
Series Editor: Xiangdong Wang, MD, PhD, Prof
Translational Bioinformatics 19

Kang Ning   Editor

Methodologies 
of Multi-Omics 
Data Integration 
and Data Mining
Techniques and Applications



Translational Bioinformatics

Volume 19

Series Editor

Xiangdong Wang, Shanghai Institute of Clinical Bioinformatics, Zhongshan Hospi-
tal Institute of Clinical Science, Fudan University Shanghai Medical College,
Shanghai, China



Translational bioinformatics is defined as the development of storage-related, ana-
lytic, and interpretive methods to optimize the transformation of increasingly volu-
minous biomedical data, and genomic data in particular, into proactive, predictive,
preventive, and participatory health. Translational bioinformatics includes research
on the development of novel techniques for the integration of biological and clinical
data and the evolution of clinical informatics methodology to encompass biological
observations. The end product of translational bioinformatics is the newly found
knowledge from these integrative efforts that can be disseminated to a variety of
stakeholders including biomedical scientists, clinicians, and patients. Issues related
to database management, administration, or policy will be coordinated through the
clinical research informatics domain. Analytic, storage-related, and interpretive
methods should be used to improve predictions, early diagnostics, severity monitor-
ing, therapeutic effects, and the prognosis of human diseases.



Kang Ning
Editor

Methodologies
of Multi-Omics Data
Integration and Data Mining
Techniques and Applications



Editor
Kang Ning
Department of Bioinformatics and Systems
Biology, Center of AI biology, College of
Life Science and Technology
Huazhong University of Science and
Technology
Wuhan, China

ISSN 2213-2775 ISSN 2213-2783 (electronic)
Translational Bioinformatics
ISBN 978-981-19-8209-5 ISBN 978-981-19-8210-1 (eBook)
https://doi.org/10.1007/978-981-19-8210-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-8210-1


Preface

Many biomedical and clinical questions can now be answered using the wealth of
multi-omics data that has become available in the age of omics. In the process,
however, it has also created hurdles in the integration, mining, and comprehensive
understanding of omics data.

Several biomedical applications are of special interest among various applica-
tions. The first is about cancer omics, which is always at the forefront of omics data
analysis. Previous cancer omics research has focused on genomics and
transcriptomics, whereas current multi-omics analysis would undoubtedly be the
focus of in-depth mining of cancer progression principles. The second is about
inflammation disease omics, which has piqued the interest of the research commu-
nity, in part due to the growing proportion of patients suffering from inflammatory
diseases such as arthritis. Multi-omics research, particularly on the dynamics of
multi-omics, would shed light on a better understanding of the development of
inflammation disease. The third is about the microbiome, which is a current hot
topic: microbial communities are now thought to be linked to a variety of diseases,
including T2D, IBD, and others. And, as with so many other questions, the principle
governing the regulation of the microbiome on these various diseases remains a
mystery. As a result, metagenomic data mining and explanations would be
extremely valuable in the omics field. The fourth topic is omics data integration,
which is related not only to databases and online data analysis pipelines, as well as
visualization tools, but also to the development of various methods for multi-omics
data correlation analysis or even causal or dynamic pattern discovery in the data
integration procedure. Only through such high-level data integration could a solid
foundation for data mining be built. Finally, method development is critical for a
better understanding of hidden principles that can only be recovered by novel
creative artificial intelligence tools.

This book has covered not only multi-omics big-data integration and data-mining
techniques, but also cutting-edge researches in the principles and applications of
several omics, including cancer omics, inflammation disease omics, and microbiome
research. (1) Multi-omics big-data integration and data-mining techniques: Data
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vi Preface

integration and data-mining techniques will be introduced, along with illustrative
examples and figures, to provide a better understanding of the essence of the
definitions of both multi-omics and data mining, as well as how they can be
combined to gain the most insights from these omics data. (2) Advancement in
concrete research on multi-omics big-data: readers will learn the fundamental pro-
cedures for conducting representative and concrete multi-omics studies: given a set
of omics data, how data-mining techniques can be applied to meet the needs of
specific biological questions of interest. (3) Cutting-edge research in applications
such as cancer omics, inflammation disease, and microbiome research: three topics
would be highlighted out of many applications, one on cancer omics data analysis
and explanations, another on inflammation disease, and another on specifically
featured microbiome applications such as those related to T2D and IBD. (4) Con-
temporary data resources, tools, and analytical platforms will also be featured for
readers to gain hands-on experience.

Intended as a book on the biomedical big-data expedition in the omics age, this
book focuses on data integration and data-mining methods for multi-omics
researches, explaining the “What,” “Why,” and “How” of the topic in detail and
with supporting examples. It is an attempt to bridge the gap between biomedical
multi-omics big data and data-mining techniques to obtain optimal practices in
contemporary bioinformatics and in-depth insights into biomedical and clinical
questions.

Wuhan, China Kang Ning



About the Book

This book features multi-omics big-data integration and data-mining techniques. In
the omics age, the paramount of multi-omics data from various sources is the new
challenge we are facing, but it also provides clues for several biomedical or clinical
applications. For multi-omics research, this book discusses in detail and with
examples how to integrate data and performed data mining. This book focuses on
data integration and data-mining methods for multi-omics research, which explains
in detail and with supportive examples the “What,” “Why,” and “How” of the topic.
The contents are organized into eight chapters, out of which one is for the introduc-
tion, followed by four chapters devoted to omics integration techniques and data-
mining methods, and three chapters devoted to the applications of multi-omics
analyses, where data-mining methods are used to demonstrate how multi-omics
analyses can be used in practice. This book is an attempt to bridge the gap between
biomedical multi-omics big data and the data-mining techniques, for the best
practice of contemporary bioinformatics and the in-depth insights for the biomedical
questions. It would be of interest to the researchers and practitioners who want to
conduct multi-omics studies in cancer, inflammation disease, and microbiome
researches.
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Multi-omics studies typically include omics data from multiple sources, including
genomics, transcriptomics, proteomics, epigenomics, and microbiomics (Chung and
Kang ). Genomics refers to omics data derived from DNA materials (Manzoni
et al. ). Transcriptomics is the study of omics data derived from RNA materials
(Manzoni et al. ). Proteomics is the collection of omics data from protein
materials (Manzoni et al. ). Epigenomics refers to omics data derived from
the whole range of epigenetic alterations on genetic material (Casadesús and Noyer-
Weidner ). Microbiomics refers to omics data derived from a microbial
community’s entire set of genetic materials (Kumar ). Each of these omics
represents a different part of the research goal, and when combined, they could
disclose the regulatory patterns and principles that govern how genetic materials
regulate genotypes (Fig. ). On a more generalized scope, the omics can also1.1
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Chapter 1
Introduction to Multi-Omics

Kang Ning and Yuxue Li

The rapid development of technologies and informatics tools for producing and
interpreting massive biological data sets (omics data) has resulted in a paradigm shift
in how we approach biomedical challenges (Manzoni et al. 2018). Large data sets are
typically generated during genomics, transcriptomics, proteomics, microbiomics,
and metabolomics research (Osier et al. 2017). With the advancement of these
omics investigations, multi-omics research has emerged as one of the most promis-
ing venues for a deeper understanding of biological problems (Sun and Hu 2016). As
the name suggests, multi-omics encompasses all digital genetic resources relevant to
the research objectives, and its related research will automatically generate more
comprehensive information to achieve the purpose of the research.
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Fig. 1.1 The generalized
definition of multi-omics.
Large-scale acquisition of
omics data from different
molecular levels such as
genome, transcriptome,
proteome, epigenome,
metabolome, microbiome,
etc., and integrated analysis
to achieve a deeper
understanding of biological
processes and molecular
mechanisms

include those data from bioimaging, biosensors, and even social networks (Antonelli
et al. 2019; Sriram and Subrahmanian 2020; Loizou 2016).

1.1 The History of Omics

The omics studies have quite a long history. Back in 1958, the first sequencing
technique emerged, as Frederick Sanger has invented the protein sequencing
methods, especially the amino acid sequence of insulin (Heather and Chain 2016).
However, sequencing technology did not develop significantly during the next
twenty to thirty years. DNA was originally extracted in 1869, it was not until more
than a century later that the first genomes were sequenced, making genomics a
relatively new field that truly began in 1970s.

1.1.1 1971–1910: Discovery of DNA

In 1871, Friedrich Miescher published a paper identifying the presence of nuclein
and associated proteins in the nucleus. This is what we now call DNA, which is the
foundation of the field of genomics.

Walter Sutton and Theodor Boveri discovered in 1904 that chromosomes
appeared in pairs, with one inherited from each parent., which is known as the
theory of chromosome inheritance. In 1910, Albert Kossel discovered the five
nucleotide bases: adenine (A), cytosine (C), guanine (G), thymine (T), and
uracil (U).
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1.1.2 1950–1968: Development of Knowledge about DNA

Erwin Chargaff discovered the base pairing of adenosine, cytosine, guanine, and
thymine nucleotides in 1950. He discovered that the concentrations of thymine and
adenine or cytosine and guanine in DNA samples are always equal. As a result, he
concluded that adenosine and thymine form a chromosome pair, while cytosine and
guanine form a chromosome pair.

In 1952, Alfred Hershey and Martha Chase proved through a series of experi-
ments that it was DNA, not protein, that carried inherited genetic features. The
following year, the double helix structure of DNA was discovered by James Watson
and Francis Crick (Portin 2014). A research team led by Marshall Nirenberg and Har
Gobind Khorana discovered what is now known as DNA “codons” in 1961.

1.1.3 1977–Present: Sequencing of DNA Related Stories

Frederick Sanger developed a DNA sequencing technology in 1977 to sequence the
first complete genome, known as the phiX174 virus, which opened the door to new
possibilities in genomics. In 1983, Dr. Kary Mullis invented the polymerase chain
reaction (PCR) technique for amplifying DNA (García-Quesada et al. 2021). The
first bacterial genome sequence, Haemophilus influenza, was completed in 1995
(Fraser and Rappuoli 2004). The yeast genome was completed one year later (Zhang
1999). Dolly the sheep, the first cloned animal, was also born at this time
(Elster 1999).

In 1990, the Human Genome Project was launched to sequence 3 billion letters of
the human genome. As part of this project, chromosome 22 was sequenced as the
first chromosome in 1999. The project was finished in 2003, and it confirmed that
humans have between 20,000 and 25,000 genes.

In 2007, there was a breakthrough in DNA sequencing technology that increased
the output of DNA sequencing by 70 times in 1 year. This prompted the launch of the
1000 Gene Project in 2008, intending to sequence the genomes of a large population
of 2500 people.

In general, advances in DNA technology have aided the development of omics.
Figure 1.2 depicts a brief timeline of recent developments in multi-omics research.

1.2 Omics: DNA, RNA, Protein, and Microbiome

There are now many hot omics studies such as transcriptomics for RNA research,
proteomics for protein research, and microbiomics for microbiome research
(Yu et al. 2018). Transcriptomics is the study of gene transcription in cells as well
as transcriptional regulation in general (Dong and Chen 2013). Proteomics is the
study of the composition of cells, tissues, or biological proteins and their changing
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1970 1980 1990 2000 2010 2020

1969
FACS

1977
1-color FCM

1988
PCR with
thermostable
Taq ploymerase

1995
cDNA microarrays

1996
Real-time auantitative

2008
RNA-seq

2009
single cell RNA-seq

2007
ChIP-seq

2011
Over thirty makers
mass cytometry(CyTOF)

2013
ATAC-seq

Gene editing mouse by
CRISPR/Cas9

2006
18-colour FCM

2001
11-colour
FCM

2003
LC-MS/MS

1997
CFSE in
proliferation

1991
Intracellular
Cytokine
staining

Fig. 1.2 The timeline for the development of multi-omics researches. The development history of
multi-omics is actually the process of development and innovation of different omics data acqui-
sition technologies. With the enrichment and cross-use of omics data, multi-omics analysis has
gradually been applied

laws using protein as the research object. The term “microbiome” refers to the
genomes of microorganisms (bacteria, archaea, lower or higher eukaryotes, and
viruses) as well as their entire environment (Marchesi and Ravel 2015).

Multi-omics has emerged with the accumulation of various omics datas, and has
become a research focus in recent years due to its importance in basic research and
clinical application (Chakraborty et al. 2018). A series of disease-related differences
are typically generated for omics data. These data can be used as disease process
markers as well as insights into biological pathways or process differences between
the disease and the control group. However, only one type of data analysis has
limited relevance, primarily reflecting the reaction process rather than causality. The
integration of various omics data types is typically used to clarify potential patho-
genic changes or treatment targets that cause the disease, which can then be tested
further. Multi-omics research, when compared to a single type of omics research, can
better understand the basic information flow of diseases.

In recent years, sequencing technologies have generated a large amount of multi-
omics data worldwide, but also brings many problems. First, because the growth rate
of multivariate data was unimaginable ten years ago, large public databases have
used cloud facilities to store these data. Secondly, the cost of generating multi-omics
data has decreased rapidly, leading to a further increase in the amount of multi-omics
data as well (NHGRI 2021).

1.3 Databases and Tools for Omics Studies

When confronted with multi-omics data, there is an increasing demand for compu-
tational methods that can rationally integrate and accurately analyze heterogeneous
multi-omics data. To date, numerous databases and analytical tools have been
developed to aid in the analysis of these multi-omics datasets (Tables 1.1 and 1.2).
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Table 1.1 Representative databases for multi-omics research

Database Functionality Web link Reference

ChEBI Metabolomics database and ontology http://bigd.big.ac.cn/
databasecommons/
database/id/364

Degtyarenko
et al. (2007)

E.coli
metabolome
database
(ECMDB)

Annotated metabolomics and metab-
olite pathway database

https://ecmdb.ca/ Guo et al.
(2012)

FlyBase Genes and RNA-seq data of different
drosophila

https://flybase.org/ Thurmond
et al. (2018)

GenBank
(database)

Proteomics database open access
annotated collection of all publically
available nucleotide sequences and
their protein transitions.

https://www.uniprot.
org/database/DB-002
8

Benson et al.
(2017)

Human
Metabolome
Database
(HMDB)

Human metabolite and pathway
database

https://hmdb.ca/ Wishart et al.
(2017)

KEGG Collection of databases dealing with
genomes biological pathways, dis-
ease, drugs and chemical substances

https://www.kegg.jp/ Kanehisa
et al. (2016)

Table 1.2 Representative analytical tools for multi-omics research

Tool/Method Tool/Method approach Tool/Method link Reference

PARADIGM Probabilistic graphical models
using directed factor graphs

http://paradigm.five3geno
mics.com/

Gluth et al.
(2013)

iCluster Joint latent variable model-based
clustering method

https://cran.r-project.org/web/
packages/iCluster/index.html

Shen et al.
(2009)

iClusterPlus Generalized linear regression for
the formulation of the joint model

http://www.bioconductor.org/
packages/release/bioc/html/
iClusterPlus.html

Pierre-Jean
et al.
(2019)

1.4 Multi-Omics Applications

Multi-omics research has been successfully applied to many biological problems
such as cancer omics, inflammatory disease omics and microbiome research.

The applications of multi-omics in disease (Hasin et al. 2017), including the
integration of genome, epigenome, transcriptomics, proteomics, metabolomics and
microbiome, as well as their interrelationships. Figure 1.3 depicts the various omics
data types and disease research methods from an article. Each layer represents an
omics data type. The omics data is gathered across the entire molecular pool, which
is represented by circles. Except for the genome, all data layers reflect genetic
regulation and the environment, and the environment’s impact on each molecule
may differ. In a recent work, cancer genomic profiling of 78 clinical tumor samples
(Rusch et al. 2018) using three-platform sequencing of the whole genome, whole

http://bigd.big.ac.cn/databasecommons/database/id/364
http://bigd.big.ac.cn/databasecommons/database/id/364
http://bigd.big.ac.cn/databasecommons/database/id/364
https://ecmdb.ca/
https://flybase.org/
https://www.uniprot.org/database/DB-0028
https://www.uniprot.org/database/DB-0028
https://www.uniprot.org/database/DB-0028
https://hmdb.ca/
https://www.kegg.jp/
http://paradigm.five3genomics.com/
http://paradigm.five3genomics.com/
https://cran.r-project.org/web/packages/iCluster/index.html
https://cran.r-project.org/web/packages/iCluster/index.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
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Fig. 1.3 Different omics data and corresponding analytical methods for disease research. Except
for the genome, all data layers reflect both gene regulation and environment, which may affect each
molecule to varying degrees. Potential interactions or correlations detected between molecules in
different layers are represented by thin arrows

exome, and transcriptome to identify tumor-related structure variation (SV), somatic
cell mutation, and pathogenic mutation, among other things. Sequencing, variant
detection, variant classification, group review, and report generation are all covered
in this the clinical three-platform sequencing design. In another research, multi-
omics approaches to study secondary metabolites biosynthesis in microbes
(Palazzotto and Weber 2018).

In general, multi-omics data resources are rapidly growing, and their analysis
tools and platforms are maturing. Multi-omics research has made remarkable
achievements in cancer and biological problems. Some applications of multi-omics
research are listed below.

1. Multi-omics approaches to cancer (Aure et al. 2013) tracked genetic associa-
tions caused by breast cancer using complete genome-wide copy number and
expression data. The author proposed a method for analyzing in-cis correlated
genes in biological processes that is not biased towards particular types or
functional processes. The goal of this method is to find cis-regulated genes
whose expression correlation with other genes supports the role of network
interference in cancer. This method was used to examine the genome-wide
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copy number and expression data of 100 primary breast cancer patients. A total of
6373 gene abnormalities were discovered, 578 of which were highly in-cis
correlated to biological processes and 56 of which were in-trans correlated.
Among these in-trans process associated and cis-correlated (iPAC) genes, 28 per-
cent had previously been linked to breast cancer, and 64 percent had previously
been linked to cancer. The proposed method identified several known and new
cancer driver candidates by combining the statistical evidence from three inde-
pendent sub-analyses focusing on copy number, gene expression, and the com-
bination of the two. The validation of independent data sets backs up the
conclusion that this method identifies cancer-related genes.

2. Multi-omics approaches to chronic kidney disease (Husi et al. 2014). To gain a
comprehensive understanding of key molecular changes in the vascular system
caused by diabetes, researchers performed integrated proteomics and bioinfor-
matics analysis on the aortic blood vessel data of a low-dose streptozotocin-
induced diabetic mouse model (10) The researchers discovered significant
dysregulation of molecules involved in myogenesis, angiogenesis, hypertension,
hypertrophy (associated with aortic wall thickening), and a significant decrease in
fatty acid storage. Another novel discovery is the significant down-regulation of
glycogen synthase kinase-3 (Gsk3) and the up-regulation of molecules associated
with the tricarboxylic acid cycle (for example, aspartate aminotransferase [Got2]
and hydroxy-oxy-acid transhydrogenase). Furthermore, the pathways involved in
the breakdown of primary alcohols and amino acids have been altered, potentially
leading to the formation of ketone bodies.

3. The NASA twins study: a multidimensional analysis of a year-long human
spaceflight (Garrett-Bakelman et al. 2019; Jerrusalem 2015) investigated the
biology that may change humans during long-term space travel. When NASA
astronaut Scott Kelly launches on a year-long mission to the International Space
Station, researchers will collect and compare genomic, molecular, and physio-
logical data from Scott and his twin brother, former astronaut Mark Kelly. Data
changes may reveal how the human body reacts to extreme environments. The
multi-omics longitudinal analysis process for twins is depicted in
Fig. 1.4. According to NASA, the study was divided into four parts. (1) Human
physiology: How does the space environment change organs such as the heart,
muscles and brain? (2) Behavioral health: The changes in astronauts’ cognitive
reasoning, decision-making and alertness in the space environment. (3) Microbi-
ology: The study examines dietary differences and stressors in twins and how
they affect their gut flora. (4) Molecular/omics: Research in this area will focus on
possible changes in gene expression caused by the space environment, as well as
the effects of radiation, claustrophobic conditions, and microgravity on proteins
and metabolites.
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Fig. 1.4 Multidimensional,
longitudinal assays of the
NASA Twins Study. The
twins collected and analyzed
the characteristics of
10 generalized biomedical
models before the flight
(in flight), during flight
(in flight), and after flight
(after flight) for a total of
25 months

1.5 Future Perspectives

With more easily accessible data, as well as more mature databases and analytical
tools for multi-omics data, multi-omics studies are expected to reveal more profound
omics patterns that regulate the phenotypes of objectives of interest. Multi-omics
studies have been widely applied to many biological problems in recent years. For
example, many advances have been made in the epidemiology of chronic diseases
(Pang et al. 2021). Zhou et al. conducted a longitudinal multi-omics study on the
host-microbial dynamics in the pre-diabetes stage, gaining a better understanding of
the multi-omics characteristics of this early stage (Zhou et al. 2019). Fiorenza
Schussler Rose SM et al. used in-depth multi-omics measurement to identify clin-
ically relevant T2D molecular pathways, investigated the ability of in-depth longi-
tudinal analysis in health-related discoveries, identification of clinically relevant
molecular pathways, and behavior influence, and employed omics method develop-
ment. Using an insulin resistance predictive model, the findings show that in-depth
longitudinal analysis can lead to actionable health findings and provide relevant
information for accurate health (Schüssler-Fiorenza Rose et al. 2019). Liu et al.
combined epidemiology, pharmacology, genetics, and gut microbiome data in the
drug metabolite map, and the results demonstrated that the cross-sectional study of
the effect of statins on metabolites is estimated and intervention and genetic obser-
vation research comparable. Proton pump inhibitors are linked to circulating metab-
olites, liver function, liver steatosis, and the gut microbiome in additional data
integration. The research map serves as a tool for targeted experimental drug
research and clinical trials aimed at improving drug efficacy, safety, and reuse (Liu
et al. 2020). In general, single-omics research lacks multi-level integration, and the
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utility of inferring the etiology of complex diseases is limited. Multi-omics research
significantly broadens the scope of etiology research. The previously difficult prob-
lem of obtaining pathological samples of multi-omics data has gradually been solved
due to the rapid growth of multi-omics database resources. Multi-omics offers new
ideas for traditional observational epidemiological research to infer the cause of
chronic diseases, as well as valuable resources in the integration of systemic
epidemiology to investigate disease mechanisms, and will serve as an important
reference for subsequent further experimental verification studies (Pang et al. 2021).

However, the maintenance of long-term follow-up and laboratory testing is more
expensive when obtaining multi-omics data related to the disease. Pathological
samples of rare diseases are difficult to obtain in clinical practice, posing significant
challenges to disease-related molecular biology research. Furthermore, the com-
bined effects of multiple factors, as well as the high variability of a single data set,
can lead to false discoveries, making it difficult to interpret the results of multi-omics
analysis, particularly when identifying biologically related molecules (Pang et al.
2021). In general, while multi-omics research is progressing well, there is still a long
way to go before we have a complete understanding of the holistic and dynamic
pattern of how genetic materials regulate the phenotypes of objectives of interest.
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Chapter 2
Biomedical Applications: The Need
for Multi-Omics

Yuxue Li and Kang Ning

Multi-omics studies are urgently required for biomedical applications, not only
because of the comprehensiveness of the omics that such multi-omics studies
could consider but also because of the interconnections that different omics data
would reveal towards a more in-depth understanding of the molecular biology
behind living cells and/or communities of lives. The multi-omics strategy for
biomedical applications is essentially a big data strategy. In the following sections,
we will discuss (1) biomedical big data and challenges, (2) analytical techniques for
biomedical multi-omics big data, particularly deep learning, (3) representative data-
bases and tools for multi-omics data analysis, and (4) representative applications
based on multi-omics data.

2.1 Biomedical Big Data and Challenges

Different from the traditional research paradigm, big data research is based on a
statistical research, in which comparison, clustering, correlation analysis, classifica-
tion analysis, and induction of a large number of data. For decades, the goal of
experiments at the level of molecular biology has been to obtain conclusions or
propose a new hypothesis in terms of biomedical big data and big data research is
gradually shifting from hypothesis-driven to data-driven (Casanova et al. 2022).
Now, we can explore the rules of massive data research, directly put forward
hypotheses, and draw reliable conclusions based on massive biomedical big data.
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Fig. 2.1 The properties of biomedical big data, and trends of biomedical big data mining.
Biological big data analysis faces challenges: accuracy and speed, as the basic challenges inherited
from big-data analytical tasks

However, the biomedical big data will be a double-edged sword. On the one hand,
the difference of data will form a bottleneck in data integration at the same time of
high-speed accumulation of big data. On the other hand, once this series of bottle-
necks is broken, the profound biological laws contained in big data will greatly
promote the understanding of human health.

Biomedical big data has unique properties, as represented by 3 V characteristics
(Fig. 2.1). First, the volume of biomedical data is enormous. Second, the research
has stringent requirements for the accuracy and speed with which results are
processed. Third, the relevant source data are diverse and highly heterogeneous
(Ning and Chen 2015). The needs for big data analysis is also high, which could be
represented by 5H needs: High speed, High accuracy, High heterogeneity, High
demand, High frequency of updates (Fig. 2.1). To be more specific, biomedical big
data has high-dimensional characteristics in terms of multiple sample analysis
angles, multiple omics data, and multiple sample sizes, necessitating the superposi-
tion, indexing, and learning of multi-dimensional data. What more, biomedical
research’s goals and processes are complex. Finally, differences in sample sources,
processing methods, and storage formats in biomedical research result in a high
degree of uncertainty and inconsistency of the research objects, necessitating intel-
ligent data models for in-depth analysis (Ning and Chen 2015).

Among all omics data, microbiome big data has unique properties: heterogeneous
biome from which samples are collected, highly incomplete reference, largely
insufficient meta-data. Microbiome biological big-data analysis faces challenges:
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dynamic pattern mining, and functional gene mining, as the bottleneck for data
understanding.

2.2 Deep Learning for Biomedical Big Data

Deep learning techniques have been widely used in big data analysis (Zhang et al.
2017), including biomedical big data analysis (Krassowski et al. 2020). Since
biological big data could be categorized into sequence data and feature-rich data in
other forms (Pal et al. 2020), deep learning methods can be classified as sequence-
based or feature-based.

Sequence-based deep learning methods typically transform sequences into fea-
ture space before data mining (Li et al. 2019). One-hot is a method of converting a
biological sequence into a binary sequence based on a coding scheme. For
example, A, C, G, and T could be coded as 0001, 0010, 0100, and 1000, respec-
tively. However, one-hot is not only redundant in information but also introduces
noise into data mining, it is not widely used today. The second method is to extract
k-mer features directly from sequences, which is an efficient method but has poor
interpretability. The third approach, which has been successful in a wide range of
applications (Li et al. 2019), is based on feature extraction from sequences using
domain knowledge.

Fetures-based deep learning methods are adaptable for a wide range of applica-
tions, including functional element mining (Nahmias et al. 2020), gene or species
distribution pattern mining, and evolutionary relationship inference (Sadeqi Azer
et al. 2020), among others. For example, in functional element mining, feature-based
deep learning methods typically work as follows: feature extraction and alignment,
modeling construction, and prediction. Another example is AlphaFold for protein
3D structure prediction, which considers residue-residue distances as features and
trains the deep learning model to best fit for these features (Poplin et al. 2018).

Deep learning algorithms have emerged in many fields, including text, medical
care, and finance, and have shown great promise. In the field of gene sequencing,
there have also been numerous application breakthroughs. DeepVariant (Poplin et al.
2018), a deep learning-based mutation detection software developed by Google, was
the first to use artificial intelligence technology to detect mutations and decode
genetic data. As we known, sequencing errors are unavoidable in the process of
high-throughput sequencing technology. Mutation detection, as a link in the gene
sequencing process, is designed to prevent various errors accumulated during the
sequencing process from generating false negative and false positive information in
the final mutation information, thereby affecting the accuracy of the sequencing
report. The standard mutation detection tool at the moment is GATK’s Haplotype
Caller (Happ et al. 2019). The detection accuracy of single nucleotide polymorphism
variation on commonly used 30X deep whole genome (WGS) sequencing data can
reach around 99.7% (Poplin et al. 2018).
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Google as a pioneer in the field of artificial intelligence, recently launched
DeepVarian, a mutation detection software based on a deep learning algorithm,
which aims to improve the accuracy of mutation detection by using the rapidly
developing artificial intelligence technology. Advantages of DeepVariant include
more complex classification features and the ability to propose effective measures
for specific problems.

The Process of DeepVariant can be divided into three steps:

1. The input data required by DeepVariant can be used to obtain BAM data by
GATK or other mature processes to conduct quality control, comparison, sorting,
deduplication and other operations on sequencing data.

2. The potential mutation sites are retrieved and screened from the BAM data, and
the sequencing data near these points are expanded and spliced into a pileup
image.

3. The high-depth convolutional neural network with pre-training is used for image
recognition and classification of Pileup images, and the variation information of
target sites, such as various types and qualities, is provided.

DeepVariant has mutation detection accuracy far outperforms state-of-the-art
methods. Various deep learning algorithms will redefine mutation detection and
even the standards of each link in the bioinformatics analysis process in the future,
catapulting the bioinformatics industry to new heights (Poplin et al. 2018).

2.2.1 Application of Functional Gene Mining

Gene annotation is based on “homology equals functional similarity”, using bioin-
formatics methods to search and compare the similarity of unknown gene sequences
in public databases. Homology with annotated genes in the database can be used to
infer the function of unknown genes. GenBank (NCBI), EMBL, and DDBJ are the
most well-known annotated nucleic acid databases. SwissProt and TrEMBL are two
of the most popular protein databases. BLAST, FASTA, and other search and
comparison software are commonly used.

2.2.1.1 Using Comparisons and Annotations to Discover Genes

Unigene is created by processing and splicing a large number of EST sequences
obtained through sequencing. Candidate genes with reference annotation function
can be obtained or new genes discovered through comparison and annotation with
multiple public databases using software such as BLAST. This method is most
commonly used to find genes in species with known genomic information or clear
metabolic pathways (Yang et al. 2020).
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2.2.1.2 Using Expression Differences to Discover Genes

Transcriptome sequencing can be used to compare differentially expressed genes in
non-model species that lack reference genomes and have weaker molecular basic
research. Conduct cluster analysis on these differentially expressed genes, group
genes with similar functions together, and determine the functions of unknown genes
grouped into one class via known functional genes.

High-throughput transcriptome sequencing technology is still in its infancy, but it
provides a new platform and a huge development opportunity for molecular biology
and transcriptome research, with obvious benefits. Exploration of genes using
transcriptome sequencing technology will greatly enrich the gene resources of
eukaryotes, particularly non-model organisms, and promote the development of
molecular breeding.

Machine learning methods, such as deep learning, have very promising prospects
for discovering hidden structures and making accurate predictions based on large
amounts of data. The author introduced the background of deep learning and its
successful application in biological problems in a review. In addition to presenting
specific applications and providing practical tips (Angermueller et al. 2016). Figure
2.2 is a typical learning case process in machine learning.

2.2.2 Protein Structure Prediction

A protein’s function frequently depends on its unique three-dimensional structure,
and predicting the structure of proteins is critical to understanding its role in the body
as well as diagnosing and treating diseases thought to be caused by misfolded
proteins. Alzheimer’s, Parkinson’s, Huntington’s, and cystic fibrosis are a few
examples (Callaway 2020). However, predicting a protein’s three-dimensional
structure from a limited gene sequence is more difficult because it is difficult to
predict how long a chain of amino acid residues will fold into a protein with a
complex three-dimensional structure. This is referred to as the “protein folding
problem” (Strodel 2021).

Scientists have developed experimental techniques to determine the structure of
proteins over the last 50 years, such as cryo-electron microscopy, nuclear magnetic
resonance, and X-ray crystallography, but these methods rely heavily on trial and
error and cost a lot of money and time to identify a structure. So, biologists are
turning to artificial intelligence methods to replace this time-consuming and labori-
ous protein processing process (Callaway 2020).

Protein structure prediction methods:

1. Comparative homology modeling: to construct protein model according to the
alignment information between protein sequence and already structured proteins
(Webb and Sali et al. 2016).
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2. Threading fold recognition: to find the most suitable template for the unknown
protein, sequence and structure comparison is carried. Finally, the structure model
is established (Buchan and Jones 2017).

3. Ab initio /de novo methods: to predict protein structure from scratch from the
sequence itself (Guo et al. 2008).

Deep learning methods that rely on genetic data to predict problems have grown in
popularity in recent years. With the rapid reduction in the cost of gene sequencing, a
large amount of genomics data has been accumulated. Deep learning methods that
rely on genetic data to predict problems have grown in popularity. DeepMind’s
efforts on this front resulted in the AlphaFold (Serpell et al. 2021), which CASP
organizers hailed as an “unprecedented advance in the ability of computational
methods to predict protein structure.” AlphaFold solves the problem of creating
target structures from scratch without the use of previously solved proteins as
templates (Callaway 2020). The basic principle and process of protein structure
prediction are depicted in Fig. 2.3.

Learned Structural Motifs

Protein Structure

Distance Feature
X

Convolutional Features
H1

Convolutional Features
HN

FingerPrint

Fig. 2.3 The process of protein structure prediction. Protein sequence features are first transformed
to residue-residue distance matrix, and then processed through convolution and feature selection
processes, before the final structural motif and protein structures are obtained
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2.3 Representative Databases and Analytical Tools

Faced with multi-omics data, there is an increasing demand for computational
methods that can rationally integrate and accurately analyze heterogeneous multi-
omics data. Until now, numerous databases have been created to aid in the analysis
of these multi-omics datasets (Table 2.1).

One of the most prominent databases for multi-omics studies is the TCGA
database and platform (Li et al. 2020). Based on paramount multi-omics data,
various analytical tools have also been developed (Table 2.2).

Table 2.1 Representative databases for multi-omics researches

Tools Types Web Link Reference

The Cancer Genome Atlas
(TCGA)

RNA-Seq, DNA-Seq. miRNA-
Seq, SNV, CNV, DNA meth-
ylation, RPPA

https://
cancergenome.
nih.gov/

Wang et al.
(2016);
Danaher
et al. (2018)

Clinical Proteomic Tumor
Analysis Consortium
(CPTAC)

Proteomics data corresponding
to TCGA cohorts

https://cptac-
data-portal.
georgetown.edu/
cptaPublic/

Rudnick
et al. (2016)

International Cancer
Genomics Consortium
(ICGC)

Whole-genome sequencing,
genomics variation data
(somatic and germline
mutation)

https://icgc.org/ Li et al.
(2020)

Cancer Cell Line Ency-
clopedia (CCLE)

Gene expression, copy number,
and sequencing data; pharma-
cological profiles of 24 antican-
cer drugs

https://portals.
broadinstitute.
org/ccle

Ghandi et al.
(2019);
Nusinow
et al. (2020)

Molecular Taxonomy of
Breast Cancer Interna-
tional Consortium
(METABRIC)

Clinical traits, gene expression,
SNP and CNV

https://molonc.
bccrc.ca/
aparicio-lab/
research/
metabric/

Heng et al.
(2017)

Table 2.2 Representative analytical tools for multi-omics researches

Tool/
Method

PARADIGM Probabilistic graphical
models using directed factor
graphs

http://paradigm.five3genomics.
com/

Gluth et al.
(2013)

iCluster Joint latent variable model-
based clustering method

https://cran.r-project.org/web/
packages/iCluster/index.html

Shen et al.
(2009)

iClusterPlus Generalized linear regression
for the formulation of the joint
model

http://www.bioconductor.org/
packages/release/bioc/html/
iClusterPlus.html

Pierre-Jean
et al. (2019)

LRAcluster Probabilistic
The model with low-rank
approximation

http://lifeome.net/software/
lracluster/

LRAcluster
(2008)

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://cptac-data-portal.georgetown.edu/cptaPublic/
https://cptac-data-portal.georgetown.edu/cptaPublic/
https://cptac-data-portal.georgetown.edu/cptaPublic/
https://cptac-data-portal.georgetown.edu/cptaPublic/
https://icgc.org/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
https://molonc.bccrc.ca/aparicio-lab/research/metabric/
http://paradigm.five3genomics.com/
http://paradigm.five3genomics.com/
https://cran.r-project.org/web/packages/iCluster/index.html
https://cran.r-project.org/web/packages/iCluster/index.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://www.bioconductor.org/packages/release/bioc/html/iClusterPlus.html
http://lifeome.net/software/lracluster/
http://lifeome.net/software/lracluster/
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2.4 Representative Applications Based on Multi-Omics
Big Data

The general approaches for multi-omics studies on biomedical applications follow
the “multi-omics data integration -- > multi-omics data mining -- > biomedical
pattern inference and validation” paradigm (Subramanian et al. 2020). Following
this paradigm, many biomedical applications have been conducted based on multi-
omics data, which in turn urged for more dependencies on multi-omics data by
biomedical applications (Fig. 2.4) (Chakraborty et al. 2018; Khan and Azmir 2020).

Cancer poses a great threat to human health and is the focus of much biomedical
research. The development of multi-omics has promoted cancer research, and cancer
analysis has become one prominent example of multi-omics study (Khan and Azmir
2020).

Complementary Information
Cancer: Multi-omic analysis has a huge impact on the field of cancer mapping
analysis, diagnosis and treatment. However, different types of mutations in cancers
complicate analysis, and require specific treatment. In addition to the technical
challenge of identifying somatic variation, most of the apparent genetic changes in

Fig. 2.4 Representative applications based on multi-omics approaches. Based on the integration of
multi-omics data, a more comprehensive understanding of the molecular characteristics of diseases
can be obtained, and promote the development of pathological research, marker discovery, etc.
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cancer cases are benign and do not promote cancer cell growth. As a result,
determining which mutations are driving the disease or which pathways are involved
remains a significant challenge (Karczewski and Snyder 2018)

Identifying Driver Mutations: Whole-genome sequencing (WGS) of multiple
tumors to identify mutated genes in common is a common method for identifying
driver mutations. Because driver mutations are more likely to be present in genes
expressed in specific cancers, adding functional data helps prioritize the likelihood of
driver genes for these genes. In this way, combining additional multi-omics data
with genetic data analysis provides a mechanism for filtering out a large number of
genetic variations and eventually obtaining functionally related driving variants
(Karczewski and Snyder 2018)

Molecular Signatures of Cancer: Multi-omics data can reveal biochemical
pathways active in cancer and classify them into different subtypes, in addition to
identifying driver mutations. As a result, it is a useful tool for determining which
pathways are targeted in patients, even if strong candidate mutations (such as
difficult-to-characterize non-coding mutations or indirect effects) are not found in
these pathways (Karczewski and Snyder 2018)

2.4.1 Microbiome Mining for Cancer Research

Unknowns surround the microbiome and cancer. According to a widely quoted
statistic, infectious pathogens cause 20% of all cancers worldwide. This may explain
why microbes are often regarded as carcinogens that must be eradicated in cancer
biology (Xavier et al. 2020).

In 2019, the IUCN stated that “there is no direct evidence that human symbiotic
microbes are a key determinant of cancer pathogenesis”, it is critical to distinguish
between the microbiome’s direct and indirect effects on cancer. When microbes
come into direct contact with cancerous tissue and affect its performance, direct
effects may occur. When the microbiome affects tumors at the distal end, it may have
an indirect effect, as in the case of the intestinal microbiome, or it may influence
cancer progression elsewhere by influencing host physiology or triggering systemic
inflammation. In general, the human microbiome can interact with cancer through
complex feedback loops. The effect of the microbiome on cancer may be direct or
indirect. Direct interactions between the microbiota can occur in tissues where
cancer arises, such as the skin microbiota described here directly interacting with
melanoma; indirect interactions can occur between the microbiota and cancer in
different tissues. For example, the gut microbiota alters circulating metabolites,
which in turn affect the general physiology of the host and may have indirect effects
on skin cancer progression or its response (Xavier et al. 2020).

The microbiome’s impact on cancer can be direct or indirect, which is an
important distinction. As illustrated in the following hypothetical case: The skin
microbiome interacts directly with melanoma; indirect interactions between the
microbiome present in different tissues and cancer are also possible. The gut
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microbiome, for example, may influence host physiology by altering circulating
metabolites, thereby indirectly influencing skin cancer progression or the host’s
response to treatment. Furthermore, diet may play a role, as it influences metabolite
circulating levels and microbiome composition.

Viruses play a key role in our understanding of cancer as an inherited disease, and
those that have been found to cause cancer in humans are further evidence that the
link between microbes and cancer may help prevent it. Although there is a link
between viruses and cancer, most microbiome research focuses on bacteria rather
than viruses. Surprisingly, other microbes in the microbiome may also influence the
progression of virus-caused cancers, which is significant because the majority of
people infected with cancer-causing viruses do not develop cancer, and the factors
that determine how viral infections develop are unknown.

Cervical squamous epithelial lesions and HPV infection significantly altered the
composition of bacteria and fungi in a study of Puerto Rican women. Thus, changes
in the cervicovaginal microbiome shifted from a Lactobacillus-dominated commu-
nity to one dominated by strictly anaerobic bacteria (such as Sneathia sanguinigens
and Gardnerella vaginallis), which colonizes the host-environment junction, may
influence cervical cancer susceptibility (Xavier et al. 2020).

Dual Role of Microorganisms in Cancer
Helicobacter pylori, the most well-known cancer-causing bacterium, exemplifies a
paradox: while it causes stomach cancer in humans, it is thought to be a normal
component of the stomach microbiome, capable of spreading from person to person
and co-evolving with humans. Furthermore, h. pylori colonization may be beneficial
to human health because removing h. pylori increase the risk of many diseases,
including severe gastroesophageal reflux disease and its sequelae, Barrett’s esoph-
agitis, and esophageal adenocarcinoma. Although it is a risk factor for diabetes and
other diseases, it can also prevent asthma, multiple sclerosis, and inflammatory
bowel disease (IBD). As a result, Helicobacter pylori may be both harmful and
beneficial to human health. This duality also applies to other microbes. The type of
inflammation caused by microbes may be the difference between good and bad. The
human immune system is in balance, and an appropriate immune response is
required for homeostasis.

Emerging Technology to Study the Role of Microbiota in Cancer
To investigate the role of the microbiome in cancer, it is necessary to distinguish
between direct and indirect effects, as they necessitate different approaches and even
different techniques. These studies may necessitate sophisticated in-situ imaging
techniques to preserve the spatial structure of directly affected microbes, which can
directly contact cancer cells and affect their performance.

A systematic approach to the function of the microbiome is required to analyze
the indirect effects of the microbiome. For studying microbiome functions, several
bioinformatics tools, such as BugBase93 and PICRUSt2, are already available.
Other tools, such as QIIME 2, to multiple sets of studies provide a platform for
microbial groups, integration of different types of microbial groups of data, such as
taxonomy data, metagenomic and metabolomic data, to support research and what
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Fig. 2.5 Migration to the United States reduces the diversity of intestinal microbiota. Accompanied
with the host migrations to the USA, the lower microbial diversities, the depleted metabolic
functions, as well as the increased cancer incidences also appear

microorganisms exist at the same time, their potential function and metabolic
activity, can go beyond simply microbiome association studies, to study the mech-
anism of microbial groups.

Environmental Effects on Microbial Composition and its Role
in the Pathogenesis of Cancer
A recent study of the microbiome of the immigrant population in the United States
(Vangay et al. 2018) (Fig. 2.5) showed that the immigrant’s gut microbiome changed
after arrival in the United States: After migration, the native strains and functions of
the immigrant’s gut were immediately replaced by those typical of the American
population. The longer immigrants stay in the United States, the more their
microbiome changes. The change in the next generation was even greater, and
importantly, it was associated with obesity. This suggests that migration can have
an impact on microbiome diversity and further contribute to cancer-related health
problems (such as obesity), which justifies the need for a microbiome library for
remodel.

A recent study of the microbiome of the immigrant population in the United
States (Fig. 2.5) revealed that the gut microbiome of the immigrant changed after
arrival: The native strains and functions of the immigrant’s gut were immediately
replaced by those of the American population after migration. The more time
immigrants spend in the United States, the more their microbiome changes. The
change in the next generation was even greater, and it was linked to obesity. This
suggests that migration can affect microbiome diversity and contribute to cancer-
related health problems (such as obesity), justifying the need for a microbiome
library for remodel.

This could explain the increased incidence of certain diseases, including obesity
and some cancers, among certain groups of immigrants to the United States.



2 Biomedical Applications: The Need for Multi-Omics 25

Studying this intriguing phenomenon could shed new light on the role of the
microbiome in cancer.

2.4.2 The Twin Astronauts

NASA launched a genetic research project involving twin astronauts in 2017 to
investigate the impact of the space environment on human genes. Ten research
groups compared astronaut Scott Kelly’s physiological data before, during, and
after his mission to the space station to that of his twin brother, Mark Kelly, who
is also an astronaut and is now retired and back on Earth. Based on the research, in
April 2019, Science published an article titled “The NASA Twins Study: A
Multidimensional Analysis of a Year-Long Human Spaceflight,” which discussed
the impact of a year in space from multiple perspectives.

At the genomic level, it was discovered that Scott and Mark each had hundreds of
mutations, as well as over 200,000 RNA molecules that differed from those found in
the normal population, after sequencing the DNA and RNA of white blood cells
from the twins. Scott’s DNA’s chemical modification decreased during the flight and
returned to normal immediately after landing. Mark’s DNA chemistry changed
halfway through the experiment, but it eventually returned to normal. The
researchers believe that this demonstrates that genes are sensitive to environmental
changes, whether in space or on Earth. Scott’s telomeres grew during his time in
space. When he returned to Earth, his telomeres had shrunk again. Telomeres
typically shorten with age, which could imply “longer life,” but researchers believe
the change is likely due to Scott’s increased exercise and decreased calorie intake
while on the station. Telomerase, a reverse transcriptase that repairs and lengthens
telomeres, was also studied in the twins. Both became more active in November
2015, possibly as a result that “major and intense family matter” that was taking
place at the time. They also have different microbial communities, which is most
likely due to the environment they live in and the food they eat. Scott’s digestive
tract was dominated by two major strains of bacteria once in space and once on
Earth.

According to NASA’s chief scientist John Charles human research projects (John
Charles), the experiment, some results, such as the growth of the telomerase, require
further studies to compare, verify whether be deceptive or transient changes, pre-
liminary results show that the pressure of life in space for a year and there is no more
in 6 months of life. More definitive results, including samples and supporting data,
correlations between overall results, and genetic testing of astronauts on the current
ISS mission and participants on future long-term missions, await further analysis.
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2.4.3 Integrative Analysis of Genomics, Epigenomics,
Transcriptomics

Genomics changes caused by DNA copy number aberrations or mutations frequently
occur during tumorigenesis, promoting tumor development. Cancer genome epige-
netic regulation via DNA methylation is also important in heterogeneous cancer
behavior. Genome mapping studies, particularly in hepatocellular carcinoma (HCC),
have revealed the enormous heterogeneity of genomic and epigenome disorders. The
transcriptome disorder caused by these mutations is a major driving force in cancer
progression. The limitations of using single omics data to analyze pathogenic factors
have become increasingly apparent in recent years. When combined with multi-
omics analysis, it allows for a more comprehensive understanding of tumors as well
as the discovery of valuable tumor markers and related mechanisms. During tumor
invasion, both DNA methylation and CNV occur, and both have an impact on
transcription. It is unclear whether they have a synergistic effect.

The article “Integrative analysis of genomic and epigenomic regulation of the
transcriptome in liver cancer” was published in Nature Communication in October
2017. The CNV, MET, and EXP samples from 64 liver cancer samples were chosen
by the author. A difference analysis was performed using transcriptome data com-
bined with genomic and epigenetic data to try to find abnormal genes or pathways
that are closely related to the occurrence and progression of liver cancer.

The findings revealed that the abnormal frequencies of DNA copy number-related
(CNVcor) and methylation-related expression (METcor) genes are significantly
co-regulated. The integration of CNVcor and METcor genes in a multi-omics
study revealed three prognostic subtypes of hepatocellular carcinoma, which can
be confirmed by independent data. BAP1 mutations are common in the most
aggressive subtypes expressing stem genes, indicating that it plays a role in aggres-
sive tumor progression.

In conclusion, the study established a new research direction for the comprehen-
sive examination of genome and epigenome regulation. As an in-depth understand-
ing of the molecular biology principles underlying multi-omics data has already been
obtained for biomedical applications, the “multi-omics data integration -- > multi-
omics data mining -- > biomedical pattern inference and validation” paradigm has
also evolved: more types of omics data are required for a holistic view of such
patterns, as are more investigations of the associations between various omics data
(Subramanian et al. 2020).
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2.5 When Biocuration Meet Artificial Intelligence

2.5.1 The Current State of Biocuration

Biocuration, mostly done by biocurators, serve as the museum catalog of the Internet
age. Biocuration has its data source from various biological databases and data
described in numerous literature (Hirschman et al. 2016), and outputs high-quality
annotation and curated data in standard format for scientists in various fields to
further process (Bateman 2010). The biological administrator manages, collects,
annotates, and verifies information disseminated through biological and model
biological databases using computers (Bateman 2010).

This is not only about workload, but also about curation quality: as input data
grows larger and the degree of heterogeneity increases, accurate manual curation
will inevitably require more time, but time does not wait for biocurators. As a result,
community biocuration has been proposed and demonstrated to be effective (Dauga
2015).

The development of machine learning approaches for omics data is a significant
advancement in biocuration (König et al. 2018). Nowadays, it is difficult to find a
biocurator who does all of her curations by hand. Machine learning tools may not
only aid in more effective data pre-screening, but may also aid in the mining of
previously overlooked valuable information from omics data (Ma and Zhang 2019).
As a result, various automatic or semi-automatic methods for improving the effi-
ciency and accuracy of biocuration have been proposed (Hu et al. 2004).

2.5.2 The Current State of Artificial Intelligence and its
Application in Biocuration

Artificial Intelligence (AI) refers to the general or specific intelligence exhibited by
computing machines or software (Hamet and Tremblay 2017). It focuses on central
problems (or goals) including reasoning, knowledge, planning, learning, and per-
ception (Russell and Norvig 2003).

AI has long been used in biocuration to increase efficiency and accuracy. Simple
AI methods, such as K nearest neighbor (KNN), Support Vector Machine (SVM),
Markov chain Monte Carlo (MCMC), and Neural Network (NN), were used on
sequence analyses in the early years of biological data curation (Liao and Noble
2003), and they remain key methods for sequence annotations today, except human
curation. More sophisticated AI for biocuration is based on more sophisticated
computational models such as multi-layer MCMC and NN (Zobitz et al. 2011;
Kim et al. 2019), new algorithms such as network analysis (DeGregory et al.
2018), and statistical methods such as PAML (Maldonado et al. 2016), for more
diverse areas of biocuration including text mining (Hirschman et al. 2016), ontology
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analysis (Orchard and Hermjakob et al. 2015) and community curation (Dauga
2015).

However, AI has been in the stage of “weak AI” for decades, thus making current
automatic or semiautomatic biocuration techniques also weak in AI. In recent years,
“strong AI” has become more and more popular, which relies on multi-purpose and
automatically-adjustable AI (Russell and Norvig 2003; Searle 1980). Similar to
recent years’ advancement of omics research based on multiple omics data, strong
AI has its core model built based on a larger size of heterogeneous data, and this
model is optimized with the accumulation of more data and becomes more accurate
during this process (Gluth et al. 2013). One typical application of AI on biocuration
is in biological text mining by means such as natural language processing. For
example, the BioCreative initiative (Arighi et al. 2013) has been in smooth progress
to tackle several biological text mining challenges using advanced information
extraction methods. More recently, Google has made its text2vec text mining engine
open-source (Johnson et al. 2019).

2.5.3 In Alliance Is the Trend

Automatic biocuration would become more powerful as a result of strong AI, and
biocurators might be concerned about competition with them in big-data annotation
and data mining. Actual debates have been going on for quite some time. However,
they should be confident that manual curation has distinct advantages.

Firstly, current AI-based curations are still insufficient power for large-scale,
effective, and predictive biocuration. Secondly, current computation hardware/soft-
ware structures are rule-based, AI built based on the current computer system would
follow rules. Thirdly, the ultimate goal of biological researchers is to help people.
Making biocuration results understandable and readable by humans, including
visualization, clinical interpretations, and public understanding, would thus require
significant human intervention. Finally, and most importantly, because human
intelligence and AI are based on different computation architectures (Searle 1980;
Anderson 1964), a proper collaboration between the two would undoubtedly be
beneficial. As a result, manual curation could be focused on more sophisticated,
problem-oriented, and logic-intensive biocuration, while strong AI handles data
collection and integration, batch processing, and result summary. This approach
would be suitable for biological big-data research as well as improving the efficiency
and accuracy of biocuration.

Current trends in biological research have also demonstrated that collaboration
between biocurators and AI for better biological data curation is unavoidable. The
collaboration of a biocurator and artificial intelligence would result in optimized
biocuration that could best utilize biological big data for knowledge discovery.

Firstly, current grand projects may help us learn about biological intelligence,
which we can then apply to biocuration and systems biology research. Furthermore,
crowd-sourcing approaches for biocuration based on community power have been
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proposed (Hirschman et al. 2010). On the one hand, this would speed up biocuration,
while on the other hand, it would provide more rules for strong AI to learn and even
for AI systems to join for community biocuration. Finally, through the “computing
everywhere” trend, the integration of hardware (hard disks, networks, etc.) in which
databases and biocuration software or even strong AI systems live would be deeply
integrated with the human (Mostéfaoui et al. 2008). Overall, while researchers in
biological big data and bio-curators should continue to be cautious and patient in
biological data curation, they should not be concerned about the future of their
careers in biocuration.

Furthermore, we should keep in mind that the future of IT will not necessarily
resemble human intelligence in terms of speed, accuracy, and data volume. Rather,
the use of artificial intelligence to improve human intelligence is becoming more
popular, particularly in bio-curation (Hirschman et al. 2010). However, decision-
making, particularly those not based on a majority vote, would pose a significant
challenge to IT development (New York Times report and human intelligence).

2.6 Conclusion

Multi-omics is an emerging field of omics research (Hasin et al. 2017). Some
progress has been made in solving biomedical problems, but there are still many
questions about the research of complex physiological processes such as human cells
and diseases. The need of biomedical applications has prompted the development of
multi-omics. Multi-omics platforms are considered to be the most complete system
for obtaining and measuring biomedical data.

Cancer research, chronic kidney disease, infectious disease, and heart disease are
all areas where multi-omics has been used. It provides more comprehensive biolog-
ical information to answer the pathological process of the disease, allowing for
in-depth study of the disease and the implementation of effective interventions.

A growing number of multi-omics studies have been published in recent years.
The utility and benefit obtained through the multi-omics process cannot be obtained
through any single omics method. The application of biomedicine will greatly
promote the development of understanding the relationship between the molecular
and clinical characteristics of diseases, and could naturally lead to the increasing
development of tools and resources in the multi-omics platform.
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Biomedical big data is divided into two categories: big data storage and big data
analysis, with big data storage serving the in-depth analysis of big data (Luo et al.

). Big data analysis pertains to single-omics data analysis and multi-omics data
integration analysis. What is the motivation for performing multi-omics data inte-
gration analysis? Because biological contexts are interacting networks, -omics levels
are not independent. Thus, analysis limited to a single-omics level has provides a
restricted representation of biology, whereas multi-omics integration analysis can
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Chapter 3
-Omics Technologies and Big Data

Ansgar Poetsch and Yuxue Li

3.1 Multi-Omics Data Types and Underlying Technology

Biomedicine is an interdisciplinary field of academic research and innovation that
applies biomedical information, medical imaging technology, genetic chips, nano-
technology, new materials and other technologies (Asif et al. 2018). With the
development and gradual application of high-throughput DNA sequencing technol-
ogy since the turn of the century, the amount of data in the field of life science has
grown rapidly (Long et al. 2014). The emergence of second and third-generation
sequencing technologies has enabled data avalanche growth, and “really” big data
has been achieved. Nowadays biomedical big data comprises several types, includ-
ing genomic data, metagenomic data, proteomic data, metabolomic data, single-cell
data, and biomedical image data (Cirillo and Valencia 2019) et al.
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better explain molecular information and causal relationships in biology including
biomedicine.

3.1.1 Genomics & Transcriptomics Data Analysis

In 1986, American geneticist Thomas H. Roderick first proposed genomics. Geno-
mics is an interdisciplinary biological discipline for collective characterization,
quantitative research and comparative study of different genomes for all genes of
an organism. Genomics includes genome sequencing and analysis to assemble and
analyze the function and structure of entire genomes through the use of high-
throughput DNA sequencing and bioinformatics. Genomics with the goal of collec-
tively characterizing and quantifying all genes in an organism, its main tools and
methods include bioinformatics, genetic analysis, gene expression measurement,
and gene function identification. It is worth mentioning that Whole Genome
Sequencing (WGS) currently refers to human whole-genome sequencing (Modi
et al. 2021). The term “whole” refers to the complete genome sequence within the
cell of the species, from the first DNA to the last DNA, complete detection and
arrangement, allowing this technology to detect almost any type of mutation on the
genome. Whole-genome sequencing has a high value for humans because it contains
inherent associations between all genes and life traits, but it also means more data
interpretation and greater technical challenges (Nikolayevskyy et al. 2019).

Transcriptomics is the study of gene transcription and regulation of transcription
in cells at the overall level. Transcriptome refers to the sum of all RNAs that can be
transcribed by a living cell, and is an important way to study cell phenotype and
function. In contrast to the genome, the definition of the transcriptome includes
temporal and spatial constraints. The gene expression of the same cell in different
growth periods and growth environments is not exactly the same. For example, the
same tissue expresses almost the same set of genes to distinguish it from other
tissues, such as brain tissue or myocardial tissue, which differently express 30% of
all genes, showing tissue specificity.

DNA sequencing has made several leaps in technology in recent decades with
second and third generation technologies hallmarked by high sequencing speed and
parallelization in different commercial realizations: 454 and Solexa, PacBio etc. In
respect to data analysis, sequencing is simply the process of converting a physical
signal (e.g. light pulse) from DNA sequencing into a computer-readable digital
signal (Chen et al. 2021). However, with all high throughput -omics technologies
comes the need for sophisticated data analyses to determine and extract valid signals
from chemical noise and to limit and control errors in the conversion process. So far,
with the rapid accumulation of high-throughput sequencing data, the analysis
requirements for genomics and transcriptomics data integration, mining, and visu-
alization are increasing (Karczewski and Snyder 2018). To meet the analytical and
user requirements, it is urgent to optimize software and hardware systems for big
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data analysis, integrate the analysis process, and build an interactive visual analysis
platform for big data analysis.

After obtaining DNA sequence information, it is necessary to perform gene
prediction to obtain the contained functional genes. Gene prediction refers to the
analysis of the assembled genome sequence to identify the functional regions such as
genes contained in it according to the knowledge of the gene structure of known
organisms or database sequences. Gene prediction is mainly based on sequence
similarity search or ab initio prediction based on pattern sequence features. Com-
monly used prokaryotic gene prediction software include GeneMark, Glimmer,
Prodigal, etc., and eukaryotic gene prediction software include GENSCAN, August-
us, GlimmerHMM, PASA, etc.

3.1.2 Metagenomics Data Analysis

Metagenomics was defined for the first time in 1998 as “the collection of all genomes
in a microbial community” (Handelsman et al. 1998; Rondon et al. 1999).
Metagenomics studies target the entire microbial community in a given habitat.
DNA is often extracted directly from environmental samples to study the community
structure, species taxonomy, phylogeny, gene function, and metabolic network of
environmental microbes (Rondon et al. 1999).

Metagenomics borrows technology from genomics for sequencing, but comes
with additional considerations and challenges in all experimental steps: (1) sample
collection, processing, and sequencing; (2) sequencing data pre-processing; (3) tax-
onomic, functional group, and other genomics analysis of the microbiome; (4) sta-
tistical and biological function analysis (Thomas et al. 2012).

Sample collection: metagenomics samples face some challenges due to complex
environments and individual differences, such as each person’s age, dietary habits,
living environment, drug uptake (especially antibiotics), resulting in quite different
gut microbiota structures. Moreover, choice of primers and amplification methods
can introduce biases or limit metagenome coverage.

Sequencing and library preparation: library preparation is a standardized process,
and there are many well-established tools. The choice of sequencing platforms must
fit purpose of the experiment. If we want to access low abundance information in the
sample, we may require a high-throughput, large-data sequencing result increasing
time, costs, and data amount. If the goal is to analyze microbial components,
lineages, and so on, the Illumina NextSeq and NovaSeq platforms reach TB level.

Data type and analysis: unlike genomics, which studies a specific species,
metagenomics can obtain sequence information of all species in a specific environ-
ment. During sequencing data pre-processing, depending on the source of the
samples and the target of the analysis, it is needed to filter out sequences that may
cause interference (e.g. human genome), commonly used software are BWA,
Bowtie, BBMap. Obtaining a feature table containing the relative abundance of
bacteria is a critical step in metagenomics research, and most subsequent analyses
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are based on this. MetaPhlAn is widely used to analyze the composition and species
abundance of microbial communities (bacteria, archaea, eukaryotes and viruses).

Statistical and biological function analysis: based on the species and functional
composition of the microbiome. The overall difference and group specific difference
analysis are often carried out from the analysis target. Sometimes an association
analysis of environmental factors and microorganisms is also carried out.

3.1.3 Proteomics Data Analysis

Proteins are the material basis of life activity and the executor of life, so studying
proteins is self-evidently important. The study of proteins and their interactions
within specific systems is known as proteomics (McArdle and Menikou 2021;
Patterson and Aebersold 2003). Proteomics essentially covers all technologies
used for the characterization of proteins at a large-scale level, including protein
expression levels, posttranslational modifications, protein-protein interactions, pro-
tein localizations, thus obtaining an overall and comprehensive representation of cell
status for understanding disease biogenesis, cellular metabolism, and so on, a
concept first proposed by Marc Wilkins in 1994 (Yadav 2007).

Proteomics is a product of the post-genomic era, far more complex than genomics
(Maithal 2002). The presence of the genome is relatively stable, whereas the
proteome between cells varies due to biochemical reactions of proteins and genes
as well as environmental factors. Whilst the number of human protein coding genes
is around 20,000, alternative splicing and posttranslational modifications result in a
myriad of theoretical proteoforms with the total number existing in humans still
awaiting experimental clarification (Smith et al. 2021). Different proteins can be
expressed by the same organism in different parts of living organisms, at different
stages of life, and in different environments. Moreover, the same protein may have
different functions depending on posttranslational processing—a classical example
is protein phosphorylation as signal transduction pathway on/off switch.

A mass spectrometer is an excellent tool for high-throughput proteomics sequenc-
ing (McArdle and Menikou 2021) and nowadays indispensable in obtaining any
protein feature that can be identified by protein or protein fragment mass. If the
sequencer is a ruler measuring the sequence and length of the gene base sequence,
the mass spectrometer is a scale calling the quality of the protein fragmentation ions.
Mass spectrometry techniques such as high-resolution multistage tandem mass
spectrometry are mature in proteomics. Massive high-resolution one-dimensional
mass spectrometry (MS) and two-dimensional mass spectrometry (MS/MS) data
have been collected to complete some large-scale proteome qualitative and quanti-
tative analysis (Bantscheff et al. 2012). Currently, proteomics methods move
towards more comprehensive subjects (such as comprehensive first-level mass
spectrometry data-independent acquisition (DIA) data studies) and higher through-
put in clinical studies. Importantly, most high-throughput proteome analyses are
done on the peptide “bottom up” and not protein level “top down”, which may lead
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to ambiguities in protein and PTM site identification and quantification (Dupree et al.
2020). It must be pointed out that so far state of the art proteomics (and
metabolomics) yields incomplete data, a consequence of the sheer number of
proteoforms and their abundance range covering several orders of magnitude
(> = 1010 in human plasma). Therefore, in practice, with a dedicated workflow
focus of the analysis is on certain aspects of the proteome such as protein abundance
or a certain protein modification. Inevitably missing data is not only important for
proteome data interpretation, but a challenge that must be addressed during -omics
data integration, including different -omics data types for mechanistic studies.

Proteome data is commonly analyzed from the following perspectives:

1. Proteins identification:
Although fragment mass spectra can be used for de novo sequencing, proteins

are usually identified by comparing the measured mass spectra against theoretical
mass spectra calculated from all protein sequences suspected in the sample by
search engines (Andromeda (Cox et al. 2011), SEQUEST (Griffiths et al. 2019),
. . . .) thus previous genome sequencing and annotation is required. Here we list
some commonly used protein databases: first comprehensive protein databases,
such as NCBI, Uniprot (UniProt: the universal protein knowledgebase 2017),
Ensembl (Yates et al. 2020); second species-specific protein databases, such as
Arabidopsis (TAIR (Garcia-Hernandez et al. 2002)), rice (RAP-DB (Tanaka et al.
2008)), silkworm (silkdb (Lu et al. 2020)). The use of mass spectral libraries
(even theoretical) instead can be advantageous and has gained popularity.

2. Protein quantification:
The signal intensity of an analyte in mass spectrometry is based on the

ionization efficiency of a compound, where analyte concentration is only one of
contributing factors. Owing to ongoing quantification method development and
dictated by experimental design and question, various methods for relative as well
as absolute protein quantification are currently in use. Examples are label-free
quantification, tandem mass tag labels, isotope labelled standards. Consequently,
the representation of quantitative protein data and metadata will vary and with
this the approaches and tools to glean the desired quantitative information for
-omics data integration.

3. Protein feature information:
One of nature’s inventions is to modify protein functions by changing protein

features such as protein length, modification, interaction with other biomolecules,
localization. In principle proteomics is capable of obtaining most if not all feature
information by employing tailored methods. In doing so, some of these methods
go beyond processing of mass spectral data only. As several methods are spe-
cialized, not commonly used, and/or under development, data standards are less
mature; rather frequently, published protein feature data does not adhere to any
standard. Nonetheless, protein feature information can be invaluable for biolog-
ical interpretation, justifying the extra effort in data analysis or conversion
sometimes needed.
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3.1.4 Metabolomics Data Analysis

Metabolomics is the comprehensive analysis of the metabolites present in a biolog-
ical specimen. The metabolome can be highly dynamic, as some key cellular
metabolites display an extremely fast turnover in living organisms. Metabolites
display a rich structural and physicochemical diversity. Consequently, metabolomics
is the analytically most challenging -omics technology and so far, no separation,
identification, and quantification technology powerful enough to cover all metabo-
lites in a single experiment exists. The complementary methods NMR and MS are
the cornerstone of current metabolomics; NMR excels at structural elucidation,
accuracy and reproducibility, whereas the strengths of MS lie mostly in sensitivity
and throughput. Owing to the complexity of most biological samples, online or
offline chromatographic (GC or LC) separation is usually done prior to analysis.
Furthermore, all the metabolites present in humans remain to be fully elucidated, as
quite frequently only partial molecular features (e.g. mass, chemical moieties) are
known.

MS-based metabolite identification is far more challenging than protein identifi-
cation. Still, the field of metbabolomics tolerates ambiguous identifications for
instance purely based on retention time and intact mass. But even rich molecular
information from MS and MSn spectra may be insufficient for unequivocal metab-
olite identification. In fact, common is the confident identification of only 2% of all
m/z features in an untargeted metabolomics MS analysis (Silva et al. 2015). Here,
one must discern identification of known and unknown metabolites. The usual
approach for identification of known metabolites is their matching to previously
recorded mass spectra. So just like in proteomics, this comes with a degree of
uncertainty that is determined by automated statistical data analysis. The unequiv-
ocal identification and structural elucidation (including stereochemistry when appli-
cable) of an unknown metabolite, ideally including authentication with the
synthesized compound, can be an arduous procedure often not followed in high-
throughput metabolomics. Fortunately, scientific ingenuity in metabolomics data
analysis and ever-increasing computational power have been constantly producing
and improving identification of unknowns; exemplary approaches are prediction of
compound structures based on chemical/enzymatic reaction pathways and prediction
of MS fragmentation at astounding accuracy with AI.

NMR delivers connectivity and distance for atoms, and is therefore extremely
powerful for the structural elucidation of unknown compounds. Yet employing all
tools (e.g. COSY, TOCSY) to establish metabolite molecular structure takes hours
or days, which prevents their use in high throughput metabolomics. Instead, methods
(e.g. STOCSY, STORM) use spectral correlations between the NMR signal features
in the sample and reference spectra for compounds in a spectral library (Dona et al.
2016).

Metabolite data is commonly analyzed from the following perspectives:

1. Metabolite identification:
Aside from commercial spectral libraries and identification software, free

databases for mass and NMR spectra are available (e.g. HMDB (Wishart et al.
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2021)). For processing, vendor specific RAW data is usually converted into
standardized format for MS (e.g. mzML (Martens et al. 2011)) and NMR
(e.g. nmrML (Schober et al. 2018)). It is good practice to provide for each
compound one of the four levels (from identified to unknown) of identification
according to Metabolomics Standard Initiative (Sumner et al. 2007). Identifica-
tion may require more than one MS or NMR method, thus identification may be
based on several pieces of complementary information.

2. Metabolite quantification:
In principle, quantification with NMR against one reference compound is

straightforward and robust. However for complex bio-samples, both in NMR
and MS results may be confounded by overlapping signals. MS spectra are
processed with sophisticated algorithms (Tautenhahn et al. 2008) to correct for
background signals etc. As already mentioned for proteomics, MS signal inten-
sity is affected my many factors, hence standards, ideally an isotope labelled
identical compound for every metabolite, are required for absolute quantification.
Relevant identification and quantification information, as well as metadata can be
stored in the mzTAB-M standard (Hoffmann et al. 2019). For metabolomics
experiment result sharing, there are two popular public repositories,
MetaboLights and NIH Metabolomics Workbench.

3.1.5 Single-Cell Data Analysis

The analysis of single-cell genomics data can disclose heterogeneities in cell
populations, thus may yield more relevant and informative data (Miao et al. 2021).
However, single-cell data analysis faces enormous challenges due to the unknown
distribution of heterogeneity between single cells and correlation properties (such as
gene structure, gene expression, and so on). At present, there are not many methods
for analyzing single-cell genomic data, mainly improved genome assembly methods
such as velvet and single-cell gene expression differentiation analysis methods, and
there is no specialized technology for in-depth single-cell heterogeneity analysis.
Existing methods for single-cell phenotype detection and single-cell sequencing
have tentatively determined its feasibility, revealing its far-reaching implications in
terms of single-cell methods. Current single-cell research methods are also limited to
a small number of single cells in terms of hardware and software architectures, so
data analysis is done with CPU clusters that are independent of one another.
However, because this trend is accelerating, there are indications that the era of
data analysis for hundreds or even thousands of single cells has arrived.

Further, although single-cell sequencing can identify changes in gene expression
regulatory networks in various types of cells, it cannot determine the source (DNA
level) of gene expression network abnormalities. Genomics analysis can find
disease-related susceptibility genes, but it is difficult to answer which cell types
and which gene pathways are mainly affected by mutations in susceptibility genes.
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Therefore, multi-omics analysis of combined single-cell data, including genome
analysis, has higher value for the interpretation of many biological problems.

3.1.6 Biomedical Image Data Analysis

Biomedical images are human measurements at various scales (micro-, macroscopic,
etc.). They use a variety of imaging modes (CT scanners, ultrasonic instruments, and
so on) to assess the physical properties of the human body. These images are
interpreted by clinical experts and have a significant impact on physician’s
decision-making. Biomedical images are typically three-dimensional (3D), with an
additional time dimension (4D) and multiple channels (4-5D).

The characteristics of biomedical images: (1) highly dependent on imaging
equipment and imaging environment and there are many different types of images,
which are difficult to fuse; (2) the image pixels are large, but the signal-to-noise ratio
and the image resolution are low; (3) there are differences and variability among
biological individuals. With the advancement of optical imaging instruments and
high-precision cell operation technology, biomedical image-related data is rapidly
accumulating, and the associated image processing technologies are changing with
each passing day. With the reinvestment of the United States and the European
Union in biomedical research fields such as brain science, many 2D and 3D medical
image processing methods adapted to high throughput and high accuracy of TB level
have been proposed, and the potential of related applications has gradually been
recognized. The 2012 Nature Methods Bioimage Processing album provides a
systematic overview of existing high-throughput bioimage processing methods
such as Universal imageJ (Schneider et al. 2012) and PhenoRipper for biomedical
images (Rajaram et al. 2012).

Deep learning, which has recently emerged, has largely replaced many other
machine learning methods because it avoids the creation of manually engineered
features, thereby removing a critical source of error from the process. It can be
applied to image segmentation, image registration, lesion detection and auxiliary
diagnosis, imaging omics biomarker extraction in biological images. For example,
convolutional neural network (CNN) can be used to extract image features or
directly complete tasks such as classification and detection. Fully convolutional
neural network (FCNN) can obtain pictures of the same resolution as the original
picture, which is often used for tasks such as segmentation. Faster Region-proposal
based neural network (FRCNN) can be used to detect a variety of objects in images.

Since 2013, the journal BMC Bioinformatics has been collecting and arranging
biological image data, analyzing related research papers, and related methodological
articles have emerged one after another. At present, biomedical image data is mainly
stored in three formats, DICOM, Analyze and NIfTI, and data processing develops
rapidly. However, there is still a lack of recognized and standardized biomedical
image storage and processing platforms.
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3.2 Biological Big Data Research

A trait of all presented -omics technologies (single cell, metagenomic data, etc) is the
production of big data, which spurred computational developments to handle all
aspects of big data. Generally, humanity has entered the era of big data in all aspects
of life and research fields. Big data research, following the general laws of techno-
logical innovation, development, and maturity, transforms traditional a priori
knowledge-driven research methods into data-driven research.

We will briefly illustrate the history of big data in biomedical sciences and key
developments. The development history of multi-omics big data is actually a process
of development and innovation of different -omics data collection technologies. The
discovery in 1952 that the genetic material is DNA, not protein, started the process of
in-depth research on DNA sequences. In 1977, Frederick Sanger developed a DNA
sequencing technique and completed the sequencing of the first complete genome,
known as the phiX174 virus, which opened up new possibilities for genomics. In
2005, the next-generation sequencing technology 454 was invented, and Illuminas
came out the following year. In 2008, the third-generation sequencing technology
nanopore sequencing began to be used. All of this information is stored in large
generic databases such as NCBI or EBI. Simultaneously, with the development and
application of high-throughput sequencing technology, as well as the integration of
biotechnology and information technology, the biomedical data types and data
scales in large general databases such as NCBI are constantly increasing (Fig. 3.1),
which provide a good opportunity for research in the biomedical field.

3.2.1 Research Trend of Biological Big Data

Several directions can be identified for the utilization of big data (Ning and Chen
2015), demonstrating new possibilities and the great power of biomedical big data
(Fig. 3.2) to drive research:

In the following, we will elaborate on important major research directions
enabling the utilization of big data in biomedicine:

1. Grand ecology
The development of biomedical big data allows us to better understand the

world. The main applications in grand ecology include public health and public
safety. The volume of data recorded by hospitals, such as human health status and
immunizations, is huge, but without big data, this data is meaningless. Big data
analytics can standardize and integrate raw patient data to enrich public health
records, and a rich variety of public health records can provide better care. In
COVID-19, the successful application of biomedical big data in public safety has
played an important role in COVID-19 prevention and control. The location-
based spatiotemporal big data results, such as COVID-19 thematic maps, “health
codes”, intelligent robots have been applied in many fields related to epidemic
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prevention and control. However, in the process, it was found that the current
biomedical big data cannot meet the needs of public health, the spatiotemporal
trajectory data is incomplete and the accuracy is not high, and the contradiction
between data sharing and privacy is an urgent problem to be solved at present,
and it is also the direction of further development in the future.

2. Clinical
On the other hand, real-time analysis and clinical processing of biomedical

data, involving rapid and accurate sampling, data mining, and knowledge dis-
covery, as well as clinical processing or other real-time feedback, is another hot
topic in biomedical data research. As many as three million people die each year
due to lower respiratory tract infections. Previously, diagnosis was mainly based
on microbial culture, but it was time-consuming and had poor sensitivity. In July
2019, the first rapid and economical metagenomic sequencing method using
nanopore technology was proposed. This method can accurately and quickly
identify bacterial pathogens directly from patient respiratory samples, and can
accurately detect resistance genes within 6 h. In cancer diagnosis, there are
studies collecting tumor tissue, paracancerous tissue and blood of patients, and
analyzing the whole genome and whole transcriptome data of samples in the
TCGA database to characterize the cancer-related microbiome. In general, fast
and accurate sampling, data mining, knowledge discovery, and clinical
processing or other real-time feedback have gradually developed into a system
framework that will further promote the clinical application of biomedical
big data.

3. Modeling
Big data integration is a universal problem of biomedical big data, involving

several issues such as data format, data contradiction, and data indexing. Intelli-
gent data modeling and analysis will aid in the resolution of the aforementioned
issues, can greatly deepen understanding, and is a major focus of biomedical data
research (Fig. 3.3). Biomedical data entails the deep integration of different types
and scales of data: integration of sample phenotypes, genotypes, and metadata,
integration of different samples, and finally the construction of an all-around data
model. Modeling needs to be trained with a large amount of actual data to achieve
continuous optimization. The final model can accurately and quickly realize the
integration and analysis of biomedical big data, and mine effective information
from it.

4. Personalisation
Finally, personalised analysis, prediction, and safe preservation of biomedical

data (next-generation electronic medical records) have a wide range of applica-
tions. On the one hand, biomedical big data collection and analysis processing
will collect genotypic and epigenetic data from massive samples; on the other
hand, the relevant data will be sorted out and analyzed, and then a personalized
prediction will be provided. At the same time, personalised data will necessitate
the security preservation of massive amounts of data.
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Fig. 3.3 The biomedical big data integration and modeling. Generating data models for different
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3.2.2 Challenges in -Omics Research

Although all individual -omics datasets may not have the four “V” characteristics
associated with “big data” integration, volume, variety, velocity and veracity, they
present similar challenges, especially in large sample data research. Each -omics
platform has its own characteristics and also faces unique challenges. It is important
to understand these when developing methods and approaches to integrate -omics
data, as the complexity and completeness of each data type is different. Linking
phenotype and genotype is a major challenge, nucleic acid amplification from small
amounts of biological material, reliable quantification and molecular annotation
based on sequence identity enables high-throughput sequencing. However, the
interpretation of many biological problems cannot be based only on genomic and
transcriptomic data, but has to explain these phenomena in a specific biological
context, that is, the impact of specific variants on phenotypic variation. Combining
proteomic and metabolomic data with genomics and transcriptomic data can poten-
tially link genetic and epigenetic variation to phenotypic variation by providing
molecular information. In addition, it is also a challenge for the quantification of
proteome and metabolome without amplification methods.

There are still many common problems in the -omics data platform. (1) data
handling, -omics data generally needs to be filtered, cleaned, converted, standardized
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for better follow-up analysis, but so far, there is no standardized process for -omics
data, and different analysis methods and processes will have a significant impact on
the analysis results. (2) data annotating, the quality of -omics data annotation directly
affects the accuracy of subsequent analysis. For model organisms, the relevant
reference data resources are comprehensive and the available tools are abundant,
but for non-model organisms, achieving high-quality annotation is a big challenge.
(3) data storaging and sharing, -omics datasets lack standard naming rules and
unified data formats, making it difficult to achieve unified access in public databases.
It is necessary to formulate standard rules to classify and organize data, and store it in
a large public database in a more standardized manner, so as to achieve more
effective data sharing and promote research.

3.2.3 Multi-Omics Data Integration Tools and Databases

Extracting meaningful correlations and real interactions from massive -omics data is
an extremely difficult process. Especially in multi-omics data analysis, the hetero-
geneity of different -omics data and the nonlinear interactions and multi-factor
combined effects in biological systems make it more complicated to identify real
biological signals from random noise. Biological systems, analytical platforms,
and data types can all contribute to noise. At present, a large number of tools for
integrating -omics data have been developed, including web-based tools that do not
require computing experience, and more functional tools for those with computing
experience, catering to the needs of different researchers. The following tables
(Tables 3.1 and 3.2) list some commonly used multi-omics data integration tools
and databases for readers to choose from.

3.2.4 Auxiliary Data and Tools for Multi-Omics Data
Integration

3.2.4.1 Relevant Metadata

A large amount of biological big data has accumulated as a result of the advancement
of high-throughput sequencing technology (Churko et al. 2013). The increase in data
volume allows us to explore many biological issues deeper, and the emergence of
many bioinformatics tools and platforms makes it possible to combine samples from
different studies for analysis (Magi et al. 2010). However, data integration is very
challenging due to the wide range of data sources and the differences in the analysis
methods. Metadata can assist in the integration of data, and data analysis benefits
from metadata, as it may reveal otherwise hidden patterns in data structure
(e.g. sex/age effects). The important role of metadata in data analysis has prompted
the development of metadata-related databases and analytical platforms containing
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Table 3.1 Tools for multi-omics data integration

Tools Function Link address Reference

MapMan Visualize and display large
datasets on metabolic pathway
maps

https://mapman.gabipd.org/ Bolger
et al.
(2021)

WGCNA Gather R functions for weighted
correlation network analysis

https://labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/
Rpackages/WGCNA/

Langfelder
et al.
(2008)

iCluster Detect novel biomarkers based on
transcriptomic and proteomic
datasets

https://www.mskcc.org/depart
ments/epidemiology-biostatis
tics/biostatistics/icluster

Tian et al.
(2021)

3Omics Integrate multiple inter-
transcriptomic or intra-
transcriptomic, proteomic and
metabolomic data

http://3omics.cmdm.tw/ Kuo et al.
(2013)

Omics
Integrator

Integrating proteomic data, gene
expression data, and/or epigenetic
data using protein-protein interac-
tion networks

http://fraenkel.mit.edu/
omicsintegrator, https://github.
com/fraenkel-lab/
OmicsIntegrator

Kedaigle
et al.
(2018)

MixOmics Enables data exploration, integra-
tion, dimensionality reduction and
visualization of biological datasets

http://mixomics.org/ Rohart
et al.
(2017)

Table 3.2 Databases and resources for multi-omics data integration

Databases Function Link address Reference

NCBI Genomics and transcriptomics https://www.ncbi.
nlm.nih.gov/

Schoch
et al.
(2020)

MOPED The database has integrated 250 publicly
available protein and mRNA abundance
profiles from four different model
organisms

http://moped.
proteinspire.org

Kolker
et al.
(2011)

OMICtools Repository to aid in the integration of
-omics datasets

https://omictools.
com/

Borsatto
et al.
(2021)

MetaboLights Metabolomics datasets http://www.ebi.ac.
uk/metabolights/

Haug
et al.
(2020)

PeptideAtlas
repository

Proteomics http://www.
peptideatlas.org/
PASS/PASS00512

Desiere
et al.
(2006)

Omics Data-
base
Generator

Use genome files and the output of various
programs to create a graph database for
querying genomic data across domains

https://github.com/
jguhlin/odg

Guhlin
et al.
(2017)

metadata. The TCGA database (Tomczak et al. 2015), which contains cancer
metadata information, and Qiita (Gonzalez et al. 2018) metadata analysis platform
are widely used.
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As exemplary metadata analysis tool Qiita will be portrayed: it is free and open
source online for microbiome analysis, designed to make it easier for
non-bioinformatics scientists to analyze their data or combine data in the database
for meta-analysis using standardized analysis processes (such QIIME 2 can start
analysis from raw DNA sequences, standardizing the process directly to obtain
publication-grade statistical and graphical results.). Qiita has the following features:
(1) users do not need any command-line tool knowledge system to perform
microbiome data analysis; (2) perform a variety of metagenomic data analyses,
such as 16S, 18S, ITS, and WGS, among others; (3) to obtain similar research,
upload complete sample information, clarify the research software and parameters,
and upload sequence data or intermediate files; (4) submit the biological sequence
data used for analysis to EBI-ENA for storage; (5) connect to the database, combine
your data with other research data for meta-analysis, realize data sharing within the
research team. Qiita stores a wealth of metadata information for various types of
samples. For example, a total of 1573 samples are stored for COVID-19, and the
sample metadata information includes age, gender, the time of sample acquisition,
whether antibiotics were used, and so on (Gonzalez et al. 2018).

A prime example for metadata as well as integration of -omics with clinical data is
the TCGA (The Cancer Genome Atlas) project (Huang et al. 2020). In 2006, the
National Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI) collaborated to launch the project, a watershed moment in cancer genome
research. More than 20,000 primary cancers and matched normal samples from
33 cancer types were molecularly described (Wang et al. 2016). In the TCGA, we
can find available clinical information for liver cancer (may include demographic
information, treatment information, survival data, etc.); pathology report (partial
samples); mRNA data (measured by mRNA chip or RNA-Sequencing); copy
number (the ratio of each segment of chromosome obtained by SNP chip sequencing
to the tumor compared with normal tissue); mutation (nucleotide changes obtained
from tumor tissue sequencing data relative to the reference genome sequence,
including changes such as insertions, deletions, and so on); protein (the expression
level of approximately 200 common cancer genes (the degree of DNA methylation
was obtained by methylation chip sequencing).

3.2.4.2 Quality Assurance Example

Shotgun sequencing, which randomly interrupts mRNA at one time and selects
sequences with a suitable length for large-scale sequencing, is used in second-
generation sequencing technology. The obtained random short sequences are then
merged, and short sequences with the same part are spliced together. The short
sequence has a high number of repetitive parts in this process, and the presence of
merging codons frequently causes errors. As a result, different outcomes will be
measured for a given base position, and the quality value can be calculated by
running these outcomes through a series of calculations. The goal of quality control
is to eliminate extremely low-quality sequences (Kchouk et al. 2017).
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FastQC (de Sena Brandine et al. 2019) is a Java-based software that provides a
straightforward method for quality control of raw sequence data from high-
throughput sequencing pipelines. It is capable of performing a fast multi-threaded
quality evaluation of sequencing data (Quality Control). It is used to quickly
determine whether there are any issues with the data, and one should pay attention
to these issues before proceeding with further analysis. It can be used to quickly
determine whether there are any issues with the data, and one should be aware of
these issues before moving forward with further analysis. FastQC’s primary func-
tions are as follows: (1) import data from BAM, SAM, or FastQ files; (2) provide a
quick overview and indicate which areas may have issues; (3) summarize charts and
tables to quickly evaluate your data; (4) export the results to a permanent HTML-
based report. (5) offline operation enables automatic report generation without the
need for interactive applications to be run (de Sena Brandine et al. 2019). For the
output results of FastQC, we need to focus on, (1) Basic Statistics; (2) per base
sequence quality; (3) per sequence quality scores; (4) per base sequence content;
(5) sequence duplication levels.

3.3 Case Studies on Multi-Omics Data Integration:
Resources and Applications

Multi-omics research can provide more comprehensive biological information than
single-omics research. Some progress has been made in the solution of biomedical
problems, which will hopefully be applied to the study of complex physiological
processes such as human cells and diseases. Multi-omics research has been widely
used to connect cancer and genetic information.

3.3.1 Multi-Omics Data Resources for Human Brain
Diseases

In recent years, multi-omics data research on human brain diseases has grown in
scope. American researchers published “Review of multi-omics data resources and
integrative analysis for human brain disorders” in Briefings in Functional Genomics
in May 2021, summarizing the brain multi-omics data resources of the healthy
control group and neuropsychiatric diseases, such as schizophrenia, autism, bipolar
disorder, Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy,
and others (Dong et al. 2021).

ENCODE is a project that began in 2003 to determine the regulatory function of
about 1% of the human genome. Although ENCODE is primarily concerned with
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cell lines, recent updates have included some -omics data from the human brain,
primary neurons, or neuronal cell lines (The ENCODE (ENCyclopedia Of DNA
Elements) Project 2004). Roadmap Epigenomics is primarily concerned with the
collection of RNA-seq, ChIP-seq (histone), DNase-seq, and methylation data from
human blood and 22 tissue types (Kundaje et al. 2015). OmicsDI is a search platform
for multiple -omics data sets. It combines data sets from multiple databases in
proteomics, genomics, metabolomics, and transcriptomics. Searches for the keyword
“brain” produced 116,261 results as of December 2020, 10 of which are multi-omics
data sets (Perez-Riverol et al. 2017). PsychENCODE, the data features the largest
brain collection (2793 unique donors), including control and disease group data
including schizophrenia, bipolar disorder, and autism. The frontal cortex is the main
brain area studied by the consortium (Akbarian et al. 2015). The BRAIN Initiative
and related brain research projects generate -omics data, for which NeMO, a data
repository, is dedicated to storing and sharing. NeMO data includes transcriptional
activity, methylation, histone modification profile, and chromatin accessibility for
humans, mice, and marmosets. A current search of human data on the BICCN
website reveals that 418 scRNA-seq (n = 412) and scATAC-seq (n = 6) samples
are publicly available. More human brain single-cell -omics data (for example,
single-cell PLAC-seq, ATAC-seq, and RNA-seq data used to define cell type-
specific 3D epigenomes) are available on NeMO via restricted access (Song et al.
2020).

3.3.2 Multi-Omics Data Resources for Cancer Cell Lines

Cancer cell lines are the most widely used model for studying cancer biology,
identifying cancer targets, and assessing drug efficacy. Previous cell line research
was limited to a few commonly used cell lines or up to 60 cell lines using NCI60
panels. As a result of the scarcity of large-scale, robust, and well-defined cancer cell
line models, the high sensitivity of cancers with activating EGFR mutations was
initially overlooked. As the Cancer Genome Anatomy (TCGA) project began to
define the genetic basis of human cancer, it became clear that similar efforts would
be required to determine the characteristics of cancer cell lines.

In 2008, the “Cancer Cell Line Encyclopedia Project” was launched. The goals
are to (1) perform detailed gene and drug characterization on a large number of
human cancer models; (2) develop comprehensive computational analysis to link
unique drug vulnerabilities with characteristic inheritance, gene expression, and cell
lineage patterns; and (3) integrate cell lines. Cancer patients can be stratified using
genomics. There are 1457 different cell lines, 84,434 genes, 136,488 different
databases, 1,159,663 mutation entries, 118,661,636 distribution scores, and
411,948,577 methylation site scores in the CCLE database. To put it another way,
the CCLE database contains gene expression profile data (Affy chip and RNA-seq),
copy number data, mutation data, and methylation data from various cell lines.

We can see six different data set modules in the CCLE database’s function
module: (1) Achilles shRNA knockdown; (2) Copy number; (3) DNA methylation;
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(4) Protein Array; (5) mRNA expression (Affy); (6) mRNA expression (RNA-seq).
The corresponding -omics data is downloaded based on individual analysis require-
ments. CCLE is a vital data resource in pan-cancer research.

3.3.3 Multi-Omics Research for Retinoblastoma

Multi-omics studies have investigated cancer-causing tumors related to genetic
background. A comprehensive genomics study showed that there is a strong corre-
lation between the genetic status of tumors and multi-omics data (Khan and Azmir
2020). The multi-omics in cancer project carried out a “multi-omics method to
identify disease progression biomarkers of retinoblastoma” study in November
2016. Retinoblastoma is a type of pediatric eye cancer that typically affects children
under the age of five. It’s a complicated disease caused primarily by biallelic
inactivating mutations in the RB1 gene (Limonte et al. 2020). Tumors, aqueous
humor, vitreous, and tear fluid samples were obtained from nine patients whose eyes
were removed, and the retina, aqueous humor, and vitreous were obtained from the
eyes of the two children who died. Their deaths were not caused by any ophthal-
mological diseases.

The authors used microarrays for mRNA and miRNA gene expression, and then
performed pathway analysis to determine gene enrichment, thereby realizing the
functional characterization of tumors. Differential expression analysis showed that
108 ( p ≤ 0.05, fold change ≥10) genes are unique genes in patients with high risk of
metastasis. Pathway analysis revealed the key pathways involved in the progression
of retinoblastoma, including the cell cycle and Rap1 signaling pathway. In this
study, transcriptomics, metabolomics, and proteomics are integrated, and
18 miRNAs of retinoblastoma cancer cell lines that may be related to retinal cancer
are reported.

3.3.4 Multi-Omics Research for Cardiovascular Disease

Cardiovascular disease is the leading cause of morbidity and death worldwide
(Pagidipati and Gaziano 2013). Discrete transcriptional regulatory pathways and
global protease inhibitors interfere with the expression profile of cardiac proteins,
causing them to change in pathological myocardial hypertrophy. Many studies are
now using transcriptomics (such as RNA-seq) and proteomics (such as mass spec-
trometry) to identify disease characteristics and pathogenic mechanisms in cardiac
hypertrophy and other diseases. However, because of the poor correlation between
the differential expression of transcripts and the differential expression of proteins, it
is still debatable whether transcriptomics and proteomics experiments reflect the
same biological laws. Furthermore, does the irrelevance of transcription for protein
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reflect the dominance of different translational regulation in protein abundance, or is
it simply the result of unexplained technological variation?

Previous genomics research has linked coronary heart disease to a group of
150 genomes (Deloukas et al. 2013). In January 2018, the journal Nature Commu-
nication published an article titled “Integrated omics dissection of proteome dynam-
ics during cardiac remodeling,” which integrated transcriptomics, proteomics, and
protein turnover for multi-omics research and evaluated their effects in vitro. The
data had a synergistic effect for the myocardial hypertrophy model mice.

This study looked at the reproducible hypertrophy features in each -omics data
type of six mouse genetic strains and discovered that combining transcript abun-
dance, protein abundance, and protein turnover data results in disease candidate
genes. Furthermore, the inclusion of protein turnover measurements enables the
discovery of different post-transcriptional regulatory pathways and implies the
presence of different disease proteins not found in steady-state transcription and
protein abundance data.

3.3.5 Multi-Omics Research for Infectious Disease

Infectious diseases in wild animals that are newly emerging pose a serious threat to
biodiversity, and infectious diseases are the cause of a decline in the number of large
numbers of wild animals. Chytrid disease, caused by Dendrobium chytrid, has
severely impacted many amphibian populations and species around the world
(Rebollar et al. 2016). A potential research strategy for its research is to enhance
the amphibian skin with antifungal bacteria through probiotic organisms. In vivo
experiments using bioaugmentation strategies have yielded mixed results, necessi-
tating a more informed strategy for selecting successful probiotic candidates. Multi-
omics integrated analysis, such as metagenomics, transcriptomics, and
metabolomics, can better guide probiotic selection and optimize the selection
method.

This study employs bioinformatics and statistical tools to integrate multiple sets
of data, and it is possible to identify species involved in pathogen suppression using
an in silico model that connects bacterial community structure and bacterial defense
functions. For in-field investigations and experiments, the authors used 16S rRNA
gene amplification and sequencing, index species analysis, Kolmogorov-Smirnov
measurement, and symbiosis network methods to identify bacteria related to patho-
gen resistance. In addition to 16S amplicon sequencing, methods for the in-depth
understanding of symbiosis functions, such as shotgun metagenomics,
metatranscriptomics, or metabolomics, are recommended to increase the likelihood
of finding beneficial bacteria candidates. Probiotics can be isolated and tested in
ongoing and clinical trials.
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In summary, multi-omics data integration and organization techniques have been
developed, and a broad-spectrum of applications have been conducted based on
these techniques and the organized multi-omics data. These advancements in data
integration and organization have also called for data mining techniques that could
best utilize multi-omics data for novel knowledge discovery.
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ADMM Alternating direction method of multipliers
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LPP Locality preserving projections
LRMs Linear regulatory modules
LUSC Lung squamous cell carcinoma
MALA Microarray logic analyzer
MCCA Multiple canonical correlation analysis
MCIA Multiple co-inertia analysis
MCMC Markov chain Monte Carlo
MCP Minimax concave penalty
ML Machine learning
MOFA Multi-omics factor analysis
NGS Next generation sequencing
OR Odds ratio
PCA Principal component analysis
PMC PubMed Central
QC Quality control
R Statistical programming language R
rMKL Robust multiple kernel learning
SARC Sarcoma Alliance for Research through Collaboration
SCAD Smoothly clipped absolute deviation
SKCM Skin cutaneous melanoma
SNF Similarity network fusion
SNP Single nucleotide polymorphism
TCGA The Cancer Genome Atlas

With the aid of cost-effective next-generation sequencing technologies, the datasets
with multiple dimensions, called multi-omics or integrated omics, have been dra-
matically accumulated. Because of the limitation of application individual omics,
multi-omics efforts have been playing the lead in bioinformatics and biomedical
research—from simple computation to data mining. As multi-omics, a merger of
biology, informatics, data science and computational sciences, has incredible high
complexity, the multi-omics data mining techniques are indigestible to researchers
new to this field. The present review is to provide an overview of the current state of
the field. On the one hand, we do our best to summarize the algorithms and software
designed for the horizontal or vertical integration of the omics data from the various
high-throughput sequencing platforms. For each method, we give a complete survey
on software and their algorithms that are frequently used coupled with a brief
discussion about the principles for applying these computational strategies and
considerations, especially in cancer research. On the other hand, we also give a
summary of the user-friendly tools suited for multi-omics data interpretation, anal-
ysis, and visualization. To our knowledge, this is the most complete and updated
summary of publicly available resources about multi-omics data mining. We hope
the readers can get inspiration here for their own multi-omics data analysis.
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4.1 Introduction

Huge volumes of biology data have been generated from various sequencing
machines at multiple levels, including the genome, transcriptome, proteome,
epigenome, and metabolome, since the advent of high-throughput technologies.
Furthermore, the omics spectrum can be expanded to include the lipidome,
glycolproteome, and phosphoproteome. These so-called “multi-omics” have unprec-
edentedly aided in the capture of so much information related to life sciences that
have temporally aided the progress of personalized medicine (Ghosh et al. 2018;
Karczewski and Snyder 2018), agriculture (Ichihashi et al. 2020), microbiology
(Quinn et al. 2016), plant science (Liu et al. 2016). As further research has become
increasingly dependent on data mining, an increasing number of algorithms and
software have been developed for multi-omics data.

Although individual omics analysis has been widely used in biology-related
studies, an integrative analysis on multi-omics data not only provides manyfold
more meaningful results than individual omics, but also maximizes comprehensive
biological insight via jointed data mining (Krassowski et al. 2020). Individual omics
are generally combined sequentially or simultaneously by integrated approaches to
reveal the interplay of molecules (Biswas and Chakrabarti 2020; Zhang et al. 2012).
In addition, to help in assessing the information flow from one-dimension data to the
other and then enrich the availability results, the integrative approaches can poten-
tially enable researchers to overcome the formidable obstacles that individual omics
internally have (Misra et al. 2019; Gomez-Cabrero et al. 2014). However, during this
process, they also inevitably bring about new challenges of data fusion, clustering,
visualization, and functional characterization (Pinu et al. 2019). Although many
tools use a combination of approaches, data integration algorithms can be broadly
classified as fusion-based, network-based, Bayesian-based, correlation-based,
similarity-based, and other multivariate methods. Approaches developed for multi-
omics data mining in cancer research, in particular, can reveal tumor subtypes,
biological mechanisms, and identify driver genomic alternations. As a result, they
have been widely used in diagnostics, tumor classification, and prognosis (Ickstadt
et al. 2018). Especially, the approaches developed for multi-omics data mining in
cancer research can reveal can tumor subtypes, biological mechanism and identify
driver genomic alternations. Thus, they have been widely employed for diagnostics,
tumor classifications and prognostications (Biswas and Chakrabarti 2020; Menyhárt
and Győrffy 2021; Mantini et al. 2021; Kong et al. 2020; Rappoport and Shamir
2018).

In this review, we provide an overview of popular software for multi-data
integration, interpretation, and visualization in genomics, proteomics,
transcriptomics, metabolomics, and epigenomics, among other fields. We concen-
trate on approaches that use parallel data set the integration to integrate at least two
omics data sets derived from at least partially overlapping samples and are readily
available in algorithms and software.
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4.2 Software for Multi-Omics Data Integration

Hundreds of integrative methods for multi-omics have been developed over the last
two decades. The vast majority of those present were supervised, unsupervised, or
semi-supervised. It is unfortunate that some are no longer maintained or have lost
their code. We do our best to summarize the entire information of each method for
the benefit of the readers. Several studies compared those methods to real-world data
and/or simulations (Meng et al. 2016; Tini et al. 2017; Bersanelli et al. 2016; Pierre-
Jean et al. 2019; Song et al. 2020).

4.2.1 Matrix Factorization Methods

4.2.1.1 Joint/Integrative Non-negative Matrix Factorization
(jNMF, iNMF)

The Non-negative Matrix Factorization (NMF) method has been widely used for
unsupervised data integration, which projects differences between datasets onto
dimension-reduced space (Bakal et al. 2019; Gligorijević et al. 2019). Zhang et al.
proposed splitting a non-negative matrix into two matrices: a specific coefficient
matrix and a common basis matrix for multi-omics data integration (Zhang et al.
2012; Zhang et al. 2011). It is worth noting that the NMF rationale is to parse data
onto a common basis space rather than simply correlation. This allows one to take
stock of the elements with significant z-scores before detecting coherent patterns
among datasets. Furthermore, this method has several extensions: The iNMF frame-
work considers heterogeneous effects during data integration (Yang and Michailidis
2015), whereas jNMF can detect homogeneity in datasets (Zhang et al. 2012). The
homogeneous and heterogeneous patterns are then combined using a combination of
NMF and jNMF objective functions. A homogeneity parameter aids in accounting
for dataset heterogeneity. Because the objective function of iNMF is nonconvex, the
process should be repeated many times to obtain the optimal minimal objective
function.

However, because of the wide range of distributions and variability, the applica-
tion of NMF necessitates not only non-negative input matrices, but also an appro-
priate normalization step for the inputs. Furthermore, NMF necessitates a large
amount of memory and is time-consuming.

4.2.1.2 iCluster

Shen et al. (Shen et al. 2009) created a regularized joint latent variable for integrative
clustering that is similar to the common factor but does not have non-negative
constraints. The unsupervised method reduces the dimensionality of the datasets in
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a single framework while also incorporating flexible modeling of the associations
between different data types and the variance-covariance structure, resulting in a
single cluster assignment for all samples. A likelihood-based inference is computed
using the expectation-maximization algorithm. It cannot, however, handle both
categorical and continuous variables.

4.2.1.3 iCluster+

Mo et al. (Mo et al. 2013) proposed iCluster+, a framework for joint modeling of
discrete and continuous variables resulting from genomic, transcriptomic, and
epigenomic profiles. It is an advanced version of iCluster that employs generalized
linear regression to create a joint model of categorical and numerical variables
(continuous and count). According to their hypothesis, a set of orthogonal latent
variables representing distinct molecular drivers can be used to predict diverse
molecular phenotypes, which can then reveal clinical and biologically significant
subgroups. To induce sparsity, a penalized likelihood approach with lasso penalty
terms was used. The lasso regression can determine the subset of features that
contribute to biological variation between subtypes. However, due to the computa-
tionally intensive approach and the use of penalized regression, iCluster is
constrained by esoteric statistical inference.

4.2.1.4 Multiple Factor Analysis (MFA)

MFA is popular software that integrates several ‘omics’ data (numerical and/or
categorical) through a projection and pushes them into a low-dimensional variable
space. As a result, the integration of numerical and categorical variables is possible,
which aids in the incorporation of a supplementary group of data into the down-
stream analysis. Each dataset is also subjected to principal component analysis
(PCA) to identify the individual pattern. The variance-covariance matrix is used in
global analysis to identify the common structure in each dataset. A variable matrix
for visualizing individual and common structures is also generated. The
implementable code is included in FactomineR’s R package (http://factominer.
free.fr) as one of the multivariate methods (de Tayrac et al. 2009).

4.2.1.5 Joint and Individual Variation Explained (JIVE)

JIVE is a variation of the NMF category and an extension of PCA with clear
advantages over popular two-block methods such as Canonical Correlation Analysis
(CCA) and Partial Least Squares. It separates the joint and individual effects of the
datasets as a general decomposition of variation for the integrated analysis multi-
omics by decomposing the datasets into three terms, residual noise, a low-rank
approximation capturing joint variation between omics, and a low-rank
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approximation for structured variation individual to each omics. As a result, JIVE
can quantify the amount of joint (shared) variation between omics, reduce dimen-
sionality, and enable visual exploration of the individual (omic-specific) and joint
structure, leading to new directions for visual exploration of joint and individual
structure. Although outliers reduce robustness, JIVE estimates common features
more accurately (Lock et al. 2013). The R package of R.JIVE developed in CRAN
is a wrapper of JIVE with important extensions, which improves the JIVE accessi-
bility to the bioinformatics community, and the speed and flexibility of result
visualization (O’Connell and Lock 2016).

4.2.1.6 Joint Bayes Factor

A beta-Bernoulli process is used in the Joint Bayes Factor, which, like JIVE,
assumes a common factor for data-specific and a shared factor across all datasets
(Ray et al. 2014). The original inputs are decomposed into residual noise, common
factors shared across omics data, and omic-type specific factors. Unlike JIVE, this
non-parametric method employs penalties to introduce sparsity and assumes a beta-
Bernoulli process for the two types of factors (Thibaux and Jordan 2007). The factor
loading matrix, like many other biological studies, should be sparse. To add the
sparsity, a student-t sparseness-promoting prior or a spike-slab prior is used (Tipping
2001; Chen et al. 2011; Carvalho et al. 2008). Sparsity was also imposed on the
factor scores for modeling the heterogeneous genomic data. The assumption of a
close relationship between multilevel datasets and a linear relationship between the
observed space and the latent space is a significant limitation of the Joint Bayes
Factor.

4.2.2 Bayesian Approach

4.2.2.1 Bayesian Consensus Clustering (BCC)

Consensus clustering (CC) is a widely used methodology for combining multiple
clustering algorithms, and it can also be used to integrate datasets from multiple
sources (Jovanovski and Kocarev 2019). BCC is a versatile clustering method that
can model the heterogeneity and dependence of multi-omics data using a finite
Dirichlet mixture model. Separate clustering is formed for each omic data that is
loosely connected to the overall clustering of multi-omics data to undergo post-hoc
integration of separated clusters. BCC performs both omic-specific clustering and
CC at the same time. Because BCC implementation assumes normally distributed
data, CC is derived from the distribution with a higher probability to clusters that are
present in specific regions. A heuristic approach is also provided for selecting the
optimal number of clusters for a given set of omic data.
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4.2.2.2 Multiple Dataset Integration (MDI)

Kirk et al.(Kirk et al. 2012) proposed multiple dataset integration (MDI) as a
Bayesian method for unsupervised integrative modeling of multi-omics data. Each
omic can be represented using the Dirichlet-Multinomial Allocation (DMA) mixture
model, with the parameters describing their agreement defining their dependencies.
Additionally, the models can be connected through the use of multilevel variables
assigned to components (e.g., genomic features). Linkages at the component vari-
able level aid in capturing the dependencies between multiple datasets. As a result,
MDI can examine the shared data captured by parameters describing the agreement
between multiple omics datasets. In different datasets, the same gene allocation
affects each other. For instance, a group of genes assigned to the same MDI
component can be clustered across all datasets.

Cho et al., like MDI, developed a probabilistic framework called Prob GBM to
build a patient similarity network, where nodes represent patients and edges repre-
sent phenotypic similarities among patients (Cho and Przytycka 2013). This method
illustrates the phenotypic similarities using features from multi-omics data rather
than directly calculating phenotypic similarity between patients and providing
potential explanatory features. Explanatory characteristics explain the phenotypic
similarities of patients derived from gene expression data (e.g., mutations and
miRNA expression, CNVs). As a result, each patient is defined as a combination
of the genetic characteristics of each subtype, which is represented by a feature
distribution. Finally, the most likely subtype is assigned to each patient. Prob GBM
can be used to model relationships between gene expression similarity and a variety
of genetic causes in general.

4.2.2.3 COpy Number and EXpression in Cancer (CONEXIC)

CONEXIC is a Bayesian network-based method developed by Akavia et al. from
Module Networks (Segal et al. 2003). It is capable of integrating gene expression data
and matched CNV (amplifications and deletions) exclusively (Akavia et al. 2010).
This method employs a score-guided search algorithm to identify the combination of
modulators that best explain the behavior of each module (gene expression) across all
samples and seeks the highest score within deleted or amplified regions. The outputs
include a ranked list of modulators that correlate with DEGs across samples and are
present in deleted or amplified regions. Rather than identifying mutation drivers,
CONEXIC aids in elucidating the probable roles of candidate drivers.

4.2.2.4 Multi-Omics Factor Analysis (MOFA)

MOFA, an unsupervised model-based method, can integrate multi-omics data from
the same or partially overlapped samples (Argelaguet et al. 2018). This method can
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handle missing values and aid in determining the main sources of technical and
biological variation in multiple datasets as a set of hidden factors. It provides a model
formulation that supports the combination of different noise models to integrate
different data types such as numerical and categorical data by using a probabilistic
Bayesian framework. The use of linear models to represent relationships between
datasets, on the other hand, can yield strong nonlinear relationships within and
between omics.

4.2.2.5 Patient-Specific Data Fusion (PSDF)

Yuan et al. (Yuan et al. 2011) presented a non-parametric Bayesian model for the
integration of gene expression data and CNVs based on a Dirichlet process hierar-
chy. This method is made up of three steps: a. extract concordance from discordant
signals; b. select informative features; c. provide an estimate of the number of
disease subtypes. The concordance of each sample’s gene expression and CNVs
was assessed, and a binary state was assigned based on their concordance. The
samples that agreed were fused, while the others did not, resulting in patient-specific
fusion models. The Markov chain Monte Carlo (MCMC) sampling method was used
to predict the probability of each fused sample. PSDF feature selection reduces noise
in datasets by selecting only those features that aid in clustering. The feature
selection is also a binary indicator that is identified separately for each dataset. As
a result, patient-specific data fusion results in patient-specific consistent fusion,
which in turn determines the number of clusters. However, like CONEXIC, this
method restricts the inputs to only two types of data (CNVs and gene expression),
limiting its flexibility and application range.

4.2.3 Network-Based Methods

4.2.3.1 Similarity Network Fusion (SNF)

SNF builds individual networks per omic type and iteratively optimizes the networks
to promote their similarity until they concentrate onto a single network using a
nonlinear network fusion method (Wang et al. 2014). The fusion step, based on
message-passing theory, makes the network more similar to the others within each
iteration (KNN and graph diffusion). SNF, because it is based on sample networks,
can scale a large number of genes to derive useful information even from a small
cohort of samples while remaining robust to data heterogeneity and noise. The main
reason is that noise (weak connections) is removed, leaving only the strong connec-
tions to converge. SNF, to its credit, does not impose data format constraints,
allowing it to accommodate more data types. The only restriction is that the samples
must be consistent across all datasets. In terms of sample classification, Morgane
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et al. claimed that SNF outperformed the other 12 unsupervised methods (Pierre-
Jean et al. 2019).

4.2.3.2 Low-Rank Approximation Based Multi-Omics Data Clustering
(LRAcluster)

Wu et al. proposed a method called LRAcluster that uses the low-rank approxima-
tion method to find the principal low-dimension subspace for classification of multi-
omics data (Wu et al. 2015). Each omics data set is conditional on a size-matched
parameter matrix in this method, and this low-rank parameter matrix can be
represented in a low-dimensional space. The dimension parameter and the number
of clusters aid in the rapid reduction of dimension and the better clustering of disease
subtypes (Cantini et al. 2021). As a result, LRAcluster is a very useful tool for faster
and more efficient unsupervised clustering of samples (Vaske et al. 2010).

4.2.3.3 Pathway Representation and Analysis by Direct Reference
on Graphical Models (PARADIGM)

PARADIGM can be used to infer patient-specific genetic variations in a probabilistic
graphical model framework by incorporating curated pathway interactions among
genes (Vaske et al. 2010). Multiple genome-scale measurements (e.g., CNVs, gene
expression) from a sample can be combined in the PARADIGM model to infer gene
activities and products and summarize the inputs/outputs of a single National Cancer
Institute (NCI) pathway. Each NCI pathway was converted to a distinct probabilistic
model, represented by a factor graph with both hidden and observed states, during
this process. A pathway was abstracted as an acyclic graph, with edges representing
either positive or negative influence on downstream nodes, and nodes relying on the
combined input signals. A gene was abstracted as a factor graph consisting of a set of
interconnected variables representing a gene’s expression level and activity, which
were combined with other high-through measurements. The integrated pathway
activity (IPA) scores can describe the specific measurement with an altered degree
of alteration in a specific pathway as a result of PARADIGM. However, the
PARADIGM pathways are measured independently without taking into account
the interactions between pathways, which may reduce their accuracy and robustness.

4.2.3.4 NetICS

NetICS, using a graph diffusion-based model framework, can accommodate a wide
range of data types, including but not limited to gene expressions, somatic muta-
tions, CNVs, miRNA expressions, methylation patterns, and protein expressions
(Dimitrakopoulos et al. 2018). The main advantage of this method is the ability to
predict the effect of epigenetic changes, genetic aberrations, and miRNAs on
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downstream genes and proteins in the interaction network by identifying mediators
that orchestrate downstream expression changes and are located between aberrant
and DEGs. It employs a per-sample network-diffusion model on a directed func-
tional interaction network to generate a population-level gene ranking by aggregat-
ing individual rankings, as well as a global ranking for all samples. The method
ranks genes based on their proximity to upstream genetic anomalies and downstream
differentially expressed genes. Proteins from each sample are then combined using a
powerful rank aggregation technique.

4.2.3.5 Perturbation Clustering for Data INtegration and Disease
Subtyping (PINS) and PINSPLUS

Nguyen et al. proposed a radically different unsupervised method named PINS to
integrate multi-omic data including but not limited to gene expression, CNVs, DNA
methylation, and noncoding microRNA (Strehl and Ghosh 2003) based on the
resilience of patient connectivity and cluster ensembles (Nguyen et al. 2017).
PINS computes a similarity matrix for one block of an omics dataset, followed by
hierarchical clustering of the patients that are cut for each possible number of
clusters. Then, for each partitioning in the clusters, this method employs a pair-
wise connectivity matrix. Then, by adding Gaussian noise to the original data,
perturbed matrices are generated to evaluate the stability of clustering. PINS com-
putes connectivity matrices and an average of the matrices using the perturbed
datasets. Finally, if there are no significant differences between the original connec-
tivity matrix and the average of perturbed connectivity matrices, it means that the
perturbations do not affect the clustering results. A hierarchical structure search on
the average connectivity matrix is used to address the heterogeneous subgroup of
patients within a cluster, and the best number of subgroups has the smallest differ-
ence between the original and perturbed connectivity matrix. Furthermore, PINSPlus
is reported to be much faster and more powerful when running on large omics
datasets (Nguyen et al. 2018).

4.2.4 Multiple Kernel Learning Methods and Multi-Step
Analysis-Based Methods

4.2.4.1 Feature Selection Multiple Kernel Learning (FSMKL)

The FSMKL method is a supervised classification method that uses the multiple
kernel learning algorithm (Seoane et al. 2013). This new scheme measures the
similarity of multi-omics data and computes a statistical score for feature selection
per omic and pathway. FSMKL creates classifiers with a decision function based on
a variety of different types of input data and pathway-based kernels. Each omic is
treated as a base kernel, and composite kernels are created by linearly combining
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them. To further incorporate biological information into the algorithm, specific
groups of genes, including membership in a KEGG pathway, are used to construct
kernels independently. Statistical methods complete feature selection, allowing the
most relevant kernels and associated features to be discovered. Following the feature
selection steps, the most appropriate decision function over kernels is completed,
which contributes to an integrative function over base kernels. Including clinical
factors in the classifier’s high-throughput profiles can improve prediction accuracy.

4.2.4.2 Regularized Multiple Kernel Learning Locality Preserving
Projections (rMKL-LPP) & Web-rMKL

rMKL-LPP (Speicher and Pfeifer 2015) is an unsupervised version of Speicher and
Pfeifer’s machine-learning-based biomedical data fusion methods, which is an
extension of the current multiple kernel learning method (MKL-DR) (Lin et al.
2011). Depending on the multiple kernel learning with a graph embedding frame-
work algorithm called Locality Pre-serving Projections, the method can reduce
dimensionality for the clustering of samples. One key feature of the method is the
accommodation for numerical and sequence matrices and stability for small datasets,
even several kernel matrices per omic. Moreover, as rMKL-LPP provides a variety
of kernels per omic and different choices of dimension reduction methods, it claims
to offer comparable results with much more flexibility (Zeng and Lumley 2018).
Like mixOmics (Rohart et al. 2017) and BioNMF (Mejía-Roa et al. 2008) which
provide web services, a web-server named web-rMKL (Röder et al. 2019) that
employs rMKL-LPP had been established for the users’ convenience.

4.2.4.3 CNAmet

Louhimo et al. proposed a cutting-edge multi-step integration method called
CNAmet (Louhimo and Hautaniemi 2011) to exclusively integrate CNVs, DNA
methylation, and gene expression data. The method assumes that gene upregulation
occurs as a result of increased copy number and hypomethylation, whereas gene
downregulation occurs as a result of decreased copy number and hypermethylation.
CNAmet consists of three major steps: calculating signal-to-noise statistics to
measure copy number and methylation aberrations relative to expression values
(weight calculation); combining the weights to infer deterministic scores (score
calculation), which aids in identifying the type of gene modification; and performing
a permutation test on the combined scores and correcting the P-values (significance
evaluation). During these steps, the genes regulated by methylation and CNVs work
together to provide better characterization and a better understanding of biological
processes. However, one significant limitation is that the sample set in all omics data
must be the same.
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4.2.4.4 Integrative Bayesian Analysis of Genomics Data (iBAG)

iBAG is a versatile supervised multi-step technique with an embedded hierarchical
model for incorporating biologically meaningful data from an arbitrary number of
omics platforms (Wang et al. 2012). This approach is composed of two stages:
(1) The first step is to apply a regression model mechanistically to partition gene
expression data into discrete segments, which include the CNV principal compo-
nent, the methylation principal component, and unknown components. (2) The next
stage is to create a clinical model. Clinical data, such as survival statistics and binary
outcomes, are modeled as the result of joint regression based on the components
identified in the first step regression. The Normal-Gamma (NG) prior is used to
account for sparsity and facilitate effect size estimation.

4.3 Software for Multi-Omics Data Interpretation
and Visualization

4.3.1 UCSC Xena

To meet the need for easy-to-use genomics visualization software, UCSC Xena was
developed for both private datasets and large public repositories (Goldman et al.
2020). It has multiple advanced features over the UCSC Cancer Brower: (1) easy to
use by installing a Xena Hub on users’ computers; (2) view public and private data
together on the same platform; (3) security advantages as no need to upload private
data to a public server; (4) integration of multi-omics data by combining multiple
hubs. Besides, statistical tools are embedded which allow the significance of asso-
ciations and dynamic quantification (Sanborn et al. 2010; Goldman et al. 2014;
Goldman et al. 2012).

4.3.2 LinkedOmics

LinkedOmics is the first multi-omics database that consists of mass spectrometry
(MS)-based global proteomics data produced by the Clinical Proteomic Tumor
Analysis Consortium (CPTAC). Three analysis modules (LinkFinder, LinkCompare
and LinkInterpreter) were developed to comprehensively analyze and explore The
Cancer Genome Atlas (TCGA) data, including 32 cancer types and a total of 11,158
patients. The LinkFinder module examines the associations between and within
datasets and clinical interested attributes. The LinkCompare module performs a
comparison of the associations in multi-omics and pan-cancer analyses identified
by LinkFinder. The LinkInterpreter module decodes the identified associations into
biological sense through network and pathway analysis.
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4.3.3 NetGestalt

To address the challenge of increasing data complexity and network size, a web
application named NetGestalt which can integrate multi-omics data over biological
networks was developed by Zhiao et al. (Shi et al. 2013). To reduce the visualization
complexity of large biological networks, this method places the nodes in a single
horizontal dimension on the ground of the hierarchical modular architecture.
Depending on the computational algorithm of the network seriation and
modularization (NetSAM) package, NetGestalt uncovers the hierarchical organiza-
tion of biological networks. Compared with other network visualization software, it
provides multi-scale representation and navigation of the data, pathways, statistical
analysis, and cross-omic comparisons. To facilitate data integration, it enables
simultaneous visualization of different types of data within the same framework.

4.3.4 3Omics

The 3Omics is a web-based systems biology software that performs professional
integration and comparative analysis of human transcriptomics, proteomics, and
metabolomics (Kuo et al. 2013). If only two of the three omics data are available
in running, this method automatically captures the missing protein, transcript or
metabolite information by text-mining the PubMed literature. Five commonly used
analysis methods are intensively combined: correlation analysis, phenotype map-
ping, co-expression profiling, GO enrichment analysis, and pathway enrichment
analysis on each omic via a single platform. The main output of 3Omics are the
inter-omic correlation networks, by which users can visualize the relationships
within the omics data with respect to experimental conditions or time for all proteins,
transcripts and metabolites.

4.3.5 Paintomics 3

Paintomics 3 is also a web-based software specially designed for integrated visual-
ization and exploration of multi-omics data (Hernández-de-Diego et al. 2018). In
addition to traditional transcriptomics, metabolomics, and proteomics, it supports
region-based approaches such as ChIP-seq or ATAC-seq data. This method has a
comprehensive KEGG pathway analysis workflow, including automatic pathway
enrichment feature name/identifier conversion, multi-layered feature matching, trend
charts, network analysis, interactive heatmaps, and so on. Moreover, it is rich in
auxiliary and customization functions that enable id conversion data and job storage,
re-coloring, filtering, rescaling. In different cases, this method creates the most
informative representation of the multi-omics dataset.
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4.3.6 MethHC & MethHC 2

The database of DNAMethylation and gene expression in Human Cancer (MethHC)
is a portal for mRNA/microRNA expression profiles and a large collection of DNA
methylation data from TCGA, comprising 18 cancer types, 6000 samples, 12,567
RNA sequencing and 6548 microarrays data (Huang et al. 2014). The specialty of
MethHC is to implement identification of differentially methylated genes, clustering,
and correlation analysis with gene expression. To interpret the results, three data-
bases (UCSC genome browser, miRStart, and KEGG pathways) are integrated in
this method. The updated version, MethHC 2, consists of 33 human cancers, 50,118
microarray and RNA sequencing data from TCGA and GEO (Huang et al. 2020).
Besides, the key features including clinical-pathological data, mutations and CNVs,
a multiplicity of information (enhancer regions, gene regions, and CGI regions),
even circulating tumor DNA methylation profiles were supplemented into the multi-
omic data.

4.4 Challenges of Multi-Omics Data Manipulation

Multi-omics data mining, colloquially referred to as “data munging,” frequently
begins with a difficult and time-consuming data wrangling phase. To maintain
uniformity across different sequencing platforms, a large amount of data should
undergo data filtering, systematic normalization, batch effect removal, and quality
checks prior to transformation and mapping. Typically, the former is used to
harmonize disparate datasets via data normalization, scaling, and imputation. The
latter can be accomplished through an ID harmonization process or a labor-intensive
meta-data annotation process. Additionally, the majority of multi-omics software
requires inputs in a particular format (sample X feature matrix). Thus, it is critical to
use preprocessing steps carefully, as they may have a significant latent influence on
the downstream analysis. A thorough orientation for newcomers regarding sample
registration and robust metadata recording prior to data generation and analysis is
extremely beneficial in mitigating errors and avoiding artificial waste.

Data heterogeneity is an obvious additional challenge when dealing with multi-
omics data due to the variety of technologies and platforms used. For example, due
to batch effects and other factors, even datasets generated from the same cohort of
samples within a unified framework cannot be combined easily (Su et al. 2014).
Additionally, because pre-processing steps for individual datasets have not been
democratized, the software can be applied only to representative studies (Shen et al.
2009; Robinson et al. 2017; Pineda et al. 2015). Without a doubt, integrating
non-omics data (e.g., clinical and epidemiological data) that contribute to the
explanation of disease-related trait variation can likely improve the outcomes of
omics-only algorithms (Lichtenstein et al. 2000). However, additional challenges
arise when integrating omics and non-omics data, including the ability to integrate
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the two types of large-scale data and their relationship (i.e., ascertainment bias), the
nature and heterogeneity of non-omics data, the fairness of the models (independent,
conditional, and joint modeling), and the presence of interactions (López de
Maturana et al. 2019).

In this contribution, we have enumerated widely used algorithms and software for
data integration, analysis, visualization. The performance of the unsupervised soft-
ware had been compared with both simulated and real data several times in (Tini
et al. 2017; Bersanelli et al. 2016; Ritchie et al. 2015; Subramanian et al. 2020;
Pucher et al. 2018; Chauvel et al. 2019). The reviews focusing on integrative
clustering software are also reported sometimes (Chalise et al. 2014),. From a lack
of an accurate and unifying ‘Gold Standard’ framework, robust conclusions do not
come into being. In other words, no exiting software has the domination in the multi-
omics data mining filed. The supervised software is indeed model-based and has the
characteristics of regression analysis which identities the subset of only identity the
subset of relevant omics features (e.g., candidate biomarkers) (Richardson et al.
2016; Ma et al. 2020).

4.5 Conclusions and Future Perspectives

The advantages of multi-omics data studies have been widely acknowledged in
various domains of cancer, microbial, plant, biomedical and animal scientific
research in the past decade. Currently, the integrative approaches coupled with
computational challenges offer the opportunity to derive the most relevant biological
insights such as disease subtyping, prognosis, and diagnosis. In this document, we
collected typical algorithms and software in multi-omics data mining techniques,
focusing on the data integration, analysis, and visualization. For data imputation,
readers can refer to the review paper which summarizes the currently available
imputation methods for handling missing values at the stage of data quality control
with an emphasis on multi-omics imputation (Song et al. 2020). For computational
environment sharing, new researchers can find guidance in (Krassowski et al. 2020).
For the state-of-the-art single-cell multi-modal omics (scMulti-omics) studies
(Ma et al. 2020), several integration software are also available, such as MAGAN,
UnionCom (Cao et al. 2020), LIGER (Wilson et al. 2019), MOFA+ (Argelaguet
et al. 2020). As easy-to-use guidance mainly for new researchers, such a summary
can hardly accommodate all software matching this chapter, even for a single
integration part. Thus, we had pruned the whole catalogue according to the following
principles: (1) the semi-supervised software was excluded (e.g., GeneticInterPred
(You et al. 2010)); (2) the software without installation source was no more
considered (e.g., iPAC (Aure et al. 2013), MCD (Chari et al. 2010)); (3) others
(e.g., CoxPath (Mankoo et al. 2011), MKGI (Kim et al. 2016)). Besides, we prefer
the software with high citations.

To date, the most primal of motivations to code the software above is to solve the
biological questions of interest. To get the best results, consideration of the sample
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type, environmental parameters, multi-omics data and integrative methods is vital
before decision making. A crucial application is cancer subtyping or molecular
classification, which serves as a reference to further advance the precision treatment
(Robinson et al. 2017; Kim et al. 2016; Xiao et al. 2021; Kristensen et al. 2014).
However, most of the cancer-derived multi-omics software is partly limited to the
algorithms employed which results in its utilization only to specific scenarios such as
fixed multi-omics types or poor statistical significance. Thus, it is quite worthy to
compare the software in multiple large-scale multi-omics studies to confirm their
strong point. Furthermore, the application to other complex diseases such as
Alzheimer’s and Parkinson’s dementia should be meaningful.

Collectively, based on multi-omics big-data, hundreds of data mining algorithms
and software have been developed, serving for diverse purposes. The application of
these algorithms and software on multi-omics big-data have already revealed rich
information about the regulation patterns in diverse biomedical objectives. And the
details of these applications will be described in following chapters.
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Chapter 5
Multi-Omics Data Analysis for Cancer
Research: Colorectal Cancer, Liver Cancer
and Lung Cancer

Hantao Zhang, Xun Gong, and Min Tang

5.1 Introduction

Cancer is a disease mainly caused by the accumulation of mutations in two gene
classes, which are proto-oncogenes and tumor suppressor genes (Weinberg 1996).
With its incidence growing rapidly, cancer is regarded as an important obstacle to
human life extension (Torre et al. 2016b). In terms of cancer deaths worldwide for
both men and women, lung cancer, colorectal cancer, and liver cancer are top three
cancer types (Sung et al. 2021).

Since the twentieth century, lung cancer started to become the most common
cause of cancer death as well as the second most commonly occurring cancer in both
men and women internationally (Alberg and Samet 2003). It also ranks the most
frequently diagnosed cancer and the leading cause of cancer mortality in men (Sung
et al. 2021). In the United States, every year the number of patients who die from
lung cancer is higher than the combined death toll from colon, breast, and prostate
cancer (Spiro and Silvestri 2005). Tobacco smoking is regarded as the leading cause
of lung cancer (Salgia and Skarin 1998). Compared with non-smokers, smokers have
a 20- to 30-fold increase in lung cancer risk (Minna et al. 2002). Hence, the
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industrialized countries, where the smoking prevalence first took place, have the
highest lung cancer incidence rates (Alberg et al. 2005). Over the past several
decades, because of tobacco control policies and smoking cessation, the smoking
prevalence keeps decreasing in those countries (De Groot et al. 2018), thus the
burden of lung cancer shifts to developing countries (Torre et al. 2016a). People also
gain more knowledge in lung cancer biology. The majority of lung cancers have
been divided into four histological types, which are small-cell lung cancer (SCLC)
and three non-small-cell lung cancer (NSCLC) types including squamous cell
carcinoma, adenocarcinoma, and large cell carcinoma (Wistuba and Gazdar 2006).
However, the mortality rates of lung cancer still remain high (Barta et al. 2019),
which might be explained by nonspecific symptoms of this disease at early stages
(Van Meerbeeck et al. 2011). When seek medical treatment, most patients present
with advanced disease which is nearly incurable (Patz et al. 2000).

Nowadays, colorectal cancer (CRC) is the second most common cause of cancer-
related death worldwide and the third most common malignant disease (Center et al.
2009). Generally, colorectal cancer has been thought as a disease of the elderly, with
rare people being diagnosed before 50, but it also strikes younger people (O'connell
et al. 2004). In addition, colorectal cancer is the only type that strikes both men and
women with approximately equal frequency (Potter 1999), since it is the second
most common cancer in females and the third most common cancer in males (Siegel
et al. 2014). What’s more, the incidence rates of colorectal cancer vary greatly
around the world (Stintzing 2014). It is well-known that most cases of colorectal
cancer are detected in western countries (Mármol et al. 2017), because people in
longstanding developed countries often exhibit same factors playing important roles
in the development of colorectal cancer, which might include obesity, unhealthy
diet, smoking, alcohol consumption, and physical inactivity (Fearon 1995; Weinberg
and Schoen 2014). However, in recent years, high incidence rates of CRC have been
observed in newly developed countries where the risk of suffering from colorectal
cancer was once quite low (Mármol et al. 2017).

Liver cancer is regarded as an aggressive and heterogeneous tumor which ranks
the third most common cause of cancer-related death as well as the second leading
cause of cancer-related death in man around the world (Yamashita and Wang 2013;
Gao et al. 2019). In addition, liver cancer can be divided into primary liver cancer
and secondary liver cancer in nature (Mckillop and Schrum 2005). As for primary
liver cancer (PLC), based on different histological features, it can be categorized into
six subtypes, which are hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma (iCCA), mixed hepatocellular-cholangiocarcinoma
(HCC-CCA), fibrolamellar HCC, and the pediatric neoplasm hepatoblastoma
(Mcglynn et al. 2001; Srivatanakul et al. 2004). Among these histological types,
HCC is the commonest primary liver cancer worldwide which accounts for nearly
90% of all cases of primary liver malignancies (Ariff et al. 2009). The second most
frequent type of primary liver cancer is iCCA, the incidence rates increase steadily
(Sia et al. 2017). What’s more, the incidence rates of liver cancer in different
countries vary significantly (Bosch et al. 1999). Blaming for hepatitis B virus
(HBV) infection, the East and Southeast Asia as well as the Middle and Western
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Africa have the highest liver cancer rates (Bosch et al. 2004). Thanks to HBV
vaccine, liver cancer incidence rates is decreasing in several highest-risk areas
(Chen and Zhang 2011). However, in some low-risk western countries, the rates
continue to increase. Risk factors such as obesity, cigarette smoking, hepatitis C
virus (HCV) infection and chronic alcohol abuse are believed to be related to liver
cancer in these areas (Bishayee 2014). Gender is another risk factor for liver cancer
development, males are more susceptible than females, as the incidence rates of liver
cancer among men is over twice that among women (Liu et al. 2015).

Through molecular and genetic studies of cancer, multiple biomarkers of colo-
rectal cancer, liver cancer, and lung cancer have been identified (Zochbauer-Muller
and Minna 2000; Bishayee 2014; Dienstmann et al. 2017). However, it is quite
difficult to find diagnostic, prognostic, and therapeutic targets from these outcomes,
and the morality is still high for patients all over the world (Chakraborty et al. 2018).
With the advancement of high-throughput omics technologies, researchers are now
able to study genomics, transcriptomics, proteomics, and phosphoproteomic data at
the same time (Ahmed 2020). Although through analyzing single omics data set, one
can observe the alternation and association of biological entities at that level, the
interaction between multiple molecular layers cannot be fully assessed (Biswas and
Chakrabarti 2020). Hence, in lung cancer, liver cancer, and colon cancer research,
many multi-omics analyses have been conducted in order to gain a holistic view of
the molecular dynamics underlying cancer progression and to make a progress in
early detection and prognosis (Sun and Hu 2016). Also, because of the heteroge-
neous nature of cancer, different patient may have different clinical responses to the
same treatment (Du and Elemento 2015). For this problem, multi-omics studies at an
individual level have been conducted to develop precision cancer medicine (Ghosh
et al. 2018; Mantini et al. 2021).

In this review, we introduced different types of omics data used in the research of
colorectal cancer, liver cancer, and lung cancer. In addition, we summarized cur-
rently used technologies for high-throughput multi-omics data analysis. We also
reviewed integrative analyses using genomic, epigenomic, transcriptomic, proteo-
mic, and metabolomics data that helped reveal the molecular pathology of colorectal
cancer, liver cancer, and lung cancer. Finally, we discussed challenges and
envisioned the future of precision cancer medicine.

5.2 Various Multi-Omics Data Types and Selected
Repositories

With the advent of sequencing technologies, biomolecules in a given biological
samples can be identified and quantified at multiple omics levels (Das et al. 2020).
Next-generation sequencing (NGS) is now frequently used for whole-genome or
whole-exome sequencing (Behjati and Tarpey 2013). ChIP-seq (chromatin immu-
noprecipitation) and DNase1-seq (DNase I hypersensitive sites-sequencing) are used
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for detection of DNA-protein interactions. RNA-seq can be used to identify and
quantify RNA molecules (Kim and Dekker 2018; Lu et al. 2019). As for proteomic
and metabolomic study, mass-spectrometry based techniques are widely used
(Domon and Aebersold 2006). Omics data generated by these techniques, including
but not limited to genomic, epigenomic, transcriptomic, proteomic, and
metabolomic, is together called as multi-omics data (Liu et al. 2019). There are
several publicly accessible databases listed in references (Huang et al. 2017;
Subramanian et al. 2020), which accommodate multiple omics data sets and serve
as rich resources for understanding the etiology of human cancer.

5.2.1 DriverDB v3

The DriverDB database (http://ngs.ym.edu.tw/driverdb/) contains numerous exome-
seq data that was extracted from The Cancer Genome Atlas (TCGA), The Interna-
tional Cancer Genome Consortium (ICGC), Prostate Cancer Genetics Project
(PCGP), The Therapeutically Applicable Research to Generate Effective Treatments
(TARGET), and published papers (Cheng et al. 2014). More exome-seq data as well
as additional RNA-seq data from TCGA, ICGC, and published papers were added to
updated DriverDB v2 (Chung et al. 2016). DriverDB v3, the latest version, incor-
porated not only new exome-seq and RNA-seq datasets but also copy number
variation (CNV), methylation, and smRNA-seq datasets. By applying various bio-
informatic tools it contains, users can identify abnormalities at multi-omics levels
and discover driver genes and mutations (Liu et al. 2020a).

5.2.2 TCGA Portal

The Cancer Genome Atlas (TCGA) was launched by The National Institute of
Health (NIH) in 2006 aiming to reveal genomic and epigenomic alternations asso-
ciated with 32 types of human cancers (Wang et al. 2016). For each type of human
cancer, various kinds of data including gene expression, exon expression, miRNA
expression, protein expression, single nucleotide polymorphism (SNP), copy num-
ber variation (CNV), loss of heterozygosity (LOH), and DNA methylation has been
generated and processed (Tomczak et al. 2015). The aforementioned data are stored
in a free-access database, namely the TCGA Data Portal (https://tcga-data.nci.nih.
gov/tcga/). Without a doubt, the wealth of TCGA data has led to the discovery of
diagnostic biomarkers and development of new cancer therapies (Colaprico et al.
2016).

http://ngs.ym.edu.tw/driverdb/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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5.2.3 ICGC

The International Cancer Genome Consortium (ICGC; https://icgc.org/) mainly
contains mutational genomic data in nearly 50 cancer types. The International
Cancer Genome Consortium Data Portal (https://dcc.icgc.org) is a user-friendly
platform which helps users visualize, analyze, and interpret cancer-related genetic,
molecular, and clinical data it contains. This may lead to deeper understanding of
tumor biology as well as development of better diagnostic methods and drugs
(Zhang et al. 2019).

5.2.4 CCLE

In order to promote the translation of genetic and pharmacological data generated by
cancer cell line studies into understanding of cancer progression and development of
novel therapies, Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/
ccle) was built by the collaboration between the broad Institute and the Novartis
Institute (Barretina et al. 2012). The original release of CCLE contains a large-scale
genomic data set from 947 human cancer cell lines and pharmacological profiling of
24 anticancer drugs across 479 of those cell lines. Later, whole genome sequencing,
RNA-seq, miRNA profiling, and histone profiling were added to it (Nusinow et al.
2020).

5.2.5 LinkedOmics

The LinkedOmics database (http://www.linkedomics.org) contains mass spectrom-
etry (MS)-based global proteomics data which was downloaded from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC). Multi-omics data including geno-
mic, epigenomic, and transcriptomic data as well as clinical data for 32 TCGA
cancer types which were downloaded from The Cancer Genome Atlas (TCGA)
project were also added to this database. Aiming to allow users to analyze these data
in detail, LinkedOmics provided three analysis modules, namely LinkFinder,
LinkCompare, and LinkInterpreter. For each cancer cohort, the LinkFinder module
allows user to find associations between an attribute of interest and all other
attributes. These associations can be compared with query attributes through the
LinkCompare module and interpreted through the LinkInterpreter module. The
results are presented in the form of plot or heatmap, which may effectively help
users gain biological understanding (Vasaikar et al. 2018).

https://icgc.org/
https://dcc.icgc.org/
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
http://www.linkedomics.org
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5.2.6 RHPCG

Consisting of a group of kinases, hippo signaling pathway is a highly conserved
pathway which plays important roles in controlling cell proliferation, apoptosis, and
migration. Dysregulation of Hippo signaling pathway is involved in the initiation
and progression of cancer, such as breast cancer, lung cancer and so on. The
Regulation of the Hippo Pathway in Cancer Genome database (http://www.
medsysbio.org/RHPCG) can serve as an open resource for visualizing alternations of
Hippo pathway genes as well as understanding the roles of Hippo pathway in cancer,
because RHPCG was designed to allow users easily search, view, and download
alternations of core Hippo-protein-encoding genes in 33 cancer types at levels of
genomics, epigenomics, and transcriptomics (Wang et al. 2019).

5.2.7 MOBCdb

The Multi-Omics Breast Cancer Database (http://bigd.big.ac.cn/MOBCdb/) was
constructed in order to facilitate identification of breast cancer subtypes and discov-
ery of novel biomarkers. MOBCdb contains SNV, gene expression, microRNA
expression, DNA methylation, clinical, and drug response data that were
downloaded from the TCGA data portal, GENECODE, miRBase, PharmGKB,
and NCBI. With more than 10,000 files stored in the database, MOBCdb provides
several methods to help users effectively gain information. In addition, by using the
genome-wide browser in MOBCdb, users can visualize different omics data easily.
The survival module was designed to help users find new biomarkers (Xie et al.
2018).

5.2.8 Target

The Therapeutically Applicable Research to Generate Effective Treatments database
(https://ocg.cancer.gov/programs/target) was built by the cooperation of extramural
and NCI investigators. TARGET originated with two pilot projects, now it contains
the clinical information, gene expression, miRNA expression, copy number, and
sequencing data of 24 molecular types of cancer. The effort of TARGET researchers
has undoubtedly accelerated discoveries of genomic alterations in cancer and facil-
itated rapid translation of those findings into the clinic (Wu et al. 2021a).

There is much information that can be obtained from the data sets stored in the
aforementioned databases. For instance, genomic studies can reveal the associations
between tumorigenesis and genetic mutations (Ghosh et al. 2018). Also, Epigenomic
data can lead to knowledge regarding how chemical modifications of DNA and
protein drive tumorigenesis (Rhee 2018). Similarly, transcriptomic profiling can be

http://www.medsysbio.org/RHPCG
http://www.medsysbio.org/RHPCG
http://bigd.big.ac.cn/MOBCdb/
https://ocg.cancer.gov/programs/target
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used to detect the association between cancer and dysregulated genes (Canzler et al.
2020). Proteomic data can help researchers better understand its function in human
cancer (Matthiesen and Jensen 2008). Because each omics data type only provides a
partial view of the complexity of cancer, biological mechanisms can be fully
captured only through integrating different omics data types (Hao et al. 2019).

5.3 Selected Integrative Tools for Multi-Omics Analysis

Cancer is a consequence of malfunction and alteration in multiple molecular layers
(Hausman 2019). With decreasing time and cost to generate multiple omics datasets
from biological samples, an increased need for large-scale omics analysis tools
emerged to explore relationships between different biological readouts
(Altenbuchinger et al. 2020). Usually, steps to conduct an integrative analysis of
these readouts include data normalization, variable selection, cluster analysis, and
dimensional reduction (Meng et al. 2016; Chauvel et al. 2020; Nicora et al. 2020). In
this section, we review eight computational integrative tools that are capable of
multi-omics data analysis. The first five tools were designed to reveal the biological
mechanisms connecting identified key drivers and pathways to diseases. The
remaining three tools can be used to discover new therapeutic interventions or
support clinical decision making.

Integrative Omics Data Analysis (iODA) is a software for omics data analysis,
which is written in Java and able to run on Windows or Linux operating systems.
iODA can integrate and refine data generated by RNA-seq, miRNA-seq, and ChIP-
seq, which leads to the revelation of complex pathogenesis of human cancer. There
are six statistical methods included, namely Least Sum of Ordered Subset Squared,
Cancer Outlier Profile Analysis, Maximum Ordered Subset T-statistics, Outlier
Robust T-statistics, Outlier Sum, and t-test, which can be selected by users to process
their input data. Then, differentially expressed genes and miRNAs as well as
transcription factor binding sites are extracted for the following pathway enrichment
analysis and consistency analysis. The dysfunctional molecules are mapped on the
KEGG pathway, and the consistent molecular signatures are identified as key
pathogenic factors in cancer. The source code as well as executable file of iODA
can be downloaded at http://www.sysbio.org.cn/iODA for free (Yu et al. 2020).

The interactive tool for statistical analysis of omics and clinical data (IOAT in
short) is a R and Python-based Windows application for analyzing and visualizing
multi-omics and clinical data. IOAT is a user-friendly tool designed for
non-programmers. It can perform feature screening, risk assessment, clustering,
and survival analysis after reading a comma-separated value text file imported by
users and preprocessing the multi-omics and clinical data contained in the file. All
results are displayed in a report, which enables users to view the outcomes of each
step and thus gain a better understanding of their data. Additionally, IOAT considers
data breaches. After downloading an executable file from https://github.com/WlSun

http://www.sysbio.org.cn/iODA
https://github.com/WlSun


84 H. Zhang et al.

shine/IOAT-software, users can use this desktop tool without the need for network
connectivity, ensuring the security of their personal data (Wu et al. 2021b).

MEXPRESS is a simple and user-friendly web tool for visualizing and
interpreting multiple omics data that does not require clinical researchers to be
programmers. Users can view gene expression, DNA methylation, and clinical
data extracted from TCGA by entering a gene name and selecting a cancer type.
MEXPRESS can also be used to conduct statistical analyses on these datasets and
determine their correlation, which is extremely useful for biomarker discovery
(Koch et al. 2015). While the core functions of MEXPRESS remain unchanged in
the new version released in 2019, new data types, statistical methods, and options are
included. All code is available for free download at https://github.com/akoch8/
mexpress (Koch et al. 2019).

PROMO is a powerful and integrative Windows software written in Matlab that is
designed to analyze large genomic and clinical datasets contained in multi-omics
databases effectively. It includes several features such as data preprocessing, explo-
ration and visualization, clustering, enrichment analysis, biomarker discovery, and
classification of cancer subtypes. After importing a multi-omics dataset into
PROMO, users can discover correlations between features at various multi-omics
levels as well as the genes involved in biological differences, resulting in a better
understanding of biological mechanisms and the discovery of new biomarkers.
PROMO is freely accessible to the public at http://acgt.cs.tau.ac.il/promo/ (Netanely
et al. 2019).

Chromatin structures, such as topologically associating domains (TAD) and TAD
boundaries, are critical for gene expression regulation. Changes in the structure of
chromatin may contribute to the progression of human cancer (Valencia and Kadoch
2019). PredTAD is a machine learning tool that uses the Gradient Boosting Machine
(GBM) algorithm to predict 3D chromatin structures. It makes use of genomic and
epigenomic data to predict and detect TAD boundary variants in normal and cancer
cell genomes. Correlations between TAD boundary alternations and the expression
of nearby genes can be identified using RNA-seq data analysis. Because genes
located near altered boundaries may be involved in a cascade of oncogenic signaling
pathways, PredTAD is an effective tool for transforming genomic and ChIP data into
an understanding of the roles of chromatin structures in cancer progression. The
source code for PredTAD is available at https://github.com/jchyr-sbmi/PredTAD/
(Chyr et al. 2021).

IOBR is a computational tool for interpreting multi-omics data; its application in
immuno-oncology biological research has the potential to shed new light on tumor-
immune interactions and accelerate the development of immunotherapies. It is
composed of four functional modules: signature and tumor microenvironment
(TME) estimation, phenotype estimation, mutation estimation, and module construc-
tion. IOBR is capable of identifying signature genes and phenotype-relevant signa-
tures, analyzing signature-associated mutations, and building models using
previously identified signatures. These models can be used to forecast therapy
response, prognosis for cancer, and tumor resistance. The IOBR R package can be
downloaded from https://github.com/IOBR/IOBR (Zeng et al. 2021).

https://github.com/akoch8/mexpress
https://github.com/akoch8/mexpress
http://acgt.cs.tau.ac.il/promo/
https://github.com/jchyr-sbmi/PredTAD/
https://github.com/IOBR/IOBR
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DrugComboExplorer, a computational systems biology tool, predicts drug com-
binations for specific cancer types by integrating DNA-seq, RNA-seq, methylation,
and gene copy number data. It processes multi-omics data from cancer patients,
identifies driver signaling networks, and quantifies the efficacy of combinatorial
drugs on these networks using multiple algorithms. Combinations of optimal drugs
that target driver signaling networks may be a way to copy resistance progression.
The source code for DrugComboExplorer is available at https://github.com/
Roosevelt-PKU/drugcombinationprediction (Huang et al. 2019).

OncoPDSS is a system that interprets multi-omics variants detected in cancer
samples as supporting evidence for clinical pharmacotherapy decision-making. It
contains the OncoPDSS knowledgebase (OncoPDSSkb), which was created to store
data on drug-drug interactions, clinical trials for cancer, and drug indications.
OncoPDSS imports user-uploaded variants. It uses a classification strategy to deter-
mine whether pharmacotherapies are potentially effective or not based on
OncoPDSSkb mutation records, cancer records, and drug records that serve as
oncology pharmacotherapy evidence. As a result, this tool will significantly aid
clinicians and physicians in making clinical decisions, while also providing cancer
researchers with novel treatment strategies. OncoPDSS is accessible via the
following link: https://oncopdss.capitalbiobigdata.com (Xu et al. 2020a).

Recent cancer projects as well as multi-omics databases provide the research
community with a wealth of omics data and clinical information on cancer patients
(Cieslik and Chinnaiyan 2020). Integrative analysis of these data is challenging and
requires bioinformatics, statistical, and programming skills (Chakraborty et al. 2018;
Park et al. 2020). Numerous tools have been built to solve this problem. However,
some limitations still exist. For instance, iODA only supports the analysis of mRNA,
miRNA, and ChIP-seq data (Yu et al. 2020). Efforts should be devoted to develop
new tools that can be applied for all omics data types. In addition, several tools
utilize the R language, which is not friendly for researchers with limited biostatistical
or programming knowledge (Eicher et al. 2020; Graw et al. 2021). Web-based
interfaces should be created to allow fundamental researchers to leverage the merits
of multi-omics tools.

5.4 Overview of Cancer Multi-Omics Research

5.4.1 Lung Cancer

Lung cancer is a highly complex and heterogeneous disease (De Sousa and Carvalho
2018). In recent decades, cancer researches focusing on the discovery of prognostic
indicators and therapeutic targets have already been made (Jones and Baldwin
2018). Li proposed a novel method for mining cancer-related gene modules based
on multi-omics data. First, genome-wide regulatory networks were constructed
using key regulatory factors identified by feature selection method. Second,
dysregulated gene sets were identified by comparing regulatory networks in variant

https://github.com/Roosevelt-PKU/drugcombinationprediction
https://github.com/Roosevelt-PKU/drugcombinationprediction
https://oncopdss.capitalbiobigdata.com
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and non-variant samples, which were then used to generate cancer-related gene
modules. This new mining method has been proved to be applicable to lung cancer
research (Li et al. 2019). By analyzing genomic, transcriptomics, and proteomic
data, Kong et al. identified abnormal expressed membrane proteins in highly meta-
static lung cancer cells. The high expression level of CDH2, EGFT, ITGA3, ITGB1,
ITGA5 and low expression level of CALR were found to be associated with cancer
metastasis (Kong et al. 2020).

Small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) are two
major types of lung cancer (Wu et al. 2020). Patients diagnosed as NSCLC accounts
for nearly 85% of all lung cancer patients, which makes NSCLC the most common
histological type of lung cancer (Wang et al. 2018). Chen et al. performed gene
expression, prognosis, DNAmethylation, and gene mutation analysis of NUF2 gene.
It was shown that that the more NUF2 expressed, the poorer prognosis patients had.
Thus, NUF2 might be considered as a prognostic biomarker of NSCLC and can be
used for cancer treatment (Chen et al. 2014). Luan et al. integrated DNA methyla-
tion, RNA, miRNA and DNA copy number data to construct a survival risk model.
Based on this, the chromosome regions 17q24.3 and 11p15.5 were identified as the
copy number variation regions that were associated with NSCLC patient survival
(Luan et al. 2020).

NSCLC can be further divided into three main subtypes, lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and large cell carcinoma (LCC)
(Herbst et al. 2018).

Numerous potential biomarkers have been identified as a result of advancements
in the molecule biology of LUAD. Paula et al. used proteomic data, ChIP-seq and
RNA-seq assays to demonstrate that MGA gene, which is mutated and copy number
deleted in LUAD, acts as a tumor suppressor by repressing genes activated by the
MYC pathway. This discovery may open new therapeutic avenues (Llabata et al.
2020). Zhang et al. estimated different tumor microenvironment infiltration patterns
and the correlation between these patterns and the genetic or epigenetic alterations
by analyzing expression, RNA-seq, WES, and DNA methylation profiles. A prog-
nosis model was constructed using the detected genetic and epigenetic alternations,
which may aid in the development of a more accurate prognostic predictor for human
LUAD (Zhang et al. 2020b). Ken built a SVM to subclass patients based on their
survival based on clinical data from LUAD. By combining RNA expression and
miRNA expression data of these subtypes, six genes were efficiently identified to be
associated with LUAD patient survival: ERO1B, DPY19L1, NCAM1, RET,
MARCH1, and SLC7A8 (Asada et al. 2020). Lee et al. applied mRNA, miRNA,
DNA methylation and CNV data to develop a deep learning autoencoding approach
for survival risk stratification. They successfully identify significant prognostic
difference between two groups of LUAD patients using this model (Lee et al. 2020).

LUSC has a worse prognosis than LUAD (Zhang et al. 2020a). Numerous studies
have already been conducted to ascertain the molecular characteristics of this
subtype. According to Zhang, an integrative analysis of methylation and gene
expression data revealed that 113 methylation features and 23 gene expression
features are strongly associated with lung cancer. SFTA3 and LPP may serve as
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molecular markers for subtyping NSCLC (Zhang et al. 2020a). Additionally, Xu
et al. investigated the gene expression changes associated with DNA copy number or
DNA methylation in LUSC patients by integrating genomic, transcriptomic, and
epigenetic data. Seven genes expressed at a high level, which could be due to CNV
or methylation and result in a poor prognosis (Xu et al. 2020c). Additionally, Hu
et al. examined multi-omics differences between LUSC patients with high and low
levels of programmed death 1 expression (PD1). It was discovered that 178 genes
involved in immunity were significantly upregulated in the high expression group,
which may contribute to a better understanding of the relationship between PD1 and
immunotherapy effect (Hu et al. 2020).

Pulmonary sarcomatoid carcinomas (PSC) is a rare tumor in the family of
NSCLC (Antoine et al. 2016). Yang et al. conducted multi-omics analysis of PSC
samples and found out that PSC may be converted from the epithelial components
and can be divided into five subtypes based on different histological morphologies
(Yang et al. 2020b). Also, it was delineated that a large portion of patients had
mutations in the p53, RTK/RAS, and PI3K pathways, suggesting that targeted
therapy could be an option for patients with PSC (Yang et al. 2020b). Totally,
their study shed light on the biological nature and brought entry points for the
treatment of this rare malignancy (Yang et al. 2020b).

5.4.2 Colorectal Cancer

Colorectal cancer (CRC) is a heterogeneous disease (Berg et al. 2017; Almusawi
et al. 2021). Various studies performed in recent years have provided insights into
the molecular characteristics of CRC. Xu et al. explored genes related to CRC
prognosis and incidence (Xu et al. 2020b). Genes annotated with single nucleotide
mutation sites, copy number variation sites, and methylation sites along with differ-
entially expressed genes were identified as candidate genes (Xu et al. 2020b).
Moreover, a weighted gene co-expression network analysis was performed to search
for hub genes (Xu et al. 2020b). Finally, LRRC26 and REP15 were identified as
CRC-specific driving genes (Xu et al. 2020b). Yuan et al. attempted to link genetic
variants, genes, and risk of CRC (Yuan et al. 2021). They conducted expression
quantitative trait loci (eQTL) analysis, meta-analysis, and methylation quantitative
trait loci (mQTL) analysis of 131 lead SNPs to explore potential target genes (Yuan
et al. 2021). In addition, a colocalization analysis of genes identified in the previous
step was performed, which revealed 66 putative susceptibility genes in CRC (Yuan
et al. 2021). Ayiomamitis et al. investigated the roles of cyclooxygenase 2 (COX-2),
an enzyme that promotes prostaglandin E2 (PGE2) production, and human telome-
rase reverse transcriptase (hTERT), a component of telomerase, in the onset of CRC
(Ayiomamitis et al. 2019). By analyzing the expression levels of COX-2, PGE2, and
hTERT along with telomerase activity, they demonstrated that COX-2 plays a key
role in the initial stages of CRC development (Ayiomamitis et al. 2019). Also, high
COX-2 expression was found to be associated with low hTERT expression and a
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better survival among CRC patients (Ayiomamitis et al. 2019). To gain a better
understanding of the clinical relevance between obesity and CRC, Holowatyj et al.
performed transcriptomic analysis on visceral adipose and tumor tissues and
metabolomics analysis on blood samples of CRC patients (Holowatyj et al. 2020).
Combining results generated by each omics measurement, they elucidated that
glycolytic metabolism, GPVI signaling, and fibrosis participated in the adipose-
tumor crosstalk and could promote CRC development (Holowatyj et al. 2020).
Ghaffari et al. investigated the underlying mechanisms that drive metastatic progres-
sion (Ghaffari et al. 2021). They performed RNA-seq, ChIP-seq, and ATAC-seq on
a CRC cell line (Ghaffari et al. 2021). Then, a statistical model was used to
comprehensively analyze these multi-omics profiles along with TF-DNA binding
information (Ghaffari et al. 2021). It was elucidated that JunD, a TF, plays a crucial
role in CRC migration and invasion (Ghaffari et al. 2021).

It is widely accepted that most colorectal cancers arise as a result of transforma-
tion from adenoma to adenocarcinoma (Lam et al. 2016), which is triggered by the
stepwise accumulation of genetic and epigenetic mutations (Aarons et al. 2014).
Using the deep learning framework, Lv et al. constructed a prognostic model for
patients with colon adenocarcinoma (COAD) using the TCGA and GEO databases
(Lv et al. 2020). After applying this model to the TCGA dataset, it was discovered
that two subgroups with significantly different survival rates existed. Further anal-
ysis of these two subgroups revealed 1217 differentially expressed genes and ten
differentially expressed miRNAs, which may aid in deciphering the mechanisms
underlying COAD development (Lv et al. 2020). Yin et al. proposed an approach to
detect potential prognosis risk biomarkers (PRBs) (Yin et al. 2020). First, based on
gene expression, exon expression, DNA methylation, and somatic mutation profiles
along with clinical information of COAD patients, the multi-omics-based prognostic
analysis (MPA) model was used to select features closely related to the prognosis of
COAD patients (Yin et al. 2020). Second, they applied the protein-protein interac-
tion (PPI) network to annotate the functions of these features (Yin et al. 2020).
Finally, 13 features were identified as PRBs through the further validation, which
may serve as drug targets in COAD treatment (Yin et al. 2020).

CRC is also known as bowel and colon cancer, which makes colon cancer (CC) a
subset of it (Jahanafrooz et al. 2020). Tong et al. successfully constructed a prog-
nostic prediction model of CC patients by integrating clinical features, gene expres-
sion, miRNA expression, and DNA methylation data extracted from TCGA (Tong
et al. 2020). Compared with models based on clinical and gene expression data, this
integrative prognostic model was more effective, suggesting that the more types of
omics data integrated, the better the cancer prognostic model would perform (Tong
et al. 2020). Yang et al. also established a prognostic model for CC (Yang et al.
2020a). They first conducted an identification of differentially methylated genes,
differentially expressed genes and miRNAs between tumor samples and normal
samples (Yang et al. 2020a). Then, using omics features correlated with prognosis,
the prognostic model was built, which might be helpful for CC research (Yang et al.
2020a). Yi et al. explored the underlying mechanisms of Wnt/β-catenin signaling
regulating EMT program (Yi et al. 2020). It was validated that the RUNX2
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expression activated by Wnt signaling pathway would lead to an increase in the
expression of EMT-associated genes (Yi et al. 2020). Because EMT has been proved
to be highly correlated with metastasis formation and tumorigenesis (Pastushenko
and Blanpain 2019), RUNX2 might serve as a prognostic biomarker for CC. Arora
et al. detected the dysregulated expression pattern of seven classical
non-homologous end joining (c-NHEJ) pathway genes in CC (Arora et al. 2020).
Compared to normal tissues, XRCC5, XRCC6, PRKDC, and PAXX were observed to
be overexpressed in tumor tissues, whereas the expression level of LIG4 and NHEJ1
were downregulated (Arora et al. 2020). In addition, PAXX was identified as a
prognostic biomarker (Arora et al. 2020). Thus, their study may help reveal the
clinical significance of c-NHEJ pathway genes in CC. Using a novel upstream
analysis strategy, Kel et al. deciphered the molecular mechanisms of the resistance
to methotrexate (MTX) in CC (Kel et al. 2016). This strategy mainly contains two
steps, i.e., the identification of transcription factors (TFs) and master regulators that
activate these TFs (Kel et al. 2016). After applying this approach to transcriptomics,
proteomics, and ChIP-seq data, PKC-alpha, TGF-alpha, TGF-beta, and alpha9-
integrin were identified as anti-resistance targets (Kel et al. 2016). Their findings
would provide new insight into oncology drug resistance research.

Left-sided colon cancer (LCC), which originates from the hindgut, and right-
sided colon cancer (RCC), which originates from the midgut, are two subtypes of CC
(Song et al. 2020). In addition to the different tumor locations, there are many
differences between them (Shen et al. 2015). To gain a better understanding of
these differences, Huang et al. analyzed transcriptomics, clinical, and somatic
mutation data of patients with CC (Huang et al. 2021). A total of 360 differentially
expressed genes were observed (Huang et al. 2021). Among them, it was indicated
that BRAF and KRAS mutations were frequently presented in RCC, whereas APC
mutation was frequently presented in LCC (Huang et al. 2021). In addition, the
4-mRNA and 6-mRNA were identified as prognostic signatures for LCC and RCC,
respectively (Huang et al. 2021). Similarly, Hu et al. conducted a study on the
differences in molecular features between LCC and RCC (Hu et al. 2018). It was
revealed that PARC was hypermethylated in RCC, whereas CDX2 was
hypermethylated in LCC (Hu et al. 2018). Also, the expression levels of miR31,
miR155, and miR625 were observed to be upregulated in RCC, whereas the
expression levels of miR-296 and miR592 were downregulated in LCC (Hu et al.
2018). In addition, compared with LCC, the mutation rate of KRAS and BRAF was
higher in RCC, which was believed to be associated with a worse prognosis
(Hu et al. 2018). Yi et al. performed a systematic analysis on the regulatory
mechanisms between gene mutations and tumor immune microenvironment
(TIME) in LCC and RCC cells (Yi et al. 2021). It was revealed that the mutations
of top mutated genes were strongly correlated with TIME, DNA methylation levels
of some immune checkpoints, and immune-related genes and miRNAs in RCC.
However, these associations were less significant in LCC (Yi et al. 2021).
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5.4.3 Liver Cancer

Liver cancer, one of the extraordinarily heterogeneous diseases, is caused by the
interplay of various internal and environmental factors (Li and Wang 2016; Marengo
et al. 2016). The development of omics strategies has helped us gain a holistic view
of tumor biology. Shen et al. distinguished two molecular subtypes by analyzing
genomic, epigenomic, and transcriptomic data from patients with liver cancer (Shen
et al. 2021b). In addition, two prognostic molecular targets, ANXA2 and CHAF1B,
were highly expressed in tumor tissues and identified to be strongly related to the
prognosis of liver cancer patients (Shen et al. 2021b). Their research findings could
provide new insight into the exploration of key biomarkers and mechanisms of liver
cancer (Shen et al. 2021b).

Primary liver cancer is a serious public health issue, with HCC as the most
common pathological subtype (Lin et al. 2016). Significant effort has been made
to reveal the biological nature of HCC. Based on multi-omics datasets of HCC
samples downloaded from TCGA and GEO databases, Liu et al. conducted an
investigation on the methyltransferase-like 3 (METTL3) as well as
methyltransferase-like 14 (METTL14), which were both core molecules of a
multicomponent methyltransferase complex (MTC) that catalyzed the formation of
N6-methyladenosine (m6A) (Liu et al. 2020b). It was clarified that METTL3 and
METTL14 influence distinct signaling pathways and biological processes, thus may
play opposite regulatory roles in HCC (Liu et al. 2020b). Using several databases,
Jin et al. investigated the impact of the expression levels of CDK1, CCNB1, and
CCNB2 in the survival of HCC patients (Zou et al. 2020). The upregulation of
CDK1, CCNB1, and CCNB2, which might be caused by low levels of methylation or
genomic alternations, was found to be highly correlated with poor prognosis in HCC
patients (Zou et al. 2020). Using multi-omics analysis of metabolomics and absolute
quantification proteomics, Dan et al. conducted an investigation on the effects of
canagliflozin (CANA) on the proliferation of HCC cell lines (Nakano et al. 2020). It
was shown that CANA, the sodium glucose co-transporter 2 (SGLT2) inhibitor,
mainly altered oxidative phosphorylation metabolism, fatty acid metabolism, and
DNA synthesis, which may suppress cell proliferation of Hep3B and Huh7 cells
(Nakano et al. 2020). Shen et al. performed a multi-omics analysis to explore the
metabolic impact of estrogen and its receptors in HCC cells (Shen et al. 2021a). It
was suggested that estrogen acts on its receptors to suppress HepG2 cell growth via
altering glucose and lipid metabolism, which might be part of the reason why women
have a lower risk of HCC development as compared to men worldwide (Shen et al.
2021a). Woo et al. integrated CNV, DNA methylation, and mRNA expression data
of a cohort of HCC patients to identify DNA copy-number-correlated (CNVcor) and
methylation-correlated (METcor) genes (Woo et al. 2017). The frequencies of
CNVcor gene aberration were indicated to be significantly correlated with frequen-
cies of METcor gene aberration, demonstrating that the concomitant regulation of
transcriptomes by alternations in DNA copy numbers and methylation should be
took into consideration in liver cancer research (Woo et al. 2017).
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In developing countries prevalent for hepatitis B virus (HBV) infection, HBV still
remains the most common etiologic agent of HCC (Chang 2014). Much work also
has been done to uncover the direct and indirect mechanisms that are involved in
HCC oncogenesis by HBV (Xie 2017). Through the integration of proteomics and
metabolomics assays, Xie et al. conducted an exploration on the mechanisms of
HBV-induced HCC (Xie et al. 2017). They demonstrated that HBV core protein
might contribute to the progression of HCC by modifying the metabolism of
glycolysis and amino acid (Xie et al. 2017). Consequently, HBV core protein
could represent a promising target for antiviral therapy (Xie et al. 2017). Aiming
to identify novel biomarkers in HCC, Miao et al. performed multi-omics analyses
integrating genomic, transcriptomics, and clinicopathological data of patients with
HBV-related multifocal HCC (Miao et al. 2014). Six genes with abnormal expres-
sion levels were identified (Miao et al. 2014). Among them, TTKmight be an overall
prognostic indicator for HCC, because the expression level of TTK was shown to be
highly correlated with metastatic potential, postsurgical recurrence, and survival of
HCC patients (Miao et al. 2014). Gao et al. conducted a comprehensive
proteogenomic characterization of tumor and adjacent liver samples from
159 HCC patients with HBV infection (Gao et al. 2019). Two metabolic enzymes,
PYCR2 and ADH1A, were identified to participate in HCC metabolic
reprogramming (Gao et al. 2019). Because the upregulation of PYCR2 or
downregulation of ADH1A may result in HCC progression, they were also validated
as potential prognostic biomarkers (Gao et al. 2019).

Since accurate stratification is essential for clinical decision making (Preisser
et al. 2020), different stratification methods applied to cohorts of HCC patients have
been developed. Kumardeep et al. proposed a deep learning-based model derived
from RNA-seq, miRNA-seq, CpG methylation and clinical data of HCC samples to
identify two subgroups with significantly different survival (Chaudhary et al. 2018).
It was illuminated that the more aggressive subgroup is associated with TP53
inactivation mutations and Wnt pathway activation (Chaudhary et al. 2018). There-
fore, this risk stratification model may be useful at HCC prognosis prediction as well
as therapeutic intervention (Chaudhary et al. 2018). Xiao et al. formed an integration
method and used this method for an analysis of mRNA expression data,
DNA-methylation data, somatic mutation data, and clinical information of HCC
samples (Ouyang et al. 2020). 34 differentially expressed genes (DEGs) were
identified, some of them were verified as diagnostic biomarkers for HCC (Ouyang
et al. 2020). According to the gene expression data of the aforementioned DEGs,
tumor samples were divided into three subtypes that displayed different biological
processes (Ouyang et al. 2020). Hence, what they found out might help improve
precision medicine regarding HCC (Ouyang et al. 2020).

The advanced molecular biological techniques as well as improving understand-
ing of complex mechanisms of liver cancer has driven the development of precision
medicine (Yoo et al. 2018). Yildiz analyzed datasets generated by high-throughput
drug screening and genomic and transcriptomic studies on HCC cell lines (Yildiz
2018). He divided HCC cells into two subtypes that responded differently to the
same drug treatments (Yildiz 2018). 6 molecular targets were revealed to be
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associated with drug sensitivity, which could aid the development of effective
molecular therapies (Yildiz 2018). Also, the EGFR/PI3K/AKT/mTOR signaling
pathway was believed to play a central role in the regulation of sensitivity and
resistance to drug treatments in HCC (Yildiz 2018). Christos et al. utilized a
computational approach to explore the novel drug targets in mTOR-driven HCC
(Dimitrakopoulos et al. 2021). 74 mediators under the impact of upstream genetic
aberrations and changes in miRNA expression were identified, among which YAP1,
GRB2, HDAC4, SIRT1, and LIS1 were validated to be dysregulated in human HCC
(Dimitrakopoulos et al. 2021). Thus, inhibitors of these mediators may be potentially
useful in HCC treatment (Dimitrakopoulos et al. 2021).

5.5 Conclusion

Multiomics clearly has advantages when it comes to translating the biological
characteristics of cancer into understandable and clinically interpretable data. The
advancement of multiomics research in the context of a specific cancer reveals
numerous “invisible” but critical correlations. Multiple biomarkers have a higher
specificity than previous single-gene markers, laying the groundwork for future
research in this field. The identification of specific markers enables the diagnosis
of cancer and subsequent treatment, as well as better stratifying patients and devel-
oping more effective and personalized treatment methods.

As mentioned previously, multi-omics methods have been successfully applied to
colorectal cancer, liver cancer, and lung cancer, yielding a wealth of biological data.
As methods and resources for multi-omics analysis mature, multi-omics research
will play an increasingly important role in understanding the pathogenesis of cancer
and developing effective treatment measures.

However, there is a growing gap between the ability to integrate, process, and
interpret data and the ability to generate large amounts of omics data. The majority of
data standardization efforts and development of a central public database of omics
data have been abandoned. Simultaneously, the majority of tools for multi-omics
integration are insufficiently robust, prone to errors, and are only suitable for
advanced users with programming expertise. There is still a long way to go before
multi-omics analysis is widely applied and its value is maximized in cancer research.
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Chapter 6
Multi-Omics Data Analysis
for Inflammation Disease Research:
Correlation Analysis, Causal Analysis
and Network Analysis

Maozhen Han, Na Zhang, Zhangjie Peng, Yujie Mao, Qianqian Yang,
Yiyang Chen, Mengfei Ren, and Weihua Jia

In recent decades, an enormous amount of research on the human gut microbiota has
established that it is strongly associated with human health and is involved in the
occurrence and development of a variety of diseases, including inflammation dis-
eases. However, current research has concentrated on the relationship between
disease and the human gut microbiota, as well as the interactions between microor-
ganisms. The absence of a more detailed understanding of the mechanism and
causation of diseases associated with the gut microbiota restricts clinical diagnosis
and treatment. Due to the advancement of sequencing and mass spectrometry
techniques, numerous approaches have been used in microbiome research to gener-
ate multi-omics datasets that can provide a comprehensive view of the compositions
and changes in microbial communities’ genetic, metabolic, and biochemical pro-
cesses, as well as an in-depth understanding of the gut microbiome and diseases.
Nonetheless, the absence of systematic reviews of multi-omics approaches and their
application to diseases restricts their application to microbiome research. As such,
we took a holistic view of multi-omics approaches in the gut microbiome and
discussed how multi-omics approaches could aid in disease diagnosis and treatment
in this review. To be clear, we used inflammation disease as a model disease to
introduce multi-omics approaches, integrated analysis methods for multi-omics
datasets, and their application to inflammation diseases, particularly in terms of
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treatment methods involving microbiome approaches. Without a doubt, our com-
prehensive review of multi-omics approaches in inflammation disease and the
bioinformatics tools for integrating multi-omics datasets may help identify clades
for clinical diagnosis and treatment of inflammation diseases.

6.1 Introduction

The human microbiota is a collection of microorganisms that coexist in symbiotic
communities with various human body sites (Manzo and Bhatt 2015). The human
microbiota contains over 100 trillion bacteria, the majority of which colonized the
gut, evolved alongside the host, and became an inseparable part of the host (Glasner
2017). In recent decades, mounting evidence has established that the human gut
microbiome is associated with human health, contributes to host physiology, metab-
olism, and the development of the host immune system (Sharon et al. 2016), and is
involved in the development of inflammation diseases and many other diseases, such
as hypertension (Li et al. 2017), cholestatic liver disease (Isaacs-Ten et al. 2020),
rheumatoid arthritis (RA) (Manasson et al. 2020), systemic lupus erythematosus
(SLE) (Chen et al. 2020), cancers (Slowicka et al. 2020; Amy et al. 2020), etc.,
which suggested that human gut microbiome play an essential and important role in
keeping host health. Hence, more and more researchers focused on the research of
gut microbiota to uncover the characters of the gut microbiome, explore the dynamic
changes of gut microbiota during the development of disease, and investigate the
detailed mechanism between the gut microbiome and disease using various omics
approaches.

Researchers have examined the characteristics of the human gut microbiome as a
result of the success of their investigation into gut microbial communities. For
example, the human gut microbiome is normally in homeostasis and can be classi-
fied into a specific enterotype that is conserved across disparate populations
(Arumugam et al. 2011) based on the composition of gut microbial communities.
Three enterotypes have been identified in the human gut microbiome to date:
enterotype 1 (predominant genus Bacteroides), enterotype 2 (predominant genus
Prevotella), and enterotype 3 (the predominant genus is Ruminococcus). We previ-
ously demonstrated that human microbial communities are bidirectionally plastic
and resilient, as well as the eliciting effects on clinical practice for gut microbiome-
associated diseases (Liu et al. 2019). With the increasing number of human gut
microbiome studies, researchers gained a better understanding of the gut microbiota
and identified factors that affect the composition of gut microbial communities,
which may be associated with the development of human diseases. Among these
studies, Peer Bork and colleagues reported that enterotypes are unaffected by age,
gender, body weight, or national population (Arumugam et al. 2011), and the
following study suggested that alternative enterotype states are influenced by long-
term diet (Wu et al. 2011). Our studies have suggested that the human gut microbial
compositions, including taxonomical composition and functional composition, are
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affected by dietary factors (Liu et al. 2019), physical characteristics, and sport-
related features (Han et al. 2020a). Specifically, the correlation analysis between
the dynamic changes of human gut microbiota and the dietary shifts showed that the
resilience of human gut microbiota is largely mediated by dietary changes. The
variation partitioning analysis between the compositions of gut microbial commu-
nities and various factors, which was mainly divided into three different groups,
including dietary factors, physical characteristics, and sport-related indices from
three cohorts of athletes showed that these factors can in concert explain 41% of
the inter-person human gut microbiome (Han et al. 2020a). Besides, a growing
number of studies paid attention to the correlation between factors and human gut
microbiome composition, and between the development of diseases and human gut
microbiome (Ghaisas et al. 2016; Gaulke and Sharpton 2018; Bäckhed et al. 2015).
The findings of the gut microbiome studies have been demonstrated that the envi-
ronment and host factors can influence the composition of the human gut
microbiome with large-scale association analyses (Kurilshikov et al. 2021; Spor
et al. 2011). However, the results of these studies are limited to correlation analysis
between disease and human gut microbiota, the interactions among microbiota, and
lack of more detailed mechanism analysis and causality analysis (Cani 2018; Walter
et al. 2020; Harley and Karp 2012), although researchers have conducted a lot of
human gut microbiome studies.

Additionally, it should be noted that these studies examined the correlation
between disease and the human gut microbiota using a single microbiome approach,
including 16S rRNA amplicon sequencing, metagenomic sequencing,
metaproteomic data, and meta-metabolome data. For example, a previous systematic
review summarized sixteen articles that used 16S rRNA-targeted sequencing data
from 777 patients with irritable bowel syndrome (IBS) and 461 healthy controls
(HCs) to examine the differences in gut microbiota between IBS patients and HCs
and found that the results were inconsistent, if not contradictory (Duan et al. 2019).
Notably, the Human Microbiome Project (HMP), which consists of two phases,
HMP1 and iHMP, was established to generate resources for the purpose of charac-
terizing the human microbiota (Turnbaugh et al. 2007; Integrative et al. 2019).
Regarding the first phase of HMP, HMP1 focused on the microbiome collected
from five major body sites of healthy humans using 16S rRNA amplicon sequencing
and metagenomic shotgun sequencing to generate resources for the healthy human
microbiome, including 600 microbial reference genomes, 70 million 16S sequences,
700 metagenomes, and 60 million predicted genes and proteins (Proctor 2011;
Gevers et al. 2012), which provides baseline taxonomic and functional dives
(Lloyd-Price et al. 2017). While HMP1 remains the largest resource for the human
microbiome to date, the lack of longitudinal datasets, including host genetic and
human microbiome datasets, and the limitation of single omics data make it difficult
to gain a comprehensive understanding of the microbiome’s causal relationship with
disease. To address this, researchers proposed the second phase of HMP, dubbed
iHMP, which collects host and microbiome samples from three distinct studies
(pregnancy and preterm birth, inflammatory bowel disease (IBD), and type 2 diabetes
(T2D), integrates longitudinal datasets using multiple omics technologies, and
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enables researchers to conduct dynamic analyses between host disease and
microbiome using these multi-omics datasets during periods of huma (Integrative
2014).

Thus, to gain a thorough understanding of disease and develop a rational
microbiome approach for treating gut microbiome-related diseases in clinical prac-
tice, we believe that it is critical to employ multiple approaches, particularly the
combination of multi-omics methods, to collect multi-omics data and conduct big
data analysis to uncover correlation, causality, and network analysis.

Numerous studies have demonstrated that multi-omics approaches in human gut
microbiome research have the potential to provide a comprehensive picture of the
compositions and changes in genetic, metabolic, and biochemical processes. Addi-
tionally, an increasing number of studies have used multi-omics approaches to
generate multi-omics datasets, demonstrating a thorough understanding of the
human gut microbiome (Lloyd-Price et al. 2019; Metwaly and Haller 2019). None-
theless, there is a dearth of systematic reviews of multi-omics approaches and their
application to diseases involving the gut microbiome, which limits multi-omics’
application in the field of the gut microbiome, particularly for clinical diagnosis and
treatment of diseases. As a result, we took a holistic view of multi-omics approaches
in the gut microbiome and how multi-omics approaches may aid in disease diagnosis
and treatment in this review. To clarify, we used inflammation disease as a model
disease to demonstrate correlation analysis, causal analysis, and network analysis
using multi-omics datasets derived from multi-omics approaches. To begin, we
discussed the human gut microbiota and microbiome, inflammation diseases, and
the relationship between the human gut microbiota and inflammation diseases.
Second, we discussed the benefits of multi-omics approaches and summarized the
methodology for integrating multi-omics datasets generated through multi-omics
approaches. Thirdly, we discussed the applications of multi-omics approaches to
diseases, particularly inflammation diseases, and briefly discussed how microbiome
approaches can be used to treat inflammation diseases clinically. We summarized the
application of multi-omics approaches to inflammation disease, the bioinformatics
tools for integrating multi-omics datasets, and identified clades for clinical diagnosis
and treatment of inflammation disease.

6.2 Human Gut Microbiota and Gut Microbiome

Humans have always been subjected to the natural microbial environment, and the
human body is inhabited by an enormous number of microorganisms, forming a
complex ecological community and symbiont of the human and bacteria
(Dekaboruah et al. 2020). The human microbiota can be classified into bacteria,
archaea, fungi, viruses, and eukaryotes and it can be colonized in the skin, the oral
cavity, intestinal tract, and so on (Clemente et al. 2012). Numerous studies
conducted over the last two decades have established that the human microbiota is
primarily found in the intestinal tract, and these microorganisms have been dubbed
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the human gut microbiota (Thursby and Juge 2017), and tremendous of studies
focused on human gut microbiota have demonstrated that the human gut microbiota
is greatly impacting human health and physiology (Fan and Pedersen 2020) and
plays an essential role in maintaining host health (Marchesi et al. 2016; Valdes et al.
2018).

Specifically, increasing evidence indicates that Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria are the four most abundant bacterial phyla in
the human gut microbial community (Han et al. 2020a; Zhang et al. 2015a; Shin
et al. 2015) and the ratio of Firmicutes to Bacteroidetes was reported to be positively
correlated with the production of total short-chain fatty acids (SCFAs) (Fernandes
et al. 2014) and suggested as a potential indicator for monitoring the health of host
(Chen et al. 2016), especially for solving the obesity problem (Sutoyo et al. 2020).
Nevertheless, whether the Firmicutes/Bacteroidetes ratio really important is still a
hotly debated spot (Magne et al. 2020; Schwiertz et al. 2010). Additionally,
Bacteroides, Prevotella, Ruminococcus, and Faecalibacterium are the dominant
bacterial genera in the human gut microbial community (Gorvitovskaia et al.
2016) and the previous three genera are famous as the dominant genus for three
enterotypes (Romo-Vaquero et al. 2019).

Furthermore, several bacteria have been discovered and selected as biomarkers,
which might be associated with the occurrence, development, and treatment of
diseases, and the performance of athletes (Sandhu and McBride 2018; Scheiman
et al. 2019; Marietta et al. 2016; Mithieux 2018). For example, numerous studies
have demonstrated that Clostridioides difficile colonizes the colon and produces
toxins, which can inhibit action polymerization in host cells and lead to cell death,
causing the most common healthcare-related infection in American (called
C. difficile infection, CDI) (Sandhu and McBride 2018; Mushtaq 2018; Abt et al.
2016). Additionally, previous research has established that Prevotella copri is the
most prevalent pathogen in rheumatoid arthritis (RA) and that P. copri is strongly
associated with the occurrence and development of RA (Tong et al. 2020; Scher et al.
2013; Pianta et al. 2017). Interestingly, a previous study demonstrated that enteral
exposure to Prevotella histicola suppresses arthritis via mucosal regulation and
proposed that P. histicola is a novel commensal that can be used to treat rheumatoid
arthritis with few or no adverse effects (Marietta et al. 2016; Maeda and Takeda
2017). Additionally, several studies have demonstrated that Veillonella atypica can
increase the metabolic conversion of exercise-induced lactate to propionate, thereby
increasing the running time of mice, implying that it could be used to improve athlete
performance (Scheiman et al. 2019; Han et al. 2020b; Kulecka et al. 2020).

To date, an increasing number of studies have focused on the relationship
between human gut microbiota and disease, and with the advancement of sequenc-
ing techniques and the innovation of research technologies, studies of human gut
microbiota have advanced to the omics level, namely the human gut microbiome
(Cani 2018), revealing additional patterns or dynamic changes in human gut micro-
bial communities. For example, several microbial taxonomic and functional signa-
tures have been associated with metabolic traits in multiple cases of type 1 diabetes
mellitus (T1DM) using metagenomic, metatranscriptomic, and metaproteomic
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datasets (Heintz-Buschart et al. 2016). These studies demonstrated that the human
gut microbiome can be used as a potential controller of diseases (Kho and Lal 2018;
Benítez-Páez et al. 2019). Undoubtedly, studies of the human gut microbiome have
emphasized the benefits of studying species or strain levels to gain a better under-
standing of the relationship between human gut microbiota and diseases, as well as
to identify clades for diagnosing and treating diseases using microbiome approaches.

6.3 Relationship Between Inflammation Diseases
and Human Gut Microbiota

The human immune system is currently subjected to a variety of stresses, including
emotional and physical strain, as well as exposure to environmental pollutants.
Inflammation occurs naturally during this process as the human body’s immune
system responds to illness and infection. However, inflammation can sometimes be
misdirected, resulting in the immune system attacking body tissues and resulting in
inflammation diseases. Inflammatory diseases encompass more than 100 distinct
conditions. Clinically prevalent inflammatory diseases include rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE) (Santos and Morand 2009), Crohn’s
disease (CD), ulcerative colitis (UC), and irritable bowel syndrome (IBS). And RA
and SLE are two famous examples of inflammation diseases. Although many studies
have focused on the occurrence, development, and molecular mechanism of RA and
SLE (Alamanos and Drosos 2005; Yong et al. 2008), researchers continue to lack a
clear understanding of the etiology of these two diseases, limiting their treatment.
Fortunately, as evidence accumulates, the complex etiology of rheumatoid arthritis
and systemic lupus erythematosus is becoming clear.

Specifically, RA is an autoimmune disease characterized by a chronic inflamma-
tory disorder and a variety of inflammatory symptoms, including joint pain, swell-
ing, and stiffness, as well as damage to other organs and tissues throughout the body,
including the skin, eyes, lungs, and heart (Majithia and Geraci 2007; Bullock et al.
2018). Although the etiology of RA remains unknown, numerous previous studies
have demonstrated that the disease is associated with genetic and environmental
factors (Majithia and Geraci 2007; Aletaha and Smolen 2018), including human gut
microbiota (Maeda and Takeda 2017; Horta-Baas et al. 2017). To begin, the results
of experiments in germ-free mice demonstrated that the gut microbiota can shape the
intestinal immune system, implying that the gut microbiota has a strong positive
correlation with immune-mediated diseases (Round and Mazmanian 2009; Torres
et al. 2020), including RA. Second, the increasing number of animal and human
studies have demonstrated that gut microbiota plays an important role in the occur-
rence, development, and treatment of RA (Maeda and Takeda 2017). For an
instance, several studies have revealed that the dysbiosis of human gut microbial
communities can cause the disorder of immune system in RA patients. P. copri was
dominant in RA patients and found to be correlated with an absence of human
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leukocyte antigen-DRB1 (Scher et al. 2013). In our laboratory, we used metagenome
sequencing to compare the changes in taxonomic composition of the gut microbial
communities between healthy SD mice and SD mice with RA (CIA model). Our
analysis of metagenome datasets from six healthy SD mice and five SD mice with
rheumatoid arthritis revealed significant differences in taxonomic and functional
compositions compositions between SD healthy mice and SD mice with rheumatoid
arthritis. Eight species were identified as biomarkers, including Lactobacillus sp.
ASF360, Akkermansia muciniphila, Prevotella copri, Parabacteroides goldsteinii,
Parabacteroides johnsonii, Lactobacillus reuteri, and Bacteroides dorei. Further-
more, our findings suggested that these species may be associated with the occur-
rence and development of rheumatoid arthritis. Naturally, the precise functional
mechanism of these species is being verified.

Similarly, systemic lupus erythematosus (SLE) is an autoimmune disease that is
characterized by a type I interferon gene signature (Guerrini et al. 2018). In this
chronic disease, the immune system of the host mistakenly attacks its healthy tissues,
causing inflammation and tissue damage. The most common type of SLE is lupus
and it can affect the joints, skin, lungs, kidneys, brains, and other tissues (Borchers
et al. 2010). Although the complex etiology of SLE is not fully understood,
numerous studies have suggested that the interactions between host genetics and
environmental factors contributing to the occurrence and development of SLE
(Guerrini et al. 2018; Neuman and Koren 2017). Particularly, several studies results
have proposed that an association between gut microbiota and SLE (Neuman and
Koren 2017), the disorder of gut microbiota have been identified in SLE cohorts and
candidate biomarkers, such as Ruminococcus gnavus and Enterococcus gallinarum,
maybe contribute to the immune pathogenesis (Guerrini et al. 2018; Silverman et al.
2019). These studies suggested that dysbiosis of the gut microbiota, particularly
dynamic alteration of specific bacteria, may be associated with the occurrence and
progression of SLE. However, the causal relationship between gut microbiota and
SLE is unknown, and additional research is required to fully understand the detailed
mechanism of SLE.

Together, these previous studies suggested that the gut microbiota play a critical
role in the onset and progression of inflammatory diseases and established a strong
association between gut microbiota and inflammation diseases. However, the lack of
causality between gut microbiota and inflammation diseases makes it difficult to gain
a thorough understanding of the pathogenesis of inflammation diseases and to
develop a clinically effective microbiome approach for treating inflammation
diseases.
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6.4 The Advantages of Multi-Omics Approaches
and the Methodology for Integrating the Multi-Omics
Datasets

Over the last two decades, researchers have recognized that the microbial commu-
nity is composed of a diverse range of microorganisms, the majority of which are
unculturable, and the critical role of the gut microbiota in maintaining host health. To
elucidate which microbiota exist in a microbial community (who), what a microbial
community is capable of (what), and how a microbial community functions (how), a
variety of techniques have been used in microbiome research, including microarrays,
high-throughput technologies, and liquid chromatography-mass spectrometry
(LC-MS)(Hamady and Knight 2009; Zhou et al. 2015; Hansen et al. 2019). With
the advancement of high-throughput technologies, 16S rRNA amplicon sequencing,
whole genome sequencing, and transcriptome sequencing have all been widely
applied in microbiome research, demonstrating the dynamic pattern of microbial
communities. For instance, in the last decade, 16S rRNA amplicon sequencing has
become a standard method for verifying the taxonomic compositions of microbial
communities and shed light on the structure of numerous microbial ecosystems
(Prodan et al. 2020; Caporaso et al. 2011). Due to the limitation of 16S rRNA
amplicon sequencing in terms of identification level, whole genomic sequencing of
metagenomic DNA was developed and is now widely used in microbiome research,
specifically metagenomics. The taxonomic composition of the microbial community
can be determined at the species level using metagenome datasets, and the functional
composition can be profiled against various databases, including the CAZyme
database (Huang et al. 2018), nitrogen cycle database (Tu et al. 2019), CARD
database (Jia et al. 2016), and so on. Hence, researchers can analyze and investigate
the pattern of the microbial ecosystems with different perspectives based on omics
datasets obtained from different omics approaches.

To date, an enormous amount of microbiome research has been conducted,
yielding massive omics datasets. The metagenome, meta-transcriptome, meta-pro-
teome, meta-metabolome, and culturomics are examples of these omics datasets
(Sarangi et al. 2019). Researchers discovered a link between diseases and
microbiota, particularly in the gut microbiota, using these single omics datasets.
For instance, the metagenome is enhancing our understanding of the taxonomic
composition of species and the gene content or functional characteristics of micro-
bial communities. Researchers developed a protocol for conducting a metagenome-
wide association study using datasets of gut microbial communities obtained from
345 Chinese individuals and identified approximately 60,000 markers associated
with type 2 diabetes (Qin et al. 2012). A previous study has demonstrated that the
dysbiosis of gut microbiota contributed to the development of hypertension based on
196 gut microbiota metagenome datasets, including 41 healthy controls, 56 individ-
uals with pre-hypertension, and 99 individuals with primary hypertension (Li et al.
2017). Similarly, we expanded the analysis depth based on these 196 metagenome
datasets and investigated the function of viruses in the development of hypertension
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(Han et al. 2018). As a supplementary, meta-transcriptome can provide the infor-
mation of active bacteria and a wealth of knowledge about the expression of their
genes in a microbial community (White et al. 2016). A meta-transcriptomic analysis
of feces from 12 macaques with idiopathic chronic diarrhea and 12 matched healthy
controls revealed that the expression of genes involved in inflammation and tran-
scripts from several bacterial pathogens, including Campylobacter, Helicobacter,
and the protozoan Trichomonas, were increased (Westreich et al. 2019). Addition-
ally, meta-proteomics aims to profile the metabolic activities of the microbiota
within a microbial community, which complements other omics approaches and
can establish a direct link between microbial communities’ genetic potential and
functional metabolism (Abraham et al. 2014; Wang et al. 2020a). Numerous studies
have concentrated on the human gut microbiota’s meta-proteome, identifying and
quantifying several peptides, and associating several peptides with diseases (Xiong
et al. 2015). For example, a previous study identified and quantified 91,902 peptides
and 341 proteins as biomarkers for colorectal cancer patients compared to healthy
controls (Long et al. 2020). Additionally, meta-metabolomics aims to characterize
the composition and dynamics of metabolites in biological samples, and has
emerged as a technique for defining host-microbial relationships (Lee et al. 2019).
Microbiome studies focusing on the gut microbiota’s meta-metabolome have
increased over the last decade, demonstrating that several metabolites can be used
as biomarkers for disease clinical diagnosis (Vernocchi et al. 2016; Zhang et al.
2019).

In summary, the development of sequencing and mass spectrometry techniques
resulted in the generation of numerous omics datasets and, in most cases, a single
omics dataset for microbiome research. While researchers were able to gain a
thorough understanding of the gut microbiome using these single omics datasets,
the result was not comprehensive and did not resolve the causality of diseases,
limiting the accuracy of clinical diagnosis and treatment. Thus, it is critical to choose
two or more microbiome approaches in order to obtain multi-omics datasets and
conduct a comprehensive analysis to examine the correlations, causal relationships,
and network relationships between gut microbiota and diseases.

In general, multi-omics approaches to the microbiome are a synthesis of several
different omics approaches used in microbiome research, and its numerous omics
datasets are used to deduce the pattern of a biological process. Additionally, multi-
omics datasets encompass a variety of high-dimensional biological datasets, such as
16S rRNA amplicon sequencing data, metagenomic data, metagenome data, meta-
transcriptome data, meta-proteome data, meta-metabolome data, and culturomics
data (Jiang et al. 2019). Multi-omics data analysis can currently shed light on the
relationship between gut microbiota and disease, provide an in-depth understanding
of disease occurrence and progression, and may even resolve disease causality.

At the moment, many researchers are working on a method to obtain multi-omics
datasets associated with host diseases and gut microbiota, to conduct data mining on
multi-omics datasets from a variety of perspectives in order to reveal correlations
between diseases and gut microbiota, between microorganisms, and to demonstrate
disease causality. For instance, the application of multi-omics approaches to fecal
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and serum samples collected from 110 healthy individuals in two locations in India,
including 16S rRNA amplicon sequencing, whole-genome shotgun metagenomics
sequencing, and metabolomics, revealed a unique composition of the Indian gut
microbiome, particularly for the gut microbial gene catalog, and provided novel
insight into the gut-microbe-metabolic axis (Dhakan et al. 2019). Multi-omics
analysis of 1640 samples from 16S rRNA gene datasets and 26 samples from
metagenomics datasets from patients with chronic obstructive pulmonary disease
(COPD) revealed that 12 microbial genera can be used as COPD biomarkers.
Additionally, researchers inferred the metabolic potential of the airway microbiome,
linked these biomarkers to host targets, and investigated the effects of COPD patient
separation, demonstrating the feasibility of integrating multi-omics datasets to probe
disease biology (Wang et al. 2020b). Totally, in the past decade, multi-omics
datasets analyses have revealed significant associations between gut microbiota
and diseases, including obesity, diabetes, IBD, and so on. Particularly, several
studies have demonstrated the causative roles for the gut microbiome in the occur-
rence and development of diseases, such as dietary fibers alleviate type 2 diabetes
(Zhao et al. 2018) and obesity (Fei and Zhao 2013). Thus, we believe that integrating
multi-omics datasets and conducting correlation, causal, and network analyses is
critical for gaining a better understanding of the gut microbiota, resolving disease
causation, and providing clues for clinical diagnosis and treatment. In the future,
integration multi-omics data analysis will become increasingly popular in
microbiome-disease research.

Besides, the growing number of articles focused on the methodology for inte-
grating the multi-omics datasets and provided the methods or tools to conduct the
integration analysis, which propose promising solutions to multi-omics datasets and
speed up its application in microbiome research. Specifically, firstly, the tools
developed for analyzing the single-omics data, such as for 16S rRNA amplicon
sequencing data, QIIME (Caporaso et al. 2010), QIIME2 (Bolyen et al. 2019),
Mothur (Schloss et al. 2009), Vsearch (Rognes et al. 2016), DADA2 (Callahan
et al. 2016), Deblur (Amir et al. 2017), Parallel-META3 (Jing et al. 2017), etc., were
developed for profiling the taxonomical composition of the microbial community.
Similarly, PICRUSt (Langille et al. 2013), PICRUSt2 (Douglas et al. 2020),
Tax4Fun (Aßhauer et al. 2015) were developed for predicting the functional com-
position, while Bugbase was developed for predicting the phenotypic composition
based on 16S rRNA amplicon sequencing data. As to metagenomic data, Kraken
(Wood and Salzberg 2014), Prokka (Seemann 2014), MOCAT2 (Kultima et al.
2016), and MetaPhlAn2 (Truong et al. 2015) was designed and developed for
profiling the taxonomical composition, while HUMANn2 was used for predicting
the functional composition of a microbial community based on metagenome and
metatranscriptomes (Franzosa et al. 2018). Moreover, the tools for analyzing the
meta-metabolome data were also established and developed, such as MetaboAnalyst
(Xia et al. 2015), MetaBox (Wanichthanarak et al. 2017), MetaCoreTM, InCroMAP,
and 3Omics (Cambiaghi et al. 2017). Besides, several powerful bioinformatics tools,
such as Meta-Proteome-Analyzer (Muth et al. 2012), MPA portable (Muth et al.
2018), MetaProteomeAnalyzer (Muth et al. 2015), have been developed for
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analyzing the meta-proteome data and providing the interpretation of proteins of
microbial communities. Secondly, several computational frameworks were
established and developed to integrate high-throughput omics datasets and obtain
an in-depth understanding of the gut microbiome with different perspectives. For
example, a previous study has integrated human gut microbiome data (WGS data),
untargeted serum metabolome data, and measures of host physiology provided a
framework, which was established in R platform and can be applied to other
investigations and demonstrated the potential mechanistic links (Pedersen et al.
2018). As to the results of integrated multi-omics datasets, several articles conducted
the network analysis and given the interpretations with network perspective (Ramos
et al. 2019; Misra et al. 2019; Tuncbag et al. 2016; Yan et al. 2018), which provide
great potential to solve the interactions among themselves and with their
environment.

In comparison to traditional single-omics data analysis, multi-omics datasets can
provide additional information about microbial communities, allow for in-depth
exploration of the interactions between microbiota and other features, and demon-
strate the relationship between microbiota and diseases, particularly when investi-
gating disease causation. We believe that as high-throughput technologies are
developed and methods and tools for the joint analysis of multi-omics datasets are
established, multi-omics datasets will be obtained from an increasing number of
microbiome researches. Correlation analysis, causal analysis, and network analysis
can all be used to gain a better understanding of the gut microbiota and to aid in the
clinical diagnosis and treatment of diseases using these multi-omics datasets.

6.5 The Application of Multi-Omics Approaches
to Inflammation Diseases and its Clinical Treatment
with Microbiome Approaches

Owing to the advantages of multi-omics approaches, it has been widely applied to
gut microbiome research in inflammation diseases. For example, based on multi-
omics datasets of inflammatory bowel diseases (IBD), including metagenomes,
metatranscriptomes, proteomes, metabolomes, and viromes of IBD patients and
healthy controls, researchers demonstrated the abundance of facultative anaerobes
increased, as well as an increase in molecular disruptions in microbial transcription,
such as Clostridia, and several metabolites, such as acylcarnitines, bile acids, and
short-chain fatty acids, which provide a comprehensive description of the host and
gut microbial activities in IBD (Lloyd-Price et al. 2019). In the following study, the
authors proposed cutting-edge methodologies with a unique computational toolbox
for multi-omics datasets analysis, which benefits the biomarker discovery (Metwaly
and Haller 2019). As to RA, previous studies have been revealed that the gut
microbiota plays an important role in the occurrence and development of RA
(Kishikawa et al. 2020; Xu et al. 2020; Van de Wiele et al. 2016), and the alterations
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of the gut microbiome and oral microbiome between RA patients and healthy
controls (Zhang et al. 2015b). Specifically, for the purpose of examining the
relationship between gut microbiota and rheumatoid arthritis, a previous review
summarized the primary and most recent applications of multi-omics approaches
in human rheumatoid arthritis research, which uncovers new avenues for preventing
and managing rheumatoid arthritis (Cassotta et al. 2021). Concerning SLE, a
previous article collected fecal samples from 117 untreated SLE patients and
52 post-treated SLE patients and compared them to 115 matched healthy controls
to obtain metagenome datasets for these samples. The results of this study indicated
that the composition of the gut microbiota of individuals with SLE differs signifi-
cantly from that of healthy controls, and that several species, including Clostridium
ATCC BAA-442, Clostridium leptum, Atopobium rimae, Shuttleworthia satelles,
Actinomyces massiliensis, and Bacteroides fragilis, were enriched in SLE patients
and decreased after treatment, suggesting that they could be used as biomarkers.
Additionally, the authors assessed and validated the findings using the mouse fecal
metagenome (Chen et al. 2021). In total, various inflammation diseases have been
associated with changes in the composition and function of the gut microbiota, and
emerging evidence suggests that the distribution of the gut microbiota plays a role in
the occurrence and development of inflammation diseases.

Thus, based on their understanding of the gut microbiota’s role in inflammation
diseases, researchers have proposed several microbiome approaches, including fecal
microbiota transplantation (FMT), probiotic bacteria, and dietary habit modification,
for shaping the taxonomical and functional compositions of the human gut
microbiome and treating inflammation diseases. For example, numerous case reports
and cohort studies on inflammatory bowel disease have described the clinical use of
FMT in inflammatory bowel disease patients (Lopez and Grinspan 2016) and this
method has gained interest as a novel treatment approach for IBD (Colman and
Rubin 2014). Additionally, an increasing number of articles examined the use of
probiotic bacteria in the treatment of inflammatory diseases and evaluated the
method’s therapeutic efficacy. For example, previous research demonstrated that
restoring the gut microbiome of a single bacterium, Lactobacillus casei (ATCC334),
significantly suppresses the induction of adjuvant-induced arthritis and protects the
bones in rheumatoid arthritis mice, indicating that probiotic bacteria may be a
promising treatment option for rheumatoid arthritis (Pan et al. 2019). Similarly, a
randomized double-blind clinical trial of RA revealed that the supplementation of
L. casei (LC01) can affect the disease activity and inflammatory cytokines in RA
(Alipour et al. 2014). However, as to the efficacy of probiotic bacteria, many
researchers hold the opposite opinion (Aqaeinezhad Rudbane et al. 2018;
Mohammed et al. 2017; Pan et al. 2017) and whether the effect of probiotic bacteria
in inflammation diseases, especially for RA is still under verification. So, more
microbiome researches should be paid attention to verify it in the future.

Together, multi-omics data analysis for correlation analysis, causal analysis, and
network analysis of inflammation diseases is critical to elucidate the underlying
mechanism and is urgently needed to identify novel and precise diagnostic bio-
markers and clinical treatment strategies utilizing microbiome approaches.
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6.6 Conclusion

Numerous studies have established that the human gut microbiota is critical for
human health maintenance and that dysbiosis of the human gut microbiome con-
tributes to the occurrence and development of human diseases. Due to the impor-
tance of the human gut microbiome, many microbiome scientists refer to it as the
body’s second genome. Although numerous microbiome studies have been
conducted, the detailed mechanisms of disease and the causal relationship between
disease and gut microbiota remain elusive. Due to the advancement of sequencing
and mass spectrometry techniques, multi-omics approaches have been applied to
microbiome research, and integrated analysis of multi-omics datasets has been
performed to gain a better understanding of the gut microbiota and disease. We
chose inflammation disease as a model disease in this review to illustrate the
relationship between inflammation disease and gut microbiota, particularly for
multi-omics approaches and bioinformatics methods for integrating multi-omics
datasets and their applications in inflammation diseases. Our findings summarized
the roles of gut microbiota in the occurrence and development of inflammation
diseases such as inflammatory bowel disease, rheumatoid arthritis, and systemic
lupus erythematosus, discussed the benefits of multi-omics approaches, introduced
bioinformatics methods for dealing with multi-omics datasets, and described clinical
strategies utilizing microbiome approaches for treating inflammation diseases. Our
comprehensive review of multi-omics approaches and their application may shed
light on the clinical relevance of the human gut microbiome and inflammation
diseases, as well as identify clades for developing an inflammation disease thera-
peutic schedule.

References

Abraham PE, et al. Metaproteomics: extracting and mining proteome information to characterize
metabolic activities in microbial communities. Curr Protoc Bioinformatics. 2014;46(1):13.26.
1-13.26. 14

Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence.
Nat Rev Microbiol. 2016;14(10):609–20.

Alamanos Y, Drosos AA. Epidemiology of adult rheumatoid arthritis. Autoimmun Rev. 2005;4(3):
130–6.

Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: a review. JAMA.
2018;320(13):1360–72.

Alipour B, et al. Effects of L actobacillus casei supplementation on disease activity and inflamma-
tory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int J
Rheum Dis. 2014;17(5):519–27.

Amir A, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems.
2017;2:2.

Amy IY, et al. Gut microbiota modulate CD8 T cell responses to influence colitis-associated
tumorigenesis. Cell Rep. 2020;31(1):107471.



114 M. Han et al.

Aqaeinezhad Rudbane SM, et al. The efficacy of probiotic supplementation in rheumatoid arthritis:
a meta-analysis of randomized, controlled trials. Inflammopharmacology. 2018;26(1):67–76.

Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.
Aßhauer KP, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data.

Bioinformatics. 2015;31(17):2882–4.
Bäckhed F, et al. Dynamics and stabilization of the human gut microbiome during the first year of

life. Cell Host Microbe. 2015;17(5):690–703.
Benítez-Páez A, et al. A multi-omics approach to unraveling the microbiome-mediated effects of

arabinoxylan oligosaccharides in overweight humans. mSystems. 2019;4(4):e00209–19.
Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using

QIIME 2. Nat Biotechnol. 2019;37(8):852–7.
Borchers AT, et al. The geoepidemiology of systemic lupus erythematosus. Autoimmun Rev.

2010;9(5):A277–87.
Bullock J, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2018;27

(6):501–7.
Callahan BJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat

Methods. 2016;13(7):581–3.
Cambiaghi A, Ferrario M, Masseroli M. Analysis of metabolomic data: tools, current strategies and

future challenges for omics data integration. Brief Bioinform. 2017;18(3):498–510.
Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25.
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat

Methods. 2010;7(5):335–6.
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per

sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516–22.
Cassotta M, et al. Nutrition and rheumatoid arthritis in the ‘omics’ era. Nutrients. 2021;13(3):763.
Chen B, et al. The gut microbiota of non-treated patients with SLE defines an autoimmunogenic and

proinflammatory profile. Hoboken NJ: Arthritis Rheumatol; 2020.
Chen BD, et al. An autoimmunogenic and proinflammatory profile defined by the gut microbiota of

patients with untreated systemic lupus erythematosus. Arthritis Rheumatol. 2021;73(2):232–43.
Chen S, et al. Linkages of firmicutes and Bacteroidetes populations to methanogenic process

performance. J Ind Microbiol Biotechnol. 2016;43(6):771–81.
Clemente JC, et al. The impact of the gut microbiota on human health: an integrative view. Cell.

2012;148(6):1258–70.
Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease:

a systematic review and meta-analysis. J Crohn's Colitis. 2014;8(12):1569–81.
Dekaboruah E, et al. Human microbiome: an academic update on human body site specific

surveillance and its possible role. Arch Microbiol. 2020;202(8):2147–67.
Dhakan DB, et al. The unique composition of Indian gut microbiome, gene catalogue, and

associated fecal metabolome deciphered using multi-omics approaches. GigaScience. 2019;8:3.
Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38

(6):685–8.
Duan R, et al. Alterations of gut microbiota in patients with irritable bowel syndrome based on 16S

rRNA-targeted sequencing: a systematic review. Clin Transl Gastroenterol. 2019;10:2.
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol.

2020:1–17.
Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in

germfree mice. ISME J. 2013;7(4):880–4.
Fernandes J, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult

humans. Nutr Diabetes. 2014;4(6):e121.
Franzosa EA, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat

Methods. 2018;15(11):962–8.
Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome

composition. Nat Med. 2018;24(10):1495–6.



6 Multi-Omics Data Analysis for Inflammation Disease Research: Correlation. . . 115

Gevers D, et al. The human microbiome project: a community resource for the healthy human
microbiome. PLoS Biol. 2012;10(8):e1001377.

Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the
microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and
neurodegenerative diseases. Pharmacol Ther. 2016;158:52–62.

Glasner ME. Finding enzymes in the gut metagenome. Science. 2017;355(6325):577–8.
Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of

diet and lifestyle. Microbiome. 2016;4(1):1–12.
Guerrini MM, Vogelzang A, Fagarasan S. A hen in the wolf Den: a pathobiont tale. Immunity.

2018;48(4):628–31.
Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools,

techniques, and challenges. Genome Res. 2009;19(7):1141–52.
Han M, et al. The human gut virome in hypertension. Front Microbiol. 2018;9:3150.
Han M, et al. Stratification of athletes’ gut microbiota: the multifaceted hubs associated with dietary

factors, physical characteristics and performance. Gut Microbes. 2020a;12(1):1–18.
Han M, et al. Comparative genomics uncovers the genetic diversity and characters of Veillonella

atypica and provides insights into its potential applications. Front Microbiol. 2020b;11:1219.
Hansen RL, et al. Nanoparticle microarray for high-throughput microbiome metabolomics using

matrix-assisted laser desorption ionization mass spectrometry. Anal Bioanal Chem. 2019;411
(1):147–56.

Harley IT, Karp CL. Obesity and the gut microbiome: striving for causality. Mol Metab. 2012;1
(1–2):21–31.

Heintz-Buschart A, et al. Integrated multi-omics of the human gut microbiome in a case study of
familial type 1 diabetes. Nat Microbiol. 2016;2(1):16180.

Horta-Baas G, et al. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and
the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017

Huang L, et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and
annotation. Nucleic Acids Res. 2018;46(D1):D516–21.

Integrative H. The Integrative human microbiome project: dynamic analysis of microbiome-host
omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):
276–89.

Integrative H, et al. The integrative human microbiome project. Nature. 2019;569(7758):641–8.
Isaacs-Ten A, et al. Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver

disease by promoting intestinal permeability in mice. Hepatology (Baltimore, Md). 2020;72(6):
2090.

Jia B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic
resistance database. Nucleic Acids Res. 2016:gkw1004.

Jiang D, et al. Microbiome multi-omics network analysis: statistical considerations, limitations, and
opportunities. Front Genet. 2019;10:995.

Jing G, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for
efficient comparison of microbial communities. Sci Rep. 2017;7(1):1–11.

Kho ZY, Lal SK. The human gut microbiome—a potential controller of wellness and disease. Front
Microbiol. 2018;9:1835.

Kishikawa T, et al. Metagenome-wide association study of gut microbiome revealed novel
aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis. 2020;79(1):
103–11.

Kulecka M, et al. The composition and richness of the gut microbiota differentiate the top polish
endurance athletes from sedentary controls. Gut Microbes. 2020;11(5):1374–84.

Kultima JR, et al. MOCAT2: a metagenomic assembly, annotation and profiling framework.
Bioinformatics. 2016;32(16):2520–3.

Kurilshikov A, et al. Large-scale association analyses identify host factors influencing human gut
microbiome composition. Nat Genet. 2021;53(2):156–65.



116 M. Han et al.

Langille MG, et al. Predictive functional profiling of microbial communities using 16S rRNA
marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.

Lee H-J, et al. Meta-analysis of targeted metabolomics data from heterogeneous biological samples
provides insights into metabolite dynamics. bioRxiv. 2019:509372.

Li J, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome.
2017;5(1):14.

Liu H, et al. Resilience of human gut microbial communities for the long stay with multiple dietary
shifts. Gut. 2019;68(12):2254–5.

Lloyd-Price J, et al. Strains, functions and dynamics in the expanded human microbiome project.
Nature. 2017;550(7674):61–6.

Lloyd-Price J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.
Nature. 2019;569(7758):655–62.

Long S, et al. Metaproteomics characterizes human gut microbiome function in colorectal cancer.
npj Biofilms Microbiomes. 2020;6(1):14.

Lopez J, Grinspan A. Fecal microbiota transplantation for inflammatory bowel disease.
Gastroenterol Hepatol. 2016;12(6):374–9.

Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med. 2017;6(6):60.
Magne F, et al. The firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese

patients? Nutrients. 2020;12(5):1474.
Majithia V, Geraci SA. Rheumatoid arthritis: diagnosis and management. Am J Med. 2007;120

(11):936–9.
Manasson J, Blank RB, Scher JU. The microbiome in rheumatology: where are we and where

should we go? Ann Rheum Dis. 2020;79(6):727–33.
Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders. Blood.

2015;126(3):311–8.
Marchesi JR, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):

330–9.
Marietta EV, et al. Suppression of inflammatory arthritis by human gut-derived Prevotella histicola

in humanized mice. Arthritis Rheumatol. 2016;68(12):2878–88.
Metwaly A, Haller D. Multi-omics in IBD biomarker discovery: the missing links. Nat Rev

Gastroenterol Hepatol. 2019;16(10):587–8.
Misra BB, et al. Integrated omics: tools, advances and future approaches. J Mol Endocrinol.

2019;62(1):R21–45.
Mithieux G. Does Akkermansia muciniphila play a role in type 1 diabetes? Gut. 2018;67(8):

1373–4.
Mohammed AT, et al. The therapeutic effect of probiotics on rheumatoid arthritis: a systematic

review and meta-analysis of randomized control trials. Clin Rheumatol. 2017;36(12):2697–707.
Mushtaq A. New clinical recommendations for Clostridium difficile. Lancet Infect Dis. 2018;18(4):

384.
Muth T, et al. Meta-Proteome-Analyzer: A software tool specifically developed for the functional

and taxonomic characterization of metaproteome data. in GCB2012: German conference on
bioinformatics. 2012.

Muth T, et al. The MetaProteomeAnalyzer: a powerful open-source software suite for
metaproteomics data analysis and interpretation. J Proteome Res. 2015;14(3):1557–65.

Muth T, et al. MPA portable: a stand-alone software package for analyzing metaproteome samples
on the go. Anal Chem. 2018;90(1):685–9.

Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus
erythematosus. Curr Opin Rheumatol. 2017;29(4):374–7.

Pan H, et al. Whether probiotic supplementation benefits rheumatoid arthritis patients: a systematic
review and meta-analysis. Engineering. 2017;3(1):115–21.

Pan H, et al. A single bacterium restores the microbiome dysbiosis to protect bones from destruction
in a rat model of rheumatoid arthritis. Microbiome. 2019;7(1):107.



6 Multi-Omics Data Analysis for Inflammation Disease Research: Correlation. . . 117

Pedersen HK, et al. A computational framework to integrate high-throughput ‘-omics’ datasets for
the identification of potential mechanistic links. Nat Protoc. 2018;13(12):2781–800.

Pianta A, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients
with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(5):964–75.

Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10(4):
287–91.

Prodan A, et al. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing.
PLoS One. 2020;15(1):e0227434.

Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature.
2012;490(7418):55–60.

Ramos PIP, et al. Leveraging user-friendly network approaches to extract knowledge from high-
throughput omics datasets. Front Genet. 2019;10:1120.

Rognes T, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Romo-Vaquero M, et al. Deciphering the human gut microbiome of urolithin metabotypes:

association with enterotypes and potential cardiometabolic health implications. Mol Nutr
Food Res. 2019;63(4):1800958.

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health
and disease. Nat Rev Immunol. 2009;9(5):313–23.

Sandhu BK, McBride SM. Clostridioides difficile. Trends Microbiol. 2018;26(12):1049–50.
Santos LL, Morand EF. Macrophage migration inhibitory factor: a key cytokine in RA, SLE and

atherosclerosis. Clin Chimica Acta. 2009;399(1–2):1–7.
Sarangi AN, Goel A, Aggarwal R. Methods for studying gut microbiota: a primer for physicians. J

Clin Exp Hepatol. 2019;9(1):62–73.
Scheiman J, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe

that functions via lactate metabolism. Nat Med. 2019;25(7):1104–9.
Scher JU, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to

arthritis. elife. 2013;2:e01202.
Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported

software for describing and comparing microbial communities. Appl Environ Microbiol.
2009;75(23):7537–41.

Schwiertz A, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18
(1):190–5.

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Sharon G, et al. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–32.
Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota.

Trends Biotechnol. 2015;33(9):496–503.
Silverman GJ, Azzouz DF, Alekseyenko AV. Systemic lupus erythematosus and dysbiosis in the

microbiome: cause or effect or both? Curr Opin Immunol. 2019;61:80–5.
Slowicka K, et al. Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nat Cancer.

2020;1(6):620–34.
Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut

microbiome. Nat Rev Microbiol. 2011;9(4):279–90.
Sutoyo DA, Atmaka DR, Sidabutar LMG. Dietary factors affecting firmicutes and Bacteroidetes

ratio in solving obesity problem: a literature review. Media Gizi Indonesia. 2020;15(2):94–109.
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–36.
Tong Y, et al. Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. Front

Cell Infect Microbiol. 2020;9:475.
Torres J, et al. Infants born to mothers with IBD present with altered gut microbiome that transfers

abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42–51.
Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods.

2015;12(10):902–3.
Tu Q, et al. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of

nitrogen cycling genes. Bioinformatics. 2019;35(6):1040–8.



118 M. Han et al.

Tuncbag N, et al. Network-based interpretation of diverse high-throughput datasets through the
omics integrator software package. PLoS Comput Biol. 2016;12(4):e1004879.

Turnbaugh PJ, et al. The human microbiome project. Nature. 2007;449(7164):804–10.
Valdes AM, et al. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
Van de Wiele T, et al. How the microbiota shapes rheumatic diseases. Nat Rev Rheumatol. 2016;12

(7):398.
Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach

to unravel compounds affecting human health. Front Microbiol. 2016;7:1144.
Walter J, et al. Establishing or exaggerating causality for the gut microbiome: lessons from human

microbiota-associated rodents. Cell. 2020;180(2):221–32.
Wang Y, et al. Metaproteomics: a strategy to study the taxonomy and functionality of the gut

microbiota. J Proteome. 2020a;219:103737.
Wang Z, et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in

chronic obstructive pulmonary disease. ISME J. 2020b;14(11):2748–65.
Wanichthanarak K, et al. Metabox: a toolbox for metabolomic data analysis, interpretation and

integrative exploration. PLoS One. 2017;12(1):e0171046.
Westreich ST, et al. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals

altered mucin degradation and fucose utilization. Microbiome. 2019;7(1):41.
White RA, et al. The past, present and future of microbiome analyses. Nat Protoc. 2016;11(11):

2049–53.
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact align-

ments. Genome Biol. 2014;15(3):1–12.
Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334

(6052):105–8.
Xia J, et al. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res.

2015;43(W1):W251–7.
Xiong W, et al. Microbial metaproteomics for characterizing the range of metabolic functions and

activities of human gut microbiota. Proteomics. 2015;15(20):3424–38.
Xu H, et al. Interactions between gut microbiota and immunomodulatory cells in rheumatoid

arthritis. Mediat Inflamm. 2020;2020
Yan J, et al. Network approaches to systems biology analysis of complex disease: integrative

methods for multi-omics data. Brief Bioinform. 2018;19(6):1370–81.
Yong P, et al. Management of hypogammaglobulinaemia occurring in patients with systemic lupus

erythematosus. Rheumatology. 2008;47(9):1400–5.
Zhang J, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across

lifestyles, geography and ethnicities. ISME J. 2015a;9(9):1979–90.
Zhang X, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly

normalized after treatment. Nat Med. 2015b;21(8):895–905.
Zhang X, et al. Advancing functional and translational microbiome research using meta-omics

approaches. Microbiome. 2019;7(1):154.
Zhao L, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science.

2018;359(6380):1151–6.
Zhou J, et al. High-throughput metagenomic technologies for complex microbial community

analysis: open and closed formats. MBio. 2015;6:1.



Chapter 7
Microbiome Data Analysis
and Interpretation: Correlation Inference
and Dynamic Pattern Discovery

Kang Ning and Yuxue Li

Microbial communities are everywhere within our bodies and in the environments
(Byrd et al. 2018), which play a key role in human health and all critical nutrient
cycles on earth. The microbiome refers to the entire micro-environment, including
microorganisms, genomes, and the surrounding environment. With the development
of high-throughput sequencing (HTS) technology and data analysis methods, the
role of the microbiome in humans, animals, plants, and the environment has become
increasingly clear in recent years.

7.1 Microbiome and its Importance

Microbes are everywhere. The origin of life on earth began with microorganisms,
which greatly promoted the evolution of the earth. Environmental microorganisms
tend to vary from place to place, and there is an enrichment phenomenon in a specific
environment, and the composition of human microorganisms also has similar char-
acteristics. So far, scientists have mainly studied microorganisms that cause diseases.

In early research, scientists discovered that the human body needs to coexist
peacefully with trillions of microbes, and called it the “microbiome”. Later, micro-
bial community refers to the collection of all microbes and their genetic information
in a certain environment or ecosystem. Figure 7.1 shows the timeline of the
microbiome research.
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In addition, there are many professional terms in microbiome research. Table
explains some professional terms.
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Fig. 7.1 A brief timeline of microbiome research. Microbiome studies could be traced back to
hundreds of years, but only by use of high throughput sequencing these studies have discovered
millions of genes and species that have never been identified before

Microbiome is one of the emerging omics studies with profound biomedical
applications. It is now already known that many biomedical applications are related
to the microbiome (Fig. 7.2).

7.2 Experimental and Analytical Approaches
for Microbiome Researches

7.2.1 Metagenomics

Metagenome was proposed by Handelsman et al. (Di Bella et al. 2013) in 1998 and
defined as “the genomes of the total microbiota found in nature”, which refers to the
sum of the genetic material of all microbiota found in the environment (Nowrotek
et al. 2019). It contains the genes of cultivable and non-cultivable microbiota, and
currently mainly refers to the sum of the genomes of bacteria and fungi in environ-
mental samples.

7.2.1.1 The Differences Between 16S and Metagenome (Ruairi
Robertson 2020)

The Sequencing Principles

16S rDNA is the most common “molecular clock” in bacterial taxonomy and is
highly conservative. The sequence contains 9 hypervariable regions and
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Table 7.1 Terms used in microbiome studies

Basic terms Introduction

Microbiota A collection of microorganisms is present in a special environment. First,
defined by Lederberg and McCray in 2001, the emphasis is on the
importance of human health and disease-related microbes. The microbial
composition is studied mainly through molecular methods, based on 16S,
18S rRNA or other marker genes or genome regions for analysis. Bio-
logical samples are amplified, sequenced, and finally divided into different
classes according to the sequences.

Metataxonomics The entire microbial population is described through a high-throughput
sequencing process and a phylogenetic tree, called a macrotaxonomic tree,
which can be used to represent the relationships between all obtained
sequences. Although viruses are part of the microbial community, there
are no universal viral marker genes that can be used to classify them.

Metagenome Metagenome refers to the genomes and genes associated with members of
a microbial community. The sample DNA is collected by shotgun
sequencing and compared with the reference database for annotation.

Microbiome The microbiome refers to the entire genome (genes) of microorganisms
(bacteria, archaea, lower or higher eukaryotes, and viruses) as well as their
surrounding environment.

Metabolomics All metabolites present in a given strain and a single tissue are collectively
called the metabolome. Metabolomics is used to characterize the metab-
olites of a given strain or individual tissue.

Metabonomics This is a variant of the method metabolomics, which describes the
methods used to generate metabolic profiles from complex systems.

Metatranscriptomics This concept refers to the use of high-throughput sequencing to analyze
the corresponding meta-cDNA of RNAs (meta-RNAs) expressed in the
microbial community.

Metaproteomics Refers to a large-scale description of the entire proteome in a specific
environment/clinical sample at a specific time. This approach does not
distinguish between a protein derived from a microbial population or a
host or environmen.

Fig. 7.2 The microbiome-related biomedical applications. The human gut microbiome is tightly
connected with brain, blood, liver, lung, bone and intestine systems
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10 conserved regions. A sequence of a certain hypervariable region (such as V4 or
V3-V4) is amplified by PCR and then sequenced to obtain a sequence of about
200–400 bps. Metagenomic sequencing, like conventional DNA libraries, randomly
breaks microbial genome DNA into small fragments, and then adds adapters at both
ends of the fragments for high-throughput sequencing.

Different Fields of Study

16S sequencing mainly studies the species composition, the evolutionary relation-
ship among species, and the diversity of communities. Metagenomic sequencing can
also be used for further research at the genetic and functional levels.

Different Degrees of Species Identification

Many of the sequences obtained by 16S sequencing are not annotated at the species
level, while metagenomic sequencing can identify microbiota to the species level or
even the strain level.

Application Fields of Metagenomics

(a) Environmental microbial diversity (Wang et al. 2019).
(b) Gene mining (Vakhlu et al. 2008).
(c) Disease association analysis (Kishikawa et al. 2020).
(d) Drug development (Chiu and Miller 2019).

The Process of Metagenomics Research

Informatics and bioinformatics technologies are needed in all aspects of
metagenomics big data analysis. The first is the storage of big data (Papageorgiou
et al. 2018). After classification and sorting, the data needs to be stored in a
standardized database for subsequent analysis. The second is the pre-processing of
big data. The pre-processing of big data is the basis of metagenomics research, and
its speed and accuracy will have a great impact on the progress of the experiment and
the conclusion. Finally, the data after basic analysis needs further information
analysis, comparison, and refinement. The community composition and microbial
diversity, community function and genetic variation, community structure and
species correlation, community and environment interaction will be analysed
(Sangwan et al. 2016). Figure 7.3 briefly summarizes the various processes of
metagenomics analysis.

Metagenomics usually focuses on the analysis of microbial diversity, population
structure, species evolutionary relationships, gene function activity, community
collaboration, and the relationship with the environment (Oulas et al. 2015). The
analysis process, database, and software can refer to the following Fig. 7.4:
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Material 
collection Data analysisSequencing

Information 
analysis

Fig. 7.3 The processes of metagenomics analysis. Select appropriate research materials, conduct
genome sequencing, and perform analysis based on the obtained sequencing data

7.2.2 High-Throughput Sequencing Technology

In 1977, the first generation of DNA sequencing technology (Sanger) came out and
has a history of more than 30 years.

High-throughput sequencing (also known as Next Generation Sequencing, NGS)
is to randomly fragment DNA (or cDNA) and add adapters to prepare sequencing
libraries. Through the extension reaction of tens of thousands of clones in the library,
the corresponding signal is detected, and the sequence information is finally
obtained. The current main sequencing technology platforms include the
Solexa,454, and solid.

7.2.2.1 Application of High-Throughput Sequencing Technology
to Species Identification

High-throughput sequencing represents several emerging technologies that are being
developed for species identification, but the way they record nucleotide variations
are fundamentally different. In addition, these methods have significant differences
in throughput, read length, accuracy, and technical deviation.

7.2.2.2 Application of High-Throughput Sequencing Technology
to Individual Identification

When targeting SNPs in rapidly evolving sites, partial genomes, or full genomes, the
HTS method can be used to distinguish individuals. Early HTS population genomics
methods mainly studied the distribution of SNPs in certain variable regions. With the
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sharp drop in the cost of HTS, it is easy to determine part and the entire genome of a
pathogenic organism from pure cultures, host tissues, and soil environments. Whole-
genome sequencing (WGS) can produce orders of magnitude more information
about polymorphic sites, and a better understanding of their connection and occur-
rence in exons and introns (Tedersoo et al. 2019).

7.2.2.3 Technical Deviations of High-Throughput Sequencing
Technology

All molecular-based analysis methods have specific analysis biases. Labeling bias
may select organisms with high copy numbers. Primer bias will discriminate against
targets whose primer-template does not match (Tedersoo et al. 2019). PCR bias is
manifested as uneven amplification of target species due to differences in AT:CG
ratio, DNA secondary structure, and marker length.

Label confusion and chimeric molecule formation are common technical products
in HTS. Chimeric molecules are usually formed during PCR, and when the ampli-
fication is incomplete (due to low processability, short amplification time, or nucle-
otide depletion), these short fragments are initiated as templates in subsequent
cycles. As the PCR cycle and the community complexity increase, the formation
of chimeric molecules between two closely related organisms has become more
common. In essence, tag-switch artifacts are also chimeric molecules that are formed
between multi-component samples during the post-PCR library preparation step
(Tedersoo et al. 2019).

7.2.3 Optimizing Microbiome Research Methods to Avoid
Misunderstandings

Using high-throughput sequencing methods to study the microbiome, we can obtain
the composition of the microbiome from different sources and compare them to
reveal the relevant patterns of the microbiome. However, there are often many
deviations during the experiment. Therefore, we must carefully design the experi-
ment to ensure that it can answer the questions raised, and the statistical analysis
methods involved in the research must be designed from the beginning, to realize a
power analysis.

7.2.3.1 Influencing Factors

Antibiotic, diet, age, gender, longitudinal instability (time gradient), cage effect in
animal experiments.
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7.2.3.2 Precautions during Sample Collection and Processing

Sample Storage Conditions

The most important thing in the preservation of microbiome samples is to reduce the
variation of the original microflora from sample collection to treatment and to
maintain the same preservation conditions for all samples (Kim et al. 2017).

Set Negative Control

Negative control samples are collected to assess the background of contamination.
We usually set three types of negative control samples in each 16S rRNA sequencing
reaction. “blank swab”, a sterile cotton swab was opened from the package and
subjected to a complete sequencing protocol. “blank extraction”, DNA extraction
and all subsequent steps are performed without the addition of additional material.
“blank library”, the extraction scheme is not implemented. DNA-free water is used
in the subsequent steps of the extraction of the protocol, starting with library
construction, to characterize contamination in the downstream steps.

Set Positive Control

Positive control samples can verify that the sample preparation and a sequencing
process is proceeding smoothly. When samples are purified on a porous plate, the
samples are aligned at specific locations on the plate, which allows any sample
mix-ups to be tracked and detected in the sequencing results. Ideally, positive and
negative control samples would be placed asymmetrically on the extraction plate to
determine the orientation of the plate.

7.3 Microbiome Big Data and Challenges

Microbiomics data integration and data analysis have uniqueness. A microbial
community is usually composed of more than one species, thus making microbiome
data more complicated to understand. In recent years, the analysis of microbiome
data has become a research hotspot, and 16S sequencing is an important break-
through in the field of microbial ecology.
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7.3.1 Main Methods of Microbiome Analysis

In the past 10 years, with the development and application of high-throughput
sequencing technology, the relevant analytical methods and tools in the field of
microbiome research have also made rapid progress. A large number of excellent
software, processes, and visualization tools have been released, further promoting
the development of this field (Liu et al. 2019).

7.3.1.1 Amplicon Analysis Software

Amplicon analysis technology is widely used in microbiology and can quickly learn
the microbial diversity in the research object. Mothur, QIIME, and USEARCH are
three important amplicon analysis software, published and cited 10,000 times in the
past 10 years. Figure 7.5 integrates these widely used works and methods in the field
of microbiome research in recent years.

Mothur It integrates the previously published OTU definition software DOTUR,
OTU difference comparison tool SONS, and other available tools, and realized the
first set of relatively complete analysis procedures, making it possible for researchers
to carry out amplicon analysis (Schloss et al. 2020).

QIIME Compared with mothur, it has more advantages, mainly including (1) inte-
grating more than 200 pieces of related software and packages to achieve more
choices for each step; (2) providing more than 150 scripts to achieve various
personalized analyses; (3) the process is highly open and easy to integrate new
software and methods; (4) enhance statistics and visualization, realize diversity,
species composition, difference comparison, network, and many other methods
and publication-level charting. Since QIIME allows researchers in the same field
to carry out personalized analysis and visualization of amplicon data more

Fig. 7.5 Important software and algorithms used in microbiome research. These software and
algorithms are organized according to their invention time along the timeline
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autonomously, it has gradually become the most popular software in this field
(Caporaso et al. 2010; Kuczynski et al. 2012).

USEARCH-Based Amplicon Analysis Process Based on previous algorithms and
software, Robert gradually developed USEARCH into a complete amplicon analysis
process including nearly 200 commands. It is also cross-platform, compact, free of
dependencies, and easy to install.

7.3.1.2 Metagenomics Analysis Software

Compared with amplicon sequencing, metagenomics sequencing can not only obtain
unbiased species composition, but also obtain the functional composition of the
research object, and even splice the draft genome of some microorganisms. In areas
with many studies such as the human gut microbiome, the quantitative analysis of
metagenomics species and functional composition can be quickly realized through
comparison based on reference databases, such as MetaPhlAn2 and Kraken2 for
sequence species classification, and HUMAnN2 for functional composition quanti-
fication. For areas lacking high-quality metagenomics reference databases, it is
necessary to splice metagenomics data from the beginning (de novo) and perform
gene prediction. Commonly used metagenomics splicing software includes MEGA-
HIT and metaSPAdes, and gene annotation software such as Prokka and
GeneMarkS-2. For the combined analysis of multi-sample or multi-batch
metagenomics data, CD-HIT is usually used to construct a non-redundant gene
set. The obtained gene set is compared to a variety of protein function annotation
databases, such as CAZy, CARD, and VFDB.

More, it is also possible to assemble a single bacterial genome through the
binning method. At present, the commonly used binning tools include MetaBAT
2, MaxBin 2, and CONCOCT, but the results are quite different. Two binning
purification tools metaWRAP and DAS_Tool were published last year, which solved
the problem of difficult selection of binning tools and large differences in results.
They usually integrate the results of 3 ~ 5 binning tools, further screening, and
comprehensive utilization, to obtain higher quality a single-bacterial genome, at the
same time provides a series of common analysis functions such as quantification and
annotation of bins.

7.3.1.3 Statistics and Visualization Tools

Taxonomic tables and functional tables obtained by amplicon and metagenomics
analysis are collectively referred to as feature tables, which are a common format in
the analysis results of second-generation sequencing data. In downstream analysis,
data can be converted and presented by selecting a variety of R packages, graphical
interfaces, command line, or web version tools. The Bioconductor website provides
thousands of R packages for biological data analysis. STAMP can realize principal
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component analysis and multiple statistical methods to compare two or more groups.
LEfSe can implement a command-line tool based on linear discriminant analysis to
find feature vectors.

7.3.2 The Basic Process of Microbiome Analysis

On May 23, 2018, Nature Microbiology Review (2017 IF: 31.851) published a
review of research methods in the field of the microbiome, which not only system-
atically summarized the past but also provided a clear picture of the research
methods in the field in the next 3–5 years. This review aims to provide direct
guidance for the design and execution of microbiome experiments and the analysis
of the resulting data, with particularly emphasis on the human, model, and environ-
mental microbiome. Next, we will guide readers to a more professional commentary
on the specific topics that exist (Knight et al. 2018).

7.3.2.1 Experimental Design

Designing experiments that produce meaningful data is the first step in the analysis.
The general methods applicable to microbiome analysis are independent of the
source of the sample. However, the specific details of the analysis may depend on
the source of the sample. When evaluating different sample types, other main
considerations are experimental design and sample collection. Careful experimental
design is essential to obtain accurate and meaningful results from microbiome
research.

Different methods of investigating microbial communities, including marker
gene, metagenome, and metatranscriptome sequencing, may produce different
results. We outline the best workflow for each method in Fig. 7.6.

After careful design and sample collection, microbiome data generation consisted
primarily of 16S, metagenomic, or macrotranscriptome sequencing. The advantages
and disadvantages of the three commonly used microbial community research
methods are compared and analyzed in Table 7.2:

Marker gene sequencing (amplicons): The primers used in marker gene sequenc-
ing are usually designed for a specific field to determine the phylogenetic
relationship of microorganism in the sample (Chen et al. 2011).

Metagenomic analysis:Metagenomic analysis is a method of sequencing all micro-
bial genomes in a sample (Chen et al. 2011).

Macrotranscriptome analysis: Metatranscriptome analysis is to analyze the tran-
scription process of the microbiome by using RNA sequencing to provide
information about gene expression and microbiome functional activity.
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Fig. 7.6 The practical workflow for analyzing 16S, metagenomics, and metatranscription sequenc-
ing data. The analysis mainly divided into high-level community profiling and functional profiling
and real-time functional profiling. And the analysis of different sequencing data in three modules
have corresponding methods and tools

7.3.2.2 Higher Level Analysis

Processing the microbiome data generates a matrix that correlates feature richness
(taxa or genes) with samples. The overall pattern of microbiome variation is usually
assessed by alpha and beta diversity.

The software used to perform Alpha and Beta diversity calculations include
QIIME, Mothur, and the R software package vegan. The non-parametric permuta-
tion tests PERMANOVA and ANOSIM are used to assess the significant β diversity
clustering between groups, but PERMANOVA may perform better on data sets with
changes in dispersion within groups. To visualize beta diversity data, sorting tech-
niques such as principal coordinate analysis (PCoA) or principal component analysis
(PCA) are usually used.

7.3.2.3 Integrating Other Omics Data

For a given study, the integration of other data types (including marker gene
sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics,
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Table 7.2 Three approaches for microbial community research (Chen et al. 2011)

Method Advantage Disadvantage

Marker gene
analysis

• Fast, simple and inexpensive
sample preparation and analysis
• Closely related to genome content
• Suitable for samples with low
biomass and high host contamina-
tion
• Compare with existing large pub-
lic data sets

• No discrimination in death or
alive
• Affected by amplification bias
• Selection of primers and variable
regions will amplify the deviation
• Need prior knowledge of the
microbial community
• Resolution is usually only to
genus
• Need for proper negative control
• Limited functional information

Metagenomic
analysis

• The relative abundance of micro-
bial functional genes can be directly
inferred; for known organisms,
microbial classification and phylo-
genetic identity can be achieved at
the species and strain level
• It is not assumed to understand the
microbial community
• No biases associated with PCR
• The in-situ growth rate of target
organisms with sequenced genomes
can be estimated
• It is possible to assemble a
population-average microbial
genome
• Can be used for new gene families

• Relatively expensive, laborious
and complicated sample prepara-
tion and analysis
• Contamination of DNA and
organelles from the host may
obscure microbial characteristics
• The default pipeline usually does
not annotate viruses and plasmids
well
• No discrimination in death or
alive
• Due to assembly artifacts, popu-
lation average microbial genomes
are often inaccurate

Macrotranscriptome
analysis

• When paired with a marker gene,
it is possible to estimate which
microorganisms in the community
are actively transcribing
• Inherently distinguish between
active living organisms and dor-
mant or dead microorganisms and
extracellular DNA
• Capture dynamic internal differ-
ences
• Direct assessment of microbial
activity, including response to
interventions and event exposure

• The most expensive, laborious
and complicated sample prepara-
tion and analysis
• Host mRNA contamination and
rRNA must be removed
• Need for careful sample collec-
tion and storage
• Data biased towards organisms
with high transcription rates
• Paired DNA sequencing is
required to decouple the transcrip-
tion rate from changes in bacterial
abundance

and other technologies) is essential for a comprehensive understanding of the
composition and function of microbial communities.

There are many difficulties in integrating multiple omics data. For example, gene
expression and metabolism run on different time scales, and microorganisms usually
produce many metabolites only in response to molecular signals from other species.

Simply finding correlations in various omics data is only the first step.
Establishing causality and correlation across data sets is the next challenge. In
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multi-omics analysis, it is important to correct for multiple comparisons. Despite
these challenges, the future potential of omics data integration is promising. Some
examples have successfully integrated metabolome, metabolome, and metabolome
data, clarified gene regulation in the microbiome and correlated the presence of
microorganisms with metabolites.

7.3.3 The Basic Flow of Microbiome Data Analysis

The development of high-throughput sequencing technology has led to a series of
microbiome research technologies, such as amplicon, metagenome, and
macrotranscriptome, which have rapidly promoted the development of microbiome
(Liu et al. 2019). The next-generation sequencing (NGS) technology makes it
possible to study the microbial composition based on the non-culture method,
which greatly promotes the study of the microbiome. Current studies on microbiome
samples mainly focus on three levels:(1) microbe culture level, (2) DNA level, and
(3) mRNA level.

Microbiome research can be divided into four stages (Fig. 7.7b): (1) Microbiome
sample preparation: based on scientific experimental design, microbiome samples
from people, animals and plants or the environment are collected, and DNA or RNA
is selected to extract according to the purpose of the research. (2) Meta-omics data
production: Meta-omics data were obtained by constructing a sequencing library and
high-throughput sequencing after DNA or RNA extraction of samples. (3) Data
processing (quality control quantitative): obtaining microbiome data, quality control
should be carried out first, including removing the primers and connectors added
artificially in the process of sequencing and database building, as well as the
low-quality sequences generated in the process of sequencing. In addition, the
sequencing results of the host-associated microbiome contain a large number of
host sequences, which need to be removed by comparing the host genome. The

Fig. 7.7 Overview of microbiome research procedure (Liu et al. 2019). (a) The main three levels
on microbiome samples. (b) The four stages of microbiome research. (c) The main three steps of
microbiome data analysis
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obtained clean data were then compared to the reference database or the reference
gene set assembled from De novo, and the quantitative value was the feature table.
According to the sequence annotation type, the feature table could be divided into
species or functional gene composition tables. (4) Statistical analysis and visualiza-
tion: the feature table should be further combined with the sample metadata for
statistical analysis, and appropriate graphs should be selected for visualization,
which is conducive to the observation and summary of biological laws, and improve
the readability and dissemination of results (Fig. 7.7b).

After obtaining the original microbiome data, how to analyze it to a highly
readable publication-level chart? To facilitate understanding, this article divides
the microbiome data analysis process into three main steps (Fig. 7.7c).

7.4 Representative Microbiome Databases
and Analysis Tools

The development of the next-generation sequencing (NGS) technology makes it
possible to study the microbial composition based on non-culture methods and
promotes the study of the microbiome (Liu et al. 2019).

The accumulation and integration of microbiome data, the development of
microbiome has greatly promoted the study of microbial communities. In the past
decade, a large number of microbiology-related literature has been published. In
terms of microbiome data analysis and mining, with the accumulation of
microbiome data, a large number of microbiome data analysis methods, platforms
and database resources have emerged. Table 7.3 is the current popular common
algorithm and analysis platform.

High-quality reference databases are the foundation for efficient analysis of
microbiome data, and progress in this field depends on the application of large-
scale culturomics and the publication of more high-quality reference genomes. At
the same time, it is also necessary to classify the published data, improve its usability
and further mining.

Metagenomics is a method of studying the microbiome, which involves sequenc-
ing the genetic material of all microbes in a given environment, such as soil, water,
or the human gut. One of the most important databases for microbiome researches is
EBI MGnify. EBI Metagenomics is one of EMBL-EBI’s fastest-growing data
resources, has changed its name to MGnify, provides a freely available automated
process for assembly, analysis, and archiving of microbiome data.

With the development of the microbiome, a large numbers of microbiome
analysis tools have emerged, greatly improving the efficiency of analysis.
Table 7.4 illustrates the widely used analysis tools.

In 2017, in a review titled “A review of methods and databases for metagenomic
classification and assembly” published in Briefings in Bioinformatics, there are also
many ideas and software summaries that can be referred to (Breitwieser et al. 2019).

https://www.ebi.ac.uk/metagenomics/
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Table 7.3 Representative microbiome analysis platform and database as online resources

Software
(platform)

Analysis data
object

MOCAT Metagenome Species structure, abundance and func-
tion classification, and comparison
between species

Kultima et al. (2016)

MEGAN 16S rRNA Species structure, abundance and func-
tion classification, and comparison
between species

Huson et al. (2007)

MetaPhlAn Metagenome Species structure, abundance Segata et al. (2012)

PICRUSt Metagenome,
16S rRNA

Species structure and function
classification

Douglas et al.
(2020); Langille
et al. (2013)

antiSMASH Metagenome BGC analysis Blin et al. (2019);
Medema et al.
(2011)

Sort-
ITEMS

16S rRNA Species structure and function
classification

Monzoorul Haque
et al. (2009)

UniFrac 16S rRNA Species structure, abundance and func-
tion classification, and comparison
between species

Lozupone and
Knight (2005)

QIIME 16S rRNA Species structure, abundance and func-
tion classification,

Caporaso et al.
(2010); Kuczynski
et al. (2012)

MG-RAST Metagenome,
16S rRNA

Species structure, abundance and func-
tion classification, and comparison
between species

Keegan et al. (2016)

IBDsite Metagenome,
16S rRNA

Species structure, abundance and func-
tion classification, and comparison
between species

Merelli et al. (2012)

1. Figure 7.8 showed the classic process of metagenomics.
2. Table 7.5 represented the commonly used quality control tools.
3. Table 7.6 represented the commonly used Classification annotation tools.
4. Table 7.7 represented the assembly and binning tools are summarized.

7.5 Representative Microbiome Analysis Applications

Based on currently available microbiome analysis databases and tools, many prom-
inent biological problems have largely been solved, or at least have gained deeper
insights. Typical examples of microbiome analysis are outlined below.
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Table 7.4 Representative microbiome analysis tools

Tool name Type Web link Reference

Uparse OTU clustering tool https://drive5.com/
uparse

Edgar (2013)

Usearch Integrated sequence analysis
tool for amplicon

https://www.drive5.
com/usearch/

Rognes et al. (2016)

Vsearch Alternative implementation of
Vsearch

https://github.com/
torognes/vsearch

Rognes et al. (2016)

DADA2 Amplicon sequence variant
(ASVs)tools

https://
benjjnebgithub.io/
dada2/

Callahan et al. (2016)

Deblur Amplicon sequence variant
(ASVs)tools

https://github.com/
biocore/deblur

Schuler et al. (2015)

PICRUSt/
PICRUSt2

Functional profiles prediction
from amplified marker genes

http://picrust.github.
io/picrust/

Douglas et al. (2018);
Douglas et al. (2020)

Tax4Fun Functional profiles prediction
from amplified marker genes

http://tax4fun.
gobicsde/

Aßhauer et al. (2015)

QIIME/
QIIME2

Integrated microbiome bioin-
formatics workflow

http://qiime.org/
https://qiime2.org/

Caporaso et al. (2010);
Kuczynski et al. (2012)

Mothur Integrated microbiome bioin-
formatics workflow

https://mothur.org/ Schloss (2020)

Kraken Taxonomical annotation of
WGS short reads

http://ccb.jhu.edu/soft
ware/kraken/

Wood et al. (2014)

MetaphlAn2 Taxonomical annotation of
WGS short reads

https://huttenhower.
sph.harvard.edu/

Truong et al. (2015)

HUMANn2 Funcctional annotation of
WGS short reads

https://huttenhower.
sph.harvard.edu/
human

Franzosa et al. (2018)

metaSPAdes Assembling of WGS short
reads

https://github.com/
ablab/spades

Nurk et al. (2017)

7.5.1 Biogeographical Characteristics of the Intestinal Flora

Spatial structure is essential for natural ecosystems and many microbial communities
(including gut flora), exhibit complex spatial organization. Biogeographic maps of
bacteria can reveal the interaction of community functions, but existing methods
cannot accommodate the hundreds of species found in the natural microbiome.

In July 2019, “Spatial metagenomic characterization of microbial biogeography
in the gut” published by Nature Biotechnology, proposes a new sequencing method,
MAPS-Seq, which is a multiplex sequencing technology that analyzes microbial
cells in their natural geographic environment to statistically reconstruct the local
spatial organization of the microbiome.

MAPS-Seq is a physical fixation of the input sample followed by in situ fixation
of the microbiota by perfusion and polymerization on an acrylamide polymer matrix.
The embedded sample is then broken by cold bead pulping, cell lysis is performed,
and size selection is performed through a nylon screen to produce cell clusters or

https://drive5.com/uparse
https://drive5.com/uparse
https://www.drive5.com/usearch/
https://www.drive5.com/usearch/
https://github.com/torognes/vsearch
https://github.com/torognes/vsearch
https://benjjnebgithub.io/dada2/
https://benjjnebgithub.io/dada2/
https://benjjnebgithub.io/dada2/
https://github.com/biocore/deblur
https://github.com/biocore/deblur
http://picrust.github.io/picrust/
http://picrust.github.io/picrust/
http://tax4fun.gobicsde/
http://tax4fun.gobicsde/
http://qiime.org/https:/qiime2.org/
http://qiime.org/https:/qiime2.org/
https://mothur.org/
http://ccb.jhu.edu/software/kraken/
http://ccb.jhu.edu/software/kraken/
https://huttenhower.sph.harvard.edu/
https://huttenhower.sph.harvard.edu/
https://huttenhower.sph.harvard.edu/human
https://huttenhower.sph.harvard.edu/human
https://huttenhower.sph.harvard.edu/human
https://github.com/ablab/spades
https://github.com/ablab/spades
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Microbiome
sample

Library
preparation

DNA
extraction

Quality Control
Remove low quality and low complexity

reads,trim adapter and remove
contaminations

Shotgun Metagenome
Sequencing

Short reads:Illumina,
long reads:Oxford Nanopore

Metagenome Assembly
Merge reads into longer contiguous

sequences(contigs)

Contig Bining

Optional:Ressembly and curation
Check completeness and contamination

Taxonomic Assignment
Assign reads or contigs to

taxons using marker gene or
signature based

profiling,genome alignment,k-
mer mapping or protein

alignment

Reconstructed genomes Species Composition

Downstream Analysis
Identification of pathogens, identification of functional potential ,SNPs,

genomes structure,phylogeny

Fig. 7.8 Overview of the metagenomic analysis process. Microbial sample acquisition, Total DNA
extraction, library construction, on-machine sequencing, data quality control (removal of low
quality and adapters, etc., removal of interference information such as host genome), metagenomic
assembly, Contig Binning, genome reconstruction, taxonomic annotation (based on reads, contig,
bins, the restored genome for species annotation), and other downstream analysis

particles with the desired physical size and adjustable physical size. The resulting
cluster contains genomic DNA fixed in the original arrangement, and local spatial
information is preserved. These clusters were then co-encapsulated with gel beads
using a microfluidic apparatus, each containing a unique barcode positive 16S rRNA
amplification primer. The primers were photolyzed from the beads and clusters, and
the genomic DNA was released from the clusters by triggering the degradation of the
polymer matrix within the droplets, and PCR amplification in the 16S V4 region was
performed. The droplets were then broken up and the resulting library was deeply
sequenced. Sequenced reads are filtered and grouped according to their unique
barcodes, resulting in bacterial operational taxonomic units (OTUs) identity and
relative abundance (RA) in a single cell cluster of defined size.
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Table 7.5 Representative quality control tools (Luo et al. 2010)

Tool Introduction Web link Reference

FastQC Quality control tool showing statics such
as quality value, sequence length distri-
bution and GC content distribution

http://www.bioinfor
matics.babraham.ac.
uk/projects/fastqc/

de Sena
Brandine
(2019)

FastQ Screen Screen a library against sequence data-
bases to see if composition of library
matches expectations

http://www.bioinfor
matics.babraham.ac.
uk/projects/fastq_
screen

Wingett
and
Andrews
(2018)

BBtools BBDuk trims and filters reads using
k-mers and entropy information,
BBNorm normalizes coverage by down
sampling reads

http://jgi.doe.gov/data-
and-tools/bbtools/bb-
tools-user-guide/

Institute.,
D.J.G
(2021)

Trimmomatic Flexible read trimming tool for Illumina
data

http://www.usadellab.
org/cms/?page=
trimmomatic

Bolger
et al.
(2014)

Cutadapt Find and remove adapter sequences,
primers, poly-A tails and other types of
unwanted sequence

https://cutadapt.
readthedocs.io

Martin
(2011)

Khmer/
diginorm

Tools for k-mer error trimming of reads
and digital normalization of samples

http://khmer.
readthedocs.io

Crusoe
et al.
(2015)

MultiQC Summarize results from different analy-
sis (such as FastQC) into one report

https://multiqc.info/ Sangwan
et al.
(2016)

The isolated clusters of homogeneous mouse fecal bacteria or Escherichia coli
were analyzed by MAP-seq. The results showed that most of the detected barcodes
were uniquely mapped to their respective initial communities with minimal mixing
and that the introduction of contaminants during sample processing was negligible,
meaning that MAP-Seq could accurately measure bacterial properties and abun-
dances within a single spatially limited cluster of cells. MAP-Seq was applied to the
colon microbiome of mice. The authors generated and characterized clusters of cells
from the distal colon of mice fed a plant-polysaccharide diet, including epithelial and
digestive tissue, producing 1406 clusters. A total of 236 OTUs were identified, and
their prevalence in the entire cluster was highly correlated with the high abundance
obtained by standard 16S sequencing, meaning that richer taxa were also physically
dispersed over more space. The spatial distribution of taxa across groups appears to
be mixed (median of 9 OTUs per group), but some clusters contain only a few OTUs,
indicating spatial aggregation or clumping in parts of the community. In addition, the
distribution of OTU in each cluster was observed to be significantly lower than
clusters of the same size produced by homogeneous fecal bacteria, which was a
control for a well-mixed community. These results suggest that the various taxa in
the gut microbiome are neither completely mixed nor highly structured on the scale
of tens of microns, but are heterographically distributed in mixed plaques.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen
http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://cutadapt.readthedocs.io
https://cutadapt.readthedocs.io
http://khmer.readthedocs.io
http://khmer.readthedocs.io
https://multiqc.info/
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Table 7.6 Representative Classification annotation tools

Tool Introduction Web link Reference

Kraken Fast taxonomic classifier using in-memory
k-mer search of metagenomics reads
against a database built from multiple
genomes

https://ccb.jhu.edu/
software/kraken/

Wood
et al.
(2014)

Kraken-
HLL

Extension of kraken counting unique
k-mers for taxa and allowing multiple
database

https://github.com/
fbreitwieser/kraken-
hllCLARK

CLARK(-S) Fast taxonomic classifier using in-memory
k-mer search of metagenomics reads
against a database built from completed
genomes. Extension uses spaced k-mer
seeds for better classification.

http://clark.cs.ucr.edu Ounit and
Lonardi
(2016)

Kallisto Taxonomic profiler using pseudo-
alignment with k-mers using techniques
based on transcript quantification.

https://github.com/
pachterlab/kallisto

Bray et al.
(2016)

DIAMOND Protein homology search using spaced
seeds with a reduced amino acid
alphabet,2000–20,000 times faster than
BLASTX

https://github.com/
bbuchfink/diamond

Buchfink
et al.
(2015)

BLAST+ Highly sensitive nucleotide translated-
nucleotide protein alignment

https://blast.ncbi.nlm.
nih.gov

Camacho
et al.
(2009)

MetaPhlAn2 Marker gene-based taxonomic profiler https://bitbucket.org/
biobakery/
metaphlan2

Truong
et al.
(2015)

mOTU Taxonomic profiler based on a set of
40 prokaryotic marker genes

http://www.bork.
embl.de/software/
mOTU/

Sunagawa
et al.
(2013)

The research found that diet plays an important role in the variation of intestinal
flora between individuals. The authors divided co-reared mice into two cohorts, one
on a plant-based polysaccharid-based diet (LF, the same as the previous cohorts) and
the other on a high-fat, high-sugar diet (HF, commonly used in diet-induced obesity
studies), to investigate changes in the microbiome representative of the diet-related
changes. After 10 days, a significant decrease in species richness in the cecum and
colon was observed in HF-fed mice compared to LF-fed mice.

To determine whether dietary changes could alter the spatial organization of the
microbiota in a way that would contribute to the observed changes in species
diversity, the authors performed MAP-seq on distal colon samples from mice fed
LF or HF diets. The authors found that the distribution of unique OTU per 20 μm
cluster was similar between the two diets. This implies that the distribution of species
in the local ~20 μm range is controlled by factors that are common or not influenced
by both diets. However, assessment of diversity at higher taxonomic levels showed
significantly higher diversity in HF clusters, suggesting that while both LF and HF
clusters contain a similar number of OTUs, taxa within a single HF cluster are more

https://ccb.jhu.edu/software/kraken/
https://ccb.jhu.edu/software/kraken/
https://github.com/fbreitwieser/kraken-hllCLARK
https://github.com/fbreitwieser/kraken-hllCLARK
https://github.com/fbreitwieser/kraken-hllCLARK
http://clark.cs.ucr.edu
https://github.com/pachterlab/kallisto
https://github.com/pachterlab/kallisto
https://github.com/bbuchfink/diamond
https://github.com/bbuchfink/diamond
https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
https://bitbucket.org/biobakery/metaphlan2
https://bitbucket.org/biobakery/metaphlan2
https://bitbucket.org/biobakery/metaphlan2
http://www.bork.embl.de/software/mOTU/
http://www.bork.embl.de/software/mOTU/
http://www.bork.embl.de/software/mOTU/
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Table 7.7 Representative the assembly and binning tools

Tool Synopsis Web link Reference

Megahit Co-assembly of metagenomic reads
with variable k-mer lengths and low
memory usage

https://github.com/
voutcn/megahit

Gleeson et al.
(2011);
Wosinska et al.
(2019)

SPAdes Dbg assembler using multiple k-mers,
works also for simple metagenomes

http://cab.spbu.ru/
software/spades

Bankevich et al.
(2012)

MetaSPAdes Extension of SPADES with better
assemblies with different abundances,
conserved regions and strain mixtures

http://cab.spbu.ru/
software/spades/

Nurk et al.
(2017)

Ray Meta DBG assembler with fixed k-mer size http://
denovoassemler.
sourceforge.net/

Boisvert et al.
(2012)

IDBA-UD DBG assembler using multiple k-mer
sizes, analyzes coverages between
paths to give better assemblies in
complex metagenomes with uneven
coverage

http://i.cs.hku.hk/
~alse/hkubrg/pro
jects/idba_ud/

Peng et al.
(2012)

MetAMOS Framework for metagenomic assem-
bly, analysis and validation

http://metamos.
reasthedocs.io

Treangen et al.
(2013)

MOCAT2 Pipeline for read filtering taxonomic
profiling assembly, gene prediction
and functional analysis

http://mocat.embl.
de/

Kultima et al.
(2016)

CONCOCT Bins contigs using nucleotide compo-
sition, coverage data in multiple sam-
ples and paired-end read information

https://github.com/
BinPro/
CONCOCT

Alneberg et al.
(2014)

COCACOLA Binning contigs in using read cover-
age, correlation, sequence composition
and paired-end read linkage

https://github.com/
youngllululu/
COCACOLA

Lu et al. (2017)

phylogenetically diverse. This further emphasizes the usefulness of map-seq for
examining spatial organization at a higher classification resolution.

7.5.2 Plasticity of Intestinal Flora (Dynamic Pattern)

“Unaccustomed to water and soil” is a very common symptom that people produce
during travel. This is actually a reaction caused by changes in the intestinal flora
caused by dietary changes. How does diet affect gut microbes? Scientists have
conducted many studies on this question. They selected samples of patients and
healthy people and adjusted their diets over a period of time. The results shown that
short-term diet changes can change the composition of the intestinal flora of patients
and healthy people. However, the conclusions of these studies are only a few points
in time, and the respondents have only experienced one dietary change. The dynamic

https://github.com/voutcn/megahit
https://github.com/voutcn/megahit
http://cab.spbu.ru/software/spades
http://cab.spbu.ru/software/spades
http://cab.spbu.ru/software/spades/
http://cab.spbu.ru/software/spades/
http://denovoassemler.sourceforge.net/
http://denovoassemler.sourceforge.net/
http://denovoassemler.sourceforge.net/
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
http://metamos.reasthedocs.io
http://metamos.reasthedocs.io
http://mocat.embl.de/
http://mocat.embl.de/
https://github.com/BinPro/CONCOCT
https://github.com/BinPro/CONCOCT
https://github.com/BinPro/CONCOCT
https://github.com/youngllululu/COCACOLA
https://github.com/youngllululu/COCACOLA
https://github.com/youngllululu/COCACOLA
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pattern of the microbial community on a longer time scale and various dietary
changes remain unclear.

In 2018, the Ningkang team published an article “Resilience of human gut
microbial communities for the long stay with multiple dietary shifts” on Gut,
observing the changes of human intestinal flora under long-term dietary changes,
and clarifying the principle of plasticity of intestinal flora. The authors recruited a
team of ten Chinese volunteers. They set off from Beijing, stayed in Trinidad and
Tobago for 6 months, and then returned to Beijing. By using a high-density
longitudinal sampling strategy, fecal samples of volunteers were collected and
their detailed dietary information was recorded. High-throughput sequencing and
correlation analysis of stool samples revealed that the human intestinal flora changes
dynamically due to dietary changes over a long period of time. The research found
that the microbial community in the intestine has two-way plasticity and elasticity
during the long-term stay, and has a variety of dietary changes.

7.5.3 Gene Mining

Our body host a vast array of microorganisms that encode about 100 times more
unique genes than our own genome. These microorganisms have a great impact on
human healthy, especially those living in the intestines. The intestinal microbes are
essential for digesting food. It will be a high chance of suffering intestinal disease or
obesity once the intestinal microbiota is changed. Therefore, it is necessary to
decipher the content, diversity and function of the gut microbial community based
on the gene diversity since genes are the basic units that control functions and traits.

Jun Wang et al. established a human gut microbial gene catalog through
metagenomic sequencing. They collected 124 fecal samples of European individuals
and recovered 3.3 million non-redundant microbial genes from the Illumina-based
metagenomic sequencing data of these samples (Qin et al. 2010). The number of
non-redundant microbial genes is 150 times the number of human gene complement.
These microbial genes were largely shared among individuals in this cohort, and
they covered the vast majorities of (more common) microbial genes in the cohort,
contained the majorities of human gut microbial genes. Interestingly, more than
99 percent of these genes were bacterial, the entire cohort consisted of 1000 to 1150
endemic bacterial species, with individual containing at least 160 such species, and
that they were also largely shared. The minimum intestinal metagenome and the
minimum intestinal bacterial genome in terms of the functions of all individuals and
most bacteria were defined and described by the authors, respectively.

The research found that most of the microorganisms living in the gut have a great
impact on human physiology and nutrition and are crucial to human life. Researchers
aimed to understand and exploit the impact of the gut microbiome on human health
in terms of its content, diversity and function based on the 16S ribosomal RNA gene
(rRNA) sequencing. They found that two bacterial families, the Bacteroidaceae and
the Antimicrobiaceae, account for more than 90% of known phylogenetic categories
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and dominate the distal intestinal flora, and they also found large differences in the
gut microbiome between healthy individuals.

To generate a broad catalog of microbial genes from the sequencing data of
human gut, the authors first assembled short Illumina reads into longer overlapping
clusters (contigs), which could then be analyzed and annotated using standard
methods. They used SoapDeNovo to assemble all Illumina GA sequence data
from scratch, and they assembled a total of 6.58 million overlapping groups from
up to 42.7% of Illumina GA reads. They were surprised to find that nearly 35% of
reads from any one sample could be mapped to overlap groups from the other
samples, indicating a common sequence core. The authors then combined the
unassembled reads from all 124 samples and repeated the de novo assembly process
to complete the overlapping group setup, and they obtained bout 400,000
overlapping groups with a length of 370 Mb and a length of N50 939 bp. Therefore,
the authors assembled total of 10.7 GB overlapping groups.

To establish a non-redundant human gut microbiome genome, the authors first
used the Metagene program to predict ORFs in contigs, and they found 14,048,045
ORFs over 100 bp in length which accounted for 86.7% of the contigs, comparable
to the 86 percent found in fully sequenced genomes. The authors found that about
wo-thirds of the ORFs appeared to be incomplete, and they attributed it to the size of
the assembled overlapping groups (N50 is 2.2 KB). In order to avoid dataset bloat
due to possible sequencing errors, the authors used very strict criteria (95% confor-
mance exceeds 90% of the shorter ORF length) to remove the excess ORFs.

The authors defined the “epidemic genes” as the genes in the non-redundant set
because they are encoded on an overlapping group assembled from the richest read
segments. The authors examined the number of prevalent genes found across all
individuals, which is a function of the sequencing range, and they set the minimum
number of genes to support reads to two. Through estimating the coverage richness
(ICE) based on incidence determined by 100 people (the maximum number that can
be accommodated by the Evaluations21 program), the authors concluded that they
captured 85.3% of the prevalence genes, suggesting that the catalog contains the vast
majority of the prevalent genes in this cohort, even through this may be an
underestimate.

Furthermore, there are already studies on associating microbiome and other omics
for the in-depth understanding of the regulation principles and dynamic patterns.
These multi-omics studies include: Multi-omics analysis reveals the changes of
metabolome, gut microbiome and immune indicators with age (Zhang et al. 2021).
Human gut microbiota from Autism Spectrum Disorder promote(ASD) behavioral
symptoms in mice (Sharon et al. 2019). Gut microbiome structure and metabolic
activity in inflammatory bowel disease (Franzosa et al. 2019).
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7.6 Conclusion and Perspectives

In summary, the microbiome has become one of the key omics that could assist the
in-depth understanding of the biological system, and the microbiome data analysis
has already helped for the interpretation of patterns and dynamics of the microbial
communities at every niche of our body.
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Chapter 8
Current Progress of Bioinformatics
for Human Health

Jin Zhao, Shu Zhang, Shunyao Wu, Wenke Zhang, and Xiaoquan Su

8.1 Introduction

Massive biological data provides a broad view for understanding the dynamics of
human health status and disease from multiple aspects. During the past decade, the
tremendous volume of biological data has been produced in different ways. How to
analyze the high-volume data precisely and efficiently, and take advantage from it
has become one of the most essential bottlenecks for precision medicine. Newly
developed bioinformatics tools are bringing opportunities for these challenges, from
sequence-based algorithms such as genome assembly and genome comparison, to
disease classifiers like regular machine learning and neural network. In this chapter,
we summarize the widely-used state-of-the-art computational approaches of multi-
omics data to study human health and diseases, including bioinformatics methods
and tools for genomics, transcriptomics, metagenomics, and single-cell data, as well
as machine learning algorithms and strategies.

8.2 Genome Comparison and Analysis Expands our
Understanding of Genetic Diseases and Treatments

Sequencing technology enables the survey of genetic information on a large scale.
Using high throughput sequencing and bioinformatical analysis, studies like the
human genome project (HGP) (Randal 1991) have highly promoted our understand-
ing of human health and diseases (Hood and Rowen 2013; Lander 2011). Genome
comparison and analysis are the basis for elucidating the evolutionary relationships
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of species, as well as revealing gene functions and molecular mechanisms. Previous
research revealed the occurrence between genetic diseases and changes in human
genome structure that known as genome variants (Brandler et al. 2016; Sudmant
et al. 2015; Feuk et al. 2006), which can be detected by genome comparison.
Specifically, according to the distinct areas between two genomes, it would be
possible to determine the pathogenic genes, which brings new approaches to predict
the possibility of certain diseases, as well as suggest the best treatment strategy
(Sankoff et al. 1992; Rasko et al. 2011; Ozery-Flato and Shamir 2009; Chen et al.
2008; Nalbantoglu et al. 2010).

Genome Assembly A prerequisite for genome variants detection is the reconstruc-
tion of complete genomes. The length of genomes varies between species: human
genome is about 2.9G base pairs (bp), while that of bacteria is only 3–10 M bp.
However, next generation sequencing (NGS; e.g. Illumina platforms) cannot directly
produce DNA reads with adequate length to cover complete genomes. Thus, the
complete genetic information restored from short sequence reads is always relied on
sequence assembly. Currently, available sequence assembly algorithms fall into two
categories: de novo sequence assembly and reference-based assembly (Pop 2009).
The reference-based assembly approaches like E-RGA (Vezzi et al. 2011) usually
employ existing genomes as templates, and then locate and sort short reads by
sequence alignment. However, it can also miss short reads that exhibit significant
structural differences to the references. The de novo genome assembly strategies,
which assemble short reads into long sequences with the use of overlap between
them instead of a reference genome, have been used in a wide range such as Celera
Assembler (Venter et al. 2001), Arachne (Batzoglou et al. 2002), CAP3 (Huang and
Madan 1999), Canu (Koren et al. 2017), miniasm (Li 2015) and wtdbg (Ruan and Li
2020).

Scaffold Filling The assembly algorithms merge short reads into “long sequences”
of contigs or scaffolds, which are considered as draft genomes (Huson et al. 2002).
Such drafted genomes often introduce errors due to their incompleteness. Thus, the
scaffold filling problem is proposed to restore the whole genomes via computation
across assembled long sequences (Muoz et al. 2010). This problem can be solved in
two scenarios: a one-sided mode that fill a single scaffold from other sequences with
missing genes, and two-sided mode can fill two scaffolds from each other. Usually,
the scaffold filling strategy aims to minimize the double cut and join (DCJ) distance
among different sequences, which is a polynomial-time algorithm for whole-genome
reconstruction (Muoz et al. 2010). On the other side, some alternative sequence
distance metrics are also used as optimization objectives with better performance in
accuracy or reliability for scaffolds filling, such as the breakpoint distance and
adjacency number distance, while they can introduce additional computing com-
plexity. For example, the adjacency number-based scaffold filling is NP-Hard (Jiang
et al. 2010). Thus, approximated solutions of such algorithms are then developed to
reduce the high time-complexity, e.g. with adjacency number distance, one-sided
scaffold filling can achieve a 1.2-approximation local search algorithm (Jiang et al.
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2011; Jiang et al. 2012; Ma and Jiang 2016; Liu et al. 2013) and two-sided scaffold
filling reached a performance ratio 1.4 + ε (Ma et al. 2021).

Genome Variation Detection Since the aforementioned software and algorithms
have highly promoted genome variant detection, studies on related human diseases
such as cancer (Norris et al. 2016; Macintyre et al. 2016), mendelian disorders
(Sanchis-Juan et al. 2018), autism (Hedges et al. 2012), and Alzheimer (Qiang
et al. 2017) have been consequently improved. Generally, genome variants can be
divided into three types, single nucleotide variant (SNV) (Mackeh et al. 2018;
Poirion et al. 2018; Kleftogiannis et al. 2019), small insertion/deletion (indel)
(Ratan et al. 2015; Ferlaino et al. 2017), and structural variant (Nakagawa and Fujita
2018; Piazza and Heyer 2019). Among them, structural variant is most frequently
associated with genetic diseases (Carvalho and Lupski 2016; Gonzalez-Garay 2014).
Based on next-generation sequencing data, Some robust algorithms have been
developed for detecting structural variation, for example, Hydra (Sindi et al. 2009)
(based on pair-end mapping), CNVnator (Abyzov et al. 2011) (based on read depth),
AGE (Abyzov and Gerstein 2011) (based on split read), SOAPdenovo2 (Luo et al.
2012) (based on de novo assembly). In recent years, the third-generation sequencing
technology (PacBio or Oxford Nanopore) lays the foundation to improve the
detection of structural variants (English et al. 2015; Wenger et al. 2019), for it
extends the length of the sequence to several thousand of base pairs. In this case,
some tools or software packages have been implemented to detect structural variants
based on long DNA reads from sequencers, such as Sniffles (Sedlazeck et al. 2018),
SVIM (Heller and Vingron 2019) and SVLR (Gu et al. 2021). Therefore, the
emergence of new technology makes genome variant detection more accurate and
efficient and brings new opportunities for genetic disease treatments.

8.3 Transcriptome Analysis Enables the in-Depth
Elucidation of Disease Mechanisms

Alternative splicing occurs as a normal phenomenon in eukaryotes, and it allows a
gene to express multiple transcripts, which plays an important role in regulating gene
expression and producing the diversity of proteins (Mo and M.J. L 2009; Baralle and
Jimena 2017; Kelemen et al. 2013). Numerous researches have revealed that a great
number of human diseases, especially cancer, are related to abnormal splicing
(Climente-González et al. 2017; A, S et al. 2016; Giuseppe et al. 2019; André and
C.T. A 2003). The identification and analysis of expressed transcripts play an
important role in diseases researches. In this section, we focus on three key steps
of transcriptome studies, including transcriptome assembly, differential expression
analysis, and abnormal splicing detection.

Transcriptome Assembly Advances in High-throughput RNA sequencing
(RNA-seq) have opened the door to transcriptome reconstruction (Fatih and
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M.P. M 2011; Peng et al. 2016). The RNA-seq protocol takes the expressed
transcripts as input and outputs millions of short reads. In principle, such short
reads can allow us to recover all expressed transcripts. However, this task is
complicated by various alternative splicing variants, highly similar paralogs, differ-
ent expression levels of transcripts of the same gene, and sequencing errors and bias
(Jin et al. 2021). Like genome assembly, existing transcriptome assembly strategies
can also be generally divided into two categories: reference-based and de novo
assembly approach. On a high level, both reference-based and de novo strategies
generally first construct graphs to represent splicing variants and then traverse the
graph to extract paths as recovered transcripts. However, the reference-based assem-
blers such as StringTie (Mihaela et al. 2015; Sam et al. 2019), TransRef (Ting et al.
2021), Scallop (Mingfu and Carl 2017), TransComb (Juntao et al. 2016a), Cufflinks
(Cole et al. 2012), Bayesember (Lasse et al. 2014), CIDANE (Stefan et al. 2016),
iReckon (M. M.A et al. 2013a), and Scripture (Mitchell et al. 2010) usually construct
graphs based on the alignments between reference genomes and RNA-seq reads. De
novo assemblers such as TransLiG (Juntao et al. 2019), rnaSPAdes (Elena et al.
2019), MultiTrans (Jin et al. 2021), BinPacker (Juntao et al. 2016b), SOAPdenovo-
trans (Yinlong et al. 2014), IDBA-Tran (Yu et al. 2013), Oases (H, S.M. 2012), and
Trinity (Segata et al. 2011) construct graphs according to the overlaps between
reads. The reference-based assemblers usually achieve higher accuracy than de
novo assemblers when a high-quality reference genome is available; on the other
hand, de novo assemblers are desired when the reference genome is unknown,
incomplete, or substantially altered as in cancer tissues.

Differential Expression Analysis Differential expression analysis aims to find
genes or transcripts differentially expressed between conditions, which is an integral
part of understanding the molecular basis of phenotypic variation and diseases (D, R.
M., et al. 2010). Such analysis is always performed in the following steps. Firstly,
estimating the expression levels for each gene or transcript, which are usually
measured by RPKM (the number of reads per kilobase of the gene/transcript per
million reads mapped to the gene) and FPKM (the expected number of fragments per
kilobase of gene/transcript per million fragments sequenced). Then, normalizing and
identifying differentially expressed genes. There are three types of approaches for
this step: (i) data-driven reference normalization such as GRSN (Carl et al. 2008),
KDWL (Wen-Ping et al. 2011), KDQ (Qi et al. 2005), IRON (A, W.E et al. 2013b),
BSN (Aanes et al. 2014) and SVR (Meng et al. 2019), (ii) extra-control reference
normalization such as Spike-in Controls (Lovén et al. 2012) and wcloess normali-
zation (Di et al. 2013), and (iii) all-gene reference normalization such as CrossNorm
(Lixin et al. 2016a), ICN (Lixin et al. 2016b) and GPA normalization (Huiling et al.
2008). Finally, evaluate the relevance of the produced data with biological pheno-
types of interest. Usually, two alternative methods are widely used: parametric and
non-parametric. Parametric methods such as edgeR (D, R.M., et al. 2010) and
baySeq (J, H.T., and K.K. A 2010) are applied to the normalized data (each
expression for a given gene is mapped into a particular distribution, such as Poisson
and negative binomial) while non-parametric methods including NOIseq (Sonia
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et al. 2012) and SAMseq (Li and Tibshirani 2013) take into consideration that data
distribution cannot be defined from a finite set of parameters, such that
non-parametric methods can capture more details about the data distribution.

Abnormal Splicing Detection Recent studies have shown that disruption of nor-
mal programs of splicing regulated by different splicing factors can lead to human
diseases. For example, Eglė et al. revealed that alternative splicing is related to
Alzheimer’s and Parkinson’s diseases (Eglė and Arvydas 2021). Recognition of
aberrations in splicing events that are associated with disease has contributed to our
understanding of disease pathogenesis. Methods for detecting alternative splicing
can be categorized into two quantification schemas: count-based and isoform reso-
lution strategies (Ruolin et al. 2014). For differential splicing, the count-based
models such as DEXSeq (Simon et al. 2012), SDGseq (Wang et al. 2013),
SplcingCompass (Moritz et al. 2013), rMATs (Shihao et al. 2014), rDiff-parametric
(Philipp et al. 2013) and SeqGSEA (Xi and C.M. J 2014) usually configure each
gene into a single representation consisting of counting units. Counting units can be
full or truncated exonic regions or junction regions. Instead of transforming the
question into detecting differential usage of counting units, isoform resolutions
models (e.g. Cufflinks (Cole et al. 2012) and DiffSplice (Carl et al. 2008)) usually
directly compare the relative isoform abundance across samples or conditions. These
two methods have their own advantages and disadvantages, that is the count-based
models can accurately discover the local differences while isoform resolution
models detect the aberrations in isoform levels.

8.4 A New Sight on Human-Microbe Associations by Data
Mining of Microbiome

The human microbiome can provide a novel sight to study on the relationship
between microbial communities and their hosts (Blaser et al. 2016). In the past
decade, massive volume of microbiome samples has been collected to discover the
microbial- associations with human health (Forslund et al. 2015; Halfvarson et al.
2017; Poore et al. 2020; Qin et al. 2010). Meta-analysis on multiple cohorts can
produce reliable and reproducible results for further applications (Wirbel et al. 2019;
Bisanz et al. 2019; Armour et al. 2019). Profiling for taxonomic or functional
features is the basis to study the microbiome, which mainly relies on DNA sequenc-
ing (Knight et al. 2018). In general, two sequencing approaches have been widely
adopted: amplicon sequencing using marker genes (e.g. 16S rRNA, 18S rRNA or
ITS) for taxonomy recognition, and shotgun metagenomic whole-genome sequenc-
ing (WGS) that survey genome-wide sequences of all species in a specimen.

Microbiome Profiling For short sequence fragments of marker genes, a series tools
have been developed for taxonomy classification by reads clustering and OTU
(Operational Taxonomic Units) picking based on sequence similarity such as
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UPARSE (Edgar 2013) and Usearch (Edgar 2010). To further improve the accuracy
of marker-gene-based analysis on single-nucleotide level, amplicon sequence vari-
ants (ASVs) denoising algorithms like DADA2 (Callahan et al. 2016), Deblur (Amir
et al. 2017) and UNOISE3 (Edgar 2016) are then used in the latest works, which
provide higher reliability, reproducibility and comprehensiveness than regular OTUs
(Callahan et al. 2017). PICRUSt (Langille et al. 2013; Douglas et al. 2020) and
Tax4Fun (Asshauer et al. 2015) even predict the functional profiles from amplicons
using the pre-processed information between marker genes and reference whole
genomes. In addition, comprehensive pipelines including QIIME (Caporaso et al.
2010; Bolyen et al. 2019), Mothur (Schloss et al. 2009) and Parallel-Meta (Jing et al.
2017; Chen et al. 2022) integrate most of these profiling methods with additional
statistical analysis on alpha diversity and beta diversity. As a cost-efficient approach,
amplicon-based analysis has been widely used in large number of microbiome
studies, however, the precision is also challenged due to PCR bias (Jones et al.
2015), limited resolution of short-read markers and insufficient marker-genome
associations. For instance, taxonomy annotation by amplified regions of 16S
rRNA gene fragments is always on genus level (Edgar 2018; Yarza et al. 2014),
and function inference might not be reliable for shortage of reference genomes
(Langille et al. 2013).

With higher scale of sequence numbers, WGS is more informative as well. Thus,
some approaches employ unassembled WGS short reads for species or strain level
taxonomy identification (Ye et al. 2019; Scholz et al. 2016) (e.g. Karken (Wood and
Salzberg 2014), mOTUs (Sunagawa et al. 2013), and MetaPhlAn2 (Segata et al.
2012)) and function parsing (e.g. HUMANn2 (Franzosa et al. 2018)). On the other
side, binning- or assembling-based method (e.g. metaSPAdes (Bankevich et al.
2012), meta-IDBA (Peng et al. 2012) and MetaWRAP (Uritskiy et al. 2018)) are
suitable for genome re-construction, de novo gene prediction with unknown species,
as well as single nucleotide polymorphism (SNP) analysis. However, the broad-
range application of WGS is also suffered from the 3–10 folds higher overall cost
including sequencing, data storage and sharing, bioinformatics processing of reads
quality control (Zhou et al. 2014; Zhou et al. 2018), profiling (Ye et al. 2019;
Franzosa et al. 2018) than those of amplicons (Langille et al. 2013; Jing et al.
2017; Rognes et al. 2016; Lu and Salzberg 2020). Recently, a new library prepara-
tion protocol named ‘shallow shotgun sequencing’ achieves species-level accuracy
similar to that offered by regular ones, making the WGS in a more economical way
(Hillmann et al. 2018).

Different from specific targeted variable regions of mark gene amplification, full-
length 16S rRNA gene by the third generation sequencing platforms has the potential
of accurate microbiome classification at species or strain resolution (Johnson et al.
2019). To couple with such advantages by long-read sequencing platform data,
algorithms or tools for sequence denoising, clustering and annotation should also
be updated accordantly. Thus, the rapid development of microbiome profiling
methods provides the fundamental of a broader view to the “microbiome data
universe”.
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Microbiome Data Integration Massive microbiomes have been produced by
previous works such as Human Microbiome Project (Proctor et al. 2019), Earth
Microbiome Project (Thompson et al. 2017) and American Gut Project (McDonald
et al. 2018a). Usually, sequences are deposited are shared in online repositories,
e.g. NCBI-SRA (Kodama et al. 2012), MG-RAST (Meyer et al. 2008), EBI
Metagenomics (Harrison et al. 2019), JGI-IMG/M (Chen et al. 2019), MPD
(Zhang et al. 2018) and so on. Such big data provides the “materials” for study on
the global-wide microbial diversity and distribution, while also brings new problems
in data integration and re-analysis. In these repositories, most specimens are sorted
by their original studies, and metadata among studies are not normalized for feature
selection and comparison, leading to the difficulty for revealing microbial patterns
under a specific conditions or phenotypes.

Several works re-organized the microbiome data with unified metadata format
(Yilmaz et al. 2011; Buttigieg et al. 2016) and re-processed the DNA sequences by
standard operating procedures (SOPs) (Ten Hoopen et al. 2017), enabling the
utilization and reusability of valuable microbiome big-data for further meta-analysis.
GMrepo (Wu et al. 2020) database curated human gut metagenomes with constant
profiling procedures and detailed metadata of host variables. Qiita (Gonzalez et al.
2018; McDonald et al. 2019) enables meta-analysis across different studies, and
retrieve microbiomes with specific features (e.g. metadata, taxon terms, and
sequence fragments) by SQL-like queries. In addition, Gc-Meta (Shi et al. 2019)
implemented a data management system integrated with bioinformatical tools and
workflows for analyzing data in a standardized way.

Recently, a Microbiome Search Engine (MSE) (Su et al. 2018; Jing et al. 2021a)
has been proposed for rapid match of microbiomes in a “community to communi-
ties” mode. By a dynamic index and whole-microbiome-level similarity scoring
functions (Jing et al. 2019; Su et al. 2014), MSE enables the real-time accessibility of
microbiomes with aimed structure from huge number of samples. In this way, with a
newly sequenced microbiome, people can answer what existing samples in the
repositories or databases have an overall similar community to it, thus predict the
environmental conditions or health status.

Technical variation is a key barrier to integrate microbiome datasets from multi-
ple sources and batches. These factors mainly include (but not limited to) DNA
extraction, PCR primers for marker genes, sub-regions of the marker gene amplifi-
cation, sequencing platforms and types of sequence reads (Costea et al. 2017; Xiao
et al. 2022). Technical differences can outweigh the taxonomy diversity among
sample groups (Hacquard et al. 2015; Lozupone et al. 2013), e.g. human
microbiomes from hosts with different states, ages, locations and diets, interfering
the cross-study comparison, even such variation can be reduced by computational
methods (Jing et al. 2021b). Thus, amplicon-based studies still need unified exper-
imental protocols. In contrast, shotgun WGS is less sensitive to technical variations
(Wirbel et al. 2019; Voigt et al. 2015), which is an optimal option for integration and
comparison of cross-study datasets.
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8.5 High-Resolution Bioinformatics on Single-Cell Level

One of the most important features of a microbial community is the complex inter-
species interactions. For some diseases, dynamics among status is always associated
with a series of microbiome structure variations. Detection and description of such
variation is the basis to understand the action mode of the microbiome. However, the
widely-used microbiome sequencing approaches typically only profile the overall
taxonomy composition (e.g. species) or functional structure (e.g. gene families). On
the other hand, multi-omics combination of the meta-transcriptome, meta-proteome,
or meta-metabolome faces tremendous challenges in rapid-response monitoring of
microbiome status for their destructive nature, tedious operation, and high cost.
Furthermore, the significant shortage in biomarkers of the microbiome also presents
major technical hurdles in tracing microbiome functions.

Fluorescence-Activated Cell Sorting Single-cell approaches including functional
sorting, sequencing, and cultivation potentially enable the discrimination and vali-
dation of the function of individual cells within a microbial community. Currently,
most function-based cell-sorting methods are based on fluorescence-activated cell
sorting (FACS) (Song et al. 2017). However, FACS always requires cell labeling
with fluorescent probes that target to specific proteins, metabolites, or nucleic acids,
thus requiring a priori knowledge about the biomarkers of the aimed functions.

Single-Cell Ramanome “Ramanome” is a label-free, single-cell-level functional
imaging tools that proposed for the “instant photography” of microorganisms (Lin
et al. 2016). It is a collection of single-cell Raman spectra (SCRS) captured from
individual cells within an isogenic population or consortium (Lin et al. 2016). Each
SCRS consists of over 1500 Raman bands that correspond to the chemical bonds
from the metabolites in a single cell, thus can be used to depict the profile of
metabolites in the cell. Since the metabolite profile is sensitive to the genetic
background, physiological state, and environmental changes of a cell, each SCRS
can be considered as a digital photo of ~1500 pixels. As an optical approach, the
ramanome is non-destructive to the cell and does not require external labeling or
biomarkers. Thus, a ramanome works as a single-cell-resolution metabolome that
can be obtained and analyzed with high speed and low cost.

8.6 Machine Learning Brings the Opportunity of Disease
Screening and Prediction in Precise Medicine

The volume of biological data has been intensively raised with the development of
high-throughput sequencing. Usually, biological features are surveyed into either
taxonomy units (e.g. species or OTUs) (Edgar 2013; Edgar 2010), or metabolic
functions (e.g. gene families or pathways) (Franzosa et al. 2018; Truong et al. 2015).
Then machine learning (ML) algorithms can reveal biological patterns of these
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features under different statuses, promoting data-driven disease detection and
screening (Namkung 2020; Topçuoğlu et al. 2020; Cammarota et al. 2020). One
of the most prevalent machine learning techniques, supervised classification, plays
important role in the pattern recognition of human diseases (Duvallet et al. 2017a;
Vangay et al. 2019) such as gingivitis (Huang et al. 2014; Huang et al. 2021), cancer
(Poore et al. 2020; Wirbel et al. 2019), diabetes (Bajaj et al. 2012), inflammatory
bowel disease (IBD) (Halfvarson et al. 2017; Gevers et al. 2014), etc. By training
classifiers and models using taxonomical or functional profiles from patients and
their healthy control, ML classifiers like support vector machines (SVM) (Cortes and
Vapnik 1995) and random forest (RF) (Breiman 2001) can identify the status of new
samples.

Basically, the data-based disease detection is a classification problem using
biological profiles (Su et al. 2020a). With profiles X = {x1, . . ., xn} for n samples
(here xi is the profile of a sample that can be represented by the richness of features
like species, genes, etc.) and their corresponding status meta-data (label) Y = {y1,
. . ., yn}, ML classifier solves a function Y= f(X) that maps the profiles to their meta-
data, thus identify the status of a new sample based on its profile. Here label yi in
meta-data Y is a discrete variable that represents a status (e.g. a specific disease). We
review the commonly used three types of ML classifiers for health status detection,
mainly including individual classifiers, ensemble classifiers and neural networks.

Individual Classifiers Logistic regression (LR) is a linear model based on a logistic
function to model a binary variable (Kleinbaum et al. 2002). LR calculates the
probability for an event, e.g. a microbiome sample is healthy or not. For its high
interpretability and efficiency, LR is widely used in biological feature based disease
recognition (Topçuoğlu et al. 2020; Song et al. 2020), although the accuracy is not as
good as other methods. Support vector machine (SVM) captures non-linear associ-
ations between biological profiles and their phenotypes to obtain the maximum
margin of samples that belong to different groups (Cortes and Vapnik 1995), thus
exhibits better performance rather than LR. Another approach is k-nearest neighbors
(k-NN), which directly labels an unknown sample by its nearest neighbors (Peterson
2009). The key problem of k-NN is how to suitably evaluate the neighborship among
samples (Comin et al. 2020). For example, relations among microbiomes are always
measured by distance metrices such as JCCARD, Bray-Curtis and Jensen-Shannon
Divergence (Ricotta and Podani 2017), or phylogeny-based distances like UniFrac
(McDonald et al. 2018b) or Meta-Storms (Jing et al. 2019) algorithms. Recently, A
search-based approach uses microbiome search engine (MSE) (Jing et al. 2021a) to
discriminate unhealthy microbiomes by a novelty score, and further detect their
disease types via phylogeny-based distances, which outperforms regular k-NN in
speed, robustness and sensitivity (Su et al. 2020b).

Ensemble Classifiers To further enhance the precision for status classification and
disease detection, ensemble classifier are developed by integrating individual ML
classifiers (Zhou 2009; Polikar 2012). Random forest (RF) builds multiple decision
trees by randomly selecting samples and features in training data, then combines the
predicted results of new samples by voting (Namkung 2020; Topçuoğlu et al. 2020;
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Breiman 2001; LaPierre et al. 2019). Another approach, gradient boosting decision
tree (GBDT), can assign a weight to each single sample, constructs the tree-like
models in a stage-wise way (Friedman 2001; Friedman 2002), and iteratively
updates parameters for minimum estimation errors (Ruder 2016). The ensemble
classifiers of RF and GBDT not only exhibit advantages in precision than individual
classifiers, but can also quantify and sort the importance of each biological features
in status classification (Duvallet et al. 2017b; Pasolli et al. 2016).

Neural Networks For classification, feature extraction from input data is crucial for
sensitivity and accuracy (Pouyanfar et al. 2018). Different from regular ML
approaches, neural network based deep learning automatically performs feature
selection and trains deep networks in an end-to-end mode (Glasmachers 2017),
which also reduces the high dimensionality and sparsity by the data complexity
and diversity. Neural networks (such as deep neural networks (DNNs) (Deng et al.
2016), recurrent neural networks (RNNs) (Mou et al. 2017), convolutional neural
networks (CNNs) (Gu et al. 2018), etc.) have been transplanted from image
processing to bioinformatical research with additional efforts in data adaption. For
example, in computer vision, CNNs generate new variables using convolution
operations on spatial neighboring pixels. However, such neighborship among bio-
logical features such as microbes or metabolic functions are not clear. To tackle this
problem, Sharma et al. (Sharma et al. 2020) developed a novel CNN method by
collapsing taxa to phylum-level clusters for human microbiome-based classification.
Lo et al. (Lo and Marculescu 2019) also mapped biological features into a negative
binomial distribution and solved over-fitting problem by data augmentation
in CNNs.
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The multi-omics studies have already proven themselves as a powerful approach for
the in-depth understanding of biology systems, from a data-driven perspective.
Based on these multi-omics studies, hundreds to thousands of studies have been
conducted for both basic researches and precision medicine applications, deepen our
understanding of the disease regulations patterns as well as dynamic models at
multiple levels. In recent years, this trend has become more obvious, with more
multi-omics studies conducted and more mature data integration and mining tech-
niques, a broad spectrum of applications have been realized, helping for fast
translation of molecular understanding of diseases to clinics. No doubt, that with
the increasing type and amount of multi-omics data, we could see more success
stories based on the analyses of these data.

The multi-omics studies will continue to grow, at least in two directions: first,
from multi-omics for the single organism or single species, to single-cell level omics
studies, as well as to population and community level studies (Fig. 1a); second, the
tight integration of multi-omics with data science as well as with clinical applications
(Fig. 1b).

From the aspect of multiple levels of omics data, we expect to see more types of
multi-omics data, expanding the scope of multi-omics: from the single organism or
single species, to single-cell level omics studies (Chappell et al. 2018), as well as to
population and community level studies (Rahnavard et al. 2021). We have already
seen rapid progress in this direction, largely due to the sequencing technical
advances (Buermans and den Dunnen 2014). For example, single-cell level omics
studies have already revealed the spatial-temporal patterns of how a biological
system develop at single-cell level, especially during disease progression (Chappell
et al. 2018). On the population and community level, population genetics have
already revealed the differences between different ethnic groups (Huang et al.
2015), while recent microbiome studies have also examined the patterns that have
never been discovered before on how microbes could assert such strong influences
on human health (Sharma and Gilbert 2018). All of these expansions of multi-omics
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Fig. 1 The two main
directions of multi-omics
research. (a) One direction
is from single cell to
individual species’ multi-
omics to population and
community level omics. (b)
Another direction is from
integration of omics data to
data analysis, to knowledge
discovery, to applications

studies at different scales have pushed the multi-omics researches to be closer to a
full picture of the dynamic regulation system in human.

From the aspect of the integration of multi-omics with data science as well as with
clinical applications, there are very hard challenges still lying ahead. Firstly about
“from bedside to bench”, since more types of multi-omics data could be obtained,
while how these multi-omics data at different levels correspond to each other
remains illusive, so new sampling as well as sequencing techniques are needed for
a solid multi-omics study. Secondly about data integration and data mining, new
tools especially deep learning tools are urgently needed for mining of hidden
patterns (Shi et al. 2019). Thirdly about “from bench to bedside”, any analytical
results, regardless of biomarker, dynamic pattern or functional gene, should be
validated by wet-lab experiments, and the fast and reliable translation of multi-
omics knowledge to clinical practices is critical (Plebani 2021), which might also
need a shift of mindset: the combination of data-driven and clinical problem driven.

From the aspect of the biological computing, it is the trend to integrate advanced
AI technology and cutting-edge biotechnology through long-term and large-scale,
towards a new type of multi-omics detection and analysis, high-throughput exper-
imental simulation, intelligent molecular discovery engine, and accelerating the
development of new drugs and diagnostic products. There have been many studies
in this area with good results, including biocomputing drives innovation and devel-
opment of plant-based natural medicines (Thomford et al. 2018), simulating the
biomolecules of interest in research (Giannakis et al. 2020), the design of biological
therapeutics with silico methods (Roy et al. 2017). It would be desirable to connect
laboratory instruments and computing systems to build a dry and wet closed-loop
model, organically combine artificial intelligence models with wet experiments, and
overcome the limitations of artificial intelligence models that do not have enough
experimental data to modify and test parameters. For examples, at present, drug
development of pharmaceutical companies is mainly based on human assumptions
and existing experimental capabilities. In this way, the potential target space or
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pharmaceutical space that can be explored is greatly limited by the accumulation of
existing research and development. With artificial intelligence methods, more com-
plex data can be considered comprehensively, and higher-dimensional information
can be observed. Based on this, it can take advantage of AI models and computing
resources, combine self-produced experimental data and medical and pharmaceuti-
cal expertise to discover new drug targets. And a broad spectrum of applications
could follow this scheme to be equipped with AI for more knowledge discovery.

Collectively, it is now a multi-omics age, and everyone should keep pace with
it. It is based on multi-omics data analysis and interpretation that many of current
clinical applications are possible, and there is no doubt that more clinical applica-
tions would be heavily dependent on multi-omics studies. In this book, we have
described the needs for multi-omics, the basic database and tools for omics data
analysis, as well as representative applications based on muti-omics studies. We
hope the readers could gain basic idea about multi-omics, and could use the
information provided in this book to help for designing and conducting their own
project. And we believe that many pieces of information provided here could also
help those who are working in area of systems biology to gain more idea to improve
their studies.

Good luck!



References

Buermans HPJ, den Dunnen JT. Next generation sequencing technology: advances and applica-
tions. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842(10):1932–41.

Chappell L, Russell AJC, Voet T. Single-cell (multi)omics technologies. Annu Rev Genomics Hum
Genet. 2018;19(1):15–41.

Giannakis K, et al. Particular biomolecular processes as computing paradigms. Cham: Springer
International Publishing; 2020.

Huang T, Shu Y, Cai Y-D. Genetic differences among ethnic groups. BMC Genomics. 2015;16(1):
1093.

Plebani M. Chapter 3—“Omics” translation: a challenge for laboratory medicine. In: Wehling M,
editor. Principles of translational science in medicine (third edition). Boston: Academic; 2021.
p. 21–32.

Rahnavard A, et al. Omics community detection using multi-resolution clustering. Bioinformatics.
2021;37(20):3588–94.

Roy A, et al. In silico methods for design of biological therapeutics. Methods. 2017;131:33–65.
Sharma A, Gilbert JA. Microbial exposure and human health. Curr Opin Microbiol. 2018;44:79–87.
Shi Q, et al. Deep learning for mining protein data. Brief Bioinform. 2019;22(1):194–218.
Thomford NE, et al. Natural products for drug discovery in the 21st century: innovations for novel

drug discovery. Int J Mol Sci. 2018;19(6):1578.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
K. Ning (ed.), Methodologies of Multi-Omics Data Integration and Data Mining,
Translational Bioinformatics 19, https://doi.org/10.1007/978-981-19-8210-1

167

https://doi.org/10.1007/978-981-19-8210-1#DOI

	Preface
	About the Book
	Contents
	About the Editor
	Chapter 1: Introduction to Multi-Omics
	1.1 The History of Omics
	1.1.1 1971-1910: Discovery of DNA
	1.1.2 1950-1968: Development of Knowledge about DNA
	1.1.3 1977-Present: Sequencing of DNA Related Stories

	1.2 Omics: DNA, RNA, Protein, and Microbiome
	1.3 Databases and Tools for Omics Studies
	1.4 Multi-Omics Applications
	1.5 Future Perspectives
	References

	Part I: Omics Integration Techniques
	Chapter 2: Biomedical Applications: The Need for Multi-Omics
	2.1 Biomedical Big Data and Challenges
	2.2 Deep Learning for Biomedical Big Data
	2.2.1 Application of Functional Gene Mining
	2.2.1.1 Using Comparisons and Annotations to Discover Genes
	2.2.1.2 Using Expression Differences to Discover Genes

	2.2.2 Protein Structure Prediction

	2.3 Representative Databases and Analytical Tools
	2.4 Representative Applications Based on Multi-Omics Big Data
	2.4.1 Microbiome Mining for Cancer Research
	2.4.2 The Twin Astronauts
	2.4.3 Integrative Analysis of Genomics, Epigenomics, Transcriptomics

	2.5 When Biocuration Meet Artificial Intelligence
	2.5.1 The Current State of Biocuration
	2.5.2 The Current State of Artificial Intelligence and its Application in Biocuration
	2.5.3 In Alliance Is the Trend

	2.6 Conclusion
	References

	Chapter 3: -Omics Technologies and Big Data
	3.1 Multi-Omics Data Types and Underlying Technology
	3.1.1 Genomics & Transcriptomics Data Analysis
	3.1.2 Metagenomics Data Analysis
	3.1.3 Proteomics Data Analysis
	3.1.4 Metabolomics Data Analysis
	3.1.5 Single-Cell Data Analysis
	3.1.6 Biomedical Image Data Analysis

	3.2 Biological Big Data Research
	3.2.1 Research Trend of Biological Big Data
	3.2.2 Challenges in -Omics Research
	3.2.3 Multi-Omics Data Integration Tools and Databases
	3.2.4 Auxiliary Data and Tools for Multi-Omics Data Integration
	3.2.4.1 Relevant Metadata
	3.2.4.2 Quality Assurance Example


	3.3 Case Studies on Multi-Omics Data Integration: Resources and Applications
	3.3.1 Multi-Omics Data Resources for Human Brain Diseases
	3.3.2 Multi-Omics Data Resources for Cancer Cell Lines
	3.3.3 Multi-Omics Research for Retinoblastoma
	3.3.4 Multi-Omics Research for Cardiovascular Disease
	3.3.5 Multi-Omics Research for Infectious Disease

	References

	Chapter 4: Multi-Omics Data Mining Techniques: Algorithms and Software
	4.1 Introduction
	4.2 Software for Multi-Omics Data Integration
	4.2.1 Matrix Factorization Methods
	4.2.1.1 Joint/Integrative Non-negative Matrix Factorization (jNMF, iNMF)
	4.2.1.2 iCluster
	4.2.1.3 iCluster+
	4.2.1.4 Multiple Factor Analysis (MFA)
	4.2.1.5 Joint and Individual Variation Explained (JIVE)
	4.2.1.6 Joint Bayes Factor

	4.2.2 Bayesian Approach
	4.2.2.1 Bayesian Consensus Clustering (BCC)
	4.2.2.2 Multiple Dataset Integration (MDI)
	4.2.2.3 COpy Number and EXpression in Cancer (CONEXIC)
	4.2.2.4 Multi-Omics Factor Analysis (MOFA)
	4.2.2.5 Patient-Specific Data Fusion (PSDF)

	4.2.3 Network-Based Methods
	4.2.3.1 Similarity Network Fusion (SNF)
	4.2.3.2 Low-Rank Approximation Based Multi-Omics Data Clustering (LRAcluster)
	4.2.3.3 Pathway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM)
	4.2.3.4 NetICS
	4.2.3.5 Perturbation Clustering for Data INtegration and Disease Subtyping (PINS) and PINSPLUS

	4.2.4 Multiple Kernel Learning Methods and Multi-Step Analysis-Based Methods
	4.2.4.1 Feature Selection Multiple Kernel Learning (FSMKL)
	4.2.4.2 Regularized Multiple Kernel Learning Locality Preserving Projections (rMKL-LPP) & Web-rMKL
	4.2.4.3 CNAmet
	4.2.4.4 Integrative Bayesian Analysis of Genomics Data (iBAG)


	4.3 Software for Multi-Omics Data Interpretation and Visualization
	4.3.1 UCSC Xena
	4.3.2 LinkedOmics
	4.3.3 NetGestalt
	4.3.4 3Omics
	4.3.5 Paintomics 3
	4.3.6 MethHC & MethHC 2

	4.4 Challenges of Multi-Omics Data Manipulation
	4.5 Conclusions and Future Perspectives
	References


	Part II: Applications of Multi-omics Analyses
	Chapter 5: Multi-Omics Data Analysis for Cancer Research: Colorectal Cancer, Liver Cancer and Lung Cancer
	5.1 Introduction
	5.2 Various Multi-Omics Data Types and Selected Repositories
	5.2.1 DriverDB v3
	5.2.2 TCGA Portal
	5.2.3 ICGC
	5.2.4 CCLE
	5.2.5 LinkedOmics
	5.2.6 RHPCG
	5.2.7 MOBCdb
	5.2.8 Target

	5.3 Selected Integrative Tools for Multi-Omics Analysis
	5.4 Overview of Cancer Multi-Omics Research
	5.4.1 Lung Cancer
	5.4.2 Colorectal Cancer
	5.4.3 Liver Cancer

	5.5 Conclusion
	References

	Chapter 6: Multi-Omics Data Analysis for Inflammation Disease Research: Correlation Analysis, Causal Analysis and Network Anal...
	6.1 Introduction
	6.2 Human Gut Microbiota and Gut Microbiome
	6.3 Relationship Between Inflammation Diseases and Human Gut Microbiota
	6.4 The Advantages of Multi-Omics Approaches and the Methodology for Integrating the Multi-Omics Datasets
	6.5 The Application of Multi-Omics Approaches to Inflammation Diseases and its Clinical Treatment with Microbiome Approaches
	6.6 Conclusion
	References

	Chapter 7: Microbiome Data Analysis and Interpretation: Correlation Inference and Dynamic Pattern Discovery
	7.1 Microbiome and its Importance
	7.2 Experimental and Analytical Approaches for Microbiome Researches
	7.2.1 Metagenomics
	7.2.1.1 The Differences Between 16S and Metagenome (Ruairi Robertson 2020)
	The Sequencing Principles
	Different Fields of Study
	Different Degrees of Species Identification
	Application Fields of Metagenomics
	The Process of Metagenomics Research



	7.2.2 High-Throughput Sequencing Technology
	7.2.2.1 Application of High-Throughput Sequencing Technology to Species Identification
	7.2.2.2 Application of High-Throughput Sequencing Technology to Individual Identification
	7.2.2.3 Technical Deviations of High-Throughput Sequencing Technology

	7.2.3 Optimizing Microbiome Research Methods to Avoid Misunderstandings
	7.2.3.1 Influencing Factors
	7.2.3.2 Precautions during Sample Collection and Processing
	Sample Storage Conditions
	Set Negative Control
	Set Positive Control



	7.3 Microbiome Big Data and Challenges
	7.3.1 Main Methods of Microbiome Analysis
	7.3.1.1 Amplicon Analysis Software
	7.3.1.2 Metagenomics Analysis Software
	7.3.1.3 Statistics and Visualization Tools

	7.3.2 The Basic Process of Microbiome Analysis
	7.3.2.1 Experimental Design
	7.3.2.2 Higher Level Analysis
	7.3.2.3 Integrating Other Omics Data

	7.3.3 The Basic Flow of Microbiome Data Analysis

	7.4 Representative Microbiome Databases and Analysis Tools
	7.5 Representative Microbiome Analysis Applications
	7.5.1 Biogeographical Characteristics of the Intestinal Flora
	7.5.2 Plasticity of Intestinal Flora (Dynamic Pattern)
	7.5.3 Gene Mining

	7.6 Conclusion and Perspectives
	References

	Chapter 8: Current Progress of Bioinformatics for Human Health
	8.1 Introduction
	8.2 Genome Comparison and Analysis Expands our Understanding of Genetic Diseases and Treatments
	8.3 Transcriptome Analysis Enables the in-Depth Elucidation of Disease Mechanisms
	8.4 A New Sight on Human-Microbe Associations by Data Mining of Microbiome
	8.5 High-Resolution Bioinformatics on Single-Cell Level
	8.6 Machine Learning Brings the Opportunity of Disease Screening and Prediction in Precise Medicine
	References


	Concluding Remarks
	References

