

Learn Python in 7 Days

Get up-and-running with Python

Mohit
Bhaskar N. Das

 BIRMINGHAM - MUMBAI

Learn Python in 7 Days
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1190517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78728-838-6

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Mohit
Bhaskar N. Das

Copy Editor
Muktikant Garimella

Reviewer
Rejah Rehim

Project Coordinator
Ulhas Kambali

Commissioning Editor
Kunal Parikh

Proofreader
Safis Editing

Acquisition Editor
Denim Pinto

Indexer
Pratik Shirodkar

Content Development Editor
Anurag Ghogre

Graphics
Abhinash Sahu

Technical Editor
Hussain Kanchwala

Production Coordinator
Deepika Naik

  

About the Authors
Mohit (mohitraj.cs@gmail.com) is a Python programmer with a keen interest in the field of
information security. He has completed his bachelor's degree in technology in computer
science from Kurukshetra University, Kurukshetra, and master’s in engineering (2012) in
computer science from Thapar University, Patiala. He is a C|EH, ECSA from EC-Council
USA and a former IBMer. He currently works in Sapient. He has published several articles
in national and international magazines. He is the author of Python Penetration Testing
Essentials and Python: Penetration Testing for Developers, also by Packt.

His LinkedIn profile is h t t p s ://w w w . l i n k e d i n . c o m /i n /m o h i t - 990a 852a /.

First of all, I am grateful to the Almighty for helping me to complete this book. I would like
to thank my mother for her love and encouraging support and my father for raising me in a
house with desktops and laptops. A big thanks to the co-author, Bhaskar Das. I would also
like to thank everyone who has contributed to the publication of this book, including the
publisher, especially the technical reviewers and also the editors, Denim and Anurag. Last
but not least, I'm grateful to my i7 Dell XPS laptop, without which it would not have been
possible to write this book.

Bhaskar N. Das (bhaskarndas@gmail.com) is an application developer with a keen interest
in the field of analytics and financial markets. He completed his Bachelor of Technology in
Mechanical Engineering from Dehradun Institute of Technology, India and his master's
degree in science (2014) in CSR and ethical management from FH BFI, Vienna, Austria. He
has eight years of experience with IBM and has worked on several web and analytics-
related technologies. He has published technical articles in leading magazines.

His LinkedIn profile is h t t p s ://w w w . l i n k e d i n . c o m /i n /b h a s k a r - d a s - 093a 2012/.

It has been my pleasure to work with the Packt team, and I am thankful to them for
providing me with such a wonderful opportunity. I am also thankful to my co-author
Mohit for his invaluable help. Finally, I am thankful to my family who just helped me to
timely complete the work. Well, this work would not have been possible without the newly
devised CDP tool, so a great thanks should be given to it and also to all the resources that
helped in the timely completion of this book.

mailto:mohitraj.cs@gmail.com
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
https://www.linkedin.com/in/mohit-990a852a/
mailto:bhaskarndas@gmail.com
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/
https://www.linkedin.com/in/bhaskar-das-093a2012/

About the Reviewer
Rejah Rehim is currently a security architect with Faya Innovations, India and is a long-
time preacher of open source and has authored a book titled, Effective Python Penetration
Testing. He is a steady contributor to the Mozilla Foundation and his name has been
featured in the San Francisco Monument made by the Mozilla Foundation.

He is a part of the Mozilla add-on review board and has contributed to the development of
several node modules. He has also been credited with the creation of eight Mozilla add-ons,
including the highly successful Clear Console add-on which was selected as one of the best
Mozilla add-ons of 2013. With a user base of more than 44,000, it has registered more than
6,50,000 downloads till date. He has successfully created the world's first one-of-a-kind
security testing browser bundle, PenQ, an open source Linux-based penetration testing
browser bundle preconfigured with tools for spidering, advanced web searching,
fingerprinting, and so on.

Rejah is also an active member of the OWASP and a chapter leader of OWASP Kerala. He is
also an active speaker at Coffee@DBG, one of the most premier monthly tech rendezvous in
Technopark, Kerala. Besides being a part of the Cyber Security division of Faya currently
and QBurst in the past, Rejah is also a fan of process automation and has implemented it in
Faya.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /L e a r n - P y t h o n - 7- d a y s - M o h i t /d p /1787288382/.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/
https://www.amazon.com/Learn-Python-7-days-Mohit/dp/1787288382/

Table of Contents
Preface 1

Chapter 1: Getting Started with Python 6

Why Python? 6
Python applications 7
Versions 7
Implementations of Python 7

Installation 8
Installation on Windows platform 8
Installation on Linux platform 11
Installation on Mac OS 12

Notepad++ installation 14
Python file formats 14
Python interactive shell 14
System or environment variables 16

Setting environment variables in Windows 16
Setting environment variables in Linux 20
Setting environment variables in Mac OS (OS 10.9) 20

Writing a simple Hello World! program 20
Basic Python syntax 21

Comments in Python 22
Triple, double and single quotes 22
Python back slash 24
String inside the quotes 25
Escape sequence in Python 25
String concatenation 26
Formatted output 26
Indentation 27

Summary 27

Chapter 2: Type Variables and Operators 28

Variables 28
Single assignment 29
Multiple assignment 29
Data types in Python 29

Numeric data types or numbers 30

[ii]

Integers and long integers 30
Floating point numbers 31
Complex numbers 32
Boolean data type 33
String data types 34

American Standard Code for Information Interchange (ASCII) character
sets 35
Conversion functions 36
Arithmetic expressions 37

Mixed mode arithmetic 38
Mixed Mode Conversion 38

Type conversions 39
Operators 39

Arithmetic operators 40
Comparison operators 40
Variants of assignment operator 43
Bitwise operators 44
Logical operators 45
Membership operators 46
Identity operators 47
Operator precedence 50

Summary 51

Chapter 3: Strings 52

Python strings 52
The subscript operator 53

Slicing for substrings 54
Python string methods 56

String case methods 57
String strip methods 59
String split methods 60
String justify methods 61
String Boolean methods 64

String functions 68
Tuple 70

Creating an empty tuple 70
Creating tuple with elements 70
Indexing tuple 71
Slicing of tuple 71
Unpacking the items of tuples 73

Tuple functions 74

[iii]

Operations of tuples 76
Exercise 77
Summary 77

Chapter 4: Lists 78

Creating a list 78
Creating a list with values 78

Unpacking list values 79
List operations 80

Accessing list values 80
Slicing the list 80
Updating the list 81
Deleting values from a list 82
Addition of Python lists 82
Multiplication of lists 83

in operator 84
List functions 85

len() 85
max () 85
list () 86
sorted () 87

List methods 88
append () 88
extend () 89
Difference between append and extend. 90
count () 91
index () 91
insert() 92
remove() 93
pop() 94
reverse() 98

List comprehensions 98
Exercises 101
Summary 101

Chapter 5: Dictionary 102

Overview of dictionary 102
Operations on the dictionary 103

Accessing the values of dictionary 103
Deleting an item from the dictionary 104

[iv]

Updating the values of the dictionary 105
Adding an item to the dictionary 105

Dictionary functions 106
len() 106
str() 106
max() 106
min() 107
dict() 107

Dictionary methods 109
copy() 109
get() 111
setdefault() 111
has_key() 112
keys() 112
values() 113
update() 114
items() 114
clear() 114

Python dictionary with for loop 115
Practical program 117

Exercise 118
Summary 119

Chapter 6: Control Statements and Loops 120

Control statements 120
The if and if...else statement 121
The if...elif...else statement 123
Loops 125

Types of loops 125
Definite loop 126
Indefinite loop 131

The while True and break statement 134
The break statement 136

Nested loops 137
The continue and pass statements 138
The pass statement 140

Summary 141

Chapter 7: Function and Scope of Variable 142

Functions 142
Categories of functions 143

Built-in functions 144

[v]

User-defined functions 144
Function definition 144
Calling a function 145
Function with arguments 146
Function with an argument and return type 148
Function with default argument 149
Function with variable length argument 150
Key-value pair as variable length argument 151

Pass by reference versus pass by value 152
Scope of variables 154
Memory management 159
Summary 160

Chapter 8: Modules and Packages 161

Modules 161
The import statement 162
Locating Python modules 166
Compiled Python files 169
The Python package 172
Summary 174

Chapter 9: File Handling and Exceptions 175

Reading text from a file 175
The read() method 175
The readline() method 177
The readlines() method 178
Exercise 179

Writing text to a file 180
Examples 184

Pickling 184
Unpickling 185
Exceptions 187

The try statement with an except clause 188
Multiple exception blocks 190
The try...finally statement 192
The exception argument 193
Raising exceptions 194
User-defined exceptions 195

Summary 197

Chapter 10: Collections 198

Collections 198

[vi]

Counter 199
Update function 202

Usage of counters 204
Operations of Python collection counter 208

Deque 209
Populating deque 210
Deque consumption 212
Deque rotation 213

Ordered dictionary 214
Sorting of ordered dictionary based upon keys 215
Sorting of ordered dictionary based upon values 216

Default dictionary 218
Sample problem solved by the default dictionary - scenario one 221
Sample problem solved by the default dictionary - scenario two 222

Named tuple 223
Adding values and creating a dictionary 225

Summary 227

Chapter 11: Class and Objects 228

Object-oriented programming overview 228
Key concepts 228
Creating a class 229

Instance variables 230
The __init__ method 231
Class variables 236
Class inheritance 241

Multiple inheritance 245
Multilevel inheritance 246

Overriding methods 246
Operator overloading 247
The class method 252
The static method 254
The private variable 255
Summary 257

Index 258

Preface
Python was initially developed by Guido Von Rossum as a fun project and was named after
his favorite show Monty Python's Flying Circus. It was developed in 1991, but it started
becoming popular around 2008. A major contributor to this popularity was Google, which
has developed a number of platforms using Python. Recently, Python has been popularized
by cloud, DevOps, data science, data analytics, machine learning, and natural language
processing. With more and more data harvesting and data processing, people want to get
into new types of job roles, which require basic programming skills, and Python perfectly
suits all the categories of job work. Learn Python in 7 Days has been designed to give such
people an easy way to learn and master the basics of Python in 7 days. The book covers the
basic and necessary concepts that are required to understand the working of the Python
language. The book is for all types of readers and learners. It also acts as a refresher for
experienced people. We believe that we have covered as much as possible for making it a
book to be finished in seven days; however, we believe that merely reading the book is not
sufficient to master programming skills. It will take more than that to achieve mastery. We
hope you enjoy reading the book and use it as a good learning book.

What this book covers
Chapter 1, Getting Started with Python, gives you the background of Python programming
language, along with installation instructions and basic commands.

Chapter 2, Type Variables and Operators, gives you an idea of variable types and the various
types of operators used in Python.

Chapter 3, Strings, sheds light on various strings and string operations in Python.

Chapter 4, Lists, gives the idea of one of the important collection types, called lists,
available in Python and all the relevant operations that could be done on lists.

Chapter 5, Dictionary, covers another important collection type available in Python and
deals with the basics of dictionary and the various operations on a dictionary.

Chapter 6, Control Statements and Loops, discusses about various control statements, such as
if statement, and loops (for, while, and so on), which could be used to write a piece of code
in Python.

Preface

[2]

Chapter 7, Function and Scope of Variable, gives you an idea about functions that could be
user-defined or built in. The chapter talks about the basics of a function and various
operations. Also, the chapter gives you an idea about the validity of a variable within the
particular scope of the code block.

Chapter 8, Modules and Packages, discusses about various modules and packages that are
available in Python and also how to create your own package and module.

Chapter 9, File Handling and Exceptions, is divided into two parts; the first part deals with
different file handling operations and the second part deals with exception handling.

Chapter 10, Collections, gives you the primer for different types and subtypes of collections
in Python and explains the basic operations that could be done on them.

Chapter 11, Class and Objects, finally gives you an idea about some object-oriented
programming concepts that are available in Python.

What you need for this book
For this book, you need to install Python 2.7x version on your machine, along with a simple
text editor (Notepad or Notepad++). All the examples are meant to be run on the Python 2.7
version and will not work in Python 3.x versions.

Who this book is for
This book is intended for people who have zero to some background in computer
programming. It is also intended for people who want to have some refresher in Python
programming.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
step is to edit build.properties file."

A block of code is set as follows:

print "Name Marks Age"
print ("%s %14.2f %11d" % ("John Doe", 80.67, 27))
print ("%s %12.2f %11d" %("Bhaskar" ,76.901, 27))
print ("%s %3.2f %11d" %("Mohit", 56.98, 25))

Any command-line input or output is written as follows:

 $ brew install python

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Once done, click on
Activate."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p s ://g i t h

u b . c o m /P a c k t P u b l i s h i n g /L e a r n - P y t h o n - i n - 7- d a y s . If you purchased this book
elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t and register to have the files
e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Java-9-Programming-By_Example. We also have other
code bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P

a c k t P u b l i s h i n g /. Check them out!

https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
https://github.com/PacktPublishing/Learn-Python-in-7-days
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with Python

The Python language had a humble beginning in the late 1980s when a Dutchman Guido
Von Rossum started working on a fun project, which would be a successor to ABC language
with better exception handling and capability to interface with OS Amoeba at Centrum
Wiskunde and Informatica. It first appeared in 1991. Python 2.0 was released in the year
2000 and Python 3.0 was released in the year 2008. The language was named Python after
the famous British television comedy show Monty Python's Flying Circus, which was one of
Guido's favorite television programmes. Here we will see why Python has suddenly
influenced our lives and the various applications that use Python and its implementations.
In this chapter, you will be learning the basic installation steps that are required to perform
on different platforms (that is Windows, Linux, and Mac), about environment variables,
setting up of environment variables, file formats, Python interactive shell, basic syntaxes
and finally printing out formatted output.

Why Python?
Now you might be suddenly bogged with the question, why Python? According to
 Institute of Electrical and Electronics Engineers (IEEE) 2016 ranking Python ranked third
after C and Java. As per Indeed.com's data of 2016, the Python job market search ranked
fifth. Clearly, all the data points to the ever rising demand in the job market for Python. Its a
cool language if you want to learn just for fun or if you want to build your career around
Python, you will adore the language. At school level, many schools have started including
Python programming for kids. With new technologies taking the market by surprise Python
has been playing a dominant role. Whether it is cloud platform, mobile app development,
BigData, IoT with Raspberry Pi, or the new Blockchain technology, Python is being seen as
a niche language platform to develop and deliver a scalable and robust applications.

Getting Started with Python

[7]

Some key features of the language are:

Python programs can run on any platform, you can carry code created in
Windows machine and run it on Mac or Linux
Python has inbuilt large library with prebuilt and portable functionality, also
known as the standard library
Python is an expressive language
Python is free and open source
Python code is about one third of the size of equivalent C++ and Java code
Python can be both dynamically and strongly typed--dynamically typed means it
is a type of variable that is interpreted at runtime, which means, in Python, there
is no need to define the type (int or float) of the variable

Python applications
One of the most famous platforms where Python is extensively used is YouTube. The other
places where you will find Python being extensively used are the special effects in
Hollywood movies, drug evolution and discovery, traffic control systems, ERP systems,
cloud hosting, e-commerce platform, CRM systems, and whatever field you can think of.

Versions
At the time of writing this book, two main versions of the Python programming language
were available in the market, which are Python 2.x and Python 3.x. The stable release as of
writing the book were Python 2.7.13 and Python 3.6.0.

Implementations of Python
Major implementations include CPython, Jython, IronPython, MicroPython, and PyPy.

Getting Started with Python

[8]

Installation
Here we will look forward to the installation of Python on three different OS platforms,
namely, Windows, Linux, and Mac OS. Let's begin with the Windows platform.

Installation on Windows platform
Python 2.x can be downloaded from h t t p s ://w w w . p y t h o n . o r g /d o w n l o a d s . The installer is
simple and easy to install. Perform the following steps to install the setup:

Once you click on setup installer, you will get a small window on your desktop1.
screen as shown here; click on Next:

https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads
https://www.python.org/downloads

Getting Started with Python

[9]

Provide a suitable installation folder to install Python. If you don't provide the2.
installation folder, then the installer will automatically create an installation
folder for you, as shown in the following screenshot. Click on Next:

Getting Started with Python

[10]

After completion of step 2, you will get a window to customize Python as shown3.
in the preceding screenshot. Notice that the Add python.exe to Path option has
been marked x. Select this option to add it to system path variable (which will be
explained later in the chapter), and click on Next:

Getting Started with Python

[11]

Finally, click on Finish to complete the installation:4.

Installation on Linux platform
These days most of the Linux-based systems come preloaded with Python, so in most cases,
you do not need to install it separately. However, if you do not find your desired version of
Python on the Linux platform, you can download your desired version for a particular
Linux platform from the site h t t p s ://w w w . p y t h o n . o r g /d o w n l o a d s /s o u r c e /. Perform the
following steps:

Extract the compressed file using the tar -xvzf1.
python_versionx.x command.
Browse the directory of the compressed file as shown in the screenshot:2.

https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/
https://www.python.org/downloads/source/

Getting Started with Python

[12]

Run the following commands:3.

 [root@localhost Python-2.7.12]# ./configure
 [root@localhost Python-2.7.12]# make
 [root@localhost Python-2.7.12]# make install

Use the command as shown in screenshot to ensure that Python is running:4.

Installation on Mac OS
For Mac OS, you will get the installer from the site h t t p s ://w w w . p y t h o n . o r g /d o w n l o a d s /m

a c - o s x /.

https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/
https://www.python.org/downloads/mac-osx/

Getting Started with Python

[13]

For the new Mac OS X, Sierra comes loaded with Python 2.7 and it's good for learning but
the same cannot be used to develop advanced-level programs. You do not need to
separately install Python on the new Mac OS X. However, a word of caution is that the
version of Python packed with the Mac OS could be out of date and might require
updating. If you still want to install a separate version, you can follow the simple steps
mentioned as follows:

First of all, you might require to install Xcode, Xcode is the IDE for platform and1.
can be downloaded from the Apple appstore.
Once Xcode is installed, you need to install the command-line tools, which can be2.
installed by running the xcode-select --install command on the terminal
found under /Applications/Utilities/, as shown in the following
screenshot:

 A pop-up window appears with three different options as shown here:3.

Once you click on Install and agree to their terms and conditions, the command-4.
line tools will start to download and will be installed in few minutes depending
on the Internet connection.

Getting Started with Python

[14]

The next step in the process would be to install Homebrew, which is a package5.
manager for Mac OS and handles the Python package. In order to install
Homebrew, simply provide the following inputs to the terminal:

 /usr/bin/ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew/install/master/install)"

To install the latest python2 version, simply type brew install python on the6.
terminal:

 $ brew install python

In order to install python3, you need to use brew install python3.

Notepad++ installation
Notepad++ is one of the easy-to-use text editors and is a free open source software program,
which could be easily downloaded from h t t p s ://n o t e p a d - p l u s - p l u s . o r g /. We will be
using this text editor to create simple programs.

Python file formats
Every language understands a file format, for example, like the C language file extension is
.c likewise java language has a file extension .java. The Python file extension is .py while
bytecode file extension is .pyc.

Python interactive shell
Python interactive shell is also known as Integrated Development Environment (IDLE).
With the Python installer, two interactive shells are provided: one is IDLE (Python GUI)
and the other is Python (command line). Both can be used for running simple programs.

https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/

Getting Started with Python

[15]

For complex programs and executing large files, the windows command prompt is used,
where after the system variables are set automatically, large files are recognized and
executed by the system.

The preceding screenshot is what we call Python IDLE, which comes bundled with the
Python installation. The next screenshot is of the command line that also comes bundled
with the Python installation, or we can simply launch the Python command through the
windows command line and get Python command line. For most of our programming
instructions, we will be using the Python command line:

Getting Started with Python

[16]

System or environment variables
If you remember the installation steps explained earlier, you might be still thinking what
are system variables? They are a set of predefined variables, which are available to all
programming units. If it's not set, then each and every time you want to run your program
or execute a Python file, you will have to manually provide path for each Python
executable, but if python.exe is set as a system variable, then the system automatically
recognizes your programming instruction and starts executing.

Setting environment variables in Windows
Here, if python.exe is not provided to the path variable, then the system does not
recognize python as a command, as shown in the following screenshot:

Getting Started with Python

[17]

The Windows command prompt does not recognize python as shown in the previous
screenshot. Once Python has been updated in the path variables or system variables, the
windows command line recognizes the python command and executes as shown here:

During installation, the installer provides an option to set system variables, which we have
seen in our installation steps. But in case you missed that out, you need not worry. You can
manually set the system variables. Simply follow these steps:

Just right-click on My Computer (older version of Windows PC) or Computer1.
(win 7 onwards) and select Properties. Once you have selected the properties,
you will get the following screenshot where you need to select Advanced system
settings:

Getting Started with Python

[18]

After you have clicked on Advanced system settings, you will get System2.
Properties. Click on the Environment Variables button.
After completing Step 2, a window will pop up. From the System variables pane,3.
select Path and click on the Edit button.
Your Python installation will look something like the following screenshot, where4.
you need to right-click on the address bar and select the Copy address as text
option:

Getting Started with Python

[19]

Add the Python installation folder path to the Path variable.5.
Click on OK and then again on OK to close all the windows. Our system variable6.
is set:

Getting Started with Python

[20]

Setting environment variables in Linux
Linux comes with different types of shells and the Python directory path is
usually /usr/local/bin/python:

csh shell: Open the terminal and enter setenv PATH
"$PATH:/usr/local/bin/python" followed by pressing Enter
bash shell: On the terminal, enter export
PATH="$PATH:/usr/local/bin/python" followed by pressing Enter
sh or ksh shell: Enter PATH="$PATH:/usr/local/bin/python" followed by
pressing Enter

Setting environment variables in Mac OS (OS 10.9)
Here, simply you need to edit the launchd.conf file and add the path variable to the file:

$ sudo edit /etc/launchd.conf
setenv PYTHONPATH /Users/vesper/temp:/Users/vesper/misc

Writing a simple Hello World! program
Congratulations on your successful installation. Now you can start programming. Open
Notepad++ and create a new file. In the new file, type the following:

print "Hello World!"

Save the file as hello.py.

Getting Started with Python

[21]

Open the command prompt and traverse to the folder where your file is located using cd
and then the path of the folder. For executing the file, the command will be python
hello.py as shown in the following screenshot:

It is quite easy, isn't it? Likewise, you can execute all the Python files. Once you start
working on projects and large files, it's always good to remain organized by creating a
folder structure.

Basic Python syntax
Basic syntaxes can be referred to as simple guidelines that every programming language
requires. Let's try to understand from our daily lives. Let's say you can't eat your food
without having it dressed and placed properly on the platter. You need to have proper
dressing of food before you can consume it. You prepare a special drink comprising
three measures of Gordon gin, one of vodka, half of Kina Lillet, and follow the process to
mix in steps. The process is necessary to have a perfect blend. These are sort of syntaxes
when we talk in terms of programming languages.

Getting Started with Python

[22]

Kina Lillet-Lillet (French pronunciation: [li'le]), classed as an aromatized
wine within EU law, is a French aperitif wine from Podensac, a small
village south of Bordeaux. It is a blend of 85% Bordeaux region wines
(Semillon for the Blanc and for the Rosé, Merlot for the Rouge) and 15%
macerated liqueurs, mostly citrus liqueurs (peels of sweet oranges from
Spain and Morocco and peels of bitter green oranges from Haiti). The mix
is then stirred in oak vats until blended. During the aging process, Lillet is
handled as a Bordeaux wine (undergoing fining, racking, filtering, and so
on).
The preceding information has been taken from h t t p s ://e n . w i k i p e d i a . o

r g /w i k i /L i l l e t .

Comments in Python
In Python, there are two types of comments--one is a single-line comment and the other is
multiline comment. For a single-line comment, # is used, while for a multiline comment,
triple quotes """ are used:

#This is a single line comment in Python

print "Hello World" #This is a single comment in Python

""" For multi-line
comment use three
double quotes
...
"""
print "Hello World!"

Triple, double and single quotes
Python doesn't care if you use single quotes or double quotes to print a single statement.
But, surely, both has some significance while printing complex statements, which we will
see soon.

https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet
https://en.wikipedia.org/wiki/Lillet

Getting Started with Python

[23]

print "Hello World!" and print 'Hello World!' will give the same output Hello
World! two times:

How will you print something like this:

I am mad in love do you think I am doing the right thing? One way is to enclose the complete thing within the
triple quotes as shown here:

print '''I am mad in love
 do you think
 I am doing
 the right thing '''

Alternatively, you can also use double quotes three times to achieve the same thing:

print """I am mad in love
 do you think
 I am doing

 the right thing """

Getting Started with Python

[24]

The preceding two examples are not in formatted form, they are just to show
how we can achieve multiline printing.

Let's try another example. What should be the outcome of the following statement?

print 'Hey there it's a cow'

The preceding piece of code gives the following results:

C:pydev>python hello.py
File "hello.py", line 1
print 'Hey there it's a cow'
^
SyntaxError: invalid syntax

Python simply interprets that the statement terminated with a single quote after it. The
solution is to enclose the complete sentence within double quotes as shown:

print "Hey there it's a cow"

Adding double quotes (") gives an error-free output as shown:

C:pydev>python hello.py
Hey there it's a cow

Python back slash
The Python back slash is used for continuation of the print statement. You can stretch a
single statement across multiple lines:

print "Hello
 world "

This gives the following output:

C:pydev>python hello.py
Hello world

Getting Started with Python

[25]

String inside the quotes
For printing a string, either a pair of single (' ') quotes or pair of double quotes (" ") can
be used as shown in the succeeding examples:

print "Hello World 'Mr' Bond"
print 'old world "but" still good'

This gives the following results:

C:pydev>python hello.py
Hello World 'Mr' Bond
old world "but" still good

Escape sequence in Python
The escape sequence is used to insert the tab, the newline, the backspace, and other special
characters into your code. They give you greater control and flexibility to format your
statements and code:

Escape Sequence Meaning

b Backspace

a Sound system bell

n Newline

t Horizontal tab

The character

' Single quotation mark

" Double quotation mark

print 'a'
print 'tHermit'
print "i know , they are 'great'"

The output is as follows:

C:pydev>python hello.py
Hermit
i know , they are 'great'

Getting Started with Python

[26]

The preceding code executes with a beep sound. If you did not hear the beep sound, check
your speakers.

String concatenation
Two strings can be joined using the + operator:

print "Only way to join" + "two strings"

The following is the output of the preceding code:

C:pydev>python string_concatenation.py
Only way to join two strings

Formatted output
Consider an example where you would want to print the name, marks, and the age of the
person:

print "Name", "Marks", "Age"
print "John Doe", 80.67, "27"
print "Bhaskar", 76.908, "27"
print "Mohit", 56.98, "25"

The output will be as follows:

C:pydev>python hello.py
Name Marks Age
John Doe 80.67 27
Bhaskar 76.908 27
Mohit 56.98 25

You can see the output, but the output that is displayed is not formatted. Python allows you
to set the formatted output. If you have done some coding in C language, then you should
be familiar with %d, %f, %s. In order to represent an integer %d is used, %f is used for float,
and %s is used for string. If you used %5d, it means 5 spaces. If you used %5.2f, it means 5
spaces and .2 means precision. The decimal part of the number or the precision is set to 2.
Let's use the formatting on the preceding example:

print "Name Marks Age"
print ("%s %14.2f %11d" % ("John Doe", 80.67, 27))
print ("%s %12.2f %11d" %("Bhaskar" ,76.901, 27))
print ("%s %3.2f %11d" %("Mohit", 56.98, 25))

Getting Started with Python

[27]

The output we get is as follows:

C:pydev>python hello.py
Name Marks Age
John Doe 80.67 27
Bhaskar 76.90 27
Mohit 56.98 25

The preceding output is much better than the previous one. You can see Marks 76.901 set
to 76.90 automatically.

Indentation
The most unique characteristic of Python, unlike other programming languages, is
indentation. Indentation not only makes Python code readable, but also distinguishes each
block of code from the other. Let's explain this with an example:

def fun():
 pass
for each in "Australia":
 pass

While writing the code, a new block of code starts with a colon followed by a tab. Here,
after the function fun(), a colon is provided which will start the function body, pass is
part of the function fun() and it is placed at one tab space. Likewise, the for loop starts
with a colon. Here, most people get confused whether to use a tab or space. It is advisable to
stick to only one type and follow the same across the whole code. If the indentation is not
strictly implemented, then code execution will throw an error.

Summary
So far, we did a walkthrough of the beginning and the brief history of Python. We looked
through various implementations and flavors of Python. We also learned about installation
on various platforms. We learned about basic syntaxes that are used in writing the code and
also we learned about various escape sequences that would make writing the code simple.
We finally learned about the importance of indentation in Python.

In the next chapter, we will see immutable data types.

2
Type Variables and Operators

In the last chapter, you learned a little bit about the history of Python. You learned the steps
to install Python and some basic syntax of the language. In the basic syntax, you learned
about types of comments that can be used in the code, various types of quotes, escape
sequence that can be handy, and finally, you learned about the formatting of strings. In this
chapter, you will learn about assignment statements, arithmetic operators, comparison
operators, assignment operators, bitwise operators, logical operators, membership
operators, and identity operators.

Variables
So, what is a variable? Consider that your house needs a name. You place a nameplate at
the front gate of your house. People will now recognize your house through that nameplate.
That nameplate can be considered as variable. Like a nameplate points to the house, a
variable points to the value that is stored in memory. When you create a variable, the
interpreter will reserve some space in the memory to store values. Depending on the data
type of the variable, the interpreter allocates memory and makes a decision to store a
particular data type in the reserved memory. Various data types, such as integers, decimals,
or characters, can be stored by assigning different data types to the variables. Python
variables are usually dynamically typed, that is, the type of the variable is interpreted
during runtime and you need not specifically provide a type to the variable name, unlike
what other programming languages require. There are certain rules or naming conventions
for naming variables. The following are the rules:

Reserved key words such as if, else, and so on cannot be used for naming
variables

Type Variables and Operators

[29]

Variable names can begin with _, $, or a letter
Variable names can be in lower case and uppercase
Variable names cannot start with a number
White space characters are not allowed in the naming of a variable

You can assign values to the variable using = or assignment operator.

Syntax:

<variable name>= < expression >

Single assignment
Here, we will illustrate the use of the assignment operator (=) with an example:

city='London' # A string variable assignment.
money = 100.75 # A floating point number assignment
count=4 #An integer assignment

In this case, we assigned three different values to three variables using the = operator.

Multiple assignment
A single value can be assigned to several variables simultaneously. For example:

a = b = c = 1

Data types in Python
What is a data type in any programming language? Let's try to understand with a real life
problem. We use water, oil, liquid soap, syrups, and so on in our day to day life. How do
you categorize these items? Let's take another set of examples of bar soap, cell phone, and
so on; what classification would you like to give these items? Answer to all these questions
is simple: solid, liquid, and gases. Yes, we have these three broader classifications for any
item that we have heard about or used in our day to day life. Same is the case in the
programming world. Each and every thing needs to be categorized under different types.
There are many types of data, such as numbers, strings, character, images, and so on.

Type Variables and Operators

[30]

Data types can be broadly categorized into five different types, listed as follows:

Numbers
String
Tuples
List
Dictionary

Numeric data types or numbers
There are generally four numeric data types in Python. They are integers, long integers,
floating point numbers, and complex numbers.

Integers and long integers
Integers include zero, all of the positive whole numbers, and all of the negative whole
numbers. The interpreter first checks the expression on the right hand side of the
assignment operator and then binds the value with its variable name; this process is termed
as variable definition or initialization. The int or integer data type ranges from -231 to
(231-1); the leading minus sign shows the negative values. Beyond these ranges, the
interpreter will add L to indicate a long integer, as shown in the following screenshot:

Type Variables and Operators

[31]

Floating point numbers
Numbers with certain places after the decimal point are referred to as floating point
numbers in the programming language:

The floating point number type ranges approximately from -10 to 10^308 and has
16 digits of precision.
There are two ways to write a floating point number. It can be written using
ordinary decimal notation or scientific notation. Scientific notation is often useful
for mentioning very large numbers, as shown in the following screenshot:

Type Variables and Operators

[32]

Complex numbers
A complex number has both real and imaginary parts, and Python allows you to specify
this data type in a very easy and convenient way.

Syntax:

<variable name>=complex(x,y)

OR

<variable name>=x+yj

Here, x is the real part and y is the imaginary part. Here, j plays the role of iota.

It will be clearer with the following screenshot:

Here, we declare two variables to denote complex numbers. One way to achieve is to use
complex() method and the other way is to use the standard notation as used in
mathematics.

Type Variables and Operators

[33]

In standard complex number notation, x+ij, i is used to denote the starting
of the imaginary part and stands for iota. j denotes the imaginary part. The
credit for conceiving the idea of complex numbers goes to Italian
mathematician Gerolamo Cardano in 1545.
Source: https://en.wikipedia.org/wiki/Complex_number

Boolean data type
A Boolean data type generally has only two values 'True' or 'False'. Boolean data type
is a sub type of integers.

Syntax:

<variable name>=<'True' or 'False'>

Boolean data types can be referred to as an on and off switch, which has only two values to
chose from:

In the preceding example, we try to compare the value of x with the value of y, and when
we use the == operator, the value of the Boolean is returned as True.

https://en.wikipedia.org/wiki/Complex_number

Type Variables and Operators

[34]

String data types
A Python string is a contiguous sequence of Unicode characters. Single quotes or double
quotes can be used to denote a string, as we saw in Chapter 1, Getting Started with Python.
For multiline string representation, ''' or """ can be used.

Syntax:

<variable name>= <String sequence>

You will understand better with the following screenshot:

More details on strings, tuples, list, and dictionary will be covered in the coming chapters.

Type Variables and Operators

[35]

American Standard Code for Information
Interchange (ASCII) character sets
The succeeding table shows the mapping of the first 128 ASCII codes to character values.
The left column digits are the leftmost digits of the ASCII code. The top row's digits
represent the rightmost digits. For example, the ASCII code of character A would be 65.

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DCI DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! " # $ % & `

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [] ^ _ ' a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

ASCII was developed primarily for telegraph code. Bell labs brought out
7-bit teleprinter code for commercial promotion and official work on the
ASCII code began on October 6, 1960.
Source: https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

Type Variables and Operators

[36]

Conversion functions
In order to convert a character value to ASCII code, the ord() function is used, and for
converting ASCII code to character, the chr() function is used, as shown in the following
screenshot:

Here, when we want to get the ASCII code for 'A', it shows 65, which you can easily get
from the aforementioned table. The letter 'A' can be located on the sixth row and fifth
column; thus, its value is 65. Likewise, we can get the letter corresponding to a particular
ASCII code.

Type Variables and Operators

[37]

Arithmetic expressions
Arithmetic expressions in any language comprise operands and operators. For reference, x
and y are used as operands having values 10 and 20, respectively. The following table
shows the precedence order:

Operator Description

** Exponent: Performs exponential (power) calculations on operators

* Multiplication: Multiplies values on either side of the operator

/ Division: Divides the left-hand operand by the right-hand operand

% Modulus: Divides the left-hand operand by the right-hand operand and
returns the remainder

+ Addition: Adds values on either side of the operator

- Subtraction: Subtracts the right-hand operand from the left-hand operand

In an arithmetic expression, generally, the rule of Bracket, Of, Division, Multiplication,
Addition, and Subtraction (BODMAS) is followed, and operators have their own
precedence order. Exponentiation enjoys a higher precedence order, while addition and
subtraction have a lower precedence order.

The decreasing precedence order is as follows:

Exponent
Unary negation
Multiplication, division, modulus
Addition, subtraction

If operands are of the same data type, then the resulting value is also of that type. However,
addition of two int data types can produce a long integer.

Type Variables and Operators

[38]

Mixed mode arithmetic
The arithmetic operation involving both integer and floating point numbers is called mixed
mode arithmetic. When each operand is of a different data type, the resulting value is of the
more general type, and float is the more general type.

The following screenshot will make it clearer for you:

Mixed Mode Conversion
In the preceding example, 11/2.0, the less general type integer, 11, is temporarily and
automatically converted into float 11.0. Then, the calculation is performed. It is called
mixed mode conversion.

Type Variables and Operators

[39]

Type conversions
It is easy to convert the data type of operands using a type conversion function. Let's
understand with some examples:

In the preceding screenshot, 4.77 is converted into 4. In order to convert 4.77 into the int
data type, the int() function is used. Likewise, if you want to convert into float, use
the float() function.

Operators
Python supports the following types of operators:

Arithmetic operators.
Comparison operators
Assignment operators
Bitwise operators
Logical operators
Membership operators
Identity operators

Type Variables and Operators

[40]

Arithmetic operators
Arithmetic expressions comprise operands and operators:

Operator Description

** Exponent: Performs exponential (power) calculations on operands

* Multiplication: Performs multiplication between operands

/ Division: Performs division between operands

% Modulus: Performs modulus division between operands

+ Addition: Performs addition between operands

- Subtraction: Performs subtraction between operands

We have already discussed the precedence order of the operators.

Comparison operators
Like any other language, Python also supports comparison operators. Comparison
operators return True or False:

Operator Description

== Checks the equality

< Returns True if the left-hand side operand is less than the right-hand side
operand

> Returns True if the left-hand side operand is greater than the right-hand side
operand

<= Returns True if the left-hand side operand is less than or equal to the right-
hand side operand

>= Returns True if the left-hand side operand is greater than or equal to the right-
hand side operand

!= Returns True if the left-hand side operand is not equal to the right-hand side
operand

<> Returns True if the left-hand side operand is not equal to the right-hand side
operand

Type Variables and Operators

[41]

Some examples of comparison operators and their outcome are shown in the following
screenshot:

Let's evaluate the following expression:

a < b < = c is equivalent to a<b and b<=c

Type Variables and Operators

[42]

Here, the and operator is used, b is evaluated only once, and c will not be evaluated if a <
b is found False:

In the preceding example, 12<5 is evaluated first; if it is False, then the next expression
will not be evaluated. If the operands are of different types, then they are converted to a
common type. Otherwise, the == and != operators always consider objects of different types
to be unequal.

Type Variables and Operators

[43]

Let's look at two different scenarios where we try to evaluate a float data type with an int
data type, as shown:

Here, the operator evaluates to True in both the cases, as the interpreter converts one data
type to another and then compares both the values.

Comparison between different data types:

Numbers are compared arithmetically
Strings are compared as per the alphabetical order, using the numeric equivalents
Tuples and lists are compared according to the alphabetical order using the
comparison of corresponding elements, which we will see in the coming chapters

Variants of assignment operator
Earlier in the chapter, you learned about the assignment operator, =. Now, we will see some
more variants of the assignment operator, often used in combination with arithmetic
operators:

Operator Description

= x=y , y is assigned to x

Type Variables and Operators

[44]

+= x+=y is equivalent to x=x+y

-= x-=y is equivalent to x=x-y

= x=y is equivalent to x=x*y

/= x/=y is equivalent to x=x/y

= x=y is equivalent to x=x**y

Here, we will look at a few examples of the variants of the assignment operator:

Bitwise operators
Python supports bitwise operations. You might have come across AND, OR, or
complementary operations:

Operator Description

| Performs binary OR operation

& Performs binary AND operation

~ Performs binary XOR operation

Type Variables and Operators

[45]

^ Performs binary one's complement operation

<< Left shift operator: The left-hand side operand bit is moved left by the number
specified on the right-hand side

>> Right shift operator: The left-hand side operand bit is moved right by the
number specified on the right-hand side

The following screenshot illustrates the various usages of bitwise operators:

~x will give -241, which is in 2's complement form due to a signed binary number.

Logical operators
Python supports logical operators AND, OR, and NOT:

Operator Description

and Returns True if both the right-hand and left-hand sides of the operator are true

or Returns True if any side, either the right-hand side or the left-hand side, of the
operator is true

not If condition in the not operator is True, the not operator makes it False

Type Variables and Operators

[46]

These only evaluate their second argument if needed for their outcome, as shown in the
following screenshot:

Membership operators
Python has two membership operators to test the membership in a sequence, such as a
string, list, tuple, and others:

Operator Description

in Returns True if the specified operand is found in the sequence

not in Returns True if the specified operand is not found in the sequence

Type Variables and Operators

[47]

The following screenshot will make it clearer for you:

In the preceding screenshot, we try to search for the character, 'o', in the string, 'John',
and it returns True. However, 'k' is not present in the string, and hence, it returns False.

Identity operators
Given in the table are the two identity operators:

Operator Description

is Returns True if two variables point to the same object and False, otherwise

is not Returns False if two variables point to the same object and True, otherwise

The following screenshot shows that the value can be same but id can be different. It
returns True if id is the same:

Type Variables and Operators

[48]

Here, as both x and y contain the same value (10), id() returns the same value for both.
However, when x and y are provided with the same list, id() returns different values. This
could be attributed to the fact that when x and y have 10 assigned to them, it essentially
means that both are pointing to the same memory address, which has a value of 10, while
in the case of a list, this could be different. Why different? That is because lists are
immutable, which means they can't be changed. So, when we assign the same list to y, it
means that a new memory address is blocked again for a new list.

The id() function returns the identity of an object. This is an integer (or long integer), which
is guaranteed to be unique and constant for this object during its lifetime. It is similar
to memory addresses in the C language.

Type Variables and Operators

[49]

However, there is a small twist in our id() function. Python supports same memory
allocation for integers only up to 256. It will be clearer with the following screenshot:

Here, as you can see, once we pass values above 256 for x and y, both are given different
memory allocations by the interpreter, but if the values are 256, then the same memory
allocation is provided for both x and y.

Type Variables and Operators

[50]

Operator precedence
Operators with the highest precedence are placed on the top:

Operator Description

() Parentheses

x[index],x[index1:index2],f(arg...),x.attribute Subscription, slicing, call, and
attribute reference

** Exponentiation

+x, -x, ~x Positive, negative, and bitwise
NOT

*, /, % Multiplication, division, and
remainder

+, - Addition and subtraction

<<, >> Shifts

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including
membership tests and identity
tests

not x Boolean NOT

and Boolean AND

or Boolean OR

if...else Conditional expression

lambda Lambda expression

Operators that have the same precedence are evaluated from left to right, except for
comparisons and exponentiation. Comparisons can be chained arbitrarily.

Type Variables and Operators

[51]

Summary
In this chapter, you learned about various data types available in Python and the naming
conventions required. You also learned about the Python character set and about converting
a character set to ASCII code and vice versa, using ord() and chr() methods available in
the language. In the next chapter, you will learn about two different data types, namely
string and tuples.

3
Strings

In this chapter, you will learn Python strings and tuples. You will learn how to use string,
string slicing, string methods, and useful functions. You will learn what is an immutable
sequence. In the tuple section, you will see how to use the Python tuple.

Python strings
A Python string is a sequence, which consists of zero or more characters. The string is an
immutable data structure, which means they cannot be changed. For example, if you define
string str1 = "Satyamev jayate", then str1 will always remain "Satyamev jayate".
You cannot edit the value of the str1 variable. Although you can reassign str1, let's
discuss this with examples:

>>> str1 = "satyamev jayate"
>>> str1
'satyamev jayate'
>>> id(str1)
47173288

In the preceding example, a "satyamev jayate" string has been assigned to
an str1 variable. By using the ID function, we obtained the memory address. Now,
reassign the str1 variable as shown here:

>>> str1 = "Leapx"
>>> id(str1)
44909408
>>>

Strings

[53]

You can see that the memory address of the str1 variable has been changed. But string
value at memory address 47173288 will not change. Python memory management
might delete the value if it is not referred by any variable. If the value exists at memory
address, then you can get the value using ctypes modules as shown here:

>>> import ctypes
>>> ctypes.cast(47173288, ctypes.py_object).value
'satyamev jayate'
>>>

In order to find the length of the string, the len() function is used as shown in the
following example:

>>> a = "hello jarvis"
>>> len(a)
12
>>> b= ""
>>> len(b)
0
>>>

Sometimes, you may want to access a particular character(s) at a given position in the
string. The subscript operator makes this possible.

The subscript operator
The subscript operator is defined as square brackets []. It is used to access the elements of
string, list tuple, and so on. Let's discuss the syntax with an example:

<given string>[<index>]

The given string is the string you want to examine and the index is the position of the
character you want to obtain. Let's discuss this with an example:

>>> name = "The Avengers"
>>> name[0]
'T'
>>> len(name)
12
>>> name[11]
's'
>>>
>>> name[12]
 Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>

Strings

[54]

 name[12]
IndexError: string index out of range
>>>

The "The Avengers" string is 12 characters long, which means it ranges from 0 to 11
index. The name[0] represents the character 'T'. If you give the 12th index value, then the
Python interpreter generates an error out of range.

Let's see what is negative indexing:

>>> name[-1]
's'
>>> name[-12]
'T'
>>>

The -1 index represents the last character and -12 represents the first character.

In the computer world, the computer counts the index from 0 itself.

The following diagram will clear all your doubts:

Positive and negative indexing

Slicing for substrings
In many situations, you might need a particular portion of strings such as the first three
characters of the string. Python's subscript operator uses slicing. In slicing, colon : is used.
An integer value will appear on either side of the colon. Refer to the following example:

>>>
>>> name[0:3]
'The'
>>> name[:6]

Strings

[55]

'The Av'
>>> name[4:]
'Avengers'
>>> name[5:9]
'veng'
>>>

>>> name[::2]
'TeAegr'
>>>

Refer to the following diagram to clear your remaining doubts:

String positive and negative slicing

If you want to print a reverse of the given string str1, then use
str1[::-1]

To find the length of a string, you can use the len() function:

>>> len(name)
12
>>>

Now, let's see some useful string methods.

Strings

[56]

Python string methods
There are several string methods, which will be discussed one by one. To represent strings,
we use the str1 variable.

Sometimes, we want to count the characters or substrings in the given string. The string
method count helps to achieve this:

count()

The syntax for the method is as follows:

str1.count(substr [, start [, end]])

The count method returns the number of occurrences of the substring substr in string
str1. By using the parameter start and end you can obtain a slice of str1.

Consider the following example:

>>> str1 = 'The Avengers'
>>> str1.count("e")
3
>>> str1.count("e",5,12)
2
>>>

In many situations, we need to find the index of the substring in the given string. The
find() method can do the task.

The syntax for the find() method is given as follows:

str.find(str, beg=0 end=len(string))

The find() method is used to find out whether a string occurs in a given string or its
substrings.

>>> str1 = "peace begins with a smile"
>>> str1.find("with")
13
>>>

Strings

[57]

So 13 is the index value of substring "with" as shown here:

Showing index value of substring

Let's discuss another example of the find method:

>>> str1 = "what we think, we become"
>>> str1.find("we")
5
>>>

In the preceding example, the "we" substring occurs two times, but the find method will
only give the index of the first occurrence. If you want to find the occurrence from right,
you can use the rfind method. Let's learn by example:

> str1 = "what we think, we become"
>> str1.rfind("we")
15
>>>

Sometimes, the user wants to find the index of a substring but is not sure about the cases.
The substring may occur in lower, upper, or title cases. Python gives you some methods to
deal with cases.

String case methods
Let's see one by one, first is the lower() method.

The syntax for the lower() method is given as follows:

str1.lower()

The lower() method returns a string in which all case-based characters are present in
lowercase. Let's see an example:

>>> name = "Mohit RAJ1234"
>>> name.lower()
'mohit raj1234'
>>> name

Strings

[58]

'Mohit RAJ1234'
>>>

You can see that case-based characters get converted into lowercase; as we know that the
string is immutable, the original string remains the same. If you like uppercase, you can use
the upper() method.

The syntax for the upper() method is given as follows:

str1.upper()

The upper method returns a copy of string str1, which contains all uppercase characters.
Consider the following example:

>>> name = "Hello jarvis"
>>> name.upper()
'HELLO JARVIS'
>>> name
'Hello jarvis'
>>>

Sometimes, we need to capitalize the first character of the line. In this case,
the capitalize() method allows you to do that for you.

The syntax for the method is given as follows:

str1.capitalize()

This method capitalizes the first letter of the returned string:

>>> name = "the game"
>>> name.capitalize()
'The game'
>>>

If you want to convert the first character of every word of the string in uppercase, you can
use the title() method:

The syntax for the method is given as follows:

str1.title()

The title() method returns a copy of the string in which the first character of every word
of the string is capitalized:

>>> name = 'genesis of a new realm of possibility.'
>>> name.title()
'Genesis Of A New Realm Of Possibility.'

Strings

[59]

>>> name
'genesis of a new realm of possibility.'
>>>

A swapcase method allows the user to swap the cases:

swapcase()

The syntax for it is as follows:

str.swapcase()

It returns a copy of the string in which the cases are swapped.

Consider the following example:

>>> name = 'Genesis Of A New Realm Of Possibility.'
>>> name.swapcase()
'gENESIS oF a nEW rEALM oF pOSSIBILITY.'
>>>
>>> name
'Genesis Of A New Realm Of Possibility.'
>>>

String strip methods
Dealing with the strings, many times programmers encounter the problem of undesirable
character/characters at the end or beginning of the string, such as space or new line
character at the end, for example, " Baba saheb " and "Dr Ambedkar n".

To handle these problems, the Python string class comes loaded with three methods. We
will discuss them one by one. Let's start with rstrip().

The syntax for the method is given as follows:

str1.rstrip([chars])

This method returns a copy of string str1 in which unwanted character/characters get
removed from the right side of the string.

Consider the following example:

>>> str1 = "Dr Ambedkarn"
>>> str1.rstrip("n")
'Dr Ambedkar'

Strings

[60]

If you do not provide any chars as argument, then space is taken as default. Look at
following the example:

>>> str2 = " Baba Saheb "
>>> str2.rstrip()
' Baba Saheb'
>>>

If you want to strip from the left-side use the lstrip() method. If you want to strip from
both sides, use the strip() method.

Consider the following example:

>>> str2
' Baba Saheb '
>>> str2.strip()
'Baba Saheb'
>>>

String split methods
Sometimes we see strings in the form of parts such as "27-12-2016" and "Mohit raj".
Our requirement is to get the last part or first part. So, based upon delimiters, we can split
strings into parts and take the desirable part. Let's understand how it works; from the first
string, we need only the year part.

We have an interesting method called split().

The syntax for the method is given as follows:

Str1.split(“delimiter”, num)

Let's look at an example:

>>> str1.split("-", 1)
['27', '12-2016']
>>>

The split method returns a list of all the words of the string separated by a delimiter and
the num integer specifies the maximum splits. If num is not specified, then all the possible
splits are made. Refer to the following example:

>>> str1 = "27-12-2016"
>>> str1.split("-")
['27', '12', '2016']

Strings

[61]

>>>

So far, we have not learned about lists, which we will be covering later. But using this
method, we can access a particular value of the list:

>>> list1 = str1.split("-")
>>> list1[2]
'2016'
>>>

If you don't provide any delimiter, then the space is taken as the default, as shown here:

>>> name = "Mohit raj"
>>> name.split()
['Mohit', 'raj']
>>>

If you want that splits should be started from the right, then you can use the rsplit()
method, as shown in the following example:

>>> str1 = "27-12-2016"
>>> str1.rsplit("-", 1)
['27-12', '2016']
>>>

I hope you got the idea of splitting.

String justify methods
methods to deal with these types of situations.

In many situations, you might need to justify the string length. The requirement may be
string, which must possess a certain length. We have four string methods to deal with these
types of situations. Let's start from ljust(), which means left justify.

The syntax for the method is given as follows:

str1.ljust(width[, fillchar])

When you provide the string to the ljust() method, it returns the string left justified. The
minimum string length is specified by width and the padding on the left side is specified by
the fillchar character(s), the space is default.

Consider the following examples:

>>> str1= "Mohit Raj"

Strings

[62]

>>> str1.ljust(15, "#")
'Mohit Raj######'
>>>
>>> str2= "Bhaskar Narayan Das"
>>> str2.ljust(15, "#")
'Bhaskar Narayan Das'
>>>

In the preceding example, the length of str2 is greater than 15. So padding is not made,
which means fillchars has not been used. Let's see the example of rjust, which does the
same thing but justifies the length from the right side:

>>> str1= "Mohit Raj"
>>> str1.rjust(15, "#")
'######Mohit Raj'
>>>

Consider the situation where you want to justify the string from both sides. In this case, we
will use the center() method.

Let's see an example of center():

>>> str1= "Mohit Raj"
>>> str1.center(16, "#")
'###Mohit Raj####'
>>>

Sometimes when you are dealing with strings such as bank account number, binary
numbers, and so on, you may need to justify the string with zeros. Although we can do this
using the ljust method, Python offers you a special method called zfill().

The syntax for the method is given as follows:

str.zfill(width)

This method pads the string on the left with zeros to fill the width.

Consider the following examples:

>>> acc_no = "3214567987"
>>> acc_no.zfill(15)
'000003214567987'
>>>
>>> binary_num = "10101010"
>>> binary_num.zfill(16)
'0000000010101010'
>>>

Strings

[63]

Many times we deal with the situation where we may want to replace a word from a line or
a substring from the string. Python's replace() string method can do the task.

replace()

The syntax for the method is as follows:

str.replace(old, new max)

This method returns a copy of the string in which the old character(s) are replaced with new
character(s). The max parameter specifies the number of replacements. If no number is
specified, then it means all the occurrences would be replaced.

Consider the following example:

>>> str1 = "time is great and time is money"
>>> str1.replace("is","was")
'time was great and time was money'
>>>
>>> str1
'time is great and time is money'
>>> str1.replace("is",1)
>>> str1.replace("is","was",1)
'time was great and time is money'
>>>

Consider you have a sequence (list or tuple) of string and you want to join values of the
sequence.

Consider the sequence ["Mohit","raj"] and you want to make it "Mohit raj" or
"Mohit-raj".

To deal with these type of situations, use the join method:

join()

The syntax for the method is:

str1.join(seq)

The seq contains the sequence of separated strings; here, str1 acts as a separator. Let’s see
different examples of join():

The space as the separator:1.

>>> name = ["Mohit","raj"]
>>> " ".join(name)

Strings

[64]

'Mohit raj'
>>>

Nothing as separator:2.

>>> "".join(name)
'Mohitraj'
>>>

A hyphen - as the separator:3.

>>> "-".join(name)
'Mohit-raj'
>>>

You can try with different-2 separators.

String Boolean methods
Let's discuss some string methods, which return the value in the form of True or False
based upon certain conditions. Sometime we are interested in strings which are ends with
particular substring. For this we use string method endswith()

The syntax of the method is as follows:

str1.endswith(sub-string, begin,end)

The method returns True if string str1 ends with specified substring. The begin and end
parameter represent the slice of string str1:

Consider the following example:

>>> str1 = "Life should be great rather than long"
>>> str1.endswith("ng")
True
>>>
>>> str1.endswith("er")
False
>>> str1.endswith("er",0,27)
True
>>>

The next method is startswith(), which works the same way as the previous method,
just check the condition from the beginning.

Strings

[65]

Let's understand with the help of an example:

>>> str1.startswith("Li")
True
>>> str1.startswith("be", 11)
False
>>> str1.startswith("be", 12, 16)
True
>>>

Consider you may want to be sure that the given string must contain only letters. The
isalpha() methods helps you to do that.

The syntax is given as follows:

Str1.isalpha()

The method returns True only if string str1 contains letters alone.

Consider the following example:

>>> str1 = "Hello"
>>> str1.isalpha()
True
>>> str2 = "Hello 123"
>>> str2.isalpha()
False
>>> str3 = "hello "
>>> str2.isalpha()
False
>>>

Even spaces are not allowed.

If you want to check the alphanumeric characters appearing in the string, then you can use
the isalnum() method. This method returns True if the string contains only alphanumeric
characters.

Consider the following examples:

>>> str1 = "Hello123"
>>> str1.isalnum()
True
>>> str2 = "Hello123#"
>>> str2.isalnum()
False
>>>

Strings

[66]

If you only want to check digits, then you can use the isdigit() method.

The syntax is given as follows:

str.isdigit()

This method returns True if the string contains only digits.

Consider the following example:

>>> str1 = "12345"
>>> str1.isdigit()
True
>>>
>>> str2 = "123456H"
>>> str2.isdigit()
False

To deal with only white spaces, Python string offers a method called isspace(), which
returns True if the string contains only spaces:

isspace()

The syntax is given as follows:

str.isspace()

Consider the following example:

>>> str1 = "hello "
>>> str1.isspace()
False
>>> str2 = " "
>>> str2.isspace()
True
>>>

Let's see methods that deal with cases:

istitle()

The syntax is given as follows:

str.istitle()

Strings

[67]

The istitle() method returns True if the string is in title case. The following example
shows the rest of the story:

>>> str1 = "Mohit raj"
>>> str1.istitle()
False
>>> str2 = "Mohit Raj"
>>> str2.istitle()
True
>>>

To check for lowercase, we can use the islower() method.

The syntax for the method is given as follows:

str.islower()

This method returns True if the string contains all lowercase characters:

>>> str1 = "mohit"
>>> str1.islower()
True
>>>
>>> str1 = "Mohit"
>>> str1.islower()
False
>>> str2 = "mohit1234"
>>> str2.islower()
True
>>> str3 = "!@mohit"
>>> str3.islower()
True
>>>

The islower() method does not care about the special character and digits.

Similarly, to check for uppercase you can use isupper():

isupper()

The syntax is given as follows:

str.isupper()

Strings

[68]

This method returns True if the string contains only uppercase characters:

>>> str1 = "MOHIT"
>>> str1.isupper()
True
>>> str2 = "MOHIT123#$"
>>> str2.isupper()
True
>>> str3 = "mOHIT"
>>> str3.isupper()
False
>>>

String functions
So far you have seen string methods. Let's see built-in functions of sequences and what
values they would return when the string is passed as an argument. At the beginning of the
chapter, we have already discussed the len() function.

Consider you need to find the minimum character from a given string according to the
ASCII value. To handle this situation, you can use the min() function:

min()

The syntax is given as follows:

min(str1)

The min() function returns the min character from string str1 according to the ASCII
value:

>>> str1 = "Life should be great rather than long"
>>> min(str1)
' '
>>> str2 = "hello!"
>>> min(str2)
'!'
>>>

Strings

[69]

The next method is max(), which returns the max characters from string str according to
the ASCII value. Let's see some examples:

>>> str1 = "Life should be great rather than long"
>>> max(str1)
'u'
>>> str2 = "hello!"
>>> max(str2)
'o'
>>>

In many situations, we might need to convert integers or floats into a string. In order to do
this conversion, the str() function is used.

The syntax is given as follows:

str(value)

This function converts an argument value to string type. The argument value can be any
type.

Consider the following examples:

>>> a = 123
>>> type(a)
<type 'int'>
>>> str(a)
'123'
>>> list1 = [1,2]
>>> type(list1)
<type 'list'>
>>> str(list1)
'[1, 2]'

In order to find a substring in the string, you can use the in operator. The in operator is
used with the if statement as shown in the following example:

>>> str1 = "Life should be great rather than long"
>>> if "be" in str1:
 print "yes"

yes
>>>

Strings

[70]

You have gained enough knowledge on Python strings. Now we move on to our next
immutable data structure.

Tuple
Python tuple is a sequence, which can store heterogeneous data types such as integers,
floats, strings, lists, and dictionaries. Like strings, tuple is immutable.

Creating an empty tuple
<variable –name > = ()
Tup1 = ()

The empty tuple is written as two parentheses containing nothing.

Creating tuple with elements
To create a tuple, fill the values in tuple separated by commas:

tup1 = (1,2,3,4.6, "hello", "a")

If you define the variable as follows:

a = 1,2,3

The variable a would be a tuple:

>>> tup1 = 1,2,3,4
>>> tup1
(1, 2, 3, 4)
>>>
>>> type(tup1)
<type 'tuple'>
>>>

Strings

[71]

Indexing tuple
In order to access a particular value of tuple, specify a position number, in brackets. Let's
discuss with an example. I am going to make a tuple of the heroes from the movie Avengers.

>>> Avengers = ("iron-man", "vision", "Thor", "hulk")
>>> Avengers[0]
'iron-man'
>>> Avengers[2]
'Thor'
>>>
>>> Avengers[-1]
'hulk'
>>>

The following diagram will clear the doubts:

Tuple indexing

Now you can see positive and negative indexing.

Slicing of tuple
In order to do slicing, use the square brackets with the index or indices.

Consider the following example:

>>> Avengers[1:3]
('vision', 'Thor')
>>>

Strings

[72]

Let’s discuss with this diagram:

Slicing of tuple

>>> Avengers[:3]
('iron-man', 'vision', 'Thor')

The preceding example means we need start from 0 to 3:

>>> Avengers[1:]
('vision', 'Thor', 'hulk')
>>>

The preceding example means we start from 1 to the last index.

If you use slicing index out of range, then the empty tuple would be returned:

 >>> Avengers[5:6]
()

For negative indexing, use the following code:

>>> Avengers[-3:-2]
('vision',)
>>>

Now, let's see some generic function, which can be applied on the tuple.

Strings

[73]

Unpacking the items of tuples
In this section, we will learn how to unpack the tuple variable. Let's learn by example:

>>> tup1 = (1,2,3)
>>> a,b,c = tup1
>>> a
1
>>> b
2
>>> c
3

In the preceding example, tuple's items have been assigned to a, b, and c variables
correspondingly.

What happens if you use more number of variables than the number of items in a tuple.
Let's see more examples:

>>> tup2 = (5,6)
>>> x,y,z = tup2

Traceback (most recent call last):
 File "<pyshell#11>", line 1, in <module>
 x,y,z = tup2
ValueError: need more than 2 values to unpack

So, interpreter throws a ValueError.

What happens if you use less number of variables than the number of items in a tuple. Let's
see more examples:

>>> tup2 = (5,6)
>>> x,y,z = tup2

Traceback (most recent call last):
 File "<pyshell#11>", line 1, in <module>
 x,y,z = tup2
ValueError: need more than 2 values to unpack

So, the interpreter once again shows an error with a different description.

Strings

[74]

Tuple functions
If you want to know the length of the tuple, then you can use the len() function.

len()

The syntax for the method is as follows:

len(tuple)

The len() function returns the length of the tuple, which means the total number of
elements in a tuple.

>>> tup1 = ("C", "Python", "java","html")
>>> len(tup1)
4
>>>

Let's see how to use the max() function on a tuple.

max()

The syntax for the method is as follows:

max(tuple)

The max(tuple) function returns the element of tuple with the maximum value.

You must be in doubt with the meaning of maximum value.

Let's understand with examples:

>>> t2 = (1,2,3,4,510)
>>> max(t2)
510

The max function returns the maximum integer value.

If the tuple contains int and float with the same numeric value, which value would be
returned can you guess? Let’s see with this example:

>>> t2 = (1,2,450.0,450)
>>> max(t2)
450.0
>>>

Strings

[75]

If you are thinking it returns a float value, see the next example:

>>> t2 = (1,2,450,450.0)
>>> max(t2)
450
>>>

Both 450 and 450.0 possess the same numeric value. The max function returns the first
occurrence in the tuple:

>>> t3 = (800, "1")
>>> max(t3)
'1'
>>>

The max() function returns the string as the max value.

Let's see an example of string comparison:

>>> tup1 = ('aa', 'z', "az")
>>> max(tup1)
'z'
>>>

The max value decision is taken on the basis of the first character. So, 'z' has been taken as
the max value.

Let's see the next example:

>>> tup2 = ('aa', 'z', "az", "za")
>>> max(tup2)
'za'
>>>

You can see that the second and fourth strings both have the 'z' character in the first
position; this is when the decision is taken by judging the second character.

min()

The syntax for this method is as follows:

min(tuple)

Strings

[76]

The min(tuple) function returns the element of tuple with a minimum value.

Consider the following examples:

>>> tup1 = (1,2,3,4,"1")
>>> min(tup1)
1
>>> tup2 = ('aa', 'z', "az")
>>> min(tup2)
'aa'
>>>

If you want to convert a string or list into a tuple, then you can use the tuple() function.

Consider the following example:

>>> str1 = "mohit"
>>> tuple(str1)
('m', 'o', 'h', 'i', 't')
>>>

You can delete the tuple using del keyword, as shown in the following example:

>>> tup1 = (1,2,3)
>>> tup1
(1, 2, 3)
>>> del tup1
>>> tup1

Traceback (most recent call last):
 File "<pyshell#25>", line 1, in <module>
 tup1
NameError: name 'tup1' is not defined
>>>

Operations of tuples
In this section, you will see addition and multiplication.

By using the + operator, two tuples can be added as shown:

>>> avenger1 = ("Iron-man", "captain", "Thor")
>>> avenger2 = ("Vision", "Sam")
>>> avenger1 + avenger2
('Iron-man', 'captain', 'Thor', 'Vision', 'Sam')
>>>

Strings

[77]

By using the * operator, you can perform multiplication:

>>> language = ("Python","html")
>>> language*2
('Python', 'html', 'Python', 'html')
>>>

Let's check the memory address of the tuple after multiplication:

>>> a = language*2
>>> a
('Python', 'html', 'Python', 'html')
>>> id(a[0])
45826944
>>>
>>> id(a[2])
45826944
>>>
>>> id(a[1])
45828896
>>> id(a[3])
45828896
>>>

Now, you can see that the first and third strings both possess the same memory location.

Exercise
Obtain the domain (thapar.edu) name from the URL1.
http://www.thapar.edu/index.php/about-us/mission.

You have the tuple tup = ('www', 'thapar', 'edu','index',2.
'php','about-us','mission'); now you can make a full URL like this
 www.thapar.edu/index.php/about-us/mission

Summary
In this chapter, you have learned about strings, how to define strings, string functions, and
string methods. Strings are immutable, they cannot be changed. In the tuple section, you
have seen how to create a tuple. Like strings, tuples are immutable. There is no method that
exists, which can change the existing tuple or string.

http://www.thapar.edu/index.php/about-us/mission

4
Lists

In this chapter, we will cover Python lists, list functions, and list methods.

In the real world, we often make lists, such as daily to-do lists, a list of players of the Cricket
team, a guest list for a wedding, lists of food, and so on.

Like tuple, a list is also a built-in data structure available in Python. It can contain
heterogeneous values such as integers, floats, strings, tuples, lists, and dictionaries.
However, Python lists are mutable; yes, they can change.

The following are the characteristics of a Python list:

Values are ordered
Mutable
A list can hold any number of values
A list can add, remove, and alter the values

Creating a list
Let's see how we can create an empty list:

<Variable name > = []
List1 = []

Creating a list with values
A list contains comma-separated values. For example:

Avengers = ['hulk', 'iron-man', 'Captain', 'Thor']

Lists

[79]

Unpacking list values
You can assign a list value to variables by using the assignment operator. Let's discuss this
with an example:

>>> a,b = [1,2]

>>> a

1

>>> b

2

>>>

You can see that 1 is assigned to variable a and 2 is assigned to variable b. This is called
unpacking. What happens when a list is provided with more variables? Let's see the
following example:

>>> a,b = [1,2,3]
Traceback (most recent call last):

 File "<pyshell#7>", line 1, in <module>

 a,b = [1,2,3]

ValueError: too many values to unpack

 The error indicates that there are more values to unpack. Let's see another example:

>>> a,b,c = [1,2]
Traceback (most recent call last):

 File "<pyshell#8>", line 1, in <module>

 a,b,c = [1,2]

ValueError: need more than 2 values to unpack

The preceding error indicates that there should be more list values to unpack.

Lists

[80]

List operations
In this section, you will learn slicing, accessing, adding, deleting, and updating the values in
a list.

Accessing list values
In order to access list values, use list names with positional index in square brackets. For
example, consider the following code snippet:

>>> Avengers = ['hulk', 'iron-man', 'Captain', 'Thor']

>>> Avengers[0]

'hulk'

>>> Avengers[3]

'Thor'

>>> Avengers[-1]

'Thor'

>>> Avengers[4]

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

 Avengers[4]

IndexError: list index out of range

If the desired index is not found in the list, then the interpreter throws IndexError.

Slicing the list
The slicing of a list is the same as we did in tuples. See the syntax:

<list-name>[start : stop : step]

Lists

[81]

See the example:

>>> Avengers[1:3]

['iron-man', 'Captain']

>>> Avengers[:4]

['hulk', 'iron-man', 'Captain', 'Thor']

>>> Avengers[:]

['hulk', 'iron-man', 'Captain', 'Thor']

>>> Avengers[2:]

['Captain', 'Thor']

>>> list1 = [1,2,3,4,5,6,7,8,9,10,11,12,13]

>>> list1[1:13:3]

[2, 5, 8, 11]

>>>

The step means the amount by which the index increases. If you don't define it, then it takes
1 step by default.

Updating the list
Lists are mutable, so the values of a list can be updated.

Let's see the example with our mightiest heroes of Avengers:

Avengers = ['hulk', 'iron-man', 'Captain', 'Thor']

In the preceding list, the name 'Captain' should be 'Captain-America':

>>> Avengers = ['hulk', 'iron-man', 'Captain', 'Thor']

>>> Avengers[2]

'Captain'

>>> Avengers[2] = "Captain-America"

Lists

[82]

>>> Avengers

['hulk', 'iron-man', 'Captain-America', 'Thor']

>>>

By using the index number, you can update the values.

Deleting values from a list
By using the del keyword, you can delete a value or a slice of list from the list.

Let's see the example of making a new team for the Civil War movie:

 >>> C_W_team = ['hulk', 'iron-man', 'Captain-America', 'Thor',"Vision"]

>>> del C_W_team[0]

>>> C_W_team

['iron-man', 'Captain-America', 'Thor', 'Vision']

>>>

>>> del C_W_team[2:4]

>>> C_W_team

['iron-man', 'Captain-America']

>>>

We deleted the first and last two values from the list in the preceding example.

Addition of Python lists
You can add two lists by using the + operator.

See the following example:

>>> Avengers1 = ['hulk', 'iron-man', 'Captain-America', 'Thor']

>>> Avengers2 = ["Vision","sam"]

>>>

Lists

[83]

We need a big team, so add both the lists:

>>> Avengers1+Avengers2

['hulk', 'iron-man', 'Captain-America', 'Thor', 'Vision', 'sam']

>>>

>>> Avengers2+Avengers1

['Vision', 'sam', 'hulk', 'iron-man', 'Captain-America', 'Thor']

>>>

>>> Avengers1

['hulk', 'iron-man', 'Captain-America', 'Thor']

>>>

>>> Avengers2

['Vision', 'sam']

>>>

The original list will not be changed; the addition of lists can be saved to another variable.

Multiplication of lists
By using the * operator, you can perform multiplication of Python lists, as shown in the
following example:

>>> Av = ['Vision', 'sam']

>>> new_Av = Av*2

>>> new_Av

['Vision', 'sam', 'Vision', 'sam']

Let us see the memory address of the new list.

>>> id(new_Av[0])

47729312

Lists

[84]

>>> id(new_Av[2])

47729312

>>>

In this case, the memory address of both the index values is the same.

in operator
You can use the in operator on list with the if statement.

Let's discuss this with an example:

>>> Avengers= ['hulk', 'iron-man', 'Captain-America', 'Thor']

>>> if "iron-man" in Avengers:

 print "yes "

yes

>>>

>>> if "vision" in Avengers:

 print "yes "

>>>

In the preceding example, we check whether the particular value exists in the list or not. We
check whether the strings, "iron-man" and "vision", exist in the Avengers list.

This way, you can use the in operator in a list.

Lists

[85]

List functions
In this section, we will discuss some Python built-in functions, which can be applied to a
list.

len()
The syntax for the len() method is given as follows:

len(list)

The len() function returns the number of elements or values in the list, as shown in the
following example:

>>> avengers = ['hulk', 'iron-man', 'Captain-America', 'Thor']

>>> len(avengers)

4

>>>

Let'ss see how to use the max () function on a list.

max ()
The syntax for the max () method is given as follows:

max (list)

The max (list) function returns the element of the list with the maximum value:

>>> list1 = [1, 2, 3, 4,510]

>>> max (list1)

510

>>> list1 = [1, 2, 3, 4,510,510.0]

>>> max (list1)

510

Lists

[86]

>>> list1 = [1, 2, 3, 4,510.0, 510]

>>> max (list1)

510.0

>>> list2 = [800, "1"]

>>> max (list2)

'1'

>>>

The working of the max () function for lists and tuples is the same. Max preference of a
string is more than float and integer values.

The next function is the min () function, the opposite of the max () function. The min ()
function returns an element from the Python list with the minimum value.

You can easily convert a tuple into a list by using the list () function.

list ()
The syntax for the list () method is given as follows:

list(tuple)

The list function converts the sequence into a list. Let's see the following example:

>>> tup1 = ("a","b","c")

>>> list (tup1)

['a', 'b', 'c']

>>> name = "mohit raj"

>>> list1(name)

>>> list(name)

['m', 'o', 'h', 'i', 't', ' ', 'r', 'a', 'j']

>>>

Lists

[87]

You can see that the tuple, tup1, and string name have been converted into a list.

Python offers you a function to sort the list, called sorted ().

sorted ()
The syntax for the sorted () method is given as follows:

sorted (iterable, cmp, key, reverse)

The sorted () function returns a new sorted list from the values in iterable. See the
following example:

>>> list1 = [2, 3, 0, 3, 1, 4, 7, 1]

>>> sorted (list1)

[0, 1, 1, 2, 3, 3, 4, 7]

>>> list1

[2, 3, 0, 3, 1, 4, 7, 1]

>>>

Let's take a tuple to pass into the sorted() function, as shown in the following:

>>> tup1 = (2, 3, 0, 3, 1, 4, 7, 1)

>>> sorted (tup1)

[0, 1, 1, 2, 3, 3, 4, 7]

>>> tup1

[2, 3, 0, 3, 1, 4, 7, 1]

>>>

In the preceding example, you saw that the return type is list. So, the sorted () function
always returns a list type. We will see the rest of the arguments of the sorted ()
function in the list method, sort ().

Lists

[88]

List methods
In this section, we will discuss list methods, one by one, with examples.

Let's make an empty list and add values one by one:

Avengers = []

In order to add a value to the list, we will use the append () method. You will see this
method most of the time.

append ()
The syntax for the append () method is given as follows:

list.append ()

The method adds a value at the end of the list. Let's see the following example:

>>> Avengers = []

>>> Avengers.append("Captain-America")

>>> Avengers.append("Iron-man")

>>> Avengers

['Captain-America', 'Iron-man']

>>>

You can see that we have added two members to the list.

Consider a situation where you want to add a list to an existing list. For example, we have
two lists of our heroes:

Avengers1 = ['hulk', 'iron-man', 'Captain-America', 'Thor']

Avengers2 = ["Vision","sam"]

We want to add the Avengers2 list to the Avengers1 list. If you are thinking about the +
operator, you might be right to some extent but not completely because the + operator just
shows the addition but doesn't change the original lists.

Lists

[89]

In order to add one list to another, we will use the extend () method. See the syntax
explained in the subsequent subsection.

extend ()
The syntax for the extend () method is given as follows:

list1.extend (seq)

The list1 list is the primary list to be extended.

The seq argument could be a sequence, string, tuple, or list, which would be added to
list1. The following is the example of the famous Avenger team:

>>> Avengers1 = ['hulk', 'iron-man', 'Captain-America', 'Thor']

>>> Avengers2 = ["Vision","sam"]

>>> Avengers1.extend(Avengers2)

>>> Avengers1

['hulk', 'iron-man', 'Captain-America', 'Thor', 'Vision', 'sam']

>>>

>>> Avengers2

['Vision', 'sam']

In the preceding example, you can see that the Avenger1 team has been extended by
appending all the elements of the Avengers2 list.

Let's see one more example:

>>> list1 = ["mohit", "Bhaskar"]

>>> name = "leapx"

>>> list1.extend(name)

>>> list1

['mohit', 'Bhaskar', 'l', 'e', 'a', 'p', 'x']

Lists

[90]

>>>

In the preceding example, list1 has been extended by appending all the characters of the
string name. Let's see another example:

>>> Avengers1 = ['hulk', 'iron-man', 'Captain-America', 'Thor']

>>> team2 = ("vision”, “Clint")

>>> Avengers1.extend(team2)

>>> Avengers1

['hulk', 'iron-man', 'Captain-America', 'Thor', 'vision', 'Clint']

>>>

In the preceding example, we added the team2 tuple to the Avengers1 list.

Difference between append and extend.
If you are confused between the append and extend methods, the following example will
clear your doubts:

>>> Linux = ["kali", "Ubuntu", "debian"]

>>> Linux2 = ["RHEL", "Centos"]

>>> Linux.extend(Linux2)

>>> Linux

['kali', 'Ubuntu', 'debian', 'RHEL', 'Centos']

>>>

>>>

>>> Linux = ["kali", "Ubuntu", "debian"]

>>> Linux2 = ["RHEL", "Centos"]

>>> Linux.append(Linux2)

>>> Linux

Lists

[91]

['kali', 'Ubuntu', 'debian', ['RHEL', 'Centos']]

>>>

The append method gives a list within the list. The list Linux2 = ["RHEL", "Centos"]
has been taken as one list. Let's proceed to the next method.

count ()
The syntax for the count () method is given as follows:

list1.count (item)

The count () method is used to find the occurrence of an item in a list. See the following
example:

>>> list1 = ["a","c","b","c","a","h","l", 1, 2, 3, 4]

>>> list1.count ("a")

2

>>> list1.count ("c")

2

>>>

>>> list1.count ("k")

0

The preceding example shows that the characters, "a" and "c", occur two times. If no
occurrence is found, then the method returns 0.

Consider that you have a big list and you want to find out the index of a particular item. To
accomplish this, you can use the index () method.

index ()
The syntax for the index () method is given as follows:

list.index(item)

Lists

[92]

The index () method is used to find the index of a particular item in a list. For example,
consider the following code snippet:

>>> OS = ['kali', 'Ubuntu', 'debian', 'RHEL', 'Centos']

>>> OS.index("debian")

2

>>> OS.index("mint")

Traceback (most recent call last):

 File "<pyshell#55>", line 1, in <module>

 OS.index("mint")

ValueError: 'mint' is not in list

>>>

From the preceding example, you can easily understand that if a list does not contain the
item, then the index () method shows ValueError.

Let's see another example:

>>> OS = ['kali', 'Ubuntu', 'debian', 'RHEL', 'Centos','RHEL']

>>> OS.index("RHEL")

3

>>>

If an item occurs two times, then the index method returns the index of the first occurrence.

Consider a list of avengers [‘iron-man', 'hulk', 'Thor']. As we know, one name is
missing: 'Captain-America', and I want to insert 'Captain-America' in the first index.
To do this, we can use the insert () method.

insert()
The syntax for the insert () method is given as follows:

list1.insert (index1, item)

Lists

[93]

index1 is the index where the item needs to be inserted. The item is the value to be inserted
into list1:

>>> A = [‘iron-man', 'hulk', 'Thor']

>>> A.insert (0,"Captain-America")

>>> A

['Captain-America', 'iron-man', 'hulk', 'Thor']

>>>

remove()
Sometimes, we need to remove an item from a list. So, this can be accomplished by using
the remove () method. The syntax for the method is given as follows:

list.remove(item)

The remove () method is used to remove an item from a list. For example, consider the
following example:

>>> Avengers1 = ["Iron-man","Thor","Loki","hulk"]

>>> Avengers1.remove ("Loki")

>>> Avengers1

['Iron-man', 'Thor', 'hulk']

>>>

>>>

Because "Loki" was not a member of the Avengers team, we removed it.

Let's consider another example:

>>> num = [1,2,3,4,5,6,4,1,7]

>>> num.remove(1)

>>> num

Lists

[94]

[2, 3, 4, 5, 6, 4, 1, 7]

>>>

In the preceding example, you can see that the remove () method just removed the first
occurrence.

pop()
If you want to see a removed item, you can use the pop () method. The syntax for the
method is given as follows:

list.pop()

The pop () method removes and returns the last item from the list.

Let's take the example of the famous TV series, GoT:

>>> GoT = ["Tyrion","Sansa", "Arya","Joffrey","Ned-Stark"]

>>> GoT.pop()

'Ned-Stark'

>>> GoT.pop()

'Joffrey'

>>> GoT

['Tyrion', 'Sansa', 'Arya']

>>>

In the preceding example, you can see that the pop () method returns the removed
item. You can also remove any item based on the index. See the following example:

>>> GoT = ["Tyrion","Sansa", "Arya","Catelyn","Joffrey","Ned-Stark"]

>>> GoT = ["Tyrion","Sansa", "Arya","Catelyn","Joffrey","Ned-Stark"]

>>> GoT.pop(3)

'Catelyn'

>>> GoT

Lists

[95]

['Tyrion', 'Sansa', 'Arya', 'Joffrey', 'Ned-Stark']

>>>

In preceding example, index number 3, that is, "Catelyn" has been removed. Sometimes,
you need to sort the values of a list. Python lists offer a very beautiful method called sort
().

The syntax for the method is given as follows:

list.sort(cmp=None, key=None, reverse=False)

The sort() method is stable and inplace. Stable means that the order of items that compare
equal will be preserved. Inplace in sort does not use extra memory. Let's understand the
sort() method by examples.

Consider the following example where simple numbers are sorted in an ascending order:

>>> list1 = [5, 6, 7, 1, 4, 2, 0, 4, 2, 8]

>>> list1.sort()

>>> list1

[0, 1, 2, 2, 4, 4, 5, 6, 7, 8]

>>>

Let's see how to sort the list in the descending order:

>>> list1 = [5, 6, 7, 1, 4, 2, 0, 4, 2, 8]

>>> list1.sort (reverse=True)

>>> list1

[8, 7, 6, 5, 4, 4, 2, 2, 1, 0]

>>>

Now, you got an idea of the reverse argument. Let's take an example of a list of numbers
and strings:

>>> list2 = [8, 7,4,2,1, "1", "a","@#", "nm"]

>>> list2.sort ()

>>> list2

Lists

[96]

[1, 2, 4, 7, 8, '1', '@#', 'a', 'nm']

For ascending order, the interpreter first takes the number and then strings.

For descending order, the interpreter first takes string, then numbers:

>>>

>>> list2 = [8, 7,4,2,1, "1", "a","@#", "nm"]

>>> list2.sort (reverse=True)

>>> list2

['nm', 'a', '@#', '1', 8, 7, 4, 2, 1]

>>>

Let's take some complex examples:

Consider that you have a list of tuples as follows:

[("a",4),("b",1),("v",5),("f",2)]

The tuples in the list contain two values, and you want to sort the list according to the
second value of tuples.

See the following code:

def fun1(x):

 return x[1]

list_tup = [("a",4),("b",1),("v",5),("f",2)]

list_tup.sort(key= fun1)

print list_tup

In the preceding code, we defined a fun1() function, which is used as a key of the sort
method. The list_tup list passes its elements one by one to the fun1(x) function,
and fun1(x) returns the tuple's second element because sort would be performed
according to the tuple's second element.

Lists

[97]

Let's see the output of the program:

Output of sort of list.

I have one more example for you. Consider that you want to sort the elements of a list but
based on some conditions. Consider that you have a list as follows:

list1 = [10,9,3,7,2,1,23,1,561,1,1,96,1]

You want to sort all the elements, but you want that all 1 elements must remain on the right
side. It can be accomplished by the cmp argument of the sort() method.

Let's discuss a simple example:

list1 = [10,9,3,7,2,1,23,1,561,1,1,96,1]

def cmp1(x,y):

 return

list1.sort(cmp = cmp1)

In the preceding example, we have a list of unsorted numbers. We are using the cmp
argument. The cmp1 function takes two arguments. These arguments come from a given
list, for example, (10, 9), (9, 3), (3,7), and so on. If cmp1 returns a negative number,
then ascending order sort happens, and if it returns a positive number, then descending sort
happens.

In our problem, we want ascending order sort, but we also want to push all the 1s to the
right:

list1 = [10,9,3,7,2,1,23,1,561,1,1,96,1]

def cmp1(x,y):

 if x == 1 or y==1:

Lists

[98]

 c = y-x

 else:

 c = x-y

 return c

list1.sort(cmp = cmp1)

print list1

Here is the output of the program:

Showing output of list cmp argument

reverse()
Our last list method is reverse(). The syntax for the method is given as follows:

List1.reverse()

The reverse() method reverses the items of a list. Consider the following example:

>>> av = ['hulk', 'iron-man', 'Captain-America', 'Thor', 'vision', 'Clint']

>>> av.reverse()

>>> av

['Clint', 'vision', 'Thor', 'Captain-America', 'iron-man', 'hulk']

>>>

Lists

[99]

List comprehensions
List comprehension is a concise way of creating lists. In this section, we will use a list with
the for loop. If you have not read about the for loop so far, you can skip this section and
get back after learning about the for loop, covered in Chapter 6, Control Statements and
Loops.

Let's take a list1 list as shown:

list1 = [2,3,4,5,6]

Now, our aim is to make a new list that contains the square of the elements of list1:

list1 = [2,3,4,5,6]

list2 = []

for each in list1:

 list2.append(each*each)

print list2

The output of the program is as follows:

Square of list

The preceding code took four lines to create the desired list. By using list comprehensions,
we can do the preceding stuff in just one line:

>>> list1 = [2, 3, 4, 5, 6]

>>> [each*each for each in list1]

[4, 9, 16, 25, 36]

>>>

Lists

[100]

Let's have a look at some more examples with the if statement.

 Create a new list that would contain the square of the even numbers of a given list:

list1 = [2,3,4,5,6]

list2 = []

for each in list1:

 if each%2== 0:

 list2.append(each*each)

print list2

The output of the preceding code snippet is as follows:

List with if statement

 Let's do it by using list comprehension:

>>> list1 = [2,3,4,5,6]

>>> [each*each for each in list1 if each%2 == 0]

[4, 16, 36]

>>>

Lists

[101]

Exercises
See the following list:1.

list1 = ["abc",[2,3,("mohit","the avengers")],1,2,3]

Get the string "avengers".

With the for loop, take the following list and sort it based on the sum of the2.
values of the tuples of the list:

[(1,5),(9,0),(12,3),(5,4),(13,6),(1,1)]

Use the list, [1,2,4,5,1,1,4,1,56], and find the index of all the 1 elements.3.
Do the preceding exercise by using list comprehension.4.

Summary
In this chapter, you learned about lists, defining a list, and using a list. You also learned
various list operations, such as accessing and slicing of lists. In the list functions,
you learned some generic functions that can be applied to lists. You also learned list
methods specific to the list. By using list methods, you learned about sort, reverse, pop,
append, and extend methods. Finally, you learned how to use a list with the for loop and
how to write one-line code.

5
Dictionary

So far, you have learned about strings, tuples, and lists. In this chapter, we have another
useful built-in data type in Python is called dictionary. In a list, values are indexed by the
range of numbers, but in a dictionary, values are indexed by keys.

Overview of dictionary
In Python, a dictionary is a sequence of key-value, or item, pairs separated by commas.

Consider the following example:

port = {22: "SSH", 23: "Telnet" , 53: "DNS", 80: "HTTP" }

The port variable refers to a dictionary that contains port numbers as keys and its protocol
names as values.

Consider the following example:

companies = {"IBM": "International Business Machines", "L&T" :"Larsen &
Toubro"}

The syntax of a dictionary is as follows:

Dictionary_name = {key: value}

Dictionary

[103]

The key-value pair is called an item. The key and value are separated by a colon (:), and
each item is separated by a comma (,). The items are enclosed by curly braces ({ }). An
empty dictionary can be created just by using curly braces ({ }). Key features of the
dictionary are:

The key of the dictionary can not be changed
A string, int, or float can be used as a key
A tuple that does not contain any list can be used as a key
Keys are unique
Values can be anything, for example, list, string, int, and so on
Values can be repeated
Values can be changed
A dictionary is an unordered collection, which means that the order in which you
have entered the items in a dictionary may not be retained and you may get the
items in a different order

Operations on the dictionary
As you know, a dictionary is mutable; you can add new values, and delete and update old
values. In this section, you will learn accessing, deletion, updation, and addition
operations.

Accessing the values of dictionary
In order to access the dictionary's values you will need the key. Consider a dictionary of
networking ports: In order to access the dictionary's values you will need the key. Consider
a dictionary of networking ports:

Port = {80: “HTTP”, 23 : “Telnet”, 443 : “HTTPS”}

Let's learn by example:

>>> port = {80: "HTTP", 23 : "Telnet", 443 : "HTTPS"}
>>> port[80]
'HTTP'
>>> port[443]
'HTTPS'

Dictionary

[104]

In order to access the dictionary's value, use the square brackets along with the key. What
happens if the key is not in the dictionary?

>>> port[21]

Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 port[21]
KeyError: 21
>>>

If the key is not found, then the interpreter shows the preceding error.

Deleting an item from the dictionary
By using the del keyword, you can delete the entire dictionary or the dictionary's items. If
you want to delete the dictionary's items, use the following syntax:

del dict[key]

Considering the following code snippet for example:

>>> port = {80: "HTTP", 23 : "Telnet", 443 : "HTTPS"}
>>> del port[23]
>>> port
{80: 'HTTP', 443: 'HTTPS'}
>>>

If you want to delete the entire dictionary, then use the following syntax:

The del dict

Consider the following example:

>>> port = {80: "HTTP", 23 : "Telnet", 443 : "HTTPS"}
>>> del port
>>> port

Traceback (most recent call last):
 File "<pyshell#12>", line 1, in <module>
 port
NameError: name 'port' is not defined
>>>

The preceding error shows that the port dictionary has been deleted.

Dictionary

[105]

Updating the values of the dictionary
Updating the dictionary is pretty simple; just specify the key in the square bracket along
with the dictionary name. The syntax is as follows:

dict[key] = new_value

Consider the following example:

port = {80: "HTTP", 23 : "SMTP”, 443 : "HTTPS"}

In the preceding dictionary, the value of port 23 is "SMTP", but in reality, port number 23 is
for telnet protocol. Let's update the preceding dictionary with the following code:

>>> port = {80: "HTTP", 23 : "SMTP", 443 : "HTTPS"}
>>> port
{80: 'HTTP', 443: 'HTTPS', 23: 'SMTP'}
>>> port[23] = "Telnet"
>>> port
{80: 'HTTP', 443: 'HTTPS', 23: 'Telnet'}
>>>

Adding an item to the dictionary
Adding an item to the dictionary is very simple; just specify a new key in the square
brackets along with the dictionary. The syntax is as follows:

dict[new_key] = value

Consider the following example:

>>> port = {80: "HTTP", 23 : "Telnet"}
>>> port[110]="POP"
>>> port
{80: 'HTTP', 110: 'POP', 23: 'Telnet'}
>>>

In the preceding example, we added the "POP" protocol.

Dictionary

[106]

Dictionary functions
In this section, we will explore the built-in functions available in Python, which can be
applied to dictionary. You may have seen most of the functions in the previous chapters of
 list and tuple. In this section, you will see how to apply those functions to a dictionary.

len()
In order to find the number of items that are present in a dictionary, you can use the len()
function. See the following example:

>>> port = {80: "http", 443: "https", 23:"telnet"}
>>> len(port)
3
>>>

str()
Consider a situation where you want to convert a dictionary into a string; here you can use
the str() function. The syntax of the method is as follows:

str(dict)

Consider the following example:

>>> port = {80: "http", 443: "https", 23:"telnet"}
>>> port
{80: 'http', 443: 'https', 23: 'telnet'}
>>> str(port)
"{80: 'http', 443: 'https', 23: 'telnet'}"
>>>

You can easily see the double quotes around the dictionary. Let's get the max key from the
dictionary, using the max() function.

max()
If you pass a dictionary to the max() function, then it returns the key with the maximum
worth. The syntax of the method is as follows:

max(dict)

Dictionary

[107]

See the following example:

>>> dict1 = {1:"abc",5:"hj", 43:"Dhoni", ("a","b"):"game", "hj":56}
>>> max(dict1)
('a', 'b')

So, the max function gives the tuple the maximum worth. Similarly, to get the minimum
key, you can use the min() function.

min()
The min() function is just opposite to the max() function. It returns the dictionary's key
with the lowest worth. The syntax of the method is as follows:

min(dict)

Consider the following example:

>>> dict1 = {1:"abc",5:"hj", 43:"Dhoni", ("a","b"):"game", "hj":56,
(1,3):"kl"}
>>> dict1
{1: 'abc', (1, 3): 'kl', 5: 'hj', 43: 'Dhoni', 'hj': 56, ('a', 'b'):
'game'}
>>> min(dict1)
1
>>>

Let's convert the list or tuple into a dictionary. In order to convert the list or tuple into a
dictionary, the format should be as follows:

port = [[80,"http"],[20,"ftp"],[23,"telnet"],[443,"https"],[53,"DNS"]]

Alternatively, it can be as follows:

 port = [(80,"http"),(20,"ftp"),(23,"telnet"),(443,"https"),(53,"DNS")]

We need pairs of two values. By using the dict function, we can convert the preceding list
into a dictionary.

dict()
You can pass a tuple or list to the dict() function, but that tuple or list contain elements as
pairs of two values, as shown in the next example.

Dictionary

[108]

The syntax of the method is as follows:

dict(list or tuple)

Let's see the conversion by example:

>>> port = [[80,"http"],[20,"ftp"],[23,"telnet"],[443,"https"],[53,"DNS"]]
>>> port
[[80, 'http'], [20, 'ftp'], [23, 'telnet'], [443, 'https'], [53, 'DNS']]
>>> dict(port)
{80: 'http', 443: 'https', 20: 'ftp', 53: 'DNS', 23: 'telnet'}
>>>
>>> port = [(80,"http"),(20,"ftp"),(23,"telnet"),(443,"https"),(53,"DNS")]
>>> dict(port)
{80: 'http', 443: 'https', 20: 'ftp', 53: 'DNS', 23: 'telnet'}
>>>

In operator on Python dictionary The in operator can be used to find the existence of a key
in the dictionary. Consider the example program inkey.py:

port1 = {21: "FTP", 22:"SSH", 23: "telnet", 80: "http"}
key = int(raw_input("Enter the key "))
if key in port1:
 print "YES"
else :
 print "NO"

See the following screenshot for the output:

Output of in program

Dictionary

[109]

Similarly, you can use the not in operator. Consider the following example:

>>> port1 = {21: "FTP", 22 :"SSH", 23: "telnet", 80: "http"}
>>> if 21 not in port1:
 print "yes"
>>

In the preceding code snippet, nothing gets printed.

Dictionary methods
In this section, we will discuss the dictionary methods one by one. Consider that you want
to create a copy of an existing dictionary; you can use the copy() method.

copy()
The syntax of the copy() method is as follows:

dict.copy()

See the following example:

>>> Avengers ={'iron-man':"Tony", "CA":"Steve","BW":"Natasha"}
>>> Avengers
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>> Avengers2 = Avengers.copy()
>>> Avengers2
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>>

You can see that Avengers2 is an exact copy of Avengers. Do not confuse copy() with the
assignment operator. Let's see the following example:

>>> A1 = {'iron-man':"Tony", "CA":"Steve","BW":"Natasha"}
>>> A2= A1
>>>
>>> A2
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>>
>>> CW= A1.copy()
>>> CW
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>>

Dictionary

[110]

Variable A1 and A2 hold the same dictionary, but the CW variable hold different dictionary.
You can check the memory address of A1, A2, and CW:

>>> id(A1)
46395728
>>> id(A2)
46395728
>>> id(CW)
46136896
>>>

We can do one more thing. Let's add one more member to the A1 dictionary:

>>> A1
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>> A1["hulk"]= "Bruce-Banner"
>>> A1
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk': 'Bruce-
Banner'}
>>> A2
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk': 'Bruce-
Banner'}
>>> CW
{'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha'}
>>>

We have changed the A1 dictionary and the changes would also be reflected by A2 since
both hold the same memory address, whereas CW holds a different dictionary. Consider that
you have a dictionary and you want to access a key, which does not exist in the dictionary.
The interpreter shows KeyError as follows:

>>> A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk':
'Bruce-Banner'}
>>> A1["panther"]
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 A1["panther"]
KeyError: 'panther'
>>>

In the preceding code, you can clearly see the error. If this happens in running code, your
code will not get fully executed. In order to deal with this situation, we will use the get()
method.

Dictionary

[111]

get()
The syntax of the get() method is as follows:

dict.get(key, default=None)

The get() method is used to get the value of a given key from the dictionary. If key is not
found, then the default value or message will return. See the following example, where key
is present:

 >>> A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk':
'Bruce-Banner'}
 >>> A1.get('iron-man',"not found")
 'Tony'

In the preceding example, since the key is found, the custom message, not found, does not
get printed. Let's see another example:

 >>> A1.get('panther',"not found")
 'not found'
 >>> A1.get("Black")
 >>>

If the custom message is not set, then nothing will be returned. There is another
method, setdefault(), which is very much similar to the get() method with a little
different functionality. Let's discuss the method with examples.

setdefault()
The syntax of setdefault() is as follows:

dict.setdefault(key1, default=None)

key1 -- This is key to be searched.

Default -- if key1 is not found, then the message will be returned and added to the
dictionary. Let's see the following example:

 >>> port1.setdefault(23, "Unknown")
 'Telnet'
 >>> port1
 {80: 'http', 22: 'SSH', 23: 'Telnet'}
 >>> port1.setdefault(19, "Unknown")

Dictionary

[112]

 'Unknown'
 >>> port1
 {80: 'http', 19: 'Unknown', 22: 'SSH', 23: 'Telnet'}

If the message has been not been set, then it returns and adds a default value, None. See the
following example:

 >>> port1.setdefault(18)
 >>> port1
 {80: 'http', 18: None, 19: 'Unknown', 22: 'SSH', 23: 'Telnet'}
 >>>

To avoid KeyError, we can use the get() method, but we can add one more check to
avoid KeyError. The has_key() method facilitates you to check whether the given key
exists or not.

has_key()
The syntax for has_key() is given as:

dict.has_key(key)

key--this is the key to be searched in the dictionary, dict. The has_key() method
returns True or False, as shown in the following example:

 >>> port1 = {80: 'http', 18: None, 19: 'Unknown', 22: 'SSH', 23: 'Telnet'}
 >>> port1.has_key(80)
 True
 >>>
 >>> port1.has_key(20)
 False
 >>>

Consider a situation where you want to do some operation on a dictionary's keys and want
to get all the keys in different lists. In this situation, you can use the keys() method.

keys()
The syntax of keys() is as follows:

dict.keys()

Dictionary

[113]

Let's consider the following example:

A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk': 'Bruce-
Banner'}

In the preceding dictionary, we want the superhero's characters, that is, all the keys:

>>> A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk':
'Bruce-Banner'}
 >>> A1.keys()
 ['iron-man', 'CA', 'BW', 'hulk']
 >>>

The preceding method returns a list of all the keys.

Similarly, if we want all the values in a separate list, we can use the values() method.

values()
The syntax of values() is as follows:

dict.values()

Let's consider the following example:

A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk': 'Bruce-
Banner'}

In the preceding dictionary, we want to get all the real names of our heroes:

 >>> A1 = {'iron-man': 'Tony', 'CA': 'Steve', 'BW': 'Natasha', 'hulk':
'Bruce-Banner'}
 >>> A1.values()
 ['Tony', 'Steve', 'Natasha', 'Bruce-Banner']
 >>>

Dictionary to another dictionary. Consider the following example: Sometimes, we need to
add one dictionary to another dictionary. Consider the following example:

port1 = {22: "SSH", 23: "telnet", 80: "Http”}

We have another dictionary of ports, that is, port2 as shown:

port2 = {53 :"DNS", 443 : "https"}

In order to update port1 with port2, we can take advantage of the update() method.

Dictionary

[114]

update()
The syntax is given as:

dict.update(dict2)

dict2--this is the dictionary to be added.

Consider the following example:

 >>> port1 = {22: "SSH", 23: "telnet", 80: "Http" }
 >>>
 >>> port2 = {53 :"DNS", 443 : "https"}
 >>>
 >>> port1.update(port2)
 >>> port1
 {80: 'Http', 443: 'https', 53: 'DNS', 22: 'SSH', 23: 'telnet'}
 >>>

Be careful to use the preceding method because if dict and dict2 dictionaries contain the
same key, then the dict dictionary's keys would be replaced by the keys of the dict1
dictionary.

items()
The syntax of the items() method is as follows:

dict.items()

The items() method returns the list of dictionary's (key, value) tuple pairs:

 >>> dict1 = d={1:'one',2:'two',3:'three'}
 >>> dict1.items()
 [(1, 'one'), (2, 'two'), (3, 'three')]
 >>>

Sometimes, we need to delete all the items of a dictionary. This can be done by using
the clear() method.

clear()
The syntax of clear() is as follows:

dict.clear()

Dictionary

[115]

Let's consider the following example:

 >>> dict1={1:'one',2:'two',3:'three'}
 >>> dict1
 {1: 'one', 2: 'two', 3: 'three'}
 >>> dict1.clear()
 >>> dict1
 {}
 >>>

Python dictionary with for loop
In this section, we will learn how to use the for loop with a dictionary. If you have not read
about the for loop so far, you can skip this section and get back after learning about
the for loop, covered in Chapter 6, Control Statements and Loops. Let's apply the for loop to
a dictionary. See the following program named forloopkey.py:

port1 = {21: "FTP", 22 :"SSH", 23: "telnet", 80: "http"} for each in port1:
print each

The output is as follows:

Output of program forloopkey.py

The preceding program prints only the keys of the dictionary. If you want to print the key
as well as the value, then you can use the items() method. See the following program
named forloopitems.py:

port1 = {21: "FTP", 22 :"SSH", 23: "telnet", 80: "http"}
 for k,v in port1.items():
 print k," : ", v

Dictionary

[116]

The following screenshot shows the output of the program:

Output of program forloopitems.py

The preceding program seems difficult to understand at first. Let's break the program into
two parts. The port1.items() method returns a list of tuple pairs, as shown:

>> port1 = {21: "FTP", 22:"SSH", 23: "telnet", 80: "http"}
 >>> port1.items ()
 [(80, 'http'), (21, 'FTP'), (22, 'SSH'), (23, 'telnet')]
 >>>

The for loop sends each tuple to the variables, k and v. See the one iteration of for loop:

>> k,v = (80, 'http')
 >>> k
 80
 >>> v
 'http'
 >>>

Now, you have learned how to iterate through a dictionary. Consider a dictionary of
millions of items, and you want to iterate through the dictionary. The items () method
returns a list of key-value pairs. The newly created list will also take a lot of memory. A
Python dictionary has a very beautiful memory-saving method called iteritems(). Let's
understand it by the following example code named forloopiter.py:

port1 = {21: "FTP", 22 :"SSH", 23: "telnet", 80: "http"} for k,v in
port1.iteritems(): print k," : ", v

Dictionary

[117]

See the output:

Output of forloopiter.py program

The preceding code does not create a list. Let's understand by Python shell:

>> port1 = {21: "FTP", 22 :"SSH", 23: "telnet", 80: "http"} >>>
port1.iteritems() <dictionary-itemiterator object at 0x02A66210> >>>

The preceding code returns a dictionary object, not a huge list. We will not delve into the
details of the object. You can replace key() by iterkeys() and values() by
itervalues(). When to use iteritems() and items() ? If we need the corresponding
list and have to do some operations on the list, such as slicing and indexing, then
the items() method will be the most suitable. But if our need is just to iterate through the
dictionary, then iteritems() will be the most suitable.

Practical program
Let's make some program to understand the dictionary. Make a dictionary from two lists.
Both the lists are of equal length. Take the lists as shown:

list1 = [1, 2, 3, 4, 5]
list2 = ["a", "b", "c","d", "e"]

The list1 values act as the keys of the dictionary and the list2 values act as the values.
The following is the program for it:

list1 = [1, 2, 3, 4, 5]
list2 = ["a", "b", "c","d", "e"]
dict1 = {}
for index1 in xrange(len(list1)):
 dict1[list1[index1]] = list2[index1]
print dict1

Dictionary

[118]

The output is as follows:

Output of exercise 1

Let's do the preceding exercise in one line:

 >>> list1 = [1,2,3,4,5]
 >>> list2 = ["a", "b", "c","d", "e"]
 >>> dict1 = dict([k for k in zip(list1,list2)])
 >>> dict1
 {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
 >>>

Just a one-liner code can make a dictionary from two lists. So, in the preceding example, we
used the zip() function; zip() is a built-in function, which takes two lists and returns a
list of two tuples, such as [(key, value)]. Let's see an example of the zip() function:

>> list1 = [1,2,3]
 >>> list2 = ["a","b","c"]
 >>> zip(list1, list2)
 [(1, 'a'), (2, 'b'), (3, 'c')]
 >>>

Exercise
Find the number of ways to find whether a key exists in a dictionary or not.1.
Use the dictionary, port1 = {21: "FTP", 22:"SSH", 23: "telnet", 80:2.
"http"}, and make a new dictionary in which keys become values and values
become keys, as shown: Port2 = {“FTP":21, "SSH":22, “telnet":23,
"http": 80}

Dictionary

[119]

Summary
In this chapter, you learned about dictionaries, how to create an empty dictionary, adding
items to the dictionary, and accessing and deleting values from a dictionary. In order to find
the number of items in a dictionary, we used the len() function. There are other useful
functions, such as max() and min() to find the maximum and minimum values in a
dictionary, respectively. In dictionary methods you learned different methods, such as
copy(), keys(), and items(). By using items(), we can iterate through a dictionary. In
the end, you learned two memory-saving methods: iteritems() and iterkeys().

6
Control Statements and Loops

In this chapter, we will understand the principles and working of different control
statements, namely, if, if...else, and if...elif...else. We will also be
understanding the principles and working of various loops, namely, the for and while
loops. We will also get acquainted with the xrange function and statements such as break,
continue, and pass.

Control statements
Now, most of the beginners must be wondering what are control statements. Control
statements are nothing but a series of statements that a program follows to get the desired
results. Let's first try to understand what are control statements and why they form an
essential part of any programming language. You might have used the ATM machine to
withdraw money. What do you do when you insert your debit card? The very first thing
you watch on the screen are the options to chose from the menu. Now you have to perform
certain actions, else your card would be turned away after some time, in case you keep the
computer waiting for a long time. When you choose to withdraw, you have to provide the
correct amount, which is required to be withdrawn from the machine. If you provide the
wrong amount, the computer will immediately give the message "Please enter the correct
amount". What happened here? Did you notice? Here computer is merely following
instructions. It has been ordered to accept only the correct amount and prompt an error
message on input of the wrong amount. This is one such scenario where you can see the use
of control statements.

Control Statements and Loops

[121]

The if and if...else statement
If can be understood as metaphorical English what if which most people use in their day to
day life. What if this doesn't happen? If I were to become a billionaire. If this match is
drawn we are out of the champions' league. If Churchill had not come to power Battle of
Britain would have been lost. If this car doesn't start, use the other one. We are loaded with
numerous examples from across the globe on usage of if. Same is the case with
programming languages. Majority of the programming languages have control statements
and you will find majority of them use the keyword if in their control statements. Python
is no different and also facilitates the usage of if. Let's understand with an example:

password= raw_input("Enter the passwordt")
if password=="MI6":
 print "Welcome Mr. Bond."

For entering inputs through command line raw_input() function is used
in Python.
Any function or control statement block in Python is started by placing the
colon at the end of the line. Colon here marks the beginning of the if
block and print statement begins after one tab space right after the colon.
Programmers usually make a mistake by mixing space with tab right after
the colon.

In the preceding example, after password is entered, the interpreter checks for the entered
string and compares with "MI6"; if password entered is correct, it prints Welcome Mr.
Bond.. If the password is wrong, it will skip the if block and terminate the program:

Control Statements and Loops

[122]

But merely using only if doesn't give much of the choice to the interpreter and it has to
terminate the program. What if the interpreter is given an alternative for a failed if test. In
that case, else can be used to give choice to the interpreter.

Syntax

if condition :
 statements-1
else:
 statements-2

Let's take an example to understand if and else conditions:

password= raw_input("Enter the passwordt")
if password=="MI6":
 print "Welcome Mr. Bond."
else:
 print "Access Denied."

Here, if the password is entered wrongly, the interpreter will immediately execute
statement inside the else block. Here, the control statement is divided into two blocks one
is the if block and the other is the else block. At one time, the interpreter will execute
either of the two blocks:

Control Statements and Loops

[123]

The if...elif...else statement
If there are a series of actions to be executed, then the if...elif...else block can be
used. Most of the programming languages provide the if...else if...else control
block, while Python has shortened else if to elif but the principle remains the same,
that is, it divides the complete control block into number of blocks for specific action to be
executed. It can be interpreted with day-to-day examples, for example, if this debit card
doesn't work, use this credit card, else pay with a cheque.

Syntax

if condition-1:
 sequence of statements-1
elif condition-n:
 sequence of statements-n
else:
 default sequence of statements

Here, in the syntax, we are illustrating a series of branching statements under different
conditions which is also called conditional branching in any language. First, we encounter
an if block and if the condition inside the if block is satisfied or becomes true, only then
will the if block be executed. If while executing the condition inside the if block is not
satisfied, then the control is handed over to the immediate condition statement, that is, elif
block, where the condition would be checked differently, and, finally, we have the else
block, where if all the conditions before the else condition fail, then the else block will
process the code.

Now, let's try to put college grades into use and understand how we can put the grades
through programming:

Grade Score

A All grades above 4

B All grades above 3 and below 3.5

C All grades above 2.5 and below 3

D All grades below 2.5

num =float(raw_input("Enter the number:"))

Control Statements and Loops

[124]

if num > 4:
 letter = 'A'
elif num > 3:
 letter = 'B'
elif num > 2:
 letter = 'C'
else:
 letter = 'D'
print "The Grade is " , letter

Here we have declared a variable num to store the marks entered and we have created a set
of conditions, which will check the marks input. For example, if the marks entered are
greater than 4, then the code inside the if condition would be executed and the letter
variable would be assigned the value 'A' or grade A. Likewise, if the marks entered are less
than or equal to 4, but greater than 3, then the if condition would fail and the control will
be passed onto the elif num>3 conditional block and the letter variable would be
assigned the value of 'B' or the grades B would be assigned to the entered marks. Here, the
interpreter checks for the entered input and executes the correct block as per the correct
marks entered. We entered marks 4.5 and the interpreter gives us grade A as shown in the
following screenshot:

Control Statements and Loops

[125]

Loops
There might be a situation where you might require to run a single block of code a number
of times, in that situation, loops come in handy. Loops come handy in situations such
as iterating through data structures in any programming language or traversing through
large sets of data to filter out junk data, followed by certain keywords followed by
alphanumeric characters followed by certain special characters.

Types of loops
There are two types of loops, namely:

Definite: In this case, the code of block runs for a defined number of times. This1.
is useful when the programmer exactly knows in how many counts the task will
be executed or let's assume that he knows the number of elements inside the data
structure. For example, the strength of a classroom.

Indefinite: In this case, the code of block runs until the condition is true. This is2.
useful where the count is unknown. For example, trying to figure out the number
of times London appears in a literary article.

Before further delving into loops, let's try to understand the range() and xrange()
functions in Python.

The range() function comes handy when you want to generate a list on-the-fly. Its syntax
is as follows:

Syntax

range(start-value, end-value, difference between the values)

Control Statements and Loops

[126]

Here, range(10) will generate a list, which has elements starting from 0 upto 9.
range(2,10) means the list will be generated starting from 2 and will have elements
upto 9. The range(2,10,3) means the list will be generated starting with 2 and having a
difference of 3 after each element.

Syntax

xrange(start-value, end-value, difference between the values)

The xrange() is quite similar to range() except that xrange() releases or
frees the memory when not in use, whereas range() doesn't release the
memory.

Definite loop
It is a loop which is executed a set number of times. The best example that can be thought of
a definite loop is a for loop. Let's take a look at the for loop:

Control Statements and Loops

[127]

Syntax

for <variable> in xrange(<an integer expression >):
 <statement-1 >
 <statement-n >

The first line of code in the for loop is sometimes called the loop header. An integer
expression specifies the number of times the loop has to run. The colon : ends the loop
header. Python's for loop block or body consists of the statements below the header that
will be executed a set number of times. The for loop body must be indented. The
statements inside the loop body are executed sequentially on each run.

Let's try some example:

for a in xrange(4):
 print "Hello all"

Here, in the preceding example, we are trying to print "Hello all" four times.

Control Statements and Loops

[128]

Here, a is any variable or iterating variable or counter variable whose initial value is 0 and
will execute 4 times. Let's take another example:

for count in xrange(4):
 print count

Here the value of count will be printed one at a time and always on a new line.

In the preceding examples, the output is printed on a new line, but the output can be
formatted to be printed in one line. For this, comma or , can be used as shown:

for count in xrange(4):
 print count,

Control Statements and Loops

[129]

The use of , will give you an output similar to this:

Let's consider some more examples:
product =1
for count in xrange(1,5):
 product = product*count
 print product,

We are interested to print the product times count. For this, we create a variable product
whose value we initialize with 1 and generate a list of numbers from 1 to 5, but not
including 5. For one iteration of the for loop, the product is multiplied the number of times
the count value.

Control Statements and Loops

[130]

Here, the count value is nothing but the numbers from our list. We will be getting an
output as shown here:

Let's take another example of the for loop. Here, we are interested in printing each
character in a given string:

for each in 'VIENNA PHILHARMONIC' :
 print each,

Control Statements and Loops

[131]

For every single iteration of the for loop variable, each will store the value of every single
character and will print them one by one in a single line, as shown here:

Indefinite loop
So far we learned about definite loop, now we will understand what is an indefinite
loop? Indefinite loop is a loop that will continue to run infinite number of times until and
unless it is asked to stop. In order to execute an indefinite loop, we use the while statement.

Syntax

while <condition>:
 <statements>

This loop will continue to execute until the condition is met and will terminate once the
condition is not met. Let's try to understand with an example:

 checking_acc = 5678143
 num = int(raw_input("Enter the account numbert"))
 while checking_acc != num:

Control Statements and Loops

[132]

 print "Wrong number "
 num = int(raw_input("Enter the right account numbert"))
 print "n*********"
 print "Your account number is" , num

Here, we are interested to validate a checking bank account. We take a variable
checking_acc, which stores the value of a checking bank account. We take input from the
user for his/her checking bank account number and store it in the num variable. We check
the condition in the while loop and compare the input entered with our existing record of
checking bank account. Here, until the correct account number is entered, the condition will
keep on failing. So, in our case, if checking account is falsely entered, the user will get the
message Wrong number and will be prompted to enter the correct number. Once he enters
the correct number, the condition becomes true and the while loop terminates. You can see
the output here:

But there is a little tweak with which the while loop can be used and made to behave like a
definite loop. Let's try to understand with an example:

sum = 0
 for counter in xrange(1,10):
 sum = sum+counter
 print sum,
 print "n"
 sum = 0
 counter = 1

Control Statements and Loops

[133]

 while (counter < 10):
 sum = sum + counter
 print sum,
 counter= counter + 1

In our previous example, either the condition needs to be failed or it needs to be passed for
the while loop to terminate. But if we insert a condition inside the while loop in such a
manner that it will run for that definite time, then we can make the while loop to behave
like a definite loop. In the preceding example, we are interested to print the sum of numbers
from 1 to 10. We are achieving the same result using the for loop as well, when using
the while loop. The for loop is simple and self-explanatory. To achieve similar results, we
create a counter variable just before the while loop and initialize the variable with the
value of 1. Now, until the value of counter is less than 10, it will continue to execute.
Inside the while loop, we will increment the value of counter by 1 for every iteration.
Thus, the loop will run only 10 times and on the tenth iteration, it will terminate. In the
succeeding screenshot, the output of the for loop is displayed one by one on a new line,
while the output of the while loop is displayed in a single line to differentiate the execution
of both the loops (that is, for and while):

Both the for loop and while loop produce the same outcome. But the while loop block is a
bit large, containing extra statements. The counter is the loop control variable, which must
be explicitly initialized before the loop header. The while loop requires extra effort to make
it work as a definite loop, but there would be several situations where the while loop will
be the only solution available at hand.

Control Statements and Loops

[134]

The while True and break statement

Execution of an infinite while loop can be broken by the use of the break statement. Let's
understand with an example:

sum = 0
while True:
 data = int(raw_input("Enter the data or press 0 to quit :"))
 if data == 0:
 break
 sum = sum+data
print "Sum is ", sum

Here we intend to print the sum of numbers being entered. In the preceding example,
the while loop condition has been set to be Boolean, that is, True. In this case, the while
loop will continue to execute infinitely as the condition will always be true. However, we
can break this loop by setting up a condition check inside the while loop and then using a
break statement. So, the loop will continue to run until the user keeps on entering
numbers, but it will terminate as soon as the number 0 is entered. Here, once 0 is entered,
the if condition inside the while loop will check and as the number entered is 0, the code
inside the if block will execute, which is a break statement. This will terminate the loop
and print the sum of the numbers entered as shown here:

Control Statements and Loops

[135]

Here, the while loop has Boolean value True, which is an entry condition for the while
loop. In this case, the loop would execute at least once. But there is another way to achieve
the preceding outcome without using the break statement. Let's have look at another
example:

sum = 0
flag = 1
while flag == 1:
 data = int(raw_input("Enter the number or press 0 to quit :"))
 if data == 0:
 flag =0
 sum = sum+data
print "Sum is ", sum

We have achieved the same output without using the break statement. Here, we have used
a flag variable instead of a break statement:

The initial entry point of the while loop is the value of the flag variable as 1. Until the
flag variable is 0, the loop will continue to execute. When 0 is entered, the value of flag
variable becomes 0 and the loop terminates.

Control Statements and Loops

[136]

The break statement

The break statements are used to change the flow of any block of statements. There might
be a situation where we might need to break the loop in between; in that scenario, using the
break statement will help us achieve our goal. Let's have a look:

attraction_in_Vienna = ['Stephen plaz', 'Maria-Hilfer strasse', 'Donau-
insel', 'Vienna-Philharmonic']
first = "Donau-insel"
for each in attraction_in_Vienna:
 if(each == first):
 break
print each

Here we have created a list of attractions available in the city of Vienna. We take a variable
first and assign it a value as "Donau-insel":

Control Statements and Loops

[137]

We want to print all the places of attraction in Vienna. But there is a twist. We would like to
stop the moment Donau-insel occurs in the list. Hence, for every iteration of the for loop,
the if block will check each and every element inside the list and compare it with the value
we have given to compare, that is, "Donau-insel". So the program will print all the names
appearing before Donau-insel, and the moment Donau-insel occurs, the break
statement terminates the loop. There can be several situations where the break statement
can be handy such as searching for a keyword in a stack of words, searching a palindrome,
and so on.

Nested loops
They are loops inside loops and there could be more than two loops each within another
loop. In most situations, we generally use the break statement to break the inner loop while
the outer loop will continue to execute. Let's try to understand its working with an example:

list1 = ["London","Paris","New York","Berlin"]
for each in list1:
 str1 = each
 for s in str1:
 if (s =="o"):
 break
 print s,
 print "n"

Here we are interested to print all the city's names and are not interested to print anything
after character o. For this, we create a list of cities and we use the for loop to iterate
through the list. We will use the second for loop to eliminate any characters appearing
after character o. This condition is checked inside the second for loop, which is nested
inside the first for loop with the help of the if statement:

Control Statements and Loops

[138]

In this case, the inner loop breaks whenever char o is encountered, while the outer loop
continues to execute.

The continue and pass statements
While the break statement terminates, the entire loop continue statement will skip that
step and the loop will continue thereafter.

Let's discuss with an example:

movies = ['P.S I Love You', 'Shutter Island', 'Les Miserables play',
'King's Speech', 'Forest Gump']

Control Statements and Loops

[139]

Here is the list of movies but Les Miserables is the name of a play and we would like to skip
this name and want the program to print all the names of the movies:

movies = ["P.S I Love You", "Shutter Island", "Les Miserables Play",
"King's Speech", "Forest Gump"]

for each in movies:
 if (each== "Les Miserables Play"):
 continue
 print each

The for loop iterates through each element of the list and the if block checks the condition
for the occurrence of "Les Miserables Play".

Here, the continue statement just skipped "Les Miserables Play" and the loop
continued to print the rest of the names of the movies.

Control Statements and Loops

[140]

The pass statement
There can be scenarios in various programming problems, where you might want to reserve
a loop for future use. We may not want to write anything inside the block, but at the same
time the block cannot have an empty body. In this case, we use the pass statement to
construct a body that does nothing.

Syntax

def fun():
 pass
for each in "Australia":
 pass

If you are wondering what is def fun(), it's nothing but defining the function with an
empty body. In this case, the body does nothing:

If you are wondering what functions are, then, do not worry, we will be covering them in
a separate chapter on functions.

Control Statements and Loops

[141]

Summary
We started with understanding the concept of control statements and why they are essential
in our day-to-day programming problems. We had a chance to look into two functions
range() and xrange() that are used to generate a list on-the-fly. We learned about
definite loops and indefinite loops. We also learned about the difference between definite
and indefinite loops. Under definite loops, we learned about various control statements
such as if, if...else, if...elif...else, and for loop. While, in indefinite loops, we
had a chance to study the while statement and how we can also use the while loop to work
as a definite loop. We saw the usage of while with the break statement and without
the break statement. We also looked into the working of the continue and pass
statements.

In the next chapter, we will learn about functions and scope of variables.

7
Function and Scope of Variable

In the previous chapter, we learned about control statements and loops. We learned about
various types of control statements such as if statement, if...else statement,
and if...elif...else statement. Next, we saw two main categories of loops, that is,
definite and infinite loops. Under definite loops, we saw the working of for loop and we
learned about two utility functions that are provided by Python, which can generate a list
on-the-fly. They are range() and xrange(). Next, we learned about infinite loops, where
we saw the working principle of the while loop. Then, we learned about nested loops along
with break and continue statements. In this chapter, we will be covering functions,
functions with arguments, functions with arguments and return value, functions with
default arguments, functions with variable length arguments, key-value pairs as variable
length arguments to the function, and finally we will be discussing on the scope of the
variables.

Functions
The big question arising in the minds of the beginner would be, "What are functions?" and
"Why are they necessary in any programming language?"

Function and Scope of Variable

[143]

Functions are nothing but a small programming unit inside a big programming construct
that generates a designated output. Let's try to understand with real-world scenario. It's
difficult to think of a scenario where someone may not have access to television. What do
you observe inside a normal television? On broader classification, considering a normal
viewer, it has three functions:

It has a display unit
It has a volume control unit
It has a channel tuning setup embedded inside the electronic circuitry

Although modern smart televisions have more complex functions, we will restrict our
example to three main functions explained.

The display unit works differently from the other two functional units and its sole purpose
is to put up a display to the user. Similarly, the volume control unit has its sole purpose to
fine-tune the volume of the television, and, finally, channel tuning has the main function to
have different channels loaded in the memory. Functions in programming language also
work in a similar fashion, each has its own purpose defined. Some examples can be
calculateMonthSalary(), calculateTotalBill(), and so on.

A method is an identical function in terms of name except that it is called on object and
passed on the data, whereas a function is called directly by name and passed on the data to
operate. A method is something that belongs to an object or in object-oriented programming
class which contains the method. In this chapter, we will study more about functions.

Categories of functions
Functions in any programming language can fall into two broad categories:

Built-in functions
User-defined functions

Function and Scope of Variable

[144]

Built-in functions
They are predefined by programming languages and each serves a specific purpose. While
some built-in functions cannot be customized, some can be customized as per the
programming guidelines laid down by a specific programming languages. The Python
language also comes with a set of built-in functions such as len() and cmp(). You can get
details about built-in functions from the Python documentation.

The Python documentation can be found at h t t p s ://d o c s . p y t h o n . o r g .

User-defined functions
They are defined by users as per their programming requirement. Functions can be created
or can exist in various forms in any programming language. In this section, we will learn in
depth about various ways in which we can create a function.

Function definition
There are some simple rules to define a function in Python. They are as follows:

Use the def keyword followed by function name with parentheses ()
Any argument to the function must be placed within these parentheses ()
The code block must start with a colon :
The code within the function must be indented

The syntax for this is as follows:

def function_name(arguments):
 <statements>
 return value

This is the syntax of any function definition in Python. If there are any arguments, they are
written inside the parentheses and if the function has any return value that would be the
last statement in any function code block or function body. The function code block or
function body starts immediately after colon (:) and ends with return value if there is any
return value. In Python, the body of any code block which starts after a colon (:) must be
indented using spaces (preferably) or else with a tab. This eliminates indentation errors,
which the interpreter might throw while running the program.

https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org
https://docs.python.org

Function and Scope of Variable

[145]

More on indentation is available at:
h t t p s ://w w w . p y t h o n . o r g /d e v /p e p s /p e p - 0008/#t a b s - o r - s p a c e s .

Next, we will see how to call a function in a program.

Calling a function
You might be wondering what is calling a function. Now, let's suppose you wrote some
business logic about washing instructions to be embedded inside an automatic washing
machine. Let's say you want to time sequence for rinsing of clothes immediately after wash.
In programming language, you don't want to get lost writing a big chunk of program, so, in
order to make things easy, you write your business logic inside a function. This function has
to be called when you want that particular sequence to be timed right after the washing
sequence finishes. There you pass the execution of instruction to the function written for
timing of sequence. This is achieved by calling the function at an appropriate time.

Syntax block of code is:

function_name(arguments)

A function can be called within a programming construct similar to the built-in function.
Use the name of the function followed by a set of parentheses. A function can be called any
number of times within the same programming file, or another, or can be called within
another function. Yes you got it right: a function can call another function. Let's learn from
an example:

def helloWorld():
 """ This is Hello World Program"""
 print "You are in Hello World"

helloWorld()

Here, we define the helloWorld() function and we give a body, which has a comment and
a print statement. Finally, we simply call the function by merely typing the name of the
function followed by parentheses. When the program is run, we get the output as shown
here:

https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces
https://www.python.org/dev/peps/pep-0008/#tabs-or-spaces

Function and Scope of Variable

[146]

There are various ways in which a function can be written or exists in any programming
language. We will discuss various ways in which a function can be formed in Python.

Function with arguments
So far we saw a function which had no arguments, now we will learn about functions with
arguments. A function can contain any number of arguments depending on the business
requirement. Let's try to understand with an example:

def func(passArgument):
 print passArgument
str = "hello all"
func(str)

Function and Scope of Variable

[147]

In the preceding example, the func function accepts one argument which has a data type
string. We create a variable str with a certain string statement assigned and then we call
the func function and thereby pass the value of str. Finally, the output will look
something like this:

In the preceding example, what will happen if we do not pass any argument to the
function?

def func(passArgument):
 print passArgument
str = "hello all"
func()

It will simply throw a TypeError as shown in the following screenshot:

Function and Scope of Variable

[148]

Hence, it becomes mandatory to pass an argument to the function during function calling
after the function has been defined to accept arguments.

Function with an argument and return type
Sometimes, it may be necessary to return any specific datatype or value from a function
which takes any arbitrary number of arguments. Let's evaluate this scenario with an
example:

def sum(a, b):
 c = a+b
 return c
x = 10
y = 50
print "Result of addition ", sum(x,y)

Function and Scope of Variable

[149]

Here, we define the function, which accepts two arguments and the body evaluates their
sum with return type as value of the sum, which is denoted by the return c statement. We
then call the function in the print statement and pass the value of variable x and variable y.
This will give us the output as shown next:

Function with default argument
Sometimes you will be presented with a condition where there has to be some value
assigned to the argument, which will be called as the default argument. Let's try to
understand with real-life scenario. Most of us fill in certain forms for job application online.
Now, in the form, there is a section for gender selection. In this case, programmers have
inserted a default value as female. By default your sex will be set to female if you do not
specifically change this value. Same is the case with the function with default arguments.
Let's try to understand this with a small code example:

def info(name, age=50):
 print "Name", name
 print "age", age
info("John", age=28)
info("James")

Function and Scope of Variable

[150]

Here, the info function takes two arguments name and age. The age is the argument with
the default value 50. In this case, during the calling of the info function, if age is not
provided, then the function will set the value of age as 50. We have called the info
function twice. In the first call, we pass the value of "John" and age as 28, while in the
second call, we just pass the value of name as "James". We will get output as shown here:

Function with variable length argument
There might be a scenario where you need to pass more arguments than specified during
the function definition. In this case, variable length arguments can be passed:

Syntax
def function_name(arg, *var):
 code block
 return

Here, arg means normal argument which is passed to the function. The *var refers to the
variable length argument. This is will be more clear through the example:

def variable_argument(var1, *vari):
 print "Out-put is",var1
 for var in vari:
 print var
variable_argument(60)
variable_argument(100,90,40,50,60)

Function and Scope of Variable

[151]

In this case, we define a function which takes two arguments, where the second argument is
the variable length argument. When we call the function for the first time, we pass only 60
as the value to the argument and the function takes it as the first argument. During our
second call to the function, we pass five numbers, so the function takes them as variable
length argument. Depending on the nature of arguments passed, the function either
considers the first argument or the variable length argument. Finally, we could see a
different output based on our passing of different values as shown here:

Key-value pair as variable length argument
Under certain circumstances, there might be a situation, where the key-value pair needs to
be passed as the variable length argument to the function. Let's take one example here. In
the given example, the key-value pairs are passed as variable length arguments:

def infocity(**var):
 print var
 for key, value in var.items():
 print "%s == %s" %(key,value)

infocity(name="l4w", age = 20, city="Los Angeles")
infocity(name="John",age=45, city="London", sex="male", medals=0)

Function and Scope of Variable

[152]

Using a for loop we print out each key-value pair that is passed to the function. On the first
call, we pass only few key-value pairs, while in the second call to the function, we pass a bit
more key-value pairs and we get the output as shown here:

Pass by reference versus pass by value
Pass by reference is the term used in some programming languages, where values to the
argument of the function are passed by reference, that is, the address of the variable is
passed and then the operation is done on the value stored at these addresses.

Pass by value means that the value is directly passed as the value to the argument of the
function. In this case, the operation is done on the value and then the value is stored at the
address.

In Python arguments, the values are passed by reference. During the function call, the
called function uses the value stored at the address passed to it and any changes to it also
affect the source variable:

def pass_ref(list1):
 list1.extend([23,89])
 print "list inside the function: ",list1
list1 = [12,67,90]
print "list before pass", list1

Function and Scope of Variable

[153]

pass_ref(list1)
print "list outside the function", list1

Here, in the function definition, we pass the list to the pass_ref function and then we
extend the list to add two more numbers to the list and then print its value. The list extends
inside the function, but the change is also reflected back in the calling function. We finally
get the output by printing out different representations of the list:

Let's look at another scenario:

def func(a):
 a=a+4
 print "Inside the function", a
a= 10
func(a)
print "Outside the function", a

The preceding example might make you think it is called by value, as the change happening
inside the Python function does not get reflected back in the calling function. It is still a pass
by reference, as, in this situation inside the function, we made new assignment, that is, a=
a+4. Although you might think that a = a + 4 is changing the number stored in a, but it is
actually reassigning a to point to a new value:

Function and Scope of Variable

[154]

Scope of variables
This could be an intriguing topic for you to understand for the first time. But it is actually a
very simple topic. Let's try to understand this with a real-life situation. You might be aware
of two types of airlines: domestic and international carriers. The scope of domestic carriers
will be restricted to a particular country's operation only, while an international carrier has
the scope to operate on an international border. Same is the case with variables. The scope
on the broader aspect defines the access level for specific variable. There are two basic
scopes of variables in Python:

Local variables
Global variables

Function and Scope of Variable

[155]

A local variable is defined inside the Python function. Local variables are only accessible
within their local scope. A global variable is defined outside the Python function. Global
variables are only accessible throughout the program:

Here, the variable k with value 4 is an example of a global variable, while the list1
variable is an example of a local variable. The area marked in green inside the main()
function shows the scope of the list1 variable, while the area marked in yellow shows the
scope within the add() function, and this scope is valid until the end of
the add() function.

The succeeding example will explain both these types of variables:

def func():
 a =12
 print '''Inside the function the value of
 a is acting as local variable''', a
a= 10
func()
print '''Outside function the value of a is
 acting as global variable''',a

Function and Scope of Variable

[156]

Variable a is a global variable; its value remains the same outside the function compared to
the value inside the function, where it is acting as a local variable:

Let's analyze another situation:

def func():
 a =12
 print "a inside the function is the local variable",a
func()
print "Trying to access the local variable outside the function.",a

Function and Scope of Variable

[157]

Here we have declared variable a whose scope is local to the func() function. As we try to
access the local variable, the interpreter does not support us on this and will tell you
something as shown next:

But this situation can be overcome using the global keyword, as we will use in our next
example:

def func():
 global k
 k=k+7
 print "variable k is now global",k
k=10
func()
print "Accessing the value of k outside the function",k

Function and Scope of Variable

[158]

In this case, we declare the k variable as global using the global keyword inside the
function. We can now access it from anywhere. The global keyword tells the interpreter
that the variable is global and it should stop searching across all the functions or local
scopes.

Function and Scope of Variable

[159]

Memory management
This is quite a fascinating topic and is also a big pain for any programmer who has to deal
with memory-related issues such as memory leakage issues. However, since it is a big topic
which needs to be covered at the intermediate stage, we will try to explain the very basics of
the topic. In the earlier days, memory management used to be handled manually by all the
programmers. Who could better understand manual memory management than C/C++
language programmers. New and modern programming languages such as Java and
others are coming loaded with more advanced memory management mechanism, so
programmers have to worry less in this area as every issue is taken care by the language
garbage collection facility. We have already covered what is local scope and what is global
scope are. Local scope of the function, contains parameters and variables. The complete
local scope must be stored somewhere in the RAM of the computer. Language divides the
RAM into two parts called run-time stack and the heap. Memory is divided into two parts
in any programming language:

Stack or run-time stack
Heap

The heap is a specific area of RAM where all values (objects) are stored. The run-time stack
never contains the object. The run-time stack store only references pointing toward the
values stored in the heap. Let's try to understand with an example:

line 1 :k = 4
line 2 :def main():
line 3 : list1 = []
line 4 : def add():
line 5 : for x in xrange(k):
line 6 : list1.append(x)
line 7 : print list1
line 8 : add()
line 9: main()

During execution of lines 5, 6, and 7 of the code, the run-time stack looks as shown in the
next figure. There are three activation records present on run-time stack. The interpreter
first puts the module Activation Record. While executing the module, the interpreter goes
from top to bottom and places the variable definition of the module scope into the
activation record of the module. The activation record of the module consists of the
reference k to the value 4.

Function and Scope of Variable

[160]

Summary
In this chapter, we learned about functions and how to define a function. Then we
discussed various types of functions such as built-in and user-defined functions. We saw
various examples of user-defined functions, where we explained functions with no
arguments and no return type, functions with arguments, functions with arguments and
return type, functions with default arguments, and functions with variable length
arguments. We also learned about key-value pairs being passed as a variable length
argument to the function. We came across the scope of the variable and, finally, we
examined the basic concepts of memory management where we learned about two types of
memory, namely, stack and heap.

In the next chapter we will learn about quite an interesting topic: collections.

8
Modules and Packages

In the previous chapter, you learned about the Python functions. In this chapter, you will
learn the Python modules. A Python module is the Python source file, which can consist of
statements, classes, functions, and variables.

Modules
Modules are code files meant to be used by other programs. In order to use a module, we
use the import statement. A module can import other modules.

Let's discuss the simple Python program:

def sum1(a,b):
 c = a+b
 return c

def mul1(a,b):
 c = a*b
 return c

The preceding code is a very easy and basic example. Let's save the program as
module1.py. You can consider that the preceding program is the Python module. We
will use module1.py. Consider, while making another program, you need multiplication or
addition of two numbers. You need not make any function. You can take the advantage
of module1.py.

Modules and Packages

[162]

The import statement
In order to use the functions and variables of the module1.py program, we will use
the import statement. The syntax of the import statement is shown here:

Import module1, module2, module

In this way, you can import multiple modules. Let's make another program mod1.py,
which will import module1.py:

 import module1
 x = 12
 y = 34
 print "Sum is ", module1.sum1(x,y)
 print "Multiple is ", module1.mul1(x,y)

As you know, the module contains statements and definitions and these statements and
definitions are executed for the first time when the interpreter encounters the module name
in the import statement.

In preceding code, the module1 module gets executed when the interpreter encounters
the module1 name in the import statement. In order to use the module variables and
functions, use the module_name.variable and
module_name.function() notations. In the preceding code, we want to use
the sum1() function of module1, that's why we use module1.mul1().

Let's see the output:

Output of the mod1.py program

Modules and Packages

[163]

If you think it is tedious and time consuming to write module1 with every function of
module1.py, then Python allows you to use the as statement as shown. The syntax is given
as follows:

import module_name as new_name

Let's write a program mod2.py:

import module1 as md
x = 12
y = 34
print "Sum is ", md.sum1(x,y)
print "Multiple is ", md.mul1(x,y)

In the preceding code, module1 is used as md. Let's see the output:

Output of the mod2.py program

You can explicitly define the function as per your need. Consider we want only the sum1()
function not mul1(). Syntax is given as module-name import function-name

Let's write the code:

 from module1 import sum1
 x = 12
 y = 34
 print "Sum is ", sum1(x,y)

Modules and Packages

[164]

In the first line, I defined from where I am taking the sum1() function, then there will be no
need to use module1 with the function name. Let's see the output of the code:

Output of the mod3 program

Consider a module that contains many functions and you have to import all the functions.
You can use the following statement as shown:

from module-name import *

But I advise you don't use the preceding statement because if you are importing more than
one module, then it is very difficult to identify which function is taken from which module.
Let's take an example. Consider one more module named as module2:

def sub1(a,b):
 c = a-b
 return c

def divide1(a,b):
 c = a/b
 return c

Now we have two modules module1 and module2. We have defined module1 earlier. Let's
write the next program mod4.py:

 from module1 import *
 from module2 import *
 x = 36
 y = 12
 print "Sum is ", sum1(x,y)
 print "Substraction is ", sub1(x,y)
 print "after divide ", divide1(x,y)
 print "Multiplication is ", mul1(x,y)

Modules and Packages

[165]

In the preceding function, we imported all the functions of module1 and module2. But it is
very difficult to identify which function is coming from which module. The output of the
program is as shown here:

Output of the mod4 program

However, Python offers you the built-in function dir(), which can be used to identify the
functions. See the example mod5.py:

 import module1
 print dir(module1)

The output of the program is as shown here:

The preceding is the output of the mod5 program. After seeing the output, we can say
that the mul1() and sum1() functions came from the module1 module.

Modules and Packages

[166]

Locating Python modules
After encountering the import statement, the Python interpreter searches the module in the
following sequence:

The current directory, which contains the running script. I advise you, be sure,1.
that the name of your program is different from the importing modules.
PYTHONPATH has to be defined in the environment variable in Windows OS. Let's2.
learn by example. Consider we move the mod5.py program to another directory
as covered in the following screenshot.

But the current directory does not contain any module1 module. The output
will be as shown here:

Output of mod5.py in a different directory

We are running the mod5.py program from F:project_7daysmodulepack.
The output shown there is no module1 module found. Let's set the
PYTHONPATH variable as shown here:

Modules and Packages

[167]

Setting the PYTHONPATH variable

After setting PYTHONPATH, you will have to reboot your computer. After
reboot, start the program again.

Modules and Packages

[168]

The output will be as shown here:

This is the output of the program after setting PYTHONPATH. Now you can see
that there is no error, meaning the interpreter is able to find
the module1 module.

Here you have Python installed by default. If you want to know the installation3.
path, you can check the sys.path variable in the sys module. Refer to the
following example:

A screenshot showing sys path

The sys.path returns a list of default paths.

Modules and Packages

[169]

Compiled Python files
Whenever module1.py and module2.py are successfully compiled, an attempt is made to
write the compiled version to module1.pyc and module2.pyc respectively. Refer to the
following screenshot:

A screenshot showing the compiled files

The contents of the compiled file is platform independent, so a Python module can be used
by machines on different architectures.

Let's discuss a special scenario, consider Bob make a program named myprog.py as shown:

def sum1(a,b):
 c = a+b
 return c
 print "Sum is ", sum1(3,6)

Let's run it:

Output of the myprog.py program

Modules and Packages

[170]

Bob's program is running successfully. Consider another user, Alice, who uses your
program as a module.

Refer to Alice's program alice1.py:

import myprog
num = 10
total = num+myprog.sum1(23,12)
print "Alice total is ", total

The preceding program is very simple, just import myprog.py as a module and use the
sum1() function of the myprog module. Let's see the output:

Output of the alice1.py program

The program is running successfully. With the output from alice1.py the output of
myprog.py is also printed, which is unwanted. Any user who imports myprog.py as a
module unwantedly would get the output of myprog.py. To avoid this situation, we made
some amendments in myprog.py.

You can see the new version of program myprog.py here:

def sum1(a,b):
 c = a+b
 return c

if __name__ == '__main__' :
 print "Sum is ", sum1(3,6)

From the preceding code, what is the significance of __name__ and __main__. __name__ is
a special variable that holds a string "__main__". If the program is being imported from
another program, then __name__ would be set to the module's name.

Modules and Packages

[171]

Let's see the output of both the programs myprog.py and alice1.py:

Output of the myprog.py and alice1.py programs

If you are still not getting the point of the __name__ variable, let's discuss with examples. I
have made temporary changes in the myprog.py program:

def sum1(a,b):
 c = a+b
 return c

print "name is ", __name__

if __name__ == '__main__' :
 print "Sum is ", sum1(3,6)

Let's run both the programs myprog.py and alice1.py:

Output of the myprog.py and alice1.py programs

So, in the preceding output, when myprog.py is being run, the __name__ variable returns a
string value "__main__". Further, when myprog has been imported by another program as
a module, then it returns a module named myprog. I hope everything is clear now.

Modules and Packages

[172]

The Python package
Python modules is a single file, whereas a Python package is a collection of modules. A
package is a directory that contains Python modules and one additional
file: __init__.py. What is the need of a package? Consider a team gets a project to
convert the recording sound into MP3 format. One developer writes a code
rectomp3.py to convert the recording voice to MP3 sound in
the sound_conversion directory. After some time, the team gets new requirements to
convert the recording voice to .wav format. Instead of writing in the rectomp3.py file,
we write our own code rectowav.py file in sound_conversion. Then, a new
requirement comes by where you need to convert the recording to WMA format.
Again, a new author writes a new code rectowma.py file in the same directory
sound_conversion. In this way, they make a package just adding one more file
__init__.py. Let's take a practical example.

Here, you can see the code rectomp3.py in sound_conversion:

 #Written by Mohit
 def rec2mp3():
 """
 Converions code
 """
 return "recording voice converted to Mp3"

The preceding code is a dummy code, just for understanding. Let's see the second code
rectowav.py in the same directory sound_conversion:

 #Written by Bhaskar
 def rec2wav():
 """
 Converions code
 """
 return"recording voice converted to wav"

The preceding code converts the recording voice to WAV format. Let's see the new code:

#Written by Denim
def rec2wma():
 """
 Converions code
 """
 return "recording voice converted to wma"

Modules and Packages

[173]

Now that all the code is written, make an empty file __init__.py in the directory
sound_conversion. The __init__.py file can be an empty file, but it can also be used to
import the module. Now our package is ready; let's import it. We will write a new program
voice_changer.py. Put the program outside the directory sound_conversion. Refer
to the program:

from sound_conversion import rectomp3
from sound_conversion.rectowma import rec2wma
print rectomp3.rec2mp3()
print rec2wma()

While executing the preceding file, the interpreter might give an error because the Python
interpreter doesn't know the sound_conversion path as shown.

Set the PYTHONPATH as shown here:

The preceding screenshot also shows that the code is running. If you want to create
voice_changer.py in another directory say F:/, let's copy and paste the code of
voice_changer.py in F:/ and run it. You might get an error if the interpreter is not able
to find the package as shown here:

An output showing error

Modules and Packages

[174]

In the preceding code, we are getting the error No module named sound_conversion,
which means the interpreter did not get the package or module. Let's edit the code. Refer
to the code shown here:

 import sys
 sys.path.append("F:project_7daysmodulepackprograms")
 from sound_conversion import rectomp3
 from sound_conversion.rectowma import rec2wma
 print rectomp3.rec2mp3()
 print rec2wma()

In the voice_changer1.py program, we edit the sys.path for the program using syntax
sys.path.append("F:project_7daysmodulepackprograms") . Let's see the output:

Output of the voice_chnager1.py program

The preceding screenshot shows that the code is running successfully. In this way, you can
load the package and modules.

Summary
In the Module section, you have learned how to make modules and how to import them. By
using the dir() function, you can check the involved function in the modules. The Python
package is a collection of modules: generally a Python package is a directory. You have
learned how Python searches the modules and packages.

9
File Handling and Exceptions

So far you have seen the various Python programs, which took the input from the keyboard
and delivered the output on the screen. In this chapter, you will, however, learn to take
input from files and write result to the files. Also, we will go through the concept of
exceptions.

Reading text from a file
In order to read and write into a file, we will use the open() built-in function to open the
file. The open() function creates an file_object object. What is an object? You will
understand in Chapter 11, Class and Objects. The Syntax is given as:

file_object = open(file_name ,access_mode)

The first argument,file_name, specifies the filename that you want to open. The second
argument, access_mode, determines in which mode the file has to be opened, that is, read,
write, append, and so on.

The read() method
Now we will read a file by a program. The access mode for reading is r.

Let's take the sample of a text file containing famous quotes:

Sample file

File Handling and Exceptions

[176]

I have saved the preceding file with the name sample1.txt.

Let's write a readfile.py program to read the earlier file:

file_input = open("sample1.txt",'r')
all_read = file_input.read()
print all_read
file_input.close()

In the given code, first we created a file_input file object, then we called
file_input.read() to read the file content. After reading, the file_input file object is
closed by file_input.close(). To be sure the sample file and the code readfile.py
must be in the same directory. Let's check the output:

Reading a file

The preceding code is running successfully. In order to read character from the file, you can
pass the argument to the read() function, for example, read(5) would read the first five
characters of the file.

Let's understand the sample code readcount1.py:

file_input = open("sample1.txt",'r')
print file_input.read(20)
print file_input.read(15)
print file_input.read(10)
file_input.close()

Let's analyze the output:

File Handling and Exceptions

[177]

Output of code read

The second line of code reads the first 20 characters of the file, the third line reads the next
15 characters, and the fourth line reads the next 10 characters of the file.

The readline() method
In order to read the file line by line, use readline().

Let's see the sample code readline1.py:

file_input = open("sample1.txt",'r')
print file_input.readline()
print file_input.readline()
print file_input.readline()
file_input.close()

Let's see the output of code:

In code, we have printed three lines. What happens, if you specify count in
readline(count). See the code readlinecount.py:

file_input = open("sample1.txt",'r')
print file_input.readline(100)
print file_input.readline(20)
file_input.close()

File Handling and Exceptions

[178]

 Let's see the output:

In the file_input.readline(100) syntax prints 100 characters of the first line. But the
first line contains only 48 characters. The syntax file_input.readline(20) prints the 20
characters from the second line of sample1.txt.

The readlines() method
Consider the situation where you want to make a list of lines of a file; in that case, the
readlines() method allows you to do that.

See the code in readlines1.py:

file_input = open("sample1.txt",'r')
print file_input.readlines()
file_input.close()

Let's check the output of the code:

In the preceding screenshot, you can easily see the list of lines.

For reading purposes, you can loop over the file object. Let's analyze the code
in readfileforloop.py:

file_input = open("sample1.txt",'r')

File Handling and Exceptions

[179]

for line in file_input:
 print line

This is the output:

You can see all the lines. This is memory efficient, fast, and leads to simple code.

Exercise
Let's do an exercise.

See the given file, batman.txt, containing the quotes from famous Hollywood movies.

Our aim is to write a program to find a given word from the file:

Screenshot of batman.txt

Let's write a program to find the particular word from the file. We are making the
assumption that the program should be case insensitive, which means it does not
matter whether the characters are in uppercase or lowercase.

File Handling and Exceptions

[180]

See the code in findword.py:

word = raw_input("Enter the word ")
word = word.lower()
file_txt = open("batman.txt", "r")
count = 0
for each in file_txt:
 if word in each.lower():
 count = count+1
print "The ", word ," occured ",count, " times"

The program is very easy to understand. Let's see the output of the code:

Output of findword.py

The program findword.py is working fine.

Writing text to a file
In this section, we will learn how to write a new file using Python.

This time we'll use the write mode 'w' in open(). The 'w' mode creates a new file. If the
file already exists, then the file would be overwritten. We will use the write() function.

Let's discuss the code in filewrite1.py:

file_input = open("motivation.txt",'w')
file_input.write("Never give up")
file_input.write("nRise above hate")
file_input.write("nNo body remember second place")
file_input.close()

File Handling and Exceptions

[181]

You can see that I have written the famous WWE star John Cena's quotes.

Let's see the output:

Output of code filewrite.py

We wrote lines one by one by adding a new line character n. You can supply all of them in
one go as shown here:

file_input = open("motivation.txt",'w')
file_input.write("Never give up nRise above hate nNo body remember second
place")
file_input.close()

Next, I will use the writelines() function. This method writes a Python list of strings to a
file.

Let's see the code:

list1 = ["Blood sweat and respectn",
 "The first two you given"
 "The last you earnn"
 "Give it Earn it"]
text_file = open("wwerockquotes.txt", 'w')
text_file.writelines(list1)
text_file.close()

File Handling and Exceptions

[182]

In the preceding code, Python list, list1, contains some motivational lines, and we want to
save that in a file. We could use the writelines() function for our requirement. Let's see
the output:

Output of filewriteline.py

Every time you run the program, the file gets overwritten, means a new file would be
created. Consider the situation where you want to add content to the previous file; you can
use access mode 'a'.

Let’s use the preceding program filewritea.py with access mode 'a'.

file_input = open("newmotivation.txt",'a')
file_input.write("Never give up")
file_input.write("nRise above hate")
file_input.write("nNo body remember second place")
file_input.close()

Let's see the output:

File Handling and Exceptions

[183]

Output of filewritea.py

Let's run the program with different lines:

file_input = open("newmotivation.txt",'a')
file_input.write("nBlood sweat and respect")
file_input.write("nThe first two you give")
file_input.write("nThe last you earn")
file_input.write("nGive it Earn it")
file_input.close()

Let's see the output:

Output of program filewritea1.py

File Handling and Exceptions

[184]

The newmotivation.txt file has been successfully appended.

There are other access modes too.

Examples
The "r+" opens a file for reading and writing. This mode places the pointer at the
beginning of the file.

The "w+" opens a file for reading and writing. If the file doesn't exist, then a new file is
created. If the file exists, then the file is overwritten.

The "a+" opens a file for appending and reading. If the file doesn't exist, it creates a new
file. If the file already exists, the pointer is placed at the end of the file.

Pickling
Text files are convenient to use because you can read, write, and append them with any text
editor, but they are limited to storing a series of characters. Sometimes you may want to
store complex information such as list and dictionary. Here we would use Python's pickle
module. The pickle module is used to store complex data such as list and dictionary. Let's
discuss with the help of an example:

import pickle
name = ["mohit","bhaskar", "manish"]
skill = ["Python", "Python", "Java"]
pickle_file = open("emp1.dat","w")
pickle.dump(name,pickle_file)
pickle.dump(skill,pickle_file)
pickle_file.close()

The program seems complex to understand. Let's understand the code line by line.

The name and skill are two lists which we have to store.

The pickle_file = open("emp1.dat","w") syntax creates a pickle_file object in
write mode as we have done earlier.

File Handling and Exceptions

[185]

The pickle.dump() is used to dump and store the lists name and skill in
the pick.dat file. The pickle.dump() requires two arguments, first the data (like list) to
pickle and second the file to store it. The pickle_file.close() finally close the file.
Let's see the output:

Output of pickle file

Now you must have an idea how to store complex data.

Unpickling
Unpickling means retrieving the data from the pickle file. In the previous topic, you
learned how to store (list, dictionary) data in the pickle file; now it's time to
retrieve the stored data. In order to perform unpickling, we will use pickle.load(). The
pickle.load() takes one file object as an argument.

Let's see the program:

import pickle
pickle_file = open("emp1.dat",'r')
name_list = pickle.load(pickle_file)
skill_list =pickle.load(pickle_file)
print name_list ,"n", skill_list

File Handling and Exceptions

[186]

Let's understand the program line by line. The pickle_file = open("emp1.dat",'r')
syntax creates a file object in read mode. The name_list = pickle.load(pickle_file)
syntax reads the first pickled object in the file and unpickles it to produce the ['mohit',
'bhaskar', 'manish'] list. Similarly, skill_list =pickle.load(pickle_file)
reads the second pickled object in the file and unpickles it to produce the ['Python',
'Python', 'Java'] list.

Let's see the output to clear up any confusion:

Output of filepickle2.py

In pickle, you can not access the data randomly. Pickle stores and retrieves the list
sequentially.

The data you dump in the pickle file first, would be retrieved first. This is the limitation of
the pickle file.

Given the limitation of the pickle file, you can't access the list randomly, but you can use
the dictionary with lists to retrieve the lists randomly.

Consider the following example:

leapx_team = {
name : ["mohit", "Ravender", "Himmat", "Robbin"],
skill : ["Python","Data Analytic", "Information Security", "SAP"]
 }

By dumping this dictionary, you can access any list randomly.

Let's see the program:

import pickle
pickle_file = open("emp2.dat",'w')
leapx_team = {
 'name' : ["Mohit", "Ravender", "Himmat", "Robbin"],
 'skill' : ["Python","Data Analytic", "Information Security", "SAP"]
 }

File Handling and Exceptions

[187]

pickle.dump(leapx_team,pickle_file)
pickle_file.close()

In the preceding program, we have dumped a dictionary referred by name leapx_team.
Run the preceding program and check the directory. A file named emp2.dat must be
formed.

Let's retrieve the content of the emp2.dat file.

import pickle
pickle_file = open("emp2.dat",'r')
all_data = pickle.load(pickle_file)
print all_data["skill"]
print all_data["name"]

In the preceding program, all_data is the dictionary and we are accessing the values of
the dictionary by keys.

Let's see the output:

We are accessing the list randomly.

The pickle module is written in Python, while the cPickle module is written in C
language, which is faster than the pickle module.

Let's see the example code in filecpickle1.py:

import cPickle as pickle
name = ["mohit","bhaskar", "manish"]
skill = ["Python", "Python", "Java"]
pickle_file = open("emp1.dat","w")
pickle.dump(name,pickle_file)
pickle.dump(skill,pickle_file)
pickle_file.close()

File Handling and Exceptions

[188]

Exceptions
Consider you have created a program calc.py and that it is running successfully. After
some time, a third person edits the program calc.py. While executing the program, the
interpreter throws some error. Due to the error, the whole program stops working. How
can we avoid this situation, where, if any error occurs, then the whole program execution
does not suffer?

The answer is simple: just use exception handling. Errors detected during execution are
called exceptions. In the next section, you will see the example in detail, where we will see
how to use exception handling with the try...except clause.

The try statement with an except clause
In this section, you will see how to use the try...except block to handle the exceptions.
Let's understand the usage of the try...except block with examples.

Consider the following program:

def sum1(a,b):
 c = a+b
 return c
print sum1(10,0)

Consider that a third person edits the program calc.py; the full program is shown here:

def sum1(a,b):
 c = a+b
 return c
def divide(a,b):
 c = a/b
 return c
print divide(10,0)
print sum1(10,0)

Let's run the program:

File Handling and Exceptions

[189]

Output of calc.py

In the preceding output, the program is showing an error because we performed division
by 0. Due to one error, the whole program stop. In order to deal with the situation, we use
the try and except blocks.

Let's see the program calc.py:

def sum1(a,b):
 try:
 c = a+b
 return c
 except :
 print "Error in sum1 function"
def divide(a,b):
 try:
 c = a/b
 return c
 except :
 print "Error in divide function"
print divide(10,0)
print sum1(10,0)

Let's run it again:

Output of calc.py

File Handling and Exceptions

[190]

Now the sum1() function is giving the output Error occurred in divide function.

Let's discuss try...except in detail. First see the syntax:

try:
 operation block;
except Exception_name:
 If there is Exception_name1 then execute this block.
except Exception_name2:
 If there is Exception_name2, then execute this block.
 else:
 If there is no exception then execute this block.

In the calc.py program, a call to divide raises an exception; the exception is caught and the
crafted message is displayed: Error in divide function. If no exception is raised, the
program skips the except clause, continuing with the rest of the code.

Multiple exception blocks
In previous example, you learned how to catch the exceptions. But you don't know the type
of error that occurred. Every exception has a certain type. The types in the example are
ZeroDivisionError, NameError, and TypeError. Type is written in the error message.
Consider a different program divide1.py:

def divide1():
 num = int(raw_input("Enter the number "))
 c = 45/num
 print c
divide1()

In the given program, when we give the input from the keyboard, the input string will be
converted into int type.

File Handling and Exceptions

[191]

Let's run program with different inputs:

Output of program divied.py

When we give the input 5, then the program returns 9. When we supply a string instead of
a number, then the interpreter returns a message with a ValueError error as highlighted
under red line. When number 0 is supplied, then ZeroDivisionError is returned. By
using multiple exception blocks, you can handle both the exceptions.

Refer to the program divide1.py:

 def divide1():
 try:
 num = int(raw_input("Enter the number "))
 c = 45/num
 print c
 except ValueError :
 print "Value is not int type"
 except ZeroDivisionError :
 print "Don't use zero"
 else:
 print "result is ",c
divide1()

File Handling and Exceptions

[192]

In the preceding program, multiple exceptions have been handled and a crafted message
has been displayed. Let's see the output:

Output of program divide1.py

In the preceding output, customized messages have been displayed so that the user can
understand his mistake.

The try...finally statement
In a situation where you are completely sure that a certain block of code will be executed
whether the program throws exceptions or not, try...finally is useful. Consider the
situation when you open a file and read the input, but for some reason the program throws
an exception and the file you want is closed whether the exception occurs or not, then
try...finally will solve the problem.

The syntax is as follows:

try:
 #run this action first
except:
 # Run if exception occurs
Finally :
 #Always run this code

The order of the statement should be:

try -> except -> else -> finally

Let's discuss the code in finally1.py:

File Handling and Exceptions

[193]

try:
 num = int(raw_input("Enter the number "))
 re = 100/num
except:
 print "Something is wrong"
else:
 print "result is ",re
finally :
 print "finally program ends"

In the preceding code, we used try, except, else, and finally blocks. Let's discuss the
functionality by executing the code:

Output of finally1.py

In the preceding output, in the first run, 10 has been provided as the input and try, else,
and finally blocks have been executed. In the second run, a string Mohit has been
supplied. Due to error in type conversion except and finally blocks have been executed.

With this you have seen the importance of the finally statement.

The exception argument
When you write a program, it is very mundane and tedious to write each and every
exception type. Instead of writing each exception, you could use just one line. See the code
in exceptiontype.py:

try:
 num = int(raw_input("Enter the number "))
 re = 100/num
 print re
except Exception as e :
 print e, type(e)

File Handling and Exceptions

[194]

The preceding code catches the exception as e and type(e) displays its exception type.
Let's see the output. In the code, e is the argument of the exception: the contents referred
by the argument vary by exception:

Output of program exceptiontype.py

You can see that we run the program three times. The first time we passed the value 10. It
runs successfully. In the second run, we passed string 'mohit', which is when the
interpreter handled the exception and showed the exception message and its type. In third
run, we passed 0, which is when interpreter showed the corresponding exception message
and its type.

Raising exceptions
The raise statement allows the programmer to trigger specific exceptions explicitly.

Consider the following example:

>>> raise IOError
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 raise IOError
IOError

In the preceding example, the specific exception IOError has been raised by the raise
keyword:

>>> raise IOError("Hi there")
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 raise IOError("Hi there")
IOError: Hi there
>>>

File Handling and Exceptions

[195]

In the preceding example, a string "Hi there" argument has been passed, which is printed
with the exception.

User-defined exceptions
In this section, we will use classes, as you have not read the Chapter 11, Class and Objects,
you can skip the topic and get back once you complete the class and objects.

Python allows you to define your own exceptions. Exceptions should be inherited from the
Exception class.

Let's discuss with an example:

class MyException(Exception):
 def __init__(self, value):
 self.value = value
 def __str__(self):
 return (self.value)
try:
 num = raw_input("Enter the number : ")
 if num == '2':
 raise MyException("ohh")
 else :
 print "number is not 2"
except MyException :
 print "My exception occurred"

Do not be afraid to see the full code.

Let's see the class part:

class MyException(Exception):
 def __init__(self, value):
 self.value = value
 def __str__(self):
 return (self.value)

The preceding code defined the MyException class, which inherits the base class
Exception.

In this example, the default __init__() exception has been overridden.

try:
 num = raw_input("Enter the number : ")
 if num == '2':
 raise MyException("ohh")

File Handling and Exceptions

[196]

 else :
 print "number is not 2"
except MyException :
 print "My exception occurred"

The preceding code raises the user-defined exception if you pass the value 2. The raised
exception is handled by the except block.

See the output of the code:

Output of code userdefined.py

In the preceding code, if you pass the value 2, then it gives a user-defined custom error. If
you pass a number other than 2, then no error occurs. Let's make some changes in the code
to understand the example clearly.

See the program userdefined2.py:

class MyException(Exception):
 def __init__(self, value):
 self.value = value
 def __str__(self):
 return (self.value)
try:
 num = raw_input("Enter the number : ")
 if num == '2':
 raise MyException("ohh")
 else :
 print "number is not 2"
except IOError:
 print "My exception occurred"

Just the except block has been changed. Now, the except block is only handling IOError
not MyException.

File Handling and Exceptions

[197]

Let's see the output:

Output of program userdefind2.py

When you pass a value other than 2, then the MyException exception is raised and the
except block does not handle the raised exception. The interpreter shows the error with an
exception type.

If you do not want to print an exception message, you can use pass the statement except:
pass.

Summary
In this chapter, you learned how to read data from text files. You learned how to write data
to the text files. Text files are not a good choice to store complex data such as list and
dictionary. In order to store complex data, we have used pickle files. After that, you
learned to handle exceptions. Without handling exceptions you cannot write standard code.
In exceptions, you learned how to handle multiple exceptions and how to print its exception
type. In end of the chapter, you learned how to create your own exception.

10
Collections

In the last chapter, we learned about functions and scope of variable. In functions, we
learned about defining a function, functions with arguments, functions with arguments and
return type, functions with default arguments, functions with variable length arguments,
and, finally, in functions, we saw how to use key-value pairs as variable length arguments.
We covered the topic of scope variable and memory management. In this chapter, we will
touch the essence of every programming language, that is, collections. Some of the topics
under collections such as list, dictionary, and tuple have already been covered in the
previous chapter. In this chapter, we will be looking at counter, deque, ordered dictionary,
default dictionary, and named tuple.

Collections
While for people with some experience in programming this is not a new topic, but those
who are just taking up programming for the first time, it is a topic that will raise quite a bit
of curiosity in their minds. What is a collection? The answer to this question can be well
understood by the day-to-day examples from our lives. Everyone has seen a collection of
stamps, collection of books, or collection of flowers, and so on. So basically we group items
in a collection. What type of items does a collection contain? Pretty sure this question would
be the next one. Well, a collection can contain either one type of item, for example, a
collection of flowers (here, the type is flowers) or the collection can be a hybrid collection,
for example, a collection of books and magazines (here, the type being books and
magazines). In Python programming, each collection has unique characteristic and can be
used to achieve the desired outcome. All the collections are part of the collections
module.

Collections

[199]

More about collections can be found at the website h t t p s ://d o c s . p y t h o n

. o r g /2/l i b r a r y /c o l l e c t i o n s . h t m l .

Counter
Counter is a container and it tracks the frequency of values.

Container is a generic word, which can mean anything that can hold
anything. For example, a bucket of water can be considered as container
which contains water. Similarly, a list of guests can be considered as
another container that holds the list.

The syntax is as follows:

>>>import collections
>>>collections.Counter()

It will be more clear with an example:

https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html
https://docs.python.org/2/library/collections.html

Collections

[200]

In the preceding screenshot, we directly use the Python command line to show the example.
Before using Counter, you will need to import the collections module. In the preceding
example, we pass on a list of characters to Counter. The Counter processes the list and
returns the frequency of each character. Here, frequency means how many times each
character occurs within the list. The outcome is in the form of dictionary, where each
character of the input list becomes a key and its frequency becomes value for that key. For
example, d is the key and 4 is the value which means the character d has appeared four
times in the list.

Let's view another example:

Collections

[201]

We provide sequence of strings directly to the Counter. Here, in this case, even empty
spaces are taken into account and their frequency is calculated:

Collections

[202]

In this example, we create a list of movies and then pass on the list to the Counter, which
returns the frequency of the movies present in the list.

Update function
At any given time during programming, if there is a need to add more values to the existing
counter, then the update() method can be used instead of creating a new counter. Let's
look at the update() method of Counter.

Collections

[203]

In the preceding example, we try to update an empty Counter using the update() method
and passing "Locarno Caine" to the method. Thereby, the Counter returns frequency of
each character. Did you notice that empty space also has a frequency?

In the preceding example, we use the update() method to update the existing sequence of
strings provided to the Counter.

Collections

[204]

In the preceding case, we used the update() method to increase the frequency of
characters "a" and "P" to the existing sequence of strings. Here, we learned how
the update() method can be used to update an empty counter, update the existing input to
the counter, and increase the frequency of the existing input sequence of strings to the
counter.

Usage of counters
So far our examples were demonstrated using Python IDLE GUI. Now we will see the
usage of counter by creating a Python file. For those who did not understand what is a
Python file, read Chapter 1, Getting Started with Python, and then you can come back and
continue:

import collections

c = collections.Counter('King TutanKhamen was the youngest Pharoah')
print c
for letter in 'What a king?':
 print '%s : %d' % (letter, c[letter])

Collections

[205]

In the given example, we try to compare the stream of strings provided as input to the
Counter with another stream of strings. In this case, Counter prints out only the frequency
of the sequence of strings we want to compare and not the input string to the Counter:

Counter does not raise KeyError for unknown items. If a value is not found in the input
string (as with W, k, and ? in this example), then its count is 0.

King Tutankhamen (or Tutankhamun) ruled Egypt as pharaoh for 10 years
until his death at the age of 19, around 1324 B.C. He was barely known to
the modern world until 1922, when British archaeologist, Howard Carter,
chiseled through a doorway and entered the boy pharaoh’s tomb, which
had remained sealed for more than 3,200 years. This information has been
taken from h t t p ://w w w . h i s t o r y . c o m /t o p i c s /a n c i e n t - h i s t o r y /t u t a n k

h a m e n .

http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen
http://www.history.com/topics/ancient-history/tutankhamen

Collections

[206]

We will look at another example where we will deal with the basic file operations. Here, we
will provide a text file, which has sentences and we will provide this file to counter as input.
The following screenshot shows the text file with some texts that will serve as input to the
counter:

Now, let's look at the code for passing the text file as the input to the Counter:

import collections

co = collections.Counter()
file_txt = open("Counter_input.txt","r")
for line in file_txt:
 co.update(line.lower())
print co

Collections

[207]

The preceding program gives the frequency of all the characters present in the text file. We
will use the open() function to open the file in read mode and file_txt variable serves
as handle to this file handling operation. We will use the for loop and update our counter
with inputs from the file one by one. The outcome is shown in the following screenshot:

There could be a scenario where you might require to choose the first five letters of higher
frequency. Here you can achieve the desired outcome using the most_common() method.

Syntax

most_common(number)

Let's take a look at the example for the preceding scenario:

import collections

co = collections.Counter()
file_txt = open("Counter_input.txt","r")
for line in file_txt:
 co.update(line.lower())

print "Most common:n"
for letter, count in co.most_common(5):
 print '%s: %7d' % (letter, count)

Collections

[208]

We have modified our example here and now we are trying to retrieve the first 5 letters of
higher frequency. Here we have simply made use of the most_common() method of
Counter. The outcome is shown in the following screenshot:

Operations of Python collection counter
In Python collection counter, you can apply the sets operation such as addition, subtraction,
union, and intersection. Let's take one example to illustrate the set operations:

import collections

co1 = collections.Counter(['C','L','E','O','P','A','T','R','A'])
co2 = collections.Counter('JULIUS CAESAR')

print co1
print co2

print "addition n",co1 + co2 # Prints addition of sets
print "Subtractionn", co1 - co2 # Prints substration of sets

print "Union n", co1 | co2 # Prints union of sets
print "Intersection n", co1 & co2 # Prints intersection of sets

Collections

[209]

Here, in the preceding example, we are performing set operations on two counters. We
have done addition, subtraction, union, and intersection on both the sets. The outcome
is shown in the following screenshot:

Deque
A Deque double-ended queue. It can be visualized similar to a hollow tube or pipe, which is
open at the both ends. Deques allows addition and removal of elements from either ends. It
will be more clear with examples:

import collections

de = collections.deque('India')
print 'deque:', de
print 'Lenght :', len(de)
print 'left end:', de[0]
print 'right end:', de[-1]

de.remove('a')

print 'After removing:', de

Collections

[210]

Here we are providing input to deque 'India' and we are printing the left-hand side and
right-hand side elements of deque using the index and then we are removing a character
'a' from the right-hand side of the deque using remove(). The output will look something
like this:

The len() function gives the length of the deque.

Populating deque
As we have already read that deque is a double-ended queue, hence it means elements can
be added from either side or the deque can be populated from either side. In order to add
elements or populate the deque, we have four functions: extend(), append(),
extendleft(), and appendleft(). Let's take an example to illustrate how we can
populate or add elements to both sides of the deque:

import collections
d1 = collections.deque("Google")
print d1
d1.extend('raj')
print "after extend :n", d1
d1.append('hi')
print "After append :n",d1

d1.extendleft("de")

Collections

[211]

print "after extend leftn ", d1

d1.appendleft("le")
print "after append leftn ", d1

Here, in this case, we are providing "Google" as input to the deque. We then extend the list
by passing 'raj' as the input and it is extended to the right-hand side of the deque. We
append another input to the right-hand side of the deque. In order to add elements to the
left, we use extendleft() and appendleft(). The output of the program will clear the
doubts as shown:

The functions extend() and append() both add elements to any
collection. The only difference is that extend() adds each element to the
collection one by one, while append() considers all the elements as one
and appends all at the end of the collection. For
example, extend(['Dunkirk','Calais']) adds two elements
'Dunkirk' and 'Calais' one by one to the collection. While
append(['Dunkirk','Calais']) considers both of them as one
element and adds to the end of the collection.

The extendleft() function iterates over its input and performs the equivalent of an
appendleft() for each item. The final outcome is that the deque contains the input
sequence in reverse order.

Collections

[212]

Deque consumption
Deque can be consumed from either both ends or one end. For consuming deque elements
or retrieval of elements, we use two functions: pop() and popleft(). It will be more clear
with an example:

import collections
d1 = collections.deque("abcdefghacmqdcb")
print d1
print "Poped element ",d1.pop()
print d1
print "Poped left element ",d1.popleft()
print d1

Here we use pop to remove the elements one at a time from right end of the deque. In this
case, char b is removed from the right end of the deque. The popleft() function removes
element from the left end of the deque. Here, popleft() removed char a from the left end
of the deque as shown:

Collections

[213]

Deque rotation
Deque rotation allows rotation of items on either side. For right-side rotation, the notation is
(+n) and for left-side rotation, the notation used is (-n), where n is the number of
rotations:

import collections

d = collections.deque(xrange(6))
print "Normal queue", d

d.rotate(2)
print "nRight rotation :", d

d1 = collections.deque(xrange(6))
d1.rotate(-2)
print "nleft rotation :", d1

In this case, using the xrange() function we generate a list of 5 numbers, which will serve
as input to our deque. We rotate the deque on the right side and then on the left side. The
results can be seen here:

Collections

[214]

From the output, we can observe that in the right rotation, items are shifted to the right
direction. In the left rotation, the items are shifted to the left direction.

Ordered dictionary
The OrderedDict is a subclass of the dictionary and it remembers the order in which the
elements are added:

Syntax

d1 = collections.OrderedDict()
d1 is ordered dictionary here.

Let's look at the comparison between dictionary and ordered dictionary:

import collections
print 'Regular Dictionary'
d = {}
d['a']= 'SAS'
d['b']= 'PYTHON'
d['c']= 'R'

for k,v in d.items():
 print k, ":",v

print 'n Ordered dictionary'

d1 = collections.OrderedDict()
d1['a']= 'SAS'
d1['b']= 'PYTHON'
d1['c']= 'R'

for k,v in d1.items():
 print k, ":",v

Collections

[215]

Here, we create a normal dictionary and an ordered dictionary. Both the outputs are shown
here:

As we could see, the ordered dictionary has retained the order in which the elements
were added.

Sorting of ordered dictionary based upon keys
We can sort the ordered dictionary using the sorted() function:

Syntax

dict = collections.OrderedDict(sorted(d1.items()))
dict = New sorted dictionary
d1= Original Order dictionary

Let's take an example to understand the sorted() function. For a refresher on sorted()
function, you can revisit Chapter 4, Lists:

import collections
print 'n Order dictionary'
d1 = collections.OrderedDict()
d1['a']= 'SAS'
d1['d']= 'PYTHON'

Collections

[216]

d1['b']= 'JULIA'
d1['f']= 'R'
d1['c']= 'SPARK'

for k,v in d1.items():
 print k, ":",v
print 'n Sorted Order dictionary'
dict = collections.OrderedDict(sorted(d1.items()))

for k,v in dict.items():
 print k, ":",v

Here we create an ordered dictionary d1 and then sort it using the sorted() function. The
following output will make it more clear:

By default, the dictionary is sorted according to keys.

Sorting of ordered dictionary based upon values
We can also sort the ordered dictionary based upon values:

Syntax

 dict = collections.OrderedDict(sorted(d1.items(), key=lambda (k,v): v))
 dict = New sorted dictionary
 d1= Original Ordered dictionary

Collections

[217]

Here, the lambda function changes the key to its value. As ordered, the dictionary returns
the (key, value) pair. The lambda function makes key = value, thus the ordered
dictionary will be sorted by its value. Let's take an example to understand the sorting of the
ordered dictionary based upon values:

import collections
print 'n Order dictionary'
d1 = collections.OrderedDict()
d1['a']= 'SAS'
d1['d']= 'PYTHON'
d1['b']= 'SAP HANNA'
d1['f']= 'R'
d1['c']= 'JULIA'

for k,v in d1.items():
 print k, ":",v
print 'n Sorted Order dictionary'
dict = collections.OrderedDict(sorted(d1.items(), key=lambda (k,v): v))

for k,v in dict.items():
 print k, ":",v

As you can clearly see from the preceding example, the lambda() function converts key to
value and we can see the output as shown here:

Collections

[218]

The lambda function is explained in the special function section.

Default dictionary
So far we have learned about regular dictionary and ordered dictionary. In this section, we
will learn a special type of dictionary called default dictionary, which is provided by
the defaultdict module of collections. A defaultdict works exactly the way a normal
dict does, but it is initialized with a callable function called default_factory() that
takes no arguments and provides a default value for a nonexistent key.

Syntax

defaultdict(default_factory())

We will try to understand with two examples:

from collections import defaultdict

def func():
 return "Cricket"

game = defaultdict(func)

game["A"]= "Football"
game["B"] = "Badminton"

print game
print game["A"]
print game["B"]
print game["C"]

In this case, our function or function func acts as a default_factory function. We have
assigned game["A"]= "Football", where "A" is the key. If key is new (not found in the
dictionary "game"), then defaultdict does not give an error; instead, it returns the
default value, which is returned by the default_factory() function. So, for the new key
"C", the default value is "Cricket".

Collections

[219]

This will be more clear with the mentioned output:

The preceding task can be achieved by following the lambda function. Let's understand
with an example:

from collections import defaultdict
game = defaultdict(lambda : "Cricket")

game["A"]= "Football"
game["B"] = "Badminton"

print game
print game["A"]
print game["B"]
print game["C"]

Collections

[220]

Here, we just used the lambda function, which initializes the default value of "Cricket" if
any new key is encountered:

Now, next we will use int as default_factory function. The default value for int is 0:

from collections import defaultdict

game = defaultdict(int)

game["A"]= "Football"
game["B"] = "Badminton"

print game
print game["A"]
print game["B"]
print game["C"]

Collections

[221]

Here, we just initialized the int value for any new key encountered. For game["C"], the
output returned is 0:

Sample problem solved by the default dictionary -
 scenario one
Let's consider a simple problem solved by default dictionary; here we would like to
calculate the frequency of elements present in the list. Let's examine the scenario with an
example:

from collections import defaultdict

game = defaultdict(int)

list1 = ['cricket', 'badminton', 'hockey' 'rugby', 'golf', 'baseball' ,
'football']

for each in list1:
 game[each]= game[each]+1

print game

Collections

[222]

As the default value is initialized with 0 we have incremented it with 1, and, in this way,
we can calculate the frequency of elements present in the list:

Sample problem solved by the default dictionary -
 scenario two
Let's analyze a scenario where we have a list of tuple pairs. The list tuple_list_county =
[('US', 'Visconsin'), ('Germany', 'Bavaria'), ('UK', 'Bradfordshire'),
('India', 'punjab'), ('China', 'Shandong'), ('Canada', 'Nova Scotia')]

is the pair of (Country, county). So our aim is to make our county or state as key and
country as the list of values. Let's do it with the following code:

from collections import defaultdict

game = defaultdict(list)

tuple_list_county = [('US', 'Visconsin'), ('Germany', 'Bavaria'), ('UK',
'Bradfordshire'), ('India', 'punjab'), ('China', 'Shandong'), ('Canada',
'Nova Scotia')]

print game["any_value"]

for k,v in tuple_list_county:

Collections

[223]

 game[k].append(v)

print game

Here, the default value is the list itself. The first value of the tuple is fixed as key and the
second value is appended:

Named tuple
Python facilitates you to create your own data type. In the Python collection, namedtuple
gives you a special feature to create your own data type. In the C language, you might have
used struct to create your own data type. When you want to create a new data type, you
would like to explore the answers to some questions as what should be the name of the new
data type? What are the fields of the new data type? Let's discuss this with a syntax and an
example of namedtuple.

Collections

[224]

Syntax

collections.namedtuple(typename, field_names[, verbose=False][,
rename=False])

Let's try to understand the syntax of namedtuple. In the preceding syntax:

The typename defines the name of the new data type
The field_names can be a sequence of strings such as ['x', 'y'] or string in
which values are whitespaced or , separated
If verbose is False, then the class definition would not be printed, it is a good
idea to keep it False
If rename is False, then the invalid field names are automatically replaced with
positional names, for example, 'def, age, empid' is converted to '_0 ,
age, empid' because def is a keyword

Let's discuss with an example:

import collections
employee = collections.namedtuple('emp','name, age, empid')

record1 = employee("Hamilton", 28, 12365)

print "Record is ", record1
print "name of employee is ", record1.name
print "age of employee is ", record1.empid

print "type is ",type(record1)

Collections

[225]

Here, we create a namedtuple emp, which will contain the name of the employee, his/her
age and the employee ID. We print out the complete record along with name, empid, and
what type of record namedtuple contains. In order to access the values of namedtuple, we
use the . operator along with the name of the tuple. As the namedtuple contains the record
type as emp, the outcome displays the same as shown here:

Adding values and creating a dictionary
In the next example, we will understand how to add list values into namedtuple and how
to make dictionary from namedtuple:

import collections
employee = collections.namedtuple('emp','name, age, empid')
list1 = ['BOB', 21, 34567]
record2 =employee._make(list1)
print record2
print "n"
print (record2._asdict())

Collections

[226]

Here, by using _make, we can add a list into a namedtuple and by using _asdict we can
create dictionary of namedtuple:

Now, consider a scenario where you would like to replace a value from namedtuple. Like
tuple, the namedtuple is also immutable. But you can use the _replace function to
replace the value from namedtuple:

import collections
employee = collections.namedtuple('emp','name, age, empid')

record1 = employee("Marina", 28, 12365)

print "Record is ", record1
print "n"
print record1._replace(age= 25)
print "n"
print "Record is ", record1
print "n"
record1 = record1._replace(age= 25)
print "Record is ", record1

Collections

[227]

Here, we are simply using the dot (.) operator followed by the _replace() function and
providing the new value as an input to the _replace() function. In this way, we can
replace the existing value in a namedtuple:

Summary
In collections, we learned about collections, and asked what are collections? What is their
importance in any programming language? We learned about different types of collections,
which are available in the Python programming language. We learned about module
collection and its various members, which we import in our code. We also learned about
counter, deque, ordered dictonary, default dictionary, and finally namedtuple. In the next
chapter, we will take some object-oriented programming (OOPs) concepts and we will see
how Python supports the OOPs concepts.

11
Class and Objects

Before we delve deeper into classes and objects, let's first try to understand what they are
and why they form part of Python programming. Python language also supports object-
oriented programming. For beginners, this might be a little confusing topic but be assured it
is not that difficult to understand the concept of object-oriented programming (OOP). Let's
try to understand what object-oriented programming is. Before this concept was
introduced, we were primarily slave to writing procedural programming, that is, going line
by line. At this level, you need not understand what is procedural programming but
certainly there is one example to illustrate it, that is, C language. In procedural
programming, there were a lot of complexities and above all procedural programming had
negligible code reuse concept.

Object-oriented programming overview
The concept of object-oriented programming was seen to solve many problems, which
procedural programming did not solve. In object-oriented programming, everything
mimics just like a real-world object. In the real world, everything is an object. An object can
have state and behavior. An object in the real world can communicate with another object.
For example, a dog object in the real world has state and behavior. OOPs is based on four
pillars. They are:

Polymorphism
Inheritance
Abstraction
Encapsulation

Class and Objects

[229]

Key concepts
OOPs is a vast topic that needs to be covered at the intermediate level. In case of Python
programming, however, we will cover some key concepts in this chapter.

Class: Class is considered as a blueprint for object creation. It can be understood
as a factory to produce objects. It provides a template for creating an object and
specifying its behavior through means of methods and state through means of
variable instance name.
Objects: They can be considered as an instance of a class. An object can have state
and behavior or attributes. The objects basically bundles a set of related states
and behaviors, for example, a dog has state (name) and behavior (barking).
Inheritance: Inheritance is a feature supported by many programming languages,
it can be correlated in real life as properties passed on by parents to their
children. In object-oriented programming, the child class can inherit many
properties from the parent class. Here, we mean that the child class can use
an existing method or behavior, which the parent class has defined and use them
accordingly in their class. Inheritance can be a single inheritance or multiple
inheritance. Single inheritance, as the name suggests, refers to only one parent,
while multiple inheritance refers to inheriting the property from multiple
parents.
Polymorphism: Well, this literally means something, which has many forms. In
OOPs, an object can have many forms through means of different attributes. To
simplify, in our case, we can understand it by methods with the same name but
having different outputs.
Abstraction: Here, we hide the necessary details and are only interested
in showing the relevant details to the other intended user. Here, by other
intended user we mean another software application, or another class, or other
client who will be the end users of the program.
Encapsulation: This refers to hiding the necessary methods and their relevant
details from the outside world. A class can be treated as a best example, which
provides encapsulation to the methods and relevant instances.

Creating a class
Now, after understanding some basic concepts of OOPs, let's understand them with some
programming.

Class and Objects

[230]

Creating a class in Python is quite easy. Refer to the following syntax:

 class <class name >(<parent class name>):
 <method definition-1>
 <method definition-n>

Let's create a class1.py program. In this program, we are creating an empty class:

class Leapx_org():
 pass

We have just created a Leapx_org class. This class is empty, the class body just contains the
pass statement. Basically, the class is a blueprint to create instances. Let's create the
instances:

L_obj1 = Leapx_org()
L_obj2 = Leapx_org()
print L_obj1
print L_obj2

Let's run the class1.py program:

Output of program class1.py

In the preceding screenshot, you can see both the instances of the Leapx_org class at
different locations in memory.

Instance variables
Instance variables refer to the data that are unique to instances (objects). Let's create an
instance variable. We will write a new class2.py program:

class Leapx_org():
 pass

Class and Objects

[231]

L_obj1 = Leapx_org()
L_obj2 = Leapx_org()
L_obj1.f_name = "Mohit"
L_obj1.L_name = "RAJ"
L_obj1.pamount = "60000"
L_obj2.f_name = "Ravender"
L_obj2.L_name = "Dahiya"
L_obj2.pamount = "70000"
print L_obj1.f_name+ " "+ L_obj1.L_name
print L_obj2.f_name+ " "+ L_obj2.L_name

In the preceding code, L_obj1.f_name, L_obj1.L_name, and L_obj1.pamount are the
instance variables, which are unique to the L_obj1 instance. Similarly, L_obj2.f_name,
L_obj2.L_name, and L_obj2.pamount are the instance variables of the L_obj2 instance.

Let's run the code:

Output of code class2.py

If we create an instance variable, as shown in the code, then we would not get benefit of
making a class. You can see repeatable code for both the instances. So we would not have to
set the variable all the time. In order to make it automatically, we will use the special
method __init__() function.

The __init__ method
The __init__() method must begin and end with two consecutive underscores. Here
__init__ works as the class's constructor. When a user instantiates the class, it runs
automatically.

Class and Objects

[232]

Let's see and understand this concept with the help of code. Here we will write the full code
for classinit.py and then we will understand it line by line:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1.full_name
print L_obj2.full_name

So, from preceding code, it seems difficult; let's understand it by line by line. The first line
defines a class as we already know. When we create the __init__(self,first,last,
pay) method inside the class then first argument, self, of __init__() method receives the
instance of the class automatically. By convention we call it self, you can use another
name, but it is a good idea to stick to the convention. After declaring the self variable, we
can specify other arguments that we want to accept. So we will accept three values first,
last, and pay. Inside the __init__() method we will declare the instance variable. So the
self.f_name, self.l_name, self.pay_amt, and self.full_name are instance
variables. The self variable receives the instance. The self.f_name = first statement is
the same thing as we saw L_obj1.f_name = "Mohit" in the previous code class2.py.
The L_obj is the instance of the class and the variable is self referred to instance of the class,
which is more or less similar. When we create an instance like L_obj1 =
Leapx_org('mohit', 'RAJ', 60000) the values ('mohit', 'RAJ', 60000) are
automatically passed to the __init__(self, first, last, pay) method. We don’t
need to pass the value of the self variable, because the L_obj1 instance is passed
automatically.

Class and Objects

[233]

Similar things happens for the L_obj2 instance. If your doubt still persists for the self and
instance variables, you can refer to the following figure for clarification:

Self linking with object

Now you got an idea of the instance variable: the self.f_name, self.l_name,
self_pay_amt, and self.full_name are the instance variables, unique to instance
L_obj1 and L_obj2. The self.f_name, self.l_name, self_pay_amt, and
self.full_name contain values mohit, RAJ, and 60000, for instance, L_obj1 and
Ravender, Dahiya and 70000, for instance, L_obj2, respectively.

Let's run the code:

Output of classinit.py

You can see that the preceding result and the result from class2.py are the same. But we
reduce few lines from the code classinit.py.

Class and Objects

[234]

Let's create the method inside the class. We want a functionality to generate the e-mail
address for users. We will write the full code for classmethod1.py and discuss it:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1.full_name
print L_obj1.make_email()
print L_obj2.full_name
print L_obj2.make_email()

The code is very much similar to the previous code. We added the make_email() method
here, which used the instance variables self.f_name and self.l_name. By using the
L_obj1.make_email() syntax the L_obj1 instance calls the method
make_email() method.

The make_email() is the regular method. What is the regular method? The regular
methods in the class automatically take the instances as the first argument. That's why, by
convention, we use self as the first argument which expects an instance.

If you remember, in string, list we did the same thing as we did in list1.append(). If you
relate list with the preceding class, then list1 is the instance and append() is the method
of the class list. You can also define the list as shown here:

List1 = list()

Let's go deeper to explore the self variable. If you are still in doubt, the next example will
clear it. Refer to the code in classmethod2.py as follows:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email():
 return self.f_name+ "."+self.l_name+"@xyz.com"
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
print L_obj1.make_email()

Class and Objects

[235]

The preceding code is very much similar to classmethod2.py. In order to experiment, we
used just one instance L_obj1. In the make_email() method, the argument self has been
removed. Let's run the code:

Output of code classmethod2.py

You can see that error make_email() takes no arguments (1 given). This can be
confusing as we have not passed any argument in the syntax L_obj1.make_email().
What is the make_email() method expecting? In this case, the L_obj1 instance is passed
automatically. That’s why we use the self argument to the methods of the class.

Let's see following code classmethod3.py in order to understand this better:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
print L_obj1.make_email()
print Leapx_org.make_email(L_obj1)

In the preceding code, the self variable has been put in the make_email(self) method.
In the last line, Leapx_org.make_email(L_obj1) signifies what is running in the
background. The syntax L_obj1.make_email() and Leapx_org.make_email(L_obj1)
both are one and the same.

The syntax Leapx_org.make_email(L_obj1) states class.method(instance). In this
syntax, we pass the instance to the make_email() method and the self argument accepts
that instance. So, L_obj1.make_email() is transformed into
Leapx_org.make_email(L_obj1).

Class and Objects

[236]

Class variables
Class variables are the ones, which are sharable among all the instances of the class. The
class variable must be the same for all the instances. To understand with example, let's
assume that leapx_org gives 5 percent increment based upon pay_amt. Let's use another
method to calculate the increment. Refer to the classinstance1.py program:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"
 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*1.20)
 return self.pay_amt
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1.pay_amt
print L_obj1.incrementpay()

There are a couple of things that are new in the preceding program. We added
incrementpay() which returns the raised pay_amt amount. The last line print
L_obj1.incrementpay() states that the L_obj1 instance calls
the incrementpay() method. Let's run the program:

Output of classinstance1.py

The preceding program runs successfully but most of its content is logically wrong. In
the incrementpay() method, we used the multiplication number 1.20, which would be
same for all the instances. So we can make the multiplication number 1.20 as the class
variable.

Class and Objects

[237]

Let's write the new code classinstance2.py with amendments:

class Leapx_org():
 mul_num = 1.20
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"
 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1.pay_amt
print L_obj1.incrementpay()

In the preceding program, we made a mul_num class variable that contains the value 1.20.
In the incrementpay() method, we access the mul_num class variable with the help
of self means instance. You can use either self or class name with the mul_num. If you
use the class name with mul_num, then it would be Leapx_org. mul_num. If you don't use
any of them, then the interpreter throws an error. You might be confused, if it is a class
variable, then how can we access the class variable with the instance. Let's add some lines to
understand it better. Add the following lines at the end of the code:

print L_obj1.mul_num
print L_obj2.mul_num
print Leapx_org.mul_num

Run the program and see the output:

Output of program classinstance2 with added lines

Class and Objects

[238]

As you can see, we are accessing the mul_num class variable with the help of instances
L_obj1, L_obj2, and the Leapx_org class. All are showing the same value 1.2. So what
happens when we try to access an attribute by an instance? The instance first checks
whether the instance contains the attribute. If the instance does not contain the attribute,
then it checks the class or its parent class contains that attribute. So the instances L_obj1
and L_obj2 access the mul_num from the class. For more clarification, you can view the
attribute of the class and instances.

The following is the full code of classinstance3.py:

class Leapx_org():
 mul_num = 1.20
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print "instance space ",L_obj1.__dict__
print "class space ",Leapx_org.__dict__

Except for the last two lines, the rest of the code is similar to the previous one.
The L_obj1.__dict__ syntax prints all the attributes of the L_obj1 instance and
Leapx_org.__dict__ prints all the attributes of the Leapx_org class. Run the program to
see the output:

Output of code classinstance3.py

Class and Objects

[239]

You can see that the instance name space does not contain the mul_num class variable, but
the class name space contains mul_num. Let's add mul_num to the name space of
the L_obj1 instance. To avoid confusion, we will write classinstance4.py:

class Leapx_org():
 mul_num = 1.20
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
L_obj1.mul_num = 1.3

print "instance space L_obj1 n",L_obj1.__dict__
print "ninstance space L_obj2 n",L_obj2.__dict__
print "nclass space n",Leapx_org.__dict__

print L_obj1.mul_num
print L_obj2.mul_num
print Leapx_org.mul_num

In the preceding code, line L_obj1.mul_num = 1.3 adds the mul_num variable in the
name space of the L_obj1 instance. The last three lines of code print the name of space of
the instance L_obj1, L_obj2 and the Leapx_org class. Let's run the code:

Class and Objects

[240]

Output of code classinstance4.py

The preceding output shows that the L_obj1 instance finds the mul_num first with its own
namespace before searching in the class namespace. That's why L_obj1 shows 1.3. We did
not set mul_num, for instance, L_obj2, so L_obj2 is still getting the value from the class
namespace. In the incrementpay() method, we use self.mul_num instead of
Leapx_org.mul_num because self.mul_num gives the ability to change mul_num value
for single instance, if we want to. Let's create one more class variable to count the number of
employees.

Let us see the next code classinstance5.py:

class Leapx_org():
 mul_num = 1.20
 count= 0
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 Leapx_org.count = Leapx_org.count+1

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

Class and Objects

[241]

L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
L_obj3 = Leapx_org('Bhaskar', 'DAS',70000)
print "Number of Employees are : ", Leapx_org.count

Earlier we created new class variables count initializing with 0. The syntax
Leapx_org.count = Leapx_org.count+1 increases the class variable by one. We have
created three instances. Whenever we create a new instance, the count variable is
incremented by one. Let's see the output:

Output of code classinstance5.py

Now you got the idea of the class variable. If you set self.count = self.count+1
instead of Leapx_org.count = Leapx_org.count+1, then you would get 0 employees.

Class inheritance
In this section, we will learn about inheritance. Inheritance allows us to inherit methods and
attributes of the parent class. By inheritance, a new child class automatically gets all of the
methods and attributes of the existing parent class. The syntax is given as follows:

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 . .
 <statement-N>

If you remember, in Chapter 10, File Handling and Exceptions, we had inherited the built-in
class exception. Starting with the existing code, let's make the instructor class, which
would inherit the method of the Leapx_org class. Refer to the code in classinheri1.py:

class Leapx_org():
 mul_num = 1.20
 count= 0
 def __init__(self,first,last,pay):

Class and Objects

[242]

 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 Leapx_org.count = Leapx_org.count+1

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

class instructor(Leapx_org):
 pass
I_obj1 = instructor('mohit', 'RAJ', 60000)
I_obj2 = instructor('Ravender', 'Dahiya',70000)
print "number of employees ", instructor.count
print I_obj1.make_email()
print I_obj2.make_email()

In preceding code, we create a new class instructor which inherits the method and
attributes from the Leapx_org class. The Leapx_org class is the base class and the
instructor class is the child class. We left the body of the instructor class blank. We created
two instances of the instructor class, then we printed the e-mails. Let's run the code:

Output of code classinheri1.py

The preceding result shows that the child class is successfully accessing the attributes of the
parent class. When we instantiate the instructor class, it first looks up the __init__ method
of the instructor class. As the instructor class is empty, the interpreter checks the chain of
inheritance. If you want to check the chain of inheritance, you need to use the help()
function.

Class and Objects

[243]

Add the following lines in the classinheri1.py code and run it:

Output of the help function

In the preceding screenshot, you can easily see which methods, data, and attributes inherit
from the base class. You can say that the base class is generic class and the child class is a
specific class. Let's proceed to more complicated examples. In the instructor class, we
will add one more thing, which instructor teaches which subject. In order to do that, we
need to add the __init__ method to the instructor class. Let's see the code
classinheri2.py and discuss the additions:

class Leapx_org():
 mul_num = 1.20
 count= 0
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 Leapx_org.count = Leapx_org.count+1

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):

Class and Objects

[244]

 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

class instructor(Leapx_org):
 def __init__(self,first,last,pay, subject):
 Leapx_org.__init__(self,first,last,pay)
 self.subject = subject

I_obj1 = instructor('mohit', 'RAJ', 60000, "Python")
I_obj2 = instructor('Ravender', 'Dahiya',70000, "Data Analytic")
print I_obj1.make_email()
print I_obj1.subject
print I_obj2.make_email()
print I_obj2.subject

In the class instructor, we have created a new __init__ method, which accepts the data
first, last, pay, and subject. Now, there is no need to copy and paste the code of
the __init__ method from the Leapx_org base class. In order to get the data of the first,
last, and pay arguments, we have used
the Leapx_org.__init__(self,first,last,pay) syntax. This syntax passes the first,
last, and pay arguments to the Leapx_org base class. The arguments first, last, and
pay are handled by the Leapx_org class and the subject argument is handled by the class
instructor.

We created two instances I_obj1 and l_obj2, which pass the data to the instructor class.
Let's run the code:

Output of code classinheri2.py

Now you can understand that by using this class we can avoid repeating a lot of code.

Class and Objects

[245]

Multiple inheritance
In multiple inheritance, a class inherits the attributes and methods from more than one
parent class. Let's take a simple example classmultiple.py:

class A():
 def sum1(self,a,b):
 c = a+b
 return c
class B():
 def sub1(self,a,b):
 c = a-b
 return c
class C(A,B):
 pass
c_obj = C()
print "Sum is ", c_obj.sum1(12,4)
print "After substraction ",c_obj.sub1(45,5)

In the preceding code, we have created three classes. Class A contains a sum1() method,
which performs the sum of two numbers. Class B contains a sub1() method, which
performs the subtraction of two numbers. Class C is the class that inherits classes A and B.
The c_obj instance is an instance of class C. The statement c_obj.sum1(12,4) calls the
sum1() method of class A. The c_obj.sub1(45,5) statement calls the sub1() method of
class B. Let's run the code classmultiple.py:

Output of program classmultiple.py

The preceding output shows that the program is running successfully.

Class and Objects

[246]

Multilevel inheritance
In this type of inheritance, a class can inherit from a child class or derived class. Let's take a
simple example code classmultilevel.py to understand:

class A():
 def sum1(self,a,b):
 c = a+b
 return c

class B(A):
 pass

class C(B):
 pass

c_obj = C()
print "Sum is ", c_obj.sum1(12,4)

In the preceding example, you can see that class B inherited from class A and class C
inherited from class B. The instance of class C can call the method of class A. Let's see the
output:

Output of code classmultilevel.py

The preceding output shows that the code is running successfully.

Overriding methods
Overriding the methods allows a user to override the parent class method. Sometimes the
class provides a generic method, but in the child class, the user wants a specific
implementation of the method. The name of the method must be the same in the parent
class and the child class.

Class and Objects

[247]

Let's see the program classover1.py:

class A():
 def sum1(self,a,b):
 print "In class A"
 c = a+b
 return c

class B(A):
 def sum1(self,a,b):
 print "In class B"
 c= a*a+b*b
 return c

b_obj = B()
print B.__dict__
print b_obj.sum1(4,5)

In the preceding example, classes A and B both have the same method sum1() with
different implementations. We also have printed the class name space using B.__dict__.
Let's see the output of the code:

Output of code classover1.py

In the preceding output, you can see the sum1 function. The Interpreter first checks the
instance’s class name space: if the method is found, the interpreter uses it.

Operator overloading
In this section, we will learn about operator overloading with special methods. Generally,
people call them magic methods. We will use these methods in operator overloading. First,
let's understand what operator overloading is.

Class and Objects

[248]

Using a special method, we'll able to change the built-in behavior of the operator. The
special method is surrounded by double underscores (__). Some people called it the dunder
method. Let's take an example of the + operator, as shown in the following example:

>>> "M"+"R"
'MR'
>>> 4+6
10
>>>

You can see a different behavior of the + operator. The integer number is added and the
strings are concatenated. Depending upon the object you are working with, the + operator
has different behavior. However, the + calling is a special method that runs in the
background. In order to do addition of two integers, the + operator
calls int.__add__(1,2) and for string addition + calls str.__add__(“a”, “b”). Refer
to the following example:

>>> int.__add__(4,6)
10
>>> str.__add__("M","R")
'MR'
>>>

So we can customize the addition using the __add__() method. Let's take an example of
the following code classoperator1.py, which is very much similar to the earlier code
snippets:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1+L_obj2

Class and Objects

[249]

We will add two instances L_obj1 and L_obj2. Let's see the output:

Output of code classoperator1.py

The preceding output shows an error in the code. Error for the + operator L_obj1 and
L_obj2 are unsupported. We don't know what we want to get from the addition. Consider
we want to add the pay amount of both the instances. When I use obj1+L_obj2, the
+ operator should add the pay amount, which means 60000+70000. Let's refer to the
program and see how to overload the + operator:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def __add__(self,other):
 result = self.pay_amt+ other.pay_amt
 return result
L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1+L_obj2

The preceding program is the same as the previous one except for the magic __add__()
method. When we use L_obj1+L_obj2, then the + operator calls the __add__() method.
The __add__() method accepts two instances as arguments. The syntax result =
self.pay_amt+ other.pay_amt signifies the addition of pay_amt of two instances,
which are L_obj1 and L_obj2, in our case. Let's see the output:

Class and Objects

[250]

Output of classoperator2.py

Let's do one more program, which compares pay_amt for both the instances. Here is the
code for classoperator3.py:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def __gt__(self,other):
 return self.pay_amt>=other.pay_amt

L_obj1 = Leapx_org('mohit', 'RAJ',60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
print L_obj1>L_obj2

In the preceding program, the last statement L_obj1>L_obj2 would call the __gt__()
method which accepts two instances; in this method, we perform a comparison based on
their pay_amt. Let's see the output:

Output of program classoperator3.py

Do your experiment with different pay_amt values.

Class and Objects

[251]

Let's use the same program and print the instance length and instance. Refer to the code
for classoperator4.py:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

L_obj1 = Leapx_org('mohit', 'RAJ',60000)
print L_obj1
print "n"
print "Lenght is ",len(L_obj1)

In the preceding code, we have printed the instance and length of the instance. Let's see the
output:

Output of code classoperator4.py

We need to use two magic methods: to customize the instance print, we will use __str__()
and to find out the length, we will use __len__(). For the __len__() method, we will use
the length of the full name. See the code classoperator5.py:

class Leapx_org():
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

Class and Objects

[252]

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def __str__(self):
 str1 = "instance belongs to "+self.full_name
 return str1

 def __len__(self):
 return len(self.f_name+self.l_name)

L_obj1 = Leapx_org('mohit', 'RAJ',60000)
print L_obj1
print "n"
print "Lenght is ",len(L_obj1)

As discussed earlier, we need to use two methods: one is __str__() and the second one is
__len__(). We used the customize output instance is belong to. The __len__()
function returns the combined length of the first name and the second name. Refer to the
output:

Output of code classoperator5.py

Bingo! So both our purposes are served, the customized output and the length of the
instance are being printed. I hope you got an idea how to use operator overloading and
magic methods.

The class method
You have seen the regular class methods of the class. The regular method automatically
takes an instance as the first argument, and, by convention, we called it self. How can we
pass the class as an argument so that we can change the class variable in the method? To do
that, we use the class method.

Class and Objects

[253]

The class method takes the class as first argument. To turn the regular method into the class
method, we will use decorator (@classmethod) at the top of the method. Let's see
the methodclass1.py example:

class Leapx_org():
 mul_num = 1.20
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last

 def make_email(self):
 return self.f_name+ "."+self.l_name+"@xyz.com"

 def incrementpay(self):
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

 @classmethod
 def mul_num_set(cls, amt):
 cls.mul_num=amt

L_obj1 = Leapx_org('mohit', 'RAJ', 60000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
Leapx_org.mul_num_set(1.40)
print L_obj1.mul_num
print L_obj2.mul_num

In the preceding program, a couple of things are new. The regular method mul_num_set()
has been converted into the class method using the decorator @classmethod at the top. In
the mul_num_set(cls,amt) method, the first argument cls represents the class. By
convention, we are using cls. Don't use class as the argument because class is the
keyword, use it to define a class. The syntax cls.mul_num=amt sets the mul_num class
variable to the amt value, which is passed by the line Leapx_org.mul_num_set(1.40).
The line Leapx_org.mul_num_set(1.40) calls the class method mul_num_set() using
the class. You can also use an instance to call the class method as shown
in L_obj1.mul_num_set(1.40):

Class and Objects

[254]

Let's run the program:

Output of program methodclass1.py

The same thing can be achieved using the Leapx_org.mul_num= 1.40 line. But here we
used the class method.

The static method
The static method doesn't take an instance or class as the first argument. They are just
simple functions. But we include them in class because they have some logical connection
with the class. Consider a situation in the methodclass1.py program, when the pay of a
person is less than 50000, then the incremented pay amount would be 1.30of pay amount
, otherwise 1.20. To turn a regular method into a class method, we will use decorator
(@staticmethod) at the top of the method.

Let's make the program:

class Leapx_org():
 mul_num = 1.20
 mul_num2 = 1.30
 def __init__(self,first,last,pay):
 self.f_name = first
 self.l_name = last
 self.pay_amt = pay
 self.full_name = first+" "+last
 @staticmethod
 def check_amt(amt):
 if amt <50000:
 return True
 else :
 return False
 def incrementpay(self):
 if self.check_amt(self.pay_amt):
 self.pay_amt = int(self.pay_amt*self.mul_num2)

Class and Objects

[255]

 else :
 self.pay_amt = int(self.pay_amt*self.mul_num)
 return self.pay_amt

L_obj1 = Leapx_org('mohit', 'RAJ', 40000)
L_obj2 = Leapx_org('Ravender', 'Dahiya',70000)
L_obj1.incrementpay()
L_obj2.incrementpay()
print L_obj1.pay_amt
print L_obj2.pay_amt

In the preceding program, the check_amt() method is a static method as specified by the
decorator @staticmethod. The check_amt() method checks whether amt is greater than
50000 or not. The incrementpay() method uses the check_amt() static method. The
check_amt() method does not change the class and instance variable. But it has some
logical connection with regular method incrementpay().

Refer to the following output:

Output of program staticmethod1.py

Hope you understood the static method.

The private variable
Python doesn't have real private methods, so two underlines at the beginning make a
variable and a method private. Let's see a very simple example:

class A:
 __amount = 45
 def __info(self):
 print "I am in Class A"
 def hello(self):
 print "Amount is ",A.__amount

Class and Objects

[256]

a = A()
a.hello()
a.__info()
a.__amount

In the preceding program, __info() is the private method and __amount is the private
variable. Let's see the output:

Output of program private1.py

You can see the benefit of the private variable. Outside the class, you cannot access the
private method as well as the private variable, but inside the class, you can access the
private variables. In the hello() method, the __amount variable can be accessed as shown
in the output (Amount is printed).

However, you can access private variables and the private method from outside the class.
Use the syntax like instance _class-name__private-attribute.

Now, let's rewrite the program with the correct syntax:

class A:
 __amount = 45

 def __info(self):
 print "I am in Class A"

 def hello(self):
 print "Amount is ",A.__amount

a = A()
a.hello()
a._A__info()
print a._A__amount

Class and Objects

[257]

Let's see the output:

Output of program private1.py

So what is the benefit of accessing private variable outside the class. The benefit is to
prevent the class method and variable being changed by others accidentally. Hope you get
the idea of private methods.

Summary
In this chapter, we have learned what is class and the benefits of creating a class.
We learned how to create an instance or an object. Instance and object are the same thing.
We learned the difference between class variable and instance variable. Class variables are
shareable among all the regular methods. Static methods are unique to instances. In class
inheritance, we learned the benefit of inheritance and code reuse. By using method
overriding, we can override the method of the parent class. In operator overloading, we
learned how to change the behavior of the built-in operator. We learned why to create static
and class methods. The class methods are created to change class attributes. In the end, we
learned the benefits of private methods and private variables.

Index

_
__init__ method 231, 233, 235

A
American Standard Code for Information

Interchange (ASCII) character sets 35
arithmetic expressions
 about 37
 mixed mode arithmetic 38
arithmetic operators 40
assignment operator
 variants 43

B
bitwise operators 44
Bracket, Of, Division, Multiplication, Addition, and

Subtraction (BODMAS) 37

C
class inheritance
 about 241, 242, 244
 multilevel inheritance 246
 multiple inheritance 245
class method 252, 254
class variable 236, 237, 239, 240
collections
 about 198
 counter 199, 201
 default dictionary 218
 named tuple 223
 ordered dictionary 214
 reference link 198
comparison operators 40
complex numbers
 reference link 32
conditional branching 123

control statements 120
conversion functions 36
counter, collections
 update function 202, 203
counter
 Python collection counter, operations of 208
 usage 204, 206, 207

D
data type
 in Python 29
 numeric data type 30
default dictionary 218, 220, 221, 222
definite loop 127, 129, 131
deque
 about 209
 consuming 212
 populating 210
 rotation 213
dictionary functions
 about 106
 dict () 107
 len () 106
 max () 106
 min () 107
 str () 106
dictionary methods
 about 109
 clear () 114
 copy () 109
 get () 111
 has_key () 112
 items () 114
 keys () 113
 setdefault () 111
 update () 114
 values () 113

[259]

dictionary
 about 102
 item, adding 105
 item, deleting 104
 operations 103
 overview 102
 values, accessing 103
 values, updating 105

E
environment variables
 about 16
 setting, in Linux 20
 setting, in Mac OS 20
 setting, in Windows 16, 17, 19
exceptions
 about 188
 argument 193
 multiple exception blocks 190, 192
 raising 194
 try statement, with except clause 188, 189
 try...finally statement 192
 user-defined exceptions 195, 196

F
functions
 about 142
 built-in functions 144
 calling 145
 categories 143
 defining 144
 key-value pair, as variable length argument 151
 user defined functions 144
 with arguments 146, 148
 with default argument 149
 with return type 148
 with variable length argument 150

I
identity operators 47
if and if...else statement 121
if...elif...else statement 123
import statement 162, 165
in operator 84
indefinite loop

 about 131, 133
 break statement 134, 136
 while loop 134
instance variables 230
Integrated Development Environment (IDLE) 15
item 103

L
Linux platform
 installing 11
 reference link 11
list comprehensions 99
list functions
 about 85
 len () 85
 list () 86
 max () 85
 sorted () 87
list methods
 about 88
 append () 88
 append method, versus extend method 90
 count () 91
 extend () 89
 extend method, versus append method 90
 index () 91
 insert () 92
 pop () 94, 95, 97
 remove () 93
 reverse () 98
list operations
 about 80
 list values, accessing 80
 list values, deleting 82
 list values, multiplication 83
 list values, slicing 80
 list values, updating 81
 Python lists, addition 82
list values
 accessing 80
 creating 78
 deleting 82
 multiplication 83
 slicing 80
 unpacking 79

[260]

 updating 81
list
 creating 78
logical operators 45
loop header 127
loops
 about 125
 definite loop 125, 126, 129, 131
 indefinite loop 125, 131, 133
 nested loops 137
 types 125

M
Mac OS
 installing 12
 reference link 12
membership operators 46
memory management 159
mixed mode arithmetic
 about 38
 mixed mode conversion 38
mixed mode conversion 38
module Activation Record 159
modules 161
multilevel inheritance 246
multiple assignment operator 29
multiple exception blocks 190, 192
multiple inheritance 245

N
named tuple
 about 223
 dictionary, creating 225, 227
 values, adding 225, 227
nested loops
 about 137
 continue statement 138
 pass statement 138, 140
Notepad++
 environment variables 16
 installing 14
 program, writing 20
 Python file formats 14
 Python interactive shell 14
 system variables 16

 URL, for downloading 14
numeric data type
 about 30
 Boolean data type 33
 complex numbers 32
 floating point numbers 31
 integers 30
 long integers 30
 string data type 34

O
object-oriented programming, key concepts
 abstraction 229
 class 229
 encapsulation 229
 inheritance 229
 objects 229
 polymorphism 229
object-oriented programming
 class, creating 229
 key concepts 229
 overview 228
operator overloading 247, 249, 251
operator precedence 50
operators
 about 39
 arithmetic operators 40
 assignment operator, variants 43
 bitwise operators 44
 comparison operators 40
 identity operators 47
 logical operators 46
 membership operators 46
 operator precedence 50
ordered dictionary
 about 214
 sorting, based on key 215
 sorting, based on values 216
overriding methods 246

P
pass by reference
 about 152
 versus pass by value 152
pass by value

[261]

 about 152
 versus pass by reference 152
pickling 184
private variable 257
Python 2.x
 URL, for downloading 8
Python dictionary
 programming 117
 with for loop 115, 116
Python file formats 14
Python files
 compiled 169, 170
Python interactive shell 15
Python lists
 addition 82
Python modules
 locating 166, 168
Python package 172, 173
Python string
 about 52
 methods 56
 string Boolean method 64
 string case method 57
 string justify method 61
 string split method 60
 string strip method 59
 subscript operator 53
Python syntax
 about 21
 back slash 24
 comments in 22
 double quotes 22
 escape sequence 25
 formatted output 26
 indentation 27
 single quotes 22
 string concatenation 26
 string quotes 25
 triple quotes 22
Python tuple
 about 70
 empty tuple, creating 70
 indexing 71
 slicing 71
 tuple, creating with elements 70

Python
 about 6
 applications 7
 implementations 7
 installing 8
 Linux platform, installing 11
 Mac OS, installing 13
 versions 7
 Windows platform, installing 8, 10

R
raise statement
 used, for triggering exceptions 194
read() method 175
readline() method 177
readlines() method 178

S
scope of variables
 about 154
 global variables 155
 local variables 155, 157
single assignment operator 29
string Boolean method 64
string case method 57
string function 68
string justify method 61
string split method 60
string strip method 59
substring
 slicing 54
system variables 16

T
text
 examples 184
 exercise 179
 read() method 175
 reading, from file 175
 readline() method 177
 readlines() method 178
 writing, to file 180, 182, 184
try statement
 with except clause 188
try...finally statement 192

tuple functions 74
tuple
 operations 76
type conversion 39

U
unpacking 79
unpickling 185, 187
user-defined exceptions 195, 196

V
variables

 about 28
 American Standard Code for Information

Interchange (ASCII) character sets 35
 arithmetic expressions 37
 conversion functions 36
 data type, in Python 29
 multiple assignment operator 29
 single assignment operator 29
 type conversion 39

W
Windows platform
 installing 8, 10

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Python
	Why Python?
	Python applications
	Versions
	Implementations of Python

	Installation
	Installation on Windows platform
	Installation on Linux platform
	Installation on Mac OS

	Notepad++ installation
	Python file formats
	Python interactive shell
	System or environment variables
	Setting environment variables in Windows
	Setting environment variables in Linux
	Setting environment variables in Mac OS (OS 10.9)

	Writing a simple Hello World! program
	Basic Python syntax
	Comments in Python
	Triple, double and single quotes
	Python back slash
	String inside the quotes
	Escape sequence in Python
	String concatenation
	Formatted output
	Indentation

	Summary

	Chapter 2: Type Variables and Operators
	Variables
	Single assignment
	Multiple assignment
	Data types in Python
	Numeric data types or numbers
	Integers and long integers
	Floating point numbers
	Complex numbers
	Boolean data type
	String data types

	American Standard Code for Information Interchange (ASCII) character sets
	Conversion functions
	Arithmetic expressions
	Mixed mode arithmetic
	Mixed Mode Conversion

	Type conversions

	Operators
	Arithmetic operators
	Comparison operators
	Variants of assignment operator
	Bitwise operators
	Logical operators
	Membership operators
	Identity operators
	Operator precedence

	Summary

	Chapter 3: Strings
	Python strings
	The subscript operator

	Slicing for substrings
	Python string methods
	String case methods
	String strip methods
	String split methods
	String justify methods
	String Boolean methods

	String functions
	Tuple
	Creating an empty tuple
	Creating tuple with elements
	Indexing tuple
	Slicing of tuple
	Unpacking the items of tuples

	Tuple functions
	Operations of tuples
	Exercise
	Summary

	Chapter 4: Lists
	Creating a list
	Creating a list with values
	Unpacking list values

	List operations
	Accessing list values
	Slicing the list
	Updating the list
	Deleting values from a list
	Addition of Python lists
	Multiplication of lists

	in operator
	List functions
	len()
	max ()
	list ()
	sorted ()

	List methods
	append ()
	extend ()
	Difference between append and extend.
	count ()
	index ()
	insert()
	remove()
	pop()
	reverse()

	List comprehensions
	Exercises
	Summary

	Chapter 5: Dictionary
	Overview of dictionary
	Operations on the dictionary
	Accessing the values of dictionary
	Deleting an item from the dictionary
	Updating the values of the dictionary
	Adding an item to the dictionary

	Dictionary functions
	len()
	str()
	max()
	min()
	dict()

	Dictionary methods
	copy()
	get()
	setdefault()
	has_key()
	keys()
	values()
	update()
	items()
	clear()

	Python dictionary with for loop
	Practical program

	Exercise
	Summary

	Chapter 6: Control Statements and Loops
	Control statements
	The if and if...else statement
	The if...elif...else statement
	Loops
	Types of loops
	Definite loop
	Indefinite loop
	The while True and break statement
	The break statement

	Nested loops
	The continue and pass statements
	The pass statement

	Summary

	Chapter 7: Function and Scope of Variable
	Functions
	Categories of functions
	Built-in functions
	User-defined functions
	Function definition
	Calling a function
	Function with arguments
	Function with an argument and return type
	Function with default argument
	Function with variable length argument
	Key-value pair as variable length argument

	Pass by reference versus pass by value
	Scope of variables
	Memory management
	Summary

	Chapter 8: Modules and Packages
	Modules
	The import statement
	Locating Python modules
	Compiled Python files
	The Python package
	Summary

	Chapter 9: File Handling and Exceptions
	Reading text from a file
	The read() method
	The readline() method
	The readlines() method
	Exercise

	Writing text to a file
	Examples

	Pickling
	Unpickling
	Exceptions
	The try statement with an except clause
	Multiple exception blocks
	The try...finally statement
	The exception argument
	Raising exceptions
	User-defined exceptions

	Summary

	Chapter 10: Collections
	Collections
	Counter
	Update function
	Usage of counters
	Operations of Python collection counter

	Deque
	Populating deque
	Deque consumption
	Deque rotation

	Ordered dictionary
	Sorting of ordered dictionary based upon keys
	Sorting of ordered dictionary based upon values

	Default dictionary
	Sample problem solved by the default dictionary - scenario one
	Sample problem solved by the default dictionary - scenario two

	Named tuple
	Adding values and creating a dictionary

	Summary

	Chapter 11: Class and Objects
	Object-oriented programming overview
	Key concepts
	Creating a class

	Instance variables
	The __init__ method
	Class variables
	Class inheritance
	Multiple inheritance
	Multilevel inheritance

	Overriding methods
	Operator overloading
	The class method
	The static method
	The private variable
	Summary

	Index

