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Preface
This book represents a substantial revision of the first edition which was published in 
1971. Most of the topics of the original edition have been retained, but in a number of 
instances the material has been reworked so as to incorporate alternative approaches to 
these topics that have appeared in the mathematical literature in recent years.

The book is intended as a text, appropriate for use by advanced undergraduates or gradu
ate students who have taken a course in introductory real analysis, or as it is often called, 
advanced calculus. No background in complexvariables is assumed, thus making the text 
suitable for those encountering the subject for the first time. It should be possible to 
cover the entire book in two semesters.

The list below enumerates many of the major changes and/or additions to the first edition.

1. The relationship between real-differentiability and the Cauchy-Riemann equations.

2. J.D. Dixon’s proof of the homology version of Cauchy’s theorem.

3. The use of hexagons in tiling the plane, instead of squares, to characterize simple 
connectedness in terms of winding numbers of cycles. This avoids troublesome details 
that appear in the proofs where the tiling is done with squares.

4. Sandy Grabiner’s simplified proof of Runge’s theorem.

5. A self-contained approach to the problem of extending Riemann maps of the unit disk 
to the boundary. In particular, no use is made of the Jordan curve theorem, a difficult 
theorem which we believe to be peripheral to a course in complexanalysis. Several 
applications of the result on extending maps are given.

6. D.J. Newman’s proof of the prime number theorem, as modified by J. Korevaar, is 
presented in the last chapter as a means of collecting and applying many of the ideas and 
results appearing in earlier chapters, while at the same time providing an introduction to 
several topics from analytic number theory.

For the most part, each section is dependent on the previous ones, and we recommend 
that the material be covered in the order in which it appears. Problem sets follow most 
sections, with solutions provided (in a separate section).
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We have attempted to provide careful and complete explanations of the material, while 
at the same time maintaining a writing style which is succinct and to the point.
© Copyright 2004 by R.B. Ash and W.P. Novinger. Paper or electronic copies for non
commercial use may be made freely without explicit permission of the authors. All other 
rights are reserved.



Complex Variables

by Robert B. Ash and W.P. Novinger

Table Of Contents
Chapter 1: Introduction
1.1 Basic Definitions
1.2 Further Topology of the Plane
1.3 Analytic Functions
1.4 Real-Differentiability and the Cauchy-Riemann Equations
1.5 The Exponential Function
1.6 Harmonic Functions

Chapter 2: The Elementary Theory
2.1 Integration on Paths
2.2 Power Series
2.3 The Exponential Function and the Complex Trigonometric Functions
2.4 Further Applications

Chapter 3: The General Cauchy Theorem
3.1 Logarithms and Arguments
3.2 The Index of a Point with Respect to a Closed Curve
3.3 Cauchy’s Theorem
3.4 Another Version of Cauchy’s Theorem

Chapter 4: Applications of the Cauchy Theory
4.1 Singularities
4.2 Residue Theory
4.3 The Open mapping Theorem for Analytic Functions
4.4 Linear Fractional Transformations
4.5 Conformal Mapping
4.6 Analytic Mappings of One Disk to Another

1



2

4.7 The Poisson Integral formula and its Applications
4.8 The Jensen and Poisson-Jensen Formulas
4.9 Analytic Continuation

Chapter 5: Families of Analytic Functions
5.1 The Spaces A(Q) and C(Q)
5.2 The Riemann Mapping Theorem
5.3 Extending Conformal Maps to the Boundary

Chapter 6: Factorization of Analytic Functions
6.1 Infinite Products
6.2 Weierstrass Products
6.3 Mittag-Leffler’s Theorem and Applications

The Prime Number Theorem
7.1 The Riemann Zeta Function
7.2 An Equivalent Version of the Prime Number Theorem
7.3 Proof of the Prime Number Theorem



Chapter 1

Introduction

The reader is assumed to be familiar with the complex plane C to the extent found in 
most college algebra texts, and to have had the equivalent of a standard introductory 
course in real analysis (advanced calculus). Such a course normally includes a discussion 
of continuity, differentiation, and Riemann-Stieltjes integration of functions from the real 
line to itself. In addition, there is usually an introductory study of metric spaces and the 
associated ideas of open and closed sets, connectedness, convergence, compactness, and 
continuity of functions from one metric space to another. For the purpose of review and 
to establish notation, some of these concepts are discussed in the following sections.

1.1 Basic Definitions
The complex plane C is the set of all ordered pairs (a, b) of real numbers, with addition 
and multiplication defined by

(a, b)+(c, d)=(a + c, b + d) and (a, b)(c, d)=(ac - bd, ad + bc).

If i =(0, 1) and the real number a is identified with (a, 0), then (a, b)=a + bi. The 
expression a + bi can be manipulated as if it were an ordinary binomial expression of real 
numbers, sub ject to the relation i2 = -1. With the above definitions of addition and 
multiplication, C is a field.

If z = a + bi, then a is called the real part of z , written a =Rez , and b is called the 
imaginary part of z , written b =Imz . The absolute value or magnitude or modulus of z 
is defined as (a2 + b2)1/2 . A complex number with magnitude 1 is said to be unimodular. 
An argument of z (written arg z) is defined as the angle which the line segment from (0, 0) 
to (a, b) makes with the positive real axis. The argument is not unique, but is determined 
up to a multiple of 2n.

If r is the magnitude of z and 6 is an argument of z, we may write

z = r (cos 6 + i sin 6)

and it follows from trigonometric identities that

|z1z2| = |z1||z2| and arg(z1z2) = arg z1 - arg z2
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2 CHAPTER 1. INTRODUCTION

(that is, if 6k is an argument of zk,k = 1, 2, then 6 1 + 62 is an argument of z 1 z2). If 
z2 = 0, then arg(z1/z2) = arg(z1) + arg(z2). If z = a + bi, the conjugate of z is defined as 
z = a — bi, and we have the following properties:

Izl = Izl, arg z = — arg z, z 1 + z 2 = z 1 + z 2, z 1 — z 2 = z 1 — z 2,

z 1 z 2 = z 1 z 2, Re z = ( z + z) / 2, Im z = ( z — z) / 2 i, zz = \z\ 2.

The distance between two complex numbers z1 and z2 is defined as d(z1,z2) = |z1 — z2 |. 
So d(z1, z2) is simply the Euclidean distance between z1 and z2 regarded as points in 
the plane. Thus d defines a metric on C, and furthermore, d is complete, that is, every 
Cauchy sequence converges. If z 1, z2,... is sequence of complex numbers, then zn ^ z if 
and only if Re zn ^ Re z and Im zn ^ Im z. We say that zn — to if the sequence of real 
numbers \zn\ approaches + to.

Many of the above results are illustrated in the following analytical proof of the triangle 
inequality:

\z 1 + z 21 < lz 11 + lz 21 for all z 1 ,z 2 G C.

The geometric interpretation is that the length of a side of a triangle cannot exceed the 
sum of the lengths of the other two sides. See Figure 1.1.1, which illustrates the familiar 
representation of complex numbers as vectors in the plane.

Figure 1.1.1

The proof is as follows:

Iz 1 + z2 |2 = (z 1 + z2)(z 1 + z2) = Iz 1 |2 + Iz2 |2 + z 1z2 + z 1z2

= Iz 1 |2 + Iz2 |2 + z 1z2 + z 1z2 = Iz 1 |2 + Iz2 |2 + 2 Re(z 1z2)

< Iz 1 |2 + Iz2 |2 + 2Iz 1z2 | = (Iz 1 | + Iz2 |)2.

The proof is completed by taking the square root of both sides.
If a and b are complex numbers, [a, b] denotes the closed line segment with endpoints 

a and b.Ift1 and t2 are arbitrary real numbers with t1 <t2 , then we may write

t — t1
[a, b] = {a +  ----- —(b — a) : 11 < t < 12 }.

t2 — t1

The notation is extended as follows. If a1 ,a2 ,... , an+1 are points in C, a polygon from 
a1 to an+1 (or a polygon joining a1 to an+1) is defined as

n

[aj,aj+1],
j=1

often abbreviated as [a1,... , an+1].
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1.2 Further Topology of the Plane

Recall that two subsets S1 and S2 of a metric space are separated if there are open sets 
G 1 2 S 1 and G2 2 S2 such that G 1 Cl S2 = G2 Cl S 1 = 0, the empty set. A set is 
connected iff it cannot be written as the union of two nonempty separated sets. An open 
(respectively closed) set is connected iff it is not the union of two nonempty disjoint open 
(respectively closed) sets.

1.2.1 Definition

A set S C C is said to be polygonally connected if each pair of points in S can be joined 
by a polygon that lies in S.

Polygonal connectedness is a special case of path (or arcwise) connectedness, and it 
follows that a polygonally connected set, in particular a polygon itself, is connected. We 
will prove in Theorem 1.2.3 that any open connected set is polygonally connected.

1.2.2 Definitions

If a G C and r > 0, then D(a, r) is the open disk with center a and radius r; thus 
D(a, r) = {z : \z — a| < r}. The closed disk {z : \z — a| < r} is denoted by D(a, r), and 
C(a, r) is the circle with center a and radius r.

1.2.3 Theorem

If Q is an open subset of C, then Q is connected iff Q is polygonally connected.

Proof. If Q is connected and a G Q, let Q1 be the set of all z in Q such that there is a 
polygon in Q from a to z, and let Q2 = Q\Q1 .Ifz G Q1, there is an open disk D(z, r) C Q 
(because Q is open). If w G D(z, r), a polygon from a to z can be extended to w, and 
it follows that D(z, r) C Q1, proving that Q1 is open. Similarly, Q2 is open. (Suppose 
z G Q2, and choose D(z, r) C Q. Then D(z, r) C Q2 as before.)

Thus Q1 and Q2 are disjoint open sets, and Q1 = 0 because a G Q1 . Since Q is 
connected we must have Q2 = 0, so that Q1 = Q. Therefore Q is polygonally connected. 
The converse assertion follows because any polygonally connected set is connected. &

1.2.4Definitions

A region in C is an open connected subset of C. A set E C C is convex if for each pair 
of points a, b G E, we have [a, b] C E; E is starlike if there is a point a G E (called a 
star center) such that [a, z] C E for each z G E. Note that any nonempty convex set is 
starlike and that starlike sets are polygonally connected.
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1.3 Analytic Functions
1.3.1 Definition
Let f : Q — C, where Q is a subset of C. We say that f is complex-differentiable at the 
point z0 G Q if for some A G C we have

lim f (z0 + h) ~ f (z0)
h—— 0 h

(1)

or equivalently,

lim f(z) - f (z0) = A. (2)
z—z0 z - z0

Conditions (3), (4) and (5) below are also equivalent to (1), and are sometimes easier to 
apply.

l f (z0 + hn) - f (z0) _ alim -----------=-------  — a
n — tt hn

(3)

for each sequence {hn} such that z0 + hn G Q \ {z0} and hn — 0 as n — ^.

lim f(zn) - f (z0) — A (4)
n—tt zn - z0

for each sequence {zn} such that zn G Q \{z0} and zn — z0 as n — ^.

f (z) — f (z0) + (z - z0)(A + e(z)) (5)

for all z G Q, where e : Q — C is continuous at z0 and e (z0) — 0.
To show that (1) and (5) are equivalent, just note that e may be written in terms of 

f as follows:

f f(z)-f (z0) - a if z — z0
e(z)%> z-z0 -f — 0

0ifz — z0.

The number A is unique. It is usually written as f'(z0), and is called the derivative of f 
at z0.

If f is complex-differentiable at every point of Q, f is said to be analytic or holomorphic 
on Q. Analytic functions are the basic objects of study in complex variables.

Analyticity on a nonopen set S C C means analyticity on an open set Q D S. In 
particular, f is analytic at a point z0 iff f is analytic on an open set Q with z0 G Q. If f1 

and f2 are analytic on Q, so are f1 + f2, f1 - f2, kf1 for k G C, f1f2, and f1 /f2 (provided 
that f2 is never 0 on Q). Furthermore,

( f 1 + f2)' — f 1 + f2, (f 1 - f2)' — f 1 - f2, (kf 1)' — kf 1

+ ffA' f2 f 1 - f 1 f2
( J 1 J 2) — J 1 f 2 + f 1 f 2, f^~ J — -------f2------
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The proofs are identical to the corresponding proofs for functions from R to R.
Since -dZ(z) = 1 by direct computation, we may use the rule for differentiating a 

product (just as in the real case) to obtain

— (zn) = nzn-1, n = 0, 1, .. . 
dz

This extends to n = -1, -2,... using the quotient rule.
If f is analytic on Q and g is analytic on f (Q) = {f (z) : z G Q}, then the composition 

g ◦ f is analytic on Q and

d-g (f (z )) = g' (f (z) f' (z) 
dz

just as in the real variable case.
As an example of the use of Condition (4) of (1.3.1), we now prove a result that will 

be useful later in studying certain inverse functions.

1.3.2 Theorem
Let g be analytic on the open set Q1 , and let f be a continuous complex-valued function 
on the open set Q. Assume
(i) f (Q) C Q1,
(ii) g' is never 0,
(iii) g(f(z)) = z for all z G Q (thus f is 1-1).
Then f is analytic on Q and f' = 1 / (g' ◦ f).
Proof. Let z0 G Q, and let {zn} be a sequence in Q \ {z0} with zn ^ z0. Then

f ( zn ) - f ( z 0 ) = f ( zn ) - f ( z o) = T g ( f ( zn )) ~ g ( f ( z 0)) 1 - 1

zn - z0 g(f (zn)) - g(f (z0)) f (zn) - f (zo) _ .

(Note that f (zn) = f(z0) since f is 1-1 and zn = z0.) By continuity of f at z0, the
expression in brackets approaches g'(f (z0)) as n ^ <x>. Since g'(f (z0)) = 0, the result 
follows. ^

1.4 Real-Differentiability and the Cauchy-Riemann Equa
tions

Let f : Q ^ C, and set u = Re f, v = Im f. Then u and v are real-valued functions on Q 
and f = u + iv . In this section we are interested in the relation between f and its real 
and imaginary parts u and v . For example, f is continuous at a point z0 iff both u and v 
are continuous at z0 . Relations involving derivatives will be more significant for us, and 
for this it is convenient to be able to express the idea of differentiability of real-valued 
function of two real variables by means of a single formula, without having to consider 
partial derivatives separately. We do this by means of a condition analogous to (5) of 
(1.3.1).
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Convention
From now on, Q will denote an open subset of C, unless otherwise specified.

1.4.1 Definition
Let g : Q ^ R. We say that g is real-differentiable at z0 = x0 + iy0 G Q if there exist 
real numbers A and B, and real functions e 1 and e2 defined on a neighborhood of (x0, y0), 
such that e 1 and e2 are continuous at (x0,y0), e 1(x0,y0) = e2(x0,y0) = 0, and

g(x,y) = g(x0,y0) + (x — xo)[A + e 1(x,y)] + (y - y0)[B + e2(x,y)]

for all (x,y) in the above neighborhood of (x0, y0).
It follows from the definition that if g is real-differentiable at (x0, y0 ), then the partial 

derivatives of g exist at (x0 ,y0) and

||(xo, yo) = A, dy (x0, y0) = B.

If, on the other hand, dx and dy exist at (x0, y0) and one of these exists in a neighborhood 
of (x0, y0 ) and is continuous at (x0, y0 ), then g is real-differentiable at (x0, y0 ). To verify 
this, assume that dx is continuous at (x0,y0), and write

g(x,y) - g(x0,y0)=g(x,y) - g(x0, y) + g(x0, y) - g(x0, y0).

Now apply the mean value theorem and the definition of partial derivative respectively 
(Problem 4).

1.4.2 Theorem
Let f : Q ^ C ,u = Re f,v = Im f. Then f is complex-differentiable at (x 0, y 0) iff u and 
v are real-differentiable at (x0, y0 ) and the Cauchy-Riemann equations

du dv dv dv
dx dy, dx dy

are satisfied at (x0 ,y0 ). Furthermore, if z0 = x0 + iy0 , we have

f' (z 0) = tt (x 0 ,y 0) + i^v (x 0 ,y 0) = Tv (x 0 ,y 0) — i^r (x 0 ,y 0). 
dx dx dy dy

Proof. Assume f complex-differentiable at z0, and let e be the function supplied by (5) 
of (1.3.1). Define e 1(x,, y) = Ree(x, y), e2(x, y) = Ime(x, y). If we take real parts of both 
sides of the equation

f (x ) = f (z 0) + ( z — z 0)( f' (z 0) + e (z)) (1)

we obtain

u(x,y) = u(x0, y0) + (x — x0)[Re f'(z0) + e 1(x,y)]

+ (y — y o)[ — Im f' (z 0) —e 2( x,y)].
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It follows that u is real-differentiable at (x0 ,y0) with

dX (x 0 ,y 0) = Ref' (z 0), ^u (x 0 ,y 0) = - Im f' (z o) • (2)

Similarly, take imaginary parts of both sides of (1) to obtain

v(x,y) = v(x0,y0) + (x - x0)[Im f'(z0) + e2(x,y)]

+ (y - y0)[Re f'(z0) + e 1(x,y)]

and conclude that

— (x 0 ,y 0) = Im f' (z 0), 
dx

dv I> r/z
^-(x0,y0) = Ref (z0)• dy

(3)

The Cauchy-Riemann equations and the desired formulas for f'(z0) follow from (2) and 
(3).

Conversely, suppose that u and v are real-differentiable at (x0, y0) and satisfy the 
Cauchy-Riemann equations there. Then we may write equations of the form

u(x,y)=u(x0,y0)+(x

+(y

v(x,y)=v(x0,y0)+(x

+(y

..Uu. . .
x 0)^- (x 0 ,y 0) + e 1( x,y)] dx

.,Uu, . . ...
y 0)[ dy(x 0 ,y 0)+e 2(x,y)],

dvv /
x 0)^- (x 0 ,y 0) + e 3( x,y)] dx

dvv /
y 0 )h~( x 0 ,y 0) + e 4( x,y)] • 

dy

(4)

(5)

Since f =u + iv, (4) and (5) along with the Cauchy-Riemann equations yield

f(z) = f(z0) + (z dUUf A . -dv , A . / A!
z 0)[ dx (x 0 ,y 0) + idx (x 0 ,y 0) + e (z)]

where, at least in a neighborhood of z0,

e(z) =
x - x0

z - z 0
[ei(x,y) + ie3(x, y)] +

y0

z - z0
[e2(x, y) + ie4(x, y)] if z = z0; e(z0) = 0•y

It follows that f is complex-differentiable at z0. &

1.5 The Exponential Function
In this section we extend the domain of definition of the exponential function (as normally 
encountered in calculus) from the real line to the entire complex plane. If we require that 
the basic rules for manipulating exponentials carry over to the extended function, there is 
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only one possible way to define exp(z) for z = x + iy G C. Consider the following sequence 
of “equations” that exp should satisfy:

exp(z) = exp(x + iy)
“ = ” exp(x) exp(iy)

[ ('iy )2 \“ = ” e^ 1 + iy + + "J

x x IY1 y2 x- y4 A j_ • y y3 . y5 Y
x x= e IV 2! + 4! ) + i\y 3! + 5! J]

“=”ex (cos y + i sin y).

Thus we have only one candidate for the role of exp on C.

1.5.1 Definition
If z = x+iy G C, let exp(z) = ex (cosy+i sin y). Note that if z = x G R, then exp(z) = ex 

so exp is indeed a extension of the real exponential function.

1.5.2 Theorem
The exponential function is analytic on C and -Z exp(z) = exp(z) for all z.

Proof. The real and imaginary parts of exp(x + iy) are, respectively, u(x,y)=ex cos y 
and v(x,y)=ex sin y. At any point (x0, y0), u and v are real-differentiable (see Problem 
4) and satisfy the Cauchy-Riemann equations there. The result follows from (1.4.2). ^

Functions such as exp and the polynomials that are analytic on C are called entire 
functions.

The exponential function is of fundamental importance in mathematics, and the in
vestigation of its properties will be continued in Section 2.3.

1.6 Harmonic Functions
1.6.1 Definition
A function g : Q ^ R is said to be harmonic on Q if g has continuous first and second 
order partial derivatives on Q and satisfies Laplace’s equation

d2 g + d2 g =0
dx 2 dy 2

on all of Q.

After some additional properties of analytic functions have been developed, we will be 
able to prove that the real and imaginary parts of an analytic function on Q are harmonic 
on Q. The following theorem is a partial converse to that result, namely that a harmonic 
on Q is locally the real part of an analytic function.
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1.6.2 Theorem
Suppose u : Q ^ R is harmonic on Q, and D is any open disk contained in Q. Then there 
exists a function v : D ^ R such that u + iv is analytic on D.

The function v is called a harmonic conjugate of u.
prynd C? /aki <i (I pp flip <1 i ffpppnl Id 1 /^y/r I dsrld ppp d —  du — du ^Iipipp 7/ yrr oof. xsivj.er tj..ie vj.iJ..Lerexj.ti^ax cx^x । ^^Uty, wi..Lere d , ^^Q d . u^i^xce u> is
harmonic, P and Q have continuous partial derivatives on Q and = dQ. It follows 
(from calculus) that Pdx + Qdy is a locally exact differential. In other vords, there is a 
function v : D ^ R such that dv = Pdx + Qdy. But this just means that on D we have

dv = P = — du and dv = Q = du. 
dx dy dy dx

Hence by (1.4.2) (and Problem 4), u + iv is analytic on D.

Problems
1. Prove the parallelogram law |z1 + z2 |2 + |z1 - z2 |2 = 2[|z1 |2 + |z2 |2] and give a 

geometric interpretation.
2. Show that |z1 + z2 | = |z1 | + |z2 | iff z1 and z2 lie on a common ray from 0 iff one of 

z1 or z2 is a nonnegative multiple of the other.
3. Let z 1 and z2 be nonzero complex numbers, and let 6,0 < 6 < n, be the angle 

between them. Show that
(a) Re z 1 z2 = lz 1 ]]z21 cos 6, Imz 1 z2 = ±lz 1 ]]z21 sin6, and consequently
(b) The area of the triangle formed by z 1, z2 and z2 — z 1 is | Im z 1 z21/2.

4. Let g : Q ^ R be such that dx and dg exist at (x0, y0) e Q, and suppose that one 
of these partials exists in a neighborhood of (x0, y0) and is continuous at (x0, y0). 
Show that g is real-differentiable at (x0, y0).

5. Let f (x) = z,, z e C. Show that although f is continuous everywhere, it is nowhere 
differentiable.

6. Let f(z) = |z|2,z e C. Show that f is complex-differentiable at z = 0, but nowhere 
else.

7. Let u(x, y) y Ixyl, (x,y) e C. Show that and Qu both exist at (0,0), but u is
not real-differentiable at (0,0).

8. Show that the field of complex numbers is isomorphic to the set of matrices of the 
form

ab
-ba

with a, b e R.
9. Show that the complex field cannot be ordered. That is, there is no subset P C C 

of “positive elements” such that
(a) P is closed under addition and multiplication.
(b) If z e P, then exactly one of the relations z e P, z =0, -z e P holds.
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10. (A characterization of absolute value) Show that there is a unique function a : C ^ R 
such that
(i) a(x) = x for all real x > 0;
(ii) a(zw) = a(z)a(w), z, w G C;
(iii) a is bounded on the unit circle C(0, 1).

Hint: First show that a(z)=1for|z| =1.

11. (Another characterization of absolute value) Show that there is a unique function 
a : C ^ R such that
(i) a(x)=x for all real x > 0;
(ii) a(zw) = a(z)a(w),z,w G C;
(iii) a(z + w) < a(z) + a(w), z,w G C.

12. Let a be a complex number with |a| < 1. Prove that

z-a
1 — az

=1 iff |z| =1.

13. Suppose z G C,z = 0. Show that z + 1 is real iff Imz = 0 or \z\ = 1.

14. In each case show that u is harmonic and find the harmonic conjugate v such that 
v(0,0) = 0.
(i) u(x,y)=ey cos x;
(ii) u(x,y)=2x — x3 + 3xy  .2

15. Let a, b G C with a = 0, and let T (z)=az + b, z G C.
(i) Show that T maps the circle C(z0, r) onto the circle C(T (z0), r|a|).
(ii) For which choices of a and b will T map C(0, 1) onto C(1 + i, 2)?
(iii) In (ii), is it possible to choose a and b so that T(1) = —1+3i?

16. Show that f(z) = eRez is nowhere complex-differentiable.

17. Let f be a complex-valued function defined on an open set Q that is symmetric with 
respect to the real line, that is, z G Q implies z G Q. (Examples are C and D(x, r) 
where x G R.) Set g(z) = f (z), and show that g is analytic on Q if and only if f is 
analytic on Q.

18. Show that an equation for the circle C(z0, r) is zz — z0z — z0z + z0z0 = r2.

19. (Enestrom’s theorem) Suppose that P(z) = a0 + a 1 z + • • • + anzn, where n > 1 and 
a0 > a 1 > a2 > • • • > an > 0. Prove that the zeros of the polynomial P(z) all lie 
outside the open unit disk D(0, 1).

Hint: Look at (1 — z)P(z), and show that (1 — z)P (z) = 0 implies that a0 = 
(a0 — a 1)z + (a 1 — a2)z2 + • • • + (an- 1 — an)zn + anzn+1, which is impossible for 
|z| < 1.

20. Continuing Problem 19, show that if aj-1 >aj for all j, then all the zeros of P(z) 
must be outside the closed unit disk D(0, 1).

Hint: If the last equation of Problem 19 holds for some z with |z|<1, then z =1.



Chapter 2

The Elementary Theory

2.1 Integration on Paths
The integral of a complex-valued function on a path in the complex plane will be intro
duced via the integral of a complex-valued function of a real variable, which in turn is 
expressed in terms of an ordinary Riemann integral.

2.1.1 Definition
Let y : [a,b] ^ C be a piecewise continuous function on the closed interval [a, b] of reals. 
The Riemann integral of y is defined in terms of the real and imaginary parts of y by

R p (t) dt = R Re p (t) dt + i R Im p (t) dt. 
aa a

2.1.2 Basic Properties of the Integral
The following linearity property is immediate from the above definition and the corre
sponding result for real-valued functions:

R (X~(t)+ /o’(t)) dt = A R <p(t) dt + ^ R 0(t) dt 
a aa

for any complex numbers X and p,. A slightly more subtle property is

[ <p(t) dt < I |y>(t) | dt. 
a a a

This may be proved by approximating the integral on the left by Riemann sums and 
using the triangle inequality. A somewhat more elegant argument uses a technique called 
polarization, which occurs quite frequently in analysis. Define X = | jb ¥(t)dt| / fb p(t) dt; 

then |X| = 1s (If the denominator is zero, take X to be any complex number of absolute 

1
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value 1.) Then | bb p(t) dt\ = X ab p(t) dt = ab X^(t)dt by linearity. Since the absolute 
value of a complex number is real,

I p (t) dt = Re [ X<p (t) dt = R Re X<p (t) dt
J a ba ba

by definition of the integral. But Re \z\ < \z\, so

R Re Xx(t) dt < R |Xy>(t) | dt = R |y>(t) | dt 
a aa

because |X| = 1. &
The fundamental theorem of calculus carries over to complex-valued functions. Ex

plicitly, if <p has a continuous derivative on [a, b], then

<p (x) = <p (a) + / <p' (t) dt 
a

for a < x < b. If <p is continuous on [a,b] and F(x) = bX <p(t) dt,a < x < b, then 
F'(x) = y(x) for all x in [a, b]. These assertions are proved directly from the corresponding 
results for real-valued functions.

2.1.3 Definition
A curve in C is a continuous mapping y of a closed interval [a, b] into C. If in addition, 
Y is piecewise continuously differentiable, then y is called a path. A curve (or path) with 
Y(a) = Y(b) is called a closed curve (or path). The range (or image or trace) of y will be 
denoted by y*. If Y is contained in a set S, y is said to be a curve (or path) in S.

Intuitively, if z = Y(t) and t changes by a small amount dt, then z changes by dz = 
y'(t) dt. This motivates the definition of the length L of a path y:

L = Y'(t)| dt

and also motivates the following definition of the path integral f f (z) dz•

2.1.4 Definition
Let y : [a,b] ^ C be a path, and let f be continuous on y, that is, f : y* ^ C is 
continuous. We define the integral of f on (or along) Y by

fz(z) dz = Rj f (y(t))y'(t) dt.

It is convenient to define J f (z) dz with y replaced by certain point sets in the plane. 
Specifically, if [z1, z2]is a line segment in C, we define

f(z) dz = f(z) dz
[ z 1,z 2] Y
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where y (t) = (1 — t) z 1 + tz2, 0 < t < 1. More generally, if [z 1,... , zn +1] is a polyoon 
joining z1 to zn+1 , we define

/
[z1 ,z2 ,... ,zn+1 ]

f(z) dz
n (.

=, 

j=1 [zj,zj+1]
f(z) dz.

The next eitimate will be referred to ai the M-L theorem.

2.1.5 Theorem
Suppoie that f is cootiououi on the path y and If (z) | < M for all z G Y*• If L is the 
length of the path y, then

f(z) dz
Y

< ML.

Proof. Recall from (2.1.2) that the abiolute value of an integral ii leii than or equal to 
the integral of the abiolute value. Then apply the definition of the path integral in (2.1.4) 
and the definition of length in (2.1.3). &

The familiar proceii of evaluating integrali by anti-differentiation extendi to integra
tion on pathi.

2.1.6Fundamental Theorem for Integrals on Paths
Suppose f : Q ^ C is continuous and f has a primitive F on Q, that is, F' = f on Q. 
Then for any path y : [a,b] ^ Q we have

f(z) dz = F (y(b)) — F (y(a)). 
Y

In particular, if y is a closed path in Q, then Y f(z) dz =0.

Proof• fy f (z)dz = Jb F'(Y(t))y'(t) dt = Jb dttF(Y(t)) dt = F(Y(b)) — F(Y(a)) by the
fundamental theorem of calculus [see (2.1.2)]. &

2.1.7 Applications
(a) Let z 1, z2 G C and let y be any path from z 1 to z2, that is, y : [a,b] ^ C is any path 
such that Y (a)=z1 and Y (b)=z2 . Then for n =0, 1, 2, 3, .. . we have

zndz = (z2n+1 — z1n+1)/(n + 1). 
Y

This follows from (2.1.6) and the fact that zn+1/(n+ 1) is a primitive of zn. The preceding 
remains true for n = —2, —3, —4,... provided that 0 G/ Y* and the proof is the same: 
zn+1/(n + 1) is a primitive for zn on C \ {0}. But if n = —1, then the conclusion may 
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fail as the following important computation shows. Take 7(t) = ei, 0 < t < 2n (the unit 
circle, traversed once in the positive sense). Then

n dz = rn et dt=2 ni=0.

Y z JO e

This also shows that f (z) = 1/z, although analytic on C \ {0}, does not have a primitive 
on C \ {0}.

(b) Suppose f is analytic on the open connected set Q and f'(z) = 0 for all z G Q. Then 
f is constant on Q.

Proof. Let z 1 ,z2 G Q. Since Q is polygonally connected, there is a (polygonal) path 
Y : [a,b] ^ Q such that 7(a) = z 1 and y(b) = z2. by (2.1.6), J7 f'(z) dz = f (z2) — f (z 1). 
But the left side is zero by hypothesis, and the result follows. &

Remark
If we do not assume that Q is connected, we can prove only that f restricted to any 
component of Q is constant.

Suppose that a continuous function f on Q is given. Theorem 2.1.6 and the applications 
following it suggest that we should attempt to find conditions on f and/or Q that are 
sufficient to guarantee that f has a primitive. Let us attempt to imitate the procedure 
used in calculus when f is a real-valued continuous function on an open interval in R.We 
begin by assuming Q is starlike with star center zO , say. Define F on Q by

F (z)= f (w) dw.
[z0,z]

If z 1 G Q, let us try to show that F'(z 1) = f (z 1). If z is near but unequal to z 1, we have

F(z)----F— = f f f (w) dw — [ f (w) dw

z - z1 z - z1 [z0,z] [z0,z1]

and we would like to say, as in the real variables case, that

f(w) dw- f(w) dw = f(w) dw,
[z0,z] [z0,z1] [z1,z]

(1)

from which it would follow quickly that (F(z) — F(z 1))/(z — z 1) ^ f (z 1) as z ^ z 1. 
Now if T is the triangle [zO,z 1, z, zo], equation (1) is equivalent to the statement that 

T f(w) dw = 0, but as the example at the end of (2.1.7(a)) suggests, this need not be 
true, even for analytic functions f . However, in the present setting, we can make the zx
key observation that if T is the union of T and its interior (the convex hull of T), then 
T C Q. If f is analytic on Q, it must be analytic on T, and in this case, it turns out 
that T f(w) dw does equal 0. This is the content of Theorem 2.1.8; a somewhat different 
version of this result was first proved by Augustin-Louis Cauchy in 1825.
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2.1.8 Cauchy’s Theorem for Triangles

Suppose that f is analytic on Q and T = [z 1, z2, z3, z 1 ] is any rnangle uihi that T C Q. 
Then T f(z) dz =0.

Proof. Let a, b, c be the midpoints of [z1, z2], [z2, z3]and [ z3, z1]respectively. Consider 
the triangles [z1, a, c, z1], [z2, b, a, z2], [z3, c, b, z3]and [ a, b, c, a](see Figure 2.1.1). Now the 
integral of f on T is the sum of the integrals on the four triangles, and it follows from the 
triangle inequality that if T1 is one of these four triangles chosen so that | T f(z) dz | is 
as large as possible, then

\ j f (z) dz\ < 4\ f f (z) dz\.

Also, if L measures length, then L(T1) = 1L(T), because a line joining two midpoints of a 
triangle is half as long as the opposite side. Proceeding inductively, we obtain a sequence _ _ __ ___ _ ____
{Tn : n = 1, 2,... } of triangles such that L(Tn) = 2 nL(T), Tn +1 C Tn, and

| f(z)dz| < 4n| f (z) dz|. (1)

Now the Tn form a decreasing sequence of nonempty closed and bounded (hence compact) /X
sets in C whose diameters approach 0 as n ^ <x. Thus there is a point z0 e h^ । Tn. (If 
the intersection is empty, then by compactness, some finite collection of Ti’s would have 
empty intersection.) Since f is analytic at z0, there is a continuous function e : Q ^ C 
with e(z0) = 0 [see (5) of (1.3.1)] and such that

f (z) = f (z0) + (z - zo)[f'(z0) + e(z)], z e Q. (2)

By (2) and (2.1.7a), we have

f f (z) dz J (z — z0)e(z) dz, n = 1, 2, 3,. .. . (3)
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But by the M-L theorem (2.1.5),

\ [ (z - z0)e(z) dz\ < sup [|e(z)| \z - z01]L(Tn) 
JT„ zETn

< sup |e(z)|(L(Tn))2 since z G Tn
z<ETn

< sup |e(z)14-n(L(T))2 
zGTn

— 0 as n — <x.

Thus by (1) and (3),

\ [ f (z) dz\< sup |e(z)|(L(T))2 — 0 
JT z£Tn

as n — ^, because e(z0) = 0. We conclude that fT f (z) dz = 0. £

We may now state formally the result developed in the discussion preceding Cauchy’s 
theorem.

2.1.9 Cauchy’s Theorem for Starlike Regions
Let F be analytic on the starlike region Q. Then f has a primitive on Q, and consequently, 
by (2.1.6), Yf f (z) dz = 0.

Proof. Let z0 be a star center for Q, and define F on Q by F(z) = [z ,z] f(w) dw. It 
follows from (2.1.8) and discussion preceding it that F is a primitive for f. £

We may also prove the following converse to Theorem (2.1.6).

2.1.10 Theorem

If f : Q — C is continuous and f f (z) dz = 0 for every closed path y in Q, then f has a 
primitive on Q.

Proof. We may assume that Q is connected (if not we can construct a primitive of f on 
each component of Q, and take the union of these to obtain a primitive of f on Q). So fix 
zo G Q, and for each z G Q, let Yz be a polygonal path in Q from z0 to z. Now define F on 
Q by F(z) = Y f (w) dw, z G Q. Then the discussion preceding (2.1.8) may be repeated 
without essential change to show that F' = f on Q. (In Equation (1) in that discussion, 
[z0, z]and [ z0, z1]are replaced by the polygonal paths yz and yz1 , but the line segment 
[z1, z]can be retained for all z sufficiently close to z1 .) £

2.1.11 Remarks
(a) If y : [a, b] — C is a path, we may traverse y backwards by considering the path A 
defined by A (t) = y (a + b — t), a < t < b. Then A* = y* and for every continuous function
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Figure 2.1.2

f : y* ^ C, it follows from the definition of the integral and a brief change of variable 
argument that

f(z) dz = - f(z) dz.

(b) Similarly, if y 1 : [a,b] ^ C and Y2 : [c, d] ^ C are paths with Y 1(b) = Y2(c), we may 
attach y2 to y1 via the path

(t)= f Y 1((1 - 21)a + 2tb), 0 < t < 1 /%
Y( ) [y2((2 - 21)c + (21 - 1)d), 1 /2 < t < 1 •

Then y* = Y* u Y* and for every continuous function f : y* ^ C,

[ f (z) dz = [ f (z) dz + ( f (z) dz.
J^ Y11 Y y 2

There is a technical point that should be mentioned. The path Y1(t), a < t < b, is strictly 
speaking not the same as the path Y1((1 - 2t)a + 2tb), 0 < t < 1/2, since they have 
different domains of definition. Given the path y 1 : [a, b] ^ C, we are forming a new path 
6 = y 1 ◦ h, where h(t) = (1 — 21)a + 2tb, 0 < t < 1/2. It is true then that 5* = y* and for 
every continuous function f on y*, f f (z) dz = fs f (z) dz• Problem 4 is a general result 
of this type.
(c) If Y1 and Y2 are paths with the same initial point and the same terminal point, we 
may form a closed path y by first traversing y 1 and then traversing y2 backwards. If f is 
continuous on Y*, then y f(z) dz =0iffy f(z) dz = y f(z) dz (see Figure 2.1.2).

An Application of 2.1.9
Let r = [z 1, z2, z3, z4, z 1] be a rectangle with center at 0 (see Figure 2.1.3); let us calculate 
fr 1 dz. Let y be a circle that circumscribes the rectangle r, and let y 1, Y2, Y3, Y4 be the 
arcs of Y joining z1 to z2 , z2 to z3, z3 to z4 and z4 to z1 respectively. There is an open 
half plane (a starlike region) excluding 0 but containing both [z1, z2]and Y1* . By (2.1.9) 
and Remark (2.1.11c), the integral of 1/z on [z1, z2]equals the integral of 1 /z on Y1 .By 
considering the other segments of r and the corresponding arcs of y, we obtain

d — dz = [ — dz = ± 2 ni 
Jr z Yy z
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z 4

z 1

z 3

Figure 2.1.3

by a direct calculation, as in (2.1.7a).

The reader who feels that the machinery used to obtain such a simple result is excessive 
is urged to attempt to compute fr 1 dz directly.

The following strengthened form of Cauchy’s Theorem for triangles and for starlike 
regions will be useful in the next section.

2.1.12 Extended Cauchy Theorem for Triangles
Let f be continuous on Q and analytic on Q \ {z0}. If T is any triangle such that T C Q, 
then T f (z) dz =0.

Proof. Let T = [z 1, z2, z3, zi], If z0 / T, the result follows from (2.1.8), Cauchy’s theorem 
for triangles. Also, if z1, z2 and z3 are collinear, then T f(z) dz = 0 for any continuous 
(not necessarily analytic) function. Thus assume that z1, z2 and z3 are non-collinear and 
that z0 T T. Suppose first that z0 is a vertex, say z0 = z 1. Choose points a G (z 1, z2) and 
b G (z 1 ,z3); see Figure 2.1.4. By (2.1.9),

f(z) dz = f(z) dz + f(z) dz + f(z). dz
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Since f is continuous at z0 = z 1, each of the integrals on the right approaches zero as 
a,b ^ z 1, by the M-L theorem. Therefore JT f (z) dz = 0.

If z0 e T is not a vertex, join z0 to each vertex of T by straight line segments (see 
Figure 2.1.5), and write T f(z) dz as a sum of integrals, each of which is zero by the 
above argument. &

2.1.13 Extended Cauchy Theorem for Starlike Regions
Let f be continuous on the starlike region Q and analytic on Q \ {z0}. Then f has a 
primitive on Q, and consequently Y f (z) dz = 0 for every closed path y in Q.

Proof. Exactly as in (2.1.9), using (2.1.12) instead of (2.1.8). &

Problems
1. Evaluate [-i,1+2i] Im zdz.

2. Evaluate Y z dz where y traces the arc of the parabola y = x  from (1,1) to (2,4).2

3. Evaluate [z ,z ,z ] f(z) dz where z1 = -i, z2 =2+5i, z3 =5i and f(x + iy)=x  + iy.2

4. Show that JY f (z) dz is independent of the parametrization of y* in the following sense. 
Let h : [c, d] ^ [a, b] tee one-to-one and continuously differentiable, with h(c) = a and 
h(d) = b (y is assumed to be defined on [a, b]). Let y 1 = Y ◦h. Show that y 1 is a path, 
and prove that if f is continuous on y*, then J f (z) dz = Y f (z) dz.

5. In the next section it will be shown that if f is analytic on Q, then f' is also analytic, in 
particular continuous, on Q. Anticipating this result, we can use (2.1.6), the fundamen
tal theorem for integration along paths, to show that JY f'(z) dz = f (y(b)) — f (y(a))• 
Prove the following.
(a) If Q is convex and Re f' > 0 on Q, then f is one-to-one. (Hint: z 1 ,z2 e Q with 
z1 = z2 implies that Re[(f (z2) — f (z1))/(z2 — z1)] > 0.)
(b) Show that (a) does not generalize to starlike regions. (Consider z +1/z on a suit
able region.)
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(c) Suppose z0 e Q and f'(z0) = 0. Show that there exists r > 0 such that f is one- 
to-one on D(z0, r). Consequently, if f' has no zeros in Q, then f is locally one-to-one.

2.2 Power Series
In this section we develop the basic facts about complex series, especially complex power 
series. The main result is that f is analytic at z0 iff f can be represented as a convergent 
power series throughout some neighborhood of z0 . We first recall some elementary facts 
about complex series in general.

2.2.1 Definition
Given a sequence w0,w 1 ,w2,... of complex numbers, consider the series 522=0wn• If 
limn ,2 n= n=0 wk exists and is the complex number w, we say that the series converges 
to w and write w = n2=0 wn . Otherwise, the series is said to diverge.

A useful observation is that a series is convergent iff the partial sums kn=0 wk form
a Cauchy sequence, that is, 52n= m wk — 0 as m,n — ^.

The series n2=0 wn is said to converge absolutely if the series n2=0 |wn | is convergent.
As in the real variables case, an absolutely convergent series is convergent. A necessary 
and sufficient condition for absolute convergence is that the sequence of partial sums 

kn=0 |wk | be bounded. The two most useful tests for absolute convergence of complex 
series are the ratio and root tests.

2.2.2 The Ratio Test
If 52 wn is a series of nonzero terms and if lim supn ,2 | wn+1 | < 1, then the series converges 
absolutely. If | wn+11 > 1 for all sufficiently large n, the series diverges.

2.2.3 The Root Test
Let 52wn be any complex series. If limsupn ,-x_ |wn|1 /n < 1, the series converges abso
lutely, while if limsupn ,-x_ |wn|1 /n > 1, the series diverges.

The ratio test is usually (but not always) easier to apply in explicit examples, but the 
root test has a somewhat wider range of applicability and, in fact, is the test that we are 
going to use to obtain some basic properties of power series. Proofs and a discussion of 
the relative utility of the tests can be found in most texts on real analysis.

We now consider sequences and series of complex-valued functions.

2.2.4 Theorem
Let {fn } be sequence of complex-valued functions on a set S. Then {fn} converges 
pointwise on S (that is, for each z e S, the sequence {fn (z)} is convergent in C) iff {fn} 
is pointwise Cauchy (that is, for each z e S, the sequence {fn (z)} is a Cauchy sequence 
in C). Also, {fn} converges uniformly iff {fn} is uniformly Cauchy on S, in other words, 
\fn (z) — fm (z) | — 0 as m, n — <x, uniformly for z e S.
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(The above result holds just as well if the fn take their values in an arbitrary complete 
metric space.)
Proof. As in the real variables case; see Problem 2.2.1. &

The next result gives the most useful test for uniform convergence of infinite series of 
functions.

2.2.5 The Weierstrass M -Test
Let g 1 ,g2,... be complex-valued functions on a set S, and assume that Ign(z) | < Mn for 
all z G S. If 52n=1 Mn < + ^, then the series 52n=1 gn (z) converges uniformly on S.
Proof. Let fn = kn=1 gk ; it follows from the given hypothesis that {fn} is uniformly
Cauchy on S. The result now follows from (2.2.4). &

We now consider power series, which are series of the form 52n=0 an (z - z0)n, where 
z0 and the an are complex numbers. Thus we are dealing with series of functions 52n=0 fn 

of a very special type, namely fn(z) = an(z - z0)n. Our first task is to describe the sets 
S C C on which such a series will converge.

2.2.6Theorem
If 52n=0 an(z - z0)n converges at the point z with Iz — z01 = r, then the series converges 
absolutely on D(z0, r), uniformly on each closed subdisk of D(z0, r), hence uniformly on 
each compact subset of D(z0, r).
Proof. We have |an(z — z0)n| = |an(z — z0)n| | z- f0 | . The convergence at z implies that 

an(z — z0)n ^ 0, hence the sequence {an(z — z0)n} is bounded. If \z' — z01 < r' < r, then 

z — z 0

z — z 0
< - < 1 r

proving absolute convergence at z (by comparison with a geometric series). The Weier- 
strass M-test shows that the series converges uniformly on D (z0, r'). &

We now describe convergence in terms of the coefficients an .

2.2.7 Theorem
Let 122=0 an (z — z0)n be a power series. Let r = [limsupn ,-^_(|an| 1 /n)] 1, the radius of 
convergence of the series. (Adopt the convention that 1 /0 = (X, 1 !x = 0.) The series 
converges absolutely on D(z0, r), uniformly on compact subsets. The series diverges for 
|z — z0| >r.
Proof. We have limsupn ,-x_ |an(z — z0)n|1 /n = (— z01)/r, which will be less than 1 if 
|z — z0 | <r. By (2.2.3), the series converges absolutely on D(z0, r). Uniform convergence 
on compact subsets follows from (2.2.6). (We do not necessarily have convergence for 

— z01 = r, but we do have convergence for — z01 = r', where r' < r can be chosen 
arbitrarily close to r.) If the series converges at some point z with |z — z0| >r, then by 
(2.2.6) it converges absolutely at points z such that r < — z01 < — z01. But then
(|z — z0|)/r > 1, contradicting (2.2.3). &
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2.2.8 Definition
Let C(z0, r) denote the circle with center z0 and radius r. then C((r) f (z) dz is defined 
as Y f (z) dz where Y (t) = z0 + reit, 0 < t < 2n.

The following result provides the essential equipment needed for the theory of power 
series. In addition, it illustrates the striking difference between the concept of differen
tiability of complex functions and the analogous idea in the real case. We are going to 
show that if f is analytic on a closed disk, then the value of f at any interior point is 
completely determined by its values on the boundary, and furthermore there is an explicit 
formula describing the dependence.

2.2.9 Cauchy’s Integral Formula for a Circle
Let f be analytic on Q and let D(z0,r) be a disk such that D(z0,r) C Q. Then

f(z) = X [ f (w)
2ni Cc(20 r) w - z z & D (z 0, r).

Proof. Let D(z0,p) be a disk such that D(z0,r) C D(z0,p) C Q. Fix z & D(z0,r) and 
define a function g on D (z0 ,p) by

f f (w)—f (2)
w w — 2
V' (z)g(w) =

if w = z 
ifw = z.

Then g is continuous on D(z0, p) and analytic on D(z0, p) \ {z}, so we may apply (2.1.13) 
to get c(2 ,r) g(w) dw = 0. Therefore

1 f f (w ) , f (z) f 1 ,----  I -------- dw —------- -------- dw.
2ni J c(20 r) w - z 2ni Cc(20 r) w - z

Now

[ 11 -------- dw =
c(20,r) w - z

1 ________ 1________ d = f \^ (z — z 0)n d
/c (2 0 r) (w - z 0) - (z - z 0) w -J C (z 0 r) ^=0 (w - z 0)n+1 w

The series converges uniformly on C(z0, r) by the Weierstrass M -test, and hence we may 
integrate term by term to obtain

~ 1 1
J2(z - z0)n / n------------ —+1 dw.

=0 c(20,r) (w - z0)n+1

But on C(z0,r) we have w = z0 + reit, 0 < t < 2n, so the integral on the right is, by 
(2.2.8),

r—(+1)e—i(n+1)tireit dt 0
[2 ni

ifn=1,2,...
if n =0.
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We conclude that Jc(r) w-z dw = 2ni, and the result follows. &

The integral appearing in Cauchy’s formula is an example of what is known as an 
integral of the Cauchy type. The next result, which will be useful later, deals with these 
integrals.

2.2.10 Theorem
Let y be a path (not necessarily closed) and let g be a complex-valued continuous function 
on y*. Define a function F on the open set Q = C \ y* by

F(z) =
Y1

ggwL dw.
w-z

Then F has derivatives of all orders on Q, and

F (n)(z > = n! / w-wn+1 dw

for all z G Q and all n = 0, 1, 2,... (take F(0) = F). Furthermore, F(n)(z) ^ 0 as 
Izl ^ <x.

Proof. We use an induction argument. The formula for F(n) (z) is valid for n =0,by 
hypothesis. Assume that the formula holds for a given n and all z G Q; fix z1 G Q and 
choose r > 0 small enough that D(z 1 ,r) C Q. For any point z G D(z 1 ,r) with z = z 1 we 
have

F(n)(z) - F(n)(z1) z -z1 - (n+ 1)!
Y Y

, g(w > dw
(w - z1)n+2

n! (w - z1)n+1 - (w - z)n+1 g(w)z—zi Y (w - z)n+1(w - z 1)n + 1 g(w) dw - (n + 1)! JY (w - z 1)n+2 (1)

z
(z z 1)En=o(w - z 1)n-k(w 

(w - z) n +1( w - z 1) n+1

z)k
-----g (w) dw - (n + , g(w > 2 dw 

(w - z1)n+2
(2)

where the numerator of the first integral in (2) is obtained from that in (1) by applying the algebraic identity an+1 - bn+1 =(a - b) kn=0 an-k bk with a = w - z1 and b = w - z.

Thus

F(n)(z) - F(n)(z 1) 
z - z1

- (n+ 1)!
Y

, g(w dw
(w - z1)n+2

I2n=0(w - z 1)n k +1(w - z)k - (n + 1)(w 
(w - z) n+1( w - z 1) n+2

- z)n+1 
----------- g (w) dw

Y



14 CHAPTER 2. THE ELEMENTARY THEORY

max
wEY*

< n
k=0 (w - z1)n-k+1 (w - z)k - (n+ 1)(w - z)n+1

--------------------  -------- -——--------- -——------------------- g (w) dw 
(w - z)n+1 (w - z1)n+2

L (Y)

by the M-L theorem. But the max that appears in brackets approaches 0 as z ^ z 1, since 
52fc=0(w - z 1)n k + 1(w - z)k ~Hn=0(w - z 1)n+1 = (n + 1)(w - z 1)n +1. Hence

F(n)(z) - F(n)(z 1)
z - z1

(n+1)!
Y

, g (w > dw 
(w - z1)n+2

^

as z ^ z 1, and the statement of the theorem follows by induction. The fact that 
IF(n)(z)| ^ 0 as \z\ ^ <x> is a consequence of the M-L theorem; specifically,

F(n)(z)| < n ’ Ig (w) Imax 7-------- :—-r
wEY* Iw - zIn+1

L (Y) • *

Theorems 2.2.9 and 2.2.10 now yield some useful corollaries.

2.2.11 Corollary
If f is analytic on Q, then f has derivatives of all orders on Q. Moreover, if D(z0, r) C Q, 
then

f(n) (z) = n- [ ( f (wn+1 dw, z & D (z 0 ,r) •
2ni JC(zo ,r) (w - z)n +1

Proof. Apply (2.2.10) to the Cauchy integral formula (2.2.9). *

2.2.12 Corollary
If f has a primitive on Q, then f is analytic on Q.
Proof. Apply (2.2.11) to any primitive for f. *

2.2.13 Corollary
If f is continuous on Q and analytic on Q \ {z0}, then f is analytic on Q.
Proof. Choose any disk D such that D C Q. By (2.1.13), f has a primitive on D, hence 
by (2.2.12), f is analytic on Q. It follows that f is analytic on Q. *

The next result is a converse to Cauchy’s theorem for triangles.

2.2.14 Morera’s Theorem
Suppose f is continuous on Q and fT f (z) dz = 0 for each triangle T such that 'T C Q. 
Then f is analytic on Q.
Proof. Let D be any disk contained in Q. The hypothesis implies that f has a primitive 
on D [see the discussion preceding (2.1.8)]. Thus by (2.2.12), f is analytic on D. Since 
D is an arbitrary disk in Q, f is analytic on Q. *

One of many applications of Morera’s theorem is the Schwarz reflection principle, 
which deals with the problem of extending an analytic function to a larger domain.
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2.2.15 The Schwarz Reflection Principle
Suppose that f is analytic on the open upper half plane C+ = {z :Imz>0}, f is 
continuous on the closure C+ U R of C+, and Im f (z) = 0 for z G R. Then f has an 
analytic extension to all of C.
Proof. We will give an outline of the argument, leaving the details to the problems at the 
end of the section. Extend f to a function f * defined on C by

f * (z ) =
zG C+ UR

zG/C+ U R.

Then f* is analytic on C \ R and continuous on C (Problem 10). One can then use 
Morera’s theorem to show that f * is analytic on C (Problem 11). &

We now complete the discussion of the connection between analytic functions and 
power series, showing in essence that the two notions are equivalent. We say that a 
function f : Q ^ C is representable in Q by power series if given D(z0,r) C Q, there is a 
sequence {an} of complex numbers such that f (z) = 0= 0=0 an(z — z0)n, z G D(z0, r).

2.2.16Theorem
If f is analytic on Q, then f is representable in Q by power series. In fact, if D(z0, r) C Q, 
then

f(z) = Efnr)(z — z0)n, zg d(z0,r). 

n=0

As is the usual practice, we will call this series the Taylor expansion of f about z0 . 
Proof. Let D(z0, r) C Q, fix any z G D(z0, r), and choose r1 such that |z — z0 | <r1 <r. 
By (2.2.9), Cauchy’s formula for a circle,

f f (w) .d -------- dw.
C(z0,-1) w — z

Now for w G C(z0, r1),

1 o
&(w )(w’f(w)f ( w ) _

w — z (w — z0) — (z — z0)
f(w)

w — z0 1— z-z 0 
w-z o

z 0) n
z 0) n +1.

The n-th term of the series has absolute value at most

max If(w)| • J----- , 0 = — max If(w)|
wec(z0,-i)UV 71 rn+1 ri wec(z0,-i)UV 71

|z — z0|
r1

Since lz-z0| < 1, the Weierstrass M-test shows that the series 
C(z0, r1). Hence we may integrate term by term, obtaining

converges uniformly on

oo
f (z ) = £-/ '(w)

~0 [2nijC(z0,-1) (w dw (z
o

— z 0) n = E
n=0

-r2 (z — z 0) n 
n!

n



16 CHAPTER 2. THE ELEMENTARY THEORY

by (2.2.11). A
In order to prove the converse of (2.2.16), namely that a function representable in Q 

by power series is analytic on Q, we need the following basic result.

2.2.17 Theorem
Let {fn} be a sequence of analytic functions on Q such that fn ^ f uniformly on compact 
subsets of Q. Then f is analytic on Q, and furthermore, fnk) ^ f(k) uniformly on compact 
subsets of Q for each k =1, 2,......
Proof. First let D (z 0 ,r) be any closed disk contained in Q. Then we can choose p> r 
such that D(z0, p) C Q also. For each z G D(z0, p) and n = 1, 2,..., we have, by (2.2.9),

fn(z) =
f(w)

C(z0,P) w-z
dw.

By (2.2.10), f is analytic on D(z0, p). It follows that f is analytic on Q. Now by (2.2.11),

fn(k)(z) - f(k)(z) k! f fn(w) - f (w );
d— I dw
2ni JC(zo ,p) (w - z)k+1

and if z is restricted to D (z0, r), then by the M-L theorem,

k!Ifnk)(z) - f(k)(z)|< - max 
w'EC (z o ,p)

Ifn(w)- f(w)| -T-(p
2 np
- r) k +1

^ 0 as n ^ <x.

Thus we have shown that f is analytic on Q and that fnk) ^ f(k) uniformly on closed 
subdisks of Q. Since any compact subset of Q can be covered by finitely many closed 
subdisks, the statement of the theorem follows. A

The converse of (2.2.16) can now be readily obtained.

2.2.18 Theorem
If f is representable in Q by power series, then f is analytic on Q.
Proof. Let D(z0,r) C Q, and let {an} be such that f (z) f== 0 0 an(z - z0)n, z G 
D(z0, r). By (2.2.7), the series converges uniformly on compact subsets of D(z0, r), hence 
by (2.2.17), f is analytic on Q. A

Remark
Since the above series converges uniformly on compact subsets of D(z0, r), Theorem 2.2.17 
also allows us to derive the power series expansion of f(k) from that of f, and to show 
that the coefficients {an} are uniquely determined by z0 and f. For if f(z) is given by 
'f=0=n an(z - z0)n, z G D(z0, r), we may differentiate term by term to obtain 

oo

f(k)(z) = n(n
n=k

1) • • • (n - k + 1)an(z - z0)n k,
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and if we set z = z0 , we find that

_ f(k)(z0) 
ak = k! '

We conclude this section with a result promised in Chapter 1 [see (1.6.1)].

2.2.19 Theorem
If f = u + iv is analytic on Q, then u and v are harmonic on Q.
^nnf Rif n A 9'1 f' — — I d Ou — dV — d^ Itul hv f9 9 111 f' i< also analvfir on Or r oof. F)y (i.£i.2), f — q,& । i xx — —y i dy . ut .y (2.2.11), f is aiso analytic on u,,
and thus the Cauchy-Riemann equations for f' are also satisfied. Consequently,

^(duu\_^( du} JL(dv\_ d(dv\
d I n f n I n f , n I — - €l I €1 1 .dx d dx dn \ hqi dx d dx dn d nn /xx xx\ / & \ & / \ / & \ & /

These partials are all continuous because f" is also analytic on Q. &

Problems
1. Prove Theorem 2.2.4.

2. If n zn has radius of convergence r, show that the differentiated series nanzn-1

also has radius of convergence r.
3. Let f(x) — e-1/x2 ,x — 0;f(0) — 0. Show that f is infinitely differentiable on 

(— x, x) and f(n)(0) — 0 for all n. Thus the Taylor series for f is identically 0, 
hence does not converge to f. Conclude that if r>0, there is no function g analytic 
on D(0, r) such that g — f on (-r, r).

4. Let {an : n —0, 1, 2 ...} be an arbitrary sequence of complex numbers.
(a) If limsupn ,.-x_ |an +1 /an\ — a, what conclusions can be drawn about the radius of 
convergence of the power series ^22 0 anzn?
(b) If |an+1 /an | approaches a limit a, what conclusions can be drawn?

5. If f is analytic at z0, show that it is not possible that |f (n) (z0)| > n!bn for all 
n — 1, 2,..., where (bn )1/n — x as n — x.

6. Let Rn (z) be the remainder after the term of degree n in the Taylor expansion of a 
function f about z0 .
(a) Show that

Rn(z) —
(z - z o) n+1 r f (w)

2ni r (w — z)(w — zo)n +1

where r — C(z0, r 1) as in (2.2.16).
(b) If \z — zo| < s < r 1, show that

\Rn(z) | < A(s/r 1)n +1, where A — Mf (r)r 1 /(r 1 — s)

and Mf (r) — max{\f (w)| : w E r}.
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7.

8.

9.

10.

11.
12.

13.

14.

15.
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(Summation by parts). Let {an} and {bn} be sequences of complex numbers. If 
Abk = bk . । — bk, show that

s

akAbk = as+1bs+1
k=r

s

— ar br bk+1Aak.
k=r

(a) If {bn} is bounded and the an are real and greater than 0, with a 1 > a2 > • • • ^ 0, 
show that 52 2=1 an A bn converges.
(b) If bn = bn (z), that is, the bn are functions from a set S to C, the bn are uni
formly bounded on S, and the an are real and decrease to 0 as in (a), show that 
X';' ■ an(bn+1(z) — bn(z)) converges uniformly on S.
(a) Show that 522=1 zn/n converges when z = 1, except at the single point z =1.
(b) Show that 522=1 (sin nx)/n converges for real x, uniformly on
{x : 2kn + 6 < x < 2(k + 1)n — J}, 6 > 0, k an integer.
(c) Show that n2=1 (sin nz)/n diverges if x is not real. (The complex sine function 
will be discussed in the next chapter. It is defined by sin w = (eiw — e-iw)/2i.

Show that the function f * occurring in the proof of the Schwarz reflection principle 
is analytic on C \ R and continuous on C.

Show that f* is analytic on C.
Use the following outline to give an alternative proof of the Cauchy integral formula 
for a circle.
(a) Let

f 1
F(z) = j -------- dw, ziC'(zo,r).

Use (2.2.10), (2.1.6) and (2.1.7b) to show that F is constant on D(z0, r).
(b) F(z0) = 2ni by direct computation.
Theorem 2.2.9 now follows, thus avoiding the series expansion argument that appears 
in the text.
(a) Suppose f is analytic on D(a, r). Prove that for 0 < r<R,

If (n)(a)n If (a + rei)| dt.
2nrn J-n

(b) Prove that if f is an entire function such that for some M>0 and some natural 
number k, If(z)I < M IzIk for IzI sufficiently large, then f is a polynomial of degree 
at most k .
(c) Let f be an entire function such that If(z)I <1+IzI3/2 for all z. Prove that there 
are complex numbers a0, a1 such that f(z) =a0 + a1z.

Let {an : n = 0, 1,... } be a sequence of complex numbers such that 522=0 |anI < ^ 
but 522=0 nIan I = ^• Prove that the radius of convergence of the power series 52 anzn 

is equal to 1.

Let {fn} be a sequence of analytic functions on Q such that {fn} converges to f 
uniformly on compact subsets of Q. Give a proof that f is analytic on Q, based on
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Morera’s theorem [rather than (2.2.10), which was the main ingredient in the proof 
of (2.2.17)]. Note that in the present problem we need not prove that f(.k) ^ f(k) 

uniformly on compact subsets of Q.

2.3 The Exponential and Complex Trigonometric Func
tions

In this section, we use our results on power series to complete the discussion of the 
exponential function and to introduce some of the other elementary functions.

Recall (Section 1.5) that exp is defined on C by exp(x + iy) = ex(cos y + i sin y); thus 
exp has magnitude ex and argument y . The function exp satisfies a long list of properties; 
for the reader’s convenience, we give the justification of each item immediately after the 
statement.

2.3.1 Theorem
(a) exp is an entire function [this was proved in (1.5.2)].
(b) exp(z) = £° zn/n!, z & C.
Apply (a) and (2.2.16), using the fact [see (1.5.2)]that exp is its own derivative.
(c) exp(z1 + z2) = exp(z1) exp(z2).
Fix z0 & C; for each z & C, we have, by (2.2.16),

exp(z)
oo

£ exp( z 0) 
n!

(z z0)n = exp(z0)
n=0

(Z ~ Z0)n 

n!
= exp(z0) exp(z - z0) by (b).

o

Now set z0 = z1 and z = z1 + z2 .
(d) exp has no zeros in C.
By (c), exp(z - z) = exp(z) exp(-z). But exp(z - z) = exp(0) = 1, hence exp(z) =0.
(e) exp(-z) = 1/ exp(z) (the argument of (d) proves this also).
(f) exp(z) = 1 iff z is an integer multiple of 2ni.
exp(x + iy)=1iffex cosy = 1 and ex siny =0iffex cos y = 1 and siny =0iffx = 0 and 
y = 2 nn for some n.
(g) | exp(z)| = eRez (by definition of exp).
(h) exp has 2ni as a period, and any other period is an integer multiple of 2ni.
exp(z + w) = exp(z) iff exp(w) = 1 by (c), and the result follows from (f).
(i) exp maps an arbitrary vertical line {z :Rez = x0} onto the circle with center 0 and 
radius ex0, and exp maps an arbitrary horizontal line {z :Imz = y0} one-to-one onto the 
open ray from 0 through exp(iy0).
{exp(z): Rez = x0} = {ex0 (cos y + i siny): y & R}, which is the circle with center 0 
and radius ex0 (covered infinitely many times). Similarly, we have {exp(z): Imz = y0} = 
{ex eiy0 : x & R}, which is the desired ray.
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(j) For each real number a, exp restricted to the horizontal strip {x + iy : a < y < a + 2n}, 
is a one-to-one map onto C \ {0}.

This follows from (i) and the observation that as y0 ranges over [a, a + 2n), the open rays 
from 0 through ely0 sweep out C \ {0}. ^

Notation

We will often write ez for exp(z). We now define sin z and cos z by

sin z =
ei - — 

2i

eiz + e-iz
cos z =--------------

2

These definitions are consistent with, and are motivated by, the fact that eiy = cos y + 
i sin y,y G R.

Since exp is an entire function, it follows from the chain rule that sin and cos are 
also entire functions and the usual formulas sin' = cos and cos' = — sin hold. Also, it 
follows from property (f ) of exp that sin and cos have no additional zeros in the complex 
plane, other than those on the real line. (Note that sinz =0iffeiz = e-iz iff e2iz = 1.) 
However, unlike sin z and cos z for real z, sin and cos are not bounded functions. This can 
be deduced directly from the above definitions, or from Liouville’s theorem, to be proved 
in the next section.

The familiar power series representations of sin and cos hold [and may be derived using 
(2.2.16)]:

TO z 2 n +1 TO z 2 n
sin z 5^( — 1) n------------ —, cos z 5^( — 1) n-——.

n=o ) (2n +1)!’ n=0 ) (2n)!

Other standard trigonometric functions can be defined in the usual way; for example, 
tan z = sin z/ cos z . Usual trigonometric identities and differentiation formulas hold, for 
instance, sin(z 1 + z2) = sin z 1 cos z2 + cos z 1 sin z2, d tan z = sec2 z, and so on.

Hyperbolic functions are defined by

cOSh z = ■ ', sinh z = £——-. 
2 ’ 2

The following identities can be derived from the definitions:

cos iz = cosh z, sin iz = i sinh z 

sin(x + iy) = sinxcoshy + icosxsinhy, cos(x + iy) = cosxcoshy — isinxsinhy.

Also, sinh z = 0 iff z = inn, n an integer; cosh z = 0 iff z = i(2n + 1)n/2, n an integer.
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Problems
1. Show that for any integer k, sin z maps the strip {x+iy : (2 k — 1) n/2 <x< (2 k+1) n/2 } 

one-to-one onto C \ {w + iv : v = 0, |w| > 1}, and maps {x + iy : x = (2k + 1)n/2, y > 
0} U {x + iy : x = (2k — 1)n/2, y < 0} one-to-one onto {w + iv : v = 0, | w| > 1}.

2. Find all solutions of the equation sin z =3.

3. Calculate Cc(0 1) 's-nz dz.

4. Prove that given r > 0, there exists n0 such that if n > n0, then 1+z+z2/2! + • • •+zn/n! 
has all its zeros in |z | >r.

5. Let f be an entire function such that f" + f = 0, f (0) = 0, and f'(0) = 1. Prove that 
f (z) = sin z for all z G C.

6. Let f be an entire function such that f' = f and f (0) = 1. What follows and why?

2.4 Further Applications
In this section, we apply the preceding results in a variety of ways. The first two of these 
are consequences of the Cauchy integral formula for derivatives (2.2.11).

2.4.1 Cauchy’s Estimate
Let f be analytic on Q, and let D(z0,r) C Q. Then

lf(n)(z0)K n! max |f(z01.
rn zec(Z0r)

Proof. This is immediate from (2.2.11) and the M-L theorem. &

Remark
If f(z) = zn and z0 = 0, we have f(n) (z0) = n! = (n!/rn) maxzEC(z0,r) |f(z)|, so the above 
inequality is sharp.

2.4.2 Liouville’s Theorem
If f is a bounded entire function, then f is constant.

Proof. Assume that f(z)| < M < <x for all z G C, and fix z0 G C. By (2.4.1), 
\f'(z0) | < M/r for all r > 0. Let r — ^ to conclude that f'(z0) = 0. Since z0 is 
arbitrary, f' = 0, hence f is constant on C by (2.1.7b). &

2.4.3 The Fundamental Theorem of Algebra
Suppose P(z) = a0 + a 1 z + • • • + anzn is polynomial of degree n > 1. Then there exists 
z0 G C such that P(z0) = 0.
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Proof. Since

,  ................   I a„_ 1 a0 I , I a„ Ip~ n L-, i n -11 i 0 I \ jn I n II p (z) I — I z I I an +--------- + • • • + — I > izi I — In z zn 2

for all sufficiently large ]z], it follows that IP(z)| ^ <x as z\ ^ <x>. If P(z) is never 0, 
then 1 /P is an entire function. Moreover, 11 /P(z)I ^ 0 as ]z] ^ <x, and therefore 1 /P is 
bounded. By (2.4.2), 1 /P is constant, contradicting degP > 1. &

Recall that if P is a polynomial of degree n > 1 and P(z0) — 0, we may write 
P(z) — (z - z0)mQ(z) where m is a positive integer and Q(z) is a polynomial (possibly 
constant) such that Q(z0) — 0. In this case P is said to have a zero of order m at z0. The 
next definition extends the notion of the order of a zero to analytic functions in general.

2.4.4 Definition
Let f be analytic on Q and z0 G Q. We say that f has a zero of order m at z0 if there is 
an analytic function g on Q such that g(z0) — 0 and f (z) — (z — z0)mg(z) for all z G Q.

2.4.5 Remark
In terms of the Taylor expansion f (z) — Y= P0 an(z — z0)n, f has a zero of order m at z0 iff 
a0 — ai — • • • — am-1 — 0, while am — 0. Equivalently, f(n)(z0) — 0 for n — 0,... ,m — 1, 
while f (m)(z0) — 0 (see Problem 2).

2.4.6Definition
If f : Q ^ C, the zero set of f is defined as Z(f) — {z G Q : f (z) — 0}.

Our next major result, the identity theorem for analytic functions, is a consequence 
of a topological property of Z(f).

2.4.7 Lemma
Let f be analytic on Q, and let L be the set of limit points (also called accumulation 
points or cluster points) of Z(f) in Q. Then L is both open and closed in Q.

Proof. First note that L C Z(f) by continuity of f. Also, L is closed in Q because the 
set of limit points of any subset of Q is closed in Q. (If {zn} is a sequence in L such 
that zn ^ z, then given r > 0, zn G D(z,r) for n sufficiently large. Since zn is a limit 
point of Z(f), D(z, r) contains infinitely many points of Z(f) different from zn, and hence 
infinitely many points of Z(f) different from z.Thusz G L also.) It remains to show 
that L is open in Q. Let z0 G L, and write f (z) f== n==0 an(z — z0)n, z G D(z0, r) C Q. 
Now f (z0) — 0, and hence either f has a zero of order m at z0 (for some m), or else 
an — 0 for all n. In the former case, there is a function g analytic on Q such that 
f(z) — (z — z0)mg(z), z G Q, with g(z0) — 0. By continuity of g, g(z) — 0 for all z 
sufficiently close to z0, and consequently z0 is an isolated point of Z(f). But then z0 G/ L, 
contradicting out assumption. Thus, it must be the case that an — 0 for all n, so that 
f = 0 on D(z0, r). Consequently, D(z0, r) C L, proving that L is open in Q. &



2.4. FURTHER APPLICATIONS 23

2.4.8 The Identity Theorem
Suppose f is analytic on the open connected set Q. Then either f is identically zero on 
Q or else Z(f) has no limit point in Q. Equivalently, if Z(f) has a limit point in Q, then 
f is identically 0 on Q.
Proof. By (2.4.7), the set L of limit points of Z(f) is both open and closed in Q. Since 
Q is connected, either L = Q, in which case f = 0 on Q, or L = 0, so that Z(f) has no 
limit point in Q. &

2.4.9 Corollary
If f and g are analytic on Q and {z G Q : f (z) = g(z)} has a limit point in Q, then f = g.
Proof. Apply the identity theorem to f - g . &

Our next application will be to show (roughly) that the absolute value of a function 
analytic on a set S cannot attain a maximum at an interior point of S . As a preliminary 
we show that the value of an analytic function at the center of a circle is the average of 
its values on the circumference.

2.4.10 Theorem
Suppose f is analytic on Q and D(z0, r) C Q. Then

1 2 2 nf (zo) I f (z0 + reit) dt.
2 n J o

Proof. Use (2.2.9), Cauchy’s integral formula for a circle, with z = z0. &
The other preliminary to the proof of the maximum principle is the following fact 

about integrals.

2.4.11 Lemma
Suppose <p : [a,b] ^ R is continuous, <p(t) < k for all t, while the average of y, namely 
^j1^ a^ ^(t) dt, is at least k. Then p(t) = k for all t.
Proof. Observe that

0 < [ [k - ¥(t)] dt = k(b - a) - [ ¥(t) dt < 0■ & 
aa

We now consider the maximum principle, which is actually a collection of closely 
related results rather than a single theorem. We will prove four versions of the principle, 
arranged in order of decreasing strength.

2.4.12 Maximum Principle
Let f be analytic on the open connected set Q.
(a) If |f| assumes a local maximum at some point in Q, then f is constant on Q.
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(b) If A = sup {If (z) | : z G Q}, then either If (z) | < A for all z G Q or f is constant on Q.
(c) If Q is a bounded region and M > 0 is such that limsupn ,.-x_ If (zn)| < M for each 
sequence {zn} in Q that converges to a boundary point of Q, then |f(z)| <Mfor all 
z G Qorf is constant on Q.
(d) Let Q be a bounded region, with f continuous on the closure Q of Q. Denote the 
boundary of Q by d Q, and let M0 = max {If (z) | : z G d Q }. Then either If (z) | < M0 for all 
z G Q or f is constant on Q. Consequently, max {If (z) I : z G Q} = max {If (z) I : z G d Q}. 
Proof.
(a) If If I assumes a local maximum at z 0 G Q, then for some 6 > 0, If (z) I < If (z 0) I for 
Iz — z01 < 6. If f (z0) = 0, then f (z) = 0 for all z G D(z0,6), so f = 0 by the identity 
theorem. So assume that f (z0) =0. If0<r<6, then (2.4.10) with both sides divided 
by f (z0) yields

1=
f2n f (z0 + rei) dt 

2 nJ0 f (z 0)

Taking the magnitude of both sides, we obtain

1 < f 2n f (z0 + reit) 
“ 2nJ0 f(z0) dt < 1

because If (z 0 + rei) I < If (z 0) I for all t G [0, 2 n ]. Since this holds for all r G (0,6), the 
preceding lemma (2.4.11) gives If (z)/f (z0)I =1,z G D(z0, 6). Now take the real part 
(rather than the magnitude) of both sides of the above integral, and use the fact that for 
any complex number w, we have I Re wI < IwI. We conclude that Re(f (z)/f (z0)) = 1 on 
D(z0, 6). But if IwI =Rew = c, then w = c, hence f(z) = f(z0) on D(z0,6). By the 
identity theorem, f is constant on Q.
(b) If A = + to there is nothing to prove, so assume A < + to. If If(z0) I = A for some 
z0 G Q, then f is constant on Q by (a).
(c) If A is defined as in (b), then there is a sequence {zn} in Q such that If (zn)I ^ A. But 
since Q is bounded, there is a subsequence {znj } that converges to a limit z0. If z0 G Q, 
then If (z0 )I = A, hence f is constant by (b). On the other hand, if z0 belongs to the 
boundary of Q, then A < M by hypothesis. Again by (b), either If(z)I <A< M for all 
z G Qorf is constant on Q.
(d) Let {zn} be any sequence in Q converging to a point z0 G dQ. Then If(zn)I ^ 
If(z0)I < M0. By (c), IfI <M0 on Q or f is constant on Q. In either case, the maximum 
of If I on Q is equal to the maximum of If I on d Q. &

The absolute value of an analytic function may attain its minimum modulus on an 
open connected set without being constant (consider f(z)=z on C). However, if the 
function is never zero, we do have a minimum principle.

2.4.13 Minimum Principle
Let f be analytic and never 0 on the region Q.
(a) If If I assumes a local minimum at some point in Q, then f is constant on Q.
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(b) Let g = inf{\f(z)| : z G Q}; then either f (z)| > g for all z G Q or f is constant on Q. 
(c) If Q is a bounded region and m > 0 is such that liminfn ,-x_ \f (zn)| > m for each 
sequence {zn} that converges to a boundary point of Q, then |f (z)| >mfor all z G Qor 
f is constant on Q.
(d) Let Q be a bounded region, with f is continuous on Q and m0 = min{\f (z)| : z G dQ}. 
Then either |f (z)| >m0 for all z G Qorf is constant on Q. As a consequence, we have 
min{\f(z)| : z G Q} = min{\f(z)| : z G dQ}.
Proof. Apply the maximum principle to 1 /f. &

Suppose f is analytic on the region Q, and we put g = ef. Then |g| = eRef, and hence 
|g| assumes a local maximum at z0 G QiffRef has a local maximum at z0 . A similar 
statement holds for a local minimum. Furthermore, by (2.1.7b), f is constant iff f' = 0 
iff f'ef = 0 iff g = 0 iff g is constant on Q. Thus Re f satisfies part (a) of both the 
maximum and minimum principles (note that |g| is never 0). A similar argument can be 
given for Im f (put g= e-if). Since the real and imaginary parts of an analytic function 
are, in particular, harmonic functions [see (2.2.19)], the question arises as to whether 
the maximum and minimum principles are valid for harmonic functions in general. The 
answer is yes, as we now proceed to show. We will need to establish one preliminary result 
which is a weak version of the identity theorem (2.4.8) for harmonic functions.

2.4.14 Identity Theorem for Harmonic Functions
If u is harmonic on the region Q, and u restricted to some subdisk of Q is constant, then 
u is constant on Q.
Proof. Let A = {a G Q:u is constant on some disk with center at a}. It follows from 
the definition of A that A is an open subset of Q. But Q \ A is also open; to see this, 
let z0 G Q \ A and D(z0,r) C Q. By (1.6.2), u has a harmonic conjugate v on D(z0,r), 
so that u is the real part of an analytic function on D(z0 ,r). If u is constant on any 
subdisk of D(z0, r), then [since u satisfies (a) of the maximum (or minimum) principle, 
as indicated in the remarks following (2.4.13)] u is constant on D(z0, r), contradicting 
z0 G Q \ A. Thus D (z0 ,r) C Q \ A, proving that Q \ A is also open. Since Q is connected 
and A = 0 by hypothesis, we have A = Q.

Finally, fix z1 G Q and let B = {z G Q: u(z) = u(z1)}. By continuity of u, B is closed 
in Q, and since A =Q,B is also open in Q. But B is not empty (it contains z1), hence 
B = Q, proving that u is constant on Q. &

2.4.15 Maximum and Minimum Principle for Harmonic Func
tions

If u is harmonic on a region Q and u has either a local maximum or a local minimum at 
some point of Q, then u is constant on Q.
Proof.Sayu has a local minimum at z0 G Q (the argument for a maximum is similar). 
Then for some r>0wehaveD(z0,r) C Q and u(z) > u(z0) on D(z0,r). By (1.6.2) again, 
u is the real part of an analytic function on D(z0, r), and we may invoke the minimum 
principle [as we did in proving (2.4.14)]to conclude that u is constant on D(z0, r) and 
hence by (2.4.14), constant on Q. &
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Remark
The proof of (2.4.12) shows that part (a) of the maximum principle implies part (b), (b) 
implies (c), and (c) implies (d), and similarly for the minimum principle. Thus harmonic 
functions satisfy statements (b), (c) and (d) of the maximum and minimum principles.

We conclude this chapter with one of the most important applications of the maximum 
principle.

2.4.16Schwarz’s Lemma
Let f be analytic on the unit disk D = D(0, 1), and assume that f (0) = 0 and \f (z)| < 1 
for all z e D. Then (a) \f(z)| < \z\ on D, and (b) \f'(0)| < 1. Furthermore, if equality 
holds in (a) for some z = 0, or if equality holds in (b), then f is a rotation of D . That is, 
there is a constant A with |X| = 1 such that f (z) = Xz for all z e D.
Proof. Define

f(z)/z ifzeD\{0} 
g(z) = f'(0) if z = 0.

By (2.2.13), g is analytic on D. We claim that |g(z)| < 1. For if |z| <r<1, part (d) of 
the maximum principle yields

(z)| < max{|g(w)| : |w| = r} < r sup{f(w) | : w e D} < 1.

Since r may be chosen arbitrarily close to 1, we have |g|<1onD, proving both (a) and 
(b). If equality holds in (a) for some z = 0, or if equality holds in (b), then g assumes 
its maximum modulus at a point of D, and hence g is a constant A on D (necessarily 
|X| = 1). Thus f (z) = Xz for all z e D. A

Schwarz’s lemma will be generalized and applied in Chapter 4 (see also Problem 24).

Problems
1. Give an example of a nonconstant analytic function f on a region Q such that f has 

a limit point of zeros at a point outside of Q.
2. Verify the statements made in (2.4.5).
3. Consider the four forms of the maximum principle (2.4.12), for continuous rather than 

analytic functions. What can be said about the relative strengths of the statements? 
The proof in the text shows that (a) implies (b) implies (c) implies (d), but for 
example, does (b) imply (a)? (The region Q is assumed to be one particular fixed 
open connected set, that is, the statement of the theorem does not have “for all Q” 
in it.)

4. (L’Hospital’s rule). Let f and g be analytic at z0, and not identically zero in any neigh
borhood of z0. If limz ,z0 f (z) = limz ,z0 g(z) = 0, show that f (z)/g(z) approaches a 
limit (possibly to) as z ^ z0, and lim. ..0 f (z)/g(z) = lim.0 f'(z)/g'(z).

5. If f is analytic on a region Q and |f| is constant on Q, show that f is constant on Q.
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6. Let f be continuous on the closed unit disk D, analytic on D, and real-valued on dD. 
Prove that f is constant.

7. Let f (z) = sin z. Find max{\f (z) | : z G K} where K = {x + iy : 0 < x,y < 2p.

8. (A generalization of part (d) of the maximum principle). Suppose K is compact, f is 
continuous on K, and f is analytic on K°, the interior of K. Show that

max \f (z)\ = max \f (z)\. 
ztK zEdK

Moreover, if \f (z0) | = maxzEK \f (z) | for some z0 G K°, then f is constant on the 
component of K° that contains z0.

9. Suppose that Q is a bounded open set (not necessarily connected), f is continuous on 
Q and analytic on Q. Show that max{\f(z)| : z G Q} = max{\f(z)| : z G dQ}.

10. Give an example of a nonconstant harmonic function u on C such that u(z)=0for 
each real z. Thus the disk that appears in the statement of Theorem 2.4.14 cannot 
be replaced by just any subset of C having a limit point in C.

11. Prove that an open set Q is connected iff for all f,g analytic on Q, the following holds: 
If f (z)g(z) = 0 for every z G Q, then either f or g is identically zero on Q. (This says 
that the ring of analytic functions on Q is an integral domain iff Q is connected.)

12. Suppose that f is analytic on C+ = {z : Im z > 0} and continuous on S = C+ U (0, 1). 
Assume that f(x) = x4 - 2x2 for all x G (0, 1). Show that f(i) = 3.

13. Let f be an entire function such that f(z) | > 1 for all z. Prove that f is constant.

14. Does there exist an entire function f, not identically zero, for which f(z)=0for 
every z in an uncountable set of complex numbers?

15. Explain why knowing that the trigonometric identity sin(a + p) = sin a cos p + 
cos a sin p for all real a and p implies that the same identity holds for all complex a 
and p.

16. Suppose f is an entire function and Im(f (z)) > 0 for all z. Prove that f is constant. 
(Consider exp(if).)

n n di i n nii/l nn ‘I ‘iii'Ji'Ii/' nii/l nun ■/<! c n nn /)n O n nii/l n ( ^~/n) — 0~/n) ,, —1i. suppose f aim g are analytic aim nonzero on Dy (o, 1), aim f (1 ) — 5(1 /n) , n — 

2, 3,. Prove that f/g is constant on D(0, 1).

18. Suppose that f is an entire function, f(0) — 0 and |f (z) - ez sin z| < 4 for all z. Find 
a formula for f(z).

19. Let f and g be analytic on D — D(0, 1) and continuous on D. Assume that Re f (z) — 
Re g(z) for all z G dD. Prove that f — g is constant.

20. Let f be analytic on D — D(0, 1). Prove that either f has a zero in D, or there is a 
sequence {zn} in D such that ^nj ^ 1 and {f (zn)} is bounded.

21. Let u be a nonnegative harmonic function on C. Prove that f is constant.

22. Suppose f is analytic on Q D D(0, 1),f (0) — i, and f(z)| > 1 whenever ^ — 1. 
Prove that f has a zero in D(0, 1).

23. Find the maximum value of Re z3 for z in the unit square [0, 1] x [0, 1].
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24. Suppose that f is analytic on D(0, 1), with f(0) = 0. Define fn(z) = f(zn) for 
n = 1, 2,... ,z G D (0, 1). Prove that ^2 fn is uniformly convergent on compact 
subsets of D(0, 1). (Use Schwarz’s lemma.)

25. It follows from (2.4.12c) that if f is analytic on D(0, 1) and f (zn) ^ 0 for each 
sequence {zn} in D(0, 1) that converges to a point of C(0, 1), then f = 0. Prove the 
following strengthened version for bounded f. Assume only that f (zn) ^ 0 for each 
sequence {zn} that converges to a point in some given arc {eit,a < t < p} where 
a < p, and deduce that f = 0. [Hint: Assume without loss of generality that a = 0. 
Then for sufficiently large n, the arcs Aj = {elt : (j — 1)p < t < jp},j = 1, 2,... ,n 
cover C(0, 1). Now consider F(z) = f (z)f (e1^z)f (e12@z) • • • f (eln13z).]

26. (a) Let Q be a bounded open set and let {fn} be a sequence of functions that are an
alytic on Q and continuous on the closure Q. Suppose that {fn} is uniformly Cauchy 
on the boundary of Q. Prove that {fn} converges uniformly on Q. If f is the limit 
function, what are some properties of f?
(b) What complex-valued functions on the unit circle C (0, 1) can be uniformly ap
proximated by polynomials in z?



Chapter 3

The General Cauchy Theorem

In this chapter, we consider two basic questions. First, for a given open set Q, we try 
to determine which closed paths 7 in Q have the property that Y f (z) dz = 0 oor every 
analytic function f on Q. Then second, we try to characterize those open sets Q having 
the property that Y f (z) dz = 0 oor all closed pah is 7 in Q and all analytic functions f 
on Q. The results, which may be grouped under the name “Cauchy’s theorem”, form the 
cornerstone of analytic function theory.

A basic concept in the general Cauchy theory is that of winding number or index of 
a point with respect to a closed curve not containing the point. In order to make this 
precise, we need several preliminary results on logarithm and argument functions.

3.1 Logarithms and Arguments
In (2.3.1), property (j), we saw that given a real number a, the exponential function when 
restricted to the strip {x + iy : a < y < a + 2n} is a one-to-one analytic map of this strip 
onto the nonzero complex numbers. With this in mind, we make the following definition.

3.1.1 Definition
We take loga to be the inverse of the exponential function restricted to the strip Sa = 
{x + iy : a < y < a + 2n}. We define arga to the the imaginary part of loga.

Consequently, loga (exp z) = z for each z G Sa, and exp(loga z) = z for all z G C \ {0}.

Several important properties of loga and arga follow readily from Definition 3.1.1 and 
the basic properties of exp.

3.1.2 Theorem
(a) If z = 0, then loga(z) = ln \z\ + i arga(z), and arga(z) is the unique number in 
[a, a + 2n) such that z/\z\ = eiarga(z), in other words, the unique argument of z in 
[a, a + 2n).

1
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(b) Let Ra be the ray [0,ela, <x) = {reia : r > 0}. The functions loga and arga are
continuous at each point of the “slit” complex plane C \ Ra, and discontinuous at each 
point of Ra.

(c) The function loga is analytic on C \ Ra, and its derivative is given by log'a (z) = 1 / z.
Proof.

(a) If w = loga(z),z = 0, then ew = z, hence \z\ = eRew and z/\z\ = ei Imw. Thus 
Re w = ln \z\, and Im w is an argument of z/\z\. Since Im w is restricted to [a, a + 2n) 
by definition of loga, it follows that Im w is the unique argument for z that lies in the 
interval [a, a + 2n).
(b) By (a), it suffices to consider arga. If z0 e C \ Ra and {zn} is a sequence converging 
to z0, then arga(zn) must converge to arga(z0). (Draw a picture.) On the other hand, if 
z0 e Ra \ {0}, there is a sequence {zn} converging to z0 such that arga(zn) ^ a + 2n = 
arg a (z 0) = a.
(c) This follows from Theorem 1.3.2 (with g = exp, Q1 = C, f = loga, and Q = C \ Ra) 
and the fact that exp is its own derivative. &

3.1.3 Definition
The principal branches of the logarithm and argument functions, to be denoted by Log 
and Arg, are obtained by taking a = —n. Thus, Log = logn and Arg = arg-n.

Remark
The definition of principal branch is not standardized; an equally common choice for a is 
a = 0. Also, having made a choice of principal branch, one can define wz = exp(z Log w ) 
for z e C and w e C \ {0}. We will not need this concept, however.

3.1.4Definition
Let S be a subset of C (or more generally any metric space), and let f : S ^ C \ {0} be 
continuous. A function g : S ^ C is a continuous logarithm of f if g is continuous on S 
and f (s) = eg(s) for all s e S .A function 9 : S ^ R is a continuous argument of f if 9 is 
continuous on S and f (s) = \f (s)\ei9(s) for all s e S.

3.1.5 Examples
(a) If S = [0, 2n] and f (s) = ei, then f has a continuous argument on S, namely 
9 (s) = s + 2kn for any fixed integer k.
(b) If for some a, f is a continuous mapping of S into C \ Ra , then f has a continuous 
argument, namely 9(s) = arga (f (s)).
(c) If S = {z : \z\ =1} and f(z) = z, then f does not have a continuous argument on S.

Part (a) is a consequence of Definition 3.1.4, and (b) follows from (3.1.4) and (3.1.2b). 
The intuition underlying (c) is that if we walk entirely around the unit circle, a continuous 
argument of z must change by 2n. Thus the argument of z must abruptly jump by 2n
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at the end of the trip, which contradicts continuity. A formal proof will be easier after 
further properties of continuous arguments are developed (see Problem 3.2.5).

Continuous logarithms and continuous arguments are closely related, as follows.

3.1.6 Theorem
Let f : S ^ C be continuous.

(a) If g is a continuous logarithm of f , then Im g is a continuous argument of f.

(b) If 6 is a continuous argument of f, then In \f | + id is a continuous logarithm of f.

Thus f has a continuous logarithm iff f has a continuous argument.

(c) Assume that S is connected, and f has continuous logarithms g1 and g2, and continuous 
arguments 6 1 and 62. Then there are integers k and l such that g 1(s) — g2(s) = 2nik and 
61(s) — 62( s) = 2nl for all s G S. Thus g 1 — g2 and 6 1 — 62 are constant on S.

(d) If S is connected and s,t S S, then g(s) — g(t) = ln \f (s)| — ln \f (t)| + i(6(s) — 6(t)) 
for all continuous logarithms g and all continuous arguments 6 of f .

Proof.

(a) If f(s) = eg(s), then |f (s)| = eRe g(s), hence f (s)/|f (s)| = ei Im g(s) as required.

(b) If f (s) = \f (s)\ei&(s), then f (s) = eln lf(s)| + ie(s), so ln\f | + i6 is a continuous logarithm. 

(c) We have f(s) = eg1(s) = eg2(s), hence eg1(s)-g2(s) = 1, for all s G S. By (2.3.1f), 
g 1(s) — g2(s) = 2nik(s) for some integer-valued function k. Since g 1 and g2 are continuous 
on S,soisk. But S is connected, so k is a constant function. A similar proof applies to 
any pair of continuous arguments of f.

(d) If 6 is a continuous argument of f, then ln |f | + i6 is a continuous logarithm of f by 
part (b). Thus if g is any continuous logarithm of f, then g = ln \f | + i6 + 2nik by (c). 
The result follows. &

As Example 3.1.5(c) indicates, a given zero-free continuous function on a set S need 
not have a continuous argument. However, a continuous argument must exist when S is 
an interval, as we now show.

3.1.7 Theorem
Let y : [a,b] ^ C \ {0} be continuous, that is, y is a curve and 0 / y* . Then y has a 
continuous argument, hence by (3.1.6), a continuous logarithm.

Proof. Let e be the distance from 0 to y*, that is, e = min{|y(t)| : t G [a, b]}. Then e > 0 
because 0 / y* and y* is a closed set. By the uniform continuity of y on [a, b], there is 
a partition a = t0 < t1 < • • • < tn = b of [a,b] such that if 1 < j < n and t G [t— 1 ,tj], 
then y(t) D D(y(tj), e)• By (3.1.5b), the function y, restricted to the interval [t0,t 1], has 
a continuous argument 61, and y restricted to [t1, t2] has a continuous argument 62 . Since 
6 1(11) and 62(11) differ by an integer multiple of 2n, we may (if necessary) redefine 62 on 
[11, 12] so that the relation 6 1 U 62 is a continuous argument of y on [10, 12]. Proceeding in 
this manner, we obtain a continuous argument of y on the entire interval [a, b]. &

For a generalization to other subsets S, see Problem 3.2.6.
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3.1.8 Definition
Let f be analytic on Q. We say that g is an analytic logarithm of f if g is analytic on Q 
and eg = f.

Our next goal is to show that if Q satisfies certain conditions, in particular, if Q is a 
starlike region, then every zero-free analytic function f on Q has an analytic logarithm on 
Q. First, we give necessary and sufficient conditions for f to have an analytic logarithm.

3.1.9 Theorem

Let f be analytic and never zero on the open set Q. Then f has an analytic logarithm 
on Q iff the “logarithmic derivative” f'/f has a primitive on Q. Equivalently, by (2.1.6) 
and (2.1.10), Y ff(Zy dz = 0 oor every closed path y in Q.

Proof. If g is an analytic logarithm of f, then eg = f, hence f'/ f = g. Conversely, if 
f'/ f has a primitive g, then f'/ f = g', and therefore

(fe-g)' = -fe-g g + f 'e-g = e-g (f' — fg)

which is identically zero on Q. Thus fe-g is constant on each component of Q. If 
fe-g = kA on the component A, then kA cannot be zero, so we can write kA = elA for 
some constant lA. We then have f = eg+lA , so that g + lA is an analytic logarithm of f 
on A. Finally, U^ (g + Ia ) is an analytic logarithm of f on Q. &

We may now give a basic sufficient condition on Q under which every zero-free analytic 
function on Q has an analytic logarithm.

3.1.10 Theorem

If Q is an open set such that J h(z) dz = 0 for eveyf anayytic function h on Q and every 
closed path y in Q, in particular if Q is a starlike region, then every zero-free analytic 
function f on Q has an analytic logarithm.

Proof. The result is a consequence of (3.1.9). If Q is starlike, then Y h(z) dz = 0 by 
Cauchy’s theorem for starlike regions (2.1.9). &

3.1.11 Remark
If g is an analytic logarithm of f on Q, then f has an analytic n-th root, namely f1/n = 
exp(g/n). If f (z) = z and g = loga, we obtain

z1/n — ovn 1 _  In I 1 I I 1___ 1 1 — I 1 I 1 /n itvri I __  *i i'i। -y 1— exp — ln izi + i— arga z — izi exp — arga z .
yn n n yn f

More generally, we may define an analytic version of fw for any complex number w, via 
fw = ewg .
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3.2 The Index of a Point with Respect to a Closed 
Curve

In the introduction to this chapter we raised the question of which closed paths 7 in an 
open set Q have the property that f f (z) dz = 0 for eveyy analytic Uunction f on Q. As 
we will see later, a necessary and sufficient condition on y is that “y not wind around any 
points outside of Q.” That is to say, if z0 / Q and y is defined on [a, b], there is “no net 
change in the argument of y (t) - z0”ast increases from a to b. To make this precise, we 
define the notion of the index (or winding number) of a point with respect to a closed 
curve. The following observation will be crucial in showing that the index is well-defined.

3.2.1 Theorem
Let y : [a,b] ^ C be a closed curve. Fix z0 / y*, and let 6 be a continuous argument of 
Y — z0 [6 exists by (3.1.7)]. Then 6(b) — 6(a) is an integer multiple of 2n. Furthermore, if 
61 is another continuous argument of y - z0, then 61 (b) - 61(a) = 6(b) - 6(a).
Proof. By (3.1.4), we have (y(t) — z0)/\y(t) - z01 = ei(t),a < t < b. Since y is a closed 
curve, y (a)=y (b), hence

i = y(b) - z0 . \7(a)—zq\ = ei(g(b)_g(a)) 

\y(b) - z0| y(a) - z0 '

Consequently, 6 (b) — 6(a) is an integer multiple of 2n. If 6 1 is another continuous argument 
of y - z0, then by (3.1.6c), 6 1 — 6 = 2nl for some integer l. Thus 6 1(b) = 6(b) + 2nl and 
6 1(a) = 6(a) + 2nl, so 6 1(b) — 6 1(a) = 6(b) — 6(a). A

It is now possible to define the index of a point with respect to a closed curve.

3.2.2 Definition
Let y : [a,b] ^ C be a closed curve. If z0 / y*, let 6z0 be a continuous argument of y — z0. 
The index of z0 with respect to y, denoted by n(y, z0), is

n(y,z0) = 6z0(b) — 6z0(a) • 
2 n

By (3.2.1), n(y, z0) is well-defined, that is, n(y, z0) does not depend on the particular 
continuous argument chosen. Intuitively, n(y, z0 ) is the net number of revolutions of 
y(t), a < t < b, about the point z0. This is why the term winding number is often used 
for the index. Note that by the above definition, for any complex number w we have 
n(y, z0) = n(y + w, z0 + w).

If y is sufficiently smooth, an integral representation of the index is available.

3.2.3 Theorem
Let y be a closed path, and z0 a point not belonging to y* . Then

n ('’•’■• J) = 2n? Y t—zjdz-
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More generally, if f is analytic on an open set Q containing y*, and z0 / (f ◦ y) *, then

n(f ◦ Y, z0 f dz
Y f(z) - z0

Proof. Let e be the distance from z0 to y*. As in the proof of (3.1.7), there is a partition 
a = t0 < t1 < • • • < tn = b such that tj- 1 < t < tj implies y(t) D D(y(tj), e). For each 
j, z0 / D(y(tj), e) by definition of e. Consequently, by (3.1.10), the analytic function 
z ^ z - z0, when restricted to D(y(tj), e) has an analytic logarithm gj. Now if g is an 
analytic logarithm of f, then g = f'/f [see (3.1.9)]. Therefore gj(z) = 1 /(z - z0) for all 
z D D(y(tj), e). The path y restricted to [tj_ 1 ,tj] lies in the disk D(y(tj), e), and hence 
by (2.1.6),

I -^—- dz = gj(y(tj)) - gj(y(tj-1))•
Y|[tj-1,tj] z-z0

Thus

Y z - z0

n

z = [gj(Y(tj)) - gj(Y(tj-1))].
j=1

If Oj = Imgj, then by (3.1.6a), Oj 

By (3.1.6d), then,
is a continuous argument of z ^ z - z0 on D(y(tj), e).

f-1
Y z

n

~dz = ^[ °j (Y (tj)) - Oj (Y (tj-1))] •

If O is any continuous argument of Y - z0, then O|[tj-1,tj] is a continuous argument of 
(Y - z0)|[tj-1,tj]. But so is Oj ◦ Y|[tj-1,tj], hence by (3.1.6c),

Oj(Y(tj)) - Oj(Y(tj-1)) = O(tj) - O(tj-1)•

Therefore,

1n1 — dz = £[O(tj) - O(tj_ 1)] = O(b) - O(a) = 2nn(y, z0) 
Y z - z0 j=1

completing the proof of the first part of the theorem. Applying this result to the path 
f ◦ y, we get the second statement. Specifically, if z0 / (f ◦ y)*, then

ffn 1 1 ( 1 ; 1 f f' (z) 1 xn(f ◦ Y,z°) = 2nijf◦Y —dz = 2Hj, f dz *

The next result contains additional properties of winding numbers that will be useful 
later, and which are also interesting (and amusing, in the case of (d)) in their own right.
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3.2.4Theorem
Let y, Y 1, Y2 : [a, b] ^ C be closed curves.
(a) If z / y*, then n(Y, z) = n(Y — z, 0).
(b) If 0 / y* Uy *, then n (Y 1 Y 2,0) = n (Y 1,0)+n (Y 2,0) and n (Y 1 /y 2,0) = n (Y 1,0)—n (Y 2,0). 
(c) If y* Q D(z0, r) and z / D(z0, r), then n(Y, z) = 0-
(d) If |y 1 (t) — Y2(t)I < Iy 1(t)I, a < t < b, then 0 / Y* U Y* and n(Y 1, 0) = n(Y2,0). 
Proof.
(a) This follows from Definition 3.2.2.

(b) Since 0 ^ y* U y*, both n(Y 1,0) and Y2, 0) are defined. If 6 1 and 62 are continuous 
arguments of y 1 and y2 respectively, then Yj(t) = lYj(t) lei6j(t),j = 1, 2, so

Y 1( t) Y 2( t) = lY 1( t) Y 2( t) lei (6 1( t)+6 2( t)), Y 1( t) /y 2( t) = Iy 1( t) /y 2( t) |ei (° 1( t) - 2( t)).

Thus

n(Y1Y2, 0) = (61(b) + 62(b)) - (61(a) + 62(a)) = (61(b) - 61(a)) + (62(b) - 62(a)) 
= n(Y1, 0) +n(Y2, 0).

Similarly, n(Y1/Y2,0) =n(Y1,0) - n(Y2, 0).
(c) If z / D(z0,r), then by (3.1.10), the function f defined by f(w)=w - z, w D(z0, r), 
has an analytic logarithm g.If6 is the imaginary part of g, then by (3.1.6a), 6 ◦ Y is 
a continuous argument of y — z. Consequently, n(y, z) = (2n)- 1[6(y(b)) — 6(y(a))] = 0 
since Y(b) = Y(a).
(d) First note that if Y1(t)=0orY2 (t) = 0, then IY1 (t) — Y2 (t)I < IY1 (t)I is false; 
therefore, 0 / Y1* U Y2* . Let Y be the closed curve defined by Y(t) = Y2(t)/Y1 (t). By the 
hypothesis, we have I1 — Y(t)I < 1on[a, b], hence Y* Q D(1, 1). But by (c) and (b), 
0 = n(y, 0) = n(y2,0) — n(y 1, 0). A

Part (d) of (3.2.4) is sometimes called the “dog-walking theorem”. (See the text by 
W. Veech,A Second Course in Complex Analysis, page 30.) For if Y1 (t) and Y2 (t) are 
respectively the positions of a man and a dog on a variable length leash, and a tree is 
located at the origin, then the hypothesis states that the length of the leash is always 
less than the distance from the man to the tree. The conclusion states that the man and 
the dog walk around the tree exactly the same number of times. See Problem 4 for a 
generalization of (d).

The final theorem of this section deals with n(Y, z0) when viewed as a function of z0 .

3.2.5 Theorem
If y is a closed curve, then the function z ^ n(y, z), z / Y*, is constant on each component 
of C \ Y* , and is 0on the unbounded component of C \ Y* .
Proof. Let z0 C \ Y* , and choose r > 0such that D(z0, r) Q C \ Y* .Ifz D(z0, r),
then by parts (a) and (b) of (3.2.4),

n(Y, z) — n(Y, z0) = n(Y — z, 0) — n(Y — z0, 0 =n (^^, = J1 +
Y—z0

,0
z 0 — z
Y — z 0



8 CHAPTER 3. THE GENERAL CAUCHY THEOREM

But for each t, 

z 0 - Z
Y (t) - z 0

<____ r____ < 1
Iy(t) - z01

since D (z 0 ,r) C C \ y *. Therefore the curve 1 + ( z 0 — z) / ( y — z 0)liesin D (1,1). By part (c) 
of (3.2.4), n(1+(z0-z)/(Y-z0), 0) = 0, so n(Y, z) = n(Y, z0). This proves that the function 
z ^ n(y, z) is continuous on the open set C\y* and locally constant. By an argument that 
we have seen several times, the function is constant on components of C\y* . (If z0 6 C\y* 

and Q is that component of C \ y* containing z0, let A = {z 6 Q : n(y, z) = n(Y, z0)}• 
Then A is a nonempty subset of Q and A is both open and closed in Q, so A = Q.) To 
see that n(Y, z) = 0on the unbounded component of C \ Y*, note that Y* C D(0, R) for R 
sufficiently large. By (3.2.4c), n(Y, z) = 0for z 6/ D(0,R). Since all z outside of D(0, R) 
belong to the unbounded component of C \ y*, we are finished. &

Problems
1. Suppose Q is a region in C \{0} such that every ray from 0meets Q.

(a) Show that for any a 6 R, loga is not analytic on Q.
(b) Show, on the other hand, that there exist regions of this type such that z does have 
an analytic logarithm on Q.

2. Let f(z) = (z - a)(z - b) for z in the region Q = C \ [a, b], where a and b are distinct 
complex numbers. Show that f has an analytic square root, but not an analytic 
logarithm, on Q.

3. Let f be an analytic zero-free function on Q. Show that the following are equivalent. 
(a) f has an analytic logarithm on Q.
(b) f has an analytic k-th root on Q (that is, an analytic function h such that hk = f) 
for every positive integer k .
(c) f has an analytic k-th root on Q for infinitely many positive integers k.

4. Prove the following extension of (3.2.4d), the “generalized dog-walking theorem”. Let 
Y 1 ,Y2 : [a,b] ^ C be closed curves such that |yi(t) — Y2(t) I < Iy 1(t) I + Iy2(t) I for all 
t 6 [a, b]. Prove that n(Y1, 0) =n(Y2, 0). (Hint: Define Y as in the proof of (3.2.4d), 
and investigate the location of Y* .) Also, what does the hypothesis imply about the 
dog and the man in this case?

5. Prove the result given in Example 3.1.5(c).

6. Let f be a continuous mapping of the rectangle S = {x + iy : a < x < b, c < y < d} 
into C \ {0}. Show that f has a continuous logarithm. This can be viewed as a 
generalization of Theorem 3.1.7; to obtain (3.1.7) (essentially), take c = d.

7. Let f be analytic and zero-free on Q, and suppose that g is a continuous logarithm of 
f on Q. Show that g is actually analytic on Q.

8. Characterize the entire functions f,g such that f2 + g2 = 1. (Hint: 1 = f2 + g2 = 
(f + ig)(f - ig), so f + ig is never 0.)

9. Let f and g be continuous mappings of the connected set S into C \ {0}.
(a) If fn = gn for some positive integer n, show that f = g exp(i2nk/n) for some 
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k = 0, 1,... ,n — l.Hence if f (s0) = g(s0) for some s0 e S, then f = g. 
(b) Show that C \{0} cannot be replaced by C in the hypothesis.

3.3 Cauchy’s Theorem
This section is devoted to a discussion of the global (or homology) version of Cauchy’s 
theorem. The elementary proof to be presented below is due to John Dixon, and appeared 
in Proc. Amer. Math. Soc. 29 (1971), pp. 625-626, but the theorem as stated is originally 
due to E.Artin.

3.3.1 Cauchy’s Theorem
Let y be closed path in Q such that n(y, z)= 0 for all z e C \ Q.

(i) For all analytic functions f on Q, f f (w) dw = 0;

(ii) If z e Q \ y*, then

if 1 f f(w) a 
n(Y,z) J (z) = 2~ J w - z dw.

A path y in Q with n(y, z) = 0for all z e C \ Q is said to be Q-homologous to zero.
Dixon’s proof requires two preliminary lemmas.

3.3.2 Lemma
Let f be analytic on Q, and define g on Q x Q by

g(w, z)=
f f (w)-f (z) 

w w-z 
V' (z),

w=z
w= z.

Then g is continuous, and for each fixed w e Q, the function given by z ^ g(w, z) is 
analytic on Q.
Proof. Let {(wn, zn), n = 1, 2,...} be any sequence in Q x Q converging to (w, z) e Q x Q.
If w = z, then eventually wn = zn, and by continuity of f, g(wn, zn) = f (wn)—f (zn) ^ wn -zn

f (w)-f (z) = g(w, z). However, if w = z, then w-z , . , ,

f W-T [\z w ] f'(T) dT if wn = zn 
wn -zn [zn ,wn]

g(wn,zn) = [ f' (zn ) if wn = zn

In either case, the continuity of f' at z implies that g(wn, zn) ^ f'(z) = g(z, z).

Finally, the function z ^ g(w, z) is continuous on Q and analytic on Q \ {w} (because 
f is analytic on Q). Consequently, z ^ g(w, z) is analytic on Q by (2.2.13). ^
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3.3.3 Lemma

Suppose [a, b] C R, and let v be a continuous complex-valued function on the product 
space Q x [a, b]. Assume that for each t G [a, b], the function z ^ v(z,t) is analytic on Q. 
Define F on Q by F (z) = b v(z, t) dt, z G Q. Then F is analytic on Q and

F'(z) = / d^~(z,t) dt, z G Q.

Note that Theorem 2.2.10on integrals of the Cauchy type is special case of this result. 
However, (2.2.10) will itself play a part in the proof of (3.3.3).

Proof. Fix any disk D(z0,r) such that D(z0,r) C Q. Then for each z G D(z0,r),

F(z) = y v(z, t) dt

Vwn w dt 

w - z
(by 2.2.9)

V(w, t) dt -------- dw
w-z1

(Write the path integral as an ordinary definite integral and observe that the interchange 
in the order of integration is justified by the result that applies to continuous functions on 
rectangles.) Now bb v(w, t) dt is a continuous function of w (to see this use the continuity 
of v on Q x [a, b]), hence by (2.2.10), F is analytic on D(z0,r) and for each z G D(z0,r),

F'(z) = 5— / [ V(w,t) dt
2ni JC(z0 ,r) Ja

= fb 1 /■ V (w,t)
Ja 2ni JC(z0,r) (w - z)2

= /a. TG(z’') dt

1
(w — z )2

dw

dt

by (2.2.10) again. &

Proof of Cauchy’s Theorem.

Let y be a closed path in the open set Q such that n(y, z) = 0 for all z G C \ Q, and let 
f be an analytic function on Q. Define Q' = {z G C \ Y* : n(Y, z) = 0}. Then C \ Q C Q', 
so Q U Q' = C; furthermore, Q' is open by (3.2.5). If z G Q A Q' and g is defined as in 
(3.3.2), then g(w, z) = (f(w) — f (z))/(w — z) since zG/y* . Thus

g(
-'7

w, z) dw [ ——- dw — 2nin(Y, z) f (z) f (w)
w—z

dw
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since n(y, z) = 0 for z G Q'. The above computation shows that we can define a function 
h on C by

ffY g(w, z)dw 
h(z) =

f fw dw
Yf w-z

if z G Q

if z G Q'.

By (2.2.10), h is analytic on Q', and by (3.3.2) and (3.3.3), h is analytic on Q. Thus h 
is an entire function. But for ]z] sufficiently large, n(y, z) = 0 by (3.2.5), henee z G Q'. 
Consequently, h(z) = J W-) dw ^ 0 as Izl ^ ^• By Liouville’s theorem (2.4.2), h = 0. 
Now if z G Q \ y* we have, as at the beginning of the proof,

0= g(w, z
Y

f f (w) j o ■ r vri I --------dw — 2nm(y, z) f (z)
Y w — z 

proving (ii). To obtain (i), choose any z G Q \ y* and apply (ii) to the function w ^ 
(w — z)f(w),w G Q. A

3.3.4Remarks
Part (i) of (3.3.1) is usually referred to as Cauchy’s theorem, and part (ii) as Cauchy’s 
integral formula. In the above proof we derived (i) from (ii); see Problem 1 for the reverse 
implication.

Also, there is a converse to part (i): If y is a closed path in Q such that J) f (w) dw = 0 
for every f analytic on Q, then n(y, z) = 0for every zG/Q. To prove this, take f (w)= 
1/(w — z) and apply (3.2.3).

It is sometimes convenient to integrate over objects slightly more general than closed 
paths.

3.3.5 Definitions
Let y1,y2,... ,ym be closed paths. If k1,k2,... ,km are integers, then the formal sum 
y = k 1 y 1 + • • • + km7m is called a cycle. We define y* = ^'=1 y* , and for any continuous 
function f on y * ,

f (w) dw
Y

m „

= kj f (w) dw.
j=1 j

Finally, for zG/y * , define
m

n(y, z) kjn(yj ,z). 
j=1

It follows directly from the above definitions that the integral representation (3.2.3) for 
winding numbers extends to cover cycles as well. Also, the proof of Cauchy’s theorem 
(3.3.1) may be repeated almost verbatim for cycles (Problem 2).

Cauchy’s theorem, along with the remarks and definitions following it combine to yield 
the following equivalence.
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3.3.6 Theorem
Let y be a closed path (or cycle) in the open set Q. Then Y f (z) dz = 0 for every analytic 
function f on Q iff n (y, z) = 0 for every z / Q.
Proof. Apply (3.3.1), (3.3.4) and (3.3.5). Note that the proof of the converse of (i) of 
(3.3.1) given in (3.3.4) works for cycles, because the integral representation (3.2.3) still 
holds. ^

3.3.7 Corollary
Let y 1 and Y2 be closed paths (or cycles) in the open set Q. Then J f (w) dw = 
J f (w) dw for every analytic function f on Q iff n (y 1, z) = n (Y2, z) for every z / Q.

Proof. Apply (3.3.6) to the cycle y 1 — y2. ^
Note that Theorem 3.3.6 now provides a solution of the first problem posed at the 

beginning of the chapter, namely, a characterization of those closed paths y in Q such 
that JY f (z) dz = 0 for eveyy anayttic function f on Q.

Problems
1. Show that (i) implies (ii) in (3.3.1).

2. Explain briefly how the proof of (3.3.1) is carried out for cycles.

3. Let Q, y and f be as in (3.3.1). Show that for each k = 0, 1, 2,... and z Q Q \ y*, we 
have

( W( k )fo k! [ f (w’n(y'z’f( )(z■ ’“Si/Y (w — z)k +1 dw.

4. Compute Jc(0 2) z2— 1 dz.

5. Use Problem 3 to calculate each of the integrals Jy e +zc4os z dz,j = 1, 2, where the y^ 
are the paths indicated in Figure 3.3.1.

6. Consider y : [0.2n] ^ C given by y(t) = a cos t + ib sin t, where a and b are nonzero 
real numbers. Evaluate JY dz/z, and using this result, deduce that

f 2n dt = 2 n
Jo a2 cos2 t + b2 sin2 t ab

3.4 Another Version of Cauchy’s Theorem
In this section we consider the second question formulated at the beginning of the chapter: 
Which open sets Q have the property that JY f (z) dz = 0 for all aanaytifo I'uiid Ions f on 
Q and all closed paths (or cycles) y in Q? A concise answer is given by Theorem 3.4.6, 
but several preliminaries are needed.
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Figure 3.3.1

3.4.1 The Extended Complex Plane
Let S = {(x 1, x2,x3) E R3 : x2 + x2 + (x3 — 1 /2)2 = 1 /4}. Thus S is the sphere inR3 (called 
the Riemann sphere) with center at (0,0,1/2) and radius 1/2 (Figure 3.4.1). The line 
segment joining (0,0,1), the north pole of S, to a point (x, y, 0) is {(tx, ty, 1 — t) : 0 < t < 1}, 
and this segment meets S when and only when

12( x 2 + « 2) + (1 — t )2 = 1 or t =_____ 1_____
t (x + y ) + (2 t) 4, or t 1+ x2 + y2 ■

Therefore the intersection point is (x1, x2, x3), where

x y x2+ y2

x1 = 1 + x 2 + y 2 , x 2 = 1 + x 2 + y 2 , x 3 = 1 + x 2 + y 2 '

Since 1 - x3 =1/(1+ x2+ y2), it follows from (1) that
x1 x2

x = ~3, y = ~3 ■

(1)

(2)

Let h be the mapping that takes (x, y, 0) to the point (x1,x2,x3) ofS. Then h maps 
R2 x {0}, which can be identified with C, one-to-one onto S \ {(0, 0, 1)}. Also, by (2), 
h 1( x 1 ,x 2 ,x 3) = (1—— , 1- - , 0). Consequently, h is a homeomorphism, that is, h and 
h-1 are continuous.

We can identify C and S \ {(0, 0, 1)} formally as follows. Define k : C ^ R2 x {0}. by 
k(x + iy) = (x, y.0). Then k is an isometry (a one-to-one, onto, distance-preserving map), 
hence h ◦ k is a homeomorphism of C onto S \ {(0, 0, 1)}. Next let to denote a point not 
belonging to C, and take C to be C U {to}. Define g : C ^ S by

g(z) = h(k(z)),
(0, 0, 1),

zEC
z = to.

Then g maps C one-to-one onto S. If p is the usual Euclidean metric of R3 and d is 
defined on C x C by

d(z,w) =p(g(z),g(w)),
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then d is a metric on C. (The d-distance between points of C is the Euclidean distance 
between the corresponding points on the Riemann sphere.) The metric space (C, d) is 
called the extended plane, and d is called the chordal metric on C. It is a consequence of 
the definition of d that (C,d) and (S,p) are isometric spaces. The following formulas for 
d hold.

3.4.2 Lemma

{
\z—w|

(1 + |z|2)1 /2(1+ |w|2)1 /2 ,

_____ 1_____
(1 + |z|2)1 /2 -,

z,w G C

z G C,w = ^.

Proof. Suppose z = x + iy,w = u + iv. Then by (1) of (3.4.1),

r 7/ \ 19[d(z, w)]2 =
1 + |w|2

y
1 + Izl2 1 + |w|2

Izl2 H2 V

1 + ^2 1 + |w| 2_

x
TTH2

1 2 u
+

1 2 v
+

x2 + y2 + !z!4 u2 + v2 + |w|4
_(I+|z|2)^ + (1 + |w|2)2

2 xu + yv + M2|w|2

w
Izl2 |w|2 } z}2 + |w|2 __  _ w\2 + 2 lzl2 |w|2lzl |w| lzl + |w| w| + " lzl |w|

I+lzP + 1 + |w|2

|z — w|2 

(1+^^+^
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as desired. Also,

[d,(z, to)]2 = [p(g(z), (0, 0, 1))]2

x2 + y2 +1
(1 + x2 + y2)2 by (1) of (3.4.1)

_ 1
= T+izi2' *

TT • 1 • j C j 1 j 1 • j • C /AHere is a list of the most basic properties of C.

3.4.3 Theorem
(a) The metric space (C, d) is compact, and the identity function on C is a homeomorphism 
of C (with the usual metric) onto (C, d).

(b) The complex plane is a dense subspace of C. In fact, a sequence {zn } in C converges 
to TO iff {|zn|} converges to +TO.

(c) The metric space (C, d) is connected and complete.

(d) Let y be a closed curve in C, and define n(y, to) = 0. Then the function n(y, •) is 
continuous on C \ y*.

(e) The identity map on C is a homeomorphism of (C, d) with the one-point compactifi
cation (C^, T) of C. (Readers unfamiliar with the one-point compactification of a locally 
compact space may simply ignore this part of the theorem, as it will not be used later.)

t-» f rx- ji t~» • i i i i i i i • /zrx ix miProof. Since the Riemann sphere is compact, connected and complete, so is (C, d). The 
formula for d in (3.4.2) shows that the identity map on C is a homeomorphism of C into 
C, and that zn ^ to iff \zn\ ^ + to. This proves (a), (b) and (c). Part (d) follows from 
(3.2.5). For (e), see Problem 4. *

We are now going to make precise, in two equivalent ways, the notion that an open 
set has no holes.

3.4.4 Theorem
t j z-a i • zt~x mi zA \ z-a • ji-rr ii i Zi i i X •Let Q be open in C. Then C \ Q is connected iff each closed curve (and each cycle) y in
Q is Q-homologous to 0, that is, n(y, z) = 0 for all z / Q.

Proof. Suppose first that C \ Q is connected, and let y be a closed curve in Q. Since 
z ^ n(y, z) is a continuous integer-valued function on C \ y* [by (3.2.5) and (3.4.3d)], it 
must be constant on the connected set C \ Q. But n(y, TO) = 0, hence n(y, z) = 0for all 
z C C \ Q. The statement for cycles now follows from the result for closed curves.

The converse is considerably more difficult, and is a consequence of what we will call 
the hexagon lemma. As we will see, this lemma has several applications in addition to its 
use in the proof of the converse.
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3.4.5 The Hexagon Lemma
Let Q be an open subset of C, and let K be a nonempty compact subset of Q. Then there 
are closed polygonal paths 7 1, y2,... , Ym in Q \ K such that

m

n(yj ,z)= 
j=1

10 if z K K 
if z / Q.

The lemma may be expressed by saying there is a (polygonal) cycle in Q \ K which winds 
around each point of K exactly once, but does not wind around any point of C \ Q.

Proof. For each positive integer n, let Pn be the hexagonal partition of C determined by 
the hexagon with base [0, 1/n]; see Figure 3.4.2. Since K is a compact subset of the open 

Figure 3.4.2. A Hexagonal Partition of C.

set Q, we have dist(K, C \ Q) > 0, and therefore we can choose n large enough so that if 
He Pn and H n K = 0, then H C Q. Define K = {He Pn : H n K = 0}. Since K is 
nonempty and bounded, K is a nonempty finite collection and

K C \J{H : He K}C Q.

Now assign a positive (that is, counterclockwise) orientation to the sides of each hexagon 
(see Figure 3.4.2). Let S denote the collection of all oriented sides of hexagons in K that 
are sides of exactly one member of K. Observe that given an oriented side ab S S, there 
are unique oriented sides ca and bd in S. (This uniqueness property is the motivation for 
tiling with hexagons instead of squares. If we used squares instead, as in Figure 3.4.3, 
we have ab, bc and bd S S, so ab does not have a unique successor, thus complicating the 
argument that follows.)

By the above observations, and the fact that S is a finite collection, it follows that 
given a1a2 S S, there is a uniquely defined closed polygonal path 7 1 = [a 1, a2,... ,ak, a 1] 
with all sides in S.IfS1 consists of the edges of y1 and S \ S1 = 0, repeat the above
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d
Figure 3.4.3 Nonuniqueness when squares are used.

construction with S replaced by S\S1. Continuing in this manner, we obtain pairwise dis
joint collections S 1, S2,... ,Sn such that S = Um=1 Sj, and corresponding closed polygonal 
paths y 1, Y 2,... ,Ym (Figure 3.4.4).

Suppose now that the hexagons in K are H 1, H2,... , Hp, and let aj denote the bound
ary of Hj, oriented positively. If z belongs to the interior of some Hr, then n(ar ,z) = 1 
and n(aj, z) = 0,j = r. Consequently, n(a 1 + a2 + • • • + ap, z) = 1 by (3.3.5). But by 
construction, n(y 1 + • • • + Ym, z) = n(a 1 + • • • + ap, z). (The key point is that if both 
hexagons containing a particular side [a, b] belong to K, then ab / S and ba / S. Thus 
[a, b] will not contribute to either n(y 1 + • • • + Ym, z) or to n(a 1 + • • • + ap, z). If only one 
hexagon containing [a, b] belongs to K, then ab (or ba) appears in both cycles.) Therefore 
n(y 1 +-------- + Ym, z) = 1. Similarly, if z / Q, then n(y 1 + + Ym, z) = n(a 1 +---------+ ap, z) = 0.

Finally, assume z K K and z belongs to a side s of some Hr. Then s cannot be in 
S, so z K (Y 1 + • • • + Ym) *. Let {w} be a sequence of interior points of Hr with wk 

converging to z. We have shown that n(y 1 + • • • + Ym,wk) = 1 for all k, so by (3.2.5), 
n(y 1 +-------+ Ym,z) = 1. A

Completion of the Proof of (3.4.4)

If C \ Q is not connected, we must exhibit a cycle in Q that is not Q-homologous to 0. Now 
since C is closed and not connected, it can be expressed as the union of two nonempty 
disjoint closed sets K and L. One of these two sets must contain to; assume that to K L. 
Then K must be a compact subset of the complex plane C, and K is contained in the 
plane open set Q1 = C \ L. apply the hexagon lemma (3.4.5) to Q1 and K to obtain 
a cycle a in Q1 \ K = C \ (K U L) = Q such that n(a, z) = 1 for each z K K (and 
n (a, z) =0 for z / Q1). Pick any point z in the nonempty set K C C \ Q. Then z / Q 
and n(a, z)=1 =0. A



18 CHAPTER 3. THE GENERAL CAUCHY THEOREM

Figure 3.4.4. Construction of the closed paths.

Remark
As a consequence of the definition (3.3.5) of the index of a cycle, if C \ Q is not connected, 
there must actually be a closed path y in Q such that n(y, z) = 0 for some z / Q.

The list of equivalences below is essentially a compilation of results that have already 
been established.

3.4.6 Second Cauchy Theorem
Let Q be an open subset of C. The following are equivalent.
(1) C \ Q is connected.
(2) n(y, z) = 0 oor each closed [athi (or cycle) y in Q and each point z C C \ Q.
(3) f7 f (z) dz = 0 f°r every doeed path oor eyrie) y in Q and every analytic function f 
on Q.
(4) Eeery analytic function on Q has a primitiee on Q.
(5) Eeery zero-free analytic function on Q has an analytic logarithm.
(6) Eeery zero-free analytic function on Q has an analytic n-th root for n =1, 2, 
Proof.
(1) is equiealent to (2) by Theorem 3.4.4.
(2) is equiealent to (3) by Theorem 3.3.6.
(3) is equiealent to (4) by Theorems 2.1.6 and 2.1.10.
(3) implies (5) by Theorem 3.1.10.
(5) is equiealent to (6) by Problem 3.2.3.
(5) implies (2): If z0 / Q, let f (z) = z — z0, z Q Q. Then f has an analytic logarithm on
Q, and hence for each closed path (or cycle) y in Q we haee, by (3.2.3) and (3.1.9),

, , 1 f 1,, 1 f f' (z)n(''• z0) = 2ni Jy—dz = 2niJ,. fpzy dz = 0 *



3.4. ANOTHER VERSION OF CAUCHY’S THEOREM 19

We will be adding to the above list in later chapters. An open subset of C satisfying any 
(and hence all) of the conditions of (3.4.6) is said to be (homological ly) simply connected.

It is true that in complex analysis, the implications (1) ^ (2) ^ (3) are used almost 
exclusively. The rather tedious hexagon lemma was required to establish the reverse 
implication (2) ^ (1). Thus one might wonder why we have gone to the trouble of 
obtaining the hexagon lemma at all. One answer is that it has other applications, including 
the following global integral representation formula. This formula should be compared 
with Cauchy’s integral formula for a circle (2.2.9). It will also be used later in the proof 
of Runge’s theorem on rational approximation.

3.4.7 Theorem
Let K be a compact subset of the open set Q. Then there is a cycle y in Q \ K such that 
Y is a formal sum of closed polygonal paths, and for every analytic function f on Q,

f (z) =--- - f ——d- dw = 0 for all z G K.
2ni JY w — z

Proof. Apply the hexagon lemma and part (ii) of (3.3.1). &

Problems
1. (a) Give an example of an open connected set that is not simply connected. For this set, 

describe explicitly an analytic function f and a closed path y such that Jy f (z) dz = 0. 
(b) Give an example of an open, simply connected set that is not connected.

2. Suppose that in the hexagon lemma, Q is assumed to be connected. Can a cycle that 
satisfies the conclusion be taken to be a closed path ?

3. Let r1 be the ray [1 ,i/2, to) = {1 — t + ti/2 : 0 < t < to} and let r2 be the ray 
[1, 2, to).
(a) Show that 1 — z has analytic square roots f and g on C \ r1 and C \ r2 respectively, 
such that f (0) = g(0)=1.
(b) Show that f = g below r = r1 U r2 and f = —g above r. (Compare Problem 
3.2.9.)
(c) Let h(z) be given by the binomial expansion of (1 — z)1/2, that is,

h(z)=n=0 1n/2 (—z) |z| < 1,

where Q) = w(w 1)n!w n +1). What is the relationship between h and f ?

4. Prove Theorem 3.4.3(e).



Chapter 4

Applications Of The Cauchy
Theory

This chapter contains several applications of the material developed in Chapter 3. In 
the first section, we will describe the possible behavior of an analytic function near a 
singularity of that function.

4.1 Singularities
We will say that f has an isolated singularity at z0 if f is analytic on D(z0 ,r) \{z0 } for 
some r. What, if anything, can be said about the behavior of f near z0? The basic tool 
needed to answer this question is the Laurent series, an expansion of f (z)in powers of 
z - z0 in which negative as well as positive powers of z - z0 may appear. In fact, the 
number of negative powers in this expansion is the key to determining how f behaves 
near z0 .

From now on, the punctured disk D(z0, r) \ {z0} will be denoted by D'(z0, r). We will 
need a consequence of Cauchy’s integral formula.

4.1.1 Theorem

Let f be analytic on an open set Q containing the annulus {z : r 1 < \z — z01 < r2}, 
0 < r 1 < r2 < <x, and let y 1 and Y2 denote the positively oriented inner and outer 
boundaries of the annulus. Then for r1 < \z — z0 \ <r2 , we have

f(z) w) u-------- dw — 
w—z

f (w) 
w—z

dw.

Proof. Apply Cauchy’s integral formula [part (ii) of ^3^3.1)] to the cycle y2 - Y 1. ^

1
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4.1.2 Definition
For 0 < s 1 < s2 < + to and z0 G C, we will denote the open annulus {z : s 1 < \z—z01 < s2 } 
by A(z0, s1, s2).

4.1.3 Laurent Series Representation
If f is analytic on Q = A(z0, s 1, s2), then there is a unique two-tailed sequence {an}^=—IX 

such that
tt

f (z)= an(z — z0)n,z G Q.
n= — tt

In fact, if r is such that s1 <r<s2 , then the coefficients an are given by

1 f(w)an Ti " I + \n i1 dw, n 0, i1, i2, . . . .
2niJ C ( z 0 ,r) ( w — z 0) n +1

Also, the above series converges absolutely on Q and uniformly on compact subsets of Q. 
Proof. Choose r1 and r2 such that s1 <r1 <r2 <s2 and consider the Cauchy type 
integral

1 f f(w) dw, z G D(z0,r2).
2ni J C (z 0 ,r 2) w — z

Then proceeding just as we did in the proof of Theorem 2.2.16, we obtain

1 / f (w) / ^ / nn— I --------  dw 5 an (z — z0)
2niJC(z0,r2) w — z n=0

where

1 [ f (w) J
an = ------ d--------------- :—tt dw.2ni JC(z0,r2) (w — z0)n +1

The series converges absolutely on D(z0, r2), and uniformly on compact subsets of D(z0, r). 
Next, consider the Cauchy type integral

1 f f (w) , l
- 2ni / ( ^w - z dw, \z - z0\ >r 1 ’

This can be written as
tt n—1 z0)1 [ f (w) d =J_ [

2 niJ C ( z 0 ,r 1) ( z — z 0)[1 — W—000 ] w 2 niJ C ( z 0 ,r 1)

By the Weierstrass M -test, the series converges absolutely and uniformly for w G C(z0, r1). 
Consequently, we may integrate term by term to obtain the series

. . „ . . 1 f f (w)£ bn (z — z 0)— , where bn = -JC (z 0,r 1) + dw.

f(w) 
n=1

(w
(z z0)n

dw.
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This is a power series in 1/(z - z0), and it converges for |z - z0| >r1, and hence uniformly 
on sets of the form {z : \z — z01 > 1 /p} where (1 / p) > r 1. It follows that the convergence 
is uniform on compact (indeed on closed)subsets of {z : z - z0 | >r1 .

The existence part of the theorem now follows from (4.1.1)and the above computa
tions, if we note two facts. First, if s1 <r<s2 and k =0, ±1, ±2,...,

C(z0,r)

f (w) df f (w) d _ f f (w) d
(w - z 0) k +1 W Jc (z 0 ,r 1) ( w - z 0) k +1 W (z 0 ,r 2) (w - z 0) k + 1 W'

Second, any compact subset of A(z0, s 1, s2) is conaaindd in {z : p 1 < lz — z01 < p2} for 
some p1 and p2 with s1 <p1 <p2 <s2 .

We turn now to the questaon of unaqueness. Let {bn} be a sequence such that f(z) = 
O=— -n bn(z - z0)n for z ^ A(z0,s 1 ,s2). As in the above argument, this series must 
converge unaformly on compact subsets of A(z0, s1, s2). Therefore af k as any anteger and 
s1 <r<s2, then

C (z0,r)

f(w) d __
(w — z 0) k +1 dw

C (z0,r)

^

bn(w n-k-1— z0) dw

oo

bn
1

2 ni

n = — ^

— z0)n-k-1 dw
= o

=bk,

because

— [ (w — z 0)n—k- 1 dw = J 1
2 nij C (z 0 ,r) 0) (o

ifn — k — 1 =—1 
otherwise.

The theorem is completely proved. &
We are now in a position to analyze the behavior of f near an isolated singularity. 

As the preceding discussion shows, if f has an isolated singularity at z0 , then f can be 
represented uniquely by

o

f (z )= an (z - z0) n
n=-o

in some deleted neighborhood of z0 .

4.1.4 Definition
Suppose f has an isolated singularity at z0, and let no=-o an (z — z0)n be the Laurent 
expansion of f about z0, that is, the series given in (4.1.3). We say that f has a removable 
singularity at z0 if an = o for all n<o; f has a pole of order m at z0 if m is the largest 
positive integer such that a-m = o. (A pole of order 1 is called a simple pole.)Finally, if 
a = o for infinitely many n<o, we say that f has an essential singularity at z0 .

The next theorem relates the behavior of f (z)for z near z0 to the type of singularity 
that f has at z0.
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4.1.5 Theorem
Suppose that f has an isolated singularity at z0 . Then
(a) f has a removable singularity at z0 iff f (z) approaches a hiihe iimit as z ^ z0 iff f (z) 
is bounded on the punctured disk D'(z0, 6) for some 6 > 0.
(b)For a given positive integer m, f has a pole of order m at z0 iff (z-z0)mf (z)approaches 
a finite nonzero limit as z ^ z0. Also, f has a pole at z0 iff \f (z)| ^ + to as z ^ z0.
(c) f has an essential singularity at z0 iff f (z)does not approach a finite or infinite limit 
as z ^ z0, that is, f (z) has no linnt in C as z ^ z0.
Proof. Let {an}n= o and r > 0 be such that f (z) = O°\o an(z — z0)n for 0 < \z — z01 < r. 
(a) ff an = 0 for all n < 0, then limz ,z0 f (z) = a0. Conversely, if limz ,z0 f (z) exists inn 
C), then f can be defined (or redefined)at z0 so that f is analytic on D(z0, r). It follows 
that there is a sequence {bn}n=0 such that f (z) = 2= n=0 bn(z — z0)n for z G D'(z0, r). Bb 

uniqueness of the Laurent expansion, we conclude that an = 0 for n< 0 and an = bn for 
n > 0. (Thus in this case, the Laurent and Taylor expansions coincide.) The remammg 
equivalence stated in (a)is left as an exercise (Problem 1).
(b)If f has a pole of order m at z0, then for 0 < \z — z0\ <r,

oo

f(z) = a-m(z z0) +----- + a-1( z z0 )-1+ an(z
n=0

z0)nm

where a-m = 0. Consequently, (z — z0)mf (z) ^ a-m = 0 as z ^ z0. Conversely, if 
limz ,z0 (z — z0)mf (z) = 0, then by (a) applfod to (z — z0)m f (z), there is a sequence 
{bn }no=0 such that

(z — z0)mf(z)
o

bn(z — z0)n, z G D1 (z0, r).
n=0

Let z ^ z0 to obtain b0 = limz ,z0 (z — z0)mf (z) = 0. Thus f (z) cm be written as 
b0(z — z0)-m + bi(z — z0)-m+1 + • • •, showing that f has a pole of order m at z0. The 
remaining equivalence in (b)is also left as an exercise (Problem 1).

(c) ff f (z) rloss not have a himt m C as z ^ z0, then by (a) and (b), f must have an 
essential singularity at z0 . Conversely, if f has an essential singularity at z0, then (a)and 
(b) aj^am imply that iimz ,z0 f (z) cannot exstt in C. &

The behavior of a function near an essential singularity is much more pathological 
even than (4.1.5c)suggests, as the next theorem shows.

4.1.6 Casorati-Weierstrass Theorem
Let f have an isolated essential singularity at z0 . Then for any complex number w, 
f (z)comes arbitrarily close to w in every deleted neighborhood of z0 . That is, for any 
6 > 0, f (D'(z0, 6)) is a dense subset of C.
Proof. Suppose that for some 6 > 0, f (D'(z0, 6)) is not dense in C. Then for some w G C, 
there exists e > 0 such that D (w, e) <loss not mett f (D' (z 0,6)). For z G D' (z 0,6), put 
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g(z) = 1 /(f (z) — w)). Then g is bounded and analytic on D(z0, 8), and hence by (4.1.5a), 
g has a removable singularity at z0 . Let m be the order of the zero of g at z0 (set m =0if 
g(z0) = 0)and write g(z) = (z — z0)mg1 (z)where g1 is analytic on D(z0, 8)and g1 (z0) =0 
[see (2.4.4)]. Then (z — z0)mg1(z) = 1/(f(z) — w),soasz approaches z0,

(z — z0)m f (z) = (z — z0)m« + -L. ■ f w + 1 /g 1(z°’ “ m = 0

g i( z) [1 /g i( z o) if m = 0.

Thus f has a removable singularity or a pole at z0. &

4.1.7 Remark
The Casorati-Weierstrass theorem is actually a weak version of a much deeper result called 
the “big Picard theorem”, which asserts that if f has an isolated essential singularity at 
z0, then for any 8 > 0, f (D'(z0, 8)) is either the complex plane C or C minus one point. 
We will not prove this result.

The behavior of a complex function f at to may be studied by considering g(z) = 
f (1 / z) for z near 0. This allows us to talk about isolated singularities at to. Here are the 
formal statements.

4.1.8 Definition
We say that f has an isolated singularity at to if f is analytic on {z : |z| >r} for some r; 
thus the function g(z) = f(1/z)has an isolated singularity at 0. The type of singularity 
of f at to is then defined as that of g at 0.

4.1.9 Remark
Liouville’s theorem implies that if an entire function f has a removable singularity at to, 
then f is constant. (By (4.1.5a), f is bounded on C.)

Problems
1. Complete the proofs of (a)and (b)of (4.1.5.) (Hint for (a:) If f is bounded on 

D(z0, 8), consider g(z) = (z — z0)f (z).)

2. Classify the singularities of each of the following functions (include the point at to). 
(a) z/ sin z (b)exp(1 /z)(c) zcos 1/z (d)1 /[z(ez -1)] (e) cot z

3. Obtain three different Laurent expansions of (7z - 2)/z(z +1)(z - 2)about z = -1. 
(Use partial fractions.)

4. Obtain all Laurent expansions of f(z) = z-i +(z - 1)-2 +(z + 2)-i about z =0, 
and indicate where each is valid.

5. Find the first few terms in the Laurent expansion of z2(eZ—e-z) valid for 0 < \z\ < n.

6. Without carrying out the computation in detail, indicate a relatively easy procedure 
for finding the Laurent expansion of 1 / sin z valid for n < \z\ < 2n.
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7. (Partial Fraction Expansion). Let R(z)=P (z)/Q(z), where P and Q are polynomials 
and deg P<deg Q. (If this is not the case, then by long division we may write 
P(z)/Q(z) = anzn + • • • + a 1 z + a0 + P1(z)/Q(z) where deg P1 < deg Q.) Uppooee 
that the zeros of Q are at z1 ,... ,zk with respective orders n1 ,... ,nk . Show that 
R(z) = jk=1 Bj (z), where Bj (z)is of the form

Aj,0 ,_____ , A3, (nj - 1)

(z - zj )nj (z - zj ) ’

with

1 dr
Aj,r = Z^mj r\ dzr[(z- zj) nj R(z)]

dr(ddzr f (z) 1S interpeeted ass f (z) when r = 0).

Apply this result to R(z) = 1/[z(z + i)3].

8. Find the sum of the series ^22=0 e-n sinnz (in closed form), and indicate where 
the series coiverees. Make ai appropriate statemeit about uiiform coivereeice. 
(Suggestion: Consider ^22=0 e-neinz and ^22=0 e-ne-mz• )

9. (a)Show that if f is analytic on C, then f is constant.
(b) Suppose f is entire and there exists M > 0 and k > 0 such that \f (z)| < M\z\k 

for |z| sufficiently large. Show that f(z)is a polynomial of degree at most k. (This 
can also be done without series; see Problem 2.2.13.)
(c) Prove hliat if f is entire and has a nonessential singularity at to, then f is a 
polynomial.
(d)Prove that if f is meromorphic on C (that is, any singularity of f in C is a pole), 
then f is a rational function.

10. Classify the singularities of the following functions (include the point at to).

(a)sin4 z (b)—-—zy+sin1 (c)cscz -- (d)exp(tan 1) (e)—r1---- r.
z4 z2(z +1) z z z sin(sin z)

11. Suppose that a and b are distinct complex numbers. Show that (z - a)/(z - b)has an 
analytic logarithm on C \ [a’ b], call it g. Then find the possible Laurent expansions 
of g(z)about z =0.

12. Suppose f is entire and f(C)is not dense in C. Show that f is constant.

13. Assume f has a pole of order m at a, and P is a polynomial of degree n. Prove that 
the composition P ◦ f has a pole of order mn at a.

4.2 Residue Theory
We now develop a technique that often allows for the rapid evaluation of integrals of the 
form Y f (z) dz, where y is a closed path (or cycle) m Q nd f is analytic on Q except 
possibly for isolated singularities.
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4.2.1 Definition
Let f have an isolated singularity at z0 , and let the Laurent expansion of f about z0 be 
0=—=-oo an(z - z0)n. The residue of f at z0, denoted by Res(f, z0), is defined to be a- 1.

4.2.2 Remarks
In many cases, the evaluation of an integral can be accomplished by the computation of 
residues. This is illustrated by (a)and (b)below.
(a) Suppose f has an isolated singularity at z0, so that f is analytic on D'(z0, p) for some 
p > 0. Then for any r such that 0 < r < p, we have

I f (w) dw = 2ni Res( f, z0).
C(z0,r)

Proof. Apply the integral formula (4.1.3) for a- 1. &
(b) More generally, if y is a closed path or cycle in D'(z0, p) such that n(y, z0) = 1 and 
n(y, z) = O for every z / D(z0, p), then

f f (w) dw = 2ni Res( f, z0).
J7

Proof. This follows from (3.3.7). &
(c) Rees(f, z0) is thaat number k such that f (z) — [k/(z — z0)] has a primitive on D'(z0,p).
Proof. Note that if 0 <r<p, then by (a),

)k
- z 0

f(w)
C(z0,r) w

dw = 2ni[Res( f, z0) — k].

Thus if f (z) — [k/(z — z0)] has a primitive on D'(z0, p), then the integral is zero, and hence 
Res(f, z0) =k. Conversely, if Res(f, z0) =k, then

k
— z 0

f(z) —
oo

= E an(z — z0)n, 
n=-o

=-1

which has a primitive on D'(z0, p), namely

o E 
=-o 
=-1

an^(z — z0)n+1 . &

(d)If f has a pole of order m at z0, then

1 dm-1
Res(f, z0) = ?------- ---  lim —-1 [(z — z0)mf (z)] .

(m — 1)! z^zo dzm 1 J
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In particular, if f has a simple pole at z0 , then

Res(f, z0)= lim [(z - z0)f (z)]. 
z^z 0

Proof. Let {an } be the Laurent coefficient sequence for f about z0 , so that an = 0 for 
n < —m and a-m = 0. Then for z G D(z0, p),

(z — z0)m f (z) = a-m + a-m +1(z — zo) + • • • + a-1(z — zo)m 1 + a0(z — zo)m + • • • , 

hence
dm-1

m m- 1[(z - zo)mf(z)] = (m - 1)!a-1 +(z - zo)g(z) dzm-1

where g has a removable singularity at zo. The result follows. &
(e) Suppose f is analytic at zo and has a zero of order k at zo. Then f'/ f has a simple 
pole at zo and Res(f' /f, zo) = k.
Proof. There exists p>0 and a zero-free analytic function g on D(zo, p)such that 
f (z) = (z — zo)kg(z) for z G D(zo,p). Then f'(z) = k(z — zo)k-1 g(z) + (z — zo)kg'(z), 
and hence for z G D (zo, p),

f' (z) = k + 
f (z) z — z o g(z)'

Since g'/g is analytic on D(zo,p), it follows that f'/f has a simple pole at zo and 
Res(f'/f,zo) = k. &

We are now ready for the main result of this section.

4.2.3 Residue Theorem
Let f be analytic on Q \ S, where S is a subset of Q with no limit point in Q. In other 
words, f is analytic on Q except for isolated singularities. Then for any closed path (or 
cycle) y in Q \ S such that y is Q-homologous to 0, we have

f f (w) dw = 2ni n(y, w) Res( f, w).

Proof. Let S1 = {w G S : n(y, w) = 0}• Then S1 C Q = C \ {z / y* : n(Y, z) = 0}. 
Since y is Q-homologous to 0, Q is a subset of Q. Furthermore, by (3.2.5), Q is closed and 

bounded. Since S has no limit point in Q, S1 has no limit points at all. Thus S1 is a finite 
set. Consequently, the sum that appears in the conclusion of the theorem is the finite 
sum obtained by summing over S1 . Let w1,w2,... ,wk denote the distinct points of S1. 
[If S1 is empty, we are finished by Cauchy’s theorem (3.3.1).] Choose positive numbers 
r1,r2,... ,rk so small that

D(wj, rj) C Q \ S, j = 1, 2,... , k.

Let a be the cycle ^2k=1 n(7->wj)y^, where y^ is the positively oriented boundary of 
D (wj, rj). Then a is cycle in the open set Q \ S, and you can check that if z / Q \ S, then 
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n(y, z) = n(a, z). Since f is analytic on Q \ S, it follows from (3.3.7) that Yz f (w) dw = 
fT f (w) dw. But by definition of a,

Y

k p k

nZ'w (Y,wj ) f (w) dw = 2 nl^n (Y,wj) Ress( f, wj)
j=1 j j=1

by part (a) of (4.2.2). A
In many applications of the residue theorem, the integral JY f (w) dw is computed by 

evaluating the sum 2 ni^, wES n (Y, w) Res( f,w). Thus it is important to have methods 
available for calculating residues. For example, ((.....d)is useful when f is a rational
function, since the only singularities of f are poles. The residue theorem can also be 
applied to obtain a basic geometric property of analytic functions called the argument 
principle. Before discussing the general result, let’s look at a simple special case. Suppose 
z traverses the unit circle once in the positive sense, that is, z = eit 0 < t < 2n. Then 
the argument of z2, namely 21, changes by 4n, so that z2 makes two revolutions around 
the origin. Thus the number of times that z2 winds around the origin as z traverses the 
unit circle is the number of zeros of z2 inside the circle, counting multiplicity.

The index of a point with respect to a closed path allows us to formalize the notion 
of the number of times that f (z)winds around the origin as z traverses a path y. For we 
are looking at the net number of revolutions about 0 of f(y(t)), a < t < b, and this, as we 
have seen, is n(f ◦ y, 0). We may now state the general result.

4.2.4 Argument Principle
Let f be analytic on Q, and assume that f is not identically zero on any component of Q. 
If Z(f) = {z : f(z) = 0} and Y is any closed path in Q \ Z (f)such that Y is Q-homologous 
to 0,then

n(f ◦ Y, 0) = 12 n(Y,z)m(f, z) 
zEZ (f)

where m(f, z)is the order of the zero of f at z.
Proof. The set S = Z (f) nnd hhe funciinn f '/f satisfy the hypothesis of the residue 
theorem. Applying it, we get

X f f (z) dz = V n(y z) Rest f'If z) 
d^: I dz= dz Y n n(Y,z) Restf If,z).
2ni Jy f(z) zEZ(f)

But the left side equals n (f ◦y, 0) by (3.2.3}a and hhe irihht side eqiin Is ^2 zEZ (f) n (Y, z) m (f, z) 
by (4.2.2e). A

4.2.5 Remarks
Assuming that for each z G Z(f), n(y, z) = lor0, the argument piinciple says thiat the 
net increase in the argument of f (z) as z traverses y* in the positive direction is equal to 
the number of zeros of f “inside Y” (n(Y, z)= 1)with multiplicities taken into account.
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There is a useful generalization of (4.2.4)to meromorphic functions. A function f is 
meromorphic on Q if f is analytic on Q except possibly for poles. That is, there is a subset 
S C Q with no limit points in Q such that f is analytic on Q \ S and f has a pole at each 
point of S . For example, any rational function is meromorphic on C. More generally, 
the quotient f/g of two analytic functions is meromorphic, provided g is not identically 
zero on any component of Q. (This follows from (2.4.8)and (4.1.5).) Conversely, every 
meromorphic function is a quotient of two analytic functions. (This is a much deeper 
result, which will be proved in a later chapter.)

4.2.6 Definition
For f meromorphic on Q, let Z(f)denote the set of zeros of f, and P (f)the set of poles 
of f. If z G Z(f) U P(f), let m(f, z) bee the order of the zeo> or pole of f at z.

4.2.7 Argument Principle for Meromorphic Functions
Suppose f is meromorphic on Q. Then for any closed path (or cycle) y in Q\ (Z(f)UP(f)) 
such that y is Q-homologous to 0, we have

n(f ◦ Y,0 22 n(Y,z)m(f,z) - 22 n(Y,z)m(f,z)•
zEZ ( f) zEP ( f)

Proof. Take S = Z(f) UP(f), and apply the residue theorem to f'/f. The analysis is the 
same as in the proof of (4.2.4), if we note that if z 0 G P (f), then Res( f' / f, z 0) = —m (f, z 0). 
To see this, write f(z) = g(z)/(z - z0)k where k = m(f, z0)and g is analytic at z0, with 
g(z0) = 0. Then f'(z)/f (z) = [g'(z)/g(z)] — [k/(z — z0)]. A

Under certain conditions, the argument principle allows a very useful comparison of 
the number of zeros of two functions.

4.2.8 Rouche’s Theorem
Suppose f and g are analytic on Q, with neither f nor g identically zero on any component 
of Q. Let y be a closed path in Q such that y is Q-homologous to 0. If

If (z)+ g(z) | < If (z) | + \g(z) | for each z G y* , (1)

then

22 n(Y,z)m(f,z) = 22 n(Y,z)m(g, z) • 
zEZ(f) zEZ(g)

Thus f and g have the same number of zeros, counting multiplicity and index.
Proof. The inequality (1)implies that y* C Q \ [Z(f) U P(f)], and hence by the argument 
principle, applied to each of f and g, we obtain

n(f ◦ Y, 0) = 22 n(Y, z)m(f, z) md n(g ◦ y, 0) = 22 n(Y,z)m(g, z) • 
zEZ(f) zEZ(g)
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But again by (1), \f(y(t)) + g(y(t))| < If(Y(t))| + lg(Y(t))| for all t in the domain of 
the closed path y. Therefore by the generalized dog-walking theorem (Problem 3.2.4), 
n(f ◦ Y, 0) = n(g ◦ Y, 0). The result follows. ^

4.2.9 Remarks
Rouche’s theorem is true for cycles as well. To see this, suppose that y is the formal 
sum k 1 y 1 + • • • + krYr• Then just as in the proof of (4.2.8), we have n(f ◦ y, 0) = 
ZLzez (f) n (Y,z) m (f, z) nd n (g ◦ y, 0) = £ zEz (g) n (Y, z) m (g, z)• But now \f (z)+ g (z) | < 
\f (z) | + \g(z) | for each z G y* = Ur =1 Yj implies, as before, that n(f ◦ Yj, 0) = n(g ◦ Yj, 0) 
for j = 1,... , r, hence n(f ◦ y, 0) = n(g ◦ Y, 0) and the proof is complete. ^

In the hypothesis of (4.2.8), (1) is often replaced by

|f (z) - g(z)| < |f(z)| for each z G Y* . (2)

But now if (2) holds, then \f(z) + (—g(z))| < \f(z)| < \f(z)| + | — g(z)| on y*, so f and 
-g, hence f and g, have the same number of zeros.

Problems
1. Let f(z) =(z — 1)(z — 3 + 4i)/(z + 2i)2, and let Y be as shown in Figure 4.2.1. Find 

n(f ◦ Y, 0), and interpret the result geometrically.

2. Use the argument principle to find (geometrically)the number of zeros of z3—z2+3z+5 
in the right half plane.

3. Use Rouche’s theorem to prove that any polynomial of degree n > 1 has exactly n 
zeros, counting multiplicity.

4. Evaluate the following integrals using residue theory or Cauchy’s theorem.
(a) OT xsin ax dx a> 0 (b) OT ________ x_________ dx
(a) J-ot x4+4 dx, a > 0  J-ot (x2 + 1)(x2 + 2x+2) dx(b)

(c) rOT  1 dx (d) r2n coss jo (e) rOT 1 dx a> 0(c) J-OT (x2 - 4 x+5)2 dx (d)J 0 5+4cos e d0 (eAl 0 x 4+a 4 dx, a> 0

(f) rOT cos x dx (p-) f2 n (sin 0 )2 n do(1) Jo x2+1 dx (f) (g) Jo (sin 0) d0
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Figure 4.2.2

5. Evaluate f Logez dz along the path Y indicated in Figure 4.2.2.

6. Find the residue at z = 0 of (a)csc 2 z, (b) z-3 csc(z2), (c) z cos(1/z).

7. Find the residue of sin(ez /z)at z = 0. (Leave the answer in the form of an infinite 
series.)

8. The results of this exercise are necessary for the calculations that are to be done in 
Problem 9.
(a)Show that for any r>0,

e - sin 6 de < — (1 
- 2 r

-- ).e

(Hint: sin e > 2e/n for 0 < e < n/2.)
(b) Suppose f has a simple pole at z0, and let Ye be a circular arc with center z0 and 
radius e which subtends an angle a at z0, 0 < a < 2n (see Figure 4.2.3). Prove that

lim
< . 0

f(z)
7«

dz = ai Res(f, z0).

In particular, if the Ye are semicircular arcs (a = n), then 

lim f(z)
e^ °J Y

dz = ni Res( f, z0) = (1 /2)2ni Res( f, z0).

(Hint: f(z) - [Res(f, z0)/(z - z0)] has a removable singularity at z0.)

9. (a) Show that j'Y sixx dx = n by integrating etz/ z on the closed path y Rr indicated 
in Figure 4.2.4.
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(b) Show thaat j^ cos x2 dx = f™ sin x2 dx = jy/n/2. (Integrate eiz around the 
closed path indicated in Figure 4.2.5; assume as known the result that 00^ e-x dx = 
1 Vn.) 2
ln‘'\ C'1 KIT'D Til 11-P l<n(x ln(x +1) k-rr 1 K11" P CTK ft 1" 1 KI L Log(z+i) ftKl'TllTTK'l fl'lP pIktQPK'I Tift I'll pif T^lCTllKP (c) ojnpuite o x2 + 1 cxx y integrating %2 + 1 aroun te close pat o Figure 
4.2.6.
(d) Derive formulas for /£/2 lncos d dd and /£/2 lnsin d dd by making the change of 
variable x = tan d in (c).

Figure 4.2.4

Figure 4.2.5

10. Use Rouche’s theorem to show that all the zeros of z4 + 6z + 3 are in z < 2, and 
three of them are in 1 < |z | < 2.

11. Suppose f is analytic on an open set Q D D (0, 1), and If (z) | < 1 for \z\ = 1. Show that 
for each n, the function f(z) - zn has exactly n zeros in D(0, 1), counting multiplicity. 
In particular, f has exactly one fixed point in D(0, 1).

12. Prove the following version of Rouche’s theorem. Suppose K is compact, Q is an 
open subset of K, f and g are continuous on K and analytic on Q, and we have the
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Figure 4.2.6

inequality \f (z) + g (z) | < If (z) | + lg (z) | for every z G K \ Q. Show that f and g have 
the same number of zeros in Q, that is,

m(f, z)= m(g, z).
zEZ (f) zEZ(g)

[Hint: Note that Z(f) U Z(g) C {z : \f (z) + g(z)| = \f(z)| + \g(z)|, and the latter set
is a compact subset of Q. Now apply the hexagon lemma and (4.2.9).]

13. Show that n ]’_’ e+_x2 dx = e-l“l for real u.

14. Evaluate the integral of exp[sin(1/z)] around the unit circle |z| =1.

15. Suppose f and g are analytic at z0 . Establish the following:
(a)If f has a zero of order k and g has a zero of order k +1 at z0 , then f/g has a 
simple pole at z0 and

Res(f/g,z0) = (k + 1)f(k)(z0)/g(k+1)(z0).

(The case k = 0 is allowed.)
(b)If f (z0) = 0 and g has a zero of order 2 at z0, then f/g has a pole of order 2 at 
z0 and

R / )-2 f' (z o) 2 f (z o) g" (z o)
(f/g,z0) 2g"(zo) 3 [g"(zo)]2 '

16. Show that the equation 3z = e-z has exactly one root in |z | < 1.

17. Let f be analytic on D(0, 1) with f (0) = 0. Spppose e > 0, 0 < r < 1, and 
min|z| = r f(z)| > e. Prove that D(0, e) C f (D(0, r)).

18. Evaluate

C(1+i,2)

4^+-1+4' 

z2 +1 z ez
dz.

19. Suppose that P and Q are polynomials, the degree of Q exceeds that of P by at 
least 2, and the rational function P/Q has no poles on the real axis. Prove that 
f_’ [P(x)/Q(x)] dx is 2ni times the sum of the residues of P/Q at its poles in the 
upper half plane. Then compute this integral with P(x) = x2 and Q(x)=1+x4.
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20. Prove that the equation ez - 3z7 = 0 has seven roots in the unit disk |z| < 1. More 
generally, if |a| >eand n is a positive integer, prove that ez - azn has exactly n roots 
in |z| < 1.

21. Prove that ez = 2z +1 for exactly one z G D (0, 1).

22. Show that f(z) = z7 - 5z4 + z2 - 2 has exactly 4 zeros inside the unit circle.

23. If f(z) = z5 +15z + 1, prove that all zeros of f are in {z : |z| < 2}, but only one zero 
of f is in {z : |z| < 1/2}.

24. Show that all the roots of z5 + z + 1 = 0 satisfy |z | < 5/4.

25. Let {fn} be a sequence of analytic functions on an open connected set Q such that 
fn ^ f uniformly on compact subsets of Q. Assume that f is not identically zero, 
and let z0 G Q. Prove that f (z0)= 0 iff there is a subsequence {fnk } and a sequence 
{zk} such that zk ^ z0 and fnk (zk) = 0 for all k. (Suggestion: Rouche’s theorem.)

26. Let p(z) = anzn + • • • + a 1 z + a0, an = 0, deine q(z) = a0zn + • • • + an- 1 z + an, and 
put

f (z) = a0p(z) - anq(z).

Assume that p has k > 0 zeros in \z\ < 1, but no zeros on \z\ = 1. Establish the 
following.
(a) For z = 0, q(z) = znp(1 /z).
(b) q has n - k zeros in |z| < 1.
(c) |p(z)| = |q(z)| for |z| =1.
(d)If |a0| > |an|, then f also has k zeros in |z| < 1, while if |a0| < |an|, then f has 
n - k zeros in |z| < 1.
(e)If |a0| > |an|, then p has at least one zero in |z| > 1, while if |a0| < |an|, then p 
has at least one zero in |z| < 1.

4.3 The Open Mapping Theorem for Analytic Func
tions

Our aim in this section is to show that a non-constant analytic function on a region Q 
maps Q to a region, and that a one-to-one analytic function has an analytic inverse. These 
facts, among others, are contained in the following theorem.

4.3.1 Open Mapping Theorem
Let f be a non-constant analytic function on an open connected set Q. Let z0 G Q and 
w0 = f (z0), and let k = m(f - w0, z0)be the order of the zero which f - w0 has at z0.

(a) There exists e > 0 such that D(z0, e) C Q and such that neither f — w0 nor f' has a 
zero in D (z0, e) \ {z0 }.
(b) le'l y be the positively oriented boundary of D(z0, e), let W0 be the component of 
C \ (f ◦ Y)* that contains w0, and let Q1 = D(z0, e) A f- 1(W0). Then f is a k-to-one map 
of Q1 \{z0 } onto W0 \{w0 }.
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(c) f is a one-to-one map of Q1 onto W0 iff f'(z0) = 0.

(d) f (Q) is open.

(e) f : Q ^ C maps open subsets of Q onto open sets.

(f)If f is one-to-one, then f-1 is analytic.

Proof.

(a)This follows from the identity theorem; the zeros of a non-constant analytic function 
and its derivative have no limit point in Q.

(b) ff w G W0, then by the argument principle, n(f ◦ y) the number of zeros of f — w 
in D(z0, e). But n(f ◦ y,w) = n(f ◦ Y,w0), because the index is constant on components 
of the complement of (f ◦ y)*. Since n(f ◦ y, w0) = k, and f' has no zeros in D'(z0, e), it 
follows that for w = w0, f — w has exactly k zeros in D(z0, e), all simple. This proves (b).

(c) ff f'(z0) = 0, then k = 1. Conversely, if f'(z0) = O, then k > 1.

(d)This is a consequence of (a)and (b), as they show that f(z0)is an interior point of
the range of f.

(e)This is a consequence of (d)as applied to an arbitrary open subdisk of Q.

(f)Assume that f is one-to-one from Q onto f (Q). Since f maps open subsets of Q 
onto open subsets of f (Q), f -1 is continuous on f (Q). By (c), f' has no zeros in Q, and 
Theorem 1.3.2 then implies that f -1 is analytic. ^

4.3.2 Remarks
If Q is not assumed to be connected, but f is non-constant on each component of Q, 
then the conclusions of (4.3.1)are again true. In particular, if f is one-to-one, then 
surely f is non-constant on components of Q and hence f-1 is analytic on f (Q). Finally, 
note that the maximum principle is an immediate consequence of the open mapping 
theorem. (Use (4.3.1d), along with the observation that given any disk D(w0, r), there 
exists w G D(w0, r)with |w| > |w0 |.)

The last result of this section is an integral representation theorem for f-1 in terms of 
the given function f. It can also be used to give an alternative proof that f-1 is analytic.

4.3.3 Theorem
Let f and g be analytic on Q and assume that f is one-to-one. Then for each z0 G Q and 
each r such that D(z0,r) C Q, we have

l,-V >> 1 f i ( f'(z> ,,
g(f (w)) = 2n<Jc(z.„) g(z)M-wdw

for every w G f (D(z0, r)). In particular, with g(z) = z, we have

,-1 > 1 I f' (z)f (w ) = 2niJC (z 0,r) f dw
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Proof. Let w G f (D (z 0 ,r)). The function h (z) = g (z) f (z) is analytic on Q \{f 1( w)}, , f (z )-w ,
and hence by the residue theorem [or even (4.2.2a)],

1 f f . f' (z) „ .g— I g(z —dz = Res(h,w) •
2niJ C(z0 ,r) f (z) - w

But g is analytic at f -1(w)and f - w has a simple zero at f -1(w)(because f is one-to- 
one), hence (Problem 1)

Res(h,w) = g(f 1 1(w))Res(—f— ,w) = g(f 1 1(w)) by (4.2.2e)• A 
f-w

In Problem 2, the reader is asked to use the above formula to give another proof that f-1 

is analytic on f (Q).

Problems
1. Suppose g is analytic at z0 and f has a simple pole at z0. show that Res(gf, z0)= 

g(z0)Res( f, z0). Show also that the result is false if the word “simple” is omitted.

2. Let f be as in Theorem 4.3.3. Use the formula for f-1 derived therein to show that 
f-1 is analytic on f (Q). (Show that f-1 is representable in f (Q)by power series.)

3. The goal of this problem is an open mapping theorem for meromorphic functions. 
Recall from (4.2.5)that f is meromorphic on Q if f is analytic on Q \ P where P is a 
subset of Q with no limit point in Q such that f has a pole at each point of P . Define 
f (z) = to if z G P, so that by (4.1.5b), f is a continuous map of Q into the extended 
plane C. Prove that if f is non-constant on each component of Q, then f (Q)is open 
in C.

4. Suppose f is analytic on Q, D(z0,r) C Q, and f has no zeros on C(z0,r). Let 
a 1 ,a2,••• ,an be the zeros of f in D(z0,r). Prove that for any g that is analytic 
on Q,

1 f f'(z) / \ r] .f \ \
g— I -(T-dz(z)dz m(f,aj) g(aj)
2niJC(zo ,r) f (z) j=1

where (as before) m(f, aj )is the order of the zero of f at aj .

5. Let f be a non-constant analytic function on an open connected set Q. How does 
the open mapping theorem imply that neither |f | nor Re f nor Im f takes on a local 
maximum in Q?

4.4 Linear Fractional Transformations
In this section we will study the mapping properties of a very special class of functions 
on C, the linear fractional transformations (also known as Mobius transformations).
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4.4.1 Definition
If a, b, c, d are complex numbers such that ad - bc = 0, the linear fractional transformation 
m zA zri • j i • j i t t • i r* iiT : C ^ C associated with a, b, c, d is defined by

T(z) =

az+b 
cz+d, 
a/c,
x,

z = x, z = -d/c 
z = x 
z= -d/c.

Note that the condition ad - bc = 0 guarantees that T is not constant. Also, if c =0, 
then a = 0 and d = 0, so that the usual agreements regarding x can be made, that is,

T(x) = ac c , and T(-d/c) = x if c =0. 
x if c =0

It follows from the definition that T is a one-to-one continuous map of C onto C. Moreover, 
T is analytic on C \ {-d/c} with a simple pole at the point -d/c. Also, each such T is a 
composition of maps of the form
(i) z ^ z + B (translation)
(ii) z ^ Xz, where |X| = 1 (rotation)
(iii) z ^ pz, p > 0 (dilation)
(iv) z ^ 1 /z (inversion).

To see that T is always such a composition, recall that if c = 0, then a =0= d,so

a/d b
T (z ) = a/dadiz+d-

and if c = 0, then

T(z) =
(bc - ad)/c2 a

z + (d/c) c

Linear fractional transformations have the important property of mapping the family of 
lines and circles in C onto itself. This is most easily seen by using complex forms of 
equations for lines and circles.

4.4.2 Theorem
Let L = {z : azz + pz + pz + y = 0} where a and y are real numbers, P is complex, and 
s2 = pp — aY > 0. If a = 0, then L is a circle, while if a = 0, then L is a line. Conversely, 
each line or circle can be expressed as one of the sets L for appropriate a, y, P.
Proof. First let us suppose that a = 0. Then the equation defining L is equivalent to 
| z + (p/a)| 2 = (pp — aY)/a2, which is the equation of a circle with center at -P/a 
and radius s/|a|. Conversely, the circle with center z0 and radius r>0 has equation 
lz — z012 = r2, which is equivalent to zz — z0z — z0z + lz012 — r2 =0. This has the required 
form with a =1,p= —z0,y= |z0 |2 — r2 . On the other hand, if a = 0, then p = 0, and 
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the equation defining L becomes fiz + fiz + 7 = 0, which is equivalent to Re(fiz) + y/2 = 0. 
This has the form Ax + By + y/2 = 0 where z = x + iy and fi = A + iB, showing that 
L is a line in this case. Conversely, an equation of the form Ax + By + C = 0, where A 
and B are not both zero, can be written in complex form as Re(fiz) + y/2 = 0, where 
fi = A + iB and y = 2C. *

4.4.3 Theorem
Suppose L is a line or circle, and T is a linear fractional transformation. Then T (L)is a 
line or circle.

Proof. Since T is a composition of maps of the types (i)-(iv) of (4.4.1), it is sufficient to 
show that T (L)is a line or circle if T is any one of these four types. Now translations, 
dilations, and rotations surely map lines to lines and circles to circles, so it is only necessary 
to look at the case where T(z) = 1 / z. But if z satisfies azz + fiz + fiz + y = 0, then 
w = 1 / z satisfies yww + fiw + fiw + a = 0, which is also an equation of a line or circle. *

Note, for example, that if T(z) = 1 / z, y = 0 and a = 0, then L is a circle through the 
origin, but T(L), with equation fiw + fiw + a = 0, is a line not through the origin. This 
is to be expected because inversion interchanges 0 and to .

Linear fractional transformations also have an angle-preserving property that is pos
sessed, more generally, by all analytic functions with non-vanishing derivatives. This will 
be discussed in the next section. Problems on linear fractional transformations will be 
postponed until the end of Section 4.5.

4.5 Conformal Mapping
We saw in the open mapping theorem that if f'(z0) = 0, then f maps small neighborhoods 
of z0 onto neighborhoods of f (z0)in a one-to-one fashion. In particular, f maps smooth 
arcs (that is, continuously differentiable arcs)through z0 onto smooth arcs through f (z0). 
Our ob jective now is to show that f preserves angles between any two such arcs. This is 
made precise as follows.

4.5.1 Definition
Suppose f is a complex function defined on a neighborhood of z0, with f(z) = f (z0)for 
all z near z0 but not equal to z0. If there exists a unimodular complex number ei? such 
that for all 6,

f (z0 + reie) - f (z0) i? ie

If(z0 + rei0) - f (z0)|

as r 0+ 0+, then we say that f preserves angles at z0.
To gain some insight and intuitive feeling for the meaning of the above condition, 

I ll'll ('/>!' 'III!' z ‘lll/l Clll'll 0 "0. O 1CZ 0 + rG j J'0'- 0) . . — lllill V'll/'l/if T" ( l/inote tnat ioi any a aim. sniaii r 0 ^> 0, f ( । i@) f ( ) । is a miit vector noni f (z 0) ovi 
f (z0 + r0eie). The vectors from z0 to z0 + re10, 0 < r < r0, have argument 6, so the 
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condition states that f maps these vectors onto an arc from f (z0)whose unit tangent 
vector at f (z0) hias argument <p + 6. Since y is to be the same for all 6, f rotates all short 
vectors from z0 through the fixed angle y. Thus we see that f preserves angles between 
tangent vectors to smooth arcs through z0 .

4.5.2 Theorem
Suppose f is analytic at z0. Then f preserves angles at z0 iff f'(z0) = 0.

Proof. If f'(z0) = 0, then for any 6,

f (z0 + reig) - f (z0) ie [f (z0 + reig) - f (z0)]/reig ie f'(z0)
r ■ ' If (z0 + reig) - f (z0)| r ■ ' |[f (z0 + reig) - f(z0)|]/r f'(z0)|.

Thus the required unimodular complex number of Definition 4.5.1 is f' (z 0)/If' (z 0) |. Con
versely, suppose that f'(z0) = O. Assuming tlaat f is not constant, f — f (z0) has a zero 
of some order m>1atz0, hence we may write f(z) - f(z0) = (z - z0)m g (z)where g is 
analytic at z0 and g(z0) = 0. For any 6 and small r>0,

f (z0 + reig) - f (z0) = eimg g(z0 + reig) = eigei(m-1)g g(z0 + reig) 
f(z0 + reig) - f (z0)| ]g(z0 + reig)| ]g(z0 + reig)|

and the expression on the right side approaches eiei (m- 1)gg(z0)/]g(z0)| as r ^ 0+. Since 
the factor ei(m- 1)gg(z0)/\g( z0)| depends on 6, f does not preserve angles at z0. Indeed, 
the preceding shows that angles are increased by a factor of m, the order of the zero of 
f - f(z0) at z0. A

A function f on Q that is analytic and has a nonvanishing derivative will be called a 
conformal map ; it is locally one-to-one and preserves angles. Examples are the exponential 
function and the linear fractional transformation (on their domains of analyticity). The 
angle-preserving property of the exponential function was illustrated in part (i)of (2.3.1), 
where it was shown that exp maps any pair of vertical and horizontal lines onto, respec
tively, a circle with center 0 and an open ray emanating from 0. Thus the exponential 
function preserves the orthogonality of vertical and horizontal lines.

Problems
1. Show that the inverse of a linear fractional transformation and the composition of two 

linear fractional transformations is again a linear fractional transformation.

2. Consider the linear fractional transformation T(z) = (1 + z)/(1 - z).
(a)Find a formula for the inverse of T .
(b) Show that T maps |z| < 1 onto Re z > 0, |z| = 1 onto {z : Re z = 0} U {^}, and 
|z | > 1ontoRez<0.

3. Find linear fractional transformations that map
(a)1 ,i,-1to1, 0, -1 respectively.
(b)1 ,i,-1to-1,i,1 respectively.



4.6. ANALYTIC MAPPINGS OF ONE DISK TO ANOTHER 21

4. Let (z1, z2, z3)be a triple of distinct complex numbers.
(a)Prove that there is a unique linear fractional transformation T with the property 
that T(z 1) = 0, T(z2) = 1, T(z3) = to.
(b) Poove that if one ff z 1, z2, z3 is to, then the statement of (a) remains rrue.
(c)Let each of ( z1, z2, z3)and ( w1, w2, w3)be triples of distinct complex numbers 
(or extended complex nrmbers in C). Show that there is a rniqre linear fractional 
transformation srch that T(zj )=wj,j =1, 2, 3.

5. Let f be meromorphic on C and assrme that f is one-to-one. Show that f is a linear 
fractional transformation. In particrlar, if f is entire, then f is linear, that is, a first 
degree polynomial in z . Here is a srggested ortline:
(a) f has at most one pole in C, conseqrently to is an isolated singrlarity off .
(b) f (D(0, 1)) and f (C \ D(0, 1)) are disjoint open sets in C.
z x r i i ii-i-jj r • i • /A(c) f has a pole or removable singrlarity at to,sof is meromorphic on C.
(d) f has exactly one pole in C.
(e)Let the pole of f be at z0. Ifz0 = to, then f is a polynomial, which mrst be of 
degree 1. If z0 G C, consider g(z) = 1 /f (z),z = z0; g(z0) = 0. Then g is analytic at 
z0 and g'(z0) = 0.
(f) f has a simple pole at z0.
(g) f(z) - [Res(f, z0))/(z -z0)] is constant, hence f is a linear fractional transformation.

4.6 Analytic Mappings of One Disk to Another
In this section we will investigate the behavior of analytic frnctions that map one disk 
into another. The linear fractional transformations are examples which are, in addition, 
one-to-one. Schwarz’s lemma (2.4.16)is an important illrstration of the type of conclrsion 
that can be drawn abort srch frnctions, and will be generalized in this section. We will 
concentrate on the special case of maps of the rnit disk D = D(0, 1)into itself. The 
following lemma srpplies rs with an important class of examples.

4.6.1 Lemma
I-' • _ 7TO 1 1 r* C I • /AlFix a G D, and define a function va on C by

Va ( z ) =
z-a

1 — az ’

where the usual conventions regarding to are made: va (to) = — 1 /a and va (1 /a) = to. 
Then va is a one-to-one continuous map of C into C whose inverse is v—a. Also, va is 
analytic on C \ {1 /a} with a simple pole at 1 /a (and a zero of order 1 at a). TThu va is 
analytic on a neighborhood of the closed disk D. Finally, 

Va (D )= D, Va (dD ) = dD, Va (z) =
1 — lai 2 

(1 — az )2

hence

Va (a) = 1 —X|a|2 and v'a (0) = 1 — |a|2 •
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Proof. Most of the statements follow from the definition of pa and the fact that it is a 
linear fractional transformation. To see that pa maps Z = 1 into itself, we compute, for 
|z|=1,

z-a
1 — az

z-a
z (1 — az)

z—a
1.

z — a

Thus by the maximum principle, pa maps D into D. Since p-1 = p-a (a computation 
shows that p-a(pa(z)) = z), and |a| < 1 iff | — a| < 1, it follows that pa maps D onto 
D and maps dD onto dD. The formulas involving the derivative of pa are verified by a 
direct calculation. &

4.6.2 Remark
The functions pa are useful in factoring out the zeros of a function g on D, because g(z) 
and pa(g(z)) have the same maximum modulus on D, unlike g(z) and (z — a)g(z). In 
fact, if g is defined on the closed disk D, then

z—a
1 — az

g(z) = |g(z)| for |z| =1.

This property of the functions pa will be applied several times in this section and the 
problems following it.

We turn now to what is often called Pick’s generalization of Schwarz’s lemma.

4.6.3 Theorem
Let f : D ^ D be analytic. then for any a G D and any z G D,

f (z) — f(a) 
1 — f (a) f (z)

z—a 
1 — az

and

If'(a) | <
1 — If (a) 12

1 — |a| 2

(i)

(ii)

Furthermore, if equality holds in (i)for some z = a, or if equality holds in (ii), then f is 
a linear fractional transformation. In fact, there is a unimodular complex number A such 
that with b = f (a), f is the composition p-b ◦ Xpa = p-1 ◦ Xpa. That is,

Xpa(z) + b
z) =-----=---------- , \z\ < 1.1 1 + bXpa (z), 1 1

Proof. Let a G D and set b = f (a). We are going to apply Schwarz’s lemma (2.4.16)to 
the function g = pb ◦ f ◦ p-a. First, since f maps D into D, so does g. Also,

g(0) = Pb(f (P-a(0))) = Pb(f (a)) = Pb(b) = 0.
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By Schwarz’s lemma, \g(w)| < |w| for |w| < 1, and replacing w by <pa(z) and noting that 
g(pa(z)) = pb(f (z)), we obtain (i). Also by (2.4.16), we have \g'(0) < 1. But by (4.6.1),

9 (0) = pb (f (p-a (0))) f' (p—a (0)) p—a (0) 

= pb (f (a)) f' (a )(1 -|a| 2)

= i-W)f'(a)(1 -|a|2) •

Thus the condition \g'(0) | < 1 implies (ii).

Now if equality holds in (i) for oime z = a, then \g(pa(z))| = !pa(z)| for some z = a, 
hence \g(w)| = |w| for some w = 0. If equality holds in (ii), then \g'(0)| = 1. In either 
case, (2.4.16) yields a unimodular complex number A such that g(w) = Aw for |w| < 1. 
Set w = pa(z) to obtain pb(f (z)) = Apa(z), that is, f (z) = p—b(Apa(z)) for \z\ < 1. &

An important application of Theorem 4.6.3 is in characterizing the one-to-one analytic 
maps of D onto itself as having the form Apa where | A| = 1 and a e D.

4.6.4 Theorem
Suppose f is a one-to-one analytic map of D onto D. then f = Apa for some unimodular 
A and a e D.

Proof. Let a e D be such that f(a)= 0 and let g = f-1, so g(0)= a. Now since 
g(f(z)) = z, we have 1 = g' (f (z))f'(z), in particular, 1 = g'(f (a))f'(a) = g'(0)f'(a). 
Neet, (4.6.3ii) impiees that \g'(0)| < 1 — |a|2 and \f'(a)| < 1 /(1 — |a|2). Thus

1 = \gf (0) \\f' (a) |< 1-^ = 1 •
1 — |a|2

Necessarily then, \f'(a)| = 1 /(1 — |a|2) annd \g'(0)| = 1 — |a|2). Consequently, by the 
condition for equality in (4.6.3ii), f = Apa, as required. &

4.6.5 Remark
One implication of the previous theorem is that any one-to-one analytic map of D onto 
D actually eetends to a homeomorphism of D onto D. We will see when we study the 
Riemann mapping theorem in the neet chapter that more generally, if f maps D onto a 
special type of region Q, then f again eetends to a homeomorphism of D onto Q.

Our final result is a characterization of those continuous functions on D which are 
analytic on D and have constant modulus on the boundary |z | = 1. The technique 
mentioned in (4.6.2)will be used.

4.6.6 Theorem
Suppose f is continuous on D, analytic on D, and \f(z)| = 1 for \z\ = 1. Then there is 
a unimodular A, finitely many points a1 ,... ,an in D, and positive integers k1 ,... ,kn, 
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such that

f (- )=x n Z T-^)kj. 

j-=i \ 1- ajz)

In other words, f is, to within a multiplicative constant, a finite product of functions 
of the type <pa. (If f is constant on D, the product is empty and we agree that it is 
identically 1 in this case.)
Proof. First note that |f(z )| = 1 for |z | = 1 implies that f has at most finitely many 
zeros in D.Iff has no zeros in D , then by the maximum and minimum principles, f is 
constant on D. Suppose then that f has its zeros at the points a 1,... ,an with orders 
k1 ,. .. ,kn respectively. Put

n / r _ n X kj g(z) = n (1^) , z € D.
j=1 1 - ajz

Then f/g has only removable singularities in D, the analytic extension of f/g has no 
zeros in D, and f/gl = 1 on dD. Again by the maximum and minimum principles, f/g 
is constant on D \ {a 1,... , an}. Thus f = Xg with |X| = 1. ^

Problems
1. Derive the inequality (4.6.3ii) directly from (4.6.3i).
2. Let f be an analytic map of D(0, 1)into the right half plane {z :Rez >0}. Show that 

1-z-\f(0)| < If(z)| < 1+4If(0)|, z € D(0, 1),, ,,
1+ |z| 1- |z|

and

f'(0)| < 21 Re f (0)|.

Hint: Apply Schwarz’s lemma to T ◦ f, where T(w) = (w — f (0))/(w + f (0)).
3. Show that if f is an analytic map of D(0, 1)into itself, and f has two or more fixed 

points, then f(z)=z for all z € D(0, 1).
4. (a)Characterize the entire functions f such that |f (z)| = 1 for |z| = 1 [see (4.6.6)]. 

(b)Characterize the meromorphic functions f on C such that |f(z)| = 1 for |z| =1. 
(Hint: If f has a pole of order k at a € D(0, 1), then [(z — a)/(1 — az)]k f (z) lias a 
removable singularity at a.)

5. Suppose that in Theorem 4.6.3, the unit disk D is replaced by D(0, R)and D(0, M). 
That is, suppose f : D(0, R) ^ D(0, M). How are the conclusions (i) and (ii) modified 
in this case? (Hint: Consider g(z) = f(Rz)/M.)

6. Suppose f : D(0, 1) ^ D(0, 1) is continuous and f is analytic on D(0, 1). Assume that 
f has zeros at z1,... ,zn of orders k1,... ,kn respectively. Show that

n

|f(z)| <
j=1

zj

1— zjz

kjz
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Suppose equality holds for some z G D(0, 1) with z = Zj,j = 1,... ,n. Find a formula 
for f (z).

4.7 The Poisson Integral Formula and its Applications
Our aim in this section is to solve the Dirichlet problem for a disk, that is, to construct 
a solution of Laplace’s equation in the disk sub ject to prescribed boundary values. The 
basic tool is the Poisson integral formula, which may be regarded as an analog of the 
Cauchy integral formula for harmonic functions. We will begin by extending Cauchy’s 
theorem and the Cauchy integral formula to functions continuous on a disk and analytic 
on its interior.

4.7.1 Theorem
Suppose f is continuous on D(0, 1) and analytic on D(0, 1). Then
(i) C (0,1) f (w) dw = 0 and

(ii) f (z) = -ix f(w) dw for all z G D(0, 1).
2 i C 0 2ni JC(0,1) w-z ,
Proof. For 0 <r<1,C (0,r) f(w) dw = 0 by Cauchy’s theorem. For n =1, 2,... , put 
fn(z) = f (n+iz). Then fn is analytic on D(0, n+1) and the sequence {fn} converges 
to f uniformly on C(0,1) |ly cnntiuuily of f on D(0, 1)]. Hence JC(0 1) fn(w) dw ^ 
fc(0 1) f (w) dw. Since fc(0 1) fn(w) dw = n^ fc(0 ) f (w) dw = 0, we have (i). To 

prove (ii), we apply (i) to the function g , where

f f (w)-f (z), w = z 
g(w) = 5 yw— z .

If (z), w = z. *

Note that the same proof works with only minor modifications if D(0, 1)is replaced by 
an arbitrary disk D(z0, R).

4.7.2 Definition
For z G D(0, 1), define functions Pz and Qz on the real line R by

Pz(t) =
1 — \z\2 

\eit - z\2

eit + z 
and Qz ( t ) = eir— ■

Pz (t)is called the Poisson kernel and Qz (t)the Cauchy kernel. We have

Re[Qz(t)] = Re
(elt + z)(e it — z) 

leit — z\
1 — \z\2 + ze it — zei 

leit — z\
= Pz(t).

Note also that if z = rei, then

1 — r2 1 — r2
Pz (t) = 7^ i^[2 = I i(t-^ 2 = Pr (t — ^) .let — rei l2 lei(t- ) — rl2
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Since |ei(t e) — r|2 = 1 — 2r cos(t — 6) + r2, we see that

Pr (t — 6 ) =
1 — r 2

1 — 2r cos(t — 6) + r2

1 — r 2

1 — 2r cos(6 — t) + rr2
= Pr(6 —t).

Thus for 0 < r < 1, Pr (x) is an even Uunction of x. Note also that Pr (x) is positive and 
decreasing on [0, n].

After these preliminaries, we can establish the Poisson integral formula for the unit 
disk, which states that the value of an analytic function at a point inside the disk is a 
weighted average of its values on the boundary, the weights being given by the Poisson 
kernel. The precise statement is as follows.

4.7.3 Poisson Integral Formula
Suppose f is continuous on D(0, 1) and analytic on D(0, 1). then for z G D(0, 1) we have 

f (z ) = 2n^21 Pz (t) f (ei) dt

and therefore

Re f (z) = 71 2 Pz(t)Re f (eii) dt.
2 n J 0

Proof. Bl Theorem 4.7.1(ii),

f (0) = — f fw dw = — 2 f (ei) dt,
’’ 2 nij c (o, i) w 2 nJ o M , ,

hence f (0) = (1 /2n) jjP P0(t) f (eii) dt because P0(t) = 1. This takes care of the case 
z =0. Ifz =0, then again bl (4.7.1)we have

f (z) =------ [ w—- dw and 0 =
2nM c(o,i) w — z

f f (w) .
f ------ dw dw,
c(o,i) w — 1 /z

the second equation holding because 1 /z / D (0, 1). Subtracting the second equation from
the first, we get

1 1 1 1f (z ’=2nJc (o, i>[ w — z — w — 1 rff < w’ dw

1 221 1 1= 2n Jo [ eii — z — e- — 1 /d^f (ei ’ dt

= 2 [-^e— + . zel -t ] f (e^i) dt
2 nJ o ^ei* — z 1 — zeii

= F f1 [-e— + ~ ]̂ f (e'i’ dt
2nJo eil — z e it — z

= - 1'21 1 — |z|2 f (eii) dt
2 nJo leii — zl2 f ( ’

which proves the first formula. Taking real parts, we obtain the second. &
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4.7.4 Corollary
For z < 1, 2n J2n Pz (t) dt = 1.

Proof. Take f = 1 in (4.7.3). &

Using the formulas just derived for the unit disk D(0, 1), we can obtain formulas for 
functions defined on arbitrary disks.

4.7.5 Poisson Integral Formula for Arbitrary Disks
Let f be continuous on D (z0, R) and analytic on D (z0, R). Then for z G D (zo, R),

f (z) = 2n I P(z-zo)/R(t) f (zo + Rei) dt.

In polar form, if z = z0 + reie, then

f (zo + rei) = fn Pr/R(e - t) f (zo + Rei) dt.

2 n J 0

Proof. Define g on D(0, 1) by g(w) = f (z0 + Rw). Then (4.7.3) applies to g, and we 
obtain

g(w) = 71 [ Pw (t)g(ei) dt, |w| < 1.
2 n J 0

If z G D(z0, R), then w =(z - z0)/R G D(0, 1)and

f (z) = g(— .) = 71 f n P(z-zo)/R(t) f (z0 + Rei) dt

R 2 n J 0

which establishes the first formula. For the second, appll (4.7.2). [See the discussion 
beginning with “Note also that ... ”.] ^

We now have the necessarl machinerl available to solve the Dirichlet problem for 
disks. Again, for notational reasons we will solve the problem for the unit disk D(0, 1). 
If desired, the statement and proof for an arbitrarl disk can be obtained bl the same 
technique we used to derive (4.7.5)from (4.7.3).

4.7.6 The Dirichlet Problem
Suppose u0 is a real-valued continuous function on C(0, 1). Define a function u on D(0, 1) 
bl

u0(z)for |z| =1,
2n f2n Pz(t)u0(e't) dt for Izl < 1.u(z) =
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Then u is continuous on D(0, 1) and harmonic on D(0, 1). Furthermore (since Pz is the 
real part of Qz), for z G D(0, 1),

u(z) = Re
1 2 2 n

— Qz (t) u o( ei) dt
2 n J 0

In particular, the given continuous function u0 on C(0, 1)has a continuous extension to 
D(0, 1)which is harmonic on the interior D(0, 1).
Proof. The function z ^ 2n f2Q Qz(t)uo(ei) dt is analytic on D(0, 1) yy (23.23.3), and 
therefore u is harmonic, hence continuous, on D(0, 1). All that remains is to show that u 
is continuous at points of the boundary C(0, 1).

We will actually show that u(rei0) ^ u0(ei) uniformly in 6 as r ^ 1. Since u0 is 
continuous on C(0, 1), this will prove that u is continuous at each of point of C(0, 1), by 
the triangle inequality. Thus let 6 andr be real nurbers with 0 <r<1. Then by (4.7.2), 
(4.7.4)and the definition of u(z),

u(rei0) - u0(ei0) = — 2 Pr(6 - t)[u0(ei) - u0(ei0)] dt.
2 n J 0

Make the change of variable x = t - 6 and recall that Pr is an even function. The above 
integral becores

1 2 2— -0
— Pr (x)[u0 (0(0+x)) - u0(ei0)] dx,
2 n J—0

and the limits of integration can be changed to -n and n, because the integrand has 2n 
as a period. Now fix 5 with 0 < 5 < n and write the last integral above as the sum,

1 f—s 1 2 s 1 2 n
2 nJ— n + 2 nJ— /*" 2 nJ5 '

We can estimate each of these integrals. The first and third have absolute value at 
most 2sup{|u0(ei*)| : -n < t < n}Pr(5), because Pr(x) is a positive and dccreasmg 
function on [0, n] and Pr (-x) = Pr (x). The middle integral has absolute value at most 
sup{|u0 (ei(0+x)) - u0 (ei0)| : -5 < x < 5}, by (4.7.4).

But for fixed 5 > 0, Pr(5) ^ 0 as r ^ 1, while sup{|u0(ei(0+x)) -u0(e10)| : -5 < x < 5} 
approaches 0 as 5 ^ 0, uniformly in 6 because u0 is uniformly continuous on C(0, 1). 
Putting this all together, we see that given e > 0 there is an r0, 0 < r0 < 1, such that for 
r0 < r < 1 and all 6, we have |u(rei0) - u0(ei)| < e. This, along with the continuity of 
u0 on C(0, 1), shows that u is continuous at each point of C(0, 1). &

4.7.7 Uniqueness of Solutions to the Dirichlet Problem
We saw in (2.4.15)that harmonic functions satisfy the maximum and minimum principles. 
Specifically, if u is continuous on D(0, 1) and la-imioiiK- on D(0, 1), then

max u(z)= max u(z)and min u(z)= min u(z).
ztD (0,1) z^C (0,1) zED (0,1) z&C (0,1)
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Thus if u = 0 on C(0, 1), then u = 0 on D(0, 1).
Now suppose that u 1 and u2 are solutions to a Dirichlet problem on D (0, 1) \vith 

boundary function u0. Then u 1 — u2 is continuous on D(0, 1), harmonic on D(0, 1), and 
identically 0 on C(0, 1), hence identically 0 on D(0, 1). Therefore u 1 = u2, so the solution 
to any given Dirichlet problem is unique.

Here is a consequence of the uniqueness result.

4.7.8 Poisson Integral Formula for Harmonic Functions
Suppose u is continuous on D(0, 1) and harmonic on D(0, 1). Then for z G D(0, 1), we 
have

u(z) = — P Pz(t)u(ei) dt.
2n J 0

More generally, if D(0, 1)is replaced by D(z0, R), then

u(z) = 2n / P(z-zo)/R(t)u(z0 + Rei) dt;

equivalently,

u (z0 + reiS) = ~~ P Pr/R (9 — t)u (z0 + Rei) dt
2n J 0

for 0 < r < R and all 9.
Proof. The result for D(0, 1)follows from (4.7.6)and (4.7.7.) To prove the result for 
D(z0, R), wee apply 44.7.6) and (4.7.7) to u* (w) = u(z0 + Rw),w G D(0, 1). If z = 
z0 + rei, 0 < r < R, then u(z) = u* ((z — z0)/R), hence

u ( z fn n P(z-z o)/R (t) u* ( eit ) dt = ± fn n Pr/R ( 9 — t) u ( z 0 + Rei) dt

2n J 0 2n J 0

as in (4.7.5). &
The Poisson integral formula allows us to derive a mean value property for harmonic 

functions.

4.7.9 Corollary
Suppose u is harmonic on an open set Q. If z0 G Q and D(z0, R) C Q, then

1 2 2 n
u(z0) = — I u(z0 + Reit) dt.

2n J 0

That is, u(z0)is the average of its values on circles with center at z0.
Proof. Apply (4.7.8) with r = 0. &

It is interesting that the mean value property characterizes harmonic functions.
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4.7.10 Theorem
Suppose v is a continuous, real-valued function on Q such that whenever D(z0,R) C Q, 
it is true that v(z0) = fn J2 n V(z0 + Rei) dt- Then V is harmonic on Q.

Proof. Let D(z0, R) bee any disk such that D(z0, R) C Q. Let u0 be the restriction of v 
to the circle C(z0, R)and apply (4.7.6)[for the disk D(z0, R)] to produce a continuous 
function u on D(z0, R) uuch that u = u0 = v on C(z0, R)• We will show that v = u on 
D(z0, R), thereby proving that V is harmonic on D(z0, R). Since D(z0, R)is an arbitrary 
subdiss, this will prove that v is harmonic on Q.

The function v - u is continuous on D (z0 ,R), and hence assumes its maximum and 
minimum at some points z1 and z2 respectively. If both z1 and z2 belong to C(z0, R), 
then since u = v on C(z0, R), the maximum and minimum values of v - u are both 0. It 
follows that v - u = 0 on D(z0, R) and we are fhuthed. On the other hand, suppose tliat 
(say) z1 belongs to the open diss D(z0, R). Define a set A by

A = {z e D(z0, R) : (V - u)(z) = (V - u)(z 1)}•

Then A is closed in D(z0, R)by continuity of v - u. We will also show that A is open, and 
thus conclude by connectedness that A = D(z0, R). For suppose that a e A and r>0is 
chosen so that D (a, r) C D (z0, R). Then for 0 < p < r we have

V(a) — u(a) = — [ [V(a + Pei) - u(a + peit)] dt
2 n J 0

Since v(a + peit) — u(a + peit) < v(a) — u(a), it follows from Lemma 2.4.11 that v — u 
is constant on D(a, r). ThusD(a, r) C A,soA is open. A similar argument is used if 
z2 e D(z0, R). &

Remark
The above proof shows that a continuous function with the mean value property that has 
an absolute maximum or minimum in a region Q is constant.

Problems
1. Let Qz(t) bee as m (4.7.2). Prove that 27 0n Qz(t) dt =1.

2. Use (4.7.8)to prove Harnack’s inequality: Suppose u satisfies the hypothesis of (4.7.8), 
and in addition u > 0. Then for 0 < r < 1 and all 6,

1-ru(0) < u(rei3) < 1+ru(0) • 
• 1+r 1—r

3. .rove the following analog (for harmonic functions)of Theorem 2.2.1.. Let {un} be a 
sequence of harmonic functions on Q such that un ^ u uniformly on compact subsets 
of Q. Then u is harmonic on Q. (Hint: If D(z0, R) C Q, the Poisson integral formula 
holds for u on D(z0, R).)
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4. In Theorem 1.6.2 we showed that every harmonic function is locally the real part of 
an analytic function. Using results of this section, give a new proof of this fact.

5. Let Q be a bounded open set and 7 a closed path such that the following conditions 
are satisfied:
(a) y* = dQ, the boundary of Q.
(b) There exists z0 such that for every 6,0 < 6 < 1, the path ys = z0 + 6(Y - z0) has 
its range in Q (see Figure 4.7.1).

If f is continuous on Q and analytic on Q, show that

1 f(w)
f (w) dw = 0 and n(y, z) f (z) =---- : -------- dw, z G Q■

2ni JY w — z

Outline:
(i)First show that Q must be starlike with star center z0 by showing that if z G Q, 
then the ray [z0, z, <x) metss dQ at some point p. By (a) and (b), [z0,p) C Q. Next 
show that z G [z0, p), hence [z0, z] C Q.
(ii) The denied I conclusions hold with Y replaced by ys ; let 6 ^ 1 to complete the 
proof.

6. (Poisson integral formula for a half plane). Let f be analytic on {z :Imz>0} and 
continuous on {z : Im z > 0}. If u = Re f, establish the formula

1 1 1 f™ yu(P 0) „ T... . „u(x,y) = — -------- dt, Im z > 0
nJ-™ (t — x )2 + y2 ,

under an appropriate hypothesis on the growth of f as z — ^. (Consider the path y 
indicated back in Figure 4.2.6. Write, for Im z > 0, f (z) = (2ni) 1fY [f (w)/(w — z)] dw 
and 0 = (2ni)-1 JY [f (w)/(w — z)] dw by using either Problem 5 or a technique similar 
to that given in the proof of (4.7.1). Then subtract the second equation from the first.)

Figure 4.7.1

4.8 The Jensen and Poisson-Jensen Formulas
Suppose f is continuous on D(0, R), analytic on D(0, R) and f has no zeros in D(0, R).
Then we know that f has an analytic logarithm on D(0, R)whose real part ln |f| is 
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continuous on D(0, R) nnd hrrmomc on D(0, R). Thus by (4.7.8), the Poisson integral 
formula for harmonic functions, we have

ln f(z) | = 2n f Pz/R(t)ln f(Rei) | dt

or in polar forr,

ln If (rei&) I = 71 f" Pr/R (& - t) n If (R) I dt.

1 117/ m / i w - (aj/R)
ln IF (w)I kj ln ------/-

j=1 1 — (aj w/R)

2 n J 0

If f has zeros in D(0, R), then this derivation fails. However, the above formula can be 
rodified to take the zeros of f into account.

4.8.1 Poisson-Jensen Formula
Suppose that f is continuous on D(0, R), analytic on D(0, R) and that f has no zeros on 
C(0, R). Let a1,... ,an be the distinct zeros of f in D(0, R)with multiplicities k1,... ,kn 

respectively. Then for z G D (0, R), z unequal to any of the aj, we have

ln |f(z)|
n

kj ln
j=1

R(z - aj) 
R2 - ajj z

+ :1 f n Pz/R(t)n If (Ret I dt.

2 n J 0

Proof. We first give a proof for the case R =1. By (4.6.2), there is a continuous function 
g on D(0,1), analytic on D(0,1), such that g has no zeros in D(0,1) such

f(z) =
n kj
n (—j) g (z).
j=1 1 - ajz

Since the product has modulus one when IzI = 1 we have If (z)I = Ig(z)I for IzI =1. Thus 
if f(z) = 0, then

ln If(z)I
n

kjln
j=1

z - aj

1 — aj z
+ln Ig(z)I.

But g has no zeros in D(0, 1), so by the discussion in the opening paragraph of this section, 

ln lg(z)I = 71 /2n PZ(t)ln lg(ei)| dt = ± f" Pz(t) In If (ei) | dt.

2 n J o 2 n J 0

This gives the result for R = 1. To obtain the formula for arbitrary R, we apply what 
was just proved to F(w) = f (Rw), w < 1. Thus

+ 71 I PW(t) In IF(ei)I dt.
2 n J 0
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If we let z = Rw and observe that

w - (aj /R) R(z - aj)
1 — (aj w/R) R2 — aj z ’

we have the desired result. &
The Poisson-Jensen formula has several direct consequences.

4.8.2 Corollary
Assume that f satisfies the hypothesis of (4.8.1). Then
(a) In f(z) | < 21n J2n Pz/R(t)n lf (Rei) | dt.

If in addition, f(0) = 0, then
(b) In If (0)| = E n=i kj ln laj/RI + 27 Jo2* ln If (Rei)I dt, hence

(c) In If (0)|< 2n Jo2n ln If (R)| dt.

Part (b)is known as Jensen’s formula.
Proof. It follows from (4.6.1)and the proof of (4.8.1)that

R (z — aj) 
R2 — aj z

< 1, hence kj ln R (z — aj) 
R2 — aj z

< 0,

proving (a). Part (b) follows from (4.8.1) with z = 0, and (c)follows from (b). &
Jensen’s formula (4.8.2b)does not apply when f (0)= 0, and the Poisson-Jensen 

formula (4.8.1)requires that f have no zeros on C(0, R). It is natural to ask whether any 
modifications of our formulas are available so that these situations are covered.

First, if f has a zero of order k at 0, with f(z) = 0 for IzI = R, then the left side of 
Jensen’s formula is modified to k ln R + ln If(k) (0)/k!I rather than ln If (0)I. This can be 
verified by considering f (z)/zk and is left as Problem 1 at the end of the section.

However, if f (z) = 0 for some z G C(0, R), then the situation is complicated for several 
reasons. For example, it is possible that f (z)= 0 for infinitely many points on C(0, R) 
without being identically zero on D (0, R) if f is merely assumed continuous on D (0, R) 
and analytic on D(0, R). TThs In |f (z)| = —<x at infinitely many points in C(0, R) and 
so the Poisson integral of ln If | does not a priori exist. It turns out that the integral does 
exist in the sense of Lebesgue, but Lebesgue integration is beyond the scope of this text. 
Thus we will be content with a version of the Poisson-Jensen formula requiring analyticity 
on D(0, R), but allowing zeros on the boundary.

4.8.3 Poisson-Jensen Formula, Second Version
Let f be analytic and not identically zero on D (0, R). Let a 1,... ,an be the zeros of f in 
D(0, R), with multiplicities ki ,... ,kn respectively. Then for z G D(0, R) \ Z(f), 

ln If(z)I
j=i

kj ln R (z — aj) 
R2 — a^ z

+ ;1 f2" Pz/R (t )n If (Rei) I dt

2 n J 0
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where the integral exists as an improper Riemann integral.

Proof. Suppose that in addition to a1 ,... ,an, f has zeros on C(0, R)at an+1,... ,am 

with multiplicities kn + 1,... , km. There is an analytic function g on D (0, R) with no zeros 
on C(0, R)such that

f (*) = (* - an +1) kn+1 ••• (* - am) km g (*). (1)

The function g satisfies the hypothesis of (4.8.1)and has the same zeros as f in D(0, R). 
Now if * G D(0, R) \ Z(f), then

n

ln lf (*)| = kj ln \* - aj| +ln \s(*)|.
j=1

But by applying (4.8.1)to g we get

In lg(*) | = £ In R2* ~_aj) 1 f" Pz/r(t)ln \g(Rei) | dt,
j=1 R1 2 - aj * 2 nJ 0 '

1 2 2 n— l ln e' - 11 dt = 0.
2 n J 0

so the problem reduces to showing that

V kj In l* - aj | + ^[ Pz/R(t)ln \g(Rei) | dt = I Pz/r(t) In \f (Rei) | dt.
j=n +1 2 n J 0 2 n 0 0

Since by (1), f (Rei) = [[]n=1 (Rei - aj)kj]g(Rei), 0 < t < 2n, we see that it is sufficient 
to show that

In \* - aj | = — P Pz/R(t) In Rei - aj | dt
2 n J 0

for j = n +1,... ,m. In other words, the Poisson integral formula (4.7.8)holds for the 
functions u(*) = ln|* - a| when |a| = R (as well as for |a| <R. This is essentially the 
content of the following lemma, where to simplify the notation we have taken R = 1 and 
a=1

4.8.4 Lemma
For |*| < 1,

In \* - 11 = 71/' Pz(t)ln ^i - 11 dt,
2 n J 0

where the integral is to be understood as an improper Riemann integral at 0 and 2n. In 
particular,
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Proof. We note first that the above improper integral exists, because if 0 < t < n, then 
leit — 11 = tv/2(1 — cost) = 2sin(t/2) > 2t/n. Therefore

Pz(t) In leit — 11 > Pz(t) ln(2t/n) = Pz(t)[ln(2/n) + Int].

Since the improper integral 2 In tdt exists by elementary calculus and Pz (t) is conilni- 
uous, the above inequalities imply that

1 z»n 1 /*2 —g
lim — I Pz(t) In leit — 11 dt > —x and lim — I Pz(t) In leit — 11 dt > —x.

g ,o+ 2nJg g , o+ 2nJn

Thus it remains to show that the value of the improper Riemann integral in the statement 
of the lemma is ln lz — 1l. We will use a limit argument to evaluate the integral

I =71/' Pz(t) In leit — 11 dt.
2 n J 0

For r> 1, define

Ir = 71/' Pz(t) In leit — rl dt.
2 n J 0

We will show that Ir ^ I as r ^ 1+. Now for any fixed r > 1, the function z ^ ln \z — rl 
is continuous on D(0, 1) and l^amionic m D(0, 1), hence by (4.7.8), ln \z — rl = Ir. Since 
ln \z — rl ^ ln \z — 1l as r ^ 1+, this will show that I = ln \z — 1l, completing the proof. 
So consider, for r>1,

■2 n
lIr Pz(t)ln

eit

eit dt
1 2 2 n= Tn\0 Pz (t >>” eit

eit dt.
r r

0 1 1

(The outer absolute values may be removed because leit — rl > leit — 1l and therefore the 
integrand is positive.) Using the 2n-periodicity of the integrand, we may write

n

and since Pz(—t) = Pz(t), this becomes

Now if 0 < t < n, then

eit — r
eit — i

ei — 1 + 1 — r 1 ! 1 — r
ei — 1 = 1 + ei — 1.

But as we noted at the beginning of the proof, leit — 11 > 2t/n, so the above expression
is bounded in absolute value by 1 + [n (r — 1) /21]. Thus

0<ln
ei — r
eit — i < ln

n (r — 1)
1 + —------- -21
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Also, the Poisson kernel satisfies

1 -Izl2 < (1 -Izl)(1 + Izl) = 1 + |z| 
\eit - zl2 < (1 -Izl )2 1 -Izl,

an estimate that was used to establish Harnack’s inequality. (See the solution to Section
4.7, Problem 2. Thus we now have

0 < lIr -Il< 1 + Izl
1 -Izl

1+
n(r - 1)

2t
dt.

Now fix 6, 0 < 6 < n, and write

1+
n (r - 1) 

2t 1+
n (r - 1) 

2t dt + 1+
n (r - 1) 

2t dt.

Since the integral on the left side is finite (this is essentially the same as saying that 
0 lntdt > -<x), and the integrand increases as r increases (r > 1), the first integral on 
the right side approaches 0 as 6 ^ 0+, uniformly in r. On the other hand, the second 
integral on the right side is bounded by (n - 6) ln(1 + [n(r - 1)/26]), which for fixed 6 > 0, 
approaches 0 as r ^ 1+. This completes the proof of the lemma, and as we noted earlier, 
finishes the proof of (4.8.3). &

The Poisson-Jensen formula has a number of interesting corollaries, some of which will 
be stated below. The proof of the next result (4.8.5), as well as other consequences, will 
be left for the problems.

4.8.5 Jensen’s Formula, General Case
Let f be analytic on an open disc D(0, R) and asuume that f ^ 0. Assume that f has a 
zero of order k > 0 at 0 and a 1, a2,... are the zeros of f in D(0, R) \ {0}, each appearing 
as often as its multiplicity and arranged so that 0 < la 11 < la 21 < • • •. Then for 0 <r < R 
we have 

k ln r +ln
f (k)(0) 

k!

n(r) , , 1 2 n n^ln|ai| + ±
j=1 । r I 2nJo ln lf (reit)l dt

where n(r)is the number of terms of the sequence a1,a2,... that are in the disk D(0, r).

Problems
1. Prove (4.8.5).
2. Let f be as in (4.8.2), except that instead of being analytic on all of D(0, R), f has 

poles at b1,... ,bm in D(0, R) \ {0}, of orders l1,... ,lm respectively. State and prove 
an appropriate version of Jensen’s formula in this case.

3. Let n(r)be as in (4.8.5). Show that

r n(r)
f nt) dt = £> ' 
o t j= lj l
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4. With f as in (4.8.5)and M (r)= max {|f (z)| : |z| = r}, show that for 0 <r<R,

f n (t ) , . r M (r)
t dt ^ f\((k)(0)Irk/k!.

5. Letf be as in (4.8.5). Show that the function

r ^ I ln \f (rei) \ dt
2 n 0 0

is increasing, and discuss the nature of its graph on the interval (0, R).

4.9 Analytic Continuation
In this section we examine the problem of extending an analytic function to a larger 
domain. An example of this has already been encountered in the Schwarz reflection 
principle (2.2.15). We first consider a function defined by a power series.

4.9.1 Definition
Let f (z) 2=0 an(z — z0)n have radius of convergence r, 0 < r < <x. Let z* be a point
such that \z* — z0 \ = r and let r(t) be the aadius of conveggence of the xxpansion of f 
about the point z 1 = (1 — t)z0 + tz*, 0 < t < 1. Then r(t) > (1 — t)r (Figure 4.9.1). If

Figure 4.9.1

r(t) = (1 — t)r for some (hence for all) t G (0, 1), so that there is no function g analytic 
on an open set containing D(z0, r) U {z*} and such that g = f on D(z0, r), then z* is said 
to be a singular point of f. Equivalently, z* G D(0, r)is not a singular point of f iff f 
has an analytic extension to an open set containing D(z0, r) U {z*}.

We are going to show that there is always at least one singular point on the circle of 
convergence, although in general, its exact location will not be known. Before doing this, 
we consider a special case in which it is possible to locate a singular point.
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4.9.2 Theorem
In (4.9.1), if an is real and nonnegative for all n, then z0 + r is a singular point.

Proof. Fix z 1 between z0 and z0 + r. Note that since an > 0 for all n and z 1 — z0 is
a positive real number, f and its derivatives are nonnegative at z1 . Now assume, to the 
contrary, that the Taylor series expansion of f about z1 does converge for some z2 to the 
right of z0 + r . Then we have

oo 
s f (k)(z 1E

.■ (z 2 — z 1) < + ^.

But by the remark after (2.2.18),

o

f(k)(z1) E
n=k

n(n 1) • • • (n — k + 1) an (z 1 n-k—z0)

for k =0, 1, 2,...... Substituting this for f(k) (z1)in the Taylor expansion of f about z1

and using the fact that the order of summation in a double series with nonnegative terms 
can always be reversed, we get

oo

+to > n(n
k=0 n=k

1) • • • (n — k + 1) an (z 1 n-k—z0)
( z 2 — z 1) k 

k!
oo

= £ E CO-(z 1

k=0 n=k

n-k—z0) (z2 — z1)k

on
£ an E n
n=0 k=0

(z1 — z0)n-k(z2 — z1)k

o o

o

an ( z2 — z0 ) n 
n=0

by the binomial theorem. But this implies that no=0 an(z—z0)n has radius of convergence 
greater than r, a contradiction. &

The preceding theorem is illustrated by the geometric series 1 + z + z2 + • • •, which 
has radius of convergence equal to 1 and which converges to 1/(1 — z)for |z| < 1. In this 
case, z* = 1 is the only singular point, but as we will see later, the other extreme is also 
possible, namely that every point on the circle of convergence is a singular point.

4.9.3 Theorem
In (4.9.1), let r = {z : \z — z01 = r} be the circle of convergence. Then there is at least 
one singular point on r.

Proof. If z G r is not a singular point, then there is a function fz analytic on a disk
D(z, ez) such that fz = f on D(z0, r) A D(z, ez). Say there are no singular points on r.
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By compactness, r is covered by finitely many such disks, say by D(Zj,<j),j = 1,... ,n. 
Define 

g(z) =
f(z), 
fzj (z),

z & D (z 0 ,r)
z & D(Zj, 6j),j = 1, ... ,n.

We show that g is well defined. If D(Zj, ej)AD(zk, ek) = 0, then also D(Zj, ej) AD(zk, ek) A 
D(z0, r) = 0, as is verified by drawing a picture. Now fzj — fzk = f — f = 0 on D(zj, ej) A 
D(zk, ek) by the identity theorem (2.4.8)p proving hatt g is well defined. Thus g is analytic 
on D(z0, s)for some s>r, and the Taylor expansion of g about z0 coincides with that 
of f since g = f on D(z0, r). This means that the expansion of f converges in a disk of 
radius greater than r, a contradiction. &

We are now going to construct examples of power series for which the circle of conver
gence is a natural boundary, that is, every point on the circle of convergence is a singular 
point. The following result will be needed.

4.9.4 Lemma

Let f1 (w) = (wp + wp+1)/2, p a positive integer. Then |w| < 1 implies |f1(w)| < 1, and 
if Q = D (0, 1) U D (1, e), e> 0, then f 1( D (0, r)) C Q for some r > 1.

Proof. If |w| < 1, then \f 1(w)| = |w|p| 1 + wl/2 < 11 + wl/2, which is less than 1 unless 
w = 1, in which case f 1(w) = 1. Thus |w| < 1 implies \f 1 (w)| < 1, and f 1(D(0, 1)) C Q. 
Hence f- 1(Q) is an o[)ni set cnntaming D(0, 1). Consequently, there exists r > 1 such 
that D(0, r) C f1-1(Q), from which it follows that f1(D(0, r) C f1(f1-1(Q)) C Q. &

The construction of natural boundaries is now possible.

4.9.5 Hadamard Gap Theorem

Suppose that f (z) = ^22=1 ak znk and, for some s > 1, nk +1 /nk > s for all k. (We say 
that k akz nk is a gap series.)If the radius of convergence of the series is 1, then every 
point on the circle of convergence is a singular point.

Proof. We will show that 1 is a singular point, from which it will follow (under these 
hypotheses)that every point on the unit circle is a singular point. Thus assume, to the 
contrary, that 1 is not a singular point. Then, for some e > 0, f has an analytic extension 
g to D(0, 1) U D(1 , e). Let p be a positive integer such that s > (p + 1)/p, and let f 1 

and r>1 be as in Lemma 4.9.4. Then h(w) = g(f1 (w)) is analytic on D(0, r), and for
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|w| < 1,

oo

g(f 1(w)) = f (f 1(w)) = ak(f 1(w))nk

k=1
o

= ak2-nk(wp + wp+1)nk

k=1
o nk

= ak2-nk nk wp(nk -n)w(p+1)n

k=1 n=0 n
o nk

= ak2-nk nnk wpnk+n.

Now for each k we have nk+1 /nk > s > (p + 1) /p, so pnk + nk < pnk +1. Therefore, the 
highest power of w that appears in n=0 nk) wpnk + n, namely wpnk + nk, is less than the 
lowest power wpnk+1 that appears in nnk=+01 nkn+1 wpnk+1 +n. This means that the series

o

ak2-nk 
k=1

nk

n=0 nnk wpnk+n

is (with a grouping of terms)precisely the Taylor expansion of h about w = 0. But since 
h is analytic on D(0, r), this expansion converges absolutely on D(0, r), hence (as there 
are no repetition of powers of w),

k=1
|ak|2-nk

nk

n=0 nnk |w|pnk+n < <x,
o

that is [as in the above computation of g(f1(w))], 

o

0l\-n 12-nk (|w|p + |w|p+1)nk < <x> 

k=1

nk

for |w| < r. But if 1 < |w| < r, then 2 nk (|w|p + |w|p +1)nk = |w|p( +2 ) > 1. Con

sequently, ko=1 ak znk converges for some z with |z| > 1, contradicting the assumption 
that the series defining f has radius of convergence 1.

Finally, if z* = ei is not a singular point, let q(z) = f (eiz) = 0=00=1 akel6nk znk (with 
radius of convergence 1, as before, because |e^0nk | = 1) Now f extends to a function 
analytic on D(0, 1) U D(z*,e) for some e > 0, and thus q extends to a function analytic 
on D(0, 1) U D(1, e), contradicting the above argument. &

Some typical examples of gap series are ko=1 z2k and ko=1 zk! .

Remarks
The series no=0 zn diverges at every point of the circle of convergence since |z |n does 
not approach 0 when |z | = 1. However, z = 1 is the only singular point since (1 - z)-1 
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is analytic except at z = 1. On the other hand, ^22=1 nr z2 has radius of convergence 1, 
for if ak =0,k =2n; a2n = 1/n!, then

lim sup |an|1/n = lim sup |a2n |1/2n = lim sup(1/n!)1/2n =1 
n—>2 n—>2 n—>2

because 
n

ln[(n!)1/2n] = 2-n ln(n!)= 2 -n ^2 ln k < 2 nn ln n ^ 0 •
k=1

The series converges (as does every series obtained from it by termwise differentiation)at 
each point of the circle of convergence, and yet by (4.9.5), each such point is singular.

The conclusion of Theorem 4.9.5 holds for any (finite)radius of convergence. For if 
akznk has radius of convergence r, then ak (rz)nk has radius of convergence 1.
We now consider chains of functions defined by power series.

4.9.6 Definitions
A function element in Q is a pair (f, D), where D is a disk contained in Q and f is analytic 
on D. (The convention D = D(0, 1)is no longer in effect.) If z is an element of D, then 
(f, D)is said to be a function element at z. Two function elements (f1, D1)and ( f2, D2) 
in Q are direct analytic continuations of each other (relative to Q) if D 1 A D2 = 0 and 
f 1 = f2 on D 1 A D2. Note that in this case, f 1 U f2 is an extension of f 1 (respectively f2) 
from D 1 (respectively D2) to D 1 U D2. If there is a chain (f 1, D 1), (f2, D2),... , (fn, Dn) 
of function elements in Q, with (fi, Di)and ( fi+1, Di+1)direct analytic continuations 
of each other for i = 1, 2,... , n — 1, then (f 1, D 1) and (fn, Dn) are said to bee analytic 
continuations of each other relative to Q.

Suppose that y is a curve in Q, with y defined on the interval [a, b]. If there is a partition 
a = t0 < t1 < • • • < tn = b, and a chain( f 1, D 1),... , (fn, Dn) of functfon elemnnts in Q 
such that (fi +1, Di+1) ss a direct analyiic conainuaaton <ff (fi, Di) for i = 1, 2,... , n — 1, 
and y(t) G Di for ti- 1 < t < ti,i = 1, 2,... , n, then (fn, Dn) ss aafo to bee nn analytic 
continuation of (f1, D1) along the curve y.

4.9.7 Theorem
Analytic continuation of a given function element along a given curve is unique, that is, 
if (fn, Dn)and ( gm, Em)are two continuations of ( f1, D1)along the same curve y, then 
fn = gm on Dn A Em .
Proof. Let the first continuation be (f 1, D 1),... , (fn, Dn), and let the second continuation 
be (g 1, E 1),... , (gm, Em), where g 1 = f 1, E 1 = D 1. There are partitions a = 10 < 11 < 
• • • < tn = b,a = s0 < s 1 < • • • < sm = b such that y(t) G Di for ti- 1 < t < ti,i = 
1, 2, .. . ,n, y (t) G Ej for Sj- 1 < t < Sj, j = 1, 2, .. . , m.

We claim that if 1 < i < n, 1 < j < m, and [ti-1, ti] A [sj-1, sj] = 0, then (fi, Di)and 
(gj, Ej)are direct analytic continuations of each other. This is true when i = j = 1, since 
g1 = f1 and E1 = D1 . If it is not true for all i and j, pick from all (i, j)for which the 
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statement is false a pair such that i + j is minimal. Say ti- 1 > sj- 1 [then i > 2, for if i = 1, 
then sj-1 = t0 = a, hence j = 1, and we know that the result holds for the pair (1,1)]. We 
have ti- 1 < Sj since [ti- 1 ,ti] A [sj- 1, sj] = 0, hence sj- 1 < ti- 1 < sj. Therefore y(ti- 1) G 
Di- 1 A Di A Ej, in particular, this intersection is not empty. Now (fi,Di) is a direct 
analytic continuation of (fi-1, Di-1), and furthermore (fi-1, Di-1)is a direct analytic 
continuation of (gj,Ej)by minimality of i + j (note that ti-1 G [ti-2, ti-1] A [sj-1, sj], 
so the hypothesis of the claim is satisfied). Since Di-1 A Di A Ej = 0, (fi, Di)must be 
a direct continuation of gj ,Ej), a contradiction. Thus the claim holds for all i and j,in 
particular for i = n and j = m. The result follows. &

4.9.8 Definition
Let Q be an open connected subset of C. The function elements (f 1 ,D 1) and (f2,D2) in 
Q are said to be equivalent if they are analytic continuations of each other relative to Q. 
(It is immediate that this is an equivalence relation.) Ann euuivalen^e class $ of fnnttion 
elements in Q such that for every z G Q there is an element (f,D) G $ with z G D is 
called a generalized analytic function on Q.

Note that connectedness of Q is necessary in this definition if there are to be any 
generalized analytic functions on Q at all. For if z1 ,z2 G Q, there must exist equivalent 
function elements (f1, D1 )and ( f2, D2 )at z1 and z2 respectively. This implies that there 
is a curve in Q joining z1 to z2 .

Note also that if g is analytic on Q, then g determines a generalized analytic function 
$ on Q in the following sense. Take

$ = {(f,D) : D C Q and f = g\D}.

However, not every generalized analytic function arises from a single analytic function 
in this way (see Problem 2). The main result of this section, the monodromy theorem 
(4.9.11), addresses the question of when a generalized analytic function is determined by 
a single analytic function.

4.9.9 Definition
Let y0 and y1 be curves in a set S C C (for convenience, let y0 and y1 have common domain 
[a, b]). Assume y0(a) = y1 (a) = z0,y0(b) = y1 (b) = z1, that is, the curves have the same
endpoints. Then y0 and y1 are said to be homotopic (in S)if there is a continuous map 
H : [a, b] x [0, 1] ^ S (called a homotopy of y0 and y 1) such ttaat H(t, 0) = yo(t), H(t, 1) = 
y1 (t), a < t < t; H(a, s) = z0,H(b, s)=z1, 0 < s < 1. Intuitively, H deforms y0 into y1 

without moving the endpoints or leaving the set S. For 0 < s < 1, the curve t ^ H(t, s) 
represents the state of the deformation at “time s”.

4.9.10 Theorem
Let Q be an open connected subset of C, and let y0 ,y1 be curves in Q that are homotopic 
in Q. Let (f, D)be a function element at z0, the initial point of y0 and y1 . Assume that 
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(f, D) can be continued along all possible curves in Q, thiat is, if y is a curve in Q joining 
z0 to another point zn, there is an analytic continuation (fn, Dn) of (f, D) along y.

If (g0, D0) is a continuation of (f, D) along y0 and (g 1, D 1) is a continuation of (f, D) 
along y 1, then g0 = g 1 on D0 A D 1. (Note that D0 A D 1 = 0 since the terminal point 
z 1 of y0 and y 1 belongs to D0 A D 1.) Thus (g0,D0) and (g 1 ,D 1) are diecct analytic
continuations oo each other.

Proof. Let H be a homotopy of y0 and y 1. By hypothesis, if 0 < s < 1, then (f,D) 
can be continued along the curve Ys = H(• ,s), say to (gs,Ds). Fix s and pick one 
such continuation, say (h1,E1),... , (hn, En)[with ( h1, E1) = (f, D), (hn,En) = (gs,Ds)]. 
There is a partition a = t0 < t1 < • • • tn = b such that Ys(t) G Ei for ti- 1 < t < ti, i = 
1,... ,n. Let Ki be the compact set Ys([ti- 1 ,ti]) C Ei, and let

e = min {dist(Ki, C \ Ei} > 0.
1 <i<n

Since H is uniformly continuous, there exists 6 > 0 such that if |s — s 1| <6, then 
Y(t) — Ys 1 (t)I < e for all t G [a, b]. In particular, if ti- 1 < t < ti,, then since Ys(t) G Ki 

and y (t) — ys 1 (t) | < e, we have ys 1 (t) G Ei.
Thus by definition of continuation along a curve, (h1,E1),... , (hn, En)is also a con

tinuation of (f, D)along ys1 . But we specified at the beginning of the proof that (f, D) 
is continued along ys1 to (gs1 ,Ds1 ). By (4.9.7), gs = gs1 on Ds A Ds1 . Thus for each 
s G [0, 1] there is an open interval Is such that gs = gs1 on Ds A Ds1 whenever s1 G Is . 
Since [0, 1] can be covered by finitely many such intervals, it follows that g0 = g1 on 
D 0 A D 1. A

4.9.11 Monodromy Theorem
Let Q be an open connected subset of C with the property that every closed curve y in 
Q is homotopic to a point, that is, homotopic (in Q) to y0 = z, where z is the initial and 
terminal point of y. Let $ be a generalized analytic function on Q, and assume that each 
element of $ can be continued along all possible curves in Q. Then there is a function g 
analytic on Q such that whenever (f, D) G $wehaveg = f on D. Thus $ is determined 
by a single analytic function.

Proof. Ifz G Q there is a function element (f, D) G $ such that z G D. Define g(z) = f(z). 
We must show that g is well defined. If (f *, D*) G $ and z G D*, we have to show that 
f (z) = f *(z). But since (f, D), (f *, D*) G $, there is a continuation in Q from (f, D) to 
(f* ,D* ); since z G D A D* , we can find a curve y (in fact a polygonal path)in Q with 
initial and terminal point z such that the continuation is along y . But by hypothesis, y 
is homotopic to the curve y0 = z• Since (f,D) a cantinuctian ff (f,D) llong y0, it 
follows from (4.9.10)that f = f* on D A D*, in particular, f(z) = f* (z). Since g = f on 
D, g is analytic on Q. A

Remarks
Some authors refer to (4.9.10), rather than (4.9.11), as the monodromy theorem. Still 
others attach this title to our next result (4.9.13), which is a corollary of (4.9.11). It is 



44 CHAPTER 4. APPLICATIONS OF THE CAUCHY THEORY

appropriate at this point to assign a name to the topological property of Q that appears 
in the hypothesis of (4.9.11).

4.9.12 Definition
Let Q be a plane region, that is, an open connected subset of C. We say that Q is 
(homotopically) simply connected if every closed curve in Q is homotopic (in Q)to a 
point. In the next chapter, we will show that the homotopic and homological versions of 
simple connectedness are equivalent.

Using this terminology, we have the following corollary to the monodromy theorem 
(4.9.11).

4.9.13 Theorem
Let Q be simply connected region and let (f, D)be a function element in Q such that 
(f, D)can be continued along all curves in Q whose initial points are in D. Then there is 
an analytic function g on Q such that g = f on D.

Proof (outline). Let $ be the collection of all function elements (h, E) such that (h, E) is 
a continuation of (f,D). One can then verify that $ satisfies the hypothesis of (4.9.11). 
Since (f, D) G $, the result follows. &

Alternatively, we need not introduce $ at all, but instead imitate the proof of (4.9.11).

We conclude this section with an important and interesting application of analytic 
continuation in simply connected regions.

4.9.14 Theorem
If Q is a (homotopically)simply connected region, then every harmonic function on Q has 
a harmonic conjugate.

Proof. Ifu is harmonic on Q, we must produce an analytic function g on Q such that 
u =Reg. We make use of previous results for disks; if D is a disk contained in Q, then 
by (1.6.2), there is an analytic function f on D such that Re f = u. That is, (f, D)is a 
function element in Q with Re f = u on D.

If y : [a,b] ^ Q is any curve in Q such that y(a) G D, we need to show that (f, D) 
can be continued along y• As in the proof of (3.1.7), there is a partition a = t0 < t1 < 
• • • < tn = b and disks D 1,... , Dn with centers at y (t1),... , Y(tn) respectively, such that 
if tj- 1 < t < tj, then y(t) G Dj. Now D A D 1 = 0, and by repeating the above argument 
we see that there exists f1 analytic on D1 such that Re f1 = u on D1 . Since f - f1 is pure 
imaginary on D A D1, it follows (from the open mapping theorem (4.3.1), for example) 
that f - f1 is a purely imaginary constant on D A D1 . By adding this constant to f1 

on D1, we obtain a new f1 on D1 such that (f1, D1)is a direct continuation of ( f, D). 
Repeating this process with (f1, D1)and ( f2, D2), and so on, we obtain a continuation 
(fn, Dn)of ( f, D)along y. Thus by (4.9.13), there is an analytic function g on Q such 
that g = f on D. Then Re g = u on D, and hence by the identity theorem for harmonic 
functions (2.4.14), Re g = u on Q. &
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In the next chapter we will show that the converse of (4.9.14)holds. However, this will 
require a closer examination of the connection between homology and homotopy. Also, we 
can give an alternative (but less constructive)proof of (4.9.14)after proving the Riemann 
mapping theorem.

Problems
1. Let f (z) 522=0 zn!,z G D(0, 1). Show directly that f has C(0, 1) as iSs ntUuaal

boundary without appealing to the Hadamard gap theorem. (Hint: Look at f on radii 
which terminate nt points of the form ei2np/q where p and q are integers.)

2. Let f (z) = Logz = 52n=1(- 1)n- 1(z - 1)n/n, z D D = D(1, 1). Let Q = C \ {0} and 
let $ be the equivalence class determined by (f, D).
(a) Show that $ is acUiaally a generaiized analytic function on Q, that is, if z G Q then 
there is an element (g, E) $ $ with z E E.
(b)Show that there is no ffnction h analytic on Q sfch that for every (g, E) G $we 
have h =g on E .

3. Criticiie the following argfment: Let f(z) = n2=0 an(z - z0)n have radifs of conver
gence r.Ifz1 G D(z0, r), then by the rearrangement procedfre of (4.9.2) we can find 
the Taylor expansion of f aboft z1 , namely

2 2

f(z)
22

= £ £ On < z 1

k=0 n=k

n-k- z0) (z - z1)k.

If the expansion about z 1 converges at some point z / D(z0, r), then since power series 
converge absolftely inside the circle of convergence, we may rearrange the expansion 
about z1 to show that the original expansion about z0 converges at z, a contradiction. 
Consequently, for any function defined by a power series, the circle of convergence is a 
natural boundary.

4. (Law of permanence of functional equations). Let F : Ck+1 ^ C be such that 
F and all its first order partial derivatives are continuous. Let f1 ,... ,fk be ana
lytic on a disk D, and assume that F (z, f 1( z),... , fk (z)) = 0 for all z G D. Let 
(fi1, D1), (fi2,D2),... , (fin, Dn), with fi1 = fi, D1 = D, form a continuation of 
(fi ,D) ,i = 1 ,...,k. Show that F (z,f 1 n (z),... , fkn (z)) = 0 for all z G Dn. An 
example: If eg = f on D and the continuation carries f into f * and g into g*, then 
eg = f * on Dn (take F(z,w 1, w2) = w 1 - ew2,f 1 = f, f2 = g).

5. Let (f*,D*) be a contiuatioon of ff,D). Show that (f*',D*) Is a contiunttion of
(f',D). (“The derivative of the continuation, that is, f*', is the continuation of the 
derivative.”)

Reference
W. Rudin, “Real and Complex Analysis,” 3rd ed., McGraw Hill Series in Higher Mathe
matics, New York, 1987.



Chapter 5

Families of Analytic Functions

In this chapter we consider the linear space A(Q) of all analytic functions on an open set 
Q and introduce a metric d on A(Q) with the property that convergence in the d-metric is 
uniform convergence on compact subsets of Q. We will characterize the compact subsets 
of the metric space (A(Q), d) and prove several useful results on convergence of sequences 
of analytic functions. After these preliminaries we will present a fairly standard proof of 
the Riemann mapping theorem and then consider the problem of extending the mapping 
function to the boundary. Also included in this chapter are Runge’s theorem on rational 
approximations and the homotopic version of Cauchy’s theorem.

5.1 The Spaces A(Q) and C(Q)

5.1.1 Definitions
Let Q be an open subset of C. Then A(Q) will denote the space of analytic functions on 
Q, while C(Q) will denote the space of all continuous functions on Q. For n =1, 2, 3 ..., 
let

Kn = D(0, n) C {z : \z — w| > 1 /n for all w & C \ Q}.

By basic topology of the plane, the sequence {Kn } has the following three properties:
(1) Kn is compact,
(2) Kn C Kn +1 (the interior of Kn +1),

(3) If K C Q is compact, then K C Kn for n sufficiently large.
Now fix a nonempty open set Q, let {Kn} be as above, and for f, g & C(Q), define

d(f ?) = v 1f - g^K-
(f,g) n=^2j 1+hf - gwK-'

where

II , 11 fsup{If(z) — g(z)| : z & Kn}, Kn = 0
llf — ' = |0, Kn = 0

1
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5.1.2 Theorem
The assignment (f, g) ^ d(f, g) defines a metric on C(Q). A sequence {fj} in C(Q) is d- 
convergent (respectively d-Cauchy) iff {fj} is uniformly convergent (respectively uniformly 
Cauchy) on compact subsets of Q. Thus (C(Q), d) and (A(Q), d) are complete metric 
spaces.
Proof. That d is a metric on C(Q) is relatively straightforward. The only troublesome part 
of the argument is verification of the triangle inequality, whose proof uses the inequality: 
If a, b and c are nonnegative numbers and a < b + c, then

abc
1 + a ~ 1 + b 1 + c

To see this, note that h(x) = x/(1 + x) increases with x > 0, and consequently h(a) < 
b ( b I z_,'\ — ____ b____ I ____ c___ <" b I c NTmir 1 of" nc cTimir hl-i o f- o camion no J" ■£ . X ic /■? an nTnr(((c* । c) — 1| b । c + 1| b | c ^< 1| b + 1| c . nnow let us siiow tiiat a seq^ueiice {f j} is — v_>auciiy 
iff {fj } is uniformly Cauchy on compact subsets of Q. Suppose first that {fj } is d-Cauchy, 
and let K be any compact subset of Q. By the above property (3) of the sequence {Kn}, 
we can choose n so large that K C Kn. Since d(fj, fk) ^ 0 as j, k ^ <x, the same is true 
of Wfj - fk||k„. But Wfj - fkWx < Wfj - fk||k„, hence {fj} is uniformly Cauchy on K. 
Conversely, assume that {fj} is uniformly Cauchy on compact subsets of Q. Let e > 0 and 
choose a positive integer m such that ^2™=m +1 2-n < e• Since {fj} is uniformly Cauchy 
on Km in particular, there exists N — N(m) such that j, k > N implies Wfj — fk ||kto < e, 
hence

m

s 2nWfj — fk ||Km < 6.

It follows that for j, k > N ,

d(fj,fk) Qn^

The remaining statements in (5.1.2) follow from the above, Theorem 2.2.17, and com
pleteness of C. ^

If {fn} is a sequence in A(Q) and fn ^ f uniformly on compact subsets of Q, then 
we know that f G A(Q) also. The next few theorems assert that certain other properties 
of the limit function f may be inferred from the possession of these properties by the fn . 
The first results of this type relate the zeros of f to those of the fn .

5.1.3 Hurwitz’s Theorem
Suppose that {fn } is a sequence in A(Q) that converges to f uniformly on compact subsets 
of Q. Let D(z0, r) C Q and assume that f (z) — 0 for lz — z01 — r. Then there is a positive 
integer N such that for n > N, fn and f have the same number of zeros in D(z0 ,r).

1 f — fk K- < \ ’ 1 || f. _ f ||
2 2 I 2n 1 1 । || f < || < / v I 2n I Wfj fkll-K
n=1 \1 2 * / 1 + Wfj - fkIIk„ n=i V2 /

Wfj — fkIIk„ < 2f
1 + Wfj — fk IIk-
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Proof. Let e = min {\f (z) | : \z — z 01 = r} > 0. Then for sufficiently large n, \fn (z) — f (z) | < 
e < If (z)| for \z - z01 = r• By Rouche’s theorem (4.2.8), fn and f have the same number 
of zeros in D (z0 ,r). &

5.1.4 Theorem

Let {fn} be a sequence in A(Q) such that fn ^ f uniformly on compact subsets of Q. If 
Q is connected and fn has no zeros in Q for infinitely many n, then either f has no zeros 
in Q or f is identically zero.

Proof. Assume f is not identically zero, but f has a zero at z0 G Q. Then by the identity 
theorem (2.4.8), there is r>0 such that the hypothesis of (5.1.3) is satisfied. Thus for 
sufficiently large n, fn has a zero in D(z0, r). &

5.1.5 Theorem

Let {fn} be a sequence in A(Q) such that fn converges to f uniformly on compact subsets 
of Q. If Q is connected and the fn are one-to-one on Q, then either f is constant on Q or 
f is one-to-one.

Proof. Assume that f is not constant on Q, and choose any z0 G Q. The sequence 
{fn — fn(z0)} satisfies the hypothesis of (5.1.4) on the open connected set Q\{z0} (because 
the fn are one-to-one). Since f — f (z0) is not identically zero on Q \ {z0}, it follows from 
(5.1.4) that f — f (z0) has no zeros in Q \ {z0}. Since z0 is an arbitrary point of Q, we 
conclude that f is one-to-one on Q. &

The next task will be to identify the compact subsets of the space A(Q) (equipped 
with the topology of uniform convergence on compact subsets of Q). After introducing 
the appropriate notion of boundedness for subsets F C A(Q), we show that each sequence 
of functions in F has a subsequence that converges uniformly on compact subsets of Q. 
This leads to the result that a subset of A(Q) is compact iff it is closed and bounded.

5.1.6 Definition

A set F C C(Q) is bounded if for each compact set K C Q, sup{\\f ||^ : f G F} < <x, 
that is, the functions in F are uniformly bounded on each compact subset of Q.

We will also require the notion of equicontinuity for a family of functions.

5.1.7 Definition

A family F of functions on Q is equicontinuous at z0 G Q if given e > 0 there exists 6 > 0 
such that if z G Q and \z — z01 <6, then \f (z) — f (z0)| < e for all f G F.

We have the following relationship between bounded and equicontinuous subsets of 
A(Q).
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5.1.8 Theorem
Let F be a bounded subset of A(Q). Then F is equicontinuous at each point of Q.
Proof. Let z0 G Q and choose r > 0 such that D(z0,r) C Q. Then for z g D(z0,r) and 
f G F, we have

Thus

f ^)_ f ^)-^f f (w) 1 [ f (w) d,
0 2ni JC(z0 ,r) w — z 2ni JC(z0 ,r) w — z0 .

f(z) f (z0)|< sup ( ( ) ( ) : w G C(z0,r^>2nr
2 n |^w — z w — z 0 J

= r |z z0 | sup f (w)
(w - z)(w - z0)

:wG C(z0, r) .{
But by hypothesis, there exists Mr such that \f (w) | < Mr for all w G C(z0,r) and all 
f GF. Consequently, if z G D(z0, r/2) and f GF, then

f (W) Mrr\z - z"Isupf (W - z)(w - z 0) :w G C (z°-r )J < r|z — z °\(r722,

proving equicontinuity of F. &
We will also need the following general fact about equicontinuous families.

5.1.9 Theorem
Suppose F is an equicontinuous subset of C(Q) (that is, each f GFis continuous on Q 
and F is equicontinuous at each point of Q) and {fn} is a sequence from F such that 
fn converges pointwise to f on Q. Then f is continuous on Q and fn ^ f uniformly on 
compact subsets of Q. More generally, if fn ^ f pointwise on a dense subset of Q, then 
fn ^ f on all of Q and the same conclusion holds.
Proof. Let e > 0. For each w G Q, choose a 8w > 0 such that |fn(z) — fn(w) | < e for 
each z G D(w, 8w) and all n. It follows that | f (z) — f (w) | < e for all z G D(w, 8w), 
so f is continuous. Let K be any compact subset of Q. Since {D(w, 8w) : w G K} is 
an open cover of K, there are w 1,... ,wm G K such that K C ^m=1 D(wj,8wj). Now 
choose N such that n > N implies that f(wj) — fn(wj)| < e for j = 1,... ,m. Hence if 
z G D (wj, 8wj) and n > N, then

f (z) — fn(z)| < f(z) — f(wj)| + f(wj) — fn(wj)| + fn(wj) — fn(z)| < 3e.

In particular, if z G K and n > N, then f (z) — fn (z) | < 3e, showing that fn ^ f 
uniformly on K .

Finally, suppose only that fn ^ f pointwise on a dense subset S C Q. Then as before, 
fn (z) — fn (w) | < e for all n and all z G D(w, 8w). But since S is dense, D(w, 8w) contains 
a point z G S , and for m and n sufficiently large,

fm (w ) — fn (w ) | < fm (w ) — fm ( z) | + fm ( z) — fn ( z) | + fn ( z) — fn (w ) | < 3 C.

Thus {fn (w)} is a Cauchy sequence and therefore converges, hence {fn} converges point
wise on all of Q and the first part of the theorem applies. &
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5.1.10 Montel’s Theorem
Let F be a bounded subset of A(Q), as in (5.1.6). Then each sequence {fn} from F has 
a subsequence {fnj } which converges uniformly om compact subsets of Q.

Remark
A set F C C(Q is said to be relatively compact if the closure of F in C(Q) is compact. 
The conclusion of (5.1.10) is equivalent to the statement that F is a relatively compact 
subset of C (Q), and hence of A(Q).

Proof. Let {fn} be any sequence from F and choose any countable dense subset S = 
{z1,z2,...} of Q. The strategy will be to show that fn} has a subsequence which converges 
pointwise on S. Since F is a bounded subset of A(Q), it is equicontinuous on Q by (5.1.8). 
Theorem 5.1.9 will then imply that this subsequence converges uniformly on compact 
subsets of Q, thus completing the proof. So consider the following bounded sequences of 
complex numbers:

{fj ( z 1) }j=1, {fj ( z 2 ) }£1,-.. •

There is a subsequence {f 1 j }j=i of {fj }j=i which converges at z 1. There is a subsequence 
{f2j}jj=i of {f 1 j}jj=i which converges at z2 and (necessarily) at z 1 as well. Proceeding 
inductively, for each n > 1 and each k = 1 ,••• ,n we construct sequences {fkj}j=1 

converging at z1 , •• • ,zk , each a subsequence of the preceding sequence.

Put gj = fjj . Then {gj } is a subsequence of {fj }, and {gj } converges pointwise on 
{z 1, z2, • • • } since for each n, {gj } is eventually a subsequence of {fnj }jj=1. A

5.1.11 Theorem (Compactness Criterion)
Let F C A(Q). Then F is compact iff F is closed and bounded. Also, F is relatively 
compact iff F is bounded.

(See Problem 3 for the second part of this theorem.)

Proof.
If F is compact, then F is closed (a general property that holds in any metric space). 
In order to show that F is bounded, we will use the following device. Let K be any 
compact subset of Q. Then f ^ ||f ||^ is a continuous map from A(Q) into R. Hence 
{\\f ||k : f G F} is a compact subset of R and thus is bounded. Conversely, if F is closed 
and bounded, then F is closed and, by Montel’s theorem, relatively compact. Therefore 
F is compact. A

Remark
Problem 6 gives an example which shows that the preceding compactness criterion fails 
in the larger space C (Q). That is, there are closed and bounded subsets of C(Q) that are 
not compact.
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5.1.12 Theorem
Suppose F is a nonempty compact subset of A(Q). Then given z0 e Q, there exists g e F 
such that \g'(z0) | > If'(z0) | for all f e F.

Proof. Just note that the map f ^ If'(z0)\,f e A(Q), is continuous. &

Here is a compactness result that will be needed for the proof of the Riemann mapping 
theorem in the next section.

5.1.13 Theorem
Assume that Q is connected, z0 e Q, and e > 0. Define

F = {f e A(Q) : f is a one-to-one map of Q into D(0, 1) and If'(z0)| > e}.

Then F is compact. The same conclusion holds with D(0, 1) replaced by D(0, 1).

Proof. By its definition, F is bounded, and F is closed by (5.1.5). Thus by (5.1.11), F 
is compact. To prove the last statement of the theorem, note that if fn e F and fn ^ f 
uniformly on compact subsets of Q, then (5.1.5) would imply that f eF, were it not 
for the annoying possibility that |f (w)| = 1 for some w e Q. But if this happens, the 
maximum principle implies that f is constant, contradicting If'(z0)| > e > 0. &

The final result of this section shows that if Q is connected, then any bounded sequence 
in A(Q) that converges pointwise on a set having a limit point in Q, must in fact converge 
uniformly on compact subsets of Q.

5.1.14 Vitali’s Theorem
Let {fn} be a bounded sequence in A(Q) where Q is connected. Suppose that {fn} 
converges pointwise on S C Q and S has a limit point in Q. Then {fn} is uniformly 
Cauchy on compact subsets of Q, hence uniformly convergent on compact subsets of Q to 
some f e A(Q).

Proof. Suppose, to the contrary, that there is a compact set K C Q such that {fn } is not 
uniformly Cauchy on K. Then for some e > 0, we can find sequences {mj} and {nj} of 
positive integers such that m 1 < n 1 < m2 < n2 < • • • and for each j, ||fTO. — fn. ||k > e. 
Put {gj} = {fmj } and {hj} = {fnj }. Now apply Montel’s theorem (5.1.10) to {gj} 
to obtain a subsequence {gjr } converging uniformly on compact subsets of Q to some 
g e A(Q), and then apply Montel’s theorem to {hjr} to obtain a subsequence converging 
uniformly on compact subsets of Q to some h e A(Q). To prevent the notation from 
getting out of hand, we can say that without loss of generality, we have gn ^ g and 
hn ^ h uniformly on compact subsets, and ||gn — hn\\K > e for all n, hence \\g — h\\K > e. 
But by hypothesis, g = h on S and therefore, by (2.4.9), g = h on Q, a contradiction. &

Problems
1. Let F = {f e A(D(0, 1)) : Re f > 0 and If(0)| < 1}. Prove that F is relatively 

compact. Is F compact? (See Section 4.6, Problem 2.)
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2. Let Q be (open and) connected and let F = {f G A(Q) : \f(z) — a| > r for all 
z G Q}, where r > 0 and a G C are fixed. Show that F is a normal family, that is, 
if fn GF,n =1, 2,..., then either there is a subsequence {fnj } converging uniformly 
on compact subsets to a function f G A(Q) or there is a subsequence {fnj } converging 
uniformly on compact subsets to to. (Hint: Look at the sequence {1 /(fn — a)}.)

3. (a) If F C C(Q), show that F is relatively compact iff each sequence in F has a 
convergent subsequence (whose limit need not be in F).
(b) Prove the last statement in Theorem 5.1.11.

4. Let F C A(D(0, 1)). Show that F is relatively compact iff there is a sequence of 
nonnegative real numbers Mn with limsupn ,-x_ (Mn )1/n < 1 such that for all f G F 
and all n = 0, 1, 2,..., we have \f (n )(0)/n! | < Mn.

5. (a) Suppose that f is analytic on Q and D(a, R) C Q. Prove that

If(a)12 < nR2 j \o If(a + reit)I2rdrdt.

(b) Let M>0 and define F to be the set

{f G A(Q) : |f(x + iy)|2 dxdy < M}.

Show that F is relatively compact.

6. Let Q be open and K = D(a, R) C Q. Define F to be the set of all f G C(Q) such 
that |f(z)| < 1 for all z G Q and f(z) = 0 for z G Q \ K}. Show that F is a closed and 
bounded subset of C(Q), but F is not compact. (Hint: Consider the map from F to 
the reals given by

f ^ K (1—|f(x + iy)|) dx dy
-1

Show that this map is continuous but not bounded on F.)

Figure 5.1.1
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7. (An application of Vitali’s theorem.) Let f be a bounded analytic function on D(0, 1) 
with the property that for some 6, f (reie) approaches a limit L as r ^ 1-. Fix 
a G (0, n/2) and consider the region S(6, a) in Figure 5.1.1. Prove that if z G S(6, a) 
and z ^ ei, then f (z) ^ L. (Suggestion: Look at the sequence of functions defined 
by fn(z) = f (ei + 1 (z - ei)), z G D(0, 1).)

8. Let L be a multiplicative linear functional on A(Q), that is, L : A(Q) ^ C such that 
L(af + bg) = aL(f) + bL(g) and L(fg) = L(f)L(g) for all a, b G C,f,g G A(Q). 
Assume L = 0. Show that L is a point evaluation, that is, there is some z0 G Q such 
that L(f) = f(z0) for all f G A(Q).
Outline: First show that for f = 1, L(f) = 1. Then apply L to the function I(z) = z, 
the identity on Q, and show that if L(I) = z0, then z0 G Q. Finally, if f G A(Q), apply 
L to the function

f f (z)-f(z0) z =
g (z W z—z o , z = z 0

V' (z o), z = z 0 •

9. (Osgood’s theorem). Let {fn} be a sequence in A(Q) such that fn ^ f pointwise on Q. 
Show that there is an open set U, dense in Q, such that fn ^ f uniformly on compact 
subsets of U. In particular, f is analytic on a dense open subset of Q.
(Let An = {z G Q : Ifk(z) | < n for all k = 1, 2, • • • }. Recall the Baire category theorem: 
If a complete metric space X is the union of a sequence {Sn } of closed subsets, then 
some Sn contains a nonempty open ball. Use this result to show that some An contains 
a disk D. By Vitali’s theorem, fn ^ f uniformly on compact subsets of D. Take U to 
be the union of all disks D such that fn ^ f uniformly on compact subsets of D.)

5.2 Riemann Mapping Theorem
Throughout this section, Q will be a nonempty open connected proper subset of C with 
the property that every zero-free analytic function has an analytic square root. Later 
in the section we will prove that any open subset Q such that every zero-free analytic 
function on Q has an analytic square root must be (homotopically) simply connected, 
and conversely. Thus we are considering open, connected and simply connected proper 
subsets of C. Our objective is to prove the Riemann mapping theorem, which states that 
there is a one-to-one analytic map of Q onto the open unit disk D. The proof given is 
due to Fejer and F.Riesz.

5.2.1 Lemma
There is a one-to-one analytic map of Q into D.
Proof. Fix a G C \ Q. Then the function z - a satisfies our hypothesis on Q and hence 
there exists h G A(Q) such that (h(z))2 = z - a, z G Q. Note that h is one-to-one and 
0 G/ h(Q). Furthermore, h(Q) is open by (4.3.1), the open mapping theorem, hence so 
is — h(Q) = { — h(z) : z G Q}, and [h(Q] G [ — h(Q] = 0 (because 0 / h(Q)). Now choose 
w — —h(Q). Since —h(Q) is open, there exists r > 0 such that D(w, r) C —h(Q), hence 
h(Q) G D(w,r) = 0. The function f (z) = 1 /(h(z) — w), z G Q, is one-to-one, and its 
magnitude is less than 1 /r on Q. Thus rf is a one-to-one map of Q into D. &
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5.2.2 Riemann Mapping Theorem

Let Q be as in (5.2.1), that is, a nonempty, proper, open and connected subset of C such 
that every zero-free analytic function on Q has an analytic square root. Then there is a 
one-to-one analytic map of Q onto D.

Proof. Fix z0 G Q and a one-to-one analytic map f0 of Q into D [f0 exists by (5.2.1)]. 
Let F be the set of all f G A(Q) such that f is a one-to-one analytic map of Q into D 
and If'(zo)| > If0(z0)|. Note that If0(z0)| > 0 by (4.3.1).

Then F = 0 (since f0 G F) and F is bounded. Also, F is closed, for if {fn} is a 
sequence in F such that fn ^ f uniformly on compact subsets of Q, then by (5.1.5), 
either f is constant on Q or f is one-to-one. But since fn ^ f', it follows that If'(z0)| > 
If0(z0)| > 0, so f is one-to-one. Also, f maps Q into D (by the maximum principle), so 
f GF. Since F is closed and bounded, it is compact (Theorem 5.1.1). Hence by (5.1.2), 
there exists g G F such that \g'(z0) I > If'(z0) I for all f G F. We will now show that such 
a g must map Q onto D. For suppose that there is some a G D \ g(Q). Let pa be as in 
(4.6.1), that is,

z-a 
pa (z) = -----—, z G D.1 — az

Then pa ◦ g : Q ^ D and pa ◦ g is one-to-one with no zeros in Q. By hypothesis, there 
is an analytic square root h for pa ◦ g. Note also that h2 = pa ◦ g is one-to-one, and 
therefore so is h. Set b = h(z0 ) and define f = pb ◦ h. Then f(z0 )=pb (b)=0andwe 
can write

g = p-a ◦ h2 = p-a ◦ (p-b ◦f)2 = p-a ◦ (p2-b ◦f)=(p-a ◦ p2-b) ◦f.

Now

g'(z0) = (P-a ◦ P2-b)'(f (z0))f'(z0)
(1)

= (p-a ◦ p-b)'(0)f'(z0).

The function p-a ◦ p2-b is an analytic map of D into D, but it is not one-to-one; indeed, 
it is two-to-one. Hence by the Schwarz-Pick theorem (4.6.3), part (ii), it must be the case 
that

I(p-a ◦ p—)'(0)I < 1 — p—a ◦ p2__t,(0)12.

Since f'(z0) = 0, it follows from (1) that

Ig'(z0)I < (1 — Ip—a ◦ p2—b(0)12)If'(z0)I < If'(z0)I.

This contradicts our choice of g G F as maximizing the numbers If'(z0)\,f G F. Thus 
g(Q) = D as desired. &
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5.2.3 Remarks
(a) Any function g that maximizes the numbers {\f'(z0) | : f G F} must send z0 to 0. 
Proof. Let a = g(z0). Then <pa ◦ g is a one-to-one analytic map of Q into D. Moreover,

| ( ':' ■ ◦ g )' ( z 0 ) | = \p'a ( g ( z 0)) g ( z 0) |
= Ma ( a ) g' ( z 0 ) |

= 1 - |a|2 \g'(z 0) |

> \g'(z0)| >\f0(z0)|.

Thus aa ◦ g G F, and since (z 0) | maximizes f' (z 0) | for f GF, it follows that equality 
must hold in the first inequality. Therefore 1 /(1 — |a|2) = 1, so 0 = a = g(z0). A 
(b) Let f and h be one-to-one analytic maps of Q onto D such that f(z0) = h(z0) = 0 
and f'(z0) = h'(z0) (it is enough that Arg f'(z0) = Argh'(z0)). Then f = h.
Proof. The function h ◦ f-1 is a one-to-one analytic map of D onto D, and h ◦ f-1 (0) = 
h(z0) = 0. Hence by Theorem 4.6.4 (with a = 0), there is a unimodular complex number 
A such that h(f - 1(z)) = Xz, z G D. Thus h(w) = Xf (w),w G D. But if h'(z0) = f'(z0) 
(which is equivalent to Argh'(z0) = Arg f'(z0) since h(z0)| = |X||f'(z0)| = f'(z0)|), we 
have X =1 and f = h. A
(c) Let f be any analytic map of Q into D (not necessarily one-to-one or onto) with 
f (z0) = 0. Then with g as in the theorem, f'(z0)| < (z0)|. Also, equality holds iff 
f = Xg with |X| =1.
Proof. The function f ◦ g-1 is an analytic map of D into D such that f ◦ g-1 (0) = 
0. By Schwarz’s lemma (2.4.16), f(g- 1(z))| < \z\ and f'(g- 1(0)) • g,(Zo) | < 1. Thus 
f'(z0)| < g(z0)|. Also by (2.4.16), equality holds iff for some unimodular X we have 
f ◦ g- 1(z) = Xz, that is, f (z) = Xg(z), for all z G D. A

If we combine (a), (b) and (c), and observe that Xg'(z0) will be real and greater than 
0 for appropriately chosen unimodular X, then we obtain the following existence and 
uniqueness result.
(d) Given z0 G Q, there is a unique one-to-one analytic map g of Q onto D such that 
g(z0) = 0 and g'(z0) is real and positive.

As a corollary of (d), we obtain the following result, whose proof will be left as an 
exercise; see Problem 1.
(e) Let Q1 and Q2 be regions that satisfy the hypothesis of the Riemann mapping theorem. 
Let z1 G Q1 and z2 G Q2 . Then there is a unique one-to-one analytic map f of Q1 onto 
Q2 such that f (z 1) = z2 and f'(z 1) is real and positive.

Recall from (3.4.6) that if Q C C and Q satisfies any one of the six equivalent conditions 
listed there, then Q is called (homologically) simply connected. Condition (6) is that every 
zero-free analytic function on Q have an analytic n-th root for n =1, 2,......ThusifQ
is homologically simply connected, then in particular, assuming Q = C, the Riemann 
mapping theorem implies that Q is conformal ly equivalent to D, in other words, there is a 
one-to-one analytic map of Q onto D. The converse is also true, but before showing this, 
we need to take a closer look at the relationship between homological simple connectedness 
and homotopic simple connectedness [see (4.9.12)].
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5.2.4 Theorem

Let y0 and Y 1 be closed curves in an open set Q C C. If y0 and Y 1 are Q-homotopic (in 
other words, homotopic in Q), then they are Q-homologous, that is, n(y0,z) = n(Y 1 ,z) 
for every z G C \ Q.

Proof. We must show that n(y0, z) = n(y 1, z) for each z G C \ Q. Thus let z G C \ Q, let 
H be a homotopy of y0 to y 1, and let 6 be a continuous argument of H — z. (See Problem 
6 of Section 3.2.) That is, 6 is a real continuous function on [a, b] x [0, 1] such that

H (t,s) — z = H (t,s) — zlei (t,s)

for (t, s) G [a, b] x [0, 1]. Then for each s G [0, 1], the function t ^ 6 (t, s) is a continuous 
argument of H (■, s) — z and hence

n (H (.,, ),z ) = 6 (b,s )-f (“■’ ).

This shows that the function s ^ n(H(■, s), z) is continuous, and since it is integer valued, 
it must be constant. In particular,

n (H(■, 0) ,z) = n (H(■, 1),z).

In other words, n(y0, z) = n(y 1, z). A

The above theorem implies that if y is Q-homotopic to a point in Q, then y must be 
Q-homologous to 0. Thus if y is a closed path in Q such that y is Q-homotopic to a point, 
then f f (z) dz = 0 for every analytic function f on Q. We will state this result formally.

5.2.5 The Homotopic Version of Cauchy’s Theorem
Let y be a closed path in Q such that y is Q-homotopic to a point. Then fy f (z) dz = 0 
for every analytic function f on Q.

Figure 5.2.1
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Remark
The converse of Theorem 5.2.5 is not true. In particular, there are closed curves 7 
and open sets Q such that 7 is Q-homologous to 0 but Y is not homotopic to a point. 
Take Q = C \ {a, b}, a = b, and consider the closed path y of Figure 5.2.1. Then 
n(y, a) = n(y, b) = 0, hence y is Q-homologous to 0. But (intuitively at least) we see that 
y cannot be shrunk to a point without passing through a or b. It follows from this example 
and Theorem 5.2.4 that the homology version of Cauchy’s theorem (3.3.1) is actually 
stronger than the homotopy version (5.2.5). That is, if y is a closed path to which the 
homotopy version applies, then so does the homology version, while the homology version 
applies to the above path, but the homotopy version does not. However, if every closed 
path in Q is homologous to zero, then every closed path is homotopic to a point, as we 
now show.

5.2.6 Theorem
Let Q be an open connected subset of C. The following are equivalent.
(1) Every zero-free f G A(Q) has an analytic square root.

(2) If Q = C, then Q is conformally equivalent to D.
(3) Q is homeomorphic to D.

(4) Q is homotopically simply connected.
(5) Each closed path in Q is homotopic to a point.
(6) Q is homologically simply connected.

Proof.
(1) implies (2): This is the Riemann mapping theorem.
(2) implies (3): If Q = C, this follows because a conformal equivalence is a homeomor
phism., while if Q = C, then the map h(z) = z/(1 + |z|) is a homeomorphism of C onto 
D (see Problem 2).

(3) implies (4): Let 7 : [a,b] ^ Q be any closed curve in Q. By hypothesis there is a 
homeomorphism f of Q onto D. Then f ◦ 7 is a closed curve in D, and there is a homotopy 
H (in D)off ◦ y to the point f (y (a)) (see Problem 4). Therefore f-1 ◦ H is a homotopy 
in Q of y to y (a).
(4) implies (5): Every closed path is a closed curve.

(5) implies (6): Let y be any closed path in Q. If y is Q-homotopic to a point, then by 
Theorem 5.2.4, y is Q-homologous to zero.

(6) implies (1): This follows from part (6) of (3.4.6).

Remark
If Q is any open set (not necessarily connected) then the statement of the preceding 
theorem applies to each component of Q. Therefore (1), (4), (5) and (6) are equivalent 
for arbitrary open sets.

Here is yet another condition equivalent to simple connectedness of an open set Q.
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5.2.7 Theorem

Let Q be a simply connected open set. Then every harmonic function on Q has a harmonic 
conjugate. Conversely, if Q is an open set such that every harmonic function on Q has a 
harmonic conjugate, then Q is simply connected.

Proof. The first assertion was proved as Theorem 4.9.14 using the method of analytic con
tinuation. However, we can also give a short proof using the Riemann mapping theorem, 
as follows. First note that we can assume that Q is connected by applying this case to 
components. If Q = C then every harmonic function on Q has a harmonic conjugate as in 
Theorem 1.6.2. Suppose then that Q = C. By the Riemann mapping theorem, there is a 
conformal equivalence f of Q onto D. Let u be harmonic on Q. Then u ◦ f-1 is harmonic 
on D and thus by (1.6.2), there is a harmonic function V on D such that u ◦ f-1 + iV is 
analytic on D. Since (u ◦ f-1 + iV ) ◦ f is analytic on Q, there is a harmonic conjugate of 
u on Q, namely v = V ◦ f .

Conversely, suppose that Q is not simply connected. Then Q is not homologically 
simply connected, so there exists z0 e C\Q and a closed path 7 in Q such that n(y, z0) = 0. 
Thus by (3.1.9) and (3.2.3), the function z ^ z — z0 does not have an analytic logarithm 
on Q, hence z ^ ln \z — z01 does not have a harmonic conjugate. ^

The final result of this section is Runge’s theorem on rational and polynomial approx
imation of analytic functions. One consequence of the development is another condition 
that is equivalent to simple connectedness.

5.2.8 Runge’s Theorem
T 1 TS 1 j 1 1 C /ft 1 1 j C A \ T S’ j 1 1 1 • 1 1 1 • 1Let K be a compact subset of C, and S a subset of C \ K that contains at least one point 
in each component of C \ K. Define B(S) = {f : f is a uniform limit on K of rational 
functions whose poles lie in S}. Then every function f that is analytic on a neighborhood 
of K is in B(S). That is, there is a sequence {Rn} of rational functions whose poles lie 
in S such that Rn ^ f uniformly on K.

Before giving the proof, let us note the conclusion in the special case where C \ K is 
connected. In this case, we can take S = {<»}, and our sequence of rational functions will 
actually be a sequence of polynomials. The proof given is due to Sandy Grabiner (Amer. 
Math. Monthly, 83 (1976), 807-808) and is based on three lemmas.

5.2.9 Lemma
Suppose K is a compact subset of the open set Q C C. If f e A(Q), then f is a uniform 
limit on K of rational functions whose poles (in the extended plane!) lie in Q \ K.

5.2.10 Lemma
Let U and V be open subsets of C with V C U and dV A U = 0 .If H is any component 
of U and V A H = 0, then H C V.
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5.2.11 Lemma
If K is a compact subset of C and A G C \ K, then (z — X)- 1 G B (S).

Let us see how Runge’s theorem follows from these three lemmas, and then we will 
prove the lemmas. First note that if f and g belong to B (S), then so do f + g and 
fg. Thus by Lemma 5.2.11 (see the partial fraction decomposition of Problem 4.1.7), 
every rational function with poles in C \ K belongs to B(S). Runge’s theorem is then a 
consequence of Lemma 5.2.9. (The second of the three lemmas is used to prove the third.)

Proof of Lemma 5.2.9
Let Q be an open set containing K. By (3.4.7), there is a cycle y in Q \ K such that for 
every f G A(Q) and z G K,

,, , 1 f f (w) .
f (z ) = 2niJY —dw.

Let e > 0 be given. Then 6 = dist(y*,K) > 0 because y* and K are disjoint compact 
sets. Assume [0,1] is the domain of y and let s, t G [0,1], z G K. Then

f (Y (t)) f (Y (s))
Y(t) - z Y(s) - z
_ f (Y(t))(Y(s) - z) - f (Y(s))(Y(t) - z)

(Y(t) - z)(Y(s) - z)
= f (Y(t))(Y(s) - Y(t)) + Y(t)(f (Y(t)) - f (Y(s))) - z(f (Y(t)) - f (Y(s)))

(Y(t) - z)(Y(s) - z)
< -12(If (Y(t))||Y(s) - Y(t)| + |Y(t)Ilf (Y(t)) - f (Y(s))| + Izllf (Y(t)) — f (Y(s))|)• 

62

Since Y and f ◦ Y are bounded functions and K is a compact set, there exists C>0 such 
that for s, t G [0, 1] and z G K, the preceding expression is bounded by

C
G2(|Y(s) - Y(t)| + lf (Y(t)) - f (Y(s))|.

Thus by uniform continuity of Y and f ◦ Y on the interval [0, 1], there is a partition 
0 = t0 < t 1 < • • • < tn = 1 such that for t G [tj- 1, tj] and z G K,

f (Y (t)) f (Y (tj))--  —!------  -- ---'. !------  
Y(t) — z Y(tj) — z

< c

Define

R(z) = ^2 f(7((tj_)) (Y(tj) - Y(tj- 1)), z = Y(tj)• 
j=1 Y(tj) - z
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Then R(z) is a rational function whose poles are included in the set {7(11),... ,7(tn)}, 
in particular, the poles are in Q \ K. Now for all z G K,

12nif(z) — R(z) | = [ f(w)
J y

dw
Y w — z

f v (7 (tj)—7 (j 1))
j=1 Y(tj) — z

nt= A tj (M 
j=J j- A Y (t) - z— — ”, 

z Y(tj
fj Y (t) dt 
7 (j ) - z)

= e • length of 7.
* 'J1 

0

Since the length of 7 is independent of e, the lemma is proved. &

Proof of Lemma 5.2.10
Let H be any component of U such that V A H = 0. We must show that H C V. let 
s G V A H and let G be that component of V that contains s. It suffices to show that 
G = H.NowG C H since G is a connected subset of U containing s and H is the union 
of all subsets with this property. Write

H = G U (H \ G) = G U [(dG A H) U (H \ G)].

But dG A H = 0, because otherwise the hypothesis dV A U = 0 would be violated. Thus 
H = G U (H \ G), the union of two disjoint open sets. Since H is connected and G = 0, 
we have G = H as required. &

Proof of Lemma 5.2.11
Suppose first that to G S. Then for sufficiently large |A01, with A0 in the unbounded 
component of C \ K, the Taylor series for (z — A0)-1 converges uniformly on K. Thus 
(z — A0)-1 G B(S), and it follows that

B((S \ {to}) U {A0}) C B(S).

(If f G B ((S \ {to}) U {A0}) and R is a rational function with poles in (S \ {to}) U{A0 } 
that approximates f, write R = R1 + R2 where all the poles (if any) of R1 lie in S \ {to} 
and the pole (if any) of R0 is at A0 . But R0 can be approximated by a polynomial P0 , 
hence R1 +P0 approximates f and has its poles in S,sof G B(S).) Thus it is sufficient to 
establish the lemma for sets S C C. We are going to apply Lemma 5.2.10. Put U = C\ K 
and define

V= {AG U :(z—A)-1 G B(S)}.

Recall that by hypothesis, S C U and hence S C V C U. To apply (5.2.10) we must first 
show that V is open. Suppose A G V and m is such that 0 < |A — ^] < dist(A, K). Then 
^ G C \ K and for all z G K,

1
z M

1
(z — A )[1 — — ].
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Since (z — X)_ 1 e B(S), it follows from the remarks preceding the proof of Lemma 5.2.9 
that (z — p,)_ 1 e B(S). Thus p, V V, proving that V is open. Next we’ll show that 
dV C U = 0. Let w e dV and let {Xn} be a sequence in V such that Xn ^ w. Then as 
we noted earlier in this proof, |Xn — w| < dist(Xn, K) implies w e V, so it must be the 
case that |Xn — w| > dist(Xn, K) for all n. Since |Xn — w| ^ 0, the distance from w to K 
must be 0, so w K K. Thus w / U, proving that dV C U = 0, as desired. Consequently, 
V and U satisfy the hypotheses of (5.2.10).

Let H be any component of U. By definition of S, there exists s S S such that s H H. 
Now s e V because S C V. Thus H C V = 0, and Lemma 5.2.10 implies that H C V. We 
have shown that every component of U is a subset of V, and consequently U C V. Since 
V C U, we conclude that U = V. &

5.2.12 Remarks

Theorem 5.2.8 is often referred to as Runge’s theorem for compact sets. Other versions 
of Runge’s theorem appear as Problems 6(a) and 6(b).

We conclude this section by collecting a long list of conditions, all equivalent to simple 
connectedness.

5.2.13 Theorem

If Q is an open subset of C, the following are equivalent.

(a) C \ Q is connected.

(b) n(y, z) = 0 for each closed path (or cycle) y in Q and each point z C C \ Q.

(c) f7 f (z) dz = 0 for each f A A(Q) and each closed path y in Q.

(d) n(y, z) = 0 for each closed curve y in Q and each z e C \ Q.

(e) Every analytic function on Q has a primitive.

(f) Every zero-free analytic function on Q has an analytic logarithm.

(g) Every zero-free analytic function on Q has an analytic n-th root for n =1, 2, 3,....

(h) Every zero-free analytic function on Q has an analytic square root.

(i) Q is homotopically simply connected.

(j) Each closed path in Q is homotopic to a point.

(k) If Q is connected and Q = C, then Q is conformally equivalent to D.

(l) If Q is connected, then Q is homeomorphic to D.

(m) Every harmonic function on Q has a harmonic conjugate.

(n) Every analytic function on Q can be uniformly approximated on compact sets by 
polynomials.

Proof. See (3.4.6), (5.2.4), (5.2.6), (5.2.7), and Problem 6(b) in this section. &
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Problems
1. Prove (5.2.3e).

2. Show that h(z) = z/(1 + |z|) is a homeomorphism of C onto D.

3. Let y : [a,b] ^ Q be a closed curve in a convex set Q. Prove that

H(t, s) = sy(a) + (1 - s)Y(t), t G [a, b], s G [0, 1]

is an Q-homotopy of y to the point y(a).

4. Show directly, using the techniques of Problem 3, that a starlike open set is homotopi
cally simply connected.

5. This problem is in preparation for other versions of Runge’s theorem that appear in 
Problem 6. Let Q be an open subset of C, and let {Kn} be as in (5.1.1). Show that in 
addition to the properties (1), (2) and (3) listed in (5.1.1), the sequence {Kn} has an 
additional property:
(4) Each component of C \ Kn contains a component of C \ Q.

6. Prove the following versions of Runge’s theorem:
(a) Let Q be an open set and let S be a set containing at least one point in each 
component of C \ Q. Show that if f G A(Q), then there is a sequence {fin} of rational 
functions with poles in S such that Rn ^ f uniformly on compact subsets of Q.
(b) Let Q be an open subset of C. Show that Q is simply connected if and only if for 
each f G A(Q), there is a sequence {Pn } of polynomials converging to f uniformly on 
compact subsets of Q.

Figure 5.2.2

7. Define sequences of sets as follows:

An = {z : lz + n!| <n! +— }, Bn = {z : lz----- | < ~},nn



18 CHAPTER 5. FAMILIES OF ANALYTIC FUNCTIONS

Cn = {z : \z - (n! +—) | < n! +— }, Kn = {z : \z + n!| < n! +— }

Ln = {-}, Mn = {z : Iz - (n! + -)| < n!} nn

(see Figure 5.2.2). Define

{
0, z G An

1, Z G Bn

0,zG Cn

0,zG A 
and gn(z) =

1,zG C

(a) By approximating fn by polynomials (see Problem 6), exhibit a sequence of poly
nomials converging pointwise to 0 on all of C, but not uniformly on compact subsets. 
(b) By approximating gn by polynomials, exhibit a sequence of polynomials converging 
pointwise on all of C to a discontinuous limit.

5.3 Extending Conformal Maps to the Boundary
Let Q be a proper simply connected region in C. By the Riemann mapping theorem, 
there is a one-to-one analytic map of Q onto the open unit disk D. In this section we will 
consider the problem of extending f to a homeomorphism of the closure Q of Q onto D. 
Note that if f is extended, then Q must be compact. Thus we assume in addition that Q 
is bounded. We will see that dQ plays an essential role in determining whether such an 
extension is possible. We begin with some results of a purely topological nature.

5.3.1 Theorem
Suppose Q is an open subset of C and f is a homeomorphism of Q onto f(Q) = V . Then 
a sequence {zn} in Q has no limit point in Q iff the sequence {f (zn)} has no limit point 
in V .

Proof. Assume {zn} has a limit point z G Q. There is a subsequence {znj } in Q such that 
znj ^ z. By continuity, f (znj) ^ f (z), and therefore the sequence {f (zn)} has a limit 
point in V. The converse is proved by applying the preceding argument to f- 1. *

5.3.2 Corollary
Suppose f is a conformal equivalence of Q onto D. If {zn } is a sequence in Q such that 
zn ^ P G dQ, then If (zn)| ^ 1.
Proof. Since {zn} has no limit point in Q, {f (zn)} has no limit point in D, hence 
If ( zn ) H 1. *

Let us consider the problem of extending a conformal map f to a single boundary 
point p G dQ. As the following examples indicate, the relationship of Q and p plays a 
crucial role.



5.3. EXTENDING CONFORMAL MAPS TO THE BOUNDARY 19

5.3.3 Examples

(1) Let Q = C \ (—x, 0] and let ^Z denote the analytic square root of z such that -pT = 1. 
Then -pT is a one-to-one analytic map of Q onto the right half plane. The linear fractional 
transformation T (z)=(z - 1)/(z + 1) maps the right half plane onto the unit disk D, 
hence f (z) = Pfz — 1) / (^/z + 1) is a conformal equivalence of Q and D. Now T maps 
Re z = 0 onto dD\{ 1}, so if {zn} is a sequence in Im z > 0 that converges to p G (—x, 0), 
then {f (zn)} converges to a point w G dD with Imw > 0. On the other hand, if {zn} lies 
in Im z < 0 and zn ^ p, then {f (zn)} converges to a point w G dD with Im w < 0. Thus 
f does not have a continuous extension to Q U {p} for any p on the negative real axis.

(2) To get an example of a bounded simply connected region Q with boundary points to 
which the mapping functions are not extendible, let

Q = [(0, 1) x (0, 1)] \ {{1 /n} x (0, 1 / 2] : n = 2, 3,... }.

Thus Q is the open unit square with vertical segments of height 1/2 removed at each 
of the points 1/2, 1/3,... on the real axis; see Figure 5.3.1. Then C \ Q is seen to be

connected, so that Q is simply connected. Let p = iy where 0 <y< 1/2, and choose 
a sequence {zn} in Q such that zn ^ iy and Im zn = y,n = 1, 2, 3,.... Let f be 
any conformal map of Q onto D. Since by (5.3.2), \f (zn)| ^ 1, there is a subsequence 
{znk} such that {f(znk)} converges to a point w G dD. For simplicity assume that 
{f (zn)} converges to w. Set an = f (zn) and in D, join an to an +1 with the straight 
line segment [ an, an+1] ,n = 1, 2, 3,.... Then f - 1([ an,an +1 ]) is a curve in Q joining 
zn to zn+1, n =1, 2, 3,...... It follows that every point of [iy, i/2] is a limit point of
Unf-1([an, an+1]). Hence f-1, in this case, cannot be extended to be continuous at 
w G dD.

As we now show, if p G dQ is such that sequences of the type {zn} in the previous 
example are ruled out, then any mapping function can be extended to Q U {p}.
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5.3.4 Definition
A point p G dQ is called simple if to each sequence {zn} in Q such that zn ^ p, there 
corresponds a curve 7 : [0, 1] ^ Q U {p} and a strictly increasing sequence {tn} in [0,1) 
such that tn ^ 1, y (tn) = zn, and y (t) G Q for 0 < t < 1.

Thus a boundary point is simple iff for any sequence {zn } that converges to p, there 
is a curve y in Q that contains the points zn and terminates at p . In Examples 1 and 2 
of (5.3.3), none of the boundary points p with p G (—<x, 0) or p G (0,i/2) is simple.

5.3.5 Theorem
Let Q be a bounded simply connected region in C, and let p G dQ be simple. If f is a 
conformal equivalence of Q onto D, then f has a continuous extension to Q U {p}.

To prove this theorem, we will need a lemma due to Lindelof.

5.3.6 Lemma
Suppose Q is an open set in C, z0 G Q, and the circle C(z0, r) has an arc lying in the 
complement of Q which subtends an angle greater than n at z0 (see Figure 5.3.2). Let g 
be any continuous function on Q which is analytic on Q. If \g(z) | < M for all z G Q while 
lg(z) | < e- for all z G D(z0,r) A dQ, then \g(z0) | < ^eM.
Proof. Assume without loss of generality that z0 = 0. Put U = Q A (—Q) A D(0, r). (This 
is the shaded region in Figure 5.3.2.) Define h on U by h(z) = g(z)g(— z). We claim 
first that U C Q A (—Q) A D(0, r). For by general properties of the closure operation, 
U C Q A (—Q) A D(0, r). Thus it is enough to show that if z G dD(0, r), that is, \z\ = r, 
then z / Q or z / (—Q). But this is a consequence of our assumption that C(0,r) has 
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an arc lying in the complement of Q that subtends an angle greater than n at z0 = 0, 
from which it follows that the entire circle C(0, r) lies in the complement of Q A (— Q). 
Consequently, we conclude that if z G dU, then z G dQ A D(0, r) or z G d(—Q) A D(0, r). 
Therefore, for all z G dU, hence for all z G U by the maximum principle, we have

\h(z)| = \g(z)||g(—z)| < M

In particular, \h(0)| = \g(0)|2 < eM, and the lemma is proved. &

We now proceed to prove Theorem 5.3.5. Assume the statement of the theorem is 
false. This implies that there is a sequence {zn} in Q converging to p, and distinct 
complex numbers w 1 and w2 of modulus 1, such that f (z2j- 1) ^ w 1 while f (z2j) ^ w2. 
(Proof: There is a sequence {zn} in Q such that zn ^ p while {f (zn)} does not converge. 
But {f (zn)} is bounded, hence it has at least two convergent subsequences with different 
limits w1, w2 and with |w1 | = |w2 | = 1.) Let p be the midpoint of the positively oriented 
arc of dD from w 1 to w2. Choose points a and b, interior to this arc, equidistant from p 
and close enough to p for Figure 5.3.3 to obtain. Let y and {tn} be as in the definition

of simple boundary point. No loss of generality results if we assume that f (z2j-1) G W1 

and f(z2j) G W2 for all j, and that |f (y(t))| > 1/2 for all t. Since f (y(t2j-1)) G W1 and 
f (y(t2j)) G W2 for each j, there exist xj and yj with t2j-1 <xj <yj <t2j such that one 
of the following holds:

(1) f(y(xj)) G (0,a), f(y(yj)) G (0, b), and f (y(t)) is in the open sector a0ba for all t 
such that xj <t<yj ,or

(2) f(y(xj)) G (0,d), f(y(yj )) G (0, c), and f (y (t)) is in the open sector d0cd for all t 
such that xj <t<yj .

See Figure 5.3.4 for this and details following. Thus (1) holds for infinitely many j or 
(2) holds for infinitely many j . Assume that the former is the case, and let J be the set 
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of all j such that (1) is true. For j G J define Yj on [0, 1] by

[ j f (Y(x3)),
Yj (t)= f(Y(t)),I —j f ( y (yj)),

0 < t < Xj, 

Xj < t < yj, 
yj < t < 1 •

Thus Yj is the closed path whose trajectory Yj consists of

r)C(z o,

b W2

Figure 5.3.4

[0, f (y(xj))] U {f (y(t) : xj < t < yj} U [f (y(yj)), 0] •

Let Qj be that component of C \ Yjj such that 2-p G Qj. Then dQj C Yjj. Furthermore, 
Qj C D, for if we compute the index n(Yj, 11 p), we get 1 because Y (t) | > 11 for Xj < t < yj, 
while the index of any point in C \ D is 0. Let r be a positive number with r < - |a — &| 
and choose a point z0 on the open radius (0, p) so close to p that the circle C(0, r) 
meets the complement of D in an arc of length greater than nr. For sufficiently large 
j G J, |f (Y(t))| > |z0| for all t G [t-j—1 ,t-j] ; so for these j we have z0 G Qj . Further, if 
z G dQj CD(z0, r), then z G {f (y(t)) : t2j-1 < t < t2j} and hence f--(z) G y([t2j-1, t2j]}• 
Define

tj = sup {If-1 (z) — PI : z G d Q j C D (z 0 ,r)} < sup {|y (t) — PI : t G [12 j- 1 P 2 j ]}

and

M = sup {If 1( z) — PI : z G D}
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Since M > sup {If - 1( z) — fl\ : z G Q j }, Lemma 5.3.6 implies that \f - 1( z 0) — p\ < ^/ e-j M. 
Since ej- can be made as small as we please by taking j G J sufficiently large, we have 
f - 1(z0) = p. This is a contradiction since f - 1(z0) G Q, and the proof is complete. &

We next show that if P1 and P2 are simple boundary points and P1 = P2 , then any 
continuous extension f to Q U {p 1 ,p2} that results from the previous theorem is one-to- 
one, that is, f(P1) = f (P2). The proof requires a lemma that expresses the area of the 
image of a region under a conformal map as an integral. (Recall that a one-to-one analytic 
function is conformal.)

5.3.7 Lemma
Let g be a conformal map of an open set Q. Then the area (Jordan content) of g(Q) is 
//o \a'|2 dxdy.
Proof. Let g = u + iv and view g as a transformation from Q C R2 into R2. Since g is 
analytic, u and v have continuous partial derivatives (of all orders). Also, the Jacobian 
determinant of the transformation g is

d (u, v) 
d (x,y)

du du 
dx dy 
dv dv 
dx dy

du dv dv du /W 2 dv' ^2 । /|2

dx dy dx dy dx KXx'

Pit u ll> u u, oil u R i orn omi n 111 ii> I h'.iic I 11<i *> / > (' u( C"') Ik uv d,U ^v'j j i < i<Dy tiie v>auciy Riemann equations. oince me area oi g (i£) is j Jo d (xy x y,, tiie state
ment of the lemma follows. &

Figure 5.3.5
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5.3.8 Theorem
Let Q be a bounded, simply connected region and f a conformal map of Q onto D. If 
p 1 and p2 are distinct simple boundary points of Q and f is extended continuously to 
Q U{p 1 ,p2}, then f (p 1) = f (p2).
Proof. Assume that p1 and p2 are simple boundary points of Q and f(p1) = f(p2). We 
will show that p1 = p2 . It will simplify the notation but result in no loss of generality if 
we replace D by D(1, 1) and assume that f(p1) = f(p2) = 0.

Since p 1 and p2 are simple boundary points, for j = 1, 2 there are curves Yj in Q U{Pj } 
such that Yj([0, 1)) C Q and Yj(1) = pj. Put g = f - 1. By continuity, there exists t < 1 
such that t < s,t < 1 implies

Iy2(t) - Y 1(s)l> 2p22 - p 11 (1)

and there exists 8, 0 < 8 < 1, such that for t < t we have f (Yj(t)) / D(0,8),j = 1, 2. 
Also, for each r such that 0 <r < 8, we can choose sr and tr > t such that f (yi(sr)) and 
f (Y2(tr)) meet the circle C(0, r); see Figure 5.3.5. Let 6(r) be the principal value of the 
argument of the point of intersection in the upper half plane of C(0, r) and C(1, 1). Now 
g(f (Y2(tr))) — g(f (Y 1(sr))) is the integral of g' along the arc Ar of C(0,r) from f (yi(sr)) 
to f (Y2(tr)). It follows from this and (1) that

2lp2 - p 1 | < |Y2(tr) - Y 1(sr) |

= lg(f (y2 (tr))) - g(f (y 1(sr)))l
= \( g(z) dz\ 

r e (r)
< lg' (reid) \rd0. (2)

--e (r)

(Note: The function 6 ^ \g'(rei) | is positive and continuous on the open interval 
(-6(r), 6(r)), but is not necessarily bounded. Thus the integral in (2) may need to 
be treated as an improper Riemann integral. In any case (2) remains correct and the 
calculations that follow are also seen to be valid.)

Squaring in (2) and applying the Cauchy-Schwarz inequality for integrals we get

1 /• e(r)
7 lp2 - p 112 < 26(r)r2 / \g'(reie) 12 d6.
4 -e(r)

(The factor 26(r) comes from integrating 12d6 from -6(r) to 6(r).) Since 6(r) < n/2, we 
have

p2^- - p 1|2 < r f((" . (re“)\2 de.
4 nr - -^ (r)

(3)

Now integrate the right hand side of (3) with respect to r from r =0tor = 8. We obtain

n
e (r) r r

| g(reie) | 2r d6 dr < J J | g'(x + iy) | 2 dx dy
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where L is the lens-shaped open set whose boundary is formed by arcs of C(0,8) and 
C(1, 1); see Figure 5.3.5. By (5.3.7), J JL |g'|2 dxdy is the area (or Jordan content) of 
g(L). Since g(L) C Q and Q is bounded, g(L) has finite area. But the integral from 0 
to 8 of the left hand side of (3) is + to unless p 1 = p2. Thus f (p 1) = f (p2) implies that 
p 1 = P2. * _ _

We can now prove that f : Q ^ D extends to a homeomorphism of Q and D if every 
boundary point of Q is simple.

5.3.9 Theorem
Suppose Q is a bounded, simply connected region with the property that every boundary 
point of Q is simple. If f : Q ^ D is a conformal equivalence, then f extends to a 
homeomorphism of Q onto D.
Proof. By Theorem 5.3.5, for each p G dQ we can extend f to Q U {p} so that f is 
continuous on Q U {p}. . Assume this has been done. Thus (the extension of) f is a 
map of Q into D, and Theorem 5.3.8 implies that f is one-to-one. Furthermore, f is 
continuous at each point p G dQ, for if {zn} is any sequence in Q such that zn ^ p then 
for each n there exists wn G Q with |zn - wn | < 1/n and also |f (zn) - f (wn)| < 1/n, by 
Theorem 5.3.5. But again by (5.3.5), f (wn) ^ f (p) because wn ^ p and wn G Q. Hence 
f (zn) ^ p, proving that f is continuous on Q. Now D C f (Q) C D, and since f (Q) is 
compact, hence closed, f (Q) = D. Consequently, f is a one-to-one continuous map of Q 
onto D, from which it follows that f —1 is also continuous. *

Theorem 5.3.9 has various applications, and we will look at a few of these in the sequel.
In the proof of (5.3.8), we used the fact that for open subsets L C D,

yy |g'|2dxdy (1)

is precisely the area of g (L), where g is a one-to-one analytic function on D. Suppose 
that g(z) n=0 anzn, z G D. Then g'(z) n=1 nanzn- 1. Now in polar coordinates
the integral in (1), with L replaced by D, is given by

\g' (rei6) 12r dr d)) J r dr j \g'(rei6) 12 dd.

But for 0 < r < 1,

W (rei6) 12 = g' (rei6) g (rei6)
oo oo

= nanrn- 1 ei(n- 1)6 ma-rm- 1 e—(m— 1)6

n=1 m=1
o

= nmana-rm+n—2 ei (n—m)6.
j =1 m+n=j

(2)

Since 

ei(n-m)6 d) (n n, 

0,
n=m
n=m
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and the series in (2) converges uniformly in 6, we can integrate term by term to get

Z
n o

\gf(rei)|2 d6 = 2n^k2fa|2r2k-2.

n k=1

Multiplying by r and integrating with respect to r, we have

C rdr-n
\g' (rei) |2 d6 = lim 2n

p ■ 1"

oo

k=1

k2\ak |2p2k

2 k

If this limit, which is the area of g(D), is finite, then

o

k\ak |2 < <x>.
k=1

We have the following result.

5.3.10 Theorem

Suppose g(z) = no=0 anzn is one-to-one and analytic on D. Ifg(D) has finite area, then 
^m n|an|2 < &.

Now we will use the preceding result to study the convergence of the power series for 
g (z ) when |z | = 1. Here is a result on uniform convergence.

5.3.11 Theorem

Let g(z) 0=0 anzn be a one-to-one analytic map of D onto a bounded region Q such
that every boundary point of Q is simple. Then the series 0=0 anzn converges uniformly 
on D to (the extension of) g on D.
Proof. By the maximum principle, it is sufficient to show that n0=0 an zn converges 

uniformly to g(z) for Z = 1; in other words, 0=0 anein6 converges uniformly in 6 to 
g(ei). So let e > 0 be given. Since g is uniformly continuous on D, (ei) — g(rei6)| ^ 0 
uniformly in 6 as r ^ 1 -. If m is any positive integer and 0 < r < 1, we have

m m

() — £ a^ < (ei) — g(rei6)| + (rei6) — ^ anein|.
n=0 n=0

The first term on the right hand side tends to 0 as r ^ 1 , uniformly in 6, so let us 
consider the second term. If k is any positive integer less than m, then since g(rei6) =
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52n=0 anrnein3, we can write the second term as

km ^

|E an(rn - 1)■ + E an(rn — 1)ein + E anrnein3 I
n=0 n = k +1 n=m +1

k

E<1 -
n=0

<
m ^

rn)|an| + E (1 - rn)M + E |anrn

n=k+1 n=m+1

<
km tt

E n(1 - r)|an| + E n(1 — r)|an| + |an|rn
n=0 n=k+1 n=m+1

(since 11-r = 1 + r + • • • + rn1 < n). We continue the bounding process by observing 
that in the first of the three above terms, we have n < k. In the second term, we write 
n(1 — r)|an| = [^/n(1 — r)]^/n|an|] and apply Schwarz’s inequality. In the third term, 
we write |an|rn = ^/n|an|][rn/y/n] and again apply Schwarz’s inequality. Our bound 
becomes

k m m 112 f m 112
k (1 _ r)Y^ |a | + < V n (1 - r )2 I J ^a 12>
av(1 i) a^ + \ / v n(1 r) । । n n|an| t

n=0 n=k+1 n=k+1

( & 1 /2 ( & 2 n 1 /2
4 E "|a.|4 | E U •

n=m+1 n=m+1

(1)

Since 77n==o n|an|2 is convergent, there exists k > 0 such that {^2™=k +1 n\an |2}112 < e/3. 
Fix such a k. For m > k put rm = (m — 1)/m. Now the first term in (1) is less 
than e/3 for m sufficiently large and r = rm. Also, since {72m= k +1 n(1 - rm)2}1 /2 = 
G2m== k +1 n(1 /m)2}1 /2 = (1 /m){72"k + 1 n}1 /2 < (1 /m){m(m +1)/2}1 <2 < 1, the middle 
term in (1) is also less than e/3. Finally, consider

( ~ r 2 n 1 1 / / (4. <n=m+1

m(m +1) ™ 'I 1 /2 1 1 ™ 'I 1 /2
■ £r4 <1. ■ =0^1

which evaluates to

/—----------—
m +1 1 — rm

}' /2 4 mH1 /2
< 1.

Thus the last term in (1) is also less than e/3 for all sufficiently large m > k and r = 
rm = (m — 1)/m. Thus |g(ei13) — ]Em=0 anein^| ^ 0 uniformly in 9 as m ^ ^. &

The preceding theorem will be used to produce examples of uniformly convergent 
power series that are not absolutely convergent. That is, power series that converge 
uniformly, but to which the Weierstrass M-test does not apply. One additional result will 
be needed.
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5.3.12 Theorem
Suppose f (z) 5=2=0 anzn for z & D, and 522=0 l°nl < + ^• Then for each S, 

l If'(rei6)l dr = Um j If'(rei6)l dr < + ^-

Proof. If 0 < r < p < 1 then for any S we have f'(rei6) = 522=1 nanrn 1 e(n 1)6. Thus

f If'(rei6)| dr < 2 |an|pn < 2 |an| < + ^ *
0 n=1 n=1

5.3.13 Remark
For each S, J01 f' (rei6) | dr is the length of the image under f of the radius [0, ei] of D. 
For if y (r) = rei6, 0 < r < 1, then the length of f ◦ y is given by

£ |(f ◦ Y)'(r)| dr = j 1 \f'(rei6)ei| dr = 1 f'(rei6)| dr.

Thus in geometric terms, the conclusion of (5.3.12) is that f maps every radius of D onto 
an arc of finite length.

We can now give a method for constructing uniformly convergent power series that 
are not absolutely convergent. Let Q be the bounded, connected, simply connected region 
that appears in Figure 5.3.6. Then each boundary point of Q is simple with the possible 
exception of 0, and the following argument shows that 0 is also a simple boundary point. 
Let {zn} be any sequence in Q such that zn ^ 0. For n =1, 2,... put tn = ( n— 1)/n. Then 
for each n there is a polygonal path Yn : [tn, tn +1] ^ Q such that Yn(tn) = zn, Yn(tn+1) = 
zn+1, and such that for tn < t < tn+1, Re yn(t) is between Re zn and Re zn+1. If we define 
Y = ^Yn, then y is a continuous map of [0, 1) into Q, and y(t) = Yn(t) for tn < t < tn +1. 
Furthermore, y(t) ^ 0 as t ^ 1_. Thus by definition, 0 is simple boundary point of Q.

Hence by (5.3.9) and the Riemann mapping theorem (5.2.2), there is a homeomorphism 
f of D onto Q such that f is analytic on D. Write f (z) 5= anzn, z & D. By (5.3.11),
this series converges uniformly on D. Now let ei be that point in dD such that f (ei6) = 0. 
Since f is a homeomorphism, f maps the radius of D that terminates at ei6 onto an arc 
in Q U {0} that terminates at 0. Further, the image arc in Q U {0} cannot have finite 
length. Therefore by (5.3.12) we have 52 |an| = + ^•

Additional applications of the results in this section appear in the exercises.

Problems
1. Let Q be a bounded simply connected region such that every boundary point of Q is 

simple. Prove that the Dirichlet problem is solvable for Q. That is, if u0 is a real-valued 
continuous function on dQ, then u0 has a continuous extension u to Q such that u is 
harmonic on Q.
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2. Let Q = {x + iy : 0 < x < 1 and — x2 < y < x2}. Show that
(a) The identity mapping z ^ z has a continuous argument u on Q (necessarily har
monic on Q).
(b) There is a homeomorphism f of D onto Q which is analytic on D.
(c) u ◦ f is continuous on D and harmonic on D.
(d) No harmonic conjugate V for u ◦ f can be bounded on D.

3. Let Q be a bounded, simply connected region such that every boundary point of Q 
is simple. Show that every zero-free continuous function f on Q has a continuous 
logarithm g. In addition, show that if f is analytic on Q, then so is g.
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Chapter 6

Factorization of Analytic
Functions

In this chapter we will consider the problems of factoring out the zeros of an analytic 
function f on a region Q (a la polynomials), and of decomposing a meromorphic function 
(a la partial fractions for rational functions). Suppose f is analytic on a region Q and 
f ^ 0. What can be said about Z(f)? Theorem 2.4.8, the identity theorem, asserts that 
Z(f) has no limit point in Q. It turns out that no more can be said in general. That 
is, if A is any subset of Q with no limit point in Q, then there exists f G A(Q) whose 
set of zeros is precisely A. Furthermore, we can prescribe the order of the zero which 
f shall have at each point of A.NowifA is a finite subset of Q, say {z1 ,... , zn}, and 
m1 ,... ,mn are the corresponding desired multiplicities, then the finite product

f ( Z ) = ( Z - Z1) m1 ••• ( Z - Zn ) mn

would be such a function. However, in general the construction of such an f is accom
plished using infinite products, which we now study in detail.

6.1 Infinite Products
Let {2n} be a sequence of complex numbers and put Pn = kn=1 2k , the n-th partial 
product. We say that the infinite product [J^=1 zn converges if the sequence {Pn} is 
convergent to a complex number P, and in this case we write P = [J^=1 zn.

This particular definition of convergence of infinite products is a natural one if the 
usual definition of convergence of infinite series is extended directly to products. Many 
textbook authors, however, find this approach objectionable, primarily for the following 
two reasons.

(a) If one of the factors is zero, then the product converges to zero, no matter what 
the other factors are, and a “correct” notion of convergence should presumably depend 
on all (but possibly finitely many) of the factors.

1
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(b) It is possible for a product to converge to zero without any of the factors being 
zero, unlike the situation for a finite product.

Nevertheless, we have chosen to take the naive approach, and will deal with the above if 
and when they are relevant.

Note that if Pn — P = 0 , then zn = Pn/Pn- 1 — P/P = 1 as n — ^. Thus 
a necessary (but not sufficient) condition for convergence of the infinite product to a 
nonzero limit is that zn — 1.

A natural approach to the study of an infinite product is to formally convert the 
product into a sum by taking logarithms. In fact this approach is quite fruitful, as the 
next result shows.

6.1.1 Lemma

Suppose that zn = 0,n = 1, 2,.... Then H2=1 zn converges to a nonzero limit iff the series 
222=1 Log zn converges. (Recall that Log denotes the particular branch of the logarithm 
such that —n < Im(Log z) < n.)

Proof. Let Pn = kn=1 zk and Sn = kn=1Logzk.IfSn — S, then Pn = eSn — eS =0.
Conversely, suppose that Pn — P = 0. Choose any 6 such that arge is continuous at P 
(see Theorem 3.1.2). Then loge Pn = ln PnI + i arge(Pn) — ln IP| + i arge(P) = loge P. 
Since eSn = Pn, we have Sn = loge Pn + 2niln for some integer ln. But Sn — Sn- 1 = 
Log zn — Log 1 = 0. Consequently, loge Pn — loge Pn- 1 + 2ni (In — ln- 1) — 0. Since 
loge Pn — loge Pn- 1 — loge P—loge P = 0 and ln—In- 1 is an integer, it follows that In—ln- 1 

is eventually zero. Therefore ln is eventually a constant l. Thus Sn — loge P + 2nil. &

6.1.2 Lemma

If an > 0 for all n, then [J2=1(1 + an) converges iff 22 2=1 an converges.

Proof. Since 1 + x < ex, we have, for every n =1, 2,...,

a 1 + ••• + an < (1 + a 1) • • • (1 + an) < ea 1+ + an■ &

Lemma 6.1.2 suggests the following useful notion of absolute convergence for infinite 
products.

6.1.3 Definition

The infinite product H2=1(1 + zn) is said to converge absolutely if [J2=1(1 + IznI) con
verges. Thus by (6.1.2), absolute convergence of [J2=1 (1 + zn) is equivalent to absolute 
convergence of the series 222=1 zn•

With this definition of absolute convergence, we can state and prove a result analogous 
to a well known property of infinite series.
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6.1.4 Lemma
If the infinite product H2=1 (1 + zn) converges absolutely, then it converges.
Proof. By Lemma 6.1.2, convergence of H2=1(1 + Iznl) implies that of ^22=1 Iznl, hence 
Iznl ^ 0 in particular. So we can assume that \zn\ < 1 for all n. Now for \z\ < 1, we have

Log(1 + z) = z - z— + z3 - z4 + ••• = zh(z)

23
where h(z) = 1 — 2 + —— z4 + ••• ^ 1 as z ^ 0. Consequently, for m < p,

pp

| Log(1 + zn)| < |zn||h(zn)|.
n=m n=m

Since {h(zn) : n = 1, 2,... } is a bounded set and ^22=1 Iznl converges, it follows from the 
preceding inequality that | ^2 ^=m Log(1 + zn) | ^ 0 as m,p ^ x. Thus ^2 2=1 Log(1 + zn) 
is convergent, which by (6.1.1) implies that H2=1(1 + zn) converges.

The preceding result may be combined with (6.1.2) to obtain a rearrangement theorem 
for absolutely convergent products.

6.1.5 Theorem
If fl2=1(1 + zn) converges absolutely, then so does every rearrangement, and to the 
same limit. That is, if fj2=1(1 + Iznl) converges and P = fj2=1(1 + zn), then for every 
permutation k ^ nk of the positive integers, fl2=1(1 + znk) also converges to P.
Proof. Since n2=1(1 + IznI) converges, so does n2=1 IznI by (6.1.2). But then every 
rearrangement of this series converges, so by (6.1.2) again, k2=1(1+Iznk I) converges. Thus 
it remains to show that k2=1(1 + znk ) converges to the same limit as does n2=1(1 + zn). 
To this end let e > 0 and for j = 1, 2,... , let Qj be the j-th partial product of fl2=1(1 + 
znk). Choose N so large that ^22==N+1 Iznl < e and J so large that j > J implies that 
{1, 2,... ,N} C {n 1, n2,... ,nj }. (The latter is possible because j ^ n is a permutation 
of the positive integers.) Then for j > J we have

IQj - P I<IQj - PN I + IPN - P I
(1)

= IPNII (1 + znk )- 1I+ IPN

k

- P I

where the product is taken over those k < j such that nk >N. Now for any complex 
numbers w1,... ,wn we have (by induction) I kn=1(1 + wk) - 1I< kn=1(1 + Iwk I) - 1. 
Using this, we get from (1) that n 

k

IQj-PI<IPNI( (1 + Iznk I) - 1) + IPN - P I

< |Pn|(ee - 1) + |Pn - P|.

But the right side of the above inequality can be made as small as we wish by choosing 
e sufficiently small and N sufficiently large. Therefore Qj ^ P also, and the proof is 
complete. &
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6.1.6 Proposition
Let g1 ,g2 ,... be a sequence of bounded complex-valued functions, each defined on a set 
S. If the series 522=1 gn I converges uniformly on S, then the product [J2=1(1 + gn) 
converges absolutely and uniformly on S. Furthermore, if f (z) = [J2=1(1 + gn(z)), z G S, 
then f (z) = 0 for some z G S iff 1 + gn (z) = 0 for some n.
Proof. Absolute convergence of the product follows from (6.1.2). If IgnI converges 
uniformly on S, there exists N such that n > N implies \gn(z) | < 1 for all z G S. Now 
for any r > N,

r N-1 r

H(1 + gn(z))= fl (1 + gn(z)) fl (1 + gn(z)).
n=1 n=1 n=N

As in the proof of (6.1.4), with the same h and with m, p > N,

pp

| ^2 Log(1 + gn(z))I < Ign(z)IIh(gn(z))I — 0
n=m n=m

uniformly on S as m,p — <x. Therefore 5222=N Log(1 + gn(z)) converges uniformly 
on S. Since the functions gN , gN+1 ,... are bounded on S, it follows that the series 

n2=N Ign (z)IIh(gn (z))I is bounded on S and thus by the above inequality, the same is 
true of n2=N Log(1 + gn (z)). However, the exponential function is uniformly continuous
on bounded subsets of C, so we may infer that

exp
] Log(1 + gn(z)) | — exp < Log(1 + gn(z)) >

n=N n=N

=0

uniformly on S as r — ^. This proves uniform convergence on S of H22=N (1 + gn(z)). 
Now 1 + gn(z) is never 0 on S for n > N,soiff(z)= n2=1(1 + gn(z)), then f(z) = 0 for 
some z G S iff 1 + gn (z) = 0 for some n < N. &

Remark
The product n2=1(1 + Ign I) also converges uniformly on S, as follows from the inequality

p

(1 + IgnI) < exp
n=m

If Ign]
n=m

or by applying (6.1.6) to |g1|, |g2|,......
Proposition (6.1.6) supplies the essential ingredients for an important theorem on 

products of analytic functions.

6.1.7 Theorem
Let f 1, f 2,... be analytic on Q. If 522=1 fn- ~ 11 converges uniformly on compact subsets 
of Q, then f (z) = [J2=1 fn(z) defines a function f that is analytic on Q. Furthermore, 
for any z G Qwehavef (z )=0 ifffn = 0 for some n.
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Proof. By (6.1.6) with gn = fn — 1, the product H2=1 fn(z) converges uniformly on 
compact subsets of Q, hence f is analytic on Q. The last statement of the theorem is also 
a direct consequence of (6.1.6). &

Problems

1. Let f1,f2,... and f be as in Theorem 6.1.7. Assume in addition that no fn is identically 
zero on any component of Q. Prove that for each z G Q ,m (f, z) 52 2=1 m (fn,z )•
(Recall that m(f, z) is the order of the zero of f at z; m(f, z)=0iff(z) = 0.)

2. Show that — ln(1 — x) = x + g(x)x2, |x| < 1, where g(x) ^ 1 /2 as x ^ 0. Conclude 
that if a 1, a2,... are real numbers and 522=1 an converges, then the infinite product 
Hn (1 - an) converges to a nonzero limit iff 522=1 an < w. Also, if 522=1 an < ^, 
then n(1 — an) converges to a nonzero limit iff n2=1 an converges.

3. Determine whether or not the following infinite products are convergent.
('ai n n 2-^ d 1 i 1 tt h ~i~(- 1) nn 1 ial in(1 — 2 ), bl in(1 — n+1), cl in(1 + ~^r), Un(1 — n2).

4. (a) Give an example of an infinite product n (1 + an) such that an converges but 
n(1 + an) diverges.

(b) Give an example of an infinite product n (1 + an) such that an diverges but
n(1 + an) converges to a nonzero limit.

5. Show that the following infinite products define entire functions.
(a) n2=1(1+anz),|a| < 1, (b) nnEz,n=o(1 - z/n)ez/n,

(c) n 2=2 [1 + n (izn )2 ].

6. Criticize the following argument. We know that n(1+zn) converges to a nonzero limit 
iff n Log(1 + zn) converges. The Taylor expansion of Log(1 + z) yields Log(1 + z)= 
zg(z), where g(z) ^ 1 as z ^ 0. If zn ^ 0, then g(zn) will be arbitrarily close to 
1 for large n, and thus n zng(zn) will converge iff n zn converges. Consequently,

n (1 + zn) converges to a nonzero limit iff n zn converges.

6. 2 Weierstrass Products

In this section we will consider the problem of constructing an analytic function f with 
a prescribed sequence of complex numbers as its set of zeros, as was discussed at the 
beginning of the chapter. A naive approach is simply to write n(z — an)mn where 
a1 ,a2 ,. .. is the sequence of (distinct) desired zeros and mn is the specified multiplicity 
of the zero, that is, m(f, an)=mn . But if a1 ,a2 ,... is an infinite sequence, then the 
infinite product n(z —an)mn need not converge. A more subtle approach is required, one 
that achieves convergence by using factors more elaborate than (z — an). These “primary 
factors” were introduced by Weierstrass.
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6.2.1 Definition
Define E0(z)=1- z and for m =1, 2,...,

Em(z)=(1- z) exp
■ z2 zm'
2m

Note that if z < 1, then as m ^ <x, Em(z) ^ (1 — z)exp[ — Log(1 — z)] = 1. Indeed, 
Em (z) ^ 1 uniformly on compact subsets of the unit disk D. Also, the Em are entire 
functions, and Em has a zero of order 1 at z = 1, and no other zeros.

6.2.2 Lemma
11 — Em(z)| < zm+1 for \z\ < 1.

Proof. If m = 0, equality holds, so assume m > 1. Then a calculation shows that

Em, (z) = —zm exp
■ + z2 + + zm

m

so that

(1 — Em(z))' = zm exp
zmz + z— + ••• + — . 

2m
(1)

This shows that the derivative of 1 — Em has a zero of order m at 0. Since 1 — Em (0) = 0, 
it follows that 1 — Em has a zero of order m +1 atz =0. Thus (1 — Em(z))/z m+1 has 
a removable singularity at 0 and so has a Taylor expansion 522=0 anzn valid everywhere 
on C. Equation (1) shows also that the derivative of 1 — Em has nonnegative Taylor 
coefficients and hence the same must be true of (1 — Em (z))/z m+1. Thus an > 0 for all 
n. Consequently,

2 2
1 — Em (z) 

z m+1 <n=0 |an||z|n < an 

n=0

if |z|<1.

But 522=0 an = [(1 — Em(1)]/1 m +1 = 1, and the result follows. &

Weierstrass’ primary factors Em will now be used to construct functions with pre
scribed zeros. We begin by constructing entire functions with given zeros.

6.2.3 Theorem
Let {zn} be a sequence of nonzero complex numbers such that Iznl ^ <x. Then there is 
a sequence {mn} of nonnegative integers such that the infinite product n2=1 Emn (z/zn) 
defines an entire function f . Furthermore, f (z)=0iffz = zn for some n. Thus it is 
possible to construct an entire function having zeros precisely at the zn , with prescribed 
multiplicities. (If a appears k times in the sequence {zn}, then f has a zero of order k at 
a. Also, a zero at the origin is handled by multiplying the product by zm.)
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Proof. Let {mn} be a sequence of nonnegative integers with the property that 

g( £) -+1 < —

for every r>0. (One such sequence is mn = n- 1 since for any r>0, r/|zn|) is eventually 
less than 1/2.) For fixed r>0, (6.2.2) implies that

11 - Emn ( z/zn ) I < Iz/Znlmn +1 < (r/zn ) mn +1

for all z G D (0 ,r). Thus the series ^2 11 — Emn (z/zn) | converges uniformly on D (0 ,r). 
Since r is arbitrary, the series converges uniformly on compact subsets of C. The result 
follows from (6.1.7). &

6.2.4 Remark
Let {zn} be as in (6.2.3). If |zn| grows sufficiently rapidly, it may be possible to take {mn} 
to be a constant sequence. For example, if \zn\ = n, then we may choose mn = 1. The 
corresponding product is [J2=1 E 1(z/zn) = [J2=1(1 — z/zn)ez/zn. In this case, m = 1 
is the smallest nonnegative integer for which ^22=1(r/IznI)m +1 < — for all r > 0, and 
112=1 Em(z/zn) can be viewed as the canonical product associated with the sequence 
{zn}. On the other hand, if IznI = lnn, then ^22=1(1 /IznI)m = + — for every nonnegative 
integer m, so no constant sequence suffices. These concepts arise in the study of the order 
of growth of entire functions, but we will not pursue this area further.

Theorem 6.2.3 allows us to factor out the zeros of an entire function.Specifically, we 
have a representation of an entire function as a product involving the primary factors Em .

6.2.5 Weierstrass Factorization Theorem
Let f be an entire function, f = 0, and let k > 0 be the order of the zero of f at 0. 
Let the remaining zeros of f be at z1 ,z2 ,... , where each zn is repeated as often as its 
multiplicity. Then

f (z)= eg(z)zk n Emn (z/zn) 
n

for some entire function g and nonnegative integers mn .
Proof. Iff has finitely many zeros, the result is immediate, so assume that there are 
infinitely many zn. Since f = 0, IznI ^ —. By (6.2.3) there is a sequence {mn} such that

2

h(z) = f(z)/[zk Emn (z/zn)]
n=1

has a zero-free extension to an entire function, which we will persist in calling h. But 
now h has an analytic logarithm g on C, hence h(z) = eg(z) and we have the desired 
representation. &

More generally, versions of (6.2.3) and its consequence (6.2.5) are available for any 
proper open subset of C. We begin with the generalization of (6.2.3).
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6.2.6 Theorem
Let Q be a proper open subset of C, A = {an : n = 1, 2,... } a set of distinct points in 
Q with no limit point in Q, and {mn} a sequence of positive integers. Then there exists 
f C A(Q) such that Z(f) = A and such that for each n we have m(f, an) = mn.

Proof. We first show that it is sufficient to prove the theorem in the special case where 
Q is a deleted neighborhood of to in C and to / A. For suppose that the theorem has 
been established in this special case. Then let Q1 and A1 be arbitrary but as in the 
hypothesis of the the theorem. Choose a point a = to in Q1 \ A1 and define T(z) = 
-i / / \ _ /r~i mi m • t r j • i < r , • r /ri - /At i < i1 /(z — a), z C C. Then T is a linear fractional transformation of C onto C and thus 
is a one-to-one continuous map of the open set Q1 in C onto an open set Q. Further, 
if A = {T(an): n =1, 2 ...} then Q and A satisfy the hypotheses of the special case. 
Having assumed the special case, there exists f analytic on Q such that Z(f)=A and 
m(f, T (an)) = mn. Now consider the function f1 = f ◦T. Since T is analytic on Q1 \ {a}, 
so is f 1. But as z — a, T(z) — to, and since f is analytic at to, f (T(z)) approaches a 
nonzero limit as z — a. Thus f 1 has a removable singularity at a with f 1(a) = 0. The 
statement regarding the zeros of f1 and their multiplicities follows from the fact that T 
is one-to-one.

Now we must establish the special case. First, if A is a finite set {a1,... , an}, then 
we can simply take

(z — a 1)m 1 ••• (z — an) mn 

( z - b) m 1+------+ mn

where b C C \ Q. The purpose of the denominator is to assure that f is analytic and 
nonzero at to.

Now suppose that A = {a1,a2,...} is an infinite set. Let {zn} be a sequence whose 
range is A but such that for each j , we have zn = aj for exactly mj values of n. Since 
C \ Q is a nonempty compact subset of C, for each n > 1 there exists a point wn in C \ Q 
such that |wn — zn\ = dist(zn, C \ Q). Note that |wn — znl — 0 as n — to because the 
sequence {zn} has no limit point in Q. Let {fn} be the sequence of functions on Q defined 
by

fn (z ) = En( } ,
z—wn

where fn(to) = En(0) = 1. Then fn has a simple zero at zn and no other zeros. Further
more, 52 Ifn — 1I converges uniformly on compact subsets of Q. For if K C Q, K compact, 
then eventually |zn — wn |/|z — wn| is uniformly bounded by 1/2 on K. Thus by Lemma 
6.2.2, 

|fn(z) — 1| = 1E—n
zn wn

z — wn

wn

z — wn

n+1

< (1 /2)n +1) zn

for each z K K. The statement of the theorem then follows from (6.1.7) by setting 
f(z) = n~=i fn(z). *
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It is interesting to see what the preceding argument yields in the special case Q = C, a 
case which was established directly in (6.2.3). Specifically, suppose that A = {a1 ,a2,...} 
is an infinite set of distinct points in C (with no limit point in C), and assume that 0 / A. 
Let {mj } and {zn } be as in the preceding proof. We are going to reconstruct the proof in 
the case where to a Q \ A. In order to do this, consider the transformation T(z) = 1 /z. 
This maps C onto C \{0} and the sequence {zn} in C \{0} onto the sequence {1/zn} 
in T(C). The points wn obtained in the proof of (6.2.6) are all 0, and the corresponding 
functions fn would be given by

fn (Z) = En (1 /ZnZ), Z A C \{0}.

Thus f (z) = [J°°= 1 fn(z) is analytic on C \{0} and f has a zero of order mj at 1/aj . 
Transforming C \ {0} back to C, it follows that

oo

F(z) = f(1/z) = En(z/zn)
n=1

is an entire function with zeros of order mj at aj and no other zeros. That is, we obtain 
(6.2.3) with mn = n. (Note that this mn from (6.2.3) is unrelated to the sequence {mj} 
above.)

The fact that we can construct analytic functions with prescribed zeros has an inter
esting consequence, which was referred to earlier in (4.2.5).

6.2.7 Theorem

Let h be meromorphic on the open set Q C C. Then h = f/g where f and g are analytic 
on Q.

Proof. Let A be the set of poles of h in Q. Then A satisfies the hypothesis in (6.2.6). Let 
g be an analytic function on Q with zeros precisely at the points in A and such that for 
each a A A, the order of the zero of g at a equals the order of the pole of h at a. Then gh 
has only removable singularities in Q and thus can be extended to an analytic function 
f A A(Q). *

Problems

1. Determine the canonical products associated with each of the following sequences. [See 
the discussion in (6.2.4).]
(a) zn =2n, (b) zn = nb,b > 0, (c) zn = n(ln n)2.

2. Apply Theorem 6.2.6 to construct an analytic function f on the unit disk D such that 
f has no proper analytic extension to a region Q D D. (Hint: Construct a countable 
set A = {an : n = 1, 2,... } in D such that every point in dD is an accumulation point 
of A.) Compare this approach to that in Theorem 4.9.5, where essentially the same 
result is obtained by quite different means.
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6.3 Mittag-Leffler’s Theorem and Applications
Let Q be an open subset of C and let A = {an : n = 1, 2,... } be a set of distinct points in 
Q with no limit point in Q. If {mn} is a sequence of positive integers, then Theorem 6.2.6 
implies (by using 1/f) that there is a meromorphic function f on Q such that f has poles 
of order precisely mn at precisely the points an . The theorem of Mittag-Leffler, which we 
will prove next, states that we can actually specify the coefficients of the principal part 
at each pole an . The exact statement follows; the proof requires Runge’s theorem.

6.3.1 Mittag-Leffler’s Theorem
Let Q be an open subset of C and B a subset of Q with no limit point in Q. Thus 
B = {bj : j G J} where J is some finite or countably infinite index set. Suppose that to 
each j G J there corresponds a rational function of the form

Sj(z) = j + rh + ■■■+< j ■ 
z - bj (z - bj)2 (z - bj)nj

Then there is a meromorphic function f on Q such that f has poles at precisely the points 
bj and such that the principal part of the Laurent expansion of f at bj is exactly Sj .
Proof. Let {Kn} be the sequence of compact sets defined in (5.1.1). Recall that {Kn} 
has the properties that Kn C Kn +1 and zK,. = Q. Furthermore, by Problem 5.2.5, each 
component of C \ Kn contains a component of C \ Q, in particular, C \ Q meets each 
component of C \ Kn. Put K0 = 0 and for n = 1, 2,..., define

Jn = {j G J : bj G Kn \ Kn-1}.

The sets Jn are pairwise disjoint (possibly empty), each Jn is finite (since B has no limit 
point in Q), and GJn = J. For each n, define Qn by

E
j £Jn

Qn(z) Sj(z)

where Qn = 0 if Jn is empty. Then Qn is a rational function whose poles lie in Kn \ Kn- 1. 
In particular, Qn is analytic on a neighborhood of Kn-1. Hence by Runge’s theorem 
(5.2.8) with S = C \ Q, there is a rational function Rn whose poles lie in C \ Q such that

IQn(z) - Rn(z) | < (1 /2)n, z G Kn- 1.

It follows that for any fixed m > 1, the series ^2O0=m +1(Qn — Rn) converges uniformly on 
Km to a function which is analytic on Km D Km- 1. Thus it is meaningful to define a 
function f : Q ^ C by

oo

f(z) = Q1(z) + (Qn(z) — Rn(z)),zG Q.
n=2

Indeed, note that for any fixed m, f is the sum of the rational function Q1+ nm=2 (Qn —Rn) 
and the series no=m+1(Qn — Rn), which is analytic on Kmo . Therefore f is meromorphic 
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on Q, as well as analytic on Q \ B. It remains to show that f has the required principal 
part at each point b G B. But for any bj G B, we have f (z) = Sj (z) plus a function that 
is analytic on a neighborhood of bj .Thusf has a pole at bj with the required principal 
part Sj. &

6.3.2 Remark
Suppose g is analytic at the complex number b and g has a zero of order m > 1 at b. Let 
c1 ,c2 ,... ,cm be given complex numbers, and let R be the rational function given by

R (z■ )=zc—b+-+(^mm

Then gR has a removable singularity at b, so there exist complex numbers a0 ,a1,a2 ,... 
such that for z in a neighborhood of b,

g(z)R(z) = a0 + a 1(z — b) + • ' ' + am-1(z — b)m 1 + ■ ■ ■ .

Furthermore, if we write the Taylor series expansion
g(z) = b0(z -b)m + b1(z - b)m+1 + + bm-1 (z - b)2m-1 + ,

then the coefficients a0,a1,... for gR must satisfy

a0 = b0cm

a1 = b0cm-1 + b1cm

am-1 = b0c1 + b1c2 + + bm-1cm

That is, if c1,c2,... ,cm are given, then a0,a1,... , am-1 are determined by the above 
equations. Conversely, if g is given as above, and a0,a1,... , am-1 are given complex 
numbers, then since b0 = 0, one can sequentially solve the equations to obtain, in order, 
cm,cm-1,... ,c1. This observation plays a key role in the next result, where it is shown 
that not only is it possible to construct analytic functions with prescribed zeros and with 
prescribed orders at these zeros, as in (6.2.3) and (6.2.6), but we can specify the values 
of f and finitely many of its derivatives in an arbitrary way. To be precise, we have the 
following extension of (6.2.6).

6.3.3 Theorem
Let Q be an open subset of C and B a subset of Q with no limit point in Q. Index B 
by J, as in Mittag-Leffler’s theorem, so B = {bj : j G J}. Suppose that corresponding 
to each j G J, there is a nonnegative integer nj and complex numbers a0j ,a1j ,... ,anj ,j . 
Then there exists f G A(Q) such that for each j G J,

f(k) (bj)
----k------ = akj, 0 < k < nj.
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Proof. First apply (6.2.6) to produce a function g G A(Q) such that Z(g) = B and for 
each j, m(g, bj)=nj +1=mj , say. Next apply the observations made above in (6.3.2) 
to obtain, for each bj G B, complex numbers c1j ,c2j ,... ,cmj ,j such that

mj

g(z ) (z — j .) k = a 0 j + a 1 j (z - bj ) + + anj ,j ( z - bj ) nj +

for z near bj. Finally, apply Mittag-Leffler’s theorem to obtain h, meromorphic on Q, 

such that for each j ,
mj 

h v ckj_____h (z - bj) k

has a removable singularity at bj . It follows that the analytic extension of gh toQisthe 

required function f . (To see this, note that

(
mj \ mjh - g a?)+g £ (j

and m (g, bj) > nj.) &

6.3.4 Remark
Theorem 6.3.3 will be used to obtain a number of algebraic properties of the ring A(Q). 
This theorem, together with most of results to follow, were obtained (in the case Q = C) 
by Olaf Helmer, Duke Mathematical Journal, volume 6, 1940, pp.345-356.

Assume in what follows that Q is connected. Thus by Problem 2.4.11, A(Q) is an 
integral domain. Recall that in a ring, such as A(Q), g divides f if f = gq for some 
q G A(Q). Also, g is a greatest common divisor of a set F if g is a divisor of each f GF 
and if h divides each f GF, then h divides g.

6.3.5 Proposition
Each nonempty subfamily F C A(Q) has a greatest common divisor, provided F = {0}.
Proof. Put B = ',Z(f) : f G F}. Apply Theorem 6.2.6 to obtain g G A(Q) such that Z(g)=B and for each b G B, m(g, b) = min{m(f, b):f GF}. Then f G F implies that 

g|f (g divides f). Furthermore, if h G A(Q) and h|f for each f GF, then Z(h) C B and 
for each b G B, m(h, b) < min{m(f, b) : f G F} = m(g, b). Thus hlg, and consequently g 
is a greatest common divisor of F. &

6.3.6 Definitions
A unit in A(Q) is a function f G A(Q) such that 1/f G A(Q). Thus f is a unit iff f has 
no zeros in Q. If f, g G A(Q), we say that f and g are relatively prime if each greatest 
common divisor of f and g is a unit. It follows that f and g are relatively prime iff 
Z(f) ClZ(g) = 0. (Note that f and g have a common zero iff they have a nonunit common 
factor.)
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6.3.7 Proposition
If the functions f 1 ,f2 G A(Q) are relatively prime, then there exist g 1 ,g2 G A(Q) such 
that f 1 g 1 + f2 g2 = 1.
Proof. By the remarks above, Z(f 1) G Z(f2) = 0. By working backwards, i.e., solving 
f1g1 + f2g2 = 1 for g1 , we see that it suffices to obtain g2 such that (1 - f2g2 )/f1 has only 
removable singularities. But this entails obtaining g2 such that Z(f 1) C Z(1 — f2g2) and 
such that for each a G Z(f 1),m(f 1 ,a) < m(1 — f2g2,a). However, the latter condition 
may be satisfied by invoking (6.3.3) to obtain g2 G A(Q) such that for each a G Z(f1) 
(recalling that f2 (a) = 0),

0=1— f2(a)g2(a) = (1 — f2g2)(a)

0 = f2( a ) g2 ( a ) + f2 ( a ) g 2( a ) = (1 — f2 g 2)'( a )
0 = f2( a ) g 2 ( a ) + 2 f2 ( a ) g 2 ( a ) + f"2 ( a ) g 2( a ) = (1 — f2 g 2) " ( a ) 

. . .

0 = f2( a) g 2 )( a) + '•• + f( )( a) g 2( a) = (1 — f2 g 2)( m 1)( a)

where m = m (f 1 ,a). [Note that these equations successively determine g 2( a) ,g 2 (a) ,...,g(m 1)( a).] 
This completes the proof of the proposition. ^

The preceding result can be generalized to an arbitrary finite collection of functions.

6.3.8 Proposition
If {f1,f2,... ,fn} C A(Q) and d is a greatest common divisor for this set, then there exist 
g1,g2,... ,gn G A(Q) such that f1g1 + f2g2 + •••+ fngn = d.
Proof. Use (6.3.7) and induction. The details are left as an exercise (Problem 1). &

Recall that an ideal I C A(Q) is a subset that is closed under addition and subtraction 
and has the property that if f G A(Q) and g G I, then fg G I.

We are now going to show that A(Q) is what is referred to in the literature as a Bezout 
domain. This means that each finitely generated ideal in the integral domain A(Q) is a 
principal ideal. A finitely generated ideal is an ideal of the form {f1g1 + ••• + fngn : 
g1,... ,gn G A(Q)} where {f1,... ,fn} is some fixed finite set of elements in A(Q). A 
principal ideal is an ideal that is generated by a single element f1 . Most of the work has 
already been done in preceding two propositions.

6.3.9 Theorem
Let f1,... ,fn G A(Q) and let I = {f1g1 + •••+ fngn : g1,... ,gn G A(Q)} be the ideal 
generated by f1 ,... ,fn . Then there exists f G A(Q) such that I = {fg : g G A(Q)}. In 
other words, I is a principal ideal.

Proof. Iff G I then f = f1h1 + •••+ fnhn for some h1,... ,hn G A(Q). If d is a greatest 
common divisor for {f1,... , fn}, then d divides each fj, hence d divides f.Thusf is 
a multiple of d. On the other hand, by (6.3.8), there exist g1,... ,gn G A(Q) such that 
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d = f 1 g 1 + • • • + fngn. Therefore d and hence every multiple of d belongs to I. Thus I is 
the ideal generated by the single element d. &

A principal ideal domain is an integral domain in which every ideal is principal. Prob
lem 2 asks you to show that A(Q) is never a principal ideal domain, regardless of the 
region Q. There is another class of (commutative) rings called Noetherian; these are rings 
in which every ideal is finitely generated. Problem 2, when combined with (6.3.9), also 
shows that A(Q) is never Noetherian.

Problems
1. Supply the details to the proof of (6.3.8). (Hint: Use induction, (6.3.7), and the 

fact that if d is a greatest common divisor (gcd) for {f1,... ,fn} and d1 is a gcd for 
{f1,... , fn-1}, then d is a gcd for the set {d1, fn}. Also note that 1 is a gcd for 
{f1/d,... , fn/d}.)

2. Show that A(Q) is never a principal ideal domain. that is, there always exists ideals I 
that are not principal ideals, and thus by (6.3.9) are not finitely generated. (Hint: Let 
{an } be a sequence of distinct points in Q with no limit point in Q. For each n, apply 
(6.2.6) to the set {an,an+1,...}.)



Chapter 7

The Prime Number Theorem

In this final chapter we will take advantage of an opportunity to apply many of the 
ideas and results from earlier chapters in order to give an analytic proof of the famous 
prime number theorem: If n(x) is the number of primes less than or equal to x, then 
x1 n(x) In x — 1 as x — <x. Tatt is, n(x) is asymptotically equal to x/ In x as x — <x. 
(In the sequel, prime will be taken to mean positive prime.)

Perhaps the first recorded property of n (x) is that n (x) — <x as x — ^, in other words, 
the number of primes is infinite.This appears in Euclid’s “Elements”.A more precise 
result that was established much later by Euler (1737) is that the series of reciprocals of 
the prime numbers,

1
2

1111
+ 3 + 5 + 7 + TT + ■"

is a divergent series.This can be interpreted in a certain sense as a statement about 
how fast n(x) — <x as x — <x. Later, near the edd ot the 88-th century, mathemati
cians, including Gauss and Legendre, through mainly empirical considerations, put forth 
conjectures that are equivalent to the above statement of the prime number theorem 
(PNT).However, it was not until nearly 100 years later, after much effort by numerous 
19tth century mathematicians, that the theorem was finally established (independently) 
by Hadamard and de la Vallee Poussin in 1896. The qeetl for a proof led Riemenn, for 
example, to develop complex variable methods to attack the PNT and related questions. 
In the process, he made a remarkable and as yet unresolved conjecture known as the 

Riemann hypothesis, whose precise statement will be given later.Now it is not clear on 
the surface that there is a connection between complex analysis and the distribution of 
prime numbers.But in fact, every proof of the PNT dating from Hadamard and de la 
Vallee Poussin, up to 1949 when P. Eddos and A.Selberg succeeded in finding “elemen
tary” proofs, has used the methods of complex variables in an essential way.In 1980, DJ. . 
Newman published a new proof of the PNT which, although still using complex analyt 
sis, nevertheless represents a significant simplification of previous proofs.It is Newman’s 
proof, as modified by J.Korevaar, that we present in this chapter.

There are a number of preliminaries that must be dealt with before Newman’s method 
can be applied to produce the theorem.The proof remains far from trivial but the steps 

1

proofs.It
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along the way are of great interest and importance in themselves.We begin by introducing 
the Riemann zeta function, which arises via Euler’s product formula and forms a key link 
between the sequence of prime numbers and the methods of complex variables.

7.1 The Riemann Zeta function
The Riemann zeta function is defined by

z (z ) = E A 
nz 

n=1

where nz = ez ln n.Since |nz | = nRez, the given series converges absolutely on Re z>1 
and uniformly on {z : Re z > 1 + J} for every 6 > 0. eet p 1 ,p2 ,p3,... be the sequence 
2,3,5, ... of prime numbers and note that for j =1, 2,... and Re z>1, we have

1 111
1 - 1 /pj = + pz + p2z + ■" .

Now consider the partial product

mm
m—-=n(1+4+4z+•••).

-z z 2z
j=1 1 - pj j=1 pj pj

By multiplying the finitely many absolutely convergent series on the right together, rear
ranging, and applying the fundamental theorem of arithmetic, we find that the product is 
the same as the sum nEP nz, where Pm consists of 1 along with those positive integers 
whose prime factorization uses only primes from the set {p1,... , pm}.Therefore

n-^=e-,r-> 1.
j.,1 - p-z n=i nz

We now state this formally.

7.1.1 Euler’s Product formula
For Re z>1, the Riemann zeta function z(z) = ne.1 1/nz is given by the product 

e1 Jl(1 - p-z)

where {pj} is the (increasing) sequence of prime numbers.
The above series and product converge uniformly on compact subsets of Re z>1, 

hence z is analytic on Re z > 1.Furthermore, the product representation of z shows that 
z has no zeros in Re z>1 (Theorem 6.1.7). Our proof of the PNT requires a number 
of additional properties of z.The first result is concerned with extending z to a region 
larger than Re z>1.
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7.1.2 Extension Theorem for Zeta
The fu 
Thus 
residue
Proof. 
and bn

nction Z(z) — 1 /(z - 1) has an analytic extension to the right half plane Re z > 0. 
has an analytic extension to {z : Re z > 0,z = 1} and has a simple pole with 
1 at z =1.

For Re z > 1, apply the summation by parts formula (Problem 2.2.7) with an = n 
= 1 /nz to obtain

kk-1 [ 1 -2-1 - 1 _ 1 _ - 1
n= n |_(n + 1)z nz] = kz-1 (n + 1)z '

Thus

1 v 1 1 _vn r 1 1 ■
+ n=1 (n + 1)z = kz-1 n !-(n + 1)z n\ '

But

n [-—------- -] = nz 1 t-z-1 dt = —z n + [t]t-z-1 dt
(n +1) z nz\ 7n Jn

where [t] is the largest integer less than or equal to t. Henee wee have

— = 1 + IL 1n = T~i + z - f n+1[t]t-z-1 dt
n=inz n=1(n + 1) z k £=Jn

= k— + z^ [t]t-z-1 dt.

Lettin g k — ^, we obtain the integral formula

OO

Z (z )= zj [ t ] t-z-1 dt (1)

for Re z > 1. Cnnsieer, howaeer, tee cloeely nlteed ineegaal

z O tt-z-1 dt = z O t-z dt — = 1 + —L.
71 71 z — 1 z — 1

Combining this with (1) we can write

Z(z) = 1 + z f ([t] t)t z 1 dt.
z — 1 J1

Now fi 
entire

x k > 1 and consider the integral fk([t] — t)t-z-1 dt. By (3.3.3), this integral is an 
function of z. fgnthermOTe, if Re z > 0, then

([t] — t)t-z-1 dt\ <! t- Re(z+1) dt <! t-1 -Rez dt .
1 1 1 Re z
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This implies that the sequence fk(z) = 1k ([t] -t)t-z-1 dt of analytic functions on Re z>0 
is uniformly bounded on compact subsets. Hence by Vitali’s theorem (5.1.14), the limit 
function

f (z)=^ ' ([t] - t)t-z- 1 dt

(as the uniform limit on compact subsets of Re z>0) is analytic, and thus the function

1+* ([t] - t)t-z-1 dt

is also analytic on Re z > 0. But hhis junction ggeees wihh Z(z) — z-1 for Re z > 1, and 
consequently provides the required analytic extension of Z to Re z > 0. This coni pities 
the proof of the theorem. &

We have seen that Euler’s formula (7.1.1) implies that Z has no zeros in the half plane 
Re z > 1, but how about zeros of (the extension of) Z in 0 < Re z < 1? The next theorem 
asserts that Z has no zeros on the line Rez = 1.This fact is crucial to our proof of the 
PNT.

7.1.3Theorem
The Riemann zeta function has no zeros on Rez =1,so(z — 1)Z(z) is analytic and 
zero-free on a neighborhood of Rez > 1.
Proof.Fix a real number y = 0 and consider the auxiliary function

h(x) = Z3(x)Z4(x + iy)Z(x + i2y)

3 + 4cos 6 + cos 26 = 3 + 4 cos 6 + 2cos2 6 — 1 = 2(1 + cos 6)2 > 0•

for x real and x>1.By Euler’s product formula, if Re z>1 then
OO OO 

p-z) = ReEE np-nz 

j=1 n=1

OO

ln |Z (z) | = — E ln 11 — p-z I = — Re E Log(1 —
j=1 j=1

where we have used the expansion — Log(1 — w) = O OO=1 wn/n, valid for |w| < 1. Hnnee

3REE n Pj 

j=1 n=1

ln |h(x)| =3ln|Z(x)| +4ln|Z(x + iy)| + ln |Z(x + i2y)|

“ " • nx + 4Re f f ' p-nx-‘ny j=1 n=1 n

-nx-i2ny+ Re EE 1 Pj

j=1 n=1

= V V 1„-nx Re(3 + 4n-iny + n-i2ny) zL zL npj Re(3 + 4pj + pj )•
j=1 n=1

But pj-iny 

form

in ln -i2ny i2n ln -iny -i2nye-iny ln pj and pj- ny = e-i2ny ln pj .Thus Re(3 + 4 pj- ny + pj- ny) has the
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Therefore In \h(x)| > 0 and consequently

\h(x)I = K3(x)IIQ4(x + iy)IIQ(x + i2y)I > 1 •

Thus

\h(x)|
x-1

= |(x - 1)K(x)|3 Q (x + iy) 
x-1

IK(x + i2y)I >
x-1

But ifK(1 + iy) = 0, then the left hand side of this inequality would approach a finite limit 
|K'(1 + iy)|4|K(1 + i2y) I as x ^ 1+ since Q has a simple pole at 1 with residue 1. Hoowever, 
the right hand side of the inequality contradicts this.We conclude that K(1 + iy) =0. 
Since y is an arbitrary nonzero real number, Q has no zeros on Re z = 1. A

Remark
The ingenious introduction of the auxiliary function h is due to Mertens (1898).We 
now haee shown that any zeros of K in Re z>0 must lie in the strip 0 < Re z<1. 
The study of the zeros of K has long been the subject of intensiee ineestigation by many 
mathematicians.Riemann had stated in his seminal 1859 paper that he considered it 
“eery likely” that all the zeros of K in the aboee strip, called the critical strip, lie on the 
line Re z = 1/2.This assertion is now known as the Riemann hypothesis, and remains 
as yet unresoleed.Howeeer, a great deal is known about the distribution of the zeros 
of K in the critical strip, and the sub ject continues to capture the attention of eminent 
mathematicians.To state just one such result, GH. .Hardy proeed in 1915 that K has 
infinitely many zeros on the line Re z = 1/2.Those interested in learning more about this 
fascinating subject may consult, for example, the book Riemann’s Zeta Function by H.M. 
Edwards. Another source is http://mathworld.wolfram.com/RiemannHypothesis.html.

We turn next to zeta’s logarithmic derivative Q'/Q, which we know is analytic on 
Rez > 1. In fact, more is true, for by (7.1.3), Q'/Q is analytic on a neighborhood of 
{z : Re z > 1 and z = 1}. Since Q has a simple pole at z = 1, so does Q'/Q, with residue 
Res(Q'/Q, 1) = — 1. [See the proof of (4.2.7).] We next obtain an integral representation 
for Q'/Q that is similar to the representation (1) above for Q. [See the proof of (7.1.2).] 
But first, we must introduce the von Mangoldt function A, which is defined by 

A(n)= l0np if n = pm for some m, 
otherwise.

Thus A(n) is lnp if n is a power of the prime p, and is 0 if not. Next define ^ on x > 0 by

^ (x) = £A( n) • 
n<x

(2)

An equivalent expression for ^ is

^ (x) E
p<x

mp(x) ln p,

http://mathworld.wolfram.com/RiemannHypothesis.html
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where the sum is over primes p < x and mp (x) is the largest integer such that pmp (x) < x. 
(For example, ^(10.4) = 3 ln 2 + 2 ln 3 + ln 5 + ln 7.) Note that pmp(x) < x iff mp (x) Inp < 
In 'V> i fF ln l 'V>'\ in ln x f I 'Ui il zy» \ — ln x url'» cm qq hnfArc F 1 /'IcriAtcc crroofncf intci'rci'm x in Imp (x) *"< i . a. uub 'mp (x) — i wneie as uelore, [ j vieuotes tiie greatest integer 
function. The Unction ^ will be used to obtain the desired integral representation for 
Z '/Z.

7.1.4 Theorem
For Re z> 1,

- Z-^ — z [ ^ (t) t1 dt
Z(z) 1

(3)

where ^ is defined as above.
Proof.In the formulas below, p and q range over primes.If Re z>1, we have Z(z) — 

p(1 - p-z)-1 by (7.1.1), hence

Z' (z) — £ 
p

-p-z ln p

q=p
(1 -p

i
1 - q-z

Z(z) 
p

-p-z ln p 
(1 - p-z)2

(1 - p-z)

Z(z) 
p

-p-z ln p 
1 - p-z

z

Thus

-qz) „ ■ — „ gp-nz lnp.
Z(z) v i-pz ^£1

The iterated sum is absolutely convergent for Re z> 1, so it can be rearranged as a double 
sum

(pn)-z ln p — k-z lnp
(p,n) ,n> 1 k

where k — pn for some n.Consequently,

gZ^ — f; k-z a( k) k-z (^ (k) - ^ (k -1))
Z(z) k=1 k=1

by the definitions of A and ^. But njsng^ partial suimnatinn nnee agam we obtam, with 
ak — k-z, bk+1 — ^(k), and b 1 — ^(0) — 0 in Problem 2.2.7,

M M

Yz^~Z(^(k) - ^(k - 1)) — ^(M)(M + 1)-z k=1 22^(k)(k k=1 - (k +1)-z).z+
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Now from the definition (2) of f(x) we have f(x) < x In x, so if Re z > 1 we have 
f(M)(M + 1)z — 0 as M — <x. Moreover, wee can write

ME^ (k)(k-z
k=1

-(k+1)-z)
M

E f(k) z
k=1

dt

M k k + 1
=S d f (t) t-z-1 dt

<E lnx ln p 
ln p

p<x

lnx
p<x

= (ln x) n (x).

f (t) t-z-1 dt

because f is constant on each inieeoal [k, k +1). Taking limits as M — ^, we finally get

z' (z) r°
— z( ) = z J f(t)t 1 dt, Re z > 1. &

7.2 An Equivalent Version of the Prime Number The
orem

The function f defined in (2) above provides yet another connection, through (3), between 
the Riemann zeta function and peopeeties of the peime numbees.The integeal that appeaes 
in (3) is called the Mellin transform of f and is studied in its own right. Wee next establish 
a reduction, due to Chebyshev, of the prime number theorem to a statement involving 
the function f.

7.2.1 Theorem

The prime number theorem holds, that is, x-1 n(x) ln x — 1, iff x-1 f (x) — 1 as x — <x>.

Proof.Recall that

f (x) E
p<x L

ln x 
ln p

ln p

(1)

1
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However, if 1 <y<x, then

n (x )= n (y) + 72 1 
y<p<x

< n(y)+ £ ln£ 
lny 

y<p<x

< y +7—72 ln p
lny

y<p<x

< y+iny *(x).

(2)

Now take y = x/(ln x)2 in (2), and we get

x1
n(x) < (inx? + inx - 2lnlnx*(x>.

Thus

( )ln x < 1 In x * (x)
x lnx lnx - 2 lnlnx x

(3)

It now follows from (1) and (3) that

ix < lnxn (x) < * + 
x x ln x

ln x i(x)
ln x - 2lnlnx x

and from this we can see that x 1 * (x) ^ 1 iff x 1 n (x) in x ^ 1 as x ^ <x. &
The goal will now be to show that * (x)/x ^ 1 as x ^ <x. A. nceessary intermediate 

step for our proof is to estabiish the foiiowing weaker estimate on the asymptotic behavior 
of *(x).

7.2.2 Lemma
There exists C>0 such that *(x) < Cx, x > 0.For short, *(x) = O(x).
Proof. Agam recall th^; *(x) ]+ p<x [|nnp] lnp, x > 0. Fite x > 0 and let m be an integer
such that 2m <x< 2m+1.Then

*(x) = *(2m) + *(x) - *(2m)

< *(2m) + *(2m+1) - *(2m)

=
p<2m

ln 2m 

ln p
lnp +

2m <p<2m+1

dn 2 m +1’ 

lnp
ln p.

Consider, for anr positive integer n,

,.72„ p = h' j2n P
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Now for any prime p such that n < p < 2n, p divides (2n)!/n! = n!(2^). Sicee such a p 
does not divide n!, it follows that p divides 2nn .Hence

n1!.' < I’) <(1+1)2n =22n

and we arrive at

lnp< 2n ln 2. n<p!2n

Therefore

m

in p =p!2m k=1
m

lnp < 2kln2 <2m+1ln22k-1<p!2k k=1

and

lnp<2m+1ln2.2m<p!2m+1

Rnf if ln <n 'T» 1C Cl 1 /‘•I'l f" Pl Q f" ln ^1^1 1'1'1 on ln ’'C O r-.v> 2r~\ 2 2~> 2\^ CA 1" Pl Q f" . / /V» '''> ni )st ii p *"■< ̂ x is such t^ia,t i ^> 1, tiieii j < 2 <xii^d cence ^x < ^p sio t^iait °^x ^x < ^p.

ThllQ fHrjQP fpriTlQ ID flip Q11TD \ ln C In n whpl*ln ln C \ 1 HPPlir Ohly AXrHPh n <" /''Tmus tnose terms in tue suiu / p!x in p ^n' w-^ere in p > J- occur omy wnen p < x x,
and the sum of terms of this form contribute no more than

।— Inp = n(/^) In x. 
p!V^

It follows from the above discussion that if 2m < x< 2m+1, then

^(x) < 2m+1 ln2 + 2m +1 ln2 + n(/X,) Inx
= 2m+2 in 2 + n (/X) In x

< 4x in 2 + n ^/X) in x

< 4x in 2 + -i/x in x

= (4 in 2 +—= in x) x. 
x

Since -1^ In x ^ 0 as x ^ <x, we conciude that ^(x) = O(x), which proves the iemma. &

7.3Proof of the Prime Number Theorem
Our approach to the prime number theorem has been aiong traditionai iines, but at this 
stage we wiii appiy D.J. Newman’s method (Simple Analytic Proof of the Prime Number 
Theorem, American Math.Monthiy 87 (1980), 693-696) as modified by J.Korevaar ( On 
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Newman’s Quick Way to the Prime Number Theorem, Math.Intelligencer 4 (1982), 108- 
115).Korevaar’s approach is to apply Newman’s ideas to obtain properties of certain 
Laplace integrals that lead to the prime number theorem.

Our plan is to deduce the prime number theorem from a “Tauberian” theorem (7.3.1) 
and its corollary (7.3.2). Then we will prove (7.3.1) and (7.3.2).

7.3.1 Auxiliary Tauberian Theorem
Let F be bounded and piecewise continuous on [0, + to), so that its Laplace transform

G(z)= 0 F(t)e-zt dt 
0

exists and is analytic on Re z > 0. Assume tatt G has an analytic extension to a neigh
borhood of the imaginary axis, Re z = 0. Tenn 0 F(t) dt exists as an improper integral 
and is equal to G(0). [In fact, 00 F(t)e-lyt dt converges for every y G R to G(iy).]

Results like (7.3.1) are named for A. Tauber, who is credited with proving the first 
theorem of this type near the end of the 19th century.The phrase “Tauberian theorem” 
was coined by G.H. Hardy, who along with J.E. Littlewood made a number of contri
butions in this area. Genarally, 'llbexann theomma ere those in hihhh sumt type of 
“ordinary” convergence (e.g., convergence of 00 F(t)e-iyt dt for each y G R), is deduced 
from some “weaker” type of convergence (e.g., convergence of 00 F(t)e~zt dt for each z 
with Re z>0) provided additional conditions are satisfied (e.g., G has an analytic exten
sion to a neighborhood of each point on the imaginary axis).,auber’s original theorem 
can be found in The Elements of Real Analysis by R.G. Bartle.

7.3.2 Corollary
Let f be a nonnegative, piecewise continuous and nondecreasing function on [1, to) such 
that f(x) = O(x).,hen its Mel lin transform

g(z)=z f (x)x-z-1 dx

exists for Re z>1 and defines an analytic function g .Assume that for some constant c, 
the function

g (z) —c-t

has an analytic extension to a neighborhood of the line Re z = 1. Thnn as x ^ to,

f (x)
x

^ c.

As stated earlier, we are first going to see how the prime number theorem follows from 
(7.3.1) and (7.3.2). To this end, let ^ be as above, namely

^ (x)
ln x
ln p

p<x L J

ln p.
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Then 0 is a nonnegative, piecewise continuous, nondecreasing function on [1, <x). U’m - 
thermore, by (7.2.2), 0(x) = O(x), so by (7.3.2) we may take f = 0 and consider the 
Mellin transform

g(z) = z j 0(x)x—z—1 dx.

But by (7.1.4), actually g(z) = —Z'(z)/Z(z), and by the discussion leading up to the 
statement of (7.1.4), Z4z) +---- has an analytic extension to a neighborhood of each, Z (z) z— 1 y g
point of Rez = 1, hence so does g(z) — z—^. Consequently, by (7.3.2), we can conclude 
that 0(x)/x ^ 1, which, by (7.2.1), is equivalent to the PNT. Thus we are left with the 
proof of (7.3.1) and its corollary (7.3.2).

Proof of (7.3.1)
Let F be as in the statement of the theorem. Then it follows just as in the proof of (7.1.2), 
the extension theorem for zeta, that F ’s Laplace transform G is defined and analytic 
on Re z > 0.Assume that G has been extended to an analytic function on a region 
containing Rez > 0. Smee F is bounded we may as well assume that \F(t)| < 1 ,t > 0. 
For 0 < X < <x, define

GA (z) = j F(t)e-zt dt.

By (3.3.3), each function GA is entire, and the conclusion of our theorem may be expressed 
as

lim Gx (0) = G(0).
A—>^>

That is, the improper integral J™ F(t) dt exists and converges to G(0). We begin the 
analysis by using Cauchy’s integral formula to get a preliminary estimate of |GA(0) — G(0) |. 
For each R > 0, let 5(R) > 0 be so small that G is analytic inside and on the closed path

Figure 7.3.1

YR in Figure 7.3.1. (Note that since G is analytic on an open set containing Re z > 0, 
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such a 6(R) > 0 must exist, although it may well be the case that 6(R) ^ 0 as R ^ + to.) 
Let y+ denote that portion of YR that lies in Re z > 0, and Y- the portion that lies in 
Re z<0.By Cauchy’s integral formula,

G(0) — Gx(0) = q—■ [ (G(z) — Gx(z))“ dz. (1)
2 ni J YR z

Let us consider the consequences of estimating |G(0) - Gx(0)| by applying the usual M
L estimates to the integral on the right hand side of (1) above. First, for z G y+ and 
x =Rez , we have

G(z) — Gx(z)
z

F (t)e-zt dt

< 1 J ' IF(t) le-x dt

< R £ e-x dt

1 e-xx

Rx
<111 1

R x R Re z

(2)

But 1/ Re z is unbounded on YR+, so we see that a more delicate approach is required to 
shows that G(0) — Gx (0) ^ 0 as A ^ to. Indeed, it is here that Newman’s ingenuity 
comes to the fore, and provides us with a modification of the above integral representation 
for G(0) — Gx (0).This will furnish the appropriate estimate.Newman’s idea is to replace 
the factor 1/z by (1/z) + (z/R2) in the path integral in (1).Since ( G(z) — Gx(z))z/R2 is 
analytic, the value of the path integral along YR remains unchanged.We further modify 
(1) by replacing G(z) and Gx (z) by their respective products with exz .Since exz is entire 
and has the value 1 at z = 0, we can write

G(0) — Gx(0) = 2|- I (G(z) — Gx(z))exz(1 + z ) dz.

Note that for \z\ = R we have (1 /z) + (z/R2) = (z/\z\2) + (z/R2) = (2 Re z)/R2, so that 
if z G YR+, (recalling (2) above),

|(G(z) — Gx(z))eXz(1 + z)| < Re-xRezeXRez 
z R Re z

2 Re z
R R2

2 
R2.

Consequently,

+ (G(z) — Gx(z))exz(i + R2) dz < R
YR

by the M-L theorem.Note that this estimate of the integral along the path YR+ is inde
pendent of A.Now let us consider the contribution to the integral along YR of the integral
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along Y-. Fi'ir^w we use the rrinngle meqaaltyy to bbaiin the estimate

2^ -- (G(z) - Gx(z))eXz(1 + R) dz 
y y d

Yr

- 2nJy- G(z) e^z(z + R2 ) dz + 

y yr= |I1(R)| + |I2(R)|.

2ni/- Gx (z) eXz (z + R2 ) dz 

y yr

Fiiei coneidli I2(R).Sincl Gx(z) ie an lniiil funciion, wl can ilplacl ihl paih of inil- giaiion YR- by ihl elmiciiculai paih fiom iR io -iR in ihl llfi half planl.Foi z on ihie 
elmiciiculai aic, ihl modulue of ihl inilgiand in I2 (R) ie

x F (t) z dt) exz 2Ri )|<_R1_. 2^ = _22.

(Nobs that \F| — 1, ws can rsplacs ihs upper limit of inSsgraiion by to, and exx — 1 for 
x — 0.) This inequality also holds if Rs z = 0 (1st z ^ iy). TUes yy the M-L theotem we 
gsi \I2(R)| — (1 /2n)(2/R2)(nR) = 1 /R, again.Finally, ws considsr |I1 (R)|.This will bs ths trickisst of all sincs ws only know that on 

YR-, G is an analytic extension of ths sxplicitly dsfinsd G in ths right half plans.To dsal 
with this cass, first chooss a constant M(R) > 0 such that |G(z)| — M(R) for z G y— • 
Chooss 6 1 such that 0 <6 1 < 6(R) and brsak up ths intsgral dsfining 11(R) into two 
parts, corresponding to Rs z < —6 1 and Rs z > —6 1. The rsti; eobtiiUbtion is bounded m 
modulus by

R M (R) ■ 1 ^1- + 1) nR = 1 RM (R )(-^ + 1) ■ 1,
2 n 6 (R) R 2 6 (R) R

which for fixsd R and 6 1 tsnds to 0 as A — to. On the tl Isoi- hand, the scoond oontiibution
is boundsd in modulus by

2nM(R)(.-.'// + R)2 R arcsm R

ths last factor arising from summing ths lsngths of two short circular arcs on ths path 
of intsgration.Thus for fixsd R and 6(R) ws can maks ths abovs sxprsssion as small 
as ws plsass by taking 61 sufficisntly closs to 0.So at last ws ars rsady to sstablish ths 
conclusion of this thsorsm. 1^'1 e > 0 bs givsn. TaSe R = 4/e and fix 6(R), 0 < 6(R) < R, 
such that G is analytic insids and on YR.Thsn as ws saw abovs, for all A,

2n-J + (G (z) — Gx (z)) exz (1 + Rz2) dz — R = 4 
n t ^+ i z J-.tv j_

R R

and also

1 e
R : 4

2n^(-(GX (z) eXz(z + R2 ) dz — r

Y yr
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Now choose 6 1 such that 0 <6 1 < 6(R) and such that

—M(R)( 1 + — )2R arcsin — < -.
2 n 6 (R) + R> R 4

Since

1 RM(R)(^ + -)e 1 < -
2 ( )(6 (R) + R) 4

for all A sufficiently large, say A > A0, it follows that

|Ga(0) — G(0) | < t, A > A0 

which completes the proof. ^

Proof of (7.3.2)
Let f (x) and g(z) be as in the statement of the corollary. Define F on [0, + to) by

F(t) = e-tf(et) — c.

Then F satisfies the first part of the hypothesis of the auxiliary Tauberian theorem, so 
let us consider its Laplace transform,

G(z) = (e-tf (et) — c)e-zt dt,
0

which via the change of variables x = et becomes

G (z )= [°° (1 f (x) — c) x-z — 

1x x

= f (x)x-z-2 dx — c x-z-1 dx

= [ f (x)x-z-2 dx-----
1z

= g (z + 1) — c 
z +1 z

. Ig (z + 1)-------- c ].z+1 z

It follows from the hypothesis that g (z +1) — (c/z) has an analytic extension to a neigh
borhood of the line Re z = 0, and consequently the same is true of the above function G. 
Thus the hypotheses of the auxiliary Tauberian theorem are satisfied, and we conclude 
that the improper integral 0 F(t) dt exists and converges to G(0). In terms of f, this 
says that j^ (e-tf (et) — c) dt exists, or equivalently (via the change of variables x = et 

once more) that

r (f (x) dx 
c)— x
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exists. Rcaailigg hatt f is nondecreasing, we can infer that f (x)/x — c as x — to. For 
let e > 0 be given, and suppose that for some x0 > 0, [f (x0)/x0] — c > 2e. It follows hint

f (x) > f (x0) > xo(c + 2e) > x(c + e) for x0 < x <
c +2 e

' x 0. c + e

Hence,

dx 
c)— x

— dx = e ln( —).
x c + e

But XX22 (fX) — c) dX — 0 as x 1 ,x2 

Thus for all x0 sufficiently large,
— to, because the integral from 1 to to is convergent.

(fW — c)' ln( c + 2 e) 
c + €

However, reasoning from the assumption that [f (x0)/x0] — c > 2e, we have just deduced the 
opposite inequality. Wee mint onnclude hint tir ah x0 sufficiently large, [f (x0)/x0] — c < 2e. 
Similarly, [f (x0)/x0] — c > — 2e for all x0 sufficiently large. |Say [f (x0)/x0] — c < — 2e. 
The key inequality now becomes

c c c c , c , c — ,c — 2e.
f (x) < f (x0) < x0(c — 2e) < x(c — e) for (-------- )x0 < x < x0

c — 6

and the limits of integration in the next step are from c-2- x 0 to x 0.] Therefore f (x) /x — c 
as x — to, completing the proof of both the corollary and the prime number theorem. &

The prime number theorem has a long and interesting history.We have mentioned 
just a few of the many historical issues related to the PNT in this chapter.There are 
several other number theoretic functions related to n(x), in addition to the function X(x) 
that was introduced earlier.A nice discussion of some of these issues can be found in Eric 
W.Weisstein, “Prime Number Theorem”, from MathWorld—A Wolfram Web Resource, 

http://mathworld.wolfram.com/PrimeNumberTheorem.html. This source also includes a 
number of references on PNT related matters.
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Solutions

Chapter 1
1. \z 1 + z2 |2 + \z 1 — z2 |2 = (z 1 + z2)(z 1 + z2) + (z 1 — z2)(z 1 — z2) = 2\z 1 |2 + 2\z2 |2. A 

diagram similar to Fig. 1.1.1 illustrates the geometric interpretation that the sum of 
the squares of the lengths of the diagonals of a parallelogram equals twice the sum of 
the squares of the lengths of the sides.

2. Again, use a diagram similar to Fig. 1.1.1.

3. (a) Let z 1 = a + bi, z2 = c + di; then \z 1 \\z21 cos6 is the dot product of the vectors 
(a, b) and (c, d), that is, ac + bd = Rez 1 z2. Also, \z 1 \\z21 sin6 is the length of the cross 
product of these vectors, that is, \ad — bcl = | Im z 1 z21. [Strictly speaking, we should 
take the cross product of the 3-dimensional vectors (a, b, 0) and (c, d, 0).]
(b) The area of the triangle is half the area of the parallelogram determined by z1 

and z2 . The area of the parallelogram is the length of the cross product of the vectors 
(a, b) and (c, d), which is l Im z 1 z21.

4. Say ddg exists near (x0,y0) and is continuous at (x0,y0), while dy merely exists at 
(x0 ,y0 ). Write, as in (1.4.1),

g(x, y) — g(x0, y0) = g(x, y) — g(x0, y) + g(x0, y) — g(x0, y0).

Apply the mean value theorem to the first difference and the definition of dg(x0,y0) 
to the second difference to obtain

dg (— \( \ । dg t \( \ । ( \( \
—(x,y)(x — x 0) + dy(x 0 ,y 0)( y — y 0) + e(y)(y - y 0)

where x is between x0 and x and e(y) ^ 0 as y ^ y0. In (1.4.1) we may take

A dg , a , . dg - . dg , a
A=dx(x0,y0), e 1(x,y) = dx(x,y)— dx(x0,y0),

d dg { A
B = dy(x 0 ,y 0), e 2( x,y) = e(y).

5AATo li o Tro q i ('V> q i dud du — __d du — 1 dv — __ 1 ' I i q +• f'1 on/-‘Vi i r. w v e hj-Oi v e tu (^u, y) ^u, v (^u, y) y, xj.exi.ce d 1, d 1. txxu.s txxe aiu.cxxy
Riemann equations are never satisfied.

1



2

6. Since u(x, y)=x2 + y2, v(x, y) = 0, the Cauchy-Riemann equations are satisfied 
at x = y = 0, but nowhere else. The result follows from (1.4.2) and Problem 4. 
(Differentiability at z = 0 can also be verified directly, using the definition of the 
derivative.)

d ^ilDdu dU0 Qd — dUd 0ft 11 d d d^ Q— du /M O\ — M fT'a Izp Tr~» l~»p ItlPirtl —7. oince u(0, y) — u(x, 0) — 0 lor an x, y, dx (0, 0) — dy (0, 0) — 0. T^ive v to ue ivienti
cally 0. If u is real-differentiable at (0,0), then f = u + iv is complex-differentiable at 
(0,0) by (1.4.2). Now differentiability of f at z0 requires that (f (z) - f (z0))/(z - z0) 
approach a unique limit as z approaches z0 along an arbitrary path. In the present 
case, let z ^ 0 along the line y — x. The difference quotient is

\Zx2 
x + ix

11+i 

u
if x> 0
if x< 0.

Therefore f is not complex-differentiable at the origin, hence u cannot be real- 
differentiable there.

8. Let Mab —
ab
-ba , and let h(a + bi) — Mab. Then h is 1-1 onto and h(z1 + z2)—

h(z1)+h(z2), h(z1z2)—h(z1)h(z2). The result follows.

9. By (b), either 1 e P or — 1 e P. Since i2 — (—i)2 — — 1, we have — 1 e P by (a),
hence 1 e P by (a) again. But — 1 e P and 1 e P contradicts (b).

10. If a(z) < 0, let w2 — z; by (ii), (a(w))2 — a(z) < 0, contradicting a(w) e R. Thus
a(z) > 0 for all z. Since a(zn) — [a(z)]n by (ii), it follows from (iii) that a(z) < 1 for
\z\ — 1. By (i) and (ii), \z\2 — a(\z\2) — a(z)a(z), so for z on the unit circle, a(z) < 1 
implies a(z) > 1, and therefore a(z) — 1 for \z\ — 1. Thus for arbitrary z — 0 we 
have a(z) — a(z/|z|)a(|z|) — a(|z|) — |z|.

11. As in Problem 10, a(z) > 0 for all z. Also, x2 — a(x2) — a(—x)a(x), and con
sequently a(—x) — x, x > 0. Thus a(x) — |x| for real x.Ifz — x + iy, then 
a(z) < a(x) + a(i)a(y) — |x| + |y|. (Note that (a(i))2 — a(i2) — a(—1) — 1, so 
a(i) — 1.) Therefore a is bounded on the unit circle, and the result follows from 
Problem 10.

12. Since \z — a|2 — (z—a)(z— a) and 11 — azl2 — (1 -az)(1 — az), we have \z — a| — 11 —azl 
iff zz — az — az + aa — 1 — az — Ozz + aaz~z iff z~z — 1 — aa(z~z — 1). Since |a| < 1, 
this can happen iff z~z — 1, that is, Izl — 1.

13. If z — r cos 6+ir sin 6, then 1 / z — (1 /r) cos 6 — i(1 /r) sin 6, so z +1 / z — (r +1 /r) cos 6+ 
i(r — 1 /r) sin 6, which is real iff sin 6 — 0 or r — 1 /r — 0. The result follows.

14. To show that u is harmonic, verify directly that d2u/dx2 + d2u/dy2 — 0. To find v, 
use the technique of (1.6.2). In part (i) we have

dv — — dZ — —e„ cos x, dv — — —ey sin x.
dx dy dy dx

Thus (using calculus) v(x, y)——ey sin x. In part (ii) we have

dv du dv
dx = —dy = —6xy, dy 

du 
dx

—2— 3x2 +3y2
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so v(x, y) = -3x2y +2y + y3. Note that if z = x + iy, then u + iv can be written as 
-z3 +2z. After complex exponentials are studied further in Section 2.3, it will follow 
that in part (i), u + iv = e-iz.

15. (i) Note that |z - z0| = r iff |az + b - (az0 + b)| = r|a|.
(ii) T(0) = 1 + i,sob =1+i; r|a| = |a| =2,soT(z)=az +1+i, |a| =2.
(iii) Since | - 2+2i| > 2, the desired result cannot be accomplished.

16. Since u = ex ,v= 0, the Cauchy-Riemann equations are never satisfied.

17. We have

g (z + h) - g (z) = f (z + h) - f (z) = f (z + h) - f (z)
h h h

Thus g is analytic at z iff f is analytic at z, and in this case, g'(z) = f'(z). Since 
z G Q iff z G Q, the result follows.

18. The circle is described by \z — z012 = r2, or, equivalently, (z — z0)(z — z0) = r2; the 
result follows.

19. If P (z) = 0 for some z G D(0, 1), then (1 - z)P (z) = 0, that is, 
(1 — z)(a0 + a 1 z + • • • + anzn) = 0, which implies that

a 0 = (a 0 — a 1) z + (a 1 — a 2) z 2 + • • • + (an- 1 — an) zn + anzn +1. (1)

Since ai — ai +1 > 0, the absolute value of the right side of (1) is at most \z\ (a0 — a 1 + 
a1 — a2 + •••+ an-1 — an + an) = a0|z|. If |z| < 1, this is less than a0, a contradiction.

20. If P(z) = 0 for some z with \z\ < 1, then \z\ = 1 by Problem 19. The only way for 
(1) in Problem 19 to be satisfied is if all terms (a0 — a1)z, ... , (an-1 — an)zn, anzn+1 

are nonnegative multiples of one another (cf. Problem 2), and this requires that z be 
real, i.e., z = 1. But P(1) = a0 + • • • + an > 0, so there are no roots in D(0, 1).

Chapter 2
Section 2.1
1. We have y(t) = (1 — t)(—i) +t(1 + 2i) = t + i(3t — 1), 0 < t < 1; thus

/ (Im y(t))Y'(t) dt = / (31 — 1)(1 + 3i) dt =1+ i3. 
0 0 22

2. We have y(t)=t + it2 , 1 < t < 2; thus

z zdz J Y(t) Y'(t) dt J (t — it2)(1 + i2t) dt = 9 + i3.

Intuitively,

Z ddz = Z (x — iy)(dx + idy) J xdx + y dy + i(x dy — y dx).
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Since y = x2 on 7*, this becomes

[xdx+ x2(2x dx) + ix(2x dx) - ix2 dx]

as above. Note also that, for example, Yx xdy = J4 y/ydy•

3. The first segment may be parametrized as (1 —t)(—i)+t(2+5i) = 2t+i(6t—1), 0 < t < 1, 
and the second segment as (1 — t)(2 + 5i) + t5i = 2 — 2t + 5i, 0 < t < 1. Thus

f f (z) dz J [i Im y(t) + (Re y(t))2]y'(t) dt

= [i(6t — 1) + 4t2](2 + 6i) dt
0

+ [5i + (2 — 2t)2](—2) dt

= — 28 + 12 i — 8 — 10 i = —12 + 2 i.
3 3

4. Since y is a path and h is continuously differentiable, it follows that y1 is a path. We 
have, with s = h(t),

p d d d d
I f (z) dz = / f (y 1(t))y1 (t) dt = / f (Y(h(t)))Y'(h(t))h(t) dt

Y11 C c C c

= f (y(s))y'(s) ds = f f (z) dz.

(Strictly speaking, this argument is to be applied separately to the subintervals on 
which y! is continuous.)

5. (a) By (2.1.6), f (z2) — f (z 1) = J[] f'(w) dw. If w = (1 — t)z 1 + tz2, we obtain 

f (z2) — f (z 1) = (z2 — z 1) fg f'((1 — t)z 1 + tz2) dt. Since Re f' > 0 by hypothesis, we 
have Re[(f (z2) — f (z1))/(z2 — z1)] > 0. In particular, f(z1) = f (z2).
(b) For f (z) = z + 1 /z, we have f'(z) = 1 — 1 /z2, so in polar form, Re f'(reie) = 
1 — (cos 20)/r2, which is greater than 0 iff r2 > cos 20. By examining the graph of 
r2 = cos20 (a two-leaved rose), w see that for a > 0 and sufficiently large, and 6 > 0 
and sufficiently small, we have Re f' > 0 on Q = C\A, where A is the set of points inside 
or on the boundary of the infinite “triangle” determined by the rays [a, (1 — 6)i, <x) 
and [a, (1 — 6)(—i), <x). Now Q is starlike and contains ±i, with f (i) = f (—i), which 
proves that (a) does not generalize to starlike regions.
(c) Since f'(z0) = 0, either Re f'(z0) = 0 or Im f'(z0) = 0. If the real part is nonzero, 
then Re f' must be of constant sign (positive or negative) on a sufficiently small disk 
centered at z0 . The result then follows from (a). The remaining case is handled by 
observing that Im f' = Re(—if') = Re[(—if)'].
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Section 2.2

1. The statement about pointwise convergence follows because C is a complete metric 
space. If fn — f uniformly on S, then fn (z) - fm(z)| < fn (z) - f(z)| + f(z) - 
fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, 
it is pointwise Cauchy and therefore converges pointwise to a limit function f .If 
Ifn(z) — fm(z)| < e for all n, m > N and all z G S, let m — to to show that 
Ifn (z) — f (z) | < e for n > N and all z G S. Thus fn — f uniformly on S.

2. This is immediate from (2.2.7).

3. We have f'(x) = (2/x3)e-1 /x2 for x = 0, and f'(0) = limh .0(1 /h)e-1 /h2 = 0. Since 
f  (x) is of the form pn(1/x)e-1/x2 for x = 0, where pn is a polynomial, an induction 
argument shows that f  (0) = 0 for all n.Ifg is analytic on D(0, r) and g = f on 
(—r,r), then by (2.2.16), g(z) = ^= ^=0 f(n)(0)zn/n!, z G D(0,r). [Note that f(n)(0) 
is determined once f is specified on (-r, r).] Thus g, hence f, is 0 on (-r, r), a 
contradiction.

(n)

(n)

4. (a) The radius of convergence is at least 1 /a. For if a = to, this is trivial, and if 
a < to, then for a given e > 0, eventually |an+1 /an < a + e, say for n > N. Thus 
|aN+kzN + k| < |aN||z|N|(a + e)z\k,k = 0, 1,... . By comparison with a geometric 
series, the radius of convergence is a least 1 / (a + e). Since e is arbitrary, the result 
follows.
Note that the radius of convergence may be greater than 1/a. for example, let 
an =2ifn is even, and an =1ifn is odd. The radius of convergence is 1, but 
limsupn ... |an+1 /an\ = 2, so 1 /a = 1 /2.
(b) The radius of convergence r is exactly 1/a. Forr > 1/a by (a), and on the other 
hand we have limn ,->._ |an+1 zn +1 /anzn| = aftf, which is greater than 1 if ]z] > 1 /a.
Thus limn .^ anzn cannot be 0, and hence the series cannot converge, for z > 1 /a.
[This is just the ratio test; see (2.2.2).]

5. Since an = f(n)(z0)/n!, we have limsupn ,-x_ |an|1 /n > limsup,.,-,._(bn)1/n. The
radius of convergence of the Taylor expansion bout z0 is therefore 0, a contradiction.

6. (a) As in (2.2.16), write

f(z) 1 f f (w) 
2ni Jr w — z0

1
z-z 0 
— -z 0

dw.

The term in brackets is

z — z0
1 +--------0 + ••• +

w — z0

(^n n+
w — z0

z z-z0 \ 
w — -z0 J

n+1

1 — z-z 0 
w-z0

By (2.2.11), f(z) = kn=0[f(k)(z0)(z — z0)k/k!] + Rn(z), where

Rn(z) =
(z — z 0) n+1 r______ f (w)_______

2ni Jy (w — z)(w — z0)n +1
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(b) If \z — z01 < s < r 1, then |w — z\ > r 1 — s for all w D r, hence by (2.1.5),

\Rn(z) | <
\z — z 0 In+1 Mf (r)

2 n (r 1 — s) r n +1
2nr 1 < Mf (r)--------

r1 — s
(s) n+1

7. We compute 52k=r akAbk = ar (br+1 — br) + • • • + as(bs+1 — bs )= —ar br + br+1 (ar — 
ar +1) + • • • + bs (as- 1 — as) + asbs+1 — as+1bs+1 + as+1 bs+1, and the result follows.

8. (a) If |bn |<M for all n, then k=r |bk+1Aak |<M k=r |Aak | = M(ar — ar+1 + 
ar +1 — ar+2 + • • • + as — as+1) = M (ar — as+1) — 0 as r, s — <x. The result follows 
fron Problen 7.

s s

(b) By the argument of (a), 52k=r ak Abk(z) — 0 as r, s — <x, uniformly for z S S.
9. (a) Let an = 1/n, bn(z) = kn=-01 zk =(1— zn)/(1 — z)ifz = 1. For any fixed z with 

\z\ = 1, z = 1, we have \bn(z)| < 2/\ 1 — z\ < <x for all n, and the desired result follows 
from Problem 8(a).
(b) Let an = 1 /n and bn = n= n-1 sin kx = Im(1 + eix + el2x + • • • + ei (n- 1)x) = 
Im[(1 — einx) / (1 — eix)] (if x is not an integral multiple of 2n; the series converges to 
0 in that case). Now

1 — einx 2 1 — cosnx sin2(nx/2) < 1

1 — eix 1 — cos x sin2 (x/2) — sin2( x/2)

which is uniformly bounded on {x : 2kn + 6 < x < (2k + 2)n — J}. The result follows 
from Problem 8(b).
(c) Let sinnz = sinn(x+iy) =(einz—e-inz)/2i =(einxe-ny—e-inxeny)/2i. Ify =0, 
then (1 /n) sin nz — ^ as n — ^, hence 52n(1 /n) sin nz cannot converge.

10. If z / C+ U R, then

f * (z + h) — f * (z) = f (z + h) — f (z) 
h h

f (z + h) — f (z)---------- =---------- — f' (z) as h — 0. 
h

Thus f * is analytic on C \ R. On R we have z = z and f (z) = f (z) = f (z), so f * is 
continuous on C.

11. The idea is similar to (2.1.12). If T is a triangle in C, express T f* (z) dz as a sum of 
integrals along polygons whose interiors are entirely contained in C+ or in the open 
lower half plane C-, and at worst have a boundary segment on R. But, for example, 
J[a+iS,b + iS] f * (z) dz — f[a,b] f * (z) dz as  — 0 (use the M-Ltheorem). It follows that6
T f* (z) dz = 0, and f* is analytic on C by Morera’s theorem.

12. (a) By (2.2.10), F is analytic on C \ C(z0,r) and F'(z) = fC((z,)(w — z)-2 dw. But 
for any fixed z, the function h given by h(w) = 1/(w — z)2 has a primitive, namely 
1 /(w — z), on C \ {z}. Thus by (2.1.6), F'(z) = 0. By (2.1.7b), F is constant on 
D(z0, r).
(b) We have F(z0) = 2ni [see the end of the proof of (2.2.9)] and thus by (a), 
F (z) = 2 ni for all z D D (z 0 ,r). As in the proof of (2.2.9),

C (z0 ,r)

f(w) J f(zW 1 a-------- dw =------- -------- dw = f (z) by part (b).
w — z 2 ni Jc (z o r) w — z
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13. (a) This follows from (2.2.11), (2.1.4) and (2.1.2).
(b) By part (a) with a = 0, If(n)(0)/n!| < Mrk/rn ^ 0 as r ^ tt, if n > k. Thus 
the Taylor coefficient an is 0 for n>k, and the result follows.
(c) The statement and proof of (b) go through even if k is a nonnegative number, not 
necessarily an integer. Take k =3/2 to obtain (c).

14. If IzI < 1, then 52n=0 IanznI < tt, hence the radius of convergence r is at least 1. If 
r > 1, then the series for f'(z), namely 522=1 nanzn- 1, will converge absolutely when 
IzI = 1, so 522=1 n|anl < tt, a contradiction. Thus r = 1.

15. Let T be a triangle such that T Q Q. By (2.1.8), fT fn(z) dz = 0 for every n. Since 
fn ^ f uniformly on T, we have JT f (z) dz = 0. By Morera’s theorem, f is analytic 
on Q.

Section 2. 3
1. If u + iv = sin(x + iy), then u = sin x cosh y and v = cos xsinhy. Ify = b, then 

(u2 / cosh2 b) + (v2 / sinh2 b) = 1. Thus {x + iy : —n/2 < x < n/2, y > 0} is mapped 
onto {u + iv : v > 0}, {x + iy : —n/2 < x < n /2, y < 0} is mapped onto {u + iv : v < 0}, 
{x + iy : x = n/2,y > 0} is mapped onto {u + iv : v = 0,u > 1}, and finally 
{x + iy : x = —n/2, y < 0} is mapped onto {u + iv : v = 0, u < — 1}, and the mapping 
is one-to-one in each case. Since sin(z + n) = — sin z, the statement of the problem 
follows.

2. If sin(x + iy) = 3, then sin x cosh y =3, cos x sinh y = 0. If sinh y = 0 then y = 
0, cosh y = 1, sin x = 3, which is impossible. Thus cos x = 0, x = (2n + 1)n/2. If n is 
odd then sin x = —1, cosh y = —3, again impossible. Thus the solutions are z = x + iy 
where x = (4m + 1)n/2, m an integer, y such that cosh y = 3 (two possibilities, one 
the negative of the other).

3. Since sin z = z — z3/3! + x5/5! — • • •, the only nonzero contribution to the integral is 
the single term — Jc,(0 1) dz/3!z = — 2ni/6 = —ni/3.

4. This follows from two observations:
(a) 1 + z + z2/2! + • • • + zn/n! ^ ez as n ^ tt, uniformly for IzI < r;
(b) min\z\<r IezI > 0.

5. If f (z) 522=0 anzn, then since f" + f = 0 we have n(n — 1)an + an-2 = 0, n = 2, 3 ....
Since f (0) = 0 and f'(0) = 1, we have a0 = 0, a 1 = 1, hence a2 = 0, a3 = — 1 /3!, a4 = 
0, a5 = 1 /5!, and so on. Thus f (z) = z — z3/3! + z5/5! — z7/7! + • • • = sin z.

6. As in Problem 5, nan — an- 1 = 0, a0 = 1. Therefore f (z) = 1 + z + z2/2! + • • • = ez.

Section 2. 4
1. Take f (z) = sin(1 /z), Q = C \ {0}; then f has zeros at 1 /nn ^ 0 / Q.
2. If f(z) = (z — z0)mg(z) on Q with g(z0) = 0, expand g in a Taylor series about z0 

to conclude that aj = 0 for j<mand am = 0. Conversely, if a0 = ••• = am-1 = 
0,am = 0, then f(z) = n2=m an(z — z0)n =(z — z0)mg(z) with g(z0) = 0. (Strictly
speaking, this holds only on some disk D(z0, r), but g may be extended to all of Q by 
the formula f (z)/(z —z0)m.) The remaining statement of (2.4.5) follows from (2.2.16).
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3. Let f be continuous on the region Q.
(i) If f satisfies (b) of the maximum principle, f need not satisfy (a). For example,
let Q = D(0, 2) and f (z) = 1, \z\ < 1; f (z) = Izl, 1 < \z\ < 2.
(ii) If f satisfies (c), then f satisfies (b), hence (b) and (c) are equivalent (assuming Q
is bounded). This is because f must satisfy (c) if we take M = A, and consequently 
f satisfies (b).
(iii) If Q is bounded and f is continuous on Q, then (d) implies (b), hence in this case 
(b), (c) and (d) are equivalent. For let z0 be a point on the boundary of Q such that 
If (z0)| = Mo = max{\f(z)| : x G dQ}. Since z0 G dQ, there is a sequence of points 
zn G Q with zn ^ zo, hence \f (zn)| ^ \f (zo)| = Mo. Thus A = sup{f (z)| : z G Q} > 
M0. If \f\ <M0 on Q, then \f\ <Aon Q.

4. In a neighborhood of zo, we have

f ( z ) = am ( z — z o) m + am +1( z — z o) m +1 + • • •
g(z) bn(z - zo)n + bn+1(z - zo)n +1 +------

where am =0,bn = 0 (that is, f has a zero of order m and g a zero of order n at zo). 
Then

{
am/bm if m = n
„ -r0 if m > n .
to it m < n

(To handle the last case, apply the second case to g/f.)

5. Immediate from (2.4.12).
6. Im f = 0 on dD, hence by part (d) of the maximum and minimum principles for 

harmonic functions (see (2.4.15) and its accompanying remark), Im f(z) = 0 for all 
z e D. Thus f is constant on D by the Cauchy-Riemann equations.

7. By the maximum principle, we need only consider dK. Now sin(x + iy) = sin x cosh y+ 
i cos x sinh y. If x = 0 or 2n, then sin(x + iy) = i sinh y. If y = 0, then sin(x + 
iy) = sin x. If y = 2n, then sin(x + iy) = cosh 2n sin x + i sinh 2n cos x. Since 
cosh 2n > sinh 2n > 1, it follows that the maximum modulus is attained at x = n/2 
or 3n/2,y = 2n, and max f| = cosh2n.

8. Choose zo G K such that f(zo)| = max{f(z)| : z G K}. If zo G dK, we are finished, 
so assume that zo e Ko. By (2.4.12a), f is constant on the component Qo of Q that 
contains zo, which proves the “furthermore” part. To see that |f (zo)| = max{|f (z)| : 
z G dK}, note that by continuity, f must also be constant on Qo C Ko C K. Since 
Qo is bounded, its boundary is not empty. Choose any z 1 G dQo. Then f (zo) = f (z 1) 
since z 1 G Qo, so f(z 1)| = max{f(z)| : z G K}. But z 1 G K and z 1 is not an 
interior point of K. (If z1 G Ko then D(z1, r) C Ko for some r>0, and it would 
not be possible for z1 to be a boundary point of a component of Ko .) Consequently, 
z 1 G dK, and

max{f(z)| : z G K} = f(z 1)| < max{f(z)| : z G dK} < max{f(z)| : z G K}.

The result follows.
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9. By Problem 8, maxzEq \f (z)| = maxzEdq If (z)|. But dQ = Q\Q = dQ, and the result 
follows.

10. Take u =Imf where f is a nonconstant entire function that is real-valued on R. For 
example, f(z) = ez,u(x + iy)=ex sin y;orf(z)=z, u(x + iy)=y.

11. If Q is disconnected and A is a component of Q, let f (z) = 1 if z A A, and f (z) = 0 
if z / A. Let g(z) = 0 if z A A, and g(z) = 1 if z / A. Then fg = 0 but f = 0,g = 0. 
Assume Q connected, and let f, g be analytic on Q with fg = 0. If f (z0) = 0, then f 
is nonzero on some disk D(z0, r), hence g = 0 on D(z0,r). By (2.4.8), g = 0onQ.

12. The given function can be extended to a function f * analytic on S U {z : Im z < 0} 
by the technique of the Schwarz reflection principle (2.2.15). Since f *(z) = z  — 2z2 

for z A (0, 1), the identity theorem (2.4.8) implies that this relation holds for all 
z S S U {z : Im z < 0}. Thus if z S S we have f (z) = z  — 2z2, and in particular, 
f(i) = 3.

4

4

13. Apply Liouville’s theorem to 1/f .

14. No, by the identity theorem. If S is an uncountable set, then infinitely many points 
of S must lie in some disk D(0, r), hence S has a limit point.

15. Fix the real number a. Then sin(a+p) — sin a cos p—cos a sin p is an analytic function 
of p, and is zero for real p, hence is identically zero by the identity theorem. A 
repetition of this argument with fixed p and variable a completes the demonstration.

16. If f = u + iv, then \eif | = e-v < 1 (because v > 0 by hypothesis). By Liouville’s 
theorem, eif is constant, hence |eif | = e-v is constant, so v is constant. But then by 
the Cauchy-Riemann equations, u is constant, so f is constant.

17. We have (f/g)' = (gf' — fg')/g2, and by the identity theorem, gf' — fg' is identically 
zero on D(0, 1). The result follows.

18. By Liouville’s theorem, f(z) — ez sin z = c where |c| < 4. Since f(0) = 0 we have 
c =0,sof(z)=ez sin z.

19. By the maximum and minimum principles for harmonic functions, Re(f — g) is iden
tically zero. Therefore f — g is constant.

20. If f is never 0 and {f (zn)} is unbounded whenever \zn\ ^ 1, then 1 /f (z) ^ 0 as 
\z\ ^ 1. By the maximum principle, 1 /f = 0, a contradiction.

21. Let f = u + iv with f analytic on C. Then |ef | = eu > e0 = 1, hence |e-f| < 1. By 
Liouville’s theorem, e-f is constant. But then |e-f |, hence |ef |, is constant. Since 
|ef | = eu , the result follows.

22. If f is never 0 in D(0, 1) then by the maximum principle, max^< 1 11 /f (z)| < 1, hence 
|1/f (0)| < 1. This contradicts f(0) = i.

23. If z = x + iy then u = Rez3 = x3 — 3xy2 . By the maximum principle, it suffices to 
consider u on each of the four line segments forming the boundary of the square. By 
elementary calculus we find that the maximum value is 1 and occurs at x =1,y =0.

24. If K is a compact subset of D(0, 1), then K C D(0, r) for some r A (0, 1). If M = 
max{\f(z)| : \z\ < r}, then [\f (rz)\/M] < 1 on D(0, 1). By (2.4.16), [\f(rz)\/M] < \z\ 
on D(0, 1). Make the substitution z = w/r to obtain \f(w)| < M\w\/r on D(0,r), 
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hence on K . The result now follows from the uniform convergence of the series 
W |w|", |w| < r.

25. If zn ^ z G C(0, 1), then for some k, ekz G A 1, so f (ekzn) ^ 0, and therefore 
F(zn) ^ 0. By (2.4.12c), F = 0. Now for any z G D(0, 1), F(z) = 0, so f (elhl3z) = 0 
for some h =0, 1, . . . ,n.Thusf has uncountably many zeros, hence a limit point of 
zeros, in D(0, 1). By the identity theorem, f = 0.

26. (a) By Problem 9, {fn} is uniformly Cauchy on Q, hence by (2.2.4), {fn} converges 
uniformly on Q. By (2.2.17), f is analytic on Q (and continuous on Q by the uni
form convergence). The proof of (2.2.17), in particular the formula (2.2.11), may be 
adapted to show that each derivative f,(.k) extends to a continuous function on Q, and 
that fnk) ^ f (k) uniformly on Q for all k.
(b) If p 1 ,p2,... are polynomials and pn ^ f uniformly on C(0, 1), then by (a), pn 

converges uniformly on D (0, 1) to a limit function g, where g is analytic on D (0, 1) 
and continuous on D(0, 1) (and of course g = f on C(0, 1). Conversely, if f is the 
restriction to C(0, 1) of such a function g, then f can be uniformly approximated by 
polynomials. To see this, let {rn } be an increasing sequence of positive reals converg
ing to 1, and consider gn(z) = g(rnz), |z| < 1/rn. Since gn is analytic on D(0, 1/rn), 
there is a (Taylor) polynomial pn such that |pn(z) - gn(z)| < 1/n for |z|<1. But gn 

converges uniformly to g on D (0, 1) by uniform continuity of g on D (0, 1). The result 
follows.

Chapter 3
Sections 3.1 and 3.2
1. (a) This follows because loga is discontinuous on the ray Ra 

(b) Let U be as indicated in Figure S3.2.1, and define
[see (3.1.2b)].

( ) = Jln \z\ + id(z), 0 < 0 < 2n,
g |Jii \z\ + i0(z), n < 0 < 3n,

for z 
for z

G Q1

G Q2.

Locally, g(z) coincides with one of the elementary branches of log z , hence g is an 
analytic version of log z on Q.

2. First, we show that f does not have an analytic logarithm on Q. For f'(z)/f (z) = 
[1 /(z — a)] + [1 /(z — b)], so that if y describes a circle enclosing both a and b, (3.2.3) 
yields Yy[f'(z)/f (z)] dz = 2ni(n(y, a)+ n(Y, b)) = 4ni = 0. By (3.1.9), f does not have 
an analytic logarithm on Q. However, f has an analytic square root. For if 00 is the 
angle of [a, b] (see Figure S3.2.2), then define

(z — a)1 /2 = \z — a\ 1 /2 exp(i2 arg(z — a)) 

(z — b)1 /2 = \z — b\ 1 /2 exp(i2 arg(z — b))
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b.X

a 9o

Figure S3.2.2
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where the angles are chosen in the interval [90, 90 +2n). Then g(z) = (z — a)1 /2(z — b)1 /2 

is the desired analytic square root. The key intuitive point is that if z traverses a circle 
enclosing both a and b, then the arguments of (z — a)1/2 and (z — b)1/2 each change 
by n, so that g(z) returns to its initial value. This shows that the set S = {z : z — a = 
rei0, r > lb — a|} is not a barrier to analyticity.

Remark

f(z) = z2 on D(0, 1) \{0} gives an easier example of an analytic function that is never 
0 and has an analytic square root, but not an analytic logarithm.

3. By (3.1.11) we have (a) implies (b), and (b) implies (c) is obvious. To prove that (c) 
implies (a), let gk be analytic on Q with gk = f. Then f'/ f = kg'k/ gk, so that if y is 
a closed path in Q, we have 

— g g—— dz =
2ni Jy gk (z)

TT) dz ' 0
2nik Jy f (z)

as k — ^ through an appropriate subsequence. By (3.2.3), n(gk ◦ y, 0) — 0 as k — ^. 
Since the index must be an integer, n (gk oy, 0) = 0 for large k. Therefore f fz) dz = 0, 
and the result follows from (3.1.9).

4. As in (3.2.4d), 0 S y* IJ Y*• If Y = Y2/y 1, then 11 — y| < 1 + |yl, which implies that 
y (t) can never be real and negative. Thus Arg ◦y is a continuous argument of y, hence 
n(y, 0) = 0. As in (3.2.4d), n(y1, 0) = n(y2, 0).

The hypothesis is satisfied by all possible values of y1(t) and y2 (t) except those lying on 
a line through the origin, with y1(t) and y2 (t) on opposite sides of the origin. Thus if 
initially the angle between y1(t) and y2 (t) (visualizing a complex number z as a vector 
in the plane pointing from 0 to z) is less than n and remains less than n for all t, then 
y1 and y2 have the same net number of revolutions about 0.

The interpretation of the hypothesis is that the length of the leash is always less than 
the sum of the distances of man and dog from the tree.

5. Suppose 9 is a continuous argument of f. Let y(t) = eit, 0 < t < 2n. Since z = 
lzlei0(z) = ei(z) when lzl = 1, we have

ei = ei)(eit), 0 < t < 2n.

Thus t and 9(ei) are each continuous arguments of y, so by (3.1.6c), 9(ei) = t + 2nk 
for some integer k. Let t — 0 to obtain 9(1) = 2nk, and let t — 2n to obtain 
9(1) = 2n + 2nk, a contradiction.

Note that 9(z),z S S, if it is to exist, must be a continuous function of z, that is, a 
continuous function of position in the plane, as opposed to 9(ei), 0 < t < 1, which 
is a continuous function of the “time parameter” t. If we specify 9(1) = 0 and move 
around the circle, continuity requires that 9(1) = 2n, which produces a contradiction. 
(“A function is a function is a function.”)
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6. Since f is (uniformly) continuous on S, m = min{\f (z) | : z G S} > 0, and for some 
6 > 0 we have \f (z) — f (z')| < m whenever z, z' G S, \z — z'\ < 6. Break up S into 
closed squares whose diagonal is less than 6. Let A be a particular square, and pick 
any z0 G A. Then |z — z0 | <6for every z G A, hence |f (z) — f (z0)| <m.Thus 
f(z) G D(f (z0), m), and it follows just as in (3.1.7) that f has a continuous logarithm 
on A.

Now let A and B be adjacent squares having a common side. If eg1 = f on A and 
es2 = f on B, then for some integer k, g 1 — g2 = 2nik on the common side. If we 
replace g2 by g2 +2nik, we produce a continuous logarithm of f on A U B. Continuing 
in this fashion, we may construct a continuous logarithm on each horizontal strip of S, 
and then piece the horizontal strips together to cover all of S . Formal details are not 
difficult to supply.

Remark: The same technique works if S is an infinite rectangular strip.

7. If D is a disk contained in Q, then f has an analytic logarithm h on D. Thus g — h is 
constant on D, so g is analytic on D, hence on all of Q.

8. We will show that f and g are entire functions such that f2 + g2 = 1 iff for some entire 
function h, we have f = cos h and g = sin h. The “if” part is immediate, so consider 
the “only if” assertion. Since f + ig is entire and never 0, f + ig has an analytic 
logarithm h0 on C.Ifh = —ih0, then f + ig = eih and f — ig =(f + ig)-1 = e-ih. 
Consequently, f = (eih + e-ih)/2 = cos h and g = (eih — e-ih)/2i = sin h.

9. (a) Since (f/g)n = 1, f/g is a continuous map of S into {e®2nk/n : k = 0, 1,... ,n — 1}. 
Since S is connected, the image must be connected. Therefore the image consists of a 
single point, so f/g = e®2nk/n for some fixed k.
(b) Take S = [ — 1, 1] and let f (x) = g(x) = ^x, 0 < x < 1; f (x) = iy/ix], — 1 < x < 0; 
g(x) = — iy/ix], — 1 < x < 0. Then f 2(x) = g2 (x) = x for all x G S.

Section 3. 3

1. By (i) of (3.3.1), J[f(ww—ffz)] dw = 0, and the result follows from (3.2.3).

2. In order to reproduce the proof in the text, two key observations must be made.
(a) Theorem 3.2.3 holds when y is a cycle [this was noted in (3.3.5)].
(b) For any cycle y = k 1 Y 1 + ' ' ' + kmYm, we have n(y, z) = 0 for all sufficiently large \z\. 
This holds because if |z | is large enough, then for each j , z will be in the unbounded 
component of C \ yj. Thus n(y, z) = 0 by (3.2.5).

With these modifications, the proof in the text goes through.

3. By (3.2.5), n(y, z) is locally constant, and the result then follows from (2.2.10) and (ii) 
of (3.3.1).

4. By partial fraction expansion,

1 1 1/2 1/2
--T------ -- ----------- '--------- -- -------  -- -------  .
z 2 — 1 (z — 1)( z + 1) z — 1 z +1
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By the Cauchy integral formula [(ii) of (3.3.1)],

1 11Yy z—L dz = 2ni(2 - 2) = 0■

5. Apply Problem 3 with k =3,f(w)=ew + cosw,z = 0, to obtain

/ ez+cosz dz =24 n (Yj, 0) f (3)(0) = nnin (Yj, 0) ■ z 3! 3

Since n(y 1,0) = — 1 ,n(Y2,0) = -2, the integral on Y 1 is —ni/3 and the integral on y2 
is — 2 ni/3.

6. By (3.3.7), we may replace y by Yo(t) = cos t + i sin t, hence J dz/z = J dz/z = 2ni. 
But

—a sin t+ib cost 
a cos t +ib sin t

dt.

Take imaginary parts to obtain

2 n = ab
cos2 t + sin2 t 

a2 cos2 t + b2 sin2 t

and the result follows.

Section 3. 4
1. (a) Let Q = C \ {0}. Then C \ Q = {0, to}, which is not connected. If f (z) = 1 /z on 

Q and y describes any circle with center at 0, then f f (z) dz = 2ni = 0.
(b) Let Q be the union of two disjoint disks D1 and D2 . Then Q is disconnected, but 
C \ Q is connected.

2. No. For example, the situation illustrated in Figure 3.4.4 can occur even if Q is 
connected. In this case, there is no way to replace the cycle Y by a single closed path.

3. (a) Since 1 — z is analytic and never 0 on the simply connected open set C \ r1, it has 
an analytic square root f. If we specify that -x/! = 1, then f is determined uniquely, 
by Problem 9(a) of Section 3.2. A similar analysis applies to g.
(b) Since f2 = g2 and f(0) = g(0) = 1,f= g on any connected open set containing 
0, by Problem 9(a) of Section 3.2. In particular, f = g below r. Suppose f = g above 
r. Since f is analytic on r2 \ {1} and g is analytic on r1 \ {1}, f can be extended 
to a function analytic on C \{1}.Thus1— z has an analytic square root on C \ {1}, 
so that z has an analytic square root on C \ {0}, a contradiction. (If h2 (z)=z with 
h continuous on C \ {0}, then h(eit) = eit/2k(t), where k(t) = ±1. A connectedness 
argument shows that either k(t) = 1 or k (t) = — 1, and in either case we obtain a 
contradiction by letting t ^ 0 and t ^ 2n.) It follows that f (z0) = —g(z0) for at least 
one point z0 above r, and as above, we must have f = —g at all points above r.
(c) The function h may be obtained by expanding g in a Taylor series on D(0, 1). Thus 
h(z) = f (z), z G D(0, 1), z below r1, and h(z) = — f (z), z G D(0, 1), z above r1.
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4. It follows from part (a) of (3.4.3) that if Q C C, then Q is open in C iff Q is open in C. 
T C T7 • i 1 i C z?~1 i 1 /Al \ T S’ • • /Al ZTO j 1 j 1 1 1 • C _ T TIf K is a compact subset of C, then C \ K is open in C. On the other hand, if toe V, 
where V is open in C, then C \ V is a closed and bounded (hence compact) subset of C. 
Thus the open sets in C are of two types: (i) open subsets of C, and (ii) complements 
of compact subsets of C. Consequently, C (with the topology induced by the chordal 
metric) is homeomorphic (via the identity map) to the one point compactification of C.

Chapter 4

Section 4. 1

1. (a) If f has a removable singularity at z0, then as in the proof of (4.1.5), f can be 
defined or redefined at z0 so as to be analytic on D(z0 ,r) for some r>0. Thus f is 
bounded on D'(z0, 8) for some 8 > 0, in fact f is bounded on D(z0,8). Conversely, if 
f is bounded on D'(z0,8), let g(z) = (z — z0)f(z). Then g(z) ^ 0 as z ^ z0, so by 
the first equivalence of (4.1.5a), g has a removable singularity at z0 . Since the Laurent 
expansion of g has only nonnegative powers of z — z0 , it follows that f has either a 
removable singularity or a pole of order 1 at z = z0 . The second case is impossible by 
the first equivalence of (4.1.5b), and the result follows.
(b) If f has a pole of order m at z0, then (z — z0)mf (z) ^ K = 0 as z ^ z0, so 
If (z)| ^ to. Conversely, if If(z)| ^ to as z ^ z0, then by (4.1.5a) and (4.1.6) (which 
we use instead of (4.1.5c) to avoid circularity), f cannot have a removable or essential 
singularity at z0 ,sof must have a pole.

2. (a) Since limz ,nn (z — nn)z/sin z = nn/ cos nn = (— 1)nnn, there are, by (4.1.5), 
simple poles at z = nn, n a nonzero integer. Since z/ sin z ^ 1 as z ^ 0, there is a 
removable singularity at z = 0. Now f (1 /z) = 1 /z sin 1 /z has poles at z = 1 /nn,n = 
± 1, ± 2,..., so 0 is a nonisolated singularity of f (1 /z), hence to is a nonisolated 
singularity of f (z).
(b) There is an isolated essential singularity at 0 since e1 /x ^ to as x ^ 0+, e1 /x ^ 0 
as x ^ 0-. There is a removable singularity at to since ez is analytic at 0.
(c) There is an isolated essential singularity at 0 since z cos 1/z = z(1 — 1/2!z2 + 
1 /4!z4 ), z = 0. There is a simple pole at to because (1 /z) cos z has a simple pole 
at 0.
(d) There is a pole of order 2 at 0 since z2 f (z) ^ 1 as z ^ 0. There are poles of order 1 
at z = i2nn, n = ± 1, ±2, .. . since (z — i2nn)/ z(ez — 1) ^ (1 /i2nn)(1 /ei2nn) = 1 /i2nn 
as z ^ i 2 nn.
(e) There are simple poles at z = nn, n = 0, ± 1, ±2,... since (z — nn) cos z/ sin z ^ 
cos nn/ cos nn = 1 as z ^ nn. There is a non-isolated singularity at to because to is 
a limit point of poles.

3. We have f (z) = 1 — z+1 + z-2, and

11 -1 ~
= =< — = —I.(z + 1)n, Iz + 11 < 1;

z (z+1)— 1 1 — (z+1) n=0
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2
2z

2 _ ~2/3 _ _ 2 y(1 /3)n (z +1)n \z +11 < 3
(z +1) _ 3=1 _ 1 (z +1)_ 3 /3) (z' +1) ’ |z +11 < 3 ■

Thus

3 y r 2
f(z)_ _ — _E 1+3nH (z + 1) 

n =0 L J

0 < \z + 11 < 1 ■

We may obtain a Laurent expansion for 1 < \z + 1 \ < 3 by modifying the expansion 
of 1 /z, as follows:

Therefore

1 _ 1
~z _ (z +1) _ 1

1 
z +1

z +1

1 y 1
-----y?---------r-, \z + 1 \ > 1
+ 1 n=0 (z + 1) n ’

2 y 1 2 y
f(z) _ _ . y . _ y <1 /3)n(z+1>n, 1 < \z+1 \ < 3.

For \z +1 \ > 3, the expansion 1 / z n=0 1 /(z+1)n +1 is acceptable, but the expansion
of 2/(z _ 2) must be modified:

2
z +1

z +1

y

y 3n (z + 1)-n.

n=0

Thus

f (z)_
y 1 y 3n-1
n=1( z+1) n+2 £( z+1) n

y P1 + 2(3n-1)_
_ n=2 [ (z+1) n _ ’ \z + 1 \ > 3 ■

1 1

2 _ 2
z _ 2 _ (z + 1) _ 3

3
z + 1

1
2

z + 1

4. We have

1 1 / 2 y
z+^Tryj_ £ - 1>nn2‘+1, \ z \<2

and

1 1/z y
.. . _ ID _ 1> n 2 n/zn+1’ \ z \> 2-

Now 1 /(1 _ z) _ y= n=0 zn, \ z\ < 1, and therefore by differentiation, 1 /(1 _ z)2 _ 
yy=1 nzn-1, \ z\ < 1. Also

1
1 z

_1/z y 1
1 _ 1 /z n=0 zn +1 ’ \ z \> 1 ’
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hence

(1 -1 z )2 1=0,

Thus

“ n+1 . . 1
zn +2 , IZ > 1.

f (z) = 1 + Z[n + 1 + (- 1)n2-(n+1)]zn, 0 < z < 1 n=,

= 1 + n + 1 . __ 1)n2—(n+1)zn 1 < izl < 2
= z + 2^ zn+2 + zL 1) 2 z , 1 < z < 2 z n=, z n=,

= - + £[n - 1 + (-1)n— 12n— 1]JL, \z\ > 2.
z zn

n=2

Remark

The coefficients of the Taylor expansion of f (1/z) about z = 0 are the same as the 
coefficients of the Laurent expansion of f(z) valid for lzl > 2, that is, in a neighborhood 
of to. For this reason, the expansion of f (z) for \z\ > 2 may be called the “Taylor 
expansion of f about to .”

5. Since g(z) = z/(ez — e-z) ^ 1 /2 as z ^ 0, g has a removable singularity at z = 0. 
We may compute the derivatives of g at z = 0 to form the Taylor expansion g(z) = 
(1 /2) - (1 /12)z2 + (7/720)z4---,0 < \z\ <n. Thus

f(z)
1 117

z 2( ez - e-z) = 2z3 - 122 + 720 z + '" , 0 < z <n

Alternatively,

T1=f
g(z) =

1 z2 z42 t1+ 3! + 5!+ " anz ,

and the Taylor coefficients may be found by ordinary long division, or by matching 
coefficients in the equation

z2 z4t1+ 3! + 5!+ " • (a o + a 1 z + a 2 z2 + • • •) — 2

6. The function

111 1
sin z z z - n z + n

is analytic for lzl < 2n, hence has a Taylor expansion ^2n=0 anzn. Also, 

1 1 1
z z - n z + n
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has a Laurent expansion ^2^==-x bnzn, n < \z\ < 2n; the expansion may be found by 
the procedure illustrated in Problems 3 and 4. Addition of these two series gives the 
Laurent expansion of 1 / sin z,n < \z\ < n.

7. Expand R(z) in a Laurent series about z = z1 :

A1,0R(z) =
(z - z1 )n1

A1,1 

(z - z 1) n1 —1
+ ... + A1 ,n1 —1 + R * (z), 

z - z1
+

where R1* is analytic at z1 and the representation is valid in some deleted neighborhood 
of z1 . Define

n1-1 A
R1( z ) = R(z) - g (z - z 1)

Then R1 is a rational function whose poles are at z2 ,... ,zk with orders n2 ,... ,nk , 
and R1 has a removable singularity at z1 since R1 = R1* near z1 . Similarly, expand 
R1 (z) in a Laurent series about z2 to obtain

R 2( z) = R1 (z) - V  ---- A—
2( ) 1 () =0 (z - z2)n2

where R2 is a rational function with poles at z3,... ,zk with orders n3 ,... ,nk . Con
tinue in this fashion until we reach Rk :

k
Rk (z) = Rk—1(z) - V  -----A-—

’ k ’ =0 (z - zk)nk
= R(z)

i=1
Bi(z).

Now Rk-1 has a pole only at zk, so Rk is a rational function with no poles, that is, a 
polynomial. But R(z) — 0 as z — ^ by hypothesis (degP < deg Q), and Bi(z) — 0 
as z — <x by construction. Thus Rk(z) = 0. Finally,

dr
lim TV [(z - zj)nj Bm (z)] = 0, m = j,

z^Zj dzr

and when m = j, the limit is

dr nj-1

lim - V Aji (z - zj)i = r!Aj 
■ dzr ji j jj i=0

Hence

dr
r!Aj,r = zl£m — [(z - zj)nj R(z)]

as desired. Now

1 AB C D
z(z + i)3 (z + i)3 + (z + i)2 + z + i where
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A = [ zR (z)] — 0 = -3 = i

B = (z + i )3 R (z)] z—-i = — = i
—i

Thus

C = [d [(z + i )3 R (z)] 
dz z—-—i

— 1 
z2

= 1
z—-i

1 I" d2
D = 2! d [(z + i)3R(z)] —i.

z—-i

' 1 ’ 
z 3

1 i i 1 i
z(z + i)3 z (z + i)3 + (z + i)2 z + i

8. The series converges absolutely on U = {x + iy : — 1 <y< 1}, uniformly on {x + iy : 
— 1 + e < y < 1 — e} for every e > 0, hence uniformly on compact subsets of U. The 
series diverges for z / U. For

00
— e-neinz

n=0

0
e (iz- 1) n =

n=0

1
1 — eiz-1

if \eiz 11 < 1, that is, e (y +1) < 1, or y > — 1; this series diverges if \eiz 11 > 1, that is, 
y < — 1. The convergence is uniform for \eiz-1 \ < r < 1, that is, y > — 1 — e. Similarly,

0
e-ne-inz

n=0

1
1 — e-iz-1

if \e iz 1 \ < 1, that is, y < 1, with uniform convergence for y < 1 — e. The result 
follows; explicitly, we have

0

e-n sin nz
n=0

11
2 i 1 — eiz-1 1 — e-iz-1

1
z U U.

9. (a) Since C is compact, f is bounded. The result follows from Liouville’s theorem.
(b) If f (z) = E0 bmzm, z C C, then g(z) = f (1 /z) = E °°=o bmz-m, z C C,z = 0, a

Laurent expansion of g about z = 0. By (4.1.3),

bm = 7;— g (w) wm 1 dw,
2ni J|z| = 1 /r

hence

\bm\ < max{\g(z)\ : \z\ = 1 /r}(1 /r)m = max{\f (z)\ : \z\ = r}(1 /r)m 
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which approaches 0 as r — to if m > k. Thus bm = 0 for m > k, and the result 
follows.
(c) The argument is the same as in (b), except now we know by hypothesis that bm is 
nonzero for only finitely many m, so it is not necessary to use (4.1.3).
(d) Let the poles of f in C be at z1,... ,zk, with orders n1,... ,nk. (If f had infinitely 
many poles, there would be a nonisolated singularity somewhere in C.Letg(z)= 
f (z) IIk=1 (z - Zj)nj. Then g is analytic on C and has a nonessential singularity at to . 
By (c), g is a polynomial, hence f is a rational function.

10. (a) Pole of order 2 at z = 0, isolated essential singularity at to.
(b) Isolated essential singularity at z = 0, pole of order 1 at z = -1, removable singu
larity at to.
(c) z csc z — 1 as z — 0, hence csc z — k/z has poles of order 1 at z = nn,n = 
±1, ±2,..., and a pole of order 1 at z = 0 as long as k =1. Ifk = 1, there is a 
removable singularity at z = 0. The point at to is a nonisolated singularity.
(d) If z is real and near 2/[(2n + 1)n], n = 0, ± 1, ±2,..., then exp[sin(1 / z)(cos(1 / z)] 
will be near to or 0 depending on the sign of z — [2/(2n+1)n]. By (4.1.5), exp[tan(1 / z)] 
has an isolated essential singularity at z = [2/(2n + 1)n]. There is a nonisolated sin
gularity at 0 and a removable singularity at to.
(e) sin(x + iy) = nn when sin x cosh y + i cos x sinh y = nn + i0. Thus if n = 1, 2,..., 
then y = cosh“1 nn, x = (4k + 1)n/2, k an integer. (cosh“1 nn refers to the two num
bers u and —u such that coshu = nn.) If n = — 1, — 2,..., then y = cosh“ 1(—nn),x = 
(4k + 3)n/2, k an integer. If n = 0, then x = kn, y = 0, k an integer. If z0 = x0 + iy0 

is any of these points, then by Problem 4 of Section 2.4,

1 1
lim 

z -z 0

z — z 0 

sin(sin z) cos(sin z0)cos z0 cos nn cos z0

Now cos(x0 + iy0) = cos x0 cosh y0 — i sin x0 sinh y0, and this is nonzero, by the above 
argument. Thus all the points are poles of order 1. The point at to is a nonisolated 
singularity.

11. Let f (z) = (z — a)/(z — b) and U = C \ [a, b]. For any closed path y in U,

----- d d^ d dz = ----- [ —-------------------dz = n(y, a) — n(y, b) = 0
2nijy f (z) 2nijz — a z - b> ( h ) ( h )

because a and b lie in the same component of C \ y* . (Note that y* C U, hence 
[a, b] C y* = 0.) By (3.1.9), f has an analytic logarithm g on U. Now g' = f'/f [see 
(3.1.9)], hence

1 1
g(z) = z-a b

oo
=s (an — bn) 

zn +1
|z| > max(|a|., |b|)

= E (bn+r — an+r) zn. M < "■"(W.lbl).
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Thus

g(z) = log
z-a

v - V =

oo 

k+E 

n=1

bn - an 

nzn
Iz > max(|a|, |b|),z G U

and

g (z) = k' +
o
E n

n=1 Vn aV ,
< min(|a|, |b|), z G U

where k is any logarithm of 1 and k' is any logarithm of a/b.

12. If f (C) is not dense in C, then there is a disk D(z0, r) such that D(z0, r) A f (C) = 0. 
Thus for all z G C, If (z) — z01 > r, and the result now follows from Liouville’s theorem 
applied to 1/[f (z) - z0].

13. If P(z) n=0 ajzj, then P(f (z)) = an[f (z)]n + • • • + a 1 f (z) + a0. By hypothesis,
(z—a)m f (z) approaches a finite nonzero limit as z ^ a, hence so does (z—a)mn [f (z)]n. 
But if j < n, then (z — a)mn f (z)j = (z — a)mn f (z)n/[f (z)]n-j ^ 0 as z ^ a; the 
result follows.

Section 4. 2
1. By (4.2.7), n(f ◦ y, 0) = — 1. Geometrically, as z traverses y once in the positive 

sense, the argument of z — 1 changes by 2n, the argument of z + 2i also changes by 
2n, and the argument of z — 3 + 4i has a net change of 0. Thus the total change in 
the argument of f (z) is 2n — 2(2n) = — 2n, hence n(f ◦ y, 0) = — 1.

2. Let y describe the contour of Figure S4.2.1, with r “very large”. Now f(z) = z3 — 
z2 +3z +5, so f(iy)=5+y2 + i(3y — y3). Thus f ◦ y is as indicated in Figure 
S4.2.2. Note that in moving from B to C, the argument of z changes by n. Since 
f (z) = z3(1 — z-1 + 3z-2 + 5z-3) = z3g(z) where g(z) ^ 1 as z ^ <x>, the argument 
of f (z) changes by approximately 3n. Note also that f (z) = f (z), so that f ◦ y is 
symmetrical about the real axis. It follows that n(f ◦ y, 0) = 2, so that f has two 
roots in the right half plane. (In fact f(z) = (z + 1)[(z — 1)2 + 4], with roots at 
—1,1+2i,1—2i.)

Figure S4.2.1
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Figure S4.2.2

3. Let f (z) = anzn + • • • + a 1 z + a0, an = 0, g(z) = anzn. Then if y describes a sufficiently 
large circle centered at the origin, \f — g\ < |g| on y*, so by Rouche’s theorem, f has 
exactly n zeros inside y , counting multiplicity.

4. (a) Integrate f (z) = zeiaz/(z4 + 4) around the contour y indicated in Figure S4.2.3. 
Then Yf f (z) dz = 2ni^Y residues of f at poles in the upper half plane. The poles of 
f are at \ 2e'4, V2ei3n/4, V2ei5n/4, V2ei7n/4. The residue at z = z0 is

(z — z0)zeiaz z0eiaz0
lim ------------------ =------- 5—.
z -z 0 z4 +4 4 z 3

Thus

2 i 2niI f (z) dz = —
-'7 4

exp( ia/2 eln/4) exp( ia^2ei3 n/4)
2 ein2 + 2 ei3 n/2

which reduces to

4[exp( iaV2( \ 2 / 2 + ;\ 2 / 2)) — exp( iaV2(—V2 / 2 + ;\ 2 / 2))]

= 4e-a (ei — e~ia) = 2ie-a sin a.

An application of (2.1.5) shows that the integral off around the semicircle approaches 
0 as r — ^. Thus in the expression

I f (x) dx + it f (z) dz = — '''a sin a,
-r z=re , 2

0 <t<n
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we may let r — ^ to obtain

x4 +4
xelaX dx = 2ie-a sin a.

Take imaginary parts to obtain

x sin ax 
x4 +4

dx —e a sin a.

(b) By the analysis of (a), the integral is 2ni times the sum of the residues in the

Figure S4.2.3

upper half plane of

z z
(z2 + 1)(z2 + 2z + 2) (z - i)(z + i)(z - (-1 + i))(z - (-1 - i)).

The residue at z = i is

i _ 1 _ 1 - 2 i
2 i (i2 + 2 i + 2) = 2(1 + 2 i) = 10 .

The residue at -1 + i is

-1 + i 1 _ -1 + i _ -1 + 3 i
[(-1 + i)2 + 1] 2i = 4 + 2i = 10 .

Thus the integral is 2ni(i/10) = -n/5.

(c) The integral is 2ni^ residues of 1 /(z2 - 4z + 5)2 in the upper half plane. Now 
z2 - 4z + 5 = (z - 2)2 + 1, so there are poles of order 2 at 2 + i and 2 - i. By (4.2.2d), 
he residue at 2 + i is

d 1
dz (z - (2 - i))2

-2 -2
(z - (2 - i))M z=2+i 8i3 .

The integral is 2ni/4i = n/2.

(d) The integral is

f2 n ei +' z z + z-1 dz
0 2(5 + 2(ei + —)) d J \z=i 2(5 +2(z + z- 1)) Tz 
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which is 2ni times the sum of the residues of the integrand inside the unit circle. 
Multiply numerator and denominator of the integrand by z to get

z2 +1 z2 +1
2iz(2z2 +5z + 2) 2iz(2z + 1)(z + 2)'

The residue at z = 0 is 1/4i, and the residue at z = -1/2 is

5/4 -5
2i(-1/2)2(3/2) 12i.

Thus the integral is 2ni(—2/12i) = — n/3.

(e) Since the integrand is an even function, we may integrate from —to to to and divide 
by 2 to get n^2 residues of 1 /(z4 + a4) in the upper half plane. By a computation 
similar to (a), the residue at ae™/4 is 1 /(4a3ei3n/4), and the residue at ae13n/4 is 
1 /(4a3e19n/4). Thus the integral is

ni
~T^\e 4a3

—in/4 + e-i3 n/4) = (sin n + sin 3n) = V2- .̂ 
4a3 4 4 4a3

(f) We may integrate eix/(x2 + 1) from —to to to, divide by 2, and take the real part 
to get Re(n^2 residues of eiz/(z2 + 1) in the upper half plane). The residue at z = i 
is e-1 /2i, hence the integral is Re(nie-1 /2i) = n/2e.

(g) The integral is

2i

■iff 2n

de =
r z- — z- 1V 2n 

J\=\=A 2 i )
dz 
iz

2n ( e™ e )

which is 2ni times the residue of (z2 — 1)2n /(i22nz2n +1)( — 1)n at z = 0. But the 
Taylor expansion of (1 — z2)2n is

1 2 2 2n 4 2n 6 1 n 2n 2n 4nx nnz i i z i i z i x i i i z z .1 I ri / lo/ 1 \ / I / 1 123 n

Thus the coefficient of 1/z in the Laurent expansion of (z2 — 1)2n/z2n+1 is (—1)n 2nn .
Therefore

/•2 n
(sin e)2n de =

0

2 4 n
22 n

2 n (2 n)! 
(2nn!)2 .

Remark: In these examples [except for (d) and (g)] we needed a result of the form

f . f (z) dz — 0 as r — to. 
z=reit

o 0<t<n

By (2.1.5), this will hold if zf (z) — 0 as z — to in the upper half plane.
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5. When z = i(2n + 1)n, n an integer, 1 + ez =0. These are simple poles of f (z) = 
(Log z)/(1 + ez) with residues Log(i(2n + 1)n)/ei(2n+1)n = — Log i(2n + 1)n. Since 
n(y, —in) = — 1, the integral is

2ni[Res(f, i3n) — Res(f, —in)] = 2ni[ — Log(i3n) + Log( — in)] 

= 2ni [ — ln 3 — in] = 2n2 — i2n ln 3.

6. (a) The Taylor expansion of sin2 z has no term of degree 3, so the residue is 0. 
(b) The Taylor expansion of z3 sin z2 is

z5[1
z 4 z 8 z12
3! + 5! — 7T + ■"]

and by long division, the reciprocal of the expression in brackets has a z4 term with 
coefficient 1/3! = 1/6. The residue is therefore 1/6.
(c) We have

z cos — = z 
z 1 2! z2 + 4! z4

and the residue is therefore -1/2.
7. We have

ez ez e3z e5z 
z z 3! z3 + 5! z5

where

enzfn (z ) = [( —1)( - 1> / 2]nzn, n odd

and fn (z) = 0 for n even. Now for n odd,

oo

fn ( z ) ,z = 0, 
n=1

fn(z) = (—14^(1 + nz + .. + ■ ■ ■) = £ akn^', z = 0, 
n!zn 2!

k=-o

where akn =0,k<—n, and the series is the Laurent expansion of fn about z =0. 
Now

o o en|z|

' n!Izln
k=-o n=1

n odd

o^2 |aknzk | = £
n=1 k=-o n=1

sinh
ezz\\ 
llzu < <x>.

Thus we may reverse the order of summation to obtain

sin(ez /z)
oo

= akn) zk,
k=-o n=1

z=0.
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This is the Laurent expansion of sin(ez /z) about z = 0. The residue at z =0is 
therefore 522=1 a- 1 ,n• But a- 1 ,n = 0 for n even, and for n odd we have a- 1 ,n = 
(-1)(n-1)/2nn-1/(n - 1)!n!. Thus the residue is

(-1)( n- 1) / 2 nn- 1 

n = 1X5,- ( n — 1)! n! .

8. (a) Since sin0 lies above the line segment joining (0,0) to (n/2, 1), we have sin0 > 
20/n, 0 < 0 < n/2. Thus

/ / e r sin 6 d0 < n / e-2r6/n d0 = ^ (1 — e-r).

0 0 2r

(b) Let y be the path of Figure 4.2.3, traversed in the positive sense; y consists of 
a radial path y 1 away from z0, followed by Ye, and completed by a radial path y2 
toward z0. If g(z) = f (z) — [k/(z — z0)], k = Res(f, z0), then g is analytic at z0, so

y g(z) dz = 0 by Cauchy’s theorem. Now

dz

Y« Y« Ye z — z 0

dz

A i A 2 Y^r_ z z 0.

Since the integrals along y 1 and Y2 approach 0 as e ^ 0 by (uniform) continuity of 
g, we must show that J( z-zz^ dz ^ ai. In fact, if 00 is the angle between y 1 and the 
horizontal, then

dz

Ye z — z0

60+a ieeif> ln
—— d0 = ai. 
eei

9. (a) By Problem 8a, the integral around the large semicircle approaches 0 as the 
radius approaches to . By Problem 8b, the integral around the small semicircle 
approaches —in Res(eiz/z, 0) = —in as the radius approaches 0. It follows that 
f 2 (eix/x) dx — in = 0 (where the integral is interpreted as a Cauchy principal 
value), or J-^ [(sinx)/x] dx = n.
(b) By Cauchy’s theorem,

0= [ eix2 dx + n / exp(ir2ei2t)ireit dt + 0 exp(is2ein2)ein4 ds. 

00 r

The second integral is, in absolute value, less than or equal to

r I e-r sin2t dt ^ 0 as r ^ to

0

(sin 0 > 20/n, 0 < 0 < n/2; see Problem 8 for details). Thus

" " e e-s2 ein/4 ds = 1 Vnein/4,
o0
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and therefore j^ cos x2 dx = f™ sin x2 dx = ^y/n.

(c) The integral of [Log(z + i)]/(z2 + 1) on y is 2ni times the residue at z = i of 
[Log(z + i)]/(z2 + 1), which is 2ni(Log 2i)/2i = n ln2 + in2/2. (Note that Log(z + i) 
is analytic except for z = — i — x,x > 0.) Thus

0 Log(x + i) dx + r Log(x + i) dx ~ nln2 + ¥.. 
kr x2 + 1 7o x2 + 1 2

(The integral around the large semicircle approaches 0 as r ^ <x>, by the M-L theo
rem.) Now let x' = — x in the first integral to obtain

r [Log(i - x ) + L<,g(. + x)| dx ~ n ln 2 + iL.
Jo x2 + 1 + 2

But Log(i — x) + Log(i + x) = ln[|i — x]]i + xl] + i(6 1 + 62) = ln(x2 + 1) + in (see 
Figure S4.2.4). Hence

p ln(x2 + 1) 
0 x2 + 1

(^ dx in220 nln2+~

or

f ~ ln(x2 + 1) ,I ---- d------- d dx = n ln 2
0 x2 +1

(d) In (c) let x = tan6 to obtain

n ln 2
ln(tan2 6 +1) 

tan2 6 + 1
sec2 6d6 ln cos 6d6

so

0
cos 6 d6 = — — ln 2.

Set 6 = n — x to get

-ln2 = 
2

l lncos(------x) dx = lnsin xdx.
J/22 2 00
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10. Let f(z) = z4,g(z) = z4 +6z + 3. Then |f(z) - g(z)| = |6z +3|;if|z| = 2, this is less 
than or equal to 12 + 3 < |z|4 = |f (z)|. Since f has all its zeros inside {z : |z| =2}, 
so does g.

Now let f(z) = 6z,g(z) = z4 + 6z + 3. Then \f(z) — g(z)| = lz4 + 31 < 4 < 6^ 
for |z| =1. Thus g has one root inside {z : |z| =1}, hence there are 3 roots in 
{z :1< \z\ < 2}. (Since \f — g\ < \f\ when \z\ =1,g cannot be 0 when \z\ = 1.)

11. Apply Rouche’s theorem to f (z) — zn and —zn . We have \ f (z) — zn + zn\ = \f (z)| < 
\—zn\ when \z\ = 1. Since —zn has n zeros inside the unit circle, so does f(z) — zn.

12. Apply the hexagon lemma (3.4.5) to the compact set K0 = {z : |f(z)+g(z)| = |f (z)|+ 
\g(z) |}. If y 1,... , Ym are the polygonal paths given by the lemma, let y 52m=1 Yj•
Then y* C Q \ K0, so If + g\ < If | + \g\ on Y*• Since Z(f) U Z(g) C K0, we have 
n(y, z) = 1 for each z G Z(f) U Z(g). Again by (3.4.5), y is Q-homologous to 0. The 
result now follows from (4.2.9).

13. First let u > 0. Then the integral is 2ni times the residue of emz/[n(1 + z2)] at z = i, 
which is 2nie-u /2ni = e-u. Now let u < 0. Then \eiu(x+iy) | = e-uy is bounded on 
{x + iy : y < 0} but not on {x + iy : y > 0}. Thus we must complete the contour 
in the lower half plane, as indicated in Figure S4.2.5. Therefore the integral is — 2ni 
times the residue of eiuz/[n(1 + z2)] at z = — i, which is — 2nieu/ — 2ni = eu.

Figure S4.2.5

14. We have

esin 1/z g [sin(1 /z)] k

k=0 k!

Since | sin 1/z| is bounded on {z : |z| =1}, the Weierstrass M -test shows that the 
series converges uniformly on this set and may therefore be integrated term by term. 
The residue theorem yields

esin 1 /z dz = 2ni g -1 Res(sinn 1 /z, 0). 
n!

n=0

But

11 1 1
sin z = z — 3!z3 + 5!z5 — ,z=0,
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and thus all residues of (sin 1/z)n at z = 0 are 0 except for n = 1, in which case the 
residue is 1. The integral is therefore 2ni.

15. (a) Near z0 we have

f (z) _ (- — o 0) k [ ak + ak+1( - — o 0) + ••• ]
g(z) (- — o 0) k+1[ bk+1 + bk+2(z — o 0) + • • • ]

The residue is therefore

ak f(k)(z0)/k! = k , n f(k)(z0)
bk+1 g (k+1)( z 0) / (k + 1)! ( + ) g (k+1)( z 0) ■

(b) Near z0 we have f(z)/ g(z) = [a0 + a 1(z — z0) + • • • ]/[(z — z0)2h(z)] where h(z) = 
b0 + b 1(z — z0) + • • •. The residue is therefore

dd-z [ f (z)/h (z)] z=z 0 h ( z 0 ) f' ( z 0) — f ( z 0) h ( z 0) _ r ,,z a /birr/ Ab /b 21 
-------------h2()-------------- = [f (z0)/b0] — [f (z0)b 1 /b0] ■

But g(z) = b0(z — z0)2 + b 1(z — z0)3 + • • •, so b0 = g”(z0)/2! and b 1 = g1”(z0)/3!, and 
the result follows.

16. let f(z) = 3z, g(z) = 3z — e-z. then

If(z) — g(z)| = le-z| = |e-(x+iy)| = e-x < e< 3 = f(z)| for \z\ = 1 ■

The result follows from Rouche’s theorem.
17. If w G D(0, e), we must show that w = f(z) for some z G D(0, r), that is, f — w has 

a zero in D(0,r). Now when \z\ = r we have |(f(z) — w) — f(z)| = |w| < e < \f (z)| 
by hypothesis. By Rouche’s theorem, f — w and f have the same number of zeros in 
D (0, r). But f has at least one zero in D (0, r) since f(0) = 0, and the result follows.

18. The analytic function 1/ez contributes zero to the integral, as does cos 1/z, whose 
residue at 0 is 0. Since +i is inside the circle C(1 + i, 2) but —i is outside, the 
integral is 2ni times the residue of enz/ [(z — i)(z + i)] at z = i. Thus the integral is 
2 ni (ein / 2 i) = —n.

19. Let Yr be the contour formed by traveling from —r to r along the real axis, and then 
returning to —r on the semicircle S(0, r) (in the upper half plane) with center at 0 
and radius r. The integral of P(z)/Q (z) on the semicircle approaches 0 as r — ^, 
by the M-Ltheorem. For r sufficiently large, Yr encloses all the poles of P/Q in the 
upper half plane, so

f P(z) dz = /■ r P(x) dx + f P(z) dz
Y.r Q (z) --r Q (x) +JS(0,r) Q (z)

and we may let r — <x to get the desired result. For the specific example, note that 
the poles of z2/(1 + z4) in the upper half plane are at z = eln/4 and el3n/4. The 
residues are

(z — ei^/4) 
z4 +1

(z — ein/4) z 2
lim ------ ------------

z—e in/4 4 z4 + 1
= eiin/2 lim

z—ein4 4
e^n/2

4 ei 3 n/4
1 e-iinl4

4
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and
iim (z  e3n/4)z2 = e3■2 =1 e-3n/4

. e 3 n/4 z4 + 1 4 ei9 n4 4 .

Thus the integral is

\(<-"4 + e-3'4) = \(_i sin 4 _ s ) = (_V2) = 1--.
4 2 4 4 2 2

20. Apply Rouche’s theorem with f (z) = azn and g(z) = azn _ ez. Then for ]z] = 1, 
\f (z) _ g(z)| = \ez| < ez = e < |a| = \f (z)|, and the result follows.

21. Let f (z) = 2z, g(z) = 2z + 1 _ ez. then for z = 1,

z2 z3
f (z) _ g (z) | = e _ 11 = + - + - + ..J

so

f (z) _ g (z) | < 1+---- - +---- - + ••• = e _ 1 < 2 = f (z) |IJ \ ) iJ \ ) I — OI QI I «* \ /1

and Rouche’s theorem applies.
22. Let g(z) = — 5z4. If z = 1, then f (z) — g(z)| = ]z7 + z2 _ 21 < 1 + 1 + 2 < fg(z)| 

and Rouche’s theorem applies.
23. If g(z) = z5, then for z = 2 we have f (z) _ g(z)| = 115z + 11 < 31 < 25 = [g(z)|. If 

h(z) = 15z, then for z = 1 /2, f (z) _ h(z)| = 5 + 11 < (1 /2)5 + 1 < 15/2 = (z)|. 
The result follows from Rouche’s theorem.

24. Apply Rouche’s theorem with f (z) = z5,g(z) = z5 + z + 1. We have, for ]z] = 
5/4, f (z) _ g(z)| = + 11 < (5/4) + 1 = 9/4. But f (z)| = (5/4)5 = 3.05 > 9/4, and
the result follows.

25. If fn(zn) = 0 for all n and zn — 0, then f (z0)| < f (z0) _ f (zn)| + f (zn) _ fn(zn)| + 
fn (zn) | — 0 as n — ^ by the uniform convergence of fn on compact subsets and 
the continuity of f at z0. Thus f (z0) = 0. Conversely, assume f (z0) = 0. Since 
f is not identically zero, there is a disk D (z0 ,r) containing no zero of f except z0. 
Let 6 = min{f (z)| : ]z _ z01 = r} > 0. For sufficiently large m, f (z) _ fm(z)| < 6 
for all z G D(z0,r), hence on C(z0,r) we have f (z) _ fm(z)| < f (z)|. By Rouche’s 
theorem, fm has a zero in D(z0, r), say at zm. We may repeat this process using the 
disks D(z0, 2-nr), n = 1, 2, 3,... to find the desired subsequence.

26. (a) This is a direct calculation.
(b) By hypothesis, p must have n _ k zeros in |z| > 1, and the result follows from (a). 
(c) This follows from (a) if we note that for |z| = 1, we have zz = 1, hence 1 /~z = z.
(d) Assume |a01 > |an|. If g(z) = a0p(z), then f (z) _ g(z)| = ^q(z)| < |a0p(z)| by 
part (c), so f (z) _g(z)| < ]g(z)|. By Rouche’s theorem, f has k zeros in |z| < 1. Now 
assume |a01 < |an|. If h(z) = _anq(z), then for |z| = 1, f (z) _ h(z)| = |a0p(z)| < 

| _ anq(z)| = (z)|. By Rouche’s theorem and part (b), f has n _ k zeros in |z| < 1. 
(e) If |a01 > |an| and p has no zeros in |z| > 1, then p has n zeros in |z| < 1, hence so 
does f, by (d). If |a01 < |an| and p has no zeros in |z| < 1, then by (d), f has n zeros 
in |z| < 1. In either case there is a contradiction, because f is a polynomial of degree 
at most n _ 1.
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Section 4.3
1. Near z0 we have f (z) = ^= ^=- 1 an(z-z0)n and g(z) = Y= m=0 bm(z-z0)m. The Laurent 

expansion of g(z)f (z) is found by multiplying the two series, and Res(gf, z0) = b0a-1 = 
g(z0) Res(f, z0), as desired. For the counterexample, take z0 =0,f(z)=(1/z2)+ 
(1/z),g(z)=1+z. Then Res(gf, 0) = 2; on the other hand, g(0) = 1, Res(f, 0) = 1.

2. If f (z0) = w0, then since f is one-to-one, k = minzEC(z0,r) If (z) — w01 > 0. Thus if 
|w - w0| <k, we may expand

1 __________1____________  1 r 1 '

f(z) - w f(z) - w0 - (w - w0) f(z) - w0 1 — fww

in a geometric series. Term by term integration shows that f-1 is analytic at w0 .

3. Let z0 G P. If r is sufficiently small, then V = {1 / f (z) : z G D(z0,r)} is open in C by 
(4.3.1). Also, W = {1/z : z e V} is open in C because the image under 1/z of a disk 
containing 0 is a neighborhood of to. But W = f (D(z0,r)), and the result follows.

4. By the residue theorem, the integral is ^2n=1 Res(gf'/f,aj)• Since Res(gf'/f,aj) = 
m(f, aj)g(aj) by (4.2.2e) and Problem 1 of this section, the result follows.

5. If z0 G Q and D(z0,r) C Q, then the image of D(z0,r) under f will contain a 
disk D(f (z0), s). Since D(f (z0), s) will contain points w1, w2, w3 such that |w1 | > 
|f (z0)|, Re w2 > Re f (z0), and Imw3 > Im f (z0), it follows that |f|, Re f, and Im f 
cannot take on a local maximum at z0 .

Sections 4.4 and 4.5
1. For the inverse, solve w =(az + b)/(cz + d) for z. For the composition, consider 

w = (au + b)/(cu + d), u = (az + p)/(yz + 8) and substitute. Alternatively, use the 
fact that a linear fractional transformation is a composition of maps of types (i)-(iv) 
of (4.4.1).

2. (a) If w =(1+z)/(1 - z) then z =(w - 1)/(w + 1), so T-1(w) = (w - 1)/(w + 1). 
(b) It is easier to deal with T-1 . Figure S 4.5.1 shows that T-1 maps Re w>0onto 
|w| < 1, {Re w = 0}U{to} onto |w| = 1, and Re w < 0 onto |w| > 1; the result follows.

Figure S4.5.1
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3. (a) Possibly motivated by the analysis of Problem 2, try T (z) = k(z - i)/(z + i). Since 
T (1) = 1 we have k =(1+i)/(1 - i), and this does yield T (-1) = -1, as desired.
(b) The desired transformation is accomplished by an inversion followed by a 180 degree 
rotation, in other words, T(z) = -1/z.

4. (a) T must be of the form T (z) = k(z - z1)/(z - z3). Since T (z2)=1wehave 
1=k(z2 - z1 )/(z2 - z3), which determines k uniquely.
(b) If z 1 = to then T(z) = (z2 — z3)/(z — z3). If z2 = to then T(z) = (z — z 1)/(z — z3), 
and if z3 = to then T(z) = (z — z 1)/(z2 — z 1).
(c) If T1 is the unique linear fractional transformation mapping z1 ,z2 ,z3 to 0, 1, to, 
and T2 is the unique linear fractional transformation mapping w1 ,w2 ,w3 to 0, 1, to, 
then T = T— 1 ◦ T1. (If T* is another linear fractional transformation mapping z 1, z2, z3 

to w 1 ,w 2 ,w 3, then T2 ◦ T * maps z 1 ,z 2 ,z 3 to 0, 1, to . Thus T2 ◦ T * = T1, hence 
T* = T2—1 ◦ T1 = T, proving T unique.)

5. (a) This follows from the fact that f is one-to-one.
(b) This is a consequence of the open mapping theorem for meromorphic functions 
(Section 4.3, Problem 3).
(c) Let w G f (D(0, 1)), which is open in C by part (b). If to is an essential singularity, 
then by the Casorati-Weierstrass theorem we find zn — to with f (zn) — w. Thus for 
large n, zn G/ D(0, 1) but f (zn) G f (D(0, 1)), contradicting the assumption that f is 
one-to-one.
(d) If f is analytic on C, then f is constant by Liouville’s theorem. Thus by part 
(a), there is only one remaining case to consider, in which f has poles at to and at 
z0 G C. As in (b), f (D(z0, 1)) and f(C \ D(z0, 1)) are disjoint open sets in C. Since S-. —
to G f(D(z0, 1)) (because f(z0) = to), f(C \ D(z0, 1))is a bounded set, that is, f is 
bounded on the complement of D (z0, 1). This contradicts the assumption that to is a 
pole.
(e) If z0 = to, then by Problem 9(c) of Section 4.1, f is a polynomial, and deg f =1 
because f is one-to-one. If z0 G C, then since f has a pole at z0, g is analytic at z0 . 
By the open mapping theorem (4.3.1), g'(z0) = 0. (If g'(z0) = 0 then g, hence f, is 
not one-to-one.
(f) If z0 = to, this follows from (e), so assume z0 G C. By (e), g'(z0) = 0, hence 
(z — z0) f (z) = (z — z0)/(g(z) — g(z0)) — 1 /g'(z0) as z — z0. By part (b) of (4.1.5), f 
has a simple pole at z0 .
(g) Let h(z) = f (z) — [Res(f, z0)/(z — z0)]. By (4.2.2d), lim . o(z — z0)h(z) = 0. Thus 
h(z ) has only removable singularities in C and is therefore constant.

Section 4. 6

1. By (4.6.3i),

f (z) — f (a) < 1 — 7(0) f (z) ; 
z — a ~ 1 — az ’

let z — a to obtain (4.6.3ii).
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2. Since Re z>0, we have |w - f (0)| < |w - (-f (0))| for Re w>0 (draw a picture). 
Thus T maps {w :Rew>0} into D(0, 1), so T ◦ f is an analytic map of D(0, 1) into 
itself. Since T(f (0)) = 0, Schwarz’s lemma implies that [T(f (z)| < Izl, z G D(0, 1), 
that is, If (z) - f (0) | < \z\\f (z) + f (0) |. Thus both f (z) l-f (0) | and f (0) l-f (z) | are 
less than or equal to |z|[|f (z)| + |f (0)|]. This yields the first statement of the problem. 
Now

d-T (f (z)) = 
dz

f(z) + f(0) — (f(z) — f(0)) ,,, ,
I ( z ) , 

[ f (z)+ f (0)]2

and this is at most 1 in absolute value when z = 0, by Schwarz’s lemma. Thus

12 Re f (0) |
|2 Re f (0) |2

f' (0) |< 1

and the result follows.
3. If f(z0) =z0 and f(a) = a, with z0 = a, then equality holds at z0 in (4.6.3i). In this 

case b = f (a) = a, so f = p-1 ◦ Xpa with |X| = 1. Now zo = f (zo) = p- 1(Xpa(zo)), 
hence pa(z0) = Xpa(zo)). Since z0 = a, we have pa(z0) = 0, so X =1 and f = p—1 ◦ pa, 
the identity function.

4. (a) The function f must have the form given in (4.6.6) in D(0, 1), hence on C by the 
identity theorem. Since f is entire, the only possibility is n =1,a1 =0,so f(z) = Xzk 

for some unimodular X and nonnegative integer k.
(b) Let the poles of f in D(0, 1) be at b1,... ,bm, with orders l1,... ,lm respectively. 
Then by (4.6.6), f is of the form

f(z)

-. T-rn Z z-aj )\ kj

Aiij=1^1 -a z j 

m z b ) ljTC=1 (f-a

with |X| =1;aj ,bj G D(0, 1); kj ,lj =0, 1,.
(Note that f(z) times the denominator of the above fraction has only removable sin
gularities in D(0, 1).)

5. The function g satisfies the hypothesis of (4.6.3), so by (4.6.3i),

g(z) — g(a)
1 — g(a) g(z)

z-a
1 - az

a,zG D,

that is,

M (f (Rz) — f (Ra)) 

M2 — f (Ra) f (Rz)

Let w = Rz, wo = Ra, to obtain

M(f(w) — f(wo)) . R(w — wo)-- < —
M 2 — f (w o) f (w) “ R2 — w o w

z—a
1 — az

w,wo G D(0, R)
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which is the desired generalization of (i). By (4.6.3ii), lg'(a)| < (1 — lg(a)12)/(1 — |a|2),
that is,

R|£7r >1 <1 — [ f (Ra) 12 /M 2 ]M|f( Ra *< 1 — |a|2 '

Thus

M M (M/R) — [f(w0) 12/MR] 
f <w">| < 1 — |w„/R}2 •

or

RMR (M 2 -f (w 0) 12)
|f (w0)l < M(R2 — |w(o12)

which generalizes (ii).
6. Let

t f - f (z)
g(z) nn (z-zj)k’ •

Hj=1^1 --j z)

Then g is analytic on D(0, 1), continuous on D(0, 1), and lg(z)| = f(z)| < 1 when 
|z | = 1. The assertion now follows from the maximum principle. If equality holds at 
some point z0 in D(0, 1) (other than the zj), then |g(z0)| =1,sog is constant by the 
maximum principle. Thus

f (z )=c n( -
j-=i \ 1—zj zj

where c is a constant with |c| < 1.

Section 4. 7
1. If ^ < 1, then (2ni)- 1 =1 ww+z) dw = — 1 + 2 = 1 by the residue theorem. Thus

(2n)-1 = -nn eit -- dt = 1, as desired.

2. Since — 1 < cos(6 — t) < 1, we have

1 — r 1 — r2 1 — r2 1+r
-------  = 7--------— < Pr (6 — t) <7------- 777 = ------- • 1+ r (1 + r )2 (1 — r )2 1 — r

The result now follows from (4.7.8) and the observation that by (4.7.9),

u(0) =— [ u(eit) dt. 
2n J 0

3. If D(z0, R) C Q, then by (4.7.8) with r = 0, un(z0) = (2n)-1 J02n un(z0 + Rei) dt. Let 
n — tt to obtain u(z0) = (2n)-1 J02n u(z0 + Rei) dt. By (4.7.10), u is harmonic on Q.
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4. It is sufficient to consider the case where u is continuous on D(0, 1) and analytic 
on D(0,1). Then by (4.7.8), u(z) = (2n)_  J2n Pz(t)u(ei) dt, \z\ < 1. Let f (z) = 
(2n)_  J02n Qz(t)u(elt) dt. Then f is analytic on D(0, 1) by (3.3.3), and Re f = u by 
(4.7.2), as desired.

1

1

5. (i) We have

f (z) = f f (w)
2ni Jy

If z = x + iy, w = t + i3, then

1 1 z — z 2 iy
w — z w — z (w — z)(w — z) [t — x + i (3 — y)][ t — x + i (3 + y)]

If w is real, so that 3 = 0, this becomes 2iy/[(t — x)2 + y2]. Thus

[z0, z, <x>) = ([z0, z, <x>) Cl Q) U ([z0, z, <x>) Cl dQ) U ([z0, z, <x>) Cl (C \ Q)).

The first and third sets on the right are nonempty, relatively open subsets of [z0, z, <x). 
Since [z0, z, <x) is connected, [z0, z, <x) Cl dQ = 0. Let 3 be any point in [z0, z, <x) Cl dQ. 
It follows from (a) and (b) that [z0,3) C Q. (See Figure 4.7.1 to visualize this.)

Now either z G (z0,3) or 3 & (z0, z). If 3 & (z0, z), we can repeat the above argument 
with z0 replaced by 3 to get 3 1 & dQ such that 3 1 & (3, z, <x). But then (a) and (b) 
imply that 3 & Q, a contradiction. Thus z G (z0,3), hence [z0,z] C [z0,3) C Q.
(ii) We have J f (w) dw = 0 by (3.3.1). Since |y(t) — ys(t) | = (1 — 5) |y(t) — z01 — 0 
as 5 — 1, uniformly in t, it follows from the uniform continuity of f on compact 
sets that we may let 5 — 1 to obtain J f (w) dw = 0. The result n(y,z)f(z) = 
(2ni)_  Jy [f (w)/(w — z)] dw is obtained similarly. (Note that n(ys, z) = n(y, z) for all 
5 sufficiently close to 1, by (3.2.3) and (3.2.5).]

1

6. The two equations given in the outline follow immediately from Problem 5. Subtract 
the second equation from the first to obtain

1 1
dw.

w z w z

R dt + - f
n r r RR

yf (t)
(t — x)2 * * + y2

yf (w)
(w — z)(w — z) z)

dw

where rR is the semicircular part of the contour. Let Mf (R) be the maximum value 
of If | on rR. By the M-L theoeem, for large R the integral around rR is bounded in 
absolute value by a constant times Mf (R)/R, so that if Mf (R)/R — 0 as R — ^, we 
obtain

R

f(z) yf (t)
(t — x)2 + y2

dt.
R R

If If (z)I/IzI1 s — 0 as z — <x> for some 5 > 0, then we may write

1 . 1 f ^ yf (t) dtf (z) nJ^ (t — x )2 + y2

where the integral exists in the improper Riemann sense, not simply as a Cauchy 
principal value. Take real parts to get the desired result.
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Section 4. 8
1. We may write f (z) = czk + ak+1zk+  + ak+2zk+2 + • • • where c = 0. Apply Jensen’s 

formula (4.8.2b) to f (z)/zk to obtain
1

I —=dt = n(|a31)ln |a31 + n(|a41)(ln |a41 — ln |a31) 
0t

+ n(|a61)(ln |a61 — ln |a41) + n(|a71)(ln |a71 — ln |a61) 
+ n(r)(lnr — ln |a71).

If we observe that |a71 < r < |a81, so that n(r) — n(|a81), we may write

n n^t) dt = — ln |a31 [n(|a41) — n(|a31)]
0t

— ln |a41 [n(|a61) — n(|a4)] — ln |a61 [n(|a71) — n(|a61)]
— ln |a71 [n(|a81) — n(|a71)] + n(r) lnr.

Now

— ln |a61[n(|a71) — n(|a61)] = — 2ln |a61 = — ln |a51 — ln |a61

n(r) 1 2 2 nlnlcl = g \~j l + jj / ln f (reit) 
rk

dt.

Thus

k In r + ln |c|
n(r) I I 1 2 2 n=zinHjl+^/ lnf(reit)1 dt. 
j = 1 1 r 1 2 j J 0

But c = f (k)(0)/k!, and the result follows.

2. The statement is

ln If (0)I =
n m

kj ln I — I — lj ln
j r j

+ ;1 f" ln If (Rei) I dt.

2 j J 0

bj

R

To prove the statement, note that we may write f = g/h, where g has zeros at 
a 1,... , an, h has zeros at b 1,... , bm, and g and h each satisfy the hypothesis of (4.8.1). 
Since ln If | = ln |g| — ln \h\, the result follows.

3. First note that if 0 < r < R, then n(t) is a step function on [0,r] which is left 
continuous, having jumps only at the radii of those circles that pass through zeros of 
f. To avoid cumbersome notation, we illustrate the ideas with a concrete example 
Suppose 0 < |a 11 = |a21 = |a31 < |a41 < |a51 = |a61 < |a71 < r < |a81. Then the graph 
of n(t), 0 < t < r, is shown in Figure S4.8.1. Since n(t) is constant between jumps and 
J(1 /t) dt = ln t, we have
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Figure S4.8.1

and similarly for the other terms. Thus

r r (t) n (r) n (r)
t —jdd= = -52 ln a |+n (r)ln r = 52ln |£|

as desired.
4. By Problem 3,

r n(r)
n n(Hdt^2l^-.
0 t j=1 a I

Also,

ln[|f(k) (0)|rk/k!] = k ln r + ln[|f(k)(0)|/k!].

The result now follows from (4.8.5) if we observe that

— l ln If (reitl dt <— l lnM(r) dt = lnM(r).
2 nJ0 2nJ 0

5. By (4.8.5) and Problem 3,

21nl ln If (reitl d-t = k ln r + ln[ If(k )(0)/k !]+^ n2) dt,

which is a continuous, increasing function of r. Each time n(t) has a jump, say a jump 
of size c at t = r0 (see Figure S4.8.1), 0r [n(t)/t] dt contributes a term of the form 
c(ln r - ln r0), r > r0.
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Section 4. 9
1. If z = rei2np/q, then zn! = rn! ei2nn!p/q = rn! if n > q, and rn! ^ 1 as r ^ 1. 

It follows that any analytic function that agrees with f on D(0, 1) cannot approach 
a finite limit as z approaches a point on C(0, 1) of the form ei2np/q. Since these 
points are dense in C(0, 1), there can be no extension of f to a function analytic on 
D(0, 1) U D(w, e), |w| = 1.

2. (a) Let S = {x + iy : y = 0, x < 0}. If z 1 / S, let D 1,... , Dn be disks such that 
Di A Di +1 = 9, i = 1,... , n — 1, 1 D D 1, z 1 D Dn, and Di A S = 9,i = 1,... ,n. Let 
fi(z) = Log z, z D Di. Then (fn, Dn) is a continuation of (f 1, D 1) = (f, D) relative to 
Q, so fn,Dn) D $.
If, say, z 1 is in the second quadrant, then Log z 1 = In \z 11 + id(z 1) where d can be be 
chosen in the interval [0, 2n). If z2 D S, z2 = 0, let E 1,... , Em be disks such that E 1 = 
Dn (so z 1 D E 1), Ei AEi+1 = 9,i = 1,... , m — 1, z2 D Em, and Ei AT = 9,i = 1,... ,m, 
where T = {x + iy : y = 0, x > 0}. Let gi(z) = log z = ln \z\ + id(z), 0 < d < 2n, z D Ei. 
Then (gm, Em) is a continuation of (g 1, E 1) = fn, Dn) relative to Q, so (gm, Em) D $. 
(b) By the argument of (a), if there were such an h, then h(z) = Log z, z / S, and 
hence h must be discontinuous on the negative real axis, a contradiction.

3. The reasoning beginning with “since power series converge absolutely” is faulty. If 
52fe=0 bk(z - z 1)k converges absolutely at some point z / D(z0,r), this does not imply 
that the original series converges at z .For

00

lbkll 
k=0

z1l
0 0 / \
=n

k=0 n=k

00 00

an (z1 n-kz0) lz — z 1 |k < TOz k

does not imply that

£ lanllz 1 — z0k lz — z 1 |k < to,

k=0 n=k

and the latter is what is needed to reverse the order of summation.
4. If g 1,... , gk are analytic on Q, so is h(z) = F(z, g 1(z),... , gk(z)), z D Q. (The deriva

tive of h may be calculated explicitly by the chain rule.) It follows that if hj (z)= 
F(z, f1j (z),... , fkj(z)), then hj is analytic on Dj,j =1,... ,n.Thus(h1,D1),... , (hn, Dn) 
forms a continuation. But D1 = D and h1 =0onD, by hypothesis. By successive 
application of the identity theorem (2.4.8), we have hn =0onDn, as desired.

5. If (fi+1, Di+1) is a direct continuation of (fi, Di), then fi = fi+1 on Di A Di+1, hence 
f'i = fi+1 on Di A Di +1. Therefore (f+1, Di +1) is a direct continuation of (f'i, Di), and 
the result follows.

Chapter 5
Section 5.1
1. Since lf (z)l < 1^^j lf (0)l, F is bounded, hence F is closed and bounded, and therefore 

compact. thus F is relatively compact. To show that F is not compact, let fn (z)= 
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11+Z, f (z) = 0. By Section 4.5, Problem 2, fn 6 F; since fn ^ f uniformly on 
compact subsets of D(0, 1) but f / F, F is not closed, and therefore not compact.

2. We may take a = 0 (if not, consider f — a). Since 1 /If(z)| < 1 /r for all f F F 
and z F Q, by (5.1.10) we have a subsequence {fnk} such that 1 /fnk ^ g A A(Q), 
uniformly on compact subsets. If g is not identically 0, then g is never 0 by (5.1.4), 
and it follows that fnk ^ 1 / g uniformly on compact subsets. If g = 0, then fnk ^ <x 

uniformly on compact subsets.

3. (a) If F is relatively compact then F is compact, so if fn FT,n = 1, 2,..., there is a 
subsequence {fnk } converging to a limit in F (not necessarily in F). Conversely, if each 
sequence in F has a convergent subsequence, the same is true for F. (If fn F F, choose 
gn A F with d(fn, gn) < 1 /n; if the subsequence {gnk } converges, so does {fnk }). Thus 
F is compact.
(b) F is bounded iff F is bounded (by definition of boundedness), iff F is closed and 
bounded (since F is always closed), iff F is compact (by the first statement of (5.1.11)), 
iff F is relatively compact.

4. Let F be relatively compact. If f Fa and f (z) = 52 n=0 anzn, then by (2.4.1), 
|an| < r-n max{|f (z)| : |z| = r}, 0 <r<1. But by compactness, max{|f (z)| : |z| = r} 
is bounded by a constant M (r) independent of the particular f FT. Thus

Mn = sup{|an(f) | : f F F} < M(r)/rn.

Consequently, 52Mnzn converges if \z\ < r, so by (2.2.7), (limsupn ,^ Mn/n)-1 > r. 
Let r ^ 1 to obtain limsupn ,^ Mn/n < 1. Conversely, if the desired Mn exist, then 
if f FT and \z\ < r < 1, we have If (z) | < |an||z|n <52 n=0 Mnrn < ^. Thus F is 
bounded, hence relatively compact.

5. (a) Apply Cauchy’s formula for a circle to the function f2 to get, for 0 < r<R,

f 2(a) = 71 [ f 2(a + rei) dt
2 n J 0

(the mean value of f2 ). Thus

If (a)12 = If2(a)|< 2^2’ If (a + rei)12 dt.

Now multiply on both sides by r and integrate with respect to r from 0 to R to obtain

R 2 1 R R 2 2 n
T If (a) 12 < 2n J rj If (a + rei) 12 dt dr

and the result follows.
(b) By part (a), F is bounded, and the result follows from (5.1.10).

6. Let f ^ H (f) be the suggested map. Since If I < 1 on Q and f = 0 on the boundary of 
K, the integral over K is greater than 0 and H is well defined. If fn FT and fn ^ f, 
that is, d(fn,f) ^ 0, then fn ^ f uniformly on K, hence H(fn) ^ H(f), so that H 
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is continuous. If F were compact, then H(F) would be a compact, hence bounded, 
subset of the reals.

If 0 < r < R, let f be a continuous function from Q to [0, 1] such that f = 1 on 
D = D(a, r) and f = 0 off K (Urysohn’s lemma). Then

y y If (x + iy) | dxdy > j ^1 dxdy — j / 1 dxdy

as r — R. Thus H(F) is unbounded, a contradiction.

7. If z is a point on the open radial line S from 0 to ei, then ei + (1 /n)(z — ei) = 
(1 — 1 /n) ei + (1 /n) z also lies on S, and approaches ei as n — <x. By hypothesis, 
fn converges pointwise on S. Since S certainly has a limit point in S(6, a), Vitali’s 
theorem implies that fn converges uniformly on compact subsets. Given e > 0 there 
exists 6 > 0 such that if z G S(6, a) and \z — ei| < 6, then \z — w| < e for some w G S. 
It follows that by choosing z sufficiently close to ei, we can make f (z) as close as we 
wish to L, as desired.

8. If k is a complex number, then k will also be used to denote the function that is 
identically k. Since L(1) = L(12) = L(1)L(1), L(1) must be 0 or 1. But if L(1) = 0, 
then for any f G A(Q), L(f) = L(f 1) = L(f)L(1) = 0, hence L = 0, a contradiction. 
Thus L(1) = 1, so L(k) = L(k1) = kL(1) = k. Now let z0 = L(I). If z0 G/ Q, then 
h(z) = 1/(z — z0) gives h G A(Q). Thus h(I — z0) = 1, hence L(h)(z0 — z0)=1,a 
contradiction. Therefore z0 G Q. If f G A(Q) and g is as defined in the outline, then 
g G A(Q) and g(I — z0)=f — f (z0). It follows that L(f) — f(z0) = L(g)(L(I) — z0)= 
L(g)(z0 — z0)=0.

9. Define An as suggested. Then each An is a closed subset of Q, and since for each 
z G Q, fk(z) converges to a finite limit as k — <x, we have Un=iAn = Q. By the Baire 
category theorem, some An contains a disk D. The fk are uniformly bounded on D, 
hence by Vitali’s theorem, fn — f uniformly on compact subsets of D. (Note that D 
is connected, although Q need not be.) Thus f is analytic on D . Finally, let U be the 
union of all disks D C Q such that fn — f uniformly on compact subsets of D. Then 
U is an open subset of Q and fn — f uniformly on any compact K C U (because K is 
covered by finitely many disks). If W is an open subset of Q, the first part of the proof 
shows that W contains one of the disks D whose union is U .ThusU is dense in Q.

Section 5.2
1. For j =1, 2, let gj be the unique analytic map of Qj onto D such that gj (zj ) = 0 and 

gj(zj) > 0 (5.2.3d). Then f = g-1 ◦ g 1 satisfies f (z 1) = z2 and f'(z 1) > 0. If h is 
another such map, then g2 ◦ h = gi by (5.2.3d), so h = f.

2. From the definition, h is a continuous map of C into D(0, 1). To prove that h is 
one-to-one and onto, note that h(rei) = reie/(1 + r). If h(zn) — h(z), then h(z) G 
D(0,r/(1 + r)) for r sufficiently close to 1. But since h maps D(0, r) one-to-one onto 
D(0,r/(1 + r)), it follows by compactness that h is a homeomorphism of these sets. 
Thus zn — z, so h-1 is continuous.
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3. By convexity, H(t, s) G Q for all t G [a,b] and all s G [0, 1]. Since H(t, 0) = y(t) and 
H(t, 1) = y(a), the result follows.

4. Proceed as in Problem 3, with the initial point y(a) replaced by the star center, to 
obtain an Q-homotopy of the given curve y to a point (namely the star center).

5. Let Qn = C \ Kn . By definition of Kn , we have

Qn = {^} U {z : \z\ > n} D(w, 1 /n).
wE C \ Q

Now consider any component T of Qn . Since T is a maximal connected subset of Qn , 
it follows that T D {^c} U {z : \z\ > n} or T D D(w, 1 /n) for some w G C\ Q. In either 
case, T meets C \ Q. Since Qn D C \ Q, T must contain any component of C \ Q that 
it meets, and such a component exists by the preceding sentence.

6. (a) Form the sets Kn as in (5.1.1), and find by (5.2.8) a rational function Rn with 
poles in S such that \f — Rn\ < 1 /n on Kn. For any compact subset K of Q, K C Kn 

for sufficiently large n, so that Rn ^ f uniformly on compact subsets of Q.
(b) By Problem 5, each component of C \ Kn contains a component of C \ Q, so if 
Q is simply connected, i.e., C \ Q is connected, then C \ Kn is connected for all n. 
Therefore in part (a), the Rn can be taken to be polynomials. Conversely, assume that 
for every f G A(Q) there is a sequence of polynomials Pn converging to f uniformly on 
compact subsets of Q. If y is a closed path in Q, then J Pn(z) dz = 0 for all n, hence 
JY f (z) dz = 0 because y* is compact. Thus Q is simply connected.

7. (a) By Runge’s theorem (see part (b) of Problem 6) there are polynomials pn such that 
\pn(z) — fn(z) | < 1 /n for all z G Kn U Ln U Mn . Then pn ^ 0 pointwise. But if K 
is any compact set containing all the Bn , then pn cannot approach 0 uniformly on K 
because sup{|pn(z)\ : z G Bn} > 1 — - ^ 1.
(b) Choose polynomials pn such that \pn(z) — gn(z)\ < 1/n for all z G Kn U Mn. Then 
Pn ^ g pointwise, where g(z) = 1 for Re z > 0 and g(z) = 0 for Re z < 0.

Section 5.3
1. Let f be a homeomorphism of Q onto D such that f is a one-to-one analytic map of 

Q onto D; f exists by (5.3.9) and (5.2.2). If g = f-1 and u* = u0 ◦ (g\dD), then u* 

is real-valued and continuous on dD, so by (4.7.6), u* extends to a function that is 
continuous on D and harmonic on D. Let u = u* ◦ f; then u = u0 on dQ and u is 
continuous on Q. If h = u* + iv* is analytic on D, then h ◦ f is analytic on Q and 
Re h ◦ f = u* ◦ f = u, hence u is harmonic on Q.

2. (a) Let u be the unique argument of z in [—n,n); see (3.1.2).
(b) Apply (5.2.2) and (5.3.9).
(c) Note that u(f (z)) = Imlogn(f (z)), and logn f (z) is analytic on D by (3.1.2).
(d) Suppose u(f (z))+iV (z) is analytic on D. Write V (z) = v(f(z)) where v is harmonic 
on Q. Then iu(f (z)) —v(f (z)) is analytic on D, so by (3.1.6), ln \ f (z) \ = —v(f (z))+2nik 
for some integer k. Consequently, e-v(f(z)) = \f(z)\. IfV is bounded, so is v, which 
yields a contradiction. (Examine f(z) near z0, where f (z0) = 0.)

3. Apply (5.3.9), along with Problems 3.2.6 and 3.2.7.
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Chapter 6
Section 6.1
1. If f (z) = 0, then since fn(z) — 1 as n — to, it follows that for sufficiently large N, 

the infinite product H//LN fn(z) converges. Thus f (z) = [[JN=11 fk(z)]g(z) where g is 
analytic at z and g(z) = 0. Hence m(f, z) = 52N-1 m(fk, z) = 522=1 m(fn, z)•

2. The first statement is immediate from the power series expansion of - ln(1 -x), namely

x2 x3 1 x x2
x + T + I + ■" = x + x (2 + 3 + T + ■")•

Now if n an converges, then - ln(1 - an)= n[an + g(an)a2n] where g(an) — 1/2 
as n — to. By (6.1.1), [Jn(1 — an) converges to a nonzero limit iff 52n an < ^• The 
remaining statement of the problem follows similarly.

3. (a) Absolutely convergent by (6.1.2).
(b) Does not converge to a nonzero limit by Problem 2, since 52n(n + 1) -2 < ^, 
52n (n + 1) -1 = to. In fact,

n 1 12n (1—r+r’43 n1
------ 7 = ------ — — 0 •n+1 n+1

(c) Does not converge to a nonzero limit by Problem 2. Here, an = (— 1)n+1 / y/n, hence 
n an converges but n a2n = to.

(d) Absolutely convergent by (6.1.2).
4. (a) See Problem 3(c).

(b) Take a2n- 1 = 1 /jn and a2n = (— 1 /jn) + (1 /n).
Remark: This is also an example of an infinite product that is convergent but not 
absolutely convergent.

5. (a) Since n2=1 |anz| converges uniformly on compact subsets, the result follows from
(6.1.7).
(b) Restrict z to a compact set K. For sufficiently large n (positive or negative),

Log [(1 — z)ez/n] = Log [(1 — z)] + Log ez/

= _ r(z/n)2 . (z/n)3 + '
_ 2 + 3 + "'_

z2
= — g(z/n) n2

where g(w) ——1/2asw — 0. Since K is bounded, there is a constant M such that

|Log [(1 — -n)ez'/n] | < M

for all z G K. Thus 52n Log[(1 — z/n)ez/n] converges uniformly on K. As in the proof
of (6.1.6), the infinite product converges uniformly on K, so that the resulting function 
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is entire.
(c) Since £? 2 n(ln1 ny2 converges, £ ? 2 nJnn)2 converges uniformly on compact sub
sets and (6.1.6) applies.

6. If we try to prove that the convergence of zn implies the convergence of zng(zn),
we run into difficulty. We would like to argue that | 52 m=n zk g (zk) I <52 m=n Izk g (zk) I — 
0 as n, m — ^, but this requires the absolute convergence of 52 zn. A similar difficulty 
occurs in the converse direction. [Note that n(1 + zn) converges absolutely iff n zn

converges absolutely, by (6.1.2).]

Section 6.2
1. (a) We have m = 0, and the canonical product is [J2=1(1 — z/2n)•

(b) The canonical product is [J^=1 Em (z/zn) where m is the least integer strictly 
greater than (1/b) - 1.

(c) We have m = 0, and the canonical product is [J2=1[1 — z/n(lnn)2].

2. We may proceed exactly as in (6.2.5), using (6.2.6) in place of (6.2.3).

Section 6.3
1. By (6.3.7), the result holds for n = 2. For if d is a gcd of {f1, f2}, then f1/d and 

f2/d are relatively prime. If (f1g1/d) + (f2g2/d) = 1, then f1g1 + f2g2 = d.Togo 
from n — 1ton, let d be a gcd for {f1,... ,fn} and d1 a gcd for {f1,... , fn-1}. Then 
d is a gcd for {d1, fn} (by definition of gcd). By the induction hypothesis, we have 
g 1,... , gn-1 e A(Q) such that f 1 g 1 + • • • + fn-1 gn-1 = d 1, and by (6.3.7) there exist 
h,gn e A(Q) such that d 1 h + fngn = d. But then f 1 g 1 h +---- + fn-1 gn-1 h + fngn = d.

2. Let {an} be a sequence of points in Q with no limit point in Q. By (6.2.6) or (6.2.3), 
there exists fn e A(Q) such that Z(fn) = {an, an+1,... } and m(fn, aj) = 0,j > n. Let 
I be the ideal generated by f1,f2,..., that is, I is the set of all finite linear combinations 
of the form gi 1 fi 1 + • • • + gik fik, k = 1, 2,... ,gij e A(Q). If I were principal, it would 
be generated by a single f. But then Z(f) C Z(h) for each h e I, in particular, 
Z (f) C Z(fn) for all n. It follows that f has no zeros, so 1 = f (1 /f) e I. By 
definition of 1, 1 = g 1 f 1 + • • • + gnfn for some positive integer n and g 1,... ,gn e A(Q). 
Since f 1(a 1) = f2(an) = • • • = fn(an) = 0, we reach a contradiction.
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