, but curiously they did not focus on the second solution and 
therefore did not immediately realize that it corresponded to a new type of cas­
cade. Starting from a similar study (involving four-wave resonant interactions) 
on Langmuir wave turbulence by Zakharov (1967), in which the energy spectrum 
had also been obtained, Kaner and Yakovenko (1970) found the second exact solu­
tion corresponding to an inverse cascade of wave action. It is thus in the field of 
plasmas that the existence of a dual cascade was finally demonstrated in wave 
turbulence.16

A major difference between the two turbulence regimes is that, unlike (strong) 
eddy turbulence, (weak) wave turbulence theory is analytical (see Chapter 4). In 
this case, one can develop a uniform asymptotic theory and obtain the dynamic 
equations of the system and then, if they exist, its exact spectral solutions. It is 
then possible to provide analytical proof of the type of cascade (direct or inverse). 
It is also possible to prove the local character of turbulence (by a study of the 
convergence of integrals) and thus be in agreement with one of Kolmogorov’s 
fundamental hypotheses. For this reason, exact nontrivial solutions of wave tur­
bulence are called Kolmogorov-Zakharov spectra. There are several examples in 
wave turbulence where there is an inverse cascade of wave action; in Chapter 9 we 
present the case of gravitational wave turbulence (Galtier and Nazarenko, 2017). 
It is less common to obtain an inverse cascade in the case of three-wave resonant 
interactions. An example is given by rotating magnetohydrodynamic turbulence: 
the energy cascades directly and the hybrid helicity (a modified magnetic helicity) 
cascades inversely (Galtier, 2014).

To conclude this section, let us note that Robert Kraichnan and Vladimir 
Zakharov received the Dirac medal in 2003 for their contributions to the the­
ory of turbulence, particularly the exact results and the predictions of inverse 

15 Many other studies have been devoted to gravity wave turbulence. Chapter 4 discusses some of them.
16 The second exact solution corresponding to an inverse cascade of wave action for gravity waves was published 

by Zaslavskii and Zakharov (1982).
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cascade, and for identifying classes of turbulence problems for which in-depth 
understanding has been achieved.

1.1.5 Emergence of Direct Numerical Simulation

From the 1970s, a new method for analyzing turbulence emerged: direct numer­
ical simulation (Patterson and Orszag, 1971; Fox and Lilly, 1972). By direct, we 
mean the simulation of the fluid equations themselves and not a model of these 
equations. We have already cited as a model the EDQNM approximation used in 
hydrodynamics (Orszag, 1970); there is also the case of magnetohydrodynamics 
with the study of the inverse cascade of magnetic helicity (Pouquet et al., 1976). 
There are other models such as nonlinear diffusion models (Leith, 1967) or shell 
models (Biferale, 2003) - which we will briefly discuss in Chapter 3.

Since its beginnings, direct numerical simulation has made steady progress. It 
currently represents a means of studying turbulence in great detail; it is also an 
indispensable complement to experimental studies. It is impossible to summarize 
in a few lines the numerous results obtained in the field of numerical simulation. 
Let us simply point out that the regular increase in spatial resolution makes it pos­
sible to increase the Reynolds number and to describe increasingly fine structures 
(see Figure 1.2). It is interesting to compare the current situation with the first 
direct numerical simulations of incompressible three-dimensional hydrodynamic 
turbulence. For example, Orszag and Patterson (1972) used a spatial resolution of 
643 and, as explained by the authors, each time step then required a computation 
time of 30 seconds! It is also interesting to note that the diffusion of knowledge 
takes some time: for example, the first direct numerical simulation of incompress­
ible three-dimensional magnetohydrodynamic turbulence was realized by Pouquet 
and Patterson (1978) with a spatial resolution of 323. Nowadays, a standard direct 
numerical simulation of turbulence is generally performed with a pseudospectral 
code, in a periodic box and with a spatial resolution of about 20483 - the high­
est to date being 16 3843 (Iyer et al., 2019). For more information on the subject, 
the reader can consult the review article of Alexakis and Biferale (2018), where 
numerous examples of direct numerical simulation are presented in the context of 
various turbulence studies.

1.1.6 Turbulence Today

In the history of sciences on turbulence, the early 1970s were a turning point. 
Very schematically, we can consider that the theory of turbulence was built 
during the years 1922-1972, a period during which the main concepts were intro­
duced, allowing the first exact results to be obtained.17 The books of Monin and

17 The year 1922 can be used as a reference since it is this year that Richardson introduced the fundamental 
concept of energy cascade.
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Figure 1.2 Two-dimensional direct numerical simulation of incompressible magneto­
hydrodynamic turbulence (see Chapter 7). The image, with a spatial resolution of 
2048 2048, shows the norm of the out-of-plane component of the electric current. The
white regions correspond to the sites of energy dissipation.

Yaglom (1971, 1975) summarize the situation well. After this period, which can 
be described as exploration, the years 1972-2022 are rather a period of exploita­
tion during which the results of incompressible hydrodynamics were generalized 
to other systems, often much more complex. However, it would be simplistic to 
limit this second period to a simple exploitation, because new concepts have also 
emerged and our knowledge has been considerably refined thanks, in particular, 
to numerous experiments and direct numerical simulations.

Today, the physics of turbulence appears in many fields (physics, geophysics, 
astrophysics, cosmology, aeronautics, biology) and it is impossible to draw up 
an exhaustive list of its applications. Given the difficulty of the subject, the use of 
simple - even simplistic - models of turbulence is quite common. The best-known 
result is probably the Kolmogorov energy spectrum. While there is no reason to 
think that this form of spectrum appears in other turbulence problems, it is often 
mentioned or even used. On the other hand, the exact laws based on two-point 
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measurements in physical space are less known, as well as the regime of wave 
turbulence.

Part I of this book is a short introduction to eddy turbulence, where histori­
cally the main concepts and results of turbulence have been developed. This part 
is therefore very important to appreciate Part II, the second and main part of the 
book, devoted to wave turbulence. In Chapter 2, special attention will be given 
to anomalous dissipation and the zeroth law of turbulence, which are fundamen­
tal for both eddy and wave turbulence. It is then used to derive a modern form 
of the Kolmogorov exact law. We note in passing that the exact laws of turbu­
lence are also valid for wave turbulence: for example, the Kolmogorov exact law 
(without the assumption of statistical isotropy) is also valid for inertial wave tur­
bulence (see Chapter 6). In Chapter 2 we also introduce the Kolmogorov eddy 
phenomenology (which we will compare to the wave turbulence phenomenology 
in the second part) and intermittency models. The treatment of turbulence in Fou­
rier space will be presented in Chapter 3. In particular, the discussion of statistical 
closures developed in the 1960s is relevant to the comparison with the wave turbu­
lence closure presented in Chapter 4. The case of two-dimensional turbulence will 
also be discussed in great detail; we will show that the Zakharov transformation, 
used so far only for wave turbulence, can also be a powerful tool in this case.

Part II of the book is devoted to wave turbulence: after a general introduction 
to the subject and a nonexhaustive list of applications of this regime (Chapter 
4), various examples will be treated in Chapters 5 to 9. Capillary wave turbu­
lence is probably the simplest example to present the theory of wave turbulence. 
Therefore, in Chapter 5, we present this theory in great detail. This is an essential 
technical chapter to master the asymptotic development.

This book is an introduction to the physics of wave turbulence. The bias is to 
present fundamental results limited to the case of statistically homogeneous tur­
bulence. Therefore, the problems of inhomogeneity that we encounter, especially 
in laboratory experiments, will not be discussed. Nevertheless, the results of lab­
oratory experiments will be regularly presented, as well as those obtained from 
observations or numerical simulations.

1.2 Chaos and Unpredictability

Defining turbulence precisely requires the introduction of a number of notions 
that we will define in part in this chapter. Without going into detail, we can notice 
that the disordered - or chaotic - aspect seems to be the primary characteristic of 
turbulent flows. The chaotic nature of a system is of course related to nonlineari­
ties. It is often said that a system is chaotic when two points initially very close to 
each other in phase space separate exponentially over time. This definition can be 
extended to the case of fluids.
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The origin of the media success of chaos theory goes back to the early 1960s. It 
is indeed at this period that the meteorologist Lorenz from the Massachusetts Insti­
tute of Technology (MIT) decided to use his computer (a Royal McBee LGP-300, 
without screen, capable of performing 60 operations per second) to numerically 
integrate a system of nonlinear differential equations - the Lorenz system - which 
is a simplified version of the fluid equations of thermal convection and whose form 
is:

dX
d a (Y - X), 

dt
dY
— d pX - Y - XZ, 
dt
dZ
— d XY - /3 Z, 
dt

(1.5a)

(1.5b)

(1.5c)

Figure 1.3 Numerical simulation of the Lorenz system (1.5) with D 10, D 28 and
D 8=3. The three variables X (t), Y (t), and Z(t) show a randomness, or unpredictability, 

in terms of variations or sign changes.
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where , , and are real parameters. In Figure 1.3 we show the evolution over 
time of the three variables X (t), Y (t), and Z(t).

By pure chance, Lorenz (1963) observed that two initial conditions very close 
to each other diverge quite rapidly.18 Since linear functions imply results propor­
tional to the initial uncertainties, the observed divergence could only be explained 
by the presence of nonlinear terms in the model equations. Lorenz then under­
stood that even if some nonlinear phenomena are governed by rigorous and 
perfectly deterministic laws, precise predictions are impossible because of the 
sensitivity to initial conditions, which is, as we know, a major problem in mete­
orology. To make this result clear, Lorenz used an image that contributed to the 
media success of chaos theory: the famous butterfly effect. He explained that the 
laws of meteorology are so sensitive to initial conditions that the simple flap­
ping of a butterfly’s wings in Brazil can trigger a tornado in Texas. Lorenz had 
thus just demonstrated that the future is unpredictable. But what is unpredicta­
ble is not necessarily chaotic (i.e. disordered), as demonstrated, for example, by 
the existence of strange attractors (Henon, 1976): we then speak of determin­
istic chaos. In phase space, this translates into trajectories irresistibly attracted 
by complex geometric figures. These systems wander randomly around these 
figures, without passing twice through the same point. In Figure 1.4, we show 
Lorenz’s strange attractor: it appears when we plot the function f(X, Y,Z) over 
time.

Turbulent flows are also unpredictable. Two initial conditions that are very close 
to each other diverge quite rapidly over time. Although the equations - such as 
those of Navier-Stokes - governing fluid motion are deterministic, it is not pos­
sible to predict exactly the state of the turbulent fluid at some distant future time. 
However, a distinction exists between turbulence and chaos: the word chaos is 
nowadays mainly used in mechanics to describe a deterministic dynamic system 
with a small number of degrees of freedom. In turbulence, flows have a very large 
number of degrees of freedom, which results, for example, in the nonlinear exci­
tation of a wide range of spatial scales. As we will see in this book, turbulence 
is, on the other hand, predictable in the statistical sense, hence the importance of 
studying turbulence with statistical tools.

1.3 Transition to Turbulence

The observation of turbulence in fluid mechanics is often part of everyday life 
experiences. In fact, it is under this regime that most of the natural flows of 
the usual terrestrial fluids such as air and water occur. There is a very large 
variety of turbulent flows: for example, geophysical flows (atmospheric wind,

18 Lorenz was not the first to wonder about unpredictability. Henri PoincareK addressed the question at the end 
of the nineteenth century in his study on the stability of the solar system (Poincare, 1890). Later, Richardson 
(1922) also wondered about the effect of initial conditions on the predictability of atmospheric flows.
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Figure 1.4 The Lorenz attractor appears when we plot the function f(X, Y,Z) over time, 
with X(t), Y (t), and Z(t) given by solving the Lorenz system.

river currents), astrophysical flows (sun, solar wind, interstellar cloud), biolog­
ical (blood), quantum (superfluid), or industrial flows (aeronautical, hydraulic, 
chemical). Despite this diversity, these turbulent flows have a number of common 
properties.

Probably the most familiar example of turbulent flow is that of a river encoun­
tering an obstacle, such as a rock. Downstream, there is a random movement of 
water characterized by the presence of eddies of different sizes. As we will see 
in Chapter 2, the eddy is the central concept in the analysis of strong turbulence 
and, in particular, in the phenomenological description of the cascade of energy to 
spatial scales that are generally smaller. In Figure 1.5, one can see schematically 
how such a flow moves from the laminar regime with a low Reynolds number Re , 
to the fully developed turbulence regime with a Reynolds number that exceeds 
1000. In particular, during this transition a Karman vortex street is formed for 
Re 100. Historically, it was Reynolds who was the first to study the transition 
between these two regimes in 1883 and who gave his name to the dimensionless 
parameter - the Reynolds number - measuring the degree of turbulence of a flow.



16 1 General Introduction

Figure 1.5 Transition between laminar (top) and turbulent (bottom) regimes as a function 
of the Reynolds number Re for a flow coming from the left and encountering an obstacle 
(symbolized by a disc). Figure adapted from Feynman et al. (1964).

This number reflects the relative importance of nonlinear versus dissipative effects 
in the Navier-Stokes equations and is written as follows:

Re
UL

, (1.6)

with U and L a velocity and a characteristic length of the flow respectively, while 
is the kinematic viscosity.
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1.4 Statistical Tools and Symmetries

We have mentioned the importance of approaching the physics of turbulence with 
statistical tools in order to better understand its random nature. In this section, we 
recall some of these tools that are generally introduced in the course of statistical 
physics.

1.4.1 Ensemble Average

The ensemble average hXi of a quantity X is a statistical average performed on N 
independent realizations (with N ! C1) where we measure this quantity:

1N
hXiD nlimi N XXn. (1.7)

If the averaged quantity is, for example, the velocity field, one has:

1N
hu(x, t)i D lim — Vun(x, t). (1.8)

N!C1 N
nD1

The average operation commutes with derivatives of different kinds, for example:

I @u(x, t)\ @hu(x, t)i
\ @ x I @ x

The ensemble average operator is analogous to the one used in statistical thermo­
dynamics. Generally, this is not equivalent to a spatial or temporal average, except 
under special conditions. For example, when turbulence is statistically homoge­
neous, the ergotic hypothesis can be used to calculate an ensemble average as a 
spatial average (Galanti and Tsinober, 2004). Note that, to date, no proof of the 
ergodic theorem is known for the Navier-Stokes equations.

1.4.2 Autocorrelation

To characterize the disorder in a signal u(x, t), one uses the concept of correlation. 
The simplest correlation function is the autocorrelation:

R(x,t,T)Dhu(x,t)u(x,tCT)i, (1.10)

which measures the resemblance of the function to itself, here at two different 
instants. The quantity u(x, t) (for example, a velocity component) is a random 
function. To get statistical independence between u(x, t) and u(x, t C T), T cannot 
be too small, because the fundamental laws of turbulence lead us to expect a cer­
tain memory of the signal: T must therefore be larger than a value Tc , which is 
called the correlation time. A similar analysis can be done for two measurement 
points not in time, but in space. In this case, we arrive at the notion of correlation
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Figure 1.6 Illustration of the meaning of the correlation scale Tc from a given auto­
correlation function: the surface C is by definition equal to the surface - (see relation 
(1.11)).

length Lc (also called the integral scale). Thus, a random flow is characterized by 
a spatiotemporal memory whose horizon is measured by Tc and Lc . The turbu­
lence study consists in extracting information on the spatiotemporal memory of 
the flow which can thus be revealed only if we place ourselves on relatively small 
spatiotemporal correlation scales. Figure 1.6 illustrates the notion of correlation 
time; by definition we have:

Tc =f R (T) dT,
c R (0)/o , (1.11)

where the dependence in t has been forgotten under the assumption of statistical 
homogeneity.

1.4.3 Probability Distribution and PDF

Let us define Fy(x) as the probability of finding a fluctuation of the random var­
iable y in the interval ] — 1, x]: the function Fy is by definition a probability 
distribution. From this definition one has:

Fy(x) is an increasing function,
Fy(x) is a continuous function,

• Fy(—1) d 0 and Fy(C1) d 1.

If this function is differentiable then F'(x) defines a probability density function 
(PDF), that is, Fy0 (x) is the probability of finding y in the interval ]x,xCdx]. In the 
framework of intermittency (Chapter 2) we will see that the normal (or Gaussian) 
and Poisson PDFs play a central role.
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1.4.4 Moments and Cumulants

The moments of a probability density function are the means of the powers:

Mn D hyni D C1 xnFy0(x)dx . (1.12)

We may note that the moment of order one is the mean or expected value. The 
moments of y — hyi are said to be centered. The variance is the centered moment 
of order two:

h(y -hy i)2i, (1.13)

while the mean quadratic deviation is the root of the variance.
Given any non-Gaussian random function of zero mean whose second-order 

moments are known, it is then possible to calculate the fictitious moments of 
order n that this function would have if it were a Gaussian function. The differ­
ence between the actual nth-order moment of the function and the corresponding 
Gaussian value is called the nth-order cumulant. Then, the odd cumulants are 
equal to the moments (since the odd moments of a Gaussian are zero) and by def­
inition all the cumulants are zero for a Gaussian function. We will come back to 
moments, and cumulants in particular, in Chapter 4, when the asymptotic closure 
of wave turbulence is introduced.

1.4.5 Structure Functions

A structure function of order n ofa quantity f(x) is by definition:

Sn Dh(f (X1) - f (X2))niD<(f)ni , (1.14)

where x1 and x2 are two points of the space. We will see in Chapter 2 that the 
first rigorous law established in turbulence by Kolmogorov (1941a) involves the 
velocity structure function of order three.

1.4.6 Symmetries

In order to simplify the analytical study of turbulence, we often impose certain 
symmetries on the flow. Unless explicitly stated, the symmetries below are taken 
in the statistical sense.

Homogeneity: This is the space translation invariance. It is the most classical 
assumption that is satisfied at the heart of turbulence, that is, far from the walls 
of an experiment. This assumption is essential in the theoretical treatment of 
turbulence insofar as it brings important simplifications both in physical space 
and in Fourier space. For a homogeneous turbulence the ergotic hypothesis 
allows one to calculate an ensemble average as a spatial average.
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Stationarity: This is the time translation invariance. It is a very classical 
hypothesis insofar as a system generally finds its balance between the external 
forces and the dissipation which occurs at a small scales by viscous friction. 
For stationarity turbulence the ergotic hypothesis allows one to calculate an 
ensemble average as a time average.
Isotropy: This is an invariance under any arbitrary rotation. It is a classical 
assumption in hydrodynamics, which is less justified in presence of an external 
agent like, for example, rotation or stratification.
Mirror symmetry: This is the invariance under any plane symmetry. It corre­
sponds to an invariance when the sign of all vectors (x ! —x, u ! —u, etc.) 
is changed. It allows the removal of quantities such as the kinetic helicity. One 
speaks of strong isotropy when turbulence is both isotropic and mirror sym­
metric. Throughout the book we shall use the word isotropy in the weak sense 
to indicate invariance under rotations, but not necessarily under reflexions of 
the frame of reference.
Scale invariance: This is the (nonstatistical) invariance by a transformation of 
the type u(x, t) ! Ahu(Ax, A1-ht). The solutions of the Navier-Stokes equa­
tions satisfy this symmetry if h d —1. If the viscosity is zero then h can be 
anything. In practice, this symmetry can be found in the turbulent regime if the 
scales considered are much greater than those at which the viscosity acts.

The statistical symmetries we have just defined can emerge in a fluid when the 
Reynolds number is large enough. A return to Figure 1.5 is instructive: com­
parison of the five images actually shows that the initial symmetries of the fluid 
disappear at an intermediate Reynolds number to reveal other symmetries at large 
Reynolds number.
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Part I
Fundamentals of Turbulence



2

Eddy Turbulence in Hydrodynamics

2.1 Navier-Stokes Equations

In this chapter, we shall focus on incompressible hydrodynamics and eddy turbu­
lence. The associated equations are the Navier-Stokes equations, established by
Claude Louis Marie Henri Navier and George Gabriel Stokes (see Figure 2.2):

@u
— C u -Vu D-rP=Po C vlu, (2.1a)
@t

r-uD0, (2.1b)

where u is the flow velocity, P the pressure, P0 the mass density which is supposed 
to be constant, and the kinematic viscosity. The second equation ensures the 
incompressibility of the fluid. We will assume that the reader knows the basics of 
fluid mechanics. Although this system is relatively simple, it already concentrates 
all the difficulties inherent to the treatment of turbulence with the presence of a 
nonlinear term. The relative importance of this term is usually measured by the 
Reynolds number (see Chapter 1): 

Re
ju - ruj UL
|v1u| T,

(2.2)

where U and L are the characteristic velocity and length of the flow, respectively. 
Subsequently, we will assume that the Reynolds number is very large: in practice, 
this means that the limit Re ! C1 will be taken.

2.2 Turbulence and Heating

2.2.1 Joule’s Experiment

Joule was a physicist known for his studies on energy conversion in the form of 
heating. We all know the Joule effect, which is the thermal manifestation of elec­
trical resistance that occurs when an electric current passes through a conductive 
material. But he was also interested in mechanics. In a famous experiment, Joule

27
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Figure 2.1 Eddy turbulence: vorticity produced by a direct numerical simulation of two­
dimensional Navier-Stokes equations (see Chapter 3).

Figure 2.2 Claude Louis Marie Henri Navier (left) and George Gabriel Stokes (right) 
established the eponymous equations that describe viscous fluids (Navier, 1823; Stokes, 
1845).

(1850) measured precisely the mechanical equivalent of heat. This experiment, 
which he did at home in his cellar, is relatively simple in its design (Young, 2015). 
A paddle wheel placed in a tank containing water is driven by a rope attached at 
the other end to a mass (see Figure 2.3). The fall of the mass from a given height 
is used to evaluate the mechanical work. The heating of the water set in motion by 
the blades can be deduced from the increase in temperature, measured with a ther­
mometer placed in the tank. To obtain a measurable temperature increase (from 
0.5 oF to 2 oF), the experiment, that is, the fall of the mass, would be repeated about
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Figure 2.3 The Joule (1850) experiment to measure the conversion of mechanical energy 
into heat. The fall of the mass on the right causes the blades to move in a tank containing 
water (left). The water temperature is measured using a thermometer (vertical rod to the 
left of the tank). This experiment made it possible to demonstrate the equivalence between 
work and heat. From the point of view of turbulence, we can interpret this experiment as 
a manifestation of energy transfer from large scales (movement of the blades) to small 
viscous scales from which energy is dissipated and the fluid heated.

20 times in a row. Joule was thus able to demonstrate the mechanical equivalent 
of heat.

What is the link between Joule’s experiment and turbulence? If we look at this 
experiment from a different angle, we can see here a proof of the transfer of the 
kinetic energy of the fluid from the large scales to the small viscous scales from 
which the energy is dissipated and the fluid heated.1 The interpretation is then as 
follows: the setting in motion of the fluid by the blades is characterized by eddies 
whose size is comparable to that of the blades; then, by a process of direct cascade, 
the energy associated with these large eddies is finally found at the smallest scales 
in the form of small fluctuations in velocity, or, in the language of turbulence, in 
the form of small eddies, which disintegrate as a result of viscous friction. Without

1 Of course, it is possible that part of the heating of the water is of a diffusive nature with a direct transmission 
between the heated objects (by friction with the rope for example) and water. 
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knowing it, Joule was probably the first to highlight a fundamental property of 
turbulence.

2.2.2 Mean Rate of Energy Dissipation

The Joule experiment highlights the heating process by viscous friction. What 
happens when the viscosity of the fluid is lower? In other words, in a fully devel­
oped turbulent regime, when the Reynolds number is increasing, and for identical 
experiment conditions, one can ask if the dissipation (or heating) through viscous 
friction decreases so that it becomes zero within the limit Re ! C1 (since at 

D 0 kinetic energy is a priori conserved). If this is the case, the smallest eddies, 
generated after a cascade, should accumulate since they are less dissipated. This 
thought experiment leads us to a surprising conclusion: within the limit of large 
Reynolds numbers, a fully developed turbulence excited at a large scale should be 
characterized by essentially small vortices and by the impossibility of reaching a 
statistically stationary regime, because the equilibrium between a large-scale forc­
ing and the viscous dissipation at small scales would become impossible. This 
behavior is contrary to experimental measurements where the stationarity of the 
turbulence is observed.

It is difficult to know if Kolmogorov (1941b) followed the same reasoning; 
however, we can see that one of his hypotheses is that the mean rate of dissipation 
of kinetic energy " becomes independent of viscosity within the large Re . Note 
in passing that Taylor (1935) also reached this conclusion by proposing a semi- 
phenomenological demonstration to interpret some experimental data.

Let us see what this means in terms of energy conservation. From the Navier- 
Stokes equations, we get:

0 @ u2 @ u
— — D Pou • — D Pou • (-u • ru - rP=p0 C vAu) . (2.3)2 @t @t

The use of a vector identity (see Appendix B) allows us to write in the 
incompressible case:

u • 1u d —u • (V x w) d V • (u x w) — w2, (2.4)

with by definition w r u the vorticity; then, one obtains:

Po @ u2
d -Pou • V — V • (Pu — p0v u x w) — p0v w2 . (2.5)

After some manipulation, we finally come to the local form of the kinetic energy 
conservation (E p0u2 =2):

@ E
It d -V •

2 Pou2
2

C P u — p0v u x w — p0vw2. (2.6)
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The kinetic energy variation is therefore due to two types of term: a flux F and 
a source S. The source (last term on the right) is negative and depends on the 
viscosity. In other words, it is an irreversible source of energy dissipation for 
the turbulent system which is always zero in the inviscid case ( D 0). In the 
divergence operator, we find an energy flux and a nonlinear viscous contribution 
depending on the velocity. The integral form of the kinetic energy conservation is 
written:

d HI EdV = ~ ff F • n dS ~ Pov HI w2dV. (2.7)

In the particular case of an integration on a volume large enough to contain all 
the fluid (so that on the surface of this volume u = 0; one can also consider peri­
odic boundary conditions), the flux is canceled out so that only a purely viscous 
dissipation contribution remains.

Subsequently, we will consider the ensemble average, which can be calculated 
via a spatial average when turbulence is statistically homogeneous (see Chapter 
1). If we think of a direct numerical simulation carried out in a periodic box, this 
is equivalent to taking the spatial average of this box. In this case, and with the 
notations introduced previously, we obtain the exact relation:

d h E i 
dt

= -Pov hw2i = — "(v) (2.8)

With this calculation, the mean rate of energy dissipation " is now well defined.2 
Expression (2.8) allows the introduction of a quantity often used: the enstrophy,3 
• = w2=2.

2.2.3 Spontaneous Symmetry Breaking

In the previous expression, it is not obvious that " becomes independent of viscos­
ity within the limit of a large Reynolds number. This assertion assumes that there 
is, at the same time, an increase in vorticity such that hw2i / 1=v. Physically, 
this behavior is not in contradiction with the idea of a direct cascade since small 
eddies are associated with small and rapid fluctuations in velocity. Since vorticity 
involves a spatial derivative, we can be convinced that its modulus increases when 
moving towards small scales. This property of " cannot be rigorously demon­
strated; however, it can be highlighted numerically. In Figure 2.4, we report the 
results of four freely decaying numerical simulations, that is to say, without exter­
nal forcing. The initial condition consists in exciting the flow on a large scale by 
depositing energy only on a few (small) Fourier modes. The parameters of the

2 Usually this is the mean rate of energy dissipation per unit of mass, "=P0, which is used. The comparison 
with the compressible case (see Section 2.9) shows that our definition is actually more universal.

3 The word “enstrophy” comes from the Greek P!'K, which means rotation.
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Figure 2.4 Temporal variation of the mean rate of energy dissipation "for different Reyn­
olds numbers: Re D 102 (dot), 103 (dash-dot), 104 (dash), and 105 (solid). Freely decaying 
numerical simulations.

calculation are the same, only the viscosity changes, and thus the Reynolds num­
ber, which varies by a power of 10 between Re D 102 and Re D 105. We see that 
the curves tend to overlap when Re increases, which shows that indeed "(t) tends 
to become independent of viscosity. The asymptotic shape of this curve reflects 
the fact that turbulence first passes through a phase of development characterized 
by essentially a zero dissipation rate. This is the period during which turbulence 
develops: the direct cascade generates smaller and smaller eddies; when the small­
est modes are reached, viscous dissipation becomes significant and " increases 
sharply. The last phase of decay is related to the fact that the system is not forced: 
consequently, the dissipated energy is not renewed and the dissipation rate can 
only decrease and tend towards zero after an infinite time. In the presence of a sta­
tionary external force, the behavior is different: the turbulent system adjusts itself 
so that the energy injection and dissipation rate compensate each other on aver­
age; in this case " also becomes independent of time. The fact that the mean rate of 
energy dissipation tends towards a finite value at large Re is observed numerically 
(Kaneda et al., 2003) and also experimentally with a Reynolds number that can 
approach 108 using superfluids (Sreenivasan, 1984; Pearson et al., 2002; Ravelet 
et al., 2008; Saint-Michel et al., 2014).

Suppose that " becomes asymptotically independent of viscosity at high Re . 
Moreover, we know that the Euler equations, that is, the Navier-Stokes equations 
at zero viscosity, conserve energy. Therefore, with expression (2.8) we obtain the 
property:

dhEi 
lim-----

!0 dt -" D 0 (2.9)
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This property is a fundamental law of turbulence - often called the zeroth law. 
Behind this result hides a remarkable physical property. Viscosity is the parame­
ter that breaks the symmetry of the system by evacuating energy irreversibly by 
heating or, in other words, by producing entropy. Viscosity thus induces a sym­
metry breaking of the time reversal in the Navier-Stokes equations. Now, relation 
(2.9) tells us that when the parameter , at the source of this symmetry breaking, 
tends towards zero, its effect (the symmetry breaking) remains nonzero: we have 
here an example of spontaneous symmetry breaking.4 In turbulence, we call this 
anomalous dissipation.

2.3 Karman-Howarth Equation

The first exact law in turbulence was obtained by Kolmogorov (1941a): it is the 
four-fifths law whose name is simply due to the value of the constant that appears 
in the expression. The path taken by Kolmogorov requires a delicate tensor anal­
ysis which - although elegant and historical - tends to make the formalism more 
cumbersome. We choose to follow, here, a more modern path which allows us to 
obtain, with less computation, an exact law with a slightly different form;5 it is the 
four-thirds law obtained by Antonia et al. (1997). These Kolmogorov laws express 
how third-order structure functions in velocity are related to the distance between 
the two measurement points in the case of statistically homogeneous and isotropic 
turbulence. To achieve this, we have to go through the Karman-Howarth equation 
(von Karma and Howarth 1938).

Let us write the Navier-Stokes equations at points x and x0 for the components 
i and j, respectively. Using Einstein’s notations, we get:

@tUi C @k(UkUi) d -@iP=Po C ’’@kkUi, (2.10a)
@tu0 C @. (uku) d -@jP0=po C v@02kkUj, (2.10b)

where the incompressibility condition writes @kuk D 0. To simplify the writing, 
we define u(x) u, u(x0) u0, @=@x0 @0 and we will consider that the velocity
fluctuations are of zero mean, that is to say, hui D 0. We multiply the first equation 
by U0j and the second by Ui . The addition of the two equations gives us, taking the 
ensemble average, a dynamic equation for the second-order correlation tensor:

@thUiUj0i C h@k(UkUiUj0) C @k0 (U0k U0j Ui)i D (2.11)

-h@i(Puj/Po) C @j(P0Ui=Po)i C V h@kk(UiUj) C @02kk(U'jUi)i.

To get this expression, we used the relation: @k U0j D @k0 Ui D 0. Subsequently, we 
will make extensive use of properties that are valid in statistically homogeneous

4 Turbulence was the first example in physics where such a breaking was reported. The second would come 
later in quantum electrodynamics (Schwinger, 1951; Davidson et al., 2o11).

5 This is also the approach used in MHD for electrically conducting fluids (see Chapter 8). 
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turbulence (see Batchelor, 1953). Since turbulence is statistically homogeneous, 
the two-point correlation tensors depend only on the relative distance ', with x0 d 
x C ', and not on the absolute positions x and x0 (see Figure 2.5). In particular, we 
have:

h@k(UkUiUj)i D -@'khUkUiU0, (2.12a)
h@k(u0kujui)i d @'k hu0kujuii, (2.12b)

hence the expression:

@thUiU0i C @'k hu0kujui - UkUiuji D (2.13)
C@'i hPuj/p0i - @'jhP0Ui=Po} C 2v@2k'k hUiU0i .

We will now restrict ourselves to the trace of the second-order correlation ten­
sor. In this case, the equation simplifies for two reasons: on the one hand, the 
contribution of the pressure disappears by incompressibility:

@'i hPui=p0i d h@0(Pui=p0)i d h(P=Po)@iu0i d 0, (2.14)

and on the other hand, we have by homogeneity:

@'k hUkUiU0i(') = @'k hUk(x)Ui(x)Ui(x C ')i
D @'k hUk(x - ')Ui(x - ')Ui(x)i = @'k huku0Uii(-') 
D-@' k h u ku 0ui i('). (2.15)

Figure 2.5 In statistically homogeneous turbulence, only the relative position of the two 
points M and M 0 is relevant.
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Hence the expression:

@thUiu'ii D -2@'k huku0Uii C 2v@2'k hUiu'ii
d -TV' • hUiUiu0i C 2v@'k'k hUiUii. (2.16)

The introduction of the third-order structure function gives (with the assumption 
of homogeneity):

h(5u • 5u)5ui = h(u0 — ui)2(u0 — u)i
d —2huiuiu0i C 2huiuiui C hui2u0i — hui2ui. (2.17)

By incompressibility, then homogeneity, we find:

V' • h(8u • 5u)5ui d -2Ve • huiu0u0i C 2T' • huiu'iui
d-4T' •huiu'iu'i. (2.18)

Finally, we obtain the dynamic equation for a homogeneous turbulence:

@t (uiu} D 1V' • h(«5u • <5u)MC 2v@'2k'k Iuiu\ . (2.19)
2 4 kk 2

This is the Karman-Howarth equation obtained by the authors6 in 1938, which 
reflects the dynamic evolution of the velocity correlation at two points.

2.4 Locality and Cascade

To go further in the analysis and obtain the exact Kolmogorov law, it is necessary 
to introduce a locality hypothesis. This hypothesis asserts that there is an interval 
of scales - called the inertial range - where the physics of turbulence is insensitive 
(i) to large-scale flow motions, whose dynamics are correlated in particular to 
the action of a nonuniversal external force, and (ii) to small-scale motions whose 
dynamics are governed by viscous dissipation. In practice, this means that the 
inertial range7 lies on the interval:

'diss ' '0 , (2.20)

with '0 the typical scale where an external force applies and 'diss the typical scale 
where the viscous dissipation becomes important. Therefore, the inertial range is 
the domain where nonlinear physics dominates; it is here that we can hope to find 
some universality in the flow behavior.

A fundamental hypothesis proposed by Kolmogorov (1941b) is that, within this 
scale interval, turbulence can be considered statistically homogeneous and iso­
tropic. Note that the assumption of statistical homogeneity has already been used
6 In fact, its original form was slightly different because it involved the longitudinal and transverse correlations 

(von Karman and Howarth, 1938).
7 The name inertial comes of course from the inertial term, u • Vu, from the Navier-Stokes equations. 
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to obtain the Karman-Howarth equation: the correlation scale ' in this equation is 
therefore assumed to be sufficiently small. In Figure 2.6, we schematically repre­
sent the physics of turbulence in the inertial range: it is characterized by a cascade 
of eddies from large to small scales. This classical image of the cascade process 
has, above all, a pedagogical dimension, because the reality is a bit different. An 
illustration of the vortex structures actually present in hydrodynamic turbulence 
is visible in Figure 2.7: direct numerical simulations show instead that we have 
nested vorticity tubes (like Russian dolls) which are thinning over time.

A more realistic phenomenological interpretation of the cascade was proposed 
by Taylor (1937). His reasoning is based on the topological conservation of a 
vorticity tube in the inviscid case. We know that in turbulence two points tend 
statistically to move away from each other by turbulent diffusion. From this prop­
erty, we can be convinced that a vorticity tube will tend to stretch over time. Since 
the volume of the tube is preserved by incompressibility, a stretching of this tube 
implies at the same time a thinning. On the other hand, we know that the vortic­
ity flow in the tube is conserved (Kelvin’s theorem), therefore, a thinning of the 
tube implies an increase in the vorticity norm. (It can be shown that this norm 
increases in proportion to the elongation of the tube.) This process stops when 
the radius of the tube reaches the viscous dissipation scale. The vorticity tube is 
then destroyed. It is interesting to relate the increase of vorticity at small scales to 
relation (2.8): when ! 0, the system will produce thinner and thinner vorticity 
tubes as w2 ! C1. We find here a beginning of explanation of the anomalous 
dissipation. We will come back to this in Section 2.7.1.

Figure 2.6 Three-dimensional hydrodynamic turbulence is characterized by a cascade of 
eddies from large to small scales. This energy transfer process is carried out from scale 
to scale from the energy injection scale '0 via an external forcing, up to its dissipation 
by viscous friction from a typical scale 'diss. The inertial range is located on the interval 
'diss ' '0 .
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Figure 2.7 Direct numerical simulation of Navier-Stokes equations with a spatial res­
olution 1024 1024 1024. Two iso-surfaces of vorticity are drawn in a localized
region of the simulation box. Results from the database JHU Turbulence Database Cluster;
http://turbulence.pha.jhu.edu. Reprinted with permission (Galtier, 2016).

2.5 Kolmogorov’s Exact Law

The Karman-Howarth equation was obtained without introducing an external 
force; this is also the situation considered by Kolmogorov (1941a). However, 
the calculation assumes in its final resolution the stationarity of the turbulence; 
it is therefore more consistent to introduce an external force to maintain a fully 
developed turbulence. In practice, this corresponds to adding to the Navier-Stokes 
equations (2.1a) a term f in the right-hand side. This force is assumed to be ran­
dom, homogeneous, and stationary in nature. The Karman-Howarth equation is 
then modified as follows:

@t (uu} D 1 r • <(*Ui)2M C 2v@*'k I uu\ C F('), (2.21)
2 4 kk 2

with the correlator F(') D h fiu0i C fi0uii=2. To appreciate its shape, we have to 
come back to the energy conservation equation. In the presence of f, we get:

dhEi4-i = Po hf • ui - " d PoF(0) - " . (2.22)
dt

Therefore, the stationary regime corresponds to a statistical equilibrium between 
forcing and dissipation.

We will place ourselves in the inertial range in order to highlight the universal 
behavior of turbulence. We will assume that the external force acts only at the 
largest scales of the system. In this case, we can evaluate its contribution by a 
simple Taylor development:

http://turbulence.pha.jhu.edu
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F(') ‘ F(0) C ' ■ rF('), (2.23)

with 0F(0) D C". Consequently, under the stationarity hypothesis we obtain:

0 D 4r' ■ h(8ui)2^ui C 2v@'k'k —2^ C "=Po . (2.24)

The relation (2.24) is valid for homogeneous, stationary turbulence such that 
' '0 (which is not equivalent to the limit ' ! 0). It becomes simpler if we
assume 'diss ' to be at the heart of the inertial range (which means that we 
consider the limit ! 0). In this case, the dissipation term of equation (2.24)
is negligible and the zeroth law of turbulence can be used. A primitive form of 
Kolmogorov’s law is obtained:8

(2.25)

with "N "=P0 the mean rate of energy dissipation per unit of mass. This
expression is valid for both isotropic and nonisotropic turbulence.9

Kolmogorov’s exact law, in its classical form, can be obtained by finally assum­
ing that turbulence is statistically isotropic. In this case, all that remains to be 
done is to integrate equation (2.25) on a full sphere of radius '; one obtains the 
four-thirds law valid when 'diss ' '0:

-4" D r' ■ h(8ui)28ui

42
-3n' D h(8ui)28u'i (2.26)

where u' is the longitudinal component of the velocity, that is, that along the direc­
tion of separation ' between the two measuring points. As already mentioned, the 
law originally obtained by Kolmogorov is a bit different: it is the exact four-fifths 
law, which is written:

(2.27)
4

-5"' D h(8u')3i

with the same notations. Note that this law is experimentally easier to use because 
it only requires knowing one component of velocity. Contrary to appearances, the 
mathematical link between the four-thirds law and the four-fifths law is not trivial 
(e.g. one must be careful to project the components of velocity before calculating 
their statistical value).

Kolmogorov’s law (2.27) is the first exact result in turbulence. It is a universal 
law invariant by Galilean transformation, which describes (in the inertial range) 
the statistically homogeneous, stationary, and isotropic hydrodynamic turbulence.
8 Note that this primitive form is not unique: for example, it is possible to obtain a law that involves the vorticity 

but not the divergence operator (Banerjee and Galtier, 2017).
9 For its derivation we did not make any assumption of the type of regime, so this law is also valid for wave tur­

bulence such as inertial wave turbulence, that is, fast-rotating hydrodynamic turbulence which is anisotropic 
with a cascade mainly in the direction transverse to the axis of rotation (see Chapter 6).
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Figure 2.8 Schematic reproduction of experimental measurements in a wind tunnel 
(see, e.g., Antonia and Burattini, 2006): the higher the Reynolds number, the better the 
Kolmogorov four-fifths law holds.

By exact, we mean a law obtained rigorously after an analytical calculation. Of 
course, hypotheses have been made, but they are all mathematically well defined. 
Kolmogorov’s laws are well verified10 numerically and experimentally (Moisy 
et al., 1999; Antonia and Burattini, 2006): in Figure 2.8, we report schematically 
a series of experimental measurements of the four-fifths law. Since then, other 
exact laws have been obtained: this is essentially an extension of the four-thirds 
law to other incompressible fluids. Note that the first compressible exact law was 
obtained only 70 years after Kolmogorov: it describes the compressible hydrody­
namic turbulence in the isothermal case (Galtier and Banerjee, 2011). The most 
interesting applications of this law concern turbulence in interstellar clouds where 
stars are formed. Indeed, observations reveal that the turbulent Mach number in 
these clouds approaches 100 (see Section 2.9).

2.6 Phenomenology of Eddy Turbulence

To obtain the exact four-thirds law, we have done a rigorous analysis which is, 
therefore, quite long. This law can in fact be found more quickly by a phenom­
enological approach - therefore less rigorous. However, this approach is very 
useful because it highlights the main quantities required to describe the physics of 
turbulence.

We will rely on Figure 2.6, focusing on the energy transfer in the inertial range 
at a ' scale such that 'diss ^ ' ^ '0. We can associate with this scale an eddy 
of size '. The velocity of this eddy is noted u€: we sometimes speak of the eddy 
turnover velocity. We can also define this velocity by the relation a/((5u()2i. From 
these two quantities, we can construct a (nonlinear) eddy turnover time rNL ~ '=u'. 
Note that this is also the time that emerges dimensionally from the Navier-Stokes

10 Note that it is easier to highlight the dimensional (nonexact) law h(5u')2 i / '2=3 for the second-order 
structure function because it is a positive definite quantity (Antonia and Burattini, 2006; Ishihara et al., 2020). 
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equations. In this phenomenological approach, we will associate NL to the char­
acteristic time of the energy cascade at the scale '. Therefore, the mean rate of 
energy transfer from the scale ' to a smaller scale can be written (p0 d 1):

dE' u2 u3
dt rNL ' ,

(2.28)

with E' the energy of the associated eddy. As in the inertial range, energy is neither 
injected nor dissipated; the mean rate of energy transfer "' must be equal to the 
mean rate of energy injection or dissipation ". This ultimately brings us to the 
phenomenological relation:

"' ~ u 3, (2.29)

which is the dimensional analogue of Kolmogorov’s (four-thirds or four-fifths) 
law. To obtain expression (2.29), we used the locality of the cascade, as well as 
the isotropy hypothesis. We will see later how this last hypothesis can be relaxed 
to allow us to predict the right energy spectrum in anisotropic turbulence (see 
Chapter 6).

2.7 Inertial Dissipation and Singularities

2.7.1 Onsager’s Conjecture

In this section, we will discuss the consequences of the anomalous dissipation 
(2.9), which asserts that the mean rate of energy dissipation tends to a positive 
nonzero value when ! 0C. We always place ourselves in the three-dimensional 
case. We will introduce the inertial dissipation, which is linked to the existence 
of singularities, a concept that belongs more to mathematics than to physics. 
However, it is interesting to see what we can learn from mathematics to better 
understand physics.

Since we have by definition " D 0hw2i, the anomalous dissipation necessar­
ily implies that the vorticity (or enstrophy) tends to become infinite in a region 
of the flow within the ! 0C limit. Let us note first of all that with the phe­
nomenology of Taylor (1937) presented in Section 2.4, we obtain a vorticity that 
tends towards infinity in the inviscid limit. This behavior is also supported by 
a phenomenological analysis of the vorticity equation, which can be written as 
follows:

Dw @!
— = —c u • r w d w • r u, 
Dt @ t

(2.30)

with D=Dt the Lagrangian derivative. Since dimensionally ru w, we get: 

D w
D5t w, (2.31)
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whose solution is of the form jwj ~ 1=( t* — t). This solution implies an explosion 
of vorticity in a finite time t.11 The works dedicated to the appearance of singu­
larities in fluid mechanics are of diverse nature. For example, there are those based 
on a spectral technique that allows us to follow a complex singularity over time, 
and to measure its proximity to the real axis. Ifit touches the real axis, it becomes 
a true singularity. In practice, only a trend can be identified because, in the invis­
cid case, direct numerical simulations become unstable in a finite time, whereas 
in the presence of viscosity the motion of the singularity is modified by the latter 
in a finite time (Brachet et al., 1983; Sulem et al., 1983; Fournier and Galtier, 
2001). Let us note that a new physical scenario has recently been proposed: the 
appearance of singularities in Euler’s equations could be linked to the collision of 
vorticity tubes and their transformation into layers (Brenner et al., 2016). But to 
date, the proof of the appearance of singularity in a finite time has not yet been 
obtained. This is also a major research topic for mathematicians.12

11 For two-dimensional turbulence, the situation is different since the vorticity equation (which is then a sca­
lar function) becomes a simple transport equation. In this particular case, theorems on the existence and 
uniqueness of the solutions can be established (Bardos, 1972).

12 The question of the underlying regularity of the velocity field, at any instant, is one of the seven Millennium 
mathematical problems proposed by the Clay Institute. A million-dollar reward is promised for a significant 
breakthrough on this question.

A singular behavior of vorticity may seem difficult to accept physically: it 
means in particular that the velocity becomes an irregular field within the ! 0C 
limit (see Figure 2.9 for an illustration). Derivative operations are then no longer 
applicable, and expression (2.25) becomes inappropriate. This situation was con­
sidered by the mathematician Leray (1934), who introduced the notion of weak 
solution for Navier-Stokes equations (behind this lies the concept of distribution

Figure 2.9 Velocity fluctuations for three Reynolds numbers Re. With the increase of Re, 
the irregularity of the field emerges as discontinuities.
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Figure 2.10 The convolution operation (2.32) applied to the image on the left gives new 
images that are increasingly blurry as ' becomes larger (images on the right). Images 
made by V. David.

later formalized by Laurent Schwartz). The underlying idea of this approach is to 
introduce a local average of the field values in an increasingly tightened volume 
around the point of study. In practice, a field mean weighted by a ‘' function is 
computed on a full sphere of radius ' such that:

u'(x, t) / ‘'(£ )u(x C £, t)d£ ,
R3

(2.32)

with:

''(£) ‘(£=') 
'3

(2.33)

By definition, ' 2 C1, and is compactly supported on R3, even, positive, and 
such that R3 '(£)d£ D 1 . These properties assure that '' tends towards the 
distribution (£) within the limit ' ! 0 and that therefore:

u'(x, t) ----! u(x, t) . (2.34)

With this mathematical tool, it is possible to obtain a small-scale smoothed version 
of the Navier-Stokes equations while keeping intact information coming from the 
largest scales: in mathematical language, we speak ofa weak (or regularized) for­
mulation of the equations. Figure 2.10 shows the consequences of the smoothing 
operation on an image.

As we will see in the Section 2.7.2, it is possible to demonstrate with this 
tool that an irregular velocity field can potentially lead to local energy dissipa­
tion. This result has been proven by French mathematicians Duchon and Robert 
(2000), but it was actually Onsager (1949) (see also Eyink and Sreenivasan, 2006) 
who was the first to speculate that energy could be dissipated without the assis­
tance of viscosity, by the simple fact of irregularities in the velocity field. This 
potential dissipation of energy is called inertial dissipation, as opposed to viscous 
dissipation. The importance of this conjecture lies in the fact that the anomalous 
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dissipation in turbulence could have its origin in the velocity field irregularities of 
the Euler equations.13

13 The physicist may, however, wonder whether this mathematical origin of the anomalous dissipation is physi­
cally relevant, because the irregularities in question involve a physical description on an infinitely small scale, 
for which the Euler equations are in theory no longer valid.

2.7.2 Weak Formulation

In this section, we will establish the expression for the inertial dissipation DI . To 
do this, let us apply the smoothing operator to the Navier-Stokes equations:

@tu' C @j(Uju)' D -VP=P0 C pAu‘ . (2.35)

After multiplying by u (a weak solution) and some manipulations, we get:

@t(u u') C u @j(uju)' C u' @j(uju) D
—u • VP'=P0 - u' • VP=P0 C Vu • 1u' C vu' • 1u . (2.36)

With the relation:

r • (u' • u)u D uiuj@jui' C ui'@j(uiuj) , (2.37)

and the condition of zero divergence on the velocity, we can rewrite the previous 
expression in the form:

@t(u • u') C r • (u • u')u C (P'=P0)u C (P=P0)u' D
—ui@j(uiUj)' C uiUj@ju' C vu • 1u' C vu' • 1u . (2.38)

We define the inertial dissipation (per unit mass) from the third-order structure 
function:

D' = 1 [ V‘'(<) • [(<5u)2<5u] d$
4 R3

(2.39)

After an integration by part and the development of the structure function, we 
obtain:

4D' @ (u2u )' 2u @ (u u )' u @ (u2)' 2u u @ u' (240)^—j @j (U Uj) C UUi @j(UiUj) C Uj@j(U ) UUiUj@jUi . (Z.^U)

Introducing this expression into relation (2.38) gives:

u • u'@ 4 _)C r • u • u' \ P' u C Pu' ■
~ u u C 2P0

1 a A 2' aA, V1 D' 4- % A!/' -U V i'\i!^@j LU/(U ) — (U Uj) J — Dj C — Ui 1 Ui C — Ui 1 Ui . (2.41)
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After using vector identities (see Appendix B), we find the exact equation for 
energy conservation (per unit mass):

@t (U2u') C r ■ J' D D'" D

where by definition the energy flux (per unit mass) is:

' u • u' Pu C Pu' vu' x w C vu x w' (u2u)' — u(u2)'
= 2 u 2^0 c2 4

and the viscous dissipation (per unit mass):

D' = v w • w' .

(2.42)

, (2.43)

(2.44)

Expression (2.42) can be seen as a weak formulation of the Karman-Howarth 
equation (2.19). Unlike that famous equation, the weak formulation does not use 
the ensemble average: it is therefore a local form of energy conservation. The 
correlation is made between a field at position x and another field averaged over a 
full sphere of radius ' centered at the point x; this correlation can be rewritten in 
the form:

u • u'= ' '(£)u(x)u(x C £)d$ . (2.45)
R3

With this new expression, we see that it is a correlation similar to the Karman- 
Howarth equation, but locally averaged. The two right-hand terms of expression 
(2.42) also have an equivalent: they can be associated with the inertial (after inte­
gration by part) and dissipative (after some vectorial manipulations) terms. On the 
other hand, the energy flux on the left has no equivalent in the Karman-Howarth 
equation: it is a purely local contribution that disappears on average (Dubrulle, 
2019).

We can now take the limit ' ! 0 (in the sense of distribution) of expression 
(2.42). In this case, the last two terms of the energy flux compensate each other 
and we obtain the equation (which is a theorem) of Duchon and Robert (2000):

■ U2 u C P u - V u x w 
2 0 = —DI — Dv (2.46)

with by definition:

Di = lim D' and Dv = lim D = v w2 . 
'!0 I '!0 '

(2.47)

Equation (2.46) takes all its importance when v = 0: in the case of Euler’s equa­
tions, the inertial dissipation is the only term on the right. The evaluation of this 
dissipation does not pose a problem, since the derivative is applied (before taking 
the limit) on the function ‘' and the possible discontinuities of the velocity field 
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are absorbed when calculating the integral. This leads to a surprising conclusion 
for the physicist: an irregular field can potentially contribute to dissipating energy. 
The anomalous dissipation could therefore have its origin in the nonregularity of 
the velocity field. Laboratory experiments are compatible with this idea: indeed, 
measurements show that the mean rate of energy dissipation tends towards a finite 
value within the limit of a large Reynolds number (Re 108) (Ravelet et al., 2008; 
Saint-Michel et al., 2014). Note that extreme events potentially related to inertial 
dissipation have been identified experimentally (Saw et al., 2016; Debue et al., 
2021).

From a mathematical point of view, the absence of anomalous dissipation 
requires checking the so-called Holder’s condition.14 Let us introduce 8u' = 
suipf,( ju(x C £) — u(x)| and assume that this increment satisfies the following 
relation for small enough ':

8u' < C'h , (2.48)

with C a constant and h the Holder exponents. From expression (2.39), we can 
show that:15

D' d O('3h-1). (2.49)

Therefore, for h > 1=3, D' ! 0 when ' ! 0 and energy is conserved in the invis­
cid case. On the other hand, for h 1=3, we are in presence of an anomalous 
dissipation. We can see that Kolmogorov’s law is dimensionally compatible with 
h D 1=3, and thus with the existence of an anomalous dissipation. Under cer­
tain mathematical conditions concerning the velocity field, we can also show that 
DI > 0 (Duchon and Robert, 2000; Eyink, 2008). The Euler and Navier-Stokes 
three-dimensional equations have been the subject of many mathematical stud­
ies. For example, in the first case, it has been shown that if a nonregular solution 
exists then the vorticity is not bounded (Beale et al., 1984); in the second case, it 
has been shown that the regularity of the velocity is ensured ifit remains bounded, 
and that the singularity associated with the nonregularity is necessarily punctual 
in time and space (Caffarelli et al., 1982; Constantin, 2008). For the physicist, the 
result on Euler is intuitive; on the other hand, the result on Navier-Stokes with the 
appearance of furtive singularities seems not very physical, because the speed of 
light is an impassable limit.

2.7.3 1D Shocks

To conclude this section, we first note that the anomalous dissipation can be 
calculated exactly in the particular case of Burgers’ equation, which is a one­
dimensional hydrodynamic model of shocks (see Exercise I.1). In this case, we 
can show analytically that hDIi D ". This result gives us an indication - but not a 

14 See also the work of mathematicians Constantin et al. (1994) carried out in the Besov space.
15 For a regular velocity field, using a Taylor expansion gives us h d 1. In that case, D' ! 0 when ' ! 0. 
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proof- that for three-dimensional hydrodynamics the situation could be the same. 
However, the task required to conduct such an analysis, for example with data, 
seems impractical because it requires to study locally all the events in order to 
sum up all the contributions to inertial dissipation.

We also note that the weak formulation introduced in this section can be used in 
other systems. For example, the theorem of Duchon and Robert (2000) has been 
generalized to incompressible magnetohydrodynamics (Galtier, 2018) and, as sug­
gested by the author, the inertial dissipation can be a relevant proxy to measure 
the local heating in space plasmas (David et al., 2022). Using the one-dimensional 
Burgers-MHD model for shocks, it is also possible to generalize the proof of the 
zeroth law of turbulence (i.e. hDIi D ") and to use it to evaluate, for example, the 
heating produced by collisionless shocks near Jupiter (David and Galtier, 2021).

2.8 Intermittency

Intermittency is a still poorly understood property of turbulence. This is often the 
reason why it is claimed that turbulence is an unresolved problem. This assertion 
is, however, contradicted by the immense knowledge acquired on the subject over 
more than 50 years. For example, we have at our disposal intermittency models 
that can correctly reproduce experimental data for structure functions of the order 
p 15. Even if our knowledge is still limited, we are able to understand an impor­
tant part of the physics of intermittency. The objective of this section is to present, 
first of all, a simple and pedagogical model based on the notion of fractals. Then, 
we will present the two best-known models of intermittency: the log-normal and 
log-Poisson models.

More information on intermittency is available in the eponymous chapter of 
Frisch’s (1995) book.

2.8.1 What Is Intermittency?

From the exact Kolmogorov four-fifths law (2.27), one may wonder whether it 
would be possible to extend the analytical development to higher-order struc­
ture functions.16 Until now all attempts have failed, and the closure problem 
seems insurmountable (see Chapter 1). We can, however, introduce a simple 
self-similarity hypothesis to extend the Kolmogorov law dimensionally to higher 
orders. In this case, we get:

Sp(') s {(3u')pi d Cp("')^p, (2.50)

16 In general, a random variable follows a probability law whose form is all the better known, as one can 
calculate its moments of high order. In our case, it is the longitudinal velocity increment 3u' that serves as 
basic random variable.
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Figure 2.11 Reproduction of experimental measurements (black octagons) of the velocity 
structure function exponents p (after Anselmet et al., 1984). The self-similar Kolmogorov 
law (K41) is plotted for comparison. The deviation from the self-similar law is called 
intermittency.

with:
pDp=3, (2.51)

to satisfy the third-order structure function law. It is now widely recognized that 
the self-similar model of Kolmogorov is not satisfactory, because the structure 
functions of higher order (p > 3) show unambiguously a large deviation of the 
scaling exponents. Figure 2.11 illustrates schematically this property: the higher 
the order p, the greater the discrepancy between the measures and the Kolmogorov 
self-similar law. It is this discrepancy that is called intermittency. In addition, we 
speak of anomalous exponents for p , because the latter cannot be predicted by 
simple dimensional arguments. Note that intermittency is also detected in natural 
environments such as stratocumulus clouds (Siebert et al., 2010).

A relatively simple way to visualize intermittency is to plot the spatial varia­
tion of the velocity as well as its derivative. In Figure 2.12, we see schematically 
that the intermittent character is amplified on the derivative with the presence of 
intermittent bursts, that is, the sudden appearance of large-amplitude fluctuations. 
A Gaussian random function has, however, the same behavior as its derivative. 
If we now plot the probability density function of the velocity increment 8u', we 
see that non-Gaussian wings appear. The smaller the separation between the two 
points, the larger the wings. In other words, turbulent events of large amplitude 
are more likely than they would be if the velocity at a point are the result of the 
sum of independent random events (which follow a Gaussian law). Physically, this 
means that in a turbulent flow the velocity fluctuations at a point are the result of
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Figure 2.12 Schematic representation of the spatial variation of a turbulent velocity u(x) 
(top), its derivative (middle), and its probability density function F0 u (bottom) for dif­
ferent separations ' (see, e.g., Anselmet et al., 1984). The greatest non-Gaussian wings 
correspond to the smallest separations. Reprinted with permission (Galtier, 2016).

the superposition of the influence of a large number of eddies that operate at dif­
ferent scales. These eddies are not completely independent of each other but have 
a spatiotemporal memory whose origin lies mainly in the cascade process.
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2.8.2 Fractal Model

Among the existing intermittency models, one of the simplest is undoubtedly the 
fractal model, known as the £-model, introduced by Frisch et al. (1978) (see also 
Mandelbrot, 1974). As we will see, this model is based on the idea ofa fractal cas­
cade; it is therefore by nature a self-similar model. However, since the exponents 
of the structure functions are not those predicted by the self-similar Kolmogorov 
law (2.50), we speak of intermittency and anomalous exponents.

The idea underlying the -fractal model is Richardson’s cascade (see Figure 
2.6): at each stage of the cascade, the number of eddies is chosen so that the 
volume (or the surface in the two-dimensional case) occupied by these eddies 
decreases by a factor (with 0 < < 1) compared with the volume (or surface)
of the parent eddy. The factor is a parameter of the model less than one to reflect 
the fact that the filling factor varies according to the scale considered: the smallest 
eddies occupy less space than the largest.

We define by 'n the discrete scales of our system: the fractal cascade is char­
acterized by jumps from the scale 'n to the scale 'nCp We show an example of a 
fractal cascade in Figure 2.13: at each stage of the cascade, the elementary scale 
is divided by two.17 So we have:

'o'n D 2nn , (2.52)

with '0 the integral scale, that is, the largest scale of the inertial range. Let pn be 
the probability of finding an “active” region after n steps (this is our filling factor), 
hence:

pn D n . (2.53)

We suppose that initially p0 D 1; in other words, that in the initial state (at the 
integral scale) we have a single eddy of the size of the system. We can show that:

ln(' n='o)
pn D £ ta(1=2) . (2.54)

Now we seek an expression of the form:

Pn D ('n) , (2.55)
'0

where d is the dimension of the system and D its fractal dimension. In our 
case, another way to introduce the fractal dimension is to define the following 
relationship between the number of children N that each parent produces and D:

N D 2d£ = 2D . (2.56)

17 Since an inverse cascade occurs in two-dimensional hydrodynamic turbulence, Figure 2.13 should be seen as 
a simple illustration of the concept of fractal cascades. In Figure 2.15, it is a three-dimensional fractal model 
that is considered.
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Figure 2.13 A fractal cascade in two dimensions for D 1=2. At each stage of the cascade 
the elementary scale is divided by two and the children eddies occupy only a fraction 
of the surface of the parent eddy. At the integral scale (not shown) a single eddy occupies 
the entire available surface. The fractal dimension of this cascade is D D 1.

This finally gives us the general relationship:

lnD D d C taF (2.57)

The example in Figure 2.13 therefore corresponds to a fractal dimension D D 1, whereas that of Figure 2.14 corresponds to D D ln3=ln2' 1.585.

From this fractal model, it is possible to predict the scaling laws for the energy 
spectrum and more generally for the structure functions of order p. Eddies of 
size 'n fill only a fraction pn of the considered volume (we only study the three­
dimensional case and take d D 3). Therefore, one can assume that the energy per 
unit mass associated with motions at the scale 'n is such that:

En D u'nnPn D U2n () . (2.58)
\'o/
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Figure 2.14 A fractal cascade in two dimensions for D 3=4 (see the comments in the 
caption of Figure 2.13). The fractal dimension of this cascade is D ' 1.585.

Following the usual Kolmogorov phenomenology, one gets:

u3_n!L r> ' - p-

We have in particular:

u'0

'0 ,
hence:

u'
H y(D -2)/3'-

uMT'0

Finally, we arrive at the following spectral prediction:

e- ~ e (k) k ~ u'0 f 'n y )=

'0

(2.59)

(2.60)

(2.61)

(2.62)
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Figure 2.15 Reproduction of experimental measurements (black octagons) of the velocity 
structure function exponents p (after Anselmet et al., 1984). Four theoretical models of 
reference are plotted for comparison: the self-similar Kolmogorov model (K41), the three­
dimensional fractal model with D D 2.8 (dashes), the log-Poisson model with D 2=3 
(dash-dotted line), and the log-normal model with D 0.2 (dots).

or, in other words:

E(k) - k-5/3-(3-D)/3 (2.63)

The energy spectrum associated with the fractal cascade is therefore steeper (since 
D < 3) than that of Kolmogorov.

We can generalize this result to the case of structure functions of order p; it 
yields:

(' Vp
T , (2.64)
'0/

with the fractal law:

<p d p /3 C (3 - D)(1 - p/3) . (2.65)

As expected, this fractal - self-similar - model gives us a linear relationship 
between the scaling exponents. This correction is zero forp D 3 so that we recover 
the Kolmogorov exact four-fifths law. Forp D 2, we find a result compatible with 
the energy spectrum that we have calculated just before. Furthermore, we note that 
the Kolmogorov law is obtained for D d 3: a fractal dimension identical to the 
space dimension simply means that all space is filled with eddies. Otherwise (for 
D < 3), the correction is negative and corresponds quantitatively to the measure­
ments made where, for example, D ' 2.8 has been found for p < 8 (see Figure 
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2.15). This model has subsequently been generalized to bifractal, then multifrac­
tal, cases to better describe the curvature of the p function. In the most trivial 
case, the bifractal model corresponds to the combination of the Kolmogorov law 
forp 3 and the fractal model forp > 3, a situation that we encounter in Burgers’ 
turbulence (see Exercise I.2).

2.8.3 The Log-Normal Model

We have just seen that the fractal model gives a different law from that of Kol­
mogorov in introducing the fundamental idea that intermittency is rooted in the 
nonuniform spatial distribution of turbulent structures. This property is observed 
very well in direct numerical simulations, with the appearance of clusters of vor­
ticity filaments (Kaneda and Ishihara, 2006). As we see in Figure 2.15, however, 
the fractal model becomes less relevant for high values of p, where the data 
show clearly a curvature of the p (p) function. The log-normal model that we 
present in this section brings this improvement by predicting a nonlinear law in 
p. In fact, it was historically the first intermittency model: it was introduced by 
Kolmogorov (1962) and Oboukhov (1962) in order to respond to a criticism made 
by Landau regarding the potential problems of the self-similar Kolmogorov theory 
(see Chapter 1).

The new idea introduced in the log-normal model is to rewrite the relationship 
(2.50) in the form:

Sp(') — h(Su'/i D Cph"p=3i'p=3, (2.66)

with, by definition:
"' — j 11 rtf "(x C £) d$ , 

4/3^'3 Jj<
(2.67)

which is the (local) dissipation of energy averaged in a full sphere of radius ' 
centered at x. Note in passing that we have the trivial relation {s') = ". In this way, 
we will take into consideration Landau’s remark about the possible fluctuations 
of the dissipation: for example, h"'ip will be even more different from h"i the 
stronger the fluctuations of "', but these fluctuations tend to increase as the volume 
decreases, since it is at small scales that dissipative structures are concentrated.

In this model, it is assumed that the probability density function of "' fol­
lows a log-normal behavior, that is, the probability density function of ln(") is 
a Gaussian of variance o' centered on m€:

1 r (ln(£'/£) - m')2i
Fln(") — q------ exp 2 i . (2.68)

2lo2^ L ' J

The log-normal hypothesis originated in a study by Oboukhov on the pulverization 
of ore (Davidson et al., 2011). In this process, the pieces of ore get smaller and
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smaller. After n steps, the size of the ore is "n , a product of the initial size " 
and the n random fragmentation factors fi: "n D "f1f2 : ::fn, with fi < 1 . If these 
factors are assumed to be independent, then log "n is a sum of independent random 
numbers. When n increases, the statistics of this sum tends to a Gaussian (or 
normal) law with a variance proportional to n. The analogy between the size of the 
fragments and that of the eddies justifies this hypothesis because the dissipation 
rate is fundamentally related to filamentary vorticity structures (see Figure 2.7).

By a change of variables,18 we obtain:

18 We recall the following mathematical property: the probability of a differential surface remains invariant 
underachange of variables, that is, j FOng) d ln("')j d j Fg' d "'j-

19 We recall that: RC1 exp(—ax2 — ^x)dx d pF/a exp(^2/4a), with a > 0.

F0"'
11
—exp
gFJ 2Fa'2

(lng'/g) C a2=2)2

2 a
(2.69)

where we have used the relation m' = —02=2, which allows us to verify h"'i d g. 
We deduce:19

2na-y- (n - 1)j . (2.70)

Insofar as we are looking for power-law solutions, it is convenient to introduce the 
following form for the variance:

a' = ^ ln(j) , (2.71)

where is a constant assumed to be universal. We introduce (2.70) into (2.66), 
which finally gives:

(' \ ^p

TT , (2.72)
'0/

with the log-normal law:

<p d P - £P(P - 3) . (2.73)
3 18

The first intermittency measurements gave, with a relatively good accuracy, 
the anomalous exponents p for p < 10, and allow us to conclude that '0.2. 
More recent measurements have, however, shown that for p > 10 a clear diver­
gence appears (see Figure 2.15), invalidating the log-normal model. Despite 
these limitations, it is interesting to see what happens for p D 2; we obtain 
S2(') d C2"2/3f2/3('/'0)M/9, and hence the spectrum:

E(k) - g2/3k“5/3(k'0K/9 (2.74)
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We see that the Kolmogorov energy spectrum undergoes a slight correction of 
approximately —0.02 (with ^ ' 0.2) and thus becomes steeper. This is actually a 
trend observed in the experiments and direct numerical simulations.

In conclusion, we can say that as a first approximation the log-normal law is 
relatively clearly observed (Anselmet et al., 2001). However, the model shows 
signs of weakness for p > 10: this finding motivated new work which culminated 
in the log-Poisson model.

2.8.4 The Log-Poisson Model

The log-Poisson model of intermittency was proposed by She and Leveque (1994). 
It is currently a very used model insofar as it reproduces very well the data up to 
values of p ' 16. It is based on the following three assumptions:

Existence of a scaling law for structure functions:

Sp(') = «3u'/i d Cph"p=3i'p=3 . (2.75)

Existence of a recurrence relation between the moments of the distribution of 
the local energy dissipation s':

imd"1"h),0<p< 1, (2.76)

where Ap are some constants and s' = limp!1h"'C1 i=h"pi is a quantity that is 
mainly sensitive to the tail of the distribution of S'. (We always have {s') D ".) 
Existence of divergence scale dependence associated with the most intermittent 
dissipative structures:

lim s' ~ ' 2 3 . (2.77)
'!0 '

Upon introducing the scaling relation h"'i ~ 'p, expression (2.76) leads to the 
following recurrence relation:

rpci - (1 C p)rp C prp_1 C 3(1 - p) D 0. (2.78)

By defining rp D —2p=3 C 2 C fp, we get a simple form of linear recursive 
progression of order two:

fpci - (1 C p)fp C Pfp_1 D 0, (2.79)

which we can solve easily; we find fp D A C ppp. The coefficients A and p, are 
determined from the initial conditions r0 D r1 D 0, hence:

2 f 1 - Pp \ z
rp D p) • (2-80)
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Finally, we obtain the following log-Poisson law (with by definition, Sp(') ~ '"p):

p 2 / 1 - Pp =3 p
$p 3 C 3 \ 1 - p 3 (2.81)

We see that lim!1 p D p=3: the parameter measures the degree of inter­
mittency in the sense that the smaller the value, the stronger the intermittency. 
The best agreement with the data is obtained for D2=3 (see Figure 2.15). 
The log-Poisson law correctly predicts the anomalous exponents up to approxi­
mately p D 16. The latest measurements seem to show that beyond 16 a divergence 
appears, perhaps revealing the limits of the model. Note, however, that precautions 
have to be taken in the statistical analysis because the uncertainties increase with 
the order p since the statistical sample is finite. Probably 16 is already too high for 
a serious comparison with a model.

The log-Poisson model owes its name to the fact that the recurrence (2.76) can 
be interpreted as an underlying statistical property of the distribution "' (Dubrulle, 
1994). Let us rewrite this recurrence for the variable, p' = "'/"1; we get by a 
simple substitution:

pCb A p'p ’ C 1 ('2 82')
(p‘ iD Ap(pp-y• (2)

We show easily that:

/ /_ p ~2} 0+1 VC1 1 p /p p ~2\P2 +P +
/pp\ = A . I A h ' i__ I ____ 1___= A ,AP+1 h—'__ -_____( ' i p \ p (pp-3iP ) (p-2iP p p“2 (pp“3iP(P+1)

D ::: = Ap _1 A^ A^ : : : A ^ p ^ p ^-c1

1-^p
D Bppti , (2.83) 

where the coefficients Bp depend on Aq (with 0 q < p). The distribution Fp0 
corresponding to the moments (2.83) is a generalized Poisson distribution for the 
variable Y = ln p'/ ln ^, namely:

Fy = e~Yf, (2.84)

where is the variance. With the change of variables, we get:

— f pee Ye~yln^— f pYYln^ e YdY — f (^^p)Y^Y
p'e i D p p' Yi e dp' D e e Yj dY D e i Yj dY

= e-/(1-^p). (2.85)

The condition p D 0 fixes the variance:

A ln(p'i. (2.86)
P - 1
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Hence, finally:
1 p 1 p

n i d e'"" d hn'} . (2.87)

We can even show that the relationship (2.83) is still satisfied if the distribution 
FY0 is the convolution of a Poisson distribution with any other distribution. In this 
case, a coefficient appears in the calculation and BP 6D 1.

2.8.5 Exact Constraints

To conclude on this subject of intermittency, let us point out that there are exact 
constraints that must be satisfied by the exponents P (Constantin and Fefferman, 
1994; Frisch, 1995). The first is obviously 3 D 1. A second is the convexity 
constraint:

(p3 — p 1)t2p2 > (p3 — p2X2p 1 C (p2 — p 1)^2p3 , (2.88)

for exponent orders such as P1 P2 P3. A third states that if:

2p > 2pC2 (2.89)

then the velocity fluctuations become unbounded. It is therefore necessary to con­
sider exponents which do not decrease strictly to ensure that these fluctuations 
remain subsonic. We note, in particular, that the log-normal model does not satisfy 
this third constraint, while it is actually the case for the log-Poisson model.

2.9 Compressible Turbulence

Most of the fundamental results in strong turbulence are limited to incompressible 
fluids. We can find at least three reasons for this: (i) the study of turbulence is more 
difficult in the compressible case and the basic concepts are still under debate, (ii) 
in laboratory experiments where the compressibility is strong, turbulence is gener­
ally statistically inhomogeneous, which limits the universality of the behavior, (iii) 
the supersonic homogeneous turbulence regime mainly concerns astrophysics, a 
field where important advances in turbulence have been made only recently. In 
Section 2.9.1 present in a few lines the main properties of interstellar turbulence, 
where the turbulent Mach numbers are often approaching 100. In this medium, it 
is believed that turbulence plays a key role by regulating the rate of star forma­
tion. Then, we will show how Kolmogorov’s exact law in hydrodynamics can be 
generalized to compressible fluids.

2.9.1 Supersonic Turbulence in Astrophysics

Understanding star formation is one of the major challenges of modern astro­
physics (Mac Low and Klessen, 2004; McKee and Ostriker, 2007). Although it 
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is well established that stars form in molecular clouds by collapse, many funda­
mental questions remain controversial, because the star formation is governed by 
the interstellar cycle, which involves a wide range of spatial and temporal scales, 
and a great diversity of coupled physical phenomena such as turbulence, mag­
netic field, gravity, radiation, and cosmic rays. A major problem is the low rate of 
star formation observed. To understand this problem, we can evaluate the free-fall 
time ff, that is, the time it takes for a spherical cloud without pressure to collapse 
to a point due to its own gravity. For our galaxy, we get (Spitzer, 1978):

3 6
rff d -------' 4 x 106 years . (2.90)

32G

The Milky Way contains a mass of molecular clouds of about Mc ' 2 x 109M 
(with M the mass of the sun) (Solomon et al., 1987), which gives us a rate of 
formation:

Mc
X*-------' 500M3/year. (2.91)

ff

The problem is that the rate X* measured in our galaxy is about 2 Ma/year 
(Chomiuk and Povich, 2011), which is more than two orders of magnitude lower 
than the previous estimate. Although relatively simple, this evaluation highlights a 
major problem whose origin could well be turbulence: turbulent fluctuations may 
act as an additional pressure which slows down the collapse of clouds.

The first observational signatures of interstellar turbulence date back to the 
1950s, when spectral line widening, such as that of the ionized oxygen atom 
OIII, was detected (Munch, 1958). The widening of spectral lines coming from 
cold clouds proves to be much larger than one would expect for low-temperature 
gases. This anomaly is attributed to turbulence whose velocity exceeds by far that 
of sound (cs 0.5 km/s), which means that the turbulence is supersonic. Molecu­
lar clouds were discovered in the 1970s with the detection of an intense radiation 
line emitted by the Orion nebula. This line was attributed to a transition of car­
bon monoxide (CO) molecules (Wilson et al., 1970; Penzias et al., 1972). Since 
then, there has been a lot of discussion about molecular clouds. CO molecules 
are considered to be one of the best tracers for measuring interstellar dynamics: 
for example, we know by spectroscopic analysis that molecular clouds are cold 
(T < 10 K) and dense (n > 109 m_3). Nowadays, their observations in the galaxy 
cover a wide range of length scales, from a few 100 pc to around a milliparsec (1pc 
' 3 x 1016 m). New instruments are now available to probe interstellar matter. Per­
haps the most important is the ALMA (Atacama Large Millimeter Array) antenna 
array in Chile, which considerably increases the available spatial resolution with 
the best submillimeter and millimeter interferometers. In this way it is possible 
to map cold and dark regions that cannot be observed in optics, where new stars 
and their associated planetary systems form. In particular, the observations give
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Figure 2.16 Interstellar filaments at a distance of 500 pc from the Earth observed 
in the infrared domain (70, 250, and 500 m), using the European space telescope 
Herschel. Stars are born along these filaments. Credits: ESA/Herschel/SPIRE/PACS/D. 
Arzoumanian (CEA Saclay) for the “Gould Belt survey” Key Programme Consortium.

access to fine structures at scales close to the dissipative scale of turbulence in 
molecular clouds (Baudry et al., 2016).

The systematic observation of molecular clouds in the Milky Way has made it 
possible to highlight the scaling law (Heyer and Brunt, 2004):

h8vi - 'C0.56 , (2.92)

with 8v the velocity increment between two points separated by the distance '. 
This law is observed on more than three orders of magnitude, between 0.04 pc and 
40 pc. Dimensionally, the law (2.92) is compatible with the spectrum of velocity 
fluctuations:

Eu(k) - k“2.1, (2.93)

which is significantly steeper than the Kolmogorov spectrum. It is interesting 
to note that this scaling law is close to the Burgers’ spectrum in k~2 where the 
dynamics are governed by shocks (see Exercise 1).

The imaging allows us to characterize the interstellar medium and to show that 
this medium is in the form of gigantic networks of filaments in which stars are 
born (see Figure 2.16). Recent measurements with the Herschel/ESA space tel­
escope (Arzoumanian et al., 2011) or ALMA (Fukui et al., 2019) suggest that 
these filaments, which extend over tens of parsecs, have approximately the same 
thickness (- 1pc) regardless of the density or length of these filaments (see, how­
ever, Panopoulou et al., 2022). This characteristic scale may correspond to the 
sonic scale, that is, the scale under which interstellar turbulence passes from a 



60 2 Eddy Turbulence in Hydrodynamics

supersonic to a subsonic regime. This property has been observed in numerical 
simulations where, furthermore, it is found that the velocity dispersion inside the 
filaments is subsonic and supersonic outside (Federrath, 2016). Compressible tur­
bulence thus appears as a key ingredient to understand the dynamics of interstellar 
clouds and in particular the rate of star formation (Elmegreen and Scalo, 2004; 
Chabrier and Hennebelle, 2011).

2.9.2 Generalized Exact Law

As mentioned at the start of Section 2.9, the study of compressible turbulence is 
more difficult than in the incompressible case, and the number of results is more 
limited. Note that compressible turbulence can be strong or weak. In the latter 
case, the regime - called acoustic wave turbulence - is characterized by relatively 
small mass density fluctuations with a turbulent Mach number Mt much smaller 
than one (subsonic turbulence); this regime will be discussed in Chapter 4. Inter­
mediate turbulent Mach numbers (0 < Mt < 1) is a domain widely studied both 
experimentally and theoretically whose description would require much more than 
a chapter (Sagaut and Cambon, 2008). In this domain, we note that recent prog­
ress has been made in finding a universal behavior (Donzis and John, 2020). In 
the present section, the density variation is, however, not limited and the turbu­
lence can possibly be supersonic (Mt > 1) and even hypersonic (Mt 1), with 
no possibility to find a small parameter.

For the derivation of the Kolmogorov exact law, we shall consider the 
simplest case: that of isothermal compressible hydrodynamics for which the 
equations are:

@2 + r. (pu) d 0, (2.94a)
@t

-PU c r. (p uu) d — rp c ^iu c y r o, (2.94b)

with p the mass density, the dynamic viscosity, and r . u the dilatation. 
The isothermal closure leads to the pressure-density relationship:

PDcs2p, (2.95)

with cs the sound speed, which is constant in this approximation. This system 
of equations is often used to study interstellar supersonic turbulence (Kritsuk 
et al., 2007; Federrath et al., 2008). The implicit assumption made with this 
model is that the thermal processes (which include necessarily a cooling func­
tion like radiation), are much faster than the turbulence dynamics, so that on the 
turbulence timescale the environment appears isothermal. We will see that the fila­
mentary structures produced in supersonic isothermal turbulence are very similar 
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to observations of molecular clouds (see Figure 2.16). Equations (2.94) verify the 
conservation of free energy E (also called total energy), namely:20

@ hEi 2 4 2
—— = -^hw2i - -^hO2i, (2.96)

@t 3

with E D u2=2 C U and the internal energy UD cs2 ln(=0) (0 is the mean
mass density). Among the questions currently being debated there is that con­
cerning the anomalous dissipation. While it seems likely that the first term in the 
right-hand side of equation (2.96) will lead to a nonzero contribution in the small 
viscosity limit (as observed in incompressible turbulence), it is not clear whether 
the second term will also lead to an anomalous contribution. Numerical studies in 
this direction exist but are limited to relatively small Reynolds numbers and, more 
importantly, to mainly subsonic turbulence (Jagannathan and Donzis, 2016).

The formalism presented previously in this chapter will be applied to equations 
(2.94) in order to obtain an exact law for homogeneous isothermal compressible 
turbulence. This law, which was obtained for the first time by Galtier and Banerjee 
(2011), brings up a new type of term - a source S - in addition to the classical flux 
vector F. Within the stationary limit and a large Reynolds number, the exact law 
is written (no proof is given here since the technique of derivation is similar to 
incompressible turbulence):

-4" = r' ■ F CF|, (2.97)

with " the mean rate of free energy dissipation; the expressions for the flux and 
source are respectively:

F N(u)2u , (2.98a)

S s-1 (fio0C p00)(<5u)2} , (2.98b)

where by definition N ( C 0)=2. Note that we show here the modern form 
of the law (Ferrand et al., 2020). The isothermal compressible hydrodynamic 
law is reminiscent of the classical Kolmogorov law, which is found when the 
density is constant: in the incompressible limit O ! 0 the flux is identified with 
the expression obtained previously in Section 2.5 (it is necessary to introduce 
Np = p0 and use "N = "=p0). We note in passing that expressions (2.98) are Galilean 
invariant.

The relative simplicity of expression (2.98b) allows us to understand easily its 
role in compressible turbulence (see Figure 2.17). We can see that in a compres­
sion phase, O < 0 and thus S > 0, whereas in a dilatation phase O > 0 and S < 0.

20 By free energy we mean the kinetic energy plus the work part of the internal energy. As usual in turbulence 
(compressible or not), the heat term related to entropy is not included (the isothermal closure used can be 
seen as isentropic).
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Figure 2.17 Dilatation (left) and compression (right) phases in space correlation for 
isotropic turbulence. In a direct cascade scenario, the flux vectors (dashed arrows) are 
oriented towards the center of the sphere. Dilatation and compression (solid arrows) are 
additional effects which act, respectively, in the opposite or in the same direction as the 
flux vectors.

Therefore, in a compression phase S will modify the rate "so that the effective rate 
"eff " C S=4 will be bigger than ", while "eff will be smaller than " in a dilata­
tion phase. The source can therefore be interpreted as a term whose overall effect 
is to modify the apparent cascade rate, increasing or decreasing it as follows if 
the turbulence compresses or expands the fluid. Note that the primary form of the 
exact compressible law has been studied in great detail using three-dimensional 
supersonic numerical simulations (Kritsuk et al., 2013): an extended inertial range 
was found where the theoretical predictions have been verified.

The derivation of the isothermal law (2.97) relies on the existence of a range 
of scales where the physics is immune from direct effects of viscosity and large- 
scale forcing. Such a property has been studied by Aluie (2011, 2013) under a 
rigorous framework based on coarse-graining. The technique used is similar to 
that introduced previously in this chapter in the context of the inertial dissipa­
tion. The same author also shows that under mild assumptions on the structure 
functions (for velocity and density), the mean kinetic and internal energy budgets 
decouple statistically beyond a transitional conversion range and behave therefore 
like two invariants, and that the cascade is dominated by local interactions. Several 
comments can be made. First, the decoupling in question is found numerically at 
subsonic scales (Aluie et al., 2012), which means that supersonic turbulence is 
probably more complex to describe. Second, the locality of the interactions pre­
vents the direct transfer of kinetic energy from a large scale to small (dissipative) 
scales, such as into shocks, as is commonly believed.21 Third, the fact that the 
kinetic energy behaves as an invariant, while it is not, does not mean that subsonic 
turbulence is incompressible (Ferrand et al., 2020). Overall, one can say that these 
results found with a coarse-graining approach provide strong arguments in favor 
of the universal law (2.97).

21 This belief is partially based on our knowledge of Burgers’ equation (see Exercise 1).
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(2.99)

2.9.3 Phenomenology

Compressible turbulence is physically expected to be subsonic at small scales, 
that is, where density fluctuations and the source term are relatively small. 
The question is then to know from which scale the source becomes compara­
ble, or even superior, to the first/flux term in the right-hand side of expression 
(2.97). This transition scale, 's, can be roughly evaluated from the following 
ratio:

r' • f ~ Np(8u)3) 
5 ~ ' [pQ(Nu)2} .

When this ratio is of the order of unity, one obtains: 's ~ hNui = hQi. Com­
parison with numerical simulations shows that 's coincides well with the sonic 
scale.

Based on the exact law (2.97), we can propose a phenomenology for compress­
ible turbulence. The law suggests a (isotropic) spectrum of the velocity having the 
shape:

E(k) ~ "eff2=3k“5/3, (2.100)

with an effective energy flux "eff which depends on the scale considered. At super­
sonic scales (k < ks), this flux varies according to a scaling law deduced from the 
source: a possible estimate deduced from numerical simulation (Ferrand et al., 
2020) suggests a variation of the source in k-1/2, which leads us to a velocity 
spectrum in k_2. At subsonic scales (k > ks) this effective flux is approximately 
constant because the source is negligible. The associated spectrum could therefore 
be that of Kolmogorov in k“5/3. A schematic illustration of this compressible tur­
bulence regime is given in Figure 2.18. Note that we can also expect to observe the 
acoustic wave turbulence regime at subsonic scales if the conditions are satisfied 
(see Chapter 4). In this case, we may find a spectrum in k~3/2 for the dilatation 
(i.e. compressible) component of the velocity (Zakharov and Sagdeev, 1970).

We show in Figure 2.19 the result of a numerical simulation of the isother­
mal compressible hydrodynamic equations at very high spatial resolution (10 0483 
points). A mixed compressible-solenoidal external force is applied at a large scale 
and the turbulent Mach number is around 4. A visualization of Q in a slice of the 
simulation cube reveals a structured environment with large regions where Q is 
mainly positive and others in the form of filaments where Q is negative. These 
compression filaments resemble the interstellar filaments (see Figure 2.16) in 
which stars are formed. As mentioned in Section 2.9.1, interstellar filaments might 
be characterized by a thickness of the order of the sonic scale (Arzoumanian et al., 
2011), a property also found in some numerical simulations (Federrath, 2016). In 
the light of numerical simulations, it appears that supersonic turbulence produces 
planar shocks whose collisions lead to the formation of filaments. Their thickness
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Figure 2.18 A compressible phenomenology based on the exact law suggests a velocity 
spectrum Eu (k) characterized by an effective flux of energy nonconstant at supersonic 
scales (k < ks) and approximately constant at subsonic scales (k > ks). These spectra cor­
respond to a physics dominated by shocks (Eu(k) ~ k~2) and vortices (Eu(k) ~ k“5=3), 
respectively. We can also envisage a physics dominated by waves at subsonic scales 
(Eu(k) - k-3=2).

Figure 2.19 Dilatation in a x-z plane of a cube of simulation of supersonic isothermal 
compressible hydrodynamic turbulence with spatial resolution 10 0483 and a turbulent 
Mach number of 4 (Ferrand et al., 2020; Federrath et al., 2021). We can distinguish large 
white regions where is mainly positive (dilatation zone) and narrow dark filamentary 
regions where is negative (compression zone). Image produced by R. Ferrand.

is limited at the sonic scale because the physics underneath is governed by eddies. 
If gravity is also present, numerical simulations show that at even smaller scales 
it can override the turbulent dynamics to lead to a gravitational fragmentation and 
star formation (Federrath, 2016).
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3

Spectral Theory in Hydrodynamics

The spectral approach in eddy turbulence offers an indispensable complemen­
tary way of study to the one based on correlations in physical space (see Chapter 
2). The use of spectral space can be justified in particular from (i) a theoretical 
point of view with the possibility of analyzing the mechanisms of interaction and 
energy exchange (to mention only this invariant) between wavenumbers, (ii) mod­
eling with the introduction of statistical closure hypotheses (e.g. EDQNM, DIA), 
and (iii) direct numerical simulation using spectral type codes. As we will see in 
Part II, wave turbulence is mainly studied in spectral space, therefore the three 
points mentioned are also relevant for this regime.

We will first define some indispensable statistical tools, and then discuss the 
most used spectral quantity: the energy spectrum. We will derive several exact 
results of the spectral theory in incompressible hydrodynamics, and we will con­
sider in particular the two-dimensional case, for which we can prove the presence 
of a dual cascade. For this, we will show that the Zakharov transformation, usu­
ally used only in wave turbulence, can be an elegant tool for the demonstration. 
Finally, the best-known closure models will be presented as well as the nonlinear 
diffusion model.

3.1 Kinematics

3.1.1 Spectral Tensor

The three-dimensional Fourier transformation of an integrable function f (x) is by 
definition:

O(k) sA = -1- ( f (x) e-/k'xdx, (3.1)
(2n )3 J33

with k a wavevector (its norm will be written k); then the inverse Fourier 
transformation is:

69
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f(x) fOk eikxdk. (3.2)
R3

From these definitions, we define the correlator:

hf (k)f(k') ' I hf (x)f (x')i e-i^Ck'-x')dxdx, (3.3)
(2)6 R6

with hi the ensemble average (see Chapter 1).
In the statistical homogeneous case, we can define:

Q(') = hf (x)f (x')i = hf (x)f (x C ')i, (3.4)

which leads to:

hf (k)f (k')i = -1- f Q(') e-i(kCk')'x e-ik'''dxd'
(2)6 R6

= 7^f Q(') e"i^k C k')d' 
(2)3 R3

= (k C k')QO (k'), (3.5)

with QO (k') a two-point spectral correlator.
In hydrodynamic turbulence, we are mainly interested in the velocity field. The 

three-dimensional spectral tensor of the velocity for a homogeneous turbulence is 
defined as

8ij(k) = -1- [ Rij(') e~ikldI, (3.6)
(2)3 R3

with Rij(') = hui(x)Uj(x C ')i the second-order velocity correlator tensor. This 
quantity is well defined mathematically (it is an integrable function) to the extent 
that the correlation between two points tends to zero when the distance between 
these points increases to infinity. We have the Hermitian property:

8ji(k) = 8 ij (-k) = 8 j(k), (3.7)

where the symbol means the complex conjugate (we will use c.c. for bigger 
terms). This property is the result of the homogeneity relationship in the physical 
space Rij(') = Rji(—'). Since turbulence is assumed incompressible, we also have 
the relation:

ki8ij(k) = 0. (3.8)

3.1.2 Energy Spectrum

We will now define one of the best-studied turbulence quantities, namely the 
kinetic energy spectrum per unit mass (we assume 0 =1). We have:

hEi = 1 hu2i = 1 Rii(0) = 8ii(k)dk. (3.9)
2 2 2 R3
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This relation allows us to define the energy spectrum:

E(k) s 18,(k), (3.10)

which reflects the distribution of energy by spectral band [k, k C dk].
In the particular case of isotropic turbulence, the spectral tensor depends only 

on the modulus of k; also the definition of the spectrum is reduced to:

E(k) Ek D E(k)dS(k) D 2k28ii(k) , (3.11)

where S(k) is a sphere of radius k in the Fourier space. The mean kinetic energy 
of the system is found by a simple integration over k :

Z C1
hEi D Ekdk . (3.12)

0

3.2 Detailed Energy Conservation

In this section, we will study a fundamental property of turbulence: the detailed 
conservation of invariants. To illustrate our point, we will consider the three­
dimensional hydrodynamic Navier-Stokes equations (2.1) and show that the 
kinetic energy is conserved by triadic interaction. For that, let us apply a Fou­
rier transform to these equations (we use Einstein’s notations and we do not write 
explicitly the time variable):1

1 The application of a Fourier transform to the Navier-Stokes equations supposes that it is mathematically 
possible to define the Fourier transform of the velocity field, that is, that this field decreases sufficiently 
quickly to infinity.

@tUOi(k) C U\@m\i(k) D -ikiP(k)=P0 - Vk2ui(k), (3.13a)
kiuOi(k) D 0 . (3.13b)

We can rewrite the nonlinear term by showing a convolution product of Fourier 
transforms:

um @m ui (k) D uO m ? @dm ui (k) (3.14)

d i / um(p)qmui(q)3(k - p - q)dpdq.
R6

In applying the divergence operator to equation (3.13a), one obtains:

ikiu\m@mui(k) D k2PO (k)=0 , (3.15)

hence, the expression for the pressure:

P(k)=p0 D -k2 [ um(p)qmUn(q)^(k - p - q)dpdq. (3.16)
k2 Jr6
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Figure 3.1 Examples of local (middle) and nonlocal (left and right) triadic interactions.

The incompressibility condition allows us to affirm that for a triadic interaction 
qmuO m (p) D kmuO m (p). Then, one obtains:

@tui (k) D -ikmPin I um(p)un(q)8(k - p - q)dpdq - vkui(k) 
R6

(3.17)

with Pin d 8in — kikn=k2 the projection operator which ensures the incompressibil­
ity of the fluid. Expression (3.17) is often the starting point of the spectral analysis: 
it is the spectral equations of Navier-Stokes. They involve triadic interactions and 
therefore a geometric aspect of the equations (see Figure 3.1).

To show the detailed energy conservation, we will write an evolution equation 
for the modulus of velocity, which is nothing other than the kinetic energy (per 
unit mass and) per mode:2

@tjuO (k)j2 C 2vk2juO (k)j2 D
- ikmPin f um(k)um (p)un (q)8 (k - p - q)dpdq
C ikmPin R ui(k)um(p)um(q)8(k - p - q)dpdq. (3.18)

After development, we have in vector writing:

@tju(k)j2 C 2vk2 ju(k)j2 d -i [(k • u(p))(u*(k) • u(q)) (3.19)

- (k • um(p))(u(k) • um(q))]8(k - p - q)dpdq.

This equation simplifies by using the relation u(—k) d u*(k) and by playing with 
the mute variables p and q; one obtains:

@tju(k)j2 C 2vk2ju(k)j2 d -if [(k • u*(p))(u*(k) • u*(q)) (3.20)

- (k • u(p))(u(k) • u(q))]8(k C p C q)dpdq

D i (k • uO (p))(uO (k) • uO (q))8(k C p C q)dpdq C c.c. ,

2 From now, the multiple integral will be denoted simply . 
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with c.c. the complex conjugate. By symmetrizing the equation with respect to the 
variables p and q, we can finally write:

@tjuO (k)j2 C 2k2juO(k)j2 D S(k, p, q)(k C p C q)dpdq, (3.21) 

with by definition:

S(k, p, q) = -=[(k • u (p)Xu(k) • u (q)) C(k • u (q))(u(k) • u (p))], (3.22) 

and = the imaginary part. The detailed conservation of energy is obtained by using 
the symmetry properties of the operator S(k, p, q). After some manipulations and 
use of the incompressibility condition, we arrive at the exact relation by triad of 
interaction:

S(k, p, q) C S(p, q, k) C S(q, k, p) d 0 . (3.23)

The conservation of kinetic energy (per unit mass) can be written:

@ tf 2 |u(k)|2dk C vk f |u(k)|2dk d 6 f [S(k, p, q) C S(p, q, k) (3.24)

C S(q, k, p)](k C p C q)dkdpdq D 0 .

When v D 0, there is, as expected, conservation of kinetic energy because the 
integral on the right (second line) is zero, but in fact this conservation is carried 
out locally (before integration) by triadic interaction: energy is exchanged by tri­
adic interaction without loss or gain. This remarkable property was discovered by 
Kraichnan (1959) in his work on the direct interaction approximation (DIA).3 This 
exact result is important because it informs us about the way in which energy is 
redistributed between modes.

The detailed conservation is a property that is verified for all invariants of a 
system (without dissipation), regardless of the regime under consideration. For 
example, in wave turbulence (see Chapter 4) this detailed conservation is per­
formed for resonant interactions (triadic, quartic, etc.). This property has its roots 
outside of statistical physics since the ensemble average is not applied to obtain 
expression (3.24); it must therefore also be verified as a statistical average. In Fig­
ure 3.1 we show examples of triadic interactions: we can distinguish the (two) 
nonlocal interactions from the local one. Energy is exchanged within each triad: 
the direct cascade suggests that, on average, the smallest modes yield energy to 
the largest modes.
3 Kraichnan was an original researcher whose work profoundly influenced our understanding of turbulence. Its 

originality is due in part to the fact that he obtained his PhD thesis at the age of 21, then left the academic 
world in 1962 to become an independent researcher, regularly funded by American agencies.
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3.3 Statistical Theory

3.3.1 Flux and Transfer

Let us apply the ensemble average to equation (3.21); one gets:

@thjuO(k)j2i C 2k2hjuO(k)j2i D hS(k, p, q)i(k C p C q)dpdq. (3.25)

It is easy to demonstrate that this equation conserves energy in detail. By intro­
ducing the energy spectrum, we get an equation whose form was suggested by 
Batchelor (1953) (see also Obukhov, 1941b):

@tE(k) C 2vk2E(k) d T(k) , (3.26)

with by definition the transfer function:

T(k) = y 1 h5(k, p, q»3(k C p C q)dpdq. (3.27)

Equation (3.26) is exact: it expresses the evolution over time of the three­
dimensional energy spectrum. This equation should not make people believe that 
we have solved the difficult problem of closure: in fact, the whole problem now is 
to find an analytical form for the transfer function T (k).

Let us simplify the problem and assume that turbulence is statistically iso­
tropic. We then arrive at the equation of temporal evolution of the one-dimensional 
energy spectrum:

@tE(k) C 2k2E(k) D T(k) , (3.28)

with by definition:

T(k) 4k2T(k)d5(k) , (3.29)

where the integral is performed on a sphere 5 of radius k. The transfer function can 
be expressed as an energy flux term 5(k) with the following definition (Kraichnan, 
1959):

T(k) S"@^ . (3.30)
@k

The detailed conservation of energy (3.23) allows us to affirm that:

Z C1
T(k)dk D 0

0
, (3.31)

therefore, we have the flux-transfer relations:
Z C1 Z k

n(k) = T(k)dk D^ T(k0)dk0, (3.32)
k0
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Figure 3.2 Temporal evolution of the energy spectrum in linear scales. In general, we 
prefer to show this spectrum in logarithmic scales (insert), where it is easier to distinguish 
the inertial range.

with the condition 5(0) D 5(C1) D 0. This condition is satisfied insofar 
as the energy tends towards zero within the limit of small and large wavenum­
bers. In Figure 3.2 we show schematically the evolution of the energy spectrum 
between the instants t D 0 and t D 1. The energy, localized initially over a narrow 
band of small wavenumbers, spreads mainly towards large wavenumbers. This 
development is explained by a flux of energy 5(k) on average positive.

The problem of anomalous dissipation is also found in Fourier space (see the 
discussion in Chapter 2). After integration over k from equation (3.28), we get 
(0 D 1):

1 @ hu2i Z C1 2
 d —2v / kE(k)dk = —"(v) ! —" . (3.33) 
2 @t------------ 0 !0

Let us now introduce an external force F, which is homogeneous, stationary, and 
localized at small wavenumbers around k0. We can write:

@Ek) C @5(k) d F8(k0) - 2VkE(k), (3.34)
@ t @ k

which gives us after integration on k and within the limit v ! 0:

1 @ hu2i
2 @ t

(3.35)

The study of solutions in turbulence is generally carried out in the stationary case. 
We see that this necessarily implies that the mean rate of dissipation is adjusted to 
the mean rate of energy injection F.
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Let us now return to equation (3.34) and place ourselves in the inertial range, 
that is, on a scale k such that: k0 k . We see that within the limit of a small
viscosity, the dissipation term can be neglected, and consequently:

@ E (k) @5( k)
@ t C @ k (3.36)

A stationary turbulence therefore corresponds to a constant energy flux 5. To find 
this value, we have to integrate equation (3.34):

@ @Ety) dk, C @ @5(^) dk0d f F8(k0)dk - 2v [ k2E(k)dk0, (3.37)
0 @t 0 @k0 0 0

with kk0. For large-scale stationary turbulence, the relationship is simplified:
Zk

5 d F - 2v / k2E(k')dk0. (3.38)
0

Within the limit of a small viscosity, we finally obtain:

5DFD" (3.39)

The energy flux in spectral space is therefore precisely the mean rate of energy 
dissipation, which we discussed at length in Chapter 2. The flux associated with 
a direct cascade is therefore positive. Note that in the case of an inverse cascade 
with a force acting at a small scale, we can easily show from expression (3.37) 
that this flux is negative. From the flux-transfer relations (3.32), we see that for a 
fixed wavenumber k, the transfer function T is positive for wavenumbers greater 
than k and negative for wavenumbers smaller than k.

3.3.2 Kolmogorov’s Spectrum

The Kolmogorov phenomenology developed in Chapter 2 allowed us to obtain the 
scaling relation (0 D 1):

"' ~ u3, (3.40)

valid for statistically homogeneous and isotropic turbulence. From this relation­
ship and a simple dimensional analysis, we can deduce:

u22 ~ ("')2=3 - "2=3k“2=3 - kEk, (3.41)

hence, the spectral prediction (one introduces the equal sign and therefore a 
constant of proportionality):

Ek d Ck"2=3k-5=3 , (3.42)

with CK the Kolmogorov constant; the measurements give CK ' 0.5 (Sreenivasan, 
1995; Welter et al., 2009). The energy flux involved here is the one that will be
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Figure 3.3 Energy spectrum found in experimental measurements: a universal law 
in k“5=3 is identified over approximately four orders of magnitude. Reprinted with 
permission (Saddoughi and Veeravalli, 1994).

measured in the spectral space. Note that with a pure dimensional analysis involv­
ing only Ek , ", and k, we arrive at the same scaling prediction. Although proposed 
for the first time by Obukhov (1941a), this spectrum is known as Kolmogorov’s 
spectrum. It is quite remarkable to note that despite its phenomenological origin, 
this prediction is very clearly observed at sea (Grant et al., 1962) and in many lab­
oratory experiments (Saddoughi and Veeravalli, 1994), with a power law in k“5=3 

over several orders of magnitude, as shown in Figure 3.3.
Using our analysis in physical space and Kolmogorov’s phenomenology, we 

can interpret Figure 3.3 as follows. The spectrum in k“5=3 results from a bal­
ance between the injection of energy at small wavenumbers and its dissipation at 
large wavenumbers. Between the two, we have an inertial range where turbulence 
behaves universally. This inertial range is crossed by a flux of energy that con­
nects large to small scales: this is the region where energy cascades. The cascade 
process means that the energy flows continuously from one scale to another. The 
Kolmogorov spectrum is therefore not a set of lines, but a continuous distribution 
of energy. Note that the dissipative part of the spectrum has been the subject of 
many studies to find its shape. A simple model is the one proposed by Pao (1965) 
in which the spectrum is simply the —5=3 law weighted by an exponential func­
tion whose coefficient depends on the dissipation scale, called the Kolmogorov 
scale.
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One of the objectives for theoreticians is to find a rigorous justification for 
the Kolmogorov spectrum (in the inertial range), which requires a self-consistent 
spectral equation. Despite numerous attempts by physicists and mathematicians, 
to date no solution to this problem has been found in eddy turbulence. The prob­
lem is fundamentally related to nonlinearities and the lack of closure of the 
hierarchy of equations. We will see in Chapter 4 that it is possible to find an 
analytical solution to this problem in the wave turbulence regime.

3.3.3 Infinite Hierarchy of Equations

Let us take a closer look at the closure problem. This one being fundamentally 
related to the nonlinearities, to simplify we will forget the viscous linear term 
which can be reintroduced trivially at the end of the calculation.

From the Navier-Stokes spectral equations (3.17), we obtain the equation for 
the second-order moment:

@thui(k)uj(k0)i D -ikmPin Jhuj(k0)um(p)un(q))3(k - p - q)dpdq (3.43)

- ik'mP0n y* hui(k)um(p)un(q))<5(k° - p - q)dpdq.

This equation involves a third-order moment whose evolution equation is:

@thui(k)uj(k0)uI(k00)i D -ikmPinj huj(k0)ul(k00)um (3.44)

x (p)un(q)i<5(k - p - q)dpdq

- ikmPjn hui(k)ui(k00)um(p)un(q)i<5(k0 - p - q)dpdq 

- ikmPjn I hui(k)uj(k0)um(p)un(q)i<5(k" - p - q)dpdq.

We now need to write the moment equation for the third-order, fourth-order, and 
so on: we end up with an infinite hierarchy of equations. It is generally at this 
level that spectral closures are introduced. We will present in Sections 3.3.4-3.3.6 
the main closure methods, that is, the QN, EDQN, EDQNM, then DIA approx­
imations. There are others, like the Lagrangian DIA approximation (LHDIA; 
Kraichnan, 1965), or the one based on stochastic models (Kraichnan, 1961).

3.3.4 QN Closure

The first closure model was proposed by Millionschikov (1941): it is based 
on the quasi-normal approximation (QN), which consists in simply neglect­
ing the contribution of the fourth-order cumulant, and therefore act as if the 
fourth-order moment was that of a Gaussian distribution. We recall that the fourth­
order cumulant appears when rewriting the fourth-order moment as second-order 
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moment products (see Chapter 1). With simpler notations, we have the statistical 
relationship:

huO1uO2uO3uO4i D huO1uO2ihuO3uO4i C huO1uO3ihuO2uO4i C huO1uO4ihuO2uO3i (3.45)
C fuO1uO2uO3uO4g ,

where the term in the second line is the fourth-order cumulant. In the case of a 
Gaussian statistical distribution, this term is by definition zero; it is the same for 
all odd moments (which are also cumulants). The hypothesis made by Million- 
schikov (1941) is therefore not the Gaussianity hypothesis, which would trivialize 
the problem (with vanishing third-order moments), but a close hypothesis, hence 
the name of quasi-normal closure (or approximation). Schematically, we then 
obtain:

@thuOi(k)uOj(k0)uOl(k00)i D XhuOuOihuOuOi. (3.46)

With this hypothesis, we see that it is possible after a time integration to obtain a 
self-consistent equation for the second-order moment, and therefore in particular 
for the energy spectrum.

Kraichnan (1957) showed, however, that this closure was inconsistent because 
it violated certain statistical inequalities (the feasibility conditions); then Ogura 
(1963) numerically demonstrated that this closure could lead to a negative energy 
spectrum for some wavenumbers. The energy spectrum being a definite posi­
tive quantity, this behavior constitutes a major defect of the model, which was 
consequently abandoned. The origin of the problem was understood later by 
Orszag (1970): in the absence of fourth-order cumulant, the impact of products 
of second-order moment on third-order moment is overestimated. In reality, as 
the experimental measurements show, they saturate. The fourth-order cumulant 
therefore has the role of damping for third-order moments.

3.3.5 EDQN and EDQNM Closure

In order to correct the defect of the QN approximation, a more sophisticated 
closure was proposed by Orszag (1970): it is the EDQNM (eddy-damped quasi­
normal Markovian) approximation, itself based on the EDQN approximation. In 
this approach, the fourth-order cumulant is modeled by a linear damping term. 
Thus, the schematic equation (3.46) is replaced by:

(@t C kk0k00)huOi(k)uOj(k0)uOl(k00)i D XhuO uO ihuO uO i . (3.47)

The coefficient ^kk0k00 has the dimension of the inverse of a time and is called 
the damping rate of the third-order moment. The definition of this rate is 
phenomenological: we have

kk0k00 D k C k0 C k0 (3.48)
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and
" k ~JkEk. (3.49)

In the isotropic case and after reintroduction of the viscosity, we schematically 
obtain the EDQN equation:

(31 C 2vk2) E(k, t) D (3.50)
fo R1 PhuOuihuOu (r)e l'"""kpq+v(k2+p2Cq2)](t~T)dpdqdt ,

where 1 is the domain of integration corresponding to the triadic relation k D 
p C q. However, the equations obtained with this closure conserve the weakness 
of the QN model: they do not guarantee the statistical feasibility condition in all 
situations. The spectrum can therefore become negative.

The last refinement brought to this spectral closure is called Markovianization 
(M): here, we take into account the fact that the characteristic linear damping 
time is shorter than the characteristic nonlinear time of variation of second-order 
moment products. This timescale difference is used to justify a separate average 
over short time of the contribution of "k at the level of the expression of third- 
order moments. Concretely, equation (3.50) becomes:

(31 + 2vk2) E(k, t) = J 0kp^^huuihuOoi(tt)dpdq, (3.51)

with

kpq D e-["kpq Cv( k2Cp 2C q 2)]( t -T ) d r (3.52)

The final expression of the EDQNM spectral equation, in the case of nonhelical 
turbulence, is written (Lesieur, 1997):

(31 + 2vk2) Ek D bkpqEq(k2Ep - p2Ek)0kpqdpdq
1

(3.53)

with the geometric coefficient (we consider the angles inside the triangle kpq):

bkpq = -[cos [, q) cos [, q) + cos3 [, P)] • (3.54)
q

A last simplifying assumption is made to evaluate 0kpq : it is assumed that the 
damping rate does not vary over time integration, hence the expression:

1 _ e-["kpq + v(k2 +p2 + q2)]t
0kpq "kpq + v(k2 + p2 + q2) • (3.55)

As we will see in Chapter 4, the asymptotic closure of wave turbulence is based on 
a timescale separation between the wave period and the nonlinear time of variation 
of moments. There is therefore a certain proximity between the two approaches. 
Note that the EDQNM closure, which is subsequent to that of wave turbulence 
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whose development dates from the mid-1960s, emanates from the thoughts of 
Kraichnan in the late 1950s on another closure method, called DIA.

3.3.6 DIA Closure

The direct interaction approximation (DIA) was proposed by Kraichnan (1958, 
1959) in order to remedy certain shortcomings of the QN closure (Millionschikov, 
1941) as the nonconservation of energy (Kraichnan, 1957).4 This approach, which 
has no adjustable parameter, is based on a field theory method. The fundamental 
idea is that a disturbed flow over an interval of wavenumbers will see its distur­
bance spread over a large number of modes. Within the limit L ! C1, with L the 
side of the cube in which the fluid is confined, this interval becomes of infinite size, 
which suggests that the mode coupling becomes infinitely weak. The response to 
the perturbation can then be treated systematically. Under certain assumptions, 
two integro-differential equations are obtained for the two-point (in space and 
time) correlation functions and the response function (see the review by Zhou, 
2021).

In practice, we are interested in the evolution of two velocity fields. The first uOi 

is generated by an external force fOi which is introduced to keep the turbulence 
stationary. The second is a small perturbation (of the speed uOi) uOi generated 
by a small perturbation (of the force fOi) fOi . The equation associated with the 
perturbation is written:

(@t C vk2)8Ui(k, t) - Mijm(uj(p, t), km(q, t)) d 8f(t). (3.56)

Ifwe assume that the two velocity fields are independent, then M is a linear opera­
tor whose form can be deduced from the Navier-Stokes spectral equations (3.17). 
The linearity of equation (3.56) is justified as long as the perturbations remain 
relatively small. The solution to this equation is the response to an infinitesimal 
perturbation:

8uOi(k, t) D t GO ij(k, t, t0)8fOj(k, t0)dt0, (3.57)

with, for t t0 :

(@t C vk)Gij(k, t, t) - M(ui(p, t), Gij(q, t, t)) d Pij(k)8(t - t). (3.58)

GO ij is the infinitesimal response tensor. We see that these spectral equations intro­
duce two different times, t and t0, therefore there is a temporal memory, which is 
not the case with the EDQNM approach.

4 For a moment Kraichnan believed that his theory was exact, which is not the case as demonstrated by the non 
invariance of its equations by random Galilean transformation. The origin of the problem comes from the 
truncated series used (Kraichnan, 1975).
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Although more sophisticated than the EDQNM approach, the DIA method 
remains an approximation. Briefly, we can say that this technique consists in devel­
oping the velocity field and the infinitesimal response tensor in power series of 
(hence of the Reynolds number). The zero-order term in velocity is assumed to 
be a random variable with a Gaussian statistics. DIA closure consists of stop­
ping the expansion to the lowest possible nontrivial order, then taking D 1, 
which involves subtle issues about divergence of series (Leslie, 1973; Kraich- 
nan, 1975). We speak of direct interaction in the sense that all the equations are 
truncated to a given order and that we assume that there is no indirect interac­
tion between the order of the truncation and a higher order. We finally obtain two 
coupled integro-differential equations (whose appearance resembles the EDQNM 
equations) which preserve the detailed energy conservation. The prediction for 
the energy spectrum, in k~3=2, is, however, not in dimensional agreement with the 
theory of Kolmogorov, nor with the main spectral measurements.

Improvements were then made with a Lagrangian approach - called Lagran­
gian history direct interaction approximation (LHDIA) - to solve some problems 
like the noninvariance by random Galilean transformation (Kraichnan, 1966): this 
new theory can be seen as the most sophisticated model of closure. However, its 
degree of complexity is such that its use remains rare (Nakayama, 1999, 2001). 
Nowadays, the most used spectral closure method remains the EDQNM, because 
it is a spectral theory of reasonable complexity with which it is relatively easy to 
perform numerical simulation (Lesieur, 1997).

3.4 Two-Dimensional Eddy Turbulence

The motivation for the study of two-dimensional hydrodynamic turbulence stems 
from work showing that a two-dimensional approach could account relatively well 
for atmospheric dynamics (Rossby and collaborators, 1939). It is now known that 
the rotation (or stratification) of the Earth’s atmosphere tends to confine its nonlin­
ear dynamics to horizontal planes (see Chapter 6). Numerous works are dedicated 
to this subject; for fundamental aspects, we refer the reader to the reviews of 
Boffetta and Ecke (2012) and Alexakis and Biferale (2018).

Very early on, two-dimensional hydrodynamic turbulence was suspected to 
behave differently from the three-dimensional case. For example, Lee (1951) 
demonstrated that the existence of a direct cascade of energy would violate the 
conservation of enstrophy which is an invariant of the two-dimensional equations. 
At the end of his book, Batchelor (1953) notes that the existence of this sec­
ond invariant should contribute to the emergence, by aggregation, of larger and 
larger eddies and concludes by asserting the very large difference between two- 
and three-dimensional turbulence. Using energy and enstrophy, Fj0rtoft (1953), 
for his part, was able to demonstrate, in particular with dimensional arguments, 
that energy should tend to cascade preferentially towards large scales.
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Figure 3.4 Temporal evolution of the (normalized) vorticity produced by a direct numer­
ical simulation of the two-dimensional Navier-Stokes equations. Vortices form rapidly 
with a variable direction of rotation (direct in black and retrograde in white), then agglom­
erate to leave finally only a few structures. This merging mechanism can be seen as a 
signature of the inverse cascade. The numeric box used of spatial resolution 1024 1024
is periodic in both directions.

It is in this context, clearly in favor of an inverse energy cascade, that Kraichnan 
became interested in two-dimensional turbulence (Kraichnan and Montgomery, 
1980). With the help of an analytical development of Navier-Stokes equations in 
Fourier space, the use of symmetries and under certain hypotheses such as the 
scale invariance of double and triple moments, Kraichnan (1967) brought major 
quantitative arguments in favor of a direct cascade of enstrophy and an inverse 
cascade of energy, for which the proposed spectrum is in k“5=3. The existence 
in the same system of two different cascades - called dual cascade - was quite 
new in strong turbulence. This prediction has since been accurately verified both 
at the experimental (Couder, 1984; Kellay and Goldburg, 2002) and numerical 
levels (Leith, 1968; Pouquet et al., 1975; Chertkov et al., 2007). An illustration of 
what happens in physical space is given in Figure 3.4: this is a result ofa direct 
numerical simulation of the two-dimensional Navier-Stokes equations. We see 
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the temporal evolution of the (normalized) vorticity, which allows us to follow 
the formation of eddies. The latter tend to agglomerate and finally leave room for 
only a few structures. This merging mechanism can be seen as a signature of the 
inverse cascade.

3.4.1 Fj0rtoft’s Phenomenology

It is possible to demonstrate the existence of a dual cascade by dimensional 
arguments. We recall that enstrophy is defined as:

• = - j w2dx = 2 y (r x u)2dx. (3.59)

In this two-dimensional case, the definition can be reduced to the transverse com­
ponent: • = 2 f w2(x, y)dxdy. This quantity is dimensionally related to the energy 
by the spectral relation: k2Ek •k. Suppose that an energy flux "i and an enstro- 
phy flux i are injected into the system at a scale ki . For our proof, we will assume 
the existence of dissipation at large and small scales, denoted respectively by k0 

and k1 and such that 0 < k0 < ki < k1 < C1. Large-scale dissipation can be seen, 
for example, as the consequence of the friction between the eddies and the walls of 
an experiment. We assume that the system is dynamically balanced (assumption 
of statistical stationarity) and that the injection compensates on average the dis­
sipation of the invariants. In this case, by conservation of the invariants we have:

"i D "0 C "1 , (3.60a)
i D 0 C 1 , (3.60b)

with "0, 0, "1, and 1 the values of the energy and entrophy fluxes at the scales 
mentioned above. Furthermore, we have the dimensional relation:

k2" , (3.61)

which is valid at the three scales introduced above. The combination of the 
different relationships gives us:

"0 k2>=ki -1 (3.62a)
"1 1 - k2=ki ’
V0 ki=k1 -1 (3.62b)

Vi 1 - ki=k2.
In the limit of an extended inertial range, 0 < k0 ki k1 < C1, we obtain:

"0 k2
(3.63a)

"1 ~ 11 !C1 •

V0

Vi

-1! °, (3.63b)
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which means that the energy and entrophy fluxes have an opposite direction. In 
other words, we have a direct cascade of entrophy and an inverse cascade of 
energy.

The spectral law can be obtained by the Kolmogorov phenomenology presented 
in Section 3.3.2, which does not take into account the direction of the cascade. In 
the case of energy, the prediction remains the same and we obtain a large-scale 
spectrum in Ek — "2=3k“5=3 for the inverse cascade. We then have to adapt the 
phenomenology to the enstrophy. We have in the inertial range:

, - • - A - •* - (k• k)3=2, (3.64)
r '=u

hence the small-scale entrophy spectrum for the direct cascade:

• k - ^2=3k“1 . (3.65)

Using the dimensional relationship between the two spectra, we get the energy 
spectrum at small scales:

Ek - ^2=3k“3 . (3.66)

The dependence in is there to remind us that this spectral law is the con­
sequence of the entrophy cascade and not of energy. In Figure 3.5 we show the 
energy spectrum of two-dimensional turbulence, which is therefore character­
ized by two different spectral slopes: while the power law at large scales is the

Figure 3.5 Schematic evolution (in two-dimensional turbulence) of the one-dimensional 
energy spectrum between the initial time t D 0 and t D 1. An external force applied at an 
intermediate scale injects energy flux " and entrophy flux . A dual cascade emerges and 
the energy spectrum is characterized by two different spectral slopes.



86 3 Spectral Theory in Hydrodynamics

consequence of the inverse cascade of energy, that at small scales must be inter­
preted as a signature of a direct entrophy cascade. Note, to conclude, that the 
formation of the energy spectrum in —5=3 is slower for an inverse cascade than 
for a direct cascade. The origin of this difference is the infinite capacity of the 
system to accumulate energy at small wavenumbers k, while it is finite at large 
wavenumbers.

3.4.2 Detailed Conservation

The analytical theory proposed by Kraichnan (1967) makes it possible to go fur­
ther in the description. For this we need to use the detailed energy and enstrophy 
conservation. Note that the demonstration that we are going to do differs slightly 
from that of Kraichnan because we will use the stream function i such that:

u = ez xri, (3.67)

with ez a unit vector in the transverse direction to the two-dimensional plan. In 
Fourier space, this relation is written:

u(k) d iOkkez x k. (3.68)

With the use of the stream function the condition of zero divergence on the veloc­
ity is automatically satisfied and the equations become simpler. We have also:

k • u(p) d iOpp ez • (p x k), (3.69a)
k • u(q) d iiOq ez • (q x k), (3.69b)

u(k) • u(p) d-iOkiOpk • p, (3.69c)
u(k) • u(q) d -iOkiOq k • q. (3.69d)

Therefore, expression (3.22) can be written as:

S(k, p, q) d [(k • p)(ez • (p x q)) C (k • q)(ez • (q x p))] <[iOkiOpiOq], (3.70)

with < the real part. By using the triadic relation, the relation simplifies:

S(k, p, q) d [(q2 -p2)(ez • (p x q))] <[iOkiOpiOq], (3.71)

with the energy conservation equation per mode:

@tjuO (k)j2 C 2k2juO (k)j2 D S(k, p, q)(k C p C q)dpdq . (3.72)
R4

Furthermore, we can demonstrate (see Exercise I.3) that the conservation of 
entrophy per mode is written:

@tjwO z(k)j2 C 2k2jwO z(k)j2 D k2S(k, p, q)(k C p C q)dpdq . (3.73)
R4
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For that we have to use the relation:

wz(k) D-k2Okkez. (3.74)

From these expressions, it is possible to demonstrate the detailed conservation of 
energy and enstrophy (see Exercise I.3) per triad of interaction; these conservation 
laws are written respectively:

S(k,p,q)CS(p,q,k)CS(q,k,p)D0, (3.75a)
k2S(k, p, q) C p2S(p, q, k) C q2S(q, k, p) D 0. (3.75b)

These two relations are generalized in the case of statistically isotropic turbulence 
(see Exercise I.3). In this case we have:

T(k,p, q) C T(p, q, k) C T(q, k,p) = 0 (3.76)

and

k2T(k,p, q) C p2T(p, q, k) C q2T(q, k,p) = 0 , (3.77)

with the evolution equations of the one-dimensional energy E(k) and entrophy
•(k) spectra:

@tE(k) C 2k2E(k) D T(k) D T(k, p, q)dpdq, (3.78a)

@t•(k) C 2vk•(k) d k2T(k) d /* k2T(k,p, q)dpdq, (3.78b)
1

where 1 means an integral verifying the triadic relation k C p C q D 0 and:

T(k,p, q) d 2nk(q2 p2) . ez • (ep x eq)<hi°ki°pi°q)
sin k

, (3.79)

with ep and eq two unit vectors oriented according to p and q, respectively, and k 

the opposite angle to k in the triangle k CpCqD0.

3.4.3 Zakharov Transformation and Power-Law Solutions

We will follow a method different from Kraichnan (1967) and make use of the 
Zakharov transformation. Usually, this transformation is only used in wave turbu­
lence to obtain the exact solutions of the kinetic equations (see Chapter 5). We 
will assume the scale invariance:

T(ak, ap, aq) D ax T(k, p, q) (3.80)

and introduce the dimensionless variables: £p = p=k and £q = q=k. We are first of 
all interested in energy; we have in the inertial range:

@tE(k) d 11 k2C*[T(1, £p, £q) C T(1, £p, £q) C T(1, £p, £q)]d£pd£q . (3.81)



88 3 Spectral Theory in Hydrodynamics

We then apply the following transformations respectively to the last two
integrands (see Figure 3.6):

1
$p

$p

$q

and

and

$q ! K 

p

$q ! T- , 
q

(3.82a)

(3.82b)

$p !

$p !

which gives:
k 2Cx Z

@tE (k) 3

C $p"3'

[T(1, $p, $q)
1

XT(($p,1, $q) C $q-3' xT($q , p, 1)]dpdq

(3.83)

k2Cx Z
; [ [T(1, $p, qq) C $q-3-xT($q, 1, pp) C $"xT($p, $q, 1)]dppd$q .
31

The detailed conservation laws of energy and enstrophy give us the relationships:

T ($q ,1, $p )_ 1 - $p

T (1, $p, lqq ) pp - q2I’

T ($p, qq, 1) _ $q2 - 1
T (1, $p, $q ) $p - $q-

(3.84a)

(3.84b)

Figure 3.6 Zakharov conformal transformation for three-wave interactions. The infinitely 
extended gray band corresponds to the solutions of the triangular relation k C p C q D 
0 (the boundaries correspond to flattened triangles). The transformation consists of the 
exchange of four regions separated by dashes. The transformations (3.82a) and (3.82b) 
are shown on the right and on the left, respectively.
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With the introduction of these relationships, we get:
k2Cx Z

@ tE (k) ; T T (1, jp, jq )
31

1 C

1

:-3-x 1 - $P2 . j-3-x $q - 1
q j 2 _ j 2 C jP j 2 _ j 2jp j q jp j q

(3.85)

k2Cx Z
djpdjq =— T T(1, jp, jq)

31q
(jp jq)3Cx( jp - jq) C jp+x - j5Cx C jq+x - jqCx 

(jp jq)3Cx(jp - j2
djpdjq.

Therefore, the exact stationary constant flux solution corresponds to x = —3.
What is the associated energy spectrum E(k)? To answer this question, it is 

necessary to introduce a similarity hypothesis. Dimensionally, we have:
[E(k)]3=2k3=2 D [T(k)] D kxC2 . (3.86)

Ifwe assume that E(k) ky we get the scaling relation: 3y D 2x C 1. Therefore, 
the stationary solution corresponds to y d —5=3: it is the Kolmogorov spectrum. 
This solution is not exact because we made an assumption of similarity which is 
not true in turbulence, as proven by the presence of intermittency (see Chapter 2). 
However, the intermittency correction at this statistical level is relatively small.

Let us now turn to enstrophy; we have in the inertial range:

@t•(k) D 1-i k4Cx[T(1, jp, jq) C T(1, jp, jq) C T(1, jp, jq)]djpdjq . (3.87)
31

We apply the Zakharov transformation:
k4Cx Z

@t•(k) / [T(1, jp, jq) (3.88)
31

C jq-3-xT(jq, 1, jp) C jp-3-xT(jp, jq, 1)]djpdjq .

Using detailed conservation laws gives:
k4Cx Z

@t•(k) T T(1, jp, jq)
31

(jpjq)3Cx(jp - jq) C jp3Cx - jp+x C j3Cx - jq+x 
(jpjq)3Cx(jp - j2)

(3.89)

djpdjq.

The exact stationary solution at constant flux therefore corresponds to x d —5, 
that is, an entrophy spectrum in •(k) ~ k-1. We recover the phenomenological 
prediction. Here again this result is not exact, because we have used a similarity 
hypothesis - not valid in the presence of intermittency.

3.4.4 Energy and Enstrophy Fluxes

Then, we can study the sign of the energy flux. We have:
Z C1 k02Cx k3Cx

5( k) D h dkI(') D~ 3(3CT) I(x)’ (3.90)
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with:

I(x) T(1, p, q) (3.91)

(tptq)3Cx(pp - tq) C pp3+x - p5p+ x C pq+ x - pq+x „ „
dppdqq .

(tplqq)3Cx(pp - $q)

We implicitly assumed that the contributions of the triadic interaction for k ! 
C1 tend towards 0 (and therefore that 5(C1) D 0): this is a locality hypothesis 
whose validity must be verified a posteriori. The constant flux is obtained in the 
stationary case, that is, when x d — 3. To take this limit, it is necessary to use 
L’Hospital’s rule since I(—3) d 0. With z d x + 3, we have:

lim 5( k) d " d- 1 dI(z) । z do, (3.92)
z!0 3 dz

with:
dI_ (z) ।

dz |zD0
f t fc<tqz ln(tq)+pp2tqz ln(tq)-tq2tpz Wp)+ppz Wp) At At \
1T T (1, pp, qq)------------------ q2Tq2----------------------------- dppdqq Izd0

(3.93)

t 12pp q q

D 1T T(1,pp,tq)(pp2~1)ln(ppq) ( . ''l" p)dppdqq .
p 2-12 pp q q

We get the exact expression for the energy flux:

D f T(1, tp, tq)A(tp, tq)dppdqq , 
11

(3.94)

with:
1(tpp - 1) ln(pq) - (tq - 1)ln(tp)

A (tp, tq ) d 3 2 2Sq pp

To go further, we can introduce the normalized expression (3.79):

T (1, pp, tq ) D (tq - pp)tp qq ez ' (ep X eq) <[2^ ht 11 pp ^P qq i] . 
sin k

(3.95)

(3.96)

A Taylor expansion in the neighborhood of the point p D q D 1 gives 
A(pp, pq)' — 3ppqq, therefore A(1,1) d 0. Furthermore, we see that A(pp, pq) is 
zero for p D 1 or q D 1. Thus, the gray band in Figure 3.6 on which we are can 
be divided into four regions with an axial symmetry along the diagonal p D q 

on which A D 0. The sign ofA in each region is in fact given by an estimate in the 
neighborhood of the point (1,1) (see Figure 3.7).

The enstrophy flux writes:
Z C1 k 04Cx k5Cx

^ ( k) —7- dk'J (x) D J (x) ,
k 3 3(5 C x)

(3.97)
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Figure 3.7 Functions A(x,y) (top) and B(x,y) (bottom). Only the values on the shaded 
band in Figure 3.6 are relevant. We can distinguish four regions on which A and B have 
opposite signs.
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with:

J(x) T(1, p, q) (3.98)

(tpqq)3Cx(tp - qq) C tp+x - p5Cx C tq+ x - qq+x „ „
dppdqq .

(tptqq)3Cx(tp - $q)

A study similar to the previous case gives us the exact expression:

D T (1, p , q)B(p , q)dpdq
1

with:

1, 1^.2 qq(tp - 1) ln(tq) - tp(tq - 1) ln(tp)
B(tp, qq) D 3 t _ 2 2

q q q pp

(3.99)

(3.100)

A Taylor expansion in the neighborhood of the point p D q D 1 gives B(p , q) ' 
31pqq, so B(1,1) D 0. As for A, we see that B(tp, qq) is zero for pp D 1 or tq D 1. 
Thus the gray band in Figure 3.6 can also be split into four regions with an axial 
symmetry along the diagonal p D q on which B is zero. The sign of B in each 
region is in fact given by an estimate in the neighborhood of the point (1, 1). As 
shown in Figure 3.7, A and B are always of opposite sign. Note that Kraichnan 
(1967) arrived at this conclusion without using the Zakharov transformation but 
by manipulating the integral (3.90): he showed that the flux can be reduced to the 
contribution of the triangular region at the top left of the gray band in Figure 3.6 
(right). Note in passing that the comparison of the two approaches highlights a 
nontrivial relation at the level of the contributions of the flux.5 With these results 
we arrive at a major result: the flows " and are necessarily of opposite sign. In 
other words, two-dimensional hydrodynamic turbulence is characterized by a dual 
cascade of energy and entrophy. Two-dimensional turbulence is historically the 
first example of a system where this phenomenon is observed. We now know that 
there are others, such as in magnetohydrodynamics, where the magnetic helicity 
cascades inversely (Pouquet et al., 1976).

The use of numerical simulation confirms the phenomenology: we have a direct 
cascade of entrophy and an inverse cascade of energy (Leith, 1968; Pouquet et al., 
1975; Chertkov et al., 2007). To finish, note that we have made an assumption 
about the convergence of integral (locality assumption). It turns out that a logarith­
mic correction must be made to the small-scale spectrum to verify this hypothesis 
(Kraichnan, 1971). This type of correction is not uncommon: it is also found in 
the wave turbulence regime (see, e.g., During et al., 2017).
5 The approach developed here from the Zakharov transformation is original and has never been published.
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3.5 Dual Cascade

We have just seen that two-dimensional hydrodynamic turbulence is characterized 
by an inverse cascade of energy, whereas it is direct in three dimensions. From 
a theoretical point of view, one can wonder if the transition between a direct and 
an inverse cascade of energy happens suddenly when the thickness of the fluid 
decreases, or if it is done gradually. Numerical studies on the subject show that 
the second scenario is the right one: there is a thickness interval on which the 
transition happens gradually (Benavides and Alexakis, 2017).

In the three-dimensional case, the decomposition of the velocity field on a com­
plex helicity basis (Craya, 1954) makes it possible to separate triadic interactions 
by class and highlight those that contribute to positive and negative energy flux 
(Sahoo et al., 2017; Alexakis and Biferale, 2018). We can show that this behavior 
is linked to the amount of kinetic helicity injected into the system (Plunian et al., 
2020). Note that the introduction of an external force, such as the Coriolis force, 
can fundamentally change the three-dimensional physics with the emergence of 
an inverse cascade (Smith and Waleffe, 1999) (see Chapter 6).

The duality - direct cascade / inverse cascade - remains a subject very much 
studied in hydrodynamic turbulence but also in many others systems. A review on 
this theme is proposed by Pouquet et al. (2017), 50 years after the discovery made 
by Kraichnan (1967).

3.6 Nonlinear Diffusion Model

In this section, we will present a phenomenological model of turbulence based 
on the idea of a turbulent diffusion in the spectral space. The approach is differ­
ent from the closure methods as EDQNM in that we seek to express the cascade 
mechanism directly without going through a hierarchy of equations. This type of 
model was first proposed by Leith (1967). It has since been generalized to other 
systems in strong/eddy turbulence (Leith, 1968; Zhou and Matthaeus, 1990; Con- 
naughton and Nazarenko, 2004; Matthaeus et al., 2009; Thalabard et al., 2015) 
and in weak/wave turbulence (Hasselmann et al., 1985; Dyachenko et al., 1992; 
Zakharov and Pushkarev, 1999; Boffetta et al., 2009; Galtier and Buchlin, 2010; 
Galtier et al., 2019). Note that in the latter case, the nonlinear diffusion equa­
tion can be obtained by a rigorous calculation from the weak wave turbulence 
equations in the approximation of local interactions. In Chapter 6, such a limit is 
discussed in detail in the context of rotating hydrodynamic turbulence.

In this approach, the cascade is modeled by a diffusion process in the spectral 
space. We will consider the diffusion equation of energy valid in the inertial range:

@ E (k) D-r- 5(k), (3.101)
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with 5(k) the energy flux. We assume a statistically isotropic turbulence, therefore
we can write:

1 @ (k25 k (k))
@ tE (k) D 7 2 37 , (3.102)k2 @ k

with 5k the radial component of the flux in spherical coordinates. This component
is modeled as follows:

@E(k)
5k D-, (3.103)@k

where D is a diffusion coefficient. Dimensionally, we find:

k2
D d— , (3.104)

NL

with NL the characteristic transfer time of energy. Its phenomenological expres­
sion is given by the relation (see Chapter 2):

'
rnl------ . (3.105)

U'

We introduce the one-dimensional energy spectrum, E(k) D 4 k2E(k). The 
diffusion coefficient can then be written:

D ~ kVkE(k). (3.106)

After a few manipulations, we finally obtain the following nonlinear diffusion 
equation, in which we have introduced a term of dissipation to include the 
dissipative scales:

@ / p--------@(e(k)/k2) \
@tE(k) d — I k 11/2 ^E(k) @k ) - 2vk2E(k) . (3.107)

This equation models three-dimensional, homogeneous, and isotropic hydrody­
namic turbulence. We could have introduced a constant of proportionality in front 
of the right term, however, we can always renormalize time to make this constant 
disappear. In other words, the characteristic timescale of this diffusion equation is 
normalized by the characteristic time of the cascade.

We can verify that this equation has as its solution the Kolmogorov spectrum.
For that we introduce the spectrum:

E(k) D Akx , (3.108)

with A > 0 because the energy spectrum is a definite positive quantity. The 
expression for the flux then takes the form:

5k(k) D pAk(11C-)/2 " k'' D A3/2(2 _ x)k(5C3x)/2 . (3.109)
@k
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Figure 3.8 Schematic evolution of the energy spectrum with a nonlinear diffusion model.

The non-zero constant flux solution therefore corresponds to x d —5=3: it is 
indeed the Kolmogorov spectrum. We see that for this value of x, we have:

5k d " d 131 A3/2, (3.110)

which is positive, as expected for a direct cascade. It is not difficult to numerically 
simulate the nonlinear diffusion equation and obtain the Kolmogorov spectrum 
over several decades, as shown in Figure 3.8.

This access to an extended inertial range makes it possible to numerically 
address the problem of the nonstationary regime, during which the spectrum 
formed may not be that of the stationary regime. In the hydrodynamic case, a 
slightly steeper spectrum around —1.85 was measured. This spectrum is currently 
understood as a self-similar solution of the second kind, that is, a solution that 
we cannot predict exactly (Connaughton and Nazarenko, 2004; Thalabard et al., 
2015). This solution is characterized by an explosive propagation of the spectrum 
towards large wavenumbers: we can show that the self-similar solution reaches in 
principle k D C1 in a finite time. We will come back to this question in Chapter 
6 in the context of rotating hydrodynamics and in Chapter 8 in plasma physics.

To conclude, let us note that there is another type of turbulence model that 
has been often used in the past: the shell model. As for the diffusion equation, 
in this model the nonlinear interactions are assumed to be local. The velocity is 
modeled in the Fourier space by a complex scalar depending on the wavenumber 
and whose temporal evolution is governed by an ordinary differential equation 
built in an ad hoc manner. Despite its simplicity, this hydrodynamic model has 
nontrivial intermittency properties. In the case of magnetohydrodynamics, chaotic 
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reversals of magnetic polarity have been observed. For more information, we refer 
the reader to the review articles of Biferale (2003) and Plunian et al. (2013) for 
hydrodynamics and magnetohydrodynamics, respectively.
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Exercises I

I.1 1D HD Turbulence: Burgers’ Equation

Burgers’ equation (Burgers, 1948) is often regarded as a one-dimensional model 
of compressible hydrodynamic turbulence. This equation is written:

@u @u @2u
C + u D VT"2, @t @ x @ x2

withu a scalar velocity and a viscosity. Burgers’ equation is a simple model
often used to test new ideas in turbulence. Here we will study the properties of dis­
sipation and then intermittency using the tools introduced for the Navier-Stokes 
equations.

(1) Demonstrate that:

u (x, t) D -

is an exact solution.
(2) Find the limit of this solution when ! 0.
(3) Calculate the mean rate of energy dissipation ".
(4) Calculate the mean rate of viscous dissipation ". Conclude.
(5) Find the expression of the smoothed Burgers equation by introducing an 

anomalous dissipation D'.
(6) Calculate the expression of the inertial dissipation DI with the exact 

solution. Conclude.
(7) By using the exact solution in the limit ! 0, find the exponents p by

distinguishing the case where p < 1 from the case where p 1.

I.2 Structure Function and Spectrum

We are interested in the relationship between the one-dimensional energy 
spectrum E1d (k) and the second-order structure function S2(r) in the case of 
three-dimensional homogeneous isotropic hydrodynamic turbulence.

(1) Let R(r) be the two-point correlation function of the velocity, that is, 
R(r) D hu u0i. Write down the general relation between this function and the 
three-dimensional energy spectrum E3d(k).

(2) Focusing on the isotropic case, demonstrate the relationship:

52(r) D 4 f+ 11 - sinkrA ejd(k)dk, (3.111)
0 kr

where 52(r) D h(^u)2;.
(3) It is assumed that the one-dimensional energy spectrum is given by the 

relation E 1 d(k) D CK"2=3k“5=3, where CK is the Kolmogorov constant. Find the 
relation:
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S2(r) D C2"2=3r2=3 , (3.112)

where C2 is a constant that will be given. Compare your results with the experi­
mental measurements CK ' 0.5 and C2 ' 2.5 (Sreenivasan, 1995; Welter et al., 
2009).

I.3 2D HD Turbulence: Detailed Conservation

In the two-dimensional case, the Navier-Stokes equations become simpler and it 
is possible to demonstrate analytically the existence of a dual cascade of energy 
and enstrophy (see Chapter 3). For this, we must use the detailed conservation 
laws for these invariants. The aim of this exercise is to obtain these two laws. We 
will introduce the stream function such that u ezr . With the use of this 
function the zero velocity divergence condition is automatically satisfied and the 
calculations are simplified.

(1) Write the spectral expression of enstrophy conservation.
(2) Demonstrate the detailed conservation of enstrophy using the relationships 

in the triangle formed by k, p, and q.
(3) Same question for energy.
(4) Generalize the result in the case of statistically isotropic turbulence.
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Introduction

Waves and turbulence are the two pillars of this second part. As we shall see, 
the wave turbulence regime offers the possibility to develop an analytical theory. 
Beyond its mathematical beauty, the spectral theory obtained makes it possible 
to understand in depth a weakly nonlinear system and to develop an intuition on 
the physics of strong wave turbulence. In essence, the wave turbulence regime 
only concerns systems in which waves can be excited, which excludes the Navier- 
Stokes equations of incompressible hydrodynamics.1 We have seen in Part I that 
these equations are fundamental in turbulence: indeed, it is from them and from 
laboratory experiments based on water or air that the first theoretical advances 
(concepts, exact laws) have been made. This is one of the reasons why the 
literature on turbulence focuses mainly - if not entirely - on incompressible hydro­
dynamics, thus excluding a whole range of applications where waves make a 
major contribution to the dynamics.2 The present book is an exception, as it is the 
first to devote significant attention to (strong) eddy turbulence and (weak) wave 
turbulence. As we shall see in this part, turbulent systems that have waves within 
them are very numerous. In contrast, incompressible hydrodynamics (pure eddy 
turbulence) appear quite singular.

We can distinguish two regimes in wave turbulence: one where the waves are of 
weak amplitude and one where they are not. The regime that concerns us here is 
mainly that of weak turbulence (first case). When there will be no ambiguity, we 
will follow the usages on the subject and speak of wave turbulence in the sense 
of weak turbulence. The existence of a small parameter - the amplitude of the 
waves - allows a systematic approach to the problem. The general idea is that 
the weak amplitude of the waves makes it possible to distinguish between the 
temporal evolution of the amplitude and that of the phase, the former evolving
1 We mean here the unmodified Navier-Stokes equations. If, for example, the Coriolis force is added, inertial 

waves appear. In the limit of a small Rossby number, we obtain the inertial wave turbulence regime, which is 
the subject of Chapter 6.

2 Another reason is that books on turbulence are often written by fluid mechanists and not by physicists.
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Figure 4.1 Wave turbulence: Spatial deformation of the free surface of a liquid produced 
by direct numerical simulation (see Chapter 5).

more slowly than the latter. This separation of scales in time makes it possible to 
obtain a uniform asymptotic closure of the hierarchy of equations.

A brief history will allow us to understand how the theory of wave turbulence 
was constructed. We will apply, in a simple example and then in a nonlinear 
equation model, the method of multiple scales, which allows us to justify the 
uniformity of the asymptotic development. The systematic method of wave turbu­
lence will then be presented exhaustively in what is probably the simplest example, 
that of capillary waves (Chapter 5). Chapter 5 is a technical chapter, but neces­
sary for those who wish to make the method their own. Chapters 6 and 7 will 
be devoted to hydrodynamics in rapid rotation, then to magnetohydrodynamics 
(MHD) in a strong magnetic field. A synthetic presentation of the main properties 
will be given. Chapter 8 will look at wave turbulence in a compressible plasma 
at sub-MHD scales. The final Chapter 9 deals with a subject at the limits of our 
knowledge: gravitational wave turbulence, which could play a fundamental role in 
the mechanism at the origin of the cosmological inflation that appeared in the first 
second of the universe, just after the Big Bang.

4.1 Brief History

4.1.1 Prehistory

It is essentially in the field of oceanography and the study of surface waves on 
the sea that we find the beginnings of the theory of wave turbulence (Phillips, 
1981). This work began in the late 1950s, at a time when surface waves were 
treated essentially in a linear manner, the spectra as a superposition of linear 
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waves, and nonlinear effects restricted, for example, to periodic wave distortion 
phenomena described a long time previously by Stokes (Stokes, 1847). Gravity 
waves are by definition on the surface of the ocean; inside the ocean they are 
called “internal gravity waves.” A second type of surface wave exists: capillary 
waves, which are discussed in detail in the Chapter 5. The Navier-Stokes equa­
tions, modified by the force of gravity, are the theoretical framework from which 
the first results emerged. To simplify the problem, the movements are generally 
assumed to be irrotational: this corresponds to an air-water interface disturbed by 
a unidirectional blowing wind - a typical condition encountered in the open sea. 
The problem is then reduced to Bernoulli’s equation applied to the free surface 
of the fluid, to which is added a Lagrangian equation to describe the deformation 
of the fluid surface and another to take into account an additional hypothesis: the 
deep-water hypothesis (see Chapter 5).

4.1.2 Resonant Wave Interactions

Work in the late 1950s and early 1960s led to a major theoretical breakthrough 
with the discovery of the existence of resonant interactions between nonlinear 
waves of weak amplitude.3 The waves in question are, of course, gravity waves. 
The idea has its origin in the work of Phillips (1960), Longuet-Higgins (1962), 
and Hasselmann (1962). who tried to understand how the nonlinear interactions 
between gravity waves could redistribute the energy initially present in these 
modes.4 The underlying idea is that in the initial phase of the development of 
turbulence it is the resonant interactions that provide the dominant mechanism for 
transferring energy from one wave to another. The ultimate phase of development 
had already been studied previously by Phillips (1958) who, using dimensional 
analysis, was able to make a spectral prediction of strong (wave) turbulence which 
is still in use today (see Chapter 7 on critical balance).

After long calculations based on a classical perturbative development, it was 
possible to demonstrate that the energy redistribution was generally negligible for 
interactions involving less than four waves, but that it became important for four 
waves if the following resonance relationship was satisfied: 

k1 C k2 D
!1 C !2 D

k3 C k, 
!3 C ! , (4.1)

with the dispersion relation !2 D gjkj (g being the acceleration of gravity). The 
experimental demonstration of the existence of resonant interactions was then 
published by Longuet-Higgins and Smith (1966) and McGoldrick et al. (1966).

3 Note that earlier studies on three- and four-wave resonance had already been carried out, for example, in the 
field of thermal conduction in crystals (Peierls, 1929). See also Nordheim (1928), who wrote the first kinetic 
equation: it was for four-wave interactions in the context of the electron theory of conductivity.

4 K. Hasselmann was awarded the Nobel Prize in Physics in 2021 “for the physical modelling of Earth’s climate, 
quantifying variability and reliably predicting global warming.”
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Although the existence of resonant wave interactions appeared to be real, their 
interpretation was then subject to debate because the energy exchange between 
resonant waves also led to a linear growth (in time) of the amplitude of the 
waves, ultimately breaking the hypothesis underlying the existence of resonant 
interactions, that is, the presence of waves of weak amplitude; in this case, the 
perturbation is said to be nonuniform.5 It was therefore not clear whether this 
energy transfer could be really effective. An answer to this question was first pro­
posed statistically by Hasselmann (1962), who considered a random set of gravity 
waves. The hypothesis of weak nonlinearities was then used to justify another 
hypothesis, that of a Gaussian statistics which greatly simplifies the calculations 
by eliminating in particular moments of odd order (see also Drummond and Pines, 
1962).

4.1.3 Multiple Scale Method

A second major theoretical breakthrough came with Benney’s work, which showed 
that the problem of wave turbulence is similar to that of weakly coupled oscillators 
in mechanics (Akylas, 2020). With a new mathematical technique for the analy­
sis of dispersive wave packets involving two timescale, Benney (1962) obtained 
a relatively simple form for the (discrete and nonstatistical) equations that govern 
the temporal evolution of resonant modes. In this approach, the secular terms dis­
appear: they are somehow absorbed by the slow variation of the wave amplitude. 
This work shows, in a simple way, how the exchange of energy between four grav­
ity waves is carried out: this exchange takes place while conserving energy. Here 
we find a property of strong turbulence, that of detailed conservation (see Chapter 
3).

This approach paved the way for the use of a new mathematical technique called 
the multiple scale method (Sturrock, 1957; Nayfeh, 2004), which made it possi­
ble to demonstrate that the (continuous) statistical equations of wave turbulence 
have a natural closure due to the separation of scales in time. As shown by Ben- 
ney and Saffman (1966) for quadratic nonlinearities and Benney (1967) for cubic 
nonlinearities, the equations of wave turbulence are asymptotically valid over long 
periods of time and do not require the statistical assumption of Gaussianity made 
by Hasselmann (1962). The method of multiple timescale offers a systematic and 
consistent theoretical framework in which the procedure expansion allows one 
in principle to determine the slow rate of change of the amplitude of the waves at 
any order in (Benney and Newell, 1967, 1969). The so-called kinetic equation of 
gravity wave turbulence then takes the following (schematic) integro-differential 
form in d-dimension:
5 We are talking about secular terms, an illustration of which is given in Section 4.2 from the Duffing equation.

This growth can also be nonlinear in t ( > 0) for higher-order corrective terms.
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@^(k) D e4f S(k, ki, k2, k3)[AT1 ^2(^ C AT3) - AT3^(AT1 C AT2)]
@t R3d

S(!1 C !2 — !3 — !)5(k1 C k2 — k3 — k)dk1 dk2dk3 , (4.2)

with N N (k) D E(k)=! the wave action spectrum and E(k) the energy spec- 
trum.6 The Dirac functions translate the resonance condition (4.1) discussed in 
Section 4.1.2. The presence of the e4 factor means that the timescale (normalized 
to the wave period 1=!) on which the spectra are modified by the nonlinear 
dynamics is of the order of O(1=e4). Therefore, it is a relatively slow process.

4.1.4 Kolmogorov-Zakharov Spectrum

Parallel to the work carried out in the Western world, major theoretical advances 
were also made in the East. From the beginning of the 1960s, the Soviet school 
became interested in wave turbulence, mainly through plasma physics (Sagdeev 
and Galeev, 1966; Vedenov, 1967), from which certain notations and vocabulary 
were borrowed (one speaks, for example, of the kinetic equation or collision inte­
gral). In passing, it is curious to note that this work was carried out simultaneously 
by the two parts of the world without much communication between them. In par­
ticular, by the method known as random phase approximation, kinetic equations of 
wave turbulence were proposed in a primitive form by Kadomtsev and Petviashvili 
(1963) for a problem of plasma physics, then in a modern form by Zakharov and 
his collaborators (Zakharov, 1965, 1967; Zakharov and Filonenko, 1966, 1967). 
This work is generally based on a Hamiltonian approach to the problem, whereas 
it is the Eulerian approach that was mainly used in the West.

The random phase approximation leads, in practice, to the same kinetic 
equations as by the (more rigorous) method of multiple scales. From these integro­
differential equations, a major breakthrough was achieved with the discovery 
of a conformal transformation to extract from the nonlinear kinetic equations 
the exact power-law solutions. This transformation - now called the Zakharov 
transformation - was first proposed for capillary wave turbulence involving tri­
adic interactions (Zakharov, 1967), then for Langmuir wave turbulence, where 
the interactions are quartic (Zakharov, 1967; Kaner and Yakovenko, 1970).7 For 
more details on the Zakharov transformation, we refer the reader to the Chapter 
5, on capillary wave turbulence, in which this transformation is used. However,
6 By analogy with plasma physics, wave action is often associated with particles. This is a quantity that is 

sometimes conserved in four-wave processes. This is the case, for example, in gravitational wave turbulence 
(see Chapter 9).

7 Zakharov was a student of Sagdeev. He defended his PhD thesis on surface waves in 1966 with sev­
eral fundamental results in wave turbulence to his credit, such as the discovery of exact solutions to the 
kinetic equations. This discovery is reported in the article by Zakharov (1965) in which the author first 
verified that the collision integral (obtained from a relatively simple ad hoc model of three-wave interac­
tions) tended towards 1 for two power-law exponents. He then demonstrated that the solution (the energy 
spectrum) associated with the index exactly in the middle of this interval cancels nontrivially the collision 
integral: Zakharov had just discovered an exact stationary solution. The discovery of the so-called Zakharov 
transformation came shortly after (Zakharov and Filonenko, 1966).
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we can already note that there are two types of solution: the zero flux solution 
(which was the regime studied by Nordheim, 1928) and the nonzero constant 
flux solution. The first case corresponds to the thermodynamic solution (constant 
entropy) and the second to the Kolmogorov-Zakharov spectrum, which is the most 
interesting solution because it is nontrivial. Note that we have already made use 
of the Zakharov transformation in the study of two-dimensional hydrodynamic 
turbulence (see Chapter 3).

4.1.5 Applications of Wave Turbulence

There are many examples of the application of wave turbulence. Below is a 
nonexhaustive list of applications with some references.

Surface waves: These are the first applications of wave turbulence. They 
include capillary waves and gravity waves. The former involve three-wave 
interactions, the theory of which was published in English by Zakharov (1967) 
in the deep water limit. This is the subject of Chapter 5, in which many refer­
ences are given. Note that the shallow water limit is also the subject of studies 
(see, e.g., Clark di Leoni et al., 2014). Gravity wave turbulence is a problem 
that needs to be addressed at the level of four waves (Hasselmann, 1962). This 
regime has been well reproduced in the laboratory or by direct numerical sim­
ulations (see, e.g., Deike et al., 2011; Zhang and Pan, 2022). Its detection at 
sea is more difficult, but not impossible (see, e.g., Hwang et al., 2000). The two 
subjects being linked, several experiments deal with the interaction between 
gravity and capillary waves (see Chapter 5). All in all, it is a subject that is still 
very much under study (see the review by Falcon and Mordant, 2022).
Internal gravity waves: These waves are a variant of the previous ones in 
the sense that we are interested here in gravity waves under the surface of the 
ocean. These waves contribute dynamically to the turbulent transport of heat, 
which is important to understand in order to properly evaluate the impact of 
oceans on the climate (MacKinnon, 2017). Internal gravity wave turbulence 
is an anisotropic three-wave problem for which an Eulerian theory has been 
developed by Caillol and Zeitlin (2000), as well as several experiments (see, 
e.g., Savaro et al., 2020).
Inertial waves: This is the closest example to the standard case of eddy tur­
bulence, in the sense that the equations are those of Navier-Stokes which are 
modified simply by adding the Coriolis force. Inertial wave turbulence is a 
three-wave anisotropic problem, whose theory has been published by Galtier 
(2003). Chapter 6 is devoted to this subject: the main properties of this regime 
are described, and a review of the numerous numerical and experimental works 
is given (see, e.g., Monsalve et al., 2020).
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Rossby waves: These waves appear in a situation of differential rotation. 
They are used in the modeling of planetary atmospheres, the interiors of 
gaseous planets, and stars; these are often referred to as planetary waves 
(Longuet-Higgins and Gill, 1967). In wave turbulence, the dynamics is driven 
by three-wave processes with a dominance of nonlocal interactions (Balk et al., 
1990a,b).
Plasma waves: As mentioned in Section 4.1.4, we find the beginnings of wave 
turbulence in the field of plasma physics (Sagdeev and Galeev, 1966; Vedenov, 
1967). In this very vast domain, waves are legion. In Chapter 7 we present the 
special case of Alfven wave turbulence, which is based on the simplest model of 
plasma physics. The three-wave theory was published by Galtier et al. (2000): 
it is a case where the anisotropy is so strong that the cascade is completely 
inhibited in the direction of the strong applied magnetic field. Further examples 
of plasma physics are mentioned and accompanied by references in Chapter 8, 
which is devoted to compressible plasmas.
Geodynamo waves: Geodynamo waves are defined as waves present in the 
earth’s outer liquid core. These waves take part in the dynamo effect, that is, the 
physical mechanism that maintains the earth’s magnetic field (Finlay, 2008). 
These are magnetostrophic waves and inertial waves. The three-wave theory 
models a homogeneous medium with a small Rossby number (Galtier, 2014): 
in this framework, an anisotropic inverse cascade of hybrid helicity is predicted, 
which could be at the origin of the regeneration of the magnetic field on a large 
scale (Menu et al., 2019).
Acoustic waves: Acoustic wave turbulence is driven by three-wave interac­
tions, but these waves are not dispersive. This is a critical situation for the 
application of wave turbulence, because the uniformity of the development is 
not guaranteed (it depends on the dimension of the problem). The first works on 
the subject date back to the early 1970s (Zakharov and Sagdeev, 1970). The way 
in which the asymptotic is subtly modified is discussed by Newell and Aucoin 
(1971), and later by L’vov et al. (1997). It can be shown for this regime that 
energy is at best redistributed according to rays (in three-dimensional Fourier 
space).
Elastic waves: This is a turbulence produced by a thin elastic plate or by the 
introduction of long polymer molecules into a liquid (Steinberg, 2021). In the 
former case, we are in a very different situation from the traditional turbulence 
produced by a fluid. The vibrations of a plate can in theory produce weak or 
strong wave turbulence, depending on the forces acting on it. The theory of 
wave turbulence has been published by During et al. (2006): it is a four-wave 
problem characterized by a direct energy cascade. Although the wave action is 
not conserved in this problem, direct numerical simulations show an inverse 
cascade which seems to be established in an explosive way (During et al., 
2015). Laboratory experiments using steel plates have been carried out in order 
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to reproduce, with varied success, the theoretical predictions (Boudaoud et al., 
2008; Mordant, 2008; Cobelli et al., 2009; Mordant, 2010).
Optical waves: Wave turbulence is also found in the field of nonlinear optics. 
The multidimensional nonlinear Schrodinger equation can be used to describe 
the evolution of quasi-monochromatic plane wave envelopes (Sulem and 
Sulem, 1999). The theory is explained by Dyachenko et al. (1992): this wave 
turbulence is governed by four-wave interactions, and an intermittency mech­
anism characterized by a collapse phenomenon in physical space can occur. 
In the case of a reduction of the problem to one dimension, it can be shown 
that the dominant resonant interactions are six-wave interactions, involving a 
much slower nonlinear dynamics (Laurie et al., 2012). All this work is part of 
the study of nonlinear effects on the propagation of incoherent optical beams 
(Mitchell et al., 1996; Picozzi et al., 2014).
Quantum turbulence: This subject is very close to the previous one, in the 
sense that the model used is a variant of the nonlinear Schrodinger equation: 
by changing the sign of the nonlinear term, the interaction becomes repulsive 
and the physics of turbulence is modified. The associated equation - also called 
the Gross-Pitaevskii equation - describes a Bose gas at very low temperatures. 
Note that the emergence of quantum turbulence in an oscillating Bose-Enstein 
condensate has been experimentally demonstrated (Henn et al., 2009). The 
wave turbulence regime is described by Dyachenko et al. (1992): it is shown 
that four-wave interactions conserve energy and wave action. The inverse cas­
cade associated with the latter leads to the formation of a stable condensate, 
that is, the accumulation of wave action in the k D 0 mode. Direct numerical 
simulations in two (Nazarenko and Onorato, 2006; Nazarenko, 2007) and three 
(Proment et al., 2009, 2012) dimensions illustrate this regime.
Kelvin waves: Kelvin waves are studied in the context of superfluids whose 
temperature is close the absolute zero. These waves can propagate along fil­
aments of vorticity and modify the dynamics of turbulence (Vinen, 2000; 
Kivotides et al., 2001). Kelvin’s theory of wave turbulence has been proposed 
by Kozik and Svistunov (2004): it involves six-wave processes that conserve 
both energy and wave action. As these cascade processes are extremely slow, 
it is particularly interesting to consider a local model of nonlinear diffusion 
(Nazarenko, 2006).
Gravitational waves: This example illustrates the wide range of possible appli­
cations of wave turbulence. It relates to cosmology, and more precisely the 
birth of the universe: primordial gravitational waves could be at the origin of 
the inflation phase of the universe, a question that is still open to this day and 
that touches the limits of our knowledge (Galtier et al., 2020). The theory has 
been published by Galtier and Nazarenko (2017): the dynamics is governed by 
four-wave processes sufficiently symmetric to conserve wave action. The latter 
is characterized by an explosive inverse cascade. It is interesting to note that 
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this regime is close to that of elastic waves in the strong tension limit, as shown 
by the theoretical, numerical, and experimental work of Hassaini et al. (2019). 
Chapter 9 is devoted to this cosmological subject.

To go further, the reader is invited to consult the books of Zakharov et al. (1992) 
and Nazarenko (2011), in which other examples are presented.

4.2 Multiple Scale Method

4.2.1 Duffing’s Equation

Classical Perturbation Development
The aim of this section is not to provide a rigorous and comprehensive demonstra­
tion of the theoretical validity of wave turbulence, but rather to show the reader 
the main steps in a schematic manner. To illustrate our point, we will first consider 
the Duffing equation:

d2f
-f c f D-cf 3, (4.3)
dt2

with c a small parameter (0 < c 1) which measures the intensity of the non­
linearity and f a function of time only. The main solution to this equation is a 
harmonic oscillator. This solution will, however, be slightly modified over time 
by the presence of the small nonlinear perturbation (right-hand-side term). Let us 
first use the standard perturbation theory and introduce the following power series 
development:

C1

f D Xcifi . (4.4)

We then obtain an infinite system of equations which, for the first three orders, 
can be written:

O(c0) : df Cf0 D0- (4.5a)

O(c1): f C f1 D-f0’• (4.5b)

O(c2) : f C f22 = -3f02f. . (4.5c)

We can see that the solution to a given order will affect the solution to the higher 
order. The first solution is trivially f0 D A cos(t C ). By introducing this one in 
the second equation, we can deduce the exact solution for f1 . If we stop at this 
order, the solution reads:
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f(t) D A cos(t C) CA3 - 31 sin(t C </>) C ;1 cos(31C 30) 
8 32

C O(2). (4.6)

As a first approximation, this system behaves well as a harmonic oscillator. The 
condition to be checked is that the nonlinear perturbation remains of weak ampli­
tude and the time considered relatively short. On the other hand, over long periods 
of the order of O(1=), this solution is modified in a nonnegligible way. The term 
that is at the origin of it, in t, is said to be secular. For even longer periods of 
time the development diverges; this divergence is all the more so as certain secu­
lar terms of a higher order reinforce it. Then, the uniformity of the development 
is broken.

We can pursue the analysis to evaluate the period of oscillations. To do this, the 
Duffing equation, which has been previously multiplied by the derivative of f , is 
integrated:

1
2

df\\
*) C 2f C 4'f D E, (4.7)

where E is a constant. One obtains:

dt D
df

(4.8)

This equation can be integrated over a period T. By posing f D a sin, we obtain 
the following expression, which is exact in its integral form:

Z =2 d 3 2 2 4T D 4 J q i -----D 2^ 1 — -ea2 C O(e2a4)J . (4.9)

A Taylor expansion is used to evaluate the integral. It is found that the 2 period 
of the harmonic oscillator is corrected by the nonlinear perturbation. The smaller 
the nonlinearity, the smaller the correction.

What information is useful for our problem? This very simple system illustrates 
schematically the problems that we can encounter in a classical perturbation devel­
opment. Such a development should allow us, in principle, to follow the evolution 
of the dynamics of wave turbulence at various orders in e . The main problem is 
to ensure that the development remains neat (or uniform). In other words, this 
means making sure that no secular term of the order n comes to interfere in the 
dynamics at an order m, such as m < n, in order not to find oneself in the same sit­
uation as Hasselmann (1962), that is, in the presence of a secular term. This type 
of term constitutes an obstacle to the closure of the hierarchy of equations. The 
more sophisticated method of multiple scales will allow us to solve this problem.
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Multiple Scale Method
Let us take the Duffing equation again and introduce the following independent 
time variables:

Tn nt with nD0,1,2,:::. (4.10)

The power series development of the variable f is then written:
C1

f D Xifi(t,T1,T2,:::), (4.11)

and the time derivative becomes a sum of partial derivatives:
C1

4 D X 6’— . (4.12)
dt h @ T’

The introduction of relations (4.10)-(4.12) into the Duffing equation gives:

f^C C 6 ^T~ C (f’ C Cf1 C 6 2f2 C : : :)
@t @T1 @T2

C (f0 C 6f. C 62/2 C : : :) D “6 f C I C 6 C • • .

We obtain an infinite system of equations which, for the first two orders, can be 
written:

O(60):
@2f0~^C Cf) D 0, (4.14a)
@t2

O(61): 9 2f1 @ @ 2f 0 _ -
a/2 Cf1 C 2 D f0 . (4.14b)9 t2 9 t9 T1

We can see the presence ofa new term in the time evolution equation of f1, whose 
importance emerges over long times. We will look for a solution of the form:

f) d A(Ti, T2, • • •) cos(t C 0(Ti, T2, •••)), (4.15)

with an amplitude A and a phase which can vary slowly over time. The 
introduction of the previous expression in (4.14b) gives the equation:

@f1 C f. d 2 sin( t C 0) C 2 AA —— - A A cos( t C 0)
9 t2 11 9 T1 @ t1 4 J ’

A3
—— cos(3(t C ^)). (4.16)

To ensure that the f1 solution does not include a secular term, the following 
conditions must be imposed:

@A @ 3- D 0 and @T- D -A2, (4.17)
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Figure 4.2 Variation off(t) (solid line) obtained by a numerical simulation of the Duffing 
equation with D 0.01. The solutions (4.6) and (4.18) are plotted in dotted and dashed 
lines, respectively.

which gives D (3=8)A2t C. The solution is then written:

f (t) d A cos f t C A A 2e t C 0^ C cos ^3tC | A 2e t C 30^ C O(e2), (4.18)
8 32 8

with A(T2, T3, :::) and 0 (T2, T3, :::). In the order of the truncation, we can there­
fore consider that A and 0 are constant. Note that this development is compatible 
with the previous one (4.6) for t O(). This example illustrates the fact that we 
can achieve a uniform development in a systematic way using the multiple scale 
method.
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We show in Figure 4.2 the result of a numerical simulation of the Duffing equa­
tion with D 0.01. The function f (t) is plotted in solid line. At the top, we see the 
evolution for t 2 [0.200] and at the bottom, we show an enlargement of the end of 
the simulation. The mathematical solutions (4.6) and (4.18) are plotted in dotted 
and dashed lines, respectively. The divergence with t of the solution (4.6) whose 
origin is the secular term can be seen. As expected, this divergence occurs over a 
time t of the order of O(1=) (the reference time is the wave period). On the other 
hand, the solution (4.18) remains close to the real solution until the final time.

4.3 Weakly Nonlinear Model

4.3.1 Fundamental Equation

(4.19)

(4.20a)

(4.20b)

To go further, let us now consider the following inviscid model:
@u(x, t)
----------d L(u) C e N (u, u), 

@t
where u is a null mean random function, L is a linear operator which ensures 
that waves are linear solutions to the problem, and N is a nonlinear quadratic 
operator thus implying triadic interactions. The coefficient e is a small parameter 
(0 < e 1) which measures the amplitude of the nonlinearities. Direct and inverse 
Fourier transforms in d-dimension (see Chapter 3) are introduced:

u(x, t) A(k, t)eikxdk ,
Rd

A(k, t) = (2r)d /d u(x, t)e~ik'x^x ’

The Fourier transform of equation (4.19) takes the following schematic form:
@ Z
---- C i!| A(k, t) d e / HkpqA(p, t)A(q, t)S(k — p — q)dpdq. (4.21)
@t R2d

On the left we find !, which is fixed by the dispersion relation, whereas on the 
right Hkpq is an operator which depends on the shape of the nonlinearities and is 
symmetrical in p and q. We recall that the presence of the Dirac function finds its 
origin in the convolution product, and the quadratic nature of the nonlinearities 
leads to triadic interactions. The equation is simplified by making the following 
change of variables (writing is simplified in passing):

A(k, t) d X as(k, t)e~is!kt d X ake~is!kt,

with s d ±. One obtains the fundamental equation:
@as Z
—k d e X I Hkpqasp aqe• kpqtSkpqdpdq,
@ t R2dspsq 

(4.22)

(4.23)
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with 8k,pq = 8(k — p — q) and • k,pq = s!k — sp!p — sq!q. This equation highlights 
the temporal evolution of the amplitude of the wave: this evolution is relatively 
slow since it induces a nonlinear term proportional to . We will find this prop­
erty by the multiple scale method. The presence of the complex exponential is 
fundamental for the asymptotic closure: since we are interested in the dynamics 
over a long time compared to the period of the waves, the contribution of this 
exponential is essentially zero. Only certain terms will survive: those for which 
•k,pq D 0. With the condition imposed by the Dirac, we obtain the resonance 
condition:

k dpcq, 
s!k D sp!p C sq !q . (4.24)

4.3.2 Dispersion Relation and Resonance

The triadic resonance condition (4.24) does not always have a solution. To realize 
this, we can represent this condition geometrically in the two-dimensional and 
isotropic case: Figure 4.3 shows a (axisymmetric) dispersion relation of the type 
!k kx , with x > 1 at the top and 0 < x < 1 at the bottom. The solutions of 
the resonance condition (4.24) correspond to the intersection between the surface 
!(p) (which is identified with that of !(k)) and the surface !(q). We find that this 
intersection exists only for a convex dispersion relation (x > 1). The concave case 
corresponding to 0 < x < 1 is the one encountered with gravity waves.

The special case x D 1 is that of nondispersive waves. We can easily see that the 
only possible solution is that where all three wavevectors are aligned. Although a 
solution to the triadic resonance condition exists, we are not sure that there is 
a an asymptotic closure of the hierarchy of equations. Physically, we can easily 
understand this problem: two nondispersive waves propagate at the same speed, 
therefore, if they initially overlap their interactions will be strong, otherwise they 
will never interact. Using the multiscale method presented in the Section 4.3.3, 
it can be shown in 1D that a contribution from nonlinear terms is possible on 
a timescale of the order of T1, while the closure is made on a longer timescale 
in T2 (Benney and Saffman, 1966). This problem is found in the case of acous­
tic wave turbulence, discussed briefly in Section 4.1.5. It should be noted that in 
the case of four-wave interactions, the situation is less constraining because new 
possibilities exist. Thus, gravity waves can be analyzed at this order. In the case 
of a four-wave problem of a nondispersive nature, it is also possible to develop 
a theory of wave turbulence, because the associated four wavevectors are not 
necessarily collinear. An example will be discussed in Chapter 9: these are grav­
itational waves for which the dispersion relation is !k D ck, with c the speed of 
light.
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Figure 4.3 Resonance condition for a dispersion relation of the type !k kx with x > 1
(top) and 0 < x < 1 (bottom).

4.3.3 Uniform Asymptotic Development

Following our analysis of the Duffing equation, we wish to make a power series 
development of equation (4.23) following the method of multiple timescales. 
A series of timescales are introduced, T0, T1, T2, . . . , which will be treated as 
independent variables, with:

T0 t, T1 t, T2 2t, ::: . (4.25)

We obtain:
@ @ 2 @

@7 C edT\ C6 @T2 C : : : ask D

6 Hkpqap aSqe•k,pqt^k,pqdpdq. (4.26)
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The variable ask must also be expanded to the power of to make the various scales 
appear in time:

C1
s ns s s 2sak D ak,n(t, T1, T2, :::) D ak,0 C ak,1 C ak,2 C::: . (4.27)

This expression must then be introduced into the fundamental equation (4.26). We 
obtain for the first three terms:

@ak,0 0 0, (4.28a)
@t

@ask,1 
@.D

, C X H HkpqapP0aq0e‘•k,pqt0kpqdPdq, (4.28b)
@T1 R2d , ,

@ask,2 
@.D

spsq

@as @as Z
_____ k1 0 _i_ 2 X I h as as e‘• r,pqfdnda (4 28c) 3T nT C 2 / , I Hkpqapt0aq, 1 e 0k,PT1 pMq . (4.28c)@ T1 @ T2 R2dspsq

To lighten the writing, the time dependency of the variables has been omitted. Let 
us look at the solutions; we get after integration on t:

ask,0 D ask,0(k, T1, T2,:::), (4.29a)

ask,1 D
-1 @ak0 C br 1, 

@ T 1 k ,1
(4.29b)

ask,2 D
_t t ^_ak0_ t2 @2 ask ,0 b

1 @ T 1 1 @ T2 2 @ T2 k 2 ’ (4.29c)

with

bsk,1
spsq

X y 2d Hkpqap,0aj)1$kpq)0kpqdPdq, (4.30)

and bsk,2, a term whose integral form will not be shown because it is not very useful 
for our purpose. One can rewrite expression (4.30) within the long time limit by 
using the Riemann-Lebesgue lemma for the distributions (which corresponds to 
a phase mixing):

1(X) D t eiXtdt

e-^1 ±!±1 ^(X)Cip (1 
iX X

(4.31)

This long time limit means that we are considering a much longer timescale than 
the period of linear waves (~ 1=!); however, this timescale remains shorter than 
any interaction time. We notice that the first solution (4.29a) is compatible with 
the hypothesis that amplitude and phase do not evolve on the same timescale: the 
phase evolves on a timescale . shorter than the amplitude timescale (which is on 
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T1 or longer). In relation (4.22), amplitude and phase are therefore two variables 
separated in time.

We now need to define the conditions that will enable us to ensure the uni­
formity of the development. Here, the development we are interested in concerns 
statistical objects, that is, cumulants and moments. In practice, we wish to have a 
uniform development at long times for the cumulants. We obtain from expression 
(4.29b):

/„s s,s0 \ _i_ //>s s,s0 \ — —t@ hak,0ak0,0 i । ss,s0 bs _i_ /,s b0 \ (4 32)

8 Several relationships that mix, for example, products (within the long time limit) of 1 introduced above must 
be used. For example, there is the Poincare-Bertrand formula, or the relation 1(X)1(— X) ^ 2” t<5(X) C 
2P (X ) @X, in which we have a secular contribution. For more formulas, see Benney and Newell (1967).

h ak ,1 ak0,0i C h ak ,0 ak0,ii D t @ t Ch ak0,0 bk ,1 C ak ,0 bk 0,ii, (4.32)

with hi the ensemble average. We will assume statistically homogeneous turbu­
lence. The terms on the left are moments (or cumulants) at two points. They are 
quantities which are physically bounded (we can see these terms as energy spec­
tra). The second term on the right is also bounded in the long time limit. Therefore, 
to ensure the uniformity of the development we must eliminate the potentially 
secular term and impose the condition:

@hak,0ask0,0i D 0 (4.33)
@T1

In other words, this means that the cumulants (in two points) of zero order evolve 
on a timescale longer than T1.

The analysis must continue at the higher order with the solution (4.29c). We 
can obtain:

* @ as0 @ as + @ as as0as' } + aS a0 }- -tlas J ■ as' @aA_ t [ ak ,0 ak 0,0 i
hak,2ak0,0i C hak,0ak0,2 i D tyak,0 @t Cak0,0 @t I t @t

__<*_ * a, a.as @H0\+a/ b +a. v■,
2 \ ak,0 @ t2 C ak0,0 @ t2 I C hak0,0bk,2 C ak,0bk0,2 i.

(4.34)

A condition on the uniformity of the development emerges after a few additional - 
sometimes subtle - manipulations, and reuse of expression (4.29b) (see Benney 
and Saffman, 1966).8 We can then show that the previous expression is simplified 
(for example, the first term in the second line is null). The terms on the left (cumu­
lants) are considered to be physically bounded at long time, which finally leads us 
to a nontrivial uniformity condition:

@ h ak ,0 a(0,0 i
@ T2

s s0 s0 s s s0
D Cthbk,1 bk0,1 i C Cthak0,0bk,2 C ak,0bk0,2 i , (4.35)
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where Ctf means the coefficient of f proportional to t. This relation implies, in 
particular, that the energy spectrum (two-point cumulant at zero order) evolves on 
the timescale T2: it is on this timescale that the modes can thus exchange energy.

The next part of the study consists of evaluating the right-hand-side term of 
equation (4.35). To understand the principle, we will only focus on the contribu­
tion of the first term on the right of this expression. This term shows four-point 
moments of zero order. These moments are decomposed into sums of products 
of two-point cumulants (of zero order) and four-point cumulants (of zero order). 
Therefore, we have:

s s0 X sp sq sr ss
Cthbk,1 bk0,1 i D Ct / . H Hkpq Hk'rs hap,0aq,0ar,0as,0/1(“k,pq)1(^k0,rs)

R4d si

k,pqk0,rsdpdqdrds , (4.36)

with:

asp asq asr ass spsqsrss ( r s)( r s) (437)hap,0aq,0ar,0as,0i D q0 (p, q, r, s)(p C q C r C s) (4.37)
C qs0psq(p, q)qs0rss(r, s)(p C q)(r C s) 
C qs0psr(p, r)qs0qss(q, s)(p C r)(q C s) 
C qs0pss(p, s)qs0qsr(q, r)(p C s)(q C r).

In this writing qs0s0 is a two-point cumulant of order 0 such that qs0s0(k, k0)(kCk0) D 
hask,0ask00,0 i. We can then show by manipulating Dirac products that the contribution 
of the cumulant qs0psqsrss to the dynamics is null, that is, it is not possible to generate 
from this term a linear contribution in t. Indeed, both 1 functions are independ­
ent, so the relationship (4.31) must be used as a product. On the other hand, a 
nonzero contribution can come from products of two-point cumulants: more pre­
cisely, these are products of the type 1(X)1(— X), which give a linear contribution 
in t. An analysis of the second right-hand-side term of equation (4.35) comes to the 
same conclusion. Therefore, the contribution proportional to t that we are look­
ing for does not involve the fourth-order cumulant. It should be noted that for 
a Gaussian distribution the fourth-order cumulant is zero. The situation we have 
here is thus similar in appearance to the one of a Gaussian distribution, however, 
we have not made the assumption of Gaussianity. This result does not preclude a 
contribution to the dynamics of the non-Gaussian part of the statistic: in princi­
ple, it can intervene in the dynamics by slowly changing the spectrum, but at a 
higher order in . The demonstration presented here is only sketched. For more 
information, one can refer to the work of Benney and collaborators (Benney and 
Saffman, 1966; Benney, 1967; Benney and Newell, 1967, 1969), where the case 
of four-wave interactions is also studied. In particular, it is shown for three-wave 
interactions that the development is uniformly valid for times !t O(1=4), with 
the wave period as the reference time.
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In summary, we can say that wave turbulence is characterized by a dynamics 
on two timescale. Over short times, of the order of the wave period, we have a 
phase mixing which leads, because of the dispersive nature of the waves, to the 
decoupling of the correlations initially present and to a statistics that is close to 
Gaussianity, as expected from the central limit theorem.9 (It is assumed, however, 
that initially there are no coherent structures leading to too strong correlation as 
can be the case in strong turbulence.) On a longer timescale, the nonlinear cou­
pling - weak over short times - becomes nonnegligible because of the resonance 
mechanism. This coupling leads to a regeneration of the cumulants via the prod­
uct of lower-order cumulants. It is these terms that are at the origin of the energy 
transfer mechanism. Their contribution is such that an asymptotic closure uni­
form in time is achievable. As we will see in the Chapter 5, on capillary wave 
turbulence - for which the interactions are three-wave - the analytical develop­
ment can be done in practice directly from the fundamental equation (4.23) by 
assuming a scale separation in time, between phase and amplitude. However, it 
should be borne in mind that this is a demonstration by the multiscale method of 
the uniformity of the asymptotic development, which allows the theory of wave 
turbulence to be rigorously justified.

In this book, we implicitly assume that the systems studied are of infinite 
size and that they can therefore be treated as continuous. Note that numeri­
cal simulation with its grid of points escapes this description. Effects (freezing 
of the cascade) related to the discretization of the Fourier space may emerge 
because the resonance conditions are necessarily more difficult to satisfy (see, 
e.g., Connaughton et al. (2001) for capillary waves). In theory, the weaker the 
nonlinearities, the stronger these effects. For example, in inertial wave turbulence 
Bourouiba (2008) has shown that discretization effects become preponderant 
when the Rossby number, Ro, is smaller than 10_3. Above this value, but still 
for a small Ro, these effects are negligible because of the quasi-resonances which, 
together with the resonances, contribute to the transfer of energy.

Finally, we give the schematic form of the kinetic equation of (dispersive) wave 
turbulence for three-wave interactions:

@N(k) _
@ t D

e2 ( 5(k, p, q)(NpNq - NN - NN)8(! - !p

R2d

(4.38)

!q )5(k — p — q) d p d q,

with N N(k) D E(k)=! the wave action spectrum and E(k) the energy
spectrum. This schematic equation describes the dynamics on a timescale !t 
O(1=e2). This timescale is therefore shorter than in the case of four-wave interac­
tions. New contributions of higher orders can emerge over longer timescales (from

9 Note that in a multidimensional problem, the dispersive nature of the waves is required for three-wave 
interactions but not for four-wave interactions, as shown in Chapter 9 on gravitational waves.
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O(1=4)), whereas over shorter times the dynamics of wave turbulence does not 
have time to develop. Note that the wave action is not conserved for three-wave 
interactions: it can be conserved only if the interactions are even (four waves, six 
waves, etc.).

In nature we often encounter three-wave problems. Chapters 5, 6, 7, and 8 cor­
respond to this type of situation, while Chapter 9 presents a four-wave problem. 
As mentioned in Section 4.1.5, sometimes higher-level problems (up to six waves) 
can occur. Despite the diversity of situations, the kinetic equation takes a universal 
form in the sense that it is written (at the main order):

@N(k) D e2n-4T(k), (4.39)
@t

for n-wave interactions, with T the transfer function (or collision integral). The 
higher the degree of interaction, the longer the transfer time tr . This time is 
characterized by the relation:

!rtr - O(1=e2n-4). (4.40)

Since the characteristic time of the waves is ! 1=! and the small parameter is 
none other than the ratio between this time and the nonlinear time NL , we arrive 
at the following phenomenological expression for the transfer time:

r r2n-4
rtr - '4 - ~N^5 . (4.41)g 2 n4 r 2 n5

For three-wave interactions, we will use the expression: rtr - !rN2L . In Chapter 
7, we will show how this characteristic time can be found with a phenomenology 
based on collisions of wave packets.
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5

Theory for Capillary Wave 
Turbulence

5.1 Introduction

Together with gravity waves, capillary waves are the main surface waves encoun­
tered in nature. The latter have an advantage over the former in that they are easier 
to treat analytically in the nonlinear regime. This is the choice we make in this 
chapter: we present capillary wave turbulence in detail (see Figure 5.1). It is a 
technical chapter which is, however, necessary for those who wish to master the 
theory of wave turbulence. For others, the calculation steps can be ignored.

We will consider an incompressible fluid (r u D 0) (such as water) subject to 
irrotational movements (u D r with the potential). This condition is well jus­
tified when the air-water interface is perturbed by a unidirectional wind (a typical 
condition encountered in the open sea). The nonlinear equations that describe the 
dynamics of capillary waves are obtained by firstly noting that the deformation of 
the fluid at the air-water interface verifies the exact Lagrangian relationship:

d @
-- Uz   j n , dt z @zln

(5.1)

where n(x, y, t) is the deformation and (x, y, z, t) the potential (see Figure 5.2 for 
an illustration). Bernoulli’s equation applied to the free surface of the fluid (at 
z D n) is written:

@ 1-£ — = -- (V0)2 1^ C aln , (5.2)
@t 2

where a D =water with the surface tension coefficient (for the air-water inter­
face ' 0.07 N/m) and water the mass density of the water. Note that the mass 
density of air is negligible compared to that of water. The surface tension term 
is obtained by assuming that the deformation is relatively small: jVnj ^ 1. This 
tension is responsible for a discontinuity between the pressure of the fluid at its 
free surface Pf and the pressure of the atmosphere Pa ; it is modeled by the rela­
tion Pf — Pa — a=R, with R the radius of curvature of the free surface. The
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Figure 5.1 Superposition of capillary waves (ripples) on gravity waves. Photo taken near 
Cargese (Corsica).

Figure 5.2 Schematic section of a capillary wave in deep water. It is assumed that the 
deformation , of the air-water interface is on average at altitude z = 0 and is such 
that jrj 1, that is, of weak amplitude. In addition, we will assume that the fluid 
is incompressible (r u D 0) and irrotational (u D r): in this case 1 D 0. The deep­
water hypothesis means that the potential 0 is nul at altitude z = -1. A more realistic 
illustration produced by a direct numerical simulation can be seen in Figure 5.3.

assumption of weak deformation (or weak curvature) simplifies the modeling. 
After developing the first equation, we obtain the following system:

@q @-^D-r? j -r? , Cfj, (5.3a)
@t @z

@ 1 2^7jq , (V0)2 j, C CT1, , (5.3b)
@t 2

where the symbol ? means that we only take derivatives in the x and y directions. 
This system of equations is the one used by Zakharov (1967) to develop the theory 
that interests us in this chapter. Basically, it involves the use of the potential in 
z d q, which can be tricky to handle. One way to get around this problem is to use 
a Taylor development in quadratic order to express in z D , from its (Eulerian) 
value in z D 0. We obtain (Benney, 1962; Case and Chiu, 1977):
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D — -r?Ojo • r?r C jo C r^Tjo, (5.4a)@ t @ z @ z2
@ @ 2 1 2^?jo C jo .r O/2 jo C o1i'. (5.4b)
@t @ z@t 2

We have limited ourselves to quadratic nonlinearities because the problem of 
capillary wave turbulence can be solved at this level, that is, for three-wave inter­
actions (McGoldrick, 1965). This situation differs from that of gravity waves, 
which must be treated at the cubic level (four-wave interactions). Equations (5.4a) 
and (5.4b) are the ones we will consider to develop the theory of capillary wave 
turbulence. They are completed by the incompressible and irrotational conditions 
of the fluid:

1 — o. (5.5)

Under the deep-water hypothesis, that is, O — 0 in z — —1, we obtain a function 
of form:

O(x,y,z, t) — (x(x,y, t)ek, (5.6)

with k the wavevector norm, k (kx, ky).
The linearization of the system (5.4a)-(5.4b) will give us the dispersion 

relation. We obtain after Fourier transform:

-i!kr>k — kOk, (5.7a)

-i!kOk — -ak2r>k, (5.7b)

with by definition:

rk = r>(kx, ky) — —1-2 [ r(x)exp“ik*dx, (5.8a)
(2)2 R2

Ok = O(kx, ky) — —^ / O(x)exp“ikx dx. (5.8b)
(2)2 R2

Finally, the dispersion relationship is obtained:

!2 — ak3 . (5.9)

Note that the presence of gravity at the linear level corrects this relation in !k2 — 
a k3 C gk. Therefore, our study is valid in the case where k k with k 
pgPwater=Y (we have explicitly written the surface tension coefficient to obtain a 
numerical value). This corresponds to a critical wavelength ' 1.7 cm for the 
air-water interface. As a result, capillary waves appear at small scales. They are 
dispersive with a phase velocity vO that increases with the wavenumber (vO / 
Vk). This property can be observed by slightly disturbing the water surface: short 
wavelength waves are the fastest to escape from the disturbed area. Let us note 
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in passing that in the case of gravity waves we have the inverse situation (easily 
verifiable by experiment): long wavelength gravity waves are the fastest to escape 
from the disturbed region (but they are preceded by capillary waves).

5.2 Phenomenology

Phenomenological analysis plays a fundamental role in turbulence because in the 
regime of strong turbulence it is the method used to arrive at a spectral prediction, 
for example, for energy. In the case of wave turbulence, it is possible to obtain 
this solution analytically; however, phenomenological analysis remains indispen­
sable in order to, on the one hand, rapidly arrive at a first prediction and, on the 
other hand, be able to explain simply how the solution sought emerges. If we 
consider the nonlinear contribution of equation (5.4b), we arrive at the following 
phenomenological expression:

— - k02, (5.10)
NL

where NL is the nonlinear time with @ =@ t - =NL and .r/2 - k22. We then 
obtain:

1NL ~ kk■ (5-ll)

A similar analysis using equation (5.4a) leads to the same expression. We can 
note, however, that the nonlinear term @2=(@ t@z)j0 of equation (5.4b) gives 
us an additional expression when this is balanced with the time derivative term 
(expression (5.11) should also be used), that is:

k2 - k22 . (5.12)

This can be interpreted as an equipartition relation between the kinetic k2 and 
surface potential k22 energies.

To arrive at a prediction for the total energy spectrum, we need to introduce the 
mean rate of energy transfer " in the inertial range:

kEk kEk kEkk42
" ~~ ~---- ——

trtr !TNL k 3=2

with tr the transfer (or cascade) time of capillary wave turbulence and Ek the one­
dimensional spectrum of total energy (we assume that turbulence is statistically 
isotropic). We use here the expression ttr for triadic interactions (see Chapter 4 or 
7 for a justification). One gets the relationship:

(5.14)

k7=2Ek2 , (5.13)

Ek - P"k-7=4
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Figure 5.3 Spatial variations of the surface deformation (x, y) (top) and velocity poten­
tial (x, y) (bottom) in the wave turbulence regime. This direct numerical simulation is 
presented in Section 5.9.
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From this prediction and information on the equipartition between kinetic and 
potential surface energies, we obtain the spectra:

Ek kkj2 ~ p"k~11/4 and Ek j'/kl'' ^ p"k '5 4 . (5.15)

These spectra can also be written as a function of frequency using the dispersion 
relation ! k3='. With the dimensional relation kEk !E!, one obtains for the 
total energy:

E! ~ p"!-3=2 , (5.16)

and then:

Ek ||2 ~P"!-13=6 and E' = \f)m|2 •-•p"! '76. (5.17)

It is often the latter prediction that is used for comparison with experiment (or 
direct numerical simulation) because it is easily accessible. We will see in Sec­
tion 5.6 that the energy spectrum (5.14) can be obtained analytically as an exact 
solution of the equations of capillary wave turbulence. The analytical approach 
also makes it possible to demonstrate that the energy cascade is direct (with a 
flux of energy strictly positive) and to estimate the so-called Kolmogorov constant 
of proportionality, allowing the sign “” to be substituted for “D” in expression 
(5.14).

A last comment can be made on the capillary wave turbulence regime if we 
express the ratio between the wave period and the nonlinear time. With the 
prediction (5.15), we get:

X D 1=! ~ ~ k-3=8, (5.18)
NL !

which means that turbulence is weaker at small scales (i.e. large k). In other words, 
if at a given wavenumber k the turbulence is weak, it will remain so with a direct 
cascade of energy. However, this property is not generic: for example, in magne­
tohydrodynamics (Chapter 7) the ratio increases with the wavenumbers so that 
an initially weak turbulence inevitably becomes strong at small scales (of course, 
assuming that small-scale dissipation effects remain negligible). This is also the 
case for gravity waves that can produce wave breaking and whitecaps (Nazarenko, 
'011).

5.3 Analytical Theory: Fundamental Equation

For the nonlinear treatment of capillary wave turbulence, we will pass through 
Fourier space and make extensive use of the properties of the (spatial) Fourier 
transform. We will follow the Eulerian method proposed by Galtier ('0'1), which 
is the only complete demonstration published to date; the article of Zakharov 
(1967) only gives an overview of the demonstration, and it is the same for the 
later Pushkarev and Zakharov (1996, '000), in which, however, there are some 
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additional steps; note that these articles follow a Hamiltonian approach. The 
system (5.4a)-(5.4b) can be rewritten:

@Ok 2
— - kOk = [(p • q)</>pj>q Cp OpJOq]3(k - p - q)dpdq, (5.19a)

@t R4

@OOk 2 1 3
-@f C a k JOk = 2 y [(p • q “ PqOpOOq C 2°P Jp Jq]^(k “ p “ q)dpdq.

(5.19b)

The convolution product is expressed through the presence of the Dirac 5(k — 
p — q). One can notice at this level of analysis a difference with the equations of 
Zakharov (1967) whose attribution can be given to our initial choice to use a Tay­
lor development around the equilibrium position. We now introduce the canonical 
variables Ask of this system:

1=4 

XAsk,
s

O k = - i (4° k)1=4 X sAk,

with s = . As the functions J and O are real, we have: 

f-k = fik , O'k = Ok ,

(5.20a)

(5.20b)

(5.21)

which gives us the remarkable relationship: Ask* = AZsk (with * the complex conju­
gate). The introduction of relations (5.20a)-(5.20b) in (5.19a)-(5.19b) gives (we 
also use the triadic relation q = k — p to simplify partly the nonlinear expression):

@At^ C is!kAk = 1(°4k^ jf^k • p)OOpJq3(k - p - q)dpdq (5.22)

is 1 1=4 Z
'll/ [ [(p • q - pq)OpOOq4 4° k R4

C 2ap3 Opp Jq ]<5(k - p - q)dpdq,

with !k = Vak3. The relevance of the choice of definitions of the canonical 
variables is immediately visible at the linear level: the term on the left makes the 
dispersion relationship explicitly apparent. The introduction of these variables at 
the nonlinear level gives:

@Ak , • s -i° 1=4 f X /. A /pk V7
—k C is! kAk = —s>sp (k • p) —

@ t qspsq

(5.23)

x ApAq5(k — p — q) d p d q —
is a 1=4 
2P2 spsq (p • q - pq)

pq 1=4
• ~k)

2p 3 '

(kpq )1=4.
AsppAsqq 5(k — p — q) d p d q.
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This expression cannot be used as such for a statistical development: it needs 
to be simplified and above all to make it as symmetrical as possible in order to 
facilitate subsequent work. This is a fundamental work on which one can spend 
more time than the statistical development - which is merely the application of 
sophisticated but systematic techniques. The objective here is, moreover, to find 
the expression proposed by Zakharov (1967). This guide will help us to simplify 
the expression. The first remark concerns the first and last nonlinear terms, which 
can become symmetric by exchanging the wavevectors p and q, and the associated 
polarizations sp and sq ; this gives us

@As i 1/4 Z
—k C is!kAk D —7^ 22 spsqAp Aq3(k - p - q)

@t 2 2 R4 spsq

h (pq /4

(5.24)

c sq (k • p) y=4
q

sspsq(p3 C q3)iqk 1/4

C sp(k • q) — z, W4 i~»—p (kpq)1/4
Then we introduce and subtract several terms and get:

@As i 1/4 Z
—k C iS!kAk D SpSqApAq <$(k - P - q)

@t 2 2 R4 SpSq

X s(p • q C pq) (pq} = C sq(k • p - kp) (—) 
kq 

qk f - 2.spq ( 
p 
sspsq(p3 C q3) 

d p d q.

(5.25)

C Sp(k • q - kq)

+ . (qk V=4
C Spkq — 

p

w v/4 +s kpopk V=4 
. k / q \ q )

(kpq)1=4

We will see that the terms of the last line do not ultimately contribute to the 
nonlinear dynamics over long periods of time. For this, we introduce the angular 
frequency !k D Vak3; we can then show that:

spsq
y=4 C SA) (pk. y=4 C spkq (qk y/4 
kq p

s(sp!p C sq!q)(s!k sp!p sq!q)
a (kpq )1/4 .

sspsq(p3 C q3)
(kpq)1/4

(5.26)

Finally, we get:

—k C is! kAk D — 
@t

1/4 Z
X X spsqAPAqq<5(k - p - q)

2 2 R4 spsq

(5.27)

s (p • q C pq) (pq) = C sq(k • p - kp) -P_k y=4 

. q /
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C Sp (k • q - kq)
is a 1=4 

2P2
(Sp!p C Sq!q)(S!k - Sp!p - Sq!q)^s,a^

spsq

x 5(k — p — q)dpdq.

Since the amplitude of the waves is assumed to be weak, the linear term will first 
dominate the dynamics, and the phase of the waves will evolve while maintaining 
the amplitude. Over longer periods of time, nonlinear terms will no longer be 
negligible and will modify the amplitude of the waves. Under these conditions, it 
is useful for canonical variables to separate the amplitude from the phase (which 
we have already done to find the dispersion relationship). We recall that the theory 
of wave turbulence consists of an asymptotic development whose uniformity was 
discussed in Chapter 4. A small parameter 0 < 1 is introduced, and we write:

Ak = e aske ~iS!kt, (5.28)

hence the expression:

@ ak 

@ t
iea 1=4 r X 

■ ITT /R4f/ 
SpSq

x S(p • q C pq) (pq) = C Sq(k • p - kp) f—) 
kq

qk
C Sp (k • q - kq) — 

p
(Sp!p C Sq!q)(S!k - Sp!p 

a (kpq )1=4

x 5(k — p — q)dpdq.

— q) el (s! k ~Sp!p ~ Sq! q) t (5.29)

1=4 ieSa 1=4 Zd p d q------ — I X
U2 R^rt

SpSq

— Sq !q ) Sp Sq i (S! k - Sp !p - Sq ! q ) t ap aq e

We are going to look at the nonlinear dynamics that emerges over a long time. By 
long time we mean a time much longer than the period of the waves, that is, 
1=!k. It is clear that the relevant contributions are those that cancel the coefficient 
in the exponential. Therefore, the secular contributions will not be provided by the 
second integral of equation (5.29), which precisely cancels for this condition. We 
will therefore neglect this term later on. Finally, we obtain the following nonlinear 
equation for the evolution of the amplitude of capillary waves:

@ak   q, X \ ' T ~SSpSq Sp Sq d• k pqt%
D ie I L L L-kpq ap aq e °k,pqdpdq

R SpSq

(5.30)
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with by definition • kpq = s!k - sp!p - Sq!q, 8kpq = 8(k - p - q) and

sSPpSq _ SpSqo 1=4 
Lkpq ' 2V2

s(p • q C pq) (pq) = C sp(k • q C kq)

CSq(k p Ckp) (5.31)

Equation (5.30) governs the slow temporal evolution of capillary waves of weak 
amplitude. It is a quadratic nonlinear equation: these nonlinearities correspond to 
the interactions between waves propagating in the directions p and q, and in the 
positive (sp, sq > 0) or negative direction (sp, sq < 0). Equation (5.30) is fundamen­
tal for our problem since it is from it that we will make a statistical development 
over asymptotically long times. This development is based on the symmetries of 
the fundamental equation: a lack of symmetry is a source of additional algebraic 
complexity (in particular for its statistical processing). Moreover, simplifications 
generally appear more easily on symmetrical equations. In our case, the interaction 
coefficient verifies the following symmetries (of which the number is sufficient, 
as we will see in practice):

sspsq
Lkpq

LSSqSp 
D Lkqp , (5.32a)

sspsq
L0pq D0, (5.32b)

sspsq
L—k -p - q

SSpSq
D Lkpq , (5.32c)

J- S - Sp - Sq
Lkpq

LSSpSq 
Lkpq , (5.32d)

SqSpSSSqLqpk LSSpSq 
D Lkpq , (5.32e)

SpSSqSSpLpkq LSSpSq 
D Lkpq . (5.32f)

5.4 Analytical Theory: Statistical Approach

We now move on to a statistical description. We use the ensemble average hi and 
define the following spectral correlators (cumulants) for homogeneous turbulence 
(we will also assume haski D 0):

haskask00i D qsksk00(k, k0)8(k C k0), (5.33a)
haskask00ask0000i D qsksk00sk0000(k, k0, k00)8(k C k0 C k00), (5.33b)

as as0 as00 as000 ss0s00s000 (k k0 k00 k000)8(k k0 k00 k000) (533c)hakak0ak00ak000i D qkk0k00k000 ( , , , )8 ( C C C ) (5.33c)
C qkko(k, k0)qp0000 (k00, k000)8(k C k0)8(k00 C k000)
C qsksk0000(k,k00)qsk00sk000000(k0,k000)8(k C k00)8(k0 C k000)

C qsksk000000(k,k000)qsk00sk0000(k0,k00)8(k C k000)8(k0 Ck00).
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From the fundamental equation (5.30), we get:

@ hakakoi _ I @ak 0 \ I @a'0

@t D @tak0 C\ak @t

r sspsq , « 0 sp spq\ A • k pqt $ ,1^. ,]„L-kpq hak0ap aq i e ’Pq Ok,pqdpdqD i6 R4 
R SpSq

। X X X “s spsq / s,s spp sq^x A• k0 p^^ Awx A™C i6 L k0pq hak ap aq ie ,pq Ok0,pqdpdq .
Jr4. .spsq

At the next order we have:

@ as as0 as00 I @ s @as0 @ as00@hakakiak00i _ I @aks' s"\ , s @aks00 \ . s„s0 @ak00 \

@ t \ @ t ak0ak00 C \k @ t ak00 C\ akak0 @ t

(5.34)

(5.35)

_  X I X ' r sspsq / S 0 S 00 spJq\J • k pqt SD i6 I L tL-kpq hak0ak00aP aq ie °q Okpqdpdq
R4 SpSq

I X I X ' f ~s0SpSq / „S sS" sp„sq\J• kl pqts J-J., C i6 L k0pq hakak00 ap aq ie , Ok0,pqdpdq
Jr4 „SpSq

i X I X “s00spsq / a sts[ sp Sqx iS• k00 pq^ AvxA™C i6 I L—s ~k00pq hakak0ap aq i e °q Ok00,pqdpdq .
R4 SpSq

Here we face the classic problem of closure: a hierarchy of statistical equa­
tions of increasingly higher order emerges. In contrast to the strong turbulence 
regime, in the weak wave turbulence regime we can use the scale separation in 
time to achieve a natural closure of the system. Expressions (5.33a)-(5.33c) are 
introduced into equation (5.35):

@ qskk (k, k0, k00) 
@ t

O(kCk0Ck00) D i6 (5.36)

[qsk00sk0000spspqssq (k0, k00, p, q)O(k0 C k00 C p Cq)

C qsk00sk0000(k0,k00)qsppqsq(p,q)O(k0 Ck00)O(p Cq) 
s0sp s00 sqC qk0p (k0, p)qk00q (k00, q)O(k0 C p)O(k00 Cq)
s0sq s00 spC qk0q (k0, q)qk00p (k00, p)O(k0 C q)

X <5(k" C p)]eiQk,pqtOkpqdpdq

C i6 (k, s) $ (k0, s0) dpdq
R4

C i6 n(k, s) $ (k00, s00)odpdq ,
R4

where the last two lines correspond to the exchange at the notation level between 
k, s in the expanded expression and k0, s0 (penultimate line), then k00, s00 (last line).
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We are now going to integrate expression (5.36) both on p and q, and on time, 
by considering a long integrated time compared to the reference time (i.e. the 
period of the capillary wave). The presence of several Dirac functions leads to 
the conclusion that the second term on the right (in the main expression) gives no 
contribution, since it corresponds to k D 0, for which the interaction coefficient 
is null. It is a property of statistical homogeneity. The last two terms on the right 
(always in the main expression) lead to a strong constraint on wavevectors p and q 
which must be equal to —k0 or —k00. For the fourth-order cumulant, the constraint 
is much less strong since only the sum of p and q is imposed. The consequence 
is that for long times this term will not contribute to the nonlinear dynamics (see 
the discussion on uniformity of the development in Chapter 4). Finally, for long 
times the second-order cumulants are only relevant when the associated polarities 
have different signs. In order to understand this, it is necessary to go back to 
the definition of the moment, hAskAsk.,) d e2haka^'i exp(—i(s!k C s'!k))t), from 
which we see that a nonzero contribution is possible for homogeneous turbulence 
(k d —k0) only if s d — s0 (then the coefficient of the exponential is cancelled). 
We finally get:

qkkk(k, k0, k00)<5(k C k0 C k00) D ie1(^kk0k00)5(k C k0 C k00)
r- s - s'- s00 I [- s - s00 -s0
L-k-k0-k00 C L-k-k00-k'

(5.37)
s00

-."- k00

x (k00, -k00)qtk(k0, -k0)
—s— s—s0 I T— s — s— s s— s0
-k0-k-k00 C L-k'-k'k qk00-k00

x (k00, -k00)qtk(k, -k)
- s00 - ss । r- s00 -s - s' s - s
-k00-k0-k C L-k00-k-k0 qk-k

x (k, -k)q^,

with:
f t »1=! el • kk0 k00 t — 1

i(^kk0k00) = e•kk0k00tdt' d
0

(5.38)
i • kk0 k00

We can now write without ambiguity: qk_sk(k, — k) d qsk(k). Using the symmetry 
relations of the interaction coefficient, we obtain

qk^"(k, k0, k00)<5(k C k0 C k00) d -2ie1(^kk0k00)5(k C k0 C k00) (5.39)
Lss0s00 s00 (k00) s0 (k0) Ls0ss00 s00 (k00) s(k) Ls00s0s s(k) s0 (k0)Lkk0k00 qk00 (k )qk0 (k ) C Lk0kk00 qk00 (k )qk (k) C Lk00k0kqk(k)qk0 (k ) ,

and then:

qkkk(k, k0, k00)<5(k C k0 C k00) d -2ie1(^kk0k00)5(k C k0 C k00) (5.40)

Lss0s00 s00 (k00) s0 (k0) ss0 s00 (k00) s(k) ss00 s(k) s0 (k0)Lkk0 k00 qk00 (k )qk0 (k ) C ss qk00 (k )qk (k) C ss qk (k)qk0 (k ) .
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The effective long time limit (which introduces irreversibility) gives us (Riemann- 
Lebesgue lemma):

1(x) ! (x) C iP (1=x) , (5.41)

with P the principal value integral.
The so-called kinetic equation is obtained by injecting expression (5.40) into 

equation (5.34) and integrating on k0 (with the relation qZsk(—k) D qsk(k)):

@qk(k)   2 f X X I l~sspsq |2/_o/^ \ I i O \ • kpqtk
@t D 2e / / , IL-kpq I (^^(•-kpq) C iP(1/“-kpq))e , 0kpq 

spsq

X spsq [spsqqqq (q)qp (p) - ssqqSq9 (q)qk(k) - sSpqk(k)qp (p)] dpdq

_i_ 2e2 / X Lspsq |2(-^O(Q/ ) 4- i P (1/Q, )) e‘ • kpqt O (5 42)C zfc I j j^kpq 1 VtO(A*kpq) C i' (1 = • kpq))e Okpq (J.^Z')
R4 spsq

X spsq [spsqqsqq(q)qspp(p) C ssqqsqq(q)qsk(k) C sspqsk(k)qspp(p)] dpdq .

By changing the sign of the (dummy) variables p and q of integration, and the 
associated polarities, the principal values are eliminated. Using the symmetries 
of the interaction coefficient, we finally arrive at the following expression after 
simplification:

qk( ) D 4nc2 [ X |L^ps |2O(s!k C s,!p C s,!)O(k C p C q) (5.43)D I kpq I C p p C q q C C
R spsq

spsq [spsqqsqq (q)qspp (p) C ssqqsqq (q)qsk(k) C sspqsk(k)qspp (p)] dpdq , 

with:

sspsq 2
ILkpq I 8

s (p • q C pq) (pq) = C sp(k • q C kq) f qk) 
kp

Csq(k • p C kp) (5.44)

Expression (5.43) is the kinetic equation of capillary wave turbulence first 
obtained by Zakharov & Filonenko in 1967.1 The presence of the small param­
eter 1 means that the amplitude of the quadratic nonlinearities is weak and 
that, consequently, the characteristic time over which we place ourselves to meas­
ure these effects is of the order of 1/2. As we have seen in practice, the obtaining 
of this expression was only possible thanks to the numerous symmetries of the 
interaction coefficient which we have used several times.

It is from the invariants of the system that we can bring out the main proper­
ties of wave turbulence. Energy has, therefore, a privileged role since it is always
1 To be totally convinced of the equivalence of the two expressions, it remains to develop the integrand accord­

ing to the values of sp and sq by eliminating the special case sp D sq D s, which has no solution at the 
resonance.
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conserved. Other (inviscid) invariants can appear as the kinetic helicity in incom­
pressible hydrodynamics subject to rapid rotation (limit of low Rossby numbers), 
a condition for being in the wave turbulence regime (see Chapter 6). In the capil­
lary wave turbulence regime, we will consider the only relevant invariant, energy, 
for which the detailed conservation property will be demonstrated.

5.5 Detailed Energy Conservation

The kinetic equation (5.43) describes the temporal evolution of capillary wave 
turbulence over asymptotically long times compared to the reference time, which 
is the period of the waves. It is an equation involving three-wave interactions
that give a nonzero contribution only when the following resonance condition is
verified:

s!k C sp!p C sq!q D 0 , 
kcpcq D0. (5.45)

In the case of capillary waves, the resonance condition has solutions, but this is 
not always the case. For example, for gravity waves the dispersion relation !k / 
kd does not allow us to get a solution (see Chapter 4). In this case, it is necessary 
to consider nonlinear contributions to the next order in the development, that is, 
four-wave interactions; the analytical approach then becomes more cumbersome.

A remarkable property verified by the kinetic equation is the detailed conser­
vation of energy (see also Chapter 3 on two-dimensional eddy turbulence). To 
demonstrate this result, the kinetic equation must be rewritten for the polarized 
energy spectrum:

es(k) !kqsk(k) . (5.46)

One notices in particular that: e(k) D e s(—k). After a few manipulations, we 
get:

2@ es(k) 2 Z X sspsq 2
—@p D 27 L / , ।Lkpq । 8(s!kC sp!pC sq!q)<5(k C P C q) 

R

s! k „ ,
_es (k)

R4 s s spsq

S ! k

(5.47)

sp !p । sq ! q
esp (p)

e (k) es (p) eSq (q) d p d q, 
esq (q)

with:

sspsq 2
Q kpqj

2p q C pq k q C kq k p C kp
skppq C sppPkq C SqqPkp _ (5.48)

By considering the integral in k of the total energy spectrum, eC(k) C e~(k), 
and then playing on the permutation of the wavevectors (first we decompose the 
expression into three identical integrals), we can show that:
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@fR E se (k) d k 
@ t

(5.49)

sspsq 2
j / ILkpq । S(s!k C Sp!p C Sq!q)<Xk C P C q)(S!k C Sp!p C Sq!q)6 R6 SSp Sq

S ! k 

e (k)
Sp !p 

eSp (p)
Sq !q 

eSq (q)
eS(k)eSp (p)eSq (q)dkdpdq D 0 .+

This means that energy is conserved by triadic interaction: the redistribution of 
energy takes place within a triad satisfying the resonance condition (5.45). This 
is a general property of wave turbulence that can be used to verify (in part) the 
accuracy of the kinetic equation obtained after a long computation.

5.6 Exact Solutions and Zakharov’s Transformation

In this section, we look for the exact solutions of the nonlinear kinetic equation 
(5.47). These solutions can be obtained by applying the Zakharov transformation, 
which we have already introduced in Chapter 3, which is a conformal trans­
formation applied to the integral (see Figure 5.5). Note that Balk (2000) has 
proposed another method to obtain these solutions without using a conformal 
transformation.

We will make the simplifying hypothesis that capillary wave turbulence is sta­
tistically isotropic. This assumption is reasonable, since we do not have a source of 
anisotropy as may be the case in other problems (e.g. in plasma physics, the strong 
uniform magnetic field supporting the plasma waves induces a strong anisotropy 
- see Chapters 7 and 8). The isotropic spectrum is therefore introduced:

E(k) Ek D 2kXeS(IkI) . (5.50)

We will rewrite the kinetic equation using the triangular relation (see Figure 5.4):

q2 d k2 C p2 — 2kp cos d , (5.51)

from which we deduce (at fixed k and p): qdq D kp sind. This relation will then 
be used to rewrite the kinetic equation. We use Al Kashi’s formulas on the triangle 
to finally obtain the following expanded expression:

k X SSp Sq 2
-@^ D 2^ S!k S!k jLkpq 1 8(.S!k C Sp!p C Sq!q)

1 SSpSq

(5.52)

Sk!kEpEq C Spp!pEkEq C Sqq!qEkEp

P4k2p2 — (k2 C p2 — q2)2
dpdq ,
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with 1 the integration domain (the shaded band in Figure 5.5) and:

। sv. ,2 _ r k2 - p2 - q2 C2pq 
jL kpq j D _ 2sk ppq

p2 — k2 — q2 C 2kq q2 — k — p2 C 2kp I2
2 spp Pkq C 2 sqq Pkp _

(5.53)

We notice that the new expression no longer uses wavevectors but only wavenum­
bers. A further simplification is made by introducing the adimensional wavenum­
bers p p=k and q q=k; we get the expression:

@ Ek 

@ t
e2 k5=2
2p

X s Lsspsq 2(s s 3=2 s 3=2)sjLQ 1pq j (s C spp C sqq )
1 sspsq

(5.54)

sEkppEkqq C sppp^EkEkqq C sq%q^EkEkpp 
q------------- dppdqq ,

4^p - (i C $p - qq)

with:

sspsq 2
jLQ 1pq j

~1 - $p - Sq C 2$p^q

_ 2 s p$pp $q

C $p - 1 - $q2 C 2$q C $q - 1 - $2p C 2$p 

2 sp $p\[$q 2 sq $q\[$p

(5.55)

We will apply the Zakharov transformation on this last expression by assuming 
a power-law form for the energy spectrum, Ek D Ckx . In practice, we divide the 
integral into three equal parts and apply on two of the three integrals a different 
transformation, keeping the third integral intact. The Zakharov transformations 
are:

and

$p ! $q ! $f , (TZ1)
p p

$p ! $i , qq ! (TZ2)
q q

(5.56)

(5.57)

Figure 5.4 Triadic interaction.
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Figure 5.5 Zakharov conformal transformation for three-wave interactions. The infinitely 
long gray band corresponds to the solutions of the triangular relation kcpcq D 0 (bound­
aries correspond to flattened triangles). The transformation consists in the exchange of the 
four regions separated by dashes. The transformations (5.56) and (5.57) are shown to the 
right and left, respectively.

They correspond to a conformal transformation of the region of integration 
in (p,q) space. In the case of triadic interactions, this region is an infinitely 
long band, as shown in Figure 5.5. The reader will be able to verify that these 
transformations give:

ssps. 2jLQ 1p. j TZ1
-----!

jLQs1psps..j2, (5.58a)
ssps. 2jLQ 1p. j TZ2

-----!
jLQs1.spps.j2, (5.58b)

(s C spp3'2 C sp.3'2) TZ1
-----! p3'2(sp C sp3'2 C s..3'2), (5.58c)

(s C spp3'2 C sp.3'2) TZ2
-----! .3'2(s. C spp3'2 C s.3'2), (5.58d)

1'q/4pp - (1 c qp - q.) TZ1
-----! pP=q4qp - (1 C pp - .,2)2, (5.58e)

1'q/4pp - (1C qP - q.) TZ2
-----! qp/q4pp - (1C pp - q2)2, (5.58f)

d pd . TZ1
-----! pp-3 dppdqq, (5.58g)

d pd . TZ2
-----! qdppdq.. (5.58h)

This transforms the energy spectrum equation:

@ Ek 

@ t

f2C2k2xC5=2 , jL1sp^ j22!.S C Spp}= C S,p,.'2)
6p? 1s v. q4Pp - (1C qp - ,.) (5.59)
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[qpxlxq(s C Sppp xC5=2 C Sq$q xC5=2)s
C qxqq(S C SpppxC5=2 C Sqqq-xC5=2)Spp“2

C qpqxq(S C Sppp xC5=2 C Sq%q xC5=2)Sq%q 2x 2]dppd%q .

Note that to obtain the previous expression, we exchanged S and Sp in the second 
integrand term, and S and Sq in the third integrand term. This manipulation is 
allowed because of the sum on the three indices S, Sp , and Sq . The symmetry of the 
equations is a great help in this case. After a final manipulation, we arrive at the 
following expression:

@E^ = 62C2k2xC5=2 [ X jLSSpq j2S(S C SPP3p=2 C Sqqq3/2) (5 60)
@t 6p: 1S SSpSq q4qp _ (1C qp _ qq) .

qpxqxqx[S C Sppp xC5=2 C Sqqq xC5=2][S C Sppp 2x 2 C Sqqq 2x 2]dppdqq .

The stationary solutions for which the right-hand term cancels out correspond to:

x d 1 and x d —7/4 (5.61)

Indeed, for these two values one can make appear the expression sC spp3/2 C sqq3/2 
(in the second line of (5.60)), which cancels exactly at resonance (a condition 
imposed by the Dirac).

The solution x D 1 corresponds to the thermodynamic equilibrium for which 
the energy flux is zero: in this case each of the three right-hand terms of expression 
(5.59) is null and therefore no energy transfer is possible. The solution x d —7/4 
is more interesting, because the cancellation of the right-hand term of (5.59) is 
obtained by a subtle balance of its three contributions: it is the finite energy flux 
solution called the Kolmogorov-Zakharov spectrum. In this case, a final calcula­
tion must be performed to justify the relevance of this spectrum: this is a question 
of verifying the convergence of integrals in the case of strongly nonlocal inter­
actions (this must be done before the application of the Zakharov transformation 
- see Figure 5.6). This corresponds to the regions close to the two right angles 
of the bands in Figure 5.5 as well as to the infinitely distant region of the origin. 
In the case of a divergence, the solution found is simply not relevant (however, 
sometimes a logarithmic correction is required for the convergence) and only 
the numerical simulation of the wave turbulence equation can be used to esti­
mate the shape of the spectrum. In capillary wave turbulence, the locality of the 
Kolmogorov-Zakharov spectrum has been verified by Zakharov (1967). Contrary 
to their study, our solution was obtained from an equation written in wavenum­
ber; it is therefore necessary to properly establish the area of convergence. An 
elementary calculation (for example, we can write the variables pp and qq in polar 
coordinates) brings us to the condition:

- 7/2 < x < C5/4, (5.62)
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Figure 5.6 Numerical estimation of the collision integral I(x) before the application of 
the Zakharov transform (solid line) and after (dashed line). We use expression (5.54) 
multiplied by a factor of 40 in the first case, while it is expression (5.60) or (5.63) in 
the second case. The vertical lines x d -5, x d -7=2, and x d 5=4 define the limits 
of the domains of convergence. Insert: enlargement to show the stationary Kolmogorov- 
Zakharov solution at x d -7=4. Note that the broader domain of convergence corresponds 
to the result published by Pushkarev and Zakharov (2000) with ] - 5, -5=6[, but in fact it 
should be reduced to ] - 4, -5/6[. Figure made by V David.

where the upper bound is given by the convergence condition for a point located at 
infinity on the bands of Figure 5.5. This result thus demonstrates the relevance of 
the Kolmogorov-Zakharov spectrum. The convergence condition actually corre­
sponds to a criterion of locality of interactions. In this sense, we find a hypothesis 
made by Kolmogorov to obtain the exact four-thirds (or four-fifths) law presented 
in Chapter 2, namely that the inertial range describes a universal physics inde­
pendent of mechanisms (e.g. of forcing and dissipation) operating at the largest 
and smallest scales. This is the reason why the Kolmogorov-Zakharov spectrum 
is relevant here.

5.7 Nature of the Exact Solutions

Zakharov’s transformation allowed us to obtain the exact stationary solutions in 
power law and to highlight two types of spectrum: the thermodynamic solution, 
and the dynamic solution corresponding to a cascade of energy. However, the 
nature of this cascade remains unknown: is it a direct or an inverse cascade? The 
answer to this question requires further analysis.

We will use the relation linking the energy flux 5k to the energy spectrum:

@Ek= @5 k
@ t @ k

2C2 k2xC5=2I(x), (5.63)
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where I(x) is the integral deduced from expression (5.60). We get:
_ 62 C2 k2XC7/21(X)

k D pa 2x C 7/2 (5.64)

The direction of the cascade will be given by the sign of the energy flux in the spe­
cial case where x D —7/4. But in this case, we see that the denominator cancels. 
Fortunately, so does the numerator, since it is precisely for this value that I(x) D0. 
L’Hospital’s rule allows us to write (we use the notations introduced in Chapter 3 
on energy flux):

lim 5k D
x !—7/4

62C2 I(x)
" D----- — lim ----------

X!-7/4 2X C 7/2
62C2 @I(y)
—— lim ------ ,

y!3/2 @ y

62C2
—— lim
Va y!3/2 3/2 — y

I(y)

(5.65)

with y D —2x — 2 and:

@ I (y) 
@y

sspsq 2
jLQ 1pq j

A I / . /--------------------------- ^(S C sp$p3/2 C sq$q3/2)
6 1s ssps^J4$p - (1 C $p2 - $'

$P$q[S C Sp$p~XC5/2 C Sq$XC5/2] @[s C spC sq^q ] d$pd$q j3/2

@y
sspsq 2

jLQ 1pq j
., .------------------------ Ks C sp$C sq$q3/2) (5.66)
6 1s ssps^j4$p - (i c $p - $q)

$-7/4$-7/4[S I S $ r 4 . S $ 17/4][S $3/2 ln($ ) + S $3/2 ln($ )]d$ d$ $p $q [ C p$p C q$q ][sp $p n($p) C sq$q n($q)] $p $q .

The sign of the previous expression can be found numerically. A positive sign was 
obtained (Pushkarev and Zakharov, 2000), demonstrating that the energy cascade 
of capillary wave turbulence is direct. It is also possible to find the numerical value 
of the Kolmogorov constant CK, whose expression is deduced from C in (5.65); 
finally, we obtain:2

a 1/4
Ek D----- CkP"k"7/4 ,

6

with:
1

P@I(y)/@yI3/2 '

(5.67)

(5.68)

The value reported by Pushkarev and Zakharov (2000) with their approach is 
CK ' 9.85 but this value has been corrected by Pan and Yue (2017), who found 
6.97. In the present case, the value obtained numerically for the (total) energy 
spectrum is CK ' 3.48. We see that the analytical study allowed us to find the 
main properties of capillary wave turbulence. The strength of these results is that 
they are analytical.
2 See also Chapter 7, where the Kolmogorov constant is obtained analytically and numerically.
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5.8 Comparison with Experiments

Capillary waves have been studied for a long time as, demonstrated by the work of 
Longuet-Higgins (1963) and McGoldrick (1970): in these examples, the aim was 
to understand the role of resonant wave interactions and the mechanism of cap­
illary wave generation from gravity waves. On the other hand, the experimental 
study of capillary wave turbulence is more recent and is still the subject of much 
work today. For example, Holt and Trinh (1996) have been able to produce a sea of 
capillary waves at the surface of a drop (of about 5.0 mm in diameter) in levitation 
and consisting mainly of water. The experiment shows the rapid formation (in less 
than one second) by a direct cascade of a spectrum in f-3.58 (with f the frequency) 
for the fluctuations of the surface deformation . The difference with the theoret­
ical prediction (5.17) could have its origin in nonnegligible visco-elastic effects. 
In the article by Wright et al. (1996), a new measurement technique based on the 
scattering of visible light on spheres in polystyrene (with a diameter of the order 
of m) is used to obtain the height variations of the water surface. From these 
data the authors were able to calculate the wavenumber spectrum: a narrow power 
law with an exponent around —4 was measured. Subsequent measurements with 
the same technique (but with semi-skimmed milk) gave results consistent with the 
prediction of —17=6 for the frequency spectrum (see Section 5.2) (Henry et al., 
2000).

Capillary wave turbulence has also been studied using liquid hydrogen (main­
tained at 15-16 K). The interest of this kind of study is that the liquid has a 
lower kinematic viscosity than water, allowing the size of the inertial zone to be 
increased (Brazhnikov et al., 2001, 2002). Note, however, that in this problem the 
inertial range is also limited by the surface tension coefficient. The experiment 
shows that the theoretically predicted frequency spectra can be reproduced fairly 
well over more than an order of magnitude, despite high noise. Since the imagina­
tion of physicists is vast, the problem has also been addressed using the properties 
of fluorescence (essentially localized on the surface of the liquid) of a solution 
added to water. Using a blue laser projected on to the surface of the liquid, the 
authors (Lommer and Levinsen, 2002) measured the power law with precision, 
and this time the Zakharov-Filonenko solution was very well reproduced over 
two decades of frequencies.

The low-gravity capillary wave turbulence regime ( 0.05 g) was achieved dur­
ing parabolic (Airbus A320) flights with a duration of 22 seconds (Falcon et al., 
2009). The motivation to develop such an experiment is to limit the effects of 
gravity waves and thus extend the purely capillary inertial range (see Figure 5.7). 
Two decades of frequency power law have been measured, with an exponent close
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Figure 5.7 Capillary wave turbulence on the surface of a spherical container (of 15 cm 
diameter) filled with 20 cl of water. This result is obtained during a parabolic flight in free 
fall (Falcon et al., 2009). The fluid wets the inner surface of the sphere and forms a layer 
of spherical fluid. Purely capillary waves are then generated by vibrating the container. 
Credit: E. Falcon.

to the expected value.3 Note that gravito-capillary waves have been the subject 
of several experimental studies in which, in particular, the transition between the 
regime dominated by large-scale gravity waves and small-scale capillary waves 
has been well highlighted, as well as the possible (nonlocal) interactions between 
these two types of waves (with collinear wavevectors) (see, e.g., Falcon et al., 
2007; Deike et al., 2012; Berhanu and Falcon, 2013; Aubourg and Mordant, 2015, 
2016; Berhanu et al., 2018; Hassaini and Mordant, 2018; Cazaubiel et al., 2019).

Direct numerical simulation is an essential complement to experimental studies 
because it allows a more detailed analysis of capillary wave turbulence: in princi­
ple it gives access to all fields and therefore allows precise signal processing. Little 
work has been done on this compared to the numerous experimental studies. These 
simulations were first made by Pushkarev and Zakharov (1996, 2000), then more 
recently by, for example, Deike et al. (2014) and Pan and Yue (2014) (see also 
Kochurin et al., 2020 for collinear capillary wave turbulence). However, surface 
waves are subject to numerical instabilities that make it difficult to obtain a large 
inertial range (less than a decade has been obtained). Moreover, these simulations 
with an external force take particularly long to reach a steady state for which tur­
bulence is fully developed. Finally, the discretization of the Fourier space induced 
3 A similar experiment has been done on board the International Space Station (ISS), but the regime obtained 

is that of strong capillary wave turbulence (Berhanu et al., 2019).
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by the numerical box also has potential consequences for turbulence, whose ana­
lytical properties are obtained in a continuous medium (Nazarenko, 2011; Pan and 
Yue, 2017). Paradoxically, the simulation of surface wave turbulence, by nature 
two-dimensional, seems to be more difficult to do than that in three dimensions, 
for which nonlinear interactions are more numerous and numerical instabilities 
better controlled.

These direct numerical simulations complement the numerical simulations of 
Falkovich et al. (1995) made directly from the wave turbulence equations: the aim 
was to study the nonstationary phase in a freely decaying regime in order to high­
light, in particular, the explosive properties of the spectrum. We will come back 
to this property in inertial wave turbulence (Chapter 6). Note that capillary wave 
turbulence has also been numerically simulated at the surface of a ferrofluid in the 
presence of a strong horizontal magnetic field that reduces the wave interactions 
in the direction of the magnetic field (Kochurin, 2020).

5.9 Direct Numerical Simulation

In order to illustrate the capillary wave turbulence regime, we present in this sec­
tion the results of a direct numerical simulation. For numerical stability reasons, 
dissipation terms have been added to the primitive equations (5.4a)-(5.4b). The 
simulated equations are therefore:

@7 D -r?7Io • r?v C @^ Io C ^@4 jo “ v127, (5.69a)
@t @z @z2

@7Io C 7@4Io d - 1 .r7/2 Io + ° A^ - v127 + f, (5.69b)
@t @t@z 2

17 D o, (5.69c)

with v d 3 x 10“8 a hyperviscosity. The use of a hyperviscosity allows us to 
confine the effect of dissipation to the smallest scales and thus widen the iner­
tial range. An external force f is applied only to the velocity potential, assuming 
initially the absence of deformation (i.e. 7(x, y, t D o) D o). The force f is charac­
terized by a large-scale spectrum (excitation at wavenumbers k D 1, 2, 3 at each 
time step) with a random fluctuation of the amplitudes around a mean value and a 
random phase. Classically, a pseudospectral numerical code is used with periodic 
boundary conditions in (x,y). The spatial resolution used is 512 points in each 
direction.

In Figure 5.3, we see the spatial variation of the deformation 7(x, y) of the fluid 
surface and the velocity potential 7(x,y) in fully developed turbulence. These 
fields are characterized by random fluctuations. This first figure is interesting, but 
it does not allow us to fully appreciate the excited scale range. In particular, the 
smallest scales are impossible to see. In Figure 5.8, we see how these fields evolve
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Figure 5.8 Temporal variations of the root mean square (in space) of the potential 
h(x, y)i (top) and of the deformation h(x, y)i (bottom) during the initial phase of devel­
opment of capillary wave turbulence. The time is normalized with the angular frequency 
associated with the forcing.

over time from the initial instant for which h(x, y, t D 0)i D 0. More precisely, it 
is the temporal variations of the quadratic means that are shown. We find that the 
response of the deformation to the force applied to the velocity potential is rela­
tively smooth. For both fields, the amplitude increases over time; in this window of 
time the stationary state has not yet been reached. This figure shows a qualitative 
behavior of the two fields: we can see that an increase in one field corresponds to 
a decrease in the other field.

The isotropic spectra of the surface potential energy E(k, t) are shown in Figure 
5.9 when the turbulence is fully developed. An inertial range clearly emerges, with 
a power law compatible with the prediction in k~15=4, as we can see in the insert 
figure, when these spectra are compensated by the expected solution: a plateau 
over nearly a decade is indeed obtained.

The wave character of capillary wave turbulence can be revealed by tracing the 
spectrum E (k, !). This spectrum is constructed from the field O(kx , ky, t). The 
values of the real part and the imaginary part are recorded in the course of time 
for kx D 1 and ky 2 [0, 45]. A Fourier transform in time is then applied to these 
signals, weighted with a Hamming function in order to make them periodic (and 
thus reduce the noise produced by the nonperiodicity). The result is shown in
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Figure 5.9 Spectra at different times of the surface potential energy E(k, t) and (insert) 
compensated by the expected solution in k~15=4.

Figure 5.10 Surface potential energy spectrum E(kx, ky, !) constructed from Ok (t) with 
kxD1 and ky2[0, 45]. Each signal in the vertical direction is normalized by its maximum. 
The black dots correspond to the dispersion relation ! D k3=2.

Figure 5.10: we plot the sum of the squared modulus of the Fourier coefficients. 
We see that the information is essentially concentrated along the curve ! D k3=2, 
which reveals the wave nature of this turbulence. The nonlinearities have the 
effect of widening the dispersion relationship. The !-k spectrum is often used 
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as a diagnostic tool to determine the type of turbulence. Often wave turbulence 
becomes strong at smaller scales. This is the situation encountered in magne­
tohydrodynamics (see Chapter 7): in this case, the !-k spectrum shows a clear 
transition between the two regimes, with a signal that fills a large region of !-k 
space in the strong wave turbulence regime (Meyrand et al., 2016).
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6

Inertial Wave Turbulence

Inertial wave turbulence is the regime reached by an incompressible fluid sub­
jected to a rapid and uniform rotation within the limit of a large Reynolds number. 
At first glance this situation seems to be close to the one discussed in Part I to 
introduce the main concepts of turbulence - eddy turbulence - since it is simply 
a matter of adding a well-known force to the Navier-Stokes equations, that is, 
the Coriolis force. However, there are two major differences to the standard case: 
inertial waves exist because of the rotation, and the spherical symmetry is broken 
by the presence of a privileged axis, that of rotation. This anisotropy makes the 
analytical development of wave turbulence more complex than in the case of cap­
illary waves. As we will see here, it is nevertheless possible to derive the kinetic 
equations and find the main properties of such a system.

6.1 Introduction

Rotating turbulent flows are of interest to a wide variety of fields, such as industry, 
meteorology, and geophysics (oceans, atmosphere). In the latter case the effect of 
the earth’s rotation is felt, for example, in large-scale atmospheric motions. The 
comparison between the earth and Venus illustrates this point well. The two plan­
ets, of similar size, rotate on themselves at very different speeds: by definition, it 
takes one day for an earth revolution to occur while Venus needs about 243 (Earth) 
days.1 The effects of this difference are noticeable in the atmospheric motions of 
the two planets. The earth’s atmosphere has a complex dynamics whose signature 
is revealed, in part, by the shape of the cloud structures (see Figure 6.1), while the 
Venusian atmosphere presents a more uniform appearance. Note that rotation also 
plays an important role in the geodynamo (we restrict ourselves here to the case 
of the earth): the earth’s magnetic field owes its existence to a dynamo process 
operating in the earth’s outer liquid core, where the Rossby number is about 10_6,
1 The very slow rotation of Venus on itself makes the Venusian year (225 days) shorter than its day.
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Figure 6.1 An example of a low Rossby number flow: large-scale terrestrial atmospheric 
motions. Image of the earth taken on September 4, 2019. Credits: NASA Earth Obser- 
vatory/Joshua Stevens; NOAA National Environmental Satellite, Data, and Information 
Service.

and where inertial wave signatures emanating from this core have been detected 
(Aldridge and Lumb, 1987).

A precise description of geophysical flows requires the consideration of many 
parameters (rotation, stratification, geometry, etc.). The methodology often fol­
lowed in research consists in isolating one parameter to study its effects in detail. 
Much work has been done on the effect of rotation on geophysical turbulent 
flows, for which Navier-Stokes equations are the simplest representation. These 
are written in the incompressible case (it is assumed that the mass density 0 D 1):

@w 2
------ 2 (• • r) u d (w • r) u — (u • r) w c v r2 w, (6.1) 
@t

with w r u the vorticity, • the rotation rate associated with the Coriolis 
force, and v the kinematic viscosity. Note that with this writing, the pressure term 
(including the effects of rotation) disappears. The intensity of the Coriolis force 
can be measured by the ratio between the advection term and the Coriolis force. 
This dimensionless quantity,
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U
£• ,

Ro (6.2)

is the Rossby number. A low Rossby number tells us that the effects of rotation 
are dominant. To fix these ideas, let us take the example of a wind flowing at 
U d 0.1 ms-1 and a length scale L d 10 km (the size of a large cloud struc­
ture). With the angular velocity of the earth, • T ' 7.3 x 10“5 rads-1, we get 
the Rossby number Ro ' 0.1, which is the typical value of large-scale geophys­
ical flows. With a kinematic viscosity v ~ 0.1 cm2s-1, we arrive for this flow at 
the Reynolds number Re D UL= ' 108. The modeling of large-scale atmos­
pheric flows therefore requires us to consider, among other things, the properties 
of rotating turbulence. The limit of interest in this chapter is the small Rossby 
number (Ro 1). This number offers us a small parameter on which the theory 
of inertial wave turbulence can be built.

6.2 What Do We Know About Rotating Turbulence?

Laboratory Experiment
Numerous laboratory experiments have been dedicated to the study of rotating 
turbulent flows (see Figure 6.2). From an experimental point of view, it is not dif­
ficult to obtain a small Rossby number (Ro < 1) in a fast rotating tank; on the other 
hand, it is more difficult to reach a Reynolds number higher than 105. However, 
this number is high enough for the flow to be in a fully developed turbulent regime. 
These experiments (e.g. in a wind tunnel with a rotating section) have shown that 
rotation has the effect, when Ro < 1, of bi-dimensionalizing an initially isotropic 
turbulence (Jacquin et al., 1990; Lamriben et al., 2011). This results in the pres­
ence of vorticity filaments having their axes approximately parallel to the rotation 
axis (•) and a strong correlation of velocity along • (Hopfinger et al., 1982). An 
asymmetry is also measured in the distribution of cyclones and anticyclones (the 
former dominating the latter) as well as a slowing down (compared to the nonro­
tating case) of the temporal energy decay when the turbulence is free, that is, in 
absence of external forcing (Moisy et al., 2011).

Thanks to the PIV (particle image velocimetry) technique, which consists in 
illuminating a fluid in which small spherical particles ofa few m in diameter are 
introduced, it is possible to accurately measure the velocity of these particles and 
thus that of the fluid, whose dynamics is supposed not to be influenced by the pres­
ence of these intruders. A restriction exists, however: until now, the measurement 
has been made in a plane. It is often the plane perpendicular to the axis of rotation 
that is chosen. The energy spectra measured as a function of the perpendicular 
wavenumber k? show a stiffening of the power law passing from an index close to 
—5=3 (case without rotation at Ro d Ci) to a value close to —2.2 for the fastest 
rotation (Morize et al., 2005).



158 6 Inertial Wave Turbulence

Figure 6.2 Rotating platform dedicated to the experimental study of rotating turbulence 
and inertial waves. This mechanical platform of 2 m in diameter, rotating at up to 30 
revolutions per minute, allows for the loading of one tonne of material, including the 
weight of the tank and the water (700 liters here) where flows are generated. The platform 
allows experimenters to remotely control an embedded PIV system composed of a pulsed 
laser and several high-sensitivity cameras. In the experiment presented here, an assembly 
of inertial wave beams is forced by 32 oscillating cylinders organized regularly around a 
virtual sphere of 80 cm diameter. This rotating platform and the experiments (Monsalve 
et al., 2020) have been developed by P.-P. Cortet & F. Moisy at the Fluids, Automatic and 
Thermal Systems (FAST) Laboratory (CNRS & University of Paris-Saclay) in Orsay.

The experiments also reveal that the p-order structure functions follow a self­
similar law with p D p=2 (Baroud et al., 2002) orp D 3p=4 (van Bokhoven et al., 
2009). Thus, rapidly rotating turbulence seems to be characterized by an absence 
of intermittency, in the sense that the curvature of p (p) measured in hydrodynam­
ics at Ro D C1 is absent (see Chapter 3).2 Even if the origin of this self-similar 
behavior can be attributed to inhomogeneities, measurements, or forcing effects, 
it is interesting to mention that the p D 3p=4 law is dimensionally compati­
ble with the exact solution (pD 2) of inertial wave turbulence (Galtier, 2003) as 
well as some direct numerical simulations (Pouquet and Mininni, 2010). These 
experiments also show that the probability distribution functions of (increments 
of) velocity have non-Gaussian wings (Baroud et al., 2002; van Bokhoven et al., 
2009).

The PIV technique has also made it possible to highlight the inertial wave 
turbulence regime by measuring the frequency spectrum. Like capillary waves,
2 Sometimes, the simple deviation from Kolmogorov’s law p D p=3 is considered as a signature of intermit­

tency. However, this definition is restrictive because it includes any deviation - even self-similar - from the 
spectrum in —5=3.



6.2 What Do We Know About Rotating Turbulence? 159

this spectrum is characterized by a signal essentially concentrated along the iner­
tial wave dispersion relation (Yarom and Sharon, 2014). This property is the one 
expected when nonlinearities are weak (Nazarenko, 2011). The experiments have 
shown the presence, in the perpendicular direction only, of a large-scale inverse 
cascade (Campagne et al., 2014) whose properties seem, however, to be different 
from those of a purely two-dimensional turbulence (Kraichnan, 1967).

To conclude, note that a quantitative experimental observation of weak iner­
tial wave turbulence has been reported recently by Monsalve et al. (2020). In this 
experiment where inertial waves are directly excited and the geostrophic mode 
strongly damped, the spectra display the expected power-law behavior both in 
scaling and amplitude.

Numerical Simulations
The effects of rotation on hydrodynamic turbulence are also studied via numer­
ical simulation. A reduction of the nonlinear transfer in the direction of • has 
been observed, as well as a slowing down of the temporal decay of energy (Bar­
dina et al., 1985; Cambon et al., 1997). A stiffening of the power law followed 
by the energy spectrum was measured, as well as signatures of an inverse cas­
cade (Hossain, 1994; Smith et al., 1996). In particular, Smith and Waleffe (1999) 
have shown with direct numerical simulations that when the flow is forced three- 
dimensionally at an intermediate wavenumber kf, one observes a direct cascade of 
energy for k > kf, with a one-dimensional isotropic spectrum close to k~2, and an 
apparently inverse cascade for k < kf, with a one-dimensional isotropic spectrum 
close to k“3. Their analysis shows that large-scale energy is mainly contained in 
the two-dimensional state which is defined as the fluctuations in the mode kk D 0 
(with k • D kk •; we also speak about slow mode), whereas at small scales 
the energy is mainly contained in the three-dimensional modes (fluctuations at 
modes jkkj > 0). The spectrum of the slow mode could be the result of nonlocal 
interactions between the two- and three-dimensional modes, rather than the con­
sequence of a two-dimensional inverse cascade (Bourouiba et al., 2012). We will 
come back to this problem at the end of the chapter. These simulations also show 
that the behavior at small and large scales is strongly influenced by the aspect ratio 
between the vertical resolution, along •, and the horizontal resolution: a small 
aspect ratio, with a low resolution in the vertical direction, leads to a reduction in 
the number of resonant triads and a significant alteration of the energy spectrum. 
Their simulations reveal a global energy spectrum in k“5=3 for a sufficiently small 
aspect ratio. This result suggests that the resonant triads have a fundamental role 
to play in turbulence with rotation.

The domination of cyclones (rotating in the same direction as the global rota­
tion) over anticyclones (rotating in the opposite direction; see Figure 6.3) was 
also highlighted by numerical simulation in the case of a fast rotation (Buzzicotti 
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et al., 2018). One can show that this asymmetry is linked to the nonstability of 
the anticyclones. The formation of larger and larger structures is studied through 
the notion of condensate, that is, the ability of a turbulent system to excite the 
smallest wavenumbers (Seshasayanan and Alexakis, 2018). Within the limit of a 
fast rotation, the use of frequency and wavenumber spectra has made it possible 
to highlight the wave character of turbulence (Clark di Leoni et al., 2014). Note 
finally that the most recent three-dimensional direct numerical simulations by Le 
Reun et al. (2020) show that the anisotropic Kolmogorov-Zakharov spectrum pre­
dicted by the theory is well reproduced (see also Sharma et al., 2018; Yokoyama 
and Takaoka, 2021) and that the energy transfer is mainly local. More details on 
this topic, and many other issues, are discussed in the reviews of Godeferd and 
Moisy (2015) and Alexakis and Biferale (2018).

Figure 6.3 Schematic view of vorticity tubes in the case of hydrodynamic turbulence 
without rotation (top) and with rotation (bottom). The rotation polarizes the tubes along 
the axis of rotation, here in the vertical direction, and the direction of rotation of the tubes 
is mostly that of the rotation of the fluid (domination of cyclones over anticyclones).
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Theories
Rotating turbulence can be analyzed phenomenologically. Early works on the sub­
ject (Zeman, 1994; Zhou, 1995) show that a steep spectrum in k~2 is expected 
at large scales, a region where the Coriolis force is nonnegligible, that is, for 
wavenumbers smaller than a critical wavenumber k•. We can notice, however, 
that this phenomenological prediction does not introduce anisotropy, which is a 
fundamental property of this turbulence.

In spectral theory, the most striking results were obtained using the EDQNM 
closure model (Orszag, 1970) that was introduced in Chapter 3. Cambon and 
Jacquin (1989) have developed a formalism based on an eigenmode decomposi­
tion. The ad hoc closure used leads to dynamic equations for the invariants of the 
system. The simulation of these equations allows us to understand more precisely 
certain observed properties such as the anisotropic transfer mechanism (see also 
Cambon et al., 1997). Inhomogeneity effects have been introduced to take into 
account the existence of infinitely large boundaries in the direction perpendicular 
to the axis of rotation (Scott, 2014). It has been shown that the rapidly rotating 
confined fluid behaves differently from the free one, with essentially a dissipation 
effect, due to the walls, which dynamically emerges before the classical volume 
dissipation.

One can adapt Kolmogorov’s exact law to this axisymmetric problem (Galtier, 
2009). This law can be used in its nonintegrated form (Lamriben et al., 2011), 
whose expression is, at the origin, identical to that of hydrodynamics without 
rotation (exact law (2.25)) because the Coriolis force does not work. It can also 
be integrated by means of a critical balance hypothesis (see Chapter 7). The non­
integrated Kolmogorov law is also valid in wave turbulence, since we do not need 
for its derivation to make assumptions about the type of turbulence; the univer­
sality of Kolmogorov’s law is thus reinforced. To conclude, we note that a recent 
theoretical study shows an unexpected proximity between rotating turbulence and 
solar wind turbulence at subionic scales (Galtier and David, 2020). This proximity 
opens interesting perspectives that will be discussed in final section of this chapter 
also Chapter 8).

6.3 Helical Inertial Waves

To obtain the inertial wave dispersion relation, we start from the incompressible 
equation (6.1), with by definition • •eOjj and eOjj a unit vector such that jeOjjj D 1. 
Anticipating the helical character of these waves, we will introduce a complex 
helical decomposition (Craya, 1954):

hsk hs(k) D (eOk eOjj) eOkCis(eOkeOjj), (6.3)
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with kDkeOk Dk?CkkeO (k D jkj, k? D jk?j, jeOk j D 1) and s D the directional 
polarity. This basis satisfies the following properties:

hks d h-k,
is(eOk hsk) D hsk ,

k hsk D 0 ,
2k2

hk • hk; D -?3(s C s0). k2

(6.4a)
(6.4b)
(6.4c)

(6.4d)

In particular, the relation (6.4c) means that the incompressibility condition will be 
implicitly verified by the helical fields. This property will allow us to lighten the 
wave turbulence formalism that we will briefly present later. The projection of the 
velocity on the helical basis leads us to the following definition for Ask :

uOkuO(k)DXAs(k)hskXAskhsk, (6.5)

with uO k the Fourier transform of the velocity u. One deduces from this:

wOk wO (k) D ik uOk D kXsAsk hsk . (6.6)

(6.7)

In the inviscid case ( D 0), the Fourier transform of equation (6.1) gives us:

@ wO k
--- - -i • kH uk d [(w • r)u - (u • r)w]k, 

@t
where the index k in the right-hand term means the Fourier transform. If we for­
get the nonlinear contribution and introduce the helical fields (6.5) and (6.6), we 
obtain, after projection and use of relation (6.4d):

sk^k d —-i• kAsk, 
@t k

which leads to the following dispersion relationship:

(6.8)

-•kH
! k D (6.9)

k

Inertial waves are transverse, dispersive, and helical with a left polarization.

6.4 Phenomenological Predictions

Following the classical phenomenology presented in the previous chapter on cap­
illary waves, we will define the nonlinear time from the Navier-Stokes equations; 
we obtain trivially:

NL
1

ku'
(6.10)
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The transfer (or cascade) time for three-wave interactions (nonlinearity is quad­
ratic) is written in the case of fast rotation (see Chapter 4):

•k
Xtr ~ !NL ~ k3U2 • C6-11)

The difficulty here is to take into account the statistical anisotropy induced by 
rotation, whose theoretical justification will be given in Section 6.5 the reso­
nance condition. To distinguish between perpendicular and parallel directions, we 
introduce the following two-dimensional axisymmetric energy spectrum:

u2 ~ E(k?, k||)k?kk. (6.12)

However, numerous experiments and numerical simulations show that the cascade 
is preferentially done in the direction perpendicular to the axis of rotation: this 
means that the energy is preferentially transferred in a region of Fourier space 
where k? kk . We will place ourselves in this region and thus substitute k?

for k. We then introduce the mean rate of kinetic energy transfer " in the inertial 
range:

~ E(k?,kk)k?kk ~ E2(k?,kk)k?kk 

tr •

We finally get the following spectral prediction:

E(k?, kk) ~ p"^ k25=2k|'|"1=2 .

(6.13)

(6.14)

The effect of rotation is therefore to stiffen the energy spectrum compared to the 
standard case (at Ro D C1) while orienting the cascade in the transverse direc­
tion. The dependency in kk that appears here is therefore not very relevant from 
the dynamic point of view. We will see in Section 6.5 that the spectrum (6.14) is 
the exact solution of the kinetic equations of inertial wave turbulence.

The ratio of linear to nonlinear times gives us an additional indication of the 
range of validity of the wave turbulence regime. We get, always with k? kk :

1/! k? u 2 k? pE (k?, k k) k? k k k?=4

rnl k k • k k • • k3=4
(6.15)

As the energy is essentially transfered to larger and larger k?, if the wave tur­
bulence condition ( 1) is met at a given k? scale, it will be less and less as
the cascade develops in the perpendicular direction, and beyond a critical scale, 
k?c, turbulence becomes strong. We see here a difference to the case of capillary 
wave turbulence, which becomes weaker and weaker as the cascade develops. 
Another limit of validity of wave turbulence exists at small wavenumbers. Indeed, 
the inequality 1 also means that the wavenumber kk cannot be too small: in 
particular, it is necessary that kk > 0. This condition means that the slow mode 
kk D 0 cannot be described by weak wave turbulence.
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6.5 Inertial Wave Turbulence Theory

Let us now take again the nonlinear expression (6.7) and introduce the helical 
fields (6.5) and (6.6); after projection and exchange of the dummy variables p and 
q, sp and sq , we obtain:

@ A X ssp sq sp sq
-C C is!kAk D i^ l_/pqAPAq A(k - p - q) dpdq, (6.16)

@t R6spsq

with the interaction coefficient:
skL p q — ----(s d — s «)[(n • h p )(h q • hs) — (n • h q )(hp • hs)] (6 17)Lkpq D 4^2 (spP sqq)[(q hp )(hq hk) (p hq )(hp hk)]. (6.1/)

Since the amplitude of the waves is assumed to be weak, the dynamics over short 
times - of the order of the wave period 1=! - will be dictated by linear terms. At 
longer times, such that 1=!, nonlinear terms will come into play by changing
the amplitude of the waves. Therefore, the amplitude is separated from the phase 
(see Chapter 5 for a justification):

Ask = e ake~is!kt, (6.18)

with e a small parameter (0 < e 1); hence the equation for the amplitude of 
inertial waves:
sZ

ak _ i e X L L "'■'",is/i'"ri (s!k - sP!p - s"!q) t All. n n) dndn (6 19)@ t D ie / , L 6L-kpq aP a" e A(k p q) dp dq. (6.19)
spsq R6

We find a classical form for three-wave interactions with a term in the right-hand 
side of weak amplitude (proportional to e), a quadratic nonlinearity, and an expo­
nential which, over long times, will give a nonzero contribution only when its 
coefficient cancels out.

After a few manipulations, we can write the resonance condition as follows:

sq" - SpP _sk - sq" _ SpP - sk (6.20)
s!k sp !p sq !q

It is interesting to discuss the particular case of strongly local interactions that 
generally give a dominant contribution to turbulent dynamics. In this case, we 
have k ' p ' q and the previous expression simplifies, at leading order, to:

sq - sp s - sq ~ sp - s
skk ' sppk ' sqq k

(6.21)

If kk is nonzero, the term on the left will give a nonnegligible contribution only 
when sp D — sq. We do not consider the case sp D sq, which is not relevant to the 
leading order in the case of local interactions, as we can see from the expression of 
the interaction coefficient (6.17), which then becomes negligible.The immediate 
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consequence is that either the middle term or the right-hand term has a numerator 
which cancels itself out (at main order), which implies that the associated denom­
inator must also cancel (at main order) to satisfy the equality: for example, if 
s D sp then qk ' 0. This condition means that the transfer in the parallel direction 
is negligible: indeed, the integration of equation (6.19) in the parallel direction is 
then reduced to a few modes (since pk ' kk), which strongly limits the transfer 
between parallel modes. The cascade in the parallel direction is thus possible, but 
relatively weak compared to that in the perpendicular direction. This situation is 
to be compared to that of incompressible MHD, which will be presented in the 
chapter 7: in this case, the uniform magnetic field b0 plays the role of the (uni­
form) rotation by introducing a privileged axis that breaks the spherical symmetry 
of the turbulence. In the MHD wave turbulence regime, it can be shown that no 
transfer in the b0 direction is possible; therefore, the direct cascade of the total 
(kinetic C magnetic) energy is exclusively in the perpendicular direction.

The kinetic equations of inertial wave turbulence are obtained in a classical way 
after a (long) systematic development.3 They are partially simplified when the 
k? kk limit is taken: this limit is fully justified by the arguments developed pre­
viously about the weak cascade in the parallel direction. Under these conditions, 
we finally get:

@{Ek } D 62^2 XI skkSpPk

k ssp sq 1? ? p? q?
2

sq?? - spP?\ 2
x ------------ (— (sk? C SpP? C sq??) sin e

!k

I Eq(p?Ek - k?Ep) C (p?sHk=k? - k?spHp =p?)sqHq=??

Isk? [Eq(p?sHk=k? - k?spHp =p?) C (p?Ek - k?Ep)sqHq=??]

(6.22)

(s!k C sp!p C sq!q ) (kk C pk C qk)dp? dq? dpkdqk ,

with Ek E(k? , kk) D 2k? E(k? , kk) and Hk H(k? , kk) D 2k? H(k? , kk) the
axisymmetric energy and kinetic helicity spectra, respectively. In this expression, 
e is the angle between the wavevectors k? and p? in the triangle k? C p? C 

q? D 0 and 1? is the integration domain (infinitely extended band) corresponding 
to this triangle (see Figure 5.5). The anisotropic kinetic equations of inertial wave 
turbulence (6.22) have been obtained and analyzed for the first time by Galtier 
(2003). They were then studied numerically by Bellet et al. (2006), and then found 
analytically with a Hamiltonian method by Gelash et al. (2017).

3 However, an additional step must be considered: it consists in introducing a local orthonormal vectorial 
basis for each triad (Galtier, 2014) in order to make all symmetries appear. It is only after that the statistical 
development can take place.



166 6 Inertial Wave Turbulence

After applying the generalized Zakharov transformation to the axisymmetric 
case (Kuznetsov, 1972), one obtains the exact solutions with a non-zero constant 
energy flux (Kolmogorov-Zakharov spectrum):4

E (k?, k k) - k;5=2 k -1=2 (6.23)

and H(k?, ky) — k?3=2ku"1=2. These solutions correspond to a direct cascade of 
energy. In particular, this means that the spectrum of kinetic helicity is not the con­
sequence of a dynamics specific to helicity, but the trace of a dynamics induced 
by energy. These solutions are in the domain of convergence of integrals, for 
which a subtle calculation is necessary (which mixes the perpendicular and par­
allel modes). With the following definition E — k?x kky, we find the conditions of 
locality (see Exercise II.4):

—4 < x C 2y < —3 , 
—4 < x C y < —2.

(6.24)
(6.25)

This property demonstrates that the Kolmogorov-Zakharov spectrum (6.23) is rel­
evant in describing this regime. As can be seen, it is placed exactly in the middle 
of the two intervals. Numerical simulations of the kinetic equations of wave tur­
bulence performed by Bellet et al. (2006) show a spectral behavior compatible 
with, in particular, the prediction (6.23). Note that an anisotropic spectrum com­
patible with the Kolmogorov-Zakharov solution has been obtained recently with 
three-dimensional direct numerical simulations (Le Reun et al., 2020; Yokoyama 
and Takaoka, 2021).

Several other properties of inertial wave turbulence can be deduced from 
expression (6.22). First, we see that a state with zero kinetic helicity will not 
produce helicity at any scale. Energy is therefore the main driver of turbulence. 
Second, we observe that there is no nonlinear coupling when the wavevectors p? 

and q? are collinear (because then sin D 0). Third, there is no nonlinear coupling 
when p? and q? are equal, if at the same time their polarity sp and sq are equal. 
This is a property that seems to be quite general, since it is common to other types 
of helical waves (Kraichnan, 1973; Waleffe, 1992; Turner, 2000; Galtier and Bhat- 
tacharjee, 2003). Finally, we recall that these kinetic equations cannot describe the 
slow mode (kk D 0) and cannot describe too large three-dimensional modes (espe­
cially in k?) for which the wave turbulence becomes strong. Kinetic equations are 
thus limited to a finite size domain in Fourier space. Moreover, the exact solutions 
obtained are restricted to a part of this authorized domain for which k? ^ ky.

4 The expressions of the energy flux components can be deduced under the assumption of statistical axisym- 
metry. For this, we use the relation @tE(k?,ky) = — T • 5(k?, ky) in cylindrical coordinates from which 
we can show that 5k=5? / kk=k?. Therefore, the parallel energy flux is expected to be smaller than the 
perpendicular flux since the kinetic equation used is valid in the limit kk=k? 1.
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6.6 Local Triadic Interactions

6.6.1 Nonlinear Diffusion Equation

The kinetic equations of inertial wave turbulence can be simulated numerically to 
study more precisely this regime. However, the work on the subject (Bellet et al., 
2006) shows that the problem remains difficult because it requires, in particular, 
solving properly the resonance condition, which strongly limits the number of 
triads to be considered. One way to get around this difficulty is to take into account 
only local interactions, which leads to a significant simplification of the equations. 
In our case, this limit concerns above all perpendicular wavenumbers. We will see 
later that in fact it is not possible to consider this limit for parallel wavenumbers.

In this study, we will limit ourselves to the particular case of energy, and we 
assume that the kinetic helicity is null. We have seen that within the highly aniso­
tropic limit (k? kk), the kinetic equation of inertial wave turbulence takes the 
following form:

@Ek D XT Tkppsdp?dq?dpkdqk, (6.26)

with by definition Tkssppqsq the transfer function per mode.

s.^ • skk sppk / sqq?- spp? V 2
Tkppqq D^T ,2 2 2 -------- (sk? C spp? C sqq?)2 sin9pq 4 k?2 p2?q2? !k

Eq(p?Ek - k?Ep)S(s!k C sp!p C sq!q) S(k|| C p|| C qk). (6.27)

It can be noted that the small parameter has been absorbed in the time derivative 
and therefore no longer appears explicitly: this means that we are focusing on 
the long times of wave turbulence. The transfer function verifies the following 
symmetry property, which will be used later:

spssq T sspsq
1 pkq _ 1 kpq .

Within the limit of strongly local interactions, we can write:

p? D k?(1 C p) and q? D k?(1 C q) ,

(6.28)

(6.29)

with 0 < p 1 and 0 < q 1. We can then introduce an arbitrary function 
f (k? , kk ) and integrate the kinetic equation; we get:

ssp sqf (k?, kk)Ek dk? dkk D f (k?, kk)Tkpq dk?dkkdp?dq?dpkdqk

sspsq

D 2 x [ f (k?, k k)_ f (p ?, p k)]
sspsq 

ssp sqTkpq dk?dkkdp?dq?dpkdqk . (6.30)
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For local interactions, we have at the main order (we neglect the contribution of 
the parallel wavenumber):

f(p?,pk) Df(k?,kk) C (p? - k?) @f(k?,k k) 
@k? 

@f(k?, kk)
Df(k?,kk) C epk?—---------. (6.31)@ k?

One obtains:
@ Z C m i w Ji 1 A 1 X C @ @f(k?,kk)@t I f f (k?, kk)Ekdk?dk J D - - / epk?——----- (6.32)

ssp sqTkpq dk?dkk dp?dq?dpk dqk .

An integration by part of the right-hand term allows us to write (after simplifica­
tion):

@Ek 1 @ X sspsq
it D 2 @k @jppk?Tkpq dp?dq?dpkdqk (6.33)

The local form of the transfer function Tkssppqsq can be deduced by using the locality 
in the perpendicular direction. In particular, we have:

k?2 p2?q2? D
2

S Sqq? - Spp? \ _ 

\ ! k D
(Sk? C Spp? C Sqq?)2 D

Eq (p ? Ek - k? Ep) D

k?6,
2 

^Sq ~ Sp C Sq 6 q - Sp pp^ ^4 

(S C Sp C Sq)2k?2 , 
@(Ek=k?) 

6pk? Ek Pk? ,

sin 0 D sin(^=3) D—^~, 

3(gkpq) D -k^5(Skk C sppk C SqqII).

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

After simplification, we arrive at:

tsSS _211 s^(S e _ S e )2(S )2e k4 
1 kpq D 64Q k (Sq Sp C Sqqq Sppp) (S C Sp C Sq) pp??

@(Ek=k )
Ek—?—s(Sk k C spp k C Sqq k )s(k k C p k C q k).@k

(6.40)

The previous expression shows us that the transfer will be dominant when 
SpSq D — 1. Therefore, we will only consider this type of interaction. The expres­
sion is then reduced to:

SSpSq 3 SSppk 4 @ (Ek=k?)
Tkpq D _ i6<2 k ppk?Ek @k± 5(SkkCSppk_Spq||)<5(kkCpkCqk). (6.41)
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The resonance condition leads us to two possible combinations for parallel
wavenumbers:

kk C pk - q k D 0 and kH C pH C qH d 0, (6.42)

or

kk - pk C qk d 0 and kk C pk C qk d 0. (6.43)

The solution is either qk D 0 or pk D 0, which means that the strong locality 
assumption does not apply for the parallel direction. The second solution cancels 
the transfer function, so we will consider only the first solution, for which we 
obtain:

@ Ek 

@ t
v'3 @
16^ @k?

k?7 Ek
Z C

p2 dp dq (6.44)@ (Ek=k?) \ [ Ce 
@ k? ) J-e

After integration, we finally arrive at the following nonlinear diffusion equation 
for energy:

@Ek D C @ (k7 E @ (Ek=k?)) (6.45)

with C d e4/(4V3^). This nonlinear diffusion equation describes inertial wave 
turbulence in the limit of strongly local interactions in the perpendicular direction 
(Galtier and David, 2020). It is an equation that has been rigorously deduced from 
the kinetic equation. Note that it is also possible to obtain this diffusion equation 
by phenomenological arguments. The calculation is then simpler, but it does not 
allow us to obtain the exact expression of the constant C. Consequently, we will 
renormalize the time and take C D 1.

6.6.2 Stationary and Self-Similar Solutions

We will verify that the nonlinear energy diffusion equation (6.45) has the same 
exact solutions as the kinetic equation (6.22). To do this, we introduce into 
equation (6.45) the energy flux 5(k?), which is defined by the relation:

@ E (k?) @5( k?)
@ t D @ k?

(6.46)

as well as the kinetic energy spectrum E(k?) D Ak?x . By definition, A is a positive 
constant because the energy spectrum is a positive definite quantity. We obtain:

5(k?) d A2(1 - x)k5C2x . (6.47)

Constant energy flux solutions are therefore x d 1 and x d —5/2. The first value 
cancels the flux and corresponds to the thermodynamic solution. The second value 
corresponds to the spectrum discussed in Section 6.5: it is the non-zero constant
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flux solution (Kolmogorov-Zakharov spectrum). In this case, we can also show 
that:

lim 5( kj_ ) d " d - A 2 , 
x !—5/2 ? 2 (6.48)

which is positive, as expected for a direct cascade.
The stationary solution - known as the Kolmogorov-Zakharov spectrum - is 

sometimes preceded by a nonstationary transient solution of a different nature. 
We will see, in the numerical study in the Section 6.6.3, that this is the case for 
inertial wave turbulence. It is a self-similar solution whose form is:

Ek D '■»(7?) • <6-49’

with r d t* — t and t* the time it takes for the spectrum to reach the largest 
available wavenumber. This time is finite, which means that in principle the front 
of the energy spectrum can reach infinity in a finite amount of time. This property 
reminds us of the discussion in Chapter 2 on the emergence of a singularity in 
finite time. By introducing the top expression into equation (6.45), one obtains 
the condition:

a d 4b C 1 . (6.50)

A second condition can appear, assuming that E0( ) m behind the front. The 
stationarity condition then gives us the relation:

a C mb d 0 . (6.51)

The combination of the two relationships finally gives us:

m d — a d —4-----. (6.52)
bb

This last expression means that we have a direct relation between the exponent m 
of the power-law spectrum and the propagation law of the front kf rb. For exam­
ple, if we assume that the stationary solution is established immediately when the 
front propagates, then m = —5/2 and thus b = —2/3 (and a = —5/3). In this 
case, the prediction for the front propagation is:

kf - (t* - t)“2/3. (6.53)

In practice, we will see that the nonstationary solution is different: it verifies well 
the conditions (6.51)-(6.52), but the values ofa, b, m are not predictable. We then 
speak ofa self-similar solution of the second kind (only solutions of the first kind 
are predictable).
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6.6.3 Numerical Study

The numerical study of equation (6.45) does not pose any particular problem in 
terms of implementation; however, it is necessary to consider a viscous term to 
dissipate energy at small scales in order to avoid the emergence of numerical 
instability. We make the choice of a hyperviscosity to extend the inertial range. 
Therefore, the normalized equation with C D 1 that we are going to simulate is:

@ 
@k?

@ Ek 

@ t
k?7 Ek

@(Ek=k?)\ 
@ k? /

k?6 Ek . (6.54)

One can use a logarithmic discretization for the k? axis, with k?i D 2i=8 and i an 
integer between 0 and 160. The Crank-Nicolson and Adams-Bashforth numeri­
cal schemes are used for the linear and nonlinear terms, respectively. The initial 
condition (t D 0) corresponds to a spectrum localized at large-scale such that: 

Ek ~ k? exp(—(k?/ka)2), (6.55)

with k0 D 5. No forcing is introduced in this simulation and the time step is 
1T d 2 x 10-13.

Figure 6.4 shows (top) the evolution of the energy spectrum from t D 0 to t. 
During this nonstationary phase a power law in k£8=3 appears progressively over 
about three decades. This nonstationary phase is characterized by a nonconstant 
energy flux (bottom of Figure 6.4). Therefore, the spectrum does not correspond to 
the constant flux solution obtained analytically. On the other hand, it is compatible 
with the solution ~ k21=3 when we take x = —8/3 in equation (6.47).

In order to check if these results correspond to the self-similar solution intro­
duced previously, we show on Figure 6.5 the temporal evolution of the front kf (t). 
This spectral front is defined by taking as a reference E(k?) d 10“15 in Figure 
6.4. We then follow the point of intersection between this threshold and the spec­
tral tail. From this figure, we can define the singular time t that the front takes to 
reach the maximum wavenumber (in principle k? D C1). We get approximately 
t* d 6.7537 x 10-7. In Figure 6.5 (insert) we see kf as a function of t* — t: a very 
clear power law appears over three decades, with an exponent close to —0.750. 
The negative exponent value illustrates the explosive nature of the direct energy 
cascade. These values are well compatible with:

a d —2, b d —3/4, and m = —8/3 , (6.56)

which demonstrates the self-similar nature of the nonstationary solution. Note that 
the power law in — 8/3 was apparently obtained with a numerical simulation of the 
kinetic equations of inertial wave turbulence when the spectrum is in a phase of 
development and before it is affected by inhomogeneities (Eremin, 2019).
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Figure 6.4 Top: Temporal evolution (every 4 1031T) of the energy spectrum between
8=3t d 0 (large-scale localized spectrum) and t*; a spectrum in k± emerges over about

three decades. Bottom: The spectrum of the energy flux (at the same time) is compatible 
1=3with kj_ . Simulation made by V David.

In Figure 6.6 we show the temporal evolutions of the energy and flux (insertion) 
spectra for t > t, with t close to t (top) and t t (bottom). The stationary solu­
tion is finally obtained with a spectrum in k£5=2 and a constant flux. We can notice 
that the stationary solution is established following a bounce of the spectrum when 
it reaches the smallest scales. We then have a relatively slow self-similar decay of 
the stationary solutions.

6.6.4 Universality of the Anomalous Scaling

The behavior that we have just described in detail for inertial wave turbulence is 
qualitatively universal for the solutions with finite capacity. We recall that these 
solutions correspond to spectra in power law whose integral (from the initial exci­
tation mode ki, to infinity for a direct cascade, or zero for an inverse cascade) 
is convergent. In the case of a direct cascade of energy, this means that the sys­
tem can redistribute the initial energy in the neighborhood of ki , over the interval 
ki < k < C1 in a finite time (we assume that there is no external force).
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Figure 6.5 Temporal evolution of the front kf of the spectrum for t t (semilogarithmic 
scale). A sudden increase of kf is observed from which one can precisely define the time 
t* d 6.7537 x 10“7. Insert: temporal evolution of kf as a function of t* - t (logarithmic 
scale). The dashed line corresponds to (t* - t)-°.750. For comparison two other values of 
t* - t are taken. Simulation made by V David.

The discovery of this anomalous scaling is relatively recent in the history of 
turbulence. The first detection was carried out within the framework of the study 
of a Bose condensate process (here an inverse cascade) with an exponent around 
— 1.24 instead of —7=6 for the stationary solution (Semikoz and Tkachev, 1995). 
A second detection was performed in magnetohydrodynamics (see Chapter 7) 
with an exponent for the energy spectrum in —7=3 instead of —2 (Galtier et al., 
2000). In the case of gravitational waves (see Chapter 9), the difference between 
these exponents for the wave action is tiny: —0.6517 instead of —2=3. Spectral 
anomalous scalings are also detected in strong turbulence. For example, using a 
nonlinear diffusion model to describe three-dimensional incompressible hydro­
dynamic turbulence (Leith, 1967), it is possible to show numerically that the 
Kolmogorov spectrum in —5=3 is preceded by a nonstationary spectrum around 
— 1.856 (Connaughton and Nazarenko, 2004).

To date, an exact prediction for the anomalous exponent seems out of reach 
(Grebenev et al., 2014). Only the numerical simulation can help us to estimate it, 
for example, by framing the value (Thalabard et al., 2015). As we have seen, this 
nonstationary solution is followed by a bounce of the spectrum to finally form the 
stationary solution. We can show that this bounce is described by a self-similar 
solution of the third kind (Nazarenko and Grebenev, 2017). We can ask whether
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IO1

Figure 6.6 Top: Temporal evolution (every 41031T) for t > t of the energy spectrum 
compensated by k?5=2, and (insert) the temporal evolution of the energy flux at the same 
time (semilogarithmic scale). Bottom: Final temporal evolution of these quantities for 
t t. Simulation made by V. David.

there is a quantitative relationship between these anomalous exponents and the 
possible appearance of singularities in a finite time (see Chapter 2). The answer to 
this question offers an interesting perspective.

6.7 Perspectives

Recently, several experimental studies have been devoted to rotating turbulence 
(see, e.g., Le Reun et al., 2017). An interesting perspective is the experimental 
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reproduction of the inertial wave turbulence regime (Yarom and Sharon, 2014; 
Monsalve et al., 2020) and an understanding of, in particular, the role of the slow 
mode. Experiments show a first difficulty: that of avoiding the too fast excitation 
of the slow mode which corresponds to geostrophic structures. In many laboratory 
experiments dedicated to rotating turbulence, the slow mode is often excited by 
the forcing. Now we know that this mode can become dominant and prevent the 
detection of three-dimensional modes. One possible approach is to use an inertia 
wave attractor device from which the desired regime could develop by instability 
(Brunet et al., 2020). The underlying fundamental question is to understand by 
which mechanism the slow mode can be excited and how this can, in turn, modify 
the dynamics of wave turbulence. From a theoretical point of view, the study of 
quasi-resonant interactions as an efficient source of slow mode excitation is an 
interesting perspective (Clark di Leoni and Mininni, 2016).

A new question concerns the proximity between inertial wave turbulence 
and a seemingly very different problem, that of kinetic Alfven wave turbu­
lence, a relevant regime in understanding the solar wind at subionic scales (see 
Chapter 8). Indeed, in the approximation of local interactions we can show 
analytically that the two problems are described by the same nonlinear diffu­
sion equation (Galtier and David, 2020). It is then perhaps not so surprising 
to note that experimental measurements of intermittency in the case of rota­
tion (van Bokhoven et al., 2009) and in the solar wind (Kiyani et al., 2009) 
give very close self-similar exponents. Is this a pure coincidence or is there 
really a common physics? We have here, potentially, an example of close 
interdisciplinarity.

Another interesting project would be to highlight the transition between the 
weak and strong wave turbulence regimes that is expected to occur at small scales. 
As predicted by relation (6.15), the time ratio increases with the mode k?. Accord­
ing to the phenomenology of Nazarenko and Schekochihin (2011), one can expect 
to fall into the regime of strong wave turbulence (described by the critical balance 
- see Chapter 7), then, on an even smaller scale, to no longer feel the rotation 
effect and find the fluid in the classic regime of strong eddy isotropic turbulence 
(Chapter 2). As shown by the numerical study of Mininni et al. (2012) (see also 
the work of Meyrand et al., 2016 in magnetohydrodynamics), the measurement 
ofa such a transition requires very high spatial resolution, at the limits of current 
computing facilities. It also requires measuring precisely the energy flux vector in 
anisotropic turbulence (Yokoyama and Takaoka, 2021).
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7

Alfven Wave Turbulence

Magnetohydrodynamics (MHD) is the study of the magnetic properties and 
behavior of electrically conducting fluids. It is an extension of hydrodynamics 
that couples the Navier-Stokes equations and Maxwell electrodynamics. MHD 
fluids are essentially of two kinds: on the one hand, there are liquid metals such 
as sodium, used, for example, in laboratory experiments to study the mechanism 
of generation of the magnetic field - the dynamo effect - which occurs naturally 
in the heart of our planet via the turbulent movements of liquid iron; on the other 
hand, there are partially ionized gases - called plasmas - whose properties differ 
deeply from those of neutral gases.

MHD is primarily used in astrophysics because about 99 percent of the visible 
matter in the Universe consists of plasma. There are many examples of applica­
tions: planetary magnetospheres, the Sun, stars, solar and stellar winds, interstellar 
clouds, accretion disks, and galaxies. Most of these media are very turbulent, with, 
in the case of the interstellar medium, a turbulent Mach number often of several 
dozen (see Chapter 2). Controlled thermonuclear fusion is the second-best-known 
field of application of MHD, with the famous ITER (International Thermonuclear 
Experimental Reactor) reactor in Cadarache. Indeed, the control of a magnetically 
confined plasma requires an understanding of large-scale equilibria and the solu­
tion of stability problems whose theoretical framework is basically MHD. Here, 
turbulence is also detected, but by nature it is inhomogeneous and non-MHD. 
Tokamak turbulence is, however, considered harmful because it is an obstacle to 
plasma confinement (Fujisawa, 2021).

Incompressible MHD waves - called Alfven waves - play an important role 
in many processes because they are carried by the large-scale magnetic field that 
structures the medium. Figure 7.1 displays solar coronal loops: these structures 
are interpreted as magnetic loops along which Alfven waves propagate and where 
the regime of Alfven wave turbulence is expected. The objective of this chapter 
is to give the main properties of Alfven wave turbulence, which bears a certain 
resemblance to inertial wave turbulence (Chapter 6) with a strongly anisotropic
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Figure 7.1 Coronal loops along which Alfven waves propagate. Observation made on 
June 6, 1999 at the wavelength 17.1 nm by the TRACE/NASA space telescope. Credits: 
M. Aschwanden et al. (LMSAL), TRACE, NASA.

dynamics. Some properties of incompressible MHD will be exposed, including the 
critical balance phenomenology that describes the strong wave turbulence regime. 
We will assume the reader is familiar with the MHD equations; otherwise, we 
recommend reading Galtier (2016), where the same notations are used.

7.1 Incompressible MHD

We will consider the incompressible MHD equations. In this case, the mass den­
sity 0 is constant and the magnetic field B can be expressed dimensionally as a 
velocity field b with the normalization b d B=p^0p0 (^0 is the magnetic per­
meability of vacuum). The MHD equations are then written as (Alfven, 1942):1

1 The MHD theory was proposed by the Swedish astrophysicist H. Alfven, who received the Nobel Prize in 
Physics in 1970 “for fundamental works and discoveries in magnetohydrodynamics with fruitful applications 
in different parts of plasma physics.”

ruD0, (7.1a)
@u
----- C u • ru d -VP + b • rb + via, (7.1b) 
@t
@b
----- C u •rb d b •ru + ^1b, (7.1c) 
@t
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rbD0, (7.1d)

with u the velocity, P D P=0 C b2=2 the total pressure, the kinematic vis­
cosity, and the magnetic diffusivity. The induction equation (7.1c) is obtained 
from Maxwell’s equations and Ohm’s law; it reflects the dynamics of the magnetic 
field when the plasma behaves like a monofluid within a nonrelativistic limit. This 
MHD approximation implies, in particular, plasma electroneutrality. We can refine 
the description by adding, for example, the Hall term in expression (7.1c) in order 
to take into account the decoupling between the ions and the electrons: we then 
obtain Hall MHD (see Chapter 8).

MHD turbulence is characterized by two dimensionless numbers, the classical 
(kinetic) Reynolds number, Re , and the magnetic Reynolds number, Rm , such that:

Re d UL , Rm d UL (7.2)

where U and L are characteristic velocity and macroscopic lengths of the fluid. 
These numbers are naturally very high in astrophysical media, as we can see in 
Figure 7.2.

7.2 Strong Alfven Wave Turbulence

7.2.1 Alfven Wave Packets

Most astrophysical plasmas evolve in media structured on a large scale by a 
magnetic field. The solar wind plasma illustrates this situation well, since on
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average the interplanetary magnetic field forms a spiral (called Parker’s spiral) 
with an amplitude of the order of fluctuations (see Chapter 8). The Sun with its 
numerous coronal loops (see Figure 7.1), is another example: in this case, the 
large-scale magnetic field along the loops is significantly more intense than the 
fluctuations.

It is legitimate to ask whether MHD turbulence behaves in the same way paral­
lel and perpendicular to a uniform magnetic field b0 . Theoretical, numerical, and 
observational analyses show that this is not the case: MHD turbulence becomes 
anisotropic with a reduction of the cascade along the direction of b0 (see Section 
7.4.2). It is therefore fundamental - even phenomenological - to make this dis­
tinction in our analysis of MHD turbulence. In this section, we present a model 
that accounts for this dynamics when b0 is moderate: it is the critical balance phe­
nomenology proposed by Goldreich and Sridhar (1995) on the basis ofa previous 
study by Higdon (1984) (see Oughton and Matthaeus, 2020, for a critical review 
on the subject). Basically, it is a phenomenology of strong MHD wave turbulence. 
Let us note that Phillips (1958) had already proposed a similar conjecture (the 
author speaks of “equilibrium interval”) in the framework of strong gravity wave 
turbulence.

To introduce this phenomenology, we will write the incompressible MHD 
equations using Elsasser’s variables z± = u ± b (Elsasser, 1950) and introduce a 
uniform magnetic field b0 . One obtains (with D D 0):

r z D 0 , (7.3a)
@z
— t bo • rz± D -rP* - zT • rz± . (7.3b)

@t
In this form, MHD equations appear compact and symmetrical. We can immedi­
ately see that the linear resolution of these incompressible MHD equations leads 
to the dispersion relationship for Alfven waves:

!2 D (k • bo)2 |. (7.4)

We notice that if the field zC = 0, the field z~ is an exact nonlinear solution of 
the MHD equations (at D D 0), since in this case:

@ z~ z— C bo •rz“= 0. (7.5)@t
Note that the total pressure is absent because the application of the null divergence 
condition on the MHD equations shows that P* is proportional to the nonlinear 
term. Equation (7.5) is interpreted as an Alfven wave packet z~ propagating along 
the uniform magnetic field b0, at a speed b0, without deformation. This reasoning 
is also valid for z~ = 0 with, in this case, an Alfven wave packet zC propagat­
ing in the opposite direction. Therefore, the z fields can be interpreted as Alfven 
wave packets propagating in opposite directions (see Figure 7.3) and which are
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Figure 7.3 Propagation of two Alfven wave packets along a quasi-uniform magnetic field 
that defines the parallel direction.

deformed nonlinearly when they collide. Here we touch a fundamental physical 
property of MHD turbulence: it is the collisions between Alfven wave packets 
zC and z~ and their successive deformations that produce a cascade. This colli­
sion property is intrinsically linked to the nondispersive nature of Alfven waves: 
two waves that follow each other will never catch up and will therefore not suf­
fer any nonlinear deformation. Note that the nonlinear interaction between two 
counter-propagating Alfven waves has been measured experimentally by Drake 
et al. (2013), while the first clear experimental detection of an Alfven wave was 
realized in 1959 (Allen et al., 1959). We will come back in Section 7.3.1 to this 
aspect in Alfven wave turbulence where successive collisions play a fundamental 
role in the cascade process.

7.2.2 Critical Balance Phenomenology

With the linear term in the left-hand side of equation (7.3b), a new characteristic 
time appears; it is the Alfven time:

TA b0

which can be interpreted as the collision time of two wave packets zC and z~ of 
length 'k (see Figure 7.3). Hereafter, we will assume, to simplify, that MHD turbu­
lence is balanced and that zC ~ z~ — z. The original idea of critical balance is that 
in the inertial range a natural equilibrium is established between the linear term 
that carries the Alfven wave packet and the nonlinear term which corresponds to 
its deformation by collision, whatever the scale ' considered. In other words, it 
means that the Alfven time TA balances with the nonlinear time TNL :

TA TNL , (7.7)

and that a significant transfer is achieved after a single collision. With the 
introduction of anisotropy, the nonlinear time becomes:

TNL - — . (7.8)z'
This means that we consider that the cascade is preferentially in the perpendicular 
direction. From this new definition and relation (7.7), we get:

'k
(7.6)
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log k

log kj.

Figure 7.4 The critical balance relationship (7.12) can be obtained from the perpen­
dicular and parallel energy spectra (top). There are two wavenumbers that correspond 
to each value of energy. Relation (7.12) emerges when these pairs of points are plotted 
(bottom) - see Bigot et al. (2008b). Reprinted with permission (Galtier, 2016).

'±z' - b0 j? . (7.9)

Insofar as there is a balance between the only two times available, the phenome­
nology is reduced to that of Kolmogorov, and one obtains classically:

Ee z3

ZNL '?

The spectrum of critical balance can be deduced directly; it can be written:

E(k?) - k?5=3

(7.10)

(7.11)

The combination of relations (7.9) and (7.10) finally gives the scaling relation for 
the critical balance (Goldreich and Sridhar, 1995): 

'll
b0 A ,2/3 ~ «1=3 «2=3 
,1=d '? '0 '? (7.12)

with '0 the (isotropic) injection scale of energy.
Relation (7.12) expresses the fact that the MHD cascade develops preferen­

tially - but not exclusively - in the transverse direction to the magnetic field b0 
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and that this turbulence is more anisotropic at small scales, as shown schematically 
in Figure 7.4. In practice, the difficulty lies in determining the parallel direction, 
which may vary slightly depending on the scale on which one is standing. How­
ever, we can show by direct numerical simulations that when b0 is at least three 
times greater than the fluctuations, this variation is negligible (Bigot et al., 2008c).

The conjecture of critical balance was verified by direct numerical simulations 
(Cho and Vishniac, 2000; Bigot et al., 2008c; Beresnyak, 2011). From the obser­
vational point of view, its verification is more difficult for technical reasons: it 
requires measurement of the plasma in several directions at the same time, which 
is only possible if we have several satellites at our disposal (Osman et al., 2011; 
see, however, Luo and Wu, 2010). The critical balance spectrum is in principle 
easier to check since one can concentrate on a single transverse direction. In 
practice, the measurements of the solar wind magnetic field at 1 AU show good 
agreement with this prediction (see Figure 8.2); however, the velocity fluctuations 
follow a —3=2 exponent power law (Podesta et al., 2007).

To conclude, one can note that the critical balance conjecture has been extended 
to sub-MHD scales within the electron MHD approximation. It leads to the rela­
tion 'k — '?=3 (see Chapter 8). Note that the critical balance is also mentioned in 
rotating turbulence (Chapter 6) and for gravitational wave turbulence (Chapter 9). 
In the first case, the critical balance regime is supposed to appear at the smallest 
scales of the system after a weak turbulence direct cascade of energy, while in the 
second case it is expected to appear at the largest scales of the system after a weak 
turbulence inverse cascade of wave action.

7.3 Phenomenology of Wave Turbulence

7.3.1 Iroshnikov-Kraichnan Isotropic Spectrum

The discussion on Alfven wave packets leads us to introduce one of the major 
ideas of MHD turbulence: the (IK) phenomenology proposed independently by 
Iroshnikov (1964) and Kraichnan (1965). This approach is interesting for this part 
of the book, since the ideas that emerged from this phenomenology date from 
the incubation period of the wave turbulence theory (see Chapter 4). They have 
contributed to a better understanding of the physics of wave turbulence in the case 
of triadic interactions.

The major difference between hydrodynamics and incompressible MHD is the 
presence of waves in the latter. To these waves, we can associate an Alfven time, 
rA, which characterizes the interaction time - that is, the collision time - between 
two wave packets. If these two packets have a typical length ' (isotropic turbulence 
is assumed), then:

rA - - , (7.13)b0 !k
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where b0 is the Alfven (group) velocity. Even if this hypothesis of isotropy is not 
physically justified, it will allow us in a first step to simplify the analysis. The main 
idea of IK’s phenomenology is that at each scale ofthe inertial range the structures 
see locally a uniform magnetic field, even if there is no uniform magnetic field at 
large scales. In other words, even ifthe medium is isotropic, at the turbulent scales 
of the inertial range we will consider that the physics is governed by the process 
described in Figure 7.3. Using this approach, the collision between Alfven wave 
packets becomes the central element in the analysis of MHD turbulence: it is the 
multiplicity of collisions that deforms the wave packets and finally transfers the 
energy from the large scales to smaller ones.

We will place ourselves in the balanced situation where zC ~ z~ ~ z, that is,
when the waves propagating in opposite directions are approximately balanced.
Therefore:

z2 z'
tr

(7.14)

where " is the mean rate of energy transfer in the inertial range (at scale ') and 
tr is the associated transfer time. In the process we describe, turbulence is sup­

posed to develop as the result of a large number of stochastic collisions between 
wave packets. Moreover, at a scale ' in the inertial range, the locally uniform mag­
netic field is assumed to be significantly larger than the magnetic fluctuations. The 
more intense the field, the shorter the duration of the collision, and the weaker the 
associated deformation will be. Therefore, the number of collisions required to 
produce a cascade must increase with the intensity of the field b0. So in strong 
field, we have tr A. To estimate the transfer time, let us first evaluate the defor­
mation of a wave packet at scale ' produced by a single collision. By placing 
ourselves on the wave packet, we have:

z'(t C AA) ~ z'(t) C A~ z'(t) C A. (7.15)@ t '
The deformation of the wave packet for one collision is therefore estimated at:

(7.16)
z2

11 z' ~ Ta.

This deformation will increase with time and for N stochastic collisions the 
cumulative effect can be evaluated in the same way as a random walk:

XX 1iz' ~ 1'Az JV ' (7'17)

iD1 A
The transfer time we are looking for is the one from which the cumulative 
deformation is of order one, that is, of the wave packet itself:

N 2 I 
z' ~ X 1 iz' ~ TAy / — . (7.18)

V ' V AA
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Then, we obtain:

tr
1 22

TAz2

TNL

TA

2
!TNL , (7.19)

where TNL is the nonlinear time that emerges from the MHD equations (which is 
similar to that of hydrodynamics). We see here for the first time a phenomenologi­
cal justification of the cascade time expression used for turbulence of capillary and 
inertial waves: it is the angular frequency of the wave weighted by the square of 
nonlinear time. Note that if we take as reference the collision time TA and introduce 
the small parameter TA=TNL , we come to the expression:

r ~ ^~2r Ttr TA . (7.20)

This characteristic time now shows the small parameter on which the development 
of the wave turbulence is realized. By adapting the writing, this expression is 
generalized to all triadic problems (see Chapter 4).

All that remains is to complete the calculation using expression (7.14); 
assuming E(k) E(k), we get:

z2 ~ ± ~ E2(k)k3
!TNL 'b0 b0 (7.21)

hence the one-dimensional isotropic Iroshnikov-Kraichnan (IK) spectrum of wave 
turbulence:

E (k) d Ci^/"* k "2 (7.22)

with CIK a constant of the order of unity. The isotropic IK prediction thus differs 
from that of Kolmogorov, with a slightly less steep spectrum. It is interesting to 
note that in this approach the transfer time is longer than in hydrodynamics (we 
assume TA TNL ). Physically, it is the fact of having sporadic collisions between 
wave packets - and not continuous interactions between eddies - that explains 
phenomenologically the slowdown of energy transfer to small scales. This slowing 
down is observed, for example, in direct numerical simulations where the free 
decay of energy is clearly slower in MHD than in hydrodynamics (Biskamp and 
Welter, 1989; Kinney et al., 1995; Galtier et al., 1997; Bigot et al., 2008c). This 
decay is of course related to the dissipation, whose efficiency weakens when the 
cascade process slows down.

Today, the IK spectrum is still under discussion. For example, in situ measure­
ments made in the solar wind (see Figure 8.2) at one astronomical unit show a 
power-law spectrum in —5/3 for the magnetic field fluctuations while it is in —3/2 
for the velocity.2 However, these properties may depend, on the one hand, on the 
heliocentric distance because of the expansion of the wind (Verdini and Grappin,

2 Note that turbulence in liquid metals is characterized by kinetic energy spectra close to k 5/3 over more than 
three decades (Cremerand Alemany, 1981).
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2015) and, on the other hand, on the wave character of the turbulence, which is 
probably more pronounced near the Sun where the magnetic field is stronger. In 
general, it is the critical balance of strong wave turbulence that is used to describe 
the solar wind at MHD scales for which a k£5=3 is predicted. As far as direct 
numerical simulation is concerned, the question of the spectral exponent is not 
yet decided, because the small difference between the IK and Kolmogorov predic­
tions requires a wide inertial range (at least two decades) to conclude (Beresnyak, 
2011). Note that the situation is different at subionic scales where the prediction 
of wave turbulence is in relatively good agreement with the solar wind data (see 
Chapter 8).

7.3.2 Anisotropic Spectrum

We have just seen that IK’s phenomenology leads to an isotropic spectrum in k“3=2. 
In this approach, we have assumed the existence, locally, of a uniform magnetic 
field to justify the notion of Alfven wave packet. As shown, for example, in direct 
numerical simulations (Oughton et al., 1994; Muller et al., 2003; Bigot et al., 
2008b; Teaca et al., 2009), the presence of a uniform magnetic field is a source 
of anisotropy with a cascade limited to the perpendicular direction, which con­
tradicts the hypothesis of isotropy.3 We are here in a situation similar to that of 
hydrodynamics under rotation (Chapter 6). Let us take up again this IK phenom­
enology by incorporating anisotropy through the wavenumbers k? and kk. In the 
simple case where the Alfven wave packets are balanced (zC ~ z~ ~ z), we obtain 
for the transfer time:

tr kkb0 kkb0 b0

hence the two-dimensional anisotropic (axisymmetric) spectrum:

2 ('? /z')2
r"■ !NL ',/b 0

k kb 0

k?z2.
We deduce from this:

z2 k? z4 k?(E (k?, k ।) k? k k )2 k?4 kkE2(k?, kk)

(7.23)

(7.24)

E(k?, k||) ~0^bk kZ2k 71=2 (7.25)

This anisotropic MHD spectrum is therefore the result of the cumulative effect 
of collisions of Alfven wave packets propagating in opposite directions. It was 
first proposed by Ng and Bhattacharjee (1997). Phenomenology finds here its lim­
its insofar as the dependence in k| is only apparent: indeed, we can demonstrate 
analytically that the nonlinear transfer (the cascade) is totally frozen along the b0 
magnetic field. We will see in Section 7.4.3 that the spectral prediction on k£2 is

3 MHD equations are invariant by Galilean transformation on a uniform velocity field, but not on a uniform 
magnetic field b0 D b0e| (with je|j D 1). The observed anisotropy can be seen as a consequence of this 
property.
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in fact an exact solution of Alfven wave turbulence. These two results are part of 
the theory published by Galtier et al. (2000).

7.4 Theory of Alfven Wave Turbulence

7.4.1 Canonical Variables

Let us go back to the MHD equations (with D D0), and use the directional 
polarization s D ; we get:

@zs
------ 5bo • rzs D -z“s • rzs - rp , (7.26a) 
@t

r • zs D 0. (7.26b)

The direction of the uniform magnetic field b0 defines the parallel direction. The 
Fourier transform (by component) of the Elsasser field is introduced:

Z(x, t) = A Aj(k, t) elk’x dk, (7.27)
R3

as well as the decomposition:

Aj (k, t) = e aj (k, t) e ~is! kt, (7.28)

with !k = kkb0 and 0 < e 1. The introduction of the variable ajj allows us to 
place ourselves directly on an Alfven wave packet and to follow its slow evolution 
over time whose origin is purely nonlinear. By applying the Fourier transform on 
expression (7.26a), we obtain the exact relation, whatever the value ofe:

@ ajj (k) Z^-D d -iekmPjJ a~s(q) asn(p) ei(!k~!pC!q)t8(k - p - q) dpdq
@t R6

, (7.29)

where Pjn(k) = 8jn — kjkn=k2 is the projection operator which ensures that the 
incompressibility condition (7.26b) is satisfied. Note that obtaining expression 
(7.29) requires writing the total pressure as a function of Elsasser’s variables 
beforehand. This is possible by applying the divergence operator to equation 
(7.26a); one obtains the relation:

1 p* d -r • (z“s • rzs). (7.30)

Expression (7.29) represents the MHD equations in Fourier space in the pres­
ence of a uniform magnetic field. It is the starting point for the analytical 
development of wave turbulence. We see that the Elsasser variables are the canon­
ical variables of the problem, since they directly lead to the classical form with 
a relatively simple interaction coefficient which is, here, essentially made up of 
the projection operator. Since only the counter-propagating Alfven wave packets 
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(7.31)

(7.32)

(7.33)

give a nonlinear contribution, the sum on the directional polarities is reduced to a 
unique combination involving only the s polarity.

7.4.2 Resonance Condition

Equation (7.29) shows the resonance condition:

! k D !p — !q , 
k D pCq,

which can be rewritten for its parallel part:

kk D pk qk .

Therefore, the only possible solution is:

qk D 0 and kk D pk .

This condition implies the absence of coupling between wavenumbers in the par­
allel direction when equation (7.29) is solved (a mode coupling is only possible 
if the sum implies several modes). Therefore, no transfer along the b0 field is 
expected in this problem and the cascade is only in the perpendicular direction. 
Alfven wave turbulence is thus even more anisotropic than that of inertial waves, 
a problem in which the transfer parallel to the axis of rotation is weak, but not 
totally inhibited.

The anisotropic character of MHD turbulence in a strong magnetic field was 
discussed in detail for the first time by Montgomery and Turner (1981). This 
theoretical study was based, in particular, on measurements made in magnetic con­
finement experiments (z-pinch or tokamak type) (Robinson and Rusbridge, 1971; 
Zweben et al., 1979), where it was possible to highlight an important difference 
between the correlation length along the mean field and those in the transverse 
directions, the former being greater than the latter two, fluctuations of the mag­
netic field in the transverse direction being always dominant. In the theoretical 
work of Montgomery and Turner (1981) the resonance condition is, evoked but 
it is really with Shebalin et al. (1983) that the analysis presented above, based on 
wave turbulence, was proposed for the first time to explain the results of direct 
numerical simulation of two-dimensional MHD turbulence in a strong magnetic 
field.

It is interesting to mention that at the end of the 1980s there was some confusion 
about the nature of MHD turbulence, because the Alfven-based IK phenomenol­
ogy had a fault: it did not take anisotropy into account. Wave turbulence theory 
could provide a rigorous answer, but the first attempt by Sridhar and Goldreich 
(1994) proved to be erroneous. The error comes from the fact that the authors 
considered that the fluctuations associated with the (slow) mode qk D 0 solu­
tion of the resonance condition had no energy, since they were not wavelike in 
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nature. The authors therefore proposed a four-wave theory; at the same time they 
questioned the IK phenomenology based on triadic interactions. After strong crit­
icisms (Montgomery and Matthaeus, 1995; Ng and Bhattacharjee, 1996; Chen 
and Kraichnan, 1997) explaining why, in particular, the slow mode could contain 
energy (such as in rotating hydrodynamics; see Chapter 6), the analytical theory of 
Alfven wave turbulence was finally published by Galtier et al. (2000). The impor­
tance of this paper goes far beyond the resolution of a classical wave turbulence 
problem: the theory is demonstrated for three-wave interactions, which conse­
quently validates IK’s triadic approach and clarifies the nature of MHD turbulence 
(see also Lithwick and Goldreich, 2003).

7.4.3 Kinetic Equations

The formalism of wave turbulence applies in a classical way to equation (7.29). 
Note that the simplified derivation of Galtier et al. (2002) allows us to arrive at the 
result more quickly. The kinetic equations take the following form:

@ es (k) 
@ t

2 Z (k? p?)2(k q)2

4 Pseudo-Alfven waves are the incompressible limit of the slow magneto-acoustic waves, whereas shear-Alfven
waves remain unchanged in the compressible case: these are the “true” Alfven waves.

, 2 ——k es (q)b0 R6 k?2 p2?q2? (7.34)

X [es(p) - es(k)] 3(q„) 3(k - p - q) dpdq,

where es(k) is the energy spectrum associated with shear-Alfven waves. These 
waves correspond to the transverse part of the Elsasser fields. The waves asso­
ciated with the parallel part are called pseudo-Alfven waves: their dynamics is 
enslaved to shear-Alfven waves, and they can therefore be forgotten, to lighten 
the calculations.4

We introduce the reduced axisymmetric spectrum Es(k?) defined by the 
relation:

2k?es(k) Es(k?)f (kk), (7.35)

with f (kk) a function that arbitrarily depends on the parallel wavenumbers. The 
introduction of such a dependency in kk is justified by the absence of transfer in 
the b0 direction which is mathematically translated by the presence of (qk) in the 
kinetic equations. In the same way as for capillary wave turbulence, we can then 
return to an expression involving only wavenumbers. After simplification, we get:

@ Es (k?)
@1

f) f k?(cos*q)2sin*pE-s(q?) 
2b0 1? q?

(7.36)

X [k?Es(p?) - p?Es(k?)] dp?dq? , 
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with by definition p (k\? , q?) and q (k\?, p?) the angles in the triangle 
k? D p? C q?, and 1? the integration band corresponding to this triangle (see 
Figure 5.5). The presence off(0) corresponds to the contribution qk D 0. For the 
development of wave turbulence to remain valid, the contribution of f (0) must 
remain finite: in other words, in the case of a strong condensation the theory 
becomes invalid because the term on the right is no longer in O(2) (see discussion 
in Section 7.4.4).

The simplest exact solution of the kinetic equations is the one correspond­
ing to zero energy flux. This is the thermodynamic solution (see Chapter 5) for 
which:

Es(k?) k? . (7.37)

Numerical simulations show that over long times compared to the timescale of 
the direct cascade, this solution can appear at the largest scales when the system 
is forced at an intermediate scale (Galtier and Nazarenko, 2008). In this case, the 
thermodynamic solution can contribute to the slow regeneration of a very large- 
scale magnetic field (dynamo effect). One application envisaged by the authors is 
the regeneration of the galactic magnetic field.

Figure 7.5 Numerical simulation of the kinetic equations (7.36) in which a dissipative 
term corresponding to a Laplacian is introduced. Balanced Alfven wave turbulence is con­
sidered, with an energy spectrum E(k?) initially excited at large scales. The compensation 

7=3by the nonstationary solution / k± reveals the transition to the Kolmogorov-Zakharov 
spectrum / k?2 after a spectral bounce (which is less localized at small scales than for 
rotating turbulence (see Chapter 6) where a hyperviscosity is used).
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The exact constant-flux solution of equation (7.36), with nonzero ", is:

ncC n d -4 I, (7.38)

with by definition E(k?) k?n . In this case, the convergence condition implies
that:5

- 3 < n± < -1. (7.39)

For the particular case of a balanced Alfven wave turbulence, the exact solution is 
written (see Figure 7.5):

EC(k?) d E"(k?) = E(k?) ~ kZ2 . (7.40)

We can see that the phenomenology (7.25) predicts well the right spectrum for its 
transverse part. However, the theory allows us to go further than the phenomenol­
ogy and to demonstrate that the flux is positive - the cascade is therefore direct. 
One can also find the analytical form of the Kolmogorov constant which, in the 
balanced case, is:6

CK ' 1.467. (7.41)

This constant can also be evaluated directly (see Figure 7.6) from the simulation 
of the kinetic equation (7.36) and the form of the energy spectrum

E(k?) d CkPb0"k?2 . (7.42)

In this last expression, the small parameter 2 is absorbed by the time variable 
as well as the contribution f (0). The formation of this spectrum from the kinetic 
equations is shown in Figure 7.5: a spectrum in k£2 appears over approximately 
seven decades. Note that the first observational evidence of weak MHD turbu­
lence, which includes this spectrum, was detected in the middle magnetosphere of 
Jupiter (Saur et al., 2002).

A last remark is to be made on the condition of validity of this Alfven wave 
turbulence regime. Indeed, this regime is not uniformly valid in Fourier space 
because it is conditioned by the inequality:

A
X = — « 1, (7.43)

NL 
underlying to the asymptotic development. Using the spectrum of balanced 
turbulence, this condition can be rewritten:

X ~ kp' - Sk? « 1. (7.44)
kkb0 kk

In the absence of a parallel cascade, energy will populate the k? modes more 
and more. If the condition on X is verified initially in a spectral domain, it will
5 Unlike the three-dimensional case discussed here, two-dimensional Alfven wave turbulence is nonlocal 

because the solutions obtained are out of the convergence domain (Tronko et al., 2013).
6 There is a difference (actually a correction) of V2^ with the prediction published by Galtier et al. (2000).
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Figure 7.6 Numerical estimation of the Kolmogorov constant CK from a simulation of the 
kinetic equation (7.36). The analytical prediction is obtained with a good approximation. 
Insert: time evolution of the mean rate of energy dissipation ". Its value used to estimate 
CK is taken at time t D 2.5.

no longer be in a finite time, since this ratio will grow / k?1=2 with the cascade. 
The turbulence will become strong at small scales when the two characteristic 
times become of the same order of magnitude. Then, the regime can be described 
by the critical balance phenomenology (Goldreich and Sridhar, 1995), in which 
it is assumed that the relation A NL remains true in the inertial range under 
consideration. This transition was highlighted clearly for the first time by Meyrand 
et al. (2016).

7.4.4 Treatment of the 2D Mode (kk D 0)

The kinetic equations (7.34) show a term e~s(q) whose contribution is reduced to 
qk D 0 because of the resonance condition. Since this is the slow mode, these fluc­
tuations are not associated with an Alfven wave and the inequality (7.43) cannot 
be verified. How then can this different term be treated?

First of all, there is no reason to think that e~s(q?, qy d 0) d 0, because low- 
frequency fluctuations usually have energy (this is also the case in rotating 
hydrodynamics). This means that the dominant interactions in this problem are 
indeed triadic. Can we have a strong condensation in kk D 0 that would inval­
idate the analytical approach? This situation cannot be totally excluded, but in 
practice it requires very specific conditions. For example, forcing around the slow
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Weak wave turbulence

*//

Figure 7.7 The asymptotic theory of Alfven wave turbulence is valid in a domain of 
k-space where the inequality (7.43) is satisfied; it corresponds to the region kk > (with 

> 0). However, the three-wave interactions induce the energy spectrum (schematically 
represented by the function f) of the slow mode (kk D0). The implicit assumption in 
the theory of Alfven wave turbulence is the smooth behavior of f in the narrow shaded 
domain such that f (kk D ) f(kkD0). The opposite situation corresponds to a singular 
behavior, which leads to a much higher value of f (kk D 0) (strong condensation) that 
could break the asymptotic (at time 2 t) and make the theory irrelevant.

mode could perhaps cause such condensation. According to the direct numer­
ical simulations of Bigot and Galtier (2011), in which a forcing of the type 
Es (k?, kk) D F(kk)k?3 was used for the perpendicular and parallel modes 1 and 2, 
an increase in energy at kk D 0 was clearly observed. This increase was stronger 
for larger b0, however, no strong condensation, that is, a singular tendency to trans­
fer energy to the slow mode, has been observed. Indeed, after a phase of rapid 
increase, a saturation was measured. Considering a continuous variation of e~s(q) 
around the slow mode - without condensation - therefore seems a good hypoth­
esis. From a theoretical point of view, this means that we consider fields whose 
correlation decreases with distance in any direction: in this case, e~s(q?, 0) can 
be seen as the limit of e~s(q?, ky) when qy ! 0 and the solutions described given 
in Section 7.4.3 (see Figure 7.7). If the fluctuations of the slow mode have their 
own dynamics - a possible situation if the associated energy is higher than that of 
the waves - kinetic equations can still inform us about solutions. Indeed, equation 
(7.38) can always be used with n_ the exponent of the slow mode energy spec­
trum. For example, if we assume a Kolmogorovian two-dimensional dynamics 
with n_ d —5=3, then for the wave energy spectrum we get nC d —7/3.7 These 
questions around condensation have also been discussed in phenomenological and 
numerical studies (Boldyrev and Perez, 2009; Wang et al., 2011; Schekochihin 
et al., 2012).
7 In two-dimensional MHD, strong turbulence behaves as in the three-dimensional case, with a direct energy 

cascade for which a spectrum in —5/3 is a realistic solution.
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7.4.5 Other Results

We conclude with several remarks. First, like inertial waves, the kinetic equations 
(7.36) can be studied in the limited case of local triadic interactions (see Exercise 
II.1). We can then show that the nonlinear diffusion equations that emerge are 
structurally simpler and have the same solutions as the kinetic equations (Galtier 
and Buchlin, 2010). Second, a nonstationary solution was highlighted by a numer­
ical simulation of the kinetic equation in the balanced case (see Figure 7.5). It is 
a self-similar solution of the second kind compatible with E(k?) ~ k?7=3 (Galtier 
et al., 2000). The nature of this solution is identical to that discussed in Chap­
ter 6 on inertial wave turbulence. Third, when the magnetic field b0 is too strong, 
Alfven wave turbulence becomes too weak and a problem of discretization appears 
which can modify the dynamics (Nazarenko, 2007).

7.5 Direct Numerical Simulation

Direct numerical simulation has recently made it possible to reproduce the main 
properties of Alfven wave turbulence, including its transition to a small-scale 
regime of strong turbulence (Meyrand et al., 2016). A result of such a simulation 
is shown in Figure 7.8: the modulus of the magnetic field fluctuations is presented 
on a slice perpendicular to b0 . Contrary to the case of strong turbulence, we do 
not see a hierarchy of coherent structures. This is explained by the phase mixing 
induced by b0, which tends to oppose the emergence of structures.

From such a simulation, it is possible to construct the !-ky spectrum to high­
light the wave character of such a turbulence. The result is shown in Figure 7.9: 
we see the two branches of the dispersion relation corresponding to Alfven waves. 
These have a certain thickness, whose origin is attributed to nonlinear effects. 
We can observe also the presence of a thick band at low !: we find there the 
contribution of the slow mode.

These numerical studies have highlighted the intermittency nature of Alfven 
wave turbulence (Meyrand et al., 2015). The structure functions used to take into 
account the coupling between Alfvenic fluctuations of different polarities are:

Sp D h(<5zC)p=2i«5z-)p=2i D Cp'? , (7.45)

with Cp a constant. Due to the absence of cascade in the parallel direction, only the 
transverse increments ('?) are considered. The data verify with a great accuracy 
the following law:

<p d P C 1 - (1)p = . (7.46)
84

This law has been constructed by adapting the approach of She and Leveque 
(1994) to this problem (see Chapter 2) where structures oriented along the external
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Figure 7.8 Three-dimensional direct numerical simulation of Alfven wave turbulence. 
We see here the modulus of magnetic field fluctuations on a slice of spatial resolu­
tion 3072 3072 perpendicular to b0 . Simulation made by R. Meyrand. Reprinted with
permission (Galtier, 2016).

magnetic field in the form of sheets are present. Figure 7.10 shows these mea­
surements and the correspondence with the theoretical model. The origin of the 
intermittency is partly attributed to the slow mode: indeed, the artificial reduction 
of the interactions of this mode with Alfven’s modes reveals a significant reduc­
tion of intermittency (at the PDF level). At the same time, a modification of the 
Elsasser spectrum is observed with a power law going from k£2 (interaction with 

3=2 ?the slow mode) to k? (no interaction) (Meyrand et al., 2015).

7.6 Application: The Solar Corona

The Sun has a strong magnetic activity that can be detected through the appear­
ance of sunspots in the photosphere or flares in the corona. These active regions 
are made up of a network of magnetic loops in perpetual reorganization and whose 
activity can be measured by emissions in the ultraviolet or X-ray range (Reale,
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Figure 7.9 Normalized !-ky spectrum built from magnetic energy fluctuations at k? d 4. 
Simulation made by R. Meyrand.

Figure 7.10 Measurements of the p coefficients of the structure functions (7.45) realized 
from a direct numerical simulation show a good agreement with the law (7.46) in solid 
line. Adapted from Meyrand et al. (2015).

2014). Space telescopes or imagers such as SDO/NASA allow us to follow this 
activity, but the current instruments are not yet able to resolve coronal loops at 
more than one million degrees and whose thickness is probably less than one kilo­
meter (see Figure 7.1). The coronal temperature is very inhomogeneous: between 
the quiet and active regions there is nearly a factor of ten. A major problem in solar 
physics is to understand why such a high temperature is measured in the corona 
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even though the photosphere, at a lower altitude, is at ' 6400 K. The energy avail­
able at the surface of the Sun seems to be largely sufficient to compensate for the 
loss of coronal energy, estimated at about 104Jm_2s_1 in active regions, and about 
one or even two orders of magnitude lower for the quiet corona or coronal holes, 
which are located essentially at the poles. The main problem is to understand how 
this energy available on the surface of the Sun is deposited at the corona and then 
finally released to heat the plasma (Priest, 2014).

Spectrometric analyses of coronal loops in active regions reveal plasma move­
ments at several tens of km/s (Brekke et al., 1997), with nonthermal velocities up 
to 30 km/s (Chae et al., 1998). These observations, made with the SOHO/ESA sat­
ellite, show, moreover, that the widening of the spectral lines is due to motions at 
very small spatial and temporal scales that are not resolved by the instruments (of 
the order of a second for the temporal resolution). The ubiquity of Alfven waves 
was also highlighted by measurements made from the Hinode/JAXA satellite (De 
Pontieu et al., 2007). These various observations constitute a bundle of clues that 
pleads in favor of a turbulent description of the coronal plasma in which Alf- 
ven waves play an important role (Matthaeus and Velli, 2011; Pontin and Hornig, 
2020).

At lower altitudes, at the level of the photosphere, it is possible to accurately 
measure (Zeeman effect) the magnetic field component transverse to the surface 
of the Sun. Based on two-dimensional magnetic maps of active regions, structure 
functions and spectra can be calculated. In this case, it is the correlation in the 
perpendicular direction (k? for the spectrum) that is available. Studies show spec­
tra compatible with wave turbulence predictions, especially during a flare, that is, 
in a phase of high light emission caused by an increase in heating. The spectrum, 
which is close to —5=3 in a quiet phase, becomes much steeper during a flare 
with exponents generally between —2 and —2.3 (Abramenko, 2005; Hewett et al., 
2008; Mandage and McAteer, 2016).

In the scenario of a coronal heating by MHD turbulence, the energy transport 
to the corona is done via Alfven waves excited at the photospheric level.8 This 
forcing is in fact produced by the convective movements of the plasma that can be 
observed at the surface of the Sun in the form of granulation. As shown in Figure 
7.11, the energy transported by Alfven wave packets cascades to small scales due 
to the numerous collisions between contra-propagating wave packets. In the end, 
an intermittent heating is produced. Thermodynamics then allows us to make the 
link between heating and cooling, by conduction and radiation.

Many models have been published on the subject. The first ones hypothesized 
an isotropic turbulence (Heyvaerts and Priest, 1992), then anisotropy was intro­
duced with a numerical modeling in different dimensions (Einaudi et al., 1996; 
Hendrix and van Hoven, 1996; Galtier and Pouquet, 1998; Walsh and Galtier,
8 The problem of solar coronal heating is sufficiently complex to make room for several other scenarios, such 

as the phase mixing mechanism proposed by Heyvaerts and Priest (1983).
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Figure 7.11 Heating of a magnetic loop by Alfven wave turbulence. The coronal loop 
can act as a resonant cavity for the Alfven wave packets generated in the photosphere. 
The direct cascade produced by the numerous collisions between contra-propagating wave 
packets eventually leads to a plasma heating. Reprinted with permission (Galtier, 2016).

2000; Buchlin et al., 2003; Gudiksen and Nordlund, 2005; Buchlin and Velli, 
2007; Cranmer et al., 2007). The Alfven wave turbulence regime was then studied 
by Rappazzo et al. (2007), and on the basis of the isotropic analytical model of 
Heyvaerts and Priest (1992), an anisotropic version has been proposed by Bigot 
et al. (2008a) in which the coronal heating is estimated from the turbulent vis­
cosities deduced from the Alfven wave turbulence kinetic equations (7.36). In this 
case, the heating rate obtained proves to be high enough to explain the coronal 
observations. This heating rate (integrated along the loop) is written (in IS units): 

"?
L \2/3 / u \4=3 ( B0 \ 5=3 / Po \ 1=6

106/ MOV \10-2/ V10-12/
Jm 2s 1 (7.47)

where L is the diameter of the coronal loop, u the photospheric velocity of the foot­
points of the loop (forcing velocity), B0 the coronal magnetic field and P0 the mass 
density in the corona. This prediction is comparable to the one made by Heyvaerts 
and Priest (1992) for the strong turbulence regime. Therefore, the reduction of the 
cascade to two directions does not fundamentally change the heating produced.

7.7 Perspectives

An important question concerns the physics of the solar wind near the Sun. The 
two new probes Parker Solar Probe (NASA) and Solar Orbiter (ESA), launched 
in 2018 and 2020 respectively, aim, among other things, to measure the turbulent 
properties of the solar wind at the intersection with the low solar corona (as close 
as 10 solar radii). We can expect that the wave aspect of the wind will be more pro­
nounced near the Sun since the magnetic field is more intense there, and that the 
properties differ from those measured essentially at one astronomical unit (Bale 
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et al., 2019). Interesting new questions will have to be tackled, such as, for exam­
ple, on physics at electron scales (so beyond the MHD approximation but still in 
the incompressible limit), taking into account electron inertia (Roytershteyn et al., 
2019). Wave turbulence is a solid approach to address this issue (see Chapter 8).

A second interesting perspective concerns MHD turbulence subject to uniform 
rotation. This regime is relevant in the context of the geodynamo, where the Corio­
lis force plays a central role: the Rossby number is indeed of the order of 10_6 (see 
Chapter 6). The liquid metal of the Earth’s outer core must therefore be described 
by incompressible MHD under rapid rotation. This turbulence has been little stud­
ied so far (Favier et al., 2012), because in general the emphasis is on convection. 
Rotating MHD in the presence of a uniform magnetic field generally has only one 
invariant, the total energy: indeed, cross-helicity and magnetic helicity, the two 
other invariants of standard MHD, lose their invariant status because of the rota­
tion and the uniform magnetic field, respectively. However, in the particular case 
where the axis of rotation is parallel to the uniform magnetic field, a second invari­
ant appears: hybrid helicity, a combination of cross-helicity and magnetic helicity. 
The strong wave turbulence regime has been recently studied using direct numeri­
cal simulation (Menu et al., 2019). It is interesting to note that the inverse cascade 
of the magnetic field is relatively large precisely when the axis of rotation is par­
allel (or almost) to the uniform field. This is the situation observed for the Earth: 
the angle between the two axes is nonzero but small - about 10o. Understanding 
this regime requires further studies according to the available parameters (e.g. the 
magnetic Prandtl number). Note that this theory of wave turbulence has been pub­
lished by Galtier (2014) and numerically simulated by Bell and Nazarenko (2019). 
As is very often the case, these results can be used as a guide to better understand 
the regime of strong wave turbulence.
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Wave Turbulence in a 
Compressible Plasma

Plasmas are naturally compressible. In astrophysics, most visible matter is in a 
state of plasma and a wide variety of turbulence is encountered: for example, 
in the interstellar medium, turbulence can be supersonic, with turbulent Mach 
numbers greater than 10 (see Chapter 2), while in the solar wind, itis subsonic and 
weakly compressible with a relative mass density variation of about 5 percent.1 
The Earth’s magnetosphere is another example where the mass density variations 
can be strong, often with the presence of a bow shock at the interface with the 
solar wind (see Figure 8.1).

A major difference between incompressible hydrodynamics and plasmas is the 
plethora of waves supported by the latter. Therefore, the theory of wave turbulence 
applies well beyond the approximation of incompressible magnetohydrodynam­
ics (MHD) introduced in the previous chapter. The most immediate extension is 
the weak compressible MHD case, for which the Hamiltonian (Kuznetsov, 2001) 
and Eulerian (Chandran, 2008) approaches have been used. In both cases, the 
thermodynamic pressure is neglected compared to the magnetic pressure. As for 
incompressible hydrodynamics, the turbulent dynamics is dominated by triadic 
interactions. However, the uniformity of the development has not been checked.

It is also necessary to go beyond the MHD approximation when we deal with 
sub-MHD scales. A simple model that can be used is incompressible Hall MHD 
which, within the limit of the small scales, becomes electron MHD. The associated 
theories (always for triadic interactions) use a complex helical basis, as for iner­
tial waves (Galtier and Bhattacharjee, 2003; Galtier, 2006). The direct numerical 
simulations of Meyrand et al. (2018) show that this system is nontrivial, with the 
possibility of having at the same time a wave turbulence regime for right-polarized 
waves (carried by electrons) and a strong turbulence regime for left-polarized 
waves (carried by ions). Weakly compressible Hall MHD is a much more diffi­
cult case to treat and, to date, no complete theory has been developed (Sahraoui 
et al., 2003). Only one attempt has been made for the case of kinetic Alfven waves:
1 The solar wind has a velocity (400-800 km/s) higher than the speed of sound (~ 50 km/s); however, with

velocity fluctuations 10 km/s, the turbulent Mach number Mt is less than one.
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Figure 8.1 Earth’s magnetoshere (image created by P. Robert, LPP/CNRS). Compressible 
turbulence is clearly observed in the magnetosheath. Reprinted with permission (Galtier, 
2016).

in the Hall MHD approach, this corresponds to very oblique wavevectors, that is 
close to the direction perpendicular to the uniform magnetic field (Voitenko, 1998; 
Galtier and Meyrand, 2015).

At much smaller spatial and temporal scales, we encounter Langmuir wave tur­
bulence, studied by Zakharov (1967) (see also Zakharov, 1972; Musher et al., 
1995). The purpose here is to describe the behavior of a plasma when the elec­
troneutrality is momentarily broken. It this case, the electron population oscillates 
and produces waves characterized by a wavenumber smaller than the Debye 
length (which is the characteristic distance over which electrostatic potentials are 
screened out by a redistribution of the charged particles). Contrary to the situations 
mentioned above, this turbulence involves four-wave interactions.

We will start this chapter by presenting some turbulent properties of the solar 
wind, which is at the heart of many questions related to strong and weak wave 
turbulence. Then we will derive a weakly compressible model that describes the 
dynamics of electrons on a quasi-static ocean of ions. The kinetic equations will 
be derived for this compressible system and their properties and exact solutions 
will be discussed. We will finally show the strong similarity between this problem 
and inertial wave turbulence.

8.1 Multiscale Solar Wind

The Sun is a wonderful gift for people working on turbulence, because it acts like 
a giant natural wind tunnel (Goldstein and Roberts, 1999; Bruno and Carbone,



8.1 Multiscale Solar Wind 207

Figure 8.2 Magnetic spectrum measured in the solar wind by the ACE/NASA and Clus- 
ter/ESA spacecraft at one astronomical unit. The scales i and e are the ion and electron 
Larmor radius, respectively. There are several power laws, including that of MHD around 
f “5=3 over nearly four decades. Figure created by L. Hadid and based on Sahraoui et al. 
(2020).

2013). The generated solar wind propagates in the interplanetary medium at sev­
eral hundred km/s. There exists two solar winds: a slow equatorial wind with a 
velocity of the order of 400 km/s, and a fast polar wind at about 800 km/s. Now­
adays, the properties of the interplanetary plasma are well known, thanks to the 
numerous in situ measurements carried out by the ESA and NASA probes, which 
can be seen as nonintrusive instruments. In Figure 8.2 we show a synthetic spec­
trum of the interplanetary magnetic field fluctuations carried by the solar wind. 
It is a frequency f spectrum as the in situ measurements are based on a time sig­
nal. Since the solar wind propagates relatively quickly, we can assume that the 
recorded time signal gives a fairly accurate picture of the plasma at a given time, 
because the plasma remains relatively fixed during the duration of the measure­
ments (this is the Taylor hypothesis commonly used in wind tunnels). In other 
words, the frequency spectrum can be interpreted in a first approximation as a 
wavenumber spectrum (f k). This spectrum shows several power laws over a 
total of eight decades, making it the widest spectrum ever measured in turbulence.

At very low frequencies (f < 10_4Hz), we have a law close to f-1 whose 
origin is generally attributed to physical processes of the lower solar corona: 
this frequency range can therefore be interpreted as the domain of injection (the 
reservoir) of energy. At higher frequencies (up to 0.5Hz), a second power law 
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is observed around f “5=3. This frequency range, where Alfven waves are also 
detected, is interpreted as an MHD inertial range; the critical balance phenom­
enology is often used to describe this regime of strong Alfven wave turbulence 
(see Chapter 7). After a very steep transition spectrum, a second inertial zone 
appears over about a decade (between 2 Hz and 40 Hz), with a magnetic spec­
trum often around f “8=3. It is obvious that an additional physical ingredient has to 
be brought to the standard MHD model to reproduce such a law at spatial scales 
smaller than the ion Larmor radius (which is here approximatively equal to the ion 
inertial length). This ingredient can be simply modeled by the Hall term (Franci 
et al., 2015), a dispersive term, which takes into account the decoupling between 
ions and electrons, without, however, including kinetic effects. From 40 Hz, the 
spectrum becomes even steeper: electron scales are reached beyond which current 
instruments saturate.

As in hydrodynamics, intermittency is also a clearly identified property of the 
solar wind. Figure 8.3 shows a reproduction of the measurements made in the 
slow solar wind at MHD scales (main plot): the normalized exponents of the 
structure functions of the velocity and (parallel and perpendicular components

Figure 8.3 Main plot: Normalized (with respect to 3) exponents of structure functions 
<(5X )p i ~ 'p of fluctuations in velocity (X = u) and magnetic field (components parallel 
X D bk and perpendicular X D b? to the wind direction) measured in the slow solar 
wind (data from the German probe Helios); after Carbone et al. (2004). Kolmogorov’s 
self-similar law in p=3 is indicated in solid line (K41). Inset: the plot of fp for the y- 
component of the magnetic field at sub-MHD scales (data from Cluster/ESA) reveals a 
monoscaling behavior (with p 0.85p). After Kiyani et al. (2009).
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to the wind direction) magnetic field reveal a stronger intermittency for the lat­
ter, with a stronger curvature. At sub-MHD scales (inset) a completely different 
behavior is observed for the three components of the magnetic field fluctuations 
(only the results for the y-component are reproduced here; note that the veloc­
ity fluctuations are currently not accessible for this high-frequency domain): a 
monoscaling behavior is observed. This result is similar to the experimental mea­
surements made in fast-rotating hydrodynamics (van Bokhoven et al., 2009). This 
comparison is more than anecdotal, as will be explained in Section 8.7, and may 
be interpreted as a signature of the regime of weak wave turbulence.

The evolution of the solar wind with the heliocentric distance r offers an inter­
esting question for turbulence. Indeed, the measurements (made by Voyager 1 and 
2) of the ion temperature as a function of r reveal a decrease in r~a with a < 1 
(and r 2 [0.3, 50AU]), which is significantly slower than an adiabatic cooling in 
r-4=3 (Marsch et al., 1982; Matthaeus et al., 1999). Therefore, a local source of 
heating seems required. Currently, many studies are looking at this problem by 
considering a heating of turbulent origin (see the discussion in Section 8.2). The 
idea is that the turbulent cascade is an efficient process for transporting the energy 
supplied by the Sun at large scales towards sub-MHD scales, where it is dissipated 
by kinetic effects (Matthaeus, 2021). Without knowing the details of the kinetic 
processes that lead to the heating of the plasma, it is possible to estimate the heat­
ing rate by using the mean rate of energy transfer in the MHD inertial range. It 
can be shown that the measured values are close to that required to heat the solar 
wind (Sorriso-Valvo et al., 2007; Hadid et al., 2017).

8.2 Exact Law in Compressible Hall MHD

Kolmogorov’s exact laws are valid for both eddy turbulence and wave turbulence. 
In plasma physics, exact laws were derived initially in the incompressible case, 
first for MHD (Politano and Pouquet, 1998) and later for Hall MHD (Galtier, 
2008). Exact laws were then obtained for compressible plasmas (Banerjee and 
Galtier, 2013; Andres et al., 2018; Ferrand et al., 2021a). As explained in Sec­
tion 8.1, these different laws can be used to measure the mean rate of energy 
transfer " in the solar wind (see Figure 8.4), which is a proxy for evaluating the 
mean rate of energy dissipation (Sorriso-Valvo et al., 2007; Vasquez et al., 2007; 
Osman et al., 2011; Banerjee et al., 2016; Hadid et al., 2017; Bandyopadhyay 
et al., 2020). The main conclusion of these observational studies is that weak 
compressibility has a stronger impact at sub-MHD scales than at MHD scales in 
the evaluation of ".

In this section, we shall present such a law for compressible Hall MHD, a 
system described by the following set of equations (Galtier, 2016):
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Figure 8.4 Variation of the magnetic field components (in nT) of the solar wind (Novem­
ber 2009; data from THEMIS/NASA spacecraft). A statistical study based on this interval 
shows that the heating rate " is close to 10-16Jm_3s_1 (Hadid et al., 2017).

— Cr- (pu) d 0, (8.1a)
@t

p(@u c u -ru) = -rp c —(r x b) x b c -iu c -r(r- u), (8.1b)
@t 0 3

@B (r x B) x B— = r x (u x B) - r x ---------x----- C ^1B, (8.1c)
@t -0ne

r-BD0, (8.1d)

where B is the magnetic field, -0 the magnetic permeability of free space, n the 
plasma density (due to the electroneutrality, the electron and ion mass densities 
are equal), and e the absolute value of the electron charge (other variables are 
defined in Sections 2.9.2 and 7.1). From this system, using an isothermal closure, 
one can obtain the following compact exact law (Ferrand et al., 2021a):2

- 4" = r' -/ Nf-jNuj2Nu c jNbj2Nu - 2(Nu - <Sb)<Sb
p0

- /(^jW\ _ 2 /u . N (jc x b) 
2p0 p0

C dir' - (2(6b - Jjc)Jb - j Jb j2 Jjc} - 2di (N(j x b) - j, (8.2)

where by definition " = "/p0, NX = (X C X')/2, b = B=p—0p0 is the mag­
netic field normalized to a velocity, p0 = hpi, (p/p0)jc = j = r x b, and 
di = mi=^/-0p0e2 is the ion inertial length which defines the characteristic scale

2 Note that for a given system, there is no single expression for the exact law. The law given here is the most 
compact ever found.
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below which the dynamics of ions and electrons decouples. In the first line of 
expression (8.2), we find the structure of the incompressible MHD law (Politano 
and Pouquet, 1998). The second line is purely compressible, with an HD term on 
the left and an MHD term on the right. In the third line, we finally find the con­
tribution of the Hall effect, which is proportional to di ; its expression can only be 
written as a flux in the incompressible limit. Overall, we see that the exact law for 
isothermal compressible Hall MHD has a similar expression to that of compress­
ible hydrodynamics (which is a particular limit; see expression (2.97)) in that we 
have a flux F and a source S.

The exact law (8.2) is valid for eddy turbulence and wave turbulence; however, 
in the latter case, a relatively strong uniform magnetic field (b0 b) must be
introduced. The weak turbulence regime has been studied in detail in the incom­
pressible limit by Galtier (2006). This requires a tedious calculation, because one 
has to deal with two types of waves: left and right circularly polarized waves. 
Weakly compressible Hall MHD is a much more difficult case to treat and, to 
date, no complete theory has been proposed. In Section 8.6 we will present a the­
ory of weak wave turbulence in a particular case where the dynamics is given 
by small-scale electrons evolving in a weakly compressible medium, and we will 
use from the beginning the anisotropy induced by the uniform magnetic field to 
simplify the problem. Under this limit, one can simplify expression (8.2). First, 
if we neglect ion velocity then u ! 0. Second, we can write 0 C 1 with
p1 =P0 ^ 1; then, jc ' j — jC1 with by definition jC1 = (p1=p0)j is the (normal­
ized) compressible electric current. With these assumptions, we obtain after some 
manipulation:

-4"=di D V' • ^b • 8j)8b - 2 j<5b j2 j C 2 (8(j X bo) • 8jci} (8.3)

- V' • (28b • 8jci)8b - |8b|28jci} C 2 <8(j X b) • 8jci} .

This exact law valid for wave turbulence reduces to the incompressible case when 
jc1 D 0. The contribution to the leading order comes from the first line: it includes 
the last term on the right because it is proportional to the strong uniform magnetic 
field b0. The second line corresponds to a correction in O .P1 =P0/ due to the small 
fluctuations in mass density; smaller corrections in O (P1 =P0)2 are neglected. As 
in the case of compressible hydrodynamics, the introduction of compressibility 
leads to a source which here consists of second-order mixed structure functions. 
Note that in the presence of b0, turbulence becomes anisotropic and the law cannot 
be integrated on a full sphere as it is usually done in isotropic hydrodynamics (see Chapter 2).



212 8 Wave Turbulence in a Compressible Plasma

8.3 Weakly Compressible Electron MHD

When the Cluster/ESA spacecraft initially dedicated to the Earth’s magnetosphere 
(see Figure 8.1) moved to the solar wind, a new physics became accessible in 
detail: the physics of turbulence at sub-MHD scales (Bale et al., 2005). This has 
contributed to the development of several new theoretical studies where plasma 
waves are the main ingredients. This includes the critical balance phenomenology 
for strong wave turbulence (see Chapter 7) in the context of electron MHD (Cho 
and Lazarian, 2004, 2009) or a gyrokinetic model (Howes et al., 2008, 2011), 
and the regime of weak wave turbulence in Hall MHD (Galtier and Bhattacharjee, 
2003; Galtier, 2006). On the other hand, the exact laws, which are valid for both 
strong and weak wave turbulence, have also been widely used (see the Section 
8.2).

The purpose of this section is to see how the weak compressibility assump­
tion can be used in plasma physics to derive a new set of fluid equations, valid 
at sub-MHD scales, that can model in a simple way a part of the collisionless 
solar wind plasma, and from which wave turbulence may be used to obtain spec­
tral predictions. The main assumption of the model called compressible electron 
MHD is that ions (mostly protons in the solar wind) are mainly at rest. It is not 
strictly speaking a kinetic model, which requires the use of velocity distribution 
functions to describe the particles in phase space and include kinetic effects, but 
a fluid model. However, the word kinetic is very often employed: for example, 
the weakly compressible waves associated with this system are generally called 
kinetic Alfven waves.

8.3.1 From Bi-fluid to Compressible Electron MHD

We shall start with a bi-fluid system that describes separately the ions (for 
simplicity, we only consider protons) and the electrons. We have:

@i-C + r- (piui) D 0, (8.4a)
@t

@ui
pi — C ui ■ ru i D - VPi C nieE C nieui * B, (8.4b)@t

" + ¥■ (peue) d 0, (8.4c)
@t

@ue
— C ue ■ vue ) D - vPe - neeE - neeue * B, (8.4d)@t

@ B „ z „
— D-V* E, (8.4e)@t

V * B D ^oJ D ^0ene(ui - ue), (8.4f)
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where the subscript s denotes the species (i for ion and e for electron), s is the 
mass density, ms the mass, ns the particle density (due to the electroneutrality 
ne D ni), us the velocity, Ps the pressure, and E the electric field (other notations 
are introduced in Section 8.2). Note that the electroneutrality relation imposes a 
constant adjustment of the ion density to the variation of the electron density. This 
is possible if r ui r ue , which means that the ion velocity is negligible 
compared to the electron velocity, but not its divergence (note that if ui=ue 1,
electrons must be more incompressible than ions to satisfy the ordering).

We limit ourselves to scales smaller than the typical scale at which ions and 
electrons decouple, which is the ion inertial length di (or the ion Larmor radius; 
note that they are roughly the same in the solar wind at 1 AU where i 1; its 
definition will be given later in this section). We seek to model the solar wind 
where a strong large-scale magnetic field B0 D B0ek (with jekj D 1) is present. 
This leads to an anisotropic dynamics (see Chapter 7) for which we have the ine­
quality @k @? or, equivalently, kk k?. (Note that at the leading order of the 
present derivation, no distinction will be made between the k direction along the 
total magnetic field line and the z direction; this approximation is correct as long 
as b0 b.) At these scales, the dynamics is relatively fast and we can assume that 
ui=ue O(), with 1. From the momentum equation (8.4b), we obtain at 
main order the relation valid for a perfect gas (with kB a the Boltzmann constant 
and Ts the temperature):

ni0eE D rPi D r(ni1kBTi) , (8.5)

me
(8.6)

where ni0 is a uniform particle density. For a weakly compressible plasma, we 
have ns D ns0 Cns1 with ns1=ns0 O(). Later, we will assume that both ions and 
electrons are isothermal.

We further simplify the problem by neglecting the inertia of the electrons and 
thus keeping only the right-hand-side terms of equation (8.4d). By introducing 
these terms into the Maxwell-Faraday equation (8.4e), we obtain:

@B me rPe
d _evJ_e crx (ue xb).

@ t e e
After introducing the relation r ■ ue = — @tpe=pe — (ue ■ rpe)=pe and the use of 
some vector identities, we find:

@B B D _e^ rPe x rpe C B ■ r ue - ue • rB C B(ue • V)pe . (8.7)
@t pe @t epe2 pe

We introduce the normalized magnetic field b = B=p^0pe0 = r x a and the 
normalized vector potential a = A=p^0pe0, with pe0 a uniform mass density 
(pe d pe0 C pe 1 with pe 1=pe0 ~ O(e)).3 Furthermore, the use of the Maxwell­
Ampere equation (8.4f) leads to the relation ue d de 1a, with de = _e^/^0pe0e2 
the electron inertial length. With these new variables, one obtains (at main order):
3 Note that the normalization is made with the electron mass density and not with the ion mass density, which 

leads to the introduction of the ion inertial length di .
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@ b
@t

_b0 @Pe 1 

e0 @t
de

D ~r r Pe X V P e 1
Pe0

C de (b • V)1a - (1a • V)b C — bo(1a • V)pe 1
Pe0

(8.8)

The implicit assumption is that in terms of velocity, we have ue=b0 O().
We introduce the following decomposition for the normalized magnetic field:

/ -@y S

b d boe|| - r x (S e|| C gex) = @ @x- @|g 
b0 C bk

where iS is the stream function and b। = @yg. Then, we find at main order:

/ -@ybk
1a = @ @xb|

\ -1?S

(8.9)

(8.10)

which leads to the relation (at main order), ue x B0 =deB0 V? b| . Coming back to 
the momentum equation for electrons (8.4d) and neglecting the electron inertia, 
we find (at main order) the following relation:

VPe C ne0eE C ne0eue x B0 = 0 . (8.11)

The combination of the latter expression with relations (8.5) gives:

V?(ne 1 kB(Te C Ti)) = -ene0deB0 V?b।. (8.12)

In the isothermal case, the latter expression leads to the closure relationship:
2 b| ne 1 Pe 1

i(1 C 1=)b0 = ne0 = Pe0 ,
(8.13)

with by definition the plasma parameters i 20nikBTi=B02 and Ti=Te . The
latter relation means that in a weakly compressible plasma, the density and the 
parallel magnetic field are anti-correlated. With the closure relation (8.13), the 
isothermal assumption, and the use of vector identities, equation (8.8) reduces to:

@ b 2e| @ b k
@Tt C ^ i (1 C 1=r) "@7 (8.14)

de [b0@|1?a C (b? • V?)1?a - (1?a • V?)b].

Note that the only difference with incompressible electron MHD is the presence 
of the second term in the left-hand side. The last step consists in introducing 
the stream function and again using some vector identities; we finally get, after 
simplification:4
4 In particular, the operator ek x V? must appear in front of each term of the first equation.



8.3 Weakly Compressible Electron MHD 215

@^ z „ ,— D deb0@kbk C de(ek x r .17) • r?b„,

K ~tt d ~debo@k 1?^ ~ de(ek x r?^) • r?(1?^),

(8.15)

(8.16)

with K = 1 C ,, n2_UT}. We obtain a set of self-consistent equations that describe i (1C1= )
the nonlinear evolution of magnetic field fluctuations in a weakly compressible 
isothermal plasma embedded in a strong uniform magnetic field (with @k r?). 
This system is called reduced compressible electron MHD. Compressibility only 
affects the equation for by, leaving the equation for ^ intact. The incompress­
ible limit is obtained when i ! C1 (i.e. K ! 1): this is the well-known
electron MHD system introduced by Kingsep et al. (1990). Actually, through a 
simple change of variables (^ ! =IK£ and b0 ! b0/VK; see also Galtier 
and Meyrand, 2015), one can recover the reduced incompressible electron MHD 
equations. The consequence is remarkable: the regime of (weak or strong) wave 
turbulence is the same for both systems, weakly compressible and incompressible 
electron MHD. Therefore, the nature of the waves (kinetic Alfven or whistler; 
see Section 8.4 for the wave derivation) becomes a secondary point for the 
understanding of the turbulence regime.

8.3.2 Fluid versus Kinetic Models

Weakly compressible electron MHD has been derived from the bi-fluid sys­
tem (8.4a)-(8.4f). A derivation from the gyrokinetic equations is also possible 
(Schekochihin et al., 2009); it is a more rigorous way of deriving equations (8.15)­
(8.16). A basic assumption is, however, necessary concerning the distribution 
functions, which must be close to Maxwellian. We note that this situation is rela­
tively far from the conditions encountered in the collisionless solar wind, where it 
has long been known that the velocity distribution functions are more complex, for 
example bi-Maxwellian or anisotropic (Montgomery et al., 1968; Marsch et al., 
1982; Pilipp et al., 1987). We arrive here to an interesting debate in the plasma 
community. Fluid models are often criticized for their simplicity by plasma physi­
cists, who sometimes consider that a fluid model is not relevant to describe reality. 
It is obvious that kinetic effects (e.g. Landau damping, finite Larmor radius effect) 
cannot be captured with a fluid model such as Hall MHD; however, it must be 
admitted that limiting oneself to a kinetic description that only considers a plasma 
with a velocity distribution function close to Maxwellian does not lead to the cor­
rect description of space plasmas either. When we work on turbulence in plasma 
physics, the goal for a theoretician is to find a prediction (very often for the energy 
spectrum), and in practice we generally come back to basic concepts that are fun­
damentally rooted in incompressible fluid turbulence. But we must remain modest 
in our quest for fundamental laws and accept fluid prediction that frequently gives 
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a qualitatively correct answer. This comment does not mean that kinetic effects are 
unimportant. In the case of solar wind turbulence, their role in energy dissipation 
is of crucial importance: they can potentially modify the power-law predictions 
and lead to a nonconstant value (a decrease) of the mean rate of energy transfer 
(see, e.g., Ferrand et al., 2021b).

8.4 Kinetic Alfven Waves (KAW)

The linearization of the Fourier transform of equations (8.15)-(8.16) leads to the 
system (hereafter, for simplicity the k index for the parallel component of the 
magnetic field is not written in Fourier space and we use the index k for the k- 
dependence of the variables):

- !emhd O'k d deb0k|| bk , 
-K!emhdbk d deb0k||k?Okk ,

and eventually to the dispersion relation:

!emhd D deb0k| k?

(8.17)
(8.18)

(8.19)

The waves associated with a finite fii are called kinetic Alfven waves, while in the 
i ! C1 limit (i.e. K ! 1) they are called (oblique) whistler waves. The latter

are incompressible and the former weakly compressible. Note that whistler waves 
were first detected during World War I. They are audio frequency waves, often 
produced by lightning. Once produced in the magnetosphere, these waves travel 
along closed magnetic field lines from one hemisphere to the other. Their phase 
and group velocities are both proportional to k, implying that higher-frequency 
waves have higher group and phase velocities. Thus, the high-frequency part of 
the whistler wave packet will reach a detector earlier than its low-frequency part, 
and it will appear as a falling tone in a frequency-time sonogram (see Figure 8.5).

8.5 Spectral Phenomenology

8.5.1 Strong KAW Turbulence

The spectral prediction for the magnetic energy is straightforward. In strong 
kinetic Alfven wave turbulence we have:

with

_ EL 
" ,

NL
(8.20)

(8.21)
1 ~ K b k

dek? b k dek4 1 2
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Figure 8.5 Spectrogram showing several whistler signals recorded by the Palmer Station 
(Antarctica) on August 24, 2005. These waves occur at audio frequencies. Credit: D. I. 
Golden, Stanford University. CC BY-SA 3.0.

By introducing the axisymmetric spectrum Eb ~ Eb(k?, ky)k?ky and the balance 
relation VKby ~ k?&, we find:

" 2=3
Eb(k?, ky) ~ K1/3 y) kZ7=3k^1 ,de ? y (8.22)

which is the anisotropic generalization of the prediction made by Biskamp et al. 
(1996) for isotropic incompressible electron MHD. Note that this spectral pre­
diction is compatible dimensionally with the small-scale limit of the exact law 
(8.3). Assuming a perpendicular dynamics, the exact law is written dimensionally 
as:

" ~ dib2j/'? ~ dib3/'? ~ dik?(Eb(k?, ky)k?ky)3=2 , (8.23)

hence the spectral prediction (8.22). Clearly, it is the exact law that gives solid 
support to the phenomenology, not the other way around.

On the other hand, we can use the critical balance conjecture:

emhd NL , (8.24)
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with emhd 1=!emhd . This leads to the relation:

1=3
k ~ K1=6 I 6 1 k'3 k2=3 k1=3k k ~ K I TTJ k? ~ k0 k?de b

(8.25)

with k0 the characteristic wavenumber of magnetic energy injection. The latter 
expression shows that kinetic Alfven wave turbulence is more anisotropic than 
(incompressible) MHD turbulence, for which the critical balance conjecture leads 
to the relation kk k01=3k?2=3, which was verified numerically by Cho and Lazarian 
(2009).

Strong kinetic Alfven wave turbulence is often cited as a model for the solar 
wind at sub-MHD scales, however, the comparison with the data reveals a dis­
crepancy, with a frequency spectrum characterized by a power-law index close to 
—8/3 instead of —7/3 (see Figure 8.2). Furthermore, a monoscaling behavior is 
measured for the magnetic field (see Figure 8.3) and the mass density fluctuations 
(Kiyani et al., 2009; Roberts et al., 2020), which are in strong contrast to the clas­
sical intermittency found at MHD scales and more generally in strong turbulence 
(see Chapter 2). Although no firm conclusion has been reached for the interpre­
tation, these anomalous properties can find a natural explanation in the regime of 
weak wave turbulence.

8.5.2 Weak KAW Turbulence

The phenomenology of weak wave turbulence is based on three-wave interactions. 
Therefore, we have:

EbE ' , 
tr

(8.26)

with the cascade time:

(8.27)2 Kb b o k k
rtr ! !emhdrNL - dek? *2 .

As before, we introduce the axisymmetric spectrum Eb ~ Eb(k?, ky)k?ky and get 
in this case:

(8.28)

which is also the exact solution found by Galtier and Bhattacharjee (2003) in the 
framework of incompressible electron MHD (K D 1). In Section 8.6.2, we will 
show that it is also an exact solution for kinetic Alfven wave turbulence.
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8.6 Theory of Weak KAW Turbulence

8.6.1 Canonical Variables

We start from the reduced compressible electron MHD equations (8.15)-(8.16). 
Their Fourier transforms give:

@1Ok • , , , Z , f z z 7 ? oz. - , ,
—d = ideb0kkbk - de (ek x p?) • q?iOpbq<5(k - p - q)dpdq, (8.29)

@t R6

K 'k = idebokkk?Okk - de(ek x p?) • q?q?OpOqq<5(k - p - q)dpdq. (8.30)
@ t R6

We introduce the canonical variables:

Ak = kJk - spKbk, (8.31)

where the directional polarity s = . This choice leads to a simple writing for the 
energy E. Indeed, for a compressible plasma we have:

E = 2pe(b? C bj) C peU, (8.32)

with U the internal energy. For an isothermal closure, we have U = cs2 ln(e1=e0); 
this leads to:

2 1 2 pe21
peU ' C2peoPe 1 C 2Cs p1 . (8.33)

Since by definition hpe 1 i = 0 (where hi can be seen as the space average), we 
need to consider the second-order term for the internal energy. At main order we 
obtain:

1 1 1 C2
hEi = -Peohb?i C 2PeohbJ) C 2hpesi . (8.34)

Using the closure (8.13), the definition of the sound speed Cs2 (iC e)b02=2, and
some manipulation, we find eventually:

1 21 2
hEi = 2peohb?) C 2Kpeohbsi. (8.35)

From the canonical variables, it is easy to prove that in Fourier space:

E(k) = 1Peo X jAsk j2 = 1Peok? |1°k j2 C 2Kpeoj bk |2, (8.36)
s

which is the energy per wavevector.
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Introducing the canonical variables, we find after some manipulation:

@Ak C is!emhdA D dk\ f X e„ (8.37)
@t 4 K R6 spsq

X (p? X q?) —ApAq <5(k - p - q)dpdq 
p?

C spy= f X ek • (p? X q?)q?APAq<$(k - p - q)dpdq.
4 K R6 p?spsq

We can put the two integrals together and use the symmetry in p? and q? ; we find:
@Ask s sde Z X ek • (p? X q?)

C Is!emhdAk D (sqq? SPp?)
@ t 8VK Jr« TP P ? q ?spsq

(sk? C SpP? C Sqq?)ApAqq<5(k - p - q)dpdq.

We introduce a small parameter 1 such that:

Ask = e aske~is!kt,

where, hereafter, !k identifies to !emhd . Then, we obtain:
@ask ede X ss s s s i tk p p q pqpi(s!k sp!pp sq!q)t£fL-@t D 8pK L-kpqapaqe d(k p q)dpdq,

spsq

(8.38)

(8.39)

(8.40)

with:
sspsq ek • (p? X q?)

Lkpq D s-----—------- (Sqq? - SpP?)(sk? C SpP? C sqq?). (8.41)

Equation (8.40) describes the slow evolution in time of the kinetic Alfven wave 
amplitude. This is a classical form for three-wave interactions, with a term in 
the right-hand side of weak amplitude (proportional to e), a quadratic nonlinear­
ity, and an exponential which, over long times, will give a nonzero contribution 
only when its coefficient cancels out. In the framework of incompressible electron 
MHD (K D 1), Galtier and Bhattacharjee (2003) derived a similar equation where 
the only notable difference is the presence of a phase term whose origin lies in the 
use of a complex helicity basis (and whose dependence eventually disappears in 
the derivation of the kinetic equations).

At this level, two properties can already be deduced. First, we observe that 
there is no nonlinear coupling when the wavevectors p? and q? are collinear. 
This means in particular that two wave packets travelling in the same direction 
at the same speed cannot lead to strong nonlinear effects. Second, there is no 
nonlinear coupling when p? and q? are equal, if at the same time their polarities 
sp and sq are equal. We have already met this property for inertial wave turbulence 
(see Chapter 6) and, as mentioned, it seems to be quite general for helical waves 
(Kraichnan, 1973; Waleffe, 1992; Turner, 2000; Galtier, 2003).
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8.6.2 Kinetic Equations and Exact Solutions

To derive the kinetic equations we need to use the following properties:

SSpSq
Lkpq

SSq Sp
D Lkqp , (8.42a)

SSpSq
L0pq D0, (8.42b)

SSp Sq
L - k -p - q

SSq Sp
D Lkqp , (8.42c)

- S - S - pSq
Lkpq

LSSqSp 
Lkqp , (8.42d)

SpSSq
Lpkq

_ Spp?p k LSS,Sq

D Sk? k k kpq ,
(8.42e)

SqSSp
Lqkp

_ Sqq?qk SSpppqg

D Sk? k k kpq .
(8.42f)

We will also use the resonance condition, which can be written after some 
manipulation as:

Sqq? - SpP? sk? - Sqq? SpP? - sk?

kk pk qk
(8.43)

Note that this expression is similar to the case of inertial wave turbulence (see 
Chapter 6). It is interesting to discuss the particular case of strongly local interac­
tions in the perpendicular direction that generally make a dominant contribution 
to the turbulent dynamics. In this case, we have k? ' p? ' q? , and the previous 
expression simplifies to:

Sq - Sp S - Sq ~ Sp - S
k k ' p k ' q k

(8.44)

If kk is nonzero, the term on the left will give a nonnegligible contribution only 
when Sp d — Sq. We do not consider the case Sp d Sq, which is not relevant to 
the main order in the case of local interactions, as we can see from the expression 
of the interaction coefficient (8.41). The immediate consequence is that either the 
middle term or the right-hand term has a numerator that cancels itself out (at 
main order), which implies that the associated denominator must also cancel (at 
main order) to satisfy the equality: for example, if S D Sp then qk ' 0. This 
condition means that the transfer in the parallel direction is negligible: indeed, the 
integration of equation (8.40) in the parallel direction is then reduced to a few 
modes (since pk ' kk ), which strongly limits the transfer between parallel modes. 
The cascade in the parallel direction is thus possible, but relatively weak compared 
to that in the perpendicular direction, which justifies a posteriori the assumption 
made initially, that is, k? kk . Therefore, this situation is comparable to inertial 
wave turbulence (see Chapter 6).
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After a long but standard development, we eventually find:

D = , z/ [ X jLps j2<5(s!k C sp!p C sq!qWk C p C q)
@t 16K R6 spsq

es(k)eSp (p)eq (q) r sk?k|| spp?p|| sqq?q „ 1
------ sk?k------ e ( k C C W j dPdq ,

with by definition the energy density tensor es(k) for homogeneous turbulence:
haskask00iD es(k)(k C k0)ss0, (8.46)

where ss0 means sD s0. Equation (8.45) is the kinetic equation for kinetic Alf-
ven wave turbulence. The incompressible electron MHD limit can be recovered 
when the compressibility KD 1. Note that with the current approach, we directly

find the anisotropic limit (k? k| ) of the incompressible case. From expression 
(8.45) it is straightforward to show (using the resonance condition) the detailed 
conservation of the two invariants, the energy and the magnetic helicity.

We can introduce the axisymmetric spectra for the magnetic energy Ek

E(k?, k||) = 2nk?(eC(k) C e~(k)) and the magnetic helicity Hk = H(k?, k|) = 2 
n (eC(k) — e~ (k)). After some calculation where, in particular, the resonance con­
dition in frequency and the symmetry in directional polarity are used, we obtain 
the following kinetic equations:

sk| spp|p? sin k (8.47)

/ sqq? j spp?\ (sk? C spp? C sqq?)2 

k|

J qq (Ek=k? - Ep =p?) C sqHq(sHk - spHp) 
K Is hE?((sHk - spHp) C sqHq(Ek=k? - Ep =p?)]

(s!k C sp!p C sq!q) (k| Cp| C q| )dp?dq?dp| dq| ,

where k is the angle between the wavevectors p? and q? in the triangle k? C 
p? C q? = 0, and 1? is the integration domain (infinitely extended band) corre­
sponding to this triangle (see Figure 5.5). These kinetic equations were obtained 
for the first time by Galtier and Bhattacharjee (2003) in the incompressible limit, 
then discussed by Galtier and Meyrand (2015) and Passot and Sulem (2019) in the 
context of kinetic Alfven waves.

The exact power-law solutions are found by applying the generalized Zakharov 
transformation to the axisymmetric case (Kuznetsov, 1972): for the nonzero 
constant energy flux (Kolmogorov-Zakharov spectrum), we have:

E(k?, kk) - k;5/2k"1/2 (8.48)
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and H(k?, ky) ~ k?7=2k^1=2. These solutions correspond to a direct cascade of 
energy. In particular, this means that the spectrum of magnetic helicity is not the 
consequence of a dynamics specific to helicity, but the trace of a dynamics induced 
by energy.

8.7 Inertial/Kinetic-Alfven Wave Turbulence: A Twin Problem

The exact solutions found for the energy (8.48) are similar to the one obtained for 
inertial wave turbulence (6.23), while the kinetic equations are different. In fact, 
despite their apparent difference, we can show that these two kinetic equations 
obey the same nonlinear diffusion equation when only local interactions (in the 
perpendicular direction) are retained. To prove this claim, we will follow the same 
method as in Section 6.6.

The kinetic equation takes the following form:

@Ek D XT Tkppsdp?dq?dpkdqk, (8.49)

with the transfer function per mode:

pS-- de sk k spP kP ? • a( sqq ?- spP ? Vz, . . A2Tkpq D6->pk <-qsin‘’(-T^)(Sk?Cspp?Cq?’

Eq(p?Ek - k?Ep)<$(s!k C Sp!p C Sq!q) <Xk|| Cp|| C q||) . (8.50)

It can be noted that the small parameter has been absorbed in the time derivative 
and therefore no longer appears explicitly: this means that we are focusing on 
the long times of wave turbulence. The transfer function verifies the following 
symmetry property, which we will be used later:

spssq T sspsq
1 pkq 1 kpq . (8.51)

Within the limit of strongly local interactions, we can write:

p? D k?(1 C p) and q? D k?(1 C q) , (8.52)

with 0 < p 1 and 0 < q 1. We can then introduce an arbitrary function 
f (k? , kk ) and integrate the kinetic equation; we get:

@ Z V X Z ss ssspsq
@t I f f (k?,kk)Ekdk?dk|| I D / y f f (k?, kk)Tkpq dk?dkkdp?dq?dpkdqk 

sspsq

D1 X$ [f (k?, k k) - f (p ?, p k)] tkpqdk? dk k dp ? dq ? dp k dq k. (8.53)
ssp sq
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For local interactions, we have at the main order (we neglect the contribution of 
the parallel wavenumber):

f(p?,pk) Df(k?, kk) C (p? - k?) ?, k)
@ k?

Df(k?, kk) C epk? @f(k?, kk) . (8.54)
@ k?

One obtains (as for inertial wave turbulence):
@ Z
@^Aj f (k?, k k) Ekdk? dk J D (8.55)

1 X @f(k? , kk ) sspsq
- 2 > , I epk?——--------TkPq dk?dkk dp?dq?dpk dqk.

An integration by part of the right-hand term allows us to write:

@Ek D 1-^- @X f6pk?Tkspqsqdp?dq?dpkdqk A . (8.56)
@t 2 @k ? sspsq

The local form of the transfer function Tkssppqsq can be deduced by using the locality 
in the perpendicular direction. In particular, we have:

k?2 p2?q2? D
2

s Sqq? - Spp? \ _
\ k k D

(Sk? C Spp? C Sqq?)2 D

Eq (p ? Ek - k? Ep) D

k?6,
2

S Sq - Sp C Sq eq - Sp 6p \ 
\ k k /

(S C Sp C Sq)2k?2 ,
3 @(Ek=k?)

6pk? Ek @k? ,

sin 0 D sin(^=3) D ,

K
8(S!k C Sp!p C Sq!q) D —— 8(Skk C Sppk C Sqqk). k?deb0

After simplification, we arrive at:

spSSpSq _ _ V3 de SSppk ,4 ,, @(Ek=k?) 
kpq D " 32 PKb0 ~k^'p ? k @k?

(skk C sppk C sqqk)(kk Cpk Cqk),

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)

where we have considered the dominant transfer for which SpSq D — 1. The reso­
nance condition leads us to two possible combinations for parallel wavenumbers:

kk C p k - q k D 0 and kkC p kC q k d 0, (8.64)
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or

k|| - p kC q || d 0 and k। + py + q yD 0. (8.65)

The solution is either q| D 0 or p| D 0, which means that the strong locality 
assumption does not apply for the parallel direction. The second solution cancels 
the transfer function, so we will consider only the first solution, for which we 
obtain:

@Ek V3 de @ A 7c, @(Ek=k?) \[+e 2. f +e .
-----d----------------k\Ek---------- ----- / en dd e@ t 64 PKbo @ k? V k @ k? J J_e p p J_6 ‘

(8.66)

After integration, we finally arrive at the following nonlinear diffusion equation 
for energy (Passot and Sulem, 2019):

@Ek D C @ (k7 E @ (Ek=k?)) (8.67)

with the constant C D e4de/(16x/3x/Kb0). This nonlinear diffusion equation 
has been rigorously deduced from the kinetic equation. It describes weak kinetic 
Alfven wave turbulence in the limit of strongly local interactions in the perpendic­
ular direction. Note that it is also possible to obtain this diffusion equation using 
phenomenological arguments (David and Galtier, 2019): the calculation is then 
simpler but it does not allow us to obtain the exact expression of the constant C.

Surprisingly, the diffusion equation (8.67) is the same as for inertial wave tur­
bulence (6.45); only the expression for C differs. This means that the physics of 
turbulence is essentially the same for both problems. As explained in Chapter 6, 
the exact solution found previously can be obtained here for a constant flux, and 
we can prove that this flux is positive, and thus the cascade direct. In Chapter 6, 
we made an additional comment about this nonlinear diffusion equation, which 
becomes very important for kinetic Alfven wave turbulence: the numerical sim- 

8=3ulation reveals the existence of a steep solution in k± during the nonstationary 
phase (see Figure 8.6). This anomalous spectrum is understood as a self-similar 
solution of the second kind (David and Galtier, 2019), which disappears when vis­
cous scales are reached, with a bounce of the spectrum at small scales and finally 
the formation of the expected stationary solution in k£5=2. However, unlike water, 
the solar wind is a collisionless plasma where dissipation involves physical pro­
cesses completely different from a simple viscous term.5 Also, the fact that the 
solar wind spectrum exhibits a scaling often close to f-8/3 (see Figure 8.2) can 
in fact be interpreted as the signature of weak wave turbulence. It is perhaps not
5 In numerical simulations, a viscous term is added to avoid numerical instabilities.
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Figure 8.6 Temporal evolution (from bright to dark dashed lines) of the (compensated) 
magnetic spectrum Ek in KAW turbulence produced with a nonlinear diffusion model. An 
anomalous k?8=3 spectrum is obtained (solid line) before its bounce at small scales (David 
and Galtier, 2019). Note that the extension of the inertial range is not physically realistic; 
however, it is necessary to unambiguously reveal the power-law index. Simulation made 
by V. David.

so surprising, then, that experimental measurements of intermittency in the fast­
rotating case (van Bokhoven et al., 2009) and in the solar wind (Kiyani et al., 
2009) give very close self-similar exponents.

8.8 Perspectives

An interesting perspective on compressible plasmas concerns the physics at sub- 
MHD scales in space plasmas, where kinetic AlfveKn and whistler waves are often 
observed. As shown in Figures 8.2 and 8.3, the turbulent properties of the solar 
wind vary significantly as we cross the ion Larmor radius that separates MHD 
scales from sub-MHD scales. In general, the phenomenology of (incompressible) 
wave turbulence is used to obtain spectral predictions. However, the power-law 
exponents proposed for the magnetic energy spectrum, namely —7=3 and —2.5 for 
strong and weak wave turbulence respectively, do not match observations, where 
—8=3 is often measured (Alexandrova et al., 2012; Sahraoui et al., 2013; Bale 
et al., 2019). Additionally, self-similar exponents are found for the structure func­
tions constructed from the magnetic field (Kiyani et al., 2009) or the mass density 
(Chen et al., 2014; Roberts et al., 2020), giving intermittency a very specific char­
acter. Understanding the origin of this spectral difference is a difficult subject 
because the solar wind plasma is collisionless and, therefore, the dissipation can­
not be modeled as a simple viscosity localized at small scales. In particular, this 
means that the phenomenology of turbulence based implicitly on the equilibrium 
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between a large-scale force and a small-scale dissipation can be questioned. As 
we have shown numerically in inertial wave turbulence (Chapter 6), the stationary 
solution is obtained after a bounce of the spectrum at small scales, which is only 
possible if a viscous term is present. The same behavior is observed for KAW 
turbulence (David and Galtier, 2019): during the nonstationary phase, a spectrum 
in k£8=3 is formed, which transforms into k^2.5 only after the rebound of the spec­
trum at small scales. What would happen without the effect of viscosity? One 
possible answer is that the initial spectrum in k£8=3 would be maintained, which 
would explain why standard theories have so far failed to explain the data. This 
topic is at the heart of current issues related to solar wind turbulence, where the 
kinetic effects of plasma physics have, undoubtedly, also a role to play (Passot 
and Sulem, 2015, 2019). In this context, an interesting perspective concerns the 
direct numerical simulation of the compressible electron MHD equations derived 
in this chapter to study the differences between the strong and weak KAW turbu­
lence regimes. The reproduction of solar wind intermittency measurements in the 
weak regime would provide an additional and perhaps definitive argument for a 
weak wave turbulence interpretation of solar wind turbulence at sub-MHD scales. 
If we take the comparison further, could we learn more about space plasmas from 
laboratory experiments using rotating water? In the context of a (compressible) 
bi-fluid description where there are several types of waves that are related to the 
ion and electron populations, their nonlinear interactions are not well understood. 
Theoretical and numerical studies are needed to make progress in this area.
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9

Gravitational Wave Turbulence

The first direct detection of gravitational waves (GW) by the LIGO-Virgo collab­
oration (Abbott et al., 2016), a century after their prediction by Albert Einstein 
(1916), is certainly one of the most important events in astronomy in recent 
decades. Thanks to this new gravitational astronomy and the fact that GW interact 
only weakly with matter, the primordial Universe that preceded the first electro­
magnetic radiation of the Universe, commonly known as the cosmic microwave 
background (CMB), becomes now potentially accessible. Hence, many efforts are 
currently made to detect primordial GW. But do we know how the Universe would 
have behaved ifit was made ofa sea of GW?

In this final chapter, we shall answer this question and present the regime of 
weak GW turbulence in the context of primordial cosmology. First, we will give 
a brief review of cosmology - useful for nonspecialists - with the main steps 
in the evolution of the Universe, starting from its “birth.” Then, we will report 
the main theoretical properties of weak GW turbulence, which involves four-wave 
interactions and a dual cascade, with a slow direct energy cascade and an explosive 
inverse cascade of wave action. This part will be illustrated by direct numerical 
simulations of Einstein’s equations. Finally, we will present an extension to strong 
GW turbulence with a plausible application: the cosmological inflation produced 
a fraction of second after the Big Bang.

9.1 Primordial Universe

9.1.1 History of the Universe

Since the observations of Hubble (1929), we have known that the Universe is 
expanding. This expansion is not uniform, in the sense that the farther away the 
galaxies are, the faster they move away. Reversing the arrow of time suggests that 
there was a time (around 13.8 billion years) when the Universe was concentrated 
in one point. The Big Bang is associated with this theoretical point from which the

231
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Figure 9.1 A brief history of the observable Universe. Starting from the bottom, the dif­
ferent phases of expansion are symbolized by the widening of the sample of the Universe. 
Today (top), the observable Universe has a diameter of about 13.8 109 light-years,
which is only a small fraction of the Universe (whose size could be infinite). By defini­
tion, we are at the center of the observable Universe. The timescale on the right starts 
at the Planck epoch (t ~ 10_43 s) to reach the present moment (top). On the left is indi­
cated the temperature of the Universe: the actual temperature corresponds to that of the 
cosmic microwave background radiation, emitted when the Universe was about 380 000 
years old. The primordial Universe, which preceded this moment, can be directly probed 
only by considering (primordial) GW. These were produced, in particular, during the GUT 
(t ~ 10“36 s) and electroweak (t ~ 10“10 s) phase transitions. The inflation phase would 
have increased the size of the Universe by a factor of at least 1028. A regime of strong 
GW turbulence is expected close to the birth of the Universe (hatched area), around time 
t ~ 10 36s ^ tPlanck.

Universe was created. It is difficult to conceive what the Universe was at the initial 
instant, especially since the notion of time as we know it today had no meaning. In 
general, the earliest instant to which we can refer was the first 10_43s, equivalent to 
Planck time, tPlanck, and referred to as the Planck epoch. As proposed by Wheeler 
(1955), the Universe may have been then in a state of turbulent quantum foam 
that only quantum gravity could describe, but to date this theory has not yet been 
established (Weinberg, 2008).
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In Figure 9.1 we show schematically what happened next. Globally, the Uni­
verse underwent an expansion cooling with several phases. The first phase is 
usually located around t ~ 10“36 s: at this time, the Universe would have under­
gone a very violent accelerated expansion called inflation - with a speed of 
expansion faster than the speed of light. This expansion would have occurred at 
the moment of the GUT (grand unified theory) phase transition, that is, the instant 
when the strong interaction separated from the electroweak interaction. It is fol­
lowing this phase of inflation that matter would have been created. Let us note that 
turbulence is a possible mechanism for understanding the post-inflationary transi­
tion to thermal equilibrium (Micha and Tkachev, 2003, 2004). Later, around t 
10“10 s, there was a second phase transition which corresponded to the moment 
when the weak interaction separated from the electromagnetic interaction. We 
arrive here at an energy level that CERN instruments can reach, and thus exper­
imentally test the theories. From t 380 000 years, the Universe was no longer 
opaque and the first electromagnetic radiation could escape: this was the CMB. We 
enter from this moment into the domain of the observable Universe. Then came 
the last phase, discovered in 1998 (Perlmutter et al., 1998; Riess et al., 1998): it 
was a new phase of accelerated expansion, which was due to dark energy. This 
mysterious denomination mainly reflects our ignorance about the origin of this 
acceleration.

To explain all these expansion phases, we need to use the equations of general 
relativity (Einstein, 1915). The decelerated expansion, between the end of inflation 
and the dark energy era, is well explained by the standard model (Friedmann, 
1922). Explaining the accelerated expansion phases it is still an open problem: in 
general, a nonzero cosmological constant is introduced (or equivalently a negative 
pressure of quantum origin), but the detailed physical mechanism is unknown. 
On the other hand, the equations of relativity are not valid near Planck’s epoch, 
where quantum effects are so important that they require a theory of quantum 
gravity.

9.1.2 Cosmological Inflation

The CMB was measured with unprecedented accuracy by ESA’s Planck mission 
(Planck Collaboration, 2014). These new measurements confirm those made with 
NASA’s COBE and WMAP satellites, that is, that the first electromagnetic in the 
Universe was of a very high homogeneity, with a temperature around 2.7 K. This 
property can be explained if a phase of inflation existed in the primordial Universe. 
To understand this, we must return to Figure 9.1. At the top, the two small black 
disks symbolize two regions of the sky sufficiently distant from each other to 
be causally disconnected. If we go back in time, we see that before the inflation 
phase these two regions were in fact causally connected. This change of state is 
explained by a supraluminal expansion of the Universe. This expansion at a speed 
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greater than that of light is not in contradiction with the laws of physics, because 
it is not the propagation of information but the expansion of space-time itself. If 
a physical process existed (such as turbulence) to homogenize the preinflationary 
primordial Universe, then inflation would have had the effect of extending the 
homogenized region over the entire current sky. Note that the role of inflation 
is not limited to this: for example, it is also a way to explain the flatness of the 
Universe.

Cosmological inflation was proposed in particular by Guth (1981). This sce­
nario is based on particle physics and the existence of a scalar field called inflaton. 
However, to date no direct or indirect evidence of its existence has been found. 
Furthermore, Planck’s measures point out the weaknesses of the model, which 
have led to several criticisms (see, e.g., Ijjas et al., 2013, 2014 and Hollands and 
Wald, 2002). One of the difficulties is that the classical inflation model requires a 
very fine tuning of the initial conditions, which is difficult to explain physically. 
One solution is to evoke the anthropic principle and, for example, the existence of

10100 parallel universes. Our universe would therefore have by pure chance the 
parameters in question.

In Section 9.3 we will see that strong GW turbulence may offer an original 
mechanism at the origin of the cosmological inflation. To understand the essence 
of this mechanism, we need to present the main properties of the weak turbulence 
regime.

9.2 Weak Gravitational Wave Turbulence

9.2.1 Einstein’s Equations

The theory of GW turbulence is based on the equations of general relativity, which 
dynamically describe how space-time is distorted by energy and matter (Einstein, 
1915). These equations of relativistic gravitation are written in a general way:

1R l^v 2 g/iv R 3 g/iv
8.-7 G

cl TUv , (9.1)

with Rv the Ricci tensor, R the Ricci scalar, gv the metric tensor, 3 the cos­
mological constant, Tv the stress-energy tensor, G the gravitational constant, and 
c the speed of light. For our study, we will neglect the cosmological constant 
(3 D 0). Equations (9.1) relate the energy-matter (right term) to space-time cur­
vature (left term). The fundamental variable to describe the space-time curvature 
is the metric tensor gv: it is a 4 4 tensor symmetrical in and v.1

It is interesting to make a comparison between Einstein’s equations (9.1) and 
those ofNavier-Stokes (2.1). As in hydrodynamics, general relativity is described

1 The metric is what makes it possible to measure the distance between two close points. In classical physics, 
this distance can be written: ds2 D dx2 C dy2 C dz2 D gv dx dxv . With x1 D x, x2 D y and x3 D z, we 
obtain: gv D v .
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by nonlinear partial differential equations. The tensors being symmetrical in 
and , we have a total of 10 equations. The left-hand terms of (9.1) are for us 
the core of nonlinearities (time derivatives are also present there), while the right­
hand term can be seen as an external force that excites the space-time over a 
given range of scale (or frequency). For our study, we will place ourselves in the 
vacuum, which is the same as eliminating the right-hand term of equation (9.1). 
Under these circumstances, the equations are simplified (for an empty Universe, 
R D 0), and we obtain the equation of general relativity in a vacuum:

R D 0 . (9.2)

By definition:

R- '.0 ' - @^0L C 0^ - 0^0£>, (9.3a)
0k - 1 gU(@jgik C @kgji - @igjk), (9.3b)

2
where 0jik is the Christoffel symbols; Einstein’s convention on indices should be 
used. These expressions are sufficient (we will not give details on the origin of 
the different Ricci tensor terms) to give us an idea of the type of nonlinearity we 
are dealing with: they are at least quadratic. Note that the comparison with the 
Navier-Stokes equations is not complete, since in general relativity there are no 
pure dissipative terms. However, dissipation of GW by matter is expected through, 
for example, Landau damping (Baym et al., 2017).

9.2.2 Gravitational Waves

The linear solutions of equation (9.2) are well known: they are gravitational 
waves (Einstein, 1916, 1918). These solutions are obtained by adding a small 
perturbation h to the undisturbed (flat) space-time , which is simply the 
Poincare-Minkowski metric:

000
1 0 0C 
0 1 0 CA 
001

The introduction of the metric:

g D C h

-1
0
0
0

(9.4)

(9.5)

D

in the linearized equation (9.2) gives the dispersion relation (Maggiore, 2008):

! D kc (9.6)

Gravitational waves are therefore nondispersive. This could be a problem for the 
nonlinear treatment because the uniformity of the wave turbulence development 
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is not guaranteed (see Chapter 4). But this potential problem occurs for triadic 
interactions (as for acoustic waves; see L’vov et al., 1997) while GW turbulence is 
in fact a problem that is treated at the next order, that is, for quartic interactions 
(four-wave interactions).

9.2.3 Theory of Weak GW Turbulence

The theory of GW turbulence consists in introducing expression (9.5) into the 
nonlinear equation (9.2), assuming:

jhj1. (9.7)

The objective of this final chapter is not to present the analytical development 
of the theory but rather to give an idea of the method for arriving at the kinetic 
equation, whose form is quite classical. In the approximation of waves with weak 
amplitude (9.7), we see on expressions (9.3) that the dominant nonlinear terms are 
quadratic. Consequently, the nonlinear treatment will bring out a triadic resonance 
condition similar to that of acoustic waves, for which the solutions correspond to 
rays in Fourier space (Newell and Aucoin, 1971; L’vov et al., 1997). From this 
property concerning the resonant manifold, one can demonstrate that Einstein’s 
equations (for an empty Universe and neglecting the cosmological constant) do 
not make any contribution to wave turbulence (Galtier and Nazarenko, 2017). 
Therefore, the theory must be treated at the next order - for quartic interactions - 
and take into account the cubic nonlinear contributions.

The development ofa four-wave theory is more difficult. The equations of gen­
eral relativity being themselves much more complex than the equations we usually 
deal with, we must try to simplify the approach. It is known that the search for 
solutions in general relativity is facilitated by the choice of coordinates. For exam­
ple, the search for simple solutions associated with spherical objects (black hole 
type) requires the use of spherical coordinates. We will do the same here and use 
a metric introduced by Hadad and Zakharov (2014): it is a diagonal metric in 
Cartesian coordinates, which is written:

/ -(H0)2 0 0 0 1

g D B 0
0

(H1)2
0

0
(H2)2

0
0 A

, (9.8)

\ 0 0 0 (H3)2

with H0, H1, H2, and H3 the Lame coefficients.2 These coefficients depend on 
x0 D t, x1 D x, and x2 D y, but are independent of x3 D z, with by definition the 
space-time interval: ds2 d g^vdx^dxv. The Lame coefficients are defined by the

2 One can verify with this metric that the fourth-order Riemann curvature tensor, as well as the Kretschmann 
curvature invariant, is nontrivial. This means that the metric used can describe a nontrivial physics that exists 
independently of the choice of coordinates (Weber and Wheeler, 1957).
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following relations:

H0 = e-\1 C y), H1 = e "( 1 C £), H2 = e "( 1 C a), H3 = e" ,(9.9)

with , , , 1. The introduction of these variables into equation (9.2) gives
the following system at the main order:

@x OPd-2" (@x "), (9.10a)
@y £ d—2" (@y"), (9.10b)
@xyy d-2(@x")(@y"), (9.10c)

with:

@t[(1 C a C £ - y )"] d @x[(1 C a - £ C y )@x"] C @y[(1 - a C £ C y )@y"], (9.11)

where P means the time derivative. As we can see from equation (9.11), GW are 
indeed linear solutions. We also note that " is the fundamental variable to describe 
these waves. The linear solution obtained involves only one wave polarization (the 
diagonal components whose polarization is noted C), whereas in the general case, 
there are two polarizations (the C and polarizations associated with the diago­
nal and nondiagonal components, respectively (Maggiore, 2008)). This reduction 
allows a simplification of the problem, while keeping the indispensable element 
for the theory, the wave.3

The analytical development here is based on a relatively classical Hamilto­
nian approach. The kinetic equation obtained for GW turbulence is finally written 
(Galtier and Nazarenko, 2017):

@tNk D 4 jTkk1kk32j2 NkNk1Nk2Nk3 (9.12)
R6 1 2

x Nk C N3" N1" Nk2. <5!3’12 dk1 dk2dk3,

with by definition $k312 = 5(k C k3 — k1 — k2) and ^!3 12 = 5(wk C !k3 — ! k1 — 
!k2).Nk is the wave action and Tkk3k a geometric coefficient verifying certain 

symmetries that it is not useful to give here. Equation (9.12) has two invariants: 
energy and wave action. The presence of a second invariant - the wave action - is 
not automatic for four-wave interactions because it requires the kinetic equation to 
satisfy additional symmetries (Nazarenko, 2011). In practice, interactions 1 $ 3 
must be absent, leaving only interactions 2 $ 2. Note that the wave action is 
an invariant that appears in other systems described by quartic interactions, such 
as nonlinear optics (Dyachenko et al., 1992) or for elastic wave turbulence on
3 The use of a diagonal metric immediately raises the problem of compatibility: the metric has ten elements, and 

generally four of which can be eliminated by using gauge transformations. This makes the vacuum Einstein 
equations an overdetermined system of ten equations for six unknowns. This compatibility has been properly 
checked (without introducing a gauge) by Hadad and Zakharov (2014). In particular, we can see that there 
are as many equations (9.10)-(9.11) as there are unknowns (9.9).
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Figure 9.2 Temporal evolution of the (isotropic) wave action spectrum N(k) with an 
initial spectrum located around kD1022 (decaying simulation of a nonlinear diffusion 
model). The inverse cascade produces a spectrum close to k“2=3 over more than 20 
decades (this huge inertial range is probably nonphysical, but necessary here to measure 
the power-law index unambiguously). Simulation created by E. Buchlin.

a membrane (Hassaini et al., 2019). It is also an invariant that can be found in 
six-wave problems (Laurie et al., 2012).

Equation (9.12) admits of three exact (isotropic) solutions. First, there is the 
thermodynamic solution Nk — k0. The two others are the Kolmogorov-Zakharov 
spectra for the wave action:

Nk - k~2=3 |, (9.13)

and energy (by definition Ek !kNk):

Ek - k0 . (9.14)

These solutions correspond respectively to an inverse and a direct cascade (see 
Exercise II.3 and its solutions).4 The form of the solution for the wave action 
allows us to affirm that the inverse cascade is explosive (this property is related 

kto the convergence of the integral 0 i Nkdk, with ki the initial wavenumber 
excitation).

An analysis of the explosiveness of the inverse cascade is made easier if a 
nonlinear diffusion model is used. As in the case of rotation (see Chapter 6), a 
nonstationary solution different from the Kolmogorov-Zakharov spectrum can be 
found. However, the difference in power-law exponent followed by Nk is tiny here 
(' —0.6517 for the nonstationary solution instead of —2=3 for the stationary 
solution). In Figure 9.2, we show the result of a numerical simulation with the for­
mation ofa N(k) spectrum over more than 20 decades (Galtier et al., 2019). The 
expected scenario in weak wave turbulence is therefore the rapid formation of a
4 These spectra are the first exact statistical solutions of Einstein’s equations ever found.
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Figure 9.3 Result of a direct numerical simulation of equations (9.10)-(9.11) with a 
spatial resolution of 512 512. Components g11 (bottom) and g22 C 0.2 (top) of the
space-time metric produced in weak GW turbulence. There are characterized by small 
erratic fluctuations around the reference value, the Poincare-Minkowski flat metric (C1).

large-scale inertial range by an inverse cascade of wave action, and the relatively 
slow formation of a small-scale inertial range by a direct energy cascade.

9.2.4 Direct Numerical Simulations

The direct numerical simulation of weak GW turbulence is an emerging subject in 
cosmology: the first simulation in the decaying case was realized by Galtier and 
Nazarenko (2021) with a pseudospectral code (using FFTW3 and de-aliasing). 
The main conclusion reached by the authors is that it is possible to produce tur­
bulence in general relativity. Unlike classical hydrodynamic turbulence, it does 
not consist of randomly interacting vortices but, rather, it takes a form of random 
interacting waves - the space-time turbulence (see Figure 9.3). Furthermore, the 
dual cascade was confirmed (see Figure 9.4) with a timescale (transfer time) com­
patible with four-wave processes, that is, such that tr GW=4 (see Chapter 4).
In this case, the gravitational time is defined with the initial excitation, that is,

GW D 1=ki .
The domain of validity of GW turbulence is limited to a certain range of scales. 

We have seen that for MHD plasmas (see Chapter 7) the transition between the 
weak and strong regimes is at a small scale (i.e. at a scale smaller than the initial 
excitation), whereas in the case of capillary waves the turbulence becomes weaker 
and weaker at small scales (see Chapter 5). However, in both cases, the cascade 
of the invariant is direct. In GW turbulence, a transition to strong turbulence is 
expected at large scales (scales larger than the initial excitation). In other words, 
the inverse cascade of wave action will necessarily end up (quickly) in the strong 
regime. In the direct numerical simulation shown in Figure 9.3, the computation
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Figure 9.4 Direct evidence of a dual cascade in GW turbulence (same direct numerical 
simulation as in Figure 9.3). The time evolution of the 1D isotropic compensated wave 
action spectrum k2=3Nk is shown, with the initial spectrum (located at ki D 89) given in 
dashed line. The direct cascade is stopped (around k D 140) by the additional dissipative 
term added to the Einstein equations.

Figure 9.5 Spectrum HO k of the space-time metric fluctuations. In these units, the scaling 
law of the weak inverse cascade is in k“5=3 and that of critical balance (from the ks scale) 
in k“1. A condensation phenomenon appears at k d 0, which leads to an expansion of 
the Universe (see text). Planck’s scale is given for information: close to this scale, the 
equations of general relativity are no longer valid. Sources of forcing at the ki scale are 
assumed sufficiently intense to generate a regime close to that of strong wave turbulence.

stopped when the GW amplitude exceeded 10 percent and the weak turbulence 
condition (weak wave amplitude) started not to be fulfilled.
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9.3 Strong Turbulence and Inflation

Weak GW turbulence is dominated by the inverse cascade of wave action as it 
is explosive (solution of finite capacity), whereas the direct energy cascade is 
slow (solution of infinite capacity). This means in principle that modes k smaller 
than the initial excited mode (ki) of the space-time can all be excited in a finite 
time. However, during this process wave turbulence quickly becomes strong, and 
a phenomenological model is required to pursue the description. As explained in 
Chapter 7, the critical balance conjecture is a widely used model in turbulence. 
In the case of GW, the prediction for the large-scale wave action spectrum is 
N(k) k0, a situation always favorable to an explosive inverse cascade.

What happens next? Although the scenario becomes hypothetical, we can envis­
age that the inverse cascade finally excites significantly the slow mode k D 0 (see 
Figure 9.5). We have already seen the importance of the slow mode in rotating 
hydrodynamic turbulence (Chapter 6) and in MHD (Chapter 7). In particular, we 
know that the slow mode excitation does not violate the principle of causality, 
because it does not correspond to the propagation of information in the physical 
space from a given scale to infinity. Note, in passing, that for our analysis we do 
not need to specify the size of the Universe sample (finite or infinite). In cos­
mology, the slow mode corresponds to the background level of the metric, which 
means that if we feed (amplify) this mode, we increase the size of the Universe 
(phase of expansion). This is where the link is made between turbulence and infla­
tion: due to the explosive nature of the inverse cascade we can expect an equally 
explosive expansion, that is, a phase of inflation (Galtier et al., 2020).

Is GW turbulence the cause of cosmological inflation? The answer to this ques­
tion is far from trivial and requires much more work, based, in particular, on direct 
numerical simulations of strong GW turbulence. However, based on the previous 
discussion, we can now sketch out a complete scenario. The basic assumption 
is that the nonlinearities of the equations of general relativity were nonnegligi- 
ble around t ~ 10_36s ^ tPlanck (see Figure 9.1). The sharp increase of the 
condensate described here is necessarily limited in time, because the expansion 
of the Universe induces a dilution, that is, a decrease in the space-time metric 
fluctuations, and thus a reduction of nonlinearities, which means the end of the 
cascade mechanism. Consequently, turbulence offers a natural physical mechan­
ism to stop inflation. Then, we enter a standard expansion phase of the Universe, 
with a self-similar decay of GW turbulence with a 1=k metric spectrum, which cor­
responds to the critical balance phenomenology. By using a simple dimensional 
argument, we can deduce the spectrum for the mass density of the primordial Uni­
verse following inflation (which is the Harrison-Zeldovich spectrum Harrison, 
1970; Zeldovich, 1972). It turns out that this fossil spectrum is in good agree­
ment with Planck/ESA measurements of the CMB (Planck Collaboration, 2016); 
indeed, the measurements are in correspondence with a k-1-033 metric spectrum.
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A turbulence-based scenario also has the advantage of offering a natural physi­
cal mechanism to homogenize the initial metric fluctuations without fine-tuning 
(a weakness of current models; Ijjas et al., 2013, 2014). This scenario, which is 
radically different in nature from the inflation model of particle physics based on 
a hypothetical scalar field called inflaton, suggests that under extreme conditions 
(strong nonlinearities) Einstein’s gravitation can be a repulsive force.5

5 In the standard model of cosmology (Friedmann, 1922), if we neglect the cosmological constant (3 D 0) and 
if the Universe is empty, the solution is a static Universe.

6 Other applications of strong GW turbulence, such as the environment of black holes, can also be considered 
(Green et al., 2014; Yang et al., 2015).

9.4 Perspectives

Since the equations of general relativity have never failed so far, this cosmological 
scenario is arguably interesting in helping us to better understand the primordial 
Universe from first principles. One advantage is that it can be tested directly (a lux­
ury in this field) by direct numerical simulation.6 This is a promising and exciting 
prospect in turbulence. In particular, it would be interesting to verify if an anom­
alous exponent (found in weak GW turbulence and in several other systems - see 
Chapters 6, 7, and 8) also exists for the inverse cascade in the regime of strong 
GW turbulence that could lead to a small deviation from the 1=k metric spec­
trum. According to the cosmological observation, a scaling in k_ 1.033 is expected. 
In this case, that would mean the anomalous exponent of GW turbulence could 
be at the origin of the formation of the structures in the Universe. The formation 
of a spectral condensate is not new in turbulence. For example, it is predicted 
and observed with the nonlinear Schrodinger model (Gross-Pitaevskii equation), 
which forms a Bose-Einstein condensate (Dyachenko et al., 1992; Zakharov and 
Nazarenko, 2005; Miller et al., 2013). The numerical study of the formation of 
such condensate in GW turbulence is an important perspective.

On the other hand, as shown by the theoretical, numerical, and experimental 
work of Hassaini et al. (2019), there is a strong proximity (type of interactions, 
symmetry of kinetic equations) between GW turbulence and that of elastic waves 
in the high tension limit. We can see here another interesting perspective: the 
development of new laboratory experiments could help us to better understand 
the primordial Universe.
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Exercises II

II.1 MHD Model of Nonlinear Diffusion

Nonlinear diffusion models are often used in turbulence because their numeri­
cal simulations are relatively easy. We have already encountered these models in 
Chapters 3, 6, and 8. We propose here to develop such a phenomenological model 
for Alfven wave turbulence in the balanced case. The particularity of the approach 
is that it must take into account the anisotropy. In practice, the following equation 
is considered:

@E(k)-J^D-r. 5(k), 
@t

where E(k) is the energy spectrum and 5(k) the associated flux.

(1) What are the conditions of validity of this equation?
(2) Alfven wave turbulence is strongly anisotropic. Using a coordinate system 

adapted to this situation, rewrite the diffusion equation.
(3) The transverse component of the energy flux is modeled as follows:

5?(k) = _D(k)@E«, 
@k?

where D is a nonlinear diffusion coefficient which remains to be determined. What 
is the dimension of D?

(4) We call tr the characteristic time of energy transfer. Express tr as a function 
of E(k) and k?.

(5) By using the relation E(k?)f (kk)dk?dkk D E(k)dk, show that the
nonlinear diffusion equation can be written as:

@ E (k?) a ( 6 @ (E (k?)=k?) \
- D C@k? V?E(k?) ak? , ■

where C is a constant.
(6) What is the Kolmogorov-Zakharov spectrum exact solution of the equation? 

What is the direction of the cascade?

245
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II.2 Four-Wave Interactions

Let us consider the isotropic dispersion relation ! D Ak, with A a positive con­
stant and 2 RC. In the two-dimensional case, show graphically that we can 
always find solutions for four-wave resonant interactions.

II.3 Gravitational Wave Turbulence: Exact Solutions

The objective of this exercise is to obtain analytically the exact solutions of grav­
itational wave turbulence. We have seen that the kinetic equation is written as 
follows:

0k3,12 0!3,12 dk1 dk2dk3 ,

@tNk D 6 jTkk1kk32j2 NkNk1Nk2Nk3

r 1 1 1 1 ’
x Nk C N3 " N1 " Nk~.

with 80k312 = 8(k C k3 — k1 — k2) and 803 12 = 8(!k C !k ! k1 — !k2).
We must specify the symmetries verified by the geometric coefficient. We have:

Tkkk2 D 4(W$2 C Wk3k C Wkkk1 C WkkX),

as well as:
Wkk1kk32 D Qkk1kk32 C Qkk1kk31 2. 3

(1) By applying these transformations to the kinetic equation, find the isotropic 
exact solutions proposed in Chapter 9.

(2) Deduce the direction of the cascade for each solution.
(3) Give the expression for the Kolmogorov constants.

The exact form of Qkkkk3 is not useful (see Galtier and Nazarenko, 2017); only 
information on its degree of homogeneity is important. We have:

ak ak3 k k3
ak1 ak2 D k1 k2 ,

which means that this coefficient is dimensionless.
For four-wave interactions, the Zakharov conformal transformation is written:

1 !
1

*§? §2 !
§3 

^1, §3 !
§2 

§1,
(TZa)

§3 1 §1
1 !

§2
§2 !

§2
§3 !

§2
(TZb)

1 !
|1
, , §2 !

§2
, , §3 !

1
. (TZc)

§3 §3 §3
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II.4 Inertial Wave Turbulence: Domain of Locality

Find the domain of locality for inertial wave turbulence.
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Appendix A

Solutions to the Exercises

I.1 1D HD Turbulence: Burgers’ Equation

Burgers’ equation (Burgers, 1948) is often regarded as a one-dimensional model 
of compressible hydrodynamic turbulence. This equation is written:

@u @u @2u
C C u D VT"2,@t @ x @ x2

withu a scalar velocity and a viscosity. Burgers’ equation is a simple model
often used to test new ideas in turbulence. Here we will study the properties of dis­
sipation and then intermittency using the tools introduced for the Navier-Stokes 
equations.

(1) Demonstrate that:

u (x, t) D - x — L tanh
xL
2v t

is an exact solution.
(2) Find the limit of this solution when ! 0.
(3) Calculate the mean rate of energy dissipation ".
(4) Calculate the mean rate of viscous dissipation ". Conclude.
(5) Find the expression of the smoothed Burgers equation by introducing an 

anomalous dissipation D'.
(6) Calculate the expression of the inertial dissipation DI with the exact 

solution. Conclude.
(7) By using the exact solution in the limit ! 0, find the exponents p by

distinguishing the case where p < 1 from the case where p 1.

Solutions:
(1) To demonstrate that:

u (x, t) D - x — L tanh
xL
2v t

249
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Figure A.1 Temporal evolution of the velocity starting from the initial condition u(x, 0) D 
sin(x). The formation of the shock is followed by a dissipation phase. Direct numerical 
simulation of Burgers’ equation with a spatial resolution of 32 768 points.

is an exact solution, the following expressions are calculated:

@ u 
Tt 
@ u 
@ x 

@ 2 u 
@ x2

xL
- 7 C ranh

xL
2v t J

xL2 2
C —s-e sech2 

2t3
xL
2v t J

1 L2 2 xL
1 - Msech (2?t),

L3 xL2 sinhCz^t) “''h xL
2v t J

The weighted sum of these three terms cancels each other out, which proves the 
result. Note that this solution is unique (Kruzkhov’s theorem).

(2) The exact solution is simplified within the limit ! 0 with x 6D 0. We use 
the asymptotic expression  of the tanh function and obtain:

u(x, t) *>° > -(x — L), 
!0C t

u(x, t) x<° > -(x C L). 
!°C t

(I.1.2)

This (weak) solution is valid on the [—L, CL] interval around the discontinuity 
inx D °. This discontinuity is a shock of amplitude 1 D 2L=t. An illustration 
is given in Figure A.1: these are the results of a direct numerical simulation of 
Burgers’ equation with initially u(x, °) D sin(x). The numerical grid between ° 
and 2 is solved with 32 768 points.
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(3) The mean rate of energy dissipation " within the limit ! 0 can be
obtained from @hu2=2i=@t, averaged over the interval [—L, CL]. We have:

2 Z CL 2

20 L 2

dx

L2 
6t2 .

Hence, the mean rate of energy dissipation:

@ u2 L2 12
" DD D D .@ t \ 2 / 3t3 12t

This rate varies over time as the shock dissipates.

(4) The mean rate of viscous dissipation " is written with an integration by 
part:

@2u @u2
D-v\ u aX2/ D v\(aX)

1 L2 2 xL 2
d v---- -—s sech ~—t 2t2 2t

Within the limit ! 0, one obtains at the main order:

L4 4 xL L3 Z CL 4 xL
"v d —s sech — d —7 / sech — dx 

v \4vt4 \2vt// 8vt4 J_L \2vt)
L2 Z CL2 =2t 
3,> sech4(y) dy.
4t3 JlL2/2vt

By using the relationship:

sech4(y) d 1 — 2tanh2(y) C tanh4(y),

one can show that R sech4 y dy D 4/3. Hence, the value:

L2 12p, — ---  — ----
v 3t3 12t '

Within the limit ! 0, we have therefore " D " which is independent of viscos­
ity and positive. Burgers’ equation is therefore a model that behaves similarly to 
hydrodynamics.

(5) We can apply the smoothing function to Burgers’ equation. We obtain in the 
inviscid case ( D 0):

@ u ' 1 @ (u2)' q
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hence:
@ / uu \ u @ (u2)' u'@u2
di\ C 4 @ x C J "@x D .

The anomalous dissipation, also called inertial dissipation, is defined as:

D' -12 / f(S u )3 d*

2' 2 ' 3'
— A u@X(u ) u u @Xu i @ @X(u ) .4x

After rearrangement, we get:
4 x 2 x

@ / uU \ @ /
@ t \ 2 c C @ x \

u2 2 u' (u 3)' 1 _D'
4 12 ) I.

Within the limit ' ! 0, we arrive at the expression:

@ / u2 1 @ / u3 1 
dt \"2/ C @x \SJ D-Di ,

with the distribution (generalized function) DI - lim'!0 DI' .

(6) The expression of the anomalous dissipation can be obtained with the exact 
solution within the limit ! 0 and for ' small enough. In the integral calculation, 
care must be taken to separate the contributions of the points to the right and to 
the left of the reference point X which itself is placed in the vicinity of the shock. 
We finally get:

1 Z 1 Z 13
D' D 1L2 J @^'(8 u )3 d^ D nJ @^' 1 d^ D 12 ''(0)

---- ! Di 
'!0

13 12
—3(x) D 2L12^S(x) D 2L"VS(x).

In order to make a proper comparison with the mean rate of dissipation, we still 
have to make an average calculation:

1 Z CL

hDIi D — I 2L"v8(x)dx D "v .
2L J-L

We can therefore see that the averaged anomalous dissipation is identical to " 
in the case of Burgers’ equation. This one-dimensional compressible model of 
turbulence is interesting because it allows us to carry out the analytical calcula­
tions to the end. Understanding this can help us to interpret (without constituting 
a proof) the much more difficult case of three-dimensional turbulence. Thus, it 
would seem that in order to have equality between " and hDi i, it is necessary to 
be in an extreme situation in which discontinuities are omnipresent.

(7) We are looking for the expression of the structure function of order p:

Sp D hjujpi,
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using the relationships (I.1.2). One gets:

3 u = u(x C ') — u(x) d (' - 2L )=t 
'=t

if 0 2 [x, x C '], 
otherwise .

One obtains:

Sp D
1

2L
'
t

pdxCZ0
J-t

pdxCZL 
0

' p a 1- dx 
t

' - 2 L
t

' 1p

D 1p
' \ ' ( ' V ’

2L) C 2L \ - 2L/_

' V ' ■
2L) C 2L_ with ' ^ L.

It remains for us to distinguish the case p < 1 from the case p 1. We finally 
arrive at the expressions:

('=2L/p if0 < p < 1,
Sp D 1p

'=2L ifp > 1.

Therefore:
p if 0 < p < 1 ,

p D
1 ifp > 1 .

This result differs significantly from three-dimensional turbulence: here, p expo­
nents quickly saturate (because of the shock) and the energy spectrum is in k~2 
(compatible with 2 D 1).

I.2 Structure Function and Spectrum

We are interested in the relationship between the one-dimensional energy 
spectrum E1d (k) and the second-order structure function S2(r) in the case of 
three-dimensional homogeneous isotropic hydrodynamic turbulence.

(1) Let R(r) be the two-point correlation function of the velocity, that is, 
R(r) D hu u0i. Write down the general relation between this function and the 
three-dimensional energy spectrum E3d(k).

(2) Focusing on the isotropic case, demonstrate the relationship:

S2(r) d 4 IC1 (1 - 
0

sin kr 
kr

E1d(k)dk,

where S2(r) D h(3u)2i.
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(3) It is assumed that the one-dimensional energy spectrum is given by the 
relation E 1 d(k) d CK"2=3k~5/\ where CK is the Kolmogorov constant. Find the 
relation:

S2(r) D C2"2=3r2=3,

where C2 is a constant that will be given. Compare your results with the experi­
mental measurements CK ' 0.5 and C2 ' 2.5 (Sreenivasan, 1995; Welter et al., 
2009).

Solutions:
(1) By definition, we have the relations:

E3d(k) d ( 1R(r)eik'rdr
(2)3 R3 2

and
R(r) d 2 /* E3d(k)e“ik'rdk.

R3
Then, we also have:

R(0) D 2 E3d(k)dk.
R3

(2) For isotropic turbulence:
Z C1 Z Z 2

R(r) d R(r) d 2 J J J E3d(k, 0, fl)e~i k'rk2 sin 0dkd0d$
Z C1 Z

d 4n I I k2E3d(k, 0, fl)e~ik'r sin 0 dkd0.
00

We choose a vector r along the z-axis; this gives:
Z C1 Z

R(r) d 4n I I k2E3d(k, 0, fl)e~ikr cos 0 sin 0dkd0 
00Z C1 Z 1

d 4^ / k k2E3d(k, 0,/)e~ilrrXdkdX

d 2 f 4nk2E3d(k, 0,^—nkrdk d 2 [ E 1 d(k)~-nk-dk.
0 kr 0 kr

In particular:
R(0) D 2 C1 E1d(k)dk.

0o
We also have:

S2(r) = h('^u)2i = h(u0 - u)2i d h(u0 - 2u ' u0 C u2)i 
d 2hu2i - 2hu ' u0i d 2R(0) - 2R(r).
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In the isotropic case:

52(r) D 2R(0) - 2R(r).

Hence, this is the relationship we are looking for.

(3) We substitute the proposed spectrum into the relation previously found:

52(r) d 4Ck"■= [C1 (1 - snkr^ k-5/3dk 
0 kr

d 4Ck"2=r2 =3 C1 (1 - sinY ) Y-5=3dY

' 4CK"2=3r2=3 1.21.

Then, we find the relation C2 ' 4.84CK which is compatible with the experimental 
measurements C2 ' 2.5 and CK ' 0.5.

I.3 2D HD Turbulence: Detailed Conservation

In the two-dimensional case, the Navier-Stokes equations become simpler and it 
is possible to demonstrate analytically the existence of a dual cascade of energy 
and enstrophy (see Chapter 3). For this, we must use the detailed conservation 
laws for these invariants. The aim of this exercise is to obtain these two laws. We 
will introduce the stream function ^ such that u = ezr ^. With the use of this 
function the zero velocity divergence condition is automatically satisfied and the 
calculations are simplified.

(1) Write the spectral expression of enstrophy conservation.
(2) Demonstrate the detailed conservation of enstrophy using the relationships 

in the triangle formed by k, p, and q.
(3) Same question for energy.
(4) Generalize the result in the case of statistically isotropic turbulence.

Solutions:
(1) In the two-dimensional case, the vorticity equation is written:

@twz C u rwz D 1wz ,

which gives in Fourier space:

@tWz (k) C vk2 wz(k) d - / u(p) • iqwz (q)<5(k - p - q)dpdq.
R4

With the introduction of the stream function, we have Wz(k) = — k2 Okk, and thus:

@t(k2Okk) C vk4i°k d - / Oppq • (ez x p)q2i°q<3(k - p - q)dpdq.
R4
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Then, the enstrophy equation is:

@t(k4|iOkj2) C 2vk6jiOkj2 d- ( k2 q2[iO*£piOq
R4

C OkkiOp*i°*]q • (ez x p)3(k - p - q)dpdq.

By using the relation Okk d iO_k and by manipulating the dummy variables p and 
q, we arrive at the expression:

@t(k4jiOkj2) C 2vk6jiOkj2 d- ( k2q2[iO&pkOq
R4

C iOkiOpiOq]q • (ez x p)5(k C p C q)dpdq

/ k2q2iOkiOpiOqq • (ez x p)5(k C p C q)dpdqC c.c.,
R4

where c.c. means the complex conjugate. We can make the equation symmetrical 
in p and q:

@t(k4jiOkj2) C 2vk61iOkj2 d 1 [ k2iOkiOpiOq[q2ez • (p x q)
2 R4
C p2ez • (q x p)](k C p C q)dpdq C c.c.

D k2S(k, p, q)(k C p C q)dpdq ,
R4

with by definition:

S(k, p, q) = [(q2 -P2) (ez • (p x q))] <[iOkiOpiOq].

This gives us expression S from Chapter 3.

(2) The detailed conservation of enstrophy requires the previous expression to 
be written in the form:

@tf k4 jiOkj2dk C 2v /* k6 jiOkj2dk d 1 [ [k2S(k, p, q) Cp2S(p, q, k)
R2 R2 3 R6

C q2S(q, k, p)](k C p C q)dkdpdq .

We are going to show that the integrand is null. With the definition of S, we have:

k2S(k, p, q) Cp2S(p, q, k) C q2S(q, k, p) d <[iOkiOpiOq]
ez • [k2(q2 - p2)(p x q) Cp2(k2 - q2)(q x k) C q2(p2 - k2)(k x p)].

Let us introduce the interior angles k , p , and q associated with the triangle 
k C p C q D 0 (see Figure A.2); by using identities in the triangle, we get:

k2S(k, p, q) Cp2S(p, q, k) C q2S(q, k, p) d <[iOkiOpiOq]
pq sin 0k[(q2 — p2)k2 C (k2 — q2)p2 C (p2 — k2)q2] d 0,

hence the detailed conservation of enstrophy.
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Figure A.2 Angles associated with a triad of interaction k C p C q D 0.

(3) To demonstrate the detailed energy conservation, we will use the stream 
function. We have (see Chapter 3):

@tjuO (k)j2 C 2k2juO(k)j2 D S(k, p, q)(k Cp C q)dpdq .
R4

One obtains:
@t[ ju(k)|2dk C 2v [ k2 ju(k)j2dk d |f [S(k, p, q) C S(p, q, k)

R2 R2 3 R6
C S(q, k, p)](k C p C q)dkdpdq,

with:

S(k, p, q) C S(p, q, k) C S(q, k, p) d <[iOkiOpiOq]
ez • [(q2 - p)(p x q) C (k2 - q2)(q x k) C (p2 - k2)(k x p)].

With the relationships in the triangle, we finally get:

S(k, p, q) C S(p, q, k) C S(q, k, p)
d <[iOkOppiOq]pq sin 0k[(q2 - P2) 

C (k2 - q2) C (p2 - k2)] d 0,

hence the detailed energy conservation.

(4) With the ensemble average, we find:

@tE(k) C 2k2E(k) D hS(k, p, q)i(k C p C q)dpdq
R4

d ( (q2 -P2)Pq ez • (ep x eq)<hiOkiOpiOqipd0qdp,
1

where the symbol 1 means that the integral is calculated by satisfying the trian­
gular relationship, and ep and eq are unit vectors oriented according to p and q, 
respectively. Al Kashi’s relation in the triangle:

q2 d k2 C p2 — 2kp cos 0q ,

gives us, at k andP fixed, qdq D kP sin 0qd0q, hence the expression:

@tE(k) C 2vk2E(k) d ( (q2 -p^-pq- ez • (ep x eq)<hiOkiOpiOqidpdq.
1 sin 0k
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If the turbulence is statistically isotropic, one can introduce the one-dimensional 
energy spectrum, E(k) D 2 kE(k), hence:

@tE(k) C 2k2E(k) D T(k),

with by definition:

T(kk) = / 2nk(q2 -p2)^
1 sin

ez • (ep x eq) <hiOkiOpiOqidpdq

T(k, p, q)dpdq .
1

Detailed energy conservation is easily demonstrated from the relationship:

T T(k)dk d - y [T(k,p, q) C T(p, q, k) C T(q, k,p)]dkdpdq.

We have for a given triad:

T(k,p, q) C T(p, q, k) C T(q, k,p) d 2nkpq[(q2 - p2) C (k2 - q2)
C (p2 - k2)]<hiOklOpiOqi d 0,

hence the detailed statistical energy conservation.
For enstrophy, we introduce the spectrum •(k) = k4hjiOkj2i and we obtain in a 

similar way:

@tQ(k) C 2vk2Q(k) d k k2 hS(k, p, q)i5(k C p C q)dpdq
R4

d y* k2(q2 -p2)spy ez • (ep x eq) <hiOkiOpiOqidpdq.

For the one-dimensional enstrophy spectrum this gives:

@t•(k) C 2vk2 •(k) d k2 T(k) d k k2 T(k,p, q)dpdq.
1

We have then:

k k2 T(k)dk d - [ [k2 T(k,p, q) C p2 T(p, q, k) C q2 T(q, k,p)]dkdpdq,
R 3 R3

with per triad:

k2T(k,p, q) Cp2T(p, q, k) C q2T(q, k,p) d 2nkpq[k2(q2 -p2) Cp2(k2 - q2)
C q2(p2 - k2)]<hiOkiOpiOqi d 0,

which demonstrates the detailed statistical conservation of enstrophy.
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II.1 MHD Model of Nonlinear Diffusion

Non-linear diffusion models are often used in turbulence because their numeri­
cal simulations are relatively easy. We have already encountered these models in 
Chapters 3 and 6. We propose here to develop such a phenomenological model for 
Alfven wave turbulence in the balanced case. The particularity of the approach is 
that it must take into account the anisotropy. In practice, the following equation is 
considered:

@E(k)-^D-r. 5(k), 
@t

where E(k) is the energy spectrum and 5(k) the associated flux.

(1) What are the conditions of validity of this equation?
(2) Alfven wave turbulence is strongly anisotropic. Using a coordinate system 

adapted to this situation, rewrite the diffusion equation.
(3) The transverse component of the energy flux is modeled as follows:

@E(k)5?(k) = - D (k) —(-), 
@k?

where D is a non-linear diffusion coefficient which remains to be determined. 
What is the dimension ofD?

(4) We call tr the characteristic time of energy transfer. Express tr as a function 
of E(k) and k?.

(5) By using the relation E(k?)f (kk)dk?dkk D E(k)dk, show that the non­
linear diffusion equation can be written as:

9 E (k?) 9 (9 (E (k?)=k?) \
------------ = C------ k6 E (kj_)--------------- ,91 9 k? ' ? v ? 9 k? ,

where C is a constant.
(6) What is the Kolmogorov-Zakharov spectrum exact solution of the equation? 

What is the direction of the cascade?
Solutions:

(1) The equation describes the physics of the inertial range in wave turbulence. 
This means that the external force acts on a larger scale than the scales of the 
inertial range and that dissipation acts on a smaller scale. At the same time, we 
need to check the wave turbulence conditions. We know that a transition to strong 
turbulence is possible at small scales. Therefore, an additional condition exists; 
this one is written rA ^ rNL, that is:

k?z kkb0,

with b0 the uniform magnetic field and z the Elsasser field.
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(2) Cylindrical coordinates are used, which are particularly well adapted to this 
problem. We obtain in the case of axisymmetric turbulence:

@E(k) _ 1 @ (k±5±(k))
@ t D ~ k? @k? .

(3) Dimensionaly we find:
k2

D-^, 
tr

with rtr the characteristic transfer time in Alfven wave turbulence.

(4) The transfer time is:
2 k|| bo _ bo

rtr ! !rNL - kz ~ k?e(k).

(5) Using the previous results, we can write:

@E(k) ~ 1 @ (k3 -1 @E(k) \ J___ @_ /k7 E(k) @E(k) \
@ t k? @ k? \ ±Ttr @ k? ) b 0 k? @ k? \ ? @ k? ) .

The axisymmetric spectrum is then introduced:

@(k?k||E(k)) ~ @(kif(k||)E(k?)) ~ k||f2(k||) @ (k6E() @(E(k?)=k?)) 

After simplification, we obtain the following non-linear diffusion equation:

@ E (k?) @ ( @d (E (k?)=k?) \
-@r D Cmi v?E(k?) @k? ),

with C a constant depending, among others, on bo and f(k| ). Note that this 
diffusion equation was deduced directly from the MHD kinetic equations by 
considering the approximation of local interactions (Galtier and Buchlin, 2o1o).

(6) To find the exact solutions, we introduce the spectrum E(k? ) D Ak?x (with 
A > o) and the flux 5? (k? ). For this analysis, we take C D 1, which means 
that we place ourselves on the characteristic time of the Alfven wave turbulence 
cascade. We get:

5? D A2(1 - x)k?xC4.

The first solution x D 1 is a spectrum with zero energy flux: this is the thermo­
dynamics solution. The second solution x D —2 corresponds to the Kolmogorov- 
Zakharov spectrum; in this case,

5? D 3A2 > 0 .

The flux is positive and therefore the cascade direct.
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Figure A.3 Solutions to the resonance conditions (left: > 1; right: < 1; top: 2 ! 2 
interactions; bottom: 3 ! 1 interactions) are always possible except for the last case 
(bottom right).

II.2 Four-Wave Interactions

Let us consider the isotropic dispersion relation ! D Ak, with A a positive con­
stant and 2 RC. In the two-dimensional case, show graphically that we can 
always find solutions for four-wave resonant interactions.

Solutions:
We shall consider three cases: > 1, D 1, and < 1. As shown graphically 
in Figures A.3 and A.4, solutions are always possible for interactions of the type 
2 ! 2:

!k C !k1 D !k2 C !k3 ,
k C ki d k2 C k3 ,

while for 3 ! 1 one cannot find solutions when < 1.



262 Appendix A Solutions to the Exercises

Figure A.4 Solutions to the resonance conditions for D 1 (left: 2 ! 2 interactions;
right: 3 ! 1 interactions). For 3 ! 1 interactions, solutions correspond to collinear
wavevector.

II.3 Gravitational Wave Turbulence: Exact Solutions

The objective of this exercise is to obtain analytically the exact solutions of grav­
itational wave turbulence. We have seen that the kinetic equation is written as 
follows:

@tNk D 6 jTkk1kk32j2 NkNk1Nk2Nk3
R6 1 2

X Nk C Nk3 " Nk1 " N2. dk1 dk2dk3 ,

with 80312 = 8(k C k3 — k1 — k2) and 803 12 = 5(wk C !k3 — ! k1 — !k2).
We must specify the symmetries verified by the geometric coefficient. We have: 

tkkk2 d 4( wkkk2 C wk3k2 C wkkk C wkk),

as well as:
Wkk3 Qkk3 Qk1k2
Wk1k2DQk1k2CQkk3.

The exact form of Qkkkk3 is not useful (see Galtier and Nazarenko, 2017); only 
information on its degree of homogeneity is important. We have:

akak3 kk3
ak1 ak2 D k1k2,

which means that this coefficient is dimensionless.
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For four-wave interactions, the Zakharov conformal transformation is written:

fl ! ^, I ! |, f3 ! |, (TZa) 
1 1 1

fl ! f3, & ! Y’ ! f1, (TZb) 
222

fl ! I1, f2 ! |2, f3 ! ^. (TZC) 
333

(1) By applying these transformations to the kinetic equation, find the isotropic 
exact solutions proposed in Chapter 9.

(2) Deduce the direction of the cascade for each solution.
(3) Give the expression for the Kolmogorov constants.

Solutions:
(1) We introduce the isotropic wave action spectrum:

Ni 2 kiNki ,

with in particular k0 k. We obtain the kinetic equation:

@tN0 D f Ckk, N0N1 N2N3 I" — C — - — 

t 0 J k1k2 0 1 2 3 [ No N3 Ni

k2

N2
0!3,12 dk1dk2dk3 ,

with:

Ckkk2 s 4. y jTk1kk32 3' dCodC1 dC2dC3,

where Ci are circles of radius ki . We will look for nontrivial solutions in power 
law. We introduce Ni D Akix (with A > 0), and the dimensionless wavenumber 

i ki=k ; we get:

@tN0 D A3k3xC1 j C11|2G;^;2|3)x(i C f31 x — fi1 x — f21 X)^03,12 df1 df2df3 .

Two trivial solutions appear:

x D 0 and x D 1

These are zero-flux (thermodynamic) solutions associated with wave action and 
energy, respectively.

To find the nontrivial solutions, we decompose the integral into four iden­
tical parts and apply the three Zakharov transformations on three integrals. In 
particular, we use the following properties:
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,1|3 TZa 51 52 _ c2, ■1|3
515 2 11 15 3 11 $ 15 2 ,
453 lZl' c2, ■5251 _ iir153
5152 ^2 531 ^2 5152 ,
13 TZc 531 _ 153
5152 ! 5 C5152 D 5 C5152 ’

obtained using the symmetries of the geometric coefficient. We obtain the 
expression:

9
\r _  1 A3i3<x +1 I 1 i5^3 i X X X \x/i । >-1-x >-1-x >-1-xxo5 11 it it

tN 0 — 4 Ak Cl C 5 1 52(515253) (1 + 53 — 51 — 52 )o03,12 d §1 d §2 d 53

/
il x V i11“x 1 s-1-x 1 s-1-x\ It. It. 11

b2r 153 (5253) (51 + 52 “ 1 “ 53 )i d51 d52d53
51 C 515 2 3 x 5 1- x 51612,03 5^4

f 2CC153 (5153)x (52 -x + 511’x - 5l~x - 1^ ,5 d51 d52d53
+ 52 C5152 >3x 11-x 52d21,30 M52 52 52

/re x v (x1_ x । 1 11- x 11- x\ 11 11 11
52 C153 (5152) (53 + 1 51 ~ 52 ) 5^5 d51 d52d5 3 .

By rearranging the terms, we find:

9
\i   1 j3l3 x +1 f z'U' 3 ill 1 W1 1 fc1- x 11- x 11- xx

tN0 — ^Ak I C5 1 52(515253) (1 + 53 - 51 - 52 )

(1 — 51 3x 2 — 52 3x 2 + 53 3x 2)^03,12d51d2dd53

— k3x +11 (x) .

Therefore, the non-zero constant flux solutions (Kolmogorov-Zakharov spectrum) 
are:

2
3

and x — — 1

(2) The first exact solution corresponds to an inverse cascade of wave action 
and the second to a direct cascade of energy. To demonstrate this association, we 
must introduce the wave action and energy fluxes, 4 and n, respectively.

In the first case, we have:

,tN0 — k3x +11 (x) — - -@4 ,

hence:
k3x+2

4( k) — ^^?I (x).3 x + 2
The constant (nonzero) wave action flux solution is obtained for x — —2/3, a 
value that cancels the integral I, hence (with L’Hospital’s rule):

r -zm I r 1 (x) 91 (z )ilim 4( k) = 2 — - lim -—— —----—| z—0,
x!-2/3 x!-2/3 3x + 2 9z 
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with z D 3x C 2. We finally obtain:

A - - — C C '§3 & A-2=^^ fc5=3 _ fc5=3 _ &==h In (S1S^ dt dt dt
S D 4 J C§ 1§2(s1s2s3) (1 C S3 si S2 ) ln I § I ^03,12dS1 dS2dS3

D -A3 J1 .

An evaluation of the sign of the integrand shows that S < 0 : the cascade is thus 
inward.

In the second case, we have E0 D kN0 and:

@tE0 D k3xC21(x) D - @5 . 
@k

Hence the relation:
k3xC3

5(k) D-^^I(x).3x C 3
The solution with constant (nonzero) energy flux is obtained for x D —1, a value 
that cancels the integral I , hence:

r_ I(n^ r„ 1 (x) @1 (z)ixlim 5( k) . " D - x1 3 3 D |zD,

with zQ D 3x C 3. We finally get the expression:

_ A 1 1A3 (t t t \-1/i । fc2 fc2 2^\
" D 4 I CS 1 S2(S1S2S3) (1 C S3 _ S1 _ S2)

(S1 ln S1 C §2 ln §2 — S3 ln ^3)^03,12dS1 d§2dS3

D A3J2 .

An evaluation of the sign of the integrand shows that 
therefore foreward.

" > 0 : the cascade is

(3) To find the expressions ofthe Kolmogorov constants, we just need to express 
A according to the flux. In the case of the wave action, we have:

N0 D Cn(-S)1=3k-2=3,

with the Kolmogorov constant, 
For energy, we obtain:

C - J “1=3CN D J1

N0 D Ce "1=3 k -1, 

1=3with the Kolmogorov constant, CE D J2

II.4 Inertial Wave Turbulence: Domain of Locality

Find the domain of locality for inertial wave turbulence.
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Solutions:
We start with the kinetic equation describing the evolution of the kinetic energy 

(see Chapter 6):

@tEk /
sspsq 1?

sk k spp k 

k?p?q?

sqq? - spP?

! k
(sk? C spp? C sqq?)2 sin

Eq(p?Ek - k?Ep)5(s!k C sp!p C sq!q) 5(k|| C p|| C q ||)dp?dq?dpHdq H,

where Ek E(k? , kk ) k?x jkkjy is the axisymmetric spectrum. By introducing 
the dimensionless wavenumbers pQ? p? =k?, qQ? qQ ?=k?, pQ| p| =k| and
qQ| q| =k| , we find the expression:

@tEk / I sspp1 (sqq? - spp?)2(s C spp? C sqq?)2
ssp sq 1? pQ ? qQ ?

~ (1 C pPPq? yq? q '(p? _ p?' ')

5(s C sppk C sqq1) 5(1 Cp| C qk)dp?dq?dp'dq', 
pQ ? qQ?

for which we will evaluate the convergence in three regions of nonlocality.

Region A: pQ? D 1 C rcos , qQ? D rsin, with r 1 and 2 [=4, 3=4].
At leading order, we have (we use the other delta function):

5(s C spp? C sPqjq?) D 5(sr cos ft C sqqk=(r sin ft)) when s = sp,
5(s C spp?? C sqq??) d 5(2 C sqqk=(r sin ft)) when s = -sp,
(sqq? - spp?)2 = 1,
(s C sppQ ? C sqqQ? )2 D 4 when s D sp ,
(s C spp? C sqq?)2 = r2(sq sin ft — s cos ft)2 when s = — sp,
^1 — (—'p/Q q? ) = rpsin2 ft — cos2 ft.

These estimates lead to q\\ = — ssqr2 cos ft sin ft, pk = — 1 when s = sp, and to 
qk = —2sqr sin ft, pk = — 1 when s = — sp. Note that the use of the integrations 
over pQ k and qQk leads to the emergence of the factor rj sin ftj in both cases.

For s = sp , we find the following contribution to the kinetic equation:
pR p3^/4 1 q---------------------------

2 2 ------ 2— sin2 ft — cos2 ft r j sin ft j(r sin ft)x
0 /4 r2 sin2 ft

(r2 j sin ft cos ft j)y(1 C r cos ft — (1 C r cos ft)x)rdrdft ,

which gives:
/’R 3 3^/4 q---------------------------
r I r?+2y+2/sin2 ft — cos2 ft (sin ft)x-2j cos ft jy j sin ft jy +1 cos ft drdft .
0 /4
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The condition for convergence is x C 2y > —3, however, because of the sym­
metry in the integral is zero. The next order correction leads to the condition 
x C 2y > —4.

For .v d — sp, we find the following contribution:

/• R f'4 1 2z . . ..2
r 2 ------ 2— r2 (sq sin fl — s cos fl) rJ sin fl — cos2 fl r j sin fl j

1 — sin2 fl/ cos2 fl r j cos fl j

0 =4 r2 sin2
(r sin fl)x (r j sinfl j)y(1 C r cos fl — (1 C r cos fl)x)rdrdfl , 

which gives (no cancellation from is expected):
ZR 

rxCyC4dr.
0

We find the condition for convergence x C y > —5.

Region B: p? = r cos fl, q? = 1 C r sin fl, with r ^ 1 and fl 2 [—^/4, +^/4], 
At leading order, we have (we use the other delta function):

<$(s C Sppp? C Sqqq?) d S(sqr sin fl C spp\\/(r cos fl)) when s d sq,

<$(s C spp? C sqq?) d S(2 C sppk/(r cos fl)) when s d -sq,
(sqq? - spp?)2 d 1,
(s C sppQ? C sqqQ ?)2 D 4 when s D sq ,
(s C spp? C sqq?)2 d r2(sp cos fl — s sin fl)2 when s d — sq,

1 - (1C%q? ) d P1 - sin2 fl/ cos2 fl.

These estimates lead to p d — sspr2 cos fl sin fl, q\ d —1 when s d sq, and to 
p\ d —2spr cos fl, q\\ d — 1 when s d — sq. Note that the use of the integrations 
over pQ \ and qQ \ leads to the emergence of the factor rj cosflj in both cases.

For s D sq , we find the following contribution to the kinetic equation:

fR C Cn/4 r2 cos fl sin fl 
0 J-^/4 r2 cos2 fl

(r cos fl — (r cos fl)x)(r2 j cos fl sin fl j)y)rdrdfl ,

which gives for the problematic integral:
z»R p C~/4 q
I I rx+2y+2 sin fl (cos fl) x CyJ 1 — sin2 fl / cos2 fl j sin fl j ydrdfl .
0 J-n/4

The condition for convergence is x C 2y > —3, however, because of the sym­
metry in fl the integral is zero. The next order correction leads to the condition 
x C 2y > —4.

For s d — sq, we find the following contribution:

RZ pCn/4 r cos fl / I ““ 
2 2 ---- ^y1 “ sin2 fl/ cos2 fl r j cos fl j
'0 J_w/4 r2 cos2 flv
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r2(sp cos 0 — s sin 0)2(r cos 0 — (r cos 0)x)(r j cos 0 j)y)rdrd0 , 

which gives for the problematic integral (no cancellation from is expected):
ZR 

rxCyC3dr.
0

We find the condition for convergence x C y > —4 which is stronger than for 
region A.

Region C: p? d (r1 C r2)/2, q? d (r1 — r2)/2, with r1 ^ 1 and r2 2 [—1, C1].
At leading order, we have (we use the other delta function):

<Xs C spp? C sqq?) d 2(s “ 4Pllr2/r12) when sp d Sq,
<Xs C spp? C sqq?) d 5(s C 4PhAi) when sp d ~sq,
(sqq? - spp?)2 d r22 when sp d sq,
(sqq? - spp?)2 d r2 when sp d -sq,
(s C sppQ ? C sqqQ?)2 D 12 when sp D sq,
(s C spp? C sgq?)2 d r22 when sp d -sq,
y1 - (^CPPq?) D q1 - r22 - 2r2/r1 C 2r2/r1 D q1 - r22.

These estimates lead to p| d sr2/(4r2), q\\ d —p| when sp d sq, and to p| d

—s r1/4, qi d p| when sp d — sq. Note that the use of the integrations over p| and 
qi leads to the emergence of a factor jr2/r2 j and jr1 j for sp d sq and sp d — sq, 
respectively.

For sp D sq , we find the following contribution to the kinetic equation:

C+1 C+1 r2 1 j r2 r 2 r,2
/ I rL—T^r^h _ t2txi r1 iy^ _ -,-xi r1 i.yA r1
4 4 4 r2 r1 V 1 r2 r1 j j (r1 r1 j j A i dr1 dr2 ,Jr J-1 r2 r1 r2 r2 jr2 j

which gives for the problematic integral:
C C1 C C1 q------------ -r/ 11 r1 CnV1“"2 j1d r1d r2.

The condition for convergence is x C 2y < —4, however, because of the sym­
metry in r2 the integral is zero. The next order correction leads to the condition 
x C 2y < —3.

For sp d — sq, we find the following contribution:

C C1 C C1 1 i-------------
I It1 1-21-2/1 x^ iy^ _xu iy\i_y y r1 4 r1 r2 y 1 r2 r1 jr1 j (r1 r1 jr1 j )jr1 jdr1 dr2 ,

which gives for the problematic integral (no cancellation from r2 is expected):
C C1 C C1 j

J / rx Cy C1 r2y1 — r22 d r1 d r2 .
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We find the condition for convergence x C y < —2.
In conclusion, the conditions of locality (convergence of integrals) are:

—4 < x C 2y < —3 

—4 < x C y < —2 .

The Kolmogorov-Zakharov spectrum corresponds to x d — 5=2 and y d — 1=2 
which places this solution exactly in the middle of the intervals of convergence.
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Formulary

Vector Identities

Multiple products:

(A x B) • (C x D) d (A • C)(B • D) - (A • D)(B • C) 
A(BC) DB(CA)D C(AB)

A x (B x C) d B(A • C) - C(A • B)

Rules for products with derivatives:

r(fg) D f(rg)Cg(rf)
r(A •B) D A x (rx B)CB x (rx A)C(A • r)BC(B • r)A 
v- (fA) D f (v- A) C a • (rf)

r • (A x B) D B • (r x A) - A • (r x B)
r X (f A) D f (r x A) - a x (rf)

r x (A x b) d (b • r)A - (A • r)b c A(r • b) - B(r • A)

Rules for second-order derivatives:

r • (r x A) D 0 
rx(rf)D0

r x (r x A) d r(r • A) - ia

Vectorial Derivatives

We list here the vectorial derivatives in the three usual coordinate systems (see 
Figure B.1).

271
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Cartesian coordinates:
d' d dx ex C dy ey C dz ez
dV D dx dy dz
Gradient: r9 d 9ex C 3-9ey C 3-9ez
Divergence: r • u d @@x C @y C @@z 

Rotational: r x u d (@@y - @zy) ex C (@z - 

Scalar Laplacian: 19 d @-9 C @79 C '3-9- @x2 @y2 @z2

Vectorial case: 1u D 1uxex C 1uyey C 1uzez

U Uz \ I (@uy __ @ Ux \
3x J ey C \ 3x 3y J ez

Cylindrical coordinates:
d' d dr er C rd3 eg C dz ez
dV D r dr d dz
Gradient: r9 d 39er C r 39eg C 39ez
Divergence: r • u D r 3(rur) C r33 C 3u
Rotational: rX u D (r -33 u^ er C ~U U@^ eg C r (rg-r (ru3 ) — -U^ ez

Scalar L anlacian- AW _  1 3 A.39 \ । 1 329 i 329Scalar Laplacian: 19 D r 3r rr3^) C r- 3^ C -z-y-

Vectorial case: 1u D (1 Ur - U, - 2 ) er C (1 ue - @2 C 2@ur) eg C
1Uzez
u • r b D (u • rbr - u3^ er C (u • rbe C u3^) eg C (u • rbz)ez

Spherical coordinates:
d' D dr er C rd3 eg C r sin 3d$ e^
dV D r2 sin e dr de d
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Gradient: V9 — @9e, C i 39e, C . 9e0
Divereence- V u - -13(r2Ur) + 1 3(sin6 u6) + 1Divergence: V u — r2 3r C r sin 6 36 C r sin 6 32

Rotational: V x u — ( u - ) >.,. C 1 (;sLf % _ u) „ C

1 ( 3 (ru6 ) 3 Ur \
r 3r 36 ) e0
Scalar Laplacian: 19 — -y(r2 39) C 2 1 X (sinO39) C 2 12 „ 3''9

1 r2 3r \ 3r 7 1 r2 sin 6 36 \ 36 ) r2 sin2 6 322

Vectorial case: Au — (lur - 2 (^X" 1 C s^ C ur)) erC

(lu6 C -2 (^^ - u^~ - 2-^ )) e,C
\ 6 r2 \ 36 sin2 6 sin2 6 32 J J u
(a u 2 C r?

e^ u • V b 

(u • Vb^ C

2 2 3ur , 2 cos 6 3u6 u2 \ \ 
(sin 6 32 C sin2 6 32 sin2 6j)

— (u • Vbr - u6b6 +ru2b2 ) er C 
u2brCu2b6 cot 6 \

r ) e0

ug br—u2b2 cot 6 
r e, Cu • V b 6 C

Fundamental Theorems

• Gradient theorem:
fb(Vf) • d' — f (b) - f (a) 
a

• Divergence (or Ostrogradsky) theorem:

A • d S

Rotational (or Stokes) theorem:
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eddy, 15
eddy turbulence, 12, 69, 78
eddy turnover time, 39
EDQNM, 7, 79, 161
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elastic wave, 110, 243
electron MHD, 213
Elsasser variable, 190
energy cascade, 4
energy conservation, 31
energy flux, 74, 89, 145, 169
energy spectrum, 5, 70, 74
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ensemble average, 17, 31, 70, 119, 136
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enstrophy flux, 90
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