
ptg999

ptg999

Praise for Learning iPad Programming

“This amazing, thorough book takes an interesting approach by working
through the design and development of a simple, yet realistic iPad app from
start to finish. It is refreshing to see a technical book that explains how and why
without inundating you with endless toy examples or throwing you into a sea of
mind-numbing details. Particularly amazing is that it does this without assuming
a large amount of experience at first. Yet it covers advanced topics at sufficient
depth and in a logical order for all developers to get plenty of valuable informa-
tion and insight. Kirby and Tom know this material and have done a great job
of introducing the various frameworks and the reasoning behind how, why, and
when you would use them. I highly recommend Learning iPad Programming to
anyone interested in developing for this amazing platform.”
— Julio Barros

E-String.com

“This is a great introduction to iPad programming with a well-done sample
project built throughout. It’s great for beginners as well as those familiar with
iPhone development looking to learn the differences in developing for the larger
screen.”
— Patrick Burleson

Owner, BitBQ LLC (http://bitbq.com)

“Kirby Turner and Tom Harrington’s Learning iPad Programming provides a com-
prehensive introduction to one of today’s hottest topics. It’s a great read for the
aspiring iPad programmer.”
— Robert Clair

Author, Learning Objective-C 2.0

“Learning iPad Programming is now my go-to reference when developing apps for
the iPad. This book is an absolute treasure trove of useful information and tips
for developing on the iPad. While it’s easy to think of the iPad as just a bigger
iPhone, there are specific topics that need to be treated differently on the iPad,
such as making best use of the larger display. Learning iPad Programming provides
an incredible amount of depth on all areas of iPad programming and takes you
from design to fully functioning application—which for me is a killer feature of
the book. This should be in everyone’s reference library.”
— Mike Daley

Author, Learning iOS Game Programming
Cofounder, 71Squared.com

Turner_Book.indb i 12/11/11 6:46 PM

http://bitbq.com

ptg999

“A truly well-rounded book with something for every iOS developer, be they
aspirant or veteran. If you are new to iOS, there is a solid foundation provided
in Part I that will walk you through Objective-C, the core Apple frameworks,
provisioning profiles, and making the best of Xcode. If you’ve been around the
block but want solid insight into iPad programming, Part II has you covered:
Rather than just providing canned example code, Kirby and Tom give you
real code that incrementally builds and improves a real app. And if you’ve been
working with iOS for a while, but would benefit from a walk-through of the
plethora of new features that have come our way with iOS 5 and Xcode 4, dive
into the chapters on Storyboards, iCloud, and Core Image. Best of all, the book
is well-written and conversational, making it a joy to read. This book is stellar.”
— Alexis Goldstein

Coauthor, HTML5 & CSS3 for the Real World

“Learning iPad Programming is one of the most comprehensive resources on the
planet for those developing for Apple’s iPad platform. In addition to coverage
of the language, frameworks, and tools, it dives into features new in iOS 5, like
Automatic Reference Counting, Storyboarding, and connecting your applica-
tions with iCloud. But where this book really shines is in the tutorials and the
application you will build as you read through this book. Rather than being a
toy that employs only off-the-shelf iOS user interface components from Interface
Builder, the PhotoWheel app demonstrates custom view programming and view
controller containment, nonstandard gesture/user input handling, and provides
insight into how a complex iOS project comprised of multiple subsystems is
assembled into a shipping application. In other words, Learning iPad Programming
shows how to deal with the challenges you’ll face in real iPad development.”
— Erik Price

Senior Software Engineer, Brightcove

“A thoroughly crafted guide for learning and writing iOS applications, from the
humble beginnings in Xcode and Interface Builder to creating a full-featured
iPad application. There are many books that try to cover the gamut of knowl-
edge required to take a reader from zero to app; Kirby and Tom have actually
done it in this book. It is a fun and comprehensive guide to the world of devel-
oping apps for Apple’s magical device.”
— Rod Strougo

Founder, Prop Group

 “The iPad is changing the way we think about and use technology. Learning
iPad Programming is one of the most in-depth and well-executed guides to get
both new and seasoned developers up to speed on Apple’s exciting new
platform.”
— Justin Williams

Crew Chief, Second Gear

Turner_Book.indb ii 12/11/11 6:46 PM

ptg999

Learning iPad
Programming

Turner_Book.indb iii 12/11/11 6:46 PM

ptg999
The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Turner_Book.indb iv 12/11/11 6:46 PM

ptg999

Learning iPad
Programming

A Hands-On Guide to Building
iPad Apps with iOS 5

Kirby Turner

Tom Harrington

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Turner_Book.indb v 12/11/11 6:46 PM

ptg999

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Turner, Kirby, 1966–
Learning iPad programming : a hands-on guide to building iPad apps

with iOS 5 / Kirby Turner, Tom Harrington.
 p. cm.
 Includes index.
ISBN 978-0-321-75040-2 (pbk. : alk. paper)

1. iPad (Computer)—Programming. 2. Application
software—Development. 3. Mobile computing. 4. Laptop computers. 5.
Macintosh (Computer) 6. iOS (Electronic resource) I. Harrington, Tom.
II. Title.
 QA76.8.I863T87 2012
 005.258—dc23
 2011042203

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-75040-2
ISBN-10: 0-321-75040-3
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.
Second printing, February 2012

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Chuck Toporek

Development
Editor
Chuck Toporek

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Barbara Wood

Indexer
Ted Laux

Proofreader
Linda Begley

Technical
Reviewers
Patrick Burleson
Matt Martel
Erik Price
Mike Shields

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

ptg999

❖

To Steve Jobs, who saw further than most.
— Kirby Turner and Tom Harrington

To Melanie and Rowan, for their continuous love and support.
And to my mom, the person who made me who I am today.

—Kirby Turner

To Carey, who gave me the courage to pursue my dreams.
—Tom Harrington

❖

Turner_Book.indb vii 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

Contents at a Glance

 Foreword xxv

 Preface xxix

 Acknowledgments xliii

About the Authors xlv

I Getting Started 1

1 Your First App 3

2 Getting Started with Xcode 19

3 Getting Started with Interface Builder 43

4 Getting Started with Objective-C 65

5 Getting Started with Cocoa 89

6 Provisioning Your iPad 115

 7 App Design 141

II Building PhotoWheel 165

8 Creating a Master-Detail App 167

9 Using Table Views 189

10 Working with Views 231

11 Using Touch Gestures 253

 12 Adding Photos 269

 13 Data Persistence 285

14 Storyboarding in Xcode 329

15 Doing More with View Controllers 351

16 Building the Main Screen 377

17 Creating a Photo Browser 457

18 Supporting Device Rotation 499

Turner_Book.indb ix 12/11/11 6:46 PM

ptg999

Contents at a Glancex

19 Printing with AirPrint 525

 20 Sending Email 533

 21 Web Services 547

22 Syncing with iCloud 583

23 Producing a Slideshow with AirPlay 609

24 Visual Effects with Core Image 631

III The Finishing Touches 659

 25 Debugging 661

26 Distributing Your App 683

27 The Final Word 701

A Installing the Developer Tools 703

 Index 711

Turner_Book.indb x 12/11/11 6:46 PM

ptg999

Contents

 Foreword xxv

 Preface xxix

 Acknowledgments xliii

About the Authors xlv

I Getting Started 1

1 Your First App 3

Creating the Hello World Project 3

Getting Text on the Screen 10

Say Hello 12

Summary 17

2 Getting Started with Xcode 19

The IDE 19

Workspace Window 20

Toolbar Area 20

Navigation Area 22

Editor Area 23

Utility Area 24

Debug Area 25

Preferences 26

Fonts and Colors 26

Text Editing 27

Key Bindings Preferences 31

Code Completion 33

Developer Documentation 34

Editors 35

Project Settings 36

Schemes 39

Organizer 40

Other Xcode Tools 41

Summary 41

Turner_Book.indb xi 12/11/11 6:46 PM

ptg999

Contentsxii

3 Getting Started with Interface Builder 43

Interface Builder 43

How Does IB Work? 44

Getting Hands-On with IB 45

Selecting and Copying Objects 48

Aligning Objects 49

Layout Rectangle 52

Changing State 52

Connecting Your NIB to Your Code 57

Defining an Outlet in Code 58

Using the Assistant Editor 61

Storyboards 63

Summary 64

4 Getting Started with Objective-C 65

What Is Objective-C? 65

Hands-On with Objective-C 66

Let’s Write Some Code 69

Object 70

Class 71

NSObject 73

Interface 74

Instance Variables 74

Declared Properties 75

Methods 78

Implementation 78

Synthesize 80

init 80

super 81

flip 81

Selector 82

Dot Syntax 83

Using the CoinTosser Class 84

Memory Management 85

Automatic Reference Counting 86

Summary 87

Turner_Book.indb xii 12/11/11 6:46 PM

ptg999

Contents xiii

5 Getting Started with Cocoa 89

The Cocoa Stack 89

Foundation 91

Data Type 92

Collection Classes 97

Utility Classes and Functions 99

UIKit 103

UIApplication 103

UIWindow 104

UIScreen 104

UIView 104

UIViewController 104

UIWebView 104

UILabel 104

UITextField 104

UITextView 105

UIButton 105

UITableView and UITableViewCell 106

UIScrollView 107

UIPageControl 107

UIPickerView 107

UIDatePicker 107

UISwitch 108

UISlider 108

UIMenuController and UIMenuItem 108

UIImage 108

UIImageView 108

UINavigationBar 109

UINavigationController 110

UIToolbar 110

UITabBar 110

UIBarButtonItem 111

UISegmentedControl 111

Common Design Patterns in Cocoa 112

Model-View-Controller 112

Target-Action 113

Summary 113

Turner_Book.indb xiii 12/11/11 6:46 PM

ptg999

Contentsxiv

6 Provisioning Your iPad 115

About the iOS Provisioning Portal 115

The Provisioning Process: A Brief Overview 117

What Is a Device ID? 117

What Is an App ID? 118

What Is a Development Provisioning Profile? 119

Setting Up Your Development Machine 121

Requesting a Development Certificate 121

Submit Your CSR for Approval 124

Download and Install Your Certificate 126

Setting Up Your Device 128

Use for Development 128

Using the iOS Provisioning Portal 131

Adding a Device ID 131

Adding an App ID 133

Creating a Development Provisioning Profile 135

Downloading a Development Provisioning
Profile 137

Installing a Development Provisioning Profile 137

Summary 139

 7 App Design 141

Defining Your App 141

App Name 142

App Summary 142

Feature List 143

Target Audience 144

Revisit Your Feature List 145

Competing Products 145

A Sample App Charter 146

UI Design Considerations 148

Read the HIG 148

Make Your App “Tapworthy” 148

Design for the Device 148

People Use iOS Devices Differently from the Web or
Desktop 149

Wear Your Industrial Designer Hat 149

Turner_Book.indb xiv 12/11/11 6:46 PM

ptg999

Contents xv

Metaphors 150

Sound Effects 151

Customize Existing Controls 152

Hire a Designer 153

Mockups 154

What Is a Mockup? 154

What to Mock Up 156

Tools to Use 156

Prototyping 160

What Is a Prototype? 161

How to Create a Prototype 162

Summary 163

II Building PhotoWheel 165

8 Creating a Master-Detail App 167

Building a Prototype App 167

What Is the Split View Controller? 168

Create a New Project 170

Using the Simulator 171

A Closer Look 173

Project Structure 173

App Delegate 174

Launch Options 179

Other UIApplicationDelegate Methods 180

A Tour of UISplitViewController 181

Assigning the Split View Controller Delegate 185

Detail View Controller 185

Master View Controller 186

Summary 187

Exercises 187

9 Using Table Views 189

First Things First 189

A Closer Look 193

UITableView 193

UITableViewCell 194

Turner_Book.indb xv 12/11/11 6:46 PM

ptg999

Contentsxvi

UITableViewDelegate 194

UITableViewDataSource 194

UITableViewController 194

Working with a Table View 194

A Simple Model 195

Display Data 197

Add Data 203

Edit Data 220

Delete Data 225

Reorder Data 226

Select Data 227

Summary 230

Exercises 230

10 Working with Views 231

Custom Views 231

View Controller Not 232

A Wheel View 233

A Carousel View 240

A Photo Wheel View Cell 248

Using PhotoWheelViewCell 250

Summary 252

Exercises 252

 11 Using Touch Gestures 253

Touch Gestures Explained 253

Predefined Touch Gestures 254

Gesture Types 254

How to Use Gesture Recognizers 255

Custom Touch Gestures 258

Creating a Spin Gesture Recognizer 259

Using the Spin Gesture Recognizer 262

Summary 266

Exercises 267

 12 Adding Photos 269

Two Approaches 269

Assets Library 269

Turner_Book.indb xvi 12/11/11 6:46 PM

ptg999

Contents xvii

Image Picker Controller 271

Using the Image Picker Controller 271

Using Action Sheets 274

Using UIImagePickerController 278

Saving to the Camera Roll 283

Summary 284

Exercises 284

 13 Data Persistence 285

The Data Model 285

Photos 285

Photo Albums 286

Thinking Ahead 286

Building the Model with Property Lists 286

What Is a Property List? 286

Setting Up the Data Model 287

Reading and Saving Photo Albums 288

Adding New Photos to an Album 293

Displaying Photos in an Album 297

Building the Model with Core Data 298

What Is Core Data? 299

Managed Objects and Entity Descriptions 299

Managed Object Contexts 300

Persistent Stores and Persistent Store
Coordinators 301

Adding Core Data to PhotoWheelPrototype 302

Adding the Core Data Framework 302

Setting Up the Core Data Stack 303

Using Core Data in PhotoWheel 307

The Core Data Model Editor 307

Adding the Entities 308

Creating NSManagedObject Subclasses 310

Adding Custom Code to Model Objects 315

Reading and Saving Photo Albums with Core
Data 320

Adding New Photos to an Album with Core
Data 323

Displaying Photos in an Album with Core Data 326

Turner_Book.indb xvii 12/11/11 6:46 PM

ptg999

Contentsxviii

Using SQLite Directly 326

Summary 327

Exercises 327

 14 Storyboarding in Xcode 329

What Is a Storyboard? 329

Using a Storyboard 330

Scenes 331

Segues 332

Storyboarding PhotoWheel 333

Workspace 333

Add the Main Storyboard 336

Set UIMainStoryboardFile 338

Update AppDelegate 339

Add Images 339

App Icon 341

Initial View Controller 341

Another Scene 344

Creating a Segue 346

Summary 349

Exercises 349

 15 Doing More with View Controllers 351

Implementing a View Controller 351

Segue 355

Creating a Custom Segue 355

Setting the Scene 355

Implementing a Custom Segue 358

Before You Compile 362

Customizing the Pop Transitions 364

Container View Controller 367

Create a Container View Controller 369

Add the Child Scenes 369

Add Child View Controllers 371

Fix the Custom Push Segue 375

Summary 376

Exercises 376

Turner_Book.indb xviii 12/11/11 6:46 PM

ptg999

Contents xix

16 Building the Main Screen 377

Reusing Prototype Code 378

Copy Files 378

Core Data Model 380

Changes to WheelView 385

Displaying Photo Albums 398

Implementing the Photo Albums View
Controller 400

Setting the Managed Object Context 406

Adding Photo Albums 408

Managing Photo Albums 409

Selecting the Photo Album 410

Naming the Photo Album 414

Fixing the Toolbar Display 421

Removing the Photo Album 422

A Better Photo Album Thumbnail 425

Adding Photos 429

Displaying Photos 434

Using the GridView Class 446

Building the Image Grid View Cell 451

Summary 455

Exercises 455

17 Creating a Photo Browser 457

Using the Scroll View 457

Setting Up the Photo Browser UI 466

Launching the Photo Browser 467

Improving the Push and Pop 470

Adding Chrome Effects 477

Zooming 482

Deleting a Photo 489

Summary 498

Exercise 498

 18 Supporting Device Rotation 499

How to Support Rotation 499

Supported Orientations 500

Using Autoresizing 501

Turner_Book.indb xix 12/11/11 6:46 PM

ptg999

Contentsxx

Customized Rotation 502

Rotating the Photo Albums Scene 507

Rotating the Photo Album Scene 508

Tweaking the WheelView Class 509

Rotating the About View 511

Rotating the Photo Browser 511

Fixing the Trouble Spots 511

Fixing the Photo Browser 511

Fixing the Main Screen 518

Launch Images 520

Summary 523

Exercises 523

 19 Printing with AirPrint 525

How Printing Works 525

Print Center 526

Requirements for Printing 526

Printing API 527

Adding Printing to PhotoWheel 527

The Printer Simulator 530

Summary 531

Exercises 532

 20 Sending Email 533

How It Works 533

The MFMailComposeViewController
Class 535

The SendEmailController Class 535

Introducing the SendEmailController
Class 536

Using SendEmailController 540

Summary 546

Exercises 546

 21 Web Services 547

The Basics 547

RESTful Web Services Using Cocoa 548

Flickr 549

Adding Flickr to PhotoWheel 551

Turner_Book.indb xx 12/11/11 6:46 PM

ptg999

Contents xxi

Updating the Flickr View Controller Scene 553

Displaying the Flickr Scene 555

Wrapping the Flickr API 557

Downloading Photos Asynchronously 564

Implementing FlickrViewController 570

One More Thing 580

What’s Missing 582

Summary 582

Exercises 582

22 Syncing with iCloud 583

Syncing Made Simple 583

iCloud Concepts 584

File Coordinators and Presenters 584

UIDocument and UIManagedDocument 585

Ubiquitous Persistent Stores 585

Device Provisioning, Revisited 586

Configuring the App ID 586

Provisioning for iCloud 588

Configuring iCloud Entitlements 589

iCloud Considerations for PhotoWheel 592

Don’t Sync More Than You Need to Sync 592

Using Transient Core Data Attributes 592

Updating PhotoWheel for iCloud 593

Syncing Photos with iCloud 598

Making the Persistent Store Coordinator
Ubiquitous 598

Receiving Changes from iCloud 602

Summary 607

Exercises 607

 23 Producing a Slideshow with AirPlay 609

External Display Options 609

App Requirements for External Displays 609

External Display API 610

Adding a Slideshow to PhotoWheel 611

Updating the Storyboard 612

Adding the Slideshow Display 613

Turner_Book.indb xxi 12/11/11 6:46 PM

ptg999

Contentsxxii

Managing External Displays 616

Advancing to the Next Photo 620

Adding Slideshow User Interface Controls 622

Updating the Photo Browser 624

A Note on Testing and Debugging 625

Adding AirPlay Support 626

Using AirPlay 628

Summary 629

Exercises 629

 24 Visual Effects with Core Image 631

Core Image Concepts 631

Introducing CIFilter 633

Filter Types 634

Using CIFilter 634

Image Analysis 636

Automatic Enhancement 636

Face Detection 637

Adding Core Image Effects to PhotoWheel 638

New Delegate Methods 638

Instance Variables for Filter Management 640

User Interface Additions 640

Creating the CIFilter Effects 647

Applying the Filters 651

Implementing Auto-Enhance 652

Implementing Face Zoom 653

Other Necessary Methods 655

Summary 656

Exercises 656

III The Finishing Touches 659

 25 Debugging 661

Understand the Problem 661

What Went Wrong? 661

Reproducing Bugs 661

Turner_Book.indb xxii 12/11/11 6:46 PM

ptg999

Contents xxiii

Debugging Concepts 662

Breakpoints 662

Debugging in Xcode 663

Setting and Managing Breakpoints 663

Customizing Breakpoints 664

Hitting a Breakpoint 666

Checking on Variables 667

Debugging Example: External Display Code 670

When You Really Need NSLog 674

Profiling Code with Instruments 676

Profiling Example: Slideshow UI Control
Updates 679

Summary 682

26 Distributing Your App 683

Distribution Methods 683

Building for Ad Hoc Distribution 684

Provisioning for Ad Hoc Distribution 684

Prepare the (Ad Hoc) Build! 684

Building for App Store Distribution 688

Provisioning for the App Store 688

Prepare the (App Store) Build! 689

Next Steps 691

The App Store Process 691

What If Apple Rejects the App? 692

App Information for the App Store 692

App Store Assets 694

Using iTunes Connect 695

User Roles 696

Managing Applications 696

Submitting the App 696

Going Further 698

Summary 699

27 The Final Word 701

What’s Next 702

Turner_Book.indb xxiii 12/11/11 6:46 PM

ptg999

Contentsxxiv

A Installing the Developer Tools 703

Membership Has Its Privileges 703

Joining the iOS Developer Program 704

Which Program Type Is Right for You? 704

What You Need to Register 706

Downloading Xcode 708

Installing Xcode 708

 Index 711

Turner_Book.indb xxiv 12/11/11 6:46 PM

ptg999

Foreword

Aren’t books great?
Anyone who’s known me for any amount of time knows I’m a total bookworm.

I love books. Well-written books are one of the cheapest and fastest tools for self-
education. I can remember a number of books that were hugely significant in my
personal and professional development—books like Object Oriented Software Construction
by Bertrand Meyer; Scott Knaster and Stephen Chernicoff ’s early Mac programming
books; Dave Mark’s C programming books; Robert C. Martin’s horribly titled (but
wonderfully full of aha! moments) Designing Object Oriented C++ Applications Using the
Booch Method; and of course the late W. Richard Stevens’s UNIX and network pro-
gramming books. I remember lessons learned from these tomes, even those I read over
25 years ago.

Unfortunately not all books are created equal. I’ve seen some real stinkers in my
time. When I first made the transition from Mac programming to iPhone program-
ming, some of the books I got were great. And some were terrible. Really terrible,
almost as if someone had filed the serial numbers off of Instant Visual Basic Programming
Guide for Complete Dummies in 24 Hours and pasted on pictures of iPhones. There was
one early iPad book that literally had an error on every page I skimmed at the book-
store. Some were just typos. Some were subtle errors, understandable if you haven’t
already lived in the Cocoa universe for a couple of years. Some of it was downright
bad advice, obviously from someone who did not know what he or she was doing.
There is a certain expectation of trust when you drop your hard-earned currency on a
book, and violating that trust is unforgivable.

So, this book, Learning iPad Programming. Is it worth the price? Does it fall into my
first category of books (awesome) or the second (unequivocally lame)? Good question.
Glad you asked.

First, a good book needs to cover its topic, and cover it well. Learning iPad Program-
ming, just by judging its heft, contains a lot of material. Well, assuming you’ve got
the print version in hand. War and Peace weighs the same as The Little Prince in ebook
form, so it’s hard to tell. Just skim through the table of contents and you can see that it
covers a lot of stuff. A metric freakload of stuff. And it’s all relevant stuff. It covers the
basics like installing the development tools. Model-View-Controller. Master-Detail.
Table views. UIViewController. Navigation views. Handling device rotation. There
are also more advanced topics such as consuming Web services, the media library,
touch gestures, data persistence, and the raw unpleasantness that is Apple’s device pro-
visioning. And there’s some cutting-edge stuff, such as storyboards, AirPrint, AirPlay,

Turner_Book.indb xxv 12/11/11 6:46 PM

ptg999

Forewordxxvi

iCloud, and Core Image. Kirby and Tom have suffered the arrows in their backs deal-
ing with months of f laky prerelease software so that you don’t have to.

Very good books are timely but not exploitative. I saw the first iPad programming
book about three months after the device was announced. There was no way this book
could convey the iPad gestalt to the reader because nobody had had a device in hand
for that long. It was pumped out as fast as possible to hit the market, and it showed.
The core of Learning iPad Programming has been in development for well over a year as I
write this. Good books take time to achieve high levels of awesomeness.

Great books transcend their subject matter. This book is called Learning iPad
Programming. It would be easy to assume that it just covers introductory iPad program-
ming in a simplistic manner. “Views are cool!” “Yay! Tapping a button!” But it’s
more. Not many books have a single project that lives and evolves through the entire
narrative. The reason not many books do this is because it is difficult to do well.
Important toolkit features get shoehorned into weird places because the author didn’t
do enough up-front design. This book, though, takes you from design, to a throw-
away prototype, to the Real Deal.

And then it goes further. Not many books talk about the inner game of design.
This one does. Even fewer books talk about the inner game of debugging. Debugging
is a fundamental part of the day-to-day life of a programmer, and few books devote
more than a paragraph or two to it. Learning iPad Programming has an entire chapter
on the topic, and it’s much more than how to single-step with the debugger. As I was
reading preproduction versions of the chapters so that I could sound halfway intel-
ligent in this foreword, I emitted an audible “SQUEE” when I hit Chapter 25. I love
debugging, and love seeing such an important topic covered in detail in what is osten-
sibly a beginner’s book. And as you can tell, I love learning stuff. I learned some stuff
from Chapter 25.

Finally, those who create the great books transcend the ordinary. The Mac and
iPhone community is pretty small and well connected. You tend to learn quickly who
the trusted players are. Many of the lame books I alluded to earlier are by individu-
als I had never heard of before, and never heard from again. No blogs, no appearances
at conferences, no footprint on the community. Get in, crank out something, and get
out.

Kirby and Tom are different. They’re known entities. They have blogs. Tom has his
name on a Core Data book. They’ve shipped products. They have happy customers.
They answer questions online. They organize and speak at conferences. They organize
CocoaHeads chapters. They have invested a great deal of their time into the better-
ment of the community. It is why I am honored and humbled that they asked me to
write this foreword.

As you can probably tell, I’m pretty excited about this book. There are many excel-
lent introductory iOS programming books. I recommend reading all of them (at least
the good ones) because iOS is such a huge topic that even Kirby and Tom can’t cover
everything you need to know in one volume. But if you’re specifically targeting the

Turner_Book.indb xxvi 12/11/11 6:46 PM

ptg999

Foreword xxvii

iPad, this one is the one to get. I have the feeling it’s destined to become one of those
inf luential books for some of you out there.

— Mark Dalrymple
Cofounder of CocoaHeads, the international Mac and iPhone programmer community
Author of Advanced Mac OS X Programming: The Big Nerd Ranch Guide
November 12, 2011

Turner_Book.indb xxvii 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

Preface

In October 2011, Apple CEO Tim Cook shared some interesting facts about the iPad,
including

n Ninety-two percent of Fortune 500 companies are testing or deploying iPads.
n Over 80 percent of U.S.-based hospitals are testing or piloting the iPad.
n Every state in the United States has some type of iPad deployment program in

place or in pilot.

And the news about the iPad doesn’t stop there. The FAA has approved the use of
the iPad instead of paper charts for on-duty airline pilots. Without a doubt, the iPad
is changing the way people think about (and use) computers today. And it continues
to get better with the release of iOS 5, the latest operating system for iPad and iPhone
devices.

Make no mistake, the iPad packs a punch. With its patented multi-touch interface,
an onboard graphics chip, the powerful A5 processor, and 3G and/or WiFi network-
ing, the iPad is the benchmark in a post-PC world. More important, though, is how
the iPad 2 fits into the Mac/iOS ecosystem. Mac OS X Lion and iOS 5 users can
use FaceTime for video chat from desktop to device. What’s more, iOS 5’s iMessage
enables users to text from their iPad with other iPad and iPhone users. The iPad is a
unique marriage of hardware and technology, and it is the Gold Standard for tablets.

This book is written with iOS 5 in mind and is aimed at new developers who want
to build apps for the iPad. The book will also appeal to iPhone developers who want
to learn more about how to make their apps sing on the iPad. While some people
look at the iPad as just a bigger iPhone, it really isn’t. There is a lot more that you as a
developer can do with the iPad from a user interface perspective that you just can’t do
on the iPhone.

While the book will include brief discussions of iPhone programming where appro-
priate, the primary focus of the book is the iPad. The book highlights those areas
of the iOS 5 SDK that are unique to the iPad, and it isn’t a rehash of similar books
targeting the iPhone. Additionally, the book covers new features in iOS 5, such as
container view controllers, iCloud, and Core Image, as well as some of the great new
features in Xcode 4.2, such as storyboarding. Apple has gone to great lengths to make
it easier for you to develop for iOS and OS X, and the plan for this book is to make it
even easier for you to get there.

Turner_Book.indb xxix 12/11/11 6:46 PM

ptg999

Prefacexxx

What Will I Learn?
This book will teach you how to build apps specifically for the iPad, taking you step
by step through the process of making a real app that is freely available in the App
Store right now! The app you’ll build in this book is called PhotoWheel.

Download the App!
You can download PhotoWheel from the App Store: itunes.apple.com/app/photowheel/
id424927196&mt=8. The app is freely available, so go ahead—download PhotoWheel,
and start playing around with it.

PhotoWheel is a spin on the Photos app that comes on every iPad (pun intended).
With PhotoWheel you can organize your favorite photos into albums, share photos
with family and friends over email, and view them on your TV wirelessly using Air-
Play. But more important than the app is what you will learn as you build the app.

You will learn how to take advantage of the latest features in iOS 5 and Xcode,
including storyboarding, Automatic Reference Counting, iCloud, and Core Image.
You will learn how to leverage other iOS features such as AirPrint, AirPlay, and Grand
Central Dispatch (GCD). And you will learn how to extend the boundaries of your
app by communicating with Web services hosted on the Internet.

Think of this book as an epic-length tutorial, showing you how you can make a
real iPad app from start to finish. You’ll be coding along with the book, and we’ll
explain things step by step. By the time you have finished reading and working
through this book, you’ll have a fully functional version of PhotoWheel that you can
proudly show off to friends and family (you can even share it with them, too). Best of
all, you’ll have confidence and the knowledge of what it takes to design, program, and
distribute iPad apps of your own.

What Makes the iPad So Different?
While the iPad runs the same version of iOS that runs on the iPhone, iPod touch, and
Apple TV, the iPad is significantly different from those other iOS-based devices. Each
device is used differently, and iOS brings certain things to the table for each of them.
For example, the version of iOS that runs in your Apple TV doesn’t yet offer the same
touch interface; in fact, the interface is totally different. Apple TV’s UI runs as a layer
on top of iOS, providing a completely different user experience.

But the iPad is so different. It is not something you can hold in the palm of your
hand, like the iPhone and iPod touch. You use both hands. You swipe. You touch.
You interact with it more than with most iPhone apps. It’s easy to dismiss the iPad as
“just a large iPhone,” but it really isn’t.

While the physical size is the obvious difference between the iPad and iPhone, the
real difference, the difference that sets the iPad apart from the iPhone, is conceptual. The

Turner_Book.indb xxx 12/11/11 6:46 PM

ptg999

Preface xxxi

conceptual differences stem from how an iPad application is designed and how the user
interacts with the application. And the conceptual differences start with the bigger display.

Bigger Display
The iPad’s bigger screen provides more than double the screen real estate found on
the iPhone. This means that your application can display more information, giv-
ing you more space to work with for your user interface. A good example of this is
WeatherBug.

WeatherBug HD has been designed to take full advantage of the iPad’s larger
screen. As you can see in Figure P.1, the iPad version of WeatherBug displays much
more weather-related information on a single screen than you can get on the iPhone

Figure P.1 On the left is the WeatherBug app displayed on the iPad.
The screen shot on the right is the same WeatherBug app running on the

iPhone. (Used with permission of Earth Networks.)

Turner_Book.indb xxxi 12/11/11 6:46 PM

ptg999

Prefacexxxii

version. Instead of your having to touch and swipe (and sometimes pray) to find addi-
tional weather information, WeatherBug HD on the iPad gives you everything you
need to know right on the main screen. No additional touching or swiping needed.
Of course, additional detail is still available at a touch.

Less Hierarchical
Because of the smaller screen, many iPhone applications tend to sport a hierarchi-
cal navigation system. You see this throughout many iPhone apps. The user taps an
item and a new screen slides into view. Tap another item and another view slides in.
To navigate back, you tap a back button, usually found in the upper left corner of the
screen.

The Dropbox app illustrates the hierarchical navigation system quite well. Drop-
box, for those who may not know, is an online service that allows you to store your
data files, documents, and images in the cloud. Stored files are then synced across all
of your computers and devices that run the Dropbox client software. Say, for example,
you are working on a text document from your laptop. You save the text document
to your Dropbox folder. Later you need to review the text document, so you open the
same text document on your iPhone. Dropbox makes this possible.

When you use the Dropbox app on your iPhone, you see a list of files and folders
sorted alphabetically. Tapping a file or folder will open it, causing the new screen to
slide into view. If you open a file, you see the contents of the file. If, however, you
open a folder, you see a new list of files and folders. Continue tapping folders to navi-
gate further down the hierarchy.

To move back up the hierarchy, tap the back button in the upper left corner. The
text label for this button can vary. Usually it displays the name of the previous item on
the stack, but sometimes it displays the word Back. While the text label may vary, the
style of the back button does not. The back button has a pointy left side. This almost
arrowlike style conveys a sense of moving backward through the screens.

The forward and backward navigation through the hierarchy is illustrated in
Figure P.2.

Dropbox is also available for the iPad. So how did the developers redesign an app
that obviously requires hierarchical navigation to make it feel f latter, less hierarchical?
They took advantage of an iOS object available only to the iPad called UISplitView-
Controller, shown in Figure P.3.

The split view controller is a nonvisual object that controls the display of two side-
by-side views. When you hold your iPad in landscape mode, the two views are dis-
played side by side. Rotate your iPad to portrait and the left-side view disappears. This
allows the user to focus his attention on the main content displayed on the right side.

Note
You get hands-on writing a split-view-based application in Chapter 8, “Creating a Master-
Detail App.”

Turner_Book.indb xxxii 12/11/11 6:46 PM

ptg999

xxxiii

Figure P.2 Example of navigating the hierarchy of folders and files using the Dropbox app on the iPhone. You tap to move
forward, or drill down, to more content, and you tap the back button to move backward.

T
urner_B

ook.indb xxxiii
12/11/11 6:46 P

M

ptg999

Prefacexxxiv

This view pattern is often called “master-detail,” where the master view is dis-
played on the left side and the detail view is displayed on the right side. The master
view is used to navigate the hierarchy of data, or in the case of Dropbox, the master
view is used to navigate the list of files and folders. When you find the file you want
to view, tap it in the master view and the file contents are displayed on the right in the
detail view. Rotate your iPad to a portrait position to focus your attention on the file’s
content, hiding the master view.

Orientation Matters
Most iPhone applications support only a single orientation. Many iPhone games are
played in landscape mode, while many other iPhone apps are displayed in portrait.
Like the iPad, the iPhone does support rotation and orientation, but the small size of
the device makes supporting different orientations unnecessary. Most users hold their
iPhones in portrait mode with the Home button at the bottom when using applica-
tions, rotating to landscape only to play a game.

The iPad is different. With the iPad, users grab the device and turn it on without
regard to a certain orientation. This is even truer when the iPad is not in a case. Try
this little experiment...

Place your iPhone, or iPod touch, on your desk or table with the Home button
pointing at 10 o’clock. Walk away or turn around. Come back to the device and pick
it up. Take a look at the device as you hold it in your hand. There’s a good chance that

Figure P.3 Screen shots of Dropbox running on the iPad. Notice how the
navigation is displayed in the left-side view when the device is held in a
landscape orientation and is hidden when the iPad is rotated to portrait.

Turner_Book.indb xxxiv 12/11/11 6:46 PM

ptg999

Preface xxxv

as you picked up the device, you rotated it so that the Home button is at the bottom.
You did this rotation even before turning on the device. It is an almost natural instinct
to hold your iPhone with the Home button at the bottom.

Now try the same experiment, but this time use your iPad. Place it on your desk or
table. Make sure the Home button is positioned away from you, say, at 10 o’clock, then
walk away. Come back and pick up your iPad. Chances are good you did not rotate
the device. Instead, you are likely holding your iPad in the same orientation it was in
before you picked it up.

Multi-Touch Amped Up
Did you know that the iPad and iPhone support the same multi-touch interface? They
do. As a matter of fact, the iOS multi-touch interface supports up to 11 simultaneous
touches. This means that you can use all your fingers—and maybe one or two more if
you have a friend nearby—to interact with an application.

The iPad with its larger screen makes multi-touch more feasible. While two-
handed gestures have limited use on the iPhone, they can become a natural part of
interacting with an iPad application. Take, for example, Apple’s own Keynote app
for the iPad. It takes advantage of the multi-touch interface to provide features once
reserved for the point-and-click world of the desktop. Selecting multiple slides and
moving them is just one example of how Keynote on the iPad maximizes the user
experience with multi-touch.

So you already know that the multi-touch interface supports up to 11 simultane-
ous touches, but how can you confirm this? Write an iPad app that counts the number
of simultaneous touches. That is exactly what Matt Legend Gemmell did. He wrote
a really neat iPad app, shown in Figure P.4, that shows the number of simultaneous
touches. But Matt went beyond just showing the touch count. He made the app sci-fi-
looking, which also makes it fun to play with.

You can read more about Matt’s iPad multi-touch sample and download the source
code from his blog posting (mattgemmell.com/2010/05/09/ipad-multi-touch).

Another way to explore the iPad multi-touch interface is to play with Uzu for iPad,
only $1.99 in the App Store (bit.ly/learnipadprog-UzuApp). Uzu is a “kinetic
multi-touch particle visualizer” and it’s highly addicting. (Figure P.5 doesn’t do the
app justice; you should really download and play around with Uzu if you want to see
some clever use of multi-touch.)

The iPad Bridges the Gap between the Phone and the Computer
So, everyone agrees that the iPad is not an oversize iPhone. Great, glad to have you on
the same page here. Now on to the larger question: Is the iPad a replacement for a lap-
top or desktop? No, not yet, but it’s pretty darn close.

For many, the iPad represents a mobile device bridging the gap between the
smartphone and a full-f ledged computer, whether a laptop or desktop computer.
While many individuals use the iPad for content consumption, the iPad is also used

Turner_Book.indb xxxv 12/11/11 6:46 PM

ptg999

Prefacexxxvi

Figure P.4 Matt Legend Gemmell’s multi-touch sample app for the iPad
illustrating 11 touches

Figure P.5 Uzu, the particle visualizer for the iPad

Turner_Book.indb xxxvi 12/11/11 6:46 PM

ptg999

Preface xxxvii

to perform a good number of tasks previously left to the desktop or laptop computer.
This causes iOS developers to rethink how to implement software concepts that have
been around for eons. Word-processing software is one such concept that is seeing new
life on the iPad.

The iPad opens the door to a wide range of applications not feasible on the small
form factor of the iPhone. Word processing, again, is one such application that comes
to mind.

While the iPhone is great for capturing quick notes, it is not ideal for writing
lengthy documents. And while it is technically possible to implement a full-featured
word processor on the iPhone, why would you? The screen is too small, and even in
landscape mode, typing two-thumbed on a tiny screen would be less than productive.
The iPhone is ideal for performing simple, quick tasks—writing a note, scheduling an
event, marking a to-do item as complete—but it is less than ideal for lengthier tasks
such as writing a book.

Enter the iPad
The iPad provides an experience similar to a small laptop. And when combined with
a wireless keyboard, your iPad becomes a nice setup for writing long documents. I’m
speaking from experience. A lot of the text in this book was originally written on an
iPad. I can’t imagine what writing a book on an iPhone would be like, but I know
what it is like on the iPad, and it is a joy. Best of all, the iPad allows you to concen-
trate on a single task. This eliminates distractions and gives you better focus on the
task at hand.

Organization of This Book
This book provides you with a hands-on guide for, as the book’s title states, learning
iPad programming. It walks you through every stage of the process, from download-
ing and installing the iOS SDK to submitting the first application to Apple for review.

There are 27 chapters and one appendix in the book, as follows:
n Part I, “Getting Started”

Part I introduces you to the tools of the trade. Here you learn about developer
tools such as Xcode and Interface Builder. You learn how to write code using
Objective-C and the Cocoa framework. And you learn what it takes to provision
your iPad as a development device.

n Chapter 1, “Your First App”

This chapter immediately immerses you in creating your first application.
The chapter provides a step-by-step guide to creating a simple, but functional,
iPad application that runs in the iPad Simulator. You’ll use Xcode to create
the application, which means there is also some light coding to be done, but
knowledge of Objective-C is not required at this point in the book. The goal

Turner_Book.indb xxxvii 12/11/11 6:46 PM

ptg999

Prefacexxxviii

of this chapter is for you to immediately get your hands on the tools and the
code you’ll use to create iPad apps.

n Chapter 2, “Getting Started with Xcode”

Xcode is the developer’s IDE (Integrated Development Environment) used to
write Objective-C code for iPad applications. This chapter highlights key fea-
tures of Xcode, including recommended preference settings, commonly used
shortcut keys, and descriptions of the various windows you will see when
using Xcode.

n Chapter 3, “Getting Started with Interface Builder”

In this chapter, you explore Interface Builder (IB). Interface Builder is the
tool used to create an application user interface (UI) with no programming
required. This chapter explains how to use IB and many of its useful features.
In addition, the chapter warns you about common mistakes made when using
IB, such as forgetting to associate an event to an IBAction.

n Chapter 4, “Getting Started with Objective-C”

This chapter introduces you to Objective-C with a brief overview of the pro-
gramming language of choice for iPad programming. The goal for this chap-
ter is not to be a comprehensive review of the programming language but
instead to provide enough information to get you started writing your first
real iPad app.

n Chapter 5, “Getting Started with Cocoa”

A programming language is only as powerful as the frameworks that support
it, and Cocoa provides an impressive stack of frameworks and a library that
make it possible for you to build your iPad app in less time.

n Chapter 6, “Provisioning Your iPad”

Walking down the yellow brick road to the wonderful world of iPad devel-
opment can have its own set of scary moments. One of the scariest is dealing
with provisioning profiles, certificates, and registering a device for testing.
Xcode 4 provides improvements in this area, but it is still far from perfect.
This chapter guides you through the scary forest of provisioning profiles, cer-
tificates, and device registration.

n Chapter 7, “App Design”

You can’t build an app if you don’t know what you’re building. This chapter
shares tips on designing an application before the first line of code is ever
written.

n Part II, “Building PhotoWheel”

Part II is the heart of the book. This is where you get hands-on building a real
iPad app. The app you build is no simple Hello World app. It is PhotoWheel, a
full-featured photo app. In Part II, you learn everything from custom animations
for view transitions to iCloud syncing to viewing your photos on TV.

Turner_Book.indb xxxviii 12/11/11 6:46 PM

ptg999

Preface xxxix

n Chapter 8, “Creating a Master-Detail App”

You start building PhotoWheel by first building a prototype of it. While
building the prototype you get a chance to learn about the split-view control-
ler used in master-detail apps.

n Chapter 9, “Using Table Views”

In this chapter, you learn the basics of displaying data using table views. You
also learn how to reorder, delete, and even edit data displayed in a table view.

n Chapter 10, “Working with Views”

In this chapter, you dive into the world of views. Here you learn how to cre-
ate a custom wheel view for displaying photos.

n Chapter 11, “Using Touch Gestures”

In this chapter, you learn how to take advantage of the iPad’s multi-touch
screen. You learn to use touch gestures so that users can interact with your app.

n Chapter 12, “Adding Photos”

PhotoWheel is about photos, so it is only natural that you need to learn how to
add photos to the app. In this chapter, you learn how to retrieve photos from
the Photos app library and how to take new photos using the built-in camera.

n Chapter 13, “Data Persistence”

PhotoWheel won’t be very useful if people can’t save their work. There are
numerous methods for storing and retrieving app data. In this chapter, you
explore two of them, and you learn to use Core Data.

n Chapter 14, “Storyboarding in Xcode”

A storyboard is an exciting new way for designing an app’s user interface. In
this chapter, you get hands-on with storyboarding, and you learn how you
can do more with less code using Interface Builder.

n Chapter 15, “Doing More with View Controllers”

A storyboard can take you only so far. At some point in time, you must write
code to make your app really shine. In this chapter, you learn how to take
advantage of view controllers to do more.

n Chapter 16, “Building the Main Screen”

In this chapter, you dive into PhotoWheel. Prototyping is over and you have
the basic UI in place with a storyboard. Now it’s time to build the main
screen, and that’s exactly what you do in this chapter. You also learn how to
use container view controllers, and you build a custom grid view that can be
used in other projects.

n Chapter 17, “Creating a Photo Browser”

In this chapter, you learn how to use a scroll view to create a full-screen
photo browser. You also learn how to use a pinch gesture to zoom in and out
on a photo.

Turner_Book.indb xxxix 12/11/11 6:46 PM

ptg999

Prefacexl

n Chapter 18, “Supporting Device Rotation”

Users expect iPad apps to display properly regardless of how the device is
being held. A user may hold his iPad with the Home button on the left or
right, or maybe on the top or bottom. And it is your job to ensure that your
app displays properly regardless. That is what you learn in this chapter: how
to support device rotation.

n Chapter 19, “Printing with AirPrint”

This chapter gets straight to the point and teaches you how to print from your
app using AirPrint.

n Chapter 20, “Sending Email”

Virtually everyone has an email account these days, and everyone loves look-
ing at photos. So it only makes sense that PhotoWheel users want to share
photos with family and friends using email. In this chapter, you learn how to
send email from your app.

n Chapter 21, “Web Services”

Adding photos already found on your iPad to PhotoWheel is a nice exercise,
but many people keep their photos stored elsewhere. In this chapter, you learn
how to communicate between an iPad app and a Web server to search for and
download photos from Flickr.

n Chapter 22, “Syncing with iCloud”

Many people have multiple iOS devices, and it would be great if they could
use PhotoWheel with the same data on all of them. Syncing can be hard, but
with iCloud it is a lot easier than it could be. In this chapter, we add online
syncing of photos and albums.

n Chapter 23, “Producing a Slideshow with AirPlay”

The iPad has a great screen, but you might want to show photos to a group,
and it’s awkward to gather everyone around a hand-held device. In this chap-
ter, you see how to make use of external wireless displays—a large TV set,
maybe—from an iPad app. And you do it using AirPlay, so you don’t need to
run cables across the room.

n Chapter 24, “Visual Effects with Core Image”

Core Image is an amazingly cool framework for analyzing and changing
images. As if color effects and automatic photo enhancement weren’t enough,
you can also use Core Data Image to locate the faces of any people in the
picture. You add all of this to PhotoWheel in a convenient user interface that
allows people to preview effects before committing to them.

n Part III, “The Finishing Touches”

In the final part of the book, you learn tips on debugging your app. But more
important, you learn how to distribute your app to others.

Turner_Book.indb xl 12/11/11 6:46 PM

ptg999

Preface xli

n Chapter 25, “Debugging”

At this point you know how to create an iPad application, but what happens
when a problem occurs? This chapter is devoted to application debugging.
It introduces you to the GDB and shows you how to turn on and off break-
points, and how to use sounds to debug. The chapter also introduces you
to more advanced debugging techniques such as using Instruments to track
down memory leaks.

n Chapter 26, “Distributing Your App”

The application is written. It has been debugged and tested. The next step
is getting the application into the hands of users. This chapter explores the
options for distributing iPad applications, focusing on the two most com-
monly used distribution methods: Ad Hoc and App Store.

n Chapter 27, “The Final Word”

The book ends with some final words of encouragement for the new iPad
programmer.

n Appendix A, “Installing the Developer Tools”

This appendix walks you through the steps needed to start programming for the
iPad. This includes setting up an iOS developer account, downloading the iOS
SDK, and installing the developer tools on your Mac.

Learning iPad Programming takes you from app design to the App Store. Along the
way you learn about the developer tools, the programming language, and the frame-
works. But more important, you learn how to build a full-featured iPad app that you
can show off to family and friends.

Audience for This Book
This book is intended for programmers who are new to the iOS platform and want
to learn how to write applications that target the iPad. The book assumes that you
are new to iPad programming and have little to no experience with Xcode and the
Objective-C programming language. However, the book assumes that you have some
prior programming experience with other tools and programming languages. It is not
intended for individuals with absolutely no prior programming experience.

This book is targeted to programmers who want to learn how to develop sophisti-
cated applications for the iPad using iOS 5. You are expected to have a Mac on which
you can program using Xcode and Interface Builder, as well as an iOS developer
account and an iPad. Some programming experience is helpful, particularly knowledge
of C, although there is a chapter on object-oriented programming with Objective-C
to give you a head start.

The book will also appeal to experienced iOS developers, people who have pro-
grammed and have shipped apps to the App Store for the iPhone and iPod touch. If

Turner_Book.indb xli 12/11/11 6:46 PM

ptg999

Prefacexlii

you are an experienced reader, you can skip over the basics, if you so choose, and
quickly get to work on the example projects used throughout the book.

Getting the Source Code for PhotoWheel
The source code from each chapter as well as the source code for PhotoWheel as pre-
sented in this book is available from the book’s Web site (learnipadprogramming
.com/source-code/). Work on PhotoWheel doesn’t stop at the end of this book either.
There is so much more to do with the app and so much more to learn. The most up-to-
date source code is available on github (github.com/kirbyt/PhotoWheel).

You will also find more how-to articles and tips for improving PhotoWheel at the
book’s blog site (learnipadprogramming.com/blog/).

And should you have additional questions, or want to report a bug or contribute a
new feature to PhotoWheel, feel free to send email to kirby@whitepeaksoftware.com
or tph@atomicbird.com, or send a message to @kirbyt or @atomicbird on Twitter.

There is plenty of code to review throughout the book along with exercises for you
to try, so it is assumed that you have access to the Apple developer tools such as Xcode
and the iOS SDK. Both of these can be downloaded from the Apple iOS Dev Center.1

Artwork Provided by
Matt McCray is the swell guy who provided the artwork in PhotoWheel. Reach out to Matt
if you’re looking for a designer for your next app. He can be reached at matt@elucidata.net
and his Web site is at www.elucidata.net.

1. Apple’s iOS Dev Center: developer.apple.com/ios.

Turner_Book.indb xlii 12/11/11 6:46 PM

www.elucidata.net

ptg999

Acknowledgments

As for any book that gets written, there’s an entire cast and crew who remain hidden
from the limelight; please take a moment to hear us out as we thank the supporting
cast...

Acknowledgments from Kirby Turner
I want to first thank my wife, Melanie, and my son, Rowan, for their support and
patience while I focused on completing this book. I want to thank Tom for agreeing
to be coauthor during the final stages of this book, which would have been delayed
even more if not for his help. I want to give a huge THANKS to Chuck Toporek
for giving me this opportunity to write a book. And, of course, I want to say thanks
to the technical reviewers and the production team for all their hard work in a short
amount of time.

I want to send an extra thanks to Daft Punk for the TRON: Legacy album. It was
the soundtrack for most of this book.

I want to thank Steve Jobs and the amazing Apple engineers for bringing the fun
back to programming for me. Last, I want to thank the Mac and iOS developer com-
munity. None of this would be possible if not for the passion and spirit of this unique
community.

Acknowledgments from Tom Harrington
I’d like to thank Kirby for inviting me to be part of this book. I’d especially like to
thank Chuck Toporek, our technical reviewers, and the rest of the production team
for all their hard work making me look good in print. Kirby and I wrote this book
while iOS 5 was still in beta testing, and we often found it necessary to make revi-
sions before we were finished, just to keep up with the pace of change in iOS and the
developer tools. Everyone involved has done a great job dealing with the challenges of
writing a book on a topic that’s constantly in f lux.

On a closely related note, thanks to everyone at Apple for their hard work on iOS 5
and the iPad. Without them we wouldn’t have such a cool topic to write about.

Finally, as of this writing we’ve only just learned that Steve Jobs has passed away
after a long and highly successful tenure as CEO of Apple. I got started writing soft-
ware nearly 30 years ago on an Apple II, and it set the tone for my future career.
Thanks for all you’ve done over the years, Steve.

Turner_Book.indb xliii 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

About the Authors

This book is brought to you by...

Kirby Turner
Kirby Turner is an independent software developer and business owner focusing on
Mac and iOS programming. Kirby has been programming since the early 1980s. He
sells his own apps through his company, White Peak Software, and he does contract
programming when time allows.

When Kirby is not sitting behind the keyboard, he can be found hanging out with
his wife, Melanie, and son, Rowan, hiking the mountains of New England, kayaking
the waters in and around Salem, Massachusetts, and snowboarding down mountains in
search of perfect powder.

Tom Harrington
Tom Harrington switched from writing software for embedded systems and Linux
to Mac OS X in 2002 when he started Atomic Bird, LLC. After six years of develop-
ing highly regarded Mac software, he moved to iPhone in 2008. He now develops iOS
software on a contract basis for a variety of clients. In addition to this book, Tom is
coauthor of Core Data for iOS. Tom also organizes iOS developer events in Colorado.
When not writing software, he can often be found on his mountain bike. You can
find Tom on Twitter as @atomicbird.

Turner_Book.indb xlv 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

Part I
Getting Started

Turner_Book.indb 1 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

1
Your First App

There is no better way to learn than by actually doing something, so let’s dive in by writing a really
simple iPad app. The first application you will write is a Hello World app. Yes, the Hello World
sample application is overdone, but don’t worry. You will be building more sophisticated applications
later in this book. For now, it’s important to get your hands dirty with some code and the tools.

The goal for this chapter is to give you a sneak peek at the tools you will be using to build
your iPad applications. If you are already familiar with Xcode, you may wish to skip ahead to
Chapter 4, “Getting Started with Objective-C,” or Chapter 6, “Provisioning Your iPad.” If
you are new to Xcode, please continue reading.

The rest of this chapter will guide you through the steps needed to create your first iPad appli-
cation. The chapter does not go into detail about Xcode; those details are covered in the follow-
ing chapters: Chapter 2, “Getting Started with Xcode,” and Chapter 3, “Getting Started with
Interface Builder.”

Note
Before you begin, you must have Xcode and the iOS SDK installed on your Mac computer.
If you do not have these installed, jump to Appendix A, Installing the Developer Tools, for
instructions on how to set up your Mac for iPad programming. And yes, a Mac computer is
required.

Creating the Hello World Project
Let’s begin by launching Xcode. Xcode is available in Launchpad, shown in Figure
1.1, if you installed it from the Mac App Store; otherwise it is on the Dock. Click the
Xcode icon to launch it.

Note
If Xcode is not available in Launchpad or on the Dock, you should add it. Xcode can be
found (assuming a default install) on your hard drive in the directory /Developer/Applica-
tions/. To add Xcode to the Dock, launch it. While Xcode is running, right-click (or Control-
click) on the Xcode icon that appears in the Dock and select Options > Keep in Dock. This
will keep the Xcode icon in the Dock even when the program is not running, making it
easier to launch Xcode the next time you need it.

Turner_Book.indb 3 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App4

The first window you see after launching Xcode is the Welcome to Xcode screen,
shown in Figure 1.2. You can do a number of things from this window. You can cre-
ate a new project, connect to a source code repository, go to the Xcode 4 User Guide
(a tutorial on using Xcode), or visit Apple’s developer site (developer.apple.com). If
you have created or opened Xcode projects in the past, you will also see a list of recent
projects to the right. You can open a recent project by selecting one from the list and
clicking Open.

Tucked away in the lower left corner is the Open Other… button. You can click
this button to open an existing Xcode project found on your hard drive. Next to this
button is a check box indicating whether the Welcome to Xcode window is displayed
when Xcode launches.

Note
If you are new to Xcode, you should take the time to read through the Xcode 4 User Guide.
The User Guide provides complete coverage of the entire Xcode tool set. You will learn
about Xcode in this book; however, reading the official guides from Apple is always a good
thing.

You want to create a new iPad application, so click Create a new Xcode proj-
ect. This opens the new project window, as shown in Figure 1.3. Let’s explore this

Figure 1.1 The Xcode icon as seen in Launchpad. The Mac App Store
Xcode Installer puts Xcode in the Developer group.

Turner_Book.indb 4 12/11/11 6:46 PM

ptg999

Creating the Hello World Project 5

Figure 1.2 Welcome to Xcode window

Figure 1.3 The new project window in Xcode, with callouts on sections
of Xcode’s user interface (1: target type; 2: project template;

3: template detail)

Turner_Book.indb 5 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App6

window for a moment before continuing. As you can see in the figure, the new proj-
ect has three main sections:

 1. Target type

 2. Project template

 3. Template detail

In section 1, you select the target type, iOS or Mac OS X. iPad applications run on
iOS, so you can ignore the Mac OS X target type for now. Under iOS you can build two
types of targets: Application and Framework & Library. The Application type is exactly
what the name implies; you use it to build iPhone and iPad applications. The Library tar-
get type is for building reusable static libraries, which you can also ignore for now.

The Hello World application you are building is just that, an application. So in
section 1 under iOS, select Application. When you do this, you’ll notice that the
contents in section 2 change. Section 2 now displays the list of available templates for
the selected target type. A template is used to generate the initial files needed for an
Xcode project.

If you have spent time playing with your iPad, you may have noticed that there are
some common application types, or styles. The templates listed in section 2 help speed
the process of creating an application of a particular style. For example, if you wanted
to create an application that looks similar to the Mail app on the iPad, you would
select Master-Detail Application.

Application Templates
The application templates you’ll encounter in Xcode after selecting iOS as your target
include the following types:

n Master-Detail Application: Select this template when you have a master-detail-
style application and wish to leverage the split view controller for display.

n OpenGL Game: Select this template if you wish to create a game using OpenGL
ES. This template provides a view with an OpenGL scene and timer to animate
the view.

n Page-Based Application: Select this template to create a book- or magazine-style
app that uses the page view controller.

n Single View Application: Select this template for applications that use a single
view.

n Tabbed Application: Select this template for applications that have separate
areas defined by tabs. This template provides a tab bar controller and a view
controller for the first tab.

n Utility Application: Select this template for applications that have a main view
and an alternate view.

n Empty Application: This template provides a starting point for any type of appli-
cation. Select this template when you want to start with a bare-bones project
shell.

Turner_Book.indb 6 12/11/11 6:46 PM

ptg999

Creating the Hello World Project 7

The Hello World application will consist of a single view, so select Single View
Application from the list of templates. When you do this, notice that the contents of
the template detail section change. This section shows a brief description of the tem-
plate selected in the project template section.

Clicking the Next button takes you to the project options screen, shown in Figure
1.4. Project options vary slightly based on the template. Each template has options for
the Product Name, Company Identifier, Bundler Identifier (which is completed for
you based on the Company Identifier), and the Device Family. Additional options that
may be found on an application template include Use Storyboard, Use Automatic Ref-
erence Counting, Use Core Data, and Include Unit Tests.

For the Hello World app you are building, enter “Hello World” for the Product
Name. For the Company Identifier, enter your name or company name using the
reverse domain name format. (For example, com.kirbyturner is my individual name
and com.whitepeaksoftware is my company name.) Chapter 6, “Provisioning Your
iPad,” explains the relationship between the company and bundle identifiers and how
they are used to form the App ID.

Next, select iPad as the Device Family. There are three device family types in iOS:
iPad, iPhone, and Universal. The device family iPad indicates that the app is designed
for and runs on the iPad only. The iPhone device family indicates that the app is
designed for the iPhone, and Universal says that the app is designed for and runs on
both the iPad and the iPhone.

You do not need storyboard and unit tests in this Hello World app, so leave those
options unselected. But do select the Use Automatic Reference Counting option.

Figure 1.4 Project options for the Single View Application template

Turner_Book.indb 7 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App8

This option is explained in the Memory Management section of Chapter 4, “Get-
ting Started with Objective-C.” Click the Next button, choose a location to store the
Xcode project, and click the Create button (shown in Figure 1.5).

Universal App
iPhone apps can run on the iPad, but they run in an iPhone emulator. They do not take
advantage of the iPad’s full screen. This leads to a less than ideal user experience. A
universal app, on the other hand, is designed to take full advantage of the screen real
estate provided by both the iPhone and the iPad. When a universal app is run on an
iPhone, it looks as if it was designed for the iPhone. And when a universal app is run
on an iPad, it looks like an iPad app, not an iPhone app.

A universal app gives the user the best of both worlds, a single app that looks great on
both devices. However, this comes at a cost to you, the developer. Developing a univer-
sal app, in many ways, is like developing two separate apps, one for the iPad and one
for the iPhone, and packaging them into a single app binary.

Universal apps are designed to target both the iPad and the iPhone. The focus of
this book, however, is on writing iPad applications. To keep you focused, and to avoid
the additional complexities of writing universal apps as you start your journey toward
becoming an iOS developer, universal apps are not covered in this book.

Note
Storyboard is a concept, introduced in iOS 5, for visually designing user interfaces in iOS
apps. Storyboarding is covered in Chapter 14, “Storyboarding in Xcode.”

Figure 1.5 Choose the location where your Xcode project is stored.

Turner_Book.indb 8 12/11/11 6:46 PM

ptg999

Creating the Hello World Project 9

Note
I like to keep all my source code together in a single location, so I created a Source direc-
tory within my home directory. I place all my Xcode projects under Source so I can easily
locate them in the future.

Congratulations! You just created your first iPad application. You don’t believe it?
Click the Run button (shown in Figure 1.6), or type �-R. Be sure that the active
schema is set to the iPad Simulator. If it is not, click it and change it to the simulator.

When you click Run, Xcode compiles the project, builds an application package,
installs the application on the iPad Simulator, and finally launches the application
inside the simulator. As you can see in Figure 1.7, the application is nothing more than
a white screen. Guess what? You just built your first f lashlight app for the iPad!

Note
Sometimes you will notice a delay between the time the simulator is launched and the
time your app launches within the simulator. When this delay happens, you see nothing
but a black screen within the simulator. This is normal, and it usually happens only the
first time you launch your app in the simulator.

You can take your newly created f lashlight application and submit it to Apple
for review. However, there is a high level of certainty that Apple will reject the

Figure 1.6 Xcode project window for the Hello World app

Turner_Book.indb 9 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App10

application because of its lack of functionality. Besides, you are not done with this app.
You want to build a Hello World application, and as you can see, “Hello World” does
not appear when this application is run. So let’s continue working on it.

First, stop the app, which is running in the simulator. You can do this by clicking
the Stop button at the upper left side of Xcode or type �-.. Now you’re ready to start
modifying the app.

Note
When you use a project template, Xcode gives you a valid, runnable iPad application with-
out your having to write a single line of code. Maybe it is because I still have memories of
being a teenager building apps 30 years ago, but I always get a little warm, fuzzy feeling
when I see a new application run for the first time. As a matter of fact, the first thing I do
when I create a new Xcode project is to build and run it. Seeing the application run for the
first time gives me a little jolt of excitement.

Getting Text on the Screen
This is a Hello World app, so it should display “Hello World” somewhere on the
screen. This can be accomplished by writing some code, but the easiest approach is

Figure 1.7 A “blank” single view app running in the iPad Simulator

Turner_Book.indb 10 12/11/11 6:46 PM

ptg999

Getting Text on the Screen 11

to use Interface Builder. Interface Builder, or IB as it is often called, is the visual user
interface designer that is built into Xcode. You’ll learn more about IB in Chapter 3,
“Getting Started with Interface Builder,” but for now steps are provided to guide you
through turning this blank application into a not so useful Hello World app.

To add “Hello World” to the display, you’ll edit the file ViewController.xib. A .xib
file, pronounced “zib,” is an XML representation of a NIB file. A NIB file, or .nib, is
the binary predecessor to the .xib file. Being text-based, a .xib file has the benefit of
working better with version control systems when compared to the earlier binary .nib
version. That said, .xib files are still compiled down to .nib files when you build the
application.

What is a NIB file? A NIB file is a file created by Interface Builder to archive
interface objects and their relationships. Put another way, a NIB represents the objects
that make up the visual display of a screen. You create and edit NIB files using IB, and
your application uses the NIB files at run time to display the user interface of the app.

Note
It’s common for iOS developers to refer to a .xib file as a NIB file because it is, after all,
just a text-based representation of a NIB file.

History
The N in NIB is a carryover from the NeXTSTEP days when it was used to indicate the
NeXT-style property list file. And the IB indicates that the file is an Interface Builder file.

Begin by opening the file ViewController.xib, available in the Project navigator. This
changes the contents of the Editor area. It displays the NIB file using the IB designer,
as shown in Figure 1.8.

Note
Chapter 3, “Getting Started with Interface Builder,” covers all the utilities available with IB.

IB has a set of available utilities for working with a NIB file. Type Control-
Option-�-3 to display the Object library. The Object library contains a list of visual
and nonvisual components that are used to construct the user interface. In the filter
bar at the bottom type “Label” without the quotes. This will filter the object list, dis-
playing only label-type objects.

Drag and drop the label object onto the view’s canvas area. This creates a new
UILabel instance, which is the type of object representing a label. Next, open the
Attributes inspector (Option-�-4). At the top of the Attributes inspector is a prop-
erty named Text. Change the default value “Label” to “Hello World.” Xcode should
now look similar to the screen shot in Figure 1.8.

Turner_Book.indb 11 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App12

Note
You may need to resize the label to view the entire “Hello World” content. To resize, move
the mouse cursor to the right edge of the label object. The cursor will change to the resize
indicator. Click and drag the mouse to the right to increase the width of the label.

Build and run the app in the iPad Simulator. Congratulations! You have written
your first Hello World app for the iPad.

Note
Don’t worry if none of this is making sense yet. Remember that the goal of this chapter
is to give you a sneak peak into iPad programming by way of a step-by-step guide. This
will give you a sense of what it is like to program for the iPad. Later chapters will explain
all you need to know in detail, and before you know it, the steps for creating iPad applica-
tions will be second nature to you.

Say Hello
Now that the excitement of creating your first application for the iPad has worn off,
let’s extend the application by adding some functionality to it. Instead having it always
display “Hello World,” let’s change the app to ask for a name, then display “Hello”
to the name entered. This exercise is more involved and requires you to write some

Figure 1.8 Adding “Hello World” to the main view of the app

Turner_Book.indb 12 12/11/11 6:46 PM

ptg999

Say Hello 13

Objective-C code. Do not worry if you have never seen Objective-C code before.
You will be told exactly what to type, and you will explore Objective-C in more
detail in Chapter 4, “Getting Started with Objective-C.”

In life there is often more than one way to accomplish a task. The beauty of iPad
programming is that there are many more ways than just one to do something. It is
this f lexibility in the development tools that makes many programmers prefer Xcode
to other development tools. But it does take time to learn all the ins and outs, which
can be frustrating for programmers new to Xcode.

One of the goals of this book is to show you the different ways a task can be
accomplished. Armed with this knowledge, you can decide what approaches work
best for you. For example, it is possible to use IB to generate Objective-C code that
declares objects and actions defined in a .xib file. However, this discussion is saved for
a later chapter. Instead, you’re going to write the Objective-C code yourself to extend
functionality in the Hello World app.

Two screen elements are needed, one that accepts user input for the name and the
other to display “Hello.” A third element, a button, is also needed to tell the app when
to display the hello message. The NIB file defines the objects that make up the user
interface, but there is no automatic connection between the objects and the source
code. Instead, you must make the connection.

Start by opening the file ViewController.h. You can find this file in the Project navi-
gator. When you click it, the Editor area will display the contents of the file. Modify
the file’s contents so that the source code looks exactly as it does in Listing 1.1.

Listing 1.1 Modified Version of ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (nonatomic, strong) IBOutlet UILabel *helloLabel;

@property (nonatomic, strong) IBOutlet UITextField *nameField;

- (IBAction)displayHelloName:(id)sender;

@end

Next, open the file ViewController.m. Replace the generated source code found in
the file with the source code in Listing 1.2.

Listing 1.2 Modified Version of ViewController.m

#import "ViewController.h"

@implementation ViewController

@synthesize helloLabel;

@synthesize nameField;

Turner_Book.indb 13 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App14

- (IBAction)displayHelloName:(id)sender

{

 NSString *hello = [NSString stringWithFormat:@"Hello %@", [nameField text]];

 [helloLabel setText:hello];

}

@end

The code in Listing 1.1 does a number of things. First, two properties are added to
the class ViewController. These properties are marked with IBOutlet, which is a
hint to IB that the class contains a reference to an object. Next, the method display-
HelloName: is declared. It is marked with IBAction, another hint to IB, this time
telling IB that an action exists in the class definition. At this point, the interface for
the class ViewController has been defined.

What Are IBOutlet and IBAction?
IBOutlet and IBAction are special indicators for Interface Builder, hence the IB
prefix. Interface Builder uses these indicators to connect objects and actions to ele-
ments in the user interface.

An IBOutlet is used to connect an object reference defined in Objective-C code to
the object instance used in Interface Builder. For example, earlier in this chapter you
placed a label on the view. That label is actually a UILabel. (UILabel is the class
name for the label.) To access the label in code you must have a reference to the
instance of the UILabel. You will see later in this chapter how you connect the refer-
ence declared in code to the instance displayed in IB.

An IBAction is used to connect an event sent by an object to a method defined in
code. For example, a button has an event that is fired when a user lifts her finger. This
action can be connected to the IBAction defined in the Objective-C class.

The code in Listing 1.2 represents the implementation for the class View-
Controller. The implementation begins by synthesizing the properties declared in
the class interface, helloLabel and nameField. Property synthesis is an Objective-
C compiler feature that generates the accessor methods for these properties at compile
time. More on this in Chapter 4, “Getting Started with Objective-C.”

This is followed by the implementation for the method displayHelloName:. This
method is the action that is called when the user interacts with the app, specifically
when the user taps a button, which you will provide momentarily. The implementa-
tion of this method creates a local string variable containing the name entered by the
user with the prefix “Hello.” This string is then displayed on the screen as the text
value for the helloLabel.

If you were to run the app at this point, you would see no difference from the ear-
lier version. While the code has been updated to do what you want it to do, the user

Turner_Book.indb 14 12/11/11 6:46 PM

ptg999

Say Hello 15

interface has not been updated and the connections for the outlets and actions have not
been made.

Note
This decoupling of the source code, in this particular case the controller, and the user
interface, aka the view, is representative of the Model-View-Controller design pattern,
which is discussed in Chapter 5, “Getting Started with Cocoa.”

To complete the app, you need to update the user interface and connect the UI
objects to the properties defined in the controller class. Once again, open the file
ViewController.xib. Double-click the Hello World label and change its text value to
“What is your name?” Resize the label as needed to display the entire text.

Search through the Object library in the Utilities area for the Text Field object.
Alternatively you can filter the object list by typing “text field” in the filter bar. Drag
and drop a text field to the right of the “What is your name?” label.

Now search through the Object library for the Round Rect Button. Drag and drop
an instance of the button to the right of the text field. In the Attributes inspector,
change the Title property to “Say Hello.”

Finally, search the Object library for Label, and drag and drop a new label onto the
canvas, placing it under the other objects. Be sure to increase the width of the label to
accommodate the string value created in the method displayHelloName:. The view
should look similar to the screen shot in Figure 1.9.

Figure 1.9 The modified user interface file ViewController.xib

Turner_Book.indb 15 12/11/11 6:46 PM

ptg999

Chapter 1 Your First App16

Now it’s time to connect the objects and events defined in the NIB with the outlets
and actions defined in the view controller source code. One way to connect objects
to outlets and actions is to Control-Click an object, then drag the mouse cursor to
another object. When the mouse button is released, IB will display a Heads-Up Dis-
play (HUD) of the connection options. For example, when you Control-Click the
File’s Owner object (the translucent cube displayed in the left-side bar in the Editor
area) and drag to the text field (shown in Figure 1.10), a HUD is displayed allowing
you to connect the text field to the properties nameField and view. Select name-
Field to connect the text field to the property defined in ViewController.h.

Do the same thing to connect the label to the property helloLabel. Control-
Click the File’s Owner cube and drag to the label where the output of the display-
HelloName: will be displayed.

To connect the action to the Say Hello button, you Control-Click the button
and drag to the File’s Owner cube. This will assign the action displayHelloName:
to the button event Touch Up Inside.

With the connections in place, the Hello World app is now functional. Build and
run the app in the simulator. Tap the name field in the simulator to enter a value.
Then tap the Say Hello button to display the hello message. The final app should
look similar to the screen shot in Figure 1.11.

Figure 1.10 Connect the nameField property to the text field defined
in the NIB file.

Turner_Book.indb 16 12/11/11 6:46 PM

ptg999

Summary 17

You may be wondering how IB is able to identify the correct Objective-C header
file. It’s simple: The file’s owner is defined as being of type ViewController. This
tells IB which source file to look at for outlets and actions. You can see this by click-
ing the File’s Owner cube, then typing Option-⌘-3. The class name is set to View-
Controller. This is how an object defined in IB knows it type.

Note
A common mistake made in Interface Builder is forgetting to associate your outlets and
actions. If you run the application and notice that the display does not update after
the Say Hello button is touched, chances are good the Touch Up Inside event for the
UIButton is not associated to the displayHelloName: action.

Summary
Congratulations! You have completed your first iPad application. And you just got
a sneak peak into iPad programming. This chapter should leave you itching to learn
more. Before you dive into the meat of iPad programming, you need to learn more
about the tools and programming language you will use. Let’s begin by taking a closer
look at Xcode in the next chapter.

Figure 1.11 The new and improved Hello World app

ptg999

This page intentionally left blank

ptg999

2
Getting Started with Xcode

In Chapter 1, “Your First App,” you used Xcode to create your first iPad application, but what
is Xcode exactly?

Xcode is the combination of an Integrated Development Environment (IDE) and a collection
of stand-alone development tools forming a complete developer tool set for Mac and iOS software
development.

Xcode is the world you live in as you create and build your iPad apps. Xcode will become
your friend. There will be times when the two of you get along nicely, but there will also be times
when you disagree. You may even become annoyed with your new friend from time to time, but
there’s good news. As you spend more time together, you will get to know each other much better,
and your friendship will grow. Who knows? You may even become BFFs (metaphorically speak-
ing, of course).

Over more years than I care to count, I have used many different IDEs. When I first encoun-
tered Xcode—version 3 at the time—I thought I was stepping back in time. I thought, “It’s a
glorified text editor with some handy menu items and shortcuts for compiling projects.” My opin-
ion changed over time as I grew more accustomed to using Xcode day in and day out (and some-
times all night long). And with Xcode 4, things have only gotten better.

Xcode is simple, fast, and powerful, just like the applications created with it for the Mac,
iPhone, and iPad. Each appears simple on the surface, allowing the power to be exposed as you
become better acquainted with the software. Xcode is no different. As you become more familiar
with Xcode, you’ll start seeing its power and how it is more than just a glorified text editor.

This chapter helps jump-start your friendship with Xcode and helps you become better
acquainted with it. So let’s get started.

The IDE
Xcode is the developer tool most often used to create and build applications for the
iPad. It’s a complete IDE that you use to write Objective-C code, manage project
files and settings, and make builds of your iPad applications. You also debug your apps
using Xcode, and you can even unit test your code with it. Xcode does all this and
more.

Turner_Book.indb 19 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode20

Disclaimer
Obviously there is no way to talk about all things Xcode in a single chapter. Some topics
are discussed in later chapters (such as debugging in Chapter 25, “Debugging”), while
other more advanced topics (such as refactoring) are left out completely. The point of this
chapter is to be not a complete guide to Xcode but rather a starting point for getting famil-
iar with it.

The programming language of choice for most iPad applications is Objective-C, so
it is only natural that Xcode provides outstanding support for Objective-C. But Xcode
also supports other programming languages. After all, Xcode is used for programming
duties other than writing iPad apps.

Xcode supports the C, C++, Objective-C, Objective-C++, Python, Ruby, Apple-
Script, and Java programming languages. Xcode also supports, with the help of third
parties, GNU Pascal, Free Pascal, Ada, C#, Perl, and a list of other languages. And it
does a reasonable job of supporting HTML and JavaScript.

Note
Despite Xcode’s support for a number of programming languages, you are limited to C,
C++, and most commonly Objective-C for writing iPad applications in Xcode. You cannot
use the other languages such as Java or Perl for writing iPad applications. That doesn’t
mean you will not have a need for the other programming languages in Xcode. Many iPad
developers use programming languages such as Python or Ruby to write scripts that aid in
producing iPad applications. I, for one, use Python scripts to make Ad Hoc and App Store
distribution builds of my applications.

Workspace Window
Xcode can open a project or workspace. A workspace is an Xcode file type that stores
references to one or more projects that are typically related to one another, though a
relationship is not required. When you open a project or workspace in Xcode, it is dis-
played in a workspace window.

The workspace window has five distinct areas, shown in Figure 2.1. These areas are

 1. Toolbar

 2. Navigation area

 3. Editor area

 4. Utilities area

 5. Debug area

Toolbar Area
The toolbar is displayed at the top of the workspace window (Figure 2.2). It provides
quick access to run and stop the app defined by the active scheme, change the active
scheme and set the run destination (a device or the simulator), turn on and off all

Turner_Book.indb 20 12/11/11 6:46 PM

ptg999

Workspace Window 21

Figure 2.1 The workspace window and its areas

Figure 2.2 The workspace window toolbar

Turner_Book.indb 21 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode22

breakpoints, change editors, show and hide the other areas (Navigation, Utility, and
Debug), and display Organizer. The center of the toolbar displays the current status of
the project (is running, finished running, build succeeded, etc.).

Navigation Area
The Navigation area is where you navigate through a project. The area has a mini
toolbar at the top that gives you access to seven different navigators (see Figure 2.3):

 1. Project navigator: Displays the project files in a hierarchical tree. Use this
navigator to open files within the project.

 2. Symbol navigator: Provides a way to quickly navigate a project using local
symbols such as classes and protocols that make up the application.

 3. Search navigator: Performs project-wide find-and-replace queries.

 4. Issue navigator: Shows compiler warnings and errors as well as live issues
found as you edit code.

 5. Debug navigator: Shows debug information by thread and queue, helpful with
writing a multithreaded application.

 6. Breakpoint navigator: Shows the breakpoints defined within the project. You
can also manage (edit, enable/disable, delete, and so on) breakpoints from here.

 7. Log navigator: Shows logs from current and past debug and build sessions.

Figure 2.3 The workspace window Navigation area

Turner_Book.indb 22 12/11/11 6:46 PM

ptg999

Workspace Window 23

You switch between the navigators using the mini toolbar found at the top of the
Navigation area, or you can use View > Navigators from the menu. Shortcut keys
are also available. Use �-1 for the Project navigator, �-2 for the Symbol, �-3 for the
Search, and so forth through �-7, which shows the Log navigator. You can also show
and hide the Navigation area with �-0.

At the bottom of the Navigation area is the filter bar. Use it to limit the scope of
the items displayed within the navigator.

Editor Area
The Editor area, which is always visible, is where file editing occurs (see Figure 2.4).
The editor changes based on the file type. When you select, for example, a source
code file (a .h or .m), the standard text editor is displayed. Select the project file, and
you’ll see the project editor. Select a NIB, and you’ll see the UI designer Interface
Builder.

At the top of the Editor area is a mini toolbar. The first button of the mini toolbar
displays a popup menu of recently opened files and unsaved files. The next two but-
tons, go back (Control-�-Right) and go forward (Control-�-Left), enable you
to navigate through your browsing history. Those are followed by the jump bar. The
jump bar provides a quick way to jump between files and locations within the current
file. Just click any part of the jump bar to display files and locations within files that
you can jump to.

Figure 2.4 The workspace window Editor area

Turner_Book.indb 23 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode24

Utility Area
The Utilities area, which you can show and hide using Option-�-0, displays differ-
ent inspectors and libraries (see Figure 2.5). The available inspectors will vary based
on the file type, but every file type has at least two inspectors, the File and Quick
Help inspectors. You can switch between inspectors by clicking the icons in the mini
toolbar displayed at the top of the Utilities area.

Below the Inspector area is the Library area. There are four different libraries avail-
able for use:

1. File Template library

2. Code Snippet library

 3. Object library

 4. Media library

The File Template library is used to create and add new files to the project. Drag
and drop a file template into the project to create a new file based on the template.

The Code Snippet library contains a set of code snippets that can help speed up
development. To use a code snippet, drag and drop it into the text editor. You can also
create your own code snippets by dragging and dropping a block of code from the text
editor into the Code Snippet library. To view the contents of a code snippet, click the

Figure 2.5 The workspace window Utilities area

Turner_Book.indb 24 12/11/11 6:46 PM

ptg999

Workspace Window 25

snippet and wait a second or two. A popover will display showing the snippet’s con-
tent. You can also edit snippets that you create from the popover.

The Object library is used by Interface Builder. It contains objects used to construct
the user interface of your app. Depending on the object, you will drag and drop the
object to the designer canvas, to the canvas of another object such as a view, or to the
IB dock. (Using IB to create user interfaces is discussed in Chapter 3, “Getting Started
with Interface Builder.”)

The Media library displays the list of media (images and sounds) available in the
project. This library is used by Interface Builder. In IB, you can drag and drop an
image into your user interface. This will create a view to display the image. And
you can drag and drop an image on an object that can contain an image, such as a
UIButton, to have that object display the image. Sounds work the same way. Drop a
sound on a UIButton to assign the sound to the button.

At the bottom of the Utilities area is a filter bar. The filter bar is used to limit the
displayed items in the selected library.

Debug Area
The Debug area (Shift-�-Y to show and hide it) is used when debugging your app
(Figure 2.6). As with the other areas, it too has a mini toolbar at the top, which allows
you to control the debugging session. From here you can pause the running app, step

Figure 2.6 The workspace window Debug area

Turner_Book.indb 25 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode26

over a line of code, step into a line of code, and step out from a call. Below the mini
toolbar is the watch area for variables, and next to that is the console window.

Note
More information on the Debug area, as well as tips and how-to instructions for debug-
ging, is provided in Chapter 25, “Debugging.”

Preferences
Xcode can be customized to your liking. The Xcode Preferences (Xcode > Prefer-
ences or �-,) has a long list of options that you set to fine-tune the appearance and
behavior of Xcode. Developers new to Xcode will find the default preference settings
suitable for day-to-day work. The exception, however, might be the display of the text
editor. Programmers are a picky bunch, who tend to prefer a certain look and feel to
the text editors they use, so it should be no surprise that you can customize the look of
the text editor used in Xcode.

Fonts and Colors
For starters, you can change the fonts and colors used by the text editor (Figure 2.7).
Xcode provides a list of predefined themes that you can select from, or you can add

Figure 2.7 Fonts & Colors preferences

Turner_Book.indb 26 12/11/11 6:46 PM

ptg999

Preferences 27

your own theme by duplicating an existing theme or creating a new theme from one
of the available templates.

Note
Xcode includes the Presentation theme in Fonts & Colors. This theme uses a larger font
size that is ideal for display on a projector. If you ever find yourself giving a presentation
at a meeting or a conference and you need to show off some code, you definitely want to
use the Presentation theme. It will help ensure that everyone in the room, including those
sitting in the back, can see your source code.

Text Editing
Fonts and colors are not the only changes you can make to the text editor. Additional
customizations for the text editor are available under Text Editing. Select Editing
in the Text Editing preferences (shown in Figure 2.8) to show or hide line numbers,
set the page guide column position, and turn on and off the code folding ribbon
(also known as the focus ribbon). An example of what the text editor looks like with
these settings turned on is shown in Figure 2.9. You can also change code completion
behavior and configure how the text editor will handle things such as end of line and
file encoding.

Figure 2.8 Text Editing preferences

Turner_Book.indb 27 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode28

What Is Code Folding?
Code folding is a feature that allows you to selectively show and hide blocks of code.
It’s a handy way to manage large source code files. You can think of code folding as a
way to expand and collapse blocks of code in much the same way you expand and col-
lapse an outline.

The introduction of code folding into Xcode 3 allowed the Xcode development team to
include other useful features built around the code folding feature. One such useful
feature is code focus, which shows the scope depth of a particular block of code. A
high-level view of the scope depth can be seen in the code folding (aka focus) ribbon
displayed in the gutter. To view the scope depth within the text editor, simply mouse
over the code folding ribbon.

The fun with text editor changes doesn’t end here. There is also an Indentation
preferences option for the Text Editing preferences, seen in Figure 2.10. Here you can
control behaviors such as using spaces in place of tabs, enabling line wrapping, and
using syntax-aware indenting.

Figure 2.9 Text editor with features turned on

Turner_Book.indb 28 12/11/11 6:46 PM

ptg999

Preferences 29

Note
Having the tab key insert spaces is one of the first settings I make with any text editor,
so it’s no surprise that I do the same with Xcode. I prefer spaces over tabs for the simple
reason that with spaces you know how indented code looks regardless of the program
used to display it. While Xcode allows you to specify the tab width, not all applications
do, and in many applications the tab width defaults to eight spaces. This can make your
code look ugly when a tab character is used instead of spaces and the source code is
displayed in another application, such as a Web browser or an email message.

Line Wrapping
Line wrapping is an interesting setting. I originally did not use this setting, which is
turned off by default, because I assumed it worked the same way as word wrapping
in other text editors. A friend encouraged me to turn it on, and I haven’t turned it off
since.

Xcode’s wrapping doesn’t wrap the line to the first column of the next line. Instead,
the wrapped line is indented under the starting line, as seen in Figure 2.11. And the
number of spaces for wrapped line indention is configurable in the Text Editing prefer-
ences. Using line wrapping with indentions keeps the structure and readability of your
code intact, which is something I like.

Figure 2.10 Text Editing Indentation preferences

Turner_Book.indb 29 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode30

Coding Styles
When you start changing the behavior of a text editor with settings such as spaces
instead of tabs, indentions of three characters instead of four, and so on, you start
forming your own coding style. Sticking to a coding style can be important, especially
if you work on a team with other developers. There is nothing more annoying than see-
ing multiple coding styles within a project. A standard, consistent coding style within a
project makes the code easier to read and maintain.

Selecting a coding style is often a matter of personal preference. A developer who
often works alone will have his own style. Convincing that developer to change styles
can be a tough battle. And there may be times when you are the developer who must
change to conform to the coding style of the team.

If you are reading this book, you are likely to be new to iPad and Objective-C program-
ming; if so, now is a good time to learn a coding style. You can start by bringing over
elements of style from past experience, or you can learn from the coding styles of oth-
ers. Here are three guidelines for coding styles that you may find helpful:

n Google Objective-C Style Guide, available at google-styleguide.googlecode.com/
svn/trunk/objcguide.xml

n Zarra Studios Coding Style Guide, available at www.cimgf.com/
zds-code-style-guide/

n WebKit Coding Style Guidelines, available at www.webkit.org/coding/coding-style.
html

Figure 2.11 Example of line wrapping. Lines 18, 22, 31, and 32
are wrapped.

Turner_Book.indb 30 12/11/11 6:46 PM

www.cimgf.com/zds-code-style-guide/
www.cimgf.com/zds-code-style-guide/
www.webkit.org/coding/coding-style.html
www.webkit.org/coding/coding-style.html

ptg999

Preferences 31

Key Bindings Preferences
Now that you have configured Xcode to your liking, it’s time to get more produc-
tive with Xcode by using shortcut keys. Shortcut keys save you time by allowing you
to execute some action by simply typing a combination of keys. For instance, typing
�-S to save changes to a file is faster than moving your hand to the mouse, moving
the mouse cursor to the menu bar, clicking the File menu item, followed by clicking
the Save menu item.

Xcode comes with a long list of shortcut keys, which Xcode calls key bindings. As
you might expect, Xcode allows you to select from a list of predefined key bindings,
change existing key bindings, and create new key bindings of your own. All of this is
available in the Key Bindings preferences, shown in Figure 2.12.

The hardest part about becoming more productive using shortcut keys is remem-
bering the long list of key combinations. One technique that can help is to learn at
least one new shortcut key per week. When you realize you are repeating the same
action, take a look at the Key Bindings preferences to see if a shortcut key exists. If
there is no shortcut key, add one. Make a point to use the shortcut key throughout the
week until it is ingrained in your brain. It’s not a perfect process, and you will find
yourself relearning and re-remembering the same useful but less frequently used short-
cut keys all the time. Still, the more shortcut keys you can learn, the more productive
you will be using Xcode.

Table 2.1 shows some of the commonly used shortcut keys.

Figure 2.12 Key Bindings preferences

Turner_Book.indb 31 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode32

Colin Wheeler’s Xcode Shortcut List
Colin Wheeler, aka Cocoa Samurai (www.cocoasamurai.com), has compiled a list of
Xcode shortcut keys and published it in a free PDF document. Sure, you can view the
same list in Xcode’s Key Bindings preferences, but it’s a pain compared to Colin’s out-
standing list.

He publishes two versions, one in color and the other in black and white. I highly rec-
ommend downloading Colin’s shortcut list. Then print it out and tape it somewhere
near your monitor for quick and easy reference. I keep a copy taped on the wall
between my MacBook Pro and my 20-inch external monitor.

The shortcut list covering Xcode 4 is available at cocoasamurai.blogspot.com/2011/
03/xcode-4-keyboard-shortcuts-now.html.

Table 2.1 Essential Keyboard Shortcuts for Xcode

Shortcut Description

Control-�-Up and
Control-�-Down

Switches between the .h and .m files

Control-�-Left Moves to the previous file in the File History

Control-�-Right Moves to the next file in the File History

Escape Displays the list of available code completions

�-/ Inserts comments and comment/uncomment blocks of
selected lines

�-0 Shows and hides the Navigation area

Option-�-0 Shows and hides the Utilities area

Shift-�-Y Shows and hides the Debug area

�-[Indents the current line or selected lines

�-] Unindents the current line or selected lines

Control-i Formats the selected block of code

Option-�-Left Folds code

Option-�-Right Unfolds code

�-S Saves the current file

Option-�-S Saves all modified files

�-B Builds the project

Shift-�-k Cleans the project

�-R Runs the app (and builds if needed)

�-` Switches between different Xcode project windows

Turner_Book.indb 32 12/11/11 6:46 PM

www.cocoasamurai.com

ptg999

Preferences 33

Code Completion
Code completion is a standard feature in any modern-day IDE. Code completion
helps speed development by displaying a popup list of possible code to insert into your
source code. Xcode’s code completion determines the possible code after you type
only a couple of characters and wait brief ly. You can also display the popup list by
pressing Escape or Control-.. Press the Enter key to select the completion code from
the list.

Note
Preference settings for code completion can be found under the Editing section of the
Text Editing preferences.

A really cool feature of code completion is placeholders. Placeholders are inserted
for the parameters on a method call, as shown in Figure 2.13. The placeholder displays
the data type and parameter name, making it easier to determine what is needed to
satisfy the call. And to help speed up the development process, type Control-/ to
move from one placeholder to another or type Tab to move to the next placeholder
and Shift-Tab to move to the previous one.

More Ways to Be Really Productive
Shortcut keys and code completion aren’t the only options for being more productive
in Xcode. There are third-party add-ons that extend and enhance productivity. Here are
two very popular tools:

n Code Pilot (codepilot.cc) is a favorite of many Xcoders. Code Pilot makes project
navigation easier. If you are a keyboard junkie like me, you owe it to yourself to
try out Code Pilot.

n Accessorizer (www.kevincallahan.org/software/accessorizer.html) is my personal
favorite. Accessorizer saves you time by generating boilerplate code for you. For
instance, you can use Accessorizer to generate the @synthesize code for
declared properties and to generate accessor methods using a number of dif-
ferent design approaches. This is just a sample of what Accessorizer can do for
you. If you are looking to save time writing code in Xcode, there is no better add-
on tool than Accessorizer.

Figure 2.13 Placeholders for the initWithNibName:bundle:
method on line 22

Turner_Book.indb 33 12/11/11 6:46 PM

www.kevincallahan.org/software/accessorizer.html

ptg999

Chapter 2 Getting Started with Xcode34

Developer Documentation
Apple provides a great deal of really useful documentation with Xcode. The developer
documentation, available from the menu bar by selecting Help > Documentation
and API Reference, includes all the information you need to do iPad programming,
from well-written programming guides, to API documentation, to sample source
code. About the only negative mark on the documentation is its size. The amount of
documentation is enormous, containing tens of thousands of pages. For instance, the
UIKit Framework document has nearly 1,100 pages devoted to it, and it is only one of
the many frameworks used for application development. Combine the documentation
for various frameworks, how-to guides, code samples, and other general and overview
documentation included in the developer documentation, and you can easily become
overwhelmed. It’s not hard to imagine, based on the sheer size of the documenta-
tion, that it can sometimes be hard to find the information you are looking for. That’s
where books like this one help, by consolidating the wealth of knowledge from Apple
into a condensed guide.

Xcode does a great job of helping you find the documentation you need. For
instance, you can Option-Click a class or method name to display a Quick Help
popup, as seen in Figure 2.14. Click the book icon in the popup to view the Help page
in the developer documentation, or click the .h icon to view the header file contain-
ing the element’s declaration. You can also view the Help by opening the Quick Help
inspector (Option-�-2).

Figure 2.14 Example of the Quick Help popup and Quick Help inspector

Turner_Book.indb 34 12/11/11 6:46 PM

ptg999

Editors 35

Editors
Xcode provides three different editors. They are not really editors per se, but rather
modes of an editor. They are

 1. Standard editor

 2. Assistant editor

 3. Version editor

The Standard editor is your main editor (Figure 2.15). This is where you edit
source code, design a user interface, or create a data model. The editor changes based
on the file type of the selected file. For instance, when you are editing source code,
the Standard editor displays the text editor. Interface Builder is displayed when you are
editing a user interface file (NIB or storyboard). And if you select the project file in
the Project navigator, the Standard editor displays the project editor.

The Assistant editor provides a split view editor (Figure 2.16). This allows you to
view and edit different parts of the same file or different files at the same time. The
Assistant editor is a handy way to view the .h and .m files of a class side by side. In fact,
the Assistant editor will automatically display the counterpart file for you. When you
have the Assistant editor open and you select a .h file, the Assistant will automatically
display the corresponding .m file in the second editor window. You can also manually
open another file in the Assistant editor by using the jump bar at the top of the editor
window. You can also open more than one Assistant editor to view more than two files
at the same time. Just click the + button on the Assistant editor’s mini toolbar.

Figure 2.15 The Standard editor displaying the text editor

Turner_Book.indb 35 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode36

The third editor mode is the Version editor (Figure 2.17). This editor lets you
compare a revision to another for the same file. You can use Xcode’s snapshot feature
to keep a history of changes, but a better approach is to use a source code repository.
Xcode supports Git and Subversion. Using a source code repository makes the Version
editor even more useful, allowing you not only to compare revisions, but also to view
the blame and log for the file.

Project Settings
Select the project file in the Project navigator and you’ll see the project settings editor
(Figure 2.18). Here you can set various options for the project and targets belonging to
the project.

There are two types of settings for a project: Info and Build Settings. Info lets you
set basic preferences for the project. This includes the iOS deployment target, base
configuration files for the build types (debug, release, and so on), and the default build
configuration for command-line builds.

The other type of settings is Build Settings. Build Settings make it possible for you
to fine-tune the build process. The number of Build Settings options is too large to
cover in this chapter or even in this book. Luckily, the default settings work for most
iOS projects, so covering them here is not necessary.

Figure 2.16 The Assistant editor displaying IB in one window and a text
editor in another two

Turner_Book.indb 36 12/11/11 6:46 PM

ptg999

Project Settings 37

Figure 2.17 The Version editor

Figure 2.18 The project settings editor

Turner_Book.indb 37 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode38

Project settings represent the base settings for each target created by the project. A
target is the artifact created by a build process. For example, the iPad app created when
you build a project is a target. A project has one or more targets, and each target has
its own set of settings. The target settings are derived from the project settings. That is
to say, the project settings represent the base, or default, settings across all targets, and
target settings contain nondefault settings that are unique to the particular target.

As someone new to Xcode and iPad programming, you do not need to worry about
project and target settings yet. The default settings are fine for the sample apps pre-
sented in this book and most apps that you initially create. You’ll start making changes
to the settings only when you want to do more advanced work, such as supporting
earlier versions of iOS or using a different compiler.

Setting the Organization Name
There is one particular project setting that is not in the project settings: the organiza-
tion name. The organization name is used as part of the copyright notice generated in
the top comment block when you create a new source file, as shown in Figure 2.19. If
you find you are working on different projects for different companies (as a freelancer,
contractor, or consultant), you may want to use a different organization name for each
project.

Perform these steps to change the organization name for a project:

1. Select the project file in the Project navigator.

2. Open the File inspector in the Utilities area (Option-�-1).

3. Type in the name in the Organization field found in the Project Document section
(Figure 2.19).

Figure 2.19 Set the organization name in the File inspector for the
project file.

Turner_Book.indb 38 12/11/11 6:46 PM

ptg999

Schemes 39

That’s it.

The new organization name will be used when you create new source files. Changing
the organization name does not change the name used in the commented copyright
notice found in previously created source files. You must manually change those or
use Find and Replace.

Schemes
A scheme is a collection of settings specifying targets to build, build configurations to
use, unit tests to execute, and run destinations to use when a target is launched. Xcode
creates a default scheme for you when a new project is created. For iOS projects, the
default scheme has two run destinations: devices and simulator.

You can create as many schemes as you want, or edit and delete existing schemes
from the manage schemes screen (Product > Manage Schemes…), shown in Fig-
ure 2.20. Note that when a scheme is created, it is intended for personal use only. If
you are working on a project as part of a team, other team members will not see the
schemes you create. Only shared schemes can be used by all team members. To share a
scheme, mark the Shared check box for the scheme in the manage schemes window.

You can change the active scheme and run destination by using the Scheme popup
found in the upper left corner of the project window (see Figure 2.21). You can also
edit the scheme, create a new one, and manage all the schemes from the popup menu.

Figure 2.20 The manage schemes window

Figure 2.21 The Scheme popup menu found in the workspace window toolbar

Turner_Book.indb 39 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode40

Organizer
Organizer, shown in Figure 2.22, is a project-independent window available in Xcode
(Shift-�-2 or Window > Organizer). It is used to manage your devices, add and
remove source code repositories, view project cache areas and snapshots, access product
archives, and view developer documentation.

One of the really nice things about Organizer is its device management. Here you
can view and add developer and provisioning profiles. You can manage copies of ear-
lier iOS software releases. But the feature most useful to many is viewing crash logs
found on devices.

Connect a device to your computer and Organizer will detect it. Once the device
is connected, you can view the crash logs stored on your device (found under Device
Logs). Not only can you see the crash logs for your app, but you can view the logs
from any app on the device. This can be helpful if you want to report a crash to a fel-
low iOS developer. You can also view, using Organizer, the console for an attached
device. This too is helpful when troubleshooting an app that is running on the device.

Figure 2.22 Organizer

Turner_Book.indb 40 12/11/11 6:46 PM

ptg999

Summary 41

Other Xcode Tools
As mentioned earlier, Xcode is not just an IDE. It is also a collection of developer tools
provided by Apple. So far we have talked only about Xcode the IDE, but what are
some of the other developer tools included in Xcode?

The iPad Simulator, which you used in Chapter 1, “Your First App,” is one of the
Xcode tools that you will use frequently. The iPad Simulator allows you to test your
iPad application from your computer without a physical iPad device. While there is no
substitute for running your application on a real device, there is no faster way to debug
your app than with the iPad Simulator.

Note
The iPad Simulator does an incredible job of simulating the iPad device, but at the end
of the day you still need to test your application on a real device. The iPad Simulator, as
good as it is, is just that, a simulator. And there are times when it will behave differently
from a real device. There are also limitations on what you can test using the simulator.
For example, you can’t test the accelerometer in the iPad Simulator; for that you need
a real device. The same goes for testing OpenGL ES code, which tends to run faster on
your desktop or laptop (thanks to a faster processor and loads more RAM) than in the
simulator.

As a general rule of thumb: Always test your application on a real device before submit-
ting it to Apple or distributing it to users.

Instruments (found in /Developer/Applications) is another invaluable tool included
with Xcode. With Instruments you profile your application to find memory leaks,
determine memory usage, monitor activity, and take CPU samples. You will learn
more about Instruments in Chapter 25, “Debugging.”1

Note
Apple’s iOS Development Guide has a must-read section on tuning applications.1 This
section gives you more information on using Instruments to tune your iPhone and iPad
applications.

Summary
By now you see that Xcode is more than a fancy text editor. It is a collection of devel-
oper tools that you use to build applications for the Mac, iPhone, and of course the
iPad. Some of the tools are built into Xcode’s IDE (i.e., text editing, Interface Builder,
project file management, build, and debugging), while other tools are separate,

1. iOS Development Guide, section on performance tuning: developer.apple.com/
iphone/library/documentation/Xcode/Conceptual/iphone_development/
140-Tunning_Applications/tunning_applications.html.

Turner_Book.indb 41 12/11/11 6:46 PM

ptg999

Chapter 2 Getting Started with Xcode42

stand-alone applications (i.e., Instruments). It’s this combination of developer tools that
gives Xcode its power.

This chapter highlighted the areas of Xcode that are most useful to new iPad pro-
grammers. A lot of detail is missing, as are advanced features, such as refactoring.
To cover everything provided by Xcode would take an entire book. That’s why it is
strongly recommended that you read through the Xcode User Guide (Help > Xcode
User Guide from the Xcode menu bar), which covers Xcode in more detail.

Meanwhile, do not worry if you are not using all of the features of Xcode on day
one. Learning a new development environment takes time.

That said, there is one particular tool of Xcode that deserves more attention. It’s
Interface Builder, the built-in user interface design tool, and it has its own chapter,
Chapter 3, “Getting Started with Interface Builder.”

Turner_Book.indb 42 12/11/11 6:46 PM

ptg999

3
Getting Started with

Interface Builder

All iPad applications have one thing in common: Each has a user interface. The user interface
will differ across the apps, but you can count on each app having one. There are two ways to
create the user interface for your app: You can write Objective-C code or use Interface Builder.
Interface Builder is the better, easier approach, which is why this chapter teaches you all you need
to know to get started with IB.

Interface Builder
IB is built into Xcode, and as the name implies, it is a graphical tool for building user
interfaces. While everything you do in IB can be done in code, IB helps you do it
faster and with fewer bugs.

You may find IB different from the UI designers that you have used in the past, the
biggest difference being that IB is not a source code generator. It does not generate
source code to construct the user interface, nor does it generate source code for event
handling.

Source code generation is a common approach used in other GUI-based program-
ming environments. The lack of this approach can be confusing at first. For instance,
say you want to display a button on a screen and have that button perform some
action. With other UI designers, you drop a button into a design canvas, then double-
click the button to jump to the event handler for the button. The designer generates
the event handler shell code when you double-click the button. This, of course, does
not happen with IB.

Note
I say IB doesn’t generate code, but that’s not exactly true. You will learn later in this
chapter that there are now ways to have Xcode generate code for you using IB with the
Assistant editor.

Turner_Book.indb 43 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 44

Conceptually IB is the same as other UI designers found in other programming
environments, but the magic under the hood is what makes IB different. With IB,
you drag and drop objects from a palette, called Library, onto a canvas such as a
view. IB then creates an instance of the object. Say, for example, you drag and drop a
UIButton. An instance of UIButton is created. At this point, you can set the proper-
ties, or state, of the button.

When IB saves your work, it archives the object instances to a NIB file. The
archiving process saves the object and its state. When an application uses the NIB at
run time, the object is unarchived and the object instances are connected to the NIB’s
owner, which is commonly a view controller.

Note
The concept of archiving and unarchiving an object instance is known as serializing and
deserializing in other programming environments. IB’s approach to archiving and unar-
chiving UI objects might seem familiar to those coming from Delphi and C++ Builder as
those programming environments use a similar approach. Think of a .xib file as being the
same as a .dfm file.

How Does IB Work?
Understanding how IB works is one of the biggest challenges new iOS developers
face. I know because I went through countless frustrating hours trying to design user
interfaces that behaved the way I wanted, only to abandon IB in favor of doing it all
in code. What I didn’t realize at the time was how much harder I was making it for
myself. I also ended up writing more code than necessary, which I had to support.
Simple changes to the UI were no longer simple because I had to dig through lines of
Objective-C code instead of applying the changes in IB.

How does IB work? For starters, IB stores information about the user interface and
its supporting objects in a file called a NIB file. The name NIB is a carryover from the
NeXT days. Older versions of IB stored the user interface data in a binary-formatted
file with the .nib extension, but this has since changed. Today IB stores the data in an
XML-formatted file. Because the data format has changed, Apple decided to change
the file extension for NIB files. The new extension is .xib.

When IB saves a NIB file, it archives the objects contained in the NIB. All state for
the objects is saved when they are archived. When an application loads the NIB file,
the objects are unarchived and object instances are connected to your code. In Objec-
tive-C code, you give IB hints on how to connect the object instance to your code.
These hints are IBOutlet and IBAction. IBOutlet connects an ivar or declared
property defined in your code to an object instance in the NIB, and IBAction con-
nects a method defined in your class code to events called by objects in the NIB.

Turner_Book.indb 44 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 45

Note
Ivar is short for “instance variable.” An instance variable is a variable defined as part of
an Objective-C class and is available to instances of the class. See Chapter 4, “Getting
Started with Objective-C,” for more.

Admittedly, this can become confusing. You define a property in your class, say,
a UILabel, to display some text message. You create an instance of UILabel in IB,
then set the position, font, text color, and other state. You then connect the UILabel
to the declared property using IB. This seems counterproductive, even error-prone,
but it is faster in practice than it sounds. Also, Apple is constantly improving Xcode
and IB, and the process is getting better all the time.1

Note
You may be surprised to learn that Interface Builder has been around since 1988, and
it was one of the first applications of its kind to allow interface objects such as buttons,
labels, menus, and windows to be drawn in an interface using a mouse. Check out the
Interface Builder page at Wikipedia to learn more about the history of IB.1

Getting Hands-On with IB
IB has many useful features. The best way to explore these features is hands-on.
Let’s begin by creating a new iPad project in Xcode. This time around the steps are
provided for creating a new project but not as many screen shots. Revisit Chapter 1,
“Your First App,” if you want to see screen shots of each step.

Okay, let’s get started.

 1. Launch Xcode.

2. Create a new project (File > New Project or Shift-�-N).

3. Select the Single View Application template (Figure 3.1).

 4. Click the Next button.

5. Enter “IBPlayground” as the product name and class prefix.

6. Select iPad for the device family.

7. Uncheck Use Storyboard.

 8. Click the Next button.

9. Save the project to the source directory of your choosing.

10. Build and run (�-R) the app. You will see a blank application running in the
iPad Simulator.

11. Exit the app and return to Xcode.

1. Brief history of Interface Builder: en.wikipedia.org/wiki/Interface_Builder.

Turner_Book.indb 45 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 46

Now have some fun playing with IB. In the Project navigator, find and select the
file IBPlaygroundViewController.xib. This will open and display the file in IB, which is
displayed in the Standard editor, as shown in Figure 3.2.

To help you focus on IB, type �-0 to hide the Navigation area and type
Option-�-0 to show the Utilities area. Finally, type Control-Option-�-3 to show
the Object library. The workspace window should look like the screen shot in Figure
3.3. You already know about the Utilities area, which is covered in Chapter 2, “Get-
ting Started with Xcode,” but you may not be as familiar with IB as it is displayed in
the Standard editor.

To the far left is the IB dock. The dock shows icons for the objects that make
up the user interface. The main content area is the design canvas. Grid lines deco-
rate the designer canvas. The canvas has one visible object in it, a view, which is of
type UIView. Toward the lower left corner is a round disclosure indicator. Click this
to switch between the IB dock and the Document Outline area, shown in Figure
3.4. You can also switch between the two by selecting the Editor > Show (Hide)
Document Outline menu item.

The NIB should now be open in IB. Add two labels to the view so that you have
something to play with. To accomplish this, scroll through the list of objects in the
Object library and look for the label object. If scrolling isn’t your thing, you can use
the filter box to find the label for you. The filter box is at the bottom of the Library
area. Keyboard junkies can type Option-�-L to jump to the filter box.

Figure 3.1 Create a new Xcode project using the Single View Application
template for the iPad.

Turner_Book.indb 46 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 47

Figure 3.2 Select the file IBPlaygroundViewController.xib to display it in
IB under the Standard editor.

Figure 3.3 Interface Builder displayed in the Standard editor

Turner_Book.indb 47 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 48

Type the word label to filter the list of available objects. You can also filter the list
by entering the class name, which is UILabel. Now drag and drop a label object from
the Library window to the view window. While you are at it, go ahead and drag a
second label object so that the view looks similar to Figure 3.5.

Selecting and Copying Objects
Dragging and dropping two labels from the Library window isn’t the only way to get
the two on the view. You can copy an object in the view by clicking and dragging the
object while holding down the Option key. This creates a copy of the selected object.

Note
To delete an object from a view, select the object and press the Delete key.

You can use this trick to copy more than one object as well. Simply select mul-
tiple objects within the view, Option-Click and drag, and now you have copies of
the selected objects. To select multiple objects, use your mouse, click and drag on the
view—this draws a box on the screen—then box off the objects to select. Or you can
mouse-click an object to select it, then mouse-click the additional objects while hold-
ing down �.

Neat trick, eh? It gets better.

Figure 3.4 The workspace window with the document outline showing
instead of the IB dock

Turner_Book.indb 48 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 49

Aligning Objects
Click and drag a label, moving it to the right of another label. IB displays alignment
guides for you. Use the vertical and horizontal guides to get the desired alignment.
You can also align two or more objects by selecting Editor > Align and choosing
from the list of available alignment options (Figure 3.6).

For additional help with aligning and positioning objects, add one or more verti-
cal (Editor > Add Vertical Guide, or �-|) and horizontal (Editor > Add Hori-
zontal Guide, or �-_) guides, seen in Figure 3.7. You place these guides at specific
locations within the view by sliding the guide up and down or left and right using the
mouse. To do this, place the mouse cursor over the guide. When the mouse cursor
changes to the resize cursor, mouse-click the guide and move the mouse up and down
for horizontal guides and left and right for vertical guides.

As you move a guide, you will notice two numbers displayed. These numbers
represent the distance between the guide and the edge of the view. For instance, a
horizontal guide displays the distance between the guide and the top edge of the view
as the top number. The distance to the bottom of the view is displayed as the bottom
number. This helps provide more precise placement of the guide.

To remove a guide, drag the guide off the view. Poof! A smoke cloud.
A favorite alignment feature is the positioning guides. This feature helps you get

precise positioning of objects on the screen. Here’s how to do it. Select an object in

Figure 3.5 Add two labels to the view.

Turner_Book.indb 49 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 50

Figure 3.6 Editor > Align lists additional alignment options.

Figure 3.7 Example of the horizontal and vertical guides. Note the point
location of the horizontal guide. This is displayed as you move the guide.

Turner_Book.indb 50 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 51

the view. Now hold down the Option key, making sure the mouse cursor is not over
the selected object. This displays the frame size of the selected object and the distances
between the object’s frame and the top, left, right, and bottom edges of the container
view, as seen in Figure 3.8. Use the arrow keys to move the object up, down, left, and
right. You’ll notice that the distances to the edge change as the object moves.

This, however, is not the only reason positioning guides are a favorite alignment
feature.

Continue to hold down the Option key and move the mouse cursor over another
object in the view. The guide changes to show you the distance between the selected
object and the object under the mouse cursor (Figure 3.9). And yes, you can use the
arrow keys to move the selected object while displaying the distance between the two
objects. How awesome is that!

Ever had a request to place two buttons on the screen 10 pixels apart? Select one of
the buttons, place the mouse cursor over the other button, and hold down the Option
key. Now use the arrow keys to move the selected button 10 pixels from the other but-
ton. It doesn’t get much easier, and that’s why this is a favorite alignment feature in IB.

Note
You do not need to hold down the Option key when using the arrow keys to move a
selected object or group of selected objects. Holding down the Option key, however, will
display the really useful guides and positioning information.

Figure 3.8 Select an object, then hold down the Option key to get
position information about the object.

Turner_Book.indb 51 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 52

Layout Rectangle
While playing with the position guides, did you notice that the selected object is
enclosed in a rectangle? This rectangle is handy for seeing the layout of an object,
especially for objects that do not have visual borders. You can turn this feature on for
all objects by selecting Editor > Canvas > Show Layout Rectangles from the
menu, as seen in Figure 3.10. This feature is really useful when you want to make sure
one object does not overlap another object.

Note
You can also show the bounds rectangle (Editor > Canvas > Show Bounds Rectangles) if
all you want to see is the size of an object.

Changing State
The size and position of an object can also be changed in the Inspector area within the
Utilities area. You may remember from Chapter 2, “Getting Started with Xcode,” that
the Inspector area has the File and Quick Help inspectors. Well, when using IB, there
are four additional inspectors: Identity (Option-�-3), Attributes (Option-�-4), Size
(Option-�-5), and Connection (Option-�-6).

The Identity inspector, shown in Figure 3.11, is where you specify the class name
for the object. The class name is one of the classes from the Cocoa Touch Framework

Figure 3.9 Select an object, then mouse over another object. Hold down
the Option key to see the distance between the two objects.

Turner_Book.indb 52 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 53

Figure 3.10 Layout Rectangles enabled. Notice that one of the labels
has a larger frame than the others. You would not be able to see this with

Layout Rectangles turned off.

Figure 3.11 The Identity inspector for a UIButton object

Turner_Book.indb 53 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 54

or a custom class created within your Xcode project. You also set the accessibility set-
tings for the object in the Identity inspector. Accessibility makes it possible for visually
impaired individuals to use your application.

The Attributes inspector is where you set the property values, or attribute values,
for the selected object (Figure 3.12). The list of attributes will vary based on the object
type. Examples of attributes include content mode, alpha setting, background color,
tag value, and drawing settings. Setting an attribute value is a simple matter of enter-
ing a new value, selecting from a list of possible values, or ticking and unticking a
check box.

The Size inspector, shown in Figure 3.13, enables you to set the size and position of
the selected object without having to size and move the object with the mouse. This
is a faster way to size and position an object when you know the exact dimensions
and position. Also within this inspector, you can specify the autosizing setting for the
object.

Autosizing lets you specify whether the object’s width, height, top, left, right, and
bottom positions are fixed or f lexible. By using a combination of these settings, you
control how the object is sized and positioned when the container view is resized.
Autosizing also shows an animated view of how the settings will affect the object’s size
and positioning.

Figure 3.12 The list of attributes, or properties, for a UIButton as
seen in the Attributes inspector

Turner_Book.indb 54 12/11/11 6:46 PM

ptg999

Getting Hands-On with IB 55

The Connections inspector shows the connections between the selected object and
some other object. You can also make new connections within this area. Take a look
at Figure 3.14. Notice the small circles to the right of the events and outlets references.
If you were to move the mouse cursor over one of the empty circles, it would change

Figure 3.13 The Size inspector

Figure 3.14 List of events and outlets references for a UIButton as
seen in the Connections inspector

Turner_Book.indb 55 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 56

to a circle with a plus sign in it. Clicking and dragging the plus sign draws a line on
the screen. When the plus sign is moved around, objects that support the connection
will be highlighted. Objects that do not support the connection will not be high-
lighted. When you find the desired object, drop the plus sign on the object to connect
it. This will pop up a list of actions or outlets that can be used for the connection.
Select the appropriate action or outlet to make the connection.

What Is the File’s Owner?
When looking at the IB dock or Document Outline area, you may notice an object
named File’s Owner. File’s Owner identifies the object that owns the NIB when it is
loaded at run time. A placeholder object represents the File’s Owner. A placeholder
object is a reference to an object that is not created by the NIB. Other names for
placeholder include proxy and external object, as it is called in the Object library.

The File’s Owner placeholder object is used to indicate the type of object that owns the
NIB once loaded. The object type, or class name, is displayed in the Identity inspector,
and it can be changed in the same inspector, as shown in Figure 3.15.

The File’s Owner type is the name of the class that is responsible for managing
objects at run time that are defined in the NIB. The File’s Owner type is typically the

Figure 3.15 The File’s Owner is a placeholder object. Its type is the
class name set in the Identity inspector.

Turner_Book.indb 56 12/11/11 6:46 PM

ptg999

Connecting Your NIB to Your Code 57

view controller class, but it does not have to be a view controller. Likewise, you can
have other placeholder objects defined in the NIB that are not the File’s Owner.

IB uses the class type to determine which header file to read when it’s looking for out-
lets and actions. We’ll see this in action momentarily.

Connecting Your NIB to Your Code
The objects created in a NIB are connected to classes defined in source code by way
of two IB hints, IBOutlet and IBAction. These are special macros that resolve to
nothing and void respectively, but Interface Builder uses them as a way to identify ref-
erences for outlets and actions defined in source code. From the point of view of the
source code as well as the compiled application, these macros do nothing. They are
useless. IB, however, uses them as hints for finding and connecting outlets and actions
to objects defined in the NIB.

So what are outlets and action? An outlet is a reference to an object, and an action
is a reference to a method implemented by a class.

For the moment, think of a view as a representation of the screen the user sees in
your application. The view displays a label object with some text and a button object.
A controller class manages interaction with the view. The controller has a reference
to the label defined in the view. The label reference is the outlet since it is a reference
to an object. If the controller needs a reference to the button, another outlet can be
defined referencing the button object.

Now let’s assume that when the user taps the button, text in the label changes. The
button has a touch event that calls a method. The method is implemented in the con-
troller class and is responsible for changing the label’s text. This method represents the
action.

An object reference defined in a class interface is decorated with IBOutlet and
a method declaration is decorated with IBAction when each is to be connected to
objects and events defined in a NIB. IB looks for these macros to find the available
outlets and actions defined within a class. This is how objects created in a NIB are
connected to the source code that powers your application.

Note
If you are familiar with the design pattern Model-View-Controller, some of what was just
said should make sense. iOS applications use MVC throughout. The MVC pattern is cov-
ered in Chapter 5, “Getting Started with Cocoa.”

To connect an object created in the NIB to an object reference or an object’s event
to a method, the outlet and action must be defined in your code. Two approaches can
be used to accomplish this: You can add the code manually to the class interface, or
you can use the IB with the Assistant editor.

Turner_Book.indb 57 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 58

Defining an Outlet in Code
For many iOS programmers, adding an outlet or action declaration manually to a class
interface is a more natural workf low. Manually adding outlets and actions gives you
the opportunity to focus on the class interface and implementation without concerning
yourself with the look of the user interface.

To see how this works, go back to the previous scenario where you have a view
containing a label and a button. When the user taps the button, the label’s text changes
to display “Hello from iOS.” To implement this feature, your source code needs a ref-
erence to the UILabel, which is the outlet, and a reference to a method, which is the
action that executes the code needed to update the label text.

Now, to make this so...
Show the Project navigator (�-0) and select the file IBPlaygroundViewController.h.

Update the class interface to include the code in Listing 3.1.

Listing 3.1 Code to Be Added to IBPlaygroundViewController.h

@interface IBPlaygroundViewController : UIViewController

// Add the following code:

@property (nonatomic, strong) IBOutlet UILabel *label;

- (IBAction)buttonTapped:(id)sender;

// End of code to add.

@end

What’s going on here? First, a declared property is added. @property is special
Objective-C sauce instructing the compiler to define an instance variable name label
that stores a reference to an instance of UILabel. IBOutlet is the hint given to IB so
that a connection to the instance of UILabel defined in the NIB can be made to the
declared property found in the class interface. Second, a forward declaration for the
method buttonTapped: is defined. Note that the return type is set to IBAction.
This tells IB that this method is an action.

If you try compiling the project, you will receive a build error. The build fails because
the implementations for the declared property and method have not been provided. So
open the file IBPlaygroundViewController.m (Control-�-Up or Control-�-Down while
in the counterpart .h file) and add the implementation code shown in Listing 3.2.

Listing 3.2 Updated IBPlaygroundViewController.m

#import "IBPlaygroundViewController.h"

@implementation IBPlaygroundViewController

Turner_Book.indb 58 12/11/11 6:46 PM

ptg999

Connecting Your NIB to Your Code 59

// ----

// Add the following code:

@synthesize label;

- (IBAction)buttonTapped:(id)sender
{

 NSLog(@"button was tapped.");

 [label setText:@"Hello from iOS."];

}

// End of new code.

// Other code provided by the template is not presented here.

@end

For the moment it is assumed that you have little to no Objective-C experi-
ence. Therefore, this code may seen strange, especially the @synthesize statement.
@ synthesize is more special sauce from Objective-C that tells the compiler to create
getter and setter methods for the declared property. In the case of this code, @synthe-
size creates the getter and setter methods for the declared property label. You can
write the getter and setter methods, but why bother when the compiler can do it for you?

Note
For the moment, do not worry about the details of @property and @synthesize. All
will be revealed in Chapter 4, “Getting Started with Objective-C.”

Following the synthesizing of the declared property is the implementation for the
method buttonTapped:. This method accepts a single parameter named sender.
sender is a reference to the object calling the method. In our current scenario
sender is the button found in the view.

The method has two lines of code. The first statement calls NSLog(). NSLog()
is a C function that sends output to the console. The output, of course, is the string
parameter to the NSLog() call. The second line of code sets the text property for the
object reference label. This is where the source code actually uses the IBOutlet.

What’s Really Going On?
As I mentioned, IB looks for IBOutlet, and IBAction has hints to the avail-
able outlets and actions. But how does IB know what files to look at? The answer is
the File’s Owner. The File’s Owner is of type IBPlaygroundViewController.
This tells IB to read and parse the header file IBPlaygroundViewController.h for any
IBOutlet and IBAction hints.

Turner_Book.indb 59 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 60

With IBOutlet and IBAction defined in the class interface, it’s time to update the
user interface. Select the file IBPlaygroundViewController.xib in the Project navigator to
open the NIB in IB. Add a new button (UIButton) to the view defined in the NIB.
It’s assumed there is at least one label in the view from the earlier playtime. If not, add
a label to the view as well.

Right-click the button found in the view. This shows a list of events triggered by
the object. Click and drag the circle for the Touch Up Inside event and drop it on
the File’s Owner (see Figure 3.16). IB displays the list of available actions; button-
Tapped: should be the only action available at this time. Click the buttonTapped:
action to connect the button’s Touch Up Inside event to the buttonTapped: action
method.

Note
Another way to connect the button to the action is to Control-Click the button and drag
the mouse cursor to the File’s Owner. This will connect the buttonTapped: action to
the Touch Up Inside event of the button.

The label should be connected as well; otherwise the app will not behave the way
you want. In the Document Outline area right-click the File’s Owner, then drag and
drop the circled plus sign onto a UILabel instance found in the view. This connects
the label to the declared property outlet label.

Figure 3.16 Right-click the button to see the list of events. Click and
drag an event to connect it to an action defined in another object.

Turner_Book.indb 60 12/11/11 6:46 PM

ptg999

Connecting Your NIB to Your Code 61

Note
Here again you can Control-Click the File’s Owner and drag the mouse cursor to the label
to make the connection.

Think this through for a moment. In the header file there is an outlet referencing a
UILabel and a method declaration representing an action. Nowhere in code do you
find the instantiation of the label object, nor do you see a reference of any sort iden-
tifying the button that calls the method buttonTapped:. This is because the objects
for the label and button are defined in the NIB as are the connections to IBOutlet
label and IBAction buttonTapped:. The Cocoa Framework performs the magic
for you, creating the object instances and making the connections. The real beauty
here is that you did not have to write code, and IB did not generate source code, to
create the object instances and connect the event callbacks.

At this point, you should be able to build and run (�-R) the app without errors.
Run it and see what happens. When you tap the button, does the label’s text change?
If not, the most likely cause is that either the IBOutlet or the IBAction connection
was not made. Double-check the connections.

A point to be aware of: When a connection is not made, the compiler does not
warn you and typically your app will not crash. All that happens is, well, nothing.
Nothing at all happens, which means you have to play detective and find the cause of
the nothingness. Did you forget to make the connections, or did you forget to imple-
ment the method, as might be the case for IBAction?

If you are like many other iOS programmers who are just starting out, you will
likely forget to make the connections. It’s one of the most common mistakes, which is
why you should always check the connections first when nothing happens. This bears
repeating: Whenever nothingness happens, check the connections in IB. Chances are
the connections are not there.

Note
While nothingness is the common behavior, there are situations where exceptions are
thrown that cause your app to crash because the proper connections have not been
made. Most notable is when you define a view controller as the File’s Owner and you do
not connect the view outlet to a view. I often make this mistake, so much so that when
my app crashes after adding a new NIB, I know with almost 100% certainty that I forgot to
connect the view outlet.

Using the Assistant Editor
The other way to connect outlets and actions is to use the Assistant editor. With the
Assistant editor, it’s possible to drag objects from IB into the class interface and have
Xcode create the necessary source code for you.

To see this in action, add another label and button to the view. This gives you new
objects to connect without having to go back and delete the other code. Next, show the
Assistant editor (Option-�-Return). Things might be a little crowded, so you may

Turner_Book.indb 61 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 62

want to hide the Navigation (�-0) and Utilities (Option-0) areas. Notice that when
you show the Assistant editor, it automatically displays the IBPlaygroundViewController.h
file. Xcode knows this is the counterpart file for the NIB. Figure 3.17 shows an exam-
ple of the workspace window with IB and the Assistant editor open.

Note
If for some reason IBPlaygroundViewController.h is not open in the Assistant, use the jump
bar to open it.

To declare the outlet for the label in the class interface while at the same time mak-
ing the connection, Control-Click the label and drag the mouse cursor to the class
interface in the Assistant window. When you release the mouse, a popover is displayed,
prompting you for the name of the outlet (see Figure 3.18). Call it “label2” and click
the Connect button. This creates the declared property decorated with IBOutlet and
makes the connection with the object defined in the NIB.

Note
You can place the outlet declaration anywhere you like so long as it is between the
@interface and @end statements for the class.

Figure 3.17 IB and the Assistant editor working together

Turner_Book.indb 62 12/11/11 6:46 PM

ptg999

Storyboards 63

You do the same thing to declare the action and connect the button. Control-
Click the button and drag the mouse cursor to the class interface. This time when
the popover is presented, change the connection from Outlet to Action and name the
action “button2Tapped.” The popover should look like the screen shot in Figure 3.19.
Finally, click the Connect button to create the action.

When you add an action using the Assistant, it not only creates the declaration
in the class interface but it also adds the method shell to the implementation. Open
IBPlaygroundViewController.m and scroll to the bottom to see the method shell for
button2Tapped:.

Storyboards
One of the options you may see when creating a new Xcode project is Use Story-
board. So far in this book, you have been told not to check this option. But what is a
storyboard?

A storyboard, or storyboarding, is a way of designing the user interface for your
application. It has the benefit of showing all the screens, at the same time, that make

Figure 3.18 Popover displayed when connecting an outlet using the
Assistant editor

Figure 3.19 Popover displayed when connecting an action using the
Assistant editor

Turner_Book.indb 63 12/11/11 6:46 PM

ptg999

Chapter 3 Getting Started with Interface Builder 64

up the application. This feature is built on top of Interface Builder, so everything you
learned in this chapter about using IB with a NIB applies to storyboards. The primary
difference, however, is that a storyboard can display multiple screens, or NIBs if you
will, at the same time. This gives you a complete, single picture of the application’s
user interface and the relationships between the screens.

You begin using storyboards in Chapter 14, “Storyboarding in Xcode.”

Summary
This concludes our tour of Interface Builder. We hope you enjoyed your f light and
will consider using IB for future UI designs.

Kidding aside, you now have the basic knowledge needed to use Interface Builder.
It may seem daunting in the beginning, but it will become easier over time. The key
point to remember is to always make the connections for outlets and actions. If you
created a super-nice UI but it is not displaying content or actions are not invoked on
touch, chances are good the connections are missing.

Turner_Book.indb 64 12/11/11 6:46 PM

ptg999

4
Getting Started with

Objective-C

Objective-C is the programming language used in this book, so it only makes sense to include a
chapter on this mighty fine programming language. Besides, Objective-C is the programming lan-
guage you will use as you learn iPad programming. It is not the only programming language used
for iPad programming, but it is by far the most popular. And Apple recommends Objective-C for
iOS programming. That’s why it is used for all of the source code provided in this book.

All things Objective-C is simply too large a topic to be covered in a single chapter, and it is
beyond the scope of this book. There are, however, some excellent books devoted to Objective-C,
including

n Learning Objective-C 2.0: A Hands-On Guide to Objective-C for Mac and iOS
Developers by Robert Clair (Addison-Wesley Professional, 2010)

n Programming in Objective-C 2.0, Third Edition, by Stephen G. Kochan (Addison-
Wesley Professional, 2011)

n Objective-C Programming: The Big Nerd Ranch Guide by Aaron Hillegass (Big
Nerd Ranch, Inc., 2012)

These are outstanding books that dive deep into the Objective-C programming language.
Meanwhile, this chapter covers the basics of Objective-C, giving you the jump start needed to
write your first iPad app. Once you finish this book, you can read one of the recommended
Objective-C books to gain a deeper understanding of the language.

What Is Objective-C?
Objective-C is an extension to the C programming language that turns C into an
object-oriented programming language. But unlike C++, which is derived from C,
Objective-C is a set of extensions added to the C programming language.

To make this happen, a small set of new syntax is added to the language. The com-
piler converts the Objective-C syntax to C as part of the compile process. Objective-C
also relies on a runtime environment, which gives Objective-C its dynamic nature.

Turner_Book.indb 65 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C66

Objective-C is modeled after Smalltalk, one of the first object-oriented program-
ming languages to come onto the scene. Like Smalltalk, Objective-C sends a message
to a receiver. The receiver, which is an object, then invokes a method based on the
message it receives. This allows apps written in Objective-C to construct a message at
run time that is sent to an object, which in turn invokes a method. This is different
from other programming languages such as C++, which bind method calls at compile
time.

The dynamic behavior of Objective-C makes it an ideal programming language
for frameworks and SDKs, which might be one of the reasons Apple uses it in its own
frameworks, SDKs, and operating systems.

Note
Objective-C extends the C programming language, turning it into an object-oriented pro-
gramming language. If you already know C, learning Objective-C will be a snap. But don’t
worry if you have never written a line of C code. You can learn Objective-C without any
prior C knowledge.

Hands-On with Objective-C
The best way to learn Objective-C is to use it, and that’s what you will do now. You
are going to create a simple coin toss application that runs in the Terminal window.
Writing this app will help you gain insight into Objective-C.

Let’s begin by launching Xcode. Next, create a new Command Line Tool app. You
can select either the “Create a new Xcode project” option on the Welcome to Xcode
screen, shown in Figure 4.1, or you can select File > New > New Project (Shift-
�-N) from the menu bar.

You want to create a console app. A console app runs from the command line in
the Terminal window. iOS does not support command-line applications, so you want
to select the Command Line Tool project template found under the Mac OS X group,
shown in Figure 4.2. Select this template, then click the Next button.

Name the project “CoinToss.” Select Foundation as the Type (Figure 4.3). This
creates a console application that links to the Foundation framework. You will learn
more about this and other frameworks in Chapter 5, “Getting Started with Cocoa.”
Be sure that the Use Automatic Reference Counting option is turned on. This option
is described later in this chapter. Click Next to continue.

Save the project to your source directory. If you do not have a source directory yet,
create one.

You may have noticed the option to create a local Git repository at the bottom of
the screen shown in Figure 4.4. Git is a popular distributed version control system.
Xcode has built-in support for both Git and Subversion, another popular version con-
trol system. Unless you are already familiar with Git, leave this option unmarked. The
sample code in this book does not require the use of a version control system.

Turner_Book.indb 66 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 67

Figure 4.1 Welcome to Xcode window

Figure 4.2 Select the Command Line Tool template.

Turner_Book.indb 67 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C68

Make sure the project was properly created by doing a build (�-B), then run
(�-R). This will build and run the app, which displays “Hello, World!” to the con-
sole window, as seen in Figure 4.5. Because the app is a command-line application,
you will not see the output unless you have the output window open in the Debug
area. You can open the output window by typing Shift-�-C.

Figure 4.3 Project options

Figure 4.4 Save the project to your source directory.

Turner_Book.indb 68 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 69

Let’s Write Some Code
With the project in place, it’s time to write some code. In the Project navigator, open
the file main.m. C programs always start with a main() function, which is found in the
main.m file. However, the main.m file is your first hint that you are using Objective-C.
C language source files have .c as the file extension. Objective-C source files use .m as
the file extension.

Find and delete the line of code that reads NSLog(@"Hello world!") and add the
following code in its place:

int randomValue = (arc4random()%10) + 1; // Returns an int between 1 and 10.

if (randomValue % 2) {

 NSLog(@"Heads");

} else {

 NSLog(@"Tails");

}

The source code for main.m should now look like Listing 4.1.

Listing 4.1 Simple Coin Toss Algorithm in main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

{

 @autoreleasepool {

 int randomValue = (arc4random()%10) + 1; // Returns an int between 1 and 10.

 if (randomValue % 2) {

 NSLog(@"Heads");

 } else {

 NSLog(@"Tails");

 }

 }

 return 0;

}

Figure 4.5 Output window displaying “Hello, World!” from the console app

Turner_Book.indb 69 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C70

This code retrieves a random integer value from the function arc4random(). It
then does a check to see if the random value is an even or odd number. An odd num-
ber logs “Heads” to the console, and an even number logs “Tails.”

Note
NSLog is a C function that displays output to the standard console. It is the Objective-C
equivalent of the printf function found in the C programming language. NSLog is com-
monly used to send output to the console when debugging an application. You can find
out more about using NSLog in Chapter 5, “Getting Started with Cocoa.”

Build and run (�-R) the application. As you can see in the output window (Shift-
�-C), this is not a very exciting app. It only does a single coin toss. To do more coin
tosses, you must run the app again and again. Let’s make the app a bit more interesting
by changing the source code to loop through ten times to see how random the coin
tosses actually are. To accomplish this, add the following code:

for (int index=0; index < 10; index++) {

 int randomValue = (arc4random()%10) + 1; // Returns an int between 1 and 10.

 if (randomValue % 2) {

 NSLog(@"Heads");

 } else {

 NSLog(@"Tails");

 }

}

The app is slightly more interesting now, but what’s more interesting is that up
to now you haven’t written any Objective-C code. Let’s change that by creating a
CoinTosser object.

Object
What is an object? In the software world, an object is a programming unit that con-
tains attributes and behavior. That is, the object contains data and code where data
represents the attributes (also known as properties) and code represents the behavior of
the object (methods performed by the object). The object’s data and code are related in
that the code performs some action using the data contained within the object.

An object encapsulates related data and code into a single unit, making it easier to
reuse the unit in other parts of the application. Many times an object models a real-
world concept. If, for example, you were writing a payroll application, Employee
would likely be one of the objects found within the application.

CoinToss is not a complex or large application, but it can still benefit from using
objects. Instead of including the coin toss logic in the for loop of the main function,
the app can use a CoinTosser object. CoinTosser becomes responsible for f lipping
the coin. This means that as the app grows and becomes more complex, the logic for
f lipping the coin does not have to be copied throughout the app. Instead, the app can
use the CoinTosser object when it wants to f lip a coin.

Turner_Book.indb 70 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 71

The new CoinTosser object can have some intelligence, too. It doesn’t have to
be solely a worker bee f lipping coins all day. It can keep track of the number of times
a coin has been f lipped, and it can track the number of times the coin lands on heads
and tails. This “intelligence” can be used for reporting the statistics of a set of coin
tosses.

Class
An object is used by an application when it is running, but before the object can be
used, it must be defined. A class defines an object. A class describes the attributes and
behaviors supported by the object. In more practical terms, the class is what you create
in source code that defines the object. The object is an instance of the class created at
run time.

To use a CoinTosser object in the CoinToss app, you must first define the class
for the object. To accomplish this you need to create a new file (File > New > New
File or �-N). Select the Objective-C class template found under Mac OS X >
Cocoa, seen in Figure 4.6.

Click the Next button. Xcode asks you for the class name and the subclass. Enter
“CoinTosser” for the class name, and make it a subclass of NSObject. Don’t worry if
subclass doesn’t make sense. It will be explained later in the chapter.

Click the Next button, and then click the Create button (Figure 4.7) to create and
add the new class file to the project.

Let’s talk for a moment about what just happened.

Figure 4.6 Select the Objective-C class template.

Turner_Book.indb 71 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C72

When you created the new CoinTosser class, two files were added to the project,
CoinTosser.h and CoinTosser.m. Objective-C, like C, uses two files to represent a source
module. This is different from other programming languages such as C# and Java in
which one file is used as a source module.

The .h file is the header file. The header file defines the interface for the class. The
interface tells you what properties and methods (attributes and behaviors respectively)
are supported by the class. The header file only describes the interface for the class. It
does not provide the implementation for the class.

The implementation for the class is contained in the .m file. This implementation
file is where the source code that instructs the computer to do something goes.

At the moment, the CoinTosser class does nothing. It has no attributes (proper-
ties) and no behavior (methods). It’s time to change that. Start with the interface
for the class. Open the file CoinTosser.h. This is the interface file for the class Coin-
Tosser. Now add the code in Listing 4.2.

Listing 4.2 CoinTosser.h

#import <Foundation/Foundation.h>

@interface CoinTosser : NSObject

@property (nonatomic, assign) int headsCount;

@property (nonatomic, assign) int tailsCount;

Figure 4.7 Save the class to the project by clicking the Create button.

Turner_Book.indb 72 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 73

@property (nonatomic, strong) NSString *lastResult;

- (void)flip;

@end

The first line is #import <Foundation/Foundation.h>. Foundation.h is another
header file that defines the references for all functions and classes found in the Foun-
dation framework. For the C programmers reading this, #import is similar to
#include. However, #import ensures that the file is included only once, avoiding
the problem of recursive includes.

The angled brackets surrounding Foundation/Foundation.h indicate that the
header file is a system header file. System header files are stored outside of the project
and are provided by the development environment and SDK. The system header files
needed for iPad programming are added to your computer when you install Xcode
and the iOS SDK.

If you want to import a header file that is part of the project, you enclose the
header file name with quote characters, for example, #import "CoinTosser.h". An
example of this can be found in the CoinTosser.m implementation file.

Foundation is imported into the CoinTosser class so that it can reference other
classes defined within the Foundation framework. The next line of code, for example,
includes a reference to NSObject. NSObject is a Foundation object. In other words, it
is defined in the Foundation framework.

NSObject
NSObject is the root object for all Objective-C objects (with only a few exceptions).
NSObject provides the foundation for the class CoinTosser to be an object. NSOb-
ject provides the base properties and methods for all objects so that other objects do
not have to reimplement the same code. This is a key advantage to using objects. An
object can inherit properties and methods from another object. When a class inherits
from another, it is called a subclass. CoinTosser is a subclass of NSObject. NSObject
is the superclass to CoinTosser.

Because CoinTosser inherits from NSObject, it is able to do anything NSObject
can do. The same is not true for the superclass. NSObject cannot do the same things
CoinTosser can. This is because NSObject does not inherit properties and meth-
ods from CoinTosser. CoinTosser, on the other hand, does inherit properties and
methods from NSObject.

Objective-C, like Java, C#, and Object Pascal, supports single class inheritance.
Other programming languages such as C++, Perl, and Python support multiple class
inheritance. Ambiguities can occur with multiple inheritance, which is why languages
such as Objective-C follow the single inheritance model.

Turner_Book.indb 73 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C74

Interface
To define a class you use @interface. In Listing 4.2, the CoinTosser class defini-
tion starts with the line @interface CoinTosser : NSObject. @interface
is Objective-C syntax that tells the compiler that what follows is a class definition.
CoinTosser is the name of the class. The colon character separates the class name
from the name of the superclass. The new class inherits properties and methods from
the superclass.

The class definition starts with @interface and ends at the first occurrence of
@end. This tells the compiler it has reached the end of the class definition.

A class interface has three distinct sections. Local variables called instance vari-
ables, or ivars for short, are declared between the curly braces. Declared properties and
methods are defined after the curly braces. The order of the declared properties and
methods does not matter, but Objective-C convention is to declare properties after
ivars and declare methods after properties.

Now you may notice that there are no curly braces in Listing 4.2. The curly braces
are not included because there are no ivars defined for this class. Back in the day,
ivars were required to store data within the class instance (i.e., the object). However,
the convention today is to use what is called a declared property to store data in the
object. There was a time when Objective-C required each declared property to have
an explicitly declared ivar, but that is no longer the case. The compiler implicitly
declares the ivar for a declared property for you.

What does all this mean? Let’s take a closer look, starting with instance variables.

Instance Variables
An instance variable is a variable that is created by and made available to the class
instance, which is an object. Instance variables, or ivars as Objective-C program-
mers more commonly call them, are used to store data needed within the object. Ivars
can be C data types such as int, float, or double, or Objective-C classes such as
NSString, NSArray, or NSDictionary.

When you define an ivar of an Objective-C class type, what you are actually doing
is defining a pointer to the object. Pointers are denoted in C and Objective-C with
the asterisk character (*).

Take a look at the ivars defined for the old-style version of the CoinTosser class
shown in Listing 4.3. There are three ivars. Two are defined as C int types. The int
data type is a primitive C data type. Primitive data types are not pointers, hence the
lack of the asterisk. The third ivar is of type NSString. NSString is an Objective-C
object defined in Foundation. Because it is an object, the ivar is declared as a pointer.
So NSString *lastResult says that the ivar lastResult is a pointer to an instance
of class NSString.

Turner_Book.indb 74 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 75

Listing 4.3 Old-Style Version of the CoinTosser Interface

#import <Foundation/Foundation.h>

@interface CoinTosser : NSObject

{

@private

 int headsCount;

 int tailsCount;

 NSString *lastResult;

}

@property (nonatomic, assign) int headsCount;

@property (nonatomic, assign) int tailsCount;

@property (nonatomic, copy) NSString *lastResult;

- (void)flip;

@end

Listing 4.3 shows the old style for defining a class. The old style used ivars to pro-
vide a storage location for declared properties. The declared properties are those items
in the listing that start with @property. This style of coding is no longer common in
Objective-C thanks to improvements in the compiler and Objective-C runtime. The
common style today is to not explicitly declare the ivars and instead let the compiler
take care of them for you. But even though explicitly declaring ivars is becoming a
thing of the past, understanding the role ivars play is important, especially when you
are talking about declared properties.

Declared Properties
The general convention followed in most object-oriented programming languages is
to never directly get or set an ivar from outside the object that defines it. The standard
convention, instead, is to use getter and setter accessor methods. These methods hide
the details of the data storage from the outside world, where the “outside world” is any
code using the object. The concept of information hiding is a key concept in object
orientation called encapsulation.

An object encapsulates the data to protect the rest of the application from changes
that might occur within the object. When accessor methods are used, changes can be
made to the data inside that object without impacting the rest of the application. For
example, let’s say you have a Person object, and this object has an ivar called name.
The application using this object gets and sets a person’s name as needed. Sometime
later it’s determined that you need to have firstName and lastName. name becomes
the concatenation of first and last name. If you are using getter and setter accessor
methods for name instead of accessing the ivar directly, the implementation details for
the accessor methods can change without impacting the rest of the application.

Turner_Book.indb 75 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C76

The problem with getter and setter access methods is that you have to declare each
as part of the interface. This means that for every ivar value that is exposed to the out-
side world, you need to declare two methods. The code for the Person interface looks
like this:

@interface Person : NSObject {

@private

 NSString *name_;

}

- (NSString *)name;

- (void)setName:(NSString *)newName;

@end

Note
The Objective-C convention for getter methods is to use only the name. Other object-
oriented programming languages prefix the method with get (e.g., getName).

In addition to the getter and setter accessor methods being declared in the interface,
each method must be implemented in the implementation file. This means writing a
lot of boilerplate code just to get and set a property value. Luckily, Objective-C 2.0
introduced the concept of declared properties.

A declared property is a compiler directive that generates the accessor methods for
you. This means that you do not need to declare the accessor methods in the interface.
Thus the Person class interface becomes this:

@interface Person : NSObject {

@private

 NSString *name_;

}

@property (strong) NSString *name;

@end

To make things even easier, with the release of the iOS 4.0 SDK, explicit decla-
rations for ivars are no longer required. This means that the Person class interface
becomes this:

@interface Person : NSObject

@property (strong) NSString *name;

@end

Using declared properties is more convenient now that ivars are no longer required.
But before you use a declared property, you need to understand how to define one.

A declared property is defined with the compiler directive @property. This tells
the compiler that what follows is a declared property. The declared property definition
ends at the first semicolon (;) character following the @property directive.

A number of attributes are available to the @property directive. These attributes
include nonatomic, assign, copy, retain, readwrite, and readonly. These

Turner_Book.indb 76 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 77

attributes are enclosed with parentheses found after @property. You can use a com-
bination of the settings, but not all settings can be combined. Combining readwrite
with readonly, for example, makes no sense.

Note
Two additional declared property attributes, strong and weak, are available when Auto-
matic Reference Counting is enabled. These are covered later in this chapter.

Declared properties are, by default, considered atomic. There is no attribute key-
word to denote atomic. The lack of nonatomic indicates that the property is atomic.

An atomic property is thread safe. The property value retrieved by the getter or set
by the setter can be performed safely in a multithreaded application regardless of other
concurrently executing threads. This thread safety does introduce a slight overhead in
the accessor methods, but it is well worth it if multiple threads access the object at the
same time.

nonatomic is not thread safe, which means that if two threads running concur-
rently attempt to get and set the property value at the same time, unexpected results
can occur.

assign, copy, and retain control how memory is managed within the setter
method for the declared property. assign simply assigns the new value to the ivar.
(Remember, an ivar is still used even when you do not explicitly declare it.) You
always want to use assign when declaring a property of a primitive data type such as
int, float, double, and BOOL. copy and retain are used for Objective-C objects.
These two attributes extend the lifetime of the object. assign is also used with
objects, but it does not extend the object’s lifetime.

In addition to assign, copy, and retain, two other attributes are available for use
when Automatic Reference Counting is turned on. These two attributes are strong
and weak, and they too control how memory is managed. Details on memory man-
agement of objects are covered in the Memory Management section found later in this
chapter. For now, just know that these attributes control how memory is managed.

readonly and readwrite attributes do exactly as their names imply. readonly
makes the declared property read-only. This means that the property does not have
a setter method and users of the object cannot change its value. readwrite tells the
compiler to generate both the getter and setter methods. The default is readwrite
when neither is explicitly declared.

There are two additional attributes that come in handy from time to time: getter
and setter. These two attributes allow you to rename the getter and setter access
methods. The getter attribute is commonly used with property values of Boolean
(BOOL) type. The Objective-C convention for naming Booleans is to leave off the is
prefix. For instance, instead of having a property named isVisible, the convention is
to name the property visible. However, to make the code more readable, the getter
accessor method is renamed isVisible. You define this property like this:

@property (assign, getter = isVisible) BOOL visible;

Turner_Book.indb 77 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C78

Note
BOOL is the Objective-C type equivalent of bool found in C. While you can use bool
in Objective-C code, it is recommended that you stick with BOOL since all of Apple’s
Objective-C frameworks use it. This keeps your code compatible with Apple should it ever
decide to change the BOOL type. Also, YES and NO (not true and false) are the pre-
ferred Objective-C values for setting and testing BOOL values.

Methods
Take another look at the CoinToss class interface. Following the declared properties
is the declaration for a method named -flip. The method declaration looks like this:

- (void)flip;

A method performs an action on behalf of the object. The action typically involves
using data that is associated with the object. The method -flip, for example, executes
the code needed to f lip a coin. It then stores the results in the declared properties for
the object.

A method can have a return value and zero, one, or more parameters. The data
type for the return value is specified in parentheses before the method name. A
method with no return value uses void as the data type. Parameters are included as
part of the method name. Objective-C does not use named parameters. Instead, the
colon character is used to indicate the presence of a parameter. This tends to make
Objective-C more verbose, but more readable, than other programming languages.
Here is an example of a method declaration with parameters:

– (int)incrementValue:(int)value bySomeValue:(int)someValue;

Methods come in two f lavors: class method and instance method. A class method
is denoted with a + character at the beginning. A class method is executed from the
class, not an object (which is an instance of the class). Class methods are commonly
provided by a class as a matter of convenience. For instance, many of the Foundation
classes provide class methods that return an instance of the class. Using [NSArray
array] is much more convenient than using [[[NSArray alloc] init]
autorelease].

The other method type is called an instance method. An instance method is a
method available only to an instance of the class (i.e., the object). Instance methods
are denoted with a - character at the beginning. The -flip method defined for the
CoinToss class is an instance method.

Implementation
A class is made up of two pieces: an interface and an implementation. The interface
defines what the class looks like—its properties and methods. The implementation is
where code that is executed at run time lives. In Objective-C, the implementation file
uses the .m file extension. Why .m? Well, according to a thread on StackOverf low, the

Turner_Book.indb 78 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 79

creator of Objective-C, Brad Cox, said that m is used “because .o and .c were taken.
Simple as that.”1 Others believe .m stands for “messages” or “methods.” Regardless, the
implementation of an Objective-C class is in the .m file.

Let’s take a look at the implementation file for the CoinTosser class. The imple-
mentation is shown in Listing 4.4. Be sure to open the file CoinTosser.m and add this
code to your CoinTosser class.

Listing 4.4 CoinTosser Class Implementation

#import "CoinTosser.h"

@implementation CoinTosser

@synthesize headsCount = _headsCount;
@synthesize tailsCount = _tailsCount;
@synthesize lastResult = _lastResult;

- (id)init
{
 self = [super init];
 if (self) {
 [self setLastResult:@""];
 }

 return self;
}

- (void)flip
{
 int randomValue = (arc4random()%10) + 1; // Returns an int between 1 and 10.
 if (randomValue % 2) {
 [self setLastResult:@"Heads"];
 [self setHeadsCount:[self headsCount] + 1];
 } else {
 [self setLastResult:@"Tails"];
 [self setTailsCount:[self tailsCount] + 1];
 }

}

@end

The implementation of a class starts with the compiler directive @ implementation.
The @implementation section ends with the first occurrence of the @end compiler
directive. The implementation is the code or actions performed by the class. It consists
of methods that are defined as part of the class interface as well as methods not defined

1. stackoverf low.com/questions/652186/why-do-objective-c-files-use-the-m-
extension/652266#652266.

Turner_Book.indb 79 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C80

by the interface. Methods not defined by the class interface are private and can be used
only within the class itself.

Synthesize
The first block of code typically found in the implementation is the @synthesize
statement for each declared property. The @synthesize statement is responsible for
telling the compiler that it needs to provide the accessor methods for the declared
properties. The @synthesize directive is followed by the name of the property to
synthesize. For instance, @synthesize headsCount will generate the required
accessor methods for the declared property headsCount.

By default, a synthesized property will use an ivar that has the exact same name as
the property. This means that the statement @synthesize headsCount will implic-
itly declare an ivar named headsCount. You can change the ivar name by setting the
synthesized property name equal to another name, for example:

@synthesize headsCount = _headsCount;

This line of code synthesizes the declared property headsCount. It generates the
accessor methods for the property, and it implicitly declares the ivar _headsCount.
The underscore is just a naming convention. It has no special meaning. The ivar could
be called headsCount_ or even bob.

Why would you want to rename the ivar to something other than the property
name? One of the best reasons to rename the ivar is to avoid conf licts with parameter
names used in method declarations. If the parameter name for a method matches the
ivar name, the compiler will produce a warning that the local variable hides the ivar.

As a real-world example, consider a view controller that contains a table view.
The declared property for the table view is named tableView. In the implementa-
tion, the tableView property is synthesized and the ivar is not renamed. It remains
tableView. You declare the delegate methods for the table view delegate object, and
each of these methods has a parameter named tableView. This now hides the ivar
from the method’s implementation, producing a warning message from the compiler.

The example just described likely sounds foreign to you, but it will make sense later
after you spend time writing your first iPad app. For now, just know that renaming
the ivar for a declared property is a good thing.

init
Following the @synthesize statements is the method named -init. This method
is defined in the NSObject class, which is why you do not see it in the CoinTosser
interface. The method -init is called when an object is created. In Objective-C, you
commonly see the following pattern:

MyClass *myObject = [[MyClass alloc] init];

The method +alloc is a class method. It is responsible for allocating a new object
as an instance of the class. The instance method -init is called to initialize the object.

Turner_Book.indb 80 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 81

The -init method is where you typically place code responsible for initializing the
object. For instance, the -init method for CoinTosser sets the lastResult prop-
erty to a zero-length string.

The -init method for the CoinTosser class makes references to the variable
self. The self variable is a special variable that references the current instance of the
class. It is used within the methods of a class to access properties and methods defined
by the class. The line of code [self setLastResult:@""] is saying to call the
-setLastResult: (this is the setter method for the declared property lastResult)
method on this instance of the class.

Note
Other object-oriented programming languages use self, this, and me to reference the
current instance of a class.

super
The first line of code in the -init method from Listing 4.4 is self = [super
init]. The keyword super instructs the code to call the method from the superclass.
You often call super when you override a method defined in the superclass. This
ensures that behavior from the superclass is executed as part of the implementation for
the overridden method.

flip
The final method defined in the CoinTosser implementation is -flip. This method
is an instance method, which means it can be called only on an instance of the Coin-
Tosser class. The -flip method uses the same algorithm used earlier in the C ver-
sion of the app. It generates a random number and checks to see if the number is even
or odd. The difference, however, is that the results of the f lip are no longer reported
via the NSLog function. Instead, the declared property lastResult is set to either
“Heads” or “Tails,” and the heads and tails counts are incremented.

This code may look a bit odd at first. You may be wondering about the brackets
enclosing some of the lines of code, and the string literal that has an @ symbol at the
beginning. What you are seeing here is Objective-C code. In fact, when you look at
the implementation for the -flip method, you see a mix of C and Objective-C code.
int randomValue = (arc4random()%10) + 1 and if (randomValue % 2) are
C statements. The statements enclosed with brackets are Objective-C statements.

A quick way to identify Objective-C statements is to look for the brackets, though
this is not always true, as you will see in a moment.

The string literals @"Heads" and @"Tails" are Unicode strings used by
Objective-C. The @ signals to the compiler that the string literal is for Objective-C.
An Objective-C string literal is actually shorthand syntax to define a pointer to an
Objective-C string object. If the @ symbol is missing, the compiler assumes that the
string literal is a C string literal, which is generally not used in Objective-C. A C
string literal is a pointer to a char data type and not an object.

Turner_Book.indb 81 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C82

Let’s take another look at a snippet of the Objective-C code from the -flip
method. The code is

[self setLastResult:@"Heads"];

[self setHeadsCount:[self headsCount] + 1];

What exactly is going on here? The first line of code is of course Objective-C
code. The brackets tell you (and the compiler) that. self is the object and the receiver
of the message setLastResult:. Message, not method? Yes, message.

The Objective-C runtime environment is a dynamic environment. It is a message-
based environment similar to Smalltalk. So while it looks as if the code is calling the
method setLastResult:, it is in fact sending a message to the object self. self
is the receiver, and the message it receives is setLastResult:. The message is then
mapped to the method -setLastResult:, implemented in the class that defines
the object. So while it looks as if the code is calling the method -setLastResult:,
under the Objective-C hood a message is being sent to the receiver self. And this all
happens at run time.

Why is this important? It is important because it means that the method (or mes-
sage) is not required to be known at compile time. It can be determined at run time.

Selector
A method is the implementation of some functionality within a class. At run time,
a message is sent to a receiver (object) that in turn invokes the method. The message
is called a selector, and a selector is another data type in Objective-C. The SEL type
defines a selector. In code, you can create a reference to a selector by using the
@selector compiler directive. For example:

SEL selector = @selector(flip);

This line of code assigns a selector for the message flip to the variable selector.
The selector can then be invoked by calling -performSelector:, which is available
on NSObject. This means that the Objective-C code you write can determine at run
time what selector (or method) to invoke. An example of this is shown in Chapter 16,
“Building the Main Screen.”

Dynamically invoking methods isn’t the only thing you can do with selectors.
You can use selectors to determine if an object implements a particular method. This
means that you can query an object at run time to determine if it supports a particular
method. If the method is supported, it is called; otherwise a different course of action
is taken. Examples of this are found throughout this book, starting with Chapter 15,
“Doing More with View Controllers.”

Let’s return to the code snippet:

[self setLastResult:@"Heads"];

[self setHeadsCount:[self headsCount] + 1];

Turner_Book.indb 82 12/11/11 6:46 PM

ptg999

Hands-On with Objective-C 83

So self is the object that receives the message. self is also considered the receiver,
and the message is the selector. In the first line of code, the message is setLast-
Result:. This message corresponds to a method defined in the class for self. self
is an instance of the class CoinTosser, so the message corresponds to the method
-setLastResult: defined in the class CoinTosser. But this method is not defined
anywhere in the class. Why?

The method -setLastResult: is a setter method for the declared property
lastResult. The @synthesize statement for lastResult generates the -set-
LastResult: method at compile time, which is why it is not explicitly declared in
the class implementation.

The same is true for the line of code that follows. headsCount is a property. It is
synthesized, making the setter method setHeadsCount: available in the object. But
the second line of code includes the statement [self headsCount]. This is the getter
method for the declared property. So what you see here are two lines of Objective-C
code accessing declared properties using the accessor methods for the properties.

Now you can, if you want, access the property values directly by using the ivar for
each property. The code looks like this:

_lastResult = @"Heads";

_headsCount = _headsCount + 1;

The problem, however, is that you should never (except under very rare cir-
cumstances) directly access the ivar. Accessing the ivar is not good object-oriented
programming. A declared property does more than just wrap access to the ivar. It
manages the memory associated with the ivar.

In the case of lastResult, directly setting the ivar _lastResult can result in a
memory leak. In fact, the line of code _lastResult = @"Heads" can cause a mem-
ory leak. The ivar may have been pointing to another NSString object. By directly
setting the ivar and bypassing the memory management provided by declared proper-
ties, you have orphaned the other NSString object, leaving it in memory until the
app quits. Leaking memory from one NSString object is not going to crash your app,
but leaking hundreds, even thousands, will potentially crash your app and annoy your
users.

So the general rule of thumb is never to access ivars directly. Always use accessor
methods to get and set property values.

But you say, “Okay, I’ll only use the accessor methods. But isn’t there a way to sim-
plify the code and avoid the brackets?” Why, yes, there is, but...

Dot Syntax
Objective-C supports dot syntax. Dot syntax is a shortcut way for writing code that
accesses properties. Here is the same code snippet, this time using dot syntax:

self.lastResult = @"Heads";

self.headsCount = self.headsCount + 1;

ptg999

Chapter 4 Getting Started with Objective-C84

Each line of code still states the object (or receiver) and the method (or message and
selector). But the brackets have been eliminated to make the code easier to read.

While dot syntax simplifies the code, its use in Objective-C has sparred a religious
war of sorts. Some Objective-C developers like using dot syntax anywhere and every-
where, while others are completely opposed to its use. Both groups have good argu-
ments favoring their beliefs. You can do a Google search on the phrase “Objective-C
use dot syntax or not” to read arguments from both sides.

This book does not take a stance on the use, or lack of use, of dot syntax. However,
most of the code in this book uses the messaging-style format instead of dot syntax.
Why? For many newcomers to Objective-C, using the messaging style is easier to grok.

Using the CoinTosser Class
Let’s get back to the CoinToss app. You have created the class CoinTosser and added
it to the project. If you have not, go back to the Class and Implementation sections and
copy the code from the listings.

Now open the file main.m and update it with the code from Listing 4.5.

Listing 4.5 Updated main.m File

#import <Foundation/Foundation.h>

#import "CoinTosser.h" // 1

int main (int argc, const char * argv[])

{

 @autoreleasepool {

 CoinTosser *tosser = [[CoinTosser alloc] init]; // 2

 for (int index = 0; index < 10; index++) { // 3

 [tosser flip]; // 4

 NSLog(@"%@", [tosser lastResult]); // 5

 }

 NSLog(@"Tally: heads %i tails %i", [tosser headsCount],

 [tosser tailsCount]); // 6

 }

 return 0;

}

Now let’s walk through the code changes:

1. The first change is the addition of the #import "CoinTosser.h" header
file. The code in main.m uses the CoinTosser class, so the header file must be
imported.

Turner_Book.indb 84 12/11/11 6:46 PM

ptg999

Memory Management 85

2. A local variable named tosser is created. It is a pointer to an instance of the
class CoinTosser. The class method +alloc is called to create the object, and
the instance method -init is called to initialize the object.

 3. A for loop is created that loops ten times. This for loop is standard C code.

4. The instance method -flip is called. Under the hood, Objective-C is send-
ing the message flip to the receiving object tosser, which in turns invokes
the method -flip. But to keep things simple, let’s just say the method -flip is
called.

 5. The function NSLog is called. It sends the current string value for the declared
lastResult to the output window.

 6. After the for loop completes, an additional NSLog is called to show the total
number of times the coin lands on heads and lands on tails.

After you make the changes to main.m, run the app (�-R) and see how many times
the coin lands on heads and tails.

Memory Management
One aspect of programming for iOS that is a pain point for newcomers is memory
management. The iOS platform is designed for mobile devices, which have limited
available memory. Apple does not publish information about the amount of available
RAM on the iPad, but it’s believed that the first-generation iPad has only 256MB
and the iPad 2 has 512MB of memory. Compare this to the MacBook Air, which
starts with 2GB of memory and can go up to 4GB, or the MacBook Pro, which starts
with 4GB and supports up to 8GB. The iPad, by today’s standard, doesn’t have much
memory.

The iOS platform is finely tuned for these low-memory mobile devices, which
means some technology trade-offs had to be made to ensure high performance and
great battery life. One such trade-off is the lack of garbage collection, a technology
that many of today’s programmers take for granted. Without garbage collection, you,
the programmer, are responsible for memory management within your application.
But what does this mean exactly?

Each time you allocate an object, you are responsible for releasing it. If you fail to
release the object, the object leaks. This means that the memory used by the object
remains allocated with no way of releasing it. A memory leak is one of the most com-
mon errors found in iOS apps today, and it leads to low-memory conditions on the
device, which can ultimately crash the app. And no one likes a crasher.

Memory leaks are caused by sloppy programming where a programmer is not fol-
lowing the retain-and-release pattern. When you allocate (or copy) an object, you take
ownership of the object. It’s like saying, “You retain ownership of this object.” As the
owner of the object, it is your job to release (or free) the object when it is no longer

Turner_Book.indb 85 12/11/11 6:46 PM

ptg999

Chapter 4 Getting Started with Objective-C86

needed. If the object is not released, it sits in memory until the app quits. Hence retain
and release. If you retain an object, you must release it. No ifs, ands, or buts.

Garbage collection frees the programmer from having to worry about memory
management. The garbage collector monitors the object and memory usage, and it
automatically releases the object when it knows the object is no longer needed. Gar-
bage collection, however, is not available on iOS. It is available for the Mac desktop,
which also has a lot more available RAM than an iOS device. But you’re not here to
learn about Mac programming. You’re here to learn about iOS programming, and you
have to accept the fact that no garbage collection is available for iOS.

But fear not, soon-to-be-skilled iOS programmer, because Apple engineers have
come up with a way to relieve you from the burden of memory management while at
the same time keeping iOS a finely tuned mobile OS without garbage collection.

Automatic Reference Counting
Automatic Reference Counting, or ARC for short, is a compiler-level feature that
simplifies the memory management of an object. It’s like garbage collection, but better
for mobile devices.

Objects in Objective-C are reference counted. Each time you retain an object, the
reference count for the object increments. When you release the object, the reference
count for the object decrements. When the reference count reaches zero, the object is
de-allocated. This frees the memory used by the object, giving the memory back to
the operating system so that it can be allocated for another purpose at another time.

With ARC, your code is analyzed during compile time, and the appropriate man-
agement of the lifetime for an object is injected into the compiled binary. This means
that you never need to release an object. It is done automatically. Prior to ARC,
you had to explicitly call release on each object that you retained. This is no longer
required. In fact, calling release is no longer possible. Attempting to call release on an
object while using ARC will result in a compile error.

What does ARC mean for you, the newcomer to iPad programming? It means you
don’t have to worry (as much) about the lifetime (i.e., memory management) of an
object. You allocate an object when it is needed, and it is released automatically. This
means less code for you to write, making your code easier to read and less likely to
ever cause a memory leak.

ARC also introduces two new property attributes for declared properties: weak and
strong. These two keywords control the memory management aspects of the prop-
erty. The keyword strong is used in place of retain. A strong property is claim-
ing “ownership,” and its object is automatically released when the object is no longer
referenced.

A weak property does not extend the lifetime of the object. In other words, it does
not assume ownership, so it is possible that the object is released while the property
has a reference to it. However, weak properties are automatically set to nil when the
object is released. This is a huge benefit to the iOS programmer. Before ARC, when

Turner_Book.indb 86 12/11/11 6:46 PM

ptg999

Summary 87

an object was released, the reference to the de-allocated object still pointed to the
memory address for the object. If you attempted to make a call to the released object,
it would crash your app.

With ARC, when the object pointed to by a weak property is released, the refer-
ence is automatically set to nil. And in Objective-C, sending a message to a nil
object does absolutely nothing. This means that your app will not crash. It does not
mean that your app will function properly, but at least the crasher has been eliminated.

When you create a new iOS project, one of the project options is “Use Automatic
Reference Counting.” In general, you should always turn on this feature.

Note
ARC is available for iOS 4 and above.

Summary
As stated at the beginning, this chapter is a brief overview of Objective-C. The goal
is to arm you with enough knowledge that you can work your way though this book.
You will learn more as you read along, but there is so much more to Objective-C than
what is covered here.

If you want to learn more about Objective-C, or you’re not yet comfortable with
Objective-C, read one of the books listed at the beginning of the chapter. Or read the
Objective-C Programming Language2 and Object-Oriented Programming with Objective-C3

documents published by Apple and available for free online at developer.apple.com
and in the iBookstore.

2. developer.apple.com/library/prerelease/ios/#documentation/Cocoa/Conceptual/
ObjectiveC/Introduction/introObjectiveC.html.

3. developer.apple.com/library/prerelease/ios/#documentation/Cocoa/Conceptual/
OOP_ObjC/Introduction/Introduction.html.

Turner_Book.indb 87 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

5
Getting Started with Cocoa

Objective-C is the preferred programming language for writing iOS applications. The ability to
use Objective-C for writing iOS applications would be limited, however, if not for the support of
a solid, well-designed application framework called Cocoa. It is the combination of Objective-C
with Cocoa that makes it possible for you to write iOS applications.

Cocoa is an application framework—written mostly in Objective-C—that makes it possible
to rapidly write robust, full-featured applications for iOS. Cocoa provides frameworks, libraries,
and APIs for virtually every conceivable development necessity imaginable. Without Cocoa there
would not be hundreds of thousands of iOS applications available in the App Store today.

This chapter introduces you to the Cocoa stack, two of its key frameworks (Foundation and
UIKit), and common design patterns found in Cocoa. These frameworks and patterns are funda-
mental to iOS programming and require a general understanding before you continue beyond this
chapter.

This chapter is split into four sections. The first introduces you to the Cocoa architectural stack.
A quick reference to many of the more frequently used classes found in the Foundation framework
follows this. UIKit, the framework responsible for providing objects that create and manage the
user interface for the applications you will create, is covered after Foundation. And finally, the
chapter wraps up with a review of common design patterns found in Cocoa and in the sample code
for the book.

Let’s get started by talking more about the Cocoa stack.

The Cocoa Stack
Cocoa is the application environment for iOS. Its collection of frameworks, librar-
ies, and APIs provides the building blocks for creating awesome iOS applications. The
breadth and richness of the Cocoa stack are truly amazing.

Cocoa’s architectural stack for iOS applications consists of four key layers, as seen in
Figure 5.1.

n Cocoa Touch: Supports iOS applications. It includes frameworks such as UIKit,
GameKit, iAd, and Map Kit.

Turner_Book.indb 89 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa90

n Media: Provides graphical and multimedia support to the Cocoa Touch layer,
and it depends on Core Services. It includes frameworks such as Core Anima-
tion, Core Audio, AVFoundation, Core Graphics, OpenGL ES, and Core Text.

n Core Services: As the layer name implies, the Core Services layer provides core
services such as string management, collections classes, networking, URL utili-
ties, and preferences. It also provides frameworks for hardware-based services
such as GPS, compass, accelerometer, and the gyroscope on iPhone 4, and it pro-
vides services and frameworks for data persistence. Some of the key frameworks
found in the Core Services layer include Core Data, Foundation, Core Founda-
tion, Core Location, and System Configuration.

n Core OS: At Cocoa’s foundation is Core OS. This layer abstracts the rest of
Cocoa from the actual operating system. It provides the kernel, the file system,
networking infrastructure, security, power management, and device drivers.

Cocoa is also available on Mac OS X where it is the predominant application envi-
ronment for building Mac applications. Most but not all of the frameworks provided
in Cocoa for iOS are available on Mac OS X, excluding Cocoa Touch, of course. This
means you can achieve a certain amount of code reuse when developing applications
for both iOS and Mac OS X.

As you read this book, you will get hands-on experience with different Cocoa
frameworks, but you need to be aware of two key frameworks before continuing:
Foundation and UIKit. Much of what you do with Cocoa centers on these two frame-
works, so much so that a brief overview is warranted.

Note
When I learn a new programming environment, the first thing I like to do is get an over-
view of what features are available. I don’t need to know the intimate details. I just need
a quick reference for what’s available so that my mind can start relating features of the
new environment to environments I’ve worked with in the past. That’s the purpose of the
remainder of this chapter: to give you an overview of Cocoa’s two key frameworks.

Figure 5.1 Cocoa’s architectural stack for iOS. Note the two key
frameworks, UIKit and Foundation.

Turner_Book.indb 90 12/11/11 6:46 PM

ptg999

Foundation 91

If you have been reading since Chapter 1, “Your First App”—and you probably
have—you have already used both Foundation and UIKit. So what are these two
frameworks?

Foundation is a library of Objective-C classes providing
n A set of useful primitive data classes
n Small utility classes
n Support for Unicode strings
n Support for object persistence

Foundation also provides a level of OS independence. It is this OS independence
that allows you to reuse the same code between iOS and Mac OS X.

UIKit is a library of user interface objects for constructing and managing an appli-
cation’s user interface. Unlike Foundation, UIKit is tied directly to iOS. This means
you cannot use UIKit-related code for Mac OS X applications.

Note
Mac developers use a similar user interface framework called AppKit.

Let’s look at some of the more frequently used classes in these two frameworks,
starting with Foundation.

Foundation
Foundation, as the name implies, provides the foundation for many primitive data type
classes, utility classes, Unicode string support, and object persistence for iOS applica-
tions. Much of Foundation is, just to reiterate, available on iOS and Mac OS X, so
code you write using Foundation can be used in applications built for both platforms.

This chapter does not cover every class in Foundation—there are simply too many
classes to cover each one—but it does cover the ones you will see most often, espe-
cially throughout this book.

Foundation versus Core Foundation
It’s not uncommon for developers to think that Foundation and Core Foundation are
the same, but in truth the two frameworks are different. Core Foundation is a library
found further down the Cocoa stack. It provides types and interfaces implemented in
C, not Objective-C. Foundation, on the other hand, is an object layer that sits on top of
Core Foundation, providing Objective-C objects for Foundation types and services.

A quick way to know if you are working with a Foundation type versus a Core Founda-
tion type is to look at the prefix in the type’s name. Foundation types are prefixed
with NS, and Core Foundation types are prefixed with CF. For example, NSString
resides in the Foundation framework and CFString resides in Core Foundation. The

Turner_Book.indb 91 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa92

same goes for other types such as NSDate and CFDate, NSArray and CFArray,
NSDictionary and CFDictionary, and NSNumber and CFNumber.

Most Core Foundation types have counterparts in the Foundation framework. This
close relationship between types means that Foundation types can be used in place of
Core Foundation types. This is called “toll-free bridging.”

Toll-free bridging makes it possible to use the types interchangeably with a simple
cast. For example, Foundation’s NSDate is toll-free bridged with CFDate found in
Core Foundation. This means you can use an NSDate instance on API calls expecting
CFDate as a parameter.

Data Type
As you learned in Chapter 4, “Getting Started with Objective-C,” you can use the
primitive C data types in your applications. But Foundation also provides a set of
classes for primitive data types that help simplify your code.

Note
Some of the Foundation types are Objective-C classes and others are structure types
defined in C. The only way to tell the difference is to look at the documentation or the
header file where the type is defined.

Some Foundation classes come in two f lavors: immutable and mutable. An immu-
table type cannot have its value changed once it has been initialized. Immutable types
are, in a sense, static. Their values cannot change. A mutable type, on the other hard,
can have its value changed over and over during the life of the object.

So why have both immutable and mutable classes? Immutable classes tend to be
more efficient because immutable objects do not have to worry about data changes.
Mutable classes, on the other hand, are more f lexible in that the data managed by
a mutable object can change during the life span of the object. The general rule of
thumb is that unless you have a need to change an object’s value, you will want to use
immutable types whenever possible.

Note

A mutable type has the word mutable in its name, for example, NSMutableString,
NSMutableArray, and NSMutableDictionary. Immutable types do not, for exam-
ple, NSString, NSArray, and NSDictionary.

NSData and NSMutableData
NSData provides an object interface for a byte buffer. NSData is used to store a stream
of bytes in memory. It includes methods for retrieving the bytes, retrieving subsets of
bytes, and determining the length of the byte buffer, as well as methods for writing
the bytes to a file. NSMutableData is the mutable version of NSData, which means its

Turner_Book.indb 92 12/11/11 6:46 PM

ptg999

Foundation 93

data can change. See Listing 5.1 for an example of using NSData, and see Listing 5.17
for an example of using NSMutableData.

Listing 5.1 New NSData Instance Loaded with Bytes from the Image File home.png

NSString *path = [[NSBundle mainBundle] pathForResource:@"home" ofType:@"png"];

NSData *data = [NSData dataWithContentsOfFile:path];

NSCalendar
NSCalendar is an object representing a system of time in which beginning, length,
and subdivisions of the year are defined. NSCalendar is often used when performing
date arithmetic with NSDate. Use the class method currentCalendar to return the
logical calendar for the user. This calendar is created from the user’s system locale and
custom settings from System Preferences. You can also specify the calendar by calling
initWithCalendarIdentifier: and passing in one of the NSLocale calendar keys,
shown in Listing 5.2. See Listing 5.3 for sample code using NSCalendar.

Listing 5.2 NSLocale Calendar Keys

NSString * const NSGregorianCalendar;

NSString * const NSBuddhistCalendar;

NSString * const NSChineseCalendar;

NSString * const NSHebrewCalendar;

NSString * const NSIslamicCalendar;

NSString * const NSIslamicCivilCalendar;

NSString * const NSJapaneseCalendar;

NSString * const NSRepublicOfChinaCalendar;

NSString * const NSPersianCalendar;

NSString * const NSIndianCalendar;

NSString * const NSISO8601Calendar;

NSDate
NSDate is an object representing a single point in time. It provides methods for creat-
ing dates, comparing dates, calculating time intervals, and other date-related function-
ality. NSDate is toll-free bridged with CFDate. See Listing 5.3 for sample code using
NSDate.

NSDateComponents
NSDateComponents is used to create a date object from the parts of a date and time:
month, day, year, hour, minute, and second. You can also use NSDateComponents
to retrieve the parts of the date and time. See Listing 5.3 for sample code using
NSDateComponents.

Turner_Book.indb 93 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa94

Listing 5.3 Sample Code Calculating My Son Rowan’s Age Based on His Birth Date

NSCalendar *calendar = [NSCalendar currentCalendar];

NSDate *now = [NSDate date];

NSDateComponents *components = [[NSDateComponents alloc] init];

[components setDay:29];

[components setMonth:3];

[components setYear:2008];

[components setCalendar:calendar]; // New as of iOS 4.0

NSDate *birthdate = [components date]; // New as of iOS 4.0

// Alternative approach used prior to iOS 4.0

// and still perfectly valid today.

//NSDate *birthdate = [calendar dateFromComponents:components];

// Flag determining which components of the date we want.

NSUInteger unitFlags = NSYearCalendarUnit|NSMonthCalendarUnit|NSDayCalendarUnit;

NSDateComponents *age = [calendar components:unitFlags

 fromDate:birthdate

 toDate:now

 options:0];

NSLog(@"Rowan is %i years %i months %i days old.",

 [age year], [age month], [age day]);

NSDecimalNumber
NSDecimalNumber is an object wrapper for decimal numbers derived from
NSNumber. According to Apple’s developer documentation, NSDecimalNumber can
represent any number that can be “expressed as mantissa x 10^exponent where man-
tissa is a decimal integer up to 38 digits long, and exponent is an integer from –128
through 127.” An example of using NSDecimalNumber is provided in Listing 5.4.1

Note
NSDecimalNumber isn’t the easiest object to work with, but Marcus Zarra makes a
darn good argument as to why you should use it, especially if you are dealing with cur-
rency. Read his blog posting and don’t be lazy with NSDecimalNumber.1

1. www.cimgf.com/2008/04/23/cocoa-tutorial-dont-be-lazy-with-nsdecimalnumber-
like-me/.

Turner_Book.indb 94 12/11/11 6:46 PM

www.cimgf.com/2008/04/23/cocoa-tutorial-dont-be-lazy-with-nsdecimalnumber-like-me/
www.cimgf.com/2008/04/23/cocoa-tutorial-dont-be-lazy-with-nsdecimalnumber-like-me/

ptg999

Foundation 95

Listing 5.4 Rounding Example Using NSDecimalNumber

NSDecimalNumber *number = [NSDecimalNumber decimalNumberWithMantissa:1445

 exponent:-3

 isNegative:NO];

NSDecimalNumberHandler *behavior =

 [NSDecimalNumberHandler decimalNumberHandlerWithRoundingMode:NSRoundPlain

 scale:2

 raiseOnExactness:NO

 raiseOnOverflow:NO

 raiseOnUnderflow:NO

 raiseOnDivideByZero:NO];

NSDecimalNumber *result =

 [number decimalNumberByRoundingAccordingToBehavior:behavior];

NSLog(@"%@ rounds to %@", number, result);

NSInteger and NSUInteger
NSInteger is a C typedef to describe an integer. NSInteger is a 32-bit integer in
32-bit applications and a 64-bit integer in 64-bit applications. NSUInteger is an
unsigned NSInteger. Examples of using the integer types are shown in Listing 5.5.

Listing 5.5 Examples of Initializing NSInteger and NSUInteger

NSInteger x = 5;

NSInteger y = -20;

NSUInteger z = 12;

Note
NSInteger and NSUInteger provide architecturally safe data types for the corre-
sponding C scalar types. This can be helpful when sharing code between iOS and Mac
OS X. However, there may be times when you want to use the C scalar type. For instance,
the use of NSInteger could cause unnecessary memory bloat to your application. A
4-bit integer uses half as much memory as an 8-bit integer. If your application is storing
millions of short integers in memory, using the C scalar type may make more sense. How-
ever, generally speaking, using the Foundation types is fine for most applications where
the number of these values stored in memory at one time is relatively small and the life-
time of the value is short-lived, that is, a local function variable.

NSNumber
NSNumber is an immutable object representing any C scalar (numeric) type. It pro-
vides methods for getting and setting signed and unsigned C scalar types char, short
int, int, long int, long long int, float, double, and bool. NSNumber also

Turner_Book.indb 95 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa96

includes a compare: method to compare values from two NSNumber instances. List-
ing 5.6 shows examples of using the NSNumber object.

Listing 5.6 Examples of Using NSNumber to Initialize and Retrieve Values

NSNumber *number;

number = [NSNumber numberWithFloat:1.5];

float aFloat = [number floatValue];

number = [NSNumber numberWithBool:YES];

BOOL aBool = [number boolValue];

NSNull
NSNull is a singleton object used to represent NULL in a collection object, such as
NSArray and NSDictionary, where nil is not allowed. An example of using the
NSNull object in an NSArray is shown in Listing 5.7.

Listing 5.7 Example of Using NSNull to Add a NULL Placeholder Object to an Array

// [NSNull null] places a null object in the array.

// nil ends the array.

NSArray *items = [NSArray arrayWithObjects:

 @"one", @"two", [NSNull null], @"four", nil];

NSLog(@"items = %@", items);

NSObject
NSObject is the root class for most Objective-C classes. Any class you create that does
not derive from an existing class higher up the object hierarchy should derive from
NSObject. Listing 5.8 shows an example of a class that is a subclass of NSObject.

Listing 5.8 Example of a Class Derived from NSObject

@interface MyClass : NSObject

{

}

@end

NSString and NSMutableString
NSString is an object representation of a text string. It provides methods for deter-
mining the length of the string, retrieving characters at a particular position within the
string, and text string comparisons.

The text string is stored as an array of Unicode characters. Unicode string literals are
enclosed with double quotation marks and prefixed with the @ symbol. C string literals,
on the other hand, are enclosed with only double quotation marks, no prefix. You will

Turner_Book.indb 96 12/11/11 6:46 PM

ptg999

Foundation 97

receive a compile error if you try to set an NSString to a C string literal. Listing 5.9
shows an example of creating a new NSString instance with a string literal.

Listing 5.9 Creating a New NSString Instance from a String Literal

// Create a new NSString instance with a string literal.

NSString *aString = @"This is a string literal";

Use NSMutableString when you need to update the string value after it has been
initialized, as shown in Listing 5.10.

Listing 5.10 Simple Sample of Appending New Strings to an NSMutableString

NSMutableString *string = [[NSMutableString alloc] init];

for (int i=0; i < 10; i++) {

 [string appendFormat:@"Item %i\n", i];

}

NSLog(@"%@", string);

Collection Classes
NSArray and NSMutableArray
NSArray manages an ordered collection of objects. NSArray creates a static array, and
NSMutableArray creates a dynamic array. An object added to the array receives a
retain message. When the object is removed, which is possible only with NSMutable-
Array, the object receives a release message. And when the array is released, all objects
contained by the array receive a release message. An example of using NSArray is
shown in Listing 5.11.

Listing 5.11 Example of Using NSArray and NSMutableArray

NSArray *staticArray = [NSArray arrayWithObjects:

 @"one", @"two", @"three", @"four", nil];

NSLog(@"%@", staticArray);

NSMutableArray *dynamicArray = [[NSMutableArray alloc] init];

[dynamicArray addObject:@"one"];

[dynamicArray addObject:@"two"];

[dynamicArray addObject:@"three"];

[dynamicArray addObject:@"four"];

NSLog(@"%@", dynamicArray);

[dynamicArray release];

NSDictionary and NSMutableDictionary
NSDictionary manages a static collection of objects associated by key-value pairs.
NSMutableDictionary manages a dynamic collection of objects. The key identifies

Turner_Book.indb 97 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa98

the object and the value is the object. As with NSArray and NSMutableArray, an
object added to a dictionary receives a retain message. The object receives a release
message when removed from the dictionary. And all objects contained in the diction-
ary receive a release message when the dictionary is released. Examples of using dic-
tionaries are shown in Listing 5.12.

Listing 5.12 Examples of NSDictionary and NSMutableDictionary

NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:

 @"John Doe", @"name",

 @"Seattle", @"city",

 @"WA", @"state",

 nil];

NSMutableDictionary *mutableDict =

 [NSMutableDictionary dictionaryWithDictionary:dict];

[mutableDict setObject:@"555-1212" forKey:@"phone"];

[mutableDict setObject:@"john.doe@domain.com" forKey:@"email"];

NSSet, NSMutableSet, and NSCountedSet
NSSet, NSMutableSet, and NSCountedSet manage a collection of unordered
objects. You use a set in place of an array when order is not important and you need to
check if the set contains the object.

Note
Checking for the existence of an object in an array is not as fast as checking a set. So if
order is not important and you need to determine if an object already exists in some col-
lection, use one of the set objects.

NSSet creates a static set of distinct objects. Objects cannot be added or removed
after the set is initialized. You can, however, change the object contained in a static
set. In other words, you can change the properties of an object contained in an NSSet,
but you cannot remove the object reference from the static set.

NSMutableSet creates a dynamic set of distinct objects. Objects can be added and
removed even after the set has been initialized.

NSCountedSet is a mutable set of indistinct objects. Whereas NSSet and
NSMutable Set contain at most one reference to an object, NSCountedSet can
contain any number of references to the same object. NSCountedSet keeps track of
the number of times an object is added to and removed from the set. To completely
remove an object from NSCountedSet, the object must be removed the same number
of times it is added. Examples of using sets are shown in Listing 5.13.

Note
NSCountedSet is also known as a bag.

Turner_Book.indb 98 12/11/11 6:46 PM

ptg999

Foundation 99

Listing 5.13 Examples of Using NSSet, NSMutableSet, and NSCountedSet

NSString *peter = @"Peter";

NSString *mary = @"Mary";

NSString *paul = @"Paul";

NSSet *set = [NSSet setWithObjects:paul, mary, nil];

NSLog(@"%@", set);

NSMutableSet *mutableSet = [NSMutableSet setWithSet:set];

[mutableSet addObject:peter];

NSLog(@"%@", mutableSet);

NSCountedSet *countedSet = [NSCountedSet setWithObjects:

 peter, paul, mary, peter, nil];

NSLog(@"%@", countedSet);

Utility Classes and Functions
NSLog
NSLog sends a message to the Apple System Log facility. The message can be viewed
in the console. When calling NSLog, you first pass the format string followed by a
variable number of arguments displayed as part of the output message. Table 5.1 lists
some of the more common format specifiers supported by format strings. For a com-
plete list, read the “String Format Specifiers”2 article in the developer documentation.

NSBundle
NSBundle is an object representing a location on the file system containing the code
and resources used by the application. In iOS, NSBundle is used to find the path to

2. developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/Strings/
Articles/formatSpecifiers.html.

Table 5.1 Commonly Used String Format Specifiers

Specifier Description

%@ Objective-C object; displays the string returned by
descriptionWithLocale: (if available) or description

%% “%” literal character

%d, %D, %i Signed integer

%u, %U Unsigned integer

%f Floating-point number

%s Null-terminated char array (8-bit, C language string)

%S Null-terminated Unicode char array (16-bit)

%p Pointer address displayed in hex

Turner_Book.indb 99 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa100

resources such as images and plist files included in your application. An example of
using the NSBundle object is shown in Listing 5.14.

Listing 5.14 Example of Retrieving the Path to the Application’s Icon Image File Using
NSBundle

NSString *path = [[NSBundle mainBundle] pathForResource:@"icon" ofType:@"png"];

Note
A bundle can be one of three types: Application, Framework, or plug-in. However, under
iOS you can create a bundle only of type Application. iOS third-party developers cannot
create Framework and plug-in bundles.

NSFileManager
NSFileManager is a class wrapper for performing generic file system operations such
as copying, or moving, a file from one path to another, determining if a file exists,
creating a new directory path, and so on.

Note
NSFileManager provides a singleton reference by calling the class method
defaultManager. However, it is recommended that you use [[NSFileManager
alloc] init] instead of the singleton object to ensure thread safety.

NSDateFormatter
NSDateFormatter creates a string representation of an NSDate and can convert string
representations of a date to NSDate. You can specify the date and time format or use
predefined date and time styles. Using a style is preferred since it takes into account the
user’s localization settings for the date and time formatting in the System Preferences.

NSNumberFormatter
NSNumberFormatter is used to convert a string representation of a number into an
NSNumber and convert an NSNumber to a string.

NSPredicate
NSPredicate is used to create logical conditions for searching and filtering data.
Predicates are created using a format string that looks similar to SQL syntax. Predi-
cates are used to search and filter fetched data, as with Core Data, and for in-memory
searching and filtering. An example of using NSPredicate is shown in Listing 5.15.

Listing 5.15 Example of Filtering an Array of Names Using NSPredicate

NSArray *names = [NSArray arrayWithObjects:@"Peter", @"Paul", @"Mary", nil];

NSPredicate *predicate =

 [NSPredicate predicateWithFormat:@"SELF BEGINSWITH[cd] 'P'"];

NSArray *namesBeginningWithP = [names filteredArrayUsingPredicate:predicate];

NSLog(@"%@", namesBeginningWithP);

Turner_Book.indb 100 12/11/11 6:46 PM

ptg999

Foundation 101

NSRegularExpression
NSRegularExpression is a utility class for creating and applying regular expressions
to strings.

NSTimer
NSTimer is used to create a timer object. A timer object waits until some time interval
has elapsed, then calls the desired action on a target. A timer is not a real-time mecha-
nism. Instead, a timer is fired when the associated run loop determines that the time
interval has passed. Timers are good for performing actions after a period of time has
passed and the time interval does not have to be exact. For instance, timers are useful
when you want to update the display after some time interval. An example of using a
timer is shown in Listing 5.16.

Listing 5.16 Example of Setting Up a Timer That Fires Every 5 Seconds

NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:5.0

 target:self

 selector:@selector(timerFired:)

 userInfo:nil

 repeats:YES];

NSXMLParser
NSXMLParser is a forward-only, event-based SAX parser for XML. The parser noti-
fies your code as it walks through the XML tree. Your code is responsible for main-
taining the state and creating objects for data you want to track as the XML is parsed.
Your application receives the notifications by implementing methods defined by the
NSXMLParserDelegate protocol.

Other XML Parsers
While NSXMLParser is the only XML parser provided by Cocoa, it is not the only
parser available to you. There are a number of open source alternatives available for
consuming and producing XML. Some of the more popular parsers include libxml2,
TouchXML, and KissXML.

Ray Wenderlich has an outstanding blog post on choosing the best XML parser for your
iOS project.3 His blog post includes an overview of the most popular XML parsers available
to iOS developers, and he has included a sample app for testing XML parser performance.
If you plan to consume XML in your application, Ray’s blog posting is a must-read for you.

3. www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-
project.

Turner_Book.indb 101 12/11/11 6:46 PM

www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-project
www.raywenderlich.com/553/how-to-chose-the-best-xml-parser-for-your-iphone-project

ptg999

Chapter 5 Getting Started with Cocoa102

NSURLRequest
NSURLRequest represents a URL load request in a protocol- and URL-schema-inde-
pendent manner. See Listing 5.17 for an example of using NSURLRequest.

NSURLConnection
NSURLConnecton performs the request as defined by an NSURLRequest instance.
See Listing 5.17 for an example of using NSURLConnection.

Listing 5.17 Example of Downloading Data from the Web Using NSURLRequest,
NSURLConnection, and NSMutableData

// ---- SimpleDownloader.h ----

@interface SimpleDownloader : NSObject

- (void)downloadWithURL:(NSURL *)url;

@end

// ---- SimpleDownloader.m ----

#import "SimpleDownloader.h"

@interface SimpleDownloader ()

@property (nonatomic, strong) NSMutableData *receivedData;

@end

@implementation SimpleDownloader

@synthesize receivedData = _receivedData;

- (id)init

{

 self = [super init];

 if (self) {

 [self setReceivedData:[[NSMutableData alloc] init]];

 }

 return self;

}

- (void)downloadWithURL:(NSURL *)url

{

 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:url];

 NSURLConnection *connection = [[NSURLConnection alloc] initWithRequest:request

 delegate:self

 startImmediately:NO];

Turner_Book.indb 102 12/11/11 6:46 PM

ptg999

UIKit 103

 [connection scheduleInRunLoop:[NSRunLoop currentRunLoop]

 forMode:NSRunLoopCommonModes];

 [connection start];

}

- (void)connection:(NSURLConnection *)connection

didReceiveResponse:(NSURLResponse *)response

{

 [[self receivedData] setLength:0];

}

- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data

{

 [[self receivedData] appendData:data];

}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

{

 NSLog(@"%@", [self receivedData]);

}

@end

Now that you have an understanding of commonly used Foundation classes, let’s
move up the Cocoa stack to UIKit and explore what is available for constructing really
useful user interfaces.

UIKit
UIKit provides a set of objects for creating and managing the user interface for your
application. These objects display text, accept input from the user, display lists of data,
and provide pick lists for the user and touchable buttons to request that your applica-
tion perform some action. While UIKit is not required for building application user
interfaces—there are plenty of apps available in the App Store, mostly games, that use
other frameworks, such as OpenGL ES, for UI creation and management—it is the
most common way to create user interfaces for iOS applications.

Note
Unlike Foundation, UIKit is available only on iOS. This means you cannot use UIKit-related
code for Mac applications.

UIApplication
UIApplication is a singleton object providing control for applications running on
iOS. Each application has only one UIApplication, or subclass of UIApplication,

Turner_Book.indb 103 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa104

instance. You can access the application object by calling the class method
[UIApplication sharedApplication].

UIWindow
UIWindow objects manage the windows of your application. A window is the root
view in a view hierarchy. It is responsible for sending events to the views contained
within the window. iOS applications typically have only one window. There are,
however, good reasons for having multiple windows. For instance, if your application
supports video out to a secondary display, your app will have at least two windows, a
primary window for display on the device and a secondary window for display on the
external monitor or device.

UIScreen
UIScreen objects contain information about a device’s entire screen. This information
is typically used when setting up a window in your application.

UIView
UIView defines a display area on the screen. It manages the content in that area and is
responsible for rendering any content contained within the view.

UIViewController
UIViewController is the controller for a UIView. The controller coordinates inter-
actions between the model and the view.

UIWebView
UIWebView is a view for displaying HTML content. It supports rendering of HTML
and execution of JavaScript. You can track and change behavior as the Web content
is loaded by setting the delegate property to an object conforming to the UIWeb-
ViewDelegate protocol.

UILabel
UILabel displays read-only text. You have control over the visual aspects of the
object by setting properties such as the font family type, size, color, justification,
shadow effects, and more. UILabel can display a single line of text or multiple lines.

UITextField
UITextField displays a single line of editable text (Figure 5.2). You can set the
various visual aspects such as the font type, size, and color. UITextField includes a
placeholder property for display of default text when the text field value is empty.

Turner_Book.indb 104 12/11/11 6:46 PM

ptg999

UIKit 105

UITextField is ideal when your application needs to capture a small amount of text
from the user.

UITextView
UITextView displays multiple lines of editable text in a scrollable view. You would
typically use UITextView to display large amounts of text or to allow the user to
enter and edit multiple lines of text.4

Note
A property missing from UITextView is placeholder. UITextField has a
placeholder property, which is used to display default text to the user, but this prop-
erty is not available on a text view. Default text is typically used to give the user an indi-
cation of how to use the UITextField, what type of input the object expects, or the
purpose of the field. It is unfortunate that UITextView doesn’t have the same property.

To get around this problem, I wrote a subclass to UITextView that provides a
placeholder property. You can read more about this and download the source code
from my blog site.4

UIButton
UIButton is the base class for button display (Figure 5.3). Use UIButton to pro-
vide an area on the screen that when touched will tell your application to perform an
action. UIButton supports a number of touch events, but typically your application
should respond to the touchUpInside: event. Why? A button should typically tell
the app to perform the action when the user lifts her finger, which is touching the
button, from the device.

UIButton also supports different display styles when rounded rectangle is the
default. The custom style is commonly used to display an image as a button. One style
sadly missing from UIButton is a gradient button style.

4. blog.whitepeaksoftware.com/2010/12/08/adding-placeholder-text-to-uitextview/.

Figure 5.2 UITextField with the placeholder property set to
“Placeholder text”

Figure 5.3 Round rectangle UIButton

Turner_Book.indb 105 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa106

How to Make a Gradient Button
Many developers new to iOS are surprised to learn that UIButton does not include a
gradient button style. What makes this surprising is the fact that most of Apple’s own
applications display gradient buttons, and many views managed by the iOS SDK, such
as an action sheet, display gradient buttons. Fortunately, the iOS development commu-
nity has stepped up to fill this void in the iOS SDK.

One way to display a gradient button is to place a gradient image on the button’s back-
ground. But how do you make the background image look like the gradient buttons
displayed by parts of the iOS SDK and other Apple applications? ButtonMaker is one
option.

ButtonMaker is an iPhone application designed to run in the simulator only. It uses pri-
vate APIs to create really nice gradient images for your buttons. ButtonMaker is open
source and available on github.5

Another option, and the one I tend to prefer, is to use the gradient button class cre-
ated by Jeff LaMarche. The class makes it possible to display a gradient button with-
out relying on a background image.

Jeff’s gradient button class is open source and licensed under the MIT License, which
means you can use the code in your application even if it’s a commercial app. The
original source code is hosted in a Google Code project6 with improved versions avail-
able on github.

UITableView and UITableViewCell
UITableView is used to display a scrollable list of data (Figure 5.4). A table view
has only one column, but you can customize the table view cell to give the appear-
ance of multiple columns. Each row of the table view contains a UITableViewCell.
UITableViewCell defines the look of the cell within the table view. The table view
cell supports a number of predefined cell display styles, or you can customize the cell’s
look by using a custom view.

5. github.com/dermdaly/ButtonMaker.
6. code.google.com/p/iphonegradientbuttons/.

Figure 5.4 UITableView

Turner_Book.indb 106 12/11/11 6:46 PM

ptg999

UIKit 107

UIScrollView
UIScrollView provides a scrollable view. You use a scroll view to display content that
is larger that the display area on the screen. The user uses swiping gestures to scroll
through the content. The scroll view can also let the user zoom in and out on the con-
tent using pinching gestures.

UIPageControl
UIPageControl displays a set of dots (Figure 5.5). Each dot represents a page within
some context. The page control is often used with a UIScrollView to indicate the
number of pages and current page for the scrollable content.

UIPickerView
UIPickerView is a base class for providing a pick list of values (Figure 5.6). The
picker displays the list of values using a spinning wheel or slot-machine-style meta-
phor. The user uses f lick gestures to spin the wheel of values up and down.

UIDatePicker
UIDatePicker is a specialized UIPickerView class providing a pick list of date and
time values (Figure 5.7). The date picker can also be used to display time intervals for
a countdown timer.

Figure 5.5 UIPageControl indicating five pages total with the second
page as the current page

Figure 5.6 UIPickerView

Figure 5.7 UIDatePicker

Turner_Book.indb 107 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa108

UISwitch
UISwitch displays an On/Off button (Figure 5.8).

UISlider
UISlider displays a horizontal bar representing a continuous set of values (Figure 5.9).
An indicator, or thumb, is displayed on the horizontal bar indicating the current value.
A user slides the thumb left and right to change the value.

UIMenuController and UIMenuItem
UIMenuController is a singleton object for displaying a menu for the Cut, Copy,
Paste, Replace, Select, Select All, and Delete commands (Figure 5.10). You can
add your own menu items by adding instances of UIMenuItem to the menuItems
property.

UIImage
UIImage is a wrapper class for holding the bytes of an image. A complete list of image
types supported by UIImage is shown in Table 5.2. You can use UIImage to convert
an image from one type to another, though you most commonly use it to provide an
image to UIImageView.

UIImageView
UIImageView provides a container view for displaying a single image (Figure 5.11) or
an animated set of images.

Figure 5.8 UISwitch

Figure 5.9 UISlider

Figure 5.10 UIMenuController

Turner_Book.indb 108 12/11/11 6:46 PM

ptg999

UIKit 109

UINavigationBar
UINavigationBar is a bar used to navigate a hierarchy of data (Figure 5.12). The
bar, typically displayed at the top of a screen, has buttons for navigating up and down
within the data hierarchy. The navigation bar has three primary properties: a left but-
ton for moving back (up) through the data, a title displayed in the center of the bar,
and an optional right button. You can also use custom views for these properties to
provide a customized look.

Table 5.2 Image Formats Supported by UIImage

Format File Name Extension

Tagged Image File Format (TIFF) .tiff, .tif

Joint Photographic Experts Group (JPEG) .jpg, .jpeg

Graphic Interchange Format (GIF) .gif

Portable Network Graphic (PNG) .png

Windows Bitmap Format (DIB) .bmp, .BMPf

Windows Icon Format .ico

Windows Cursor .cur

XWindow bitmap .xbm

Figure 5.11 UIImageView displaying a UIImage

Turner_Book.indb 109 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa110

Note
You will often use a UINavigationController, which creates and manages a
UINavigationBar, instead of creating and managing the navigation bar yourself.

UINavigationController
UINavigationController is a specialized view controller that manages the naviga-
tion of hierarchical data. It creates and manages a UINavigationBar, and it manages
view controllers using a navigation stack. The bottom item on the navigation stack is
the root view controller, and the top stack item is the view controller currently dis-
played. You add view controllers to the stack by pushing a view controller onto the
stack. Pushing the view controller will cause its view to display since it is the top view
controller on the stack. When you pop a view controller from the stack, the topmost
view controller is removed and the new topmost view controller is displayed. You can
programmatically pop view controllers from the stack, or UINavigationController
will do it for you when the user taps the left (back) button on the navigation bar.

UIToolbar
UIToolbar displays a bar of buttons (Figure 5.13). Typically the toolbar is displayed
at the bottom of the screen in iPhone apps and at the top of the screen in iPad applica-
tions. Each button displayed in the toolbar is a UIBarButtonItem.

UITabBar
UITabBar displays a set of buttons used to navigate to particular areas of your appli-
cation (Figure 5.14). The buttons act like a set of radio buttons in that one button is
always in a selected state. UITabBar can display only a limited number of buttons on
the screen at one time. If the tab bar is configured with more buttons than can be dis-
played on the screen, a More button is displayed as the last button.

Figure 5.12 UINavigationBar created by a
UINavigationController

Figure 5.13 UIToolbar

Figure 5.14 UITabBar

Turner_Book.indb 110 12/11/11 6:46 PM

ptg999

UIKit 111

The More button displays a list of all available buttons. The user can select a but-
ton from the list to navigate to the particular area of the application. The user can also
select which buttons to display in the tab bar from the More screen.

UIBarButtonItem
UIBarButtonItem is a specialized button for display on a UINavigationBar and
UIToolbar. The bar button item has a style property that you set to control the dis-
play of the item. The plain style will make the button glow when tapped. The border
style gives the item a rounded-corner rectangle look. The done style gives the item a
highlighted background color. You typically use the done style to indicate that the bar
button item will complete some action, such as saving data, then return to the previ-
ous view. You can also display a custom view for additional display control.

The iOS SDK provides a set of system-supplied bar button items for common
purposes. Some examples include Done, Cancel, Edit, Save, Add, Reply, Action,
Camera, Trash, Play, Pause, Rewind, and Fast Forward. Using a system-supplied
bar button item gives your application a consistent look that users will find familiar.

There are two special-case system-supplied bar button items: f lexible space and
fixed space. You use these invisible bar button items to control the spacing and posi-
tioning of visible bar button items. A f lexible space bar button item will fill the area
between two bar button items, or the edges of the bar, with spaces. Fixed space will
fill the area between two bar button items, or the edges of the bar, with a fixed
amount of space.

UISegmentedControl
UISegmentedControl displays a horizontal group of segments, with each segment
acting as a button (Figure 5.15). As for the UITabBar, only one segment is selected
at a time. UISegmentedControl is typically used within a screen to display related
information.

Note
UIToolbar, UITabBar, and UISegmentedControl are similar yet different. The
primary purpose of each is what differentiates these controls. You use UIToolbar to
display a set of buttons that typically perform some type of action. UITabBar displays a
set of buttons that, when tapped, navigate the user to new screens, or areas, of the appli-
cation. UISegmentedControl displays a set of buttons that group content displayed
on the screen. However, unlike UITabBar, UISegmentedControl does not navigate
the user to a new screen. Instead, it displays a new grouping within the current screen.

Figure 5.15 UISegmentedControl

Turner_Book.indb 111 12/11/11 6:46 PM

ptg999

Chapter 5 Getting Started with Cocoa112

That completes the tour of Cocoa on iOS and its two key frameworks, Foundation
and UIKit. Now let’s turn our attention to design patterns commonly found in Cocoa.

Common Design Patterns in Cocoa
In Cocoa, as with other application environments and programming languages, com-
mon design patterns have emerged to become the de facto standard for constructing
applications. To cover them all would fill a book, but two patterns are so commonly
used in iOS app development (and throughout the sample code in this book) that they
deserve special mention: Model-View-Controller and Target-Action.

Note
To learn more about these two design patterns and 26 other commonly used patterns
in Cocoa, read the book Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman
(Addison-Wesley, 2009).

Model-View-Controller
Model-View-Controller (MVC) is central to iOS development. Its use is not only
encouraged but enforced by development tools. Views created in Interface Builder are
expected to have a view controller, and this enforcement is even more obvious when
using storyboards. But what is MVC?

Note
Storyboards are discussed in Chapter 14, “Storyboarding in Xcode.”

To understand MVC, you must understand each component that makes up the
design pattern.

The model is an object representing data and state used by the application. The
model responds to requests about the data, and it responds to requests to change the
state (or data) managed by the object. The model also defines business rules and rela-
tionships between objects.

The view is a visual representation of the model, and it provides user interaction
with the visually rendered model data. It is the user interface element, such as a text
field, or collection of elements (labels, text fields, selection boxes, etc.) that make up
the screen presented to the user.

The controller mediates the interactions (requests and responses) between the view
and the model. It receives the user input from the view and instructs the model object
to perform a particular action or change state based on the user input. It also updates
the view based on responses from the model.

The decoupling of the view and model increases the f lexibility and maintainabil-
ity of the code. As a result, MVC has become a commonly used pattern not only in
Objective-C but in other programming frameworks, including Web frameworks such
as Ruby on Rails and Django.

Turner_Book.indb 112 12/11/11 6:46 PM

ptg999

Summary 113

Note
For an entertaining lesson on MVC, watch the video of James Dempsey singing his MVC
song at WWDC 2003 (www.youtube.com/watch?v=YYvOGPMLVDo).

Target-Action
Target-Action is a pattern whereby a dynamic relationship is formed between two
objects such that one object holds information needed to send a message to the other
object when an event occurs. You can think of Target-Action as a callback mechanism
for objects where one object calls a method (the action) on the other object (the target)
when an event occurs.

Note
Read more about Target-Action in the “Cocoa Application Competencies for iOS”
document provided by Apple (developer.apple.com/library/ios/#documentation/general/
conceptual/Devpedia-CocoaApp/TargetAction.html).

Target-Action is commonly used with UI elements (such as UIButton) where the
target and action are specified for a particular event (such as Touch Up Inside). You
can set the target and action on an object in code or by using Interface Builder.

Summary
In this chapter you took a closer look at Cocoa, the application framework used
with Objective-C that makes it possible to rapidly create great iOS applications. You
reviewed a list of commonly used classes and objects from Cocoa’s two key frame-
works, Foundation and UIKit. And you got an overview of common design patterns
used throughout Cocoa.

Turner_Book.indb 113 12/11/11 6:46 PM

www.youtube.com/watch?v=YYvOGPMLVDo

ptg999

This page intentionally left blank

ptg999

6
Provisioning Your iPad

Before you ship the next killer app, you must test it on an iPad. Using the iPad Simulator to test
and debug your application will only get you so far. That’s why it’s important to always test your
app on the real thing. But before your app will run on a real device, you must set up your iPad as
a development device. This is where provisioning comes in, and that’s exactly what you will do in
this chapter: provision your iPad for development purposes.

The steps involved are tedious. Fortunately you do not have to repeat them often, only a few
times a year. And Apple is continuously improving the provisioning process. Provisioning a device
today using Xcode is easy-peasy compared to what one had to do back in the day ... the dark
days of 2008.

About the iOS Provisioning Portal
The iOS Provisioning Portal is the Web site, shown in Figure 6.1, used to request and
download certificates, register device IDs, create App IDs, and create and download
provisioning profiles. The Web site and all of its features are not available to everyone.
You have access to the portal if you are one of the following:

n An individual registered as a paid member of the iOS Developer Program. You
can be registered as an individual or a company.

n An individual registered as a team member for a company that is a paid member
of the iOS Developer Program. Depending on your team member role, your
access to the Provisioning Portal may be limited. There is no cost to the indi-
vidual team member, and team members have access to all of the same developer
resources that a paid member has, courtesy of the paid company membership.

If you are not a paid member or a team member of a company, you will not have
access to the iOS Provisioning Portal. Without access, you will not be able to provi-
sion your device.

Note
You can read more about joining the iOS Developer Program in Appendix A, Installing the
Developer Tools.

Turner_Book.indb 115 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad116

iOS Developer Program Team Roles
When you join the iOS Developer Program as a paid member, you have the option to
join as an individual or a company. The main difference between the two is that a
company can include team members and an individual cannot. As a company, you can
invite other developers to join your team and assign roles to them. The roles are as
follows:

n Team Agent: A Team Agent is the individual who originally enrolled in the iOS
Developer Program. A Team Agent has full access to the iOS Provisioning Portal,
privileges not available to others. A Team Agent can invite others to be Team
Admins or Team Members. A Team Agent can also approve certificate requests,
register devices, create App IDs, create Push Notification Service SSL certifi -
cates, enable In App Purchase, retrieve the distribution certificate, and create
development and distribution provisioning profiles.

n Team Admin: A Team Admin can invite new Team Admins and Team Members to
joint the team. The Team Admin can also approve certificate requests, register
devices, and create development provisioning profiles.

n Team Member: A Team Member can request and download a development cer-
tificate and download development provisioning profiles.

Figure 6.1 iOS Provisioning Portal home page

Turner_Book.indb 116 12/11/11 6:46 PM

ptg999

The Provisioning Process: A Brief Overview 117

n No Access: No Access is a role given to developers to prevent them from
accessing the iOS Provisioning Portal. This role is used when the company is
enrolled in multiple Apple developer programs, that is, the iOS Developer Pro-
gram and Mac Developer Program.

The Provisioning Process: A Brief Overview
Provisioning a new device is not difficult in and of itself, but there are a number of
steps that must be performed first. You must be a paid member of the iOS Developer
Program or be a team member of a company that is a paid member. You must request
and install a development certificate on your development machine. You must register
your device ID. You must create an App ID. You must create and install a develop-
ment provisioning profile. All of this must be done before you can provision your iPad
and run your application on it.

Note
It should go without saying, but you really should have an iPad if you plan to write iPad
applications. You can learn iPad programming without an iPad, but you will be limited in
what you can test. It’s my opinion that having a physical device is a necessity for anyone
serious about iPad programming.

Luckily you do not have to perform each of these steps often. Some of the steps,
such as requesting and installing a development certificate, need to be done only once
a year, and Xcode performs other steps for you as needed. Still, knowing about each
step helps when a problem does come up, and yes, you will encounter a problem with
the process at some point in your iOS career. It’s just the nature of writing apps for
mobile devices.

Note
A development certificate is valid for one year. You must request a new development
certificate when the old one expires.

You’ve had a number of new terms thrown your way, such as device ID, App ID,
and provisioning profile, but what exactly are these?

What Is a Device ID?
A device ID, also known as the Unique Device Identifier or UDID for short, is a
40-character string that uniquely identifies the device. The UDID is tied to a single
device; no two devices will ever share the same device ID. The device ID is added to
a provisioning profile. This restricts applications built with the provisioning profile to
run on only the devices associated to the profile.

Turner_Book.indb 117 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad118

You register devices in the iOS Provisioning Portal. You can register up to 100
devices per year. The devices you register are for development and testing purposes
only. You do not register the devices of your customers who download and install
your application through the App Store.

Registering a device counts toward your yearly limit even if you remove the
device. Say you register your iPad, then delete it from the list of registered devices. It
still counts toward your annual limit of registered devices. If after deleting your iPad
UDID from the list you decide to add it back, it will count again toward your yearly
limit. Put another way, deleting a device does not reduce the number of registered
devices for the year.

What Is an App ID?
The App ID is used during the development and provisioning processes to share
Keychain data among a suite of applications, and it is used for document sharing, sync-
ing, and configuration of iCloud. The App ID also allows the application to commu-
nicate with the Push Notification Service and external hardware accessories.

The App ID is the combination of a Bundle Seed ID and a Bundle Identifier. The
Bundle Seed ID is a universally unique, ten-character, alphanumeric string. Its value
is generated by Apple within the iOS Provisioning Portal. The Bundle Identifier is
a string value you add to your application bundle. The Bundle Identifier is used by
the operating system to identify your application for tasks such as applying application
updates.

The common naming convention for the Bundle Identifier is the reverse domain
name style. If your company name is Acme and your application name is Awesome
App, you would define the Bundle Identifier as com.acme.awesomeApp.

The Bundle Identifier portion of the App ID can contain the wildcard character (*).
The wildcard character, if used, must be the last character of the Bundle Identifier, for
example, com.acme.*. Using the wildcard character allows the App ID, and its associ-
ated provisioning profiles, to be used with multiple applications.

Note
The Bundle Identifier portion of the App ID can be a wildcard only. In other words, the
Bundle Identifier value can be a single asterisk character. As you will learn momentarily,
the wildcard App ID created by Xcode’s Organizer window is a single asterisk character.

A wildcard App ID is convenient because it can be used for multiple applications.
Xcode’s Organizer window creates a wildcard App ID that can be used by any applica-
tion. The App ID looks like the last example in Table 6.1.

Note
When creating an App ID in the Provisioning Portal, you add a description of the purpose
of the App ID. The App ID created by Organizer has the description “Xcode: Wildcard
AppID.”

Turner_Book.indb 118 12/11/11 6:46 PM

ptg999

The Provisioning Process: A Brief Overview 119

You can also create an explicit App ID. An explicit App ID restricts the provision-
ing profile to a single application. Certain Apple services such as Push Notification
and In App Purchase require an explicit App ID. If you plan to use an Apple service,
you must use an explicit App ID.

Changing from a Wildcard to an Explicit App ID
You can change from a wildcard App ID to an explicit ID. You may find that you need
to do this if, for example, you decide to add Game Center support to your application
after it has been released. While you will be changing the App ID, you must not change
the Bundle ID as defined in your application’s info.plist. The Bundle ID defined in the
app is used to identify your application for new releases, that is, updates to your appli-
cation. Changing this breaks the app update process, and Apple will reject your app
update submission if the Bundle ID changes.

Changing the Bundle ID suffix in the App ID is not the same as changing the Bundle
ID in the application. This is why you can safely switch from a wildcard App ID to an
explicit App ID. Changing the App ID’s Bundle ID suffix does not change the applica-
tion’s real Bundle ID.

To change from a wildcard App ID, you must create a new App ID. You can use the
same Bundle Seed ID or generate a new one. For the Bundle ID suffix, enter the bun-
dle ID exactly as it is defined in your application’s info.plist.

Because you now have a new App ID, you need to create a new provisioning profile
that uses the new App ID.

Note
If your existing application uses the Keychain, select the same Bundle Seed ID for the
new App ID. If you use a different Bundle Seed ID, your application will not be able to
access any existing Keychain data.

What Is a Development Provisioning Profile?
A development provisioning profile ties developers, devices, and App IDs to a devel-
opment team. A provisioning profile makes it possible for the developer to install and
run the application on a device for the purpose of debugging and testing. To make
this possible, the development provisioning profile must be installed on the device. A
device, however, can contain more than one development provisioning profile.

Table 6.1 App ID Examples

App ID Remarks

ABCDE12345.com.acme.awesomeApp An explicit App ID for Acme’s Awesome App

ABCDE12345.com.acme.* A wildcard App ID for Acme applications

ABCDE12345.* A wildcard App ID for all applications

Turner_Book.indb 119 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad120

Note
There is a second type of provisioning profile, the distribution provisioning profile. A dis-
tribution provisioning profile is used for Ad Hoc distribution—distribution to registered
devices for the purpose of testing an application—and App Store distribution. More infor-
mation on the distribution provisioning profile is included in Chapter 26, “Distributing Your
App.”

Now that you understand the pieces, let’s get your development computer and
device ready.

Do I Need a Dedicated Development Device?
A common question asked by new iOS developers is whether a dedicated development
device is needed or not. The answer to this question depends entirely on you. Many
iOS developers own only one device, but many other developers own multiple devices.

I have seven devices at the time of this writing: two iPads, three iPod touches (a
first gen, a second gen, and a fourth generation), one iPhone 3GS, and one iPhone 4
CDMA. I use the older iPod touches to test my applications on older versions of iOS.
I use the fourth-gen iPod touch to test on the latest version of iOS and to test retina
display images. I usually keep one iPad up-to-date with the latest public release of iOS,
and I use the other iPad, which is my primary iPad development device, to run beta
versions of iOS. And I use my iPhone 3GS for testing on a phone, which can behave
differently from an iPod touch, receiving incoming phone calls and SMS messages, for
example.

I write a number of client apps, and my clients have different requirements, which is
why I have multiple devices—and that number is growing every few months as I con-
tinue to buy new devices. It’s doubtful that the average iOS developer needs this many
devices. You can produce your application using only one device. However, there are
advantages to having a dedicated development device.

I find I often need to reset my device to factory-install state, or I want to test my app
on the latest beta release of iOS. You can still do this while owning only one device,
but it does mean your device is constantly changing. That game you bought last night
and got halfway through gets deleted when you reset your device, or your favorite app
crashes on the new iOS beta release. This can be frustrating if your development
device is your only device and you use the device for personal reasons.

Because of this, it is helpful—and it saves you time—to own devices dedicated to
development purposes. Owning multiple devices, however, can get expensive, espe-
cially for the iPad. That’s why I typically buy used devices for development. The Apple
Refurbish Store is a good place to shop for used devices at an affordable price. Also,
ask family and friends what they plan to do with their old devices if they are upgrading
to newer hardware. This might be an opportunity to score a development device for
free or close to free.

Turner_Book.indb 120 12/11/11 6:46 PM

ptg999

Setting Up Your Development Machine 121

Setting Up Your Development Machine
The first thing you must do is set up your Mac development machine for code signing.
Coding signing your application serves two purposes: It confirms the app author, and
it guarantees that the app has not been altered since it was signed. iOS requires each
application to be digitally signed before the app can run on a device. Code signing
is never a joy, but it is a necessity, ensuring that the application comes from a trusted
source.

To code sign your app, you must have a public and private key pair and a digital
certificate. When your application is in development, you use a development certifi-
cate to code sign the application. This allows you to run and test your app on your
own device. When you are ready to deploy your application to other devices, whether
through the App Store or through Ad Hoc and enterprise distribution, you use a dis-
tribution certificate to code sign the app.

Note
Chapter 26, “Distributing Your App,” covers distribution of your application. Therefore, I do
not cover the distribution certificate in this chapter. Steps to request and install the distri-
bution certificate are covered in Chapter 26.

Requesting a Development Certificate
To prepare your development Mac for code signing, you must first request a develop-
ment certificate. To request a development certificate you need to generate a Certifi-
cate Signing Request (CSR). You use the Mac desktop application Keychain Access
to generate the CSR. As Keychain Access creates your CSR, it also generates a public
and private key pair for you and stores the pair in the login Keychain. The key pair
identifies you as an iOS developer and is associated to the development certificate.

The Keychain Access application is available in the Applications > Utilities
folder. Alternatively, you can launch the app using Spotlight. Press �-Space and start
typing “Keychain,” without the quotes, in the Spotlight box. Spotlight will find the
Keychain Access application for you. All you need to do then is press the Enter key to
launch the application.

The first thing you need to do in Keychain Access is select Preferences from the
menu (or type �-,). Click Certificates and turn off Online Certificate Status Proto-
col (OCSP) and Certificate Revocation List (CRL) as shown in Figure 6.2.

Close the Preferences window, then select Keychain Access > Certificate Assis-
tant > Request a Certificate from a Certificate Authority from the menu bar.
At this point, you are ready to enter the certificate information, as seen in Figure 6.3.
Enter your email address in the User Email Address field. This must be the same email
address you submitted when registering as an iOS Developer.

Enter your name in the Common Name field. The name must match the name
submitted when you registered as an iOS Developer. Leave the CA Email Address field
blank. Mark the options “Saved to disk” and “Let me specify key pair information.”

Turner_Book.indb 121 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad122

When you have finished, click the Continue button. The Assistant will ask where
to save the CSR. Your desktop is as good a place as any, so save the CSR to your
desktop.

Make sure you selected the “Let me specify key pair information” option in the
Certificate Information window (Figure 6.3). This tells the Certificate Assistant to
display the Key Pair Information window, shown in Figure 6.4. Here you set the
options for generating the key pair. Select 2048 bits for the Key Size and RSA for the
Algorithm. Click Continue.

Figure 6.2 Turn off the OCSP and CRL settings in the Preferences >
Certificates screen.

Figure 6.3 Certificate Assistant window in Keychain Access

Turner_Book.indb 122 12/11/11 6:46 PM

ptg999

Setting Up Your Development Machine 123

Note
Your certificate request will be rejected if you do not specify the Key Size as 2048 bits and
the Algorithm as RSA.

The Certificate Assistant will generate the CSR and save it to your desktop. A pub-
lic and private key pair is also generated for you and stored in the login Keychain. The
key pair can be viewed in the Keychain Access application under the Keys category as
seen in Figure 6.5.

Note
If you are doing development from more than one Mac, you must copy the private key to
each development machine. You will not be able to sign your application and test on your
iPad without your private key. Use Keychain Access to export your private key and import
it to your other development machines.

For a step-by-step guide on exporting your private key, visit developer.apple.com/ios/
manage/certificates/team/howto.action, scroll to the bottom of the Web page, and read
the information under the “Saving your Private Key and Transferring to other Systems”
section.

Click Done to close the Certificate Assistant. The generated CSR file is on your
desktop. Your next step is to submit the CSR for approval.

Figure 6.4 Key Pair Information window

Turner_Book.indb 123 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad124

Getting More Help
The iOS Provisioning Portal requires you to perform a number of steps before you can
test your application on your iPad and prepare your applications for distribution. A set
of helpful resources is available in the Portal Resources.

The Portal Resources include a detailed user guide and how-to videos for requesting and
installing your development certificate, assigning devices, creating App IDs, and creating
provisioning profiles. If you need additional help with the iOS Provisioning Portal or you
prefer seeing the steps performed, you should check out the Portal Resources.

The Portal Resources are available on the iOS Provisioning Portal home page under
the section Portal Resources, found on the upper right side of the page, as seen in
Figure 6.6.

Submit Your CSR for Approval
The next step is submitting your CSR for approval, and it is less involved than the
previous step. A Team Agent or Admin approves or rejects your CSR. You will
receive an email notifying you of your certificate status. If your request is approved,
you download your digital certificate from the Provisioning Portal and install it on
your development machine.

Figure 6.5 Public and private key pairs stored in the login Keychain

Turner_Book.indb 124 12/11/11 6:46 PM

ptg999

Setting Up Your Development Machine 125

Note
All certificate requests must be approved through the iOS Provisioning Portal. If you are
the Team Agent or Team Admin, you still must approve your own certificate request.

To submit your CSR, sign in to the iOS Provisioning Portal. If you have trouble
remembering the URL of the iOS Provisioning Portal, sign in to the iOS Dev Cen-
ter (developer.apple.com/ios). Toward the upper right side of the iOS Dev Center
home page there is a section titled iOS Developer Program, shown in Figure 6.7. This
section includes links for the iOS Provisioning Portal, iTunes Connect, Apple Devel-
oper Forums, and the Developer Support Center. Click the iOS Provisioning Portal
link to be transported to the portal Web site.

From the iOS Provisioning Portal home page, click the Certificates link found
in the left-side menu bar. Next click the Development tab, then the Add Certifi-
cate button. Scroll down to find the Choose file button. Click the button and select
the CSR file that you saved to the desktop. Click the Submit button to upload your
CSR. If you are unable to submit your CSR through the Web site, email the CSR file
to the Team Agent.

Figure 6.6 Portal Resources containing a user guide and how-to videos

Turner_Book.indb 125 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad126

Download and Install Your Certificate
The Team Admin will be notified by email after your submitted CSR has been
received. Once the Admin approves or rejects your request, you will receive a noti-
fication email with your certificate status. When it has been approved, you sign in to
the Provisioning Portal again, then click Certificates > Development. You’ll see
your approved certificate listed at the top. Click the Download button under the
Action column to save the certificate to your development machine.

Note
If this is your first time setting up your development machine, you need to download
and install the WWDR intermediate certificate. Click the download link and save the
AppleWWDRCA.cer file to your development machine. Use Finder to navigate to the saved
AppleWWDRCA.cer file, and double-click the file to launch Keychain Access; this installs
the certificate on your machine.

On your development machine, use Finder to locate the saved .cer file. Double-
click the .cer file to launch Keychain Access and to install your certificate. Save the

Figure 6.7 iOS Dev Center home page with a link to the iOS
Provisioning Portal

Turner_Book.indb 126 12/11/11 6:46 PM

ptg999

Setting Up Your Development Machine 127

certificate to your login Keychain. Once it is installed, you can view the certificate by
selecting the Certificates category for the login Keychain in Keychain Access (Figure
6.8). Your certificate name will be “iPhone Developer: Your Name.”

While still in Keychain Access, click the Keys category for the login Keychain.
Here you will see your public and private keys generated by the Certificate Assistant.
Expand the private key by clicking the disclosure triangle. You will see that the cer-
tificate has been associated to your private key. Apple never receives your private key
when you submit the CSR. Your private key is available only to you. This is why it is
important that you not lose it.

Note
Make sure you have a backup of your key pair. If you do not have a backup and you lose
the private key, you must go through the certificate request process all over again. I use
Time Machine to make hourly backups of my primary development machine. I also use
SuperDuper! to make complete system backups weekly. This provides a suitable backup
of my public-private key pair. You should do something similar.

Your development machine is now set up to code sign builds of your application,
but you cannot run your app on your iPad yet. You still have a few more steps to fol-
low. Next up is setting up your device.

Figure 6.8 You can view your certificate in the Certificates category.

Turner_Book.indb 127 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad128

Setting Up Your Device
Now that your development machine is set up, it’s time to set up your iPad for devel-
opment. Here’s what needs to happen:

1. You need to register your device ID.

2. You need to create an App ID.

3. You need to create a development provisioning profile.

4. You need to download and install the development provisioning profile.

These steps can be performed in one of two ways: by using the Xcode Organizer
window or the iOS Provisioning Portal. Using Organizer is by far the easier way to
set up your iPad for development. It performs the steps automatically for you. This
approach is, however, not without its limits.

Organizer creates a wildcard App ID, and as you may recall, a wildcard App ID
cannot be used if you plan to use Apple services like Game Center, In App Purchase,
and Push Notification. That said, you should still let Xcode do its magic. While you
may not use a wildcard App ID for your next awesome iPad app, it can be used to
build and run sample apps and to test proofs of concept and prototype applications on
your iPad.

Use for Development
The steps to set up your iPad for development are quite easy using Xcode. Tether your
iPad to your development computer. Launch Xcode and open the Organizer window
(Windows > Organizer or Shift-�-2). Organizer shows the list of registered and
attached iOS devices. Attached devices have a status icon displayed to the right of
the device name. A white status icon means the device is not ready for development.
A green status icon means the device is ready for development. A yellow status icon
means the device is busy.

Click the name of your iPad in the Devices list. You should see a screen similar to
the one shown in Figure 6.9. Click the Use for Development button. Xcode will
prompt you for your iOS Provisioning Portal credentials. Enter your Apple ID and
password used for your iOS Developer account.

Xcode automatically sets up your device for development. It registers your device
with the iOS Provisioning Portal, creates a wildcard App ID and development provi-
sioning profile, if needed, and last downloads and installs the provisioning profile.

Note
Figure 6.9 shows a new iPod touch. The setup instructions are the same regardless of the
device type. I chose to use an iPod touch to capture the screen shot because my develop-
ment iPad was in use at the time.

The process can take a few minutes. While the process is running, the status icon
is yellow. Do not disconnect your iPad from your computer while the process is

Turner_Book.indb 128 12/11/11 6:46 PM

ptg999

Setting Up Your Device 129

running. Once the process is compete, the status icon changes to green and you will
see a screen similar to the one in Figure 6.10.

You are now ready to build and run iOS applications on your iPad. To test that
everything has been set up correctly, create a new project in Xcode. You can select
any iOS application template; it does not matter which one. Make sure you select your
iPad as the device for the active scheme (seen in Figure 6.11). Build and run (�-R)
the project. Assuming your development machine and iPad are set up correctly, you
will see the sample app running on your iPad.

Note
Sign in to the iOS Provisioning Portal to see the App ID and development provisioning
profile created by Xcode. The App ID has the description “Xcode: Wildcard AppID,” and the
development provisioning profile has the name “Team Provisioning Profile: *.” The status
for the profile will also show “Managed by Xcode.”

As you just learned, using Xcode is the easiest way to set up a new device. But what
happens if there is a problem? And what if you plan to use Apple services like iCloud,
Game Center, or In App Purchase, which require an explicit App ID? You need to use
the iOS Provisioning Portal to manually perform the steps.

Figure 6.9 Organizer window with a new Apple device attached to
the computer

Turner_Book.indb 129 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad130

Figure 6.10 Organizer window with an attached Apple device ready
for development

Figure 6.11 Use the scheme popup menu to set the run destination.

Turner_Book.indb 130 12/11/11 6:46 PM

ptg999

Using the iOS Provisioning Portal 131

Using the iOS Provisioning Portal
As you already know, the iOS Provisioning Portal is used to request and download
developer certificates, to register devices, to create App IDs, and to create and down-
load provisioning profiles. You have already gone through the steps for requesting and
downloading the developer certificate; the rest of this chapter will focus on the other
areas of the Provisioning Portal.

Adding a Device ID
You can add a device ID individually, or you can upload a batch of device IDs in a
.deviceids file generated by the iOS Configuration Utility. The iOS Configuration
Utility is available to enterprise members only, so it is not covered here. Instead, the
following walks you through adding an individual device ID.

Start by signing into the iOS Provisioning Portal Web site (developer.apple.com/
ios/manage/overview/index.action), then click Devices in the left-side menu
bar. Click the Add Devices button found on the right side of the Devices Web page.
Enter a device name followed by the 40-character device ID, as seen in Figure 6.12.
(I tend to be descriptive with the device name, adding the device owner’s name and
device type, for example, “Kirby Turner’s iPad2.”) Click the plus sign (+) button to

Figure 6.12 Add Devices page in the iOS Provisioning Portal

Turner_Book.indb 131 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad132

enter another device. When you have entered all the devices, click the Submit but-
ton. That’s it. The device IDs are now registered.

Note
Only the Team Agent and Team Admin can register a device ID. A Team Member must
send his device ID to the agent or admin to be registered.

You can edit the name of a registered device, but you cannot change the device ID.
If a device ID is no longer valid—for example, you no longer own the device—you
can remove the device from the list by marking the check box next to the device name,
then clicking the Remove Selected button at the bottom of the registered device list.

How to Find the UDID for a Device
Finding the UDID for a device is not hard if you know where to look. There are different
ways to find the ID of a device. The easiest for developers is to use Xcode’s Organizer
window. Open the Organizer window (Shift-�-2) and select the device. The device ID is
displayed in the Identifier field as shown in Figure 6.13.

Another way to find the ID, albeit more obscure, is to use iTunes. Connect your device
to your computer, then launch iTunes. In iTunes, select the device to see the device
information screen, shown in Figure 6.14. Click the serial number. This will display the

Figure 6.13 Device information displayed in the Organizer window

Turner_Book.indb 132 12/11/11 6:46 PM

ptg999

Using the iOS Provisioning Portal 133

UDID in place of the serial number. Once the UDID is showing, type �-C to copy it to
the clipboard. Click the field again to return to the serial number.

Note
You can also click the software version to see the build number.

Another common way to retrieve the UDID is to use one of the many free UDID apps
available in the App Store. These apps not only retrieve the UDID from the device but
also provide options to copy the ID to the clipboard and to email the device ID to the
recipient of your choosing. Using a UDID app is the easiest way for nondevelopers to
send you their device IDs.

To download a UDID app, go to the App Store and search on “UDID.” Select the app
that appeals to you the most.

Adding an App ID
Adding an App ID is almost as easy as registering a device ID. Once again, sign in to
the iOS Provisioning Portal. Click the App IDs menu item in the left-side menu bar,
then click the New App ID button found on the right side of the page, shown in Fig-
ure 6.15. This takes you to the Create App ID page.

Figure 6.14 Device information displayed in iTunes

Turner_Book.indb 133 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad134

Note
The Team Agent is the only team member who can add a new App ID.

On the Create App ID page, seen in Figure 6.16, enter the description for the App
ID. Use a name or description that makes sense to you. For instance, you might use
the name of your application when creating an explicit App ID. The description you
enter is used throughout the portal, so enter a name or description that will help you
identify the App ID.

Next, set the Bundle Seed ID, aka the App ID prefix. You can have the portal gen-
erate a new seed for you, or you can select from a seed that you previously generated.
If you plan to share Keychain data access among multiple applications, you need to use
the same Bundle Seed ID for each application’s App ID.

Last, enter the Bundle Identifier, aka the App ID suffix. Remember to use the
reverse domain name naming convention. Include an asterisk (*) as the last character if
you wish to create a wildcard App ID.

Click the Submit button to save the App ID. Clicking the button returns you to
the App IDs page. Scroll down the page to see the newly created App ID in the list of
App IDs.

Figure 6.15 Click the New App button found on the App IDs page in the
iOS Provisioning Portal.

Turner_Book.indb 134 12/11/11 6:46 PM

ptg999

Using the iOS Provisioning Portal 135

In the list of App IDs, you can choose between two actions: Details and Configure.
The Details action is available only for wildcard App IDs. Click the action to see the
details of the wildcard App ID.

The Configure action is available only for explicit App IDs. Click the action
to configure the App ID for Push Notification. You do not need to configure the
explicit App ID for In App Purchase and Game Center services as these services are
enabled by default for explicit App IDs.

Note
You cannot delete an App ID once it has been created.

Creating a Development Provisioning Profile
The development provisioning profile brings you (the developer), your device, and
your App ID together so that you can run and test your application on your iPad. To
create a new development provisioning profile, log in to the iOS Provisioning Portal

Figure 6.16 The Create App ID page

Turner_Book.indb 135 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad136

and click the Provisioning link found in the left-side menu bar. Click the Develop-
ment tab at the top of the Provisioning screen, then click the New Profile button.
This will take you to the Create iOS Development Provisioning Profile page, seen in
Figure 6.17.

Note
Only Team Agent and Team Admin members can create development provisioning profiles.

Enter a name for the provisioning profile. (I like to use descriptive names, for
example, “Hey Peanut Dev Profile.”)

Select the development certificates that will be associated to the provisioning pro-
file. This identifies the development certificates used to code sign the application for
development. You should select the developer certificate for each team member who
will be using the development provisioning profile.

Select the App ID for the profile. Each profile can have only one App ID. You can
use a wildcard App ID if you wish to use the same development provisioning profile
for more than one application.

Finally, select the devices that the developers can use for running and testing the
application on a device. Then click the Submit button to generate the development
provisioning profile.

Figure 6.17 Create iOS Development Provisioning Profile page

Turner_Book.indb 136 12/11/11 6:46 PM

ptg999

Using the iOS Provisioning Portal 137

Downloading a Development Provisioning Profile
Once a development provisioning profile has been generated, team members can
download and install the profile. To download the development provisioning profile,
log in to the iOS Provisioning Profile, click the Provisioning menu item, then click
the Development tab on the Provisioning page. You will see a list of development
provisioning profiles, as shown in Figure 6.18. Click the Download button for the
profile you wish to install.

Now you are ready to install the provisioning profile.

Installing a Development Provisioning Profile
There are a few ways to install a development provisioning profile. You can copy the
profile file to ~/Library/MobileDevice/Provisioning Profile, but the most common way is
to use the Organizer window in Xcode. This will ensure that the profile is stored in
the proper directory, and it will create the directory if it does not already exist.

Note
The development provisioning profile you download has the file extension .mobileprovision.

To install using Organizer, launch Xcode and open the Organizer window (Shift-
�-2). Select a device on which to install the provisioning profile, then click the

Figure 6.18 List of development provisioning profiles

Turner_Book.indb 137 12/11/11 6:46 PM

ptg999

Chapter 6 Provisioning Your iPad138

+ button to select the .mobileprovision file you downloaded from the iOS Provisioning
Portal. Alternatively, you can drag and drop the .mobileprovision file onto the Provi-
sioning list in the Organizer window; see Figure 6.19.

Another way to install a development provisioning profile is to drag and drop the
file onto the iTunes icon in the dock. Note, however, that this will fail if the provi-
sioning profile directory does not exist.

You can also copy the .mobileprovision file directly to the ~/Library/MobileDevice/Pro-
visioning Profiles directory. To make it easier, add a shortcut for the directory to Finder.
When you need to install a new provisioning profile, simply drag and drop the down-
loaded file onto this shortcut; see Figure 6.20.

A third option is to drag and drop the provisioning file onto the Xcode icon in the
Dock. This will copy the provisioning profile to the appropriate directory and to your
iPad device if connected.

That’s it for installing a development provisioning profile.

Figure 6.19 Click the + button or drag and drop the .mobileprovision file
to add the development provisioning profile.

Turner_Book.indb 138 12/11/11 6:46 PM

ptg999

Summary 139

Figure 6.20 Finder window with a shortcut folder to the provisioning
profile directory

Summary
At this point, your development machine should be set up for code signing iOS appli-
cations, and your iPad should be ready for development. You’re now ready to write
iPad applications that you can run on your own device. But first, let’s talk a bit about
app design as it relates to the iPad.

Turner_Book.indb 139 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

7
App Design

Before you can write the next killer app, you have to know what it is you are creating. You need
to spend time up front coming up with the app design. App design, in the context of this chapter,
doesn’t mean making your app look pretty, though that is an important part of the process. You
need to know what it is you are building. You need to know whom you are building it for. And
you need to know how it will work.

The app design represents the blueprint for your application. It tells you what, who, and how
before you write a single line of code. Without it you are likely to lose focus, and this will come
across in your final product.

Good app designs consist of two main parts: an App Charter and UI mockups. The App
Charter defines your app. It tells the “what” and “who” about your app. The UI mockups tell
the “how”—how the app will work.

Let’s talk about these two parts in more detail.

Defining Your App
The first thing you need to do when designing your app is to understand what it is
you want to create. You need to define your application, what it will do, and whom it
is for. A good place to start is with the App Charter.

The App Charter describes your app, providing the basis for creating the blueprint
for the product you’re building. Creating the App Charter forces you to think about
your app before you spend time and money writing code. This up-front time will
either leave you excited about the app idea or tell you that you have a dud. Either way,
you have gained a better understanding of your app idea without spending a ton of
time or money.

The App Charter is also a good way to share your idea with others. You may think
that keeping your app concept a secret is a good idea, but it isn’t. You need to share
the idea with others to get their feedback. Often the feedback you receive will help
you improve on what you believe is already an awesome concept, but other times the
feedback will tell you it’s time to jump ship and focus on another app idea. Either way,
feedback from others at the early stage is invaluable.

Turner_Book.indb 141 12/11/11 6:46 PM

ptg999

Chapter 7 App Design142

What goes into the App Charter? The list of items included in the App Charter is
short. In fact, you really only need the following:

n App name: The actual app name or a tentative name
n App summary: A short description of your application and its differentiator
n Feature list: A list of features that will someday be included in the app
n Target audience: The ideal user of your application
n Competing products: A list of other apps competing against yours

Let’s take a closer look at each of these items.

App Name
Every app has a name, but coming up with a great name can sometimes be more chal-
lenging than building the app itself. In fact, there are Madison Avenue–type agencies
that specialize in coming up with über-cool names. Of course, these companies charge
thousands of dollars, which is something most iOS developers don’t have, so it’s up to
you to name your app.

You don’t need to spend a lot of time thinking of the app name. Often a good
name comes to you later as you are developing the app, so it’s okay to use a tentative
app name in the beginning.

Using a tentative app name is common practice in the software development world,
so common, in fact, that many software shops always use code names when referring
to apps that are in development. A code name is nothing more than a tentative name
you give your app while it is in development.

Using a theme for code names is also common practice. For instance, Apple uses cat
names for major releases of OS X, and Microsoft uses names of mountains and cities
for different f lavors of Windows OS. You can use whatever code name you like, but
following a theme can be fun. (I’m a snowboarder, so I like to use the names of ski
trails from my favorite resorts as code names.)

Of course, you don’t have to use a code name. Maybe you already have the perfect
name, which is great. But if you don’t have that perfect name yet, use a code name
for now and move on with your app design. Who knows? You may decide to use the
code name as the app name. The point is to give your app a name while it is in devel-
opment. You can always change it later.

A pp Summary
The app summary is a brief description of your application. It should be about a para-
graph long, no more than three or four sentences. It should give the reader a general
understanding of your application, and it should include what makes your application
unique. This is called the differentiator or “unique value proposition.” The unique
value proposition is what makes your application different from all the rest. It’s the
added value your app provides its users that other similar apps do not provide.

Turner_Book.indb 142 12/11/11 6:46 PM

ptg999

Defining Your App 143

Let’s look at an example. Here is the app summary for a fictitious app called
Ovation.

“Ovation is a Twitter client for the iPad that focuses on finding conversations about
your company and products. It searches Twitter’s public timeline for you and stream-
lines the processing of responses to comments made about your organization.”

There are many Twitter clients available for the iPad. Ovation is different in that its
primary function is to find mentions of your company and products within the public
timeline on Twitter. Ovation’s primary function is its unique value proposition, its dif-
ferentiator. It’s what makes this application different from the rest.

The app summary not only describes your app but also helps you decide what fea-
tures to include in the app. When deciding what features to include, you should ask,
“Does this feature fit within the app summary?” If it’s not a fit, chances are good that
the feature does not belong in the app.

This brings us to the next piece of the App Charter, the feature list.

F eature List
An app is nothing without features. Features are the tasks the application performs. A
feature list tells what your application can and will do. You need to come up with the
feature list for your app, but how do you get started? Brainstorming feature ideas is a
wonderful way to get started.

W hat Is Brainstorming?
Brainstorming is a technique by which you capture all ideas, suggestions, and creative
solutions to a problem or topic. There are no bad ideas when you’re brainstorming.
Every idea is welcome even if it seems unrealistic or far-fetched. The goal of brain-
storming is to capture as many ideas as possible.

Brainstorming works best when you have at least one other person participating,
but it is still an outstanding approach for the one-person team.

To brainstorm, get yourself in front of a whiteboard, grab some paper or a stack of
Post-It Notes, then start capturing every idea that comes to mind. Mind mapping on the
iPad works well when brainstorming solo, as shown in Figure 7.1. What you use to cap-
ture the ideas doesn’t matter. All that matters is that you capture each and every idea.

Note
Post-It Notes and index cards are useful in brainstorming sessions because you can move
them around, group them by release schedule or priority, and so on. Try different ways of
capturing ideas during brainstorming sessions. Eventually you will find what works best for
you and your team.

M y Big Fat Feature List
Have a brainstorming session to create your feature list. Capture every conceivable fea-
ture that comes to mind, even the far-fetched ones. Remember, you are brainstorming
here, so there are no wacky or unrealistic features. It’s doesn’t matter how outlandish a
feature may seem; it belongs on the list.

Turner_Book.indb 143 12/11/11 6:46 PM

ptg999

Chapter 7 App Design144

You may be thinking to yourself, “I will end up with a big list of features,” and you
are right. You will end up with a big list of features. That is the goal, to produce a big
fat feature list. Not to worry. You’ll trim the list soon enough.

The big list gives you something to work with when it’s time to decide exactly
what goes into the application. It also gives you insight into the potential of your
application. For instance, that wacky feature you came up with might turn into the
differentiator for your application.

T arget Audience
With your big feature list complete, start thinking about the target audience for your
app. Think about every possible user, from the individual who will see your app once
for only 30 seconds to the power user who will do things with your app you never
dreamed possible. Within this range is your ideal user.

Start thinking about the ideal user for your app and list the characteristics of this
user. Is the user male or female, a teenager or a retired senior? Is the user someone who
travels often? A soccer mom? Does she love snowboarding but doesn’t get to the slopes
as often as she would like? Capture every conceivable characteristic of the ideal user.

Figure 7.1 Mind map of features and target audience for the make-
believe app Racer’s Reader

Turner_Book.indb 144 12/11/11 6:46 PM

ptg999

Defining Your App 145

As you think about your ideal user, think about the conditions the user might be
facing at the time she is using your app. Add this to your list of characteristics. Will
the user be under a lot of stress at the moment she is using your application? Is the user
likely to be in a rush? These types of characteristics should be captured as well, as they
can have a direct impact on the features and usability of your application.

Once you determine the characteristics of your ideal user, you know who your
target audience is. Armed with this knowledge, you can start trimming down your
feature list to include only those features that complement the characteristics of your
target audience.

Note
Often you will think of new features as you think about the target audience. When this hap-
pens, be sure to add the new features to your big feature list.

R evisit Your Feature List
Creating the App Charter is an iterative process. You don’t make one pass defining the
aspects of your app; you make multiple passes, constantly refining the definition based
on new knowledge. As you list the characteristics of the ideal user, for instance, new
features will likely come to mind. Those features should be added to the big feature
list.

At some point, however, you must decide what actually goes into your application.
A good time to start trimming down the feature list is after you understand who the
target audience is. Then you trim down the big list of features into the list of features
that appeal to the target audience.

As you trim down the feature list, make sure you consider the device. A particular
feature may or may not make sense on the iPad. If the feature is inappropriate for the
device, strike it from the list.

The trimmed-down version of the feature list is what you include in the App Char-
ter. This list represents all the features that you would like to see in your app over its
lifetime. Don’t assume this list represents version 1.0 of your app. Version 1.0 will most
likely include only a small subset of the feature list.

C ompeting Products
Knowing your competition is important. It helps you decide what makes your app
different. It also tells you if a market exists for your application. If there is zero com-
petition for your app, your idea is beyond anything ever conceived before, which is
unlikely; or there is no market for your app, which is the more likely scenario.

If you think Google or Yahoo! invented the search engine, think again. Before
these search engines existed there was Archie (see www.searchenginehistory.com
for more on search engine history). Google and Yahoo! simply found better ways of
indexing and searching ... and to beat out the competition.

To beat the competition, you must know who the competition is, and this should
be included in the App Charter. Including the competition in the App Charter forces

Turner_Book.indb 145 12/11/11 6:46 PM

www.searchenginehistory.com

ptg999

Chapter 7 App Design146

you to acknowledge that competition exists. It also forces you to learn who your com-
petition is and to determine if there is a market for your app.

What you capture about your competition is up to you, but at a minimum you
want the name of the app, the vendor’s name, the URL to the app’s Web site, and any
notes or remarks you have about the competing app.

A Sample App Charter
In Part II of this book you will build an iPad app. Before you begin, you need to
know what the app is and whom it is for—you need its App Charter. Following is the
App Charter for the app you will build in the next part of this book.

Note
The app summary section shown here is not that of a top 100 app in the App Store, but
it does convey the primary intention of the app, to teach programmers how to write iPad
applications. This differentiator will not result in millions of downloads, but it does provide
focus as you write the application. The app is not attempting to be the best photo library
app in the App Store. It is a means to an end, where the end is you becoming a compe-
tent iPad programmer.

Target Audience for PhotoWheel
The target audience in the PhotoWheel App Charter might seem a bit odd. It’s not your
typical ideal user for an app, but PhotoWheel is not your typical app. When I thought
about the target audience for PhotoWheel, four types of users came to mind:

n The individual who downloads all available free apps
n The individual looking for another way to store photos
n The individual looking to store favorite photos from Flickr
n The iOS programmer learning iPad programming

The first user type is not someone PhotoWheel cares about. This person will likely
download the app, use it for 10 seconds, then post a 1-star rating saying the free app
costs too much.

The second and third user types are good ideal users for PhotoWheel, but they don’t fit
the application summary.

Why make this distinction? PhotoWheel is intended to help you learn iPad program-
ming. It says so in the app summary. Its goal is not to support photo editing and other
photo sites such as SmugMug.com. These user types, however, will expect full sup-
port, which is beyond the scope of the app you are building. This could change over
time, but for now these two user types are not PhotoWheel’s ideal users.

The fourth user type, the programmer learning iPad programming, is the ideal user.
This user is you, and your goal at the moment is not to write a top 100 photo app.
Your goal is to learn how to write iPad apps. This user type fits nicely within the app
summary, and for these reasons this is PhotoWheel’s target audience.

Turner_Book.indb 146 12/11/11 6:46 PM

ptg999

Defining Your App 147

App Name

PhotoWheel

App Summary

PhotoWheel puts a spin on personal photo libraries. Collect your favorite photos in one
or more photo albums. Print and email photos, apply special effects, and display them
on your TV using AirPlay.

PhotoWheel is a personal photo library app for the iPad written as the companion app
to the book Learning iPad Programming: A Hands-on Guide to Building Apps for the iPad,
which teaches programmers how to build iPad applications.

Feature List (in no particular order)

n Display photos from one or more photo albums.
n Add, edit, and remove photo albums.
n Rename photo albums.
n Add and remove photos from photo albums.
n Import photos from the Photos app library.
n Import photos from Flickr.
n Print one or more photos.
n Email one or more photos.
n View slideshows of photos.
n Display slideshows over AirPlay.
n Sync photo albums among multiple devices.

Target Audience

The iOS programmer who is reading Learning iPad Programming.

Competing Products

Flickpad HD

Vendor: Shacked Software LLC

Price: $2.99

Rating: 4.0 stars

Last update: July 2, 2011

Web site: flickpadapp.com/

iTunes: itunes.apple.com/us/app/flickpad-hd-for-facebook-flickr/id358635466?mt=8

Photo Stack

Vendor: Seong Hun Lim

Price: Free (pro version $0.99)

Rating: 4.0 stars

Last update: May 27, 2011

Web site: iTunes: itunes.apple.com/us/app/photo-stack/id427552502?mt=8

Turner_Book.indb 147 12/11/11 6:46 PM

ptg999

Chapter 7 App Design148

UI Design Considerations
You have completed your App Charter. You know what you want to build and for
whom, but you don’t know how your app will work. Your next step is to come up
with the UI design. But before you start sketching a UI for your app, there are a few
things you need to consider and do.

R ead the HIG
A must-read for all iOS developers is the iOS Human Interface Guidelines (bit.ly/
learnipadprod-HIG), more commonly referred to as just “the HIG.” This guideline,
published by Apple, provides a general overview of what you should and should not
do in an iOS application. Apple publishes updates to the HIG whenever it issues a new
build of the iOS SDK, which means you should reread it from time to time.

Note
The iOS HIG is also available in the iBookstore. Search for “Apple Developer Publications”
or “Human Interface Guidelines” to find it.

Much of what is covered in the HIG is based on Apple’s usability research for iOS
devices and apps, and Apple shares this information with you. You are doing a disser-
vice to yourself, your app, and your users if you don’t read the HIG before designing
your app’s UI.

M ake Your App “Tapworthy”
Another invaluable resource for the nondesigner type of programmer is Josh Clark’s
book Tapworthy: Designing Great iPhone Apps. While Tapworthy’s focus is on iPhone app
design, many of the principles apply to iPad app design. For example, the ideal hit tar-
get for an on-screen object is 44 pixels. Why 44 pixels? Well, that’s about the size of a
fingertip. Make the hit target smaller, and people will have trouble tapping it.

D esign for the Device
When designing your iPad app, keep in mind that you are designing for a touch envi-
ronment, not a point-and-click environment. The rules for the iPad are different from
those for the desktop or even a Web site. Touches and mouse clicks, for example, are
different, yet sometimes designers, programmers, and even users compare them as if
they were the same and required the same amount of effort. But this is not true. A
touch is not the same as a mouse click.

Mouse clicks are often considered expensive. Designers are always trying to find
the best design that requires the fewest number of clicks. This is why you see a lot of
Web sites that cram a ton of content onto the home page. While mouse clicks are con-
sidered expensive, the same is not necessarily true for touches.

Turner_Book.indb 148 12/11/11 6:46 PM

ptg999

UI Design Considerations 149

A touch is not as involved as moving a mouse, aligning the mouse cursor to the
correct screen location, then clicking the mouse button. With a touch, you see the
object you wish to see. You move your finger and tap the object. That’s it.

Touching is so simple that an 18-month-old can do it. There’s even a YouTube
video (bit.ly/SmuleCatPlay) of a cat playing with Smule’s Magic Piano (bit.ly/
learnipadprog-SmuleMagicPiano). The point here is that, by nature, humans are a
tactile lot, and that’s why the iPad has taken off so quickly. It’s much easier to launch
an app, touch or swipe something, and get it to quickly do what you want. Compare
that to Microsoft Word with all its toolbars, menus, and palettes. If all you want to do
is type a letter to someone, Word is overkill; in fact, it’s like a death sentence (no pun
intended).

Keep this in mind while designing your application. Don’t just assume that because
a particular design practice is commonplace in the point-and-click world it will trans-
late to the touch world. (I can’t imagine trying to use a touch-based version of Word,
but give me Pages for iPad—bit.ly/learnipadprog-Pages—and I can tear things up.)

P eople Use iOS Devices Differently from the Web or Desktop
When designing your iPad app, keep in mind that people do not use iOS devices in
the same way they use the Web or desktop. This should be ref lected in the design of
your application. Web site designs, for example, try to display as much information as
possible at the top half of the page. This is called “above the fold,” a term that comes
from the newspaper world. This is the section of a newspaper that is literally above the
fold, where the paper is folded in half. It is where newspapers print the biggest head-
lines and other attention-grabbing information.

On the Web, the concept of above the fold refers to everything you see before
scrolling down. Web site designers try to display the most important, eye-catching
content above the fold, at the top half of the Web page, to get the reader’s attention.
The rationale is that the user is unlikely to scroll down a Web page to view additional
content. This is one of the reasons SEO (Search Engine Optimization) experts say
you want your Web site to appear above the fold when a user does a search. Those
first four or five matches are the ones the user is most likely to click. Matches falling
below the fold, those that are hidden until the reader scrolls down, are less likely to be
clicked.

This is not true on iOS devices. Scrolling is a natural behavior, whether it’s f licking
up and down or left and right. This means you do not need to cram a ton of informa-
tion on the screen at one time. Instead, you want to provide a balanced amount of
information in a visually pleasing manner and allow the user to use touch gestures to
scroll and pop over for additional information.

Wear Your Industrial Designer Hat
App design for iPad is a bit more involved than app design for the point-and-click
world. With the iPad the user interacts directly with the objects on the screen by

Turner_Book.indb 149 12/11/11 6:46 PM

ptg999

Chapter 7 App Design150

touching them. This leads to a different set of sensations compared to the indirect
interaction of using a mouse. This also means your app design must consider user
interaction within the app from an industrial design point of view.

Industrial design considers the aesthetics, ergonomics, and usability of a product.
The iPad has no physical buttons interacting with your application—even the key-
board is virtual—so it’s up to you to include on-screen objects with which the user
interacts. The placement of these objects is important to the usability and the ergo-
nomics of your application. Left-handed users, for example, will find certain object
placement more ideal than right-handed users. This is more noticeable on the iPhone
than on the iPad, but it’s still important to consider when designing your iPad app.

Apple has made some recommendations in the iOS HIG that fall into the industrial
design realm. Toolbars should be displayed at the top of the screen on the iPad. This
is a change from the recommendation for the iPhone, where toolbars are displayed at
the bottom of the screen. This difference is because the user interacts with the devices
differently. An iPhone user often interacts with toolbar buttons using a thumb. Placing
the toolbar at the bottom of the screen makes it easier for the user to thumb tap the
buttons. Meanwhile, an iPad user is likely to hold the device in one hand, freeing the
other hand to tap the screen. With the toolbar at the top, the user is made more aware
of its presence, and she can easily tap the desired button with her free hand.

Metaphors
iOS has a complete set of UI objects that you can use to construct your app’s user
interface. These standard controls make it easier for users to use your application
because the UI looks familiar, but the standard controls look rather bland. And using
the standard controls will not make your app stand out. It will look like all the other
apps in the App Store that use the same standard controls.

One way to stand out in the crowded App Store is to provide a real-world-like
experience to the user. You accomplish this by making use of various metaphors that
loosely mimic the real world. The user interacts with the iPad using touch gestures,
which mimic behaviors in the real world, for instance, turning a page in a book. This
is a much more engaging experience compared to the point-and-click world of the
personal computer.

Proper use of metaphors will not only give the user a sense of interacting with real
objects; it provides a user interface that is familiar to the user and is easier to learn.

Metaphors should be subtle, not overdone. iBooks (bit.ly/learningipadprog-
iBooksApp) is a good example of an iPad application that pushes the limits of real-
world metaphors without going overboard. Your books are displayed on a wood-grain
bookcase, as shown in Figure 7.2. Tap a book cover to open it. Flick your finger left
and right to turn pages. This experience is similar to picking a physical book from
a bookshelf and reading it. The trick, however, is not to go too far with metaphors.
Metaphors should be subtle.

Turner_Book.indb 150 12/11/11 6:46 PM

ptg999

UI Design Considerations 151

How could iBooks take the real-world metaphor too far? For starters, if the iBooks
bookcase looked anything like many real-world bookcases, the books would be two or
three levels deep. Books would be crammed into every possible space, sitting on top
of one another, turned so the book title is hidden, and sitting at different angles. And
there would be a slight bend in the shelves caused by the weight of all the books.

Luckily, Apple did not take the bookcase metaphor this far. If it had, iBooks would
not be the beautiful, useful app it is today. Instead, it would cause the same frustrations
you might experience in the real world when looking for a particular book.

Learn from Apple: Keep the metaphors simple and don’t go overboard.

Sound Effects
Another way to give your application that real-world feel is to provide audio feedback
with sound effects. But just as with visual metaphors, don’t go over the top with them.

Figure 7.2 An iBooks library

Turner_Book.indb 151 12/11/11 6:46 PM

ptg999

Chapter 7 App Design152

The virtual keyboard provided by iOS is a good example of appropriate audio feed-
back. As you type on the keyboard, you hear soft clicking sounds. This sound effect
resonates with users, taking advantage of hearing to give a sense of typing on a real
keyboard.

You should do the same with your users—tap into their sense of hearing by provid-
ing subtle sound effects within your application. Say, for example, your app displays
a light switch that the user f licks on and off. Adding a soft click as the user f licks the
switch will give your app a real-world sensation.

Your goal when using sounds effects is to tap into the users’ senses, not to annoy
them. Don’t go overboard with sound effects. Keep them subtle. And remember, users
can use device controls that affect sounds. They can switch the device to silent with
the Silent switch, and they can turn the volume up and down with the volume con-
trols. Users can even listen to music from the iPod player while they use your app. Be
mindful of this when adding sound effects to your app.

Note
The HIG has a lengthy section on using sounds in apps, but you already know this
because you have read the HIG. You have read the HIG, right?

Customize Existing Controls
A common pitfall programmers new to iOS fall into is reinventing the wheel. The
programmer wants to implement a real-world metaphor, say, a three-way switch. The
initial thought is to write this UI control from scratch because there is no three-way
switch in the list of standard controls. But that would be a waste of time. A better
approach is to reexamine the standard controls and find one that provides the basic
behavior you are looking for. When you find the right standard control, customize its
look and behavior.

This is exactly what the team at Raizlabs did with their app Clock Radio (bit.ly/
learnipadprog-ClockRadioApp), shown in Figure 7.3.

At the bottom of Clock Radio’s screen is a three-way switch. You can slide the
switch to the On, Off, and Alarm positions. This action of sliding the switch is similar
to using UISlider.

UISlider is a horizontal bar that allows the user to select a value from a continu-
ous range of values. This is the same behavior found in the On/Off/Alarm switch in
Clock Radio. The slider is configured to support three values representing On, Off,
and Alarm. The switch slides along a horizontal bar, which again is a behavior found
in UISlider. So to implement the three-way switch in Clock Radio, Raizlabs cus-
tomized the UISlider control. They didn’t have to reinvent the wheel. They took an
existing wheel and gave it a new look.

Before you start down the path of creating your own custom control, take a look at
the standard controls provided by iOS. Chances are very good that the behavior you
are looking for has already been implemented in one of the standard controls. All you
need to do is give the control a new look.

Turner_Book.indb 152 12/11/11 6:46 PM

ptg999

UI Design Considerations 153

Hire a Designer
Unless you are a master of Photoshop and have an eye for design, your best option
for creating an awesome-looking application is to hire a designer. If you happen to be
one of those rare (and lucky) programmers who possess both programming and design
skills, you might be able to avoid hiring a designer. But for the everyday programmer,
hiring a designer is the best way to have an amazing-looking app.

A designer can help you in many different areas. Your budget will determine
how you can best leverage the skills of a designer. At a minimum, you should have
a designer create your app icon. The app icon is the first visual impression potential
users will have of your application when deciding whether to download it or not. If
you stick an ugly icon on your app, you run the risk of losing customers before they
even load your app’s profile page in iTunes. Remember, first impressions can mean a
lot, and if you’ve got some cheap, cheesy graphic as an app icon, chances are your app
won’t sail to the top of the charts, no matter how great and useful it is.

If you can afford it, get a professional designer involved in the design of your app,
specifically the UI design. This could save you time down the road when you’re pol-
ishing your app, in other words, making it look pretty.

Figure 7.3 Clock Radio from Raizlabs. Notice the On/Off/Alarm switch at
the bottom of the screen. This is the standard control UISlider with a

new look.

Turner_Book.indb 153 12/11/11 6:46 PM

ptg999

Chapter 7 App Design154

You have defined your app. You have read the HIG. You are starting to visualize
what your app might look like and the metaphors it will use. You may even have hired
a designer to help out. Now it’s time to start sketching UI designs for your app.

Mockups
One of the fastest ways to validate your app design is with mockups. Mockups make it
possible to get a sense of how your app looks and f lows between screens. Mockups also
help reduce software development cost in that they help identify major f laws within
the app design prior to your writing a single line of code.

What Is a Mockup?
A mockup is a static rendering of a visual design—“static” because a mockup is ren-
dered in a format that does not allow user interaction the way a real application does.
Mockups are used to show a visual design concept and give a basic sense of what the
app screen will look like when finished.

Note
Mockups are used for a variety of visual designs. In the software development world,
mockups are used for everything visual from artwork to screen design. For brevity’s sake,
this section focuses on mockups for screen design.

A mockup can come in many different forms. It can be a hand-drawn sketch, as
seen in Figure 7.4, or it can look exactly like the real application. A mockup can even
be as basic as a wireframe produced in Keynote or some other drawing app. Regardless
of the form, a mockup serves the same purpose: to convey the look and feel of a visual
design.

Wireframes are the easiest kind of mockup to create. A wireframe is nothing more
than boxes and simple objects sketched to show the general layout of the application
screen. What makes wireframes easy is that you can sketch them with nothing more
than pencil and paper, and no artistic skills are required.

A mockup can be made to look like the real application screen. This is a bit more
involved and requires more than pencil and paper. A realistic-looking mockup is great
when you are pitching an app concept to a potential client because it shows exactly
how the application will look. Wireframes, on the other hand, require the people
reviewing them to use a bit of imagination, but this is not a bad thing.

As awesome-looking and impressive as realistic mockups can be, they are not with-
out their own set of problems. First of all, it requires more time to create realistic-
looking mockups. Second, showing realistic mockups can mislead clients and others
into thinking the app is nearly complete even though a single line of code has not
been written. People who do not understand software development see a realistic-
looking screen mockup and think all you now need to do is sprinkle in some code and
the app is done. As a programmer, you know better.

Turner_Book.indb 154 12/11/11 6:46 PM

ptg999

Mockups 155

Note
This has happened to me on more than one occasion. I present a set of mockups to the
client. Each mockup looks like a real screen shot. The client knows little about the soft-
ware development process and upon seeing the realistic-looking mockups jumps to the
conclusion that the app is nearly finished—this despite my explaining that what is being
reviewed is only a mockup, a static rendering of a screen design. I’m now of the opinion
that it is best to avoid creating realistic-looking mockups unless you know that the person
reviewing them understands that they were drawn and not created from snapshots of a
functioning app.

Figure 7.4 A set of wireframes sketched by hand

Turner_Book.indb 155 12/11/11 6:46 PM

ptg999

Chapter 7 App Design156

What to Mock Up
What to mock up really depends on the circumstances. You can mock up as little or as
much of the application as you feel is necessary. Remember, the goal of mockups is to
convey the basic look and feel of the application, including the f low of the app. It need
not be perfect or contain every possible detail. It just needs to include enough details
for everyone to understand the UI design and workf low of the app.

It’s not always necessary to create a mockup of each and every screen. If a mockup
has done its job conveying the app design, you can assume that the additional screens
not included in the mockups follow the same look and feel. However, if the app you
are building is for a client, the client might expect, and prefer, mockups for every
screen. Use your best judgment when deciding how much or how little to mock up.

Keep in mind that using mockups is not just about designing screens for your appli-
cation. Mockups are also really useful for designing artwork that is included in your
application. Figure 7.5 shows some of the mockups for the Labor Mate app icon.

There are no limits to what you can mock up. The more mockups you create, the
better off your design. And best of all, creating mockups is a great way to get the cre-
ative juices f lowing.

Tools to Use
How you create a mockup can vary as much as the details you include in the mockup.
You may find that drawing sketches with paper and pencil works best for you. Or you
may find that a combination of hand-drawn sketches and wireframes created in Key-
note is best. Find what works best for you and run with it.

Note
My approach varies based on the project. I tend to always start with paper sketches.
Once I’m comfortable with the design, I may or may not redo the mockups in Keynote or
iMockups. If the mockup is for a client, I will more times than not redo the mockups in an
app. This gives them a more professional appearance when I present the UI designs to
clients.

To find what works best for you, you need to know what tools are available for cre-
ating mockups. Let’s go over some of the more popular ones.

Figure 7.5 Example mockups for the Labor Mate app icon, starting with
hand-drawn sketches and ending with the final app icon

Turner_Book.indb 156 12/11/11 6:46 PM

ptg999

Mockups 157

Paper and Pencil
Paper and pencil is by far the most commonly used mechanism for creating mockups.
A paper mockup is quick and simple, and it doesn’t require a learning curve. You
just start drawing. Best of all, artistic skills are not required. Your sketch doesn’t have
to look great. It simply needs to covey a sense of how the screen looks and behaves
within the app.

Hand-drawn sketches are no longer limited to paper. The iPad has become an
excellent device for sketching. Apps such as Penultimate (bit.ly/learnipadprog-
PenultimateApp) make drawing sketches as much fun as finger painting. However,
using a finger can be somewhat troublesome, especially if you are doing a large num-
ber of sketches. This is why a number of folks use a capacitive stylus for drawing on
the iPad. Whether you use your finger or a stylus, the iPad is a good alternative to
paper.

Note
I reviewed the Pogo Sketch and Boxwave Capacitive Stylus on my blog site
(blog.whitepeaksoftware.com/2010/08/29/ipad-stylus-review/). Check it out if you
want more details on capacitive styluses for the iPad.

Photoshop
Another option for creating mockups is Adobe Photoshop. This is a popular choice
with designers who have designed Web sites for years using Photoshop.

Doing mockups in Photoshop has a few advantages over paper. First of all, you can
create a mockup that looks exactly like the real thing. Photoshop is an excellent choice
when you want to create realistic-looking mockups. Second, Photoshop makes it easy
to slice out custom artwork that will be included in your app.

The downside to using Photoshop is the time it takes to learn. Many designers
already know how to use Photoshop and can produce mockups in a short amount of
time. But for some folks, using Photoshop to create a good-looking mockup is about
as realistic as your mom, who has never programmed before, writing a good iOS
application in a short amount of time. Not that it can’t be done; just that it is difficult
to do in a reasonable amount of time.

All is not lost should you still want to create realistic mockups using Photoshop.
There are a number of templates available that help get you started. One template that
looks particularly good is the iPad GUI PSD (www.teehanlax.com/blog/2010/
02/01/ipad-gui-psd/). This PSD includes most, if not all, of the standard elements
you need to create really useful, realistic-looking mockups using Photoshop.

Note
A trick you can use to suggest a real app using nothing more than mockups is to save
each screen mockup as a .png or .jpg image. Copy the images to your iPad and view the
images using the Photos app. While the screen elements are not functional, you can still
flip through the screens to get a sense of how the application will look and feel on the
device.

Turner_Book.indb 157 12/11/11 6:46 PM

www.teehanlax.com/blog/2010/02/01/ipad-gui-psd/
www.teehanlax.com/blog/2010/02/01/ipad-gui-psd/

ptg999

Chapter 7 App Design158

Keynote
Keynote may seem like an odd choice for creating mockups, but it’s a really useful
way to create nice-looking mockups for the nondesigner type who struggles with
Photoshop. Keynote, and PowerPoint for those who prefer it, makes it possible to cre-
ate realistic-looking iPad screen mockups with very little effort. And Keynote does an
outstanding job of drawing boxes, making wireframe mockups a snap to create.

As with Photoshop, starting with a template can save you time. One free template
is MockApp (mockapp.com). MockApp is designed for creating iPhone mockups,
but since many of the screen elements are the same, it can also be used to create iPad
screen mockups.

MockApp has a template for Keynote and PowerPoint. The templates are available
as “tweetware.” This means that, while the templates are free to use, the author asks
that you send a tweet about using MockApp to help spread the word about it.

Another Keynote template for creating iPad wireframes is Keynote Wireframe
Toolkit (keynotekungfu.com). You won’t be creating realistic-looking iPad mock-
ups with Keynote Wireframe Toolkit, but remember, that’s not necessarily a bad thing.
The toolkit makes it easy to create good-looking wireframes for iPad applications. It
also includes a really nice feature that allows you to link wireframes to one another. A
screen element can be made clickable, sending you to another wireframe screen. This
is a great way to prototype the application workf low in a low-cost, efficient manner.

Keynote Wireframe Toolkit comes with support for Keynote and PowerPoint, and
the cost is only $12.

Icon Sets
Creating realistic-looking screen mockups means including artwork for icons. Creating
original artwork will ensure that your application has a unique look, but sometimes
there just is not enough time. What you can do in these situations is to use stock
icons within your mockups and the real application.

There are a number of free and paid icon sets available on the Internet. One of
the most popular is Glyphish (glyphish.com), which includes over 200 stylish icons
designed for iPhone and iPad.

One additional note: While stock icon sets are great for in-app displays on buttons,
toolbars, and tab bars, they don’t make for great app icons. Your app icon should be
original artwork. If you are not a designer, hire one to create your app icon. Remember,
the app icon is the first visual impression potential users will have of your app. This
impression should be a good one, not a bad one, so spend the extra money to have
your app icon professionally designed.

Mockup Apps
Another option you have for creating screen mockups is to use an app devoted to
creating wireframes. Mockup apps have all the features you need for creating screen

Turner_Book.indb 158 12/11/11 6:46 PM

ptg999

Mockups 159

mockups. However, these apps focus on creating wireframe mockups, not realistic-
looking ones. Don’t view this as a limitation. Remember, realistic mockups can lead to
confusion. Wireframes, on the other hand, allow you to focus on the screen layout and
screen f low without worrying about pixel-perfect display.

One useful app available on the iPad is iMockups (bit.ly/learnipadprog-
iMockupsApp), shown in Figure 7.6. iMockups makes it possible to create UI mock-
ups for iPad, iPhone, and Web apps. It includes page linking so that you can prototype
your app’s workf low, and it supports VGA out for presenting your mockups on an
overhead projector. iMockups includes a library for every screen widget you need, and
you can export mockups. iMockups is the perfect iPad app for creating professional-
looking wireframe mockups of your app.

OmniGraff le from OmniGroup (bit.ly/learnipadprog-OmniGraff leApp),
shown in Figure 7.7, is another popular application for creating wireframe mockups.
OmniGraff le is available for the Mac desktop and iPad. OmniGraff le works by using
stencils of different object types and shapes. The wide array of stencils, provided by
OmniGroup and the user community, makes it possible to create virtually any type of
diagram you need, from f lowcharts to wireframes. OmniGraff le on the iPad also has a
freehand mode in which you can draw your mockups using your finger or a stylus.

Figure 7.6 iMockups wireframe for an RSS feed reader app

Turner_Book.indb 159 12/11/11 6:46 PM

ptg999

Chapter 7 App Design160

Note
OmniGraffle for iPad’s $50 price tag may give you sticker shock, but OmniGroup does
offer a unique money-back guarantee. If you are unhappy with the iPad version of Omni-
Graffle for any reason, send OmniGroup a copy of your iTunes receipt and they will issue
you a refund. Now that’s customer service.

One other app that is popular for creating wireframes and mockups is Balsamiq
Mockups (balsamiq.com), shown in Figure 7.8. Balsamiq is a cross-platform desktop
app for sketching mockups. It is also available as a plug-in for Conf luence, JIRA, Fog-
Bugz, and XWiki, and a Web version is in the works. In addition to including all the
features you would expect from a mockup and wireframing app, the folks at Balsamiq
have released an online collaboration solution called myBalsamiq. myBalsamiq makes
it possible for remote teams to work together on UI design and mockups.

Prototyping
A mockup is a good way to validate your UI design, and tools like iMockups,
Balsamiq, and Keynote make it possible to create clickable mockups that simulate the
workf low of your app. But sometimes this is not enough.

Figure 7.7 Screen shot of OmniGraffle for the iPad

Turner_Book.indb 160 12/11/11 6:46 PM

ptg999

Prototyping 161

Maybe you need to see the animation between screen transitions, or maybe you
want to verify that data can be retrieved from a Web service. These types of valida-
tions are not possible in a static mockup. What you need to do is to prototype the con-
cept in a functional app.

What Is a Prototype?
In the realm of software development, a prototype is a sample application written to
validate a design concept or group of concepts. A prototype app is a quick-and-dirty
version of a sample application intended to be a throwaway. As with mockups, the goal
of a prototype is to validate a design concept or decision. But unlike mockups, a pro-
totype is a functioning application. This means that you can interact with it, add and
retrieve data, perform calculations, and more.

The primary purpose of a prototype is to validate a concept or show how some-
thing might be accomplished. This goes a step further than a mockup in that a

Figure 7.8 Wireframing a sample iPad app using Balsamiq

Turner_Book.indb 161 12/11/11 6:46 PM

ptg999

Chapter 7 App Design162

prototype is a real application written with source code. However, a prototype is not
a complete application. It is not an app that someone would use on a regular basis to
accomplish a task.

A prototype should be limited to validating a design concept or proving that an
approach is feasible. Often a prototype is buggy, contains no error handling (unless
you are prototyping how to handle errors), and is ugly. A prototype is quick and dirty.
It is not something you share with the world.

You should not spend a lot of time on a prototype. There is no reason a prototype
should look and behave like the real application. You should treat a prototype as a
throwaway. This last point is very important and deserves repeating: You should treat
a prototype as a throwaway.

Often programmers will turn a prototype into the real application. This is a huge
mistake. A production app—that is to say, the real app, the one you share with the
world—should be far more robust than a quick-and-dirty prototype.

When writing a prototype, it’s likely you will not follow good coding styles and
conventions. After all, you’re writing something quick and dirty. You end up taking
shortcuts that you would never do in a real application. Turning this same code into a
real application makes your application less stable, uncaught bugs are more likely, and
enhancing and maintaining the app written from prototype code is a nightmare. In
the long run, you end up wasting more time with a prototype app turned into a pro-
duction app than you would had you thrown out the prototype and written the real
app from scratch.

Throwing out the prototype app might seem like a waste, but it is not. Remember,
the primary goal of the prototype is to validate one or more concepts. In the course
of creating the prototype app you gain knowledge about which techniques work and
which ones do not. Armed with this knowledge, you are able to write better code for
the real app in less time.

How to Create a Prototype
Of course you can use a clickable mockup for creating your prototype. This is fast and
efficient, but you are limited to prototyping the workf low of your app. To go beyond
this, you need to create a prototype app.

A prototype app is like any other app. The only difference is that your prototype
app will not be shared with the world, and the world will not use your prototype to
solve real-world problems. Instead, your prototype app will be used by you and maybe
a small, select group of interested individuals for a short period of time to validate
that the concept indeed works. For example, say you are writing a streaming radio
app. The first thing you might do is to write a prototype app that proves you can play
back streaming audio from the Internet. The user interface for this app will be ugly,
or there may be no UI at all. And the URL to the radio station is hard-coded in the
prototype app.

This is not the type of app you share with the world. It’s not the type of app Apple
approves for the App Store. But this app does serve a purpose. It proves that you know

Turner_Book.indb 162 12/11/11 6:46 PM

ptg999

Summary 163

how to stream audio from the Internet, and that is very important knowledge to have
if you’re planning to write a streaming radio app.

Often the fastest way to write a prototype app is to use one of the application tem-
plates provided in Xcode. The application templates provide a jump start to a working
app. With this in place, you are free to hack away with your prototype code. It doesn’t
matter which application template you use. Pick the one that best matches the purpose
of your prototype app.

Note
A short description of each application template is available in the “Application Tem-
plates” sidebar found in Chapter 1, “Your First App.”

Summary
App design is a very important part of creating iPad applications. You need to spend
the time up front thinking about and designing your app before you write a single line
of code. Create an App Charter to define the “what” and “who” of your application.
Have brainstorming sessions to come up with a big list of app features, then trim down
that list once you know who your target audience is.

Take advantage of visual and audio metaphors within your application, but don’t
go overboard. The metaphors should enhance the user experience, not distract from
it. And look for ways to customize the standard UI controls instead of writing a new
control from scratch.

Don’t forget to consider the ergonomics and aesthetics of your application. Take a
step back and look at your app design with the eyes of an industrial designer.

Hire a professional designer. Enough said. Unless you have design skills, you’re bet-
ter off letting a designer give your application a polished look.

When it’s time to figure out the “how” of your app, use mockups and prototypes.
Creating mockups and prototypes is a cost-effective way of validating your app design
before writing code for the real application. Remember, mockups are great for validat-
ing visual designs, and prototypes are great for validating designs that can be tested
only in code. Use both throughout your software development process to save time
and build better apps.

And last, read the iOS Human Interface Guidelines, the HIG. Then read it again in a
few months. Then read it again, and again, and again. Apple has spent an extraordi-
nary amount of time researching and performing usability testing for iOS. Your app
can only benefit from the advice provided in the HIG.

Turner_Book.indb 163 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

Part II
Building PhotoWheel

Turner_Book.indb 165 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

8
Creating a Master-Detail App

In Part I you learned about the tools, programming language, and frameworks used to build iPad
apps. Now it’s time to use what you have learned to build a real app. This is no simple app you
are building. It’s not yet another f lashlight app. No, it’s a real-world app that uses most if not all
of the most commonly used elements of iOS. You will be building an app that displays photos,
has animation, persists data in a local database, and calls Web services over the Internet.

What’s the app? It’s PhotoWheel, and the App Charter was presented in Chapter 7, “App
Design.”

Just to recap: PhotoWheel is a photo app that allows you to store your favorite photos in one
or more albums. It gets its name from the spinning wheel, or disc, of photo albums. You use your
finger to rotate through the set of photo albums displayed in the wheel.

It’s a good idea to read Part II with your computer nearby so that you can work on the app as
you read. This hands-on approach will help you learn faster. If you are the type who prefers to
know what’s going on first, feel free to read the chapter and then return to the beginning to work
on the app.

Let’s get started building PhotoWheel.

Building a Prototype App
As you learned in Chapter 7, “App Design,” a common technique for building a new
application is to start with mockups followed by a prototype app. The mockups for
PhotoWheel have already been done for you. Figure 8.1 shows the mockup for the
prototype app. The prototype app is used to prove core concepts of the app you are
building. It is a throwaway, and it will look nothing like the final app. The mockup of
the final PhotoWheel app is shown in Figure 8.2.

Note
You will find the complete set of mockups, including hand-drawn mockups, in the mockups
directory included with the source code.

Turner_Book.indb 167 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App168

A quick way to build a prototype app is to use one of the application templates
provided by Xcode. PhotoWheel will contain a collection of photo albums, and each
photo album will contain one or more photos. This is the classic Master-Detail pat-
tern, where the photo album represents the master data and the photos within the
album represent the detail. The Master-Detail Application template is perfect for this
type of app, so let’s use it for the prototype app. But first...

What Is the Split View Controller?
The iPad application created from the Master-Detail Application template uses a split
view controller to display master and detail information. The split view controller—or
more specifically UISplitViewController, which is the class name—is a nonvisual

Figure 8.1 Early mockup drawing of the PhotoWheel prototype app

Figure 8.2 A mockup drawing for the final version of the PhotoWheel app

Turner_Book.indb 168 12/11/11 6:46 PM

ptg999

Building a Prototype App 169

controller that manages the display for two view controllers, a master view controller
and a detail view controller. When the iPad orientation is landscape, the split view con-
troller displays the views for both view controllers at the same time. The master view is
displayed on the left side of the screen and the detail view is displayed on the right side.

When the device is rotated to the portrait orientation, only the detail view is dis-
played. The master is hidden to allow the user to focus on the content presented in the
detail view. The master view is still available to the user as a button on the toolbar, but
its view is hidden.

The Mail app included on the iPad uses UISplitViewController, as seen in
Figure 8.3. When you hold the iPad so that the Home button is on the left or right
(called landscape orientation), you see the list of inboxes, accounts, and emails on the
left side of the screen. Tap an email on the left side to view its contents on the right
side. Now rotate the iPad so that the Home button is at either the top or the bottom
(called the portrait orientation). Only the email’s contents are displayed. If you need
to navigate the list of emails, inboxes, and accounts while in portrait, tap the but-
ton in the upper left corner. This will reveal the view managed by the master view
controller.

Now that you know what the split view controller is and what it does, let’s create a
new master-detail app to serve as the PhotoWheel prototype.

Figure 8.3 A screen shot of the Mail app in action on the iPad

Turner_Book.indb 169 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App170

Create a New Project
To begin, you need to create a new project in Xcode. Start by launching Xcode.
Next, select File > New > New Project (Shift-�-N). Choose Master-Detail
Application from the list of application templates, then click the Next button, shown in
Figure 8.4.

Enter “PhotoWheelPrototype” as the product name. Accept the default Company
Identifier value or edit it to ref lect the identifier you prefer to use. Refer back to Chap-
ter 6, “Provisioning Your iPad,” to learn more about the Company Identifier value.

Leave the Class Prefix field blank. Select iPad for the Device Family, and uncheck
the options Use Storyboard, Use Core Data, and Include Unit Tests. These options are
not needed for the prototype and will be covered in later chapters. Finally, select the
option Use Automatic Reference Counting. Your settings for the project should look
like those in Figure 8.5.

Click the Next button, then select a folder in which to store the project. Finally,
click the Create button.

Note
If you are a Git user and you wish to use it, select “Create local git repository for this proj-
ect.” For the purpose of this book, Git is not required and will not be discussed.

You now have a master-detail app project. Build and run (�-R) the app to see the
generated app in action. Be sure to select the simulator in the scheme list, shown in
Figure 8.6, to run the app in the simulator; otherwise the app will run on your iPad,
assuming it is tethered to your computer.

Figure 8.4 List of the iOS application templates available in Xcode

Turner_Book.indb 170 12/11/11 6:46 PM

ptg999

Building a Prototype App 171

Using the Simulator
Using the iPad Simulator is a fast and easy way to test your app. By default, the simu-
lator launches with the device orientation in portrait mode. You rotate the device
using �-Left Arrow and �-Right Arrow (or Hardware > Rotate Left and
Hardware > Rotate Right from the menu bar).

Also by default, the device size is displayed at 50%. You make it larger by selecting
Window > Scale > 100% (�-1) or Window > Scale > 75% (�-2). Window >
Scale > 50% (�-3) returns the simulator to a 50% scale.

Take a look under the Hardware menu item for more juicy goodness. You can
have the simulator simulate the shake gesture, tap the Home button, and lock the
screen. There are also options to call up the keyboard, simulate low memory warn-
ings, and simulate an external display with TV Out.

PhotoWheelPrototype is a master-detail application, which means it uses the split
view controller. To see it completely, you need to rotate the iPad Simulator to the
landscape orientation. Type �-Left (or �-Right) to rotate the simulated device. You
should now see the app as shown in Figure 8.7.

Figure 8.5 Project options for the Master-Detail Application template

Figure 8.6 Select the scheme from the list found near the upper left
corner of the Xcode project window.

Turner_Book.indb 171 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App172

How to Quit Your App
You may have noticed that when you run your app from Xcode, whether in the simulator
or on the iPad, and you touch the Home button to exit the app, the app doesn’t actu-
ally quit. Xcode shows that the app is still running.

What’s going on here?

iOS has a service called multitasking. Multitasking allows one or more apps to run at
the same time when the active app is in the foreground and all other running apps are
in the background. When you launch an app, it becomes the foreground app. When you
tap the Home button or fast swap to another app, the foreground app transitions to the
background. When you return to the app, it transitions from the background to the fore-
ground. Your app receives messages such as applicationDidBecomeActive:
and applicationDidEnterBackground: as it transitions from the foreground
and background so that the app can act accordingly based on the new state.

This is an overly simplified explanation of multitasking on iOS. For a more complete
explanation, read the “Multitasking” section of The Core Application Design document
provided by Apple (developer.apple.com/library/ios/#documentation/iPhone/Concep-
tual/iPhoneOSProgrammingGuide/CoreApplication/CoreApplication.html). But until you
do, all you need to know is that when you touch the Home button, your app doesn’t
actually quit; it simply moves to the background. This is why Xcode shows that your
app is still running.

Figure 8.7 Master-detail application using the
UISplitViewController running in the iPad Simulator

Turner_Book.indb 172 12/11/11 6:46 PM

ptg999

A Closer Look 173

There is a logical reason for this behavior. It allows you to debug your app while it runs
in the background. If Xcode automatically terminated the app when you touched the
Home button, there would be no way to debug apps running in the background.

So what do you do when you want to quit or terminate your app? There are a couple of
options available to you. Every time you finish a debugging session, you can click the
Stop button or use the shortcut �-. in Xcode. This will terminate your app. The other
option is to quit the simulator, which is as simple as typing �-Q. I tend to use �-Q to
quit the simulator most often.

A Closer Look
When you ran the app, you may have noticed that the application template did a num-
ber of things for you. First and most important, it created a functional master-detail
app. Granted, the app isn’t useful, but it does have basic functionality commonly found
in master-detail apps.

You can rotate the device to change from the master-detail view to the detail-only
view. A toolbar button is added that displays the master view in a popover when the
device orientation is portrait. And tapping an item in the master view will update the
details display. The template has set up a functional project structure that can be used
to build a really useful app.

Project Structure
The application template creates the project structure shown in Figure 8.8. The proj-
ect contains the following files:

n AppDelegate.h and .m: This is the application delegate. It derives from
NSObject and conforms to the UIApplicationDelegate protocol.

n MasterViewController.h and .m: This is the view controller for the master view.
It derives from the UITableViewController.

n DetailViewController.h and .m: This is the view controller for the detail view—
the view displayed on the right side of the screen when the iPad orientation is
landscape. This class derives from UIViewController and conforms to the
UISplitViewControllerDelegate protocol.

n MasterViewController.xib: This is the user interface NIB file for the root view.
It contains a table view, and it is controlled by MasterViewController.

n DetailViewController.xib: This is the user interface NIB file for the detail
view. It contains a toolbar and a display label, and it is controlled by
DetailViewController.

These files represent the primary source code to your app, and these are the files
you will work with most often. There are, however, a few more files created by the

Turner_Book.indb 173 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App174

application template that are worth mentioning. Click the disclosure indicator next to
the Supporting Files group to open it. You’ll see the following files:

n PhotoWheelPrototype-Info.plist: This is the info.plist file for your application. It
contains additional metadata about the application used by the build process. Set-
tings in the info.plist are used to define various characteristics about the app such
as supported interface orientation, main NIB file or storyboard, version number,
and icon files.

n PhotoWheelPrototype-Prefix.pch: This is the precompile header file. It is used
by the compiler to improve compile-time performance and typically contains
references to other frequently used header files.

n main.m: This source file contains the main() function needed by all programs
created in the C programming language. It calls the function UIApplication-
Main(), which in turn loads the main NIB file if defined in the info.plist file,
causing the app delegate class to be instantiated.

App Delegate
From the iOS developer’s point of view, the app delegate is the launch point of the
application. The class AppDelegate defines the app delegate for the PhotoWheel-
Prototype app. Let’s examine this class a bit more. Open the AppDelegate.h file in
Xcode. You accomplish this by clicking the file name in the Project navigator. You
will see the code in Xcode’s text editor as shown in Listing 8.1.

Listing 8.1 Source Code from the AppDelegate.h File

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

Figure 8.8 Project navigator for the PhotoWheelPrototype project

Turner_Book.indb 174 12/11/11 6:46 PM

ptg999

A Closer Look 175

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) UISplitViewController *splitViewController;

@end

The first line of code is #import <UIKit/UIKit.h>. This tells the compiler to
include the UIKit header file, which contains declarations for the objects found in the
UIKit framework.

The next line of code begins with the compiler directive @interface. This indi-
cates the start of the interface declaration for the class AppDelegate. You see from
this line of code that AppDelegate derives from the class UIResponder as indicated
by : UIResponder. AppDelegate also conforms to the protocol UIApplication-
Delegate as indicated by <UIApplicationDelegate>.

Note
In Objective-C a class can be derived from one and only one class. This is called single
inheritance. While an Objective-C class can inherit behaviors and features from only one
class, it can conform to more than one protocol. To indicate that a class conforms to
more than one protocol, separate each protocol listed between the < and > symbols with
a comma, for example, <UITableViewDataSource, UITableViewDelegate>.

Next you find a set of declared property declarations. There are two declared prop-
erties in Listing 8.1: window of type UIWindow and splitViewController of type
UISplitViewController.

Note
As you learned in Chapter 4, “Getting Started with Objective-C,” the @property com-
piler directive indicates a declared property. Following the @property is the list of set-
tings for each declared property. The asterisk in front of each of the property names tells
the compiler that the property is a pointer. A pointer is a reference to an object or data
stored in memory. Refer back to Chapter 4 for a refresher on declared properties.

The class definition ends with the @end compiler directive. This concludes the
interface declaration for the class AppDelegate.

You now have an idea of what the class AppDelegate looks like, but you still don’t
know how it is implemented. To see the implementation, open the file AppDelegate.m.
A portion of the implementation file is shown in Listing 8.2.

Note
A quick way to navigate between the .h and .m files is to use the Control-�-Up and
Control-�-Down shortcut keys.

Let’s step through Listing 8.2 so that you have a better understanding of what is
happening.

Turner_Book.indb 175 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App176

Listing 8.2 AppDelegate.m

#import "AppDelegate.h"

#import "MasterViewController.h"

#import "DetailViewController.h"

@implementation AppDelegate

@synthesize window = _window;

@synthesize splitViewController = _splitViewController;

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 MasterViewController *masterViewController =

 [[MasterViewController alloc] initWithNibName:@"MasterViewController"

 bundle:nil];

 UINavigationController *masterNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:masterViewController];

 DetailViewController *detailViewController =

 [[DetailViewController alloc] initWithNibName:@"DetailViewController"

 bundle:nil];

 UINavigationController *detailNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:detailViewController];

 self.splitViewController = [[UISplitViewController alloc] init];

 self.splitViewController.delegate = detailViewController;

 self.splitViewController.viewControllers = [NSArray arrayWithObjects:

 masterNavigationController,

 detailNavigationController,

 nil];

 self.window.rootViewController = self.splitViewController;

 [self.window makeKeyAndVisible];

 return YES;

}

@end

Turner_Book.indb 176 12/11/11 6:46 PM

ptg999

A Closer Look 177

Note
If you are looking at the implementation file in Xcode, you’ll notice that the application
template generates much more code than what is shown in Listing 8.2. The additional
code is not used at the moment. For the sake of brevity, Listing 8.2 shows only the parts
of the implementation file that are of interest now.

The first things you see in Listing 8.2 are three #import statements. The first
imports the header file for the AppDelegate class. This is followed by imports of
MasterViewController and DetailViewController header files. The header files
for these two classes are imported so that the classes can be used within the code in
this file.

Following the #import statements is the @implementation compiler direc-
tive. This is the companion to the @interface compiler directive found in the
AppDelegate.h file. @implementation tells the compiler that what follows is the
implementation for the class AppDelegate.

Following @implementation is a set of @synthesize compiler directives. As you
may recall from Chapter 4, “Getting Started with Objective-C,” each declared prop-
erty must have accessor methods (getter and setter methods). @synthesize generates
the needed accessor methods for you during compile time. This reduces the amount of
code you must write.

Each @synthesize directive is followed by the property name. This name matches
the names defined in the .h file. Following the property name is an equal sign fol-
lowed by the property name with an underscore character as a prefix. This allows you
to map a declared property to an ivar of a different name.

By default @synthesize assumes that the ivar name for a declared property is
the same as the property name. For example, the code @synthesize myProperty
tells the compiler to generate the accessor methods for myProperty and use the ivar
myProperty. You can override this by setting the property name equal to a new ivar
name, for example, @synthesize myProperty = _myProperty. This does the
same as the first example except the ivar name is now _myProperty.

Why use an ivar name that is different from the property name? To help maintain
your sanity. Often programmers new to Objective-C will confuse a property with an
ivar. Take, for example, the code snippet in Listing 8.3.

Listing 8.3 A Simple Person Class

@interface Person : NSObject

{

}

@property (nonatomic, copy) NSString *name;

@end

@implementation Person

Turner_Book.indb 177 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App178

@synthesize name;

- (void)foo

{

 NSLog(@"name: %@", [self name]);

}

- (void)bar

{

 NSLog(@"name: %@", name);

}

@end

In Listing 8.3 the class Person is defined. It has a declared property called name.
name is synthesized to generate the accessor methods and the ivar, which is also called
name. The implementation includes two methods, foo and bar. Both produce the
same output, but foo uses the accessor method for the declared property while bar
uses the ivar.

Note
NSLog() is a C function that outputs a string to the console. It is similar to the C func-
tion printf in that it takes a format string followed by a list of arguments. However,
NSLog differs in that it can handle Objective-C objects. Refer back to Chapter 5, “Getting
Started with Cocoa,” for more information on NSLog.

There are a few problems with the code snippet. First of all, and most important,
you should always avoid directly accessing ivars. Accessing ivars directly is not good
OO programming. Instead, you should always go through the accessor methods for
the declared property. This ensures that any side effects implemented by the accessor
methods are taken into account. For example, the property name could have an acces-
sor method that actually concatenates two strings, first and last names, to form the
name string.

Second, using the declared property with @synthesize ensures that proper mem-
ory management is used. iOS does not support garbage collection, so your code must
manage memory, and any help you can get from the compiler is a good thing.

For someone new to Objective-C the difference between the methods foo and
bar might not be obvious. But if you rename the ivar something different from the
property name, there is no mistaking how you are accessing the data. This underscore
prefix in the modified version of bar, shown in Listing 8.4, stands out more than it
did in Listing 8.3.

Turner_Book.indb 178 12/11/11 6:46 PM

ptg999

A Closer Look 179

Listing 8.4 Modified Version of bar

- (void)bar

{

 NSLog(@"name: %@", _name);

}

Using an underscore as a prefix (or suffix) to your ivar names makes it easy to scan
your code for references to ivars. If you find code that references an ivar, that code is
likely wrong. It should be changed to use the accessor methods instead.

Note
The code in Listing 8.4 accesses the ivar directly. It is done to illustrate the point that
an ivar with an underscore at the beginning or end of the name is easy to find. The code
sample in Listing 8.4 should not be viewed as good programming style as direct access
to the ivar is not recommended.

Let’s return to Listing 8.2 and take a look at the next line of code, which is the
method declaration for -application:didFinishLaunchingWithOptions.

Launch Options
The appropriately named UIApplicationDelegate method application:did-
FinishLaunchingWithOptions: is called when the OS finishes launching the app.
This is the first time, under normal circumstances, that your code has an opportunity
to do something useful. This is when your code initializes the app and its delegate for
use.

A master-detail application first creates an instance of a UIWindow. This is the main
window displayed by the application. Next, an instance of MasterViewController is
created and used to initialize a new UINavigationController instance. An instance
of DetailViewController is created next, and it too is used to initialize a new
UINavigationController instance. This is followed by the creation of the UISplit-
ViewController. The DetailViewController instance is made the delegate for the
split view controller, and the navigation controllers, one containing the MasterView-
Controller instance and the other containing the DetailViewController instance,
are added to the split view controller. The navigation controller masterNavigation-
Controller represents the “master” and the other navigation controller, detail-
NavigationController, represents the “detail.”

The steps for initialization can and will differ between apps. You just saw, for
example, the steps needed to prepare a split view controller with master and detail
controllers. Other application templates would follow different steps, but a few steps
are common among all apps. Those steps include

n Setting the rootViewController property for the window
n Making the window visible by calling makeKeyAndVisible on the window
n Returning YES

Turner_Book.indb 179 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App180

Setting the rootViewController for the window assigns the view managed by
the root view controller as the content view for the window. makeKeyAndVisible,
as the name implies, makes the window the key—a key window is the active win-
dow—and makes it visible.

The concept of a key window comes from the OS X world where an application
often has more than one window. Unlike the desktop, however, an iPad app has only
one window. The exception to this is when the iPad is connected to an external dis-
play. At this time the iPad app can create a second window that is used to display con-
tent on the secondary screen. But even with a secondary screen the iPad app has only
one key window, and that is the window displayed on the device itself.

Last, application:didFinishLaunchingWithOptions: returns YES. If it were
to return NO, the app would not launch. Your app will almost always return YES for
this method, but there are times when NO is the appropriate return value, for instance,
when the app is unable to handle the launch options. Here’s why.

application:didFinishLaunchingWithOptions: has two input param-
eters: application and launchOptions. application is a reference to the
UIApplication instance for the running app. launchOptions is a key-value pair
dictionary indicating the reasons for launching the application.

launchOptions are used when your application is launched by some means other
than the user tapping the app icon from the Home screen. For instance, say your app
supports a particular file type and the user received an email attachment of that file
type. The user has the option to open the file type in a different app from within the
Mail app. When the user does this, your app is launched from the Mail app and the
launchOptions dictionary contains the URL to the file attachment. Your app can
now open the file attachment and process its contents.

If the app is able to process the incoming file attachment successfully, the return
value for application:didFinishLaunchingWithOptions: is YES. But if the file
attachment cannot be processed, say it’s a bad file format, NO is the appropriate return
value. Returning NO tells the operating system that your app will not continue the
launch process.

Other UIApplicationDelegate Methods
application:didFinishLaunchingWithOptions: is not the only method imple-
mented by the app delegate. There are others, although they are not as frequently
implemented. The other commonly implemented UIApplicationDelegate methods
are the following:

n applicationWillResignActive:: This method is called when the application
is about to change from an active state to an inactive state. This can happen for a
number of reasons: an incoming phone call, SMS message, or push notification,
or when the user has quit the app by tapping the Home button. You typically
pause your app when this method is called. This could mean disabling timers,
pausing long-running operations, or, if your app is a game, pausing game play.

Turner_Book.indb 180 12/11/11 6:46 PM

ptg999

181A Tour of UISplitViewController

n applicationDidBecomeActive:: This method is called when the app is about
to change from an inactive state to an active one. This is when your app would
restart those things previously paused in applicationWillResignActive:.

n applicationDidEnterBackground:: This method is called when the user
leaves your app. This is a good place to save data and release shared resources
used by your app. This method is also called if your application supports multi-
tasking; otherwise, applicationWillTerminate: is called.

n applicationWillEnterForeground:: This method is the opposite of
applicationDidEnterBackground:. It is called when your application
becomes active, but only if your app supports multitasking.

n applicationWillTerminate:: This method is called just prior to the operat-
ing system terminating your app. This is a good place to save any unsaved data
changes within your app. Because termination of your app is controlled by the
operating system, your code has only a few seconds to complete any remaining
tasks before termination. This means that code you implement in this method
should do its job quickly and efficiently. This is not the place for a long-running
task such as updating data to a Web service as there is no guarantee that the OS
will let the task complete before the app is terminated.

A Tour of UISplitViewController
As you have already learned, UISplitViewController is a nonvisual controller that
manages the display of two view controllers, a master and a detail. UISplitView-
Controller has two properties, shown in Listing 8.5.

Listing 8.5 UISplitViewController Interface

@property(nonatomic, copy) NSArray *viewControllers;

@property(nonatomic, assign) id <UISplitViewControllerDelegate> delegate;

viewControllers is an array consisting of two elements. The first element,
objectAtIndex:0, is the master controller and the second element, objectAt-
Index:1, is the detail controller.

Note
objectAtIndex: is a method on NSArray, which is the data type for the view-
Controllers property. It is important to note that arrays in C and Objective-C are
zero-based, not one-based.

UISplitViewController’s other property is delegate. This is a reference
to an object that conforms to the UISplitViewControllerDelegate protocol.
The methods from this protocol are shown in Listing 8.6, which is taken from the
UISplitViewController.h header file. Let’s take a closer look.

Turner_Book.indb 181 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App182

Listing 8.6 UISplitViewControllerDelegate Definition

@protocol UISplitViewControllerDelegate

@optional

// Called when a button should be added to a toolbar for a hidden view controller

- (void)splitViewController: (UISplitViewController*)svc

 willHideViewController:(UIViewController *)aViewController

 withBarButtonItem:(UIBarButtonItem*)barButtonItem

 forPopoverController: (UIPopoverController*)pc;

// Called when the view is shown again in the split view, invalidating the

// button and popover controller

- (void)splitViewController: (UISplitViewController*)svc

 willShowViewController:(UIViewController *)aViewController

 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem;

// Called when the view controller is shown in a popover so the delegate can

// take action such as hiding other popovers.

- (void)splitViewController: (UISplitViewController*)svc

 popoverController: (UIPopoverController*)pc

 willPresentViewController:(UIViewController *)aViewController;

@end

UISplitViewControllerDelegate has three methods that tell the delegate when
the master view controller is about to hide, when it is about to show, and when the
master view is about to show in a popover as the result of the user tapping the bar but-
ton item.

The delegate method splitViewController:willHideViewController:
withBarButtonItem:forPopoverController: is called when the master view
controller is about to be hidden. This happens when the device orientation changes
from landscape to portrait. This allows the user to focus attention on the detail
view. As a convenience, this method also provides the UIBarButtonItem and
UIPopoverController.

You should add the bar button item to the toolbar or navigation bar displayed in the
detail view. This provides the user with a way to view the contents of the master view
controller without rotating the device back to the landscape orientation.

The UIPopoverController passed in this method call is a reference to the pop-
over controller that displays the master view when the bar button item is tapped. You
can store the reference within your view controller or ignore it, depending on your
needs.

When the user taps the bar button item, the splitViewController:popover-
Controller:willPresentViewController: method is called. This gives your

Turner_Book.indb 182 12/11/11 6:46 PM

ptg999

183A Tour of UISplitViewController

code a chance to perform some action prior to the display of the master view within
the popover control. For example, if the app is already displaying a popover, this is a
good time to close it before displaying the master view popover.

The third and final method is splitViewController:willShowViewControl
ler:invalidatingBarButtonItem:. This method is called when the user rotates
the device back to the landscape orientation. The bar button item added to the toolbar
during the hide method is no longer needed. This is because the master view will now
be displayed on the left side of the screen. Therefore, you should remove the bar but-
ton item from the toolbar.

Viewing Header Files
When implementing a class that conforms to a particular protocol, often you want
to copy and paste the method declarations. This saves you the time of typing the
sometimes lengthy declaration statements. There are two ways to copy the method
declaration:

1. Copy from the SDK documentation.

2. Copy from the header file.

For many programmers new to Xcode, copying a method declaration from the SDK
documentation is the popular choice. You launch the documentation view in Organizer,
search for the protocol, then copy the desired methods from the documentation page.

A quick way to get to the documentation page for a protocol is to Option-Click the
protocol name in Xcode’s text editor. When you do this, a preview Help popover is
displayed. From here you can click the documentation icon in the upper right corner
(Figure 8.9). This will load the Help page into the document view within the Organizer
window.

Figure 8.9 Option-Click for a popover view of the documentation.

Turner_Book.indb 183 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App184

While it is common for new Xcode programmers to copy delegate methods from the
documentation, this is not the fastest way. Also, you are limited to copying only one
method at a time. If you need to implement more than one method, which is common
for many protocols, bouncing back and forth between the documentation and the text
editor can be less than efficient. A better approach is to copy the method declarations
from the header.

There are two quick ways to open a header file. The first is to select File > Open
Quickly… (Shift-�-O) from the menu bar. This approach works well when you know the
name of the header file you wish to open. However, a better, faster way is to use the
Xcode feature Jump to Definition, which works from within the text editor and doesn’t
require knowing the name of the header file.

To open the header file for a protocol in the text editor, �-Click the protocol name.
This will jump you to the header file containing the protocol definition. You can also
place the text editor cursor on the protocol name and type Control-�-D (or select Navi-
gate > Jump to Definition from the menu bar) to jump to the header file containing the
protocol definition.

From the header file you can see all the methods defined for the protocol and copy
one or more to include in your app. I tend to copy all the methods, paste them into my
app, then remove the ones I don’t need.

The best part of this trick is that Jump to Definition is not limited to protocols defined
in the SDK. You can jump to definitions found in your own code. And the item doesn’t
have to be a protocol. It can be a class name, a variable, a declared property, and
more. In fact, a common pattern you see in Objective-C code is to separate blocks of
code with a #pragma mark - statement.

#pragma mark - allows you to include a brief remark following the dash char-
acter that describes the block of code. This is commonly used to denote a block of
delegate methods. A common practice is to include the name of the protocol for the
delegate methods in the #pragma mark - statement, as seen in Figure 8.10.
Doing so makes it easy for you (and other devs who might have to support your code
down the road) to jump to the protocol definition.

Figure 8.10 You can Option-Click the name even if it is part of a
comment or #pragma mark.

Turner_Book.indb 184 12/11/11 6:46 PM

ptg999

185A Tour of UISplitViewController

Assigning the Split View Controller Delegate
As you saw in Listing 8.2, the split view controller delegate is set to an instance of the
DetailViewController. If you take a look at the source file DetailViewController.h,
you will see that the interface declaration shows that the class conforms to the UISplit-
ViewControllerDelegate protocol. And if you look at DetailViewController.m, you
will see the implementation of each UISplitViewControllerDelegate method,
courtesy of the application template. The generated code is also given in Listing 8.7.

Listing 8.7 Implementation of UISplitViewControllerDelegate Methods in
DetailViewController.m

#pragma mark - UISplitViewControllerDelegate

- (void)splitViewController:(UISplitViewController *)svc

 willHideViewController:(UIViewController *)aViewController

 withBarButtonItem:(UIBarButtonItem *)barButtonItem

 forPopoverController: (UIPopoverController *)pc

{

 barButtonItem.title = NSLocalizedString(@"Master", @"Master");

 [self.navigationItem setLeftBarButtonItem:barButtonItem animated:YES];

 self.masterPopoverController = popoverController;

}

- (void)splitViewController:(UISplitViewController *)svc

 willShowViewController:(UIViewController *)aViewController

 invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem

{

 // Called when the view is shown again in the split view, invalidating

 // the button and popover controller.

 [self.navigationItem setLeftBarButtonItem:nil animated:YES];

 self.masterPopoverController = nil;

}

As you can see, the application template provides implementations for both the hide
and show delegate methods. In the hide method, the button title is set to the string lit-
eral “Master” and the button is added to the navigation bar. In the show method, the
button is removed from the navigation bar. You can see this code in action by running
the project (�-R) and rotating the device (or simulator) between landscape and por-
trait orientations.

Detail View Controller
The DetailViewController is not only the delegate for the UISplitView-
Controller; it is also the controller for the detail view displayed on the right side of
the screen when the device orientation is landscape or full-screen when the orientation is
portrait. This view is defined in the DetailViewController.xib file, shown in Figure 8.11.

Turner_Book.indb 185 12/11/11 6:46 PM

ptg999

Chapter 8 Creating a Master-Detail App186

The view has a label (UILabel) displayed in the center of the screen. The view
and label are connected to outlets defined as declared properties in the DetailView-
Controller class.

Master View Controller
There is one other view controller class in the project that hasn’t been discussed:
MasterViewController. You may be thinking to yourself that the MasterView-
Controller is the controller for the master view, and you would be almost right. But
only almost.

The MasterViewController is used, but it’s not the controller assigned to the
first element of the UISplitViewController’s viewControllers array. Instead,
an instance of UINavigationController is the master view controller, as shown in
Listing 8.2.

UINavigationController is a specialized controller that manages a stack of view
controllers. It provides methods for pushing and popping view controllers on and off
the stack, and it can display a navigation bar with a back button, making it possible for
the user to return to a previous view with the tap of a finger.

The UINavigationController assigned as the master view controller for the split
view controller contains an instance of MasterViewController as the first control-
ler in its stack. This means that the view managed by the MasterViewController
instance is displayed when the app loads, making it seem as if the MasterView-
Controller is the master view controller.

Figure 8.11 DetailViewController.xib as shown in IB

Turner_Book.indb 186 12/11/11 6:46 PM

ptg999

Exercises 187

MasterViewController derives from the class named UITableView Controller.
UITableViewController is a specialized view controller that simplifies the display
and management of a UITableView. The UITableView is one of the most used views
in UIKit. Many apps, especially on the iPhone, use UITableView to display data.
You will work with UITableView in Chapter 9, “Using Table Views,” so no further
details are given here.

Why use a navigation controller? As you will see in the next chapter, additional
view controllers will be displayed within the master area of the split view controller.
Using a navigation controller gives the user a way to navigate back through the stack
of view controllers.

Summary
This chapter talked a lot about the Xcode project and project files generated by the
Master-Detail Application template. While the focus has been on one particular appli-
cation template, most of what is covered in this chapter applies to the other iOS appli-
cation templates.

Each template has its own unique characteristics. The Master-Detail Application
template creates a shell project that uses the split view controller for the iPad. The
Single View Application template creates a shell app that uses a single view. And so on.
The key takeaway, however, is that other than their unique characteristics, each appli-
cation template performs pretty much the same duties.

Each template creates an Xcode project with an app delegate, an info.plist for the
project, and so on. So while the walk-through in this chapter focused on the Master-
Detail Application template, most of what you learned applies to the other application
templates as well.

Note
Refer back to Chapter 1, “Your First App,” for a detailed list of iOS application templates.

Exercises
1. Change the title for the bar button item to display “Photo Album” instead of

“Master.”

2. Change the font for the “Detail view content goes here” label displayed in the
detail view controller to bold.

3. Change the font color for the same label to red.

4. Create a project for each iOS application template. Build and run the projects
and compare the app types. Identify which templates are for iPad, iPhone, and
both (called universal).

Turner_Book.indb 187 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

9
Using Table Views

In the last chapter you created a master-detail app using the application template provided by
Xcode. While the app is functional, it is not very useful. In this chapter you will start making the
app more useful by adding the ability to add, edit, and remove photo albums. You’ll learn how to
work with a table view and its data source and how to delegate protocols, create a new view with a
controller, and communicate between view controllers.

First Things First
When the app runs and the device orientation is landscape, the word Master is dis-
played at the top of the master view. The table view represents a list of photo albums,
so naming this list “Master” doesn’t really make sense. Changing it is simple: You set
the title for the MasterViewController. That’s it. The UINavigationController
does the work of actually displaying the title for you.

A good place to set the title is in the -initWithNibName:bundle: or –viewDid-
Load method. The template-generated code sets the title in the former, but the latter
is preferable. Setting the title in the -initWithNibName:bundle: method will work
only when that method is called. If, for example, the MasterViewController is
loaded without a NIB, the title will not be set. On the other hand, –viewDidLoad is
always called, regardless of whether the controller is created with a NIB or not.

Update the code in MasterViewController.m to set the title in –viewDidLoad by
copying the line of code that sets the title in -initWithNibName:bundle: and past-
ing it to the –viewDidLoad method, then change “Master” to “Photo Album.” List-
ing 9.1 shows the changes that need to be made.

Listing 9.1 Set the Title for MasterViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

{

 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

 if (self) {

 self.clearsSelectionOnViewWillAppear = NO;

 self.contentSizeForViewInPopover = CGSizeMake(320.0, 600.0);

 }

Turner_Book.indb 189 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views190

 return self;

}

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0

 inSection:0]

 animated:NO

 scrollPosition:UITableViewScrollPositionMiddle];

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

}

Note
The code that sets the title calls the C function NSLocalizedString(). This func-
tion is used to retrieve the localized version of a string. The first parameter is the key,
and the second parameter is the comment. The key is used to look up the localized string
resource. The key value is used if the string resource for the key does not exist. The com-
ment is included in the localized string resource file and is used to provide context to
the string or relay a message to the language translator. The comment is never displayed
within your app.

I’m of the opinion that developers should always use NSLocalizedString() even if
there are no initial plans to support other languages. By preparing your code at the onset,
you save time down the road should those plans change. That said, for brevity’s sake,
NSLocalizedString() is not used in the sample code for the book.

More information on internationalizing your app is available in the Introduction to Inter-
nationalization Programming Topics provided by Apple (developer.apple.com/library/
ios/#documentation/MacOSX/Conceptual/BPInternational/BPInternational.html).

The -initWithNibName:bundle: method has a couple of lines of code worth
discussing. The first, self.clearsSelectionOnViewWillAppear = NO, sets
the property found on UITableViewController, the superclass for MasterView-
Controller. This property determines whether or not the object should clear the
selection within the table view just before the view appears to the user.

Following that line is self.contentSizeForViewInPopover = CGSize-
Make(320.0, 600.0). contentSizeForViewInPopover is a property on UIView-
Controller, which is the superclass to UITableViewController. This property
tells the popover control, if any, the preferred content size for the view. This property
doesn’t guarantee that the popover will resize. It does, however, state that the popover
should be at least this size.

Turner_Book.indb 190 12/11/11 6:46 PM

ptg999

First Things First 191

Note
contentSizeForViewInPopover is used when a view managed by the view control-
ler is displayed within a popover, such as when the MasterViewController view
is displayed after the toolbar button is tapped when the iPad orientation is portrait. This
property provides a hint to the popover controller of the initial size for the popover’s con-
tent area. It doesn’t actually control the size of the popover. Say, for example, you have
two views displayed within a popover controller. The controller for the first view sets the
contentSizeForViewInPopover to 320 x 600. The controller for the second view
sets the property to 320 x 400. You might think that the content area for the popover will
resize itself to the smaller size when the second view is displayed, but that will not hap-
pen. The popover’s content area only grows larger, not smaller.

To force the content size to a smaller size you much explicitly set the size on the
UIPopoverController. This is accomplished by setting the popoverContent-
Size property on UIPopoverController.

Run the app and test your change. With the device orientation in landscape, the
navigation bar in the master view now reads “Photo Albums,” as shown in Figure 9.1.
Now rotate the device to portrait. The button added to the toolbar reads “Master.”
Not exactly what we’re going for. It should read “Photo Albums” to be consistent
with the MasterViewController title. Change the text to read “Photo Albums.”
Remember, it’s the DetailViewController that is responsible for displaying the

Figure 9.1 Screen shot of the PhotoWheelPrototype app in landscape

Turner_Book.indb 191 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views192

button on the toolbar, not the MasterViewController. Therefore, you make the
change in DetailViewController.m.

Here are the steps you want to follow:

1. Open the file DetailViewController.m.

2. Scroll down to the method -splitViewController:willHideViewController:
withBarButtonItem:forPopoverController:.

3. Change the string literal “Master” to “Photo Albums.”

4. Save your changes (�-S).

Once you have made these changes, build and run (�-R) the app and verify that
the changes are complete. The detail view for PhotoWheelPrototype should look like
the screen shot in Figure 9.2. Check your work if it does not.

With that out of the way, let’s now turn our attention to table views.

Figure 9.2 Screen shot of the PhotoWheelPrototype app in portrait

Turner_Book.indb 192 12/11/11 6:46 PM

ptg999

A Closer Look 193

A Closer Look
The table view is a visual control for displaying a list of information. It is widely used
on iPhone and has its place on iPad as well. The table view implements common fea-
tures needed when displaying a list of data, including scrolling up and down, item
selection, and highlighting. It has two styles, grouped and plain, and has different
built-in layouts for data display. It also allows you to completely customize the look.

UITableView
A table view is an instance of the class UITableView. UITableView derives from
UIScrollView, which gives the table view its scrolling behavior. But unlike
UIScrollView, which supports scrolling horizontally and vertically, UITableView
supports only vertical scrolling.

One of the more surprising aspects of UITableView is that it supports only a single
column of data. This design choice was made to support the small screen of iOS
devices. While UITableView supports only one column, it is possible to customize
the look of the table view to give it the appearance of multiple columns.

UITableView supports two styles, which must be specified when creating the
instance of the table: plain and grouped. The style cannot be changed after the table
instance is created. A plain table displays a single list of data. A grouped table allows
rows to be visually separated into individual sections. UITableView can also display
a header and footer, and it can display section headers and footers. Figure 9.3 shows
examples of each table style.

Figure 9.3 On the left is a sample of a plain table, and a grouped table
is shown on the right.

Turner_Book.indb 193 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views194

UITableViewCell
Each row of the UITableView is called a cell. The cell is an instance of UITableView-
Cell or a subclass of the same. A cell’s position within the table view is determined by
the NSIndexPath. The NSIndexPath has two properties that are used to determine
the cell’s location within the table view: section and row. The section is the section
index within the table, and the row is the row index within the section.

UITableView contains properties for accessing cells and sections using an index
path. There are also methods for scrolling to a particular row based on the index path.

UITableViewDelegate
In addition to configuring a UITableView through its properties, a delegate object
conforming to the protocol UITableViewDelegate is used to do things such as set
the height of rows and return the views for section headers and footers. Also included
in the UITableViewDelegate protocol are methods that manage the row selections,
editing, and reordering.

UITableView interacts with your application by way of the UITableViewDelegate
to configure and manage rows of the table, but a different protocol is used to populate
the table view with data. This protocol is UITableViewDataSource, and as the name
implies, it defines methods for providing data to the table view.

UITableViewDataSource
The UITableView property dataSource references an object that conforms to the
UITableViewDataSource protocol. The dataSource provides information about
the data needed to construct and maintain the table view. It tells the table view how
many sections are in the table and how many rows are in each section. It provides the
title for each section header and footer and the cell for each row. The dataSource
also has methods to determine if rows can be added, removed, and reordered.

UITableViewController
One other class that is useful when working with a table view is UITableView-
Controller. This specialized controller provides common management tasks for
working with a table view, reducing the amount of code you must write to display and
work with a table view.

With the introductions out of the way, it’s time to work hands-on with table views.

Working with a Table View
To use a table view, a few things must happen first. First and foremost, an instance of
UITableView must be created. This is handled for you in MasterViewController’s
NIB file. MasterViewController is a subclass of UITableViewController, and as
previously mentioned, UITableViewController is a specialized controller for dis-
playing a UITableView.

Turner_Book.indb 194 12/11/11 6:46 PM

ptg999

Working with a Table View 195

Also needed are the table view’s delegate and dataSource. The MasterView-
Controller will play the role of both by conforming to the protocols UITable-
ViewDelegate and UITableViewDataSource.

A Simple Model
Before the table view can display data, the data must be defined and stored in a model.
The data needed for the table view in the PhotoWheelPrototype app is the photo
album. At the moment, the only attribute needed from a photo album is name. You
could create a custom class called PhotoAlbum that has a single property called name,
but that’s overkill. After all, you’re still in the prototyping stage of the app.

So what data structure should be used as the model for the photo albums? An array
of strings works nicely. Each string in the array is the name of a different photo album.
But iOS 5 introduces a new collection type called NSOrderedSet. NSOrderedSet
manages a collection of objects that are stored in sequential order, just like NSArray.
But unlike NSArray, NSOrderedSet contains a particular object once and only once.
NSArray allows the same object to be added to the array at multiple indexes. For the
PhotoWheelPrototype, you want only one instance of each photo album to exist in the
collection, so NSOrderedSet is the better data structure for your needs.

To create the model data, you need to create an ordered set. The user should be
able to add photo albums to the app, so the set needs to be mutable. This means the
data type needed is NSMutableOrderedSet. Also, the MasterViewController is
the controller most interested in the list of photo albums, so you’ll add the mutable set
to MasterViewController.

Start by opening MasterViewController.h. Add a declared property called data of
type NSMutableOrderedSet. The modified interface for MasterViewController
should now look like the code in Listing 9.2.

Listing 9.2 MasterViewController Interface Modified to Include the data
Property

#import <UIKit/UIKit.h>

@class DetailViewController;

@interface MasterViewController : UITableViewController

@property (strong, nonatomic) DetailViewController *detailViewController;

@property (strong, nonatomic) NSMutableOrderedSet *data;

@end

Note
The property detailViewController was added by the Xcode template when the
master-detail project was created.

Turner_Book.indb 195 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views196

Before the declared property data can be used, the accessor methods—the getter
and setter methods—must be created. Let the compiler do this for you by using the
@synthesize compiler directive.

Here are the steps to follow:

1. Open the file MasterViewController.m.

2. After the line of code @implement MasterViewController add the follow-
ing: @synthesize data = _data;.

3. Save your changes (�-S).

Before you can use data it must be instantiated. A good place to create the
instance is in the -viewDidLoad event. This method is called after the content view
managed by the view controller has been loaded. While you are at it, go ahead and
add a couple of entries to the order set.

To accomplish this, follow these steps:

1. Open the file MasterViewController.m.

2. Scroll to the -viewDidLoad method.

3. At the bottom of -viewDidLoad add the following code:

[self setData:[[NSMutableOrderedSet alloc] init]];

[[self data] addObject:@"A Sample Photo Album"];

[[self data] addObject:@"Another Photo Album"];

4. Save your changes.

The -viewDidLoad method should now look like the code in Listing 9.3.

Listing 9.3 Instantiate data and Add Two Sample Photo Albums

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0

 inSection:0]

 animated:NO

 scrollPosition:UITableViewScrollPositionMiddle];

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

 [self setData:[[NSMutableOrderedSet alloc] init]];

 [[self data] addObject:@"A Sample Photo Album"];

 [[self data] addObject:@"Another Photo Album"];

}

Turner_Book.indb 196 12/11/11 6:46 PM

ptg999

Working with a Table View 197

Note
The source code in Listing 9.3 mixes the use of dot syntax with the messaging style. The
Xcode template generated the dot syntax code in the listing. In a real-world project, you
would clean up this code to use one style consistently throughout the project.

You may have noticed that -viewDidLoad already had two lines of code in it
before you made your changes. The first line, [super viewDidLoad], tells the
object instance to invoke the -viewDidLoad method implemented in the superclass.
The implementation in MasterViewController overrides the method in the super-
class UITableViewController. It is unknown if the superclass’s implementation per-
forms any important tasks. Calling the super’s implementation ensures that important
tasks, if any, are executed prior to exiting the code in the local implementation.

The next line of code autoselects the first row in the UITableView. At the moment,
the DetailViewController is not attached to the MasterViewController, so
selecting the first row in the table doesn’t do anything other than to highlight the row
in the table view. This will change once you tell the MasterViewController how to
communicate to the DetailViewController.

Display Data
MasterViewController now has model data to display, and the collection set
representing the model data has two items in it representing the photo albums, “A
Sample Photo Album” and “Another Photo Album.” However, when you run the app,
these photo album names do not appear in the table view within the MasterView-
Controller. This is because you haven’t told the table view what to display.

To tell a UITableView about data, your code must provide a data source
object that conforms to, that is to say, implements, the methods of the protocol
UITableViewDataSource. MasterViewController is a subclass of UITableView-
Controller, so by default the dataSource property for the UITableView is set to
the MasterViewController instance. This can be done explicitly in the code by
saying [[self tableView] setDataSource:self], but this is not necessary when
using an instance of UITableViewController unless the data source is an object
instance other than the controller itself.

That’s right, a data source does not have to be the view controller. However,
it is usually convenient to have the view controller serve as the data source for a
UITableView. In fact, the application template used to create the PhotoWheelPrototype
project has already generated method stubs for responding to UITableViewData-
Source calls. But these calls do not know about the ordered set data. Therefore, it
is up to you to tell the UITableView about the data by way of the UITableView-
DataSource methods. Listing 9.4 shows the changes you need to make before the table
view can display data.

Turner_Book.indb 197 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views198

Listing 9.4 UITableViewDataSource Method Implementations in
MasterViewController.m

#pragma mark - UITableViewDelegate and UITableViewDataSource methods

// Customize the number of sections in the table view.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

 NSInteger count =[[self data] count];

 return count;

}

// Customize the appearance of table view cells.

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =

 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

 reuseIdentifier:CellIdentifier];

 }

 // Configure the cell.

 NSString *text = [[self data] objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:text];

 return cell;

}

Let’s walk through the code in Listing 9.4.
The first method is -numberOfSectionsInTableView:. This method returns

the number of sections within a table view. Sections are a way to group related data
within the table view. The table view for this app has only one section, so the return
value is always 1.

The next method implemented is -tableView:numberOfRowsInSection:.
This method is called for each section, where the number of sections is determined by
-numberOfSectionsInTableView:. PhotoWheel has only one section, so -table-
View:numberOfRowsInSection: is called only once to load the table. The number

Turner_Book.indb 198 12/11/11 6:46 PM

ptg999

Working with a Table View 199

of rows is determined by the number of elements in the data array. This means the
return value is the count of data.

Note
You may be wondering why I chose to implement -tableView:numberOfRowsIn-
Section: as two lines of code, setting the count to a local variable, then returning the
count stored in the local variable. I use this pattern to make the code easier to debug.
The method could have been implemented with a single line of code, return [[self
data] count]. While this is perfectly valid, it makes it harder to see the count when
debugging the app. By setting a local variable to the count, I’m able to see the value dur-
ing a debug session, which lists the local variables in scope at the point where the pro-
gram is stopped. You’ll learn more about debugging an app in Chapter 25, “Debugging.”

The last method implemented from the UITableViewDataSource protocol is
-tableView:cellForRowAtIndexPath:. The index path is of type NSIndexPath,
and it consists of two properties of interest, section and row. The section property
returns the index of the current section. Because this app has only one section, the
section value will always be 0. row is the index of the current row within the sec-
tion. For this app, row is equal to the index identifying the element from data to be
displayed. Plainly put, the parameter variable indexPath tells the code which element
in data to retrieve. But before the app can display the name of the photo album, it
needs a UITableViewCell instance.

You may recall from the previous section that UITableViewCell is used to display
content within a UITableView. The method -tableView:cellForRowAtIndex-
Path: is called by the table view to request the cell for display. UITableViewCell
is a subclass of UIView, meaning that the cell is really nothing more than a view.
But UITableViewCell comes with a set of standard display styles. The styles for
UITableViewCell are

n UITableViewCellStyleDefault: Displays a basic cell with a text label and an
optional image view

n UITableViewCellStyleValue1: Displays a left-aligned label on the left side of
the cell and a right-aligned label with blue text on the right side

n UITableViewCellStyleValue2: Displays a right-aligned label with blue text
on the left side and a left-aligned label on the right side

n UITableViewCellStyleSubtitle: Displays a right-aligned label at the top of
the cell and a left-aligned label with gray text at the bottom

More complex views can be displayed by customizing the cell. This can be accom-
plished by adding subviews to the cell’s contentView hierarchy. PhotoWheel’s needs
are simple at the moment, so the default style UITableViewCellStyleDefault will
work nicely.

To return a UITableViewCell in the method -tableView:cellForRowAtIndex-
Path: the code must create an instance of UITableViewCell. Creating a new cell for

Turner_Book.indb 199 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views200

each row, especially when there are many rows, can hurt the scroll performance of the
table view. A better approach is to create a new instance of UITableViewCell only
when absolutely necessary. Luckily for you, the Apple engineers already thought of this
problem and have provided a solution.

A table view may contain more rows than are visible at a given point in time.
Keeping cells for nonvisible rows needlessly consumes system resources. To reduce
memory overhead, nonvisible cells can be disposed of. However, this is wasteful too,
given that once a nonvisible row becomes visible, a new cell instance must be created.
But, as has already been mentioned, creating a new cell instance each time hurts per-
formance as the user scrolls through the list of rows.

The solution the Apple engineers came up with is to cache, or queue, unneeded
UITableViewCells. As a cell goes from a visible state to a nonvisible state, the cell
is placed in a queue to be reused. When the table view requests a cell for a particular
indexPath, a call is made to the table view asking to dequeue a previously used table
cell. If no queued cells are available, your code must create a new instance, but if a
queued cell is available, it is recycled and used as the return value for -tableView:
cellForRowAtIndexPath:. This means that at any given time, the total number of
table view cells in memory is equal to the number of visible rows plus a small number
of additional, queued cells. This approach reduces memory overhead and improves
performance.

Note
In Chapter 16, “Building the Main Screen,” you will learn to build a custom grid view
that is based on the same pattern used by UITableView. This will give you a much
better understanding of, and appreciation for, what is happening under the hood of
UITableView.

That explains how to create and return a UITableViewCell. Let’s now see how this
is accomplished in code. Refer back to Listing 9.4 and look at the implementation for the
UITableViewDataSource delegate method -tableView:cellForRowAtIndexPath:.

The first line sets a local variable to the string literal “Cell.” This value is used to
identify the cell within the queue. If, for example, the table view consists of cells with
different formats, a different identifier is used. This allows the table view to queue
cells of different formats, or styles. Your code uses the identifier to dequeue the cell
of the appropriate format. This is exactly what is happening in the next line of code;
a local variable called cell is created and is set to a dequeued, reusable cell with the
specified identifier.

When the -dequeueReusableCellWithIdentifier: method is called, the table
view returns a reference to an instance of a cell with the specified identifier. If there is
no available cell, nil is returned. The nil return value means it’s up to your code to
create a new cell instance as seen in the if (cell == nil) statement.

Within the if block is the code needed to create an instance of UITableViewCell.
You see the standard alloc init pattern used here.

Turner_Book.indb 200 12/11/11 6:46 PM

ptg999

Working with a Table View 201

Once a cell instance is retrieved, either by dequeuing or with alloc init, it is
configured with the data to display. Following the if block is NSString *text =
[[self data] objectAtIndex:[indexPath row]]. This statement retrieves the
object for the current row from the data array. NSMutableOrderedSet can contain
objects of any type, but we know our set contains only strings, so it is safe to set a
local string variable to the object.

The table cell was init’d with the style UITableViewCellStyleDefault. The
default style has a text label. The property name of the text label is textLabel.
textLabel is of type UILabel, which has a text property. So to set the display text
you set the text property of the textLabel of the cell as shown in the statement
[[cell textLabel] setText:text].

Note
Other cell styles display secondary text. The property for the secondary text is called
detailTextLabel.

At this point the table view has the information it needs to display photo album
names contained in the data set. Now build and run the app to make sure the
changed code works.

As you can see in Figure 9.4, the app crashes with an uncaught exception. What’s
going on here? If you look at the code in the -viewDidLoad method, you see that the
first row of the table is selected. But the table contains no data at the time this line of
code executes. You need to move the line of code that selects the first row of the table
to the end of -viewDidLoad, as shown in Listing 9.5.

Listing 9.5 Updated -viewDidLoad Method Preventing the Crash

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

 [self setData:[[NSMutableOrderedSet alloc] init]];

 [[self data] addObject:@"A Sample Photo Album"];

 [[self data] addObject:@"Another Photo Album"];

 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0

 inSection:0]

 animated:NO

 scrollPosition:UITableViewScrollPositionMiddle];

}

Turner_Book.indb 201 12/11/11 6:46 PM

ptg999

2
0

2

Figure 9.4 Xcode reporting the uncaught exception. Note that the line of code where the exception occurs is highlighted,
and the output window in the lower right corner shows the exception message.

T
urner_B

ook.indb 202
12/11/11 6:46 P

M

ptg999

Working with a Table View 203

Make the needed code change shown in Listing 9.5, then build and run the app.
This time around the app will run, and you will see the two photo albums listed in
the Photo Albums table view, as shown in Figure 9.5. Check your work if you do not
see the sample results.

Add Data
You have the table view displaying the list of photo albums in data, but there is no
way for the user to add new photo albums. Let’s change that right now.

A good way to accomplish this is to have an add button displayed on the navigation
bar. iOS provides a built-in add button that displays + as the button text. When the
user taps the + button, a new view is displayed, allowing the user to enter the name of
the photo album. Let’s get started by setting up the plumbing. Once that’s in place, we
can add the photo album name editor.

Here are the steps to perform:

 1. Open MasterViewController.m.

 2. In the -viewDidLoad method, add an “add”-style UIBarButtonItem to the
navigation bar.

 3. Add the -add: action method to MasterViewController.

4. Save your changes.

Figure 9.5 Screen shot of the PhotoWheelPrototype app with sample
photo albums

Turner_Book.indb 203 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views204

The code changes are shown in Listing 9.6. Make these changes to your project,
then return to the book for a walk-through of the code.

Listing 9.6 Adding an “Add” Feature to MasterViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

 [self setData:[[NSMutableOrderedSet alloc] init]];

 [[self data] addObject:@"A Sample Photo Album"];

 [[self data] addObject:@"Another Photo Album"];

 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0

 inSection:0]

 animated:NO

 scrollPosition:UITableViewScrollPositionMiddle];

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(add:)];

 [[self navigationItem] setRightBarButtonItem:addButton];

}

- (void)add:(id)sender

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

Let’s walk through the code changes; first up, the changes to -viewDidLoad.
The + button, or add button as it is often called, is an instance of UIBarButtonItem.
The button is added to the navigation bar displayed at the top of the MasterView-
Controller content area. To add it, you first create an instance of UIBarButtonItem.
This object has a custom init method called initWithBarButtonSystemItem:
target:action. iOS has a list of predefined system bar buttons that you can use. The
system button needed for the PhotoWheel app is UIBarButtonSystemItemAdd. This
displays the + button.

The init method takes two additional methods, target and action. Target-
Action is a common design pattern used throughout Cocoa. target is the receiver of
an action, and action is the message sent to the target. Refer to Chapter 5, “Getting
Started with Cocoa,” if you need a refresher on the Target-Action pattern.

Turner_Book.indb 204 12/11/11 6:46 PM

ptg999

Working with a Table View 205

Next you add the button instance to the navigation bar, but you do not add it to
the UINavigationBar itself. Instead, UIViewController has a property called
navigationItem. A navigationItem, or, as it is defined in UIKit, UINavigation-
Item, represents the navigational items available within the scope of the current view
controller. In other words, it manages the display of navigation items for the view
controller.

Note
You use the navigationItem property only when your view controller is part of a navi-
gation stack managed by a UINavigationController.

To display a button on the left side of the navigation bar, you set the leftBar-
ButtonItem property of the navigation item. The code in Listing 9.6, however, places
the button on the right side of the navigation bar by calling [[self navigation-
Item] setRightBarButtonItem:addButton].

When you created the UIBarButtonItem addButton, you specified a target
and an action. These represent the object (the target) and the method (the action)
that is called when the user taps the button. You can think of this as the on-tap event
or a callback from the addButton. The target for addButton is self, which is
the MasterViewController. The action is the method -add:, which follows the
-viewDidLoad method in Listing 9.6.

Note
The compiler directive @selector is used to create a reference to add:. It’s important
that the colon character follow add; otherwise -add: is not called by addButton. In
other words, the methods add and add: have different signatures and are, therefore,
different methods.

The method -add: takes a single parameter, (id)sender. The sender is a refer-
ence to the UIBarButtonItem. Having this reference can be handy when you need
to perform some action with the object sending the message, for example, displaying
a popover. For now, we don’t know what the implementation of -add: will look like,
so an NSLog statement is used. This allows you to test that the addButton is added
to the navigation bar of the navigationItem and that the target and action are
properly set.

What you haven’t seen before is __PRETTY_FUNCTION__, which is a macro that
returns the name of the current class and method as a C string. The %s format is used
to display the C string as part of the output. When you run the app and tap the + but-
ton, you should see the statement [MasterViewController add:] in the debug
output window, shown in Figure 9.6. This tells you that the add button has been
properly set up to call the -add: method defined in the MasterViewController. If
you do not see this message, check your work.

Turner_Book.indb 205 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views206

At this point, your app has a data model for content display, and it has a way for the
user to add to the model using the add button. But the app needs to go one step fur-
ther to allow the user to add the name of the new photo album. To enable this you’ll
create a new NameEditorViewController that allows the user to enter the name of
the new photo album. Here are the steps to follow:

 1. Select File > New > New File or type �-N.

 2. Under iOS > Cocoa Touch, select the UIViewController subclass file template
(shown in Figure 9.7).

 3. Click the Next button.

 4. Type NameEditorViewController for the class name.

5. Leave the Subclass of as UIViewController.

6. Do not select the Targeted for iPad check box. The name editor will be smaller
than a normal iPad view.

7. Select the “With XIB for user interface” check box. This will create a compan-
ion .xib file for the view controller.

 8. Click the Next button.

9. Last, click the Create button. This will save the class files to the project directory.

Figure 9.6 Example of __PRETTY_FUNCTION__ output

Turner_Book.indb 206 12/11/11 6:46 PM

ptg999

Working with a Table View 207

This creates three new files and adds them to the Xcode project, as seen in Figure 9.8.
The class NameEditorViewController is defined in the NameEditorViewController.h
interface file, and its implementation is in the NameEditorViewController.m file. The view
for this controller is defined in the NIB file NameEditorViewController.xib. These three
files contain the basic setup of a view controller and its view. Your next step will be to
modify these files to display the name editor for a new photo album.

Figure 9.7 Select the UIViewController subclass file template

Figure 9.8 NameEditorViewController added to the project

Turner_Book.indb 207 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views208

An Alternative Approach
Xcode project and file templates are great time-savers for many iOS programmers
(especially for beginners), but for some more experienced iOS programmers the tem-
plates are not overly useful. Let me explain.

As you become a better iOS programmer, you will find that you do things a certain way,
and sometimes that “certain way” does not jibe with code and files generated by the
Xcode templates. This leaves you with two options:

1. You can create your own custom templates.

2. You cannot use the templates at all.

Creating a custom template is beyond the scope of this book. You can search the
Internet for tips on creating project and file templates for Xcode.

While creating a custom template can be helpful, I have found that what works best for
me is to not use a template, or rather, use the template with the fewest side effects.
For me, that template is the Objective-C class template when creating source code and
the Empty user interface file template, found under iOS > User Interface, when creating
a new NIB file.

I have found that when I use a template I spend more time deleting generated code
and renaming files than if I were to create the files from scratch. But the speed with
which to write code using a minimum template comes with experience, and even I
learned by using the Xcode-provided templates. Only after a great deal of time did I
discover the style that works best for me. For example, my own personal version of the
steps for creating the NameEditorViewController are as follows:

1. Type �-N.

2. Select iOS > Cocoa Touch > Objective-C class.

3. Click the Next button.

4. Type “NameEditorViewController” for the class name.

5. Set the Subclass to UIViewController.

6. Click the Next button.

 7. Click the Create button.

This creates two files, NameEditorViewController.h and .m. Other than the @inter-
face and @implementation stubs, the files are essentially empty. After imple-
menting my view controller, I create the user interface with the following steps:

1. Type �-N.

2. Select iOS > User Interface > Empty and click the Next button.

3. Select the Device Family iPhone and click the Next button.

4. Save the file as NameEditorView and click the Create button.

The biggest difference in this approach, other than doing the steps manually, is that
the NIB file is named NameEditorView.xib, not NameEditorViewController.xib. The NIB
represents a view, not a controller, and it has always bugged me that Xcode adds Con-
troller to the NIB file name when it is created with the view controller.

Turner_Book.indb 208 12/11/11 6:46 PM

ptg999

Working with a Table View 209

Another similar approach is to follow the original steps of selecting the UIView-
Controller subclass template and turning off the “With XIB for user interface”
option. This gives you the generated stubs common to most view controllers without
the .xib file. You can then manually create the NIB file yourself using the empty, view,
or one of the other user interface NIB templates.

The key takeaway here is to explore the options provided by Xcode and find the
approach that works best for you.

The photo album name editor is really simple. All it needs to do is allow the user
to type in a name that is used as the photo album name. Xcode created the shell view
controller and NIB needed for the name editor, but it is up to you to complete the
implementation. To do so, however, you need to know the requirements.

The name editor will allow the user to edit a name, which is nothing more than
free-form text (i.e., a string). This means that the controller needs to expose a name
property of type NSString. But the UI also needs a text field that the user can type
into. UITextField is perfect for this, and because it stores the current text, it can be
used to retrieve the photo album name.

You also want to make the user interface as friendly as possible. If the user acciden-
tally taps the add button, the name editor should provide a way for the user to cancel.
And the UI needs a way for the user to indicate he is finished editing the name of the
new photo album. The cancel and done features can be provided as buttons displayed
at the top of the name editor.

All that is left with regard to defining the requirements for the name editor is a
mechanism for communicating back to the calling view controller. This communica-
tion is needed to inform the calling view controller of the user’s desire to cancel or
save the photo album. For this, you’ll define a protocol that allows callbacks to the
calling view controller.

Now that you understand the requirements, let’s make the needed changes.
Open the interface file NameEditorViewController.h and add a declared property

of UITextField with the name nameTextField. Note that this property will be
connected to an instance of UITextField defined in the NIB, so make sure that
UITextField is also defined as an IBOutlet. Take a look at Listing 9.7 to see an
example.

The requirements also call for two actions, cancel and done, so add two methods
for these actions to NameEditorViewController’s interface. These methods will be
connected to buttons defined in the NIB, so be sure to set the return type for each
action to IBAction. This helps IB find the action methods. Also, as you saw ear-
lier with the UIBarButtonItem, include the (id)sender parameter to the actions.
While the sender is not required, it’s good to explicitly state it because you never
know when you will need it.

One last piece is needed for the NameEditorViewController interface: a dele-
gate that is told when the user cancels or is done with the name editor. The delegate

Turner_Book.indb 209 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views210

is an instance of an object, also called a receiver in this context, that receives one or
more messages based on some action or condition. A protocol is defined to ensure that
the delegate implements the appropriate methods. The delegate must then con-
form to the protocol if it wishes to receive the messages.

Note
If you’re coming from another language such as Java or C#, you can think of the proto-
col as an interface that is implemented by some other object. Read Chapter 4, “Getting
Started with Objective-C,” if you need a refresher on protocols.”

As a convention, the delegate protocol name for a view controller is often the
name of the view controller followed by the suffix Delegate. You have already
seen this convention used with the protocol UITableViewDelegate. Following
the same convention, the protocol for NameEditorViewController will be called
NameEditorViewControllerDelegate. Since this protocol is always used in con-
junction with the NameEditorViewController, it is perfectly okay to include
the protocol declaration in the same .h interface file as the view controller. This
means that the declaration for NameEditorViewControllerDelegate is added to
NameEditorViewController.h.

Defining the protocol is only part of the step. The NameEditorViewController
must have a declared property that references the delegate object. This means that you
need to add another property to NameEditorViewController called delegate.
Because the object can be of any type, the delegate property is declared as type id.
To assist the compiler, the protocol name is included with the type id. This tells the
compiler to verify that the delegate conforms to the protocol. The declared property
looks like this:

@property (nonatomic, strong) id<NameEditorViewControllerDelegate> delegate;

This introduces an interesting problem in the NameEditorViewController.h file. The
interface NameEditorViewController has a property that uses the NameEditor-
ViewControllerDelegate protocol, but the protocol has not been defined. And as
you will see shortly, the protocol uses the class name NameEditorViewController
for the data type of one of the method parameters. This means that either the class or
the protocol must have a forward declaration in the NameEditorViewController.h file.
A common convention is to forward declare the protocol with an @protocol state-
ment, then define the protocol after the class definition. This is the approach used in
Listing 9.7.

The protocol NameEditorViewControllerDelegate supports two optional
methods: -nameEditorViewControllerDidFinish: and -nameEditorView-
ControllerDidCancel:. The delegate object is not required to implement these
methods because they are declared as optional. To make the methods required, use the
compiler directive @required.

You might be thinking that the names of these two methods are a bit wordy, and
you would be right. The method names could be didFinish: and didCancel:, but

Turner_Book.indb 210 12/11/11 6:46 PM

ptg999

Working with a Table View 211

those method names are not very descriptive. Imagine if you had other view control-
ler delegate protocols that had the same names as didFinish: and didCancel:. It
would be difficult to distinguish the protocol implementations. By prefixing the pro-
tocol method names with the name of the primary sender—that is, the view controller
name—you make your code much more readable.

This raises another point, or rather points, about another convention. Similar to
action methods, which include a sender parameter, it is common for delegate pro-
tocol methods to include a parameter referencing the object that is sending the mes-
sage. However, it is not called sender. Instead, a more meaningful parameter name is
used. For instance, only an instance of NameEditorViewController will ever send a
NameEditorViewControllerDelegate message, so the parameter name represent-
ing the sender is called controller.

This is a lot to chew on for someone new to iOS programming. Don’t worry. The
changes needed to NameEditorViewController.h are shown in Listing 9.7. Go ahead and
make these changes to your project.

Listing 9.7 NameEditorViewController.h after Making the Needed Code Changes

#import <UIKit/UIKit.h>

@protocol NameEditorViewControllerDelegate;

@interface NameEditorViewController : UIViewController

@property (strong, nonatomic) IBOutlet UITextField *nameTextField;

@property (strong, nonatomic) id<NameEditorViewControllerDelegate> delegate;

- (IBAction)cancel:(id)sender;

- (IBAction)done:(id)sender;

- (id)initWithDefaultNib;

@end

@protocol NameEditorViewControllerDelegate <NSObject>

@optional

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller;

- (void)nameEditorViewControllerDidCancel:(NameEditorViewController *)controller;

@end

With the interface defined, it’s now time to update the implementation. Imple-
mentation for NameEditorViewController is fairly straightforward. The first thing
you want to do is synthesize the declared properties using the @synthesize compiler
directive. And you need to implement methods for the two actions, -cancel: and

Turner_Book.indb 211 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views212

-done:. The code for these changes is given in Listing 9.8. There are, however, a few
additions worth discussing.

Listing 9.8 NameEditorViewController.m after Making the Needed Code Changes

#import "NameEditorViewController.h"

@implementation NameEditorViewController

@synthesize nameTextField = _nameTextField;

@synthesize delegate = _delegate;

- (id)initWithDefaultNib

{

 self = [super initWithNibName:@"NameEditorViewController" bundle:nil];

 if (self) {

 // Custom initialization.

 }

 return self;

}

- (void)viewDidUnload

{

 [self setNameTextField:nil];

 [super viewDidUnload];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

 return YES;

}

#pragma mark - Actions methods

- (IBAction)cancel:(id)sender

{

 id<NameEditorViewControllerDelegate> delegate = [self delegate];

 if (delegate &&

 [delegate respondsToSelector:@selector(nameEditorViewControllerDidCan
cel:)])

 {

 [delegate nameEditorViewControllerDidCancel:self];

 }

 [self dismissModalViewControllerAnimated:YES];

}

Turner_Book.indb 212 12/11/11 6:46 PM

ptg999

Working with a Table View 213

- (IBAction)done:(id)sender

{

 id<NameEditorViewControllerDelegate> delegate = [self delegate];

 if (delegate &&

 [delegate respondsToSelector:@selector(nameEditorViewControllerDidFin
ish:)])

 {

 [delegate nameEditorViewControllerDidFinish:self];

 }

 [self dismissModalViewControllerAnimated:YES];

}

@end

Note
Much of the code provided by the Xcode file template has been changed or removed. This
is done for brevity’s sake, but also, as explained in the “An Alternative Approach” sidebar,
it’s my style to clean up the code.

Let’s first talk about the -initWithDefaultNib. This is jumping ahead, but...
A new view controller that has a companion NIB is instantiated in code with the
-initWithNibName:bundle: method. This init method makes it possible for dif-
ferent NIBs to be used with the same controller. However, in most iOS applications,
a view controller works with one and only one NIB file. Therefore, it is handy to
include the custom init method -initWithDefaultNib that loads the NIB file for
you. Its implementation knows which NIB file to load, which means the NIB file
name does not have to be scattered through your application if the view controller is
used in multiple places.

Note
Because -initWithDefaultNib is used outside NameEditorViewController,
it must be included in the controller’s interface, as shown in Listing 9.7.

The method -viewDidUnload is called when the view managed by a view con-
troller is unloaded from memory. When this method is called, the view is no longer
valid. Holding on to the IBOutlet references is a waste of memory. iOS devices have
limited memory capacity, so releasing memory when it is no longer needed is a wise
thing to do. By setting the IBOutlet property to nil, the app is telling the operat-
ing system that the memory is no longer needed by this controller and to release it as
it sees fit. It also sets the local ivar reference to nil to avoid potential problems with
accessing an invalid pointer. Even if this makes no sense to you (yet), you should make
it a habit to always set IBOutlets to nil in the -viewDidUnload method of the
view controller.

Turner_Book.indb 213 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views214

Following -viewDidUnload is the -shouldAutorotateToInterface-
Orientation: method. This is called when the view controller is loaded, and it gives
the view controller an opportunity to tell the system what orientations are supported
when the device is rotated. PhotoWheelPrototype supports all orientations, so for now
this method always returns YES for this and any other view controllers.

The last two methods implement the functionality needed for the Cancel and Done
buttons. Both implementations are similar with only slight differences. -cancel:
calls the -nameEditorViewControllerDidCancel: method on the delegate, and
-done: calls the -nameEditorViewControllerDidFinish: method.

The first line in each of these methods sets a local variable to the delegate. This is
done so that [self delegate] does not have to be used throughout the method.
Having [self delegate] all over the place can make the code messy and harder to
read. The ivar _delegate could also have been used, but direct access to ivars is not
good OO programming. This is why a local variable is used.

The if statement performs two checks. It first checks to see that delegate points
to an object. If delegate is nil, the if statement short-circuits and the method
returns control to the caller. If delegate is not nil, a check is made to ensure that
delegate has an implementation for the particular selector, -nameEditorView-
ControllerDidCancel: for the -cancel: method and -nameEditorView-
ControllerDidFinish: for the -done: method. This is one of Objective-C’s
strengths, the ability to query an object to determine what it does and does not
implement. If the delegate does not implement the method, the program f low con-
trol does not enter the if block; otherwise the if block is entered and the delegate
method is called.

It is always a good idea to check that an object implements a particular method when
a protocol method is defined as @optional. Calling a missing optional method is a
surefire way to crash your app. The check is not needed if the method is @required.
However, it can still be a good thing to perform the -respondsToSelector: check
on required methods. This protects your code should you (or someone else) change the
method from required to optional in the future.

Note
In Objective-C, sending a message to a nil object does nothing. This means that the if
statement could have been written as if ([delegate respondsToSelector:
@selector(nameEditorViewControllerDidFinish:)]). The first check to
test whether delegate is nil or not is not needed. However, after years of program-
ming in various other programming languages, this old dog finds that eliminating tests for
nil in Objective-C is a hard habit to break.

The view controller NameEditorViewController is ready to go. Its interface
has been defined, a protocol has been created to call back to a delegate object, and the
NameEditorViewController implementation is complete. All that remains before
the app can use this view controller is to complete the user interface (i.e., the view).

Turner_Book.indb 214 12/11/11 6:46 PM

ptg999

Working with a Table View 215

The view will display a toolbar at the top. The toolbar will have two buttons, a
Cancel button displayed on the left and a Done button displayed on the right. Below
the toolbar in the view area will be a UITextField. This is the text input box that
the user uses to enter a new name. The UITextField will be connected to the
IBOutlet nameTextField. The Cancel button will connect to the cancel:
IBAction method, and the Done button will connect to the done: IBAction
method. Here are the steps to follow:

Note
Read Chapter 3, “Getting Started with Interface Builder,” if you have problems with these
steps.

1. Open the file NameEditorViewController.xib.

2. Drag and drop a toolbar (UIToolbar) from the Library to the view. Place the
toolbar at the top of the view.

3. Select and delete the Item button displayed in the toolbar.

4. Open the Size inspector and set up the toolbar autosize to anchor to the top. See
Figure 9.9.

Figure 9.9 Anchor the toolbar to the top of the view by setting the
autosizing property.

Turner_Book.indb 215 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views216

1. Drag and drop a bar button item (UIBarButtonItem) on the toolbar.

2. Drag and drop a f lexible space bar button item (UIBarButtonItem) on the
toolbar, placed to the right of the other bar button item.

3. Drag and drop a bar button item (UIBarButtonItem) on the toolbar, placed to
the right of the f lexible space bar button item.

4. Change the title for the bar button item on the left to “Cancel.”

5. Change the title for the bar button item on the right to “Done.”

 6. While the Done button is still selected, open the Attributes inspector
(Option-�-4) and set the style to Done.

7. Drag and drop a text field (UITextField) on the view and place it just below
the toolbar. Size the text field to fill most of the width of the view. Set the auto-
sizing to a f lexible width (see Figure 9.10).

8. In the Attributes inspector for the text field, set the Placeholder property to
“Enter the photo album name”.

At this point your view should look like the one shown in Figure 9.11. Make any
needed adjustments if it does not. Once that is done, move on to connecting the
IBActions and IBOutlets.

Figure 9.10 Set the text field’s autosizing to a flexible width.

Turner_Book.indb 216 12/11/11 6:46 PM

ptg999

Working with a Table View 217

 1. Control-Click (or right-click) the File’s Owner placeholder object. Note
that the Xcode file template already assigned File’s Owner to the class
NameEditorViewController.

2. Connect the nameTextField outlet to the text field in the view.

3. Connect the cancel: action to the Cancel button.

4. Connect the done: action to the Done button.

5. Save your changes (�-S).

That’s it. The view is now ready. All that remains is modifying MasterView-
Controller so that it can use the new NameEditorViewController. Start by add-
ing #import "NameEditorViewController.h" to the top of MasterViewController.h.
Next add <NameEditorViewControllerDelegate> to the @interface declaration
for MasterViewController. The interface file should look like the code in Listing 9.9.

Listing 9.9 Updated MasterViewController.h

#import <UIKit/UIKit.h>

#import "NameEditorViewController.h"

@class DetailViewController;

Figure 9.11 Screen shot of the NameEditorView NIB file

Turner_Book.indb 217 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views218

@interface MasterViewController : UITableViewController

<NameEditorViewControllerDelegate>

@property (strong, nonatomic) DetailViewController *detailViewController;

@property (strong, nonatomic) NSMutableOrderedSet *data;

@end

Now for the implementation. At the bottom of MasterViewController.m, add the
implementations for the NameEditorViewControllerDelegate methods. You also
need to modify the -add: method in MasterViewController.m to create an instance of
NameEditorViewController, set the delegate, and display the view. The code
changes are given in Listing 9.10. For brevity’s sake, only the changes are included in
the listing, not the complete code source.

Listing 9.10 Modifications Needed in MasterViewController.m

@implementation MasterViewController

/* ... */

- (void)add:(id)sender

{

 NameEditorViewController *newController =

 [[NameEditorViewController alloc] initWithDefaultNib];

 [newController setDelegate:self];

 [newController setModalPresentationStyle:UIModalPresentationFormSheet];

 [self presentModalViewController:newController animated:YES];

}

#pragma mark - NameEditorViewControllerDelegate

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

- (void)nameEditorViewControllerDidCancel:(NameEditorViewController *)controller

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

@end

Take a look at the modified version of the -add: method. Before it was a single
NSLog statement, but now it has real functionality. It creates an instance of the

Turner_Book.indb 218 12/11/11 6:46 PM

ptg999

Working with a Table View 219

NameEditorViewController using the custom init method -initWithDefault-
Nib. It sets the delegate to self, which is the current instance of MasterView-
Controller, which conforms to the NameEditorViewControllerDelegate.

The name editor will display modally. To ensure a good look, the controller’s
modalPresentationStyle is set to UIModalPresentationFormSheet. This will
center the modal display on the screen, graying out the background view. It will also
adjust its position when the virtual keyboard is displayed. After the presentation style
is set, the code then displays the new controller modally using presentModalView-
Controller:animated:. This causes the new controller to slide up from the bottom
and display in the screen’s center.

You can now build and run the app. When you tap the + button, the new Name-
EditorViewController is displayed. Tapping the Cancel button displays [Master-
ViewController nameEditorViewControllerDidCancel:] in the debug output
window, and tapping the Done button displays [MasterViewController name-
EditorViewControllerDidFinish:]. The finished version should look like the
screen shot in Figure 9.12.

Before returning focus to the UITableView, there are a few loose ends that must
be tied up. The Done button should add a new entry into the data array, so replace
the MasterViewController’s implementation for -nameEditorViewController-
DidFinish: with the code in Listing 9.11.

Figure 9.12 Screen shot of the name editor

Turner_Book.indb 219 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views220

Listing 9.11 Updated -nameEditorViewControllerDidFinish: in
MasterViewController.m

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller

{

 NSString *newName = [[controller nameTextField] text];

 if (newName && [newName length] > 0) {

 [[self data] addObject:newName];

 [[self tableView] reloadData];

 }

}

Let’s walk through the code. In -nameEditorViewControllerDidFinish: a
local variable, newName, is set to the string returned by the text field displayed in
NameEditorViewController. If the newName is not nil and the string length is
greater than zero, the new name is added to the data array as a new photo album and
tableView is told to reload the data.

That’s it. The user can now add a new photo album to the table view.

Note
Calling reloadData on a table view is a quick and easy way to update the display.
However, the table view will go through the process of rebuilding and displaying the cells
for the table. If you want to avoid this extra processing, use the UITableViewData-
Source protocol methods for inserting and deleting table rows (-tableView:
commitEditingStyle:forRowAtIndexPath: and -tableView:
canEditRowAtIndexPath:).

Edit Data
What good is adding data if the user can’t edit it? Let’s add an edit feature that allows
the user to change the name of an existing photo album. To save time, you’ll reuse the
name editor, this time to edit an existing name.

You need a way to allow the user to edit an existing item. Luckily, UITableView
already supports the concept of editing. When a UITableView is in edit mode, the
table cells are indented, a red circle is added to allow deleting, and rows in the table
can be reordered. To put the table in edit mode, we need an Edit button. A good
place for the Edit button is on the left side of the navigation bar for the MasterView-
Controller, our master view.

To add a new button, all you need to do is create a new UIBarButtonItem and
add it to the left side of the navigation bar. This code is similar to the code you already
wrote in the -viewDidLoad method for MasterViewController that adds the
+ button to the navigation bar. But wait! There’s another way.

As mentioned earlier, a benefit of using UITableViewController is that the
controller provides functionality common to UITableView. One such common

Turner_Book.indb 220 12/11/11 6:46 PM

ptg999

Working with a Table View 221

functionality is an Edit button. Without UITableViewController you would be
responsible for creating a new edit bar button item and implementing the action that
puts the table view into edit mode. You would also have to change the Edit button
to a Done button and toggle back to normal mode when the user taps it. You get
this functionality for free with UITableViewController, which conveniently is the
superclass for MasterViewController.

To add the Edit button to the navigation controller, add the code in Listing 9.12
to the bottom of the -viewDidLoad method in MasterViewController.m. The property
editButtonItem returns a reference to a bar button item configured as an Edit but-
ton for the table view.

Listing 9.12 Adding an Edit Button to the Navigation Bar

- (void)viewDidLoad

{

 [super viewDidLoad];

 /* ... */

 [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];

}

Build and run the app. The app now has an Edit button that toggles the table view
between normal and edit modes. But you’re still not able to edit the row. To actu-
ally enable editing an item, a bit more code is needed. First, a detail disclosure button
should be displayed to indicate to the user that the row can be edited. Next, code must
be added to handle the selection of the item to edit. When the item is selected, the
name editor must be displayed. And when the user taps the Done button on the name
editor, the data and table must be updated to ref lect the new name.

The NameEditorViewController must also be modified to support edit mode.
UIViewController already has an editing property that can be used to tell the con-
troller it is in edit mode. But the controller needs to know more, such as the index
path to the row that is being edited.

Let’s start with updating MasterViewController. The code changes are shown
in Listing 9.13. The first change is to set the accessory type for the table cell when the
table is in edit mode. The next change adds an implementation for the UITableView-
Delegate method -tableView:accessoryButtonTappedForRowWithIndexPath:.
This method is called when the user taps the detail disclosure button on a cell. The
implementation creates an instance of the name editor, prepares it for editing, then dis-
plays it. Last, the -nameEditorViewControllerDidFinish: method is changed to
support editing. Add the changes in Listing 9.13 to your project.

Turner_Book.indb 221 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views222

Listing 9.13 Modifications to MasterViewController.m to Support Editing a Photo Album
Name

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdenti
fier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

 reuseIdentifier:CellIdentifier];

 // Display the detail disclosure button when the table is

 // in edit mode. This is the line you must add:

 [cell setEditingAccessoryType:UITableViewCellAccessoryDetailDisclosureButton];

 }

 // Configure the cell.

 NSString *text = [[self data] objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:text];

 return cell;

}

- (void)tableView:(UITableView *)tableView

accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

{

 NameEditorViewController *newController = [[NameEditorViewController alloc]

 initWithDefaultNib];

 [newController setDelegate:self];

 [newController setEditing:YES];

 [newController setIndexPath:indexPath];

 NSString *name = [[self data] objectAtIndex:[indexPath row]];

 [[newController nameTextField] setText:name];

 [newController setModalPresentationStyle:UIModalPresentationFormSheet];

 [self presentModalViewController:newController animated:YES];

}

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller

{

 NSString *newName = [[controller nameTextField] text];

 if (newName && [newName length] > 0) {

 if ([controller isEditing]) {

 [[self data] replaceObjectAtIndex:[[controller indexPath] row]

 withObject:newName];

 } else {

Turner_Book.indb 222 12/11/11 6:46 PM

ptg999

Working with a Table View 223

 [[self data] addObject:newName];

 }

 [[self tableView] reloadData];

 }

}

Note
As before, only the changes are shown in Listing 9.13. The full version of
MasterViewController.m is not displayed to save the trees.

For the moment, the project will not cleanly compile. The changes to Name-
EditorViewController are missing. A new declared property called indexPath
of type NSIndexPath must be added. The property must also be synthesized and
released in the NameEditorViewController implementation. The changes are listed
in Listing 9.14.

Listing 9.14 Changes to NameEditorViewController.h and .m

@interface NameEditorViewController : UIViewController

/* Other code purposely left out for brevity's sake. */

@property (strong, nonatomic) NSIndexPath *indexPath;

@end

@implementation NameEditorViewController

@synthesize nameTextField = _nameTextField;

@synthesize delegate = _delegate;

@synthesize indexPath = _indexPath;

/* Other code purposely left out for brevity's sake. */

@end

Once the changes are complete, run the project and see what happens. Be sure to
test the new edit feature. Did you notice anything funny going on? The name editor
does not display the original photo album name when in edit mode, this despite setting
the nameTextField’s text property prior to displaying the view. What’s going on?

nameTextField is a UITextField that is instantiated by the NIB when the NIB
is loaded. The MasterViewController calls [[newController nameTextField]
setText:name] to set the text value, but the text field has not been created and

Turner_Book.indb 223 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views224

initialized yet. And when it does finally initialize, it uses an empty string for the text
value. This is why the photo album name is not displayed. How do you get around
this problem?

The solution involves two steps:

1. Add a declared property to NameEditorViewController called default-
NameText of type NSString.

 2. During the -viewDidLoad method, set the text property of the
nameTextField.

This works because -viewDidLoad is not called until the view has been loaded and
its subviews have been initialized.

The code changes to NameEditorViewController are shown in Listing 9.15. Be
sure to synthesize and release the new declared property in the implementation.

Listing 9.15 Changes Needed to NameEditorViewController.h and .m

@interface NameEditorViewController : UIViewController

/* Other code purposely left out for brevity's sake. */

@property (nonatomic, copy) NSString *defaultNameText;

@end

@implementation NameEditorViewController

@synthesize nameTextField = _nameTextField;

@synthesize delegate = _delegate;

@synthesize indexPath = _indexPath;

// Add this line:

@synthesize defaultNameText = _defaultNameText;

- (void)viewDidLoad

{

 [super viewDidLoad];

 if ([self isEditing]) {

 [[self nameTextField] setText:[self defaultNameText]];

 }

}

/* Other code purposely left out for brevity's sake. */

@end

Turner_Book.indb 224 12/11/11 6:46 PM

ptg999

Working with a Table View 225

And the final change: Replace the [[newController nameTextField]
setText:name] call in MasterViewController.m with [newController
setDefaultNameText:name] as shown in Listing 9.16.

Listing 9.16 Changes to MasterViewController.m Needed to Set the Default Name Text

- (void)tableView:(UITableView *)tableView

accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

{

 NameEditorViewController *newController =

 [[NameEditorViewController alloc] initWithDefaultNib];

 [newController setDelegate:self];

 [newController setEditing:YES];

 [newController setIndexPath:indexPath];

 NSString *name = [[self data] objectAtIndex:[indexPath row]];

 // Replace [[newController nameTextField] setText:name]; with

 // the following:

 [newController setDefaultNameText:name];

 [newController setModalPresentationStyle:UIModalPresentationFormSheet];

 [self presentModalViewController:newController animated:YES];

}

Delete Data
Let’s not stop with adding and editing data. Let’s also allow the user to delete data.
The structure is already in place to support deleting a row. The user can tap the Edit
button, then tap the red circle. This causes the table view to display a Delete button
for the cell. And when the user swipes his finger across the row, when the table is not
in edit mode, the Delete button for the cell is displayed. A little more plumbing is
needed in MasterViewController to provide full delete capabilities.

To allow deleting, you need to implement two additional methods from the
UITableViewDataSource delegate: -tableView:canEditRowAtIndexPath:
and -tableView:commitEditingStyle:forRowAtIndexPath:. The first method
allows the app to control whether a particular row in the table is editable or not. For
the purposes of this project, the method always returns YES, but you may have apps in
the future that return YES for some rows and NO for others.

The next method is -tableView:commitEditingStyle:forRowAtIndexPath:.
In previous code, when a new row is added or an existing one is edited, the code calls
[tableView reloadData]. Here a different approach is used. Instead of reloading
the data, which works, the existing row is removed from the table view. This provides
a better user experience in that the removal of the row is animated and the table view
is not completely redrawn. In this particular case, UITableViewRowAnimationFade
is used to fade out the row being deleted.

Turner_Book.indb 225 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views226

The implementation for these two methods is shown in Listing 9.17. Be sure to add
this code to your project.

Listing 9.17 Two UITableViewDataSource Methods to Add Delete Support to
MasterViewController.m

 - (BOOL)tableView:(UITableView *)tableView

canEditRowAtIndexPath:(NSIndexPath *)indexPath

 {

 return YES;

 }

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath

{

 if (editingStyle == UITableViewCellEditingStyleDelete) {

 [[self data] removeObjectAtIndex:[indexPath row]];

 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]

 withRowAnimation:UITableViewRowAnimationFade];

 }

}

Reorder Data
There is another nifty feature of UITableView. It is reordering data. UITableView
allows the user to move rows up or down to change the sequence. Adding support for
reordering is a simple two-step process:

1. Configure the cell to display the reorder control.

 2. Implement the UITableViewDataSource delegate method -tableView:
moveRowAtIndexPath:toIndexPath:.

The code changes for MasterViewController.m are shown in Listing 9.18. Make and
save the changes to your project, then run the app to test reordering.

Listing 9.18 Changes in MasterViewController.m Needed to Support Reordering of
Table Rows

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell =

 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

Turner_Book.indb 226 12/11/11 6:46 PM

ptg999

Working with a Table View 227

 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

 reuseIdentifier:CellIdentifier];

 [cell setEditingAccessoryType:UITableViewCellAccessoryDetailDisclosureButton];

 // Add this line:

 [cell setShowsReorderControl:YES];

 }

 // Configure the cell.

 NSString *text = [[self data] objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:text];

 return cell;

}

- (void)tableView:(UITableView *)tableView

moveRowAtIndexPath:(NSIndexPath *)fromIndexPath

 toIndexPath:(NSIndexPath *)toIndexPath

{

 [[self data] exchangeObjectAtIndex:[fromIndexPath row]

 withObjectAtIndex:[toIndexPath row]];

}

As with editing a row, the UITableViewDataSource protocol includes a method
named -tableView:canMoveRowAtIndexPath: that allows your code to determine
if a row can be moved or not. Return YES to allow the row to be moved, and return
NO to prevent moving the row. This method is not implemented in Listing 9.18 so that
the user will be able to move all of the rows.

Select Data
There is one last feature you need to implement before closing the chapter on table
views. When a user taps a row in the table view, the detail view controller—Remem-
ber that fella? It’s been a while since we spoke of him—needs to be told which item
was selected. This works similarly to editing a row. UITableViewDelegate includes
the method -tableView:didSelectRowAtIndexPath:, which is called when the
user taps the row. However, the MasterViewController knows nothing about the
DetailViewController, so let’s fix that first.

MasterViewController needs a declared property of type DetailView-
Controller, and the property must be synthesized in the MasterViewController’s
implementation. Go ahead and make those changes now. This has been done for you
by the master-detail template used to create the project. Let’s take a closer look at that,
which is shown in Listing 9.19.

Turner_Book.indb 227 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views228

Listing 9.19 detailViewController as a Declared Property to
MasterViewController

#import <UIKit/UIKit.h>

#import "NameEditorViewController.h"

@class DetailViewController;

@interface MasterViewController : UITableViewController

<NameEditorViewControllerDelegate>

@property (strong, nonatomic) DetailViewController *detailViewController;

@property (strong, nonatomic) NSMutableOrderedSet *data;

@end

#import "MasterViewController.h"

#import " DetailViewController.h"

@implementation MasterViewController

@synthesize detailViewController = _detailViewController;

@synthesize data = _data;

/* Other code purposely left out for brevity's sake. */

@end

In Listing 9.19, the directive @class is used to inform the compiler that the class
name is available, but the interface file for the class is not imported in the header
file. The compiler does not need to know the interface for the class until the class
is actually used, for example, when creating a new instance of the class or sending a
message to a class instance. It is only when the class is used that its interface must be
imported. Plainly put, if you use the class in your implementation, you must include
the #import for the class header in your .m file. However, the #import is not needed
in the interface’s .h file when @class is used.

The exception to this rule is when the header declares an interface that extends
another class or conforms to a protocol. You need to include the #import in the
header file when this happens.

Note
The approach of telling the compiler that something exists without providing the details is
called a forward declaration. Forward declarations are common in the C programming lan-
guage and therefore are common in Objective-C. The compiler directive @class is

Turner_Book.indb 228 12/11/11 6:46 PM

ptg999

Working with a Table View 229

a forward declaration of a class name, but forward declarations are not limited to class
names. Forward declarations are used throughout C and Objective-C to inform the com-
piler about protocols, methods, and functions that are yet to be defined.

The method -tableView:didSelectRowAtIndexPath: can now be imple-
mented. The implementation of this method should look familiar to you. You use the
indexPath to retrieve the photo album name from the data array. Then you pass the
value to the detail view controller. This is similar to the approach used to edit a row.
The biggest difference is that the detail view controller has already been created, so
there is no need to create a new instance. Let’s take a look at the code shown in List-
ing 9.20, which replaces the code generated by the Xcode template.

Listing 9.20 Code Added to MasterViewController.m to Display the Photo Album Name
in the Detail View Controller

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 NSString *name = [[self data] objectAtIndex:[indexPath row]];

 [[self detailViewController] setDetailItem:name];

}

The final step is to set the property detailViewController on the Master-
ViewController instance to the instance of DetailViewController created in the
app delegate. Open AppDelegate.m and assign the DetailViewController instance to
the detailViewController property on the MasterViewController. Listing 9.21
shows the final code.

Listing 9.21 Assigning the DetailViewController Instance to the
detailViewController Property

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // Override point for customization after application launch.

 MasterViewController *masterViewController =

 [[MasterViewController alloc] initWithNibName:@"MasterViewController"

 bundle:nil];

 UINavigationController *masterNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:masterViewController];

 DetailViewController *detailViewController =

 [[DetailViewController alloc] initWithNibName:@"DetailViewController"

 bundle:nil];

Turner_Book.indb 229 12/11/11 6:46 PM

ptg999

Chapter 9 Using Table Views230

 UINavigationController *detailNavigationController =

 [[UINavigationController alloc]

 initWithRootViewController:detailViewController];

 // Add this line. It tells the master view controller which

 // detail view controller to use.

 [masterViewController setDetailViewController:detailViewController];

 self.splitViewController = [[UISplitViewController alloc] init];

 self.splitViewController.delegate = detailViewController;

 self.splitViewController.viewControllers = [NSArray arrayWithObjects:

 masterNavigationController,

 detailNavigationController,

 nil];

 self.window.rootViewController = self.splitViewController;

 [self.window makeKeyAndVisible];

 return YES;

}

That’s it. Build and run the app. When you tap a photo album in the table view, its
name should appear in the detail view. Check your work if you see different behavior.

Summary
This chapter focused on UITableView and its supporting protocols and classes, but
you were also introduced to other essential concepts, including creating and displaying
view controllers, communicating between view controllers using delegates, and using
the Target-Action pattern. It’s a lot of information to take in at once. Don’t worry,
though. You’ll be repeating the essential concepts again and again as you progress
through the book.

Exercises
1. Open the header file for UITableViewDelegate and UITableViewData-

Source. Review the list of delegate methods provided by these protocols. (Refer
back to Chapter 8, “Creating a Master-Detail App,” for tips on opening header
files.)

 2. Move the Edit button to the right side and the + button to the left. When you
are done, move the buttons back.

3. Change the bar button item style for the + button to other styles and note the
visual difference.

4. Modify the app to prevent the first table view row from being edited.

5. Modify the app to prevent the user from moving the last row.

Turner_Book.indb 230 12/11/11 6:46 PM

ptg999

10
Working with Views

In the last chapter you learned about using view controllers and communicating between them. In
this chapter you will learn how to create your own custom view. The concept of a photo album has
already been introduced. Now it’s time to display photos, and a custom view is just what the doc-
tor ordered.

Custom Views
UIKit provides an outstanding set of views that make it easier and faster to create iPad
apps. However, there are times when your app’s UI needs more than what is provided
by the SDK. This is where custom views come in. Creating a custom view is not dif-
ficult. In fact, it’s as easy as creating a new UIView subclass.

Why would you ever need to create a custom view? There are many reasons. The
most common reason is to simplify the code in your app. Let’s say, for example, that
the app must present the same set of visual controls—for instance, a UILabel fol-
lowed by a UITextField—to display a label followed by a text input box. Now say
the display of these controls is repeated over and over throughout the app. The con-
stant repeat violates the DRY principle, making your code harder to maintain. You
can simplify the app’s code base by creating a new view that is responsible for display-
ing the label and text field. Then, instead of repeating the label and text field combo
throughout the app, only the view that contains the label and text field is repeated.
Should you need to make a change, such as reversing the order of the two controls, the
change is made in one place and propagated throughout the app.

Note
DRY, short for “Don’t Repeat Yourself,” is a fundamental software engineering principle
whose goal is to reduce redundancy. When it is applied, blocks of code, logic, sets of UI
elements, and so forth exist only once and are reused instead of being copied and pasted
throughout an application. To learn more about DRY and other useful principles of pro-
gramming, read The Pragmatic Programmer: From Journeyman to Master (Addison-Wesley,
1999).

Turner_Book.indb 231 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views232

View Controller Not
Creating a custom view is simple. The challenge comes when deciding whether a user
interface element is better implemented as a custom view or as part of a view control-
ler. It’s not uncommon to implement a view controller to display some part of the
UI only to discover later that the code can be made more reusable if implemented as
a view. And not only is the view easier to reuse as opposed to the view controller,
but you can create specializations of the custom view, extending its appearance and
behavior.

Take, for example, a set of photos displayed in a circular formation. An initial solu-
tion for implementing the UI is to write a view controller that manages the layout of
the photos. But once you do this, you’ll realize that a good amount of controller code
is devoted to the layout of the photos. It’s the implementation of the layout code that is
ideal for a custom view, not a view controller.

Let the view controller mediate data between the view and the model. Let the view
manage the visual layout of the data provided by the controller.

A good example of this is a wheel view. Looking at the sketch of the prototype app,
shown in Figure 10.1, you see a wheel of photos. The photo wheel is nothing more
than a set of photos laid out to form a circle. While this can be implemented within
the DetailViewController, a better approach is to create a new custom view that
manages the layout of photos. Let’s take a look at how a wheel view can be imple-
mented as a custom view.

Note
The original inspiration for PhotoWheel came from the View-Master (en.wikipedia.org/wiki/
View_Master). The View-Master, a device for viewing 3D pictures, was introduced in 1939
and has since become a popular children’s toy. It uses a disk containing 14 images and
pairs the images, giving the viewer 7 pictures to view in stunning 3D.

Figure 10.1 Sketch of the PhotoWheelPrototype app

Turner_Book.indb 232 12/11/11 6:46 PM

ptg999

A Wheel View 233

A Wheel View
The wheel view displays a set of subviews laid out in a circle. Why a set of subviews
and not a set of photos? There’s no good reason to limit the wheel view to photos
only. A UIView, or some subclass of it such as UIImageView, is all that is needed to
display a photo. The wheel view doesn’t care what type of subview it is given so long
as it is at least a view of some sort. This means that the wheel view doesn’t have to
be limited to the display of photos. It can be used to display any view you see fit to
display.

How does the wheel view know about the subviews to display? One option is to
pass in an array or set of views, but this means the views must be created in memory
before ever being referenced by the wheel view. This can waste valuable system
resources (i.e., memory) on a mobile device. Instead, a better approach is to have the
wheel view ask some source for each subview as it needs it.

This pattern should sound familiar to you. It’s the same pattern used by
UITableView. UITableView has no intimate knowledge of the cell displayed in each
row. It instead relies on a UITableViewDataSource object to provide each cell when
needed. The wheel view you create will do the same.

To start, you need to create a new class. Call the new class WheelView. Follow
these steps to accomplish this:

 1. Type �-N.

2. Select iOS > Cocoa Touch > Objective-C class.

3. Click the Next button.

4. Set the Class to WheelView.

5. Set the “Subclass of” to UIView.

6. Click the Next button.

 7. Click the Create button.

Open the interface file WheelView.h and add the code in Listing 10.1.

Listing 10.1 Source Code for WheelView.h

#import <UIKit/UIKit.h>

@protocol WheelViewDataSource;

@class WheelViewCell;

@interface WheelView : UIView

@property (nonatomic, strong) IBOutlet id<WheelViewDataSource> dataSource;

@end

Turner_Book.indb 233 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views234

@protocol WheelViewDataSource <NSObject>

@required

- (NSInteger)wheelViewNumberOfCells:(WheelView *)wheelView;

- (WheelViewCell *)wheelView:(WheelView *)wheelView cellAtIndex:(NSInteger)index;

@end

@interface WheelViewCell : UIView

@end

Walking through the code, you first see the #import statement for UIKit.h. This
allows the WheelView class to reference classes within UIKit. Following this are two
forward declarations, one for the protocol WheelViewDataSource and one for the
class WheelViewCell. The forward declarations tell the compiler about the types
when it encounters a reference to the protocol or class prior to the actual declaration of
each.

Next up is the interface declaration for WheelView. The class derives from UIView,
and it has one declared property called dataSource. dataSource can be any
Objective-C object regardless of the kind of class, so the id data type is used as the
property’s data type. To assist the compiler with syntax checking, the protocol Wheel-
ViewDataSource is added to the id data type. This tells the compiler that the object
referenced by dataSource must conform to the WheelViewDataSource protocol.

Note that dataSource is also marked as an outlet. This allows you to set the prop-
erty reference within IB, which you will see momentarily.

Following the interface declaration for WheelView is the protocol declaration for
WheelViewDataSource. WheelView needs to know two things about the data it will
be displaying:

1. The number of cells to display

2. The cell for a particular index

So, two required methods are added to the WheelViewDataSource protocol. Any
object that conforms to this protocol must provide implementations for these methods.

Last, in the source code you see the declaration for WheelViewCell, which is a
subclass of UIView. We have said that WheelView does not care about the type of
view displayed in the wheel, but this could change down the road. There might come
a time when WheelView needs to store internal information on the object. By declar-
ing a generalized class now, you prepare the code for possible changes down the road.
And since this class type is used in the methods for the WheelViewDataSource pro-
tocol, you reduce the impact of change on the app should WheelView need to store
internal data within the view cell.

Turner_Book.indb 234 12/11/11 6:46 PM

ptg999

A Wheel View 235

Note
You may be wondering why WheelView, WheelViewDataSource, and Wheel-
ViewCell are all defined in the same interface file. Each could have been defined
in its own interface file, but I elected to keep them together because each is tightly
coupled with the others, and it’s easier to reuse WheelView in other projects by copying
WheelView.h and .m files instead of copying WheelView.h and .m, WheelViewDataSource.h,
and WheelViewCell.h and .m.

Now open WheelView.m and replace the template-generated code with the code
presented in Listing 10.2.

Listing 10.2 WheelView’s Implementation

#import "WheelView.h"

@implementation WheelView

@synthesize dataSource = _dataSource;

- (void)setAngle:(CGFloat)angle

{

 // The following code is inspired by the carousel example at

 // http://stackoverflow.com/questions/5243614/3d-carousel-effect-on-the-ipad

 CGPoint center = CGPointMake(CGRectGetMidX([self bounds]),

 CGRectGetMidY([self bounds]));

 CGFloat radiusX = MIN([self bounds].size.width,

 [self bounds].size.height) * 0.35;

 CGFloat radiusY = radiusX;

 NSInteger cellCount = [[self dataSource] wheelViewNumberOfCells:self];

 float angleToAdd = 360.0f / cellCount;

 for (NSInteger index = 0; index < cellCount; index++)

 {

 WheelViewCell *cell = [[self dataSource] wheelView:self cellAtIndex:index];

 if ([cell superview] == nil) {

 [self addSubview:cell];

 }

 float angleInRadians = (angle + 180.0) * M_PI / 180.0f;

 // Get a position based on the angle

 float xPosition = center.x + (radiusX * sinf(angleInRadians))

 - (CGRectGetWidth([cell frame]) / 2);

 float yPosition = center.y + (radiusY * cosf(angleInRadians))

 - (CGRectGetHeight([cell frame]) / 2);

Turner_Book.indb 235 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views236

 [cell setTransform:CGAffineTransformMakeTranslation(xPosition, yPosition)];

 // Work out what the next angle is going to be

 angle += angleToAdd;

 }

}

- (void)layoutSubviews

{

 [self setAngle:0];

}

@end

@implementation WheelViewCell

@end

Online Help
Did you notice the comment in Listing 10.2 that mentions the origin of the algorithm
used to lay out the subviews? The algorithm comes from a posting on stackoverflow.
com, and kudos to “Tommy” for providing a nice solution.

Programming today is far different from what it was like 30 years ago. Back in the
1980s, I needed to implement the YMODEM file transport protocol for a system I
was working on. I found out that sample code was available in a past issue of Dr.
Dobb’s Journal, so I went to the library at the local university to look at a copy of the
magazine.

Unfortunately, the issue wasn’t available. I had to request the microfilm of the maga-
zine, which took a few days to arrive. When it did, I had to return to the university’s
library to view the microfilm on its reader. I found the article I needed, read through
it multiple times until I was confident I understood it, and I wrote, by hand on paper,
the sample source code. If I remember correctly, the entire process, from research to
implementation, took almost two weeks before I had a working version of the transfer
protocol.

Today, many programming problems can be solved in minutes, not days or weeks.
Thanks to the Internet, Google.com and online developer communities and forums
such as stackoverflow.com and Apple’s own devforums.apple.com make programming
today much, much easier. Definitely make a habit of checking online resources such
as these Web sites when faced with a programming challenge or when you just want
to see how others might implement solutions to the same problems. And be a good
developer community citizen by giving back with postings of your answers and solu-
tions to questions from others.

Turner_Book.indb 236 12/11/11 6:46 PM

ptg999

A Wheel View 237

WheelView is now ready to be used within the app. The wheel view will be dis-
played in the DetailViewController. IB doesn’t know about WheelView, so you
must tell IB about it. This is accomplished by changing the class name in the Iden-
tity inspector from UIView to WheelView. Once IB knows that the view is of type
WheelView, the File’s Owner can be set as the data source to the wheel view. Here are
the steps to follow:

 1. Open DetailViewController.xib.

 2. Delete the UILabel “Detail view content goes here.”

3. Add a new UIView instance to the main container view.

4. Open the Size inspector (Option- -5) and set the Width and Height to 768.

 5. Center the UIView within the screen. You can do this in the Size inspector by
setting X to 0 and Y to 138.

6. Turn on f lexible top, bottom, left, right, width, and height in Autoresizing (see
Figure 10.2).

7. Open the Identity inspector (Option- -3).

8. Change the class name from UIView to WheelView.

 9. Control-Click the WheelView and connect the dataSource outlet to the
File’s Owner (see Figure 10.3).

Figure 10.2 Set the WheelView position, size, and autosize properties
in the Size inspector.

ptg999

Chapter 10 Working with Views238

Note
Seeing a UIView within a UIView can be difficult if both views have the same back-
ground color. To get around this, turn on Layout Rectangles by selecting Editor > Canvas >
Show Layout Rectangles from the menu bar.

Finally, the DetailViewController must be updated with implementations for
the WheelViewDataSource protocol methods. This is necessary because Detail-
ViewController is the File’s Owner, and the File’s Owner has been set as the data
source for the wheel view.

To accomplish this, start by opening DetailViewController.h and add WheelView-
DataSource to the list of protocols implemented by the class. Note that you will also
need to import WheelView.h, which contains the declaration for WheelViewData-
Source. Once modified, the header file should contain the code found in Listing 10.3.

Listing 10.3 Modified Version of DetailViewController.h

#import <UIKit/UIKit.h>

#import "WheelView.h"

@interface DetailViewController : UIViewController

<UISplitViewControllerDelegate, WheelViewDataSource>

Figure 10.3 Connect the WheelView’s dataSource outlet to the
File’s Owner.

Turner_Book.indb 238 12/11/11 6:46 PM

ptg999

A Wheel View 239

@property (strong, nonatomic) id detailItem;

@property (strong, nonatomic) IBOutlet UILabel *detailDescriptionLabel;

@end

Before you can implement the WheelViewDataSource methods within Detail-
ViewController, the app needs a collection of views to display. A good place to cre-
ate this data is in the -viewDidLoad event of the DetailViewController. A private
data property is needed to store the collection of views. The code changes are shown
in Listing 10.4.

Listing 10.4 Initializing an Array of Views in DetailViewController.m

@interface DetailViewController ()

@property (strong, nonatomic) NSArray *data;

// Other code left out for brevity's sake.

@end

@implementation DetailViewController

@synthesize data = _data;

// Other code left out for brevity's sake.

- (void)viewDidLoad

{

 [super viewDidLoad];

 CGRect cellFrame = CGRectMake(0, 0, 75, 75);

 NSInteger count = 10;

 NSMutableArray *newArray = [[NSMutableArray alloc] initWithCapacity:count];

 for (NSInteger index = 0; index < count; index++) {

 WheelViewCell *cell = [[WheelViewCell alloc] initWithFrame:cellFrame];

 [cell setBackgroundColor:[UIColor blueColor]];

 [newArray addObject:cell];

 }

 [self setData:[newArray copy]];

}

// Other code left out for brevity's sake.

@end

DetailViewController is the data source, and it contains the private property
data, which contains the array of views to display in the WheelView. All that remains
is implementing the WheelViewDataSource protocol methods. Add the code in

Turner_Book.indb 239 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views240

Listing 10.5 to the bottom of the DetailViewController implementation (but
before the @end statement).

Listing 10.5 Updated DetailViewController.m

#pragma mark - WheelViewDataSource methods

- (NSInteger)wheelViewNumberOfCells:(WheelView *)wheelView

{

 NSInteger count = [[self data] count];

 return count;

}

- (WheelViewCell *)wheelView:(WheelView *)wheelView cellAtIndex:(NSInteger)index

{

 WheelViewCell *cell = [[self data] objectAtIndex:index];

 return cell;

}

Build and run the app. The detail view within the app now displays a circle of blue
square views, as shown in Figure 10.4.

A Carousel View
The wheel view looks nice, but a carousel view might look better. You won’t know
until you try it. The wheel can be turned into a carousel with some minor tweaking

Figure 10.4 The prototype app with a wheel of squares.

Turner_Book.indb 240 12/11/11 6:46 PM

ptg999

A Carousel View 241

of the algorithm used to lay out the wheel view cells. This is a perfect time to experi-
ment. After all, this is a prototype app, and there is no better place to experiment with
concepts.

Making the carousel is as simple as turning the wheel on its side, but which way
looks better? A good way to compare is to add a feature to the prototype app that
enables the user to switch between the two display styles.

To make it so, open WheelView.h and add a new declared property called style.
To make the code more readable, use an enumeration type to define the list of display
styles. Your code should look like the code in Listing 10.6.

Listing 10.6 Modified Version of WheelView.h

#import <UIKit/UIKit.h>

@protocol WheelViewDataSource;

@class WheelViewCell;

typedef enum {

 WheelViewStyleWheel,

 WheelViewStyleCarousel,

} WheelViewStyle;

@interface WheelView : UIView

@property (nonatomic, strong) IBOutlet id<WheelViewDataSource> dataSource;

@property (nonatomic, assign) WheelViewStyle style;

@end

@protocol WheelViewDataSource <NSObject>

@required

- (NSInteger)wheelViewNumberOfCells:(WheelView *)wheelView;

- (WheelViewCell *)wheelView:(WheelView *)wheelView cellAtIndex:(NSInteger)index;

@end

@interface WheelViewCell : UIView

@end

Note
The declared property style uses the property setting assign. This is used instead
of strong because style’s data type is an enumeration, which is a C type, not an
Objective-C object.

Turner_Book.indb 241 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views242

Now it’s time to add carousel support to the WheelView class. Open WheelView.m
and synthesize the new style property. When this property is set, the layout of the
view must change. Therefore, you need to add an implementation for the style’s set-
ter method. The code changes are given in Listing 10.7.

Listing 10.7 Synthesizing the style Property and Implementing a Custom Setting
Method in WheelView.m

@implementation WheelView

@synthesize dataSource = _dataSource;

@synthesize style = _style;

// Other source code not shown for brevity's sake.

// Add to the bottom of the WheelView implementation.

- (void)setStyle:(WheelViewStyle)newStyle

{

if (_style != newStyle) {

 _style = newStyle;

 [UIView beginAnimations:@"WheelViewStyleChange" context:nil];

 [self setAngle:0];

 [UIView commitAnimations];

 }

}

@end

Let’s take a closer look at the setter method -setStyle:.
It checks to see if the new style is different from the current style. If it is, the cur-

rent style is set to the new style. This part of the code should be obvious to you, but
not so obvious is the rest of the code in the if block.

A call is made to setAngle: to force WheelView to redraw. At the moment, the
app always passes in 0 for the angle. In the next chapter, Chapter 11, “Using Touch
Gestures,” you’ll change the app to use different angle values, but 0 works for the cur-
rent needs of the app.

Stranger than always passing in 0 is the code above and below [self setAngle:0].
This is your first look at using Core Animation. What this bit of code does is wrap
the drawing of the wheel from one style to another in an animation block. The
+beginAnimation:context: and +commitAnimations methods on UIView
indicate to the Core Animation framework the start and end points of the animation
sequence. -setAngle: will draw the view based on the new style, and Core Anima-
tion calculates and renders the visual aspects needed to animate the transition from
one style to another.

Turner_Book.indb 242 12/11/11 6:46 PM

ptg999

A Carousel View 243

Note
Core Animation is an extremely powerful framework for producing animations within iOS
applications, and it is used throughout iOS. The bounce effect you see when scrolling
through the app icons on the Home screen, the animation effect you see when launching
and quitting apps, the pushing and popping of view controllers from a navigation control-
ler—these are all examples of where Core Animation is used.

To learn more about Core Animation, read Marcus Zarra and Matt Long’s book Core Ani-
mation: Simplified Animation Techniques for Mac and iPhone Development (Addison-Wesley,
2009), and Bill Dudney’s Core Animation for Mac OS X and the iPhone: Creating Compelling
Dynamic User Interfaces (Pragmatic Programmers, 2008).

Now you need to tweak the display algorithm in the -setAngle: method. To give
the wheel a carousel look, the circle needs to look more like an oval. Also, the views
displayed in the back of the carousel should be smaller than those in the front and
slightly faded. This gives an effect of visual depth to the carousel. The updated code is
shown in Listing 10.8.

Listing 10.8 Updated -setAngle: Method Supporting the Carousel as a Display Style

#import "WheelView.h"

#import <QuartzCore/QuartzCore.h>

@implementation WheelView

// Other source code not shown for brevity's sake.

- (void)setAngle:(CGFloat)angle

{

 // The following code is inspired by the carousel example at

 // http://stackoverflow.com/questions/5243614/3d-carousel-effect-on-the-ipad

 CGPoint center = CGPointMake(CGRectGetMidX([self bounds]),

 CGRectGetMidY([self bounds]));

 CGFloat radiusX = MIN([self bounds].size.width,

 [self bounds].size.height) * 0.35;

 CGFloat radiusY = radiusX;

 if ([self style] == WheelViewStyleCarousel) {

 radiusY = radiusX * 0.30;

 }

 NSInteger cellCount = [[self dataSource] wheelViewNumberOfCells:self];

 float angleToAdd = 360.0f / cellCount;

 for (NSInteger index = 0; index < cellCount; index++)

 {

 WheelViewCell *cell = [[self dataSource] wheelView:self cellAtIndex:index];

Turner_Book.indb 243 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views244

 if ([cell superview] == nil) {

 [self addSubview:cell];

 }

 float angleInRadians = (angle + 180.0) * M_PI / 180.0f;

 // Get a position based on the angle

 float xPosition = center.x + (radiusX * sinf(angleInRadians))

 - (CGRectGetWidth([cell frame]) / 2);

 float yPosition = center.y + (radiusY * cosf(angleInRadians))

 - (CGRectGetHeight([cell frame]) / 2);

 float scale = 0.75f + 0.25f * (cosf(angleInRadians) + 1.0);

 // Apply location and scale

 if ([self style] == WheelViewStyleCarousel) {

 [cell setTransform:CGAffineTransformScale(

 CGAffineTransformMakeTranslation(xPosition, yPosition),

 scale,

 scale)];

 // Tweak alpha using the same system as applied for scale,

 // this time with 0.3 as the minimum and a semicircle range

 // of 0.5

 [cell setAlpha:(0.3f + 0.5f * (cosf(angleInRadians) + 1.0))];

 } else {

 [cell setTransform:CGAffineTransformMakeTranslation(xPosition,

 yPosition)];

 [cell setAlpha:1.0];

 }

 [[cell layer] setZPosition:scale];

 // Work out what the next angle is going to be

 angle += angleToAdd;

 }

}

// Other source code not shown for brevity's sake.

@end

The code has now been modified to support two different display styles: wheel and
carousel. To produce the carousel effect, the Y-axis is adjusted to be 30% of the X-axis.
Also, the scale and alpha for each cell are set based on the position within the circle.
The last change is the setting of the Z-position for the layer. This effectively mimics
setting the draw order of the views without having to actually reorder the list views.

Turner_Book.indb 244 12/11/11 6:46 PM

ptg999

A Carousel View 245

Note
If Xcode is reporting a warning message on the line of code [[cell layer]
setZPosition:scale], you likely forgot to include the #import <QuartzCore/
QuartzCore.h> statement at the top of the WheelView.m file. Add the import state-
ment and the warning will go away.

Now that WheelView is ready, it’s time to update the app so that the user can
switch between the two display styles. A segmented control in the DetailView’s
navigation bar is a good way for the user to do this. But first, the DetailView-
Controller needs a new outlet that references the wheel view so that the style can
be changed programmatically. Open DetailViewController.h and add the new outlet for
the WheelView. The source code is shown in Listing 10.9.

Listing 10.9 New Outlet Added to DetailViewController

#import <UIKit/UIKit.h>

#import "WheelView.h"

@interface DetailViewController : UIViewController

<UISplitViewControllerDelegate, WheelViewDataSource>

// Other source code not shown for brevity's sake.

@property (strong, nonatomic) IBOutlet WheelView *wheelView;

@end

Next, synthesize the wheelView property in the DetailViewController implementa-
tion file. The @synthesize statement is shown in Listing 10.10.

Listing 10.10 Updated Implementation for the DetailViewController

@implementation DetailViewController

// Other source code not shown for brevity's sake.

@synthesize wheelView = _wheelView;

// Other source code not shown for brevity's sake.

@end

Now open DetailViewController.xib and connect the WheelView instance to the
wheelView outlet, as shown in Figure 10.5.

Next you need to add a segmented control to the navigation bar. The navigation bar is
managed by the UINavigationController containing the DetailViewController

ptg999

Chapter 10 Working with Views246

instance. The navigation controller displays a label that contains the view controller’s title
in the middle of the navigation bar. In the prototype app you are working on, the view
controller’s title is set to “Detail” in the -initWithNibName:bundle: method found in
the DetailViewController.m file.

The navigation controller can also display a custom view in place of the title label
in the middle of the navigation bar. To do this, set the titleView property of the
view controller’s navigation item.

You want to display a UISegmentedControl instead of the default title view in
the navigation bar. To do this, you must create a new instance of UISegmented-
Control and set the titleView property on the navigation item for the Detail-
View Controller instance. You also need to define a new action that is called when
the user taps a segment. The action’s implementation will set the wheelView style
based on the selected segment index. The code to accomplish this is shown in Listing
10.11. Add the same code to your project.

Listing 10.11 Update to DetailViewController.m

- (void)viewDidLoad

{

 // Other source code not shown for brevity's sake.

 NSArray *segmentedItems = [NSArray arrayWithObjects:

 @"Wheel", @"Carousel", nil];

Figure 10.5 Connecting the outlet

Turner_Book.indb 246 12/11/11 6:46 PM

ptg999

A Carousel View 247

 UISegmentedControl *segmentedControl = [[UISegmentedControl alloc]

 initWithItems:segmentedItems];

 [segmentedControl addTarget:self

 action:@selector(segmentedControlValueChanged:)

 forControlEvents:UIControlEventValueChanged];

 [segmentedControl setSegmentedControlStyle:UISegmentedControlStyleBar];

 [segmentedControl setSelectedSegmentIndex:0];

 [[self navigationItem] setTitleView:segmentedControl];

}

- (void)segmentedControlValueChanged:(id)sender

{

 NSInteger index = [sender selectedSegmentIndex];

 if (index == 0) {

 [[self wheelView] setStyle:WheelViewStyleWheel];

 } else {

 [[self wheelView] setStyle:WheelViewStyleCarousel];

 }

}

That’s it. Save the changes, then build and run the app. Test the new feature by tap-
ping Wheel and Carousel in the navigation bar. The carousel should look like the
one in Figure 10.6.

Figure 10.6 Screen shot of the new carousel display style

Turner_Book.indb 247 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views248

A Photo Wheel View Cell
You now have a generic, reusable view that displays a wheel or carousel of subviews, but
the specific needs of the app call for the display of photos. What is needed now is a special-
ized type of WheelViewCell. This subclass of WheelViewCell will display an image.

The easiest way to display an image is to use UIImageView. To use UIImageView,
simply create an instance of it, then add it to the view hierarchy. Next, set the image
view’s image property to an image.

This is not the only way to display an image. You can also set content for the layer
that backs the view. (It sounds complicated but it’s not.)

In iOS, all UIViews are backed by a CALayer. This means that each UIView has a
CALayer. This makes it possible to take advantage of Core Animation effects on your
UIView. You can think of a layer as something that sits behind or within the view that
stores additional information for drawing and animating views.

Note
Views on Mac OS X are not CALayer-backed by default. Instead, you must explicitly turn
on backing if you need a CALayer-backed view.

Placing an image on a CALayer is a common practice when you need to display a
large number of images. Its use is overkill for the prototype app, but let’s use it any-
way so you can see how it’s done. Also, while you’re at it, draw a border and shadow
around the image to enhance the visual display.

Here are the steps to follow. Note that the steps are purposely brief, as you should
now be familiar with creating new classes.

1. Create a new Objective-C class.

2. Name the new class PhotoWheelViewCell.

 3. Specify WheelViewCell as the subclass for the new class.

PhotoWheelViewCell needs a way to set the current image. This can be imple-
mented as a declared property, but the cell view has no need to hang on to the image.
The image will, instead, be added to the contents of the view’s layer. So instead of
adding a new property to the class, all that is needed is a single method, -setImage:,
that will add an image to the layer’s contents. The header file for PhotoWheelView-
Cell is shown in Listing 10.12, and the implementation is shown in Listing 10.13.

Listing 10.12 Header File for PhotoWheelViewCell.h

#import "WheelView.h"

@interface PhotoWheelViewCell : WheelViewCell

- (void)setImage:(UIImage *)newImage;

@end

Turner_Book.indb 248 12/11/11 6:46 PM

ptg999

A Photo Wheel View Cell 249

Listing 10.13 Implementation for PhotoWheelViewCell.m

#import "PhotoWheelViewCell.h"

#import <QuartzCore/QuartzCore.h>

@implementation PhotoWheelViewCell

- (void)setImage:(UIImage *)newImage

{

 // Add the image to the layer's contents.

 CALayer *layer = [self layer];

 id imageRef = (__bridge id)[newImage CGImage];

 [layer setContents:imageRef];

 // Add border and shadow.

 [layer setBorderColor:[UIColor colorWithWhite:1.0 alpha:1.0].CGColor];

 [layer setBorderWidth:5.0];

 [layer setShadowOffset:CGSizeMake(0, 3)];

 [layer setShadowOpacity:0.7];

 [layer setShouldRasterize:YES];

}

@end

The implementation starts by importing PhotoWheelViewCell.h and QuartzCore.h.
The QuartzCore header is needed because the code uses an object of type CALayer.

The implementation of -setImage: is straightforward. It grabs a local reference
to [self layer] to make the code more readable. Next, the CGImageRef from
the given image is stored in a local variable. Okay, so maybe the code here is not that
straightforward. Here’s what is going on.

To display an image in the contents of a layer, you must set the contents to a
CGImageRef. CGImageRef is a C structure that contains bitmap information about
the image. It is a Core Foundation–style object, and its lifetime is not automatically
managed by ARC.

Note
Revisit Chapter 4, “Getting Started with Objective-C,” if you need a refresher on ARC.

contents, on the other hand, is an Objective-C object of type id. id is a general
object type for any kind of Objective-C object regardless of the class. To set contents
to a CGImageRef the image ref must be casted to id. This is true anytime you need
to cast between an Objective-C type and a Core Foundation–style object.

To cast between the types you must use the __bridge syntax. (__bridge type)
performs a noop cast. (__bridge_transfer type) releases the reference being cast.
(__bridge_retain type) adds a count to the retain count. For PhotoWheel-
ViewCell, only a noop cast is needed. The CGImageRef returned by [newImage

Turner_Book.indb 249 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views250

CGImage] is casted to id. Once casted, it can be passed to the layer’s contents. And
because __bridge syntax is used, ARC will not attempt to manage the memory for
id, nor will the compiler complain about not knowing the memory ownership for the
local reference.

The rest of the code is used to draw the border and shadow effect around the
image. Feel free to play with these settings to see what other effects you can create.

Using PhotoWheelViewCell
Now that PhotoWheelViewCell has been implemented, it’s time to put it to good
use. The prototype app doesn’t yet have the ability to add new photos to a photo
wheel, so let’s add a default photo to the app that is displayed until the user adds a
photo.

Included with the sample source code for this chapter is defaultPhoto.png, an image
that can be used as the default photo. Add this file to your project by dragging and
dropping it from Finder to the Xcode Project navigator for your project. Be sure to
select the option “Copy items into destination group’s folder (if needed),” as shown in
Figure 10.7. This will ensure that the file is copied to the project directory.

As you may recall, DetailViewController is responsible for creating the array
of wheel view cells. It does this in its -viewDidLoad method. The code must be
changed to create instances of PhotoWheelViewCell and to set the image to default-
Photo.png. The code changes are given in Listing 10.14.

Figure 10.7 Select “Copy items into destination group’s folder” when
adding the image to the project.

Turner_Book.indb 250 12/11/11 6:46 PM

ptg999

A Photo Wheel View Cell 251

Listing 10.14 Modified DetailViewController to Use PhotoWheelViewCell
Instead of WheelViewCell

#import "DetailViewController.h"

#import "PhotoWheelViewCell.h"

// Other source code not shown for brevity's sake.

@implementation DetailViewController

// Other source code not shown for brevity's sake.

- (void)viewDidLoad

{

 [super viewDidLoad];

 UIImage *defaultPhoto = [UIImage imageNamed:@"defaultPhoto.png"];

 CGRect cellFrame = CGRectMake(0, 0, 75, 75);

 NSInteger count = 10;

 NSMutableArray *newArray = [[NSMutableArray alloc] initWithCapacity:count];

 for (NSInteger index = 0; index < count; index++) {

 PhotoWheelViewCell *cell =

 [[PhotoWheelViewCell alloc] initWithFrame:cellFrame];

 [cell setImage:defaultPhoto];

 [newArray addObject:cell];

 }

 [self setData:[newArray copy]];

 // Other source code not shown for brevity's sake.

}

// Other source code not shown for brevity's sake.

@end

The default photo image is loaded into memory by calling [UIImage image-
Named:]. This returns a reference to the image that is passed to the PhotoWheel-
ViewCell. Within the for loop, the code that created instances of WheelViewCell
and set the background color to blue is replaced with PhotoWheelViewCell and set-
ting the image to defaultPhoto.

With these changes, your PhotoWheelViewCell class is now used to display an
image as the wheel cell instead of the boring blue box. Build and run the app, and you
will see the new display as shown in Figure 10.8.

Turner_Book.indb 251 12/11/11 6:46 PM

ptg999

Chapter 10 Working with Views252

Summary
In this chapter, you learned how to create and use custom views to enhance the look
of the app. You learned how to create a reusable wheel view that supports different
display styles, and you learned how to use a delegate pattern to decouple the view
from the data that it displays. And you learned how to create a specialized class for a
view to extend the visual display even further.

You may have already noticed a recurring theme over the last couple of chapters.
The wheel view you created in this chapter loosely follows the same design pattern
used by UITableView. The patterns of reusable views, delegates and data sources, and
custom views to extend the appearance of apps are common in iOS.

Exercises
1. Play with the math used in the wheel and carousel algorithm to change the dis-

play effects. Some changes to try include changing the Y-axis percentage and
changing the scale size of the background views.

2. Change the border color and size of the photo wheel view cell. Change the
shadow effect of the cell.

3. Add more cells to the photo wheel. Display fewer photos in the wheel.

4. Comment out the animation used in the WheelView -setStyle: setter
method. Make note of how it differs from the animated version of the code.

Figure 10.8 A photo wheel with stylish cells

Turner_Book.indb 252 12/11/11 6:46 PM

ptg999

11
Using Touch Gestures

The wheel view you built in the last chapter looks nice, especially when you use the photo wheel
view cell. And the transitions between wheel and carousel are smooth thanks to Core Animation.
But there’s still something missing. The user cannot interact with the photo wheel. That changes
in this chapter as you learn about touch handling and gesture recognizers.

Touch Gestures Explained
Prior to iOS, most touch interfaces on mobile devices simply replaced the mouse with
a finger. Users used a finger to move the mouse cursor around the screen, tapped to
simulate a mouse click, and double-tapped to simulate a double click. Needless to say,
this was a less than ideal user experience. Mouse-driven operating systems expect the
mouse cursor to be much more precise than what can be achieved with a normal-size
human finger (remember the rule of 44 mentioned in Chapter 7, “App Design”). iOS
changed all of this.

iOS was built from the start with multi-touch as the central feature of the platform.
It was not an attempt to implement a multi-touch interface on top of a desktop OS.
Instead, iOS has introduced a whole new way for users to interact with software using
nothing more than a finger.

There are two ways your application can handle and respond to touch events. One
is to respond to touch events sent by the operating system. These touch events are for-
warded to your app by way of the UIResponder class.

The Apple documentation says, “The UIResponder class defines an interface for
objects that respond to and handle events.” UIView is a subclass of UIResponder.
This means that any UIView can respond to and handle events. But what events?

There are two types of events that pass through UIResponder: touch and motion.
The primary touch events are touchesBegan:withEvent:, touchesMoved:
withEvent:, touchesEnded:withEvent:, and touchesCancelled:withEvent:.
The primary motion events include motionBegan:withEvent:, motionEnded:
withEvent:, and motionCancelled:withEvent:. All a view must do to respond
to and handle any of these events is to override one or more of these methods. If, for

Turner_Book.indb 253 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures254

example, you want PhotoWheelViewCell to respond to a single or double tap, over-
ride the touchesBegan:withEvent: and touchesEnded:withEvent: methods in
the PhotoWheelViewCell class.

The problem with this approach is that code for commonly used touch gestures is
copied through your view classes, and you must subclass UIView to override the touch
handling events. If two different view classes must respond to a double tap, each class
must implement the logic needed to detect the double-tap gesture. This violates the
DRY principle discussed in Chapter 10, “Working with Views”. To get around this
problem, Apple engineers created the UIGestureRecognizer class.

The UIGestureRecognizer class was introduced in iOS 3.2, the first iOS ver-
sion for the iPad. The class is an abstract base class used to create concrete gesture rec-
ognizers. Concrete gesture recognizers are then added to views that need to respond
to and handle specific touch gestures. This approach to handling gestures means that
logic for a touch gesture is implemented only once, as opposed to the “old way” that
required the logic to be reimplemented in each view that needed to respond to a par-
ticular gesture.

Predefined Touch Gestures
When Apple introduced gesture recognizers to the SDK, it also provided implementa-
tion, or concrete, classes for a number of common touch gestures. Here is the list of
gestures provided by the SDK:

n UITapGestureRecognizer: Detects one or more taps from one or more fingers
n UIPinchGestureRecognizer: Detects the two-finger pinch gesture
n UIRotationGestureRecognizer: Detects the two-finger rotation gesture
n UISwipeGestureRecognizer: Detects a swipe gesture in one or more

directions
n UIPanGestureRecognizer: Detects the panning, or dragging, gesture
n UILongPressGestureRecognizer: Detects long presses of one or more fingers

touching a view for a minimum amount of time

Gesture Types
Gestures are broken down into two types: discrete and continuous. A discrete ges-
ture calls the action once for the touch sequence. UITapGestureRecognizer and
UISwipeGestureRecognizer are examples of discrete gesture recognizers. The
action is called once each time the gesture is detected.

A continuous recognizer calls the action message at each incremental change until
the sequence has completed. UIPinchGestureRecognizer, UIRotationGesture-
Recognizer, UIPanGestureRecognizer, and UILongPressGestureRecognizer
are all continuous gesture recognizers.

Turner_Book.indb 254 12/11/11 6:46 PM

ptg999

Touch Gestures Explained 255

How to Use Gesture Recognizers
Using a gesture recognizer is as easy as creating an instance of the recognizer and add-
ing it to the view that will receive the touch events. Each recognizer has its own set
of properties that enable you to fine-tune the behavior of the gesture recognizer. For
instance, UITapGestureRecognizer has two tap-specific properties: numberOf-
TapsRequired and numberOfTouchesRequired.

The property numberOfTapsRequired specifies the number of taps required. The
default is 1. If you wish to detect a double tap, you would change this value to 2. A
triple tap would be, of course, 3, and so on.

The property numberOfTouchesRequired tells the recognizer how many fingers
are required to detect the gesture. Again, the default value is 1. If you want to detect
a tap with two fingers, you would set the property to 2. Here is an example of using a
tap gesture recognizer to detect a double tap with two fingers:

UITapGestureRecognizer *twoFingerDoubleTap =

 [[UITapGestureRecognizer alloc] initWithTarget:self

 action:@selector(twoFingerDoubleTapped:)];

[twoFingerDoubleTap setNumberOfTapsRequired:2];

[twoFingerDoubleTap setNumberOfTouchesRequired:2];

You can also extend the behavior of a recognizer by setting the delegate property
and implementing the methods defined in the UIGestureRecognizerDelegate
protocol. This allows the app to extend the behaviors of the recognizer without having
to subclass UIGestureRecognizer.

To get a better understanding of how to use gesture recognizers, let’s modify the
PhotoWheelPrototype app and have it use a gesture recognizer or two. First, you’ll
add a single-tap recognizer to each cell of the photo wheel and have the action
implementation do nothing more than log the class and method name. (Hint: Use
NSLog(@"%s", __PRETTY_FUNCTION__).) Next, you’ll add a double-tap recognizer
to each cell and log the class and method name in the action implementation. Let’s get
started.

Note
The real implementation for the tap action will come in Chapter 12, “Adding Photos,”
where a single tap is used to add a photo to a cell.

To add the tap gesture recognizer to the cell, open DetailViewController.m and add
a new instance of UITapGestureRecognizer to each cell. The recognizer could be
added to the PhotoWheelViewCell class, but that would reduce the reusability of the
cell class. The tap action is specific to this app, which means the view controller is the
more appropriate place for the action.

The code change is shown in Listing 11.1.

Turner_Book.indb 255 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures256

Listing 11.1 Tap Gesture Recognizer Added to Each Photo Wheel View Cell

@implementation DetailViewController

// Other code left out for brevity's sake.

- (void)viewDidLoad

{

 [super viewDidLoad];

 UIImage *defaultPhoto = [UIImage imageNamed:@"defaultPhoto.png"];

 CGRect cellFrame = CGRectMake(0, 0, 75, 75);

 NSInteger count = 10;

 NSMutableArray *newArray = [[NSMutableArray alloc] initWithCapacity:count];

 for (NSInteger index = 0; index < count; index++) {

 PhotoWheelViewCell *cell =

 [[PhotoWheelViewCell alloc] initWithFrame:cellFrame];

 [cell setImage:defaultPhoto];

 // Add single-tap gesture to the cell.

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(cellTapped:)];

 [cell addGestureRecognizer:tap];

 [newArray addObject:cell];

 }

 [self setData:[newArray copy]];

 // Other code left out for brevity's sake.

}

// Other code left out for brevity's sake.

- (void)cellTapped:(UIGestureRecognizer *)recognizer

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

@end

That’s it. Two lines of code, and now the app can detect taps on each photo wheel
view cell. The -cellTapped: method outputs the class and method name to the con-
sole window. Obviously a real application will do more than this.

Next, add a double-tap gesture to each cell. This gets slightly more complicated
because the cell already has the tap recognizer. Trying to decide when the user is

Turner_Book.indb 256 12/11/11 6:46 PM

ptg999

Touch Gestures Explained 257

performing single taps versus double taps can be a challenge. Luckily, gesture recog-
nizers make it easy to handle this scenario with the -requireGestureRecognizer-
ToFail: method. This method says that a gesture is not recognized unless another
gesture recognizer fails. In the case of tap and double tap, we want a tap to be recog-
nized only after it has been determined that the user isn’t attempting a double tap.

Listing 11.2 shows the updated code that adds the double tap.

Listing 11.2 Adding a Double Tap to the Cell

- (void)viewDidLoad

{

 [super viewDidLoad];

 UIImage *defaultPhoto = [UIImage imageNamed:@"defaultPhoto.png"];

 CGRect cellFrame = CGRectMake(0, 0, 75, 75);

 NSInteger count = 10;

 NSMutableArray *newArray = [[NSMutableArray alloc] initWithCapacity:count];

 for (NSInteger index = 0; index < count; index++) {

 PhotoWheelViewCell *cell =

 [[PhotoWheelViewCell alloc] initWithFrame:cellFrame];

 [cell setImage:defaultPhoto];

 // Add a double-tap gesture to the cell.

 UITapGestureRecognizer *doubleTap;

 doubleTap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(cellDoubleTapped:)];

 [doubleTap setNumberOfTapsRequired:2];

 [cell addGestureRecognizer:doubleTap];

 // Add a single-tap gesture to the cell.

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(cellTapped:)];

 [tap requireGestureRecognizerToFail:doubleTap];

 [cell addGestureRecognizer:tap];

 [newArray addObject:cell];

 }

 [self setData:[newArray copy]];

 // Other code left out for brevity's sake.

}

// Other code left out for brevity's sake.

Turner_Book.indb 257 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures258

- (void)cellDoubleTapped:(UIGestureRecognizer *)recognizer

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

Notice that even though the doubleTap gesture recognizer was added to the cell
first, the order in which the recognizers are added doesn’t matter. The order does
not determine if tap or double tap is detected first. It is the -requireGesture-
RecognizerToFail: call on the tap gesture that determines when a single tap is
detected and when a double tap is detected.

Note
To learn more about gesture recognizers, how to use them, and how they work, watch the
WWDC 2010 video Session 120—Simplifying Touch Event Handling with Gesture Recogniz-
ers. This video is free to all registered members of the iOS Developer Program
(developer.apple.com/videos/wwdc/2010/).

Custom Touch Gestures
Most iPad apps will only ever need to use the predefined gesture recognizers. If, how-
ever, you find that you need to track a gesture that is not provided by the SDK, you
can create your own subclass of UIGestureRecognizer.

A subclass of UIGestureRecognizer will respond to one or more touch han-
dling events: touchesBegan:withEvent:, touchesMoved:withEvent:,
touchesEnded:withEvent:, and touchesCancelled:withEvent:. Gesture rec-
ognizers operate on a state machine. As incoming touch events are received, the ges-
ture recognizer transitions between states.

All recognizers start in the possible state (UIGestureRecognizerStatePossible).
Discrete recognizers transition to either a recognized state (UIGestureRecognizer-
StateRecognized) or a failed state (UIGestureRecognizerStateFailed). The
action message associated with the recognizer is sent to the target when the recognizer
enters the recognized state.

Continuous recognizers transition from the possible state to a began state
(UIGestureRecognizerStateBegan), then to the changed state (UIGesture-
RecognizerStateChanged) as touch events occur, then finally to either the end state
(UIGestureRecognizerStateEnd) or the cancelled state (UIGestureRecognizer-
StateCancelled). The changed state is optional, and it may occur multiple times dur-
ing a touch sequence. The action message is sent to the target each time there is a state
transition.

When you subclass UIGestureRecognizer, you must import UIGesture-
RecognizerSubclass.h. This header file declares the methods and properties that a subclass
must override or set. For example, the property state is read-only on the abstract
base class UIGestureRecognizer, but including UIGestureRecognizerSubclass.h in

Turner_Book.indb 258 12/11/11 6:46 PM

ptg999

Custom Touch Gestures 259

your concrete class makes the state property a read-write property for use within the
subclass implementation only. Users of your concrete gesture recognizer class will still
have read-only access to the state property.

That’s a brief overview of what you need to know when subclassing UIGesture-
Recognizer. Now let’s create one.

Creating a Spin Gesture Recognizer
The prototype app has a nice-looking wheel view. How cool would it be if users could
spin the wheel? Very cool, that’s how cool.

Spinning the wheel view is as easy as rotating the wheel view as the user touches
it. And it just so happens that iOS provides the gesture recognizer UIRotation-
GestureRecognizer. The problem with this recognizer is that it requires two fin-
gers to perform the rotation. A spinning gesture is more natural using only one finger,
so UIRotationGestureRecognizer does not satisfy the app’s particular need for
spinning. Instead, you need to create a new concrete gesture recognizer to spin a view.

Start by creating a new Objective-C class named SpinGestureRecognizer that
is a subclass of UIGestureRecognizer. The class will have one declared property
named rotation that is of type CGFloat. This will report the rotation of the gesture
in radians since its last change. The source code SpinGestureRecognizer.h is shown in
Listing 11.3.

Listing 11.3 SpinGestureRecognizer.h

#import <UIKit/UIKit.h>

@interface SpinGestureRecognizer : UIGestureRecognizer

/**

 The rotation of the gesture in radians since its last change.

 */

@property (nonatomic, assign) CGFloat rotation;

@end

The implementation for SpinGestureRecognizer must import
UIGestureRecognizerSubclass.h. This header file is needed so that the subclass can change
the state property value and override the touch handling events. The implementa-
tion must also synthesize the rotation property.

The recognizer should work with only one finger. Two or more simultaneous
touches will not be allowed, so touchesBegan:withEvent: will check the touch
count. With anything greater than 1 the gesture recognizer will fail.

The touch handling events touchesEnd:withEvent: and
touchesCancelled:withEvent: will transition the recognizer’s state machine to
the end state and cancelled state respectively. This leaves touchesMoved:withEvent:.

Turner_Book.indb 259 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures260

This is where the bulk of the work is performed, which will be explained momen-
tarily. The implementation source code is shown in Listing 11.4.

Listing 11.4 SpinGestureRecognizer.m

#import "SpinGestureRecognizer.h"

#import <UIKit/UIGestureRecognizerSubclass.h>

@implementation SpinGestureRecognizer

@synthesize rotation = _rotation;

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

 // Fail when more than 1 finger detected.

 if ([[event touchesForGestureRecognizer:self] count] > 1) {

 [self setState:UIGestureRecognizerStateFailed];

 }

}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

{

 [self setState:UIGestureRecognizerStateEnded];

}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

{

 [self setState:UIGestureRecognizerStateFailed];

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

{

 if ([self state] == UIGestureRecognizerStatePossible) {

 [self setState:UIGestureRecognizerStateBegan];

 } else {

 [self setState:UIGestureRecognizerStateChanged];

 }

 // We can look at any touch object since we know we

 // have only 1. If there were more than 1,

 // touchesBegan:withEvent: would have failed the recognizer.

 UITouch *touch = [touches anyObject];

 // To rotate with one finger, we simulate a second finger.

 // The second finger is on the opposite side of the virtual

 // circle that represents the rotation gesture.

Turner_Book.indb 260 12/11/11 6:46 PM

ptg999

Custom Touch Gestures 261

 UIView *view = [self view];

 CGPoint center = CGPointMake(CGRectGetMidX([view bounds]),

 CGRectGetMidY([view bounds]));

 CGPoint currentTouchPoint = [touch locationInView:view];

 CGPoint previousTouchPoint = [touch previousLocationInView:view];

 CGPoint line2Start = currentTouchPoint;

 CGPoint line1Start = previousTouchPoint;

 CGPoint line2End = CGPointMake(center.x + (center.x - line2Start.x),

 center.y + (center.y - line2Start.y));

 CGPoint line1End = CGPointMake(center.x + (center.x - line1Start.x),

 center.y + (center.y - line1Start.y));

 //////

 // Calculate the angle in radians.

 // From http://bit.ly/oJ9UHY

 CGFloat a = line1End.x - line1Start.x;

 CGFloat b = line1End.y - line1Start.y;

 CGFloat c = line2End.x - line2Start.x;

 CGFloat d = line2End.y - line2Start.y;

 CGFloat line1Slope = (line1End.y - line1Start.y) / (line1End.x - line1Start.x);

 CGFloat line2Slope = (line2End.y - line2Start.y) / (line2End.x - line2Start.x);

 CGFloat degs =

 acosf(((a*c) + (b*d)) / ((sqrt(a*a + b*b)) * (sqrt(c*c + d*d))));

 CGFloat angleInRadians = (line2Slope > line1Slope) ? degs : -degs;

 //////

 [self setRotation:angleInRadians];

}

@end

Let’s walk through the code for touchesMoved:withEvent: to see what is going
on.

The moment the recognizer detects movement, the state transitions from the
possible state to the began state. Any additional movement will trigger the transi-
tion to the changed state. The recognizer does not immediately go from the pos-
sible state to the changed state because a tap could have caused the movement. A tap
can have slight movement, so the recognizer transitions first to the began state. If
it turns out that the touch gesture is a tap, it will immediately end with a call to
touchesEnded:withEvent:. If the touch is not a tap and additional movement is
detected, the state transitions to changed and the action message is sent to the target.

Turner_Book.indb 261 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures262

Once the state transition has been set, the work of calculating the rotation of the
spin is performed. The calculation uses the current and previous touch points within
the view attached to the gesture recognizer to calculate the current angle of the rota-
tion. It uses an artificial second finger to perform the calculation as if two fingers were
rotating around a single center point. This, in essence, causes the spin gesture recog-
nizer to track finger movement around a central point where the central point is the
center of the view.

Note
I often say, “Math is hard.” And it is ... for me, that is. Thanks to Jeff LaMarche for provid-
ing the math used to calculate the angle of the rotation in his blog post about a better
two-finger rotation (iphonedevelopment.blogspot.com/2009/12/better-two-finger-rotate-
gesture.html).

Using the Spin Gesture Recognizer
To see your work in action, you must add the spin gesture recognizer to the wheel
view. The recognizer is added to the wheel view instead of the detail view controller
in order to make the spinning wheel a feature of the view. WheelView must also be
updated to support the new spinning behavior. The updated WheelView.m is shown in
Listing 11.5.

Listing 11.5 Updated WheelView.m with Spinning View Support

#import "WheelView.h"

#import <QuartzCore/QuartzCore.h>

#import "SpinGestureRecognizer.h"

@interface WheelView ()

@property (nonatomic, assign) CGFloat currentAngle;

@end

@implementation WheelView

@synthesize dataSource = _dataSource;

@synthesize style = _style;

@synthesize currentAngle = _currentAngle;

- (void)commonInit

{

 [self setCurrentAngle:0.0];

 SpinGestureRecognizer *spin = [[SpinGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(spin:)];

 [self addGestureRecognizer:spin];

}

Turner_Book.indb 262 12/11/11 6:46 PM

ptg999

Custom Touch Gestures 263

- (id)init

{

 self = [super init];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithCoder:(NSCoder *)aDecoder

{

 self = [super initWithCoder:aDecoder];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithFrame:(CGRect)frame

{

 self = [super initWithFrame:frame];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (void)setAngle:(CGFloat)angle

{

 // The following code is inspired by the carousel example at

 // http://stackoverflow.com/questions/5243614/3d-carousel-effect-on-the-ipad

 CGPoint center = CGPointMake(CGRectGetMidX([self bounds]),

 CGRectGetMidY([self bounds]));

 CGFloat radiusX = MIN([self bounds].size.width,

 [self bounds].size.height) * 0.35;

 CGFloat radiusY = radiusX;

 if ([self style] == WheelViewStyleCarousel) {

 radiusY = radiusX * 0.30;

 }

 NSInteger cellCount = [[self dataSource] wheelViewNumberOfCells:self];

 float angleToAdd = 360.0f / cellCount;

 for (NSInteger index = 0; index < cellCount; index++)

 {

 WheelViewCell *cell = [[self dataSource] wheelView:self cellAtIndex:index];

Turner_Book.indb 263 12/11/11 6:46 PM

ptg999

Chapter 11 Using Touch Gestures264

 if ([cell superview] == nil) {

 [self addSubview:cell];

 }

 float angleInRadians = (angle + 180.0) * M_PI / 180.0f;

 // Get a position based on the angle

 float xPosition = center.x + (radiusX * sinf(angleInRadians))

 - (CGRectGetWidth([cell frame]) / 2);

 float yPosition = center.y + (radiusY * cosf(angleInRadians))

 - (CGRectGetHeight([cell frame]) / 2);

 float scale = 0.75f + 0.25f * (cosf(angleInRadians) + 1.0);

 // Apply location and scale

 if ([self style] == WheelViewStyleCarousel) {

 [cell setTransform:CGAffineTransformScale(

 CGAffineTransformMakeTranslation(xPosition, yPosition),

 scale, scale)];

 // Tweak alpha using the same system as applied for scale, this time

 // with 0.3 as the minimum and a semicircle range of 0.5

 [cell setAlpha:(0.3f + 0.5f * (cosf(angleInRadians) + 1.0))];

 } else {

 [cell setTransform:CGAffineTransformMakeTranslation(xPosition,

 yPosition)];

 [cell setAlpha:1.0];

 }

 [[cell layer] setZPosition:scale];

 // Work out what the next angle is going to be

 angle += angleToAdd;

 }

}

- (void)layoutSubviews

{

 [self setAngle:[self currentAngle]];

}

- (void)setStyle:(WheelViewStyle)newStyle

{

 if (_style != newStyle) {

 _style = newStyle;

 [UIView beginAnimations:@"WheelViewStyleChange" context:nil];

 [self setAngle:[self currentAngle]];

Turner_Book.indb 264 12/11/11 6:46 PM

ptg999

Custom Touch Gestures 265

 [UIView commitAnimations];

 }

}

- (void)spin:(SpinGestureRecognizer *)recognizer

{

 CGFloat angleInRadians = -[recognizer rotation];

 CGFloat degrees = 180.0 * angleInRadians / M_PI; // radians to degrees

 [self setCurrentAngle:[self currentAngle] + degrees];

 [self setAngle:[self currentAngle]];

}

@end

@implementation WheelViewCell

@end

What exactly changed? Let’s take a look.
First, the SpinGestureRecognizer.h header file is imported. This, of course, is needed

since the wheel view class now uses a SpinGestureRecognizer object.
Following the import, a new private declared property, currentAngle, is added.

This property is made private by using an Objective-C feature called class extensions.
A class extension is similar to a category but with exceptions:

n A class extension is declared just like a category, but without a name.
n A class extension’s properties and methods must be implemented in the main
@implementation block for the class.

n A class extension allows you to declare required methods and properties for the
class in a location other than the main @interface block for the class.

Class extensions are a handy way to declare private methods and properties on the
class that are used within the class. As you can see in Listing 11.5, a class extension is
created for WheelView that declares the private property currentAngle. This tells
the compiler that the property exists on the class, but it is intended for internal use
only.

Note
To learn more about class extensions, read the outstanding post from Bill Bumgarner
entitled Class Extensions Explained (www.friday.com/bbum/2009/09/11/class-extensions-
explained/).

Continuing the walk-through of code changes in Listing 11.5, you see the
@synthesize statement for the private property currentAngle. Even though the

Turner_Book.indb 265 12/11/11 6:46 PM

www.friday.com/bbum/2009/09/11/class-extensions-explained/
www.friday.com/bbum/2009/09/11/class-extensions-explained/

ptg999

Chapter 11 Using Touch Gestures266

property is declared in the class extension, it must still follow the same rules as publicly
declared properties.

The next block of changes includes the new methods commonInit, init,
initWithCoder:, and initWithFrame:. The three init methods are needed to
allow the view class to be instantiated by conventions common to iOS. init and
initWithFrame: are commonly used when programmatically creating the class
instance. initWithCoder: is the init method called when the class instance is cre-
ated as the result of unarchiving the object. Put simply, this is the method called when
the class instance is created during the load of a NIB file.

Each init method calls commonInit. This follows the DRY principle and
eliminates the need to copy and paste the same initialization code to each init
method. commonInit performs the steps needed to initialize the class instance. It
sets currentAngle to 0.0, but more important, it creates an instance of Spin-
GestureRecognizer and adds it to the wheel view. This enables the wheel view to
detect the spin gesture.

Following the init methods is setAngle:. Nothing has changed in this method.
Its implementation remains the same as it was before the changes in Listing 11.5.

layoutSubviews and setStyle: have one change each. Instead of calling [self
setAngle:0.0], both methods were modified to call [self setAngle:[self
currentAngle]]. This tells setAngle: to use to the most recent angle when draw-
ing the wheel view.

Last but not least is spin:. This is the action method assigned to the SpinGesture-
Recognizer instance created in commonInit. This method is called each time the
gesture recognizer state changes. When this method is called, it grabs the rotation
angle in radians from the provided SpinGestureRecognizer. Note that the rota-
tion value is negated. The math in setAngle: assumes that degree 0 of the wheel is
at the bottom, but the spin gesture recognizer assumes that degree 0 is at the top. By
negating the rotation value, the code makes the adjustment for the location of degree 0
within the wheel.

Next, spin: converts the rotation angle from radians to degrees. This conver-
sion could have been avoided by not converting the degrees to radians within Spin-
GestureRecognizer. However, UIRotationGestureRecognizer uses radians for
its rotation property value. SpinGestureRecognizer does the same to remain con-
sistent with UIRotationGestureRecognizer.

Last, spin: increments the currentAngle with the current change in degrees, then
tells the class to draw the wheel with the new angle setting by calling set Angle:.
And with that, you now have a wheel that you can spin with a finger. Build and run
the app, and test the new touch gesture.

Summary
This chapter was all about touch and how gesture recognizers make it much easier to
detect different multi-touch gestures without copying and pasting touch handling code

Turner_Book.indb 266 12/11/11 6:46 PM

ptg999

Exercises 267

throughout your app. Typically, your apps will use the predefined touch gestures the
majority of the time, but you now also know how to create your own concrete gesture
recognizer should your app need to support some other touch gesture.

Exercises
1. Remove the negation of the rotation value in spin: and observe the effect it has

on spinning the wheel.

2. Remove the need to convert degrees to radians in SpinGestureRecognizer
and make the needed change to -spin: to ensure that spinning still works as
expected.

3. In addition to the rotation property, UIRotationGestureRecognizer has the
property velocity. Add velocity to SpinGestureRecognizer and implement
the appropriate math needed so that the property returns the correct velocity for
the rotation.

Turner_Book.indb 267 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

12
Adding Photos

The photo wheel view you created in Chapter 10, “Working with Views,” is ready to display
photos, but the prototype app does not yet have a way to add photos. It’s time to change that. In
this chapter, you will learn how to access photos managed by the Photos app, which is available
on all iPads and iPhones. And you will add support for adding photos to the prototype app you
have been building since Chapter 8, “Creating a Master-Detail App.”

Two Approaches
The iOS SDK provides two different approaches for third-party apps to retrieve photos
and videos from the Photos app. The first is to use the Assets Library framework. The
second is to use the image picker controller (UIImagePickerController). Which
approach an app uses depends largely on the needs of the app.

Assets Library
The Assets Library framework provides classes used to access photos and videos man-
aged by the Photos app. Not only does it give third-party apps access to photos and
videos, but it also provides access to metadata associated with each asset. The metadata
includes information such as the type of asset, duration if the asset is a video, orienta-
tion, creation date, representation (for example, RAW and JPEG), and location infor-
mation, which is available only if Location Services has been turned on for the app.
Third-party applications can also store and retrieve application-specific metadata on an
asset.

To access photos and videos using the Assets Library framework, you create an
instance of ALAssetsLibrary. You can retrieve a specific asset using the method
-assetForURL:resultBlock:failureBlock:, and you can retrieve a group of
assets using -enumerateGroupsWithTypes:usingBlock:failureBlock:.

An asset, that is, a photo or video from the Photos app, is represented by an instance
of the class ALAsset. The class has methods and properties for accessing metadata on
the asset, making changes to the asset, retrieving the representation (of which there
could be more than one), and retrieving the thumbnail of the asset.

Turner_Book.indb 269 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos270

Using the Assets Library framework is ideal when your application needs direct
access to assets managed by the Photos application. But it does have one odd require-
ment. To retrieve a group of assets, using the -enumerateGroupsWithTypes:using
Block:failureBlock: method, or to retrieve saved location information on an asset,
Location Services must be enabled.

The Location Services requirement is odd because it leads to a confusing user expe-
rience, which is not something for which Apple is known. Imagine, if you will, that
you want to create an app that displays photos and videos managed by the Photos app.
Your app wants only to display the photos and videos, nothing else. It doesn’t care
about any of the metadata on the asset. To enumerate and display the list of available
photos and videos, the user of your app must enable Location Services.

The first time the application attempts to access the assets the user is presented with
a message box asking for permission to use Location Services, shown in Figure 12.1.
As the message says, “This allows access to location information in photos and videos.”
The user of the app wants only to display photos and videos; she doesn’t care about
location information. She may think the same thing: “I only want to see the photos.
There’s no reason this app needs access to location information.” So she taps Don’t
Allow.

Now it may seem that as a result of the user’s action, all that has happened is that
location information is not available to the app. After all, the message did say, “This
allows access to location information in the photos and videos.” However, as it turns
out, the app will not have access to any information, including the asset itself. Yes,
that’s right. When Location Services is turned off, the app is not granted access to the

Figure 12.1 The Location Services prompt displayed when an app uses
the Assets Library framework for the first time

Turner_Book.indb 270 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 271

photos and videos. In other words, Location Services must be turned on for any app to
find and display photos and videos managed by the Photos application using the Assets
Library framework. Thankfully, there is another option for third-party developers.

Note
My gripe with the Location Services requirement is twofold. One, Location Services should
be required only if the application needs to access location information. And even then
it seems odd. The location information on an asset isn’t necessarily the current loca-
tion of the user. It’s where the user was at the time the asset was created. Still, it’s my
opinion that Location Services should be required only to access the location information.
It should not be required to access the asset and other non-location-specific metadata
found on the asset.

My second gripe is with the message displayed by iOS. It is not clear. It says that Loca-
tion Services is needed to allow access to location information, but in fact Location Ser-
vices is required to allow access to the assets themselves. A user may not want an app
to have access to location information but still have access to the photos and videos, and
the message from the iOS gives the impression that this is possible, which it is not. This
leads to a confusing user experience.

Image Picker Controller
The image picker controller (UIImagePickerController) is a specialized navigation
controller that displays photos and videos managed by the Photos app. The controller
allows the user to select a photo or video that is returned to the calling app. And the
image picker controller allows the user to take a photo or record a video that is also
returned to the calling app. Best of all, the image picker controller does not require
Location Services to be turned on.

The image picker controller is ideal for apps that use the iOS-supplied user interface
for taking photos and videos and choosing saved photos and videos for use within the
app. The downside to using the image picker controller is that the user can take only
one photo or video, or select only one photo or video, at a time. This is usually not
an issue for most apps. And you can get around this limitation by leaving the image
picker controller open and visible to the user. If, however, you have a need to import
more than one photo or video at a time, your best option is to use the Assets Library
framework, though you will be required to create your own UI.

For the PhotoWheel prototype, selecting one photo at a time is perfectly acceptable.
This means that UIImagePickerController will work nicely. It also means that you
do not have to create your own user interface for selecting photos. With the image
picker controller, the UI is provided for you.

Using the Image Picker Controller
Like so many other objects in Cocoa Touch, using the image picker controller is
simple and straightforward. You create an instance of UIImagePickerController
and present it to the user. User interaction with the views presented by the image

Turner_Book.indb 271 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos272

picker are managed by the controller, and the results of those interactions are reported
back to your app courtesy of a delegate object that conforms to the UIImagePicker-
ControllerDelegate protocol.

In Chapter 11, “Using Touch Gestures,” you added a tap gesture to each photo
wheel cell. Let’s modify that code so that a tap on the cell will display the image
picker or camera. When the user selects a photo or takes a new photo, the cell’s image
will be updated to display the returned photo.

While the image picker controller is simple to use, a number of changes are still
needed on the DetailViewController class. For starters, when a photo wheel cell
is tapped, the cell must be saved as the selected photo wheel cell. Other methods in
the view controller need to know what cell is the selected one. Also, if the device has
a camera, the app should ask the user from where to retrieve the photo. Does the user
want to add an existing photo managed by the Photos app, or does she want to take
a new photo using the camera? Once the user has selected the photo to add, the app
adds it to the selected cell. That should be it for the needed changes.

Start making changes by opening DetailViewController.m and adding a new private
declared property named selectedPhotoWheelViewCell. Its data type is a pointer
to PhotoWheelViewCell. Next, modify the -cellTapped: method to save off the
selected cell to the selectedPhotoWheelViewCell property. The code changes are
given in Listing 12.1.

Listing 12.1 Adding the selectedPhotoWheelViewCell Property to
DetailViewController.m

@interface DetailViewController ()

// Other code left out for brevity's sake.

@property (strong, nonatomic) PhotoWheelViewCell *selectedPhotoWheelViewCell;

// Other code left out for brevity's sake.

@end

@implementation DetailViewController

// Other code left out for brevity's sake.

@synthesize selectedPhotoWheelViewCell = _selectedPhotoWheelViewCell;

// Other code left out for brevity's sake.

- (void)cellTapped:(UIGestureRecognizer *)recognizer

{

 [self setSelectedPhotoWheelViewCell:(PhotoWheelViewCell *)[recognizer view]];

}

Turner_Book.indb 272 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 273

// Other code left out for brevity's sake.

@end

DetailViewController now knows what photo wheel cell has been selected.
Next, the app should check to see if the device supports a camera or not. UIImage-
PickerController can help. It has the method +isSourceTypeAvailable: that is
used to determine if a particular photo or video source is available.

Note
UIImagePickerController also has the method +isCameraDevice-
Available:, which one might think is the correct method to call when determining if
the device supports a camera. However, +isCameraDeviceAvailable: is used to
determine if a camera is available on the front or rear of the device. This method can be
used to determine if a camera device, regardless of location, is available, but it involves
performing two checks, once for the presence of the rear camera and once for the front
camera. +isSourceTypeAvailable: does this for us with a single call, which is
why it’s used here.

If the device has a camera, the app needs to give the user the option of taking a photo
or choosing from the library managed by the Photos app. Modify the -cellTapped:
method to perform this check. If the camera is available, the app will display a popup
menu of choices (or actions); otherwise the app should display the image picker. For
now, write stub methods for presenting the menu and image picker. The code changes
are given in Listing 12.2.

Listing 12.2 Checking for a Camera on the Device

- (void)presentPhotoLibrary

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

- (void)presentPhotoPickerMenu

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

- (void)cellTapped:(UIGestureRecognizer *)recognizer

{

 [self setSelectedPhotoWheelViewCell:(PhotoWheelViewCell *)[recognizer view]];

 BOOL hasCamera =

 [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) {

 [self presentPhotoPickerMenu];

Turner_Book.indb 273 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos274

 } else {

 [self presentPhotoLibrary];

 }

}

Build and run the app, first from the iPad Simulator. Tap a photo wheel cell and
take a look at the output window. You should see that -presentPhotoLibrary is
called, as shown in Figure 12.2. Now run the app on a real iPad. You will see that
-presentPhotoPickerMenu is called.

Using Action Sheets
Next, you need to provide the real implementation for the stubbed methods. Start
with -presentPhotoPickerMenu. It will display a popup menu giving the user the
choice of taking a photo or choosing an existing one from the Photos library. This
means that the app needs to present a list of actions for the user to choose from, and
UIActionSheet is the perfect object for the task.

UIActionSheet is used to display a list of options or actions to a user. An action
sheet has an optional title and one or more buttons. Each button represents an action.
An action sheet is often used to allow the user to request a specific action such as send
email or print. It can also be used to ask the user for confirmation of some action such
as deleting data.

On the iPhone, an action sheet typically slides up from the bottom of the screen.
The action sheet is dismissed when the user taps a button, and a cancel button is
usually provided so that the user can dismiss the action sheet without requesting an
action.

The display of an action sheet on the iPad is different. An action sheet is displayed
in a popover that appears in the center of the screen or is anchored to the view with
which the user interacted to request the action sheet (for example, a button on a tool-
bar). A cancel button is not provided on the iPad. Instead, the user taps outside of the
popover to dismiss the action sheet.

Change the implementation in -presentPhotoPickerMenu to display an action
sheet. The action sheet will display two options: Take Photo and Choose from
Library. DetailViewController must also be made the delegate to the action sheet.
This will inform the view controller which button (or action) the user selected. The
code changes are given in Listing 12.3.

Figure 12.2 Logged output to the output window

Turner_Book.indb 274 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 275

Listing 12.3 Adding an Action Sheet to the DetailViewController

/////////////

// DetailViewController.h

#import <UIKit/UIKit.h>

#import "WheelView.h"

@interface DetailViewController : UIViewController

<UISplitViewControllerDelegate, WheelViewDataSource, UIActionSheetDelegate>

// Other code left out for brevity's sake.

@end

/////////////

// DetailViewController.m

#import "DetailViewController.h"

#import "PhotoWheelViewCell.h"

@interface DetailViewController ()

// Other code left out for brevity's sake.

@property (strong, nonatomic) UIActionSheet *actionSheet;

// Other code left out for brevity's sake.

@end

@implementation DetailViewController

// Other code left out for brevity's sake.

@synthesize actionSheet = _actionSheet;

// Other code left out for brevity's sake.

- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)

toInterfaceOrientation duration:(NSTimeInterval)duration

{

 if ([self actionSheet]) {

 [[self actionSheet] dismissWithClickedButtonIndex:-1 animated:YES];

 }

}

Turner_Book.indb 275 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos276

// Other code left out for brevity's sake.

- (void)presentCamera

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

- (void)presentPhotoPickerMenu

{

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 [actionSheet addButtonWithTitle:@"Take Photo"];

 [actionSheet addButtonWithTitle:@"Choose from Library"];

 UIView *view = [self selectedPhotoWheelViewCell];

 CGRect rect = [view bounds];

 [actionSheet showFromRect:rect inView:view animated:YES];

 [self setActionSheet:actionSheet];

}

// Other code left out for brevity's sake.

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

 switch (buttonIndex) {

 case 0:

 [self presentCamera];

 break;

 case 1:

 [self presentPhotoLibrary];

 break;

 }

}

- (void)actionSheet:(UIActionSheet *)actionSheet

didDismissWithButtonIndex:(NSInteger)buttonIndex

{

 [self setActionSheet:nil];

}

@end

Turner_Book.indb 276 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 277

As you can see in Listing 12.3, UIActionSheetDelegate is added to the list
of conforming protocols for DetailViewController. The implementation for the
UIActionSheetDelegate protocol methods -actionSheet:clickedButton-
AtIndex: and -actionSheet:didDismissWithButtonIndex: are found in the
DetailViewController.m implementation file. The first method, -actionSheet:clicked-
ButtonAtIndex:, checks the buttonIndex value. If it is 0, the user has requested
to take a photo. If it is 1, the user has requested to pick a photo from the library. This
method is called each time the user taps a button in the action sheet.

Note
The buttonIndex value is determined based on the order in which the buttons are
added to the action sheet. The first button is index 0. The second button is index 1. And
so on.

The second method, -actionSheet:didDismissWithButtonIndex:, is called
every time the action sheet is dismissed regardless of how it is dismissed (the user taps
a button, the user taps outside the popover, or the action sheet is dismissed program-
matically). Here the private declared property for the action sheet is set to nil as the
reference is no longer needed.

At the top of the implementation section in Listing 12.3, you see the declaration for
the private property actionSheet and the @synthesize statement. This is followed
by a method that has not been discussed yet, -willRotateToInterfaceOrientation:
duration:. This method is called when the device is rotated. The HIG recommends
dismissing popovers when the device is rotated, and that is what the implementa-
tion for this method does. It checks to see if the view controller has a reference to the
action sheet, and if so, it then programmatically dismisses the action sheet.

Note
Rotation support is covered in detail in Chapter 18, “Supporting Device Rotation.”

The meat of the code change in Listing 12.3 is the implementation for the method
-presentPhotoPickerMenu. This is where the action sheet is created and displayed.
The method first creates a new instance of UIActionSheet. It sets the delegate to
self, which is the DetailViewController instance. Next, two buttons are added,
Take Photo and Choose from Library. Then the action sheet is displayed, and last
the actionSheet property is set to the newly created action sheet.

UIActionSheet has a number of methods for displaying the action sheet. The
methods, as defined in UIActionSheet.h, are as follows:

- (void)showFromToolbar:(UIToolbar *)view;

- (void)showFromTabBar:(UITabBar *)view;

- (void)showFromBarButtonItem:(UIBarButtonItem *)item

animated:(BOOL)animated __OSX_AVAILABLE_STARTING(__MAC_NA, __IPHONE_3_2);

- (void)showFromRect:(CGRect)rect inView:(UIView *)view

Turner_Book.indb 277 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos278

animated:(BOOL)animated __OSX_AVAILABLE_STARTING(__MAC_NA, __IPHONE_3_2);

- (void)showInView:(UIView *)view;

These methods allow the app to anchor the action sheet to specific views within
the view hierarchy. To anchor the action sheet to the selected photo wheel cell,
-showFromRect:inView:animated: is used. The rect is the bounds of the selected
photo wheel cell, the view is the cell itself, and the animated f lag is set to YES to ani-
mate the display of the action sheet.

Build and run the app, making sure to run it on your iPad; otherwise you will not
see the action sheet. The action sheet, as you know, is displayed only when a camera is
available, and the iPad Simulator does not have a camera. Your app should look similar
to the screen shot in Figure 12.3.

Using UIImagePickerController
Finally, the app needs to use UIImagePickerController so that the user can add
a photo to the photo wheel. Stub methods already exist to display the photo library
and camera, -presentPhotoLibrary and -presentCamera. Let’s start by adding a
private property to the DetailViewController named imagePickerController
that is a pointer to the type UIImagePickerController. Instantiate the image picker
in the initWithNibName:bundle: method, as shown in Listing 12.4. This gives the
detail view controller an image picker controller to work with.

Figure 12.3 Screen shot of the prototype app displaying an action sheet

Turner_Book.indb 278 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 279

It is important to note that the UIImagePickerController delegate prop-
erty expects the object to conform to two protocols: UINavigationController-
Delegate and UIImagePickerControllerDelegate. DetailViewController is
derived from UIView. Therefore, you must add both of these protocols to the list of
protocols to which DetailViewController conforms, as shown in Listing 12.4.

Listing 12.4 Adding imagePickerController to DetailViewController

/////////////

// DetailViewController.h

@interface DetailViewController : UIViewController

<UISplitViewControllerDelegate, WheelViewDataSource, UIActionSheetDelegate,

UINavigationControllerDelegate, UIImagePickerControllerDelegate>

// Other code left out for brevity's sake.

@end

/////////////

// DetailViewController.m

@interface DetailViewController ()

// Other code left out for brevity's sake.

@property (strong, nonatomic) UIImagePickerController *imagePickerController;

// Other code left out for brevity's sake.

@end

@implementation DetailViewController

// Other code left out for brevity's sake.

@synthesize imagePickerController = _imagePickerController;

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

{

 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

 if (self) {

 self.title = NSLocalizedString(@"Detail", @"Detail");

 [self setImagePickerController:[[UIImagePickerController alloc] init]];

 [[self imagePickerController] setDelegate:self];

 }

Turner_Book.indb 279 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos280

 return self;

}

// Other code left out for brevity's sake.

@end

Next, update the implementation for the stub methods –presentCamera and
-presentPhotoLibrary. The first method displays a full-screen camera, and the
second method displays the image picker in a popover controller. The property
popoverController already exists for DetailViewController. It was added at
the start of the project to support the display of the master view when the device ori-
entation is portrait. The new implementations for -presentCamera and -present-
PhotoLibrary are shown in Listing 12.5.

Listing 12.5 -presentCamera and -presentPhotoLibrary Implementations
in DetailViewController.m

- (void)presentCamera

{

 // Display the camera.

 [[self imagePickerController]

 setSourceType:UIImagePickerControllerSourceTypeCamera];

 [self presentModalViewController:[self imagePickerController] animated:YES];

}

- (void)presentPhotoLibrary

{

 // Display assets from the Photos library only.

 [[self imagePickerController]

 setSourceType:UIImagePickerControllerSourceTypePhotoLibrary];

 UIView *view = [self selectedPhotoWheelViewCell];

 CGRect rect = [view bounds];

 UIPopoverController *newPopoverController =

 [[UIPopoverController alloc]

 initWithContentViewController:[self imagePickerController]];

 [newPopoverController presentPopoverFromRect:rect inView:view

 permittedArrowDirections:UIPopoverArrowDirectionAny

 animated:YES];

 [self setMasterPopoverController:newPopoverController];

}

To display the camera, the image picker controller’s source type is set to UIImage-
PickerControllerSourceTypeCamera. To display the camera full-screen, the

Turner_Book.indb 280 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 281

image picker controller is presented as a modal view controller, which by default dis-
plays full-screen.

The code for displaying the Photos library isn’t much different from other code
you have seen. The image picker controller’s source type is set to UIImagePicker-
ControllerSourceTypePhotoLibrary. Local variable references to the selected
photo wheel view cell and its bounds rect are created and are used to anchor the
popover to the cell, much as the action sheet was anchored earlier in the code. A
new popover controller is created and presented to the user. And last, the pop-
over controller reference is stored in the popoverController property on the
DetailViewController.

The detail view controller needs to do one last thing. It must respond to the
UIImagePickerControllerDelegate method -imagePickerController:
didFinishPickingMediaWithInfo:, as shown in Listing 12.6. This method is
called after the user selects a new photo from the camera or from the Photos library.
It receives an NSDictionary object named info, which contains the selected image,
among other things. The image reference is retrieved from the dictionary and sent to
the selected photo wheel view cell for display.

Note
To see the entire contents of the NSDictionary info, set a breakpoint in the
-imagePickerController:didFinishPickingMediaWithInfo: method
and type “po info” in the output console window. For more debugging tricks, read Chapter
25, “Debugging.”

Listing 12.6 Responding to the UIImagePickerController Delegate Method

#pragma mark - UIImagePickerControllerDelegate methods

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

 // Dismiss the popover controller if available;

 // otherwise dismiss the camera view.

 if ([self masterPopoverController]) {

 [[self masterPopoverController] dismissPopoverAnimated:YES];

 [self setMasterPopoverController:nil];

 } else {

 [self dismissModalViewControllerAnimated:YES];

 }

 // Retrieve and display the image.

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 [[self selectedPhotoWheelViewCell] setImage:image];

}

Turner_Book.indb 281 12/11/11 6:46 PM

ptg999

Chapter 12 Adding Photos282

Build and run the app to see the image picker in action, shown in Figure 12.4. You
should run it on both an iPad and in the iPad Simulator. Remember that the action
sheet is not displayed when the app is run on the simulator because the simulator does
not have a camera device. You can choose the camera or Photos library only when the
app is run on a real iPad.

Congratulations! Your prototype app now supports adding photos.

Note
You may notice that some photos look a little funny when scaled down to thumbnail size
in the photo wheel. A better approach for scaling images is covered in Chapter 13, “Data
Persistence.”

Note
A quick and easy way to save photos to the Photos app used in the iPad Simulator is to
drag and drop images from your desktop environment onto Mobile Safari running in the
simulator. Then touch and hold (click and hold since you are using the simulator) the
image displayed in Safari until the popup menu is displayed. This menu has an option to
Save Image. Select this option to save the photo to the Photos app library.

Figure 12.4 Screen shot of the PhotoWheelPrototype app with the image
picker controller

Turner_Book.indb 282 12/11/11 6:46 PM

ptg999

Using the Image Picker Controller 283

Saving to the Camera Roll
When the camera is used to take a photo, the photo is not automatically saved to the
Photos app’s camera roll. It’s up to the app to save the photo. Your app can save a photo
to the camera roll by calling the function UIImageWriteToSavedPhotosAlbum().

void UIImageWriteToSavedPhotosAlbum (

 UIImage *image,

 id completionTarget,

 SEL completionSelector,

 void *contextInfo

);

The four parameters are
n image: The image to save to the camera roll
n completionTarget (optional): The object whose selector is called after the

image has been saved to the camera roll
n completionSelector (optional): The selector called on the completion-
Target after the image has been saved to the camera roll

n contextInfo (optional): A pointer to any context data you wish to pass to the
completion selector

Note
UIImageWriteToSavedPhotosAlbum() will save the photo to the Photo Stream if
Photo Streaming has been enabled on the device.

Go ahead and modify imagePickerController:didFinishPickingMedia-
WithInfo: to use the UIImageWriteToSavedPhotosAlbum function and save new
photos captured with the camera to the camera roll. The updated source code is given
in Listing 12.7.

Listing 12.7 Modification to Save the Photo to the Camera Roll

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info{

 // If the popover controller is available,

 // assume the photo is selected from the library

 // and not from the camera.

 BOOL takenWithCamera = ([self masterPopoverController] == nil);

 // Dismiss the popover controller if available;

 // otherwise dismiss the camera view.

 if ([self masterPopoverController]) {

 [[self masterPopoverController] dismissPopoverAnimated:YES];

 [self setmasterPopoverController:nil];

ptg999

Chapter 12 Adding Photos284

 } else {

 [self dismissModalViewControllerAnimated:YES];

 }

 // Retrieve and display the image.

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 [[self selectedPhotoWheelViewCell] setImage:image];

 if (takenWithCamera) {

 UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil);

 }

}

Build and run the app. Test the change and make sure that photos captured with
the camera are saved to the camera roll.

Summary
The prototype app now supports adding photos to a photo wheel, and you have
hands-on experience with the image picker controller. You also learned about action
sheets and how to use them. And you got a glimpse of rotation handling.

The prototype app has proven itself useful, allowing you to explore different iOS
concepts that will be used in the final PhotoWheel app. But there is one last concept
that must be explored before you are ready to write the “real” app. That concept is
data persistence, which is covered in the next chapter.

Exercises
1. Add more action items to the action sheet. Create stub methods that call

NSLog() to handle each new action you add.

2. Remove the rotation handling code. Observe the side effects when the action
sheet is displayed and the device is rotated.

Turner_Book.indb 284 12/11/11 6:46 PM

ptg999

13
Data Persistence

In the preceding chapter we added the ability for the prototype app to take photos with the device
cameras. Now that photos are coming into the app, it’s time to develop a system for saving and
managing them. In this chapter we’ll discuss what kind of data the app will deal with and how to
manage and save it effectively. This chapter will implement the Model part of the Model-View-
Controller design pattern.

The Data Model
In order to effectively build the data model, you need to have a clear idea of what kind
of data you’ll be working with and how the various types of data relate to each other.
For this app there are two types of data: photos and photo albums.

Photos
Since this app arranges photos in albums, the most obvious data item is the origi-
nal photo itself, straight from the device camera. You’ll save and display the original
photo, so the photo will be part of the data model.

But think about how the photos will actually be used in the app. When the user
is viewing an album, many photos could be on the screen at the same time. Original
photos on iPad can be fairly large data objects, even when compressed as JPEGs. To
avoid running out of memory, you’ll probably want to use thumbnail-size versions
of the photo in album views. You might need to have other sizes in other situations.
When planning the model, plan for multiple photo sizes, including the original and
one or more scaled versions.

You probably want to store some metadata with each photo, too—the date the
photo was taken, for example, or the location.

Finally, each photo will belong to a photo album. The photo data in the model
needs to include a reference or relationship of some kind to the album that contains
the photo, so that when working with a photo you can find other photos in the album.

Turner_Book.indb 285 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence286

Photo Albums
The primary requirement for the photo album is that it must track the photos that the
album contains. This is the reverse of the relationship described for photos. Each photo
album has a relationship to some number of photos that are the contents of the album.
The photo album should also have a thumbnail property or relationship to a separate
photo thumbnail object that can be used when displaying a collection of albums.

Albums will have metadata of their own, such as the album name and the date the
album was created.

Thinking Ahead
PhotoWheelPrototype has a simple data model. But apps have a way of growing in
unexpected ways, both before the initial release and in features added in later updates.
When planning your data model, it’s important to plan ahead, to design a model that
can be adapted and improved as new requirements develop. Initially it’s tempting to
design the simplest possible model that works. But doing this can constrain future
development if the model isn’t f lexible or robust enough to be adapted to new require-
ments. This chapter will cover two different approaches, one relatively simple but lim-
ited, and one that is not quite so simple but offers much more power and f lexibility.

Building the Model with Property Lists
Based on what we have covered so far, it seems that a simple way to handle the data
model would be to manage and store the data in a property list. Basic data types such
as strings and arrays cover the requirements, so it is a convenient approach at this stage.

As you read this section, keep in mind that although we are discussing property list
techniques, we won’t be using this technique in later chapters in the book. It is useful
to know how to deal with property lists and to see more than one approach to dealing
with data management. If you’re building the app as you read the book, you may want
to just read this section and continue building the app later on in the section Building
the Model with Core Data. Both this section and the later one build on code from the
previous chapter, so if you want to work through both, consider making a second copy
of the code you have so far.

What Is a Property List?
Property lists are generic data structures often used in Cocoa Touch. A property list
is any instance of NSString, NSData, NSNumber, NSDate, or any collection of those
objects into an NSArray or NSDictionary. Arrays and dictionaries can recursively
contain other arrays or dictionaries to whatever depth is needed. An extra requirement
is that if any NSDictionary objects appear, the dictionary keys must be NSStrings.
It is possible to use NSDictionary with nonstring keys, but those dictionaries
wouldn’t meet the definition of a property list.

Turner_Book.indb 286 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 287

The advantage of property lists is that they are very easy to read from and write to
files. NSDictionary, NSArray, NSString, and NSData all define convenience meth-
ods that can initialize an instance from a file or write one to a file in a single line of
code.

When property lists are saved, they are written in an undocumented binary format.
There are a couple of other property list file formats, one using XML and one using
a text format that is almost but not quite the same as JSON. You can use any of these
formats when instantiating property list objects.

Setting Up the Data Model
You don’t need any special model classes to use property lists. You can’t read and write
custom classes to property list files anyway. The model f lows directly from the defini-
tions in the model requirements. Main storage will be an array of photo albums, each
album will be an array of photos and an album name, and each photo will be a dic-
tionary of properties for a specific photo.

What would be useful are defined keys for use in the dictionaries. Since you will
need to use these in multiple places in the app, they will go in a new file that can be
imported wherever it is needed. Create a new class in Xcode, using the Objective-C
class template, and name it GlobalPhotoKeys. Xcode will create a header file and an
implementation file. This isn’t really going to be a class, but using that template is an
easy way to create both header and implementation files in one step. Delete the con-
tents of both files, but keep the files.

Add the key declarations from Listing 13.1 to GlobalPhotoKeys.h. These declare dic-
tionary keys for both the photo albums and the photos in the albums, as well as the
file name where the photo album will be stored. They are declared extern, which
means the definitions will appear elsewhere.

Listing 13.1 Key Declarations for GlobalPhotoKeys.h

// Keys for photo albums

extern NSString *kPhotoAlbumNameKey;

extern NSString *kPhotoAlbumDateAddedKey;

extern NSString *kPhotoAlbumPhotosKey;

// File name where the photo album is stored

extern NSString *kPhotoAlbumFilename;

// Keys for individual photos

extern NSString *kPhotoDataKey;

extern NSString *kPhotoDateAddedKey;

extern NSString *kPhotoFilenameKey;

// Notification that a new photo has been added and the album needs to be saved

extern NSString *kPhotoAlbumSaveNotification;

Turner_Book.indb 287 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence288

The definitions of these keys will go in GlobalPhotoKeys.m (Listing 13.2). All decla-
rations from the header file are mirrored here with their defined values.

Listing 13.2 Definitions in GlobalPhotoKeys.m

// Keys for photo albums

const NSString *kPhotoAlbumNameKey = @"name";

const NSString *kPhotoAlbumDateAddedKey = @"dateAdded";

const NSString *kPhotoAlbumPhotosKey = @"photos";

// File name where the photo album is stored

const NSString *kPhotoAlbumFilename = @"photoAlbums.plist";

// Keys for individual photos

const NSString *kPhotoDataKey = @"photoData";

const NSString *kPhotoDateAddedKey = @"dateAdded";

const NSString *kPhotoFilenameKey = @"filename";

const NSString *kPhotoAlbumSaveNotification = @"save albums notification";

Reading and Saving Photo Albums
Now you’re ready to start working with photo albums. You’ll do this in Master-
ViewController. First, edit MasterViewController.h and change the type of the data
property from NSMutableOrderedSet to NSMutableArray. These classes work
similarly, but NSMutableOrderedSet is not a property list type so it can’t be used
here. Also, remove the code in –viewDidLoad that initializes data. You’ll add code
later on to initialize it in a different way.

Now add the code from Listing 13.3 to the top of MasterViewController.m.

Listing 13.3 Top-Level Code to Add to MasterViewController.m

#import "GlobalPhotoKeys.h"

@interface MasterViewController ()

@property (readwrite, assign) NSUInteger currentAlbumIndex;

@end

The first line just imports the keys we declared earlier. The following code uses
a class extension to declare currentAlbumIndex. This property will be used to
keep track of the album being displayed in the detail view, so that MasterView-
Controller can show the user which one is currently selected. Make sure to add a
@synthesize statement for currentAlbumIndex.

Next come several new methods for reading and writing photo albums. Add the
code from Listing 13.4 to MasterViewController.m. Make sure to put this code before
–viewDidLoad in the file, or else add method declarations to the class extension.
Otherwise the compiler won’t know about them when you call them.

Turner_Book.indb 288 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 289

Listing 13.4 Methods to Manage Photo Albums in MasterViewController.m

#pragma mark - Read and save photo albums

- (NSURL *)photoAlbumPath

{

 NSURL *documentsDirectory = [[[NSFileManager defaultManager]

 URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask]

 lastObject];

 NSURL *photoAlbumPath = [documentsDirectory

 URLByAppendingPathComponent:(NSString *)kPhotoAlbumFilename];

 return photoAlbumPath;

}

- (NSMutableDictionary *)newPhotoAlbumWithName:(NSString *)albumName

{

 NSMutableDictionary *newAlbum = [NSMutableDictionary dictionary];

 [newAlbum setObject:albumName forKey:kPhotoAlbumNameKey];

 [newAlbum setObject:[NSDate date] forKey:kPhotoAlbumDateAddedKey];

 NSMutableArray *photos = [NSMutableArray array];

 for (NSUInteger index=0; index<10; index++) {

 [photos addObject:[NSDictionary dictionary]];

 }

 [newAlbum setObject:photos forKey:kPhotoAlbumPhotosKey];

 return newAlbum;

}

- (void)savePhotoAlbum

{

 [[self data] writeToURL:[self photoAlbumPath] atomically:YES];

}

- (void)readSavedPhotoAlbums

{

 NSMutableArray *savedAlbums = nil;

 NSData *photoAlbumData = [NSData dataWithContentsOfURL:[self photoAlbumPath]];

 if (photoAlbumData != nil) {

 NSMutableArray *albums = [NSPropertyListSerialization

 propertyListWithData:photoAlbumData

 options:NSPropertyListMutableContainers

 format:nil

 error:nil];

 [self setData:albums];

 } else {

 savedAlbums = [NSMutableArray array];

 // Create an initial album

 [savedAlbums addObject:[self newPhotoAlbumWithName:@"First album"]];

Turner_Book.indb 289 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence290

 [self setData:savedAlbums];

 [self savePhotoAlbum];

 }

}

- (void)photoAlbumSaveNeeded:(NSNotification *)notification

{

 [self savePhotoAlbum];

}

The first of these methods, photoAlbumPath, is a convenience method to provide
the full path to the photo album property list file as a file URL. It does this by look-
ing up the app’s documents directory and appending the album file name (declared
earlier in GlobalPhotoKeys.h). This method doesn’t do anything with albums directly,
but it is used by other methods that do.

The next method, newPhotoAlbumWithName, is a convenience method for cre-
ating a new photo album. The code creates a mutable dictionary to hold the album
and sets the creation date using kPhotoAlbumNameKey. It also sets the album’s name
to the value of the incoming albumName argument. The for loop creates an array
of empty photo entries. This is where photo information will go once the user starts
adding photos. The code creates these placeholders so that photos can be added at any
index instead of starting at index 0 and growing from there.

The next two methods handle the actual reading and writing of photo albums. The
first, savePhotoAlbums, is pretty simple. Photo albums will be kept in Master-
ViewController’s data property. To save a photo album, it looks up the location
using the photoAlbumPath method and then writes the property list from memory
to that file.

Reading photo albums may be more complex than you had expected. The first
line of readSavedPhotoAlbums just reverses the save process, reading the prop-
erty list from the save location. But it is stored as an instance of NSData instead of
NSMutable Data. Why is this? When Cocoa reads property lists from files, it always
creates immutable data structures. You might save an NSMutableDictionary, but
what comes back when you read the file is an NSDictionary. But photo albums need
to be editable so that new photos can be added, and the list of albums also needs to be
editable. That means that mutable dictionaries and arrays are needed so that entries can
be added and replaced as needed.

To manage this, the code makes use of NSPropertyListSerialization. This
class provides several utility methods that are useful when dealing with property lists.
In this case the code uses it to convert the immutable data structure read from the
photo album file into one with mutable container objects. The NSPropertyList-
MutableContainers option f lag means that the returned data structure will have
mutable arrays instead of immutable ones.

If no albums exist yet, readSavedPhotoAlbums creates an empty album so that
an album will be available the first time the app runs.

Turner_Book.indb 290 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 291

Finally, the method photoAlbumSaveNeeded is set up to receive notifications
that a new photo has been added to an album, indicating that the current photo album
needs to be saved. This notification is configured in viewDidLoad. Listing 13.5 shows
the new version of viewDidLoad.

Listing 13.5 New Version of MasterViewController’s viewDidLoad

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(add:)];

 [[self navigationItem] setRightBarButtonItem:addButton];

 [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];

 [self readSavedPhotoAlbums];

 [[self detailViewController] setPhotoAlbum:[[self data] objectAtIndex:0]];

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(photoAlbumSaveNeeded:)

 name:kPhotoAlbumSaveNotification

 object:[self detailViewController]];

}

The first of the highlighted lines calls the readSavedPhotoAlbums method we
set up earlier. The next line tells the detail view controller which album is currently
displayed. You haven’t added anything to DetailViewController to handle this yet,
but you will. When the app starts up, the code always passes the first album found in
the property list file to the detail view controller.

The last line configures an NSNotification observer. NSNotifications are a
convenient way for one part of an app to send a global signal of some kind, which may
be received by one or more observers. The four arguments configure a notification
observer as follows:

If [self detailViewController] posts a notification

...and that notification is named kPhotoAlbumSaveNotification

...then call a method named photoAlbumSaveNeeded:

...and call this method on self.

Turner_Book.indb 291 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence292

If you compare the previous chapter’s version of viewDidLoad to the implementa-
tion of newPhotoAlbumWithName:, you’ll notice that the structure of the data array
has changed. Instead of just storing a list of names, it now stores a list of dictionar-
ies, with the name stored as one of the dictionary keys. Because of this a few other
changes are needed so that the album list table view will work. In -tableView:
cellForRowAtIndexPath:, change the cell configuration code to look like List-
ing 13.6. This change looks up the album dictionary in [self data], gets the value
for its kPhotoAlbumNameKey key, and uses that in the table. It also uses the value of
currentAlbumIndex to display a check mark next to the currently selected album.

Listing 13.6 Updated Table Cell Code in MasterViewController.m

// Configure the cell.

NSDictionary *album = [[self data] objectAtIndex:[indexPath row]];

[[cell textLabel] setText:[album objectForKey:kPhotoAlbumNameKey]];

if ([indexPath row] == [self currentAlbumIndex]) {

 [cell setAccessoryType:UITableViewCellAccessoryCheckmark];

} else {

 [cell setAccessoryType:UITableViewCellAccessoryNone];

}

Make a similar change in -tableView:accessoryButtonTappedForRowWith-
IndexPath:, so that instead of looking up the album name directly in the data array,
you look up the name in the album’s dictionary.

When the user selects a new photo album in the album list, the app needs to tell the
detail view controller about the change so that it can update its display. This is handled
by adding a single line to the -tableView:didSelectRowAtIndexPath: method:

[[self detailViewController]

 setPhotoAlbum:[[self data] objectAtIndex:[indexPath row]]];

Finally, the callback from NameEditorViewController needs some changes to
handle the property list format. Make the method look like Listing 13.7.

Listing 13.7 Photo Album Name Editor Callback

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller

{

 NSString *newName = [[controller nameTextField] text];

 if (newName && [newName length] > 0) {

 if ([controller isEditing]) {

 NSMutableDictionary *photoAlbum = [[self data]

 objectAtIndex:[[controller indexPath] row]];

 [photoAlbum setObject:newName forKey:kPhotoAlbumNameKey];

 } else {

 [[self data] addObject:[self newPhotoAlbumWithName:newName]];

 }

Turner_Book.indb 292 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 293

 [self savePhotoAlbum];

 [[self tableView] reloadData];

 }

}

If the controller is editing an album name, the new code looks up the dictionary for
the album and replaces the value for its kPhotoAlbumNameKey. If the controller is not
editing an album name, the new code creates a new album using the requested name,
using the -newPhotoAlbumWithName: method declared earlier. In either case the
code calls savePhotoAlbum to write the changes to the property list file.

Adding New Photos to an Album
Now that you’re managing photo albums, it’s time to get some pictures into those
albums. Albums will be displayed by DetailViewController, which will also
handle the process of taking new photos. So the first thing you need to do is add a
way for DetailViewController to know what album is selected. First, add a new
property to DetailViewController to store a reference to the album. Add this to
DetailViewController.h:

@property (strong, nonatomic) NSMutableDictionary *photoAlbum;

Also add a @synthesize statement for this property in DetailViewController.m.
Now DetailViewController can keep a reference to a photo album. You set that

reference earlier in Listing 13.5, on the line that calls –setPhotoAlbum:.
Next, fill in MasterViewController’s implementation of -tableView:did-

SelectRowAtIndexPath: so that when the user taps on a new album, DetailView-
Controller will know that the selected album has changed (Listing 13.8).

Listing 13.8 Changing the Selected Album

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 NSIndexPath *oldCurrentAlbumIndexPath =

 [NSIndexPath indexPathForRow:[self currentAlbumIndex] inSection:0];

 [self setCurrentAlbumIndex:[indexPath row]];

 [tableView reloadRowsAtIndexPaths:

 [NSArray arrayWithObjects:indexPath, oldCurrentAlbumIndexPath, nil]

 withRowAnimation:UITableViewRowAnimationNone];

 [[self detailViewController]

 setPhotoAlbum:[[self data] objectAtIndex:[indexPath row]]];

}

The first part of this code handles updating the current album index and reloading
data in the table view to show the new selection. It saves the old selected index in an

Turner_Book.indb 293 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence294

NSIndexPath and then updates the selection by setting a new value for current-
AlbumIndex. Then the method tells the table view to reload data at both the previous
and new selection values. This will lead to calls to -tableView:cellForRowAt-
IndexPath: for both of those index paths, and that will remove the check mark at
the old selected row and add one at the new selection. Finally, the code tells detail-
ViewController about the new selection, so that it can update its display.

Getting new photos from the camera or the device library works as in earlier chap-
ters. What is new here is that the incoming photo will be added to the current album
at an index corresponding to the cell tapped by the user. To track the tapped cell you’ll
add a property in DetailViewController called selectedWheelViewCellIndex.
It is just an integer that saves the index of the thumbnail view the user tapped on. Add
the declaration in the class extension at the top of DetailViewController.m:

@property (assign, nonatomic) NSUInteger selectedWheelViewCellIndex;

Also add a @synthesize statement for this property. In the cellTapped method,
add a line to set the value of this property to the index of the tapped cell (Listing 13.9).

Listing 13.9 Updated Version of DetailViewController.m’s cellTapped: Method

- (void)cellTapped:(UIGestureRecognizer *)recognizer

{

 [self setSelectedPhotoWheelViewCell:

 (PhotoWheelViewCell *)[recognizer view]];

 [self setSelectedWheelViewCellIndex:

 [[self data] indexOfObject:[self selectedPhotoWheelViewCell]]];

 BOOL hasCamera =

 [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) {

 [self presentPhotoPickerMenu];

 } else {

 [self presentPhotoLibrary];

 }

}

The highlighted line looks up the index of the selected cell view in the data array
and saves that value for later use.

When the user selects a photo, the app will receive it in a UIIpagePicker-
Controller delegate callback, just as before. You’ll need to add the incoming picture
to the current album. The new implementation of this method is shown in Listing
13.10. This method makes use of keys declared in GlobalPhotoKeys.h, so make sure to
import that header file at the top of DetailViewController.m.

Turner_Book.indb 294 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 295

Listing 13.10 Adding New Photos to the Photo Album

- (void)imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info

{

 // If the popover controller is available,

 // assume the photo is selected from the library

 // and not from the camera.

 BOOL takenWithCamera = ([self popoverController] == nil);

 // Dismiss the popover controller if available,

 // otherwise dismiss the camera view.

 if ([self masterPopoverController]) {

 [[self masterPopoverController] dismissPopoverAnimated:YES];

 [self setMasterPopoverController:nil];

 } else {

 [self dismissModalViewControllerAnimated:YES];

 }

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 [self.selectedPhotoWheelViewCell setImage:image];

 NSData *photoData = UIImageJPEGRepresentation(image, 0.8);

 NSString *photoFilename = [[self uuidString]

 stringByAppendingPathExtension:@"jpg"];

 [photoData writeToURL:

 [[self documentsDirectory]

 URLByAppendingPathComponent:photoFilename]

 atomically:YES];

 NSMutableDictionary *newPhotoEntry = [NSMutableDictionary dictionary];

 [newPhotoEntry setObject:[NSDate date] forKey:kPhotoDateAddedKey];

 [newPhotoEntry setObject:photoFilename forKey:kPhotoFilenameKey];

 NSMutableArray *photos = [[self photoAlbum]

 objectForKey:kPhotoAlbumPhotosKey];

 [photos replaceObjectAtIndex:[self selectedWheelViewCellIndex]

 withObject:newPhotoEntry];

 [[NSNotificationCenter defaultCenter]

 postNotificationName:kPhotoAlbumSaveNotification

 object:self];

 if (takenWithCamera) {

 UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil);

 }

}

Turner_Book.indb 295 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence296

Some of this is unchanged from what you have seen before. The new code is shown
in boldface text.

To save the image, the new code converts the incoming UIImage object to a JPEG
using the utility method UIImageJPEGRepresentation. There is a similar method
to convert a UIImage to PNG format, but JPEG is usually better for photos. The first
argument to this function is a UIImage containing the new photo, and the second is
the JPEG compression factor. Compression ranges from 1.0 for best quality to 0.0 for
worst. This gives you an NSData object containing the JPEG data.

The code saves the photo data to a file rather than keeping it in the property list.
That is better for memory management, since the entire property list is in memory.
Writing the photo data to a file means it won’t get loaded except when it is actually
needed instead of staying in memory all the time. It doesn’t actually matter what the
file name is so long as it is something unique that the app can keep track of. In this
case the file name is a UUID, a universally unique ID. The UUID is obtained using
the uuidString method, which returns a string that is guaranteed to be unique. The
image data is saved in a file named from the UUID, in the app’s documents directory.
The code finds the documents directory using a utility method called –documents-
Directory. The code for these two methods is shown in Listing 13.11. You need to
add this code to the file DetailViewController.m.

Listing 13.11 Helper Methods Used When Saving a Photo to the File System

- (NSString *)uuidString

{

 CFUUIDRef uuid = CFUUIDCreate(kCFAllocatorDefault);

 CFStringRef uuidCFString = CFUUIDCreateString(kCFAllocatorDefault, uuid);

 NSString *uuidString = [(__bridge NSString *)uuidCFString copy];

 CFRelease(uuid);

 CFRelease(uuidCFString);

 return uuidString;

}

- (NSURL *)documentsDirectory

{

 NSFileManager *fm = [NSFileManager defaultManager];

 NSArray *urls = [fm URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask];

 return [urls lastObject];

}

Next, the code creates a new dictionary entry to store the new photo. Two values are
stored in the dictionary, one with the current time and date to record when the photo
was added, and one containing the image file name just created. Once this new diction-
ary has been created, it is inserted into the current photo album at the selected cell index
you saved previously. Finally, the code posts the kPhotoAlbumDidSaveNotification,

Turner_Book.indb 296 12/11/11 6:46 PM

ptg999

Building the Model with Property Lists 297

so that MasterViewController will know that a new photo has been added and can
save the new information.

Displaying Photos in an Album
Now that you have photo albums that actually contain photos, how are you going to
get them onto the wheel view so that the user can see them? When new photos are
added, they are displayed immediately by the UIImagePickerController delegate
method discussed with Listing 13.10. What about when the user selects a new album?

DetailViewController needs to update the wheel contents anytime a new photo
album is selected, so it makes sense to create a custom setter method for the photo album
and perform this update there. That way the update happens immediately when the new
album is chosen. Add this setter method to DetailViewController (Listing 13.12).

Listing 13.12 Updating the Wheel View When a New Photo Album Is Selected

- (void)setPhotoAlbum:(NSMutableDictionary *)photoAlbum

{

 photoAlbum_ = photoAlbum;

 UIImage *defaultPhoto = [UIImage imageNamed:@"defaultPhoto.png"];

 for (NSUInteger index=0; index<10; index++) {

 PhotoWheelViewCell *nub = [[self data] objectAtIndex:index];

 NSDictionary *photoInfo = [[[self photoAlbum]

 objectForKey:kPhotoAlbumPhotosKey]

 objectAtIndex:index];

 NSString *photoFilename = [photoInfo objectForKey:kPhotoFilenameKey];

 NSData *imageData;

 if (photoFilename != nil) {

 imageData = [NSData dataWithContentsOfURL:

 [[self documentsDirectory]

 URLByAppendingPathComponent:photoFilename]];

 } else {

 imageData = nil;

 }

 if (imageData != nil) {

 [nub setImage:[UIImage imageWithData:imageData]];

 } else {

 [nub setImage:defaultPhoto];

 }

 }

}

The first line in this method handles the actual setting needed by this setter method
by assigning the incoming object to an instance variable. The rest of the code runs
through the album one item at a time and updates the wheel view for each entry in

Turner_Book.indb 297 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence298

the album. In the for loop the code finds both the cell view and the entry in the
photo album corresponding to the index, and then it tries to find a photo file from the
album entry. If it finds a photo file, the code loads the JPEG data into imageData.
Otherwise it sets imageData to nil to indicate that no image was found.

In the bottom part of the loop the code checks to see if any image data was found.
If so, it creates a UIImage for the photo and displays that in the cell. If not, it uses a
default placeholder image indicating that no photo exists for that cell.

With these changes the app is now ready for use, at least as a prototype. Users can
create and delete albums and add photos to albums. There are some improvements that
would be nice to make, though.

At this point the photo album doesn’t have a “key” photo that could be used when
displaying a collection of albums. There are a couple of ways to add that. One would
be to create a separate entry in the album dictionary and duplicate the photo informa-
tion. Duplicating data like that is always kind of ugly. Also, the app would need to
be careful about maintaining the key photo if the user were to delete or replace that
photo. It would be necessary to check the duplicate entry and update or replace it. A
different approach would be to add a “key” Boolean attribute to each photo and run
through the list of photos to locate the key photo. That is also undesirable, since it
means traversing a list to locate an item instead of just looking it up directly.

The property list approach is limited in other areas. In a future version of the app
you might decide to implement undo behavior, or to give users the option to sort pho-
tos by date instead of keeping them in the same order. These improvements are cer-
tainly possible with property lists, but the apparent simplicity of this data model will
quickly be erased by the challenges posed by sorting, undo, and other new features.
Property lists are simple to begin but often become brittle and awkward in anything
but the simplest of applications.

Building the Model with Core Data
Saving application data in property lists is certainly convenient, but as an applica-
tion’s data gets larger or more complex, it can become awkward. Things like keeping
memory use under control and managing relationships get increasingly difficult as the
data set grows. There are many ways of dealing with this, and many developers have
devised their own schemes. Apple provides a framework called Core Data which is
designed to handle these tasks and many others for you. Core Data can seem daunt-
ing at first, but its principles and the techniques for using it are easy to learn and well
worth the effort of doing so.

Note
This chapter provides a basic introduction to Core Data. For more detailed information,
see Core Data for iOS by Tim Isted and Tom Harrington (Addison-Wesley, 2011).

Turner_Book.indb 298 12/11/11 6:46 PM

ptg999

Building the Model with Core Data 299

What Is Core Data?
Core Data is designed to be an object store for your model object. Using Core Data,
you read and write model objects directly, without needing to translate between your
model objects and the file format. The purpose of Core Data is to provide a persistent
data store that can handle whatever type of objects your app uses.

Details of how the objects are stored are mostly irrelevant, leaving you to focus on
using those objects in your app. You may have heard that Core Data can use SQLite to
store data, but that is an implementation detail. Core Data is not simply an Objective-C
wrapper on SQLite, and although it scales to very large data sets, it is not designed to
be used as a database. Core Data can also use other, nondatabase formats to store data.
This is why the term data store is intentionally vague. It refers to the means used to
store data in a persistent manner, but Core Data isn’t tied to a specific means. You can
even create your own if you need to.

Core Data has the following advantages:
n It can reduce memory usage. Core Data loads only the objects you request. If

your data set contains millions of objects but you need to work with only a few,
only those few will be loaded into memory. This makes it possible to deal with
data sets that are larger than available memory.

n Relationships are managed automatically. If two objects have a relationship, you
define this using the same syntax as you would to set a property value.

n Core Data provides a rich system of predicates that can be used to search your
data set for objects of interest.

n Objects can be automatically sorted when you look them up.
n It has optional data validation, to enforce rules defining acceptable values for

properties.
n It has automatic undo management.

Managed Objects and Entity Descriptions
When using Core Data, you’ll be using managed objects as your model. A managed
object is an instance of NSManagedObject or of a custom subclass of NSManaged-
Object. It contains your model data. Core Data manages it, which means that
Core Data handles creating it, maintaining relationships with other objects, saving
changed property values, and other important tasks. Managed objects are read from
and saved to data stores. Normally your model objects would subclass NSObject or
some other Foundation class like NSDictionary, but with Core Data you must use
NSManagedObject.

A managed object makes use of a related object called its entity description object.
An entity description is an instance of NSEntityDescription. Entity descriptions
contain definitions of all of the properties and relationships of a managed object, as
well as optional extra details such as default values and validation rules. An entity
description is roughly comparable to a table definition in a database, while a managed

Turner_Book.indb 299 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence300

object is roughly comparable to a single entry in the table. Entity descriptions are con-
figured in the managed object model, which defines all the entities available in the
data store. You don’t usually use entity description objects directly in code; instead,
you create them in Xcode.

When using Core Data, you’ll start by creating entity descriptions for any model
objects you need. Xcode provides a handy graph-based utility for doing this. Once you
have an entity description, you can start creating managed objects defined by it.

You can work with instances of NSManagedObject, but it is usually more conve-
nient to use custom subclasses that correspond to your model objects. The advantage
is that these subclasses can add methods to implement any model-specific behaviors
you might need and can provide accessor methods for your model properties. A plain
NSManagedObject won’t have custom accessor methods, so instead you must use key-
value coding (KVC) to access property values. For example, if you have an Employee
entity with a name property, you would set and retrieve the employee name on an
NSManagedObject instance like this:

NSManagedObject *newEmployee = // Defined elsewhere

[newEmployee setValue:@"John Smith" forKey:@"name"];

NSString *employeeName = [newEmployee valueForKey:@"name"];

That’s fine and it works, but it doesn’t let the compiler provide type checking to
make sure that you are actually assigning a string value for the name property. It also
can’t verify that you spelled "name" correctly. What’s more, since newEmployee is
declared as an instance of a generic class, it may not be immediately obvious what
entity it is intended to use.

If you instead had an Employee class that subclassed NSManagedObject and pro-
vided custom accessor methods, the preceding code could be replaced with

Employee *newEmployee = // Defined elsewhere

[newEmployee setName:@"John Smith"];

NSString *employeeName = [newEmployee name];

That’s a lot clearer and less error-prone.
Xcode can automatically generate NSManagedObject subclasses with property-

specific accessor methods based on entity definitions.
When you load an NSManagedObject from a data store, it is normally created as a

fault object. Fault objects are placeholders, which have the identity of a specific man-
aged object but none of its data. The properties are loaded—or, in Core Data termi-
nology, the fault fires—on demand when you access a property. That means that they
use hardly any memory at all until you directly access their properties.

Managed Object Contexts
Your main access point for getting and saving managed objects is the managed object
context, an instance of NSManagedObjectContext. When you need to get your
model objects, you’ll ask the managed object context. When you need to save changes

Turner_Book.indb 300 12/11/11 6:46 PM

ptg999

Building the Model with Core Data 301

to model objects, you’ll ask the managed object context to save them. The managed
object context does most of the actual managing of managed objects.

You get managed objects from the data store by requesting them from the managed
object context with a fetch request. Fetch requests specify, at a minimum, what kind
of entity you want. They can also include a predicate that determines which instances
of that entity are returned and a set of sort descriptors that determine how the result-
ing objects are sorted. Following the previous Employee example, the following code
would find all employees currently in the data store:

NSManagedObjectContext *context = // Defined and configured elsewhere

NSFetchRequest *request = [[NSFetchRequest alloc] initWithEntityName:@"Employee"];

NSError *fetchError = nil;

NSArray *allEmployees = [context executeFetchRequest:request error:&fetchError];

When you need to create a new managed object, you’ll normally do so by way of
the managed object context. The following line finds an entity named Employee in
the managed object context, creates a new managed object based on that entity, inserts
it in the managed object context, and returns it:

Employee *newEmployee = [NSEntityDescription

 insertNewObjectForEntityForName:@"Employee"

 inManagedObjectContext:context];

It is common for entities to have the same name as the NSManagedObject subclass
that uses them, but this is not required.

After the user has worked with the app for a while, there will probably be changes
that need to be saved. Saving goes through the NSManagedObjectContext, which
will save any outstanding changes on any objects loaded from or added to the context:

NSError *saveError = nil;

[context save:&saveError];

Persistent Stores and Persistent Store Coordinators
The managed object context doesn’t actually save objects itself—it makes use of
another object that handles the file-level interaction necessary for this. Core Data saves
objects to a persistent data store. The data store itself is managed by a persistent store
coordinator, an instance of NSPersistentStoreCoordinator. This is where man-
aged objects finally become SQLite records, or part of a binary file, or are converted
to some other format suitable for saving to a file. You’ll never work directly with the
persistent store coordinator except when you create it. After that, all interaction goes
through the managed object context.

Why keep the persistent store separate? It is possible to use more than one persistent
store simultaneously. The NSPersistentStoreCoordinator, as its name suggests, is
responsible for coordinating the persistent stores. You may use only one data store in
an app, but the Core Data stack doesn’t restrict you to just one.

Turner_Book.indb 301 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence302

Adding Core Data to PhotoWheelPrototype
When you create a new project in Xcode, one of the options is to have Xcode auto-
matically add code and files related to Core Data. That is convenient, but Xcode’s
template Core Data code is not always what you want. Also, sometimes you may need
to add Core Data to a project that didn’t previously use it. PhotoWheelPrototype
doesn’t have Core Data yet, so in this section we’ll go through adding Core Data to
the project.

This section builds on code from the previous chapter, so it starts without any of
the property list code developed earlier in this chapter.

Adding the Core Data Framework
Before you can write any code using Core Data classes, you need to add the Core Data
framework to the project. The framework contains the header files and implementa-
tions for Core Data classes. Until the framework is added, the compiler and linker
won’t know about Core Data.

To see the frameworks used in PhotoWheelPrototype, click on the project entry in
the file navigator and then on the app target in the editor pane (Figure 13.1). In the
Editor area, the Build Phases tab has a section named Link Binary With Libraries
that lists the current frameworks.

To add a framework, click the + button at the bottom of the framework list. Xcode
will present a list of known frameworks available for the project (Figure 13.2). Select

Figure 13.1 Xcode view of frameworks used in an app

Turner_Book.indb 302 12/11/11 6:46 PM

ptg999

Building the Model with Core Data 303

CoreData.framework from the list and click the Add button. Xcode will then add
Core Data to the project.

Adding the framework allows the linker to link Core Data classes. Next, you need
to make sure that the compiler knows about the class declarations so that it can com-
pile the code. You’ll be using Core Data in a variety of places in the app, so the best
place to do this is in the prefix header file PhotoWheelPrototype-Prefix.pch. This file
already imports headers for UIKit and Foundation. Edit the file and add CoreData.h
(Listing 13.13).

Listing 13.13 Adding Core Data to the Prefix Header File

#ifdef __OBJC__

 #import <UIKit/UIKit.h>

 #import <Foundation/Foundation.h>

 #import <CoreData/CoreData.h>

#endif

Setting Up the Core Data Stack
The set of objects necessary to use Core Data is often referred to as a stack. The man-
aged object context depends on the persistent store coordinator, which in turn depends
on the managed object model. The model is at the bottom of the stack, so you’ll start
there and build upward.

First you’ll create the file that will contain the managed object model. Create a new
file in Xcode. In the category list on the left of the new file window there is a section

Figure 13.2 Adding the Core Data framework

Turner_Book.indb 303 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence304

labeled Core Data, and in that section there’s a file type called Data Model (Figure
13.3). Use this file type and create a file named PhotoWheelPrototype.xcdatamodeld
(Xcode will add the .xcdatamodeld extension). You’ll create Core Data entities in this
file. The .xcdatamodeld is the normal extension for an uncompiled model file. When
you build the app, it will be compiled into a .momd file.

Next, you need to add code to load the data model file and configure the Core
Data stack. In this case you’ll add the setup methods to the application delegate. That’s
convenient when you have one data store that you use throughout the app, but it is not
always ideal. In many cases it makes sense to set up Core Data in a dedicated model
manager class or in one of the view controllers. In this case, though, you’ll put it in
the app delegate.

Edit AppDelegate.h and add the code shown in Listing 13.14. This code creates prop-
erties for the Core Data stack objects. It also declares a utility method called save-
Context that will save any outstanding changes in the managed object context.

Listing 13.14 Core Data Code for PhotoWheelPrototypeAppDelegate.h

@property (readonly, strong, nonatomic) NSManagedObjectContext

*managedObjectContext;

@property (readonly, strong, nonatomic) NSManagedObjectModel *managedObjectModel;

@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator

*persistentStoreCoordinator;

In AppDelegate.m, start by synthesizing the properties you just added in the header
(Listing 13.15).

Figure 13.3 Adding a Core Data model file

Turner_Book.indb 304 12/11/11 6:46 PM

ptg999

Building the Model with Core Data 305

Listing 13.15 Synthesize Statements for Core Data Stack Objects

@synthesize managedObjectContext = __managedObjectContext;

@synthesize managedObjectModel = __managedObjectModel;

@synthesize persistentStoreCoordinator = __persistentStoreCoordinator;

Next, add the method to create the managed object model file (Listing 13.16). This
method loads the compiled .momd file that corresponds to the uncompiled .xcdatamodeld
file you created earlier. The code looks for the model file in the app’s bundle and allo-
cates an NSManagedObjectModel file with its contents.

Listing 13.16 Creating the Managed Object Model Instance

- (NSManagedObjectModel *)managedObjectModel

{

 if (__managedObjectModel != nil)

 {

 return __managedObjectModel;

 }

 NSURL *modelURL = [[NSBundle mainBundle]

 URLForResource:@"PhotoWheelPrototype"

 withExtension:@"momd"];

 __managedObjectModel =

 [[NSManagedObjectModel alloc] initWithContentsOfURL:modelURL];

 return __managedObjectModel;

}

Now add code for the persistent store coordinator (Listing 13.17). This method cre-
ates the persistent store coordinator using the managed object model created earlier. It
then adds a data store to the coordinator. If the data store exists, it must contain only
entities defined in the data model, and the definitions must match. If the data store
doesn’t exist yet, the method creates an empty one. This version creates a SQLite-
backed data store, indicated by NSSQLiteStoreType.

Listing 13.17 Creating the Persistent Store Coordinator

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

{

 if (__persistentStoreCoordinator != nil)

 {

 return __persistentStoreCoordinator;

 }

 NSURL *applicationDocumentsDirectory = [[[NSFileManager defaultManager]

 URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask]

 lastObject];

Turner_Book.indb 305 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence306

 NSURL *storeURL = [applicationDocumentsDirectory

 URLByAppendingPathComponent:@"PhotoWheelPrototype.sqlite"];

 NSError *error = nil;

 __persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

 initWithManagedObjectModel:[self managedObjectModel]];

 if (![__persistentStoreCoordinator

 addPersistentStoreWithType:NSSQLiteStoreType

 configuration:nil

 URL:storeURL

 options:nil

 error:&error])

 {

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 return __persistentStoreCoordinator;

}

The last part of the Core Data stack is the managed object context (Listing 13.18).
The code that creates the context makes use of the persistent store coordinator method
in Listing 13.17, which in turn uses the managed object model created in Listing 13.16.
These three objects together form the Core Data “stack.”

Listing 13.18 Creating the Managed Object Context

- (NSManagedObjectContext *)managedObjectContext

{

 if (__managedObjectContext != nil)

 {

 return __managedObjectContext;

 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];

 if (coordinator != nil)

 {

 __managedObjectContext = [[NSManagedObjectContext alloc] init];

 [__managedObjectContext setPersistentStoreCoordinator:coordinator];

 }

 return __managedObjectContext;

}

Finally, you need to pass a reference to this managed object context to the Master-
ViewController so that it can make use of the data store when reading and writing
photos and albums. First, of course, MasterViewController needs to be able to hold

Turner_Book.indb 306 12/11/11 6:46 PM

ptg999

Using Core Data in PhotoWheel 307

a reference to the managed object context. Add a new managed object property to
MasterViewController.h:

@property (strong, nonatomic) NSManagedObjectContext *managedObjectContext;

Also add a corresponding @synthesize to MasterViewController.m.
Once that is done, add a line to set a value for that new property in AppDelegate.m,

in the -application:didFinishLaunchingWithOptions: method. Add this just
after the call to –setDetailViewController:.

 [masterViewController setManagedObjectContext:

 [self managedObjectContext]];

Now MasterViewController has access to the managed object context.

Using Core Data in PhotoWheel
Now it’s time to use Core Data to implement the model classes described earlier in the
chapter.

The Core Data Model Editor
In Xcode find the file named PhotoWheelPrototype.xcdatamodeld that you created earlier.
Click on it to bring up the model editor, shown in Figure 13.4. The model editor lists
the entities in the model with their attributes, relationships, and fetched properties.

Figure 13.4 The Xcode Core Data model editor

Turner_Book.indb 307 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence308

The toggle at the bottom right corner of the editor switches between a table-style
view and a graph style similar to an entity-relationship diagram. As with other Xcode
editors, you can click the Editor toggle at the top of the window to show or hide the
utility section of the window on the right. Make sure it is showing, because you’ll
need it to configure the entities.

There is not much to see, since you haven’t created any entities yet.

Adding the Entities
To create the Photo entity:

 1. Click the Add Entity button at the bottom of the window. You’ll see a new
entity appear in the editor. Set its name to Photo.

2. In the Inspector, set the Class to be Photo as well. This tells Core Data that
instances of the Photo entity should be instances of a subclass of NSManaged-
Object that is also named Photo. The entity and the class aren’t required to
have the same name, but it is convenient to make them the same. So far you
don’t have a Photo class, but you can still configure the class name here.

3. In the Attributes section of the editor, click the + button to create a new attri-
bute. Set its name to dateAdded, and use the popup menu under Type to set
the attribute type to Date.

4. Create another new attribute and name it originalImageData. This will save
the original image data received from the camera. Set the Attribute Type to
Binary Data.

 5. Select the originalImageData attribute. In the Inspector pane on the right,
find a check box labeled Allows External Storage. Check this box (Figure 13.5).

Figure 13.5 The Inspector pane showing the originalImageData
attribute on the Photo entity

Turner_Book.indb 308 12/11/11 6:46 PM

ptg999

Using Core Data in PhotoWheel 309

This setting tells Core Data that the image data should not be kept directly in
the data store but should be automatically saved in an external file. This will
prevent excessive memory use when loading Photo entities.

6. Repeat the previous step for properties named thumbnailImageData and
largeImageData.

To create the PhotoAlbum entity:

 1. Click the Add Entity button at the bottom of the window. Name the new
entity PhotoAlbum.

2. Set the Class for the PhotoAlbum entity to be a class named PhotoAlbum.

3. Add an attribute named name and set its Type to String.

4. Add an attribute named dateAdded and set its Type to Date.

Now that the entities exist, click the Editor style toggle on the bottom to switch to
the graph view. You’ll see both entities with their attributes listed below them. You
can drag them around in the graph view and arrange them as you like. You can work
in either the model editor’s table view or the graph view. The following steps describe
using the graph view.

Now, you need to add the relationship between the Photo entity and the Photo-
Album entity. This will be a one-to-many relationship from PhotoAlbum to Photo,
since each album can contain multiple photos but each photo can belong to only one
album.

1. Click once on the PhotoAlbum entity to select it.

2. Click and hold the Add Attribute button. A menu of options appears. Click on
Add Relationship to add a relationship from the PhotoAlbum entity. Notice
that the button’s label changes to read Add Relationship. The button’s label
changes to ref lect the most recently used choice from the popup menu.

3. Double-click on the new relationship to make its name editable, and set its name
to photos.

4. In the Inspector, click on the popup menu labeled Destination and select Photo
as the destination entity.

5. Check the box in the Inspector labeled To-Many Relationship. Also be sure to
check the one labeled Ordered, so that the order will be maintained on the rela-
tionship. Without this the relationship would be unordered, and you’ll be adding
code soon that needs to know the order.

6. Click on the popup menu labeled Delete Rule and select Cascade. This setting
will mean that deleting a PhotoAlbum will cascade to related Photos and delete
them as well. At this point the model should look like Figure 13.6.

7. Now click once on the Photo entity to select it.

Turner_Book.indb 309 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence310

 8. Click the Add Relationship button (the one that earlier read Add Attribute).

9. Double-click on the new relationship to make its name editable, and set its name
to photoAlbum.

10. In the Inspector, click on the popup menu labeled Destination and select Photo-
Album as the destination entity.

11. In the Inspector, click on the popup menu labeled Inverse and select photos as
the inverse relationship. This tells Core Data that PhotoAlbum’s photos rela-
tionship and Photo’s photoAlbum relationship are at opposite ends of the same
relationship.

12. In the Inspector, uncheck the box marked Optional. Since photos must belong to
an album, this relationship is mandatory. Contrast that with PhotoAlbum’s pho-
tos relationship. It was left as optional, because a photo album may be empty.

13. Leave the Delete Rule for this relationship set to Nullify. This tells Core Data
that when a Photo is deleted, incoming relationships should be set to nil. At
the same time the deletion should not cascade to the PhotoAlbum.

At this point the model should look like Figure 13.7.

Creating NSManagedObject Subclasses
Now that you have created the model entities, you can have Xcode create custom
NSManagedObject subclasses that match the entities. When Xcode creates the class

Figure 13.6 Model editor after adding the photos relationship to the
PhotoAlbum entity

ptg999

Using Core Data in PhotoWheel 311

files, it looks at the existing entities and the class names configured for each one. If
any entity has a class other than NSManagedObject, it offers to create a custom sub-
class for that entity.

Before you do that, let’s continue the discussion from earlier about thinking ahead
when designing a data model. Suppose in version 1.1 of PhotoWheel you want to add
new attributes to one or both of the entities. Maybe you would add location informa-
tion so that you could show photos on a map. Recall also from the earlier discussion
the idea that you might want to add custom methods to your model classes to imple-
ment model-specific behavior.

These two requirements conf lict if you have Xcode generate your subclasses. When
Xcode generates managed object classes, it overwrites the existing file and replaces
it with one matching the current state of the entities in the data model. If you have
added custom methods, those will be wiped away. On the other hand, creating and
managing your subclasses by hand is tedious and error-prone. You would need to
update the subclass code anytime you update the entity, making the same change in
two different places.

How can you resolve this? With a little bit of trickery, you use generated subclasses
without overwriting your custom code. It works by creating two classes for each
entity, one that will be generated by Xcode and the other that will be a subclass of the
first. Then Xcode can generate your model classes, and you can add methods without
conf lict. You’ll do this by temporarily renaming the entity subclasses.

Figure 13.7 Model editor showing the photoAlbum relationship on
the Photo entity

Turner_Book.indb 311 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence312

1. In the model editor, change the name of the PhotoAlbum entity’s class to
_PhotoAlbum.

2. In the model editor, change the name of the Photo entity’s class to _Photo.

3. Click one of the entities, and then Shift-Click on the other so that both entities
are selected.

 4. On Xcode’s File menu, select New File.

5. In the new file window, select Core Data from the list on the left, and
NSManagedObject subclass from the options on the right (Figure 13.8) and click
Next.

6. Save the new files. This will produce four new files, both header and implemen-
tation files for each of the _Photo and _PhotoAlbum classes. These define two
subclasses of NSManagedObject.

 7. On Xcode’s File menu, select New File. Create an Objective-C class. When
Xcode asks you what Photo’s superclass should be, type in “_Photo” (Figure
13.9). Name the class Photo. This creates a subclass of _Photo called Photo.

8. Repeat the previous step, creating a class named PhotoAlbum whose superclass
is _PhotoAlbum.

9. Go back to the model editor and change the Photo entity’s class name back to
Photo and the PhotoAlbum entity’s class name back to PhotoAlbum.

What did you just do? You used Xcode to automatically create two classes, _Photo
and _PhotoAlbum, that match the entities you created earlier. You also created two

Figure 13.8 Creating custom NSManagedObject subclasses in Xcode

Turner_Book.indb 312 12/11/11 6:46 PM

ptg999

Using Core Data in PhotoWheel 313

subclasses, Photo and PhotoAlbum. Xcode generated the superclasses, and your cus-
tom code will go in the subclasses. This keeps your code separate from code generated
by Xcode. Keep in mind that you’ll have to repeat the temporary renaming process if
you change the entities later.

Why not just leave the class names with the underscored names? The class names
saved in the model are the classes Core Data will return when creating managed
objects. If the PhotoAlbum entity’s class were named _PhotoAlbum, Core Data
would create instances of _PhotoAlbum that would not contain any custom behaviors
added in the PhotoAlbum subclass. With the name changed back, Core Data provides
PhotoAlbum instances that contain the custom code.

Take a look at the generated code. Xcode creates properties for each of the entity’s
attributes and relationships. For to-many relationships, it also creates custom acces-
sor methods for adding and removing Photos. Listing 13.19 shows the generated code
for _PhotoAlbum.h. The photos property contains all of the album’s photos and can be
accessed to look up the album contents. For adding and removing individual photos
you would use the accessor methods addPhotosObject and removePhotosObject.

Listing 13.19 Automatically Generated Code in _PhotoAlbum.h

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class _Photo;

@interface _PhotoAlbum : NSManagedObject

Figure 13.9 Setting a custom superclass for the Photo class

Turner_Book.indb 313 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence314

@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) NSDate * dateAdded;

@property (nonatomic, retain) NSOrderedSet *photos;

@end

@interface _PhotoAlbum (CoreDataGeneratedAccessors)

- (void)insertObject:(_Photo *)value inPhotosAtIndex:(NSUInteger)idx;

- (void)removeObjectFromPhotosAtIndex:(NSUInteger)idx;

- (void)insertPhotos:(NSArray *)value atIndexes:(NSIndexSet *)indexes;

- (void)removePhotosAtIndexes:(NSIndexSet *)indexes;

- (void)replaceObjectInPhotosAtIndex:(NSUInteger)idx withObject:(_Photo *)value;

- (void)replacePhotosAtIndexes:(NSIndexSet *)indexes withPhotos:(NSArray *)values;

- (void)addPhotosObject:(_Photo *)value;

- (void)removePhotosObject:(_Photo *)value;

- (void)addPhotos:(NSOrderedSet *)values;

- (void)removePhotos:(NSOrderedSet *)values;

@end

If you look at the implementation file _PhotoAlbum.m (Listing 13.20), you’ll see that
there is not much there. All of the properties are listed as @dynamic declarations, and
that’s it. Declaring properties as @dynamic implies that the necessary method declara-
tions will be created at run time, or that dynamic method resolution will be used to
handle calls to the method. NSManagedObject takes care of that. These are a couple
of the interesting features of Objective-C, that new methods can be created while an
app is running, and that calls to nonexistent methods can be handled dynamically.

Listing 13.20 Automatically Generated Code in _PhotoAlbum.m

#import "_PhotoAlbum.h"

#import "_Photo.h"

@implementation _PhotoAlbum

@dynamic name;

@dynamic dateAdded;

@dynamic photos;

@end

Alternative Subclass Generation: mogenerator
The multistep process for keeping generated code separate from custom code
(described in the previous section) is effective but can be error-prone. If you regener-
ate the class files without first changing the class names, you could accidentally wipe

Turner_Book.indb 314 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 315

out custom code. Good version control software is a must when doing this, so that
code can be recovered if necessary.

There’s an open source tool written by Jonathan “Wolf” Rentzsch called mogenera-
tor that can simplify this process. It serves as an alternative means for generating
NSManagedObject subclasses. It follows the same general approach as a two-
level class system in which one contains generated class files based on entities and
the other subclasses the first. mogenerator includes an Xcode plug-in called Xmo’d
and works automatically. It’s easy to use, but if there’s a team of people working on
an app, everyone must install it. Both mogenerator and Xmo’d are available from Rent-
zsch at rentzsch.github.com/mogenerator/. As of this writing Xmo’d has not yet been
updated to work with Xcode 4, but development continues and updates are planned.
mogenerator does work with Xcode 4, and it’s the more important part of the system.

Adding Custom Code to Model Objects
Now that we have a place to safely add custom code, what code do we need? You may
have noticed earlier that all of the image-related attributes on the Photo entity used
the binary data type. In Cocoa Touch this corresponds to an instance of NSData. In
order to draw images on the screen we’ll need UIImage instances. Adding custom
code to translate between the NSData in the data store and the UIImages needed for
the user interface is an obvious choice.

Start with code to handle a new picture from the camera. You’ll have a UIImage,
and you need to create several images of differing sizes and save all of them. Add a
method declaration in Photo.h:

- (void)saveImage:(UIImage *)newImage;

The method definition goes in Photo.m and is shown in Listing 13.21. The listing
also includes two methods that resize images, since we’ll use multiple image sizes. We
won’t discuss these in detail here. If you would like to investigate them in more detail,
consult Xcode’s built-in documentation for the methods and functions they use.

The –saveImage: method starts off by converting the UIImage to an NSData
object using JPEG compression and saving that as the original image data. Next, the
method converts the image to other sizes, using the image-scaling methods discussed
earlier. In each case, the code scales the incoming UIImage to a smaller size, converts
it to NSData, and calls one of the generated accessor methods.

Listing 13.21 Saving a New Photo in Multiple Sizes in an NSManagedObject
Subclass

- (UIImage *)image:(UIImage *)image scaleAspectToMaxSize:(CGFloat)newSize {

 CGSize size = [image size];

 CGFloat ratio;

 if (size.width > size.height) {

 ratio = newSize / size.width;

Turner_Book.indb 315 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence316

 } else {

 ratio = newSize / size.height;

 }

 CGRect rect = CGRectMake(0.0, 0.0, ratio * size.width, ratio * size.height);

 UIGraphicsBeginImageContext(rect.size);

 [image drawInRect:rect];

 UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();

 return scaledImage;

}

- (UIImage *)image:(UIImage *)image scaleAndCropToMaxSize:(CGSize)newSize {

 CGFloat largestSize =

 (newSize.width > newSize.height) ? newSize.width : newSize.height;

 CGSize imageSize = [image size];

 // Scale the image while maintaining the aspect and making sure

 // the scaled image is not smaller than the given new size. In

 // other words, we calculate the aspect ratio using the largest

 // dimension from the new size and the smallest dimension from the

 // actual size.

 CGFloat ratio;

 if (imageSize.width > imageSize.height) {

 ratio = largestSize / imageSize.height;

 } else {

 ratio = largestSize / imageSize.width;

 }

 CGRect rect =

 CGRectMake(0.0, 0.0, ratio * imageSize.width, ratio * imageSize.height);

 UIGraphicsBeginImageContext(rect.size);

 [image drawInRect:rect];

 UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();

 // Crop the image to the requested new size, maintaining

 // the innermost parts of the image.

 CGFloat offsetX = 0;

 CGFloat offsetY = 0;

 imageSize = [scaledImage size];

 if (imageSize.width < imageSize.height) {

 offsetY = (imageSize.height / 2) - (imageSize.width / 2);

 } else {

 offsetX = (imageSize.width / 2) - (imageSize.height / 2);

 }

 CGRect cropRect = CGRectMake(offsetX, offsetY,

 imageSize.width - (offsetX * 2),

 imageSize.height - (offsetY * 2));

Turner_Book.indb 316 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 317

 CGImageRef croppedImageRef =

 CGImageCreateWithImageInRect([scaledImage CGImage], cropRect);

 UIImage *newImage = [UIImage imageWithCGImage:croppedImageRef];

 CGImageRelease(croppedImageRef);

 return newImage;

}

- (void)saveImage:(UIImage *)newImage

{

 NSData *originalImageData = UIImageJPEGRepresentation(newImage, 0.8);

 [self setOriginalImageData:originalImageData];

 // Save thumbnail

 CGSize thumbnailSize = CGSizeMake(75.0, 75.0);

 UIImage *thumbnailImage = [self image:newImage

 scaleAndCropToMaxSize:thumbnailSize];

 NSData *thumbnailImageData = UIImageJPEGRepresentation(thumbnailImage, 0.8);

 [self setThumbnailImageData:thumbnailImageData];

 // Save large (screen-size) image

 CGRect screenBounds = [[UIScreen mainScreen] bounds];

 // Calculate size for retina displays

 CGFloat scale = [[UIScreen mainScreen] scale];

 CGFloat maxScreenSize = MAX(screenBounds.size.width,

 screenBounds.size.height) * scale;

 CGSize imageSize = [newImage size];

 CGFloat maxImageSize = MAX(imageSize.width, imageSize.height) * scale;

 CGFloat maxSize = MIN(maxScreenSize, maxImageSize);

 UIImage *largeImage = [self image:newImage scaleAspectToMaxSize:maxSize];

 NSData *largeImageData = UIImageJPEGRepresentation(largeImage, 0.8);

 [self setLargeImageData:largeImageData];

}

Going in the other direction, it would be convenient to be able to ask a Photo for a
UIImage even though the image is saved in the data store as binary data. Add the fol-
lowing convenience method declarations to Photo.h:

- (UIImage *)originalImage;

- (UIImage *)largeImage;

- (UIImage *)thumbnailImage;

The method definitions in Photo.m are straightforward and are shown in
Listing 13.22.

ptg999

Chapter 13 Data Persistence318

Listing 13.22 Convenience Methods to Get UIImage Objects from Binary Data in the
Data Store

- (UIImage *)originalImage;

{

 return [UIImage imageWithData:[self originalImageData]];

}

- (UIImage *)largeImage;

{

 return [UIImage imageWithData:[self largeImageData]];

}

- (UIImage *)thumbnailImage;

{

 return [UIImage imageWithData:[self thumbnailImageData]];

}

The PhotoAlbum class has a few custom methods of its own. First, you’ll over-
ride NSManagedObject’s awakeFromInsert method (Listing 13.23). This method
gets called when a managed object is first inserted into a managed object context and
is guaranteed to be called only once on any object. You’ll use this method to set the
photo album’s add date.

Listing 13.23 Setting the Add Date on Insertion into the Managed Object Context

- (void)awakeFromInsert

{

 [super awakeFromInsert];

 [self setDateAdded:[NSDate date]];

}

Next, you’ll add a convenience method for creating a new photo album (Listing
13.24). This method takes two arguments: the desired album name and the managed
object context into which the new album should be inserted. The second argument
is used because this is a class method rather than an instance method. Instances of
Photo Album have a reference to their managed object context, which can be looked
up using the managedObjectContext property. The PhotoAlbum class does not
have this property since it could be used in more than one context, so the managed
object context needs to be passed in by the caller of this method.

Listing 13.24 Adding a New Photo Album to a Managed Object Context

+ (PhotoAlbum *)newPhotoAlbumWithName:(NSString *)albumName

 inContext:(NSManagedObjectContext *)context

{

Turner_Book.indb 318 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 319

 PhotoAlbum *newAlbum = [NSEntityDescription

 insertNewObjectForEntityForName:@"PhotoAlbum"

 inManagedObjectContext:context];

 [newAlbum setName:albumName];

 NSMutableOrderedSet *photos = [newAlbum mutableOrderedSetValueForKey:@"photos"];

 for (int index=0; index<10; index++) {

 Photo *placeholderPhoto = [NSEntityDescription

 insertNewObjectForEntityForName:@"Photo"

 inManagedObjectContext:context];

 [photos addObject:placeholderPhoto];

 }

 return newAlbum;

}

The code starts off by creating a new PhotoAlbum and setting its name. The add
date will be set automatically in awakeFromInsert. Next, the code fills out the
album with placeholder objects. As with the property list implementation, this is done
so that photos can be added to the album at any index instead of only at the end of the
current photo list. The new Photo instances won’t have any of their properties set and
will use minimal memory.

Since this code makes use of the Photo class, make sure to import the header file
for that class at the top of the file:

#import "Photo.h"

PhotoAlbum also has a custom method to look up all albums in a managed object
context (Listing 13.25). This will be used when MasterViewController first loads,
so that it can display the full album list.

Listing 13.25 Looking Up All Photo Albums in a Managed Object Context

+ (NSMutableArray *)allPhotoAlbumsInContext:(NSManagedObjectContext *)context

{

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc]

 initWithEntityName:@"PhotoAlbum"];

 NSArray *sortDescriptors = [NSArray arrayWithObject:

 [NSSortDescriptor sortDescriptorWithKey:@"name"

 ascending:YES]];

 [fetchRequest setSortDescriptors:sortDescriptors];

 NSError *error = nil;

 NSArray *photoAlbums = [context executeFetchRequest:fetchRequest

 error:&error];

 if (photoAlbums != nil) {

 return [photoAlbums mutableCopy];

Turner_Book.indb 319 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence320

 } else {

 return [NSMutableArray array];

 }

}

The first thing this code does is create a fetch request for the entity named Photo-
Album. The entity name used here is just an NSString, but an entity with that name
must be present in the managed object context when the fetch request executes. The
sort descriptor requests that the results of the request be ordered by name. Sorting is
handled internally by Core Data; all that’s necessary is to provide the key or keys by
which you want to sort.

The method then executes the fetch. If any albums are found, the code creates
a mutable copy of the array and returns it. This method returns a mutable array so
that the caller can add new albums. If the managed object context doesn’t contain
any albums yet, the result will be nil, and in that case the method returns an empty
mutable array.

Make sure to add declarations in PhotoAlbum.h that correspond to the methods just
defined.

Reading and Saving Photo Albums with Core Data
Working with photo albums is a little simpler here than it was with property lists,
because a lot of the management work is handled by Core Data. Initially you need to
add nearly the same code to the top of MasterViewController.m (Listing 13.26). In addi-
tion, make sure to change the type of the MasterViewController’s data property
from NSMutableOrderedSet to NSMutableArray, just as you did in the property
list section of this chapter.

Listing 13.26 Import Statement and Class Extension for MasterViewController

#import "PhotoAlbum.h"

@interface MasterViewController ()

@property (readwrite, assign) NSUInteger currentAlbumIndex;

@end

The first line imports the header for the PhotoAlbum class, which you need so that
MasterViewController can work with albums. The rest declares the property cur-
rentAlbumIndex, which will be used to keep track of the album being displayed in
the detail view, so that MasterViewController can show the user which one is cur-
rently selected.

Setting up the list of albums can be done in viewDidLoad. Listing 13.27 shows an
updated version of MasterViewController.m’s –viewDidLoad that handles this.

Turner_Book.indb 320 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 321

Listing 13.27 Setting Up the List of Photo Albums

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view, typically from a nib.

 self.title = NSLocalizedString(@"Photo Albums", @"Photo albums title");

 [self setData:

 [PhotoAlbum allPhotoAlbumsInContext:[self managedObjectContext]]];

 if ([[self data] count] == 0) {

 PhotoAlbum *newAlbum = [PhotoAlbum

 newPhotoAlbumWithName:@"First album"

 inContext:[self managedObjectContext]];

 [self setData:[NSMutableArray arrayWithObject:newAlbum]];

 [[self managedObjectContext] save:nil];

 }

 [self.tableView selectRowAtIndexPath:[NSIndexPath indexPathForRow:0

 inSection:0]

 animated:NO

 scrollPosition:UITableViewScrollPositionMiddle];

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self

 action:@selector(add:)];

 [[self navigationItem] setRightBarButtonItem:addButton];

 [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];

 [[self detailViewController] setPhotoAlbum:[[self data] objectAtIndex:0]];

}

The first highlighted line loads all existing photo albums into MasterViewCon-
troller’s data array, using the convenience method defined earlier. The following
code handles the first-run scenario when no albums exist yet. If there are no albums,
the code creates an initial album and saves it in the data array. Then it tells the man-
aged object context to save changes so that this new album will be recorded in the
data store.

It’s also good to show the user which album is currently selected, so change the cell
configuration section of tableView:cellForRowAtIndexPath: to match the code
in Listing 13.28.

Turner_Book.indb 321 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence322

Listing 13.28 Configuring Table Cells to Show Photo Album Information

 // Configure the cell.

 PhotoAlbum *album = [[self data] objectAtIndex:[indexPath row]];

 [[cell textLabel] setText:[album name]];

 if ([indexPath row] == [self currentAlbumIndex]) {

 [cell setAccessoryType:UITableViewCellAccessoryCheckmark];

 } else {

 [cell setAccessoryType:UITableViewCellAccessoryNone];

 }

This code looks up a photo album corresponding to the current table index path
and sets the cell’s text to that album’s name. Next, it shows a check mark if the album
is the currently selected album.

You also need to change the code that handles editing photo album names to han-
dle Core Data entities properly. First, change the code in MasterViewController.m that
loads the NameEditorViewController to look like Listing 13.29.

Listing 13.29 Loading the Name Editor for a Core Data Photo Album Entity

- (void)tableView:(UITableView *)tableView

accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

{

 NameEditorViewController *newController =

 [[NameEditorViewController alloc] initWithDefaultNib];

 [newController setDelegate:self];

 [newController setEditing:YES];

 [newController setIndexPath:indexPath];

 NSString *name = [[[self data] objectAtIndex:[indexPath row]]

 valueForKey:@"name"];

 [newController setDefaultNameText:name];

 [newController setModalPresentationStyle:UIModalPresentationFormSheet];

 [self presentModalViewController:newController animated:YES];

}

The only change in Listing 13.29 is that the code now looks up the name property
of the selected photo album, which is defined on the PhotoAlbum entity.

You also need to update the callback from NameEditorViewController to han-
dle new album names and new albums. Make the method look like Listing 13.30.

Listing 13.30 Handling Photo Album Name Editor Callbacks with Core Data

- (void)nameEditorViewControllerDidFinish:(NameEditorViewController *)controller

{

 NSString *newName = [[controller nameTextField] text];

 if (newName && [newName length] > 0) {

Turner_Book.indb 322 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 323

 if ([controller isEditing]) {

 PhotoAlbum *album = [[self data]

 objectAtIndex:[[controller indexPath] row]];

 [album setName:newName];

 } else {

 PhotoAlbum *newAlbum = [PhotoAlbum

 newPhotoAlbumWithName:newName

 inContext:[self managedObjectContext]];

 [[self data] addObject:newAlbum];

 }

 [[self managedObjectContext] save:nil];

 [[self tableView] reloadData];

 }

}

If the controller was editing an album name, this code finds the PhotoAlbum being
edited and updates its name. If the controller was not editing an album name, the code
creates a new PhotoAlbum with the requested name and adds it to the data array.

In either case the code tells the managedObjectContext to save the change that
was just made.

Adding New Photos to an Album with Core Data
Now let’s see how to get pictures into photo albums when using Core Data. As
with the property list approach, the first thing we need to do is give DetailView-
Controller a reference to the currently selected photo album. Add a new property
to DetailViewController.h to hold this reference, only this time make it an instance of
PhotoAlbum:

@property (strong, nonatomic) PhotoAlbum *photoAlbum;

In the property list code photoAlbum was an NSMutableDictionary, which is
one of the core Cocoa Touch classes. Here it is a custom class that is part of the Photo-
WheelPrototype project, so you also need to add a declaration for the class for the
code to compile. Add this declaration at the top of DetailViewController.h, above the
@interface line:

@class PhotoAlbum;

Add a @synthesize statement for this property in DetailViewController.m. Also, be
sure to import PhotoAlbum.h so that the compiler will know where the class is defined:

#import "PhotoAlbum.h"

Now you need to tell DetailViewController what album is selected. You’ll
do this back in MasterViewController where the album selection is managed.
First, add a line to MasterViewController’s viewDidLoad, telling the detail view

Turner_Book.indb 323 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence324

controller to use the first album in the list. Make this the last line in the method, so
that it happens after the data property has been initialized.

 [[self detailViewController] setPhotoAlbum:[[self data] objectAtIndex:0]];

Next, fill in MasterViewController’s implementation of -tableView:
didSelectRowAtIndexPath: so that both the detail and master views will update
appropriately when the user taps on a photo album (Listing 13.31).

Listing 13.31 Changing the Selected Album Using Core Data

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 NSIndexPath *oldCurrentAlbumIndexPath = [NSIndexPath

 indexPathForRow:[self currentAlbumIndex]

 inSection:0];

 [self setCurrentAlbumIndex:[indexPath row]];

 [tableView reloadRowsAtIndexPaths:

 [NSArray arrayWithObjects:indexPath, oldCurrentAlbumIndexPath, nil]

 withRowAnimation:UITableViewRowAnimationNone];

 PhotoAlbum *selectedAlbum = [[self data] objectAtIndex:[indexPath row]];

 [[self detailViewController] setPhotoAlbum:selectedAlbum];

}

The first part of this code handles updating the current album index and updat-
ing the table view to show the new selection. It saves the old selected index in an
NSIndexPath and then updates the selection. Then it tells the table view to reload
data at both the previous and new selection values. This will lead to calls to -table-
View:cellForRowAtIndexPath: for both of those index paths, and that will remove
the check mark at the old selected row and add one at the new selection.

The rest of the method looks up the PhotoAlbum in the data array and tells
detailViewController that the selection has changed.

Getting new photos from the camera or photo library again happens in DetailView-
Controller.m in the UIImagePickerController delegate callback, though things
work differently with Core Data from the way they did with property lists (Listing
13.32).

Listing 13.32 Adding New Photos to a Photo Album Using Core Data

- (void)imagePickerController:(UIImagePickerController *)picker

 didFinishPickingMediaWithInfo:(NSDictionary *)info

{

 // If the popover controller is available,

 // assume the photo is selected from the library

 // and not from the camera.

 BOOL takenWithCamera = ([self popoverController] == nil);

Turner_Book.indb 324 12/11/11 6:46 PM

ptg999

Adding Custom Code to Model Objects 325

 // Dismiss the popover controller if available,

 // otherwise dismiss the camera view.

 if ([self masterPopoverController]) {

 [[self masterPopoverController] dismissPopoverAnimated:YES];

 [self setMasterPopoverController:nil];

 } else {

 [self dismissModalViewControllerAnimated:YES];

 }

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 [[self selectedPhotoWheelViewCell] setImage:image];

 Photo *targetPhoto = [[[self photoAlbum] photos]

 objectAtIndex:[self selectedWheelViewCellIndex]];

 [targetPhoto saveImage:image];

 [targetPhoto setDateAdded:[NSDate date]];

 NSError *error = nil;

 [[[self photoAlbum] managedObjectContext] save:&error];

if (takenWithCamera) {

 UIImageWriteToSavedPhotosAlbum(image, nil, nil, nil);

 }

}

 This code looks up the “target” photo in the album using the index of the selected
cell view. The new image is saved using Photo’s -saveImage: method, which was
discussed earlier. This creates multiple photo sizes as JPEG data and saves that data in
the target photo. The code then sets the photo’s add date to the current date and time.

The code then asks the managed object context to save the new changes. Unlike
with the property list version, no notification is posted here, because changes can be
saved directly instead of via MasterViewController.

As with the property list version, you need to add a property in DetailView-
Controller called selectedWheelViewCellIndex. It is an integer that
saves the index of the thumbnail view the user tapped on. Add the declaration
to DetailViewController.h, and add a corresponding @synthesize statement in
DetailViewController.m:

@property (assign, nonatomic) NSUInteger selectedWheelViewCellIndex;

The code in Listing 13.32 uses the Photo class, so be sure to import the header for
that class at the top of DetailViewController.m:

#import "Photo.h"

Turner_Book.indb 325 12/11/11 6:46 PM

ptg999

Chapter 13 Data Persistence326

Displaying Photos in an Album with Core Data
When the user selects a new album, DetailViewController needs to update its view
to show photos from that album. Since MasterViewController is already setting
DetailViewController’s photoAlbum property when that happens, the best place to
handle this is again in a custom setter method for that property (Listing 13.33).

Listing 13.33 Updating the Wheel View When a New Photo Album Is Selected

- (void)setPhotoAlbum:(PhotoAlbum *)photoAlbum

{

 _photoAlbum = photoAlbum;

 UIImage *defaultPhoto = [UIImage imageNamed:@"defaultPhoto.png"];

 for (NSUInteger index=0; index<10; index++) {

 PhotoWheelViewCell *cell = [[self data] objectAtIndex:index];

 Photo *photo = [[[self photoAlbum] photos] objectAtIndex:index];

 UIImage *thumbnail = [photo thumbnailImage];

 if (thumbnail != nil) {

 [cell setImage:thumbnail];

 } else {

 [cell setImage:defaultPhoto];

 }

 }

}

The first line in this method handles the actual setting of the new value of the
photo album property. The rest of the code runs through the album, updating the
wheel view as it goes. At each pass through the loop the code finds both the cell view
and the photo corresponding to the loop counter. If the photo has a thumbnail, the
code displays that thumbnail in the cell. Otherwise it displays a default image, indicat-
ing that no photo exists at that index.

With these changes the app is again ready for use as a prototype, now using Core
Data to store photos and albums instead of property lists.

In this version, the app uses Core Data to automatically sort photo albums based on
album properties. We have not added undo management, but if you wanted to do so,
Core Data would work directly with NSUndoManager to simplify the process.

Using SQLite Directly
Core Data is extremely useful as an app’s model layer, but it’s not ideal in all cases. In
some situations your needs might more closely match those of a database rather than
an object store. For example, if you routinely need to update a f lag on a large col-
lection of records, it is difficult to do so efficiently in Core Data. In those cases you
might prefer to work with SQLite directly. In most cases Core Data will be easier, but
in cases where it is not a good match, you can create and use your own SQLite files.

Turner_Book.indb 326 12/11/11 6:46 PM

ptg999

Exercises 327

SQLite offers a powerful API but it can be intimidating at first. It is written in C,
so you’ll have to do some work to convert between database records and your own
model objects. You can simplify this somewhat by using an Objective-C wrapper
for SQLite. Two open source projects, FMDB and PLDatabase,1 can greatly simplify
using SQLite in Objective-C code but otherwise don’t come between your code and
the database. You’ll still have to put some effort into converting between your model
objects and database records, but if the advantage of more direct database access is
important enough, it may be worth doing so.

Summary
This chapter presented different approaches to implementing the model layer of an
iPad app, and two alternatives were implemented. Core Data is frequently though not
always the better choice. At this point the PhotoWheelPrototype project can get new
photos, display them, and manage the albums that contain them. Next, you’ll move on
to implementing the rest of the user interface and other useful app features.

Exercises
1. Update the method -tableView:commitEditingStyle:forRowAtIndex-

Path: found in MasterViewController.m to delete the photo album from the
Core Data store. Hint: You can use the -deleteObject: method found on the
NSManagedObjectContext object.

1. FMDB can be found at github.com/ccgus/fmdb, and PLDatabase can be found at code
.google.com/p/pldatabase/.

Turner_Book.indb 327 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

14
Storyboarding in Xcode

Up to this point, you have been working on building the prototype app for PhotoWheel. Certain
design concepts were proven and development techniques explored, and you learned more about
building apps for the iPad. Now it’s time to use what you learned by starting to build the “real”
PhotoWheel app. To start things off, let’s talk about a new way of designing the user interface
using a feature called a storyboard.

What Is a Storyboard?
In the previous chapters, you learned how to create the user interface using IB and
NIB files. Mac and iOS developers have been creating user interfaces for years using
this approach. But the approach could be better. Imagine, for example, how helpful it
would be to see the entire user interface of your application on one screen, or to view
related screens at once.

And how cool would it be if you didn’t have to write the code to transition from
one screen to another? Imagine creating a user interface that displays a button, and
when that button is tapped it transitions the screen to a new view. Now imagine doing
this without writing any code. This is exactly what Apple has done with the new
story board feature in Xcode 4.2.

Apple engineers have improved the way iOS developers can create user inter-
faces. They have made it possible for developers to see the entire makeup of an app’s
user interface, and they have eliminated the need for the trivial code used to transi-
tion from one screen to another. This is all done within a storyboard; but what is a
storyboard?

Storyboarding, which was introduced with Xcode 4.2 and iOS 5, streamlines the
process of creating user interfaces and defines the transitions between view control-
lers. Under the hood, a storyboard still uses NIB files, but instead of having multiple
NIBs within your project, you now have a single storyboard file that contains all the
information that would otherwise be found in multiple NIBs. And with a storyboard,
you’re still using Interface Builder to design the UI because, after all, it’s all based
on NIBs.

Turner_Book.indb 329 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode330

This means that everything you already know about using IB applies to a story-
board. The same inspectors are available. The same Object library is available. You still
have view controllers, and you still define outlets and actions. You connect objects to
outlets and actions the same way you always have (Control-click and drag, Assistant
editor, etc.). With a storyboard, you create your user interface exactly the same way
you did with individual NIBs; the only difference is that you now can see all of the
screens at one time.

Note
You are not limited to a single storyboard within a project. A project can contain as many
storyboards as needed. Larger projects, for example, may have multiple storyboards, each
representing a collection of related screens or specific areas of the application. Think of a
storyboard as a collection of related NIBs (or screens) stored in a single file.

Using a Storyboard
You use a storyboard in much the same way you use a NIB. The only difference is that
instead of multiple NIB files in your project, you have a single storyboard containing
a collection of NIBs. You can, however, intermix storyboards and NIBs within your
project. Using a storyboard does not lock you into a single approach for UI design.

When creating a new project, most of the project templates give you the option to
use a storyboard or not. The generated template code will differ based on this option.
Say, for example, you create a new project called MyAwesomeApp. This will generate
the plist file MyAwesomeApp-Info.plist. This plist file contains settings about the app used
by the operating system and the runtime environment. The file includes settings such
as the name of the app, which is displayed on the iPad’s Home screen. The app name
is determined by a setting named Bundle Display Name (or CFBundleDisplayName,
if you look at the raw key).

Note
When viewing the Info.plist for a project, you have the option to view the key name in plain
English (as in Bundle Display Name) or as the raw key name (CFBundleDisplay-
Name). To switch between the two view options, Control-click (or right-click) the plist edi-
tor and select Show Raw Keys/Values from the popup menu (see Figure 14.1).

A project that uses a NIB file as the starting UI for the app (i.e., a project created
from a template with the Use Storyboard option turned off) will have the raw key
NSMainNibFile setting in its Info.plist. The key’s value is the NIB file name that is
used when the app is launched. A project using a storyboard as the starting UI will
have the UIMainStoryboardFile setting defined in the Info.plist with the storyboard
file name as the key’s value.

Another notable difference between an app that launches with a NIB and one that
launches with a storyboard is the main window. All iOS applications have a main

Turner_Book.indb 330 12/11/11 6:46 PM

ptg999

What Is a Storyboard? 331

window. The main window contains the root view controller that manages the initial
screen of the app. The generated project template for a NIB-based project will include
a NIB and outlet for the main window. This is not the case with a storyboard project.
When the app launches with a storyboard, the main window is not defined in the
project. Instead, it is automatically created when the storyboard loads.

Note
To better understand the difference, create two new single view application projects. In
one, turn on the Use Storyboard option and turn off the option in the other. Take a look
at the generated project files. The storyboard-based project doesn’t have any NIB files,
only a single MainStoryboard.storyboard file. The code in the app delegate is also differ-
ent. In the application:didFinishLaunchingWithOptions: method for the
NIB-based project, you see that the rootViewController is set for the window. This
code is not present in storyboard-based projects as it is done behind the scenes.

Scenes
Storyboarding introduces two new concepts to UI design: a scene and a segue.

A scene is a view controller representing a particular aspect of the screen. For
iPhone applications, a scene typically represents the full screen of the device. The same
can be true for iPad apps. However, a scene for the iPad may also represent only a por-
tion of the screen where a collection of scenes is used to form the entire screen at run
time. In other words, multiple scenes are displayed simultaneously to form the whole
screen. (You learn how to break up the screen into multiple scenes in Chapter 15,
“Doing More with View Controllers.”)

Each scene is managed by a view controller, and every storyboard file has one and
only one view controller f lagged as the initial view controller (Figure 14.2). The ini-
tial view controller is the first scene displayed by the storyboard when it is loaded.

Figure 14.1 Use the popup menu to show and hide raw key values.

Turner_Book.indb 331 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode332

Segues
The other new concept introduced with storyboards is that of a segue. A segue repre-
sents the transition between two scenes (see Figure 14.3). It provides the magic needed
to produce an animated transition from one scene to another without writing code.

A segue performs a transition from one scene to another when some event or action
occurs within the first scene. For example, when a button is tapped in one scene, a

Figure 14.2 Is Initial View Controller flag available in the
Attributes inspector

Figure 14.3 Sample storyboard with two scenes and one segue

Turner_Book.indb 332 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 333

segue performs the necessary work to display the next scene. The transition is often
animated, with the new scene sliding up from the bottom or sliding in from right to
left, similar to what you might see in a Keynote presentation. Other animated tran-
sitions are available as well, and you can even create your own custom animation
sequence for a segue (which you will do later in this chapter).

What makes a segue cool—at least from the developer’s perspective—is that the
relationship between the two scenes and the transition are defined visually using Inter-
face Builder. In other words, you don’t have to write the code for it.

Granted, we as developers know that at some point code is needed, and this
is true with segues. While a segue manages the transition between two scenes, it
doesn’t have the smarts to pass data between the scenes. And often a new scene must
be told by the previous scene what content to display. Thankfully there is an event,
prepareForSegue:sender:, that you override should you need to pass data between
scenes. (You’ll learn more about this method and using segues in the next chapter.)

Storyboarding PhotoWheel
So now you know: A storyboard is a visual design canvas for creating user interfaces
consisting of scenes (view controllers) and segues (transitions between scenes). But to
really understand a storyboard, you have to give it a go. Fortunately for you, you’re at
a place in the book where it’s time to create the real PhotoWheel application, so using
a storyboard for the UI design seems appropriate. While we’re at it, now is also a good
time to introduce another new feature in Xcode 4.2 called workspace.

Workspace
An Xcode workspace is a container for one or more related projects. It provides the
following benefits:

n The Project navigator provides quick access to related projects.
n Xcode automatically detects dependencies between projects and builds them in

the correct sequence.
n Project files are visible to other projects, so there is no need to copy shared

libraries into project folders.
n The scope of Xcode’s content-aware features, such as code completion, extends

across all projects within the workspace.

A workspace can also contain related projects that don’t necessarily share code and
are not dependent on one another. You can, for example, create a workspace contain-
ing the PhotoWheel prototype and the new PhotoWheel project. The two projects
are related but not dependent on each other. With the workspace, you will be able to
switch quickly between the projects, make changes to either project, and build and
run the projects, all from a single workspace window.

Turner_Book.indb 333 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode334

To create a new workspace, select File > New > New Workspace (or Control-
�-N). Name the workspace “PhotoWheel” and save it to the same directory con-
taining the PhotoWheelPrototype Xcode project. You should now have an empty
workspace window.

Select File > Add Files to “PhotoWheel” (or Option-�-A). Select the Photo-
WheelPrototype Xcode project file and click the Add button (see Figure 14.4). You
now have one project contained in the PhotoWheel workspace.

Now add a new project to the workspace. To do this, select File > New > New
Project (or Shift-�-N). Alternatively, you can Control-click the Project navigator
and select New Project from the popup menu. Select the Empty Application template
under iOS > Application. Click the Next button to continue.

For the project options, enter “PhotoWheel” as the Product Name, select iPad for
the Device Family, and select the Use Core Data option. Also, select the Use Auto-
matic Reference Counting option. Click the Next button. Save the project to the
same directory containing the prototype project and the PhotoWheel workspace.
Make sure the PhotoWheel workspace is selected as the group, as seen in Figure 14.5.

Click the Create button to create the new project. This will also add the project to
the workspace. You should now have a PhotoWheel workspace containing two proj-
ects, PhotoWheel and PhotoWheelPrototype, as seen in Figure 14.6.

Did you notice that there was no option for a storyboard? The Empty Application
template creates a bare-bones project. At the moment, the project does not support a
main storyboard or NIB. This is something you do manually with a few simple steps,
and while we’re at it, let’s do a couple of other things to the project so that you can
concentrate on development.

Figure 14.4 Add the PhotoWheelPrototype project to the workspace.

Turner_Book.indb 334 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 335

Figure 14.5 Create a new project in the PhotoWheel workspace. Make
sure you select the PhotoWheel workspace as the group.

Figure 14.6 The PhotoWheel workspace contains two projects,
PhotoWheel and PhotoWheelPrototype.

Turner_Book.indb 335 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode336

Why Are We Using the Empty Application Template?
Xcode’s application templates are a great way to quickly get started on a new project.
The same is true for file templates such as the UIViewController subclass. The
template generates the necessary code so that you can quickly get started, but you’ll
often find yourself deleting generated project files, renaming files, and deleting tem-
plate code you won’t ever use. And it’s not uncommon for templates to change with
each release of Xcode, which means you must relearn what the template will and won’t
do for you.

Sometimes it’s just easier to work with empty templates. This means that you do all
the work, but over time you’ll find that it saves time since you do not have to clean up
the files and code generated by the template. This is why many developers choose to
use empty templates instead.

Add the Main Storyboard
You need to set up the project to use a storyboard, which means that the first thing
you must do is add the main storyboard to the project. Select the PhotoWheel proj-
ect or any of its files in the Project navigator. Type �-N to create a new file. Select
Storyboard as the file type (found under iOS > User Interface, as shown in Figure
14.7). Click the Next button. Select iPad as the device family, and click Next again.
Name the storyboard “MainStoryboard,” then click the Create button. The new
storyboard file is added to the PhotoWheel project.

Figure 14.7 Add a new storyboard to the project. Storyboard is found
under iOS > User Interface.

Turner_Book.indb 336 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 337

Before the storyboard can be used, it needs an initial view controller representing
the initial scene. Select MainStoryboard in the Project navigator to open it. Open the
Object library found in the Utilities area (Control-Option-�-3). Drop a view con-
troller object onto the storyboard’s designer canvas. Next, drop a label onto the view
managed by the view controller. This will give you something visual when you test
that the storyboard is loading properly. Your storyboard should look similar to the one
in Figure 14.8.

One thing you quickly realize when working with iPad scenes is that they tend to
take up a lot of screen real estate. A helpful tip is to hide parts of the workspace that
you are not using while working on a storyboard. For instance, hide the Navigator
area (�-0) and the Utilities area (Option-�-0). You can also double-click the design
canvas to zoom in and out. This is helpful when you want to view multiple scenes at
once. You can also use the hover buttons at the bottom left and right corners of the
designer to show and hide the IB dock and to zoom in and out. Just be aware that
when you zoom out on a storyboard, edits cannot be performed. You must zoom in
on a scene to make edits, add and remove objects, and so on.

Figure 14.8 Screen shot of the PhotoWheel workspace with the main
storyboard open in the IB editor

Turner_Book.indb 337 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode338

Set UIMainStoryboardFile
Next, you need to tell the project to use the storyboard. In the Project navigator,
select the file PhotoWheel-Info.plist. It can be found under the Supporting Files group.
Control-click (or right-click) the Editor area to display the popup menu. Select Add
Row from the menu, as shown in Figure 14.9. If you are viewing the keys in plain
English, type “Main Storyboard file base name” as the key for the new row. (The edi-
tor should find the key for you if you simply type “Main story.”) If you are viewing
the raw keys, the key name is UIMainStoryboardFile.

Next, enter “MainStoryboard” for the value. This is the name of the storyboard file
you just created. However, do not include the file extension; it will be added for you
at run time. The setting is shown in Figure 14.10. Be sure to save (�-S) your changes
to the file.

Figure 14.9 Add a row to the plist by Control-clicking the editor and
selecting Add Row from the popup menu.

Figure 14.10 Set the “Main Storyboard file base name” to
“MainStoryboard.”

Turner_Book.indb 338 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 339

Update AppDelegate
The final step of the process is to change the application:didFinishLaunching-
WithOptions: method in AppDelegate.m to not create the main window. This may
seem odd given that all iOS applications must have a main window, but the window
is created automatically when the main storyboard is loaded. If the code in the app
delegate were to remain, the main storyboard would not be attached to the correct
window.

Open the file AppDelegate.m found in the Project navigator. Delete the first few
lines of code in the application:didFinishLaunchingWithOptions: method so
that it matches the code in Listing 14.1.

Listing 14.1 Changes to AppDelegate.m

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 [self.window makeKeyAndVisible];

 return YES;

}

Save your changes and run the app. Make sure you have set the active scheme
to PhotoWheel and the run destination to iPad 5.0 Simulator, as shown in Figure
14.11. You’ll see PhotoWheel running in the simulator with its one scene contain-
ing the label. This tells you that the project has been properly set up to use the main
storyboard.

Note
This work is done automatically when you select a project template that has the Use
Storyboard option turned on. But since the option is not available with the Empty Applica-
tion template, you are left with doing the setup yourself.

Add Images
One more thing must happen before you start work on the PhotoWheel app. A num-
ber of images are used in the app, everything from the app icon to background images
for views. Instead of adding the images piecemeal as you read the rest of the book,

Figure 14.11 Select PhotoWheel as the active scheme, and select iPad
5.0 Simulator as the run destination.

Turner_Book.indb 339 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode340

let’s add those images now. This will save you steps later, and it will save trees (as in
printed pages) because we won’t have to tell you to add an image here and there.

Download the Images
The images used to create PhotoWheel can be downloaded from the book’s Web site,
located at learnipadprogramming.com/files/2011/08/lipad-pw-images.zip. Download the
.zip file containing the images, and unzip the archive on your system.

Now that you have downloaded the images used in PhotoWheel (you just did that,
right?), it’s time to add them to the PhotoWheel project. With the PhotoWheel project
selected, select File > Add Files to “PhotoWheel” (Option-�-A). Navigate to
and select the lipad-pw-images folder that was created when you unpacked the .zip file.
Be sure to select the Destination option “Copy items into destination group’s folder (if
needed)” as shown in Figure 14.12; this copies the images into the PhotoWheel project
directory. Click the Add button to add the images to the project.

The images needed to complete PhotoWheel are now part of the project, and they
will be available when you need them. There’s no need to worry about adding images
to the project in later parts of the book.

Figure 14.12 Add images to the PhotoWheel project.

Turner_Book.indb 340 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 341

App Icon
With the images in place, there’s no better time than the present to add the app icon
to the project. When looking at the images, you may notice that there are multiple
icon files (Icon*.png). Each of these represents the app icon; they are just at different
resolutions. iPhone app icons are 57 × 57 pixels in size. iPad app icons are 72 × 72.
And other sizes are used for things such as Spotlight’s search icon, the Settings icon,
and on iOS devices with a retina display (which, at the time of this writing, is just the
iPhone 4). The different sizes enable the app icon designer to add and remove detail as
needed to make the best-looking icon for the particular size.

iOS knows which icon to use for display. If, for example, the app icon is displayed
in the Settings app, iOS looks for a 29 × 29-pixel icon. If that image isn’t found, iOS
will use the main app icon (72 × 72 for iPad and 57 × 57 for iPhone) and scale it down
to the appropriate size. If you have the app icon stored at different sizes, you can tell
iOS about them by adding icon references in the project’s Info.plist.

To accomplish this with the PhotoWheel app, open PhotoWheel-Info.plist and add the
entries shown in Figure 14.13 to the plist. This tells iOS about the different-size app
icons for PhotoWheel.

Initial View Controller
As previously mentioned, each storyboard will have an initial view controller. This is
the first scene displayed when the storyboard is loaded. MainStoryboard has only one
scene at the moment, so it is the initial view controller. If, however, there are multiple
scenes in the storyboard, you can change the initial view controller by selecting the
view controller and selecting the Initial Scene setting in the Attributes inspector, as
shown in Figure 14.14. But MainStoryboard has only one scene for the moment, so
you do not need to worry about changing this setting. Instead, let’s focus on setting up
the storyboard.

Open MainStoryboard and select the one and only scene. Delete the label object
added earlier, as it is no longer needed. You now have a clean slate to work with.

Drop an image view (UIImageView) onto the view managed by the scene’s view
controller. Set the image view to fill the entire view. A quick way to accomplish this is
to open the Size inspector (Option-�-5) and set the X, Y, Width, and Height values,
as shown in Figure 14.15.

Figure 14.13 Add the list of icon file names to the PhotoWheel-Info.plist.

Turner_Book.indb 341 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode342

Next, open the Attributes inspector (Option-�-4) and set the Image name to
background-portrait-grooved.png. You can open the drop-down list to see the list of avail-
able images. These are the images added to the project earlier.

Now add two more image views. The settings you want to use are listed in Table
14.1.

Figure 14.14 A storyboard with one scene flagged as the initial
view controller

Figure 14.15 Size inspector values for the image view

Turner_Book.indb 342 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 343

Next, add a button to the view. The button is listed in the Object library as Round
Rect Button, or you can filter on “Button” or “UIButton.” In the Attributes inspec-
tor, set the Type to Custom and set the Image to stack-add.png; this image is used when
the button is in a normal state. To add the image representing the button in a down
state, change the State Config from Default to Highlighted. Now set the Image to
stack-add-down.png. The button, which is displayed as an image, now has visible normal
and down states.

Switch to the Size inspector and set the following for the button: X to 295, Y to
846, and Height and Width each to 178. You should now see a round + button at the
bottom of the scene.

One more visual addition to the scene is needed. Drop another Round Rect Button
(UIButton) onto the view. Change its Type to Info Light. Set X to 722 and Y to 959;
you cannot change its Width and Height because those are controlled by the system.

The main scene is now complete. Run the app and take a look at your work. The
scene should look like Figure 14.16.

Table 14.1 UIImageView Settings

Image Name X Y Width Height

stack-viewer-bg-portrait.png 26 18 716 717

stack-bg.png 109 680 551 550

Figure 14.16 The PhotoWheel app running with the main scene
displayed in the simulator

Turner_Book.indb 343 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode344

Note
If the arrow pointing to the wheel is not visible, you may need to reorder the images. You
can accomplish this by selecting the image view for stack-viewer-bg-portrait.png and then
selecting Editor > Arrange > Send to Front from the menu bar.

Another Scene
Another scene is needed, one that is displayed when the info button (the i button
at the lower right of the UI) is tapped. Create the new scene in MainStoryboard by
dropping in a new view controller from the Object library. You may want to zoom
out so that you can see the two views side by side, as shown in Figure 14.17.

This new scene displays the About screen for the app when the user taps the info
button found on the main scene. The first thing to add is a toolbar that is displayed
across the top of the scene. Find the toolbar in the Object library, drop it onto the
view of the new scene, and place it at the top of the view.

By default, a toolbar anchors itself to the bottom of the view. This is determined by
the autosizing settings found in the Size inspector. Autosizing plays an important role
when the device is rotated. It allows objects on the screen to automatically size and
position themselves when the device rotates. This is covered in more detail in Chapter
18, “Supporting Device Rotation.” For now, just know that you need to anchor the
toolbar to the top of the view.

Figure 14.17 Storyboard with two scenes, zoomed out to see both at
the same time

Turner_Book.indb 344 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 345

To accomplish this, open the Size inspector. Click on the dashed red constraint bar
at the top of the Autosizing settings area. This anchors the object to the top of its cur-
rent position. In other words, if the top position changes when the user rotates his iPad,
the object adjusts its position to whatever is the top of the display. Next, click on the
solid red I beam at the bottom, turning it into a dotted I beam. This prevents the tool-
bar from anchoring to the bottom. The Size inspector should look like Figure 14.18.

The toolbar comes with a default button labeled Item. Let’s move the item to the
right side of the toolbar. Filter the Object library with the word “Flexible.” This shows
the f lexible space bar button item in the object list. Drop this object just to the left of
the Item button in the toolbar. This moves the Item button to the far right.

Note
There is also a fixed space bar button item that you can use if you ever want to separate
toolbar items by a specific set of pixels.

The Item button is now positioned correctly, but we need to change it to read
“Done.” One way to do this is by changing the title of the button, but a better way is
to change the button’s identifier. Select the Item button, and then open the Attributes
inspector. Open the Identifier drop-down list to see the list of available system but-
tons. This list covers the most common buttons used in iOS apps, including the Done
button. Change the Identifier from Custom to Done. This changes the display style of
the button and sets its label to “Done.”

Why Is This Better?
Setting a button’s identifier in the Attributes inspector is better because your app will use
system-provided buttons whenever possible. One benefit here is that the buttons have
already been localized and internationalized by Apple. Also, using system-provided buttons
helps ensure consistency between apps, reducing the learning curve for the user.

Let’s display the information about the app on the About scene. This scene will include
the app icon in an image view along with the name of the app and its version number. To

Figure 14.18 The Size inspector values for the toolbar

Turner_Book.indb 345 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode346

accomplish this, drop an image view onto the view. Set the image name to Icon@2x.png.
From the Size inspector, set X to 160, Y to 190, and the Width and Height to 114.

Now add a label (UILabel) to the view, and set its Text to “PhotoWheel.” In the
Attributes inspector, set the Font to System Bold 24.0. (You can click the T icon in
the Font field to display the popover with font settings, as shown in Figure 14.19.)
Last, resize the label’s width so that the text, “PhotoWheel,” is not truncated. You can
eyeball the position of the label or set the size manually (X to 317, Y to 190, Width to
193, and Height to 21).

Place another label below the PhotoWheel label. Set its Text to “Version 1.0” and
its Font to System 18. Use the alignment guides (covered in Chapter 3, “Getting Started
with Interface Builder”) to position and size the label based on the PhotoWheel label,
or set the size manually (X to 317, Y to 219, Width to 193, and Height to 21). The
scene should look similar to the one in Figure 14.20.

Creating a Segue
The storyboard now has two scenes, but there is no segue (also known as a transition)
between the two. What we want is to have the About scene display when the user taps
the info button on the main scene. This can be accomplished without writing a single
line of code.

Adjust the designer display so that you can see both scenes. You do not need to
zoom completely out, but you do need to see portions of both scenes at the same
time. Next, Control-click on the info button (i) in the main scene and drag it any-
where on the About scene. This displays the Storyboard Segues HUD, showing the
perform SegueWithIdentifier:sender: method. Select this method to create a
segue between the info button and the About scene. A line with an arrow at the end
is drawn between the two scenes. This arrow represents the segue and shows the rela-
tionship between the two scenes.

Figure 14.19 Font settings popover

Turner_Book.indb 346 12/11/11 6:46 PM

ptg999

Storyboarding PhotoWheel 347

Note
If your segue is not working when you run the app, it’s possible that the segue was not
created from the info button. The easiest way to fix this is to delete the segue and create
it again, making sure you Control-click and drag from the info button to the About scene.

You can fine-tune the transition managed by the segue by clicking the segue arrow
and then opening the Attributes inspector. Set the Identifier to AboutSceneSegue. The
Identifier can be used to perform segues programmatically. Next, set the style, presen-
tation, and transition for the segue.

We want the segue Style to be Modal; this displays the About scene on top of the
main scene. Set the Presentation to Form Sheet. This resizes the About scene to the
smaller form size. Finally, leave the Transition set to Default (although you should play
with other transition styles so that you can see how they differ). The storyboard should
now look like it does in Figure 14.21.

Run the app and take a look at your handiwork. The app displays the main scene
when launched, and the About scene is displayed when the info button is tapped, as
shown in Figure 14.22. All of this was accomplished without writing a single line of
code. Of course, you’ll quickly see that code is needed to dismiss the About scene
when the Done button is tapped. You’ll learn how to add code behind a scene in the
next chapter, so for now you must quit the app to dismiss the About scene.

Figure 14.20 The About scene as it looks in the storyboard

Turner_Book.indb 347 12/11/11 6:46 PM

ptg999

Chapter 14 Storyboarding in Xcode348

Figure 14.21 The storyboard with two scenes and a segue

Figure 14.22 The completed app when run in the simulator

Turner_Book.indb 348 12/11/11 6:46 PM

ptg999

Exercises 349

Summary
This chapter introduced you to a new way of creating user interfaces called story-
boarding. A storyboard is built on top of Interface Builder, so everything you already
know about building a UI in IB still applies. You also learned how to set up an empty
application project to support storyboarding, and you were introduced to workspaces,
a way to quickly access related projects from the same workspace window.

Exercises
 1. Open PhotoWheel-Info.plist. Switch between the plain English and raw key values

views.

2. Create a single view application project. Select the Use Storyboard option. Now
create a second project, but this time do not select the Use Storyboard option.
Compare the two projects.

3. Create a workspace and add the two projects created in the previous exercise to
the workspace.

4. Open MainStoryboard and change the style, presentation, and transitions for the
AboutSceneSegue.

Turner_Book.indb 349 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

15
Doing More with View

Controllers

In Chapter 14, “Storyboarding in Xcode,” you learned how to use a storyboard to build the initial
user interface for PhotoWheel. You created the main storyboard, added two scenes to it, and used a
segue to display the About scene from the main scene. All of this was accomplished without writing
a single line of code; but we developers know an app cannot really be useful unless there is code.

This chapter will show you how to do more with your scenes by writing custom view controller
classes, with each view controller managing a storyboard scene. You will also learn how to create
and use custom segues to give your app that special somethin’-somethin’.

Implementing a View Controller
You learned early on in the book that when using a NIB for a screen, a view control-
ler class is implemented to coordinate the interactions between the view and model
classes. You do the same with a storyboard. Each scene in the storyboard has its own
view controller. In fact, to create a scene in a storyboard, you drop a view controller
object from the Object library onto the IB design canvas. This means that each scene,
at a minimum, has a view controller, which is of type UIViewController. But to do
more, you will need to create your own UIViewController subclass.

Let’s take a look at the About scene created in the last chapter. A segue connects
the About scene to the main scene by way of the info button found in the lower right
corner of the main scene. When the user taps the button, the About scene is displayed.
To close the About scene, the user taps the Done button, but it doesn’t work. That’s
because you have not told the Done button what to do when the button is tapped.

How do you tell the Done button to dismiss the About scene? You might be
thinking, “Use another segue,” but unfortunately that will not work here. A segue
guides the user forward through the app’s UI, not backward. There is no segue for dis-
missing a modal view controller. Instead, a bit of code is needed.

A custom view controller is needed for the About scene. This view controller will
have an action for the Done button. The implementation of this action dismisses the
About scene when Done is tapped.

Turner_Book.indb 351 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers352

To make this happen, create a new view controller class. Select the PhotoWheel
project in the workspace. Type �-N to create a new file. Select the Objective-C
class template and click the Next button. Name the class AboutViewController
and make it a subclass of UIViewController (see Figure 15.1). Click the Next but-
ton, and save the class file in the project directory by clicking the Create button. The
AboutViewController has been added to the PhotoWheel project.

Note
You can use the UIViewController subclass template instead of the Objective-C
class template if you like. This will generate additional code for you, which is not needed
at this time.

An action is needed for the Done button, so open the file AboutViewController.h and add
the declaration for the action method done:. The source code is shown in Listing 15.1.

Listing 15.1 AboutViewController.h with the New Action Method done:

#import <UIKit/UIKit.h>

@interface AboutViewController : UIViewController

- (IBAction)done:(id)sender;

@end

Figure 15.1 Create a new class named AboutViewController,
which is a subclass of UIViewController.

Turner_Book.indb 352 12/11/11 6:46 PM

ptg999

Implementing a View Controller 353

Next, you need to implement done:. Open AboutViewController.m (Control-�-Up
or Control-�-Down to switch between the counterpart files) and add the done:
implementation, shown in Listing 15.2.

Listing 15.2 AboutViewController.m with the done: Implementation

#import "AboutViewController.h"

@implementation AboutViewController

- (IBAction)done:(id)sender

{

 [self dismissModalViewControllerAnimated:YES];

}

@end

The implementation is straightforward. It calls the -dismissModalView-
ControllerAnimated: method on itself. This closes the About scene and returns the
user to the main scene.

With the view controller now in place, it’s time to update the About scene so that
it knows about and uses the AboutViewController class. Open the MainStoryboard.
storyboard file. Select the view controller for the About scene. If the document outline
is visible (Editor > Show Document Outline), you can click the View Controller
object in the IB dock. Otherwise click the View Controller object in the object bar
below the scene (see Figure 15.2).

Open the Identity inspector (Option-�-3). The Class defaults to UIView-
Controller. Change this to AboutViewController. Now the scene is aware of the
AboutViewController you created. Now connect the Done button to the done:
action declared in AboutViewController. One way to accomplish this is to Con-
trol-click and drag from the Done button to the AboutViewController object dis-
played in either the IB dock or in the object bar. Note that because the Done button
is inside the toolbar, you must click the Done button twice to select it. Or you can
expand the document structure and select the Done button, as shown in Figure 15.3.

Note
Yet another way of declaring the done: action and making the connection is to use the
Assistant editor. Refer to Chapter 3, “Getting Started with Interface Builder,” for instruc-
tions on using the Assistant editor.

That’s it. The Done button is now connected to the done: action method, and
the done: action method dismisses the modal view, which is the About scene. Save
your changes and run the app. Tap the info button to display the About scene. Tap the
Done button on the About scene to close it and return to the main scene.

Everything should work smoothly now.

Turner_Book.indb 353 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers354

Figure 15.2 The About View Controller Scene in the main storyboard

Figure 15.3 Connect the Done button to the done: action.

Turner_Book.indb 354 12/11/11 6:46 PM

ptg999

Segue 355

Segue
As you may recall, a segue manages the transition between two scenes. A segue is
defined visually within the storyboard, and you use the Attributes inspector to fine-
tune it. You fine-tune the segue by combining its style, presentation, and transi-
tion. For instance, the AboutSceneSegue created in Chapter 14, “Storyboarding in
Xcode,” uses the style Modal, presentation Form Sheet, and transition Default. When
the segue is used to display the About scene, the scene animates up from the bottom
(transition). It fills only the center portion of the screen; it does not take over the
full screen (presentation). And it’s a modal view (style), meaning it sits on top of the
underlying view, and user interaction with the underlying view is disabled.

Note
Not all segue types have the same three properties: style, presentation, and transition. A
push segue, for example, has style and destination, and a popover segue has style, direc-
tion, anchor, and pass-through.

The combination of properties defines the segue and its behavior. The combination
you use depends on the design of the scene and app. For example, if the app was using a
navigation controller, a push segue would be used to push a new scene (view controller)
onto the navigation stack. Or a popover segue can be used to display a view within a
popover. There’s even a replace-style segue that replaces one scene with another.

But what if you cannot find the ideal segue for your app’s needs? For this you can
create a custom segue.

Creating a Custom Segue
A custom segue is a segue that you implement to suit the needs of your app. Creating
a custom segue gives you complete control over the segue’s behavior. Say you want
to have an explosion-style animation that starts from the center of the screen when
transitioning from one scene to another. (Not that you would, but let’s use that as an
example.) The iOS SDK doesn’t provide a segue for this type of effect, so you will
need to create one.

To create a custom segue, you create a new class that subclasses UIStoryboard-
Segue. In the class implementation, override the -(void)perform method to perform
the custom transition. The segue provides access to both the source and destination
view controllers, so you can change the transition based on these two controllers.

Let’s take a closer look at a custom segue by creating one.

Setting the Scene
PhotoWheel needs a way to display a photo browser when a photo is tapped, and the
photo browser needs a way to return to the main scene with a tap of a finger. But
unlike the About scene, the photo browser should not be modal; it should fill the
entire screen.

Turner_Book.indb 355 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers356

iOS provides a controller class named UINavigationController which manages
a stack of view controllers. The top view controller in the stack is the visible control-
ler. A new controller is added to the stack with a push (the -pushViewController:
animated: method). This makes the new controller the top controller, which in
turn makes it the visible controller. To return to a previous controller in the stack, a
pop is performed. The navigation controller enables an app to pop the top controller
(-popViewControllerAnimated:) or pop to a specific controller within the stack
(-popToViewController:animated:), including the root view controller
(-popToRootViewControllerAnimated:), which is at the bottom of the stack.

The navigation controller is perfect for PhotoWheel! The main view controller is the
root controller on the navigation stack since it’s the first controller displayed. When
the user taps a photo, the photo browser view controller is pushed onto the navigation
stack. This displays the photo browser.

To get back to the main scene, the user needs to tap a Back button, which is pro-
vided by the navigation controller. The navigation controller displays a navigation bar
at the top of the screen. A Back button is displayed on the left that enables the user to
navigate back to the previous view controller in the stack.

Before you implement the custom segue, let’s add the photo browser scene to the
storyboard. And let’s use the standard push segue to transition between the main scene
and the photo browser scene.

Open the MainStoryboard.storyboard file and drop a Round Rect Button somewhere
onto the main scene. The button is temporarily used to test the transition from the
main scene to the photo browser scene. Next, create a new scene by dropping a view
controller object onto the design canvas. Control-click the button on the main scene
and drag to the new scene to create a new segue between the two scenes. Click the
segue and open the Attributes inspector. Set the Style to Push and the Destination to
Current.

If you run the app, you might be surprised to learn that the new scene does not
appear when the button in the main scene is tapped. This is because the new scene
is pushed onto the navigation stack, but the storyboard does not have a scene with a
navigation controller. You can quickly remedy this by selecting the main scene in the
storyboard and choosing Editor > Embed In > Navigation Controller from the
menu bar. This creates a new scene for the navigation controller, and it sets the scene
as the initial view controller.

Run the app to see the navigation controller in action. When you tap the button
in the main scene (at the center on the left of Figure 15.4), the photo browser scene is
pushed onto the stack (at the right in Figure 15.4). You can return to the main scene
by tapping the Back button displayed in the navigation bar at the top of the screen.
Figure 15.4 shows the two scenes side by side.

Navigation and the transition between the two scenes are working, but some things
are not quite right. The navigation bar at the top of the main scene looks out of place.
Not only that, it causes the rest of the screen to shift downward. You can fix this by
hiding the navigation bar, but if you hide it, it won’t be visible in the second scene.

Turner_Book.indb 356 12/11/11 6:46 PM

ptg999

Segue 357

And if it is not visible, the user will have no way of returning to the main scene from
the photo browser scene.

The other issue is the transition from the main scene to the photo browser scene.
While the default transition of sliding the next view from right to left is fine for many
apps, it won’t look so great once PhotoWheel displays the pictures. The effect we
want is to have the transition explode from the touch point, so that when you touch a
Photo Wheel, the images fan out in a view. This is the perfect job for a custom segue.

First things first: Let’s fix the navigation bar display, then move on to the custom
segue.

The navigation bar should have a black style. This makes it blend in better with the
PhotoWheel look and feel. To change the style, you need to open the Document Out-
line, select the Navigation Controller Scene, and click on the disclosure icon for the
Navigation Controller object. Click on the navigation bar object to select it, then open
the Attributes inspector (Option-�-4). In the Inspector, set the Style from Default to
Black Translucent.

Next, you want to hide the navigation bar so that it does not appear on the main
screen. To hide the navigation bar, open the MainStoryboard.storyboard file and select
the Navigation Controller Scene. Open the Attributes inspector (Option-�-4) and
deselect the Shows Navigation Bar attribute (shown in Figure 15.5). You can see that
the navigation bar is hidden in the storyboard scenes when you deselect this option.

Figure 15.4 Side-by-side view of the main and photo browser scenes

Turner_Book.indb 357 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers358

Now that the navigation bar is hidden, the user will not have a way to return to the
main scene from the photo browser scene. There are two possible ways to solve this:

n Show the navigation bar in -viewWillAppear: for the photo browser view
controller.

n Include the showing of the navigation bar in the custom segue.

In PhotoWheel, we have chosen the second option because that enables you to control
the animation sequence for presenting the navigation bar. Let’s implement that custom
segue.

Implementing a Custom Segue
A custom segue is needed to override the default visual transition provided by the
push segue. To use a custom segue, you change the segue attributes using the Attri-
butes inspector. Open the main storyboard if it isn’t already open. Select the segue
that is performed when the button is tapped, and open the Attributes inspector
(Option-�-4). Change the Style from Push to Custom, and set the segue Class to
CustomPushSegue. Now when the button is tapped, the custom push segue is used
and handles the transition from the main scene to the photo browser scene.

But where is the class CustomPushSegue? Answer: You need to create it.
Start by creating a new Objective-C class. Type �-N and select Objective-C class

from the list of file templates. Name the class CustomPushSegue and set it as a sub-
class of UIStoryboardSegue. Finally, save the new class to the PhotoWheel project.

A UIStoryboardSegue subclass must override the -perform method. This is
where the animation for the transition takes place. The -perform implementation for
CustomPushSegue is given in Listing 15.3. Open CustomPushSegue.m and make the
changes to your code.

Figure 15.5 Deselect the Show Navigation Bar option to hide the
navigation bar.

Turner_Book.indb 358 12/11/11 6:46 PM

ptg999

Segue 359

Listing 15.3 CustomPushSegue.m

#import "CustomPushSegue.h"

#import "UIView+PWCategory.h" // 1

@implementation CustomPushSegue

- (void)perform

{

 UIView *sourceView = [[self sourceViewController] view]; // 2

 UIView *destinationView = [[self destinationViewController] view]; // 3

 UIImageView *sourceImageView;

 sourceImageView = [[UIImageView alloc]

 initWithImage:[sourceView pw_imageSnapshot]]; // 4

 UIImageView *destinationImageView;

 destinationImageView = [[UIImageView alloc]

 initWithImage:[destinationView pw_imageSnapshot]];

 CGRect originalFrame = [destinationImageView frame];

 [destinationImageView setFrame:CGRectMake(originalFrame.size.width/2,

 originalFrame.size.height/2,

 0,

 0)];

 [destinationImageView setAlpha:0.3]; // 5

 UINavigationController *navController;

 navController = [[self sourceViewController] navigationController]; // 6

 [navController pushViewController:[self destinationViewController]

 animated:NO]; // 7

 UINavigationBar *navBar = [navController navigationBar]; // 8

 [navController setNavigationBarHidden:NO];

 [navBar setFrame:CGRectOffset(navBar.frame,

 0,

 -navBar.frame.size.height)]; // 9

 [destinationView addSubview:sourceImageView]; // 10

 [destinationView addSubview:destinationImageView]; // 11

 void (^animations)(void) = ^ { // 12

 [destinationImageView setFrame:originalFrame]; // 13

 [destinationImageView setAlpha:1.0]; // 14

 [navBar setFrame:CGRectOffset(navBar.frame,

 0,

 navBar.frame.size.height)]; // 15

 };

Turner_Book.indb 359 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers360

 void (^completion)(BOOL) = ^(BOOL finished) { // 16

 if (finished) {

 [sourceImageView removeFromSuperview];

 [destinationImageView removeFromSuperview];

 }

 };

 [UIView animateWithDuration:0.6

 animations:animations

 completion:completion]; // 17

}

@end

Let’s walk through the code and see what is happening:

1. On the second line, you see #import "UIView+PWCategory.h". This is
a category on UIView that you will implement momentarily. (It will have
a method named pw_imageSnapshot.) This method takes a screen shot of
the view and returns the screen shot as a UIImage. Screen shot images of the
source and destination views are used to simplify the animation sequence for
this segue.

2–3. At the top of -perform, two local variables are set, one for the source view
and another for the destination view. The local variables make referencing the
views easier later in the code.

4. This is followed by setting local variables for image views that contain the
source and destination screen shot images. These image views, not the actual
images, are what will be animated.

5. Next, the original frame for the destination image view is saved to a local
variable. The destination image view frame is then set with a Width and
Height of 0 and is placed in the center of the screen. The alpha for the desti-
nation image view is set to 0.3. This gives the view a transparent look. Setting
the alpha to 0.0 will hide the view and setting it to 1.0 will make it fully vis-
ible. As part of the animation sequence, this view will go from a transparent
look (alpha 0.3) to fully visible (alpha 1.0).

Note
The ultimate goal will be to perform the segue animation sequence from the photo that
has been touched, but no photos are displayed in PhotoWheel yet. Therefore, the anima-
tion sequence starts from the center of the screen. The code for the segue will evolve
over time as you build the app, and eventually the animation sequence will start from the
appropriate location.

Turner_Book.indb 360 12/11/11 6:46 PM

ptg999

Segue 361

6–7. The next line of code saves a reference to the navigation controller to a local
variable. Then the navigation controller is used to push the destination view
controller onto the navigation controller stack. Note that the animated
f lag is set to NO. This means that the default animation used during a push is
turned off. The default animation sequence is not needed since the segue is
performing the animation sequence.

8. Following the push of the destination view controller, a reference to the navi-
gation bar is saved. The navigation bar is then unhidden. Remember, we need
the navigation bar to be displayed on the destination view controller, aka the
photo browser scene. Without it, the user will have no way to return to the
main scene.

9. Simply showing the navigation bar during the animation sequence is okay, but
having it slide down from the top would look even better. After the naviga-
tion bar is unhidden, it is moved off the top of the screen. CGRectOffset()
is used to adjust the frame for the navigation bar. It returns a rectangle that is
offset from the source rectangle. In this case, the offset is the negative of the
navigation bar’s height, which moves it off the top of the screen by the same
number of pixels as the height.

Note
CGRectOffset is but one of many helper functions found in CGGeometry, which
makes working with and manipulating CGRect, CGSize, and CGPoint variables easier.
For a complete list of functions, take a look at the CGGeometry Reference document
(developer.apple.com/library/ios/#documentation/GraphicsImaging/Reference/
CGGeometry/Reference/reference.html).

 10–11. Next, the source image view (containing the screen shot of the source view)
and the destination image view (containing the screen shot of the destination
view) are added to the view hierarchy of the destination view controller. Why
do this?

The destination view controller has been pushed onto the navigation stack.
That makes the destination view controller the topmost controller, which
means its view is the visible view. Adding the screen shot images from the
source and destination views to the destination view controller’s view hier-
archy makes these image views the visible elements on the screen. And since
the destination image view starts out as an alpha of 0.3, the source image view
shows through the transparency of the destination image view.

12. The destination view controller having been set up, it’s now time to define
the animation sequence. An animation block is defined for the animation
sequence, which performs three primary steps.

13. It resizes the destination image view to its original size. The resize is ani-
mated, so the visual effect is that the view grows in size.

Turner_Book.indb 361 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers362

14. The destination image view goes from a transparent visual state to a fully vis-
ible state by setting the alpha to 1.0. This too is animated, so the transition
from transparent to fully visible is gradual through the animation sequence.
The source image view is hidden once the destination image view is fully
visible.

15. The navigation bar slides down from the top of the screen. Here CGRect-
Offset is used again, this time to move the navigation bar to the top of the
screen. Because the move is animated, the user sees a slide-down effect.

16. That’s it for the animation sequence. Following it is the block completion dec-
laration. The completion block is called once the animation sequence is com-
plete. The completion block removes the source and destination image views
from the destination view controller’s view hierarchy. These static images of
the screens are no longer needed, which is why they are removed. Since it is
the destination image view that is the visible element on the screen, and since
it is an exact screen shot of the destination view, removing the image views is
not noticeable to the user.

17. The final line of code in -perform executes the animation sequence. The
duration for the sequence is set to 0.6 seconds, and the animation and comple-
tion blocks are passed in.

Slow Motion
To see the animation sequence in slow motion, change the duration to some number of
seconds longer than 0.6 seconds, such as 20 or 30 seconds.

Before You Compile
Before you compile and run the app, you still need to add the UIView+PWCategory
to the PhotoWheel project. Type �-N to create a new file. This time select the
Objective-C category template instead of the class template. Name the category
“PWCategory” and set “Category on” to UIView, as seen in Figure 15.6. Then add
the category to the project.

Open UIView+PWCategory.h and add the code in Listing 15.4.

Listing 15.4 UIView+PWCategory.h

#import <UIKit/UIKit.h>

@interface UIView (PWCategory)

- (UIImage *)pw_imageSnapshot;

@end

Turner_Book.indb 362 12/11/11 6:46 PM

ptg999

Segue 363

Now open UIView+PWCategory.m and add the code in Listing 15.5.

Listing 15.5 UIView+PWCategory.m

#import "UIView+PWCategory.h"

#import <QuartzCore/QuartzCore.h>

@implementation UIView (PWCategory)

- (UIImage *)pw_imageSnapshot

{

 UIGraphicsBeginImageContext([self bounds].size);

 [[self layer] renderInContext:UIGraphicsGetCurrentContext()];

 UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

 UIGraphicsEndImageContext();

 return image;

}

@end

Note
A category extends a class. Because you are not the owner of the class, it is always
a good idea to prefix category method names. This reduces the chances of a conflict
should the class owner, which in this case is Apple, decides to add a method name
imageSnapshot.

Figure 15.6 Select the Objective-C category template.

Turner_Book.indb 363 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers364

One more change is needed before you can compile the application. The function
CGRectOffset is defined in the Core Graphics framework. You must add this frame-
work to the PhotoWheel project, as shown in Figure 15.7. (Refer to Chapter 13, “Data
Persistence,” if you need a refresher on how to add a framework to an Xcode project.)

You should now be able to compile and run the app. When you do, tap the button
that invokes CustomPushSegue and watch your handiwork in action.

Customizing the Pop Transitions
A segue is a great way to visually represent a transition between two scenes. However,
in the case of a navigation-based app (an app, such as PhotoWheel, that uses a naviga-
tion controller), a segue defines the transition for pushing only. There is no way to
define a segue for popping a view controller from the navigation controller stack.

If you can’t use a segue for the pop transition, what other options are there? You
could roll your own navigation controller model, but that would be time-consuming.
After all, who really wants to reinvent that wheel? (No pun intended.) The easier
approach is to subclass UINavigationController.

Subclassing the navigation controller is an easy way to override the default behavior
provided by the class. But keep in mind that UINavigationController does a lot
for you, and it can be easy to mess something up by subclassing it. In fact, the docu-
mentation for UINavigationController says, “This class is not intended for sub-
classing.” This statement doesn’t mean you can’t subclass it, but it is a warning to deter
you from doing it.

Figure 15.7 Add the Core Graphics framework to the
PhotoWheel project.

Turner_Book.indb 364 12/11/11 6:46 PM

ptg999

Customizing the Pop Transitions 365

That said, there is no other way, other than subclassing, to override the default
transition from a pop on the navigation controller. To have a pop transition that is
consistent with the push segue, you must subclass UINavigationController. There
is no getting around it.

To subclass UINavigationController, create a new class (�-N) using the
Objective-C class template. Name the class CustomNavigationController and
make it a subclass of UINavigationController.

To change the pop transition, you override the -popViewControllerAnimated:
method. The new implementation is shown in Listing 15.6. Open CustomNavigation-
Controller.m and add the code from the listing to your class implementation.

Listing 15.6 CustomNavigationController.m

#import "CustomNavigationController.h"

#import "UIView+PWCategory.h"

@implementation CustomNavigationController

- (UIViewController *)popViewControllerAnimated:(BOOL)animated

{

 UIViewController *sourceViewController = [self topViewController];

 // Animates image snapshot of the view

 UIView *sourceView = [sourceViewController view];

 UIImage *sourceViewImage = [sourceView pw_imageSnapshot];

 UIImageView *sourceImageView = [[UIImageView alloc]

 initWithImage:sourceViewImage];

 NSArray *viewControllers = [self viewControllers];

 NSInteger count = [viewControllers count];

 NSInteger index = count - 2;

 UIViewController *destinationViewController;

 destinationViewController = [viewControllers objectAtIndex:index];

 UIView *destinationView = [destinationViewController view];

 UIImage *destinationViewImage = [destinationView pw_imageSnapshot];

 UIImageView *destinationImageView = [[UIImageView alloc]

 initWithImage:destinationViewImage];

 [super popViewControllerAnimated:NO];

 [destinationView addSubview:destinationImageView];

 [destinationView addSubview:sourceImageView];

 CGRect frame = [destinationView frame];

 CGPoint shrinkToPoint = CGPointMake(frame.size.width / 2,

 frame.size.height / 2);

Turner_Book.indb 365 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers366

 void (^animations)(void) = ^ {

 [sourceImageView setFrame:CGRectMake(shrinkToPoint.x,

 shrinkToPoint.y,

 0,

 0)];

 [sourceImageView setAlpha:0.0];

 // Animate the nav bar too

 UINavigationBar *navBar = [self navigationBar];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, -navBar.frame.size.height)];

 };

 void (^completion)(BOOL) = ^(BOOL finished) {

 [self setNavigationBarHidden:YES];

 // Reset the nav bar position

 UINavigationBar *navBar = [self navigationBar];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, navBar.frame.size.height)];

 [sourceImageView removeFromSuperview];

 [destinationImageView removeFromSuperview];

 };

 [UIView transitionWithView:destinationView

 duration:0.3

 options:UIViewAnimationOptionTransitionNone

 animations:animations

 completion:completion];

 return sourceViewController;

}

@end

The code in Listing 15.6 is similar to the code for CustomPushSegue, so a
thorough walk-through is not necessary. The primary difference is that the code
for -popViewControllerAnimated: reverses the animation sequence found in
CustomPushSegue. Also, -popViewControllerAnimated: returns a reference
to the view controller that is popped from the navigation stack. The rest of the code
should look familiar to you.

To use the new CustomNavigationController class, we need to change the
class name for the navigation controller created in the initial view controller defined in
the storyboard. Open the file MainStoryboard.storyboard. Select the navigation controller
in the Navigation Controller Scene, then open the Identity inspector. Change the class
from UINavigationController to CustomNavigationController, as shown in
Figure 15.8.

Turner_Book.indb 366 12/11/11 6:46 PM

ptg999

Container View Controller 367

Run the app again and check out the new pop transition. That looks much better.

Container View Controller
A container view controller is a view controller containing one or multiple child view
controllers. It is used as a way to present content from a combination of different view
controllers. UINavigationController, UITabBarController, and UISplitView-
Controller are examples of container view controllers. A container view control-
ler is the parent to the controllers it contains, forwarding messages and events to its
children.

Using a custom container view controller in your iPad app is really useful as it
enables you to break down the entire screen into smaller parts, each of which is man-
aged by its own view controller. In this way, each view controller becomes more
focused in its role within the application. The code for each view controller becomes
smaller and easier to maintain, and the view controllers can become reusable compo-
nents within the application.

Note
Using a container view controller to separate pieces of the UI into smaller parts managed
independently is not a new concept. The pattern has been around for some time now,
especially in the Web world where it is known as a composite view.

To make your own container view controller, you create a new class that subclasses
UIViewController. Within your view controller class, you make use of the contain-
ment view methods provided by UIViewController. These methods are

n -addChildViewController:

n -removeFromParentViewController

Figure 15.8 Set the class name for the navigation view controller.

Turner_Book.indb 367 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers368

n -transitionFromViewController:toViewController:duration:options:

animations:completion:

n -willMoveToParentViewController:

n -didMoveToParentViewController:

UIViewController also includes the property childViewControllers, which
is a read-only NSArray containing the child view controllers for the container view
controller.

A key feature of the container view controller is message forwarding. Prior to iOS
5’s enhancements to UIViewController for container view controllers, it was up to
the developer to roll her own containment model. And building in reliable message
forwarding was difficult to achieve. This is no longer the case. Important messages and
events are forwarded to each child view controller, including rotation messages and view
events such as -viewWillAppear:, -viewDidAppear:, -viewWillDisappear:,
and -viewDidDisappear:.

Message forwarding can be turned off by overriding the method -automatical-
lyForwardAppearanceAndRotationMethodsToChildViewControllers in the
container view controller. Return NO and messages will not be forwarded to the child
view controllers.

Warning
If you do turn off forwarding, it is up to you to forward the appropriate messages to the
child view controllers.

Using a container view controller is as simple as calling -addChildView-
Controller:, adding an instance of another view controller. When the view
controller is added as a child, it receives the message -willMoveToParentView-
Controller:, which includes the parent view controller as a parameter. You override
this method in the child view controller to perform any necessary logic prior to the
view controller becoming a child of the parent controller. It is then up to your code to
perform any transitions needed for the presentation of the child view controller.

Once the transition is complete, your code must call -didMoveToParentView-
Controller: on the child view controller. This method is not called automatically
because the parent view controller does not know about the transition, if any, for the
child view controller. You can override this method in your child view controller to
perform any necessary logic after the view controller has become a child of the parent
controller.

Removing a child view controller from the parent follows a reverse workf low.
When you call -removeFromParentViewController within a child view control-
ler, you must first call -willMoveToParentViewController:, and when you do,
-removeFromParentViewController automatically calls –didMoveToParent-
ViewController:.

Turner_Book.indb 368 12/11/11 6:46 PM

ptg999

Container View Controller 369

Create a Container View Controller
Let’s take advantage of containment views in PhotoWheel. The main screen has two
distinct areas: the photo album viewer at the top and the photo album wheel at the
bottom. Managing both of these areas within the same view controller will result in
a very lengthy view controller class that will be hard to maintain. To get around this
problem, let’s make the main view controller a container view controller and separate
the other two areas into child view controllers of the main controller.

Start by creating a new UIViewController subclass named MainViewController.
By now, the steps to create a new class should be familiar to you, but as a quick
reminder, enter �-N and select the Objective-C class template. Name the class Main-
ViewController and make it a subclass of UIViewController. Then save it to the
PhotoWheel project directory.

While you’re at it, you might as well create the view controller classes for the
photo album viewer and the photo album’s wheel. Let’s call the photo album view
controller, which is the area at the top of the screen, PhotoAlbumView Controller.
And let’s call the photo albums wheel, displayed at the bottom of the screen,
Photo AlbumsViewController. Follow the same steps as you did when creating
MainViewController.

Add the Child Scenes
PhotoAlbumViewController and PhotoAlbumsViewController are the view
controller classes for two new scenes, which means that the scenes must be added to
the main storyboard. There is no way within the storyboard to indicate that a scene is
a child to another scene, so while the storyboard contains all the scenes for the Photo-
Wheel app, you still need to write some code to add the new scenes as child view con-
trollers to MainViewController. But first things first:

 1. Open the MainStoryboard.storyboard file and drag two view controllers onto the
design canvas to create the new scenes.

2. Select one view controller and change its class name from UIViewController to
PhotoAlbumViewController (Option-�-3 to open the Identity inspector).

3. Next—and this is very important—you need to set the identifier for this scene.
Open the Attributes inspector (Option-�-4) and set the Identifier attribute to
PhotoAlbumScene.

Why is setting the identifier important? The identifier will be used to program-
matically load the scene from the storyboard. As you will soon see, this is how
the scene is added to the main view controller as a child view controller.

4. Next, select the other view controller. Set its class name to PhotoAlbumsView-
Controller and its identifier to PhotoAlbumsScene.

5. Finally, select the view controller that represents the main screen. Set its class
name to MainViewController and its identifier to MainScreen.

An example of the storyboard with the new scenes is shown in Figure 15.9.

Turner_Book.indb 369 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers370

Size Doesn’t Matter
It’s important to note that as of right now, IB does not allow you to resize a scene manu-
ally. This means that although the child scenes will use only a subset of the entire screen
real estate, within IB the child scene is represented as a full-screen view. Don’t worry;
adjustments will be made in code to get around this sizing limitation.

While you have the main storyboard open, go ahead and add the visual elements to
each new scene. In the PhotoAlbumsViewController scene, add the UIImageView
for the disc and add the + button. You’ll follow the same steps as you did in Chapter
14, “Storyboarding in Xcode.” The only difference is that you want to place the disc
and the + button at the top of the scene instead of at the bottom. The actual place-
ment for this view will be determined at run time in code as the child view controller
is added to the parent view controller.

Do the same for the PhotoAlbumViewController scene. Add the UIImageView
for the photo album viewer and add the button used to test the segue to the photo
browser scene.

Hint
You can copy and paste the objects from the main scene into the child scene as a time-
saver. When you paste the objects into the child scene, be sure that they are positioned
in the top left corner of the scene.

Figure 15.9 New scenes added to the main storyboard

Turner_Book.indb 370 12/11/11 6:46 PM

ptg999

Container View Controller 371

Once you are finished, remove the objects represented in the child scenes from
the Main View Controller Scene. Note that when you remove the button attached to
the segue to the photo browser scene, the segue is also removed. This is a good thing
because the button has moved. It is now in the PhotoAlbumViewController scene.
This also means that you need to create a new segue from the button in the Photo
Album View Controller Scene to the photo browser scene, which you should do now.
Be sure to set up the segue as a custom segue using the class CustomPushSegue.

Once you are finished, the storyboard should look like the screen shot in Figure
15.10.

Add Child View Controllers
A bit of code is needed to add the new scenes as child view controllers to the main
view controller. It would be nice if this could be performed within the storyboard,
and maybe one day that feature will exist. But for now, writing a bit of code is needed.

To add the new scenes as children of the main scene, you must get the instance of
each child view controller from the storyboard. The instance is then added to the array
of child controllers on the main view controller. Once the child view controller is added,
a call is made to -didMoveToParentViewController: on the child view controller.
Finally, the child view controller overrides -didMoveToParentView Controller: so
that it can set its position within the view hierarchy. That’s it. So let’s make it happen in
PhotoWheel.

Figure 15.10 The completed storyboard

Turner_Book.indb 371 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers372

The -viewDidLoad of MainViewController is a good place to add the child
view controllers, so open MainViewController.m and add the code given in Listing 15.7.

Listing 15.7 Adding Child View Controllers to MainViewController

#import "MainViewController.h" // 1

#import "PhotoAlbumViewController.h"

#import "PhotoAlbumsViewController.h"

@implementation MainViewController

- (void)viewDidLoad // 2

{

[super viewDidLoad];

 UIStoryboard *storyboard = [self storyboard]; // 3

 PhotoAlbumsViewController *photoAlbumsScene; // 4

 photoAlbumsScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumsScene"];

 [self addChildViewController:photoAlbumsScene]; // 5

 [photoAlbumsScene didMoveToParentViewController:self]; // 6

 PhotoAlbumViewController *photoAlbumScene; // 7

 photoAlbumScene = [storyboard

 instantiateViewControllerWithIdentifier:@"PhotoAlbumScene"];

 [self addChildViewController:photoAlbumScene]; // 8

 [photoAlbumScene didMoveToParentViewController:self]; // 9

}

@end

Let’s take a look at the code in Listing 15.7:

1. It starts off by importing the header files (MainViewController.h,
PhotoAlbumViewController.h, and PhotoAlbumsViewController.h), followed by the
@implementation statement for MainViewController and the @end state-
ment at the end of the listing for the implementation.

2. The piece we’re most interested in is the override for -viewDidLoad. This
method is called when the content view for the view controller is loaded. Once
the view is loaded, all of its objects—including outlets, if any—are available to
the code in the view controller class.

3. The content view for this view controller is loaded from the main storyboard.
The view controller has a property named storyboard, which is a reference
to the storyboard used to load the content view. You use this reference to access

Turner_Book.indb 372 12/11/11 6:46 PM

ptg999

Container View Controller 373

resources in the storyboard, including other view controllers and segues. To
make the code more readable, the local variable storyboard is set to the view
controller’s storyboard property value.

4. The next thing that happens is that an instance of the PhotoAlbumsView-
Controller is created from the storyboard. Note that the view controller
instance is created using the identifier set earlier in this chapter. If the identifier
is not found in the storyboard, an invalid argument exception is thrown when
the app is run.

5. The instance of the PhotoAlbumsViewController is stored in a local variable.
The local variable is used to add the view controller as a child view controller
to MainViewController. [self addChildViewController:photoAlbum-
Scene] is the line of code that adds the photo albums view controller as a child.

6. After the controller is added, you can perform a transition to present the child
view controller. The transition can be animated or not. That’s up to you. In the
particular case of PhotoWheel, a transition is not performed. Instead, we’ll let
the child view controller size and position itself within the parent view during
the -didMoveToParentViewController: call, which is called immediately
after the view controller is added as a child.

There is no reason why sizing and positioning of the child view controller can’t
be handled as part of the transition in the main view controller. Depending
on the requirements of the app, that might make perfect sense. A combina-
tion of -willMoveToParentViewController:, -didMoveToParentView-
Controller:, and transitioning within the parent view controller can even
be used. For instance, the -willMoveToParentViewController: could be
implemented in the child view controller to set the size of its content view.
An animation sequence could be implemented in the parent view controller
that fades in and positions the child view controller. And the -didMoveTo-
ParentViewController: could be implemented in the child view controller to
retrieve data from a Web service. It’s up to you to decide the best approach and
design for your app.

Note
-willMoveToParentViewController: is called automatically on a view controller
when it is added as a child. However, -didMoveToParentViewController: is not
automatically called. It’s up to you to make that call in your code.

7–9. The same steps are performed again, but this time for the photo album scene. An
instance of PhotoAlbumViewController is returned from the storyboard. The
instance is added as a child view controller. And the -didMoveToParentView-
Controller: method is called on the photo album view controller.

At this point, the view controllers for the photo albums and photo album scenes
are children of the main view controller. However, if you were to run the app, these

Turner_Book.indb 373 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers374

scenes would not be visible. Each scene needs to be sized and positioned before being
added to the view hierarchy managed by the main view controller.

To accomplish this, open PhotoAlbumsViewController.m and add the code in Listing
15.8. This code has the implementation for -didMoveToParentViewController:.
In this implementation, the content view for the view controller is added to the par-
ent’s view hierarchy. Next, the size and position of the child content view are set. This
will make the child scene visible when the app is run.

Listing 15.8 Setting the Size and Position in PhotoAlbumsViewController.m

#import "PhotoAlbumsViewController.h"

@implementation PhotoAlbumsViewController

- (void)didMoveToParentViewController:(UIViewController *)parent

{

 // Position the view within the new parent

 [[parent view] addSubview:[self view]];

 CGRect newFrame = CGRectMake(109, 680, 551, 550);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

@end

The last statement in the -didMoveToParentViewController: implementa-
tion sets the background color for the view to clear. This makes the background
transparent.

This setting can be made in code (as shown in Listing 15.8) or in the storyboard
using IB. To set it in IB, select the view, open the Attributes inspector, and change the
Background attribute to Clear Color. However, the clear color is not visible in IB, so
this is a case where explicitly setting the background color in code makes it clear (pun
intended) what background color is used.

Similar code is added to PhotoAlbumViewController.m. Open this file and add the
code in Listing 15.9.

Listing 15.9 Setting the Size and Position in PhotoAlbumViewController.m

#import "PhotoAlbumViewController.h"

@implementation PhotoAlbumViewController

- (void)didMoveToParentViewController:(UIViewController *)parent

{

 // Position the view within the new parent

 [[parent view] addSubview:[self view]];

Turner_Book.indb 374 12/11/11 6:46 PM

ptg999

Container View Controller 375

 CGRect newFrame = CGRectMake(26, 18, 716, 717);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

@end

At this point, you have a main view controller that contains two child view con-
trollers. When you run the app, the main screen looks like it did before, so you may
be wondering why the main scene was separated into two child scenes. The benefits of
this will become apparent in Chapter 16, “Building the Main Screen.” It is in Chapter
16 that you will implement the view controllers for each scene. When the scenes are
separated into individual view controllers, the code is easier to write and maintain.

Another thing you will notice when you run the app is that the custom segue is
not animating correctly. The custom segue assumes that the source view controller
represents the entire screen. This is no longer the case. The source view controller is
PhotoAlbumViewController, and it is only a subset of the entire screen. Therefore,
a fix to the custom segue is needed.

Fix the Custom Push Segue
The local variable sourceView is pointing to the content view of the PhotoAlbum-
ViewController. To correct the animation sequence, you need to change the
sourceView to reference the content view from the MainViewController, which it
so happens is the parent view controller.

This one-line fix is shown in Listing 15.10. Open CustomPushSegue.m and apply the fix.

Listing 15.10 Fix Applied to the Custom Push Segue

#import "CustomPushSegue.h"

#import "UIView+PWCategory.h"

@implementation CustomPushSegue

- (void)perform

{

 // Replace:

 // UIView *sourceView = [[self sourceViewController] view];

 // with:

 UIView *sourceView = [[[self sourceViewController] parentViewController] view];

 // Other code left out for brevity

@end

Run the app and check your handiwork.

Turner_Book.indb 375 12/11/11 6:46 PM

ptg999

Chapter 15 Doing More with View Controllers376

Summary
In this chapter, you learned how to implement view controllers for scenes defined in
the main storyboard. Storyboarding is a powerful feature, and it helps reduce source
code. But it does not completely eliminate the need for source code, as you now know.

You also learned how to use view controller containment to separate a screen into
multiple scenes that are pieced together by code forming the full screen. With con-
tainment, you end up with view controllers that are focused on a particular purpose.
This makes the code easier to maintain, and it makes it possible to reuse the view con-
troller, if needed, in other parts of the application.

Exercises
1. Slow down the animation sequence in CustomPushSegue and observe how the

animation sequence works.

2. Change the background color for the photo browser scene to black or some
other color to see the CustomPushSegue animation sequence better. Set the
background color using the Attributes inspector, and then set it to a different
color in code.

3. Update the About view controller scene to programmatically display the version
number. Hint: You want to add an outlet to the AboutViewController that is
connected to the version label defined in the scene. Then in the -viewDidLoad
event for the view controller, retrieve the version number from the application
bundle and set the label. The code to retrieve the version number is [[[NSBundle
mainBundle] infoDictionary] objectForKey:@"CFBundleVersion"].

Turner_Book.indb 376 12/11/11 6:46 PM

ptg999

16
Building the Main Screen

Welcome to the longest chapter in the book. This chapter is long because it walks you through
building the core piece of PhotoWheel. It is not broken into multiple chapters because this core piece
focuses on one area: the main screen of the application. This chapter also provides the foundation
needed for the remaining chapters. As a reward for completing it, you’ll have a functioning photo
app that you can show off to others. If you thought you could work through this chapter over your
morning coffee, you might find that it’s time for lunch by the time you have completed it.

To better understand why this chapter is so long—and why it isn’t broken into multiple chap-
ters—here is a list of the things you will learn and accomplish:

n Reusing the prototype code

A good amount of code presented in this chapter originated in the prototype app. However,
tweaks to the code are needed in places.

n Setup of the PhotoWheel Core Data model

Like the reusable code, the Core Data model is copied from the prototype. However, tweaks
are needed to support PhotoWheel.

n Making changes to the WheelView class

The original implementation of this class suited the needs of the prototype app, but Pho-
toWheel is no prototype app. The WheelView class will be beefed up to be more powerful
and f lexible.

n Completing the photo album scene

This is the child scene displayed at the top of the screen. You will complete the UI design
and implementation for this scene. In other words, you will finally be able to view photos
stored within a photo album.

n Building a functional photo album manager

This includes adding and removing photo albums, and adding photos to albums.
n Building a custom grid view

You will build a custom grid view, which is modeled after UITableView, to display a col-
lection of photos in a series of rows and columns.

Turner_Book.indb 377 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen378

The extra time spent on this chapter is worthwhile. By the end, you will have a function-
ing photo app that you can show off to family and friends. Not only that; you will have built
the foundation needed for the remainder of the book. After completing this chapter, you can focus
on adding cool new features to PhotoWheel, such as importing photos from Flickr, syncing with
iCloud, and displaying a slideshow of your photos using AirPlay.

Now top off your coffee mug, get settled in your favorite comfy chair, and prepare to build the
main screen of PhotoWheel.

Reusing Prototype Code
Starting with Chapter 8, “Creating a Master-Detail App,” you implemented various
concepts that ultimately will roll into the PhotoWheel app. While the prototype app
itself is a throwaway, that doesn’t mean that all of the code has to be tossed. On the
contrary, there are some real gems in the prototype app that can and will be used in
PhotoWheel.

To reuse the code, you must copy the files from the PhotoWheelPrototype proj-
ect into the PhotoWheel project. One way to copy the files is to drag and drop the
file references from the PhotoWheelPrototype project into the PhotoWheel project
within the PhotoWheel workspace. However, this copies only file references, not the
actual files. While this might be fine when you want to share files between projects,
that’s not what you need to do here, because additional changes need to be made to
files common to the two projects. You don’t want a change needed for PhotoWheel to
break your PhotoWheelPrototype app (and vice versa), so the best solution is to copy
the files, not just the file references. Unfortunately, this cannot be done in Xcode, so
you will need to use Finder instead.

Copy Files
Open Finder and navigate to the PhotoWheelPrototype project directory. A quick way
to do this is to Control-click (or right-click) any file in the PhotoWheelPrototype
project, then select Show in Finder from the popup menu. Next, select the following
files in Finder and drop them into the PhotoWheel project in Xcode (see Figure 16.1):

n _Photo.h and .m
n _PhotoAlbum.h and .m
n Photo.h and .m
n PhotoAlbum.h and .m
n PhotoWheelViewCell.h and .m
n SpinGestureRecognizer.h and .m
n WheelView.h and .m

Xcode prompts you for options when copying files into a new project, shown in Fig-
ure 16.2. Make sure you check “Copy items into destination group’s folder (if needed).”

Turner_Book.indb 378 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 379

Figure 16.1 Dropping files into the PhotoWheel Xcode project

Figure 16.2 Copy file options. Be sure to select the “Copy items into
destination group’s folder (if needed)” option.

Turner_Book.indb 379 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen380

With this option selected, the files from the PhotoWheelPrototype project directory are
copied into the PhotoWheel project directory. If you do not select the option, the files
will remain in the PhotoWheelPrototype project directory and file references will be
added to the PhotoWheel project. Future changes to the files will be ref lected in both
projects, which is not what is wanted here.

Core Data Model
One file you do not want to copy is the Core Data model file (PhotoWheelPrototype
.xcdatamodeld). This is an inappropriate file name for the PhotoWheel project, and
renaming a Core Data model is not the easiest task to accomplish. Besides, the Photo-
Wheel project already has a data model file name, PhotoWheel.xcdatamodeld.

While the original Core Data model file isn’t needed, you do want to use the same
data model in PhotoWheel as was used in the prototype app. One option is to re-create
the entries in the PhotoWheel data model, but an easier way is to copy and paste the
entries from the prototype data model into the PhotoWheel data model.

Open the PhotoWheelPrototype.xcdatamodeld data model in the PhotoWheelPrototype
project. Select the entities Photo and PhotoAlbum and copy them to the clipboard
(�-C). Next, open the PhotoWheel.xcdatamodeld file in the PhotoWheel project and
paste (�-V) the entities.

The Core Data model for PhotoWheel now includes the entities needed by the app.
However, the copy-paste trick doesn’t copy all the settings. Inverse relationships and
Delete Rules must be set up again.

Select the Photo entity in the PhotoWheel Core Data model. Set the photoAlbum
inverse relationship to photos (see Figure 16.3). Follow this up by setting the Delete
Rule for the relationships.

Select the Photo entity, then select the photoAlbum relationship within the entity.
In the Data Model inspector (Option-�-3), set the Delete Rule to Nullify. Next,
select the PhotoAlbum entity, then select the photos relationship, and set its Delete
Rule to Cascade.

Note
Refer to Chapter 13, “Data Persistence,” if you need a refresher on setting the inverse
relationship and Delete Rule.

You are already working on the Core Data model for PhotoWheel, so now is as
good a time as any to make one additional change.

When PhotoWheel displays a photo from an album, the photo thumbnail will be
sized at 100 × 100 pixels. This size does not yet exist in the Photo model, so you will
need to add it. With the PhotoWheel Core Data model open, select the Photo entity.
Add a new attribute to Photo named smallImageData and set its Type to Binary
Data. Save the Core Data model file.

Turner_Book.indb 380 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 381

At this point, you can regenerate the _Photo model class, but since it is only
one field, it’s faster to make the class change by hand. Open _Photo.h and add a new
declared property named smallImageData. Next, open _Photo.m and add the
@dynamic statement for smallImageData. The updated _Photo.h and .m files are
shown in Listing 16.1.

Listing 16.1 Updated _Photo Class

///////

// _Photo.h

///////

#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class _PhotoAlbum;

@interface _Photo : NSManagedObject {

@private

}

@property (nonatomic, retain) NSDate * dateAdded;

@property (nonatomic, retain) NSData * originalImageData;

@property (nonatomic, retain) NSData * thumbnailImageData;

Figure 16.3 Set the inverse relationship.

Turner_Book.indb 381 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen382

@property (nonatomic, retain) NSData * largeImageData;

@property (nonatomic, retain) NSData * smallImageData;

@property (nonatomic, retain) _PhotoAlbum *photoAlbum;

@end

///////

// _Photo.m

///////

#import "_Photo.h"

#import "_PhotoAlbum.h"

@implementation _Photo

@dynamic dateAdded;

@dynamic originalImageData;

@dynamic thumbnailImageData;

@dynamic largeImageData;

@dynamic smallImageData;

@dynamic photoAlbum;

@end

Now open the Photo.h model class and add a method named -smallImage that
returns a pointer to a UIImage. Then open Photo.m, add the implementation for
-smallImage, and update the -saveImage: method to save the small image as a 100
× 100-pixel image. The updated source code is given in Listing 16.2.

Listing 16.2 Updated Photo Class

///////

// Photo.h

///////

#import "_Photo.h"

@interface Photo : _Photo

- (void)saveImage:(UIImage *)newImage;

- (UIImage *)originalImage;

- (UIImage *)largeImage;

- (UIImage *)thumbnailImage;

- (UIImage *)smallImage;

@end

Turner_Book.indb 382 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 383

///////

// Photo.m

///////

#import "Photo.h"

@implementation Photo

- (UIImage *)image:(UIImage *)image scaleAspectToMaxSize:(CGFloat)newSize

{

 CGSize size = [image size];

 CGFloat ratio;

 if (size.width > size.height) {

 ratio = newSize / size.width;

 } else {

 ratio = newSize / size.height;

 }

 CGRect rect = CGRectMake(0.0, 0.0, ratio * size.width, ratio * size.height);

 UIGraphicsBeginImageContext(rect.size);

 [image drawInRect:rect];

 UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();

 return scaledImage;

}

- (UIImage *)image:(UIImage *)image scaleAndCropToMaxSize:(CGSize)newSize

{

 CGFloat largestSize =

 (newSize.width > newSize.height) ? newSize.width : newSize.height;

 CGSize imageSize = [image size];

 // Scale the image while maintaining the aspect and making sure

 // the scaled image is not smaller than the given new size. In

 // other words, we calculate the aspect ratio using the largest

 // dimension from the new size and the smaller dimension from the

 // actual size.

 CGFloat ratio;

 if (imageSize.width > imageSize.height) {

 ratio = largestSize / imageSize.height;

 } else {

 ratio = largestSize / imageSize.width;

 }

 CGRect rect =

 CGRectMake(0.0, 0.0, ratio * imageSize.width, ratio * imageSize.height);

 UIGraphicsBeginImageContext(rect.size);

 [image drawInRect:rect];

 UIImage *scaledImage = UIGraphicsGetImageFromCurrentImageContext();

Turner_Book.indb 383 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen384

 // Crop the image to the requested new size, maintaining

 // the innermost parts of the image.

 CGFloat offsetX = 0;

 CGFloat offsetY = 0;

 imageSize = [scaledImage size];

 if (imageSize.width < imageSize.height) {

 offsetY = (imageSize.height / 2) - (imageSize.width / 2);

 } else {

 offsetX = (imageSize.width / 2) - (imageSize.height / 2);

 }

 CGRect cropRect = CGRectMake(offsetX, offsetY,

 imageSize.width - (offsetX * 2),

 imageSize.height - (offsetY * 2));

 CGImageRef croppedImageRef

 = CGImageCreateWithImageInRect([scaledImage CGImage], cropRect);

 UIImage *newImage = [UIImage imageWithCGImage:croppedImageRef];

 CGImageRelease(croppedImageRef);

 return newImage;

}

- (void)saveImage:(UIImage *)newImage;

{

 NSData *originalImageData = UIImageJPEGRepresentation(newImage, 0.8);

 [self setOriginalImageData:originalImageData];

 // Save thumbnail

 CGSize thumbnailSize = CGSizeMake(75.0, 75.0);

 UIImage *thumbnailImage = [self image:newImage

 scaleAndCropToMaxSize:thumbnailSize];

 NSData *thumbnailImageData = UIImageJPEGRepresentation(thumbnailImage, 0.8);

 [self setThumbnailImageData:thumbnailImageData];

 // Save small image

 CGSize smallSize = CGSizeMake(100.0, 100.0);

 UIImage *smallImage = [self image:newImage scaleAndCropToMaxSize:smallSize];

 NSData *smallImageData = UIImageJPEGRepresentation(smallImage, 0.8);

 [self setSmallImageData:smallImageData];

 // Save large (screen-size) image

 CGRect screenBounds = [[UIScreen mainScreen] bounds];

 // Calculate size for retina displays

 CGFloat scale = [[UIScreen mainScreen] scale];

 CGFloat maxScreenSize = MAX(screenBounds.size.width,

 screenBounds.size.height) * scale;

Turner_Book.indb 384 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 385

 CGSize imageSize = [newImage size];

 CGFloat maxImageSize = MAX(imageSize.width, imageSize.height) * scale;

 CGFloat maxSize = MIN(maxScreenSize, maxImageSize);

 UIImage *largeImage = [self image:newImage scaleAspectToMaxSize:maxSize];

 NSData *largeImageData = UIImageJPEGRepresentation(largeImage, 0.8);

 [self setLargeImageData:largeImageData];

}

- (UIImage *)originalImage;

{

 return [UIImage imageWithData:[self originalImageData]];

}

- (UIImage *)largeImage;

{

 return [UIImage imageWithData:[self largeImageData]];

}

- (UIImage *)thumbnailImage;

{

 return [UIImage imageWithData:[self thumbnailImageData]];

}

- (UIImage *)smallImage

{

 return [UIImage imageWithData:[self smallImageData]];

}

@end

The Core Data model is now ready for use. Next up: updating the WheelView class
to make it more useful.

Changes to WheelView
PhotoWheel is different from the prototype app in that the spinning wheel of photos
contains thumbnails of each photo album, whereas in the prototype app the spinning
wheel displayed photos from within the selected photo album.

To support the needs of PhotoWheel, a few changes are needed to the WheelView
class. The current implementation limits the number of cells displayed in the wheel.
Sure, an app can tell WheelView to display 200 photos, but it would be unusable. The
cells would be crammed together, making it impossible to find and view the desired
photo album’s thumbnail.

PhotoWheel will not limit the number of photo albums. The user can create as
many photo albums as he desires. So the WheelView class must be updated to support

Turner_Book.indb 385 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen386

a finite number of visible cells (photo album thumbnails). While this change is easy
to implement, it leads to a bigger issue. If the wheel view has been configured with
seven visible cells and the data source has more than seven cells, how are all the cells
displayed? A wrapping feature is needed.

The wrapping feature displays the first cell when the end has been reached. But
more important, it continuously displays cells in sequential order within the bounds of
the visible cells. As the user spins the wheel, the last of the visible cells is replaced with
the next cell to display. And because only the top two-thirds of the wheel is displayed
in PhotoWheel, the user never sees this replacement. Instead, the user sees a continu-
ous f low of photo album thumbnails moving in a circular fashion.

The WheelView class also needs another change related to the display of an
unknown number of cells. In the prototype app, the DetailViewController class
managed a cache of WheelViewCell instances. The cache loads all the needed cells
into memory during the -viewDidLoad event. While this is fine for the prototype
app, this will not f ly for PhotoWheel. The user may have 200 photo albums. Loading
200 wheel view cells is wasteful, especially considering that only seven will be dis-
played at any given time.

The WheelView class needs updating to manage the cell cache. This will help
conserve valuable system resources and simplify the code in the view controller class.
But managing the cache is only one part of the update needed. The WheelView class
must support dequeuing of unused cells to improve performance, and it must notify
a delegate when a cell has been selected. In other words, it needs to behave like the
UITableView class.

Make the changes to WheelView by opening the file WheelView.h and applying the
changes shown in Listing 16.3.

Note
The complete source code for the WheelView class is shown in Listings 16.3 and
16.4. This makes it easier to follow the code while reading instead of looking at just the
changes.

Listing 16.3 Updated WheelView.h

#import <UIKit/UIKit.h>

@protocol WheelViewDataSource;

@protocol WheelViewDelegate;

@class WheelViewCell;

typedef enum {

 WheelViewStyleWheel,

 WheelViewStyleCarousel,

} WheelViewStyle;

Turner_Book.indb 386 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 387

@interface WheelView : UIView

@property (nonatomic, strong) IBOutlet id<WheelViewDataSource> dataSource;

@property (nonatomic, strong) IBOutlet id<WheelViewDelegate> delegate;

@property (nonatomic, assign) WheelViewStyle style;

@property (nonatomic, assign) NSInteger selectedIndex; // 1

- (id)dequeueReusableCell; // 2

- (void)reloadData; // 3

- (WheelViewCell *)cellAtIndex:(NSInteger)index; // 4

@end

@protocol WheelViewDataSource <NSObject>

@required

- (NSInteger)wheelViewNumberOfCells:(WheelView *)wheelView;

- (WheelViewCell *)wheelView:(WheelView *)wheelView cellAtIndex:(NSInteger)index;

@optional

- (void)wheelView:(WheelView *)wheelView

 didSelectCellAtIndex:(NSInteger)index; // 5

@end

@protocol WheelViewDelegate <NSObject> // 6

@optional

- (NSInteger)wheelViewNumberOfVisibleCells:(WheelView *)wheelView;

@end

@interface WheelViewCell : UIView

@end

Now let’s run through the code:

1–4. The updated class interface isn’t much different from the original. A new
selectedIndex property has been added along with three methods.
-dequeueReusableCell returns a reusable WheelViewCell to the caller. The
method -reloadData reinitializes and loads data into the wheel view. And
-cellAtIndex: returns the WheelViewCell instance for the specific index.

 5. The WheelViewDataSource protocol has been updated with the new optional
message -wheelView:didSelectCellAtIndex:. This message is received by
the data source when the user selects a cell in the wheel view.

6. Finally, a new protocol has been added, WheelViewDelegate. It has one
optional method, -wheelViewNumberOfVisibleCells:. If this method is
not implemented in the delegate, WheelView will display all cells. This default

Turner_Book.indb 387 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen388

behavior is overridden by implementing the new method in the delegate, return-
ing the number of cells to display. This is used in conjunction with the wrapping
feature mentioned earlier.

Changes to the WheelView class interface are minor compared to those in the
implementation. While the original logic for the display of each cell and style setting
is still in place, a number of other changes have been made. The complete source code
listing is shown in Listing 16.4. Update your code to match it.

Listing 16.4 Updated WheelView.m

#import "WheelView.h"

#import <QuartzCore/QuartzCore.h>

#import "SpinGestureRecognizer.h"

#pragma mark - WheelViewCell

@interface WheelViewCell () // 1

@property (nonatomic, assign) NSInteger indexInWheelView; // 2

@end

@implementation WheelViewCell // 3

@synthesize indexInWheelView = indexInWheelView_;

@end

#pragma mark - WheelView

@interface WheelView ()

@property (nonatomic, assign) CGFloat currentAngle;

@property (nonatomic, strong) NSMutableSet *reusableCells; // 4

// The visible cell indexes are stored in a mutable dictionary

// instead of a mutable array because the number of visible cells

// can change. Using an array requires additional logic to maintain

// the dimensions of the array. This is avoided by using the

// dictionary where the key represents the element index number.

@property (nonatomic, strong) NSMutableDictionary *visibleCellIndexes; // 5

@end

@implementation WheelView

@synthesize dataSource = _dataSource;

@synthesize delegate = _delegate;

@synthesize style = _style;

@synthesize currentAngle = _currentAngle;

@synthesize selectedIndex = _selectedIndex; // 6

Turner_Book.indb 388 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 389

@synthesize reusableCells = _reusableCells;

@synthesize visibleCellIndexes = _visibleCellIndexes;

- (void)commonInit // 7

{

 [self setSelectedIndex:-1];

 [self setCurrentAngle:0.0];

 [self setVisibleCellIndexes:[[NSMutableDictionary alloc] init]];

 SpinGestureRecognizer *spin = [[SpinGestureRecognizer alloc]

 initWithTarget:self action:@selector(spin:)];

 [self addGestureRecognizer:spin];

 self.reusableCells = [[NSMutableSet alloc] init];

}

- (id)init // 8

{

 self = [super init];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithCoder:(NSCoder *)aDecoder

{

 self = [super initWithCoder:aDecoder];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithFrame:(CGRect)frame

{

 self = [super initWithFrame:frame];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (NSInteger)numberOfCells // 9

{

 NSInteger cellCount = 0;

Turner_Book.indb 389 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen390

 id<WheelViewDataSource> dataSource = [self dataSource];

 if ([dataSource respondsToSelector:@selector(wheelViewNumberOfCells:)]) {

 cellCount = [dataSource wheelViewNumberOfCells:self];

 }

 return cellCount;

}

- (NSInteger)numberOfVisibleCells // 10

{

 NSInteger cellCount = [self numberOfCells];

 NSInteger numberOfVisibleCells = cellCount;

 id<WheelViewDelegate> delegate = [self delegate];

 if (delegate &&

 [delegate respondsToSelector:@selector(wheelViewNumberOfVisibleCells:)])

 {

 numberOfVisibleCells = [delegate wheelViewNumberOfVisibleCells:self];

 }

 return numberOfVisibleCells;

}

- (BOOL)isSelectedItemForAngle:(CGFloat)angle // 11

{

 // The selected item is one whose angle is

 // at or near 0 degrees.

 //

 // To calculate the selected item based on the

 // angle, we must convert the angle to the

 // relative angle between 0 and 360 degrees.

 CGFloat relativeAngle = fabsf(fmodf(angle, 360.0));

 // Pad the selection point so it does not

 // have to be exact.

 CGFloat padding = 20.0; // Allow 20 degrees on either side.

 BOOL isSelectedItem =

 relativeAngle >= (360.0 - padding) || relativeAngle <= padding;

 return isSelectedItem;

}

- (BOOL)isIndexVisible:(NSInteger)index // 12

{

 NSNumber *cellIndex = [NSNumber numberWithInteger:index];

 __block BOOL visible = NO;

 void (^enumerateBlock) (id, id, BOOL *) = ^(id key, id obj, BOOL *stop) {

 if ([obj isEqual:cellIndex]) {

 visible = YES;

Turner_Book.indb 390 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 391

 *stop = YES;

 }

 };

 [[self visibleCellIndexes] enumerateKeysAndObjectsUsingBlock:enumerateBlock];

 return visible;

}

- (void)queueNonVisibleCells // 13

{

 NSArray *subviews = [self subviews];

 for (id view in subviews) {

 if ([view isKindOfClass:[WheelViewCell class]]) {

 NSInteger index = [(WheelViewCell *)view indexInWheelView];

 BOOL visible = [self isIndexVisible:index];

 if (!visible) {

 [[self reusableCells] addObject:view];

 [view removeFromSuperview];

 }

 }

 }

}

- (NSInteger)cellIndexForIndex:(NSInteger)index // 14

{

 NSInteger numberOfCells = [self numberOfCells];

 NSInteger numberOfVisibleCells = [self numberOfVisibleCells];

 NSInteger offset = MAX([self selectedIndex], 0);

 NSInteger cellIndex;

 if (index < (numberOfVisibleCells/2)) {

 cellIndex = index + offset;

 if (cellIndex > numberOfCells - 1) cellIndex = cellIndex - numberOfCells;

 } else {

 cellIndex = offset - (numberOfVisibleCells - index);

 if (cellIndex < 0) cellIndex = numberOfCells + cellIndex;

 }

 return cellIndex;

}

- (NSSet*)cellIndexesToDisplay // 15

{

 NSInteger numberOfVisibleCells = [self numberOfVisibleCells];

 NSMutableSet *cellIndexes =

 [[NSMutableSet alloc] initWithCapacity:numberOfVisibleCells];

 for (NSInteger index = 0; index < numberOfVisibleCells; index++)

 {

Turner_Book.indb 391 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen392

 NSInteger cellIndex = [self cellIndexForIndex:index];

 [cellIndexes addObject:[NSNumber numberWithInteger:cellIndex]];

 }

 return cellIndexes;

}

- (void)setAngle:(CGFloat)angle // 16

{

 [self queueNonVisibleCells]; // 17

 NSSet *cellIndexesToDisplay = [self cellIndexesToDisplay]; // 18

 // The following code is inspired by the carousel example at

 // http://stackoverflow.com/questions/5243614/3d-carousel-effect-on-the-ipad

 CGPoint center = CGPointMake(CGRectGetMidX([self bounds]),

 CGRectGetMidY([self bounds]));

 CGFloat radiusX = MIN([self bounds].size.width,

 [self bounds].size.height) * 0.35;

 CGFloat radiusY = radiusX;

 if ([self style] == WheelViewStyleCarousel) {

 radiusY = radiusX * 0.30;

 }

 NSInteger numberOfVisibleCells = [self numberOfVisibleCells];

 float angleToAdd = 360.0f / numberOfVisibleCells;

 // If there are more cells than the number of visible cells,

 // we wrap the cells. Wrapping allows all cells to display

 // within a finite number of visible cells. Cells are displayed in

 // sequential order. When the end is reached, the display wraps

 // to the beginning.

 //

 // Because there is a finite number of visible cells, one cell

 // is replaced with a wrapping cell as the user scrolls through

 // (spins) the wheel. At any given time there is one and only one

 // cell that requires replacing. The cell to replace is determined

 // by comparing the contents of visibleCellIndexes to

 // cellIndexesToDisplay.

 // visibleCellIndexes can contain one index not found in

 // cellIndexesToDisplay.

 // This is the index that is replaced. It is replaced with the one

 // index in cellIndexesToDisplay not found in visibleCellIndexes.

 BOOL wrap = [self numberOfCells] > numberOfVisibleCells; // 19

 // Lay out visible cells.

 for (NSInteger index = 0; index < numberOfVisibleCells; index++)

Turner_Book.indb 392 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 393

 {

 NSNumber *cellIndexNumber;

 if (wrap) {

 cellIndexNumber = [[self visibleCellIndexes]

 objectForKey:[NSNumber numberWithInteger:index]];

 if (cellIndexNumber == nil) {

 // First time through, visibleCellIndexes is empty, hence the nil

 // cellIndexNumber. Initialize it with the appropriate cell

 // index.

 cellIndexNumber =

 [NSNumber numberWithInteger:[self cellIndexForIndex:index]];

 }

 } else {

 // Cell indexes are sequential when wrapping is turned off.

 cellIndexNumber = [NSNumber numberWithInteger:index];

 }

 if (wrap && ![cellIndexesToDisplay containsObject:cellIndexNumber]) {

 // Replace the wrapping cell index.

 __block NSNumber *replacementNumber = nil;

 NSArray *array = [[self visibleCellIndexes] allValues];

 void (^enumerateBlock) (id, BOOL *) = ^(id obj, BOOL *stop) {

 if (![array containsObject:obj]) {

 replacementNumber = obj;

 *stop = YES;

 }

 };

 [cellIndexesToDisplay enumerateObjectsUsingBlock:enumerateBlock];

 cellIndexNumber = replacementNumber;

 }

 NSInteger cellIndex = [cellIndexNumber integerValue];

 WheelViewCell *cell = [self cellAtIndex:cellIndex];

 if (cell == nil) {

 cellIndex = -1; // No cell, no cell index.

 }

 // If index is not within the visible indexes, the

 // cell is missing from the view and it must be added.

 BOOL visible = [self isIndexVisible:cellIndex];

 if (!visible) {

 [[self visibleCellIndexes] setObject:cellIndexNumber

 forKey:[NSNumber numberWithInteger:index]];

Turner_Book.indb 393 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen394

 [cell setIndexInWheelView:cellIndex];

 [self addSubview:cell];

 }

 // Set the selected index if it has changed.

 if (cellIndex != [self selectedIndex] &&

 [self isSelectedItemForAngle:angle]) // 20

 {

 [self setSelectedIndex:cellIndex];

 if ([[self dataSource]

 respondsToSelector:@selector(wheelView:didSelectCellAtIndex:)])

 {

 [[self dataSource] wheelView:self didSelectCellAtIndex:cellIndex];

 }

 }

 float angleInRadians = (angle + 180.0) * M_PI / 180.0f; // 21

 // Get a position based on the angle

 float xPosition = center.x + (radiusX * sinf(angleInRadians))

 - (CGRectGetWidth([cell frame]) / 2);

 float yPosition = center.y + (radiusY * cosf(angleInRadians))

 - (CGRectGetHeight([cell frame]) / 2);

 float scale = 0.75f + 0.25f * (cosf(angleInRadians) + 1.0);

 // Apply location and scale

 if ([self style] == WheelViewStyleCarousel) {

 [cell setTransform:CGAffineTransformScale(

 CGAffineTransformMakeTranslation(xPosition, yPosition),

 scale, scale)];

 // Tweak alpha using the same system as applied for scale, this time

 // with 0.3 the minimum and a semicircle range of 0.5

 [cell setAlpha:(0.3f + 0.5f * (cosf(angleInRadians) + 1.0))];

 } else {

 [cell setTransform:CGAffineTransformMakeTranslation(xPosition,

 yPosition)];

 [cell setAlpha:1.0];

 }

 [[cell layer] setZPosition:scale];

 // Work out what the next angle is going to be

 angle += angleToAdd;

 }

}

Turner_Book.indb 394 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 395

- (void)layoutSubviews // 22

{

 [self setAngle:[self currentAngle]];

}

- (void)setStyle:(WheelViewStyle)newStyle // 23

{

 if (_style != newStyle) {

 _style = newStyle;

 [UIView beginAnimations:@"WheelViewStyleChange" context:nil];

 [self setAngle:[self currentAngle]];

 [UIView commitAnimations];

 }

}

- (void)spin:(SpinGestureRecognizer *)recognizer // 24

{

 CGFloat angleInRadians = -[recognizer rotation];

 CGFloat degrees = 180.0 * angleInRadians / M_PI; // Radians to degrees

 [self setCurrentAngle:[self currentAngle] + degrees];

 [self setAngle:[self currentAngle]];

}

- (id)dequeueReusableCell // 25

{

 id view = [[self reusableCells] anyObject];

 if (view != nil) {

 [[self reusableCells] removeObject:view];

 }

 return view;

}

- (void)queueReusableCells // 26

{

 for (UIView *view in [self subviews]) {

 if ([view isKindOfClass:[WheelViewCell class]]) {

 [[self reusableCells] addObject:view];

 [view removeFromSuperview];

 }

 }

 [[self visibleCellIndexes] removeAllObjects];

 [self setSelectedIndex:-1];

}

Turner_Book.indb 395 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen396

- (void)reloadData // 27

{

 [self queueReusableCells];

 [self layoutSubviews];

}

- (WheelViewCell *)cellAtIndex:(NSInteger)index // 28

{

 if (index < 0 || index > [self numberOfCells] - 1) {

 return nil;

 }

 WheelViewCell *cell = nil;

 BOOL visible = [self isIndexVisible:index];

 if (visible) {

 for (id view in [self subviews]) {

 if ([view isKindOfClass:[WheelViewCell class]]) {

 if ([view indexInWheelView] == index) {

 cell = view;

 break;

 }

 }

 }

 }

 if (cell == nil) {

 cell = [[self dataSource] wheelView:self cellAtIndex:index];

 }

 return cell;

}

@end

Let’s walk though the code together, highlighting the changes:

 1–3. The implementation for WheelViewCell has been moved to the top of the
source code file. Also, a new private declared property named indexInWheel-
View has been added. This private property is used by WheelView to track the
index for the cell, which may be different from the display index. Remember,
the new WheelView can have fewer visible cells than the total number of cells.

Note
The WheelViewCell class extension and implementation were moved to the top to
make the compiler aware of the class within the WheelView implementation. If the code
remained at the bottom, the WheelView class would not compile.

Turner_Book.indb 396 12/11/11 6:46 PM

ptg999

Reusing Prototype Code 397

4–5. Two new declared properties have been added to the WheelView class exten-
sion: reusableCells and visibleCellIndexes. reusableCells is a
mutable set used to manage the cache of reusable WheelViewCell instances.
visibleCellIndexes is a mutable dictionary of indexes representing the
visible cells.

5. You might be wondering why visibleCellIndexes is declared as NSMut-
ableDictionary instead of NSMutableArray. Admittedly, it does seem
strange, but there’s a good reason for this approach.

The number of visible cells can change. If an array were used, a change in
the number of visible cells would require a change to the array’s dimension.
Also, the indexes for cells to display are not necessarily calculated in sequen-
tial order. They are displayed sequentially, but that doesn’t mean each cell to
display is determined sequentially. Therefore, if an array were used, additional
code would be needed to ensure that elements were added to the array to fill
holes that might exist as each cell is processed.

The dictionary eliminates the need for additional array management code, and
since a dictionary’s contents are not order dependent, WheelView doesn’t need
to worry about checking the bounds of an array and filling holes in it. Instead,
the class stores the index value as an NSNumber, which is used as the key to
the dictionary. Note that this index is an index within the range of visible cell
indexes. In other words, it is a value between 0 and the number of visible cells.

The object stored in the dictionary for the visible cell index key is the actual
cell index. It too is stored as an NSNumber since NSDictionary can store
only object references. The actual cell index value is some number between 0
and the total number of cells.

6–8. Continuing with the changes... The new declared properties are synthesized.
The method -commonInit is updated to initialize the selected index, visi-
bleCellIndexes, and reusableCells properties. The remaining init*
methods remain the same as before.

 9–10. The init methods are followed by two helper methods, -numberOfCells
and -numberOfVisibleCells. Each returns a value retrieved from the data
source. These values are used throughout the WheelView class. The helper
methods were created to eliminate the duplication of code in WheelView.

 11. The method -isSelectedItemForAngle: is responsible for determining if
a wheel view cell is “selected” based on the specified angle. A cell is consid-
ered selected when it is displayed at the top of the wheel, at degree 0.0 plus or
minus 20.0 degrees.

12. Another helper method named -isIndexVisible: has been added. This
method enumerates the visibleCellIndexes to see if it contains the spe-
cific cell index. A block is used to perform the enumeration. If a number is
found in the visibleCellIndexes that matches the cell index number, the
cell is visible and YES is returned to the caller; otherwise NO is returned.

Turner_Book.indb 397 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen398

13. The next method is -queueNonVisibleCells. The method removes any
nonvisible wheel view cells from the view and places them into the local cache
reusableCells.

 14–15. The next two methods are -cellIndexForIndex: and -cellIndexesTo-
Display. The first, -cellIndexForIndex:, converts a visible cell index (a
number between 0 and the number of visible cells) to a cell index (a number
between 0 and the total number of cells). This method is used by -cell-
IndexesToDisplay, which returns an NSSet of cell indexes to display. As
you will see in a moment, this set is compared to visibleCellIndexes to
find the cell that is replaced during wrapping.

 16–21. The method -setAngle: has been updated to queue nonvisible cells, retrieve
the set of cell indexes to display, support cell wrapping, and set the selected
index. The code to transform a cell to a particular position as the wheel spins
remains the same as before.

 22–24. The methods -layoutSubviews, -setStyle:, and -spin: remain
unchanged from the earlier implementation. The remaining methods, how-
ever, are new to this implementation.

 25. -dequeueReusableCell returns a reusable cell from the cache. It grabs any
object from the cache. It doesn’t matter which object is grabbed since all are
available for reuse. The object is then removed from the cache and returned to
the caller. If there are no available objects in the cache, nil is returned to the
caller, and the caller is expected to create a new instance of the cell.

 26. The method -queueReusableCells is called when data is reloaded in the
wheel view. This method takes all the visible cells currently in the view and
moves them to the reusable cell cache.

 27. -reloadData queues any reusable cells and calls -layoutSubviews, which
in turn starts the process of displaying cells within the view.

 28. Finally, there’s -cellAtIndex:. This method returns a reference to the cell
at the specified index. It is used internally by the WheelView class and can be
used externally by others such as a view controller.

Now that the new WheelView class is in place, it’s time to put it to good use dis-
playing photo albums.

Displaying Photo Albums
The next thing you want to tackle is the display of photo albums. In PhotoWheel,
photo albums are displayed as thumbnails in the disc at the bottom of the screen. This
is different from the prototype app where the albums were displayed in a table view.
Luckily, the WheelView class has been implemented as a generic view class, which
means that you can use it to display the photo album thumbnails.

Turner_Book.indb 398 12/11/11 6:46 PM

ptg999

Displaying Photo Albums 399

Open the main storyboard and select the Photo Albums View Controller Scene.
This is the scene with the image of the disc. Drag a UIView into this scene. Set its
position and size—X to 31, Y to 33, Width to 488, and Height to 484—and anchor
the view to the top left corner using the autosizing settings.

The new view should appear on top of the disc image view but under the round
+ button. To accomplish this, you need to rearrange the views in the view hierarchy.
Open the Document Outline (Editor > Show Document Outline) and expand
the view hierarchy for the scene. Drag and drop the views to rearrange the view order
within the hierarchy. The order should match the order shown in Figure 16.4.

After the view hierarchy has been set, the new view will partially hide the disc
image view, so set the Background color to Clear (found in the Attributes inspector)
for the new view.

The new view is of type UIView. You need to change this to the WheelView class.
Open the Identity inspector and change the class from UIView to WheelView. Now
that the view is of type WheelView, its dataSource and delegate outlets can be set.
Connect the WheelView dataSource to the Photo Albums View Controller Scene.
Remember, you can accomplish this by Control-clicking (right-clicking) the view
and dragging the dataSource connector to the view controller, or you can Control-
click and hold, then drag from the view to the view controller to make the connec-
tion. Both approaches work.

Do the same for the WheelView delegate, connecting it to the PhotoAlbumsView-
Controller.

Figure 16.4 Set the view hierarchy.

Turner_Book.indb 399 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen400

Implementing the Photo Albums View Controller
With the wheel view in place, it’s time to implement the PhotoAlbumsView-
Controller. This controller is the data source and delegate for the WheelView
instance, which means it must implement code conforming to the WheelViewData-
Source and WheelViewDelegate protocols.

Start with the interface file, PhotoAlbumsViewController.h. Let the compiler know
that the class conforms to these two protocols. Also add NSFetchedResults-
ControllerDelegate to the list of protocols, as a fetched results controller will be
used to retrieve the photo albums. Next, add an outlet for the WheelView object. This
will be used in the implementation of the view controller. Finally, add a new property
for the managed object context, and an action for the + button that adds a new photo
album. The source code is shown in Listing 16.5.

Listing 16.5 Updated PhotoAlbumsViewController.h

#import <UIKit/UIKit.h>

#import "WheelView.h"

@interface PhotoAlbumsViewController : UIViewController

<NSFetchedResultsControllerDelegate, WheelViewDataSource, WheelViewDelegate>

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) IBOutlet WheelView *wheelView;

- (IBAction)addPhotoAlbum:(id)sender;

@end

While you are making changes, be sure you return to the Photo Albums View
Controller Scene in the main storyboard and connect the WheelView object to the
wheelView outlet and the + button to the addPhotoAlbum: action. Otherwise the
app will not display and add photo albums properly.

And make sure to connect the addPhotoAlbum: action to the Touch Up Inside
event of the button. This is done for you when you Control-click and drag to make
the connection. You must manually select the event if you use the popup HUD to
make the connection.

Note
You may be wondering how and when the managedObjectContext property is set.
It will be set in the MainViewController at the time the PhotoAlbumsView-
Controller instance is created from the storyboard. You’ll implement this code once
the implementation for PhotoAlbumsViewController is complete.

With the interface complete, it’s time to shift your attention to the implementation.
Open PhotoAlbumsViewController.m and update it with the code in Listing 16.6.

Turner_Book.indb 400 12/11/11 6:46 PM

ptg999

Displaying Photo Albums 401

Listing 16.6 Updated PhotoAlbumsViewController.m

#import "PhotoAlbumsViewController.h"

#import "PhotoWheelViewCell.h" // 1

#import "PhotoAlbum.h"

#import "Photo.h"

@interface PhotoAlbumsViewController () // 2

@property (nonatomic, strong)

 NSFetchedResultsController *fetchedResultsController; // 3

@end

@implementation PhotoAlbumsViewController

@synthesize managedObjectContext = _managedObjectContext;

@synthesize wheelView = _wheelView; // 4

@synthesize fetchedResultsController = _fetchedResultsController;

- (void)didMoveToParentViewController:(UIViewController *)parent // 5

{

 // Position the view within the new parent.

 [[parent view] addSubview:[self view]];

 CGRect newFrame = CGRectMake(109, 680, 551, 550);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

- (void)viewDidUnload // 6

{

 [self setWheelView:nil];

 [super viewDidUnload];

}

#pragma mark - Actions

- (IBAction)addPhotoAlbum:(id)sender // 7

{

}

#pragma mark - NSFetchedResultsController and NSFetchedResultsControllerDelegate

- (NSFetchedResultsController *)fetchedResultsController // 8

{

 if (_fetchedResultsController) { // 9

 return _fetchedResultsController;

 }

Turner_Book.indb 401 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen402

 NSString *cacheName = NSStringFromClass([self class]); // 10

 NSFetchRequest *fetchRequest =

 [NSFetchRequest fetchRequestWithEntityName:@"PhotoAlbum"]; // 11

 NSSortDescriptor *sortDescriptor =

 [NSSortDescriptor sortDescriptorWithKey:@"dateAdded"

 ascending:YES]; // 12

 [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 NSFetchedResultsController *newFetchedResultsController =

 [[NSFetchedResultsController alloc]

 initWithFetchRequest:fetchRequest

 managedObjectContext:[self managedObjectContext]

 sectionNameKeyPath:nil

 cacheName:cacheName]; // 13

 [newFetchedResultsController setDelegate:self]; // 14

 NSError *error = nil;

 if (![newFetchedResultsController performFetch:&error]) // 15

 {

 /*

 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate.

 You should not use this function in a shipping application, although it

 may be useful during development. If it is not possible to recover from

 the error, display an alert panel that instructs the user to quit the

 application by pressing the Home button.

 */

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 [self setFetchedResultsController:newFetchedResultsController]; // 16

 return _fetchedResultsController; // 17

 }

- (void)controller:(NSFetchedResultsController *)controller

 didChangeObject:(id)anObject

 atIndexPath:(NSIndexPath *)indexPath

 forChangeType:(NSFetchedResultsChangeType)type

 newIndexPath:(NSIndexPath *)newIndexPath // 18

{

 [[self wheelView] reloadData];

}

Turner_Book.indb 402 12/11/11 6:46 PM

ptg999

Displaying Photo Albums 403

#pragma mark - WheelViewDataSource and WheelViewDelegate methods // 19

- (NSInteger)wheelViewNumberOfVisibleCells:(WheelView *)wheelView // 20

{

 return 7;

}

- (NSInteger)wheelViewNumberOfCells:(WheelView *)wheelView // 21

{

 NSArray *sections = [[self fetchedResultsController] sections];

 NSInteger count = [[sections objectAtIndex:0] numberOfObjects];

 return count;

}

- (WheelViewCell *)wheelView:(WheelView *)wheelView

 cellAtIndex:(NSInteger)index // 22

{

 PhotoWheelViewCell *cell = [wheelView dequeueReusableCell]; // 23

 if (!cell) {

 cell = [[PhotoWheelViewCell alloc]

 initWithFrame:CGRectMake(0, 0, 75, 75)]; // 24

 }

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 PhotoAlbum *photoAlbum = [[self fetchedResultsController]

 objectAtIndexPath:indexPath]; // 25

 Photo *photo = [[photoAlbum photos] lastObject]; // 26

 UIImage *image = [photo thumbnailImage];

 if (image == nil) {

 image = [UIImage imageNamed:@"defaultPhoto.png"]; // 27

 }

 [cell setImage:image]; // 28

 return cell; // 29

}

- (void)wheelView:(WheelView *)wheelView

didSelectCellAtIndex:(NSInteger)index // 30

{

}

@end

Turner_Book.indb 403 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen404

Now let’s walk through the code to see what is happening:

 1–3. The first things you notice are the additional #import statements. These
are followed by the class extension for PhotoAlbumsViewController. The
class extension adds a private declared property named fetchedResults-
Controller. The fetched results controller is used to populate the wheel view
with photo albums.

4–5. The first things in the @implement section are the @synthesize statements for
the new declared properties. These are followed by the method -didMoveTo-
ParentViewController:, which is unchanged from the original implementa-
tion of PhotoAlbumsViewController.

 6. The -viewDidUnload method is added. It sets the outlet wheelView to nil
when the view unloads. You should always explicitly set outlets to nil in the
-viewDidUnload method. This conserves memory resources when the view is
no longer loaded. If you do not set the outlet to nil, it will remain in memory
until the view controller is released. This is because the outlet is a declared prop-
erty with a strong reference.

7. The next method in Listing 16.6 is -addPhotoAlbum:. This action is connected
to the + button in the Photo Albums View Controller Scene. The implementa-
tion is empty for the moment. You’ll add the code that adds a new photo album
momentarily.

8. The action is followed by the custom fetched results controller getter method
-fetchedResultsController. NSFetchedResultsController manages
the results of a Core Data fetched request. It is optimized for the mobile plat-
form and designed to be used with UITableView. However, since WheelView is
modeled after UITableView, the fetched results controller can be used with it as
well.

9. The first thing the getter method does is check to see if the ivar for the fetched
results controller has already been set. If it has, the reference to the ivar is
returned. If the ivar has not been set (its value is nil), the getter method initial-
izes it.

 10. NSFetchedResultsController can optionally use a cache. The cache reduces
the overhead of figuring out section and index information managed by the con-
troller. The cache name used in this getter method is the view controller class
name. The class name is returned by the C function NSStringFromClass().

11. A new fetch request object is created next using the class method + fetch-
RequestWithEntityName:. This method provides a convenient way to create
an NSFetchRequest object that is configured for a particular entity without
having to use an NSEntityDescription object. Here the fetch request is con-
figured for the PhotoAlbum entity. Note that this name must match the entity
name defined in the PhotoWheel Core Data model.

Turner_Book.indb 404 12/11/11 6:46 PM

ptg999

Displaying Photo Albums 405

12. A sort descriptor is created and added to the fetch request. The sort descriptor
tells Core Data how to sort fetched results. In this particular case, the fetched
results are sorted by the dateAdded field in ascending order.

 13–14. The fetch request is then added to the fetched results controller, and the view
controller is made the delegate of the fetched results controller. This means that
PhotoAlbumsViewController will receive messages from the fetched results
controller as needed (such as when new data is added to the fetched results).

 15–17. Finally, the fetched results controller is told to perform the fetch. This
retrieves the data from Core Data so that it can be used within the view
controller. Also, the declared property fetchedResultsController is set
to the new fetched results controller. This in turn sets the ivar _fetched-
ResultsController, which is returned at the end of the method.

18. Following the fetched results controller getter method is the -controller
:didChangeObject:atIndexPath:forChangeType:newIndexPath:

method. This is an NSFetchedResultsControllerDelegate method
called by the fetched results controller whenever data changes in the fetched
results. The implementation is simple. It reloads the data in wheelView. As a
result, the display is automatically updated to show the changes the moment
they happen. For example, when the user taps the + button, the new photo
album displays immediately. No additional coding is needed, just the call to
-reloadData.

Note
Had you used a UITableView instead of WheelView, you could do a number of
things other than -reloadData to show the data change. UITableView has meth-
ods to insert and remove individual rows, and to update particular rows. These enhanced
behaviors are not implemented in the WheelView class, however, so reloadData will
have to do.

19. The last code changes to the PhotoAlbumsViewController class are the
WheelViewDataSource and WheelViewDelegate protocol methods. These
methods are called by WheelView to display cells within the view, and to
report back to the view controller which cell has been selected by the user.

20. The first of these methods is -wheelViewNumberOfVisibleCells:. It
returns the value 7. This means that no more than seven photo album thumb-
nails are displayed at once in the wheel view. More than seven cells can exist,
but at the most, only seven cells will be displayed.

21. The next method is -wheelViewNumberOfCells:. This method returns the
total number of cells, or in the case of PhotoWheel, the total number of photo
albums. The count is retrieved from the fetched results controller. The sec-
tions array contains the data for each section. Remember, the fetched results
controller is designed for UITableView, which can have one or more sections.

Turner_Book.indb 405 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen406

There is always only one section when using the WheelView, so the section at
index zero contains the list of photo albums.

 22–29. The method -wheelView:cellAtIndex: is responsible for constructing
WheelViewCell, setting its properties, and returning it to the caller, which
happens to be the wheelView. This method first retrieves a reusable cell, if
any are available. If no reusable cells are available, a new cell is created. Next,
the photo album model object is retrieved from the fetched results by way of
the fetched results controller. The last photo of the photo album is used as
the thumbnail of the photo album. If there is no photo or thumbnail for the
photo, the defaultPhoto.png image is used as the thumbnail. The image is added
to the cell for display, and the cell is returned to the caller.

30. And finally, there is the -wheelView:didSelectCellAtIndex: method.
This method is called when the user selects a new photo album in the wheel
view. A photo album is selected when the arrow from the photos popover
image points to a cell (see Figure 16.5). For now, leave the implementation of
this method empty.

Setting the Managed Object Context
Before the app will run, one other change is needed. The PhotoAlbumsView-
Controller needs a reference to the managed object context set up by the app del-
egate. This view controller is decoupled from the app delegate, so it expects that its
managedObjectContext property will be set by the user of the object.

Figure 16.5 The top photo album cell is the selected cell.

Turner_Book.indb 406 12/11/11 6:46 PM

ptg999

Displaying Photo Albums 407

Note
When possible, it’s always a good thing to decouple view controllers, and classes in gen-
eral, from one another. This will make the design of your application more flexible. One
way to decouple a view controller from other dependencies is to pass references into the
controller, as is done with the managed object context.

The appropriate place to set the managedObjectContext property of Photo-
AlbumsViewController is at the time the controller instance is created. This happens
in MainViewController in the -viewDidLoad event. Open MainViewController.m
and update the code to set the managedObjectContext property for the Photo-
AlbumsViewController instance, as shown in Listing 16.7.

Listing 16.7 Updated MainViewController.m

#import "MainViewController.h"

#import "PhotoAlbumViewController.h"

#import "PhotoAlbumsViewController.h"

#import "AppDelegate.h"

@implementation MainViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 AppDelegate *appDelegate =

 (AppDelegate *)[[UIApplication sharedApplication] delegate]; // 1

 NSManagedObjectContext *managedObjectContext =

 [appDelegate managedObjectContext]; // 2

 UIStoryboard *storyboard = [self storyboard];

 PhotoAlbumsViewController *photoAlbumsScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumsScene"];

 [photoAlbumsScene setManagedObjectContext:managedObjectContext]; // 3

 [self addChildViewController:photoAlbumsScene];

 [photoAlbumsScene didMoveToParentViewController:self];

 PhotoAlbumViewController *photoAlbumScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumScene"];

 [self addChildViewController:photoAlbumScene];

 [photoAlbumScene didMoveToParentViewController:self];

}

@end

Turner_Book.indb 407 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen408

Now let’s walk through the code in Listing 16.7:

1. In order for the managed object context property to be set, it must first be
retrieved from the app delegate. The AppDelegate class contains the code that
initializes the managed object context. To retrieve the app delegate, you use the
UIApplication class. It has a class method named +sharedApplication,
which returns a reference to the current application object. You call the delegate
property on the current application object to get the reference to the App-
Delegate instance.

2. Once you have a reference to the AppDelegate, a reference to the managed
object context provided by the AppDelegate is stored in the local variable
managedObjectContext.

3. The local reference to the managed object context is then used to set the
managedObjectContext property of the photoAlbumsScene.

Note
Decoupling the app delegate from the main view controller is often the preferred
approach. However, the two are coupled in Listing 16.7 to show you how to retrieve a ref-
erence to the app delegate should you ever need it.

At this point, PhotoWheel will compile and run. However, you will not see any
photo albums. That is because there are no photo albums in the Core Data persistent
store. You need to implement the action for adding a photo album first before you can
see photo albums in the wheel view.

Note
The Core Data model has changed in the chapter. Therefore, the first time the app is run
and it references the managed object context, an exception is thrown, indicating that the
data model has changed. To fix this, delete previous versions of PhotoWheel from the sim-
ulator and iPad before running the app. You need to do this only once as the data model
will not change again.

Adding Photo Albums
Before the user can see a photo album in the wheel view, he needs to add one to the
data store. But before that can happen, you must implement the -addPhotoAlbum:
action method in PhotoAlbumsViewController.m. Open PhotoAlbumsViewController.m and
scroll to the -addPhotoAlbum: method. Add the implementation shown in Listing
16.8.

Listing 16.8 Updated -addPhotoAlbum: Implementation in PhotoAlbumsViewController.m

- (IBAction)addPhotoAlbum:(id)sender

{

 NSManagedObjectContext *context = [self managedObjectContext]; // 1

Turner_Book.indb 408 12/11/11 6:46 PM

ptg999

Managing Photo Albums 409

 PhotoAlbum *photoAlbum = [NSEntityDescription

 insertNewObjectForEntityForName:@"PhotoAlbum"

 inManagedObjectContext:context]; // 2

 [photoAlbum setDateAdded:[NSDate date]]; // 3

 // Save the context.

 NSError *error = nil;

 if (![context save:&error]) // 4

 {

 /*

 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate.

 You should not use this function in a shipping application, although

 it may be useful during development. If it is not possible to recover

 from the error, display an alert panel that instructs the user to quit

 the application by pressing the Home button.

 */

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

}

Now when the user taps the + button at the bottom of the PhotoWheel screen, a
new photo album is added. The code to accomplish this is straightforward:

1. A local variable stores a reference to the managed object context.

2. A new entity description is inserted for the entity name PhotoAlbum.

 3. The dateAdded property for the entity is set to the current date.

4. The context is saved.

Because a fetched results controller is used to manage the data, PhotoAlbums-
ViewController automatically receives a message from the fetched results controller
telling it to update the wheel view display.

Run the app and test that photo albums can be added. Check your work if you can-
not add new photo albums. Remember, if nothing is happening, check the outlet and
action connections defined in the Photo Albums View Controller Scene. Nothing will
happen if the connections are missing.

Managing Photo Albums
You have updated PhotoWheel to add and display photo albums, but more work is
needed. The user should be able to select a photo album to view its photos. The user
may also want to give the photo album a name. And the user will certainly want to
remove any photo albums accidentally created.

Turner_Book.indb 409 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen410

This is as good a time as any to implement these features, starting with the selection
of a photo album.

Selecting the Photo Album
Most of the work of selecting a photo album has already been done. The Wheel-
View class knows how to detect the selected cell, and it knows when the selected cell
changes. It also sends a message to its delegate when the selected cell changes. All that
is needed to implement the features is to implement the WheelViewDelegate method
-wheelView:didSelectCellAtIndex: found in PhotoAlbumsViewController.m.

What should this implementation do? It should notify the PhotoAlbumView-
Controller—that’s the other child view controller displayed at the top of the
screen—that a different photo album has been selected. The PhotoAlbumView-
Controller is responsible for displaying the details of the photo album; this includes
displaying the title and the photos contained within the album. It is also responsible
for deleting a photo album, adding photos to the album, and setting the album title.
But first things first.

The PhotoAlbumsViewController needs to know about the PhotoAlbum-
ViewController. Without a reference to the photo album view controller, the
photo albums view controller will not be able to tell it when a photo album has been
selected.

The best place to inform PhotoAlbumsViewController about the existence of
PhotoAlbumViewController is in the MainViewController at the time the view
controllers are created. Open MainViewController.m and add the last line of code at the
bottom of -viewDidLoad in Listing 16.9.

This line of code simply sets a declared property on PhotoAlbumsViewController
to photoAlbumScene, which is an instance of PhotoAlbumViewController. The full
implementation of -viewDidLoad is shown in Listing 16.9.

Listing 16.9 MainViewController’s -viewDidLoad Implementation

- (void)viewDidLoad

{

 [super viewDidLoad];

 AppDelegate *appDelegate =

 (AppDelegate *)[[UIApplication sharedApplication] delegate];

 NSManagedObjectContext *managedObjectContext =

 [appDelegate managedObjectContext];

 UIStoryboard *storyboard = [self storyboard];

 PhotoAlbumsViewController *photoAlbumsScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumsScene"];

 [photoAlbumsScene setManagedObjectContext:managedObjectContext];

Turner_Book.indb 410 12/11/11 6:46 PM

ptg999

Managing Photo Albums 411

 [self addChildViewController:photoAlbumsScene];

 [photoAlbumsScene didMoveToParentViewController:self];

 PhotoAlbumViewController *photoAlbumScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumScene"];

 [self addChildViewController:photoAlbumScene];

 [photoAlbumScene didMoveToParentViewController:self];

 [photoAlbumsScene setPhotoAlbumViewController:photoAlbumScene];

}

Next, you must add the declared property photoAlbumViewController to the
PhotoAlbumsViewController class. Open PhotoAlbumsViewController.h and add the
declared property photoAlbumViewController with the type PhotoAlbumView-
Controller. Because this view controller does not yet know about the PhotoAlbum-
ViewController class, you’ll need to add a forward @class declaration for it at the
top. Take a look at Listing 16.10 for the changes.

Listing 16.10 Updated PhotoAlbumsViewController.h

#import <UIKit/UIKit.h>

#import "WheelView.h"

@class PhotoAlbumViewController;

@interface PhotoAlbumsViewController : UIViewController

<NSFetchedResultsControllerDelegate, WheelViewDataSource, WheelViewDelegate>

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) IBOutlet WheelView *wheelView;

@property (nonatomic, strong) PhotoAlbumViewController *photoAlbumViewController;

- (IBAction)addPhotoAlbum:(id)sender;

@end

In PhotoAlbumsViewController.m, you must add the #import statement for
PhotoAlbumViewController.h. You must also add the @synthesize statement for the
new declared property. Last, you need to add the implementation for the -wheelView
:didSelectCellAtIndex: method. The changes are shown in Listing 16.11.

Listing 16.11 Updated PhotoAlbumsViewController.m

#import "PhotoAlbumsViewController.h"

#import "PhotoWheelViewCell.h"

#import "PhotoAlbum.h"

Turner_Book.indb 411 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen412

#import "Photo.h"

#import "PhotoAlbumViewController.h"

// Other code left out for brevity's sake.

@implementation PhotoAlbumsViewController

// Other code left out for brevity's sake.

@synthesize photoAlbumViewController = _photoAlbumViewController;

// Other code left out for brevity's sake.

- (void)wheelView:(WheelView *)wheelView didSelectCellAtIndex:(NSInteger)index

{

 // Retrieve the photo album from the fetched results.

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index

 inSection:0]; // 1

 PhotoAlbum *photoAlbum = nil;

 // index = -1 means no selected cell and nothing to retrieve

 // from the fetched results.

 if (index >= 0) {

 photoAlbum = [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 }

 // Pass the current managed object context and object id for the

 // photo album to the photo album view controller.

 PhotoAlbumViewController *photoAlbumViewController =

 [self photoAlbumViewController];

 [photoAlbumViewController

 setManagedObjectContext:[self managedObjectContext]]; // 2

 [photoAlbumViewController setObjectID:[photoAlbum objectID]]; // 3

 [photoAlbumViewController reload]; // 4

}

@end

Now let’s run through the code in Listing 16.11:

1. The implementation for -wheelView:didSelectCellAtIndex: starts by retriev-
ing the photo album model object from the fetched results. This is accomplished by
calling objectAtIndexPath: on the fetched results controller. Remember, sec-
tion 0 is used because the WheelView class always has only one section.

 2–3. After the photo album model object is retrieved, the current managed object
context and object ID for the photo album are passed to the PhotoAlbumView-
Controller instance. This is but one of many different implementations that

Turner_Book.indb 412 12/11/11 6:46 PM

ptg999

Managing Photo Albums 413

could have been used to share model data between two view controllers. For
instance, instead of passing the managed object context and object ID, the photo
album model object could be passed. After all, the model object knows its object
ID, and the managed object context can be retrieved from the model object.

Why use the approach of passing the managed object context and object ID?
This approach is used to illustrate a point. The managed object context can be a
separate context. Granted, in this case it’s the same as the one retrieved from the
AppDelegate instance, but it can be different.

The other point illustrated here is that each model object has a unique identifier
named objectID. The object ID can be used to retrieve an object from a dif-
ferent managed object context (from the same persistent store). An example of
where this is common is with background threads.

NSManagedObjectContext is not thread safe. You should never use a managed
object context created in a different thread. You should only use a context cre-
ated in the current thread. Instead of passing the context between threads, you
pass the persistent store coordinator, then create a new context instance using the
store coordinator in the secondary thread. And you can pass the objectID to
the secondary thread should it need to operate on a particular object.

Note
Read Core Data: Apple’s API for Persisting Data on Mac OS X, by Marcus Zarra (Pragmatic
Bookshelf, 2009), for more on using Core Data in multithreaded applications.

 4. Back to PhotoAlbumsViewController. Once the managed object context and
object ID have been passed to the PhotoAlbumViewController instance, the
-reload method is called on the same controller instance. -reload presents the
photo album data for the object ID retrieved from the managed object context.

This, of course, means that you need to add these properties (managedObject-
Context and objectID) to the PhotoAlbumViewController class along with the
-reload method. Open PhotoAlbumViewController.h and update it with the code shown
in Listing 16.12.

Listing 16.12 Updated PhotoAlbumViewController.h

#import <UIKit/UIKit.h>

@interface PhotoAlbumViewController : UIViewController

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) NSManagedObjectID *objectID;

- (void)reload;

@end

Turner_Book.indb 413 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen414

When you are finished with the interface, open PhotoAlbumViewController.m and add
the implementation as shown in Listing 16.13. The -reload method is empty for the
moment. You’ll work on the implementation of this method as the view controller is
enhanced.

Listing 16.13 Updated PhotoAlbumViewController.m

#import "PhotoAlbumViewController.h"

@implementation PhotoAlbumViewController

@synthesize managedObjectContext = _managedObjectContext;

@synthesize objectID = _objectID;

- (void)didMoveToParentViewController:(UIViewController *)parent

{

 // Position the view within the new parent.

 [[parent view] addSubview:[self view]];

 CGRect newFrame = CGRectMake(26, 18, 716, 717);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

- (void)reload

{

}

@end

At this point, the user can add a photo album and select an album by spinning the
wheel.

Naming the Photo Album
A nice feature to give the user is the ability to name a photo album. The name can be
displayed in the toolbar at the top of the photo album view. This area can also be used
to edit the album name. Simply tap the name and it becomes editable.

But the toolbar does not yet exist. You must add it. You also need to add a text
field to the toolbar for the photo album name. And you need to add two bar button
items to the toolbar. One bar button item is displayed on the left side of the toolbar
and the other on the right. The left button is an action button that will display a menu
of action items. The right button is the add button that’s used to add a photo to the
album.

Implement these requirements in your app.

Turner_Book.indb 414 12/11/11 6:46 PM

ptg999

Managing Photo Albums 415

Open MainStoryboard.storyboard. Select the Photo Album View Controller in the
Photo Album View Controller Scene. Delete the Round Rect Button that was used to
test the custom push segue. It’s no longer needed.

Next, drop a UIToolbar onto the scene. Position it at the top of the popover
image view in the area that looks like a toolbar area (set the position and size: X to 9,
Y to 6, Width to 698, and Height to 44). Anchor the toolbar to the top by changing
the autoresizing properties, and turn off autosizing for the width. Set the Style for the
toolbar to Black Opaque, and set its Background color to Clear.

Now add two buttons (UIBarButtonItem) and a text field (UITextField) to the
toolbar. Use the f lexible spacing object to position the buttons and text field. There
should be buttons on the left and right of the text field. The text field should be in the
middle of the toolbar. Set the text field Width to 533. Set the Placeholder property to
“Tap to edit.” Set the Alignment to Center and the Border Style to nothing. Finally,
set the Text Color to White and the Background to Clear.

Change the Identifier for the left button to Action, and change the Identifier for
the right-side button to Add. The finished scene should look like the screen shot in
Figure 16.6.

Now open PhotoAlbumViewController.h and add the following outlets and actions.
You can do this by hand, or use the Assistant editor. Be sure to connect the outlets and
actions. The code changes are shown in Listing 16.14.

n Outlet named toolbar of type UIToolbar
n Outlet named textField of type UITextField

Figure 16.6 The finished Photo Album View Controller Scene

Turner_Book.indb 415 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen416

n Outlet named addButton of type UIBarButtonItem
n Action named showActionMenu
n Action named addPhoto

Listing 16.14 Updated PhotoAlbumViewController Class

///////

// PhotoAlbumViewController.h

///////

#import <UIKit/UIKit.h>

@interface PhotoAlbumViewController : UIViewController

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) NSManagedObjectID *objectID;

@property (nonatomic, strong) IBOutlet UIToolbar *toolbar;

@property (nonatomic, strong) IBOutlet UITextField *textField;

@property (nonatomic, strong) IBOutlet UIBarButtonItem *addButton;

- (void)reload;

- (IBAction)showActionMenu:(id)sender;

- (IBAction)addPhoto:(id)sender;

@end

///////

// PhotoAlbumViewController.m

///////

#import "PhotoAlbumViewController.h"

@implementation PhotoAlbumViewController

@synthesize managedObjectContext = _managedObjectContext;

@synthesize objectID = _objectID;

@synthesize toolbar = _toolbar;

@synthesize textField = _textField;

@synthesize addButton = _addButton;

- (void)didMoveToParentViewController:(UIViewController *)parent

{

 // Position the view within the new parent.

 [[parent view] addSubview:[self view]];

 CGRect newFrame = CGRectMake(26, 18, 716, 717);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

Turner_Book.indb 416 12/11/11 6:46 PM

ptg999

Managing Photo Albums 417

- (void)viewDidUnload

{

 [self setToolbar:nil];

 [self setTextField:nil];

 [self setAddButton:nil];

 [super viewDidUnload];

}

- (void)reload

{

}

#pragma mark - Actions

- (IBAction)showActionMenu:(id)sender

{

}

- (IBAction)addPhoto:(id)sender

{

}

@end

One last connection is needed in the Photo Album View Controller Scene.
Control-click and drag the text field to the Photo Album View Controller object,
and make the view controller the delegate of the text field.

With the scene in place, turn your attention to the implementation of Photo-
AlbumViewController. A number of things must happen to prepare the class to
manage a photo album. First, the -reload method must be implemented. It should
retrieve the photo album and present the photo album data to the user. If there is no
photo album, the toolbar should be hidden. This prevents the user from manipulating
a nil photo album.

PhotoAlbumViewController must also respond to UITextFieldDelegate
methods. These responses control the user experience editing the photo album name,
and they tell the controller when to save the updated album name. The updated ver-
sion of PhotoAlbumViewController.m is given in Listing 16.15. Apply these changes to
your code.

Listing 16.15 Updated PhotoAlbumViewController.m

#import "PhotoAlbumViewController.h"

#import "PhotoAlbum.h" // 1

Turner_Book.indb 417 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen418

@interface PhotoAlbumViewController () // 2

@property (nonatomic, strong) PhotoAlbum *photoAlbum; // 3

@end

@implementation PhotoAlbumViewController

@synthesize managedObjectContext = _managedObjectContext;

@synthesize objectID = _objectID;

@synthesize toolbar = _toolbar;

@synthesize textField = _textField;

@synthesize addButton = _addButton;

@synthesize photoAlbum = _photoAlbum;

- (void)didMoveToParentViewController:(UIViewController *)parent

{

 // Position the view within the new parent.

 [[parent view] addSubview:[self view]];

 CGRect newFrame = CGRectMake(26, 18, 716, 717);

 [[self view] setFrame:newFrame];

 [[self view] setBackgroundColor:[UIColor clearColor]];

}

- (void)viewDidLoad // 4

{

 [super viewDidLoad];

 [self reload];

}

- (void)viewDidUnload // 5

{

 [self setToolbar:nil];

 [self setTextField:nil];

 [self setAddButton:nil];

 [super viewDidUnload];

}

#pragma mark - Photo album management

- (void)reload // 6

{

 if ([self managedObjectContext] && [self objectID]) { // 7

 self.photoAlbum = (PhotoAlbum *)[self.managedObjectContext

 objectWithID:[self objectID]]; // 8

 [[self toolbar] setHidden:NO]; // 9

 [[self textField] setText:[self.photoAlbum name]]; // 10

 } else {

 [self setPhotoAlbum:nil];

Turner_Book.indb 418 12/11/11 6:46 PM

ptg999

Managing Photo Albums 419

 [[self toolbar] setHidden:YES];

 [[self textField] setText:@""];

 }

}

- (void)saveChanges // 11

{

 // Save the context.

 NSManagedObjectContext *context = [self managedObjectContext];

 NSError *error = nil;

 if (![context save:&error])

 {

 /*

 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate.

 You should not use this function in a shipping application, although

 it may be useful during development. If it is not possible to recover

 from the error, display an alert panel that instructs the user to quit

 the application by pressing the Home button.

 */

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

}

#pragma mark - UITextFieldDelegate methods // 12

- (BOOL)textFieldShouldBeginEditing:(UITextField *)textField // 13

{

 [textField setBorderStyle:UITextBorderStyleRoundedRect];

 [textField setTextColor:[UIColor blackColor]];

 [textField setBackgroundColor:[UIColor whiteColor]];

 return YES;

}

- (void)textFieldDidEndEditing:(UITextField *)textField // 14

{

 [textField setBackgroundColor:[UIColor clearColor]];

 [textField setTextColor:[UIColor whiteColor]];

 [textField setBorderStyle:UITextBorderStyleNone];

 [[self photoAlbum] setName:[textField text]];

 [self saveChanges];

}

- (BOOL)textFieldShouldReturn:(UITextField *)textField // 15

{

Turner_Book.indb 419 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen420

 [textField resignFirstResponder];

 return NO;

}

#pragma mark - Actions

- (IBAction)showActionMenu:(id)sender

{

}

- (IBAction)addPhoto:(id)sender

{

}

@end

Let’s run through the code in Listing 16.15:

 1–3. PhotoAlbum.h is imported. A class extension is defined, and the declared prop-
erty named photoAlbum is added. The declared property is synthesized in the
@implementation section.

 4–5. The method -viewDidLoad is added. It calls the -reload method to initial-
ize the presentation at startup. -viewDidUnload is also added, and it releases
outlets when the view unloads.

6–10. The implementation for -reload has changed. It checks to see if the control-
ler has a managed object context and object ID. If so, it retrieves the photo
album and displays the name in the toolbar. If the managed object context or
object ID is missing, the toolbar is hidden. This prevents the user from manip-
ulating a nil photo album.

 11. The method -saveChanges is a helper method. Saving the context is needed
throughout the controller, so having a common save changes method is
helpful.

 12–13. The save helper method is followed by the UITextFieldDelegate methods.
This is the meat of what you are trying to accomplish at the moment. The
first delegate method, -textFieldShouldBeginEditing:, is called just
before editing in the text field begins. Here the code changes the text field
border style, text color, and background to give the appearance of being in an
edit mode.

14. The edit mode appearance is reset in the -textFieldDidEndEditing:
method. This method is called after editing in the text field has ended. In
addition to the visual appearance of the text field being reset, the edited text is
saved as the photo album’s name.

Turner_Book.indb 420 12/11/11 6:46 PM

ptg999

Managing Photo Albums 421

15. The last of the UITextFieldDelegate methods used in this controller is
-textFieldShouldReturn:. This method is called when the user taps the
Return button in the virtual keyboard. The implementation of this method
dismisses the keyboard. The method -resignFirstResponder on the text
field is called to dismiss the keyboard.

Congratulations! The app now supports editing the photo album name. Build and
run the app, and test the new feature.

Fixing the Toolbar Display
When you ran the app, you may have noticed that the toolbar looks a little odd. The
background for the toolbar has been set to clear, but it’s not clear. Instead, the toolbar
sits on top of the image and hides the rounded corners of the background image. To
fix this, a little hackery is needed.

You are going to create a custom toolbar that controls the drawing of the toolbar’s
background. Or rather, it prevents the drawing of the background.

Add a new Objective-C class to the PhotoWheel project. Name the class
ClearToolbar, and make it a subclass of UIToolbar. Then open ClearToolbar.m and
override -drawRect: with a blank implementation. The complete code is given in
Listing 16.16.

Listing 16.16 ClearToolbar Class

///////

// ClearToolbar.h

///////

#import <UIKit/UIKit.h>

@interface ClearToolbar : UIToolbar

@end

///////

// ClearToolbar.m

///////

#import "ClearToolbar.h"

@implementation ClearToolbar

- (void)drawRect:(CGRect)rect

{

 // Intentionally left blank.

}

@end

Turner_Book.indb 421 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen422

Now tell the Photo Album View Controller Scene to use ClearToolbar instead
of UIToolbar. You accomplish this by opening MainStoryboard.storyboard, selecting the
toolbar in the Photo Album View Controller Scene, and changing the class name from
UIToolbar to ClearToolbar in the Identity inspector.

Save your changes, then build and run the app again. The toolbar should look
much better, as shown in Figure 16.7.

Removing the Photo Album
If the user can add a photo album, surely he will want to remove one. PhotoWheel
needs a way for the user to delete a photo album. The action button on the left side
of the toolbar is a good place to display a menu of actions, including Delete Photo
Album. When the user taps this action item, the app should prompt for confirmation;
otherwise the user may end up deleting his favorite set of photos accidentally.

To make all of this happen, open PhotoAlbumViewController.m and scroll to the
-showActionMenu: action method. Create a UIActionSheet and add a button with
the title “Delete Photo Album.” Then show the action sheet from the action button.
You must also set the view controller as the delegate for the action sheet. This means
that you also need to open PhotoAlbumViewController.h and add UIActionSheet-
Delegate to the list of conforming protocols.

Figure 16.7 The cleaned-up version of the toolbar

Turner_Book.indb 422 12/11/11 6:46 PM

ptg999

Managing Photo Albums 423

Finally, display the UIAlertView to confirm the delete with the user. This is the
user’s last chance to back out of the action before the photo album is gone forever.

The code changes to accomplish all of this are shown in Listing 16.17.

Listing 16.17 Updated PhotoAlbumViewController with Photo Album Deletion
Support

///////
// PhotoAlbumViewController.h
///////
#import <UIKit/UIKit.h>

@interface PhotoAlbumViewController : UIViewController <UIActionSheetDelegate>

// Other code left out for brevity's sake.

@end

///////
// PhotoAlbumViewController.m
///////
#import "PhotoAlbumViewController.h"
#import "PhotoAlbum.h"

// Other code left out for brevity's sake.

@implementation PhotoAlbumViewController

// Other code left out for brevity's sake.

#pragma mark - Actions

- (IBAction)showActionMenu:(id)sender
{
 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];
 [actionSheet setDelegate:self];
 [actionSheet addButtonWithTitle:@"Delete Photo Album"];
 [actionSheet showFromBarButtonItem:sender animated:YES];
}

- (IBAction)addPhoto:(id)sender
{

}

#pragma mark - Confirm and delete photo album

- (void)confirmDeletePhotoAlbum
{
 NSString *message;

Turner_Book.indb 423 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen424

 NSString *name = [[self photoAlbum] name];
 if ([name length] > 0) {
 message = [NSString stringWithFormat:
 @"Delete the photo album \"%@\". This action cannot be undone.",
 name];
 } else {
 message = @"Delete this photo album? This action cannot be undone.";
 }
 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"Delete Photo Album"
 message:message
 delegate:self
 cancelButtonTitle:@"Cancel"
 otherButtonTitles:@"OK", nil];
 [alertView show];
}

#pragma mark - UIAlertViewDelegate methods

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 1) {
 [self.managedObjectContext deleteObject:[self photoAlbum]];
 [self setPhotoAlbum:nil];
 [self setObjectID:nil];
 [self saveChanges];
 [self reload];
 }
}

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 // Do nothing if the user taps outside the action
 // sheet (thus closing the popover containing the
 // action sheet).
 if (buttonIndex < 0) {
 return;
 }

 [self confirmDeletePhotoAlbum];
}

@end

That’s it. Photo albums can now be deleted.

Turner_Book.indb 424 12/11/11 6:46 PM

ptg999

A Better Photo Album Thumbnail 425

A Better Photo Album Thumbnail
The photo album thumbnails look okay, but there’s room for improvement. For
instance, the thumbnail icons don’t exactly convey a collection of photos to the user.
And the photo album name is not even displayed. It’s time to change this.

Open PhotoWheelViewCell.h and replace the interface code with the code in Listing
16.18.

Listing 16.18 Updated PhotoWheelViewCell.h

#import "WheelView.h"

@interface PhotoWheelViewCell : WheelViewCell

@property (nonatomic, strong) IBOutlet UIImageView *imageView;

@property (nonatomic, strong) IBOutlet UILabel *label;

+ (PhotoWheelViewCell *)photoWheelViewCell;

@end

By now, the code change shouldn’t look too foreign to you. Two outlets are added
as declared properties. The image view is used to display the thumbnail, and the label
is used to display the photo album name.

What might look a little different to you is the class method +photoWheelView-
Cell. The + at the start indicates that this is a class method, not an instance method.
The method is used to return a photo wheel view cell.

Note
Methods like +photoWheelViewCell are sometimes called convenience methods.
They are called convenience methods because they are provided as a matter of conve-
nience. In this particular case, the method makes it more convenient to create a new
PhotoWheelViewCell instance.

Now open PhotoWheelViewCell.m and update the implementation with the code
given in Listing 16.19. This new code replaces all of the old code.

Listing 16.19 Updated PhotoWheelViewController.m

#import "PhotoWheelViewCell.h"

@implementation PhotoWheelViewCell

@synthesize imageView = _imageView;

@synthesize label = _label;

Turner_Book.indb 425 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen426

+ (PhotoWheelViewCell *)photoWheelViewCell

{

 NSString *nibName = NSStringFromClass([self class]);

 UINib *nib = [UINib nibWithNibName:nibName bundle:nil];

 NSArray *nibObjects = [nib instantiateWithOwner:nil options:nil];

 // Verify that the top-level object is in fact of the correct type.

 NSAssert2([nibObjects count] > 0 &&

 [[nibObjects objectAtIndex:0] isKindOfClass:[self class]],

 @"Nib '%@' does not contain top-level view of type %@.",

 nibName, nibName);

 return [nibObjects objectAtIndex:0];

}

@end

The implementation starts by synthesizing the declared properties. That’s nothing
new. But what is new is the implementation for +photoWheelViewCell.

The previous implementation of PhotoWheelViewCell used a CALayer to draw
an image onto the view. The new PhotoWheelViewCell uses a NIB to define the
view layout. The code in +photoWheelViewCell returns an instance of the cell cre-
ated in the NIB PhotoWheelViewCell.xib, which you have not created yet.

The first line of code retrieves the name of the class. The class name will be the
name of the NIB. The next line of code sets a local variable to the NIB instance. The
class method nibWithNibName:bundle: found on UINib is used to retrieve the
NIB instance. The NIB is then instantiated, and an array of objects found in the NIB
is returned. A quick verification check is performed to ensure that the array has at
least one object and the top-level object is of the expected class type, which is Photo-
WheelViewCell. The top-level object is then returned to the caller.

Once you complete the code changes, create a new NIB file and add it to the
PhotoWheel project. Creating a NIB file is similar to creating other project files. Type
�-N to create a new file. Select iOS > User Interface, then select the Empty file
template, as shown in Figure 16.8. Click the Next button, then select iPhone as the
Device Family. Click the Next button, and save the NIB file as PhotoWheelViewCell.

Why Select iPhone as the Device Family?
The photo wheel view cell is a small view. By selecting iPhone as the device family, IB cre-
ates a smaller view than it would have if iPad had been selected.

Open the NIB file PhotoWheelViewCell.xib. Drag a view onto the design canvas.
Change the class name for the view to PhotoWheelViewCell. Set the Background
color to Clear, and give the view a Width of 97 and a Height of 117.

Drop a UIImageView into the view. Set the image name to defaultPhoto.png and
set the frame position and size: X to 12, Y to 10, Width to 75, and Height to 75.
Control-click and drag the image view to the photo wheel view cell view object, and

Turner_Book.indb 426 12/11/11 6:46 PM

ptg999

A Better Photo Album Thumbnail 427

connect it to the imageView outlet. This is the image view that displays the photo
album thumbnail image.

Drag another UIImageView onto the view. Set the image name to stack-overlay.png,
and set the frame position and size: X to 0, Y to 0, Width to 97, and Height to 97.

Finally, drag a UILabel onto the view. In the Attributes inspector, set Line Breaks
to Truncate Middle and Alignment to Center. Set the Text Color to Default (or Black)
and the Font size to 14. In the Size inspector, set the frame: X to 0, Y to 90, Width to
97, and Height to 21. Now Control-click and drag the label to the photo wheel view
cell, connecting it to the label outlet.

The final results should look like Figure 16.9.
To use the new and improved PhotoWheelViewCell, open PhotoAlbumsView-

Controller.m and scroll to the method -wheelView:cellAtIndex:. Replace the
implementation with the code in Listing 16.20.

Listing 16.20 Updated -wheelView:cellAtIndex: Method

- (WheelViewCell *)wheelView:(WheelView *)wheelView cellAtIndex:(NSInteger)index

{

PhotoWheelViewCell *cell = [wheelView dequeueReusableCell];

 if (!cell) {

 cell = [PhotoWheelViewCell photoWheelViewCell]; // 1

 }

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

Figure 16.8 Create a new NIB using the Empty file template

Turner_Book.indb 427 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen428

 PhotoAlbum *photoAlbum = [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 Photo *photo = [[photoAlbum photos] lastObject];

 UIImage *image = [photo thumbnailImage];

 if (image == nil) {

 image = [UIImage imageNamed:@"defaultPhoto.png"];

 }

 [[cell imageView] setImage:image]; // 2

 [[cell label] setText:[photoAlbum name]]; // 3

 return cell;

}

Three lines of code changed in the update, so let’s take a look at those:

1. If a reusable cell is not returned, a new cell is created using the convenience
method +photoWheelViewCell on PhotoWheelViewCell.

2. The second change replaces [cell setImage:image] with [[cell imageView]
setImage:image]. The previous implementation of the photo wheel view cell
handled drawing the image on the layer, but the new implementation uses an
image view instead.

Figure 16.9 UI for the PhotoWheelViewCell NIB

Turner_Book.indb 428 12/11/11 6:46 PM

ptg999

Adding Photos 429

3. The third and final change is the addition of the line [[cell label]
setText:[photoAlbum name]]. This change displays the photo album name
in the wheel.

Run the app to see how the new thumbnail looks—a definite improvement, as you
can see in Figure 16.10.

Adding Photos
You have accomplished a lot in this chapter so far, but there is a bit more that must be
done. The last major component missing from PhotoWheel is the display of photos.
But before the app can display photos, the user must have a way to add them.

You already added the + button (aka add button) to the toolbar, and in the proto-
type app you wrote code to pick an image from the Photos app library or the camera.
It’s time to pull those pieces together and give the user a way to add photos to the
photo album.

Start by opening PhotoAlbumViewController.h and adding UIImagePicker-
ControllerDelegate and UINavigationControllerDelegate to the list of conform-
ing protocols. Yes, it seems strange to include UINavigation ControllerDelegate in the

Figure 16.10 PhotoWheel with the new thumbnail display style

Turner_Book.indb 429 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen430

list of protocols, but it’s required to be a delegate of UIImagePickerController. It’s not a
big deal, though. All of the methods of UINavigationControllerDelegate are
optional, so there are no UINavigationControllerDelegate methods to implement.

The updated PhotoAlbumViewController.h is shown in Listing 16.21.

Listing 16.21 Updated PhotoAlbumViewController.h

#import <UIKit/UIKit.h>

@interface PhotoAlbumViewController : UIViewController <UIActionSheetDelegate,

UIImagePickerControllerDelegate, UINavigationControllerDelegate>

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) NSManagedObjectID *objectID;

@property (nonatomic, strong) IBOutlet UIToolbar *toolbar;

@property (nonatomic, strong) IBOutlet UITextField *textField;

@property (nonatomic, strong) IBOutlet UIBarButtonItem *addButton;

- (void)reload;

- (IBAction)showActionMenu:(id)sender;

- (IBAction)addPhoto:(id)sender;

@end

Now turn your attention to the implementation file PhotoAlbumViewController.m.
You have already written the code that makes it possible for a user to add a photo to
the photo album. The code is in the prototype app, but for the sake of completeness,
the updated PhotoAlbumViewController.m is shown in Listing 16.22. You need to apply
the same changes to your code.

Listing 16.22 Updated PhotoAlbumViewController.m

#import "PhotoAlbumViewController.h"

#import "PhotoAlbum.h"

#import "Photo.h" // 1

@interface PhotoAlbumViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, strong) UIImagePickerController *imagePickerController; // 2

@property (nonatomic, strong) UIPopoverController *imagePickerPopoverController; // 3

- (void)presentPhotoPickerMenu; // 4

@end

Turner_Book.indb 430 12/11/11 6:46 PM

ptg999

Adding Photos 431

@implementation PhotoAlbumViewController

// Other code left out for brevity's sake.

@synthesize imagePickerController = _imagePickerController; // 5

@synthesize imagePickerPopoverController = _imagePickerPopoverController;

// Other code left out for brevity's sake.

- (UIImagePickerController *)imagePickerController // 6

{

 if (_imagePickerController) {

 return _imagePickerController;

 }

 self.imagePickerController = [[UIImagePickerController alloc] init];

 [self.imagePickerController setDelegate:self];

 return _imagePickerController;

}

// Other code left out for brevity's sake.

- (IBAction)addPhoto:(id)sender // 7

{

 if ([self imagePickerPopoverController]) {

 [[self imagePickerPopoverController] dismissPopoverAnimated:YES];

 }

 [self presentPhotoPickerMenu];

}

// Other code left out for brevity's sake.

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet clickedButtonAtIndex:(NSInteger)
buttonIndex // 8

{

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 NSMutableArray *names = [[NSMutableArray alloc] init]; // 9

Turner_Book.indb 431 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen432

 if ([actionSheet tag] == 0) {

 [names addObject:@"confirmDeletePhotoAlbum"];

 } else {

 BOOL hasCamera = [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) [names addObject:@"presentCamera"];

 [names addObject:@"presentPhotoLibrary"];

 }

 SEL selector = NSSelectorFromString([names objectAtIndex:buttonIndex]);

 [self performSelector:selector];

}

#pragma mark - Image picker helper methods

- (void)presentCamera

{

 // Display the camera.

 UIImagePickerController *imagePicker = [self imagePickerController];

 [imagePicker setSourceType:UIImagePickerControllerSourceTypeCamera];

 [self presentModalViewController:imagePicker animated:YES];

}

- (void)presentPhotoLibrary

{

 // Display assets from the photo library only.

 UIImagePickerController *imagePicker = [self imagePickerController];

 [imagePicker setSourceType:UIImagePickerControllerSourceTypePhotoLibrary];

 UIPopoverController *newPopoverController =

 [[UIPopoverController alloc] initWithContentViewController:imagePicker];

 [newPopoverController presentPopoverFromBarButtonItem:[self addButton]

 permittedArrowDirections:UIPopoverArrowDirectionAny

 animated:YES];

 [self setImagePickerPopoverController:newPopoverController];

}

- (void)presentPhotoPickerMenu

{

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 BOOL hasCamera = [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) {

 [actionSheet addButtonWithTitle:@"Take Photo"];

 }

Turner_Book.indb 432 12/11/11 6:46 PM

ptg999

Adding Photos 433

 [actionSheet addButtonWithTitle:@"Choose from Library"];

 [actionSheet setTag:1];

 [actionSheet showFromBarButtonItem:[self addButton] animated:YES];

}

#pragma mark - UIImagePickerControllerDelegate methods

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

 // If the popover controller is available,

 // assume the photo is selected from the library

 // and not from the camera.

 BOOL takenWithCamera = ([self imagePickerPopoverController] == nil);

 if (takenWithCamera) {

 [self dismissModalViewControllerAnimated:YES];

 } else {

 [[self imagePickerPopoverController] dismissPopoverAnimated:YES];

 [self setImagePickerPopoverController:nil];

 }

 // Retrieve and display the image.

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 NSManagedObjectContext *context = [self managedObjectContext];

 Photo *newPhoto =

 [NSEntityDescription insertNewObjectForEntityForName:@"Photo"

 inManagedObjectContext:context];

 [newPhoto setDateAdded:[NSDate date]];

 [newPhoto saveImage:image];

 [newPhoto setPhotoAlbum:[self photoAlbum]];

 [self saveChanges];

}

@end

Now for the walk-through, highlighting the changes:

 1–5. Photo.h is added to the list of imports. Two declared properties have been added
to the class extension. The first is a reference to the image picker and the second
is a reference to the popover controller used to present the image picker. The
method declaration -presentPhotoPickerMenu has also been added to the
class extension to make its location in the @implementation section unimpor-
tant. And speaking of the implementation section, the new declared properties
are synthesized in the @implementation section.

Turner_Book.indb 433 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen434

6. A custom getter method has been created for imagePickerController. It lazy
loads the UIImagePickerController instance used by the view controller.

7. The getter is followed by -addPhoto:. Previously its implementation was
empty, but now it starts the process for picking an image. It also dismisses the
popover controller if it is open.

 8. The method -actionSheet:clickedButtonAtIndex:, which is a callback
for the UIActionSheetDelegate protocol, has been modified to support more
than one action sheet. The action button displays one action sheet, and the add
button displays the other. Both use the PhotoAlbumViewController instance
as their delegates, so the same callback method is called regardless of the sending
action sheet. The tag property on the action sheet is used to distinguish between
the two action sheets. A tag value of 0 indicates that the action sheet is used by
the action button. A tag value of 1 indicates that the action sheet is used by the
add button.

9. To make the code in -actionSheet:clickedButtonAtIndex: more main-
tainable, a mutable array is used to list the selector names for each menu item
within the action sheet. The buttonIndex is then used to retrieve the selector
name from the array, and -performSelector: is called to invoke the selector.
This dynamic approach to calling selectors is a powerful feature of Objective-C
not found in many other compiled programming languages.

Note
The PhotoWheel project uses ARC to transfer responsibility for memory management of
objects to the compiler. Because the selector is unknown in the -performSelector:
call, a “possible memory leak” warning message is reported by the compiler. This warn-
ing is legitimate given that ARC does not know the selector. The selector is determined at
run time. But the code in question does not cause a leak. There is, unfortunately, no way
to turn off this warning, so for now the warning message must be a part of the compiler
output.

The remaining code in Listing 16.22 is similar to the code you wrote for the pro-
totype app for picking an image. Refer to Chapter 12, “Adding Photos,” if you need a
refresher on what the code is doing.

Displaying Photos
The final piece missing from PhotoWheel is the display of photos. A nice way to
present the photos is to lay them out in a grid, but iOS doesn’t provide a grid view.
This means it’s up to you to write the code for a grid view. Writing a grid view from
scratch should not be too difficult since some of the core concepts have already been
implemented in the WheelView class.

Turner_Book.indb 434 12/11/11 6:46 PM

ptg999

Displaying Photos 435

Like the WheelView class, the grid view will be modeled after UITableView. It
will rely on a data source protocol to communicate to a controller, and it will manage
an internal cache of reusable cells.

To create the grid view, start by creating a new Objective-C class. Name the class
GridView, make it a subclass of UIScrollView, and add the new class to the Photo-
Wheel project.

UIScrollView, the superclass for your GridView class, displays content in a view
that is larger than the visible display area. The user scrolls through the content using
swiping gestures. A PhotoWheel user may have many photos stored within a single
photo album, many more photos than the app can display at one time. Therefore, bas-
ing the GridView class on the scroll view gives you lots of display behavior for free.

After creating the GridView class, open the file GridView.h and add the code
shown in Listing 16.23.

Listing 16.23 GridView.h

#import <UIKit/UIKit.h>

@class GridViewCell; // 1

@protocol GridViewDataSource; // 2

@interface GridView : UIScrollView <UIScrollViewDelegate> // 3

@property (nonatomic, strong) IBOutlet id<GridViewDataSource> dataSource;// 4

@property (nonatomic, assign) BOOL allowsMultipleSelection; // 5

- (id)dequeueReusableCell; // 6

- (void)reloadData; // 7

- (GridViewCell *)cellAtIndex:(NSInteger)index; // 8

- (NSInteger)indexForSelectedCell; // 9

- (NSArray *)indexesForSelectedCells; // 10

@end

@protocol GridViewDataSource <NSObject>

@required

- (NSInteger)gridViewNumberOfCells:(GridView *)gridView;

- (GridViewCell *)gridView:(GridView *)gridView cellAtIndex:(NSInteger)index;

- (CGSize)gridViewCellSize:(GridView *)gridView;

@optional

- (NSInteger)gridViewCellsPerRow:(GridView *)gridView;

- (void)gridView:(GridView *)gridView didSelectCellAtIndex:(NSInteger)index;

Turner_Book.indb 435 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen436

- (void)gridView:(GridView *)gridView didDeselectCellAtIndex:(NSInteger)index;

@end

@interface GridViewCell : UIView

@property (nonatomic, assign, getter = isSelected) BOOL selected; // 11

@end

1. The interface for the GridView class should look familiar. It uses a pattern
similar to the one you used to implement the WheelView class. A GridView-
Cell is declared as a forward declaration. Its interface is declared at the bot-
tom of the source code listing. This class provides a known base class that is
used by the GridView class.

2. It is followed by the declaration for the GridViewDataSource protocol. Its
interface is also defined toward the bottom of the source code listing. This
protocol is used to enable communication between the grid view and a view
controller. The protocol has the methods you would expect after working
with UITableView and WheelView. There is a method to retrieve the num-
ber of cells, a method to get the cell size, a method to get the number of cells
to display per row, and of course a method to get the cell that is displayed in
the grid.

3. The interface for GridView is straightforward. It subclasses UIScrollView,
and it conforms to the UIScrollViewDelegate protocol. As you will see
shortly, the GridView is its own delegate for managing scroll events.

 4–5. The GridView class has two properties: dataSource and allowsMultiple-
Selection. dataSource is a reference to an object (typically a view controller)
that conforms to the GridViewDataSource protocol. allowsMultiple-
Selection is a f lag indicating whether the GridView should manage mul-
tiple selections or not. When this f lag is set to YES, one or more cells can be
selected at the same time. When the f lag is set to NO, only one cell is marked
as selected.

Note
The GridView class presented here implements the multi-select feature. However, you
will not use this feature until Chapter 21, “Web Services.”

 6–8. The GridView class has a set of methods that should be familiar to you. The
methods -dequeueReusableCell, -reloadData, and -cellAtIndex: are
also found in the WheelView class.

9–10. Two additional methods are provided in the GridView class for reporting
the selected cell or cells: -indexForSelectedCell and -indexesFor-
SelectedCells. The first returns the index to the selected cell, and the

Turner_Book.indb 436 12/11/11 6:46 PM

ptg999

Displaying Photos 437

second returns an array of selected cells. The second method is meaningful
only when the allowsMultipleSelection f lag is set to YES.

11. The declared property selected is a Boolean (BOOL) indicating whether the
cell is selected or not.

Now for the implementation. Open GridView.m and update it with the code found
in Listing 16.24.

Listing 16.24 GridView.m

#import "GridView.h"

#pragma mark - GridViewCell

@interface GridViewCell () // 1

@property (nonatomic, assign) NSInteger indexInGrid;

@end

@implementation GridViewCell // 2

@synthesize selected = selected_;

@synthesize indexInGrid = indexInGrid_;

@end

#pragma mark - GridView

@interface GridView () // 3

@property (nonatomic, strong) NSMutableSet *reusableViews;

@property (nonatomic, assign) NSInteger firstVisibleIndex;

@property (nonatomic, assign) NSInteger lastVisibleIndex;

@property (nonatomic, assign) NSInteger previousItemsPerRow;

@property (nonatomic, strong) NSMutableSet *selectedCellIndexes;

@end

@implementation GridView // 4

@synthesize dataSource = _dataSource;

@synthesize reusableViews = _reusableViews;

@synthesize firstVisibleIndex = _firstVisibleIndex;

@synthesize lastVisibleIndex = _lastVisibleIndex;

@synthesize previousItemsPerRow = _previousItemsPerRow;

@synthesize selectedCellIndexes = _selectedCellIndexes;

@synthesize allowsMultipleSelection = _allowsMultipleSelection;

- (void)commonInit // 5

{

 // We keep a collection of reusable views. This

 // improves scrolling performance by not requiring

Turner_Book.indb 437 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen438

 // creation of the view each and every time.

 self.reusableViews = [[NSMutableSet alloc] init];

 // We have no views visible at first so we

 // set index values high and low to trigger

 // the display during layoutSubviews.

 [self setFirstVisibleIndex:NSIntegerMax];

 [self setLastVisibleIndex:NSIntegerMin];

 [self setPreviousItemsPerRow:NSIntegerMin];

 [self setDelaysContentTouches:YES]; // 6

 [self setClipsToBounds:YES]; // 7

 [self setAlwaysBounceVertical:YES]; // 8

 [self setAllowsMultipleSelection:NO]; // 9

 self.selectedCellIndexes = [[NSMutableSet alloc] init]; // 10

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self action:@selector(didTap:)]; // 11

 [self addGestureRecognizer:tap];

}

- (id)init // 12

{

 self = [super init];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithCoder:(NSCoder *)aDecoder

{

 self = [super initWithCoder:aDecoder];

 if (self) {

 [self commonInit];

 }

 return self;

}

- (id)initWithFrame:(CGRect)frame

{

 self = [super initWithFrame:frame];

 if (self) {

 [self commonInit];

 }

 return self;

}

Turner_Book.indb 438 12/11/11 6:46 PM

ptg999

Displaying Photos 439

- (id)dequeueReusableCell // 13

{

 id view = [[self reusableViews] anyObject];

 if (view != nil) {

 [[self reusableViews] removeObject:view];

 }

 return view;

}

- (void)queueReusableCells // 14

{

 for (UIView *view in [self subviews]) {

 if ([view isKindOfClass:[GridViewCell class]]) {

 [[self reusableViews] addObject:view];

 [view removeFromSuperview];

 }

 }

 [self setFirstVisibleIndex:NSIntegerMax];

 [self setLastVisibleIndex:NSIntegerMin];

 [[self selectedCellIndexes] removeAllObjects];

}

- (void)reloadData // 15

{

 [self queueReusableCells];

 [self setNeedsLayout];

}

- (GridViewCell *)cellAtIndex:(NSInteger)index // 16

{

 GridViewCell *cell = nil;

 if (index >= [self firstVisibleIndex] && index <= [self lastVisibleIndex]) {

 for (id view in [self subviews]) {

 if ([view isKindOfClass:[GridViewCell class]]) {

 if ([view indexInGrid] == index) {

 cell = view;

 break;

 }

 }

 }

 }

 if (cell == nil) {

 cell = [[self dataSource] gridView:self cellAtIndex:index];

 }

Turner_Book.indb 439 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen440

 return cell;

}

- (void)layoutSubviews // 17

{

 [super layoutSubviews];

 CGRect visibleBounds = [self bounds]; // 18

 NSInteger visibleWidth = visibleBounds.size.width;

 NSInteger visibleHeight = visibleBounds.size.height;

 CGSize viewSize = [[self dataSource] gridViewCellSize:self]; // 19

 // Do some math to determine which rows and columns

 // are visible.

 NSInteger itemsPerRow = NSIntegerMin; // 20

 if ([[self dataSource] respondsToSelector:@selector(gridViewCellsPerRow:)]) {

 itemsPerRow = [[self dataSource] gridViewCellsPerRow:self];

 }

 if (itemsPerRow == NSIntegerMin) {

 // Calculate the number of items per row.

 itemsPerRow = floor(visibleWidth / viewSize.width);

 }

 if (itemsPerRow != [self previousItemsPerRow]) {

 // Force reload of grid views. Unfortunately this means

 // visible views will reload, which can hurt performance

 // when the view isn't cached. Need to find a better

 // approach someday.

 [self queueReusableCells];

 }

 [self setPreviousItemsPerRow:itemsPerRow];

 // Ensure a minimum amount of space between views.

 NSInteger minimumSpace = 5;

 if (visibleWidth - itemsPerRow * viewSize.width < minimumSpace) {

 itemsPerRow--;

 }

 if (itemsPerRow < 1) itemsPerRow = 1; // Ensure at least one view per row.

 NSInteger spaceWidth =

 round((visibleWidth - viewSize.width * itemsPerRow) / (itemsPerRow + 1));

 NSInteger spaceHeight = spaceWidth;

 // Calculate the content size for the scroll view.

 NSInteger viewCount = [[self dataSource] gridViewNumberOfCells:self];

 NSInteger rowCount = ceil(viewCount / (float)itemsPerRow);

Turner_Book.indb 440 12/11/11 6:46 PM

ptg999

Displaying Photos 441

 NSInteger rowHeight = viewSize.height + spaceHeight;

 CGSize contentSize = CGSizeMake(visibleWidth,

 (rowHeight * rowCount + spaceHeight));

 [self setContentSize:contentSize]; // 21

 NSInteger numberOfVisibleRows = visibleHeight / rowHeight;

 NSInteger topRow = MAX(0, floorf(visibleBounds.origin.y / rowHeight));

 NSInteger bottomRow = topRow + numberOfVisibleRows;

 CGRect extendedVisibleBounds =

 CGRectMake(visibleBounds.origin.x,

 MAX(0, visibleBounds.origin.y),

 visibleBounds.size.width,

 visibleBounds.size.height + rowHeight);

 // Recycle all views that are no longer visible.

 for (UIView *view in [self subviews]) { // 22

 if ([view isKindOfClass:[GridViewCell class]]) {

 CGRect viewFrame = [view frame];

 // If the view doesn't intersect, it's not visible, so recycle it.

 if (!CGRectIntersectsRect(viewFrame, extendedVisibleBounds)) {

 [[self reusableViews] addObject:view];

 [view removeFromSuperview];

 }

 }

 }

 /////////////

 // Whew! We're now ready to lay out the subviews. // 23

 NSInteger startAtIndex = MAX(0, topRow * itemsPerRow);

 NSInteger stopAtIndex = MIN(viewCount,

 (bottomRow * itemsPerRow) + itemsPerRow);

 // Set the initial origin.

 NSInteger x = spaceWidth;

 NSInteger y = spaceHeight + (topRow * rowHeight);

 // Iterate through the needed views, adding any views that are missing.

 for (NSInteger index = startAtIndex; index < stopAtIndex; index++) {

 // Set the frame so the view is placed in the correct position.

 GridViewCell *view = [self cellAtIndex:index];

 CGRect newFrame = CGRectMake(x, y, viewSize.width, viewSize.height);

 [view setFrame:newFrame];

Turner_Book.indb 441 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen442

 // If the index is between the first and last, the

 // view is not missing.

 BOOL isViewMissing =

 !(index >= [self firstVisibleIndex] && index < [self lastVisibleIndex]);

 if (isViewMissing) {

 BOOL selected = [[self selectedCellIndexes]

 containsObject:[NSNumber numberWithInteger:index]];

 [view setSelected:selected];

 [view setIndexInGrid:index];

 [self addSubview:view];

 }

 // Adjust the position.

 if ((index+1) % itemsPerRow == 0) {

 // Start new row.

 x = spaceWidth;

 y += viewSize.height + spaceHeight;

 } else {

 x += viewSize.width + spaceWidth;

 }

 }

 // Finally, remember which view indexes are visible.

 [self setFirstVisibleIndex:startAtIndex];

 [self setLastVisibleIndex:stopAtIndex];

}

- (void)didTap:(UITapGestureRecognizer *)recognizer // 24

{

 // Need to figure out if the user tapped a cell or not.

 // If a cell was tapped, let the data source know

 // which cell was tapped.

 CGPoint touchPoint = [recognizer locationInView:self];

 for (id view in [self subviews]) {

 if ([view isKindOfClass:[GridViewCell class]]) {

 if (CGRectContainsPoint([view frame], touchPoint)) { // 25

 NSInteger previousIndex = -1; // 26

 NSInteger selectedIndex = -1;

 NSMutableSet *selectedCellIndexes = [self selectedCellIndexes];

 if ([self allowsMultipleSelection] == NO) {

 // Out with the old.

 if ([selectedCellIndexes count] > 0) {

 previousIndex = [[selectedCellIndexes anyObject] integerValue];

Turner_Book.indb 442 12/11/11 6:46 PM

ptg999

Displaying Photos 443

 [[self cellAtIndex:previousIndex] setSelected:NO];

 [selectedCellIndexes removeAllObjects];

 }

 // And in with the new.

 selectedIndex = [view indexInGrid];

 [view setSelected:YES];

 [selectedCellIndexes

 addObject:[NSNumber numberWithInteger:selectedIndex]];

 } else {

 NSInteger indexInGrid = [view indexInGrid];

 NSNumber *numberIndexInGrid =

 [NSNumber numberWithInteger:indexInGrid];

 if ([selectedCellIndexes containsObject:numberIndexInGrid]) {

 previousIndex = indexInGrid;

 [view setSelected:NO];

 [selectedCellIndexes removeObject:numberIndexInGrid];

 } else {

 selectedIndex = indexInGrid;

 [view setSelected:YES];

 [selectedCellIndexes addObject:numberIndexInGrid];

 }

 }

 id <GridViewDataSource> dataSource = [self dataSource]; // 27

 if (previousIndex >= 0) {

 if ([dataSource

 respondsToSelector:@selector(gridView:didDeselectCellAtIndex:)])

 {

 [dataSource gridView:self didDeselectCellAtIndex:previousIndex];

 }

 }

 if (selectedIndex >= 0) {

 if ([dataSource

 respondsToSelector:@selector(gridView:didSelectCellAtIndex:)])

 {

 [dataSource gridView:self didSelectCellAtIndex:selectedIndex];

 }

 }

 break;

 }

 }

 }

}

Turner_Book.indb 443 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen444

- (NSInteger)indexForSelectedCell // 28

{

 NSInteger selectedIndex = -1;

 NSMutableSet *selectedCellIndexes = [self selectedCellIndexes];

 if ([selectedCellIndexes count] > 0) {

 selectedIndex = [[selectedCellIndexes anyObject] integerValue];

 }

 return selectedIndex;

}

- (NSArray *)indexesForSelectedCells // 29

{

 NSArray *selectedIndexes = nil;

 NSMutableSet *selectedCellIndexes = [self selectedCellIndexes];

 if ([selectedCellIndexes count] > 0) {

 NSSortDescriptor *sortDescriptor = [NSSortDescriptor

 sortDescriptorWithKey:@"self"

 ascending:YES];

 selectedIndexes = [selectedCellIndexes

 sortedArrayUsingDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 }

 return selectedIndexes;

}

@end

Much of the code in Listing 16.24 is conceptually familiar, so instead of a thorough
code walk-through, only key parts are highlighted.

1–2. At the top of GridView.m is a class extension and the implementation for
GridViewCell. It has a private property indexInGrid that is used by the
GridView class to maintain the cell index within the grid.

 3. Following GridViewCell is a class extension for GridView. The class exten-
sion has a set of properties used to manage the cache of reusable cells, the dis-
play of cells, and the set of selected cell indexes.

4–5. The implementation for GridView starts, as you might expect, with the syn-
thesizing of the declared properties. This is followed by -commonInit. This
method is called by the other init* methods, and it is responsible for initial-
izing the GridView instance. It allocates the reusableViews set. It then sets
property values used to control the display layout.

 The properties delaysContentTouches, clipsToBounds, and always-
BounceVertical are set to YES. These properties are inherited from
UIScrollView. This is why you do not see their declarations in the Grid-
View class.

Turner_Book.indb 444 12/11/11 6:46 PM

ptg999

Displaying Photos 445

 6. The property delaysContentTouches tells the scroll view to delay the han-
dling of touch-down gestures. The handling is delayed until the scroll view
can determine if scrolling is the intent of the gesture. The delay is needed to
give the tap gesture (also instantiated in -commonInit) a chance to handle
the gesture.

 7–8. The property clipsToBounds confines the subviews (aka cells) to the
bounds of the scroll view. This ensures that the cells are not displayed out-
side the visible area of the grid view. And alwaysBounceVertical always
bounces the scroll area when the content has reached an end.

 9–10. -commonInit also sets the allowMultipleSelection f lag to NO, which is
the default behavior for the GridView class. It then instantiates the mutable
set used to maintain the collection of selected cell indexes.

11. A tap gesture is created and added to the grid view. The tap gesture is used to
determine when a cell in the grid view has been tapped.

 12. Additional init* methods are provided, enabling a GridView object to be
created by different approaches common to Cocoa. For instance, -initWith-
Coder: is called when the GridView is defined in a NIB or storyboard, and
it is loaded at run time.

 13–16. The methods following the inits (i.e., -dequeueReusableCell,
-queueReusableCells, -reloadData, and -cellAtIndex:) are essentially
the same as ones (with the same names) found in the WheelView class, and
the code is self-explanatory. The method following those, -layoutSubviews,
is not.

 17–19. The method -layoutSubviews is the workhorse of the GridView class. This
method is responsible for displaying the cells in a grid layout. The method
starts by setting local variables to the bounds and size of the grid view. It then
requests the size of the cell from the data source, which the data source is
required to provide. These sizes, along with other variables, are used to calcu-
late the rows and columns as well as the overall layout for the grid.

20. Next, the number of items per row is calculated. The calculation evenly dis-
tributes the cells within the row. The data source has the option to override
this calculation and instead specify a specific number of items per row.

21–22. Once the calculations have been performed, the content size for the scroll
view is set. The content size can be larger than the view port displaying the
grid. After this, the bounds of the grid are calculated. These are used to deter-
mine whether a cell is visible or not. Cells that are not visible are queued for
reuse.

23. It is at this point that -layoutSubviews can finally lay out the subviews.
The subviews are the individual cells that make up the grid. A loop is cre-
ated that iterates through the cells to be displayed. If a cell is missing from the

Turner_Book.indb 445 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen446

display, it is added. The cells are then positioned within the grid to form the
grid layout of rows and columns.

24–25. The -layoutSubviews method is followed by the -didTap: method. This
method handles the tap events from the tap gestures created in -commonInit.
The method iterates through the collection of subviews looking for the cell, if
any, displayed at the user’s touch point. CGRectContainsPoint() is used to
determine if the cell has been tapped or not.

26–27. If it is determined that a cell has been tapped, logic is applied to determine if
the cell is being selected or deselected. If multiple selection support is turned
off, a tapped cell is instantly made the selected cell. If, however, multiple
selection is turned on, a tap on a nonselected cell will select it, and a tap on
a selected cell will deselect it. Once the code determines if a cell has been
selected or deselected, a callback to the data source is made informing it about
the selection change.

28. The last two methods in the GridView implementation return selected index
information. The method -indexForSelectedCell returns the selected
index. If there are no cells marked as selected, -1 is returned. If allow-
MultipleSelection is set to YES, the index of any one selected cell is
returned. The same logic is used to return the selected cell index when
allowMultipleSelection is turned off. This works because the selected-
CellIndexes set contains one and only one cell index when allow-
MultipleSelection is turned off.

29. And finally there is the -indexesForSelectedCells method. This method
returns the list of indexes for selected cells. If no cells are selected, nil is
returned.

And that, my friends, is a high-level overview of the GridView class and its
implementation.

Using the GridView Class
You use the GridView class the same way you used the WheelView class. You place a
view in a NIB or storyboard scene, change its class name in the Identity inspector, and
connect a view controller as its data source. In fact, let’s do that now.

Open MainStoryboard.storyboard. Select the Photo Album View Controller Scene and
drag a new UIView onto the scene’s content view. Change the name of the class from
UIView to GridView, and set the frame position and size: X to 9, Y to 51, Width to
698, and Height to 597. Make the photo album view controller the data source for the
grid view by Control-clicking and dragging the grid view to the view controller.

You must also connect the grid view as an outlet to the view controller. Open
PhotoAlbumViewController.h, import GridView.h, and add a new outlet named gridView
of type GridView. Be sure to update the -viewDidUnload method in the view con-
troller’s implementation with [self setGridView:nil]. Alternatively, you can use
the Assistant editor to create and connect the new outlet.

Turner_Book.indb 446 12/11/11 6:46 PM

ptg999

Displaying Photos 447

Also, PhotoAlbumViewController will be the data source for the GridView, and
it will use an NSFetchedResultsController. Therefore, you need to add Grid-
ViewDataSource and NSFetchedResultsControllerDelegate to the list of pro-
tocols implemented by the PhotoAlbumViewController class.

There’s one last visual change to make. To soften the look as a user scrolls the grid
up, place a drop shadow under the toolbar. The easiest way to accomplish this is to
drag a UIImageView into the scene. Set the image name to stack-viewer-shadow.png, and
set its frame position and size: X to 9, Y to 51, Width to 698, and Height to 8. Last,
turn off autosizing for the image view.

The completed scene should look like the one in Figure 16.11.
The updated code for the PhotoAlbumViewController class is shown in Listing

16.25. Review the listing to make sure you made the same changes to your code.

Listing 16.25 Updated PhotoAlbumViewController Class

///////

// PhotoAlbumViewController.h

///////

#import <UIKit/UIKit.h>

#import "GridView.h"

@interface PhotoAlbumViewController : UIViewController

<UIActionSheetDelegate, UIImagePickerControllerDelegate,

Figure 16.11 Completed scene with grid view and drop shadow

Turner_Book.indb 447 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen448

UINavigationControllerDelegate, NSFetchedResultsControllerDelegate,

GridViewDataSource>

// Other code left out for brevity's sake.

@property (nonatomic, strong) IBOutlet GridView *gridView;

// Other code left out for brevity's sake.

@end

///////

// PhotoAlbumViewController.m

///////

#import "PhotoAlbumViewController.h"

#import "PhotoAlbum.h"

#import "Photo.h"

#import "ImageGridViewCell.h"

@interface PhotoAlbumViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, strong) NSFetchedResultsController
*fetchedResultsController;

// Other code left out for brevity's sake.

@end

@implementation PhotoAlbumViewController

// Other code left out for brevity's sake.

@synthesize gridView = _gridView;

@synthesize fetchedResultsController = _fetchedResultsController;

// Other code left out for brevity's sake.

- (void)reload

{

 if ([self managedObjectContext] && [self objectID]) {

 self.photoAlbum = (PhotoAlbum *)[self.managedObjectContext

 objectWithID:[self objectID]];

 [[self toolbar] setHidden:NO];

 [[self textField] setText:[self.photoAlbum name]];

Turner_Book.indb 448 12/11/11 6:46 PM

ptg999

Displaying Photos 449

 } else {

 [self setPhotoAlbum:nil];

 [[self toolbar] setHidden:YES];

 [[self textField] setText:@""];

 }

 [self setFetchedResultsController:nil];

 [[self gridView] reloadData];

}

// Other code left out for brevity's sake.

#pragma mark - NSFetchedResultsController and NSFetchedResultsControllerDelegate

- (NSFetchedResultsController *)fetchedResultsController

{

 if (_fetchedResultsController) {

 return _fetchedResultsController;

 }

 NSManagedObjectContext *context = [self managedObjectContext];

 if (!context) {

 return nil;

 }

 NSString *cacheName = [NSString stringWithFormat:@"%@-%@",

 [self.photoAlbum name], [self.photoAlbum dateAdded]];

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 NSEntityDescription *entityDescription =

 [NSEntityDescription entityForName:@"Photo"

 inManagedObjectContext:context];

 [fetchRequest setEntity:entityDescription];

 NSSortDescriptor *sortDescriptor =

 [NSSortDescriptor sortDescriptorWithKey:@"dateAdded" ascending:YES];

 [fetchRequest setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 [fetchRequest setPredicate:[NSPredicate predicateWithFormat:@"photoAlbum = %@",

 [self photoAlbum]]];

 NSFetchedResultsController *newFetchedResultsController =

 [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest

 managedObjectContext:context

 sectionNameKeyPath:nil

 cacheName:cacheName];

 [newFetchedResultsController setDelegate:self];

 [self setFetchedResultsController:newFetchedResultsController];

Turner_Book.indb 449 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen450

 NSError *error = nil;

 if (![[self fetchedResultsController] performFetch:&error])

 {

 /*

 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate.

 You should not use this function in a shipping application, although

 it may be useful during development. If it is not possible to recover

 from the error, display an alert panel that instructs the user to quit

 the application by pressing the Home button.

 */

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 return _fetchedResultsController;

}

- (void)controllerDidChangeContent:(NSFetchedResultsController *)controller

{

 [[self gridView] reloadData];

}

#pragma mark - GridViewDataSource methods

- (NSInteger)gridViewNumberOfCells:(GridView *)gridView

{

 NSInteger count = [[[[self fetchedResultsController] sections]

 objectAtIndex:0] numberOfObjects];

 return count;

}

- (GridViewCell *)gridView:(GridView *)gridView cellAtIndex:(NSInteger)index

{

 ImageGridViewCell *cell = [gridView dequeueReusableCell];

 if (cell == nil) {

 cell = [ImageGridViewCell imageGridViewCellWithSize:CGSizeMake(100, 100)];

 }

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 Photo *photo = [[self fetchedResultsController] objectAtIndexPath:indexPath];

 [[cell imageView] setImage:[photo smallImage]];

 return cell;

}

Turner_Book.indb 450 12/11/11 6:46 PM

ptg999

Displaying Photos 451

- (CGSize)gridViewCellSize:(GridView *)gridView

{

 return CGSizeMake(100, 100);

}

- (void)gridView:(GridView *)gridView didSelectCellAtIndex:(NSInteger)index

{

}

@end

The code in Listing 16.25 follows the same pattern you have already learned using
WheelView, so a code walk-through is not necessary. The time is better spent creating
another new Objective-C class.

The cell type returned in the -gridView:cellAtIndex: method is Image-
GridViewCell. This class does not yet exist, which is why the app will not com-
pile (assuming you did try to compile it). ImageGridViewCell is similar to the
Photo WheelViewCell created in the prototype app. The difference here is that
ImageGridViewCell supports a selected state. A selected cell will display a visual
indicator. A nonselected cell will not.

Note
The visual indicator for selected cells is not used in this chapter, but it’s important to get
the code in place now. It will be used in Chapter 21, “Web Services.”

By now, you can probably guess what is coming, but just in case...

Building the Image Grid View Cell
Create a new Objective-C class. Name it ImageGridViewCell, and make it a sub-
class of GridViewCell. Add it to the PhotoWheel project, and then copy the code
from Listing 16.26.

Listing 16.26 ImageGridViewCell Class

///////

// ImageGridViewCell.h

///////

#import "GridView.h"

@interface ImageGridViewCell : GridViewCell

@property (nonatomic, strong, readonly) UIImageView *imageView; // 1

@property (nonatomic, strong, readonly) UIImageView *selectedIndicator; // 2

Turner_Book.indb 451 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen452

+ (ImageGridViewCell *)imageGridViewCellWithSize:(CGSize)size; // 3

- (id)initWithSize:(CGSize)size;

@end

///////

// ImageGridViewCell.m

///////

#import "ImageGridViewCell.h"

@interface ImageGridViewCell () // 4

@property (nonatomic, strong, readwrite) UIImageView *imageView;

@property (nonatomic, strong, readwrite) UIImageView *selectedIndicator;

@end

@implementation ImageGridViewCell

@synthesize imageView = _imageView; // 5

@synthesize selectedIndicator = _selectedIndicator;

- (void)commonInitWithSize:(CGSize)size // 6

{

 CGRect frame = CGRectMake(0, 0, size.width, size.height);

 [self setBackgroundColor:[UIColor clearColor]];

 self.imageView = [[UIImageView alloc] initWithFrame:frame];

 [self addSubview:[self imageView]];

 NSInteger baseSize = 29;

 self.selectedIndicator =

 [[UIImageView alloc] initWithFrame:CGRectMake(size.width - baseSize - 4,

 size.height - baseSize - 4,

 baseSize,

 baseSize)];

 [[self selectedIndicator] setHidden:YES];

 [self addSubview:[self selectedIndicator]];

}

- (id)init // 7

{

 CGSize size = CGSizeMake(100, 100);

 self = [self initWithSize:size];

 if (self) {

 }

Turner_Book.indb 452 12/11/11 6:46 PM

ptg999

Displaying Photos 453

 return self;

}

- (id)initWithSize:(CGSize)size // 8

{

 CGRect frame = CGRectMake(0, 0, size.width, size.height);

 self = [super initWithFrame:frame];

 if (self) {

 [self commonInitWithSize:size];

 }

 return self;

}

- (void)setSelected:(BOOL)selected // 9

{

 [super setSelected:selected];

 [[self selectedIndicator] setHidden:!selected];

}

+ (ImageGridViewCell *)imageGridViewCellWithSize:(CGSize)size // 10

{

 ImageGridViewCell *newCell = [[ImageGridViewCell alloc] initWithSize:size];

 return newCell;

}

@end

Now let’s review the code:

 1–2. The class interface for ImageGridViewCell has three properties: imageView,
selectedIndicator, and selected. The imageView contains the photo that
is displayed in the cell. The selectedIndicator property is a 29 × 29-pixel
image view displayed in the lower right corner of the image view when the cell
is selected.

3. A convenience method named +imageGridViewCellWithSize: is provided
to create a new cell of a specified size. Of course, you are not required to use
the convenience method. You can call -initWithSize: directly, which is also
included in the class interface.

4. The implementation for ImageGridViewCell starts with a class extension. The
class extension defines the properties imageView and selectedIndicator. In
the public interface, these properties are read-only, but in the redeclaration these
properties are made read-writable. This allows the internals of the class to change
the property values while preventing users of the class from doing the same.

What this means for ImageGridViewCell is that users of the class cannot
replace the image view or selector indicator view. However, users of the class

Turner_Book.indb 453 12/11/11 6:46 PM

ptg999

Chapter 16 Building the Main Screen454

can change values within these two properties. In other words, the user can
set the image for both imageView and selectorIndicator. The only thing
the class user can’t do is replace the reference to the image views created by the
ImageGridViewCell class itself.

5–6. Continuing with the implementation of ImageGridViewCell, you see that the
declared properties are synthesized. The -commitInit method is provided to
initialize the class upon creation. It allocates the image views used within the
class and adds each to the container view.

 7–8. The methods -init and -initWithSize: provide different ways to create an
instance of the class.

 9. The -setSelected: method overrides the setter method for the selected
property defined in the GridViewCell class. It updates the setter method to
show and hide the selectedIndicator image view based on the selected
value.

10. Finally, the convenience method +imageGridViewCellWithSize: is provided
for creating new instances of the ImageGridViewCell.

With this class in place, you can now compile PhotoWheel and run it to see all the
changes in action. The finished app will look something like Figure 16.12.

Figure 16.12 The finished app

Turner_Book.indb 454 12/11/11 6:46 PM

ptg999

Exercises 455

Note
You maybe wondering why ImageGridViewCell does not use a NIB yet Photo-
WheelViewCell does. The choice not to use a NIB for ImageGridViewCell was
based on where my mind was at the time the code was written. Certainly a NIB can be
used for ImageGridViewCell, but at the moment the code was written it was crystal-
clear to me how to create the cell in code. Had it been a different day and had my mind
been in a different place, I might have used a NIB for the class.

Summary
Congratulations! You made it through the book’s longest chapter. Go on, pat yourself
on the back; you deserve it. You have accomplished quite a bit in this chapter.

You took advantage of existing code from the prototype to help speed up devel-
opment. You made the WheelView class more robust, and you implemented a new
GridView class, both of which you can now use in other apps. And you have, for the
first time, a functional photo app that is worth showing off.

Award yourself for a job well done by taking a break. When you’re feeling refreshed
and ready, we’ll tackle adding new features to PhotoWheel in Chapter 17, “Creating a
Photo Browser.”

Exercises
1. Modify the add photo logic in PhotoAlbumViewController to save new pho-

tos to the camera roll. (Refer to Chapter 12, “Adding Photos,” for pointers on
how to do this.)

2. Enable multiple selection support on the grid view managed by the Photo-
AlbumViewController view controller class. You will need to set the image
for the cell’s selectedIndicator image view if you want to see a visual indi-
cator displayed on each selected cell. Use addphoto.png as the selector indicator
image.

Turner_Book.indb 455 12/11/11 6:46 PM

ptg999

This page intentionally left blank

ptg999

17
Creating a Photo Browser

In this chapter, you will add a full-screen photo browser to PhotoWheel. You will also learn more
ways to use the UIScrollView class.

The UIScrollView class provides a way to present a view that is larger than the visible
area on the screen. Swiping touch gestures are used to scroll the content area horizontally and
vertically, and the pinch gesture is used to zoom in and out. As you build the photo browser, you
will learn how to use the scroll view to scroll content and zoom in and out of the view.
It’s time to get started.

Using the Scroll View
You use the scroll view for two different purposes as you build the photo browser.
First, you use the class to build a full-screen photo browser. This browser enables users
to f lick through an album of photos by swiping left and right with a finger. Later, you
use the UIScrollView class to enable the user to zoom in and out on a photo.

To begin, you need a view controller for the photo browser. Create a new
Objective-C class named PhotoBrowserViewController, which is a subclass of
UIViewController. The class will respond to scroll events, so add UIScrollView-
Delegate to the list of protocols supported by the class. The class will also need an
outlet for the scroll view itself, so add an outlet named scrollView and make it a
pointer to the UIScrollView type.

The photo browser will be launched from the main screen when a photo is tapped.
The photo browser will display the tapped photo, and the user can scroll left and right
through the other photos. To support this feature, the view controller must be told the
index to the starting photo. So add a declared property of type NSInteger with the
name startAtIndex.

The photo browser must also know what photos to display. One approach is to pass
in the photo album model object to the view controller. Another approach, which
you have already used, is to pass in the managed object context and object ID for the
model object. But let’s go with a third approach that is a bit more f lexible and makes
the photo browser view controller reusable for other projects.

Turner_Book.indb 457 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser458

The class PhotoBrowserViewController will have a delegate property. The
delegate object must conform to the protocol PhotoBrowserViewController-
Delegate, which you must create. The delegate will provide methods to retrieve the
number of photos within the album and retrieve the photo image for a specified index.
This approach enables the photo browser view controller to work in any project, not
just PhotoWheel, as long as a delegate object conforming to PhotoBrowserView-
ControllerDelegate is provided.

The interface code for these requirements is shown in Listing 17.1.

Listing 17.1 PhotoBrowserViewController.h

#import <UIKit/UIKit.h>

@protocol PhotoBrowserViewControllerDelegate;

@interface PhotoBrowserViewController : UIViewController <UIScrollViewDelegate>

@property (nonatomic, strong) IBOutlet UIScrollView *scrollView;

@property (nonatomic, strong) id<PhotoBrowserViewControllerDelegate> delegate;

@property (nonatomic, assign) NSInteger startAtIndex;

@end

@protocol PhotoBrowserViewControllerDelegate <NSObject>

@required

- (NSInteger)photoBrowserViewControllerNumberOfPhotos:

(PhotoBrowserViewController *)photoBrowser;

- (UIImage *)photoBrowserViewController:(PhotoBrowserViewController *)photoBrowser

 imageAtIndex:(NSInteger)index;

@end

With the easy part out of the way, it’s time to add the implementation, shown in
Listing 17.2. You must copy this code into your controller class. An explanation of the
code is provided after the listing.

Listing 17.2 PhotoBrowserViewController.m

#import "PhotoBrowserViewController.h"

@interface PhotoBrowserViewController ()

@property (nonatomic, assign) NSInteger currentIndex; // 1

@property (nonatomic, strong) NSMutableArray *photoViewCache; // 2

- (void)initPhotoViewCache; // 3

- (void)setScrollViewContentSize;

- (void)scrollToIndex:(NSInteger)index;

Turner_Book.indb 458 12/11/11 6:46 PM

ptg999

Using the Scroll View 459

- (void)setTitleWithCurrentIndex;

- (CGRect)frameForPagingScrollView;

- (CGRect)frameForPageAtIndex:(NSUInteger)index;

@end

@implementation PhotoBrowserViewController

@synthesize scrollView = _scrollView; // 4

@synthesize delegate = _delegate;

@synthesize startAtIndex = _startAtIndex;

@synthesize currentIndex = _currentIndex;

@synthesize photoViewCache = _photoViewCache;

- (void)viewDidLoad // 5

{

 [super viewDidLoad];

 // Make sure to set wantsFullScreenLayout or the photo

 // will not display behind the status bar.

 [self setWantsFullScreenLayout:YES]; // 6

 // Set the view's frame size. This ensures that the scroll view

 // autoresizes correctly and avoids surprises when retrieving

 // the scroll view's bounds later.

 CGRect frame = [[UIScreen mainScreen] bounds]; // 7

 [[self view] setFrame:frame];

 UIScrollView *scrollView = [self scrollView]; // 8

 // Set the initial size.

 [scrollView setFrame:[self frameForPagingScrollView]];

 [scrollView setDelegate:self];

 [scrollView setBackgroundColor:[UIColor blackColor]];

 [scrollView setAutoresizingMask:UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight];

 [scrollView setAutoresizesSubviews:YES];

 [scrollView setPagingEnabled:YES];

 [scrollView setShowsVerticalScrollIndicator:NO];

 [scrollView setShowsHorizontalScrollIndicator:NO];

 [self initPhotoViewCache]; // 9

}

- (void)viewDidUnload // 10

{

 [self setScrollView:nil];

 [super viewDidUnload];

}

Turner_Book.indb 459 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser460

- (void)viewWillAppear:(BOOL)animated // 11

{

 [super viewWillAppear:animated];

 [self setScrollViewContentSize];

 [self setCurrentIndex:[self startAtIndex]];

 [self scrollToIndex:[self startAtIndex]];

 [self setTitleWithCurrentIndex];

}

#pragma mark - Delegate callback helpers

- (NSInteger)numberOfPhotos // 12

{

 NSInteger numberOfPhotos = 0;

 id<PhotoBrowserViewControllerDelegate> delegate = [self delegate];

 if (delegate && [delegate respondsToSelector:

 @selector(photoBrowserViewControllerNumberOfPhotos:)])

 {

 numberOfPhotos = [delegate photoBrowserViewControllerNumberOfPhotos:self];

 }

 return numberOfPhotos;

}

- (UIImage*)imageAtIndex:(NSInteger)index // 13

{

 UIImage *image = nil;

 id<PhotoBrowserViewControllerDelegate> delegate = [self delegate];

 if (delegate && [delegate respondsToSelector:

 @selector(photoBrowserViewController:imageAtIndex:)])

 {

 image = [delegate photoBrowserViewController:self imageAtIndex:index];

 }

 return image;

}

#pragma mark - Helper methods

- (void)initPhotoViewCache // 14

{

 // Set up the photo's view cache. We keep only three views in

 // memory. NSNull is used as a placeholder for the other

 // elements in the view cache array.

 NSInteger numberOfPhotos = [self numberOfPhotos];;

 [self setPhotoViewCache:

 [[NSMutableArray alloc] initWithCapacity:numberOfPhotos]];

 for (int i=0; i < numberOfPhotos; i++) {

 [self.photoViewCache addObject:[NSNull null]];

Turner_Book.indb 460 12/11/11 6:46 PM

ptg999

Using the Scroll View 461

 }

}

- (void)setScrollViewContentSize // 15

{

 NSInteger pageCount = [self numberOfPhotos];

 if (pageCount == 0) {

 pageCount = 1;

 }

 CGRect bounds = [[self scrollView] bounds];

 CGSize size = CGSizeMake(bounds.size.width * pageCount,

 // Divide in half to prevent horizontal

 // scrolling.

 bounds.size.height / 2);

 [[self scrollView] setContentSize:size];

}

- (void)scrollToIndex:(NSInteger)index // 16

{

 CGRect bounds = [[self scrollView] bounds];

 bounds.origin.x = bounds.size.width * index;

 bounds.origin.y = 0;

 [[self scrollView] scrollRectToVisible:bounds animated:NO];

}

- (void)setTitleWithCurrentIndex // 17

{

 NSInteger index = [self currentIndex] + 1;

 if (index < 1) {

 // Prevents the title from showing 0 of n when the user

 // attempts to scroll the first page to the right.

 index = 1;

 }

 NSInteger count = [self numberOfPhotos];

 NSString *title = title = [NSString stringWithFormat:@"%1$i of %2$i",

 index, count, nil];

 [self setTitle:title];

}

#pragma mark - Frame calculations

#define PADDING 20

- (CGRect)frameForPagingScrollView // 18

{

 CGRect frame = [[UIScreen mainScreen] bounds];

 frame.origin.x -= PADDING;

 frame.size.width += (2 * PADDING);

Turner_Book.indb 461 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser462

 return frame;

}

- (CGRect)frameForPageAtIndex:(NSUInteger)index // 19

{

 CGRect bounds = [[self scrollView] bounds];

 CGRect pageFrame = bounds;

 pageFrame.size.width -= (2 * PADDING);

 pageFrame.origin.x = (bounds.size.width * index) + PADDING;

 return pageFrame;

}

#pragma mark - Page management

- (void)loadPage:(NSInteger)index // 20

{

 if (index < 0 || index >= [self numberOfPhotos]) {

 return;

 }

 id currentView = [[self photoViewCache] objectAtIndex:index];

 if ([currentView isKindOfClass:[UIImageView class]] == NO) {

 // Load the photo view.

 CGRect frame = [self frameForPageAtIndex:index];

 UIImageView *newView = [[UIImageView alloc] initWithFrame:frame];

 [newView setContentMode:UIViewContentModeScaleAspectFit];

 [newView setBackgroundColor:[UIColor clearColor]];

 [newView setImage:[self imageAtIndex:index]];

 [[self scrollView] addSubview:newView];

 [[self photoViewCache] replaceObjectAtIndex:index withObject:newView];

 }

}

- (void)unloadPage:(NSInteger)index // 21

{

 if (index < 0 || index >= [self numberOfPhotos]) {

 return;

 }

 id currentView = [[self photoViewCache] objectAtIndex:index];

 if ([currentView isKindOfClass:[UIImageView class]]) {

 [currentView removeFromSuperview];

 [[self photoViewCache] replaceObjectAtIndex:index withObject:[NSNull null]];

 }

}

Turner_Book.indb 462 12/11/11 6:46 PM

ptg999

Using the Scroll View 463

- (void)setCurrentIndex:(NSInteger)newIndex // 22

{

 _currentIndex = newIndex;

 [self loadPage:_currentIndex];

 [self loadPage:_currentIndex + 1];

 [self loadPage:_currentIndex - 1];

 [self unloadPage:_currentIndex + 2];

 [self unloadPage:_currentIndex - 2];

 [self setTitleWithCurrentIndex];

}

#pragma mark - UIScrollViewDelegate

- (void)scrollViewDidScroll:(UIScrollView *)scrollView // 23

{

 if ([scrollView isScrollEnabled]) {

 CGFloat pageWidth = scrollView.bounds.size.width;

 float fractionalPage = scrollView.contentOffset.x / pageWidth;

 NSInteger page = floor(fractionalPage);

 if (page != [self currentIndex]) {

 [self setCurrentIndex:page];

 }

 }

}

@end

Let’s take a closer look at the implementation:

1. A class extension for PhotoBrowserViewController is added. It has two
declared properties: currentIndex and photoViewCache. The first prop-
erty, currentIndex, is the index value for the photo currently displayed.

2. The second property is photoViewCache. This property is a mutable array of
photo views. Each photo view is an instance of UIImageView. A photo album
can contain a large number of photos. Therefore, loading each photo into
memory increases the chance of out-of-memory crashes for PhotoWheel. To
conserve memory and help avoid memory-related crashes, the photo browser
will store up to three photo views in memory at any given time. The photo-
ViewCache property contains the reference to the array containing the three
photo views.

3. Following the declared properties is a set of forwardly declared methods.
These declarations are included in the class extension so their placement
within the implementation is not important.

Turner_Book.indb 463 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser464

4. The implementation section begins with the @synthesize statements for
each declared property.

 5. The -viewDidLoad method is added so that additional setup for the view can
be performed.

6. The photo browser will display photos full-screen. This means that the photo
will display behind the status bar. To make this happen, you must set the
wantsFullScreenLayout f lag to YES. This gives the photo browser a full
768 × 1024 set of pixels to work with.

7. The view controller’s top view is sized and positioned to use the entire screen,
including the pixels behind the status bar. Explicitly setting the frame for the
view helps ensure that autoresizing views like the scroll view will be sized
correctly. This becomes much more important in Chapter 18, “Support-
ing Device Rotation,” when you modify PhotoWheel to support all device
orientations.

8. Properties for an outlet can be set in a storyboard or NIB, but they can also
be set in code. Sometimes setting outlet properties in code is preferred since it
makes clear what property values have been changed. It is not always easy to
see this when looking at the inspectors for an outlet object in a storyboard or
NIB.

This is why property values for the scroll view are set in the -viewDidLoad
method. It makes it clear what values have changed to accommodate the needs
of the photo browser.

9. This is followed by the initialization of the photo view cache. The details of
what happens in the method are discussed momentarily.

10. The next method is -viewDidUnload, which sets the scroll view outlet to
nil.

 11. The method -viewWillAppear is added to set the scroll view content size
and current index. It also scrolls the view to the starting index, which is the
index of the photo thumbnail tapped on the main screen. The title, which is
displayed at the center of the navigation bar, is updated to display the current
index.

 12–13. A couple of wrapper methods are provided calling the PhotoBrowserView-
Controller delegate to retrieve the number of photos and the image at a
particular index.

 14. The method -initPhotoViewCache, which was just mentioned, creates the
instance of the mutable array and initializes it with NSNull objects. NSNull is
a singleton class that represents null objects. It is used in places where nil is
not allowed, such as in the contents for NSArray, NSDictionary, and NSSet.

 15. The method -setScrollViewContentSize determines the content size (i.e.,
the scrollable area) based on the number of photos. Each photo represents a
page, hence the local variable name pageCount.

Turner_Book.indb 464 12/11/11 6:46 PM

ptg999

Using the Scroll View 465

 16. The method -scrollToIndex: does as its name implies. It scrolls the scroll
view to a specific index, where the index is the index value for a photo.

 17. The method -setTitleWithCurrentIndex updates the display for the title
in the navigation bar.

18. The next method is -frameForPagingScrollView. This method is called
in -viewDidLoad, and it sets the frame (position and size) for the scroll view.
This is not the content size but the actual size of the viewable area of the scroll
view. However, there is a little sleight of hand going on here. The viewable
area of the scroll view (that is, the frame) is actually 40 pixels wider than the
iPad’s screen. There are exactly 20 pixels to the left and right of the scroll view.

Why do this? We want to have a bit of space between the photos when scroll-
ing, 20 pixels of space to be precise. The 20 pixels are specified in the macro
PADDING. By setting the scroll view’s frame to be 40 pixels (2 * PADDING)
wider, and taking into account the padding when calculating the frame for
each photo, we can produce a visual effect whereby the scroll view and photo
appear full-screen but in fact are wider than the physical screen. The effect
is achieved by allowing the visible area of the scroll view to be clipped by
the physical dimensions of the iPad’s screen (Figure 17.1), thus making the
20-pixel spacing visible only when scrolling.

Figure 17.1 Illustration of the scroll view frame

Turner_Book.indb 465 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser466

 19. The method -frameForPageAtIndex: calculates the frame (position and
size within the content area of the scroll view) for the page (aka the photo) at
a specified index. The calculation takes into account the padding used to space
out the photos when scrolling.

 20. The method -loadPage: loads the page (aka the photo) into memory and
adds it to the scroll view. It starts by verifying that the index is within the
range of available photo indexes. It then retrieves a reference to the view from
the photoViewCache. If the reference points to an instance of UIImageView,
nothing happens. The image view already contains the photo to display. How-
ever, if the reference is an NSNull object and not UIImageView, a new image
view is created, configured to display the photo at the specified index, and
added to the scroll view. The photoViewCache is also updated, replacing the
NSNull object with the UIImageView object.

 21. The method -unloadPage: does the opposite of -loadPage:. It removes
UIImageView from memory and from the scroll view, and it updates the
photoViewCache, replacing the image view with an NSNull object.

22. The method -setCurrentIndex: is the final piece of the sleight-of-hand
magic trick. It is here, in this custom getter method for currentIndex, that
pages are loaded and unloaded. The current, previous, and next pages are
always loaded. And the previous set of pages is unloaded, leaving only three
photos loaded into memory at any given time.

23. The implementation for PhotoBrowserViewController wraps up with the
implementation of the UIScrollViewDelegate callback method -scroll-
ViewDidScroll:. This method determines the index for the current photo
and sets the currentIndex property accordingly. This fires the custom
setCurrentIndex getter method, which in turns loads and unloads the
appropriate pages.

Setting Up the Photo Browser UI
Now that the PhotoBrowserViewController class is completed, it’s time to update
the user interface for the photo browser. Open the MainStoryboard.storyboard file and
select the View Controller Scene that you used earlier to test the custom segue.
Highlight the view controller, open the Identity inspector, and change the class from
UIViewController to PhotoBrowserViewController.

Next, add a scroll view to the scene. Size it to fill the entire container view, and
then connect it to the scrollView outlet defined in the PhotoBrowserView-
Controller class.

Finally, add a segue between the Photo Album View Controller Scene and the
Photo Browser View Controller Scene. One way to do this is to Control-click and
drag the PhotoAlbumViewController to the PhotoBrowserViewController in
the Document Outline area. After creating the segue, open the Attributes inspector for

Turner_Book.indb 466 12/11/11 6:46 PM

ptg999

Launching the Photo Browser 467

the segue and set the Identifier to PushPhotoBrowser, set the Style to Custom, and set
the Segue Class to CustomPushSegue.

Take a look at Figure 17.2 for an example of what the updated storyboard looks like.

Launching the Photo Browser
To launch the photo browser, the user taps a photo thumbnail displayed on the
main screen. To make this possible for the user, your code must perform the segue
programmatically. Open the PhotoAlbumViewController.m file and scroll to the
-gridView:didSelectCellAtIndex: method. The empty stub for this method was
created in Chapter 16, “Building the Main Screen.” Replace the stub with the new
implementation shown in Listing 17.3.

Listing 17.3 Performing the Segue Programmatically

- (void)gridView:(GridView *)gridView didSelectCellAtIndex:(NSInteger)index

{

 [self performSegueWithIdentifier:@"PushPhotoBrowser" sender:self];

}

This one line of code tells the storyboard to perform the segue. The identifier
string literal must match the identifier set in the Attributes inspector for the segue.

Figure 17.2 Updated storyboard with new segue

Turner_Book.indb 467 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser468

While this line of code starts the segue, it does not prepare the photo browser with the
needed information to display the photos. The photo browser view controller expects
a delegate object and a startAtIndex value.

To set this information, you override the -prepareForSegue:sender: method
in the PhotoAlbumViewController class. This method provides a reference to the
segue, which, as you may remember from building the CustomPushSegue class, has
references to the source and destination view controllers. This is your one opportunity to
provide additional information to the source and destination view controllers prior to the execution
of the segue.

In the particular case of the PhotoAlbumViewController class, the segue needs
to update the destination controller with a delegate and startAtIndex. The code
listing to accomplish this is shown in Listing 17.4. This code should be added to the
bottom of PhotoAlbumViewController.m.

Listing 17.4 Preparing the Destination Controller

#pragma mark - Segue

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender

{

 PhotoBrowserViewController *destinationViewController =

 [segue destinationViewController];

 [destinationViewController setDelegate:self];

 NSInteger index = [[self gridView] indexForSelectedCell];

 [destinationViewController setStartAtIndex:index];

}

The code stores a local variable reference to the destination view controller,
which is casted to PhotoBrowserViewController. The delegate property is set to
self, but it can also be set to [segue sourceViewController] since self and
the source view controller are the same. Finally, startAtIndex is set on the photo
browser to the selected cell index. This tells the photo browser which photo to display
first.

Because self is the delegate to the photo browser, and self is an instance of
PhotoAlbumViewController, the PhotoAlbumViewController class must be
updated to conform to the PhotoBrowserViewControllerDelegate protocol. The
updated source code is shown in Listing 17.5. Apply these changes to your code.

Listing 17.5 Updated PhotoAlbumViewController Class

///////

// PhotoAlbumViewController.h

///////

#import <UIKit/UIKit.h>

#import "GridView.h"

#import "PhotoBrowserViewController.h" // 1

Turner_Book.indb 468 12/11/11 6:46 PM

ptg999

Launching the Photo Browser 469

@interface PhotoAlbumViewController : UIViewController

<UIActionSheetDelegate, UIImagePickerControllerDelegate,

UINavigationControllerDelegate, NSFetchedResultsControllerDelegate,

GridViewDataSource, PhotoBrowserViewControllerDelegate> // 2

// Other code left out for brevity's sake.

@end

///////

// PhotoAlbumViewController.m

///////

@implementation PhotoAlbumViewController

// Other code left out for brevity's sake.

#pragma mark - PhotoBrowserViewControllerDelegate methods

- (NSInteger)photoBrowserViewControllerNumberOfPhotos:

(PhotoBrowserViewController *)photoBrowser // 3

{

 NSInteger count = [[[[self fetchedResultsController] sections]

 objectAtIndex:0] numberOfObjects];

 return count;

}

- (UIImage *)photoBrowserViewController:(PhotoBrowserViewController *)photoBrowser

 imageAtIndex:(NSInteger)index // 4

{

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 Photo *photo = [[self fetchedResultsController] objectAtIndexPath:indexPath];

 return [photo largeImage];

}

@end

Walking through the code, you see the following:

 1. The PhotoBrowserViewController.h header file is imported in the interface file.

 2. The PhotoBrowserViewControllerDelegate is added to the list of conform-
ing protocols.

3. The delegate method -photoBrowserViewControllerNumberOfPhotos: is
implemented. It returns the number of photos based on the data in the fetched
results controller.

4. The delegate method -photoBrowserViewController:imageAtIndex:
returns the image from the photo retrieved from the fetched results controller.

Turner_Book.indb 469 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser470

You now have a basic full-screen photo browser included in the app. Build and run
the app to see the photo browser in action.

Improving the Push and Pop
The push and pop of the photo browser are nice, but there is room for improve-
ment. For a better user experience, the push should start when the photo thumbnail is
tapped, and the pop should return to the same location. To accomplish this, the push
location must be stored somewhere so that it can be used by both the CustomPush-
Segue and CustomNavigationController classes. Each of these classes knows
about the PhotoAlbumViewController. It is the sourceViewController in the
custom segue, and it is the destination view controller in the custom navigation con-
troller. So the PhotoAlbumViewController is a good place to store the tap-from
location.

As it so happens, the location is already stored for you. It is the frame of the grid
view cell displaying the photo thumbnail. You just need to expose the cell frame via
the PhotoAlbumViewController’s public interface. While you are at it, expose
another method that returns the UIImage of the selected photo. The custom segue
will use it to make the animation smoother during the view transition.

Open PhotoAlbumViewController.h and add two methods. The first is -selected-
Image, which returns a pointer to UIImage. The second is -selectedCellFrame,
which returns the CGRect for the cell frame. Next, open PhotoAlbumViewController.m
and add the implementation for the new methods. The code changes are shown in
Listing 17.6.

Listing 17.6 Updated PhotoAlbumViewController Class

///////

// PhotoAlbumViewController.h

///////

// Other code left out for brevity's sake.

@interface PhotoAlbumViewController : UIViewController

<UIActionSheetDelegate, UIImagePickerControllerDelegate,

UINavigationControllerDelegate, NSFetchedResultsControllerDelegate,

GridViewDataSource, PhotoBrowserViewControllerDelegate>

// Other code left out for brevity's sake.

- (UIImage *)selectedImage;

- (CGRect)selectedCellFrame;

@end

Turner_Book.indb 470 12/11/11 6:46 PM

ptg999

Launching the Photo Browser 471

///////

// PhotoAlbumViewController.m

///////

// Other code left out for brevity's sake.

- (NSInteger)indexForSelectedGridCell

{

 GridView *gridView = [self gridView];

 NSInteger selectedIndex = [gridView indexForSelectedCell];

 NSInteger count = [[[[self fetchedResultsController] sections]

 objectAtIndex:0] numberOfObjects];

 if (selectedIndex < 0 && count > 0) {

 selectedIndex = 0;

 }

 return selectedIndex;

}

- (UIImage *)selectedImage

{

 UIImage *selectedImage = nil;

 NSInteger selectedIndex = [self indexForSelectedGridCell];

 if (selectedIndex >= 0) {

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:selectedIndex

 inSection:0];

 Photo *photo = [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 selectedImage = [photo largeImage];

 }

 return selectedImage;

}

- (CGRect)selectedCellFrame

{

 CGRect rect;

 GridView *gridView = [self gridView];

 NSInteger selectedIndex = [self indexForSelectedGridCell];

 if (selectedIndex >= 0) {

 GridViewCell *cell = [gridView cellAtIndex:selectedIndex];

 UIView *parentView = [[self parentViewController] view];

 rect = [parentView convertRect:[cell frame] fromView:gridView];

 } else {

 CGRect gridFrame = [gridView frame];

 rect = CGRectMake(CGRectGetMidX(gridFrame),

 CGRectGetMidY(gridFrame), 0, 0);

 }

Turner_Book.indb 471 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser472

 return rect;

}

@end

The code change starts with the helper method -indexForSelectedGridCell.
This method retrieves the index of the selected grid cell. If there is no selected cell in
the grid and the grid has at least one cell, the index to the first cell is returned; other-
wise -1 is returned. This is necessary because the selected cell may have been deleted.
How can this be when the user has no way to delete a photo? It’s true that at this
moment the user has no way to delete a photo, but that will change by the end of this
chapter.

The next two methods are similar. Both call the helper method -indexFor-
SelectedGridCell to get the cell index. But then the two methods start to differ.

The first method, -selectedImage, retrieves the photo model object from the
fetched results controller, then returns the large image from the photo. The second
method, -selectedCellFrame, retrieves the grid view cell of the tapped photo. It
then converts the cell frame from the grid view coordinate system to the MainView-
Controller’s view coordinate system. The conversion makes it possible for the cus-
tom segue to use the correct screen location when placing the images used to animate
the view transition.

Next, the custom push segue must be updated to use the new methods on the
photo album view controller. The new implementation is similar to the previous
one, except instead of using a snapshot of the destination view controller’s view, the
selected image returned from the photo album view controller is used. This will make
the animation sequence smoother for the view transition.

Open CustomPushSegue.m and replace the implementation with the one provided in
Listing 17.7.

Listing 17.7 Updated CustomPushSegue Implementation

#import "CustomPushSegue.h"

#import "UIView+PWCategory.h"

#import "PhotoAlbumViewController.h" // 1

@implementation CustomPushSegue

- (void)perform

{

 id sourceViewController = [self sourceViewController]; // 2

 UIView *sourceView = [[sourceViewController parentViewController] view];

 UIImageView *sourceImageView = [[UIImageView alloc]

 initWithImage:[sourceView pw_imageSnapshot]];

Turner_Book.indb 472 12/11/11 6:46 PM

ptg999

Launching the Photo Browser 473

 BOOL isLandscape = UIInterfaceOrientationIsLandscape(

 [sourceViewController interfaceOrientation]); // 3

 CGRect statusBarFrame = [[UIApplication sharedApplication]

 statusBarFrame]; // 4

 CGFloat statusBarHeight;

 if (isLandscape) { // 5

 statusBarHeight = statusBarFrame.size.width;

 } else {

 statusBarHeight = statusBarFrame.size.height;

 }

 CGRect newFrame = CGRectOffset([sourceImageView frame], 0, statusBarHeight);

 [sourceImageView setFrame:newFrame]; // 6

 CGRect destinationFrame = [[UIScreen mainScreen] bounds];

 if (isLandscape) { // 7

 destinationFrame.size = CGSizeMake(destinationFrame.size.height,

 destinationFrame.size.width);

 }

 UIImage *destinationImage = [sourceViewController selectedImage];

 UIImageView *destinationImageView = [[UIImageView alloc]

 initWithImage:destinationImage];

 [destinationImageView setContentMode:UIViewContentModeScaleAspectFit];

 [destinationImageView setBackgroundColor:[UIColor blackColor]];

 [destinationImageView setFrame:[sourceViewController selectedCellFrame]];

 [destinationImageView setAlpha:0.3];

 UINavigationController *navController =

 [sourceViewController navigationController];

 [navController pushViewController:[self destinationViewController]

 animated:NO];

 UINavigationBar *navBar = [navController navigationBar];

 [navController setNavigationBarHidden:NO];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, -navBar.frame.size.height)];

 UIView *destinationView = [[self destinationViewController] view];

 [destinationView addSubview:sourceImageView];

 [destinationView addSubview:destinationImageView];

 void (^animations)(void) = ^ {

 [destinationImageView setFrame:destinationFrame];

 [destinationImageView setAlpha:1.0];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, navBar.frame.size.height)];

 };

Turner_Book.indb 473 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser474

 void (^completion)(BOOL) = ^(BOOL finished) {

 if (finished) {

 [sourceImageView removeFromSuperview];

 [destinationImageView removeFromSuperview];

 }

 };

 [UIView animateWithDuration:0.6 animations:animations completion:completion];

}

@end

Let’s walk through the key changes to the custom push segue:

 1. The PhotoAlbumViewController.h header file is imported.

2. A local variable is used to store a reference to the sourceViewController.
This makes later code more readable.

3–5. The photo browser uses the entire screen. This means that the frame used to dis-
play the sourceImageView must be offset by the height of the status bar. If the
offset does not happen, the image will jump during the animation sequence.

You retrieve the status bar frame from the application, which is retrieved from
UIApplication. Although device orientation and rotation have not been cov-
ered yet, the code here takes orientation into consideration. The current ori-
entation mode is checked. If the device orientation is landscape, the status bar
height is actually the width value from the frame. Otherwise it is the height
value from the frame. Why? The frame size does not change when the device is
rotated. Therefore, you must make the necessary adjustment based on the cur-
rent orientation.

 6. The sourceImageView frame is set to include the offset from the status bar
height.

7. The last change to point out is the adjustment made to the destination frame. It
too must be adjusted to support the landscape orientation. (Chapter 18, “Support-
ing Device Rotation,” provides full coverage of rotation and orientation support.)

A similar change is needed for the CustomNavigationController class. Open
CustomNavigationController.m and update it so that it uses the -selectedCellFrame
method on the destination view controller. The needed code changes are shown in
Listing 17.8.

Listing 17.8 Updated CustomNavigationController Class

#import "CustomNavigationController.h"

#import "UIView+PWCategory.h"

#import "PhotoAlbumViewController.h" // 1

Turner_Book.indb 474 12/11/11 6:46 PM

ptg999

Launching the Photo Browser 475

@implementation CustomNavigationController

- (UIViewController *)popViewControllerAnimated:(BOOL)animated

{

 UIViewController *sourceViewController = [self topViewController];

 // Animates image snapshot of the view.

 UIView *sourceView = [sourceViewController view];

 UIImage *sourceViewImage = [sourceView pw_imageSnapshot];

 UIImageView *sourceImageView = [[UIImageView alloc]

 initWithImage:sourceViewImage];

 // Offset the sourceImageView frame by the height of the status bar.

 // This prevents the image from dropping down after the view controller

 // is popped from the stack.

 BOOL isLandscape = UIInterfaceOrientationIsLandscape(

 [sourceViewController interfaceOrientation]); // 2

 CGRect statusBarFrame = [[UIApplication sharedApplication] statusBarFrame];

 CGFloat statusBarHeight;

 if (isLandscape) {

 statusBarHeight = statusBarFrame.size.width;

 } else {

 statusBarHeight = statusBarFrame.size.height;

 }

 CGRect newFrame = CGRectOffset([sourceImageView frame], 0, -statusBarHeight);

 [sourceImageView setFrame:newFrame];

 NSArray *viewControllers = [self viewControllers];

 NSInteger count = [viewControllers count];

 NSInteger index = count - 2;

 UIViewController *destinationViewController =[viewControllers

 objectAtIndex:index];

 UIView *destinationView = [destinationViewController view];

 UIImage *destinationViewImage = [destinationView pw_imageSnapshot];

 UIImageView *destinationImageView = [[UIImageView alloc]

 initWithImage:destinationViewImage];

 [super popViewControllerAnimated:NO];

 [destinationView addSubview:destinationImageView];

 [destinationView addSubview:sourceImageView];

 // We need the selectedCellFrame from the PhotoAlbumViewController. This

 // controller is a child of the destination controller.

 CGRect selectedCellFrame = CGRectZero; // 3

 for (id childViewController in [destinationViewController childViewControllers])

Turner_Book.indb 475 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser476

 {

 if ([childViewController isKindOfClass:[PhotoAlbumViewController class]]) {

 selectedCellFrame = [childViewController selectedCellFrame];

 break;

 }

 }

 CGPoint shrinkToPoint = CGPointMake(CGRectGetMidX(selectedCellFrame),

 CGRectGetMidY(selectedCellFrame));

 void (^animations)(void) = ^ {

 [sourceImageView setFrame:CGRectMake(shrinkToPoint.x, shrinkToPoint.y,

 0, 0)];

 [sourceImageView setAlpha:0.0];

 // Animate the nav bar too.

 UINavigationBar *navBar = [self navigationBar];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, -navBar.frame.size.height)];

 };

 void (^completion)(BOOL) = ^(BOOL finished) {

 [self setNavigationBarHidden:YES];

 // Reset the nav bar's position.

 UINavigationBar *navBar = [self navigationBar];

 [navBar setFrame:CGRectOffset(navBar.frame, 0, navBar.frame.size.height)];

 [sourceImageView removeFromSuperview];

 [destinationImageView removeFromSuperview];

 };

 [UIView transitionWithView:destinationView

 duration:0.3

 options:UIViewAnimationOptionTransitionNone

 animations:animations

 completion:completion];

 return sourceViewController;

}

@end

The changes include the following:

 1. Import the PhotoAlbumViewController.h header file.

 2. The sourceImageView frame is offset by the height of the status bar. This pre-
vents the image from jumping during the animation.

3. The final change calculates the shrinkToPoint. It is calculated based on
the selectedCellFrame provided by the PhotoAlbumViewController.

Turner_Book.indb 476 12/11/11 6:46 PM

ptg999

Adding Chrome Effects 477

However, this view controller is not the source controller. Its parent is the source
view controller. So you must loop through the child view controllers, looking
for the PhotoAlbumViewController. Once it is found, the selectedCell-
Frame can be set and used to calculate the shrinkToPoint.

Build and run the app to test the changes. Tap a photo thumbnail to animate the
push from the tapped photo cell. And when the user closes the photo browser (by tap-
ping the Back button), the animation ends at the same tapped photo cell. This bit of
extra polish really enhances the user experience.

Adding Chrome Effects
If you have played with the iPad’s Photos app, you have noticed that it is a full-screen
photo browser that autohides the chrome. In the case of PhotoWheel’s photo browser,
the chrome is the combination of the status and navigation bars at the top of the
screen. You’ll need to add this autohide feature to the PhotoWheel photo browser, too,
so that the UI looks smooth and elegant without the user even noticing.

An NSTimer is used to determine when it’s time to hide the chrome. The
NSTimer class creates a timer that waits for a certain interval to elapse, then fires,
sending a message (action) to an object (target).

The code changes made to PhotoBrowserViewController.m to manage the display of
the chrome are shown in Listing 17.9. Apply these changes to your code. And, of
course, an explanation of the changes is provided after the listing.

Listing 17.9 Autohiding the Chrome

#import "PhotoBrowserViewController.h"

@interface PhotoBrowserViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, assign, getter = isChromeHidden) BOOL chromeHidden; // 1

@property (nonatomic, strong) NSTimer *chromeHideTimer; // 2

@property (nonatomic, assign) CGFloat statusBarHeight; // 3

// Other code left out for brevity's sake.

- (void)toggleChrome:(BOOL)hide; // 4

- (void)hideChrome; // 5

- (void)startChromeDisplayTimer; // 7

- (void)cancelChromeDisplayTimer; // 8

@end

Turner_Book.indb 477 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser478

@implementation PhotoBrowserViewController

// Other code left out for brevity's sake.

@synthesize chromeHidden = _chromeHidden; // 9

@synthesize chromeHideTimer = _chromeHideTimer; // 10

@synthesize statusBarHeight = _statusBarHeight; // 11

// Other code left out for brevity's sake.

- (void)viewDidLoad

{

 // Other code left out for brevity's sake.

 // Must store the status bar size while it is still visible.

 CGRect statusBarFrame = [[UIApplication sharedApplication]

 statusBarFrame]; // 12

 if (UIInterfaceOrientationIsLandscape([self interfaceOrientation])) {

 [self setStatusBarHeight:statusBarFrame.size.width];

 } else {

 [self setStatusBarHeight:statusBarFrame.size.height];

 }

}

// Other code left out for brevity's sake.

- (void)viewWillAppear:(BOOL)animated

{

 // Other code left out for brevity's sake.

 [self startChromeDisplayTimer]; // 13

}

- (void)viewWillDisappear:(BOOL)animated // 14

{

 [self cancelChromeDisplayTimer];

 [super viewWillDisappear:animated];

}

// Other code left out for brevity's sake.

#pragma mark - Page management

- (void)loadPage:(NSInteger)index

{

Turner_Book.indb 478 12/11/11 6:46 PM

ptg999

Adding Chrome Effects 479

 if (index < 0 || index >= [self numberOfPhotos]) {

 return;

 }

 id currentView = [[self photoViewCache] objectAtIndex:index];

 if ([currentView isKindOfClass:[UIImageView class]] == NO) {

 // Load the photo view.

 CGRect frame = [self frameForPageAtIndex:index];

 UIImageView *newView = [[UIImageView alloc] initWithFrame:frame];

 [newView setContentMode:UIViewContentModeScaleAspectFit];

 [newView setBackgroundColor:[UIColor clearColor]];

 [newView setImage:[self imageAtIndex:index]];

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(imageTapped:)]; // 15

 [newView addGestureRecognizer:tap]; // 16

 [newView setUserInteractionEnabled:YES]; // 17

 [[self scrollView] addSubview:newView];

 [[self photoViewCache] replaceObjectAtIndex:index withObject:newView];

 }

}

// Other code left out for brevity's sake.

#pragma mark - UIScrollViewDelegate

// Other code left out for brevity's sake.

- (void)scrollViewWillBeginDragging:(UIScrollView *)scrollView // 18

{

 [self hideChrome];

}

#pragma mark - Chrome helpers

- (void)toggleChromeDisplay // 19

{

 [self toggleChrome:![self isChromeHidden]];

}

- (void)toggleChrome:(BOOL)hide // 20

{

 [self setChromeHidden:hide];

 if (hide) {

 [UIView beginAnimations:nil context:nil];

Turner_Book.indb 479 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser480

 [UIView setAnimationDuration:0.4];

 }

 CGFloat alpha = hide ? 0.0 : 1.0;

 UINavigationBar *navbar = [[self navigationController] navigationBar];

 [navbar setAlpha:alpha];

 [[UIApplication sharedApplication] setStatusBarHidden:hide];

 if (hide) {

 [UIView commitAnimations];

 }

 if (! [self isChromeHidden]) {

 [self startChromeDisplayTimer];

 }

}

- (void)hideChrome // 21

{

 NSTimer *timer = [self chromeHideTimer];

 if (timer && [timer isValid]) {

 [timer invalidate];

 [self setChromeHideTimer:nil];

 }

 [self toggleChrome:YES];

}

- (void)startChromeDisplayTimer // 22

{

 [self cancelChromeDisplayTimer];

 NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:5.0

 target:self

 selector:@selector(hideChrome)

 userInfo:nil

 repeats:NO];

 [self setChromeHideTimer:timer];

}

- (void)cancelChromeDisplayTimer // 23

{

 if ([self chromeHideTimer]) {

 [[self chromeHideTimer] invalidate];

 [self setChromeHideTimer:nil];

 }

}

Turner_Book.indb 480 12/11/11 6:46 PM

ptg999

Adding Chrome Effects 481

#pragma mark - Gesture handlers

- (void)imageTapped:(UITapGestureRecognizer *)recognizer // 24

{

 [self toggleChromeDisplay];

}

@end

Walking through the changes, you’ll note the following:

1–2. The class extension for PhotoBrowserViewController has been updated
with two new declared properties: chromeHidden and chromeHideTimer.
The chromeHidden property is a Boolean f lag indicating the current status
for the chrome, hidden or visible. The chromeHideTimer property is a refer-
ence to the current NSTimer used to autohide the chrome.

3. A third property, statusBarHeight, has been added to the class extension.
The status bar height is stored during the -viewDidLoad method while the
status bar is still visible. Once it is hidden, the status bar frame will no longer
be available, which is why the height is saved to this property.

4–8. Also added to the class extension is a set of chrome-related helper methods,
which will be discussed momentarily.

9–11. In the implementation section of the class, the newly declared properties are
synthesized.

12. The status bar height is saved for use later. A check for the interface orienta-
tion is made. If the orientation is landscape, the width value in the status bar
frame is the actual height; otherwise the status bar frame height is the height.

13. An override for the method -viewWillAppear: is updated with a call to
-startChromeDisplayTimer. This, of course, starts the timer used to auto-
hide the chrome.

14. Another override method, this time on -viewWillDisappear:, is added.
Here the -cancelChromeDisplayTimer is called to cancel the timer prior
to the view disappearing.

 15–16. The user should be able to show and hide the chrome with a tap of the finger.
So a tap gesture recognizer is added to the UIImageView that displays the
photo. The recognizer calls the -imageTapped: method defined at the end
of the listing.

17. Even though the tap gesture recognizer has been added to the image view,
the tap won’t work until the userInteractionEnabled f lag on the image
view is set to YES. This f lag is NO by default, which means the view does not
receive any touch events.

Turner_Book.indb 481 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser482

 18. Another UIScrollViewDelegate callback method is added, -scrollView-
WillBeginDragging:. Here the chrome is told to hide when the user begins
to scroll through the photos.

19. The first of the chrome-related helper methods is -toggleChromeDisplay.
This method does as its name implies; it toggles the chrome display. If the
chrome is hidden, calling this method will show it. If the chrome is visible,
calling this method will hide it.

 20. The method -toggleChrome: will toggle the chrome based on the hide f lag.
Pass in YES and the chrome is hidden. Pass in NO and the chrome is made vis-
ible. This is also where the animation for showing and hiding the chrome is
performed.

 21. The method -hideChrome forces the chrome to hide. It also invalidates the
timer, which means it will stop firing. The chrome is hidden so the timer is
no longer needed. The timer calls this method when it fires.

 22. The -startChromeDisplayTimer method creates a timer that runs for 5
seconds (5.0). The timer calls -hideChrome when it fires.

23. The last chrome-related helper method is -cancelChromeDisplayTimer.
This invalidates the timer, causing it to stop firing.

24. The last change to the PhotoBrowserViewController class is the addition
of the -imageTapped: method. This method is called when the user taps the
photo.

After you have added the changes to your code, build and run the app. Display the
photo browser, and see how the chrome display works. When the chrome is displayed,
it autohides after 5 seconds. Tap the photo to toggle between showing and hiding the
chrome. Scrolling while the chrome is visible will also hide it. Check your work if
you do not see these behaviors.

Zooming
Your photo browser is coming along nicely, and it is already pretty useful. But let’s not
stop here. Let’s add another feature that users will expect. Let’s make it possible for
users to zoom in and out on the photo by double tapping and pinching.

To accomplish this, you will use another UIScrollView. You can implement your
own zoom using tap and pinch gestures, but why do that when the UIScrollView
provides most of the functionality for you?

Currently, the UIImageView class is used to display the photo within the browser.
You will replace this with a new custom class derived from UIScrollView. But before
you can replace the UIImageView used in the PhotoBrowserViewController class,
you need to create the new scroll view subclass.

Turner_Book.indb 482 12/11/11 6:46 PM

ptg999

Zooming 483

Create a new Objective-C class. Name the class PhotoBrowserPhotoView, and
make it a subclass of UIScrollView. Next, add the source code for the interface and
implementation files as shown in Listing 17.10.

Listing 17.10 PhotoBrowserPhotoView Class

///////

// PhotoBrowserPhotoView.h

///////

#import <UIKit/UIKit.h>

@class PhotoBrowserViewController; // 1

@interface PhotoBrowserPhotoView : UIScrollView <UIScrollViewDelegate> // 2

@property (nonatomic, assign) NSInteger index; // 3

@property (nonatomic, weak) PhotoBrowserViewController

*photoBrowserViewController; // 4

- (void)setImage:(UIImage *)newImage; // 5

- (void)turnOffZoom; // 6

@end

///////

// PhotoBrowserPhotoView.m

///////

#import "PhotoBrowserPhotoView.h"

#import "PhotoBrowserViewController.h" // 7

@interface PhotoBrowserPhotoView () // 8

@property (nonatomic, strong) UIImageView *imageView; // 9

- (void)loadSubviewsWithFrame:(CGRect)frame; // 10

- (BOOL)isZoomed; // 11

@end

@implementation PhotoBrowserPhotoView

@synthesize photoBrowserViewController = _photoBrowserViewController; // 12

@synthesize imageView = _imageView;

@synthesize index = _index;

Turner_Book.indb 483 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser484

- (id)initWithFrame:(CGRect)frame // 13

{

 self = [super initWithFrame:frame];

 if (self) {

 [self setDelegate:self];

 [self setMaximumZoomScale:5.0];

 [self setShowsHorizontalScrollIndicator:NO];

 [self setShowsVerticalScrollIndicator:NO];

 [self loadSubviewsWithFrame:frame];

 [self setBackgroundColor:[UIColor clearColor]];

 [self setAutoresizingMask:UIViewAutoresizingFlexibleWidth|

 UIViewAutoresizingFlexibleHeight];

 UITapGestureRecognizer *doubleTap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(doubleTapped:)];

 [doubleTap setNumberOfTapsRequired:2];

 [self addGestureRecognizer:doubleTap];

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(tapped:)];

 [tap requireGestureRecognizerToFail:doubleTap];

 [self addGestureRecognizer:tap];

 }

 return self;

}

- (void)loadSubviewsWithFrame:(CGRect)frame // 14

{

 frame.origin = CGPointMake(0, 0);

 UIImageView *newImageView = [[UIImageView alloc] initWithFrame:frame];

 [newImageView setAutoresizingMask:UIViewAutoresizingFlexibleWidth|

 UIViewAutoresizingFlexibleHeight];

 [newImageView setContentMode:UIViewContentModeScaleAspectFit];

 [self addSubview:newImageView];

 [self setImageView:newImageView];

}

- (void)setImage:(UIImage *)newImage // 15

{

 [[self imageView] setImage:newImage];

}

- (BOOL)isZoomed // 16

{

Turner_Book.indb 484 12/11/11 6:46 PM

ptg999

Zooming 485

 return !([self zoomScale] == [self minimumZoomScale]);

}

- (CGRect)zoomRectForScale:(float)scale withCenter:(CGPoint)center // 17

{

 // The following is derived from the ScrollViewSuite sample project

 // provided by Apple:

 // http://bit.ly/pYoPat

 CGRect zoomRect;

 // The zoom rect is in the content view's coordinates.

 // At a zoom scale of 1.0, it would be the size of the

 // imageScrollView's bounds.

 // As the zoom scale decreases, so more content is visible,

 // the size of the rect grows.

 zoomRect.size.height = [self frame].size.height / scale;

 zoomRect.size.width = [self frame].size.width / scale;

 // Choose an origin so as to get the right center.

 zoomRect.origin.x = center.x - (zoomRect.size.width / 2.0);

 zoomRect.origin.y = center.y - (zoomRect.size.height / 2.0);

 return zoomRect;

}

- (void)zoomToLocation:(CGPoint)location // 18

{

 float newScale;

 CGRect zoomRect;

 if ([self isZoomed]) {

 zoomRect = [self bounds];

 } else {

 newScale = [self maximumZoomScale];

 zoomRect = [self zoomRectForScale:newScale withCenter:location];

 }

 [self zoomToRect:zoomRect animated:YES];

}

- (void)turnOffZoom // 19

{

 if ([self isZoomed]) {

 [self zoomToLocation:CGPointZero];

 }

}

Turner_Book.indb 485 12/11/11 6:46 PM

ptg999

Chapter 17 Creating a Photo Browser486

#pragma mark - Touch gestures

- (void)doubleTapped:(UITapGestureRecognizer *)recognizer // 20

{

 [self zoomToLocation:[recognizer locationInView:self]];

}

- (void)tapped:(UITapGestureRecognizer *)recognizer // 21

{

 [[self photoBrowserViewController] toggleChromeDisplay];

}

#pragma mark - UIScrollViewDelegate methods

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView // 22

{

 return [self imageView];

}

@end

Let’s walk through the code and see what is happening, starting with the header file
PhotoBrowserPhotoView.h:

1. The forward declaration for the class PhotoBrowserViewController is
made.

 2. The PhotoBrowserPhotoView class is the delegate to itself, the scroll view.
Therefore, UIScrollViewDelegate is added to the list of protocols.

3. The class also has a property named index. This is the index to the photo
displayed in the scroll view.

 4. The property photoBrowserViewController is added. This weak reference
to the photo browser enables the photo view to talk back to the browser.

 5. The method -setImage: is called by the photo browser. It passes an image
reference for the photo that is displayed.

 6. The method -turnOffZoom is provided so that the photo browser can turn
off zooming when the user begins to scroll through the collection of photos.

The interface in Listing 17.10 is followed by the implementation. The changes to
the implementation include the following:

 7. The PhotoBrowserViewController.h header file is imported.

8. A class extension for PhotoBrowserPhotoView is declared.

9. An image view is added. This is the image view responsible for displaying the
photo.

Turner_Book.indb 486 12/11/11 6:47 PM

ptg999

Zooming 487

 10. The method -loadSubviewsWithFrame: is called during object initializa-
tion. It loads the image view used to display the photo.

 11. The method -isZoomed indicates whether the view is currently zoomed in or
not.

 12. The @implementation section starts by synthesizing the declared properties.

13. This is followed by -initWithFrame:. This override method initializes
the view, setting properties on the scroll view, and adds tap and double-tap
gestures.

 14. The method -loadSubviewsWithFrame: is responsible for creating the
image view used to display the photo.

 15. The method -setImage: sets the image for the image view. The photo
browser calls this method.

 16. The method -isZoomed returns YES when the user has zoomed in on the
photo; otherwise it returns NO.

 17. The method -zoomRectForScale:withCenter: is responsible for calculat-
ing the zoom rect based on a center point.

 18. The method -zoomToLocation: does as the name implies. It zooms to a
location within the photo.

 19. The method -turnOffZoom is provided so that the photo browser can request
that the zoom be turned off during scrolling.

20–21. Two touch gestures are assigned to the view: a double tap and a tap. The dou-
ble tap will zoom to the tapped location within the photo. The tap toggles the
chrome display. The tap gesture is managed in the PhotoBrowserPhotoView
class instead of the photo browser because it relies on the double-tap gesture
failing first.

22. The last method of the class is -viewForZoomingInScrollView:. This is a
UIScrollViewDelegate method, and it returns a reference to the view that is
used for zooming within the scroll view. For this particular case, that view is the
image view.

With the new class in place, it’s time to replace UIImageView used in the photo
browser with PhotoBrowserPhotoView. In addition to replacing the image view
with the new photo view, the -toggleChromeDisplay method must be made public
so that it can be used in the PhotoBrowserPhotoView class.

Open the PhotoBrowserViewController class and apply the changes in Listing
17.11.

Listing 17.11 Changes to the PhotoBrowserViewController Class

///////

// PhotoBrowserViewController.h

///////

Turner_Book.indb 487 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser488

@interface PhotoBrowserViewController : UIViewController <UIScrollViewDelegate>

// Other code left out for brevity's sake.

- (void)toggleChromeDisplay; // 1

@end

///////

// PhotoBrowserViewController.m

///////

#import "PhotoBrowserViewController.h"

#import "PhotoBrowserPhotoView.h" // 2

// Other code left out for brevity's sake.

@implementation PhotoBrowserViewController

// Other code left out for brevity's sake.

#pragma mark - Page management

- (void)loadPage:(NSInteger)index

{

 if (index < 0 || index >= [self numberOfPhotos]) {

 return;

 }

 id currentView = [[self photoViewCache] objectAtIndex:index];

 if ([currentView isKindOfClass:[PhotoBrowserPhotoView class]] == NO) { // 3

 // Load the photo view.

 CGRect frame = [self frameForPageAtIndex:index];

 PhotoBrowserPhotoView *newView = [[PhotoBrowserPhotoView alloc]

 initWithFrame:frame]; // 4

 [newView setBackgroundColor:[UIColor clearColor]]; // 5

 [newView setImage:[self imageAtIndex:index]]; // 6

 [newView setPhotoBrowserViewController:self]; // 7

 [newView setIndex:index]; // 8

 [[self scrollView] addSubview:newView];

 [[self photoViewCache] replaceObjectAtIndex:index withObject:newView];

 } else {

 [currentView turnOffZoom];

 }

}

- (void)unloadPage:(NSInteger)index

{

Turner_Book.indb 488 12/11/11 6:47 PM

ptg999

Deleting a Photo 489

 if (index < 0 || index >= [self numberOfPhotos]) {

 return;

 }

 id currentView = [[self photoViewCache] objectAtIndex:index];

 if ([currentView isKindOfClass:[PhotoBrowserPhotoView class]]) { // 9

 [currentView removeFromSuperview];

 [[self photoViewCache] replaceObjectAtIndex:index withObject:[NSNull null]];

 }

}

// Other code left out for brevity's sake.

@end

Here is a quick rundown of the changes to the PhotoBrowserViewController
class:

 1. The -toggleChromeDisplay method declaration has been added to the public
interface.

 2. The PhotoBrowserPhotoView.h header file is imported in the
PhotoBrowserViewController.m implementation file.

3. The check for the UIImageView class in the -loadPage: method has been
changed to check for the PhotoBrowserPhotoView class.

4–8. The UIImageView code has been replaced with PhotoBrowserPhotoView
code. The background color is set to clear. The image is set to the current photo.
And the photo browser reference is set to enable callbacks to the view controller.

 9. The UIImageView class check found in the -unloadPage: has been replaced
with a check for the PhotoBrowserPhotoView class.

And with that, your photo browser now supports zooming on a photo. As always,
build and run the app to test the changes. Check your work if zooming isn’t working
properly.

Note
Hold down the Option key and use your mouse to simulate a pinch gesture when using the
iPad Simulator.

Deleting a Photo
Before moving on, you need to add one more feature to the photo browser. In addi-
tion to adding the new delete feature, you will be laying the foundation for future
enhancements to the photo browser. The feature to add at this time is a “Delete
Photo” action. This action asks the user to confirm the deletion of the photo. The

Turner_Book.indb 489 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser490

delete action is made available to the user as a button on the navigation bar displayed
at the top of the screen.

More actions will be added in later chapters, so an action button will be displayed
in the navigation bar. This involves a little trickery since the navigation bar does not
support more than two buttons, one on the left and one on the right. In PhotoWheel,
however, three buttons are needed: one on the left for the Back button, and two on
the right, one for delete and the other for the action menu. But to make it more fun,
let’s not stop with two buttons on the right. Let’s make it three, one each for delete,
action, and Slideshow.

Note
This chapter walks you through the steps to delete a photo. Chapter 19, “Printing with
AirPrint,” and Chapter 20, “Sending Email,” show how to implement additional actions.
Chapter 23, “Producing a Slideshow with AirPlay,” shows you how to implement the slide-
show feature.

First, the additional buttons must be added to the navigation bar. Open the file
PhotoBrowserViewController.m and add the new method -addButtonsToNavigation-
Bar. Next, update the -viewDidLoad method to call the -addButtonsToNaviga-
tionBar method. The complete set of code changes is shown in Listing 17.12, with a
full explanation of the changes to follow.

Listing 17.12 Updates to PhotoBrowserViewController.m

///////

// PhotoBrowserViewController.h

///////

@interface PhotoBrowserViewController : UIViewController <UIScrollViewDelegate,

UIActionSheetDelegate> // 1

// Other code left out for brevity's sake.

@end

@protocol PhotoBrowserViewControllerDelegate <NSObject>

@required

// Other code left out for brevity's sake.

@optional

- (void)photoBrowserViewController:(PhotoBrowserViewController *)photoBrowser

 deleteImageAtIndex:(NSInteger)index; // 2

@end

Turner_Book.indb 490 12/11/11 6:47 PM

ptg999

Deleting a Photo 491

///////

// PhotoBrowserViewController.m

///////

#import "PhotoBrowserViewController.h"

#import "PhotoBrowserPhotoView.h"

#import "ClearToolbar.h" // 3

#define ACTIONSHEET_TAG_DELETE 1 // 4

#define ACTIONSHEET_TAG_ACTIONS 2 // 5

@interface PhotoBrowserViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, strong) UIBarButtonItem *actionButton; // 6

- (void)addButtonsToNavigationBar; // 7

// Other code left out for brevity's sake.

@end

@implementation PhotoBrowserViewController

// Other code left out for brevity's sake.

@synthesize actionButton = _actionButton; // 8

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Make sure to set wantsFullScreenLayout or the photo

 // will not display behind the status bar.

 [self setWantsFullScreenLayout:YES];

 // Set the view's frame size. This ensures that the scroll view

 // autoresizes correctly and avoids surprises when retrieving

 // the scroll view's bounds later.

 CGRect frame = [[UIScreen mainScreen] bounds];

 [[self view] setFrame:frame];

 UIScrollView *scrollView = [self scrollView];

 // Set the initial size.

 [scrollView setFrame:[self frameForPagingScrollView]];

 [scrollView setDelegate:self];

Turner_Book.indb 491 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser492

 [scrollView setBackgroundColor:[UIColor blackColor]];

 [scrollView setAutoresizingMask:UIViewAutoresizingFlexibleWidth |

 UIViewAutoresizingFlexibleHeight];

 [scrollView setAutoresizesSubviews:YES];

 [scrollView setPagingEnabled:YES];

 [scrollView setShowsVerticalScrollIndicator:NO];

 [scrollView setShowsHorizontalScrollIndicator:NO];

 [self addButtonsToNavigationBar]; // 9

 [self initPhotoViewCache];

 // Must store the status bar size while it is still visible.

 CGRect statusBarFrame = [[UIApplication sharedApplication]

 statusBarFrame];

 if (UIInterfaceOrientationIsLandscape([self interfaceOrientation])) {

 [self setStatusBarHeight:statusBarFrame.size.width];

 } else {

 [self setStatusBarHeight:statusBarFrame.size.height];

 }

}

// Other code left out for brevity's sake.

#pragma mark - Helper methods

- (void)addButtonsToNavigationBar // 10

{

 // Add buttons to the navigation bar. The nav bar allows

 // one button on the left and one on the right. Optionally,

 // a custom view can be used instead of a button. To get

 // multiple buttons we must create a short toolbar containing

 // the buttons we want.

 UIBarButtonItem *trashButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemTrash

 target:self

 action:@selector(deletePhoto:)];

 [trashButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *actionButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAction

 target:self

 action:@selector(showActionMenu:)];

 [actionButton setStyle:UIBarButtonItemStyleBordered];

 [self setActionButton:actionButton];

Turner_Book.indb 492 12/11/11 6:47 PM

ptg999

Deleting a Photo 493

 UIBarButtonItem *slideshowButton = [[UIBarButtonItem alloc]

 initWithTitle:@"Slideshow"

 style:UIBarButtonItemStyleBordered

 target:self

 action:@selector(slideshow:)];

 UIBarButtonItem *flexibleSpace = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemFlexibleSpace

 target:nil

 action:nil];

 NSMutableArray *toolbarItems = [[NSMutableArray alloc] initWithCapacity:3];

 [toolbarItems addObject:flexibleSpace];

 [toolbarItems addObject:slideshowButton];

 [toolbarItems addObject:actionButton];

 [toolbarItems addObject:trashButton];

 UIToolbar *toolbar = [[ClearToolbar alloc]

 initWithFrame:CGRectMake(0, 0, 200, 44)];

 [toolbar setBackgroundColor:[UIColor clearColor]];

 [toolbar setBarStyle:UIBarStyleBlack];

 [toolbar setTranslucent:YES];

 [toolbar setItems:toolbarItems];

 UIBarButtonItem *customBarButtonItem = [[UIBarButtonItem alloc]

 initWithCustomView:toolbar];

 [[self navigationItem] setRightBarButtonItem:customBarButtonItem

 animated:YES];

}

// Other code left out for brevity's sake.

#pragma mark - Actions

- (void)deletePhotoConfirmed // 11

{

 id<PhotoBrowserViewControllerDelegate> delegate = [self delegate];

 if (delegate && [delegate respondsToSelector:

 @selector(photoBrowserViewController:deleteImageAtIndex:)])

 {

 NSInteger count = [self numberOfPhotos];

 NSInteger indexToDelete = [self currentIndex];

 [self unloadPage:indexToDelete];

 [delegate photoBrowserViewController:self deleteImageAtIndex:indexToDelete];

Turner_Book.indb 493 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser494

 if (count == 1) {

 // The one and only photo was deleted. Pop back to

 // the previous view controller.

 [[self navigationController] popViewControllerAnimated:YES];

 } else {

 NSInteger nextIndex = indexToDelete;

 if (indexToDelete == count) {

 nextIndex -= 1;

 }

 [self setCurrentIndex:nextIndex];

 [self setScrollViewContentSize];

 }

 }

}

- (void)deletePhoto:(id)sender // 12

{

 [self cancelChromeDisplayTimer];

 UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:nil

 delegate:self

 cancelButtonTitle:nil

 destructiveButtonTitle:@"Delete
Photo"

 otherButtonTitles:nil, nil];

 [actionSheet setTag:ACTIONSHEET_TAG_DELETE];

 [actionSheet showFromBarButtonItem:sender animated:YES];

}

- (void)showActionMenu:(id)sender // 13

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

- (void)slideshow:(id)sender // 14

{

 NSLog(@"%s", __PRETTY_FUNCTION__);

}

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex // 15

{

 [self startChromeDisplayTimer];

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

Turner_Book.indb 494 12/11/11 6:47 PM

ptg999

Deleting a Photo 495

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 if ([actionSheet tag] == ACTIONSHEET_TAG_DELETE) {

 [self deletePhotoConfirmed];

 }

}

@end

Let’s walk through the code changes together:

1. Two action sheets are used in the photo browser. To respond to the action
sheets, the photo browser must implement methods from the UIAction-
SheetDelegate protocol. The protocol is added to the list of conforming
protocols so that the compiler can do the appropriate checks to ensure confor-
mity with the protocols.

 2. The PhotoBrowserViewControllerDelegate protocol defined in the
PhotoBrowserViewController.h file has been modified to include a new optional
method, -photoBrowserViewController:deleteImageAtIndex:.
Remember, the photo browser knows only how to display photos. It doesn’t
actually know anything about the origins of the photos, so it is up to the
photo browser delegate to perform the actual deletion of a photo.

 3. The ClearToolbar.h header file is imported. To get more than one button on the
right side of the navigation bar, a toolbar is needed. But the embedded toolbar
should be invisible to the user, which is why the ClearToolbar class is used.

 4–5. Two #defines are created, representing each action sheet. Each action sheet
will have a tag value matching one of these C macros.

6. A new declared property is added to the PhotoBrowserViewController
class extension. The property, actionButton, is a reference to the action
button displayed in the toolbar embedded in the navigation bar.

7. Also added to the class extension is the method -addButtonsToNavigation-
Bar. This method is called at the time the view is loaded. It is responsible for
embedding the toolbar of buttons into the right bar button item of the naviga-
tion bar.

8. The new declared property actionButton is synthesized.

 9. The -viewDidLoad method is updated to include a call to the -addButtons-
ToNavigationBar method.

 10. The method -addButtonsToNavigationBar is responsible for creating a
clear toolbar, adding buttons to the toolbar, and then adding the toolbar as

Turner_Book.indb 495 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser496

the right bar button item of the navigation bar. While a navigation bar cannot
contain more than one button on the right, it can contain a custom view. This
feature of the navigation bar is used to create a toolbar of additional buttons
that is added to the right bar button item.

 11. The method -deletePhotoConfirmed is called after the user has confirmed
the delete request. This method checks that the delegate responds to the
-photoBrowserViewController:deleteImageAtIndex: method. If it
does, it instructs the delegate to delete the current photo. If the photo deleted
is the last one in the photo album, the photo browser is popped from the navi-
gation stack and the user returns to the main screen. Otherwise, adjustments
are made to the browser’s scroll view to accommodate the new number of
photos.

 12. The method -deletePhoto: is called when the user taps the delete button
in the navigation bar. It creates and displays an action sheet. The action sheet
has one item, Delete Photo. The user must tap this item to confirm the delete
request. This method also stops the chrome display timer. The chrome must
remain visible while the action sheet is displayed.

 13–14. Stub methods for the action menu and slideshow have been added. The imple-
mentation for these methods will be completed in later chapters.

 15. The UIActionSheetDelegate method -actionSheet:clickedButton-
AtIndex: is next in the class implementation. This method starts the chrome
display timer. The action sheet is no longer visible; therefore, the chrome
should autohide in 5 seconds. Next, it checks that a button was tapped, and if
so, it calls the -deletePhotoConfirmed method. The -actionSheet:
clickedButtonAtIndex: method will have additional enhancements in
later chapters, which is why the action sheet tag value is checked within the
method’s implementation.

At this point, you should build and run the app to test the changes. Don’t worry
about deleting a photo. Nothing is deleted right now. Before a photo can be deleted,
the photo browser delegate object must be modified to implement the optional
-photoBrowserViewController:deleteImageAtIndex: method.

Test your changes. Ensure that each button is calling the appropriate action method,
and verify that the delete confirmation action sheet is displayed when the user taps the
delete button.

After you verify the changes, update the PhotoAlbumViewController class. An
instance of this class is the delegate for the photo browser, and it must be modified to
include the delete image at index callback.

Open the file PhotoAlbumViewController.m. Add the implementation shown in List-
ing 17.13.

Turner_Book.indb 496 12/11/11 6:47 PM

ptg999

Deleting a Photo 497

Listing 17.13 Updated PhotoAlbumViewController.m

- (void)photoBrowserViewController:(PhotoBrowserViewController *)photoBrowser

deleteImageAtIndex:(NSInteger)index

{

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 Photo *photo = [[self fetchedResultsController] objectAtIndexPath:indexPath];

 NSManagedObjectContext *context = [self managedObjectContext];

 [context deleteObject:photo];

 [self saveChanges];

}

This method retrieves the photo model object from the fetched results controller,
then deletes the object from the managed object context. Finally, the change is saved.

Congratulations! Your PhotoWheel app now has a full-screen photo browser com-
plete with zooming and delete functionality as seen in Figure 17.3.

Figure 17.3 Screen shot of the PhotoWheel photo browser

Turner_Book.indb 497 12/11/11 6:47 PM

ptg999

Chapter 17 Creating a Photo Browser498

Summary
In this chapter, you learned two more ways to leverage UIScrollView. You learned
how to use it to display scrollable content as pages in a memory-efficient manner, and
you learned how the scroll view can be used to zoom in on content. You also provided
a few additional enhancements to the app, such as launching the photo browser from
the tapped photo thumbnail and deleting a photo. But don’t stop working on Photo-
Wheel just yet. There are more features just itching to be written by you as you con-
tinue reading this book.

But first, there’s an important issue to resolve. When the user rotates the iPad, the
PhotoWheel UI does not rotate to match the device orientation. This is not good and
must be fixed, which is exactly what you will do in the next chapter.

Exercise
1. Modify the pop animation for the photo browser so that the animation ends on

the cell for the photo currently displayed in the browser.

Turner_Book.indb 498 12/11/11 6:47 PM

ptg999

18
Supporting Device Rotation

It is important that iPad apps support all device orientations. But what does this actually mean?
It means that your application should rotate the user interface to match the orientation of the
device. Most iPhone applications can get away with not rotating because of the small form factor of
the phone and the way users hold it. But the same is not true for the iPad.

An iPhone user tends to hold the device in a portrait orientation with the Home button at the
bottom. An iPad user, on the other hand, will hold the iPad in different orientations based on
how she picks it up. If your app does not rotate based on the current orientation, the user is forced
to rotate her iPad, which is not an ideal user experience.

This chapter shows you how to support device rotation within your app. Along the way, you
will update PhotoWheel so that it can be used regardless of how the user is holding the iPad—
with the Home button on the bottom, top, left, or right.

How to Support Rotation
Supporting rotation, or rather, enabling rotation for your app, is simple. To rotate a
screen, your view controller subclass overrides the -shouldAutorotateToInterface-
Orientation: method and returns YES for the supported orientations. This may be all
you need to do if you correctly use autoresizing properties for the views that make up
the UI. The PhotoWheel prototype app you wrote earlier in the book (in Chapters 8
through 13) supports rotation, and it required nothing more than returning YES on the
-shouldAutorotateToInterfaceOrientation: method.

There are, however, times when additional work is needed. You may wish to dis-
able a feature during rotation, or you may want to perform custom animation during
the rotations. Or the user interface is simply too complex to rely solely on the autore-
sizing properties to support rotation. Whatever the situation might be, there are addi-
tional methods that you can override to handle the unique needs of your app.

Say you wish to disable a feature during a rotation. Override the method -will-
RotateToInterfaceOrientation:duration: and turn off the feature. Override
the method -didRotateFromInterfaceOrientation: to turn the feature back on.

Turner_Book.indb 499 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation500

If you want to perform custom animations during a rotation, your view controller
subclass overrides the -willAnimateRotationToInterfaceOrientation:
duration: method. This method is called within the animation block used to rotate
the view. You override this method when you need to set additional view properties
that can animate. Say, for example, you need to move a button from one location to
another during rotation. Set the frame for the button during this method call, and it
will animate to its final destination.

Note
Prior to iOS 3, a two-step process was used to animate changes during a rotation. For the
two-step approach, your view controller subclass would override the methods -will-
AnimateFirstHalfOfRotationToInterfaceOrientation:duration: and
-willAnimateSecondHalfOfRotationFromInterfaceOrientation:
duration:. This approach is no longer recommended. You should use the one-step
process, as it tends to be faster.

Supported Orientations
There are six device orientations:

n Portrait
n Portrait upside down
n Landscape left
n Landscape right
n Face up
n Face down

Upside down, left, and right indicate the position of the Home button on the iPad.
Portrait upside down, for example, is when the device is held in portrait mode and the
Home button is at the top. Landscape left is when the device is held in landscape mode
and the Home button is on the right, and landscape right has the Home button on the
left.

Did you catch the comment about landscape left and right? The device orientation
is landscape left when the Home button is on the right, and the device orientation is
landscape right when the button is on the left. The device orientation is based on how
the device is rotated. Hold your iPad in your hands with the Home button at the bot-
tom. Now rotate it to the left (turning the device counterclockwise). Where is the
Home button? It’s on the right, and the device orientation is landscape left.

Adding to the confusion are the four interface orientations: portrait, portrait upside
down, landscape left, and landscape right. The Home button positions for the interface
orientations portrait and portrait upside down are the same as the device orientations
portrait and portrait upside down. But the Home button position for the two interface
orientation landscape modes is the opposite of the landscape device orientations. The

Turner_Book.indb 500 12/11/11 6:47 PM

ptg999

How to Support Rotation 501

interface orientation landscape left means the Home button is on the left of the device,
and landscape right means the Home button is on the right. This is the opposite of the
landscape modes for device orientation.

Under most circumstances, an iPad app needs to concern itself only with the inter-
face orientation, not the device orientation. And most iPad apps do not care if the
device is face up or face down. Because of this, the typical iPad app relies on the view
controller rotation mechanism described in the last section to support rotation.

You may be wondering how this rotation mechanism is used when your app is
launched and the device is in landscape mode. By default, applications are launched in
portrait mode. This is why you tend to initially design your UI in portrait. After the
-application:didFinishLaunchingWithOptions: method (found on the app
delegate) returns, the app’s root view controller receives the -shouldAutorotate-
ToInterfaceOrientation: method call. If YES is returned, the view controller
receives the other rotation method calls, which in turn cause the user interface to
rotate. The UI is fully rotated by the time the user sees it.

Using Autoresizing
By far the easiest way to support rotation within your app is to rely on autoresizing.
If the views in your app are correctly configured with autoresizing, all that is needed
to support rotation is to respond YES in the -shouldAutorotateToInterface-
Orientation: method. This sounds simple, but getting autoresizing configured
properly can be a challenge involving some trial and error.

You can set the autoresizing property for a view using the Size inspector in IB,
shown in Figure 18.1, or you can set it in code. For example, the following code snip-
pet assigns a f lexible width and height to an image view. This means that the width
and height expand and shrink as the container view resizes.

[imageView setAutoresizingMask:UIViewAutoresizingFlexibleWidth|

UIViewAutoresizingFlexibleHeight]

Figure 18.1 The Size inspector with the Autosizing settings

Turner_Book.indb 501 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation502

Use any combination of the following to define how a view is autoresized:
n UIViewAutoresizingNone

n UIViewAutoresizingFlexibleLeftMargin

n UIViewAutoresizingFlexibleWidth

n UIViewAutoresizingFlexibleRightMargin

n UIViewAutoresizingFlexibleTopMargin

n UIViewAutoresizingFlexibleHeight

n UIViewAutoresizingFlexibleBottomMargin

If you do not wish to have a view resize its subviews, you can turn off resizing by
setting the property autoresizesSubviews to NO. The default value for this prop-
erty is YES.

Customized Rotation
Relying solely on autoresizing for rotation support may not be an option for your app.
In addition to resizing a screen element, maybe an element needs to change positions,
such as moving from the top of the screen to the far right side. This is something
autoresizing will not do for you. When autoresizing alone doesn’t properly rotate your
app’s user interface, it’s time to customize the rotation.

Note
You should rely on autoresizing as much as possible. Even if your app requires custom-
izing the rotation sequence, try using autoresizing on subviews to help reduce the amount
of code you have to write. You’ll likely find that you use a combination of autoresizing and
customized rotation to produce the best user experience. In fact, PhotoWheel does this. It
uses a combination to provide a nice animated rotation sequence.

The UI for PhotoWheel uses background images for visual effects. The UI has a
top-down look to it where the contents of a photo album are displayed at the top and
the list of photo albums is displayed at the bottom. There are other visual effects such
as the arrow pointing to the selected photo album.

If PhotoWheel were to rely solely on autoresizing to support a landscape UI, the UI
would look odd. The photo album wheel, for example, would be stretched and dis-
torted. Therefore, you will need to customize the rotation in addition to using auto-
resizing to properly display PhotoWheel in landscape mode.

To start, open the file MainViewController.m and add the method -shouldAutorotate-
ToInterfaceOrientation:. Have the method return YES to support all interface
orientations. The method will look like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

Turner_Book.indb 502 12/11/11 6:47 PM

ptg999

Customized Rotation 503

{

 return YES;

}

Run the app and rotate the device. If you are using the simulator, you can type
�-Left and �-Right to rotate. As expected, the UI looks a mess, as you can see
in Figure 18.2. Autoresizing is used on the background image displayed in the

Figure 18.2 At the top is PhotoWheel with a messy landscape UI.
The bottom screen shot is what it should look like when the UI is

properly rotated.

Turner_Book.indb 503 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation504

MainViewController view. The views for the child view controllers do not use
autoresizing, so their position and size remain the same. However, the photo album
wheel is barely visible, and the UI simply looks bad.

A number of changes are required to clean up the UI for landscape mode. Addi-
tional outlets must be defined for existing screen elements. Then code must be added
to the view controller classes to manipulate the screen elements that require new sizes,
new positions, and, in the case of image views, new images.

Let’s start with the view for the MainViewController. It has a background image
and an i info button. The background must change to the landscape version of the art-
work. The info button must also move to a new location on the screen, aligning itself
with the placeholder area found in the landscape version of the artwork. This means
that the MainViewController class must have outlets for the background image view
and the info button. Open MainViewController.h and add the new outlets. Remember
to connect the outlets to the objects defined in the storyboard scene for the main view
controller, and remember to synthesize the declared properties in the class implemen-
tation file. The updated header file is shown in Listing 18.1.

Listing 18.1 Updated MainViewController.h

#import <UIKit/UIKit.h>

@interface MainViewController : UIViewController

@property (nonatomic, strong) IBOutlet UIImageView *backgroundImageView;

@property (nonatomic, strong) IBOutlet UIButton *infoButton;

@end

Now open the file MainViewController.m and override the method -willAnimate-
RotationToInterfaceOrientation:duration:. The implementation for this
method checks the interface orientation. If the iPad is held landscape (with the Home
button on either the left or the right side), a landscape layout is used for the UI; other-
wise a portrait layout is used. The code is shown in Listing 18.2. Make the same code
changes to your MainViewController class.

Listing 18.2 Updated MainViewController.m

#import "MainViewController.h"

#import "PhotoAlbumViewController.h"

#import "PhotoAlbumsViewController.h"

#import "AppDelegate.h"

@implementation MainViewController

@synthesize backgroundImageView = _backgroundImageView; // 1

@synthesize infoButton = _infoButton; // 2

Turner_Book.indb 504 12/11/11 6:47 PM

ptg999

Customized Rotation 505

- (void)viewDidLoad // 3

{

 [super viewDidLoad];

 AppDelegate *appDelegate =

 (AppDelegate *)[[UIApplication sharedApplication] delegate];

 NSManagedObjectContext *managedObjectContext =

 [appDelegate managedObjectContext];

 UIStoryboard *storyboard = [self storyboard];

 PhotoAlbumsViewController *photoAlbumsScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumsScene"];

 [photoAlbumsScene setManagedObjectContext:managedObjectContext];

 [self addChildViewController:photoAlbumsScene];

 [photoAlbumsScene didMoveToParentViewController:self];

 PhotoAlbumViewController *photoAlbumScene =

 [storyboard instantiateViewControllerWithIdentifier:@"PhotoAlbumScene"];

 [self addChildViewController:photoAlbumScene];

 [photoAlbumScene didMoveToParentViewController:self];

 [photoAlbumsScene setPhotoAlbumViewController:photoAlbumScene];

}

- (void)viewDidUnload // 4

{

 [self setBackgroundImageView:nil];

 [self setInfoButton:nil];

 [super viewDidUnload];

}

#pragma mark - Rotation support

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation // 5

{

 return YES;

}

- (void)layoutForLandscape // 6

{

 UIImage *backgroundImage = [UIImage

 imageNamed:@"background-landscape-right-grooved.png"];

 [[self backgroundImageView] setImage:backgroundImage];

Turner_Book.indb 505 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation506

 CGRect frame = [[self infoButton] frame];

 frame.origin = CGPointMake(981, 712);

 [[self infoButton] setFrame:frame];

}

- (void)layoutForPortrait // 7

{

 UIImage *backgroundImage = [UIImage

 imageNamed:@"background-portrait-grooved.png"];

 [[self backgroundImageView] setImage:backgroundImage];

 CGRect frame = [[self infoButton] frame];

 frame.origin = CGPointMake(723, 960);

 [[self infoButton] setFrame:frame];

}

- (void)willAnimateRotationToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

duration:(NSTimeInterval)duration // 8

{

 if (UIInterfaceOrientationIsLandscape(toInterfaceOrientation)) {

 [self layoutForLandscape];

 } else {

 [self layoutForPortrait];

 }

}

@end

Let’s review the changes:

 1–2. The declared properties for the outlets are @synthesized.

 3. The method -viewDidLoad remains unchanged.

 4. The method -viewDidUnload is added. It sets the outlets to nil.

 5. The method -shouldAutorotateToInterfaceOrientation: is imple-
mented. It always returns YES since all interface orientations are supported.

6. The helper method -layoutForLandscape is used to lay out the screen ele-
ments for landscape mode. First, the background image is replaced with back-
ground-landscape-right-grooved.png. The landscape view for PhotoWheel positions
the wheel on the right of the screen, and this background image ref lects this
change. The info button must also be repositioned. The frame for the button is
retrieved, and the origin is changed to ref lect the new location. Finally, the but-
ton’s frame is updated with the adjusted frame values.

Turner_Book.indb 506 12/11/11 6:47 PM

ptg999

Customized Rotation 507

7. The helper method -layoutForPortrait does the same thing as the previous
method except it is used to lay out the screen elements for portrait mode.

 8. The -willAnimateRotationToInterfaceOrientation:duration: method
is overridden. It checks the interface orientation mode, then calls the appropriate
layout helper method.

Checking the Interface Orientation
When checking the interface orientation, you can use the macros UIInterface-
OrientationIsLandscape and UIInterfaceOrientationIsPortrait.
UIInterfaceOrientationIsLandscape checks that the interface orientation
is landscape left or right, and UIInterfaceOrientationIsPortrait checks
that the orientation is portrait or portrait upside down. You can use the UIInterface-
Orientation enumeration if you need to perform a more specific check, for
example, if (toInterfaceOrientation == UIInterfaceOrientation-
PortraitUpsideDown).

The UIInterfaceOrientation options are

n UIInterfaceOrientationPortrait
n UIInterfaceOrientationPortraitUpsideDown
n UIInterfaceOrientationLandscapeLeft
n UIInterfaceOrientationLandscapeRight

Build and run the app to test your changes. Rotate the device. If the background
image or the info button remains unchanged, it’s likely you forgot to connect the
objects to the outlets in the storyboard scene.

Rotating the Photo Albums Scene
Next up is adding rotation support to the photo albums scene. This scene is dis-
played at the bottom of the screen when the iPad is in portrait mode. It con-
sists of the photo album wheel and round + button; its view controller class is
PhotoAlbumsViewController.

Because PhotoAlbumViewController is a child view controller to MainView-
Controller, it automatically receives the rotation-related messages. This means that
the PhotoAlbumsViewController class does not need to override the -should-
AutorotateToInterfaceOrientation: method. Instead, it only needs to override
the -willAnimateRotationToInterfaceOrientation:duration: method. And
because the contents of the PhotoAlbumsViewController view do not change size
or position within the view, the only thing that needs to happen is to move the con-
troller’s view based on the landscape or portrait interface orientation.

Simply put, in code, you just need to add the following method to the PhotoAlbums-
ViewController.m file:

Turner_Book.indb 507 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation508

- (void)willAnimateRotationToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation duration:(NSTimeInterval)duration

{

 CGRect newFrame;

 if (UIInterfaceOrientationIsLandscape(toInterfaceOrientation)) {

 newFrame = CGRectMake(700, 100, 551, 550);

 } else {

 newFrame = CGRectMake(109, 680, 551, 550);

 }

 [[self view] setFrame:newFrame];

}

All this does is to move the view to a new position based on the interface’s
orientation.

Note
By default, appearance and rotation messages are forwarded to child view controllers
for view controllers that implement containment logic. This behavior can be turned off
by overriding the method - (BOOL)automaticallyForwardAppearanceAnd-
RotationMethodsToChildViewControllers and returning NO in the parent
view controller.

Rotating the Photo Album Scene
Rotating the photo album scene is a bit more involved. A new background image
will be displayed for landscape mode. This new image has new dimensions that
make using autoresizing of subviews impossible. This means that each subview in the
PhotoAlbum ViewController view must be explicitly resized and positioned in code.
This also means that outlets must be defined for each screen element.

Outlets for the toolbar and grid view have already been declared. This leaves you
with the task of adding an outlet for the background and shadow images. The objects
in the toolbar do not need to be declared as outlets. Autoresizing will take care of
resizing and positioning the objects in the toolbar.

Open PhotoAlbumViewController.h and add an outlet for the background image. Add
another outlet for the shadow image, which is displayed below the toolbar. The code
for the declared properties is

@property (nonatomic, strong) IBOutlet UIImageView *backgroundImageView;

@property (nonatomic, strong) IBOutlet UIImageView *shadowImageView;

Remember to open PhotoAlbumViewController.m and @synthesize the new
declared properties. While you’re at it, be sure to connect the outlets to the appropri-
ate UIImageView objects created in the Photo Album View Controller Scene in the
main storyboard.

Next, open PhotoAlbumViewController.m and add the rotation-related methods,
shown in Listing 18.3.

Turner_Book.indb 508 12/11/11 6:47 PM

ptg999

Customized Rotation 509

Listing 18.3 Rotation-Related Methods for PhotoAlbumViewController

- (void)layoutForLandscape

[[self view] setFrame:CGRectMake(18, 20, 738, 719)];

 [[self backgroundImageView] setImage:[UIImage

 imageNamed:@"stack-viewer-bg-landscape-right.png"]];

 [[self backgroundImageView] setFrame:[[self view] bounds]];

 [[self shadowImageView] setFrame:CGRectMake(9, 51, 678, 8)];

 [[self gridView] setFrame:CGRectMake(20, 52, 654, 632)];

 [[self toolbar] setFrame:CGRectMake(9, 6, 678, 44)];

}

- (void)layoutForPortrait

{

 [[self view] setFrame:CGRectMake(26, 18, 716, 717)];

 [[self backgroundImageView] setImage:[UIImage

 imageNamed:@"stack-viewer-bg-portrait.png"]];

 [[self backgroundImageView] setFrame:[[self view] bounds]];

 [[self shadowImageView] setFrame:CGRectMake(9, 51, 698, 8)];

 [[self gridView] setFrame:CGRectMake(20, 51, 678, 597)];

 [[self toolbar] setFrame:CGRectMake(9, 6, 698, 44)];

}

- (void)willAnimateRotationToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation duration:(NSTimeInterval)duration

{

 if (UIInterfaceOrientationIsLandscape(toInterfaceOrientation)) {

 [self layoutForLandscape];

 } else {

 [self layoutForPortrait];

 }

}

The code here is pretty straightforward. There are helper methods for portrait and
landscape layouts. Each layout method positions and sizes the view and subviews based
on the current interface’s orientation.

At this point, PhotoWheel’s main screen fully supports rotation.
Or does it?

Tweaking the WheelView Class
Visually the main screen rotates, but the wheel view for the photo album still has an
issue. The wheel view does not make appropriate adjustments for landscape. In portrait
mode, the selected photo album is displayed at the top of the wheel (0.0 degrees). In
landscape mode, the selected photo album should be displayed at the left of the wheel
(-90.0 or 270.0 degrees). A tweak is needed to the WheelView class to offset the wheel
by a certain number of degrees.

Turner_Book.indb 509 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation510

Open the WheelView.h file. Add a new declared property named angleOffset of
type CGFloat. The property declaration should look like this:

@property (nonatomic, assign) CGFloat angleOffset;

Next, open the file WheelView.m and synthesize the angleOffset property. At the
bottom of the implementation section, add the following custom setter method:

- (void)setAngleOffset:(CGFloat)angleOffset

{

 if (_angleOffset != -angleOffset) {

 _angleOffset = -angleOffset;

 [self layoutSubviews];

 }

}

This method adjusts the given angle offset. This adjustment is needed because,
internally, 0.0 degrees of the wheel view is actually at the bottom of the view, not the
top. However, we tend to think of a circle’s 0-degree point as the top of the circle.
The setter method also calls -layoutSubviews. This forces the wheel view to redraw
the contents each time the angle offset is set.

Finally, scroll to the middle of the method -(void)setAngle:(CGFloat)angle
and replace the line of code that reads

float angleInRadians = (angle + 180.0) * M_PI / 180.0f;

with the following line of code:

float angleInRadians = ((angle + [self angleOffset]) + 180.0) * M_PI / 180.0f;

The WheelView class now supports an angle offset that can be used to control
the “virtual top” of the wheel. You want to set this property in the -willAnimate-
RotationToInterfaceOrientation:duration: method in the PhotoAlbums-
ViewController class. The angle offset should be set to 0.0 for portrait mode and
270.0 (or �90.00) for landscape mode. Make the change to your code; Listing 18.4
shows an example of the modified code.

Listing 18.4 Update to the PhotoAlbumsViewController.m File

- (void)willAnimateRotationToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation duration:(NSTimeInterval)duration

{

 CGRect newFrame;

 CGFloat angleOffset;

 if (UIInterfaceOrientationIsLandscape(toInterfaceOrientation)) {

 newFrame = CGRectMake(700, 100, 551, 550);

 angleOffset = 270.0;

 } else {

 newFrame = CGRectMake(109, 680, 551, 550);

 angleOffset = 0.0;

 }

Turner_Book.indb 510 12/11/11 6:47 PM

ptg999

Fixing the Trouble Spots 511

 [[self view] setFrame:newFrame];

 [[self wheelView] setAngleOffset:angleOffset];

}

R otating the About View
The main screen is not the only screen that needs to support rotation. The About
screen is another. Open the implementation file for the AboutViewController class
and add the override method -shouldAutorotateToInterfaceOrientation: so
that the method always returns YES.

R otating the Photo Browser
The photo browser needs the same change. Open the implementation file for the
PhotoBrowserViewController class and add the -shouldAutorotateTo-
InterfaceOrientation: method so that it always returns YES.

Unfortunately, though, the photo browser requires a little more work to properly
support rotation. The navigation bar and the scroll view are properly autoresized, but
the contents of the scroll view do not resize properly. We’ll get to those next.

F ixing the Trouble Spots
Adding rotation support is never easy unless the app relies solely on autoresizing.
Photo Wheel has issues with rotation that are not uncommon in other apps. First of all,
the contents of the photo browser scroll view do not resize properly during a rotation.
Another issue is seen when you launch the photo browser from portrait mode, rotate
the device to landscape mode, then tap the Back button to return to the main screen.
In this scenario, the main screen never rotates.

You need to fix these trouble spots, starting with the photo browser content area.

F ixing the Photo Browser
The photo browser is not your standard iOS screen. It displays a scroll view, which
contains one or more scroll views. Each sub–scroll view displays a photo that the user
may or may not have zoomed in on. In addition to this, the photo browser shows and
hides chrome. The combination of these points makes the photo browser a bit more
challenging to rotate.

The best way to describe what needs to happen is to show you the updated source
code, then walk you through it. You will need to update your source code with the
same set of changes. Start with the PhotoBrowserPhotoView class. It needs a num-
ber of new methods to reposition the photo after the content size for the scroll view
changes, which happens when the device is rotated.

Open the header file for the PhotoBrowserPhotoView class and add the new
method declarations shown in Listing 18.5.

Turner_Book.indb 511 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation512

Listing 18.5 New Method Declarations for the PhotoBrowserPhotoView Class

@interface PhotoBrowserPhotoView : UIScrollView <UIScrollViewDelegate>

// Other code left out for brevity's sake.

- (CGPoint)pointToCenterAfterRotation;

- (CGFloat)scaleToRestoreAfterRotation;

- (void)setMaxMinZoomScalesForCurrentBounds;

- (void)restoreCenterPoint:(CGPoint)oldCenter scale:(CGFloat)oldScale;

@end

Now open the implementation file for the PhotoBrowserPhotoView class and add
the implementation for the new methods; the code is shown in Listing 18.6.

Listing 18.6 New Method Implementations for PhotoBrowserPhotoView

#pragma mark - Rotation methods

/**

 ** Methods called during rotation to preserve the zoomScale and the visible

 ** portion of the image.

 **

 ** The following code comes from the Apple sample project PhotoScroller

 ** available at

 ** http://bit.ly/qSUD0H

 **

 **/

- (void)setMaxMinZoomScalesForCurrentBounds

{

 CGSize boundsSize = self.bounds.size;

 CGSize imageSize = [[self imageView] bounds].size;

 // Calculate min/max zoom scale:

 // the scale needed to perfectly fit the image width-wise

 CGFloat xScale = boundsSize.width / imageSize.width;

 // the scale needed to perfectly fit the image height-wise

 CGFloat yScale = boundsSize.height / imageSize.height;

 // use minimum of these to allow the image to become fully visible

 CGFloat minScale = MIN(xScale, yScale);

 // On high-resolution screens we have double the pixel density,

 // so we will be seeing every pixel if we limit the maximum

 // zoom scale to 0.5.

 CGFloat maxScale = 1.0 / [[UIScreen mainScreen] scale];

Turner_Book.indb 512 12/11/11 6:47 PM

ptg999

Fixing the Trouble Spots 513

 // Don't let minScale exceed maxScale. (If the image is smaller

 // than the screen, we don't want to force it to be zoomed.)

 if (minScale > maxScale) {

 minScale = maxScale;

 }

 self.maximumZoomScale = maxScale;

 self.minimumZoomScale = minScale;

}

// Returns the center point, in image coordinate space, to try

// to restore after rotation.

- (CGPoint)pointToCenterAfterRotation

{

 CGPoint boundsCenter = CGPointMake(CGRectGetMidX(self.bounds),

 CGRectGetMidY(self.bounds));

 return [self convertPoint:boundsCenter toView:[self imageView]];

}

// Returns the zoom scale to attempt to restore after rotation.

- (CGFloat)scaleToRestoreAfterRotation

{

 CGFloat contentScale = self.zoomScale;

 // If we're at the minimum zoom scale, preserve that by returning 0,

 // which will be converted to the minimum allowable scale when the

 // scale is restored.

 if (contentScale <= self.minimumZoomScale + FLT_EPSILON)

 contentScale = 0;

 return contentScale;

}

- (CGPoint)maximumContentOffset

{

 CGSize contentSize = self.contentSize;

 CGSize boundsSize = self.bounds.size;

 return CGPointMake(contentSize.width - boundsSize.width,

 contentSize.height - boundsSize.height);

}

- (CGPoint)minimumContentOffset

{

 return CGPointZero;

}

Turner_Book.indb 513 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation514

// Adjusts content offset and scale to try to preserve the old

// zoom scale and center.

- (void)restoreCenterPoint:(CGPoint)oldCenter scale:(CGFloat)oldScale

{

 // Step 1: Restore zoom scale, first making sure it is within

 // the allowable range.

 self.zoomScale = MIN(self.maximumZoomScale, MAX(self.minimumZoomScale,

 oldScale));

 // Step 2: Restore center point, first making sure it is within

 // the allowable range.

 // Step 2a: Convert the desired center point back to our own

 // coordinate space.

 CGPoint boundsCenter = [self convertPoint:oldCenter fromView:[self imageView]];

 // Step 2b: Calculate the content offset that would yield that center

 // point.

 CGPoint offset = CGPointMake(boundsCenter.x - self.bounds.size.width / 2.0,

 boundsCenter.y - self.bounds.size.height / 2.0);

 // Step 2c: Restore the offset, adjusted to be within the allowable

 // range.

 CGPoint maxOffset = [self maximumContentOffset];

 CGPoint minOffset = [self minimumContentOffset];

 offset.x = MAX(minOffset.x, MIN(maxOffset.x, offset.x));

 offset.y = MAX(minOffset.y, MIN(maxOffset.y, offset.y));

 self.contentOffset = offset;

}

This code comes from the PhotoScroller sample app made available by Apple. It
does the job of repositioning the image while at the same time preserving the zoom
scale for the image. The code is well documented with comments, so there’s no need
to walk through the method. Instead, it’s time to put the changes to work.

Open the file PhotoBrowserViewController.m and add the changes shown in Listing
18.7.

Listing 18.7 Adding Rotation Support to the PhotoBrowserViewController Class

#import "PhotoBrowserViewController.h"

#import "PhotoBrowserPhotoView.h"

#import "ClearToolbar.h"

// Other code left out for brevity's sake.

@interface PhotoBrowserViewController ()

// Other code left out for brevity's sake.

Turner_Book.indb 514 12/11/11 6:47 PM

ptg999

Fixing the Trouble Spots 515

@property (nonatomic, assign) NSInteger firstVisiblePageIndexBeforeRotation; // 1

@property (nonatomic, assign) NSInteger percentScrolledIntoFirstVisiblePage; // 2

// Other code left out for brevity's sake.

@end

@implementation PhotoBrowserViewController

// Other code left out for brevity's sake.

@synthesize firstVisiblePageIndexBeforeRotation =

_firstVisiblePageIndexBeforeRotation; // 3

@synthesize percentScrolledIntoFirstVisiblePage =

_percentScrolledIntoFirstVisiblePage; // 4

// Other code left out for brevity's sake.

#pragma mark - Rotation support

/**

 **

 ** Portions of the rotation code come from the Apple sample project

 ** PhotoScroller available at

 ** http://bit.ly/qSUD0H

 **

 **/

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

{

 return YES;

}

- (void)willRotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

duration:(NSTimeInterval)duration // 5

{

 [[self scrollView] setScrollEnabled:NO];

 // Here, our pagingScrollView bounds have not yet been updated for the

 // new interface orientation. So this is a good place to calculate the

 // content offset that we will need in the new orientation.

 CGFloat offset = [self scrollView].contentOffset.x;

 CGFloat pageWidth = [self scrollView].bounds.size.width;

Turner_Book.indb 515 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation516

 if (offset >= 0) {

 [self setFirstVisiblePageIndexBeforeRotation:floorf(offset / pageWidth)];

 [self setPercentScrolledIntoFirstVisiblePage:

 (offset - ([self firstVisiblePageIndexBeforeRotation] * pageWidth))

 / pageWidth];

 } else {

 [self setFirstVisiblePageIndexBeforeRotation:0];

 [self setPercentScrolledIntoFirstVisiblePage:offset / pageWidth];

 }

}

- (void)layoutScrollViewSubviews // 6

{

 [self setScrollViewContentSize];

 NSArray *subviews = [[self scrollView] subviews];

 for (PhotoBrowserPhotoView *view in subviews) {

 CGPoint restorePoint = [view pointToCenterAfterRotation];

 CGFloat restoreScale = [view scaleToRestoreAfterRotation];

 [view setFrame:[self frameForPageAtIndex:[view index]]];

 [view setMaxMinZoomScalesForCurrentBounds];

 [view restoreCenterPoint:restorePoint scale:restoreScale];

 }

 // Adjust contentOffset to preserve page location based on

 // values collected prior to location.

 CGRect bounds = [[self scrollView] bounds];

 CGFloat pageWidth = bounds.size.width;

 CGFloat newOffset = ([self firstVisiblePageIndexBeforeRotation] * pageWidth)

 + ([self percentScrolledIntoFirstVisiblePage] * pageWidth);

 [[self scrollView] setContentOffset:CGPointMake(newOffset, 0)];

}

- (void)willAnimateRotationToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

duration:(NSTimeInterval)duration // 7

{

 [self layoutScrollViewSubviews];

 // If the chrome is hidden, the navigation

 // bar must be repositioned under the status

 // bar.

 if ([self isChromeHidden]) {

 UINavigationBar *navbar = [[self navigationController] navigationBar];

 CGRect frame = [navbar frame];

 frame.origin.y = [self statusBarHeight];

Turner_Book.indb 516 12/11/11 6:47 PM

ptg999

Fixing the Trouble Spots 517

 [navbar setFrame:frame];

 }

}

- (void)didRotateFromInterfaceOrientation:

(UIInterfaceOrientation)fromInterfaceOrientation

{

 [[self scrollView] setScrollEnabled:YES];

 [self startChromeDisplayTimer];

}

@end

Let’s take a closer look at the changes:

 1–2. Two properties are added to the PhotoBrowserViewController class exten-
sion. These properties store values needed during the rotation and repositioning
of the photo scroll views.

3–4. The new properties are synthesized.

 5. The -willRotateToInterfaceOrientation:duration: method calcu-
lates the first visible page index and the percentage scrolled. The calculations
are based on the position in the scroll view’s content area and the width of the
scroll view prior to resizing. This method also turns off scrolling. This prevents
the scroll view from changing pages during recalculations that occur during the
rotation. The check for whether scrolling is enabled or not is performed in the
-scrollViewDidScroll: callback method that you implemented earlier.

 6. The method -layoutScrollViewSubviews is called during the rotation. It
repositions each photo within the scroll view while retaining the current zoom
scale. It then calculates and sets the new content offset for the scroll view.

 7. The method -willAnimateRotationToInterfaceOrientation:duration:
calls -layoutScrollViewSubviews to reposition the photos within the scroll
view. It also repositions the navigation bar when the chrome is hidden. If the
navigation bar were not repositioned, autoresizing would have moved it off the
screen, making it unavailable to the user when the chrome is shown again.

 8. The method -didRotateFromInterfaceOrientation: is called at the end
of the rotation sequence. It reenables scrolling for the user and starts the chrome
display timer.

And with that, the photo browser now supports all six possible interface orienta-
tions. Build the app, run it, and test the latest set of changes. Feel free to take your
iPad for a “spin.”

Turner_Book.indb 517 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation518

F ixing the Main Screen
Another rotation-related problem exists with the main screen. To see the problem,
hold your iPad in portrait mode. Launch PhotoWheel and then tap on a photo to
launch the photo browser. Now rotate the iPad to landscape mode. Tap the Back but-
ton to close the photo browser. The main screen did not rotate, as you can see in Fig-
ure 18.3.

The problem is caused by a design f law with UINavigationController and the
way it forwards rotation events. UINavigationController forwards rotation events
only to the top view controller, so when using a UINavigationController, only
the visible view controller receives the rotation events. This means that other view
controllers on the stack do not receive the event notifications, and for those view con-
trollers with views that rely on receiving the rotation events, the UI never rotates to
the new interface orientation.

Note
If your view relies solely on autoresizing, this is not an issue for you.

Luckily, the fix is rather simple. The main screen receives appearance events includ-
ing -viewWillAppear: when the top view controller is popped from the stack. You
can use this opportunity to force the UI to rotate. The code to accomplish this is
given in Listing 18.8. Just open the file MainViewController.m and add the code for the
–viewWillAppear: method.

Figure 18.3 The main screen using the portrait layout in
landscape mode

Turner_Book.indb 518 12/11/11 6:47 PM

ptg999

Fixing the Trouble Spots 519

Listing 18.8 Update to the MainViewController.m File

@interface MainViewController ()

@property (nonatomic, assign) BOOL skipRotation;

@end

@implementation MainViewController

// Other code left out for brevity's sake.

@synthesize skipRotation = _skipRotation;

- (void)viewDidLoad

{

 // Other code left out for brevity's sake.

 [self setSkipRotation:YES];

}

- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

 if ([self skipRotation] == NO) {

 UIInterfaceOrientation interfaceOrientation = [self interfaceOrientation];

 NSTimeInterval interval = 0.35;

 void (^animation)() = ^ {

 [self willAnimateRotationToInterfaceOrientation:interfaceOrientation

 duration:interval];

 for (UIViewController *childController in [self childViewControllers]) {

 [childController

 willAnimateRotationToInterfaceOrientation:interfaceOrientation

 duration:interval];

 }

 };

 [UIView animateWithDuration:interval animations:animation];

 }

 [self setSkipRotation:NO];

}

// Other code left out for brevity's sake.

@end

Let’s spend a moment reviewing the code.

Turner_Book.indb 519 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation520

A class extension is added. The extension defines a new Boolean property named
skipRotation. The property is used to bypass the forced rotation the first time
-viewWillAppear: is called. Why do this? Tests of PhotoWheel showed that launch-
ing the app while the device is in landscape mode caused a slightly delayed animation
sequence the first time the main screen was displayed. So this property was added to
skip the rotation the first time.

Note
Set skipRotation to NO in the -viewDidLoad method to see the problem
firsthand.

The other piece of code added to the MainViewController class is the -view-
WillAppear: method. This method is called just prior to the view appearing on the
screen. This means that the method is called when the photo browser is popped from
the navigation stack.

This method creates an animation sequence that calls the rotation methods for the
main view controller and each of its child view controllers. The reason this is done as
an animation sequence is to make the visual transition from one orientation mode to
another appear smooth.

It is important to point out that that while a view controller that uses containment
will automatically forward rotation and appearance events to its child controllers, this
autoforwarding does not happen when you explicitly call one of the rotation methods.
Therefore, it is up to you to forward the calls to each child view controller.

Once you finish making the code changes, build and run the app. The main
screen now rotates when the interface orientation changes while the photo browser is
displayed.

Launch Images
One last topic related to orientation is the use of launch images. A launch image is an
image that is displayed the moment the user taps the app icon on the Home screen.
iOS is responsible for displaying the launch image and hiding it when your app is
ready to run. Using a launch image gives the user the perception that the app has
launched quickly even though it may still be loading.

Note
You may be tempted to use the launch image as a splash screen for your app. Don’t!
Users don’t want to see your splash screen. They want to use your app. Need some
convincing? Listen to Mike Lee’s talk on Making Apps That Don’t Suck (www.infoq.com/
presentations/Making-Apps-That-Dont-Suck).

A launch image is not a splash screen. It is an image representing the initial launch
state of your app. It typically looks like the first screen of your app with no content.

Turner_Book.indb 520 12/11/11 6:47 PM

www.infoq.com/presentations/Making-Apps-That-Dont-Suck
www.infoq.com/presentations/Making-Apps-That-Dont-Suck

ptg999

Launch Images 521

An easy way to make a screen shot of your app is to use Organizer. With your device
connected to your computer, open Organizer and select Devices, then select Screenshots
under the section for your device. With your app running, click the New Screenshot
button in Organizer. This takes a screen shot of your app’s current screen, as shown in Fig-
ure 18.4. You can also click Save as Launch Image to add the image to your project.

When you create the launch image for your iPad app, you actually need to create
two images, one image each for portrait and landscape modes. iOS will use the appro-
priate image based on the device orientation when the app is launched. The recom-
mended size for the portrait launch image is 768 × 1004 pixels, and the recommended
size for the landscape image is 1024 × 748 pixels. This leaves 20 pixels at the top to
display the status bar.

Once you have the launch images, you need to tell your app about them. Add the
launch images to your Xcode project, then open the info.plist file for the project. Add a
new row with the key Launch Image (or Launch Image (iPad)) and set the value to the
file name of the portrait version of your launch image, as shown in Figure 18.5.

You can skip the info.plist step by naming the portrait image Default.png and the
landscape image Default-Landscape.png. The iPad will look for these images when the
launch image is not defined in the info.plist. If, however, you wish to use a different
name for the launch images, you must update the project’s info.plist file.

Figure 18.4 Screenshots available in Organizer

Turner_Book.indb 521 12/11/11 6:47 PM

ptg999

Chapter 18 Supporting Device Rotation522

Figure 18.5 Specify the launch image in the project’s info.plist.

The launch images for PhotoWheel are included in the set of images you added
to the project back in Chapter 14, “Storyboarding in Xcode.” The images are named
PW-Default.png and PWDefault-Landscape.png. Find these files under the Images group
in the Project navigator. Click each file name and rename it by removing the PW at
the beginning of each name (Figure 18.6). PhotoWheel will now use these images as
the launch images.

Figure 18.6 Use the Project navigator to rename the launch image files.

Turner_Book.indb 522 12/11/11 6:47 PM

ptg999

Exercises 523

Summary
So there you have it, rotation and orientation in a nutshell. Armed with the knowl-
edge from this chapter, you have no excuse for not supporting each interface ori-
entation in your iPad apps. When adding rotation to your apps, remember to use
autoresizing as much as possible. It will save you time and code. But do not just lock
your app into portrait mode if autoresizing won’t work for you. Take the time needed
to support portrait and landscape in your UI. Your reward for the extra time and effort
will be the satisfied users of your app.

Exercises
1. Change the landscape UI layout such that the photo album wheel is displayed on

the left side instead of the right. Use the images background-landscape-left-grooved.png
and stack-viewer-bg-landscape-left.png for the left-handed landscape layout.

2. Take screen shots of PhotoWheel and other apps using Organizer.

Turner_Book.indb 523 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

19
Printing with AirPrint

AirPrint is a feature added to iOS in version 4.2 that makes it possible to print wireless from the
iPad. This is a welcome feature for many iPad users who prefer having a hard copy of content
such as receipts from online purchases, documents, and images.

In this chapter, you will learn about the printing subsystem provided by iOS and how to
incorporate printing into your own apps.

How Printing Works
Printing is a feature you build into your app. It is not something that is automatically
provided to users of each and every app on the device. Your app must provide a way
for the user to request that content be printed. This is usually a tap on a button dis-
played in a navigation bar or toolbar. When a user wants to print from your app, he
taps the button (or whatever mechanism is provided by your app), which presents the
printer options. The user then selects the desired printer and number of copies to print
(Figure 19.1). And with a tap on the Print button, the content is sent to the printer.

Note
On the iPad, the Printer Options view is displayed in a popover, which you present from
the button or view tapped by the user. The Printer Options view slides up from the bottom
to fill the entire screen when presented on an iPhone or iPod touch.

Figure 19.1 The Printer Options view displayed in a popover on the iPad

Turner_Book.indb 525 12/11/11 6:47 PM

ptg999

Chapter 19 Printing with AirPrint526

Each print request issued by the user creates a print job. A print job is the combina-
tion of the content to print and the information needed to print, such as the printer
name, name of the print job, and number of copies to print.

A print job is sent to the printing subsystem where the data is saved to storage (i.e.,
the data is spooled). The print job is then placed in the print queue where it waits for
its turn to be printed. The print queue operates on a first-in first-out basis, and mul-
tiple applications on the same device can submit multiple print jobs to the printing
subsystem. This means that a user can print from your app and while waiting for the
print job to complete, print again from another app.

Print Center
The user can check the status of a print job that is printing or waiting to print by dou-
ble tapping the Home button and selecting the Print Center app in the multitasking
UI (Figure 19.2). Print Center is a background system application that is available only
when a print job is processing. The Print Center makes it possible for the user to view
detailed information about each print job and cancel jobs that are printing or waiting.

Requirements for Printing
Printing is available on any iOS device that supports multitasking and is running
iOS version 4.2 or greater. If the device does not meet these minimum requirements,
printing won’t be available. In your app, it is up to you to check whether the device
supports printing or not. If printing isn’t supported, your app should not give the user
an option to print (i.e., you need to hide the Print button). You will learn how to do
this in a moment.

Figure 19.2 Print Center showing the details of a print job

Turner_Book.indb 526 12/11/11 6:47 PM

ptg999

Adding Printing to PhotoWheel 527

Printing API
The programmatic interface for printing is provided by UIKit. The UIKit Printing
API provides classes and a protocol giving you complete control of printing content
from your application. Printing is managed through the shared instance of UIPrint-
InteractionController. The controller contains information about the print job
(UIPrintInfo) and the paper (UIPrintPaper). It also contains the content to be
printed. The content can be a single image or PDF document, an array of images
or PDF documents, a print formatter (UIPrintFormatter), or a page renderer
(UIPrintPageRenderer). The controller can also have a delegate object that con-
forms to the UIPrintInteractionControllerDelegate protocol.

The content types that are easiest to print are images and PDF documents. The
content is an object reference to a UIImage, NSData, NSURL, or ALAsset. An NSURL
object referring to the location of an image or PDF document must use the file:
or asset-library: scheme or any scheme capable of returning an NSData object.
To print an image or PDF document, set the printingItem property on the shared
UIPrintInteractionController instance. To print a collection of images or PDF
documents, store the object references in an NSArray and set the printingItems
property.

To print slightly complex content that does not require headers and footers and
can span multiple pages, you use one of the UIPrintFormatter concrete subclasses.
These subclasses include UISimpleTextPrintFormatter, UIMarkupTextPrint-
Formatter, and UIViewPrintFormatter. Create an instance of the appropriate
formatter object, then set the printFormatter property on the shared UIPrint-
InteractionController instance.

For complex content that can include headers and footers, use a custom class
derived from UIPrintPageRenderer. A print renderer object draws pages of content
to be printed, with or without using formatter objects. This is definitely the hard-
est way to print content, but it also gives you the maximum level of control over the
printed output.

Adding Printing to PhotoWheel
PhotoWheel displays photos, and printing images is something that is easy with the
UIPrintInteractionController class. So let’s give the PhotoWheel user the
option to print a photo from the photo browser.

The navigation bar in the photo browser already has an action button. This is the
perfect place to display an action menu with a print option. (You’ll add a send email
option in the next chapter, which is why an action sheet is used here.) Here is how it
should work from the point of view of the user.

The user taps the action button to display the action menu. Then the user taps the
Print menu item. The Printer Options view is displayed. The user selects the printer,

Turner_Book.indb 527 12/11/11 6:47 PM

ptg999

Chapter 19 Printing with AirPrint528

then taps the Print button. The current photo is sent to the printer, and the printer
produces a copy of the photo.

The code to make this happen is simple. The -showActionMenu: method in the
PhotoBrowserViewController class is changed to display the action sheet. The
action sheet delegate callback -actionSheet:clickedButtonAtIndex: checks
which menu item is tapped. If it is the Print action menu item, -printCurrent-
Photo is called. This new method prepares the shared UIPrintInteraction-
Controller instance, then displays it so that the user can print the photo.

That’s all it takes to print a photo.
The code to accomplish the steps just described is shown in Listing 19.1. Apply the

same code changes to your version of the PhotoBrowserViewController.m file.

Listing 19.1 Add Print Support to the PhotoBrowserViewController Class

- (void)showActionMenu:(id)sender // 1

{

 [self cancelChromeDisplayTimer];

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 [actionSheet setTag:ACTIONSHEET_TAG_ACTIONS];

 if ([UIPrintInteractionController isPrintingAvailable]) {

 [actionSheet addButtonWithTitle:@"Print"];

 }

 [actionSheet showFromBarButtonItem:sender animated:YES];

}

#pragma mark - Printing

- (void)printCurrentPhoto

{

 [self cancelChromeDisplayTimer]; // 2

 UIImage *currentPhoto = [self imageAtIndex:[self currentIndex]]; // 3

 UIPrintInteractionController *controller =

 [UIPrintInteractionController sharedPrintController]; // 4

 if(!controller){

 NSLog(@"Couldn't get shared UIPrintInteractionController!");

 return;

 }

 UIPrintInteractionCompletionHandler completionHandler =

 ^(UIPrintInteractionController *printController, BOOL completed,

 NSError *error)

 {

 [self startChromeDisplayTimer];

Turner_Book.indb 528 12/11/11 6:47 PM

ptg999

Adding Printing to PhotoWheel 529

 if(completed && error)

 NSLog(@"FAILED! due to error in domain %@ with error code %u",

 error.domain, error.code);

 }; // 5

 UIPrintInfo *printInfo = [UIPrintInfo printInfo]; // 6

 [printInfo setOutputType:UIPrintInfoOutputPhoto]; // 7

 [printInfo setJobName:[NSString stringWithFormat:@"photo-%i",

 [self currentIndex]]]; // 8

 [controller setPrintInfo:printInfo]; // 9

 [controller setPrintingItem:currentPhoto]; // 10

 [controller presentFromBarButtonItem:[self actionButton]

 animated:YES

 completionHandler:completionHandler]; // 11

}

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

 [self startChromeDisplayTimer];

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 if ([actionSheet tag] == ACTIONSHEET_TAG_DELETE) {

 [self deletePhotoConfirmed];

 } else if ([actionSheet tag] == ACTIONSHEET_TAG_ACTIONS) { // 12

 [self printCurrentPhoto];

 }

}

Let’s take a closer look at the code in Listing 19.1:

 1. The NSLog() statement originally in -showActionMenu: is replaced with
code that creates and shows an action sheet. A check is performed to make sure
the device supports printing. If the device does not, the Print menu item is not
added to the action sheet.

Turner_Book.indb 529 12/11/11 6:47 PM

ptg999

Chapter 19 Printing with AirPrint530

The chrome display timer is also turned off. The chrome should remain visible
while the action sheet is displayed.

 2. The method -printCurrentPhoto is the workhorse of the print feature for
the photo browser. It starts by canceling the chrome display timer. The chrome
should remain visible while the Printer Options view is displayed.

3. A reference to the current photo is retrieved; this is the content to be printed.

4. A reference to the shared UIPrintInteractionController is retrieved. This
is followed by a check to ensure that a valid reference is returned. If it is not, an
error message is logged to the console.

5. A completion block is created. This block is called when the print request com-
pletes. Within the block, the chrome display timer is started again, and if an
error occurred, it is logged to the console.

6–8. A new instance of UIPrintInfo is created. The output type is set to UIPrint-
InfoOutputPhoto, which produces the best-quality output for images, and the
print job is named. Naming the print job is optional, but you should give the job
a name that the user will recognize should the user need to cancel something he
has queued up to print.

 9. The printInfo object is assigned to the printInfo property found on the
shared UIPrintInteractionController object.

 10. The printingItem property for the shared UIPrintInteractionController
is set to the photo reference, which is a pointer to UIImage. This tells the con-
troller what content to print.

11. Finally, the Printer Option view is presented to the user.

The code change is ready to test, but how do you test printing? One option that
saves paper and doesn’t require a physical printer is to use the Printer Simulator.

The Printer Simulator
Included with Xcode is the Printer Simulator (Figure 19.3). The Printer Simulator
registers different simulated printer types that can be used from your app to test print-
ing, as shown in Figure 19.4.

The Printer Simulator is launched from the iOS Simulator by selecting the File >
Open Printer Simulator menu item. The simulated printers are available to your
app running in the iOS Simulator and on your iPad (as long as your iPad and the
Printer Simulator are on the same network). The simulated printers remain available as
long as the Printer Simulator is running. When you quit the simulator, the simulated
printers are unregistered and no longer available to your app.

Turner_Book.indb 530 12/11/11 6:47 PM

ptg999

Summary 531

Summary
This chapter gave you a basic understanding of how printing works in iOS. You
also got to see printing in action by adding a print feature to PhotoWheel. This
only scratches the surface of printing in iOS. To learn more, read the Printing sec-
tion of the Drawing and Printing Guide for iOS (developer.apple.com/library/
ios/#documentation/2DDrawing/Conceptual/DrawingPrintingiOS/
Introduction/Introduction.html).

Figure 19.3 The Print Simulator running on a development
Mac computer

Figure 19.4 A list of simulated printers made available courtesy of the
Printer Simulator

Turner_Book.indb 531 12/11/11 6:47 PM

ptg999

Chapter 19 Printing with AirPrint532

Exercises
1. Add a print option to the main screen that allows the user to print all photos.

2. Enable multi-selection on the photos grid view, and change the print option on
the main screen to print only the selected photos.

Turner_Book.indb 532 12/11/11 6:47 PM

ptg999

20
Sending Email

Email is a common feature found in many iPad apps. There are two main reasons for this:

1. Users want to share your app’s content with their friends.

2. Email is easy to implement in iOS apps.

PhotoWheel is no different. Users will want to share their favorite photos with others. And
since adding email support is so simple, it would be a disservice to PhotoWheel users if we didn’t
include the feature. That is the focus of this chapter: to show you how to send email from your
iPad app.

How It Works
iOS includes the Message UI Framework, which provides specialized view controllers
for composing email and SMS messages. Once the user finishes composing an email,
her message is sent to the appropriate subsystem where it is then sent out for delivery
to the recipients.

Note
SMS messages are text-based only. Because PhotoWheel is a photo app, there isn’t a
strong use case for it to support SMS, so it is not covered in this book. Conceptually,
however, sending an SMS message is no different from sending an email message. So
learning how to send an email message points you in the right direction for sending SMS
messages.

Warning
The subsystem for sending an email message is the Mail app within each iOS device.
To send email from your app, the user must configure the device with a default email
account. If the device is not set up with email, your app won’t be able to send mail mes-
sages, and therefore your app should not give the user the option to send mail.

Turner_Book.indb 533 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email534

To send an email from your app (on a properly configured device), the app first
displays the mail composition view (Figure 20.1). The MFMailComposeView-
Controller class found in the Message UI Framework provides this view. The app
can provide initial information for the email message such as a subject, recipients,
message body, and attachments. The user can add to, change, and even delete the app-
provided information in the mail composition view.

To send the message, the user simply taps the Send button and off it goes. This
sends the email message to the Mail app, where it is placed into the Outbox. The Mail
app is then responsible for sending the email message when there is an available net-
work connection.

If the user decides not to send the email while in the message composition view,
she needs to tap the Cancel button. The Cancel button gives her two choices: to
delete the draft or to save it as a draft message where it can later be edited and sent (or
deleted). Deleting the draft means that the mail message is gone forever. A deleted mes-
sage is never sent to the Mail app. A saved draft, on the other hand, is sent to the Mail
app. The user can decide later to edit and send the email from within the Mail app.

The Message UI Framework is designed in such a way that it leverages iOS’s Mail
app to handle the complexities of composing, queuing, and sending messages. From
a developer’s perspective, the Message UI Framework enables you to focus on what is

Figure 20.1 Screen shot of the mail composition view

Turner_Book.indb 534 12/11/11 6:47 PM

ptg999

The SendEmailController Class 535

important—building your app—without getting bogged down with having to write
an entire messaging interface for your app. The best part is that all of this simplicity is
transparent to the user. The Message UI Framework allows users to compose and send
messages from your app, regardless of whether they are connected to a network. When
a user isn’t connected to a network (for example, when her iPad is in Airplane mode),
messages are stored in Mail’s Outbox until the user connects to a 3G or Wi-Fi net-
work. The next time the user connects to a network and launches Mail, any messages
in the queue from your app and others will be sent.

The MFMailComposeViewController Class
The MFMailComposeViewController class provides a standard email composition
view that is displayed within your app. Since this view is provided by the system, the
user sees the same view regardless of which app she is using. This consistency across
third-party apps makes it easier for users to send email because the email experience
remains the same.

To send an email from your app, your app creates an instance of the MFMail-
ComposeViewController class. Initial message information, such as the list of recipi-
ents, subject, and message body, are set using this class. The view controller is then
presented to the user as a modal view controller. The user edits the message (if any)
and sends it on its way. Your app must provide a delegate object that conforms to the
MFMailComposeViewControllerDelegate protocol. The delegate object is respon-
sible for dismissing the view presented by the MFMailComposeViewController at
the appropriate time.

Let’s take a look at some code to better understand how sending email from your
app works.

The SendEmailController Class
As part of learning how to send email, you will update PhotoWheel to allow
users to email their photos. Users can send email from two different places within
PhotoWheel:

n From the photo browser, the user will be able to send an email containing the
current photo.

n From the photo album child view (displayed within the main screen), the user
will be able to send an email containing all photos in a photo album.

To implement this, you add the code that uses the MFMailComposeView-
Controller class to both the PhotoBrowserViewController and the Photo-
AlbumViewController. The code needed in the two view controllers is the same, so
rather than implement this twice, a better design is to consolidate redundant code by
creating a new controller class to handle message sending.

Turner_Book.indb 535 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email536

But before you can create a new controller class, you need to add the Message UI
Framework to the project. In the Project navigator, click the PhotoWheel project.
In the Editor area, select the PhotoWheel target, then select the Summary tab. Scroll
down to view the list of Linked Frameworks and Libraries (shown in Figure 20.2).
Click the + button under the Linked Frameworks and Libraries section, and add
MessageUI.framework to the project.

Now you are ready to create the new controller class for sending emails.

Introducing the SendEmailController Class
The new controller, SendEmailController, has a simple interface with two proper-
ties (viewController and photos), as shown in Listing 20.1. The viewController
property is a reference to the view controller using the SendEmailController class.
This view controller must conform to the SendEmailControllerDelegate proto-
col. The photos property is a reference to the set of photos to send.

Note
This new controller class is not a view controller, but it is still called a controller class
because it controls the setup, display, and dismissal of the MFMailComposeView-
Controller class.

Figure 20.2 The project summary editor

Turner_Book.indb 536 12/11/11 6:47 PM

ptg999

The SendEmailController Class 537

The SendEmailController class also has two instance methods: -initWith-
ViewController: and -sendEmail. The first method is used to initialize the class
instance. The second method displays the mail composition view managed by the
MFMailComposeViewController class instance.

The class method +canSendMail wraps the [MFMailComposeViewController
canSendMail] call. It is provided so that the photo browser and photo album view
controller classes do not have to include the Message UI Framework header files.

The class interface is followed by the SendEmailControllerDelegate protocol
definition. The protocol has one required method that the delegate view controller
must implement, -sendEmailControllerDidFinish:. This method is called to
inform the view controller that the send email request was completed.

Now that you know what the interface to the class looks like, it’s time to create it.
Start by adding a new Objective-C class to the project. Name the class SendEmail-
Controller and make it a subclass of NSObject. After the class files are added to the
project, update the SendEmailController.h file with the code in the Listing 20.1. Be sure
to include the header files from the Message UI Framework.

Listing 20.1 SendEmailController.h

#import <Foundation/Foundation.h>

#import <MessageUI/MessageUI.h>

#import <MessageUI/MFMailComposeViewController.h>

@protocol SendEmailControllerDelegate;

@interface SendEmailController : NSObject <MFMailComposeViewControllerDelegate>

@property (nonatomic, strong) UIViewController<SendEmailControllerDelegate>

*viewController;

@property (nonatomic, strong) NSSet *photos;

- (id)initWithViewController:(UIViewController<SendEmailControllerDelegate> *)

viewController;

- (void)sendEmail;

+ (BOOL)canSendMail;

@end

@protocol SendEmailControllerDelegate <NSObject>

@required

- (void)sendEmailControllerDidFinish:(SendEmailController *)controller;

@end

Turner_Book.indb 537 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email538

Next, open the file SendEmailController.m and add the implementation code shown
in Listing 20.2.

Listing 20.2 SendEmailController.m

#import "SendEmailController.h"

#import "Photo.h"

@implementation SendEmailController

@synthesize viewController = _viewController;

@synthesize photos = _photos;

- (id)initWithViewController:(UIViewController<SendEmailControllerDelegate> *)

viewController

{

 self = [super init];

 if (self) {

 [self setViewController:viewController];

 }

 return self;

}

- (void)sendEmail

{

 MFMailComposeViewController *mailer = [[MFMailComposeViewController alloc]

 init];

 [mailer setMailComposeDelegate:self];

 [mailer setSubject:@"Pictures from PhotoWheel"];

 __block NSInteger index = 0;

 [[self photos] enumerateObjectsUsingBlock:^(id photo, BOOL *stop) {

 index++;

 UIImage *image;

 if ([photo isKindOfClass:[UIImage class]]) {

 image = photo;

 } else if ([photo isKindOfClass:[Photo class]]) {

 image = [photo originalImage];

 }

 if (image) {

 NSData *imageData = UIImageJPEGRepresentation(image, 1.0);

 NSString *fileName = [NSString stringWithFormat:@"photo-%1", index];

 [mailer addAttachmentData:imageData

 mimeType:@"image/jpeg"

 fileName:fileName];

 }

 }];

Turner_Book.indb 538 12/11/11 6:47 PM

ptg999

The SendEmailController Class 539

 [[self viewController] presentModalViewController:mailer animated:YES];

}

- (void)mailComposeController:(MFMailComposeViewController*)controller

 didFinishWithResult:(MFMailComposeResult)result

 error:(NSError*)error

{

 UIViewController<SendEmailControllerDelegate> *viewController =

 [self viewController];

 [viewController dismissModalViewControllerAnimated:YES];

 if (viewController && [viewController respondsToSelector:

 @selector(sendEmailControllerDidFinish:)])

 {

 [viewController sendEmailControllerDidFinish:self];

 }

}

+ (BOOL)canSendMail

{

 return [MFMailComposeViewController canSendMail];

}

@end

The implementation file starts by importing Photo.h. The Photo class is used to
retrieve the photo, as you will see momentarily. Also toward the top of the listing
are the synthesize statements for the declared properties defined in the class interface.
These are followed by the –initWithViewController: method. This method is
provided as a matter of convenience. All it does is set the viewController property
to the view controller reference passed in on the method call.

The -sendEmail method is the juicy goodness that uses the Message UI Frame-
work. The method begins by creating a local instance of the MFMailComposeView-
Controller class. The SendEmailController class instance is set as the delegate to
the view controller, and the subject is set to a string literal.

Next, the method enumerates the set of photos using a block. To make this class
more f lexible, the photo set can contain either UIImage or Photo object references.
A check is performed on the object class type, and a local variable for the image is set
based on the outcome of the class check. The image is then added as an attachment to
the email message.

Once the enumeration block completes, the mail compose view controller is pre-
sented to the user. It is presented from the view controller provided at the time the
SendEmailController class is initialized.

Turner_Book.indb 539 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email540

Why Support UIImage and Photo Objects?
The photo browser does not know about Photo objects. It only knows about UIImage
objects. So when it wants to send an email, it needs to pass a UIImage object in the
photo set.

The PhotoAlbumViewController can do the same. It can build the photo set using
UIImage object references instead of Photo model objects, but this would require the
allocation of a UIImage object for each photo. This could cause a memory problem, so
references to the managed model object are passed instead. The assumption here, be it
a good one or bad, is that MFMailComposeViewController will manage the mem-
ory for attaching a potentially large number of images to an email message.

The next method in the listing is -mailComposeController:didFinishWith-
Result:error:. This is a delegate method of the MFMailComposeViewController-
Delegate protocol. The implementation dismisses the mail composition view, then
informs the SendEmailControllerDelegate view controller that the send email
request has finished.

The last method of the SendEmailController class is the class method
+canSendMail. It is a wrapper for the class method of the same name on the
MFMailComposeViewController class. This method returns YES if the device has
been properly configured to send email; otherwise NO is returned.

Using SendEmailController
It’s time now to update the PhotoBrowserViewController and PhotoAlbum-
ViewController classes to use the new SendEmailController class. Start with the
PhotoBrowserViewController class. The class interface must be modified to tell
the compiler that it adopts the SendEmailControllerDelegate protocol. The class
implementation must be modified to display an Email action item on the action button
action sheet, and the action sheet callback must be modified to present the mail mes-
sage composition view to the user by way of the SendEmailController.

The code changes are shown in Listing 20.3. Be sure to make these same changes
to your copy of the PhotoBrowserViewController class.

Listing 20.3 Updated PhotoBrowserViewController Class

///////

// PhotoBrowserViewController.h

///////

#import <UIKit/UIKit.h>

#import "SendEmailController.h" // 1

// Other code left out for brevity's sake.

@interface PhotoBrowserViewController : UIViewController <UIScrollViewDelegate,

UIActionSheetDelegate, SendEmailControllerDelegate> // 2

Turner_Book.indb 540 12/11/11 6:47 PM

ptg999

The SendEmailController Class 541

// Other code left out for brevity's sake.

@end

///////

// PhotoBrowserViewController.m

///////

@interface PhotoBrowserViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, strong) SendEmailController *sendEmailController; // 3

// Other code left out for brevity's sake.

- (void)emailCurrentPhoto; // 4

@end

@implementation PhotoBrowserViewController

// Other code left out for brevity's sake.

@synthesize sendEmailController = _sendEmailController; // 5

// Other code left out for brevity's sake.

- (void)showActionMenu:(id)sender

{

 [self cancelChromeDisplayTimer];

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 [actionSheet setTag:ACTIONSHEET_TAG_ACTIONS];

 if ([SendEmailController canSendMail]) { // 6

 [actionSheet addButtonWithTitle:@"Email"];

 }

 if ([UIPrintInteractionController isPrintingAvailable]) {

 [actionSheet addButtonWithTitle:@"Print"];

 }

 [actionSheet showFromBarButtonItem:sender animated:YES];

}

Turner_Book.indb 541 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email542

// Other code left out for brevity's sake.

#pragma mark - UIActionSheetDelegate methods

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

 [self startChromeDisplayTimer];

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 if ([actionSheet tag] == ACTIONSHEET_TAG_DELETE) {

 [self deletePhotoConfirmed];

 } else if ([actionSheet tag] == ACTIONSHEET_TAG_ACTIONS) {

 // Button index 0 can be Email or Print. It depends on whether or

 // not the device supports that feature.

 if (buttonIndex == 0) { // 7

 if ([SendEmailController canSendMail]) {

 [self emailCurrentPhoto];

 } else if ([UIPrintInteractionController isPrintingAvailable]) {

 [self printCurrentPhoto];

 }

 } else {

 // If there is a button index 1, it

 // will also be Print.

 [self printCurrentPhoto];

 }

 }

}

// Other code left out for brevity's sake.

#pragma mark - Email and SendEmailControllerDelegate methods

- (void)emailCurrentPhoto // 8

{

 UIImage *currentPhoto = [self imageAtIndex:[self currentIndex]];

 NSSet *photos = [NSSet setWithObject:currentPhoto];

 SendEmailController *controller = [[SendEmailController alloc]

 initWithViewController:self];

Turner_Book.indb 542 12/11/11 6:47 PM

ptg999

The SendEmailController Class 543

 [controller setPhotos:photos];

 [controller sendEmail];

 [self setSendEmailController:controller];

}

- (void)sendEmailControllerDidFinish:(SendEmailController *)controller // 9

{

 if ([controller isEqual:[self sendEmailController]]) {

 [self setSendEmailController:nil];

 }

}

@end

Reviewing the code, you will notice the following:

 1–2. The SendEmailController.h header file is imported, and the SendEmail-
ControllerDelegate protocol is listed as one of the protocols supported by
the PhotoBrowserViewController class.

3. In the implementation file, the sendEmailController declared property is
added to the class extension. A reference to the SendEmailController class
instance is kept while it is being used.

4. A new method, -emailCurrentPhoto, is added to the class extension. This
method is called when the user taps the Email action item.

 5. The sendEmailController property is synthesized.

6. The action sheet displaying the list of action items is updated to include Email if
the device is able to send email messages.

7. The action sheet callback is updated to check for the Email action item. The
item is at button index 0 if the device supports sending email; otherwise it is not
available. The method -emailCurrentPhoto is called when it is determined
that the user has indeed tapped the Email action item.

 8. The method -emailCurrentPhoto grabs a reference to the current photo and
adds it to an NSSet object. Then it creates a new instance of the class Send-
EmailController, passes the photo set, and tells the controller to send email.
This in turn presents the mail composition view to the user. Last, -email-
CurrentPhoto sets the private declared property sendEmailController to
the instance just created.

 9. The method -sendEmailControllerDidFinish: is called by the Send-
EmailController instance, informing the photo browser that the send email
request has finished. At this point, the property reference to the SendEmail-
Controller instance is set to nil, releasing it from memory.

Turner_Book.indb 543 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email544

A similar set of changes is made to the PhotoAlbumViewController class. The
only difference is that instead of sending a UIImage object reference in the photo set,
the photo set contains the collection of Photo model object references from the photo
album. The code changes for the PhotoAlbumViewController class are shown in
Listing 20.4. Be sure to make the same changes to your project.

Listing 20.4 Updated PhotoAlbumViewController Class

///////

// PhotoAlbumViewController.h

///////

#import <UIKit/UIKit.h>

#import "GridView.h"

#import "PhotoBrowserViewController.h"

#import "SendEmailController.h"

@interface PhotoAlbumViewController : UIViewController

<UIActionSheetDelegate, UIImagePickerControllerDelegate,

UINavigationControllerDelegate, NSFetchedResultsControllerDelegate,

GridViewDataSource, PhotoBrowserViewControllerDelegate,

SendEmailControllerDelegate>

// Other code left out for brevity's sake.

@end

///////

// PhotoAlbumViewController.h

///////

// Other code left out for brevity's sake.

@interface PhotoAlbumViewController ()

// Other code left out for brevity's sake.

@property (nonatomic, strong) SendEmailController *sendEmailController;

// Other code left out for brevity's sake.

- (void)emailPhotos;

@end

@implementation PhotoAlbumViewController

Turner_Book.indb 544 12/11/11 6:47 PM

ptg999

The SendEmailController Class 545

// Other code left out for brevity's sake.

@synthesize sendEmailController = _sendEmailController;

// Other code left out for brevity's sake.

- (IBAction)showActionMenu:(id)sender

{

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 if ([SendEmailController canSendMail]) {

 [actionSheet addButtonWithTitle:@"Email Photo Album"];

 }

 [actionSheet addButtonWithTitle:@"Delete Photo Album"];

 [actionSheet showFromBarButtonItem:sender animated:YES];

}

// Other code left out for brevity's sake.

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 NSMutableArray *names = [[NSMutableArray alloc] init];

 if ([actionSheet tag] == 0) {

 if ([SendEmailController canSendMail]) [names addObject:@"emailPhotos"];

 [names addObject:@"confirmDeletePhotoAlbum"];

 } else {

 BOOL hasCamera = [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) [names addObject:@"presentCamera"];

 [names addObject:@"presentPhotoLibrary"];

 }

 SEL selector = NSSelectorFromString([names objectAtIndex:buttonIndex]);

 [self performSelector:selector];

}

Turner_Book.indb 545 12/11/11 6:47 PM

ptg999

Chapter 20 Sending Email546

// Other code left out for brevity's sake.

#pragma mark - Email and SendEmailControllerDelegate methods

- (void)emailPhotos

{

 NSManagedObjectContext *context = [self managedObjectContext];

 PhotoAlbum *album = (PhotoAlbum *)[context objectWithID:[self objectID]];

 NSSet *photos = [[album photos] set];

 SendEmailController *controller = [[SendEmailController alloc]

 initWithViewController:self];

 [controller setPhotos:photos];

 [controller sendEmail];

 [self setSendEmailController:controller];

}

- (void)sendEmailControllerDidFinish:(SendEmailController *)controller

{

 if ([controller isEqual:[self sendEmailController]]) {

 [self setSendEmailController:nil];

 }

}

@end

Congratulations! Your version of PhotoWheel now supports email. This will surely
delight the users.

Summary
As you just learned, it is not that difficult to configure your iPad apps to handle email.
The Message UI Framework and iOS’s Mail app handle most of the work for you.
Your app only needs to prepare the mail message and display the mail composition
view provided by the MFMailComposeViewController class.

Exercises
1. Modify the code to send the large image instead of the original image.

2. Enable multi-selection on the photos grid view, and change the send email fea-
ture on the main screen to send only the selected photos.

Turner_Book.indb 546 12/11/11 6:47 PM

ptg999

21
Web Services

Many of today’s apps have some level of integration with Web servers and services hosted on the
Internet. There are many reasons why an iPad app may need to talk with a Web server. For
instance, the app may need to download an image or a movie file, or maybe it needs to upload a
file to a server. Other examples include calling a Web service to perform calculations, to update
leaderboards, or to request data that gets displayed in your app. Whatever the reason may be,
chances are good that one day you will need to incorporate Web services into your app.

This chapter gives you a basic introduction to using Web services. The focus is on the most
common type of Web services in use today: RESTful Web services. This chapter does not attempt
to cover every aspect of communicating with a Web server, but it does provide a jump start to
using Web services within your app.

In this introduction to Web services, you will learn how to communicate with a Web server
using the Cocoa classes, and you will learn how to parse JSON data. You will also learn how to
use blocks to simplify your code for asynchronous processing and concurrent programming.

Let’s get started.

The Basics
The term Web service means different things to different people. Say “Web service” to
a C# programmer and SOAP-based services will likely come to mind. Say “Web ser-
vice” to a Ruby programmer and REST-based services will likely be the first thing to
come to mind. To some, a Web site is a Web service, and to others, a Web service is
an API.

Why does this happen? Why does Web service mean different things to different
people?

Technology people tend to think differently when hearing the term Web service
because they tend to think in terms of the technology they are most familiar with.
The technologies we are most comfortable with tend to inf luence our technical deci-
sions and our way of thinking. A C# programmer, for example, writing a client-server
solution where .NET is used on both ends will mostly likely use SOAP-based Web
services because this is the preferred approach of .NET. To this programmer, a Web

Turner_Book.indb 547 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services548

service is a SOAP-based service. But ask that same programmer to build a version of
the same client app on the Mac desktop and iOS device. His eyes will be opened to a
new approach to Web services as SOAP-based services are not the preferred approach
in the Cocoa world.

So, what is a Web service?
From a generic point of view, a Web service is a method for communicating

between two systems over a network, typically using HTTP. The rest of the techno-
mumbo-jumbo surrounding Web services consists of approaches, protocols, and
techniques built on top of this generic definition. This is not to belittle the mumbo-
jumbo. On the contrary, it plays a very important role in deciding how communica-
tion between the two systems is achieved.

This being said, it is important to clarify the focus of this chapter with regard to
Web services. This chapter teaches you how to use REST-compliant Web services,
often called RESTful Web services. REST, or representational state transfer, is the
style of architecture used by the Web and HTTP. Roy Fielding introduced the term
REST in his doctoral dissertation released in 2000. A RESTful Web service has four
basic design principles:

n It uses HTTP methods explicitly (GET, POST, PUT, and DELETE).
n It is stateless.
n It uses directory-structure-like URLs.
n It transfers data in XML or JSON (JavaScript Object Notation).

These design principles are not always strictly followed. For instance, a RESTful
Web service is not limited to transferring data using XML or JSON. Data coming
back from the server can be plain text, CSV-formatted, or another format other than
XML and JSON.

The adoption of RESTful Web services was slow, but REST has become a popular
choice for the majority of Web services hosted on the Internet today. This is because
of its ease of use. Whereas other Web service methods such as SOAP require a tool-
kit or framework (typically provided by the programming environment’s vendor),
RESTful Web services can be used without any toolkit. That is not to say there are no
RESTful frameworks. In fact, there are many for many different programming lan-
guages. But the power of REST comes from the fact that a framework is not needed.
Any programming environment that can make an HTTP call can make use of REST-
ful Web services. Even a Web browser can be used to call a RESTful Web service.

RESTful Web Services Using Cocoa
Cocoa does not provide a RESTful framework, but it does provide the classes that
make it possible to call and consume RESTful Web services from your iOS app. These
classes are

n NSURL

n NSURLRequest

Turner_Book.indb 548 12/11/11 6:47 PM

ptg999

Flickr 549

n NSURLConnection

n NSXMLParser

n NSJSONSerialization

NSURL is the object containing the URL to the Web service you want to call.
The NSURLRequest object is used to build the HTTP request, and an NSURL-
Connection object is used to submit the request over the network. When using the
NSURL Connection object, you assign it a delegate object that conforms to the
NSURL ConnectionDelegate protocol. This protocol provides optional methods for
interacting with the connection object as its state changes (e.g., authentication chal-
lenges and blocks of incoming data are received).

Once all the data has been received, you use either the NSXMLParser or
NSJSONSerialization class to parse the contents of the data. NSXMLParser is an
event-driven XML parser that works in a similar fashion to a SAX parser. It notifies a
delegate about the items (e.g., elements, attributes, etc.) found as it processes the XML
document.

The NSJSONSerialization class converts JSON data to Foundation objects
(such as NSDictionary, NSArray, NSString, and NSNumber) and Foundation
classes into JSON data. This class was introduced into the iOS SDK with the release
of iOS 5. Prior to iOS 5, developers relied on open source libraries such as JSON
Framework (github.com/stig/json-framework/) and TouchJSON (github.com/
TouchCode/TouchJSON).

Armed with these five classes, you should be able to interact with any RESTful
Web service available today, including Flickr.

Flickr
Flickr is a Web site for publishing and sharing photos. Flickr also provides a RESTful-
Web-service-based API that developers like you can use in apps like PhotoWheel.
In fact, that is what you will do now. You will update PhotoWheel so that users can
search Flickr for photos and add photos to a PhotoWheel photo album.

Before the code presented in this chapter will work, you must set up a Flickr
account and request a Flickr API Key, which Flickr uses to identify your app. The
key is free for noncommercial use with the following conditions (published at
www.f lickr.com/services/apps/create/apply):

n Your app doesn’t make money.
n Your app makes money, but you’re a family-run, small, or independent business.
n You’re developing a product that is not currently commercial but might be in the

future.
n You’re building a personal Web site or blog where you are using only your own

images.

Turner_Book.indb 549 12/11/11 6:47 PM

www.flickr.com/services/apps/create/apply

ptg999

Chapter 21 Web Services550

Note
A commercial key is available to organizations working the major brands or looking to
make a profit from products and services related to Flickr beyond that of a family-run,
small, or independent business.

To request a Flickr API Key, you must first sign up with Flickr. Go to
www.f lickr.com, click Sign Up, and follow the instructions for creating a new
account. Once you have a Flickr account, sign in to your account and go to
www.f lickr.com/services/apps/create/apply. Click the button for Apply for
Non-Commercial Key and tell Flickr about your app (Figure 21.1). You will receive
the key within minutes of submitting your application information. You can find the
key by opening the You drop-down menu and selecting Your Apps (Figure 21.2).
The key is used by your app to make calls to the Flickr Web services.

Figure 21.1 Screen shot of the Flickr “Tell us about your app” Web page

Turner_Book.indb 550 12/11/11 6:47 PM

www.flickr.com
www.flickr.com/services/apps/create/apply

ptg999

Flickr 551

Adding Flickr to PhotoWheel
Once you have your Flickr API Key, you can update PhotoWheel to display and save
photos from Flickr. To accomplish this, you need to make a number of changes to
PhotoWheel, including the following:

n Add a new scene and view controller for the Flickr photo display.
n Add a search feature to the Flickr scene.
n Add a class wrapper for the Flickr API calls used by PhotoWheel.
n Parse the Flickr JSON response data.
n Download photos from Flickr asynchronously.

Start with adding the new view controller. Create a new Objective-C class named
FlickrViewController and make it a subclass of UIViewController. Add the
outlets and actions shown in Listing 21.1. Be sure to add GridViewDataSource and
UISearchBarDelegate as protocols to the FlickrViewController class. Do not

Figure 21.2 Find your API keys under the You > Your Apps menu item.

Turner_Book.indb 551 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services552

worry about completing the implementation for the class. Just get it started so that the
UI can be set up in the storyboard (or alternatively use the Assistant editor while piec-
ing together the UI). The stubbed view controller code is shown in Listing 21.1.

Listing 21.1 Stubbed FlickrViewController Class

///////

// FlickrViewController.h

///////

#import <UIKit/UIKit.h>

#import "GridView.h"

@interface FlickrViewController : UIViewController <GridViewDataSource,

UISearchBarDelegate>

@property (nonatomic, strong) IBOutlet GridView *gridView;

@property (nonatomic, strong) IBOutlet UIView *overlayView;

@property (nonatomic, strong) IBOutlet UISearchBar *searchBar;

@property (nonatomic, strong) IBOutlet UIActivityIndicatorView *activityIndicator;

@property (nonatomic, strong) NSManagedObjectContext *managedObjectContext;

@property (nonatomic, strong) NSManagedObjectID *objectID;

- (IBAction)save:(id)sender;

- (IBAction)cancel:(id)sender;

@end

///////

// FlickrViewController.m

///////

#import "FlickrViewController.h"

@implementation FlickrViewController

@synthesize gridView = _gridView;

@synthesize overlayView = _overlayView;

@synthesize searchBar = _searchBar;

@synthesize activityIndicator = _activityIndicator;

@synthesize managedObjectContext = _managedObjectContext;

@synthesize objectID = _objectID;

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

{

 return YES;

}

Turner_Book.indb 552 12/11/11 6:47 PM

ptg999

Flickr 553

#pragma mark - Actions

- (IBAction)save:(id)sender

{

}

- (IBAction)cancel:(id)sender

{

}

@end

A new class is added to the view controller that you have not used before: the
UISearchBar class. This class provides a text field that can be used for text-based
searches. It is used in the Flickr scene to capture search terms from the user.

The declared property overlayView may have you scratching your head, too. This
is a dark, transparent view that is displayed on top of the grid view to prevent the user
from interacting with the grid view during searches.

Another new class included in the FlickrViewController class interface is
UIActivityIndicatorView. This displays a spinning wheel to indicate to the user
that something is happening in the app and to please wait.

Updating the Flickr View Controller Scene
With the Flickr view controller class started, it’s time to update the storyboard to
include the new Flickr scene. Open the file MainStoryboard.storyboard. Drag a new view
controller object into the storyboard to create a new scene. Select the view controller
in the Document Outline, open the Identity inspector, and change the class name to
FlickrViewController.

Add a toolbar to the top of the Flickr scene. Be sure to anchor the toolbar to the
top using the Size inspector. Next, add a Cancel button on the left side of the toolbar
and a Save button on the right side. Use the Attributes inspector for each button to set
the Identifiers to Cancel and Save respectively. Use a f lexible spacing bar button item
to set the spacing for the two buttons.

Connect the Save button to the -save: action defined in the FlickrView-
Controller class. Connect the Cancel button to the -cancel: action.

Add a search bar under the toolbar, then connect it to the searchBar outlet
defined in the FlickrViewController class. Also set FlickrViewController as
the delegate to the search bar object. If the delegate is not set, the search bar will not
function properly.

Add a UIView object to the Flickr scene. This view should fill the remaining space
of the container view. You can change the background color to green to make the

Turner_Book.indb 553 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services554

view easier to see while you resize it. Just be sure to change it back to Default when
you are finished. Also, set the autosizing property so that the view always fills the
available space. This means turning on each autosizing constraint so that all are dis-
played as red. Finally, rename the class from UIView to GridView. This is used to
display the photos retrieved from Flickr.

Add another UIView object that sits on top of the grid view. Make sure the new
view also has its autosizing property set to always fill the area, and set its background
color to black.

Now connect the grid view to the gridView outlet, and connect the UIView sit-
ting on top of the grid view to the overlayView outlet. Also, set the dataSource
for the gridView to the FlickrViewController object. If you don’t do this, the
search results won’t appear.

Next, drag an activity indicator object to the Flickr scene and position it in the
center of the screen. In the Attributes inspector for the activity indicator, turn on the
Hides When Stopped option. And in the Size inspector, turn off all the autosizing
constraints. When you have finished, connect the activity indicator to the activity-
Indicator outlet defined in the FlickrViewController class.

Last, create a new segue between the photo album scene and the Flickr scene. The
segue should be a modal segue. Set its Identifier to PushFlickrScene and the Presenta-
tion to Form Sheet. Leave the Transition as Default.

The updated storyboard should look like the one in Figure 21.3.

Figure 21.3 Updated storyboard

Turner_Book.indb 554 12/11/11 6:47 PM

ptg999

Flickr 555

Note
Make sure the view hierarchy has the grid view, the overlay view, and the activity indicator
at the levels shown in Figure 21.3. If a different view hierarchy is used, the scene may not
display properly.

Displaying the Flickr Scene
To make sure the Flickr scene displays properly, add a new action item to the add but-
ton displayed in the photo album scene. In case you do not remember, this button calls
the -addPhoto: action method, which in turn calls the -presentPhotoPickerMenu
method.

Open the file PhotoAlbumViewController.m and apply the changes shown in Listing
21.2.

Listing 21.2 PhotoAlbumViewController.m Changes

#import "PhotoAlbumViewController.h"

#import "PhotoAlbum.h"

#import "Photo.h"

#import "ImageGridViewCell.h"

#import "FlickrViewController.h" // 1

// Other code left out for brevity's sake.

@implementation PhotoAlbumViewController

// Other code left out for brevity's sake.

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // Do nothing if the user taps outside the action

 // sheet (thus closing the popover containing the

 // action sheet).

 if (buttonIndex < 0) {

 return;

 }

 NSMutableArray *names = [[NSMutableArray alloc] init];

 if ([actionSheet tag] == 0) {

 if ([SendEmailController canSendMail]) [names addObject:@"emailPhotos"];

 [names addObject:@"confirmDeletePhotoAlbum"];

 } else {

 BOOL hasCamera = [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

Turner_Book.indb 555 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services556

 if (hasCamera) [names addObject:@"presentCamera"];

 [names addObject:@"presentPhotoLibrary"];

 [names addObject:@"presentFlickr"]; // 2

 }

 SEL selector = NSSelectorFromString([names objectAtIndex:buttonIndex]);

 [self performSelector:selector];

}

// Other code left out for brevity's sake.

- (void)presentFlickr // 3

{

 [self performSegueWithIdentifier:@"PushFlickrScene" sender:self];

}

- (void)presentPhotoPickerMenu

{

 UIActionSheet *actionSheet = [[UIActionSheet alloc] init];

 [actionSheet setDelegate:self];

 BOOL hasCamera = [UIImagePickerController

 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera];

 if (hasCamera) {

 [actionSheet addButtonWithTitle:@"Take Photo"];

 }

 [actionSheet addButtonWithTitle:@"Choose from Library"];

 [actionSheet addButtonWithTitle:@"Choose from Flickr"]; // 4

 [actionSheet setTag:1];

 [actionSheet showFromBarButtonItem:[self addButton] animated:YES];

}

// Other code left out for brevity's sake.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender // 5

{

 if ([[segue destinationViewController]

 isKindOfClass:[PhotoBrowserViewController class]])

 {

 PhotoBrowserViewController *destinationViewController =

 [segue destinationViewController];

 [destinationViewController setDelegate:self];

 NSInteger index = [[self gridView] indexForSelectedCell];

 [destinationViewController setStartAtIndex:index];

 } else if ([[segue destinationViewController]

 isKindOfClass:[FlickrViewController class]])

 {

 [[segue destinationViewController]

 setManagedObjectContext:[self managedObjectContext]];

Turner_Book.indb 556 12/11/11 6:47 PM

ptg999

Flickr 557

 [[segue destinationViewController] setObjectID:[self objectID]];

 }

}

// Other code left out for brevity's sake.

@end

Let’s take a look at the changes:

 1. The FlickrViewController.h header is imported.

 2. The presentFlickr selector name is added to the array of selectors available
for the add action sheet.

 3. The -presentFlickr method is added. It is responsible for performing the
segue PushFlickrScene.

4. The “Choose from Flickr” action item is added to the action sheet.

5. The biggest change is to the -prepareForSegue:sender: method. More than
one segue can be performed; therefore, a check is required to make sure that the
appropriate prep work is performed. The original code is enclosed in a check
of the destinationViewController’s class type. If it is a PhotoBrowser-
ViewController class, the original code is executed; otherwise a check for the
FlickrViewController class is made.

If the destination view controller is the FlickrViewController class, the man-
aged object context and object ID values are passed. The objectID, in case you
have forgotten, is the object ID for the selected photo album.

You can build and run the app if you like, but note that the Flickr scene will not
dismiss when you tap the Cancel or Save buttons. This is because the FlickrView-
Controller class has not been properly implemented yet. But before this class can be
implemented, a couple of other new classes must be created and implemented.

Wrapping the Flickr API
Before the FlickrViewController can display photos from Flickr, the app must
know how to communicate with Flickr. PhotoWheel will use the Flickr RESTful
Web service API to communicate with Flickr. Because the Web service is RESTful,
PhotoWheel relies on using standard Cocoa classes for communicating with the Flickr
Web server.

Note
The Flickr API class presented here is a basic wrapper for some Flickr API calls. If you
need to add full Flickr support to your app, consider using a Flickr API framework such as
ObjectiveFlickr (github.com/lukhnos/objectiveflickr).

Turner_Book.indb 557 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services558

PhotoWheel uses only one Flickr API: the search API. For illustration purposes,
however, the simple Flickr API wrapper class you are about to create supports four
API calls. The extra calls are implemented to show you how you would update the
class should you need to support additional API calls.

Note
The Flickr API documentation is available at www.flickr.com/services/api/. Please read the
documentation if you want a better understanding of how each API works.

The Flickr API wrapper will be an Objective-C class, so add a new Objective-C
class to the PhotoWheel project. Name the class SimpleFlickrAPI and make it a
subclass of NSObject. The class will wrap four API calls, as shown in Listing 21.3.

Listing 21.3 SimpleFlickrAPI.h

#import <Foundation/Foundation.h>

@interface SimpleFlickrAPI : NSObject

// Returns a set of photos matching the search string.

- (NSArray *)photosWithSearchString:(NSString *)string;

// Returns the Flickr NSID for the given user name.

- (NSString *)userIdForUsername:(NSString *)username;

// Returns a Flickr photo set for the user. userId is the Flickr NSID

// of the user.

- (NSArray *)photoSetListWithUserId:(NSString *)userId;

// Returns the photos for a Flickr photo set.

- (NSArray *)photosWithPhotoSetId:(NSString *)photoSetId;

@end

Naturally, the implementation for the SimpleFlickrAPI class is more involved.
The implementation code is provided in Listing 21.4. Add the code to your version of
SimpleFlickrAPI.m, then return here for a walk-through of the code.

Listing 21.4 SimpleFlickrAPI.m

#import "SimpleFlickrAPI.h"

#import <Foundation/NSJSONSerialization.h> // 1

// Changes this value to your own application key. More info

// at http://www.flickr.com/services/api/misc.api_keys.html.

#define flickrAPIKey @"YOUR_FLICKR_APP_KEY" // 2

#define flickrBaseURL @"http://api.flickr.com/services/rest/?format=json&" // 3

Turner_Book.indb 558 12/11/11 6:47 PM

www.flickr.com/services/api/

ptg999

Flickr 559

#define flickrParamMethod @"method" // 4

#define flickrParamAppKey @"api_key"

#define flickrParamUsername @"username"

#define flickrParamUserid @"user_id"

#define flickrParamPhotoSetId @"photoset_id"

#define flickrParamExtras @"extras"

#define flickrParamText @"text"

#define flickrMethodFindByUsername @"flickr.people.findByUsername" // 5

#define flickrMethodGetPhotoSetList @"flickr.photosets.getList"

#define flickrMethodGetPhotosWithPhotoSetId @"flickr.photosets.getPhotos"

#define flickrMethodSearchPhotos @"flickr.photos.search"

@interface SimpleFlickrAPI () // 6

- (id)flickrJSONSWithParameters:(NSDictionary *)parameters;

@end

@implementation SimpleFlickrAPI

- (NSArray *)photosWithSearchString:(NSString *)string // 7

{

 NSDictionary *parameters = [NSDictionary dictionaryWithObjectsAndKeys:

 flickrMethodSearchPhotos, flickrParamMethod,

 flickrAPIKey, flickrParamAppKey,

 string, flickrParamText,

 @"url_t, url_s, url_m, url_sq", flickrParamExtras,

 nil]; // 8

 NSDictionary *json = [self flickrJSONSWithParameters:parameters]; // 9

 NSDictionary *photoset = [json objectForKey:@"photos"]; // 10

 NSArray *photos = [photoset objectForKey:@"photo"]; // 11

 return photos; // 12

}

- (NSString *)userIdForUsername:(NSString *)username // 13

{

 NSDictionary *parameters = [NSDictionary dictionaryWithObjectsAndKeys:

 flickrMethodFindByUsername, flickrParamMethod,

 flickrAPIKey, flickrParamAppKey,

 username, flickrParamUsername,

 nil];

 NSDictionary *json = [self flickrJSONSWithParameters:parameters];

 NSDictionary *userDict = [json objectForKey:@"user"];

 NSString *nsid = [userDict objectForKey:@"nsid"];

 return nsid;

}

Turner_Book.indb 559 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services560

- (NSArray *)photoSetListWithUserId:(NSString *)userId // 14

{

 NSDictionary *parameters = [NSDictionary dictionaryWithObjectsAndKeys:

 flickrMethodGetPhotoSetList, flickrParamMethod,

 flickrAPIKey, flickrParamAppKey,

 userId, flickrParamUserid,

 nil];

 NSDictionary *json = [self flickrJSONSWithParameters:parameters];

 NSDictionary *photosets = [json objectForKey:@"photosets"];

 NSArray *photoSet = [photosets objectForKey:@"photoset"];

 return photoSet;

}

- (NSArray *)photosWithPhotoSetId:(NSString *)photoSetId // 15

{

 NSDictionary *parameters = [NSDictionary dictionaryWithObjectsAndKeys:

 flickrMethodGetPhotosWithPhotoSetId, flickrParamMethod,

 flickrAPIKey, flickrParamAppKey,

 photoSetId, flickrParamPhotoSetId,

 @"url_t, url_s, url_m, url_sq", flickrParamExtras,

 nil];

 NSDictionary *json = [self flickrJSONSWithParameters:parameters];

 NSDictionary *photoset = [json objectForKey:@"photoset"];

 NSArray *photos = [photoset objectForKey:@"photo"];

 return photos;

}

#pragma mark - Helper methods

- (NSData *)fetchResponseWithURL:(NSURL *)URL // 16

{

 NSURLRequest *request = [NSURLRequest requestWithURL:URL]; // 17

 NSURLResponse *response = nil; // 18

 NSError *error = nil; // 19

 NSData *data = [NSURLConnection sendSynchronousRequest:request

 returningResponse:&response

 error:&error]; // 20

 if (data == nil) { // 21

 NSLog(@"%s: Error: %@", __PRETTY_FUNCTION__, [error localizedDescription]);

 }

 return data; // 22

}

- (NSURL *)buildFlickrURLWithParameters:(NSDictionary *)parameters // 23

{

 NSMutableString *URLString = [[NSMutableString alloc]

 initWithString:flickrBaseURL];

Turner_Book.indb 560 12/11/11 6:47 PM

ptg999

Flickr 561

 for (id key in parameters) {

 NSString *value = [parameters objectForKey:key];

 [URLString appendFormat:@"%@=%@&", key,

 [value stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding]];

 }

 NSURL *URL = [NSURL URLWithString:URLString];

 return URL;

}

- (NSString *)stringWithData:(NSData *)data // 24

{

 NSString *result = [[NSString alloc] initWithBytes:[data bytes]

 length:[data length]

 encoding:NSUTF8StringEncoding];

 return result;

}

- (NSString *)stringByRemovingFlickrJavaScript:(NSData *)data // 25

{

 // Flickr returns a JavaScript function containing the JSON data.

 // We need to strip out the JavaScript part before we can parse

 // the JSON data. Ex: jsonFlickrApi(JSON-DATA-HERE).

 NSMutableString *string = [[self stringWithData:data] mutableCopy];

 NSRange range = NSMakeRange(0, [@"jsonFlickrApi(" length]);

 [string deleteCharactersInRange:range];

 range = NSMakeRange([string length] - 1, 1);

 [string deleteCharactersInRange:range];

 return string;

}

- (id)flickrJSONSWithParameters:(NSDictionary *)parameters // 26

{

 NSURL *URL = [self buildFlickrURLWithParameters:parameters];

 NSData *data = [self fetchResponseWithURL:URL];

 NSString *string = [self stringByRemovingFlickrJavaScript:data];

 NSData *jsonData = [string dataUsingEncoding:NSUTF8StringEncoding];

 NSLog(@"%s: json: %@", __PRETTY_FUNCTION__, string);

 NSError *error = nil;

 id json = [NSJSONSerialization JSONObjectWithData:jsonData

 options:NSJSONReadingAllowFragments

 error:&error];

 if (json == nil) {

 NSLog(@"%s: Error: %@", __PRETTY_FUNCTION__, [error localizedDescription]);

 }

Turner_Book.indb 561 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services562

 return json;

}

@end

Let’s walk through the code so that you understand what is happening:

 1. The NSJSONSerialization header file is imported. The Flickr API supports
both XML and JSON. JSON is used by the SimpleFlickrAPI class because
it is easier to parse and use than XML.

 2. This #define is where your Flickr API Key is stored. This must match the
key provided by Flickr.

3. Each RESTful API uses the same base URL. The base URL is stored as a
macro, making it easy to change should Flickr ever change the URL. Also
note the query string parameter format. It is set to json, which tells the Flickr
API to return data formatted with JSON. You can change the parameter value
to xml if you want XML returned by Flickr.

4. The Flickr API uses different parameter names. Instead of the Flickr API
parameter names being hard-coded throughout, they are defined here as mac-
ros. The Flickr API parameters are defined as query string parameters on the
HTTP GET request.

5. The Flickr API includes a parameter named method. This parameter defines
which API method is called. The API methods supported by this simple wrap-
per are defined here as macros.

6. A class extension for SimpleFlickrAPI is defined. It declares the instance
method -flickrJSONWithParameters:. This method takes a dictionary of
parameters, calls Flickr, and returns the parsed JSON data.

7. The first Flickr API wrapped by the class is flickr.photos.search. It is
wrapped in the method -photosWithSearchString:. This method takes
a search string, asks Flickr to find any matching photos, and then returns an
array of photos to the caller.

8. The first thing this method does is create a dictionary of Flickr parameters.
This key-value pairing is used to construct the query string that is used when
calling the Flickr Web server. The API method and key are the first two
parameters in the dictionary. The search string provided by the caller follows
this. The Flickr parameter extras provides a way for calling apps to request
additional data to be included in the response data. The value url_t tells the
Flickr API to include the thumbnail of the photo. url_s is a small version
of the photo, _m is the medium-size version, and _sq returns a square (75 ×
75-pixel) version of the photo.

One thing that should be noted here is that the API does not actually return
the photo image file. Instead, the response data includes the URL to the

Turner_Book.indb 562 12/11/11 6:47 PM

ptg999

Flickr 563

photo image. By telling the API to include the url_t, url_s, url_m, and
url_sq photos in the extras parameter, you are telling the Flickr API to
return the URLs to these photos.

9. The parameters are passed to the method -flickrJSONWithParameters:.
As you will see in a moment, the method is responsible for making the call
to the Flickr Web server. It also gathers the response data from the Web
server and parses it into Foundation objects (i.e., NSDictionary, NSArray,
NSString, etc.) using the NSJSONSerialization object.

1 0–11. The JSON data from Flickr for this API is converted into an NSDictionary
object by the NSJSONSerialization class. The dictionary contains a key
named photos, which represents the Flickr photo set for the search results.
The photoset is another dictionary containing the key photo, and photo is
an NSArray of photos. Each photo in the array is a dictionary containing data
about the photo, including the URLs requested in the extras parameter.

 12. The photos array is returned to the caller.

13–15. Examples of calling other Flickr API methods are provided. These methods
are not used by PhotoWheel but are provided here as examples of how to
make other API calls. You can see from these examples that a specific design
pattern is followed: A dictionary of parameters is created. The parameters are
passed off to the method that communicates with Flickr. The response data is
returned and parsed, and the requested data is returned to the caller.

 16. The method -fetchResponseWithURL: is responsible for making the actual
Web service call to the Flickr Web server. The URL passed in is the Flickr
API URL with parameters.

17. This method first creates an NSURLRequest object for the given URL.

 18. A nil NSURLResponse object is also created. The response object is used to
retrieve additional information, such as headers, from the HTTP response.

 19. A nil pointer to an NSError is created. This pointer is set to a valid object
reference if an error occurs during the request.

 20. The NSURLConnection is used to call the Flickr Web server synchronously
for the given request. The response and error pointers are set to valid
object references if any are created during the request process. The synchro-
nous call returns the data as an NSData object. This is a stream of the response
data coming from the Flickr Web server, which is formatted as JSON.

 21. If nil is returned for the response data, an error occurred during the request.
The error is logged to the console. A more robust Flickr framework would
return the error to the caller so that the caller can log it or report the error to
the user.

22. Finally, the data is returned.

Turner_Book.indb 563 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services564

 23. The method -buildFlickrURLWithParameters: takes the dictionary of
parameters and creates the URL to the API call. This is done by appending
each key-value pair in the dictionary as a query string parameter to the base
Flickr API URL.

 24. The method -stringWithData: converts the contents of an NSData object
to a string. As you will see momentarily, the response data from Flickr
requires a bit of tweaking before NSJSONSerialization can parse it.

 25. The method -stringByRemovingFlickrJavaScript: returns a cleaned-
up version of the Flickr API response data. The Flickr API wraps the response
data in a JavaScript function, but the SimpleFlickrAPI wants only the
JSON data. So the response data is converted from an NSData object to an
NSString object. The JavaScript function is then stripped from the string,
resulting in the string containing only the JSON-formatted data.

 26. The method -flickrJSONWithParameters: is the method called by the
wrapper methods defined at the top of the class. This method pulls all the
pieces together to make the API call. It uses the parameters to create the API
URL. It uses the URL to fetch the response data from Flickr. It removes
the JavaScript function provided by Flickr. It then uses the NSJSONSerial-
ization class to convert the JSON data into Foundation objects, which are
returned to the caller. The method also logs the JSON data to the console so
that you can see what the data looks like coming from Flickr.

That’s it for making the Flickr API Web service call. As you can see, the major-
ity of the code in the class centers on preparing the request and parsing the response.
The actual Web service call takes only a few lines of code, as seen in the method
-fetchResponseWithURL:. No additional toolkit or framework (beyond what is
provided by the iOS SDK) is needed to make the API call. There is no converting the
data into a SOAP message or any of that mess. Instead, a standard HTTP GET request
with query string parameters is made and the response data is returned. Easy-peasy.

Downloading Photos Asynchronously
The Flickr API wrapper class SimpleFlickrAPI makes a synchronous call to the
Flickr Web server. However, more times than not, you will need to make asynchro-
nous calls to a Web server. PhotoWheel can get away with making a synchronous call
to the Flickr API because the app waits for the Flickr call to return a list of photos.
But there are times when you don’t want your users waiting. One such time is when
PhotoWheel is displaying the photos from Flickr.

Once the search completes and the list of photos is returned, the Flickr scene must
display the photos in the grid view. It is here that the photos should be downloaded
asynchronously, for two primary reasons:

n You want the app to remain responsive to the user. It should not appear frozen.
The user should be allowed to do things such as tap the Cancel button to close
the Flickr scene without having to wait until all the photos have downloaded.

Turner_Book.indb 564 12/11/11 6:47 PM

ptg999

Flickr 565

n The search results can include more than one photo, and often there will be
many more. Downloading and displaying 100 photos synchronously would take
a long time, which in turn annoys the user. However, the user will perceive
downloading the same number of photos asynchronously as fast because, well, it
is faster.

One way to download the photos asynchronously is to create a separate thread for
each download request, which downloads an image synchronously within the second-
ary thread. While this approach works, it is not necessary.

NSURLConnection uses the CFNetwork framework, which is extremely efficient
at handling hundreds, if not thousands, of download requests without blocking the
main thread of the app. This is due, in part, to the combination of the run loop and
threads created as needed by the CFNetwork framework.

What Is the Runtime Loop?
When an iOS application is launched, a main thread is created for the app. The main
thread is the primary thread running the app. The app is able to respond to events
that are detected by the default run loop created on the main thread. The run loop is
always running, performing various tasks from updating the UI to checking for hard-
ware input to processing NSTimer object events. One of the tasks performed by the
run loop is to check for incoming network data requested by NSURLConnection
objects.

To learn more about this, read developer.apple.com/library/ios/#DOCUMENTATION/
General/Conceptual/Devpedia-CocoaApp/MainEventLoop.html in the Apple
documentation.

The efficiencies of the CFNetwork framework combined with the run loop on the
main thread make it possible to have simultaneous downloads without your explicitly
creating and managing threads in your app.

Note
For more information on simultaneous downloads without creating your own threads, read
the blog post Downloading Images for a Table without Threads by Jeff LaMarche (iphonede-
velopment.blogspot.com/2010/05/downloading-images-for-table-without.html). This blog
post is also the inspiration for the ImageDownloader class you create in this chapter.

Theory aside, how do you download multiple images (or any data, for that matter)
from a Web server simultaneously without creating your own thread? For starters, you
use NSURLConnection, but instead of making the call synchronously as you did in
the SimpleFlickrAPI class, you make the call asynchronously. The asynchronous call
still runs on the main thread, but it does not block the app thanks to the run loop and
the secret sauce in CFNetwork.

Turner_Book.indb 565 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services566

As the NSURLConnection object receives data from the network, it calls its del-
egate object. The delegate object implements the optional methods from the NSURL-
ConnectionDelegate protocol.

How would this work in the Flickr scene, which displays the downloaded photos
in the grid view? One approach is to define an array of NSURLConnection objects
in the FlickrViewController. The array contains the same number of NSURL-
Connection objects as there are photos in the search results. The problem, however,
is that the code becomes very messy, very fast.

Each NSURLConnection object calls the same set of delegate methods, and each
delegate method needs to know that the downloaded data belongs to a particular
photo. Not only that, but each downloaded photo must be displayed in the appropriate
grid view cell, which only further complicates the code.

A much cleaner approach is to create a new class that is responsible for download-
ing an image. Instead of the FlickrViewController class managing an array of
NSURLConnection objects, it can manage an array of this new image downloader
object. One problem still exists, however: The image download is asynchronous. The new
image download class needs to notify the FlickrViewController that the image has
downloaded and is ready for display. The view controller must then display the image
in the correct grid view cell. The image downloader class could use a delegate object,
but it would introduce the same unnecessary mess in the view controller as was intro-
duced by the NSURLConnection delegate.

It would be great if the view controller could tell the image downloader class to
execute a particular snippet of code upon completion of the download. With blocks,
you can do exactly that. You can define a block of code that is executed by the image
downloader object after the download has completed.

Let’s take a look at the code in Listing 21.5.

Listing 21.5 ImageDownloaderClass

///////

// ImageDownloader.h

///////

#import <Foundation/Foundation.h>

typedef void(^ImageDownloaderCompletionBlock)(UIImage *image, NSError *); // 1

@interface ImageDownloader : NSObject

@property (nonatomic, strong, readonly) UIImage *image; // 2

- (void)downloadImageAtURL:(NSURL *)URL

 completion:(ImageDownloaderCompletionBlock)completion; // 3

@end

Turner_Book.indb 566 12/11/11 6:47 PM

ptg999

Flickr 567

///////

// ImageDownloader.m

///////

#import "ImageDownloader.h"

@interface ImageDownloader ()

@property (nonatomic, strong, readwrite) UIImage *image; // 4

@property (nonatomic, strong) NSMutableData *receivedData; // 5

@property (nonatomic, strong) ImageDownloaderCompletionBlock completion; // 6

@end

@implementation ImageDownloader

@synthesize image = _image;

@synthesize completion = _completion;

@synthesize receivedData = _receivedData;

- (void)downloadImageAtURL:(NSURL *)URL

 completion:(void(^)(UIImage *image, NSError*))completion // 7

{

 if (URL) {

 [self setCompletion:completion];

 [self setReceivedData:[[NSMutableData alloc] init]];

 NSURLRequest *request = [NSURLRequest requestWithURL:URL];

 NSURLConnection *connection = [[NSURLConnection alloc]

 initWithRequest:request

 delegate:self

 startImmediately:NO];

 [connection scheduleInRunLoop:[NSRunLoop currentRunLoop]

 forMode:NSRunLoopCommonModes]; // 8

 [connection start]; // 9

 }

}

#pragma mark - NSURLConnection delegate methods // 10

- (void)connection:(NSURLConnection *)connection

didReceiveResponse:(NSURLResponse *)response // 11

{

 [[self receivedData] setLength:0];

}

- (void)connection:(NSURLConnection *)connection

 didReceiveData:(NSData *)data // 12

{

 [[self receivedData] appendData:data];

}

Turner_Book.indb 567 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services568

- (void)connectionDidFinishLoading:(NSURLConnection *)connection // 13

{

 [self setImage:[UIImage imageWithData:[self receivedData]]];

 [self setReceivedData:nil];

 ImageDownloaderCompletionBlock completion = [self completion];

 completion([self image], nil);

}

- (void)connection:(NSURLConnection *)connection

 didFailWithError:(NSError *)error // 14

{

 [self setReceivedData:nil];

 ImageDownloaderCompletionBlock completion = [self completion];

 completion(nil, error);

}

@end

You need to add the ImageDownloader class to your PhotoWheel project. Cre-
ate a new Objective-C class. Name the class ImageDownloader, make it a subclass of
NSObject, and then copy in the code from Listing 21.5. Here is an explanation of the
code you are copying:

 1. The ImageDownloader class stores a completion block that is called once the
image has been downloaded. To make the code more readable, the Image-
DownloaderCompletionBlock typedef is defined. This avoids having to
redeclare the block definition everywhere it is used.

2. The declared property image is a read-only property that returns the reference
to the UIImage object containing the downloaded image. Its value is nil if the
image has not been downloaded.

 3. The ImageDownloader class has one public method, -downloadImageAtURL
:completion:. It takes two parameters: the URL to the image and the comple-
tion block.

4. A class extension is defined for use internally. The first declared property of the
class extension is image. image is redeclared as a writable property to allow
updates internal to the class.

5. The declared property receivedData contains the data downloaded by the
NSURLConnection object. The data can be received over the network in blocks
(or batches). This is why receivedData is mutable. It allows the class to append
data to the property as data is received from the network.

6. The declared property completion stores a reference to the code block provided
by the caller. This block is called once the download has completed.

Turner_Book.indb 568 12/11/11 6:47 PM

ptg999

Flickr 569

7. The first method found in the implementation is -downloadImageAtURL:
completion:. This is the public method that is called by the FlickrView-
Controller. It checks that a URL is provided, and if so, it stores the reference
to the completion block. It also starts the download request.

The download request is similar to what you saw when implementing the
SimpleFlickrAPI class. The difference here is that the NSURLConnection
object is set up for asynchronous instead of synchronous use. The receiveData
property is allocated with a new NSMutableData object. The NSURLRequest
object is created with the given URL. And the NSURLConnection object is
created and initialized with the request object and the ImageDownloader class
instance as the delegate. The startImmediately f lag is set to NO to give the
class time to do more setup before starting the download.

8. Because you told the NSURLConnection object not to start immediately, the
run loop for the object can be changed. The default run loop for an NSURL-
Connection object is the run loop for the current thread. The call
[NSRunLoop currentRunLoop] returns the same run loop, the one for the
current thread. So the run loop for this NSURLConnection object does not
actually change. What does change, however, is the mode.

There are two modes for a run loop: NSDefaultRunLoopMode and NSRun-
LoopCommonModes. NSDefaultRunLoopMode is the most commonly used run
loop mode. It is intended to deal with objects other than NSURLConnection.
NSRunLoopCommonMode, on the other hand, is used to register objects with
all run loop modes in a common mode set. In essence, an object added to the
common run loop mode is monitored by all run loops in the common mode
set. Therefore, you should always use NSRunLoopCommonModes when using
NSURLConnection asynchronously. Without it, the responsiveness of NSURL-
Connection will not be as good and your Web service calls will seem slower to
respond.

9. Once the run loop mode for the connection object has been set, the connection
object starts the request process to download the image.

10. The remaining methods in the ImageDownloader class are callback methods
from the NSURLConnect object.

 11. The method -connection:didReceiveResponse: is called when the Web
server responds to the request. The method might be called multiple times, as
is the case when the original request results in one or more redirects. When the
method is called, the receivedData property is reset with a length of zero,
clearing any previously stored data. This ensures that only the data received from
the final request is captured.

 12. The method -connection:didReceiveData: is called as data is received from
the network. The method can be called multiple times during a single request.
The data is appended to the data already stored in the receivedData property.

Turner_Book.indb 569 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services570

 13. The method -connectionDidFinishLoading: is called after the request has
completed and all data has been received. This method converts the data stored
in receivedData to a UIImage object. It then calls the completion block, pass-
ing a reference to the UIImage object.

14. The last method of the class, -connection:didFailWithError:, is called if
an error is detected at any time during the download process. When this method
is called, the error message is forwarded to the completion block.

And that, my friend, is how you make an asynchronous call to a Web server. You
create an NSURLRequest object for an NSURL. You create an NSURLConnection
object and initialize it with a request and delegate object. You set the run loop mode
to common modes, then start the request process. Finally, you implement methods
from the NSURLConnectionDelegate protocol that responds to events from the
NSURLConnection object.

Although the ImageDownloader class is designed to download an image, the same
pattern can be used to download other types of data.

Image Caching
One concept not presented here is caching downloaded images. In the real world, you
don’t want to keep downloading the same image over and over. Instead, you want to store
the downloaded image (or whatever the asset might be) to the file system. As you will see
momentarily, the FlickrViewController class uses a poor man’s approach to cach-
ing the image. If the ImageDownloader object already has an image, that image is
used instead of downloading it again.

If image caching is important to your app, you should roll your own cache manager or use
an open source framework such as SDWebImage (github.com/rs/SDWebImage), which
provides image caching for you.

Implementing FlickrViewController
With the SimpleFlickrAPI and ImageDownloader classes complete, you can once
again turn your attention to the FlickrViewController class and complete its
implementation.

The FlickrViewController class is responsible for performing a number of tasks.
It searches Flickr for photos matching the search criteria provided by the user. It dis-
plays the matching photos in the grid view. It allows the user to select and deselect
photos. And finally, it saves selected photos to the current photo album.

The code to accomplish all of this is shown in Listing 21.6. Open the file
FlickrViewController.m in your PhotoWheel project and add the code from this listing.

As you add the code, you may notice that a good amount of it looks familiar. The
GridViewDataSource methods, for example, follow the same pattern you have seen
over and over in earlier chapters. The only real difference is how the grid view cell
retrieves the image.

Turner_Book.indb 570 12/11/11 6:47 PM

ptg999

Flickr 571

Listing 21.6 Updated FlickrViewController.m File

#import "FlickrViewController.h" // 1

#import "ImageGridViewCell.h"

#import "SimpleFlickrAPI.h"

#import "ImageDownloader.h"

#import "Photo.h"

#import "PhotoAlbum.h"

@interface FlickrViewController ()

@property (nonatomic, strong) NSArray *flickrPhotos; // 2

@property (nonatomic, strong) NSMutableArray *downloaders; // 3

@property (nonatomic, assign) NSInteger showOverlayCount; // 4

@end

@implementation FlickrViewController

@synthesize gridView = _gridView;

@synthesize overlayView = _overlayView;

@synthesize searchBar = _searchBar;

@synthesize activityIndicator = _activityIndicator;

@synthesize managedObjectContext = _managedObjectContext;

@synthesize objectID = _objectID;

@synthesize flickrPhotos = _flickrPhotos;

@synthesize downloaders = _downloaders;

@synthesize showOverlayCount = _showOverlayCount;

- (void)viewDidLoad

{

 [super viewDidLoad];

 self.flickrPhotos = [NSArray array];

 [[self overlayView] setAlpha:0.0]; // 5

 UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(overlayViewTapped:)]; // 6

 [[self overlayView] addGestureRecognizer:tap];

 [[self gridView] setAlwaysBounceVertical:YES];

 [[self gridView] setAllowsMultipleSelection:YES]; // 7

}

- (void)viewDidUnload

{

 [self setGridView:nil];

 [self setOverlayView:nil];

 [self setSearchBar:nil];

Turner_Book.indb 571 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services572

 [self setActivityIndicator:nil];

 [super viewDidUnload];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

{

 return YES;

}

- (BOOL)disablesAutomaticKeyboardDismissal // 8

{

 return NO;

}

#pragma mark - Save photos

- (void)saveContextAndExit

{

 NSManagedObjectContext *context = [self managedObjectContext];

 NSError *error = nil;

 if (![context save:&error])

 {

 /*

 Replace this implementation with code to handle the error appropriately.

 abort() causes the application to generate a crash log and terminate.

 You should not use this function in a shipping application, although

 it may be useful during development. If it is not possible to recover

 from the error, display an alert panel that instructs the user to quit

 the application by pressing the Home button.

 */

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 [self dismissModalViewControllerAnimated:YES];

}

- (void)saveSelectedPhotos

{

 NSManagedObjectContext *context = [self managedObjectContext];

 id photoAlbum = [context objectWithID:[self objectID]];

 NSArray *indexes = [[self gridView] indexesForSelectedCells];

 __block NSInteger count = [indexes count]; // 9

Turner_Book.indb 572 12/11/11 6:47 PM

ptg999

Flickr 573

 if (count == 0) { // 10

 [self dismissModalViewControllerAnimated:YES];

 return;

 }

 ImageDownloaderCompletionBlock completion =

 ^(UIImage *image, NSError *error) { // 11

 NSLog(@"block: count: %i", count);

 if (image) {

 Photo *newPhoto = [NSEntityDescription

 insertNewObjectForEntityForName:@"Photo"

 inManagedObjectContext:context];

 [newPhoto setDateAdded:[NSDate date]];

 [newPhoto saveImage:image];

 [newPhoto setPhotoAlbum:photoAlbum];

 } else {

 NSLog(@"%s: Error: %@", __PRETTY_FUNCTION__,

 [error localizedDescription]);

 }

 count--; // 12

 if (count == 0) {

 [self saveContextAndExit];

 }

 };

 for (NSNumber *indexNumber in indexes) { // 13

 NSInteger index = [indexNumber integerValue];

 NSDictionary *flickrPhoto = [[self flickrPhotos] objectAtIndex:index];

 NSURL *URL = [NSURL URLWithString:[flickrPhoto objectForKey:@"url_m"]];

 NSLog(@"URL: %@", URL);

 ImageDownloader *downloader = [[ImageDownloader alloc] init];

 [downloader downloadImageAtURL:URL completion:completion];

 [[self downloaders] addObject:downloader];

 }

}

#pragma mark - Actions

- (IBAction)save:(id)sender // 14

{

 [[self overlayView] setUserInteractionEnabled:NO];

 void (^animations)(void) = ^ {

 [[self overlayView] setAlpha:0.4];

 [[self activityIndicator] startAnimating];

 };

Turner_Book.indb 573 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services574

 [UIView animateWithDuration:0.2 animations:animations];

 [self saveSelectedPhotos];

}

- (IBAction)cancel:(id)sender

{

 [self dismissModalViewControllerAnimated:YES];

}

#pragma mark - Overlay methods

- (void)showOverlay:(BOOL)showOverlay // 15

{

 BOOL isVisible = ([[self overlayView] alpha] > 0.0);

 if (isVisible != showOverlay) {

 CGFloat alpha = showOverlay ? 0.4 : 0.0;

 void (^animations)(void) = ^ {

 [[self overlayView] setAlpha:alpha];

 [[self searchBar] setShowsCancelButton:showOverlay animated:YES];

 };

 void (^completion)(BOOL) = ^(BOOL finished) {

 if (finished) {

 // Do other cleanup if needed.

 }

 };

 [UIView animateWithDuration:0.2 animations:animations

 completion:completion];

 }

}

- (void)showOverlay // 16

{

 self.showOverlayCount += 1;

 BOOL showOverlay = (self.showOverlayCount > 0);

 [self showOverlay:showOverlay];

}

- (void)hideOverlay // 17

{

 self.showOverlayCount -= 1;

 BOOL showOverlay = (self.showOverlayCount > 0);

 [self showOverlay:showOverlay];

Turner_Book.indb 574 12/11/11 6:47 PM

ptg999

Flickr 575

 if (self.showOverlayCount < 0) {

 self.showOverlayCount = 0;

 }

}

- (void)overlayViewTapped:(UITapGestureRecognizer *)recognizer // 18

{

 [self hideOverlay];

 [[self searchBar] resignFirstResponder];

}

#pragma mark - Flickr

- (void)fetchFlickrPhotoWithSearchString:(NSString *)searchString

{

 [[self activityIndicator] startAnimating]; // 19

 [self showOverlay];

 [[self overlayView] setUserInteractionEnabled:NO];

 SimpleFlickrAPI *flickr = [[SimpleFlickrAPI alloc] init];

 NSArray *photos = [flickr photosWithSearchString:searchString]; // 20

 NSMutableArray *downloaders = [[NSMutableArray alloc]

 initWithCapacity:[photos count]];

 for (NSInteger index = 0; index < [photos count]; index++) {

 ImageDownloader *downloader = [[ImageDownloader alloc] init]; // 21

 [downloaders addObject:downloader];

 }

 [self setDownloaders:downloaders]; // 22

 [self setFlickrPhotos:photos]; // 23

 [[self gridView] reloadData]; // 24

 [self hideOverlay];

 [[self overlayView] setUserInteractionEnabled:YES];

 [[self searchBar] resignFirstResponder];

 [[self activityIndicator] stopAnimating];

}

#pragma mark - UISearchBarDelegate methods // 25

- (BOOL)searchBarShouldBeginEditing:(UISearchBar *)searchBar

{

 [self showOverlay];

 return YES;

}

Turner_Book.indb 575 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services576

- (void)searchBarTextDidEndEditing:(UISearchBar *)searchBar

{

 [searchBar resignFirstResponder];

 [self hideOverlay];

}

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar // 26

{

 [self fetchFlickrPhotoWithSearchString:[searchBar text]];

}

- (void)searchBarCancelButtonClicked:(UISearchBar *)searchBar

{

 [searchBar resignFirstResponder];

 [self hideOverlay];

}

#pragma mark - GridViewDataSource methods // 27

- (NSInteger)gridViewNumberOfCells:(GridView *)gridView

{

 NSInteger count = [[self flickrPhotos] count];

 return count;

}

- (GridViewCell *)gridView:(GridView *)gridView cellAtIndex:(NSInteger)index

{

 ImageGridViewCell *cell = [gridView dequeueReusableCell];

 if (cell == nil) {

 cell = [ImageGridViewCell imageGridViewCellWithSize:CGSizeMake(75, 75)];

 [[cell selectedIndicator] setImage:

 [UIImage imageNamed:@"addphoto.png"]]; // 28

 }

 ImageDownloaderCompletionBlock completion =

 ^(UIImage *image, NSError *error) { // 29

 if (image) {

 [[cell imageView] setImage:image];

 } else {

 NSLog(@"%s: Error: %@", __PRETTY_FUNCTION__, [error
localizedDescription]);

 }

 };

 ImageDownloader *downloader = [[self downloaders] objectAtIndex:index];

 UIImage *image = [downloader image]; // 30

Turner_Book.indb 576 12/11/11 6:47 PM

ptg999

Flickr 577

 if (image) {

 [[cell imageView] setImage:image];

 } else {

 NSDictionary *flickrPhoto = [[self flickrPhotos] objectAtIndex:index];

 NSURL *URL = [NSURL URLWithString:[flickrPhoto objectForKey:@"url_sq"]];

 [downloader downloadImageAtURL:URL completion:completion];

 }

 return cell;

}

- (CGSize)gridViewCellSize:(GridView *)gridView

{

 return CGSizeMake(75, 75);

}

- (void)gridView:(GridView *)gridView didSelectCellAtIndex:(NSInteger)index

{

 id cell = [gridView cellAtIndex:index];

 [cell setSelected:YES];

}

- (void)gridView:(GridView *)gridView didDeselectCellAtIndex:(NSInteger)index

{

 id cell = [gridView cellAtIndex:index];

 [cell setSelected:NO];

}

@end

Even though a lot of the code looks familiar, let’s still walk through it, just to make
sure you understand everything that’s going on:

1. The various header files for classes used by the view controller are imported.
These include the two new classes you created, SimpleFlickrAPI and
ImageDownloader.

 2. The property flickrPhotos stores a local copy of the photo data returned
from Flickr.

 3. The property downloaders stores an ImageDownloader object for each
photo in the flickrPhotos array. This is a quick-and-dirty attempt at cach-
ing the downloaded images. Each image is downloaded once for each photo
for the life of the view controller. The images are cached to memory, which
could lead to out-of-memory errors. But the Flickr API is returning a maxi-
mum of only 100 photos per request, so the potential for memory errors is low
for this particular app.

Turner_Book.indb 577 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services578

 4. The property showOverlayCount stores a stack count of the show and hide
requests for the overlay. This is used to ensure that the overlay is not prema-
turely hidden.

 5. The alpha for the overlay view is set to 0.0, which makes the view invisible.

6. A tap gesture is added to the overlay view; this is for usability’s sake only.
When the view controller is in search mode, the user can tap the overlay view
to exit the mode.

7. The grid is configured for multiple selections. Multi-select is used to save
more than one photo at a time to the photo album.

 8. The method -disablesAutomaticKeyboardDismissal is an override
method for NSViewController. This method is used to determine if the
input view (i.e., the virtual keyboard) is automatically dismissed when chang-
ing controls. By default, the method returns NO except when the presentation
style is UIModalPresentationFormSheet, where the default return value is
YES.

The problem with the default behavior in the FlickrViewController class
is that the keyboard does not dismiss when [[self searchBar] resign-
FirstResponder] is called. This happens because the presentation style
for the view controller is UIModalPresentationFormSheet. This is not
the desired behavior for this view controller, so the method is overridden to
return NO.

9. The number of selected cells is stored in the local variable count. The __block
directive is used to make the variable mutable within the completion block
defined a few lines down.

10. If the number of selected cells is zero, the view controller is dismissed and
program control exits the method. Nothing else needs to be done.

11. The completion block for the ImageDownloader object is defined. If the
block receives an image, a new Photo model object is created and its proper-
ties are set.

12. The local variable count is decremented by one. Since the variable was
declared with the __block directive, it is mutable within the block. When
the count reaches zero, all images have been downloaded and added to the
photo album. Now the managed object context is saved and the view control-
ler is dismissed.

13. Outside of the block is a for loop that downloads the medium-size image for
each photo found in the Flickr search results. The downloaders are added to
the downloaders array to ensure that they stay alive until the view controller
is dismissed.

 14. The method -save: is called when the user taps the Save button. Its primary
role is to call the -saveSelectedPhotos method (described in code lines

Turner_Book.indb 578 12/11/11 6:47 PM

ptg999

Flickr 579

9–13). It also turns off user interaction on the overlay view. This prevents the
user from tapping the view, which normally will hide the overlay. It displays
the overlay view to prevent the user from interacting with the grid view, and
it displays the activity indicator informing the user that work is in progress.

 15. The method -showOverlay: is called to show and hide the overlay when the
search bar is in use. Pass in YES to show the overlay view, and NO to hide it.

 16–17. The methods -showOverlay and -hideOverlay manage the display of the
overlay view. Each call to -showOverlay increments the showOverlay-
Count property, and each call to -hideOverlay decrements the count.
When the count is greater than zero, the overlay view is visible; otherwise it is
hidden.

18. When the overlay view is tapped, the gesture recognizer calls the -overlay-
ViewTapped: method. This method hides the overlay view and the keyboard
if displayed.

 19–24. The method -fetchFlickrPhotoWithSearchString: is called to search
Flickr. It displays the activity indicator telling the user that something is hap-
pening. It creates an instance of the SimpleFlickrAPI, then performs the
search. When the search completes, the property downloaders is populated
with instances of the ImageDownloader objects. The download process has
not started, though. The photos returned from the Flickr API call are stored
in the flickrPhotos property. Last, the grid view data is reloaded with the
photos returned from Flickr.

25. Callback methods for the UISearchBarDelegate are implemented. These
methods control the user experience when using the search bar.

26. The callback method -searchBarSearchButtonClicked: is called when it
is time to perform the search. It calls the -fetchFlickrPhotoWithSearch-
String: method.

27. The callback methods for GridViewDataSource are implemented. Each
method uses the property flickrPhotos as the data.

28. The grid view is set up to support multi-selection. When a cell is allocated,
the selected indicator image is set to the image addphoto.png.

29. Each cell displays an image of the photo from Flickr. However, the image
must be downloaded first. The completion block for the ImageDownloader
object is defined. The completion block sets the cell’s image to the image
passed in to the block.

30. If, however, the image was previously downloaded, the cell’s image is set right
away. There is no reason to download it again.

Those are the highlights from Listing 21.6. Build and run the app to test your
changes.

Turner_Book.indb 579 12/11/11 6:47 PM

ptg999

Chapter 21 Web Services580

Note
If the Flickr search is not working, check to ensure that the outlet and delegate connec-
tions for the search bar have been made. Also verify the outlet and data source connec-
tions for the grid view. Finally, check your Flickr API Key. If it is missing or invalid, the
search will fail with an “Invalid API Key (Key has invalid format)” message from Flickr. You
can see this message in the debug console window shown in Figure 21.4.

One More Thing
When you ran PhotoWheel to test the Flickr changes, did you notice how the app
freezes while searching Flickr? Even the activity indicator does not appear.

The problem is the synchronous call to Flickr made by the SimpleFlickrAPI
object. Unlike the asynchronous call to the Flickr Web server in the ImageDown-
loader class, the synchronous call in SimpleFlickrAPI is blocking the main thread
from performing additional steps in the run loop. This is why, for example, the activ-
ity indicator never displays. A quick solution to the problem is to use the Simple-
FlickrAPI object on a background thread, but there’s a better way.

Grand Central Dispatch (GCD) is a C-level API for concurrent programming.
GCD offers three benefits over traditional multithreaded programming: It is easy
to use, it is efficient, and performance is better. The GCD API makes heavy use of
blocks. These make it easier to define a unit of work in code as compared to creating
a thread. They also make your code more readable since the unit of work is coded in
one place. When using threads, the unit of work is usually spread across multiple func-
tions or even in a separate class file.

GCD uses dispatch queues to process units of work. Three types of dispatch queues
are found in GCD: the main queue, global queues, and custom queues. The main
queue executes on the main thread, and it is the same as performing a task on the
main thread such as updating the UI. Global queues are concurrent queues shared
throughout the lifetime of the app. Custom queues are queues you create.

Figure 21.4 Invalid API key error message displayed in the debug
console window

Turner_Book.indb 580 12/11/11 6:47 PM

ptg999

One More Thing 581

Note
For a more complete introduction to Grand Central Dispatch, read Mike Ash’s blog post
Intro to Grand Central Dispatch, Part I: Basics and Dispatch Queues (www.mikeash.com/
pyblog/friday-qa-2009-08-28-intro-to-grand-central-dispatch-part-i-basics-and-dispatch-
queues.html).

To prevent blocking on the main thread during the Flickr fetch process, you can
dispatch the fetch process to a global asynchronous queue. Once the process completes,
you dispatch another unit of work to the main queue to update the UI. The code to
accomplish this is shown in Listing 21.7.

Listing 21.7 Updated Save Process to Use GCD

- (void)fetchFlickrPhotoWithSearchString:(NSString *)searchString

{

 [[self activityIndicator] startAnimating];

 [self showOverlay];

 [[self overlayView] setUserInteractionEnabled:NO];

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
^{

 SimpleFlickrAPI *flickr = [[SimpleFlickrAPI alloc] init];

 NSArray *photos = [flickr photosWithSearchString:searchString];

 NSMutableArray *downloaders = [[NSMutableArray alloc]

 initWithCapacity:[photos count]];

 for (NSInteger index = 0; index < [photos count]; index++) {

 ImageDownloader *downloader = [[ImageDownloader alloc] init];

 [downloaders addObject:downloader];

 }

 [self setDownloaders:downloaders];

 [self setFlickrPhotos:photos];

 dispatch_async(dispatch_get_main_queue(), ^{

 [[self gridView] reloadData];

 [self hideOverlay];

 [[self overlayView] setUserInteractionEnabled:YES];

 [[self searchBar] resignFirstResponder];

 [[self activityIndicator] stopAnimating];

 });

 });

}

This code is almost identical to the original code. The exceptions are the two
dispatch calls. The first dispatch call, dispatch_async, queues the unit of work

Turner_Book.indb 581 12/11/11 6:47 PM

www.mikeash.com/pyblog/friday-qa-2009-08-28-intro-to-grand-central-dispatch-part-i-basics-and-dispatch-queues.html
www.mikeash.com/pyblog/friday-qa-2009-08-28-intro-to-grand-central-dispatch-part-i-basics-and-dispatch-queues.html
www.mikeash.com/pyblog/friday-qa-2009-08-28-intro-to-grand-central-dispatch-part-i-basics-and-dispatch-queues.html

ptg999

Chapter 21 Web Services582

in a global asynchronous queue. The global queue is retrieved by the function
dispatch_get_global_queue.

Inside the block defining the first unit of work is another dispatch_async call.
This time the main queue is used. This means that the unit of work defined in the
second block is performed on the main thread, which is required since the unit of
work is updating the user interface.

Apply this change to your version of the FlickrViewController class. Then
build and run the app to see the difference made by using GCD.

What’s Missing
Because this chapter is a basic overview, a number of topics were left out. Authentica-
tion and security are two topics that come to mind. Another is reachability.

Reachability is a term often used by iOS programmers to refer to a network’s acces-
sibility. The word reachability comes from the name of a class found in a networking
sample provided by Apple (developer.apple.com/library/ios/#samplecode/
Reachability/Introduction/Intro.html). The Reachability class is used to
determine the current state of the network and to monitor changes in the network
state. Apple recommends that any app using the network check the status of the net-
work and gracefully handle situations where the network is not available.

Keep an eye on the Learning iPad Programming blog (learnipadprogramming.com/
blog/) and the PhotoWheel source code repository (github.com/kirbyt/
PhotoWheel) to see how other Web-service-related improvements are made to
the app over time.

Summary
This chapter provided a basic overview of making RESTful Web service calls using
the classes provided by Cocoa. It was just an introduction to using Web services and
by no means a complete guide to using Web services in iOS apps. Full coverage of
Web services would fill an entire book, but the topics covered in this chapter should
point you in the right direction for building more robust support for Web services
within your apps.

Exercises
1. It is possible for the Flickr search to return no photos. Included in the JSON data

is the photo count. Update the app to check the photo count, and if the count is
zero, display a “No photos found” message to the user.

2. Set your iPad to Airplane mode and run PhotoWheel. Try searching Flickr and
see what happens. What changes can be made to improve the user experience?

Turner_Book.indb 582 12/11/11 6:47 PM

ptg999

22
Syncing with iCloud

At this point PhotoWheel is pretty useful. Users can work with their photos in a variety of ways.
But the app is limited to a single device. It is increasingly common for people to have more than
one iOS device and often a Mac as well. Wouldn’t it be great if PhotoWheel could sync its data
across multiple devices so that users could have their app data available on any of their devices? In
this chapter we’ll expand PhotoWheel to use Apple’s iCloud service to sync photos and albums
to different devices via the Internet. The technique we’ll cover makes Core Data into a cloud-
enabled data storage system.

Syncing Made Simple
In earlier releases of iOS, syncing data from one device to another was difficult. There
were no standard, drop-in frameworks that would easily manage syncing data across
multiple devices. App developers came up with various schemes, mostly for single
apps. The bottom line was: Syncing is hard. It often seems simple enough at first, but in
practice it is very tricky to get it right. Resolving conf licts without losing user data is a
challenge that has defeated many developers.

Syncing also requires some means of transmitting an app’s data from one device to
another. This has been implemented by means such as building a Web server into an
app so that data could be requested from other devices or by running an online service
of some kind to handle syncing. Some apps used online services such as Dropbox to
make data available across different devices. While quite useful, these services didn’t
really provide sync mechanisms.

Beginning with iOS 5.0, Apple introduced an online service called iCloud. With
iCloud, users get access to a variety of cloud-based services such as automatic device
backup and syncing of music, contacts, and other data across devices. The feature
we’re most interested in for PhotoWheel is built-in support for third-party apps that
want to sync their own app data across iOS devices. With iCloud, Apple has (mostly)
solved the syncing problem for you, providing both API support for your apps as well
as the online server support necessary to make syncing happen.

Apple provides a free iCloud account to any user with an iOS 5 device, so your
users can easily access this service at no extra charge.

Turner_Book.indb 583 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud584

iCloud Concepts
The key concept when working with iCloud is ubiquitous content. Data is said to be
ubiquitous if the iCloud service monitors it and ensures that it is kept in sync among
multiple devices that use the same iCloud account. This is in contrast to local content,
which exists only in the app and is not synced via iCloud. Up to now, PhotoWheel has
used only local content, but in this chapter we’ll make it ubiquitous.

The general f low for creating ubiquitous content is to first create the content locally
and then tell the operating system that it should be transferred to ubiquitous storage.
The data will then be moved to a new location on the device. Uploading to the cloud
is asynchronous and may not happen instantly, even if the device has a good network
connection. When your app modifies the content locally, the iCloud daemon periodi-
cally updates the cloud-based copy of the data. If the user has installed the same app
on other devices that use the same iCloud account, the updates are then available on
those devices.

On the receiving end, the iCloud daemon will download updates to the app’s data
and then notify the app that new changes are available. Apps using iCloud are then
responsible for reading the new data and updating views as needed.

File Coordinators and Presenters
Ubiquitous content can be read and written both by the app that created the content
and by the iCloud daemon. In order to coordinate access to the data, iOS 5 introduces
the concept of a file coordinator and a file presenter.

A file coordinator is just an instance of NSFileCoordinator. It acts as a read/
write lock for file access. Multiple read requests can proceed simultaneously, but writ-
ing to a file requires an exclusive lock. When using a file coordinator, an app requests
either read or write access to the data before accessing it, and the framework uses a
read/write lock to keep the data intact.

A file presenter is any object that implements the NSFilePresenter protocol. If
data is changed in a write action managed by an NSFileCoordinator, the file pre-
senter for that data is notified of the change. It can then make whatever updates are
necessary to present the new data to the user. You might implement this protocol on
your model objects, your view controllers, or both, depending on how your app needs
to respond to changes to its data.

The file presenter protocol also declares methods that notify your app of any sync
conf licts. Although iCloud resolves most conf licts internally, it is not always possible
to handle conf licts automatically. When this happens, your app will be notified of a
new version of the data via the file presenter. The app must then resolve the conf licts,
asking the user for help if it can’t handle the conf lict silently.

Combining these two, then, if an app using iCloud needs to update its data, it
requests a write lock from an NSFileCoordinator and makes its changes. Another
copy of the app, on a different device, receives a notification of this change via objects
that implement NSFilePresenter.

Turner_Book.indb 584 12/11/11 6:47 PM

ptg999

iCloud Concepts 585

UIDocument and UIManagedDocument
You don’t necessarily need to use file coordinators and presenters in your own code,
though. As a convenience, iOS 5 also introduces the UIDocument class for managing
document-based data. Document-based data is any data that can be considered as indi-
vidual, independent documents rather than as a single data store for an entire applica-
tion. Word processors and spreadsheets are examples of apps that have document-based
data. Calendars and to-do list applications usually are not document-based.

UIDocument implements the NSFilePresenter protocol and uses file coordina-
tors to handle data access. To use UIDocument, you create a custom subclass that can
manage your app’s document data. UIDocument will create and use file coordinators
as needed. Your subclass will need to implement the file coordinator methods, though,
since UIDocument’s implementations of these methods mostly do nothing.

If you have document-based data and you’re using Core Data, you can use
UIManagedDocument, which is a subclass of UIDocument. It creates and manages its
own Core Data stack. By default it searches the app bundle for managed object mod-
els. It creates a persistent store coordinator and managed object context based on the
file URL you provide when instantiating UIManagedDocument. This process can be
customized if necessary.

It is worth noting that neither UIDocument nor UIManagedDocument is actually
tied to iCloud. Each can be used for purely local document-based data that is never
synced.

Ubiquitous Persistent Stores
If you’re using Core Data but your data doesn’t fit the document paradigm, you also
can simplify the process of working with iCloud. Rather than create file coordina-
tors and presenters, it is possible to simply configure the persistent store coordinator
to make its data store ubiquitous. Setting up the Core Data stack is more or less the
same as when you’re not using Core Data. The major change is adding code to handle
incoming changes from iCloud. The iCloud daemon will update the data store auto-
matically, and the app will need to respond to these changes. Using this method is
convenient for apps that already have Core Data stores, since existing data stores can
be easily moved to iCloud storage.

When a ubiquitous persistent store is used, incoming changes are reconciled with
local data on a record-by-record basis, preserving changes to individual attributes of
entities. Core Data already incorporates conf lict management, since handling Core
Data conf licts is necessary when working with multiple threads. Conf licts are handled
either automatically based on a merge policy you choose or by custom code you write
to resolve conf licts.

This is the approach Apple recommends for “shoebox” apps—apps that contain
a collection of related data but where the data doesn’t fit the document paradigm or
where the app simply does not expose documents to the user. PhotoWheel matches
this description, so this is the approach taken in making PhotoWheel work with
iCloud.

Turner_Book.indb 585 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud586

Device Provisioning, Revisited
Chapter 6, “Provisioning Your iPad,” discussed setting up an App ID and a provision-
ing profile for use when developing apps. Before you can start working with iCloud,
you need to make some changes to the App ID configuration and update your pro-
visioning profile. Apps cannot access iCloud services unless the App ID has been
configured for iCloud and the provisioning profile has been generated with this con-
figuration. There are several steps you need to follow to enable an app to use iCloud,
described in the following sections.

Configuring the App ID
Up to now, everything you have done with PhotoWheel could have been done using a
wildcard App ID, that is, one with an *, which can be used with multiple applications.
That is certainly convenient, but it won’t work with iCloud. If you’re using a wildcard
App ID, you need to replace it with an explicit App ID. The differences and the pro-
cess for creating an App ID are discussed in Chapter 6, “Provisioning Your iPad.”

Once you have an explicit App ID, you need to configure it for use with iCloud.
Start by logging in to the iOS Developer Center and going to the Provisioning Portal.
In the portal, click App IDs in the navigation section on the left (Figure 22.1).

You’ll see a list of your App IDs. Find the PhotoWheel App ID. The Provision-
ing Portal shows various capabilities available with this App ID (Figure 22.2). In App

Figure 22.1 Finding the App IDs section of the provisioning profile

Turner_Book.indb 586 12/11/11 6:47 PM

ptg999

Device Provisioning, Revisited 587

Purchase and Game Center are enabled by default with explicit App IDs. Push Noti-
fications and iCloud are disabled but configurable. Click the Configure link in the
rightmost column of the table to start configuring iCloud.

Once you do this, you’ll see options to configure the App ID for use with Apple
Push Notifications and for iCloud. Click the “Enable for iCloud” check box (Figure
22.3), and then click Done.

Figure 22.2 Current configuration of the PhotoWheel App ID

Figure 22.3 Configuration options for the PhotoWheel App ID

Turner_Book.indb 587 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud588

Provisioning for iCloud
Next, you need to regenerate your provisioning profile so that it includes the correct
entitlements for the app to use iCloud. The Provisioning Portal doesn’t have an option
to simply regenerate an existing provisioning profile. To force it to regenerate the
profile, you’ll need to edit the profile and make a simple, even meaningless, change—
adding or removing a device, for example. You can even remove a device and then
add it back. Changing the name is a good idea since doing so makes it easy to distin-
guish the previous profile from the regenerated one.

Find the provisioning profile in the portal and click the Edit link, and then click
Modify in the popup window (Figure 22.4).

Make your change to the provisioning profile and click Submit. Download the
revised profile. To replace the previous copy, find it in Xcode’s Organizer window
(see Chapter 6, “Provisioning Your iPad,” if you’re not sure how). Select the old ver-
sion and click the – button to delete it, then install the new version.

Figure 22.4 Modifying a provisioning profile

Turner_Book.indb 588 12/11/11 6:47 PM

ptg999

Device Provisioning, Revisited 589

If you didn’t previously generate a provisioning profile, you need to create one
now, but it is not necessary to regenerate it to enable iCloud. Once you have enabled
iCloud for the App ID as described earlier, all new provisioning profiles will include
iCloud.

Note
The iPad Simulator does not support working with iCloud. When testing iCloud code, you
must use a real iOS device (iPad, iPhone, or iPod touch).

Configuring iCloud Entitlements
Finally, the app needs a custom entitlements file. Entitlements files are XML property
list files used by iOS that contain metadata about an application. To use iCloud, you
need one that contains information about how the app will use iCloud. Specifically,
the entitlements file will list container identifiers, which are used to determine where
iCloud data is stored.

First, though, you need to get your development team’s ID, since the container ID
must contain the team ID. You can find this in the Member Center section of Apple’s
developer Web site. When you’re logged in to the iOS Dev Center or the Provisioning
Portal, there is a link at the top labeled Member Center. Click this link (Figure 22.5).

Figure 22.5 Getting to the Member Center

Turner_Book.indb 589 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud590

In the Member Center, click on Your Account, and then find Organization Profile.
This page has a variety of information about your developer account. You need the value
shown for Company/Organization ID, which is a 10-character code (Figure 22.6).

Now switch over to Xcode to add the entitlements file. Select the PhotoWheel
project in the navigator, and then the PhotoWheel app target in the editor. If you
scroll down to the bottom of the editor pane, you’ll see a section named Entitlements
(Figure 22.7).

Check the Enable Entitlements box. When you do, Xcode creates a new file in the
project, called PhotoWheel.entitlements.

One of the entitlements sections is labeled iCloud Containers. Click the + button at
the bottom of this section to add a container entry. This adds a blank line for the con-
tainer identifier for the app.

The container identifier uses the team ID that you looked up earlier, plus a unique
string that the app will use to manage iCloud content. Choose a custom container
identifier of the form <Team ID>.<Custom string>. The custom string can be any
string that makes sense to you, but it is convenient to make it the same as the app’s
Bundle ID. If your team ID is A1B2C3D4E5 and the Bundle ID is com.example.
PhotoWheel, a good choice for the container identifier would be A1B2C3D4E5.com
.example.PhotoWheel.

Enter your container identifier on the blank line. The entitlements section should
now resemble Figure 22.8.

Figure 22.6 Finding your team ID

Turner_Book.indb 590 12/11/11 6:47 PM

ptg999

Device Provisioning, Revisited 591

Figure 22.7 Enabling custom entitlements

Figure 22.8 iCloud entitlements for PhotoWheel

Turner_Book.indb 591 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud592

iCloud Considerations for PhotoWheel
Now that PhotoWheel is ready to use iCloud, you could start adding code to sync
the app’s data between devices. The existing Core Data model will work as is, with
no changes. You’ll need to add a couple of extra configuration options when the app
starts up and code to handle new incoming changes from the cloud. Before doing that,
though, let’s give a little thought to whether that is really the best approach.

Don’t Sync More Than You Need to Sync
Although iCloud accounts are available for free to any iOS 5 user, the data storage is
not unlimited. A free account is capped at 5GB of data, and this includes space taken
up by device backups. Also, transfer to and from the cloud is not instant. An iOS
device might still be on a slow mobile phone network, but you still want syncing to
happen as fast as possible. As a result, it’s a good idea to consider whether you really
want to sync all of the app’s data or whether you could sync some of it and generate
the rest locally.

You may recall that PhotoWheel saves four different versions of each photo: the
original photo as well as three scaled versions. If you just add iCloud support to the
current model, everything will be synced. But it is not really necessary to sync all of
them—the scaled versions can be created from the original photo. The app could sync
just the original photo and generate the scaled versions whenever it receives a new
original from iCloud. The original is of course the largest of the images, but syncing
the original is necessary to replicate the same data on all devices.

Using Transient Core Data Attributes
We’ll still be using Core Data to manage the data model, but now we don’t want Core
Data to save the scaled images in the data store. Core Data has a “transient” attri-
bute type that is designed for this purpose. Transient attributes are managed by Core
Data while the app is running but are not actually saved to the data store. They are
intended for data that can be generated at run time, such as data that can be derived
from other attributes.

In Xcode, select the Core Data model file from the navigation pane. Click on the
Photo entity’s largeImageData attribute. In the Inspector, enable the Transient
check box for this property (Figure 22.9).

Repeat this process for the smallImageData and thumbnailImageData attri-
butes and save the data model. You don’t need to regenerate the model class for the
Photo entity, because the generated code is the same for transient and permanent
attributes.

Turner_Book.indb 592 12/11/11 6:47 PM

ptg999

Updating PhotoWheel for iCloud 593

Changing Core Data Models
When creating a Core Data stack, it is crucial that the entities defined in the data
model exactly match instances stored in any existing data stores. Any model change,
no matter how minor, will prevent Core Data from initializing the stack without some
help. This help takes the form of data model migration, which can be simple or com-
plex depending on how much the model has changed.

If the app has not been released yet, it is common to bypass this by simply removing
the app from the iPad and starting with a fresh copy. The first time the new build of
the app runs, there is no data store and therefore no compatibility issues. That’s what
you’ll do here, so after you change the model, make sure to remove the app from your
iPad before attempting to compile and run it again. If you don’t, the app will raise an
exception as soon as it tries to load the data store.

Of course, if the app had already been released, this wouldn’t be an acceptable solu-
tion. You would need to handle model migration so that your users’ data would be pre-
served when they upgraded to the latest version of your app.

Updating PhotoWheel for iCloud
Now that the scaled image attributes are transient, you need to make some code
changes to deal with keeping these images in external files. The original image is
unchanged, but the other images need new code.

Figure 22.9 Making the largeImageData attribute transient

Turner_Book.indb 593 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud594

First you’ll need to change the –saveImage: method in Photo.m to move the
image-scaling code to a separate method. Until now the scaled images have been cre-
ated only when the original image is first saved. With iCloud, new images delivered
from the cloud will have only the original image, so the app needs to create the scaled
images for those photos when the original image already exists. As a result, the app
needs to run the scaling code independently of saving the original image. Code for this
is shown in Listing 22.1. The only change this makes is breaking up –save Image: into
two methods: one to save the original image and one to create the scaled images.

Listing 22.1 Moving Image-Scaling Code into a Separate Method

- (void)saveImage:(UIImage *)newImage;

{

 NSData *originalImageData = UIImageJPEGRepresentation(newImage, 0.8);

 [self setOriginalImageData:originalImageData];

 [self createScaledImagesForImage:newImage];

}

- (void)createScaledImagesForImage:(UIImage *)originalImage

{

 // Save thumbnail

 CGSize thumbnailSize = CGSizeMake(75.0, 75.0);

 UIImage *thumbnailImage = [originalImage

 pw_imageScaleAndCropToMaxSize:thumbnailSize];

 NSData *thumbnailImageData = UIImageJPEGRepresentation(thumbnailImage, 0.8);

 [self setThumbnailImageData:thumbnailImageData];

 // Save large (screen-size) image

 CGRect screenBounds = [[UIScreen mainScreen] bounds];

 // Calculate size for retina displays.

 CGFloat scale = [[UIScreen mainScreen] scale];

 CGFloat maxScreenSize = MAX(screenBounds.size.width,

 screenBounds.size.height) * scale;

 CGSize imageSize = [originalImage size];

 CGFloat maxImageSize = MAX(imageSize.width, imageSize.height) * scale;

 CGFloat maxSize = MIN(maxScreenSize, maxImageSize);

 UIImage *largeImage = [originalImage pw_imageScaleAspectToMaxSize:maxSize];

 NSData *largeImageData = UIImageJPEGRepresentation(largeImage, 0.8);

 [self setLargeImageData:largeImageData];

 // Save small image

 CGSize smallSize = CGSizeMake(100.0, 100.0);

 UIImage *smallImage = [originalImage pw_imageScaleAndCropToMaxSize:smallSize];

 NSData *smallImageData = UIImageJPEGRepresentation(smallImage, 0.8);

 [self setSmallImageData:smallImageData];

}

Turner_Book.indb 594 12/11/11 6:47 PM

ptg999

Updating PhotoWheel for iCloud 595

Next, the app needs a method that returns the file path to use for one of the scaled
image attributes. This method is used by both getter and setter methods to read and
write the file. This is shown in Listing 22.2. Add this method to Photo.m.

Listing 22.2 Generating a Unique Path for an Attribute of a Managed Object

- (NSURL *)fileURLForAttributeNamed:(NSString *)attributeName

{

 if ([[self objectID] isTemporaryID]) {

 NSError *error = nil;

 [[self managedObjectContext]

 obtainPermanentIDsForObjects:[NSArray arrayWithObject:self]

 error:&error];

 }

 NSUInteger filenameID = [[[[self objectID] URIRepresentation]

 absoluteURL] hash];

 NSString *filename = [NSString stringWithFormat:@"%@-%ld",

 attributeName, filenameID];

 NSURL *documentsDirectory = [[[NSFileManager defaultManager]

 URLsForDirectory:NSDocumentDirectory

 inDomains:NSUserDomainMask]

 lastObject];

 return [documentsDirectory URLByAppendingPathComponent:filename];

}

This method generates a file name unique to the current photo by looking up the
photo’s objectID. The objectID is a unique identifier that is part of every managed
object. The first part of the method checks to see if the objectID is temporary. When
a managed object is first created, it has a temporary objectID. That ID is replaced
with a permanent value when you save changes to the managed object context. If you
need a permanent objectID before saving, you can ask the managed object context to
make the conversion early. You need a permanent ID so that the generated file name
won’t change when you save changes.

The managed object ID is opaque but can be converted to a URI. The code does
this and then asks NSString to calculate a hash value for the absolute URI string.
This results in an integer unique to the current photo. The method uses this file ID to
create a file name by combining it with the attribute name. For example, if the attri-
bute name is thumbnailImageData, and the file name ID is 1234567890, the file
name would be thumbnailImageData-1234567890.

The file name is then added to the app’s document directory path to produce a full
path to a file that can be used for data owned by a specific Photo instance and that
contains a specific attribute’s image data.

Next, you need to add custom accessor methods for the largeImage, small-
Image, and thumbnailImage attributes, which handle getting the data to and from
files. The first step here is to create the setters. You’ll need one setter per scaled image
attribute; these are called –setLargeImageData:, –setSmallImageData:, and

Turner_Book.indb 595 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud596

–setThumbnailImageData:. These methods are identical except for the attribute
name, so most of the code can be put in a common method used by all three setters.
That makes four new methods, shown in Listing 22.3. Add these methods to Photo.m.

Listing 22.3 Custom Attribute Setters for Scaled Image Attributes

- (void)setImageData:(NSData *)imageData forAttributeNamed:(NSString *)
attributeName

{

 // Do the set

 [self willChangeValueForKey:attributeName];

 [self setPrimitiveValue:imageData forKey:attributeName];

 [self didChangeValueForKey:attributeName];

 // Now write to a file, since the attribute is transient.

 [imageData writeToURL:

 [self fileURLForAttributeNamed:attributeName] atomically:YES];

}

- (void)setLargeImageData:(NSData *)largeImageData

{

 [self setImageData:largeImageData forAttributeNamed:@"largeImageData"];

}

- (void)setSmallImageData:(NSData *)smallImageData

{

 [self setImageData:smallImageData forAttributeNamed:@"smallImageData"];

}

- (void)setThumbnailImageData:(NSData *)thumbnailImageData

{

 [self setImageData:thumbnailImageData forAttributeNamed:@"thumbnailImageD
ata"];

}

The incoming data is saved on the managed object using the -setPrimitiveValue:
forKey: method of NSManagedObject. This method is used when overriding setters
on managed objects. It sets the value on the managed object directly without implic-
itly calling any other setter method. The calls to -willChangeValueForKey: and
-didChangeValueForKey: are a necessary detail of writing a custom Core Data set-
ter method, and they ensure that features such as undo management work. Normally
they would be handled by the dynamically generated setter method.

Along with custom setter methods, we need custom getters as well. As with the set-
ters, the actual work of getting the data is identical for all three keys; the only differ-
ence is the attribute name. The code will therefore follow the same pattern of putting
the common code in a single method called by all three of the attribute-specific get-
ters. This code is shown in Listing 22.4.

Turner_Book.indb 596 12/11/11 6:47 PM

ptg999

Updating PhotoWheel for iCloud 597

Listing 22.4 Custom Getter Methods for Nonsynced Image Data

- (NSData *)imageDataForAttributeNamed:(NSString *)attributeName

{

 // Get the existing data for the attribute, if possible.

 [self willAccessValueForKey:attributeName];

 NSData *imageData = [self primitiveValueForKey:attributeName];

 [self didAccessValueForKey:attributeName];

 // If we don't already have image data, get it.

 if (imageData == nil) {

 NSURL *fileURL = [self fileURLForAttributeNamed:attributeName];

 if ([[NSFileManager defaultManager] fileExistsAtPath:[fileURL path]]) {

 // Read image data from the appropriate file, if it exists.

 imageData = [NSData dataWithContentsOfURL:fileURL];

 [self willChangeValueForKey:attributeName];

 [self setPrimitiveValue:imageData forKey:attributeName];

 [self didChangeValueForKey:attributeName];

 } else {

 // If the file doesn't exist, create it.

 [self createScaledImagesForImage:[self originalImage]];

 [self willAccessValueForKey:attributeName];

 imageData = [self primitiveValueForKey:attributeName];

 [self didAccessValueForKey:attributeName];

 }

 }

 return imageData;

}

- (NSData *)largeImageData

{

 return [self imageDataForAttributeNamed:@"largeImageData"];

}

- (NSData *)smallImageData

{

 return [self imageDataForAttributeNamed:@"smallImageData"];

}

- (NSData *)thumbnailImageData

{

 return [self imageDataForAttributeNamed:@"thumbnailImageData"];

}

The –imageDataForAttributeNamed: method handles a variety of cases to get
the image data. First, it just checks to see if the image data has already been loaded,
and if so, it returns it. If the image data has not already been loaded, the method

Turner_Book.indb 597 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud598

looks for a file containing image data, using the -fileURLForAttributeNamed:
method discussed earlier. If that file exists, the method loads image data from it. If the
file doesn’t exist, this implies that the external files have not been created yet, which
would be the case if the photo had just been received from iCloud. In that case the
method calls the –createScaledImagesForImage: method discussed earlier. Recall
that it creates the scaled images and the files and also calls the setter methods for the
scaled image attributes.

This method also includes extra code necessary when using a custom getter method
on a managed object. In this case it uses –primitiveValueForKey:, the getter
complement to –setPrimitiveValue:forKey:. It also uses –willAccessValue-
ForKey: and –didAccessValueForKey: to notify the superclass that the method
is accessing the attribute value directly. Again, this would normally be called by the
dynamically generated getter.

Syncing Photos with iCloud
PhotoWheel now has the changes it needs to minimize the amount of data it syncs via
iCloud. Now you can make the changes needed to actually sync the data. You’ll make
two types of changes: one to make the app’s persistent store coordinator work with
ubiquitous data and one to make the app respond to incoming changes from the cloud.

Making the Persistent Store Coordinator Ubiquitous
The only requirement to make a persistent store coordinator work with iCloud is that
you must provide a value for the NSPersistentStoreUbiquitousContentNameKey
option at creation time. This option just indicates the name that should be used for
the data in iCloud. You may optionally also set a value for NSPersistentStore-
UbiquitousContentURLKey, which allows control over where the ubiquitous data is
stored. If you don’t provide a value for this key, one will be generated.

To enable cloud storage on the persistent store coordinator, replace the existing
–persistentStoreCoordinator method with the version from Listing 22.5.

Listing 22.5 Configuring the Persistent Store Coordinator to Work with iCloud

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

{

 if (__persistentStoreCoordinator != nil)

 {

 return __persistentStoreCoordinator;

 }

 __persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

 initWithManagedObjectModel: [self managedObjectModel]];

 NSURL *storeURL = [[self applicationDocumentsDirectory]

 URLByAppendingPathComponent:@"PhotoWheel.sqlite"];

Turner_Book.indb 598 12/11/11 6:47 PM

ptg999

Syncing Photos with iCloud 599

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 // Build a URL to use as NSPersistentStoreUbiquitousContentURLKey

 NSURL *cloudURL = [[NSFileManager defaultManager]

 URLForUbiquityContainerIdentifier:nil];

 NSDictionary *options = nil;

 if (cloudURL != nil) {

 NSString* coreDataCloudContent = [[cloudURL path]

 stringByAppendingPathComponent:@"photowheel"];

 cloudURL = [NSURL fileURLWithPath:coreDataCloudContent];

 options = [NSDictionary dictionaryWithObjectsAndKeys:

 @"com.mycompany.photowheel",

 NSPersistentStoreUbiquitousContentNameKey,

 cloudURL,

 NSPersistentStoreUbiquitousContentURLKey,

 nil];

 }

 NSError *error = nil;

 [__persistentStoreCoordinator lock];

 if (![__persistentStoreCoordinator

 addPersistentStoreWithType:NSSQLiteStoreType

 configuration:nil

 URL:storeURL

 options:options

 error:&error])

 {

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 [__persistentStoreCoordinator unlock];

 dispatch_async(dispatch_get_main_queue(), ^{

 NSLog(@"asynchronously added persistent store!");

 [[NSNotificationCenter defaultCenter]

 postNotificationName:kRefetchAllDataNotification

 object:self

 userInfo:nil];

 });

 });

 return __persistentStoreCoordinator;

}

Turner_Book.indb 599 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud600

This version of –persistentStoreCoordinator starts off the same way the old
version did, but then it uses dispatch_async to finish setting up the coordinator
on a background thread. Everything in the block passed to dispatch_async will
happen asynchronously on a different thread. It does this to avoid blocking the main
thread, which controls the user interface. If this is the first time the app runs on a
device and there is a lot of preexisting iCloud data, it might take a long time to get all
the data. Putting it on a background thread lets the user interface stay responsive while
the background thread waits. This means that any fetch requests the app runs to man-
age the UI will return no results at first, since the persistent store coordinator doesn’t
have a data store yet.

The first thing that happens in the background is building cloudURL, the URL
where iCloud data will go. The code starts off by passing the iCloud container ID to
NSFileManager’s URLForUbiquityContainerIdentifier method. This asks iOS
for the appropriate iCloud location to store iCloud data for your container ID. If you
pass nil for the container ID, the method uses the first container ID found in the
app’s entitlements. You can’t choose the URL’s location—although you can create files
and directories below this URL. The code does just that by appending photowheel to
the URL and then setting cloudURL to the combined path.

Note that this is not the same location as the actual data store file. That location
is in storeURL and is still in the app’s documents directory. With cloudURL, you’re
configuring how the persistent store coordinator works with iCloud, but the actual
data store is in the same place it has always been. This is very convenient because it
means that you can add iCloud support to an app that already uses Core Data but still
use the same data store. That would simplify the upgrade process for anyone using an
older non-iCloud version of the app.

The method then creates a dictionary to contain the various options that the per-
sistent store coordinator will use. It sets cloudURL as the value of NSPersistent-
StoreUbiquitousContentURLKey and com.mycompany.photowheel as the value
of NSPersistentStoreUbiquitousContentNameKey. It is not necessary to use the
app’s Bundle ID for this key but it’s convenient. Really, it can be anything that makes
sense to you and to other developers on your team. There are other options you could
use when configuring a persistent store coordinator, which you can read about in the
class documentation.

If URLForUbiquityContainerIdentifier returns nil, the app leaves options
set to nil. This would happen if the user has not configured an iCloud account. It
would also happen if the user did configure an account but did not enable Documents
& Data, which would mean that apps were not permitted to store data in the iCloud
account. In this case the app continues just as it would without iCloud, using local-
only data. If the user later adds an iCloud account or enables Documents & Data, the
app’s data would automatically start syncing to iCloud the next time the user runs the
app.

Now that the options are configured, the method creates the persistent store coor-
dinator. Since this code is running in a background thread, it locks and unlocks the

Turner_Book.indb 600 12/11/11 6:47 PM

ptg999

Syncing Photos with iCloud 601

coordinator before making the change. Persistent store coordinators are not thread
safe, but they have their own locking mechanism in case you need to access one from
a different thread.

Once that is done, the code posts a notification to tell the rest of the app that the
data store is now available. View controllers can listen for this notification and update
their views. Up until this point, the persistent store coordinator didn’t have a data
store, so fetches would return no data. Now that the data store is available, view con-
trollers need to refetch data in order to get data from the store. The method does this
in another dispatch_async call, which calls back from the background to the main
thread. It does this because the user interface should be updated only on the main
thread.

The notification name is kRefetchAllDataNotification, which isn’t defined
yet. This notification will be posted by the app delegate and received in view control-
lers, so the notification name needs to be defined somewhere available to all of those
classes. A convenient place to do this is in PhotoWheel-Prefix.pch, which is automatically
included in all source files in the project. Add this one line to PhotoWheel-Prefix.pch:

#define kRefetchAllDataNotification @"RefetchAllDatabaseData"

Now you can use this notification name anywhere it is needed. It is a common
convention to name constant variables or defined constants with names that start with
k, but it is not required.

Of course, that notification won’t do any good unless the view controllers are actu-
ally listening for it. Both PhotoAlbumsViewController and PhotoAlbumView-
Controller manage views using data from the data store, so both of them need to
receive this notification and update their view. Add the code from Listing 22.6 to
PhotoAlbumsViewController.m, in the viewDidLoad method.

Listing 22.6 Updating PhotoAlbumsViewController When the Persistent Store
Coordinator Has Loaded the Data Model

[[NSNotificationCenter defaultCenter]

 addObserverForName:kRefetchAllDataNotification

 object:[[UIApplication sharedApplication] delegate]

 queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *__strong note) {

 [self setFetchedResultsController:nil];

 [[self wheelView] reloadData];

 }];

When the notification is posted, this code gets rid of the existing fetched results
controller and then tells wheelView to reload its data. The fetched results controller is
re-created on demand in the –fetchedResultsController method, which is called
when wheelView starts asking for data. This time the fetch returns data found in the
data store.

Turner_Book.indb 601 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud602

There are a couple of related changes you need to make to avoid having
NSNotificationCenter try to call the block when the view has been unloaded or
when the view controller doesn’t exist. In those cases the view controller should unregis-
ter for the notification. Add a –viewDidUnload method to PhotoAlbumsViewController.m
with the code from Listing 22.7. This handles the case where the view has been removed
because of low-memory situations.

Listing 22.7 Unregistering for Notifications in PhotoAlbumsViewController

- (void)viewDidUnload

{

 [super viewDidUnload];

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:kRefetchAllDataNotification

 object:nil];

}

Also, add a dealloc method that does the same thing. This is called whenever the
view controller is de-allocated. The dealloc method is shown in Listing 22.8.

Listing 22.8 dealloc Method for PhotoAlbumsViewController

- (void)dealloc

{

 [[NSNotificationCenter defaultCenter]

 removeObserver:self

 name:kRefetchAllDataNotification

 object:nil];

}

You need to make the same changes in PhotoAlbumViewController. The
changes there are nearly identical to the ones just given, except that

n Instead of calling [[self wheelView] reloadData] when the notification is
posted, the block should call [self reload] to reload the photo grid view.

n Add the -removeObserver call to the -viewDidUnload and -dealloc
methods.

Receiving Changes from iCloud
Great! Now the app can send data to iCloud. That’s half the battle. Now you need to
make it notice incoming changes from the cloud for changes made on other devices.

When new changes are available, the iCloud daemon will download them in the
background. These changes are saved to the data store automatically. Once this is com-
plete, the persistent store coordinator will post a notification with the ungainly name of

Turner_Book.indb 602 12/11/11 6:47 PM

ptg999

Syncing Photos with iCloud 603

NSPersistentStoreDidImportUbiquitousContentChangesNotification. At
that point the data store is up-to-date with the latest iCloud changes, but these don’t auto-
matically show up in your app. Any managed objects that have been loaded are still valid,
and their values don’t change. The app needs to tell any managed object contexts that it is
using to get the incoming changes, and the app can then update its objects and views to
ref lect the new data.

To listen for this notification, change the –managedObjectContext method in
PhotoWheelAppDelegate.m to look like Listing 22.9.

Listing 22.9 Updated Code to Create the Managed Object Context

- (NSManagedObjectContext *)managedObjectContext

{

 if (__managedObjectContext != nil)

 {

 return __managedObjectContext;

 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];

 if (coordinator != nil)

 {

 __managedObjectContext = [[NSManagedObjectContext alloc]

 initWithConcurrencyType:NSMainQueueConcurrencyType];

 [__managedObjectContext performBlockAndWait:^(void) {

 [__managedObjectContext setPersistentStoreCoordinator:coordinator];

 [__managedObjectContext

 setMergePolicy:NSMergeByPropertyObjectTrumpMergePolicy];

 [[NSNotificationCenter defaultCenter]

 addObserver:self

 selector:@selector(mergeChangesFrom_iCloud:)

 name:

 NSPersistentStoreDidImportUbiquitousContentChangesNotification

 object:coordinator];

 }];

 }

 return __managedObjectContext;

}

This makes a couple of changes from the previous version. First, it changes the
initialization of the context to use NSMainQueueConcurrencyType. This means
that any code executed by the managed object context will be performed on the main
thread. However, to make that happen, it is necessary to enclose any code that uses
the context in a block, and to execute that block using either –performBlock: or
–performBlockAndWait:. So, after creating the context, that is what the code does.

Turner_Book.indb 603 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud604

Previously the code didn’t indicate what concurrency type to use, which means that
the managed object context used the default concurrency type of NSConfinement-
ConcurrencyType. That doesn’t add any threading help; it just means that you
assume responsibility for making sure that the context is used on only one thread.

The next change is that this version of the method explicitly sets the context’s
merge policy. Merge policies are used when you need to tell a managed object con-
text about changes to the data store that were made somewhere else, for example,
by a different managed object context—or on a different device, in which case the
changes would arrive from iCloud. The merge policy determines how conf licts will
be resolved. By default, conf licts cause an exception. The NSMergeByProperty-
ObjectTrumpMergePolicy option means that if there are changes in memory that
conf lict with objects loaded by the context, the in-memory changes should take prior-
ity. NSManagedObjectContext defines several other automatic merge policies that
you can choose from depending on your app’s requirements.

Once the context exists, the code adds self as an observer for incoming iCloud
changes and arranges for notifications to call a method named –mergeChangesFrom_
iCloud:. That method is shown in Listing 22.10.

Listing 22.10 Callback for NSPersistentStoreDidImportUbiquitous-
ContentChangesNotification

- (void)mergeChangesFrom_iCloud:(NSNotification *)notification {

 NSDictionary* userInfo = [notification userInfo];

 NSManagedObjectContext* moc = [self managedObjectContext];

 [moc performBlock:^{

 [self mergeiCloudChanges:userInfo forContext:moc];

 }];

}

The code in –mergeChangesFrom_iCloud: doesn’t handle the incoming changes
itself. It is just a “trampoline” method that uses –performBlock: to pass data from
the incoming notification over to the main thread. Notifications are received on the
thread that posted the notification, and there is no guarantee that this notification was
posted on the main thread. This method gets the change information from the notifi-
cation’s userInfo property and passes that on to the main thread to be merged.

Next, you need to handle actually merging in the changes. The nice thing about
this is that managed object contexts already know how to merge in data changes that
were made in other places. This is often necessary even without iCloud, in cases where
an app needs more than one managed object context. For example, an app might use
a background thread to import a lot of data that should not be available to the main
thread until all the changes have been saved. In that case it could use a secondary
managed object context for the import and then merge those changes to the main
thread when it finished. There is a built-in merging system designed to make one

Turner_Book.indb 604 12/11/11 6:47 PM

ptg999

Syncing Photos with iCloud 605

managed object context notice changes made in a different context, but it works just as
well no matter where the changes actually come from. That makes it ideal for use with
iCloud.

The catch is that the changes provided by NSPersistentStoreDidImport -
UbiquitousContentChangesNotification are not in the format required by man-
aged object context change merging. So, you need to add some code to run through
the incoming changes and repackage them in a different format. This code goes in the
–mergeiCloudChanges:forContext: method, shown in Listing 22.11.

Listing 22.11 Merging Incoming Changes from iCloud

- (void)mergeiCloudChanges:(NSDictionary*)noteInfo

 forContext:(NSManagedObjectContext*)moc

{

 @autoreleasepool {

 NSMutableDictionary *localUserInfo = [NSMutableDictionary dictionary];

 NSString* materializeKeys[] = { NSDeletedObjectsKey, NSInsertedObjectsKey
};

 int c = (sizeof(materializeKeys) / sizeof(NSString*));

 for (int i = 0; i < c; i++) {

 NSSet* set = [noteInfo objectForKey:materializeKeys[i]];

 if ([set count] > 0) {

 NSMutableSet* objectSet = [NSMutableSet set];

 for (NSManagedObjectID* moid in set) {

 [objectSet addObject:[moc objectWithID:moid]];

 }

 [localUserInfo setObject:objectSet forKey:materializeKeys[i]];

 }

 }

 NSString* noMaterializeKeys[] = { NSUpdatedObjectsKey,

 NSRefreshedObjectsKey, NSInvalidatedObjectsKey };

 c = (sizeof(noMaterializeKeys) / sizeof(NSString*));

 for (int i = 0; i < 2; i++) {

 NSSet* set = [noteInfo objectForKey:noMaterializeKeys[i]];

 if ([set count] > 0) {

 NSMutableSet* objectSet = [NSMutableSet set];

 for (NSManagedObjectID* moid in set) {

 NSManagedObject* realObj = [moc objectRegisteredForID:moid];

 if (realObj) {

 [objectSet addObject:realObj];

 }

 }

 [localUserInfo setObject:objectSet forKey:noMaterializeKeys[i]];

 }

 }

Turner_Book.indb 605 12/11/11 6:47 PM

ptg999

Chapter 22 Syncing with iCloud606

 NSNotification *fakeSave = [NSNotification

 notificationWithName:NSManagedObjectContextDidSaveNotification

 object:self

 userInfo:localUserInfo];

 [moc mergeChangesFromContextDidSaveNotification:fakeSave];

 [moc processPendingChanges];

 }

}

The two loops in this method run through the incoming changes and repack-
age them in a form that NSManagedObjectContext can handle automatically. The
first loop handles instances that have been added or deleted by the change, which are
always merged in to the managed object context. The second loop handles changes to
existing objects. These are merged in to the managed object context only if they have
already been loaded from the data store. If they have not, there is no need to merge
the change, because the new values will be read from the data store if and when the
entity is loaded.

The key part of the method is at the end, with the fakeSave notification. When
a managed object context saves changes, it posts a notification named NSManaged-
ObjectContextDidSaveNotification. If the app has any other managed object
contexts, it can listen for this notification and then tell the other contexts to merge in
the changes contained in the notification. NSManagedObjectContext has a method
called mergeChangesFromContextDidSaveNotification that handles this.
Here, the method builds up an NSDictionary called localUserInfo that has the
same format as the information contained in NSManagedObjectContextDidSave-
Notification. It passes this to the managed context as if the changes had come from
another managed object context, even though they came from iCloud. The managed
object context merges the data automatically.

Merging happens automatically according to the merge policy set earlier on the
managed object context. If one of the automatic merge policies is appropriate for your
app, the code in Listing 22.11 will handle updating the managed object context. If
none of those policies seems right for your app, you can replace the code with custom
merge code that has whatever logic you need.

How do you make the view controllers update their views to show the new
changes? Believe it or not, we have already covered that. In PhotoWheel, the view
controllers interact with Core Data using NSFetchedResultController. One of the
great things about that class is that it notices changes in the managed object context
automatically and notifies its delegate. Since both MainViewController and Photo-
AlbumViewController act as delegates to their NSFetchedResultController,
they are already configured to automatically receive any changes sent from iCloud.

Turner_Book.indb 606 12/11/11 6:47 PM

ptg999

Exercises 607

Summary
Syncing is hard, not just from a technical standpoint but for logistical reasons as well.
Many developers have made the mistake of thinking that it would be simple, only to
end up with code that never quite works right or with code that is still unfinished
even after long development periods. With iCloud most of the heavy lifting is done for
you, at no extra charge. PhotoWheel now syncs its photos via iCloud, so it can be used
on multiple devices with the same data. It is details like this that really make an app
appealing.

In the next chapter we’ll cover displaying photos over a wireless connection to
external displays using Apple’s AirPlay technology, so that PhotoWheel can present a
slideshow of its photos.

Exercises
1. Merging changes from iCloud makes use of the managed object context’s merge

policy. Investigate the merge options defined by the NSMergePolicy class and
choose one to use in PhotoWheel. Most likely you’d want to use NSMergeBy-
PropertyObjectTrumpMergePolicyType, which gives priority to unsaved
local changes, but you might prefer one of the other options. You set a merge
policy using the –setMergePolicy: method on the managed object context.

2. iCloud also has a key-value store that can be used to sync simple data about app
state across devices, in the NSUbiquitousKeyValueStore class. Investigate the
key-value store and use it to save the current photo to iCloud. You’ll need to add
a new iCloud entitlement to the app.

Turner_Book.indb 607 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

23
Producing a Slideshow

with AirPlay

Browsing through photos on the iPad’s built-in screen works pretty well, but wouldn’t it be nice
to put on a slideshow with fancy transitions? Even better: to be able to show this slideshow on a
larger external display, such as that big HDTV in your living room? Maybe even using an Apple
TV to run the show over a wireless link?

In this chapter, you’ll learn how to add a slideshow to PhotoWheel and make it work with
external displays, whether connected via a video adapter or via wireless connections to AirPlay
destinations.

External Display Options
All iPads support external displays. With the original iPad, video output worked with
apps that were specifically coded to detect and use external displays. Displays had to
use wired connections via a video adapter plugged into the iPad’s 30-pin dock con-
nector. Several adapters exist, for digital video out, VGA displays, and other formats.

With the iPad 2, however, the system was greatly enhanced. The iPad 2 can auto-
matically mirror the internal display to a wired external display, so everything that
happens on the built-in screen also happens on the external display. Also, the iPad 2
added support for AirPlay destinations such as the Apple TV, making it possible to use
wireless video connections to external displays.

In all cases, using an external display changes a requirement that is otherwise abso-
lute: the screen size. External displays will have different sizes and aspect ratios from
the built-in display. Apps using external displays need to avoid making assumptions
about screen size.

App Requirements for External Displays
In the simplest case, then, if your app is running on an iPad 2, you don’t actually need
to do anything at all to use an external display. Whatever your app does on its main

Turner_Book.indb 609 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 610

screen will automatically appear on an external display so long as the user has enabled
device mirroring.

However, we can do a whole lot better than that. The most obvious reason is that
many people still use the original iPad. Even though it is no longer a current model, it
is never a good idea to set system requirements higher than necessary. If an app doesn’t
do anything that specifically requires iPad 2 hardware, there is no good reason to
exclude the earlier model. PhotoWheel would seem to require a camera and therefore
need the iPad 2, but it works just fine with photos from your photo library. If a person
uses iCloud’s Photo Stream, chances are good she’ll have new photos appearing on her
original iPad all the time, even without a built-in camera. PhotoWheel doesn’t actually
need an iPad 2, so it shouldn’t be (and isn’t) coded to require a camera.

Also, simply mirroring the internal display often isn’t the best user experience. If
the external display doesn’t have a touch-sensitive screen—and it almost certainly does
not—it doesn’t make sense to display user interface controls there. What is necessary
and useful on the internal display becomes distracting clutter for someone sitting across
the room watching a display that wouldn’t handle touch events even if she were close
enough to reach it. A better app would make more appropriate use of an external dis-
play by leaving out useless content.

For apps that update their user interface based on device orientation, device rotation
must also be considered when using an external display. The external display won’t
rotate when the iPad does, so you should consider whether the external display’s con-
tent should adjust to match the device orientation. In some cases it will, but in many
cases it won’t.

External Display API
Fortunately, the API to make an app work with a wired external display is almost
exactly the same as the API for wireless AirPlay displays. The only difference is adding
a UI control for the user to select an AirPlay device. Once the iPad connects to the
device, though, it becomes available to apps in exactly the same way as a wired display
connection.

The starting point for working with external displays is the UIScreen class. It pro-
vides a class method +screens that returns an array containing UIScreen instances
for all currently available screens (Listing 23.1).

Listing 23.1 Getting a List of All Currently Connected Screens

NSArray *screens = [UIScreen screens];

if ([screens count] > 1) {

 NSLog(@"External display is connected");

}

The internal screen is guaranteed to be the first entry in the screens array. If the
array contains more than one item, an external display is connected and available for

Turner_Book.indb 610 12/11/11 6:47 PM

ptg999

Adding a Slideshow to PhotoWheel 611

use. It isn’t currently possible to have more than one external display; only one AirPlay
device can be selected at a given time. Furthermore, if you connect a wired external
display, the AirPlay connection is automatically terminated.

UIScreen provides methods and properties that provide details about the screen.
The bounds property tells you the screen resolution. Some displays support more than
one resolution. The availableModes property is an array of screen modes, each of
which contains a supported screen resolution. By default the UIScreen instance for
an external display has its mode set to the one in the preferredMode property. That
is usually the display’s native resolution. Apps can change the mode and therefore the
resolution if necessary, but only to modes defined in availableModes.

UIScreen posts notifications to let your app know when displays are connected
or removed, the appropriately named UIScreenDidConnectNotification and
UIScreenDidDisconnectNotification. Both of these pass the newly connected or
disconnected screen as the notification’s object. It is important to listen for these noti-
fications because displays can come and go at any time.

The typical f low when using an external display is therefore:

1. When the app is ready to use an external display, it calls [UIScreen screens]
to find out if one is currently connected. If so, it can start using it.

2. If the app receives UIScreenDidDisconnectNotification, it stops trying to
use the external display.

3. If the app receives UIScreenDidConnectNotification, it gets the new screen
and starts using it.

To put content on an external screen, an app creates a new instance of UIWindow.
Normally you have just one UIWindow, but an external display needs its own instance.
iPads don’t support spanning a single window across multiple displays, so the existing
window isn’t enough. Once you have created the new UIWindow, you move it to the
external display by setting its screen property to the right UIScreen instance.

Adding a Slideshow to PhotoWheel
Based on the discussion in the previous section, PhotoWheel’s slideshow will make use
of two view controllers:

n SlideShowViewController

This class is used for external displays. It handles displaying photos and transi-
tions between them but doesn’t provide any user interface controls, and it won’t
respond to device rotation.

n MainSlideShowViewController

This class is used for the main screen. The main screen shows the same slideshow
as the external display, so MainSlideShowViewController will be a subclass
of SlideShowViewController. That way it inherits the code to display slides.

Turner_Book.indb 611 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 612

This subclass adds code to detect and manage external displays and to create
instances of SlideShowViewController as needed. It also adds user interface
controls to allow the user to control the slideshow and runs the timer to auto-
matically advance to the next photo. It responds to device rotation (as you would
normally expect an iPad app to respond) by rotating the display and controls.

MainSlideShowViewController is in charge of the slideshow. Instances of
SlideShowViewController will update their display only when instructed to do so
by MainSlideShowViewController.

Let’s start by creating these two classes. Don’t forget to make MainSlideShow-
ViewController a subclass of SlideShowViewController!

Updating the Storyboard
The existing PhotoBrowserViewController already has a Slideshow button that
was added in Chapter 17, “Creating a Photo Browser.” We’ll build on that to load the
slideshow. Edit MainStoryboard.storyboard and add a new view controller, with a push
segue from PhotoBrowserViewController (Figure 23.1).

Make the new view controller an instance of MainSlideShowViewController,
and name the segue SlideshowSegue. Set the background color of the new view to
black.

We’ll implement the rest of the slideshow in code.

Figure 23.1 Adding the slideshow view controller to the storyboard

Turner_Book.indb 612 12/11/11 6:47 PM

ptg999

Adding a Slideshow to PhotoWheel 613

Adding the Slideshow Display
The first code we’ll add is implementing SlideShowViewController. This class
handles displaying photos and transitions between them, and it is the superclass of
MainSlideShowViewController.

To display photos, the class needs some way to look up photos in the album. For-
tunately, we already have this, in the form of the PhotoBrowserViewController-
Delegate protocol. This protocol was designed for use in the photo browser, but it
works just as well for the slideshow. SlideShowViewController will have a delegate
that implements this protocol and will use it in exactly the same way as the photo
browser. We’ll discuss how the delegate gets set a little later on.

Make SlideShowViewController.h look like Listing 23.2.

Listing 23.2 Interface for SlideShowViewController

#import <UIKit/UIKit.h>

@protocol PhotoBrowserViewControllerDelegate;

@interface SlideShowViewController : UIViewController

@property (nonatomic, strong) id<PhotoBrowserViewControllerDelegate> delegate;

@property (nonatomic, assign) NSInteger currentIndex;

@property (nonatomic, assign) NSInteger startIndex;

@property (nonatomic, strong) UIView *currentPhotoView;

@end

The @protocol line declares the PhotoBrowserViewControllerDelegate
protocol. There is no implementation in this file, but that’s okay because it exists
elsewhere in the project. As long as we tell the compiler it exists, we can declare that
the delegate implements it. The next two instance variables deal with the starting and
current indexes in the photo album in the same way as the photo browser. As in the
photo browser, startIndex is the initial photo index when the slideshow loads, and
currentIndex is the index of the currently displayed photo.

The last instance variable is a UIView, which displays the current photo. In most
cases we would declare currentPhotoView in the implementation file instead of in
the header. In this case, though, the subclass needs to know about it. Putting it in the
header file allows code in MainSlideShowViewController to access the view. If it
were in the implementation file, it would be private, even from subclasses.

The slideshow display is handled in the custom setter method for currentIndex.
Each time the photo index changes, this method updates the display to show the newly
current photo. This method is shown in Listing 23.3.

Turner_Book.indb 613 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 614

Listing 23.3 Custom Setter Method for currentIndex in
SlideShowViewController

- (void)setCurrentIndex:(NSInteger)rawNewCurrentIndex

{

 if ((rawNewCurrentIndex == [self currentIndex]) &&

 ([[[self view] subviews] count] != 0))

 {

 return;

 }

 // If the new index is outside the existing range, wrap

 // around to the other end.

 NSInteger photoCount = [[self delegate]

 photoBrowserViewControllerNumberOfPhotos:nil];

 NSInteger newCurrentIndex = rawNewCurrentIndex;

 if (newCurrentIndex >= photoCount) {

 newCurrentIndex = 0;

 }

 if (newCurrentIndex < 0) {

 newCurrentIndex = photoCount - 1;

 }

 // Create a new image view for the current photo

 UIImage *newImage = [[self delegate]

 photoBrowserViewController:nil

 imageAtIndex:newCurrentIndex];

 UIImageView *newPhotoView = [[UIImageView alloc] initWithImage:newImage];

 [newPhotoView setContentMode:UIViewContentModeScaleAspectFit];

 [newPhotoView setFrame:[[self view] bounds]];

 [newPhotoView setAutoresizingMask:

 (UIViewAutoresizingFlexibleWidth|UIViewAutoresizingFlexibleHeight)];

 if ([self currentPhotoView] == nil) {

 // If there's no photo view yet, just add it

 [[self view] addSubview:newPhotoView];

 } else {

 // If there is a photo view, do a nice animation

 NSInteger transitionOptions;

 // Use the original value of the new index to decide if

 // we're moving forward or backward through the photos.

 // Curl up for moving forward, down for moving backward.

 if (rawNewCurrentIndex > [self currentIndex]) {

 transitionOptions = UIViewAnimationOptionTransitionCurlUp;

 } else {

 transitionOptions = UIViewAnimationOptionTransitionCurlDown;

 }

Turner_Book.indb 614 12/11/11 6:47 PM

ptg999

Adding a Slideshow to PhotoWheel 615

 // Replace the current photo view with the new one on screen

 [UIView transitionFromView:[self currentPhotoView]

 toView:newPhotoView

 duration:1.0

 options:transitionOptions

 completion:^(BOOL finished) {

 }];

 }

 [self setCurrentPhotoView:newPhotoView];

 // Finally, do the actual set

 currentIndex_ = newCurrentIndex;

}

First the setter checks the incoming value to see if it is the same as the current
value. If so, it’s best to skip the rest of the method with its work of looking up a photo
and creating a view for it. But it continues if [self view] doesn’t have any subviews
yet, because that indicates that no photo is currently displayed. This will happen the
first time the setter is called, if the slideshow starts with the photo at index 0.

Next, the setter checks the new value for currentIndex to make sure it is valid.
The index can’t be less than zero, and the upper limit depends on the number of
photos in the album. Next, it asks the delegate for a UIImage containing the current
photo and creates a UIImageView to display it. The content mode tells the image
view to scale the photo to fit the display subject to the constraint that the aspect ratio
(shape) cannot change. The autoresizing mask tells the image view that its size and
shape should change when its parent view’s size and shape change, so that it always
fills the parent view.

If currentPhotoView is nil, it implies that no photo is being displayed. This
would be the case when the slideshow first loads. In that case the code just adds new-
PhotoView to the view hierarchy. Otherwise, the code arranges to replace current-
PhotoView with newPhotoView using a fancy visual transition. If the new index is
greater than the old one or if the index has wrapped around to zero, the transition is a
page curl upward. If the new index is less than the old one or if the index has wrapped
around to the upper end of the range, the transition is a page curl downward. The
code chooses the transition by comparing the original incoming new index value to
the current index.

The code replaces the old photo view with the new one using a UIView class
method that replaces one view with another in the view hierarchy. One line of code
removes currentPhotoView from the view hierarchy and inserts newPhotoView
in its place. The options argument specifies how the change should occur. The last
argument takes a block that executes on completion, but we don’t need to do any-
thing when that happens so we leave it empty. The code then updates the values of
currentPhotoView and currentIndex.

Turner_Book.indb 615 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 616

That takes care of most of SlideShowViewController, but there are a couple
of minor details to cover. One is that we need to set the initial value of current-
Index based on the provided value of startIndex. This works the same as in
PhotoBrowserViewController. The other is that we want to ignore device rotation
in this class, so that the external display won’t rotate when the device does. Add the two
methods in Listing 23.4 to SlideShowViewController to implement these behaviors.

Listing 23.4 Setting the Slideshow’s Initial Photo Index, and Disabling Autorotation on
External Displays

- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

 [self setCurrentIndex:[self startIndex]];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

 (UIInterfaceOrientation)interfaceOrientation

{

 return NO;

}

Managing External Displays
Now that the app can display slideshow photos, let’s add the internal screen compo-
nent that will handle detecting and managing external displays.

MainSlideShowViewController subclasses SlideShowViewController but
does not add any new public instance variables. It does add several private instance
variables in a class extension. Add the declarations in Listing 23.5 to MainSlideShow-
ViewController.m, and then add corresponding @synthesize statements.

Listing 23.5 Private Instance Variables in MainSlideShowViewController

@interface MainSlideShowViewController ()

@property (nonatomic, strong) NSTimer *slideAdvanceTimer;

@property (nonatomic, assign, getter = isChromeHidden) BOOL chromeHidden;

@property (nonatomic, strong) NSTimer *chromeHideTimer;

@property (nonatomic, strong) SlideShowViewController \

 *externalDisplaySlideshowController;

@property (nonatomic, strong) UIWindow *externalScreenWindow;

@end

The new instance variables serve the following purposes:
n slideAdvanceTimer: This periodically calls a method that automatically

advances to the next photo while the slideshow is running.

Turner_Book.indb 616 12/11/11 6:47 PM

ptg999

Managing External Displays 617

n chromeHidden, chromeHideTimer: These are used to make the user interface
controls show and hide automatically. They work just like the ones in Photo-
BrowserViewController, so we won’t spend any time on them here.

n externalDisplaySlideshowController: When an external display is con-
nected, this will point to the SlideShowViewController displaying photos on
that display.

n externalScreenWindow: When an external display is connected, this will
point to the UIWindow instance managing content on that display.

To detect and configure external displays we’ll add two methods to MainSlide-
ShowViewController. The code in Listing 23.6 looks for any external displays
and returns the result. If no external displays are found, it returns nil. MainSlide-
ShowViewController calls this method from —viewDidLoad: to see if an external
display is already available.

Listing 23.6 Detecting External Displays

- (UIScreen *)getExternalScreen

{

 NSArray *screens = [UIScreen screens];

 UIScreen *externalScreen = nil;

 if ([screens count] > 1) {

 // The internal screen is guaranteed to be at index 0.

 externalScreen = [screens lastObject];

 }

 return externalScreen;

}

When an external display is connected, MainSlideShowViewController will
call the –configureExternalScreen: method in Listing 23.7 to create the display’s
window and view controller.

Listing 23.7 Configuring an External Display

- (void)configureExternalScreen:(UIScreen *)externalScreen

{

 // Clear any existing external screen items

 [self setExternalDisplaySlideshowController:nil];

 [self setExternalScreenWindow:nil];

 // Create a new window and move it to the external screen

 [self setExternalScreenWindow:[[UIWindow alloc]

 initWithFrame:[externalScreen applicationFrame]]];

 [[self externalScreenWindow] setScreen:externalScreen];

Turner_Book.indb 617 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 618

 // Create a SlideShowViewController to handle slides on the

 // external screen

 SlideShowViewController *externalSlideController =

 [[SlideShowViewController alloc] init];

 [self setExternalDisplaySlideshowController:externalSlideController];

 [externalSlideController setDelegate:[self delegate]];

 [externalSlideController setStartIndex:[self currentIndex]];

 // Add the external slideshow view to the external window and

 // resize it to fit

 [[self externalScreenWindow] addSubview:[externalSlideController view]];

 [[externalSlideController view] setFrame:[[self externalScreenWindow] frame]];

 // Set the external screen view's background color to match the

 // one configured in the storyboard

 [[externalSlideController view]

 setBackgroundColor:[[self view] backgroundColor]];

 // Show the window

 [[self externalScreenWindow] makeKeyAndVisible];

}

This method begins by checking to see if a window and view controller already
exist for an external screen. Since the app will be detecting display connect and dis-
connect events, these objects should already be nil. With AirPlay, though, it’s some-
times possible to receive multiple connection events with no intervening disconnect
event, so it’s best to make sure that the app starts “clean” here.

This method then creates a UIWindow for the external display. The window’s frame
is the same as the applicationFrame property of the screen, which is the area avail-
able for use by the app. This window is then moved to the new screen. You can move
a window to a new screen at any time, but if the window already has content, it can
be an expensive operation. It’s best to move the window first and add content to it
later.

Next we create a SlideShowViewController to display slides on the exter-
nal display. Since this is a new instance, we also need to set the delegate and the
startIndex of the new view controller to match self’s values. They need to be the
same as the ones in MainSlideShowViewController so that the internal and exter-
nal displays will show the same photos.

Once the view controller exists, we add its view to the UIWindow we just cre-
ated and resize the view to match the window’s size. Since external displays come in
a variety of sizes, we don’t know the size in advance, so we need to set it here. Then
we set the view’s background color to match [self view]’s background color, which
is the one configured in the storyboard. Finally, call –makeKeyAndVisible to make
the new window visible on the external display. This is when the slideshow actually
appears there.

Turner_Book.indb 618 12/11/11 6:47 PM

ptg999

Managing External Displays 619

We’ll make use of these methods in –viewDidLoad. We need to check whether
an external display is already connected and register for notifications of screens being
connected and disconnected. Use the code in Listing 23.8 for MainSlideShowView-
Controller’s –viewDidLoad.

Listing 23.8 Setting Up External Screen Management in
MainSlideShowViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

 [self updateNavBarButtonsForPlayingState:YES];

 // Check for an extra screen existing right now

 UIScreen *externalScreen = [self getExternalScreen];

 if (externalScreen != nil) {

 [self configureExternalScreen:externalScreen];

 }

 NSNotificationCenter *notificationCenter = [NSNotificationCenter
defaultCenter];

 // Add observers for screen connect/disconnect

 [notificationCenter addObserverForName:UIScreenDidConnectNotification

 object:nil

 queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *note)

 {

 UIScreen *newExternalScreen = [note object];

 [self configureExternalScreen:newExternalScreen];

 }];

 [notificationCenter addObserverForName:UIScreenDidDisconnectNotification

 object:nil

 queue:[NSOperationQueue mainQueue]

 usingBlock:^(NSNotification *note)

 {

 [self setExternalDisplaySlideshowController:nil];

 [self setExternalScreenWindow:nil];

 }];

}

The first part of this code calls the –getExternalScreen method from previously
to look for external displays. If one is found, it calls –configureExternalScreen to
set up the display’s contents.

Turner_Book.indb 619 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 620

Following this, the code registers for UIScreenDidConnectNotification and
UIScreenDidDisconnectNotification to track screen events. If a new display is
connected, the code calls –configureExternalScreen to add content to it. If one
is disconnected, the code disposes of the externalDisplaySlideshowController
and externalScreenWindow instance variables, since they aren’t needed anymore.

Advancing to the Next Photo
The app is now displaying slideshow-related view controllers on one or more displays.
To actually have a slideshow we need to add a timer to automatically advance to the
next slide at regular intervals. We also need to arrange for the main screen slideshow
controller to tell the external display when to change photos. We’ll do this in Main-
SlideShowViewController, since it is always present during slideshows.

Create another custom setter method for currentIndex so that setting the cur-
rent index on the main screen slideshow controller also updates the external display, if
there is one. This setter is given in Listing 23.9.

Listing 23.9 Custom Setter for currentIndex in
MainSlideShowViewController

- (void)setCurrentIndex:(NSInteger)currentIndex

{

 [super setCurrentIndex:currentIndex];

 [[self externalDisplaySlideshowController] setCurrentIndex:currentIndex];

 [[self currentPhotoView] setUserInteractionEnabled:YES];

 UITapGestureRecognizer *photoTapRecognizer =

 [[UITapGestureRecognizer alloc]

 initWithTarget:self

 action:@selector(photoTapped:)];

 [[self currentPhotoView] addGestureRecognizer:photoTapRecognizer];

}

First, of course, the setter calls super’s implementation, which we discussed earlier.
Then it calls –setCurrentIndex on the external display’s view controller to update
the photo displayed there. If there isn’t an external display, [self externalDisplay-
SlideShowController] will be nil. As you probably recall, sending a message to nil
in Objective-C is valid and is equivalent to doing nothing, so we don’t need to check for
nil first.

The code does a little more setup for currentPhotoView, adding a tap gesture
recognizer which calls the –photoTapped: method. As with PhotoBrowserView-
Controller, this is part of the chrome-hiding system. Buttons will automatically hide
after a few seconds but will reappear when the user taps on the screen.

Turner_Book.indb 620 12/11/11 6:47 PM

ptg999

Advancing to the Next Photo 621

Advancing to the next photo is managed by an NSTimer, which periodically
updates currentIndex. Create the timer in –viewWillAppear: using the code in
Listing 23.10.

Listing 23.10 Creating a Timer to Automatically Move to the Next Photo

NSTimer *timer = [NSTimer scheduledTimerWithTimeInterval:5.0

 target:self

 selector:@selector(advanceSlide:)

 userInfo:nil

 repeats:YES];

[self setSlideAdvanceTimer:timer];

This creates an NSTimer that calls the –advanceSlide: method on self every 5
seconds. The –advanceSlide: method is shown in Listing 23.11.

Listing 23.11 Advancing to the Next Photo

- (void)advanceSlide:(NSTimer *)timer

{

 [self setCurrentIndex:[self currentIndex] + 1];

}

This method just increments currentIndex by one. Doing so calls both self and
super’s custom setter methods, which in turn update the photo display on both inter-
nal and external displays. This method doesn’t bother checking whether the new value
is valid, because that is handled in the setter.

It’s also important to make sure that MainSlideShowViewController cleans
up after itself when it leaves the screen. It needs to remove the slideshow and chrome
t imers as well as objects that manage the external display. This should happen in
–viewWillDisappear, which will be called anytime the user ends a slideshow. Make
MainSlideShowViewController’s –viewWillDisappear method look like Listing
23.12.

Listing 23.12 Cleaning Up MainSlideShowViewController Data When a Slide
Show Ends

- (void)viewWillDisappear:(BOOL)animated

{

 [self cancelChromeDisplayTimer];

 [[self slideAdvanceTimer] invalidate];

 [self setSlideAdvanceTimer:nil];

 [self setExternalDisplaySlideshowController:nil];

 [self setExternalScreenWindow:nil];

}

Turner_Book.indb 621 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 622

Adding Slideshow User Interface Controls
The main screen slideshow display will include some basic user interface controls.
Users will be able to pause or resume slideshows and to manually advance to the next
or previous photo in the album. We’ll do this with buttons on the navigation bar,
again using an approach similar to PhotoBrowserViewController.

The –updateNavBarButtonsForPlayingState method in Listing 23.13 creates
these buttons. It takes one argument, a BOOL that indicates whether the navigation bar
should include a play button or a pause button.

Listing 23.13 Adding Slideshow Controls

- (void)updateNavBarButtonsForPlayingState:(BOOL)playing

{

 UIBarButtonItem *rewindButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemRewind

 target:self

 action:@selector(backOnePhoto:)];

 [rewindButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *playPauseButton;

 if (playing) {

 playPauseButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemPause

 target:self

 action:@selector(pause:)];

 } else {

 playPauseButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemPlay

 target:self

 action:@selector(resume:)];

 }

 [playPauseButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *forwardButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemFastForward

 target:self

 action:@selector(forwardOnePhoto:)];

 [forwardButton setStyle:UIBarButtonItemStyleBordered];

 NSArray *toolbarItems = [NSArray arrayWithObjects:

 rewindButton, playPauseButton, forwardButton, nil];

 UIToolbar *toolbar = [[ClearToolbar alloc]

 initWithFrame:CGRectMake(0, 0, 200, 44)];

 [toolbar setBackgroundColor:[UIColor clearColor]];

 [toolbar setBarStyle:UIBarStyleBlack];

 [toolbar setTranslucent:YES];

 [toolbar setItems:toolbarItems];

Turner_Book.indb 622 12/11/11 6:47 PM

ptg999

Adding Slideshow User Interface Controls 623

 UIBarButtonItem *customBarButtonItem =

 [[UIBarButtonItem alloc] initWithCustomView:toolbar];

 [[self navigationItem]

 setRightBarButtonItem:customBarButtonItem

 animated:YES];

}

The general idea in this method is the same as in PhotoBrowserView-
Controller’s –addButtonsToNavigationBar method. The code creates several
UIBarButtonItem instances, adds them to a UIToolbar, and then places that toolbar
in the navigation item. The biggest change is that the collection of buttons depends
on the playing argument. If playing is YES, the toolbar includes a pause button. If
playing is NO, the toolbar includes a play button.

The actions triggered by these buttons are shown in Listing 23.14.

Listing 23.14 Actions for Slideshow Controls

- (void)pause:(id)sender

{

 [[self slideAdvanceTimer] setFireDate:[NSDate distantFuture]];

 [self updateNavBarButtonsForPlayingState:NO];

}

- (void)resume:(id)sender

{

 [[self slideAdvanceTimer] setFireDate:[NSDate date]];

 [self updateNavBarButtonsForPlayingState:YES];

}

- (void)backOnePhoto:(id)sender

{

 [self pause:nil];

 [self setCurrentIndex:[self currentIndex] - 1];

}

- (void)forwardOnePhoto:(id)sender

{

 [self pause:nil];

 [self setCurrentIndex:[self currentIndex] + 1];

}

In the –pause: method we want to stop the automatic photo advance timer. There
is more than one way we could do this. In this case we do it by manually changing the
timer’s fire time. Normally it repeats at regular intervals, but it is possible to give it a
specific date for its next fire time. It then sits idle until that time occurs. Here, we set
the time to [NSDate distantFuture]. The exact meaning of distantFuture is

Turner_Book.indb 623 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 624

not documented except to say that it is centuries into the future. For our purposes we
can regard this as meaning “never,” which effectively pauses the timer. This method also
updates the toolbar buttons so that the pause button will be replaced by a play button.

When –resume: is called, we undo the effects of –pause:. To resume automatic
slide advancement we again update the timer’s fire date, this time telling it to fire
immediately. It will then continue at its scheduled interval. We again update the tool-
bar buttons, this time putting the pause button back.

The –backOnePhoto: and –forwardOnePhoto: methods move to the previous
and next photos respectively by changing currentIndex. Again, we don’t bother
checking whether the new values for currentIndex are valid here since the setter
method will take care of that. In both cases we also pause the auto-advance timer,
since tapping either of these buttons implies that the user wants to take control of the
photo display.

Updating the Photo Browser
Great, we now have a slideshow! Except ... we don’t have any code to load it yet. We
need to do something about that.

PhotoBrowserViewController already has a placeholder method called –slide-
show: which is connected to the Slideshow button. And we now have a segue named
SlideshowSegue that loads the slideshow. The obvious thing to do, then, is connect
these two by implementing –slideshow:, as shown in Listing 23.15.

Listing 23.15 Loading the Slideshow from PhotoBrowserViewController

- (void)slideshow:(id)sender

{

 [self performSegueWithIdentifier:@"SlideshowSegue" sender:self];

}

We also need to tell the new slideshow what photo it should start at and provide it
with a delegate so that it can load photos. We’ll do this by implementing –prepare-
ForSegue: in PhotoBrowserViewController, as shown in Listing 23.16.

Listing 23.16 Configuring the Slideshow in PhotoBrowserViewController

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender

{

 if ([[segue destinationViewController] isKindOfClass:

 [MainSlideShowViewController class]]) {

 [self setSlideShowController:

 (MainSlideShowViewController *)[segue destinationViewController]];

 [[self slideShowController] setDelegate:[self delegate]];

 [[self slideShowController] setStartIndex:[self currentIndex]];

 }

}

Turner_Book.indb 624 12/11/11 6:47 PM

ptg999

A Note on Testing and Debugging 625

This method is straightforward; all it does is provide the new MainSlideShow-
ViewController with a delegate and a starting point. Note that this code assumes
the existence of an instance variable to hold that controller, which we’ll provide by
adding a declaration to the class continuation:

@property (nonatomic, strong) MainSlideShowViewController *slideShowController;

Why do we need to keep a reference to the slideshow controller anyway? There’s
one more thing we really should do, for consistency of user experience. The slide-
show will start with whatever photo is being displayed in the photo browser. When
the slideshow finishes, the photo browser should show the last photo displayed. Going
back to the initial photo would be slightly jarring since it would unexpectedly change
photos when the slideshow finishes. We’ll do this by changing –viewWillAppear:,
replacing the lines that set currentIndex and scrolling to that index with the lines
shown in Listing 23.17.

Listing 23.17 Updated Code to Set currentIndex in
PhotoBrowserViewController’s –viewDidAppear:

 if ([self slideShowController] != nil) {

 [self setCurrentIndex:[[self slideShowController] currentIndex]];

 [self scrollToIndex:[[self slideShowController] currentIndex]];

 [self setSlideShowController:nil];

 } else {

 [self setCurrentIndex:[self startAtIndex]];

 [self scrollToIndex:[self startAtIndex]];

 }

In this updated code, if the view is appearing for the first time, it proceeds as
before. It sets currentIndex to the value of startIndex and updates the scroll
view. But if the view is loading because a slideshow has just finished, it instead updates
currentIndex to the slideshow’s index value. This way, the photo browser shows
whatever photo was just shown in the slideshow.

A No te on Testing and Debugging
When you work with code that can use external displays, you may run into a conun-
drum when attempting to test the code. You install and test apps on a device using
Xcode via a USB cable connected to the iPad’s dock connector. But if you’re using a
wired display, you need to use that dock connector for the video adapter! You can’t
connect the device to both the Mac and the display at the same time, and as a result
you can’t run the debugger or even see the device console while the app is running.

One approach is to insert a lot of NSLog() statements, run the app, and then recon-
nect the device to the Mac. You can then inspect the device console in Xcode and see
what messages were printed. It’s awkward, but it does give insight into what is hap-
pening on the device.

Turner_Book.indb 625 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 626

Perhaps surprisingly, the simulator proves quite useful in this scenario. The simula-
tor’s Hardware menu has an entry labeled TV Out, which lists several screen resolu-
tions (Figure 23.2).

If you select one of the TV Out options, the iOS Simulator opens a new window
matching the size you’ve selected. This window acts as an external display connected
to the simulator. It’s not a perfect solution. There is no automatic mirroring, mak-
ing the simulator more like the original iPad than the iPad 2. Also, you can’t simulate
connecting and disconnecting displays while the app is running, because changing the
TV Out option causes the app to quit. Still, it’s extremely convenient if you’re debug-
ging code that uses an external display.

Of course, if you’re working with an AirPlay device, this is not an issue. Just leave
the device connected to the Mac and work with the app normally.

Addi ng AirPlay Support
The external display code we have added works the same with AirPlay destinations
as with wired external displays. The only extra detail we need for AirPlay support is
some way for the user to select an AirPlay destination to use as the external display.

The MediaPlayer framework has a class called MPVolumeView that includes
the option to select AirPlay destinations. The class is capable of showing a volume
slider and a route button that can be used to select AirPlay devices. Both of these are
optional, so in this case we’ll use the route button but turn off the volume slider.

First you’ll need to add the MediaPlayer framework to the app. Do this in the
build phases settings for the app, just like in Chapter 13 when you added the Core
Data framework. Then, import MediaPlayer.h into MainSlideShowViewController.m so
that you can use MPVolumeView:

#import <MediaPlayer/MediaPlayer.h>

Figure 23.2 External display options in the iOS Simulator

Turner_Book.indb 626 12/11/11 6:47 PM

ptg999

Adding AirPlay Support 627

We’ll add MPVolumeView to the toolbar at the top of the screen, next to the play/
pause, back, and forward buttons. Therefore, we’ll make some additions to the
–updateNavBarButtonsForPlayingState: method we discussed earlier. The new
version is shown in Listing 23.18.

Listing 23.18 New Code to Add an AirPlay Destination Selector

- (void)updateNavBarButtonsForPlayingState:(BOOL)playing

{

 UIBarButtonItem *rewindButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemRewind

 target:self

 action:@selector(backOnePhoto:)];

 [rewindButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *playPauseButton;

 if (playing) {

 playPauseButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemPause

 target:self

 action:@selector(pause:)];

 } else {

 playPauseButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemPlay

 target:self

 action:@selector(resume:)];

 }

 [playPauseButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *forwardButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemFastForward

 target:self

 action:@selector(forwardOnePhoto:)];

 [forwardButton setStyle:UIBarButtonItemStyleBordered];

 // Add the AirPlay selector

 MPVolumeView *airPlaySelectorView = [[MPVolumeView alloc] init];

 [airPlaySelectorView setShowsVolumeSlider:NO];

 [airPlaySelectorView setShowsRouteButton:YES];

 CGSize airPlaySelectorSize = [airPlaySelectorView

 sizeThatFits:CGSizeMake(44.0, 44.0)];

 [airPlaySelectorView setFrame:

 CGRectMake(0, 0, airPlaySelectorSize.width,

 airPlaySelectorSize.height)];

 UIBarButtonItem *airPlayButton = [[UIBarButtonItem alloc]

 initWithCustomView:airPlaySelectorView];

 NSArray *toolbarItems = [NSArray arrayWithObjects:

 airPlayButton, rewindButton, playPauseButton, forwardButton, nil];

Turner_Book.indb 627 12/11/11 6:47 PM

ptg999

Chapter 23 Producing a Slideshow with AirPlay 628

 UIToolbar *toolbar = [[ClearToolbar alloc]

 initWithFrame:CGRectMake(0, 0, 200, 44)];

 [toolbar setBackgroundColor:[UIColor clearColor]];

 [toolbar setBarStyle:UIBarStyleBlack];

 [toolbar setTranslucent:YES];

 [toolbar setItems:toolbarItems];

 UIBarButtonItem *customBarButtonItem = [[UIBarButtonItem alloc]

 initWithCustomView:toolbar];

 [[self navigationItem]

 setRightBarButtonItem:customBarButtonItem

 animated:YES];

}

The new code adds a new button on the toolbar, which contains an MPVolumeView.
Since the code turns off the volume slider and enables the route button, the result-
ing MPVolumeView is a small button-size view. Its exact size is not documented, but
we can ask it how big it needs to be using the –sizeThatFits: method. When the
user taps this button, she’ll be presented with a popup menu listing available AirPlay
destinations.

One nice feature about MPVolumeView’s route button is that it automatically hides
itself if no AirPlay destinations are available. That way users don’t get a useless button
in the app in those situations. If you don’t have an Apple TV, you won’t see the button
even after adding the code in Listing 23.18.

Using AirPlay
Running the slideshow via AirPlay requires turning on device mirroring for the iPad.
As the term suggests, when device mirroring is active, the iPad’s internal screen is
mirrored to the AirPlay destination just as with a wired external display. It may seem
strange that device mirroring is required when the slideshow is designed specifically to
not use mirroring, but that’s how Apple has implemented the API.

To enable device mirroring via AirPlay, double-tap the iPad’s Home button to
show the application switcher, and drag to show the audio controls. If an AirPlay
device is available, these will include an AirPlay menu (Figure 23.3).

You’ll need to select the AirPlay device from the popup menu and enable mirror-
ing. If device mirroring is not turned on, [UIScreen screens] returns only a single
UIScreen instance representing the internal screen. What’s more, UIScreenDid-
ConnectNotification is never posted. If you enable device mirroring while a slide-
show is running, UIScreenDidConnectNotification will be posted.

Turner_Book.indb 628 12/11/11 6:47 PM

ptg999

Exercises 629

Summary
Showing a slideshow on an external display is a great way to share photos with a group
of people. (Just don’t overdo it on the vacation photos.) In this chapter, we covered
how to run a slideshow and how to make use of both wired and wireless external dis-
plays. The code for making use of external displays would work with any kind of con-
tent and uses the same Cocoa Touch APIs you’re already familiar with. You can also
take AirPlay further and send audio or video over the wireless link. Many apps can
benefit from intelligent use of external displays, and now PhotoWheel is among them.

Next we’ll explore the new-to-iOS Core Image framework. We’ll add fun and
entertaining image transformations and see how to make PhotoWheel locate and zoom
in on faces in a picture.

Exercises
1. The slideshow transition in –setCurrentIndex: uses a page-curl effect when

changing slides. Experiment with other transition effects, like the f lip-style tran-
sitions offered by UIViewAnimationOptionTransitionFlipFromRight and
UIViewAnimationOptionTransitionFlipFromLeft.

2. This chapter’s code didn’t set the animation timing to use when changing slides,
so it used the default setting of UIViewAnimationOptionCurveEaseInOut.
Look up some other view animation options in the documentation for UIView
and try different timing options. Try some others, such as UIViewAnimation-
OptionCurveEaseIn or UIViewAnimationOptionCurveLinear.

Figure 23.3 Enabling device mirroring over AirPlay

Turner_Book.indb 629 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

24
Visual Effects with Core Image

Sometimes photos don’t come out as well as you hoped. The image is too dark, or too light, or the
people have red eyes. Most photo management software includes basic editing features to help you
deal with these problems, as well as visual effects that can be applied to change photos in fun and
interesting ways. Wouldn’t it be nice if PhotoWheel could do that too? Well, it will by the end of
this chapter: Enter Core Image.

In this chapter we’ll use Core Image to add these features and more. We’ll explore creating
filters to create visual effects and to automatically enhance photos. We’ll also see how Core Image
can locate faces in a picture.

Core Image Concepts
Core Image has been around for OS X, and it has been introduced in iOS 5 to provide
visual effects for use with both photos and video. It includes a variety of color altera-
tions and enhancements, image compositing effects for combining multiple images,
automatic photo enhancement including red-eye repair, and face detection. It works
nondestructively on images, and effects can be chained together for more complex
transformations.

We’ll focus mainly on CIFilter, the Core Image Filter class. A CIFilter typi-
cally takes one or two images and one or more configuration parameters as inputs and
produces a single output image. iOS includes numerous built-in filters that perform
different image operations. CIFilters work on instances of CIImage, which is the
class Core Image uses to store images. Figure 24.1 shows a simple example.

CIFilters can be chained together by simply connecting the output image of one
filter to the input image of another. By doing this you can combine multiple effects to
get more complex results. Figure 24.2 shows an example of using multiple filters on
the same original image.

An important concept when using Core Image is that a CIImage instance does
not actually contain an image. It contains an image recipe, that is, instructions for how
to create a particular image. Setting up filters defines the steps from input image to

Turner_Book.indb 631 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image632

output but does not actually render the filtered output image. Getting the output
image from a CIFilter doesn’t apply the filter; rather it creates a recipe for a filtered
image.

Rendering filtered images is the responsibility of a CIContext. CIContexts do the
work of carrying out the CIImage’s recipe and producing the final image. Once the
final image is rendered, you can get a UIImage to display on the screen or save to a
file or to the user’s photo library.

CPU or GPU?
CIContexts can process images on either the CPU or the GPU, giving a choice
between software and hardware image rendering. It’s tempting to think that the GPU
would always be the better choice, since it’s dedicated to graphics processing and
leaves the CPU free for other work.

That’s not always the case, though. Both CPU and GPU CIContexts have limits on
the size of their input and output images, and the GPU limit is much smaller than the
CPU limit. Also, Core Animation uses the GPU, so if your app is doing animations, the
GPU may already be busy with other work. Finally, CPU rendering uses higher-precision
math and can produce more accurate results.

Image

CIImage CIImageCIFilter

Input Image

Input intensity
Level

Output Image
Image

O

Sepia
Filter

Figure 24.1 Single CIFilter example with one input image and one
configuration parameter

Image

CIImage

Image

CIImageCIFilter

Sepia
Filter

CIFilter

Hue
Adjust
Filter

CIFilter

Contrast
Filter

Figure 24.2 Chaining multiple CIFilters for more complex effects

Turner_Book.indb 632 12/11/11 6:47 PM

ptg999

633Introducing CIFilter

Introducing CIFilter
iOS 5 includes numerous built-in filters. You could read about them in the documen-
tation, but you can also ask the runtime environment what is available. You can get a
list of all filter names directly from CIFilter:

NSArray *filterNames = [CIFilter filterNamesInCategory:kCICategoryBuiltIn];

As the method name implies, there are various filter categories. Some filters belong
to more than one category. This line of code asks for all built-in filters. For Photo-
Wheel we might look up filters in the kCICategoryStillImage category instead,
which contains all filters that work on still images.

Filter names are strings. Some examples include CIHueAdjust, CICrop, and
CIColorInvert. CIFilter can also provide detailed information about how to use
each filter via its attributes method. The attributes describe each of the filter’s
inputs, including acceptable values. For example, the code in Listing 24.1 looks up
information on the CISepiaTone filter.

Listing 24.1 Looking Up Attributes of the CISepiaTone Filter

CIFilter *sepiaFilter = [CIFilter filterWithName:@"CISepiaTone"];

NSLog(@"CISepiaTone attributes: %@", [sepiaFilter attributes]);

The result of running this code is shown in Listing 24.2.

Listing 24.2 Attributes of CISepiaTone Filter

2011-07-29 17:02:31.833 CIDemo[13727:207] CISepiaTone attributes: {

 CIAttributeFilterCategories = (

 CICategoryColorEffect,

 CICategoryVideo,

 CICategoryInterlaced,

 CICategoryNonSquarePixels,

 CICategoryStillImage,

 CICategoryBuiltIn

);

 CIAttributeFilterDisplayName = "Sepia Tone";

 CIAttributeFilterName = CISepiaTone;

 inputImage = {

 CIAttributeClass = CIImage;

 CIAttributeType = CIAttributeTypeImage;

 };

 inputIntensity = {

 CIAttributeClass = NSNumber;

 CIAttributeDefault = 1;

 CIAttributeIdentity = 0;

 CIAttributeMax = 1;

Turner_Book.indb 633 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image634

 CIAttributeMin = 0;

 CIAttributeSliderMax = 1;

 CIAttributeSliderMin = 0;

 CIAttributeType = CIAttributeTypeScalar;

 };

}

From this we see that CISepiaTone has two inputs. The first is an image to fil-
ter and the second is the intensity of the sepia tone effect. The attributes dictionary
includes the expected class for each argument and a Core Image type field. For the
intensity input it also includes a variety of details about acceptable values, including
minimum, maximum, default, and suggestions for what values to use on a slider-style
UI control. The attributes even include a suggested display name suitable for presenting
to users. By inspecting filter attributes it is possible to generate user interface controls
for filters dynamically, without hard-coding any of the information about the filter.

Filter Types
Built-in filters are grouped into over a dozen different categories, but in general they
fall into three distinct groups:

n Filters that alter single images. These filters take one input image and zero
or more configuration parameters. They include filters that change an image’s
colors or that apply an affine transform to an image.

n Filters that combine images. These filters take two input images and com-
bine them using one of a variety of image compositing or blending techniques.

n Filters that generate images. These filters have no input image but take one
or more configuration parameters. They create new images that contain gra-
dients, checkerboards, or other designs whose appearance is determined by the
input values.

In this chapter we’ll expand PhotoWheel to include some fun image effects that
users can apply to pictures in their library.

Using CIFilter
Basic CIFilter usage is quite simple, though it does involve new classes and concepts.
CIFilters work on and produce instances of CIImage. Final images are rendered not
by the filter or the image, but by a CIContext. Listing 24.3 shows a simple example
of using the CISepiaTone filter to apply a sepia tint to an image. This example also
shows how you can convert between UIImage and CIImage, which is useful when
you’re working with UIKit.

Turner_Book.indb 634 12/11/11 6:47 PM

ptg999

635Introducing CIFilter

Listing 24.3 Using the CISepiaTone Filter with a UIImage

- (UIImage *)sepiaImageFromImage:(UIImage *)myImage

{

 CIImage *myCIImage = [CIImage imageWithCGImage:[myImage CGImage]];

 CIFilter *sepiaFilter = [CIFilter filterWithName:@"CISepiaTone"];

 [sepiaFilter setValue:myCIImage forKey:kCIInputImageKey];

 [sepiaFilter setValue:[NSNumber numberWithFloat:0.9]

 forKey:@"inputIntensity"];

 CIImage *sepiaImage = [sepiaFilter outputImage];

 CIContext *context = [CIContext contextWithOptions:[NSDictionary

 dictionaryWithObject:[NSNumber numberWithBool:NO]

 forKey:kCIContextUseSoftwareRenderer]];

 CGImageRef sepiaCGImage = [context createCGImage:sepiaImage

 fromRect:[sepiaImage extent]];

 UIImage *sepiaUIImage = [UIImage imageWithCGImage:sepiaCGImage];

 CFRelease(sepiaCGImage);

 return sepiaUIImage;

}

The first thing this method does is convert the incoming UIImage to a CIImage so
that CIFilter can work with it. This is done using the CGImage format defined by
Core Graphics. Both UIImage and CIImage work with CGImages, so here it takes the
role of the transfer point from one class to another.

Next, the code creates the CIFilter, looking it up by name. As seen earlier,
CISepiaTone takes two parameters: an input image and an intensity level. The code
sets both of these via key-value coding.

The code assigns the result of the filter to sepiaImage, which is another CIImage.
Recall from earlier that this doesn’t actually contain an image; it instead contains a
recipe for creating an image. At this point the code has defined the path from the
original image to the result via the filter but has not actually applied the filter and ren-
dered the output image.

Rendering the result is the CIContext’s job. The method creates a CIContext,
setting the kCIContextUseSoftwareRenderer option to NO. This means that the
CIContext will use the GPU to render the image instead of the CPU. Creating a
CIContext on the f ly like this is okay if you’ll need it only occasionally, but if you
expect to be doing a lot of Core Image work, it’s best to make the context an instance
variable and reuse it whenever you need it. The final image is rendered as a CGImage
in the call to –createCGImage:fromRect:. The first argument is the CIImage just
created, and the second is that image’s extent, or size and location.

Turner_Book.indb 635 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image636

The rendered image is converted back to a UIImage and returned. Since ARC
manages only Objective-C objects, it is necessary to explicitly release the interim
CGImageRef sepiaCGImage.

Image Analysis
Filters are useful and often fun, but Core Image goes further, into features that require
analyzing the source image instead of merely processing its pixels. One is the auto-
enhance feature you have probably noticed in iOS 5’s camera app, which includes red-
eye elimination. The other is face detection, which locates any faces found in an image
as well as specific facial features like the person’s eyes and mouth.

Automatic Enhancement
Image enhancement uses a series of CIFilters. Rather than create the filters your-
self, though, you ask CIImage to create them for you. A CIImage instance analyzes
its image to determine what enhancements might be needed and returns an array of
CIFilters. You then chain these filters together to produce the enhanced image. List-
ing 24.4 shows an example of applying auto-enhance filters to a UIImage.

Listing 24.4 Auto-enhancing a UIImage

- (UIImage *)autoEnhancedVersionOfImage:(UIImage *)myImage

{

 CIImage *myCIImage = [CIImage imageWithCGImage:[myImage CGImage]];

 NSArray *autoAdjustmentFilters = [myCIImage autoAdjustmentFilters];

 CIImage *enhancedCIImage = myCIImage;

 for (CIFilter *filter in autoAdjustmentFilters) {

 [filter setValue:enhancedCIImage forKey:kCIInputImageKey];

 enhancedCIImage = [filter outputImage];

 }

 CGImageRef enhancedCGImage = [[self ciContext]

 createCGImage:enhancedCIImage

 fromRect:[enhancedCIImage extent]];

 UIImage *enhancedImage = [UIImage imageWithCGImage:enhancedCGImage];

 CFRelease(enhancedCGImage);

 return enhancedImage;

}

As with the previous example, the code in Listing 24.4 starts by converting the
incoming UIImage to a CIImage.

Next, it asks the CIImage to analyze the image and determine what, if any, fil-
ters are needed to enhance it. This step is processor intensive, especially with larger

Turner_Book.indb 636 12/11/11 6:47 PM

ptg999

Image Analysis 637

images, so you should consider doing it on a background thread. The result is several
CIFilters collected in an array. In this case the code asks for all possible auto-adjust
filters, which may include red-eye correction. If you don’t think you’ll need that, you
can speed up the analysis by turning that enhancement off. In that case you would use
–autoAdjustmentFiltersWithOptions: and set the kCIImageAutoAdjustRed-
Eye option to NO.

To get the enhanced image you need to apply each of these filters to the original
image. The easiest way to do that is to chain them end to end. Then you can process
the entire filter chain at once when you render the final image. The code does this
using the CIImage enhancedCIImage, which is initially set to the original image.
That becomes the input to the first filter. At each stage in the for loop the code sets
the current filter’s input to the current value of enhancedImage. Then it updates
enhancedImage to point to the current filter’s outputImage. When the loop com-
pletes, enhancedImage points to the output of the final enhancement filter.

In this case the CIImage has a more complex image recipe than in the earlier
CISepiaTone example, but it’s still just a recipe and not the final rendered image. The
rest of the method renders the result and converts it to UIImage. The only rendering
difference in this method is that the code uses an instance variable called ciContext
that contains a CIContext instance owned by the class.

Face Detection
Detecting faces also requires analyzing the image, but in this case no CIFilters are
involved. Instead, you use the CIDetector class. CIDetector is designed to analyze
images and find specific types of features. As of iOS 5, there is only one detector,
which locates faces.

CIDetector analyzes an image to locate features and returns an array of
CIFeature instances corresponding to those features. When detecting faces, the
array contains instances of CIFaceFeature, which is a subclass of CIFeature. Each
CIFaceFeature contains the overall bounds of the detected face. It may also contain
eye and mouth locations, when they can be determined. Listing 24.5 shows a code
snippet that finds faces in a CIImage.

Listing 24.5 Detecting Faces in an Image

 NSDictionary *detectorOptions = [NSDictionary

 dictionaryWithObject:CIDetectorAccuracyLow

 forKey:CIDetectorAccuracy];

 CIDetector *faceDetector = [CIDetector detectorOfType:CIDetectorTypeFace

 context:nil

 options:detectorOptions];

 NSArray *faces = [faceDetector featuresInImage:[self filteredCIImage]

 options:nil];

Turner_Book.indb 637 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image638

 if ([faces count] > 0) {

 for (CIFaceFeature *face in faces) {

 NSLog(@"Found face at %@", NSStringFromCGRect([face bounds]));

 }

 }

The code starts by creating a dictionary, which holds options for the face detec-
tor. Currently the only option is the accuracy, which can be high or low. Higher
accuracy takes longer to calculate. The code then creates a CIDetector of type
CIDetectorTypeFace using these options.

Face detection happens during the call to –featuresInImage:options:. Analyz-
ing the image to find faces may be processor intensive, so you may want to dispatch
the process to a background thread. This method returns an array of CIFaceFeatures
representing faces in the image. If no faces were found, the array will be empty.

When this call completes, the code runs through any faces that were found and
prints their bounds.

Adding Core Image Effects to PhotoWheel
Now it’s time to add these features to PhotoWheel. We’ll be adding the following
options to the photo browser:

n A collection of CIFilter effects that modify the image in various ways

The filters will be configured with random attribute values, producing a range
of effects. The app will show small preview images demonstrating the effect the
filter would have.

n Automatic image enhancement
n Automatically zooming an image to focus on faces

The effects will be cumulative, so that the user can apply multiple effects sequentially.

Note
In addition to the code changes presented in this chapter, you must add
CoreImage.framework to the PhotoWheel project.

New Delegate Methods
Since the app will show a small preview of each of the CIFilter effects, Photo-
BrowserViewController needs to be able to look up the small image for the cur-
rent photo. Also, since we are adding the ability to edit an image and save the changes,
the PhotoBrowserViewController needs to be able to replace an existing image
with a new one. For each of these we’ll need to add a new method to the Photo-
BrowserViewControllerDelegate protocol. First change the protocol declaration
in PhotoBrowserViewController.m to look like Listing 24.6.

Turner_Book.indb 638 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 639

Listing 24.6 New Delegate Methods to Support Image Editing

@protocol PhotoBrowserViewControllerDelegate <NSObject>

@required

- (NSInteger)photoBrowserViewControllerNumberOfPhotos:

 (PhotoBrowserViewController *)photoBrowser;

- (UIImage *)photoBrowserViewController:

 (PhotoBrowserViewController *)photoBrowser

 imageAtIndex:(NSInteger)index;

- (UIImage *)photoBrowserViewController:

 (PhotoBrowserViewController *)photoBrowser

 smallImageAtIndex:(NSInteger)index;

- (void)photoBrowserViewController:

 (PhotoBrowserViewController *)photoBrowser

 deleteImageAtIndex:(NSInteger)index;

- (void)photoBrowserViewController:

 (PhotoBrowserViewController *)photoBrowser

 updateToNewImage:(UIImage *)image atIndex:(NSInteger)index;

@end

The implementations of these methods go in PhotoAlbumViewController.m, since that
class is acting as the delegate. They are shown in Listing 24.7.

Listing 24.7 New Delegate Method Implementations

- (UIImage *)photoBrowserViewController:

 (PhotoBrowserViewController *)photoBrowser

 smallImageAtIndex:(NSInteger)index

{

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 Photo *photo = [[self fetchedResultsController] objectAtIndexPath:indexPath];

 UIImage *image = [photo smallImage];

 return image;

}

- (void)photoBrowserViewController:(PhotoBrowserViewController *)photoBrowser

 updateToNewImage:(UIImage *)image

 atIndex:(NSInteger)index;

{

 NSIndexPath *indexPath = [NSIndexPath indexPathForRow:index inSection:0];

 Photo *photo = [[self fetchedResultsController] objectAtIndexPath:indexPath];

 [photo saveImage:image];

 [[self gridView] reloadData];

}

The first method looks up the Photo’s small image. It is nearly identical to the
existing delegate method that looks up the large image.

Turner_Book.indb 639 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image640

The second method is used when the user wants to save changes to an image. It
looks up the Photo at the requested index and calls its –saveImage: method. Recall
that this method will create a new scaled version of the image. The method then tells
its grid view to reload data, so that it will show the new version of the thumbnail.

Instance Variables for Filter Management
The photo browser needs a few new instance variables to manage the filtering process.
Add the property declarations in Listing 24.8 to the PhotoBrowserViewController
class extension at the top of PhotoBrowserViewController.m.

Listing 24.8 New Instance Variable Declarations for
PhotoBrowserViewController

@property (readwrite, strong) CIContext *ciContext;

@property (nonatomic, strong) NSMutableArray *imageFilters;

@property (nonatomic, strong) NSMutableArray *filteredThumbnailPreviewImages;

@property (nonatomic, strong) UIImage *filteredThumbnailImage;

@property (nonatomic, strong) UIImage *filteredLargeImage;

These variables serve the following purposes:
n ciContext is a persistent CIContext that is used every time a new image is

rendered.
n imageFilters contains a collection of CIFilters. The same filter instances

are used to create small preview images and full-size filtered images, so they are
created once for the previews and saved in imageFilters so that they can be
reused for the full-size image.

n filteredThumbnailPreviewImages contains the filter preview images,
which are displayed in the UI.

n filteredThumbnailImage is the same as the raw, unfiltered thumbnail image
at first. As the user applies filters to the image, filteredThumbnailImage is
updated to contain the results of the most recent filter. Each time the user applies
a filter, filteredThumbnailImage updates with a new value selected from
filteredThumbnailPreviewImages.

n Initially, filteredLargeImage is the same as the raw, unfiltered full-size
image. As the user applies filters to the image, filteredLargeImage updates
to contain the results of the most recent filter.

Be sure to add @synthesize statements for all of the new properties.

User Interface Additions
Now we need to add the various UI elements the app needs to provide for the user
to control the effects. The effects UI goes in PhotoBrowserViewController, since
that is where the user views individual images.

Turner_Book.indb 640 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 641

The updated UI will have several additional buttons corresponding to instance
methods as well as new instance variables that will be used to control the UI’s appear-
ance. Start by updating PhotoBrowserViewController.h to look like Listing 24.9.

Listing 24.9 New IBOutlets and IBActions in PhotoBrowserViewController.h

@interface PhotoBrowserViewController : UIViewController <UIScrollViewDelegate>

@property (nonatomic, strong) id<PhotoBrowserViewControllerDelegate> delegate;

@property (nonatomic, assign) NSInteger startAtIndex;

@property (nonatomic, assign, getter = pushedFromFrame) CGRect pushFromFrame;

- (void)toggleChromeDisplay;

@property (strong, nonatomic) IBOutlet UIView *filterViewContainer;

@property (strong, nonatomic) IBOutletCollection(UIButton) NSArray *filterButtons;

// Actions that modify the image

- (IBAction)enhanceImage:(id)sender;

- (IBAction)zoomToFaces:(id)sender;

- (IBAction)applyFilter:(id)sender;

// Actions that save or restore the image

- (IBAction)revertToOriginal:(id)sender;

- (IBAction)saveImage:(id)sender;

- (IBAction)cancel:(id)sender;

@end

The filterViewContainer property will refer to an overall container view
for the Core Image effects view. The filterButtons array is something new, an
IBOutletCollection instead of an IBOutlet. An IBOutletCollection is similar
to an IBOutlet except that it can refer to multiple user interface elements and can be
connected to all of them in the storyboard. In this case the filterButtons collec-
tion will point to several UIButtons in the UI that correspond to different CIFilter
effects.

The first three IBActions will be used to apply Core Image effects to the image.
The rest of the new IBActions will provide the necessary options to revert changes,
save changes, or simply cancel image editing.

Also be sure to add @synthesize directives in PhotoBrowserViewController.m for the
new IBOutlets.

Now we’ll add the actual UI elements corresponding to the new IBOutlets and
IBActions. In MainStoryboard.storyboard, locate the photo browser view controller. The
new UI elements will go at the bottom of the main view and will look like those in
Figure 24.3.

Turner_Book.indb 641 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image642

The new elements include a UIToolbar and several UIButtons, contained in an
overall container view for filter-related UI.

The toolbar contains five UIBarButtonItems and a f lexible space. Add those to
the toolbar. To make the Save button stand out in blue, make sure its Style is set to
Done in the Attributes inspector. Connect these five buttons to the corresponding
IBAction methods declared in PhotoBrowserViewController.h.

The buttons at the bottom should be 100 × 100 pixels, which is the same as Photo-
Wheel’s small image size. Set the button Type for the buttons to Custom in the Attri-
butes inspector so that they won’t automatically be drawn with a rounded border. Set
the background color to something other than white so that they stand out against the
background. The buttons will display the images contained in filteredThumbnail-
PreviewImages. Since the buttons are the same size as the preview images, the but-
ton color won’t be visible, but it is helpful to change the color so that you can see
them when editing the user interface.

Go through the buttons and set the tag for each one to values from 0 to 6, starting
at 0 on the left and working up to 6 on the right. You may need to scroll the Attri-
butes inspector downward to find the Tag option (Figure 24.4). We’ll use the tag val-
ues later to determine which button was pressed.

Connect the new filterViewContainer IBOutlet to the container view just
as you would connect any other IBOutlet. Connecting the filterButtons collec-
tion works almost the same way, except that since it is a collection, you can now make
multiple connections from the same outlet (Figure 24.5).

Figure 24.3 New UI elements for Core Image effects

Turner_Book.indb 642 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 643

Figure 24.4 Setting the tag value on a UIButton

Figure 24.5 Connecting an IBOutletCollection to multiple
UI elements

Turner_Book.indb 643 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image644

Next, we need to add code to control when the new filter container view is visible.
It shouldn’t be visible all the time, only when the user wants to use the filters. At other
times it should disappear. The first change, then, is to make the view hidden when the
photo browser first appears. Do this by adding a line of code in –viewWillAppear
that sets the container’s alpha to zero:

 [[self filterViewContainer] setAlpha:0.0];

To make the filter container show and hide, add the methods in Listing 24.10 to
PhotoBrowserViewController.m.

Listing 24.10 Showing and Hiding the Filter Overlay View

- (void)showFilters:(id)sender

{

 if ([self imageFilters] == nil) {

 [self setImageFilters:

 [NSMutableArray arrayWithCapacity:[[self filterButtons] count]]];

 [self setCiContext:[CIContext contextWithOptions:nil]];

 [self setFilteredThumbnailPreviewImages:[NSMutableArray array]];

 }

 [self setFilteredThumbnailImage:[[self delegate]

 photoBrowserViewController:self

 smallImageAtIndex:[self currentIndex]]];

 UIImage *largeImage = [[self delegate]

 photoBrowserViewController:self

 imageAtIndex:[self currentIndex]];

 [self setFilteredLargeImage:largeImage];

 [self randomizeFilters];

 [[self view] bringSubviewToFront:[self filterViewContainer]];

 [UIView animateWithDuration:0.3 animations:^(void) {

 [[self filterViewContainer] setAlpha:1.0];

 }];

}

- (void)hideFilters

{

 // Hide filter container

 [UIView animateWithDuration:0.3 animations:^(void) {

 [[self filterViewContainer] setAlpha:0.0];

 }];

}

Turner_Book.indb 644 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 645

The showFilters method handles more than just displaying the filter container.
If this is the first time the user has asked to use filters, the method initializes some of
the instance variables added earlier, creating empty arrays and the CIContext that
will render images. It also sets the initial values of filteredThumbnailImage and
filteredLargeImage to images retrieved from the delegate. It creates a collection
of CIFilters using the new randomizeFilters method and then displays the filter
container view. The code fades the filter container gradually into view by animating
its alpha value.

The hideFilters method just makes the filter container invisible by animating its
alpha value back to zero.

Now that we have code to show the filter container, we need some way for the
user to trigger that code. We’ll add a button to the navigation bar to call the –show-
Filters: method. We already have a method called –addButtonsToNavigation-
Bar that sets up buttons there, and we’ll add one more button. Listing 24.11 shows the
updated version of this method, with new code highlighted.

Listing 24.11 Updated Toolbar Buttons, Including a Button to Show the Filter Container

- (void)addButtonsToNavigationBar

{

 UIBarButtonItem *trashButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemTrash

 target:self

 action:@selector(deletePhoto:)];

 [trashButton setStyle:UIBarButtonItemStyleBordered];

 UIBarButtonItem *actionButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAction

 target:self action:@selector(showActionMenu:)];

 [actionButton setStyle:UIBarButtonItemStyleBordered];

 [self setActionButton:actionButton];

 UIBarButtonItem *slideshowButton = [[UIBarButtonItem alloc]

 initWithTitle:@"Slideshow"

 style:UIBarButtonItemStyleBordered

 target:self

 action:@selector(slideshow:)];

 UIBarButtonItem *flexibleSpace = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemFlexibleSpace

 target:nil

 action:nil];

 UIBarButtonItem *filterButton = [[UIBarButtonItem alloc]

 initWithTitle:@"Edit"

 style:UIBarButtonItemStyleBordered

Turner_Book.indb 645 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image646

 target:self

 action:@selector(showFilters:)];

 NSMutableArray *toolbarItems = [[NSMutableArray alloc]

 initWithCapacity:4];

 [toolbarItems addObject:flexibleSpace];

 [toolbarItems addObject:filterButton];

 [toolbarItems addObject:slideshowButton];

 [toolbarItems addObject:actionButton];

 [toolbarItems addObject:trashButton];

 UIToolbar *toolbar = [[ClearToolbar alloc]

 initWithFrame:CGRectMake(0, 0, 250, 44)];

 [toolbar setBackgroundColor:[UIColor clearColor]];

 [toolbar setBarStyle:UIBarStyleBlack];

 [toolbar setTranslucent:YES];

 [toolbar setItems:toolbarItems];

 UIBarButtonItem *customBarButtonItem = [[UIBarButtonItem alloc]

 initWithCustomView:toolbar];

 [[self navigationItem] setRightBarButtonItem:customBarButtonItem animated:YES];

}

This code is mostly the same as before except for the extra button and the wider
size when creating the UIToolbar.

One other UI management detail that we need to handle is sorting the buttons in
the filterButtons array. Using IBOutletCollection is convenient for grouping
the buttons into an array. But unfortunately the order of the array is not guaranteed.
In order to make sure the array is sorted so that it corresponds to the tag values, we’ll
override the setter method for filterButtons and sort the array by button tag. This
method is given in Listing 24.12.

Listing 24.12 Sorting the filterButtons Array by Button Tag Values

- (void)setFilterButtons:(NSArray *)filterButtonsFromIB

{

 -filterButtons = [filterButtonsFromIB sortedArrayUsingComparator:

 ^NSComparisonResult(UIButton *button1, UIButton *button2) {

 return [button1 tag] > [button2 tag];

 }];

}

This method takes the incoming array filterButtonsFromIB, which contains
the buttons in some unknown order, and sorts it using an NSComparator block. The
block looks at the tag values for a pair of buttons and returns the result of comparing

Turner_Book.indb 646 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 647

them. NSArray calls the block repeatedly with different pairs of buttons and produces
a new sorted array. The result is an array where the contents are sorted by tag value.
The code assigns this result to filterButtons.

Creating the CIFilter Effects
PhotoWheel will use several different filters for different visual effects. To provide
some variety in these effects, we’ll use random values for numeric and color filter
parameters. First, we need to get random numbers. Add the RAND_IN_RANGE macro
to the top of PhotoBrowserViewController.m:

#define RAND_IN_RANGE(low,high) (low + (high - low) * \

 (arc4random_uniform(RAND_MAX) / (double)RAND_MAX))

This macro produces a random number in the range from low to high, which can
be either integer or f loating-point values. With arc4random_uniform, it isn’t neces-
sary to seed the random number generation process, so we won’t add code for that.

We’ll use this macro to create random colors for use in filters. Core Image uses
its own CIColor class to represent colors. CIColor can be instantiated with RGB or
RGBA values, so we’ll use two methods that use random values for the color param-
eters. These are shown in Listing 24.13. Add them to PhotoBrowserViewController.m.

Listing 24.13 Creating Random CIColors

- (CIColor *)randomCIColor

{

 CIColor *randomColor = [CIColor colorWithRed:RAND_IN_RANGE(0.0, 1.0)

 green:RAND_IN_RANGE(0.0, 1.0)

 blue:RAND_IN_RANGE(0.0, 1.0)];

 return randomColor;

}

- (CIColor *)randomCIColorAlpha

{

 CIColor *randomColor = [CIColor colorWithRed:RAND_IN_RANGE(0.0, 1.0)

 green:RAND_IN_RANGE(0.0, 1.0)

 blue:RAND_IN_RANGE(0.0, 1.0)

 alpha:RAND_IN_RANGE(0.0, 1.0)];

 return randomColor;

}

The randomCIColor method creates a CIColor with random red, green, and blue
values. In randomCIColorAlpha this is expanded slightly to include a value for alpha,
which allows for partially transparent colors.

Now we’ll create the actual CIFilters. The user interface has seven buttons for dif-
ferent filters. But filters have different effects depending on how they are configured, so
there are only five methods for creating different filters. These are shown in Listing 24.14.

Turner_Book.indb 647 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image648

Listing 24.14 Creating Randomly Configured CIFilters

- (CIFilter *)hueAdjustFilter

{

 CIFilter *hueAdjust = [CIFilter filterWithName:@"CIHueAdjust"];

 CGFloat inputAngle = RAND_IN_RANGE(-M_PI, M_PI);

 [hueAdjust setValue:[NSNumber numberWithFloat: inputAngle]

 forKey:@"inputAngle"];

 return hueAdjust;

}

- (CIFilter *)colorTintFilter

{

 CIColor *tintColor = [self randomCIColor];

 CIFilter *tintFilter = [CIFilter filterWithName:@"CIColorMonochrome"];

 [tintFilter setValue:tintColor forKey:@"inputColor"];

 return tintFilter;

}

- (CIFilter *)falseColorFilter

{

 CIColor *color0 = [self randomCIColor];

 CIColor *color1 = [CIColor colorWithRed:(1.0 - [color0 red])

 green:(1.0 - [color0 green])

 blue:(1.0 - [color0 blue])];

 CIFilter *falseColor = [CIFilter filterWithName:@"CIFalseColor"];

 [falseColor setValue:color0 forKey:@"inputColor0"];

 [falseColor setValue:color1 forKey:@"inputColor1"];

 return falseColor;

}

- (CIFilter *)invertColorFilter

{

 CIFilter *invertFilter = [CIFilter filterWithName:@"CIColorInvert"];

 return invertFilter;

}

- (CIFilter *)filterWithAffineTransform:(CGAffineTransform)transform

{

 CIFilter *transformFilter = [CIFilter filterWithName:@"CIAffineTransform"];

 [transformFilter setDefaults];

 [transformFilter setValue:[NSValue valueWithCGAffineTransform:transform]

 forKey:@"inputTransform"];

 return transformFilter;

}

Turner_Book.indb 648 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 649

The methods in Listing 24.14 create the following types of filters:
n CIHueAdjust: Rotates the color cube used in the image by an angle measured

in radians. The effect is that all the colors in the image shift their hue by a fixed
amount.

n CIColorMonochrome: Tints the image using a single color, giving the effect of
seeing the image though a color filter.

n CIFalseColor: Alters image colors over a range defined by two colors based on
brightness. Brighter colors shift toward one of the color parameters and darker
colors toward the other parameter.

n CIColorInvert: Inverts image colors. Note that this filter is not actually ran-
dom since there are no numeric parameters.

n CIAffineTransform: Applies an affine transform to the image, which can
change its shape or size via matrix math. Affine transforms can rotate images or
f lip or skew them depending on the affine transform. This method will be used
repeatedly with different transform types.

We now have everything we need to create the filters and set up the thumb-
nail preview images in the user interface. This happens in the randomizeFilters
method mentioned earlier, which was called from showFilters. This method is
shown in Listing 24.15.

Note
All of these filters are independent of their input image. That means that they can be
used repeatedly, on different images, exactly as they are. As a result, we can use them to
create preview thumbnail images and then reuse them later on the large image.

Listing 24.15 Creating New Randomized Filters

- (void)randomizeFilters

{

 [[self imageFilters] removeAllObjects];

 [[self filteredThumbnailPreviewImages] removeAllObjects];

 // Hue adjust filter

 CIFilter *hueAdjustFilter = [self hueAdjustFilter];

 [[self imageFilters] addObject:hueAdjustFilter];

 // Color tint filter

 CIFilter *tintFilter = [self colorTintFilter];

 [[self imageFilters] addObject:tintFilter];

 // False color filter

 CIFilter *falseColorFilter = [self falseColorFilter];

 [[self imageFilters] addObject:falseColorFilter];

Turner_Book.indb 649 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image650

 // Invert color filter

 CIFilter *invertFilter = [self invertColorFilter];

 [[self imageFilters] addObject:invertFilter];

 // Rotate 180 degrees filter

 CIFilter *rotateFilter = [self filterWithAffineTransform:

 CGAffineTransformMakeRotation(M_PI)];

 [[self imageFilters] addObject:rotateFilter];

 // Mirror image filter

 CIFilter *mirrorFilter = [self filterWithAffineTransform:

 CGAffineTransformMakeScale(-1, 1)];

 [[self imageFilters] addObject:mirrorFilter];

 // Skew filter

 CIFilter *skewFilter = [self filterWithAffineTransform:

 CGAffineTransformMake(1, tan(M_PI/12), tan(M_PI/16), 1, 0, 0)];

 [[self imageFilters] addObject:skewFilter];

 CIImage *thumbnailCIImage = [CIImage imageWithCGImage:

 [[self filteredThumbnailImage] CGImage]];

 dispatch_apply([[self imageFilters] count],

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),

 ^(size_t i) {

 CIFilter *filter = [[self imageFilters] objectAtIndex:i];

 [filter setValue:thumbnailCIImage forKey:kCIInputImageKey];

 CIImage *filterResult = [filter outputImage];

 CGImageRef filteredCGImage = [[self ciContext]

 createCGImage:filterResult

 fromRect:[filterResult extent]];

 UIImage *filteredImage = [UIImage imageWithCGImage:filteredCGImage];

 CFRelease(filteredCGImage);

 [[self filteredThumbnailPreviewImages] addObject:filteredImage];

 dispatch_async(dispatch_get_main_queue(), ^(void) {

 UIButton *filterButton = [[self filterButtons] objectAtIndex:i];

 [filterButton setImage:filteredImage forState:UIControlStateNormal];

 });

 });

}

Turner_Book.indb 650 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 651

A lot happens in this method, but it is not as complex as it might seem at first. The
first thing the method does is clear out any previously existing filters and filter pre-
view images by clearing the arrays that hold them. The method then runs through
the CIFilter methods described earlier, creating several filters and collecting them
in the imageFilters array. Notice that this method calls –filterWithAffine-
Transform: three times with different transforms, to get different effects. A full dis-
cussion of CGAffineTransform is beyond the scope of this book, but Core Graphics
provides convenience functions for common transforms like rotating or scaling images.
For the mirror image filter we use a scale filter that scales the X-axis by −1 and leaves
the Y-axis unchanged. This effectively f lips the image without changing its size.

The method then converts the current image in filteredThumbnailImage to a
CIImage so that it can be used with CIFilters.

To create the preview images the method makes use of dispatch_apply. This is a
GCD function that works sort of like a for loop, in that it calls its block of code mul-
tiple times. Unlike a for loop, though, dispatch_apply can use multiple processor
cores to run more than one pass through the block at the same time. That can be a big
advantage on multicore systems, provided the block code is thread safe. The first argu-
ment to dispatch_apply tells it how many times to run the block. The block takes
one argument, an integer that tells it which pass-through the block is running. This
argument takes the place of a for loop’s index value.

The first thing the block does is look up a CIFilter in the imageFilters array,
set its input image to the current thumbnail, and get its output image. It then renders
that image as a CGImageRef and converts the rendered image to a UIImage. This
UIImage goes into the filteredThumbnailPreviewImages array.

Updating the user interface needs to be done on the main thread, so the block uses
dispatch_apply to call back to the main thread and update the current filter-
Button with the new preview image.

Applying the Filters
Now that we’re creating filters and preview images, we’re ready to apply filters to the
original large image. Recall from earlier that all seven of the new filter buttons at the
bottom of the photo browser are connected to the applyFilter method. The imple-
mentation of this method is shown in Listing 24.16.

Listing 24.16 Applying Filters from the Seven Filter Preview Buttons

- (void)applySpecifiedFilter:(CIFilter *)filter

{

 CIImage *filteredLargeImage = [filter outputImage];

 CGImageRef filteredLargeCGImage = [[self ciContext]

 createCGImage:filteredLargeImage

 fromRect:[filteredLargeImage extent]];

 UIImage *filteredImage = [UIImage imageWithCGImage:filteredLargeCGImage];

 [[[self photoViewCache] objectAtIndex:[self currentIndex]]

 setImage:filteredImage];

Turner_Book.indb 651 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image652

 [self setFilteredLargeImage:filteredImage];

 CFRelease(filteredLargeCGImage);

}

- (IBAction)applyFilter:(id)sender {

 CIFilter *filter = [[self imageFilters] objectAtIndex:[sender tag]];

 [self applySpecifiedFilter:filter];

 [self setFilteredThumbnailImage:

 [[self filteredThumbnailPreviewImages] objectAtIndex:[sender tag]]];

 [self randomizeFilters];

}

The applyFilter method looks up the selected filter based on the tag value of
the button tapped by the user. Recall that the tag values on the preview buttons range
from 0 to 6. These values correspond to the index values used to look up entries in
imageFilters.

The applySpecifiedFilter method does the work of applying the selected
filter to the large image, following the pattern described earlier. The resulting image
is displayed in the user interface and saved in filteredLargeImage. Saving the fil-
tered image in an instance variable makes the filter effects cumulative, since this saved
image always contains the result of the most recently applied filter.

Back in applyFilter, the code sets the current value of filteredThumbnail-
Image to one of the previously rendered images in filteredThumbnailPreview-
Images. Again, this is so that the filter effects will be cumulative. Finally, the code calls
randomizeFilters to create new filter options and update the preview thumbnails.

Implementing Auto-Enhance
Using the auto-enhance capability is comparatively simple and not that different from
the sample auto-enhance code presented earlier. The implementation of enhance-
Image is shown in Listing 24.17.

Listing 24.17 PhotoWheel’s Image Auto-enhance Method

- (IBAction)enhanceImage:(id)sender {

 CIImage *largeCIImage = [CIImage imageWithCGImage:

 [[self filteredLargeImage] CGImage]];

 NSArray *autoAdjustmentFilters = [largeCIImage autoAdjustmentFilters];

 CIImage *enhancedImage = largeCIImage;

 for (CIFilter *filter in autoAdjustmentFilters) {

 [filter setValue:enhancedImage forKey:kCIInputImageKey];

 enhancedImage = [filter outputImage];

 }

 [self applySpecifiedFilter:[autoAdjustmentFilters lastObject]];

}

Turner_Book.indb 652 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 653

As discussed earlier in the section on auto-enhancement, this method asks the large
CIImage for a full set of enhancement filters, chains those filters together, and gets the
final resulting CIImage. It passes the final filter in the chain to applySpecified-
Filter, which handles updating the UI and saving the new image so that further fil-
ters can be applied.

Implementing Face Zoom
Earlier we discussed how to locate faces in a photo, but in PhotoWheel we’ll take
that a little further. Once we find faces, we’ll automatically zoom the photo in on the
faces, based on the face locations found during image analysis. Listing 24.18 shows the
method that implements this.

Listing 24.18 Finding Faces and Zooming In on Them

- (IBAction)zoomToFaces:(id)sender {

 NSDictionary *detectorOptions = [NSDictionary

 dictionaryWithObject:CIDetectorAccuracyLow

 forKey:CIDetectorAccuracy];

 CIDetector *faceDetector = [CIDetector

 detectorOfType:CIDetectorTypeFace

 context:nil

 options:detectorOptions];

 CIImage *largeCIImage = [CIImage imageWithCGImage:

 [[self filteredLargeImage] CGImage]];

 NSArray *faces = [faceDetector featuresInImage:largeCIImage options:nil];

 if ([faces count] > 0) {

 CGRect faceZoomRect = CGRectNull;

 for (CIFaceFeature *face in faces) {

 if (CGRectEqualToRect(faceZoomRect, CGRectNull)) {

 faceZoomRect = [face bounds];

 } else {

 faceZoomRect = CGRectUnion(faceZoomRect, [face bounds]);

 }

 }

 faceZoomRect = CGRectIntersection([largeCIImage extent],

 CGRectInset(faceZoomRect, -50.0, -50.0)) ;

 CIFilter *cropFilter = [CIFilter filterWithName:@"CICrop"];

 [cropFilter setValue:largeCIImage forKey:kCIInputImageKey];

 [cropFilter setValue:[CIVector

 vectorWithCGRect:faceZoomRect] forKey:@"inputRectangle"];

Turner_Book.indb 653 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image654

 [self applySpecifiedFilter:cropFilter];

 } else {

 UIAlertView *noFacesAlert = [[UIAlertView alloc]

 initWithTitle:@"No Faces"

 message:@"Sorry, I couldn't find any faces in this picture."

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [noFacesAlert show];

 }

}

Detecting faces in –zoomToFaces: is the same as we discussed earlier. What is new
here is what we do with the face information.

We can get the bounds of each face in the image. In order to zoom in on the faces,
we need to calculate a rectangle that encompasses all of them. The code uses the
faceZoomRect variable for this. Initially the code sets it to CGRectNull, which is
a constant defining a rectangle with no valid location or size. For each face, the code
checks to see if faceZoomRect has changed. If not, it saves the current face location
in faceZoomRect. If faceZoomRect has changed, the code calculates the union of
the faceZoomRect and the new face location. In this way faceZoomRect grows to
encompass all faces in the photo.

Next the code adjusts faceZoomRect a little. It uses CGRectInset to expand
faceZoomRect by 50 pixels on all sides, to widen the zoom slightly. This isn’t strictly
needed, but the unmodified faceZoomRect can lead to a zoom that feels somewhat
cramped. If there are faces close to the edge of the picture, adjusting the zoom might
result in a rectangle whose bounds go beyond the edge of the picture. The code uses
CGRectIntersection to ensure that the final value of faceZoomRect doesn’t go
beyond the large image’s extent.

Now that we have a rectangle containing the faces, we need to crop the image. The
code does this using the CICrop filter, using faceZoomRect as the crop area.

Note
Core Image once again has its own type to represent the filter parameters. In this case
Core Image needs a CIVector to represent the crop area, so the code makes the con-
version and applies the filter.

If no faces were found, the faces array will be empty. The code then skips the
zooming code and just displays a message to the user. A different approach you might
want to try is to detect faces in advance and, if none are found, either disable or hide
the Face Zoom button.

Turner_Book.indb 654 12/11/11 6:47 PM

ptg999

Adding Core Image Effects to PhotoWheel 655

Other Necessary Methods
We need a few utility methods to make the filter view fully useful. Users need to be
able to save filtered images or discard them, or revert the filtered image to the original
and start over. These methods are shown in Listing 24.19.

Listing 24.19 Filter Utility Methods

- (IBAction)revertToOriginal:(id)sender {

 [self setFilteredThumbnailImage:[[self delegate]

 photoBrowserViewController:self

 smallImageAtIndex:[self currentIndex]]];

 [self randomizeFilters];

 UIImage *originalImage = [[self delegate]

 photoBrowserViewController:self

 imageAtIndex:[self currentIndex]];

 [[[self photoViewCache] objectAtIndex:[self currentIndex]]

 setImage:originalImage];

 [self setFilteredLargeImage:originalImage];

}

- (IBAction)saveImage:(id)sender {

 // Save the filtered large image

 if ([self filteredLargeImage] != nil) {

 [[self delegate] photoBrowserViewController:self

 updateToNewImage:[self filteredLargeImage]

 atIndex:[self currentIndex]];

 }

 [self hideFilters];

}

- (IBAction)cancel:(id)sender {

 // Restore original large image

 UIImage *originalImage = [[self delegate]

 photoBrowserViewController:self

 imageAtIndex:[self currentIndex]];

 [[[self photoViewCache] objectAtIndex:[self currentIndex]]

 setImage:originalImage];

 [self hideFilters];

}

The –revertToOriginal: method reloads the original images from the delegate,
displays them, and generates new filters using randomizeFilters. It leaves the filter
buttons visible so that the user can continue exploring the filter effects.

Turner_Book.indb 655 12/11/11 6:47 PM

ptg999

Chapter 24 Visual Effects with Core Image656

The –saveImage: method replaces the current original image with the filtered
large image, saving changes via the delegate. It hides the filter view, since this com-
pletes filtering for this photo.

The –cancel: method restores the original image but, unlike –revertTo-
Original:, it doesn’t restore the thumbnail or generate new filters. Instead, it simply
hides the filter container.

Summary
Core Image frequently inspires more than a little trepidation at first. Basic Core Image
filtering is surprisingly easy, though, and it can improve images or be used for fun
and interesting visual effects. As often happens with iOS development, the really hard
work is already complete and built into the frameworks. In this chapter, we leveraged
the framework to enhance PhotoWheel with features that might appear complex but
are surprisingly straightforward.

Up until now, we have mostly assumed that the app is working as expected. Of
course, often that’s not the case. Despite your best efforts, it is extremely rare to get
your code right on the first try. In the next chapter we’ll explore tools available to find
and fix bugs in your code. We’ll also see how to monitor and analyze an app’s perfor-
mance to make sure it runs efficiently and stays responsive.

Exercises
1. Add a new effect using the CIExposureAdjust filter. To create the filter, add

a new method called –exposureAdjustFilter, similar to the other filter cre-
ation methods described in this chapter. CIExposureAdjust takes two argu-
ments. One is the same input image argument described for other filters in this
chapter. The other is called inputEV, which adjusts exposure and takes values in
a range from -10 to 10. To show this filter on the screen you can either replace
one of the existing filters or add another thumbnail view to the user interface. If
you choose to add a new thumbnail, you will need to make the existing thumb-
nails smaller so that there’s room for a new one. Don’t forget to set the tag on
the new thumbnail button!

2. Try a more complex multistage effect. One good example is to use the
CICheckerboardGenerator filter to create a semitransparent image that you
then overlay on the original image. As with the previous exercise, you’ll need to
either replace one of the existing effects or make room for a new one, and you
should add a new method that generates a randomly configured version of the
effect. To add this effect, you’ll need three filters chained together:

 a. A CICheckerboardGenerator filter to create the checkerboard. This
filter has two color arguments, inputColor0 and inputColor1. Use the

Turner_Book.indb 656 12/11/11 6:47 PM

ptg999

Exercises 657

–randomCIColorAlpha method described in this chapter for these argu-
ments. It also has an inputWidth argument that should be somewhere
from 50 to 100 pixels, and an inputSharpness argument that should be
a random number from 0 to 1.

 b. A CICrop filter to make the generated checkerboard image the same size
as the original image. The generated checkerboard goes on forever, and
this step converts it to be the size of the original image. The input image
should be the output from the CICheckerboardGenerator in the pre-
vious step, and the inputRectangle argument should be the original
image’s size (recall that this is called the extent for CIImage).

 c. A CISourceOverCompositing filter to combine the original image and
the checkerboard into a new image. Make the input image the cropped
checkerboard from the previous filter, and make the inputBackground-
Image argument the original image.

Turner_Book.indb 657 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

Part III
The Finishing Touches

Turner_Book.indb 659 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

25
Debugging

As you develop an app, you’ll find at times that the app isn’t behaving quite as you expected.
Maybe the screen layout seems off, or maybe the app is just crashing. Xcode provides a number of
useful tools for finding and fixing bugs. In this chapter we’ll discuss these tools as well as the more
general question of narrowing down and finding the source of problems.

Understand the Problem
The first thing you need to do when confronted with a bug is to get the most detailed,
accurate picture of the problem that you can. Getting a clear picture of the bug from
the outside is a crucial first step in understanding what is wrong on the inside. Diving
right into the code is rarely the best approach.

What Went Wrong?
The first step is making sure you understand exactly what happened that was unex-
pected and what steps the user had taken when this happened. If you’re testing the app
yourself, you may have a pretty good idea already. If someone else was testing the app,
try to get as much detail as possible. Without a good description of what seemed to be
wrong with the app, it can be almost impossible to track the cause. A bug description
needs to be very specific. Longtime developers have all seen at one time or another a
bug report that reads something like “I was using the app and it crashed.” Unfortu-
nately, that statement is entirely useless when it comes to fixing the problem. Unless
the app is crashing constantly, you don’t have anything to go on to find the problem.
And if the app is crashing constantly, you’re probably painfully aware of that fact
already.

Reproducing Bugs
Once you have that clear picture, it’s time to reproduce the problem. Occasion-
ally there will be situations where you’re familiar with the code to the point that the
bug description makes it obvious where the code is going wrong. More commonly,

Turner_Book.indb 661 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging662

though, the cause of the problem is not immediately obvious. In those cases, sit down
with the app and make the bug happen. Explore different ways of using the app to see
if there are other circumstances that could cause the problem. Maybe taking a slightly
different set of steps prevents the bug from appearing or makes it worse. Try to find
the minimal test case that gets directly to the bug as quickly as possible with as little
extra work as possible.

If you find that you can’t reproduce the bug, you have a problem. It is extremely
difficult to fix a problem that you can’t see. If nothing else, you may not be able to
tell if you have fixed the problem even if you change the code. Subtle or intermittent
problems may require considerable detective work to uncover where things go awry.
You might need to make your test data resemble the user’s test data. In extreme cases
you might need to get the user’s data onto your own device. Bugs can also depend on
timing or in unusual cases even the time of day.

Debugging Concepts
Xcode includes a built-in debugger. New developers often underestimate or misunder-
stand the use of debuggers and avoid them, but they don’t know what they are miss-
ing. In this section we’ll cover some of the tools and techniques debuggers offer. If you
have used debuggers on other platforms, you can skip ahead to the following section,
which discusses how Xcode’s debugger works.

Without a doubt, the debugger is the second-most important tool in your arsenal as
a developer. The only tool that is more important is the compiler itself. If you’re not
using the debugger to investigate your code, you’re missing out on an incredibly useful
tool. If you haven’t used one before, debuggers can seem daunting at first. But what-
ever time you take to learn to use a good debugger will be repaid many times over in
the time saved finding and fixing bugs.

What Is a “Debugger” Anyway?
A debugger is a specialized tool that can run another application and control and moni-
tor that application’s progress. It’s like opening the hood on a car engine to inspect
and make adjustments while the motor is running. You’ll use a debugger to investigate
what is actually happening in your code while that code is running. You can understand
a lot by reading and thinking about the code, but you’ll almost always learn a lot more
when you can see every step of the code as it really happens.

Breakpoints
Probably the most common use of a debugger is to set breakpoints in code. A break-
point is just a line in the code where you want to see what is happening. You’ll set
breakpoints on lines you suspect of buggy behavior. Once you have added a break-
point for a line, you run the code in the debugger and interact with the app normally.

Turner_Book.indb 662 12/11/11 6:47 PM

ptg999

Debugging in Xcode 663

When the code reaches the line with the breakpoint, it stops. It’s as though time has
suddenly stopped for the app, but not for you. At this point you can use the debugger
to inspect the state of the program and see if it is operating the way it should. You can
see the values of variables and change them, and even call functions while paused at
the breakpoint.

When you’re finished, you can tell the debugger to continue running the program,
and it picks up where it left off. You can also have the debugger run through the code
one line at a time, breaking after each one. Doing this can give you a very clear pic-
ture of what is happening in the code.

Another kind of breakpoint affects specific conditions instead of specific lines of
code. The effect is the same as a breakpoint, but the program stops because of an event
or situation rather than because it reaches the right line. A good example is an excep-
tion breakpoint. Certain kinds of bugs in code cause exceptions to be thrown, and
if the exceptions aren’t handled, the app will crash. An exception breakpoint is one
that stops the app whenever an exception is thrown, regardless of where it happened.
You can also create what’s called a watchpoint to track changes to a variable. With a
watchpoint, the debugger will break any time the value of a variable changes. If you’re
not sure when or why a value changed, watching the variable will help uncover the
problem.

Debugging in Xcode
Now let’s investigate how you can use these techniques in Xcode.

Setting and Managing Breakpoints
Xcode’s options for setting breakpoints are shown in Figure 25.1.

Figure 25.1 Setting breakpoints in Xcode

Turner_Book.indb 663 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging664

The quickest way to set a breakpoint on a line is in the editor’s gutter, which is the
vertical band on the left side of the source code pane. To set a breakpoint on a line,
click in the gutter next to the line. A blue pointer appears next to the line. You can
disable and reenable a breakpoint by clicking this blue indicator. Figure 25.1 shows
two breakpoints in PhotoWheelAppDelegate.m. The first, in –managedObjectModel, is
enabled. The second, in –persistentStoreCoordinator, is disabled.

To remove a breakpoint in the editor gutter, drag the blue pointer out of the gutter.
On the left side of the window is the Breakpoint navigator. This lists all break-

points, including those that are disabled. Breakpoints are organized by source file.
Clicking on one of them opens the corresponding source file at the line where the
breakpoint is set. You can also disable and reenable breakpoints here, by clicking on
the blue pointer icon. To delete a breakpoint in the Breakpoint navigator, either drag
it out of the navigator or select it and press the Delete key.

At the top of the window is the master breakpoint toggle button (�-Y). This but-
ton controls whether the app will run with breakpoints or without them. Clicking this
button affects the overall run environment when the app is running. It does not affect
whether individual breakpoints are enabled; instead it determines whether any break-
points will be used while the app is running. You can change this state while the app
is running.

Customizing Breakpoints
If you right-click on a breakpoint in the Breakpoint navigator and select Edit Break-
point from the popup menu, a popover appears that you can use to customize the
breakpoint’s behavior (Figure 25.2).

This popover offers the following options:
n Specify a condition that must be true for the breakpoint to stop the app. If you

want to stop the app only when a variable has a specific value, you can enter a
test for this condition here.

n Tell Xcode that it should ignore the breakpoint some number of times before
stopping. This can be useful for breakpoints in loops, if you want to stop in the
loop but only after, say, 50 passes through. Without this you would have to hit
the breakpoint 50 times and continue after each one.

Figure 25.2 Editing a breakpoint

Turner_Book.indb 664 12/11/11 6:47 PM

ptg999

Debugging in Xcode 665

n Configure a variety of automatic actions to take when the breakpoint is hit
(more on this later).

n Tell Xcode that it should automatically continue after executing any custom
actions the breakpoint has.

Why would you want to have Xcode automatically continue when it hits a break-
point? It turns out that breakpoints can do a number of useful things even if the app
keeps running. You configure these in the Action section of the popover.

One good use for breakpoint actions is to replace the NSLog statements that are so
common when code is in development. Often you want to know that a method has
been called or find out the value of a variable at a particular line, but you don’t neces-
sarily want to stop the app to find this out. It’s enough just to get the information. Or
you might be investigating a bug that depends on getting just the right timing, and
stopping the app ends up preventing the bug from happening. Developers commonly
add an NSLog that prints out the information of interest, which is simple and effec-
tive. But it’s also messy and can get confusing. NSLog statements have a way of stick-
ing around long after their usefulness has expired, leading to extremely verbose output
that can make it hard to find the one line you’re interested in. They also really need
to be cleaned out before the app is released so as not to fill up the system console on
people’s iPads.

One of the breakpoint actions is the Log Message action, which just prints a mes-
sage to the device console. It’s more or less the same as using NSLog except that it
doesn’t clutter up the source code. This action can also speak the text aloud using
speech synthesis instead of printing the message, so you can listen for it instead of
watching the console. Figure 25.3 shows an example of this. In this case the break-
point is in the –managedObjectModel method. When the code reaches the line with
the breakpoint, it says, “Starting managedObjectModel” and then continues without
stopping the app.

A similar option is to have Xcode play a sound when the code hits the breakpoint
(Figure 25.4). This can be used similarly to having Xcode speak a message. It is use-
ful for monitoring code when you expect to hit a breakpoint frequently. As you use

Figure 25.3 Adding a Log Message action to a breakpoint

Turner_Book.indb 665 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging666

the app, the sounds will often form a rhythm, and if the rhythm breaks, it’s a clue that
something isn’t happening the way it should.

You can add multiple actions to a breakpoint by clicking the + button on the right
side of the popover.

Hitting a Breakpoint
When the app hits a breakpoint and stops, Xcode will look like Figure 25.5.

There are a number of things of interest in this window:
n Current line. The current line in the app is highlighted in the editor, so that

you always know where you are in the app. The highlighted line has not been
executed yet—the highlighting indicates the next line that would run if the app
were to continue.

n Debug navigator. This shows the current state of all threads in the app. In
Figure 25.5 we see that the app is stopped at a breakpoint in [PhotoWheel-
AppDelegate managedObjectModel], which is in thread 1. The information
displayed under the thread 1 heading is a call stack, showing the method that

Figure 25.4 Configuring a breakpoint to play a sound and continue

Figure 25.5 Xcode window when stopped at a breakpoint

Turner_Book.indb 666 12/11/11 6:47 PM

ptg999

Debugging in Xcode 667

called –managedObjectModel, and the one that called that method, and so on.
Methods that are part of iOS frameworks rather than the app are grayed out.

You can explore the call stack by clicking on different methods. When you do,
the code editor will update to show the current line in that method. In this case
we could immediately jump to the line that called –managedObjectModel, for
example.

The slider at the bottom of the Debug navigator controls how much detail is
included in the call stack. Xcode normally tries to limit the information to
methods that are likely to be of interest (i.e., those that are part of your app).
You can adjust the level of detail to show more or less information.

n Run controls. These four buttons allow you to control what happens next
in the program’s f low. The first button tells Xcode to continue running the
app normally from the current line. The app continues until it reaches another
breakpoint, if there are others. Next to this is the “step over” button, which
steps forward one line and does not step into functions or methods that might be
called. After that, the “step into” button also steps forward one line but will step
into any functions or methods that are called, if the source code is available (it
won’t step into system framework methods since you don’t have the source for
them). Finally, the “step out” button tells Xcode that the app should continue
running but only until the current function or method ends.

n Variable view. This pane normally displays the value of any local variables. In
Figure 25.5 you see that modelURL is included here, since it is local to the cur-
rent method. There’s a popup menu at the top of the variable view that selects
different modes such as displaying global variables as well as locals.

n Console. The console displays messages from the debugger about the app’s state,
as well as the output from any NSLog or other printing statements. The console
also has a command-line interface to the debugger which can be used to control
the debug session and to inspect and change variable values. We’ll talk about
some debugger commands a little later. In Figure 25.5 the breakpoint was con-
figured to print the value of modelURL when the app hit the breakpoint, so you
can see the full value in the console.

Checking on Variables
Often the variable view is all you need to check on variables. In Figure 25.5, you can
see the URL stored in modelURL—some of it, anyway—and you could get more by
dragging the split between the variable view and the console area to the right. You
could also hover the mouse pointer over modelURL in the code editor and look at a
popup window that has a little more space (Figure 25.6).

The variable view doesn’t always have enough information, though. In Figure 25.7,
for example, the variable view tells us that options is a dictionary and that it has two
key-value pairs. That’s nice, and sometimes that’s all you need to know.

Turner_Book.indb 667 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging668

But you might want to know what data is actually saved in those key-value pairs.
Hovering the mouse pointer over options doesn’t help in this case either (Figure 25.8).

Fortunately there are a couple of other options. One way is to select the variable
in the variable view and right-click. The contextual popup menu includes an option
to print a description of the variable (Figure 25.9). It also includes some other useful
things, like the ability to set a watchpoint on the selected variable.

If you select this menu item, the description is printed in the console area (Figure
25.10).

Figure 25.6 Displaying a variable’s value by hovering the mouse pointer
over it

Figure 25.7 Variable view information about an NSDictionary

Turner_Book.indb 668 12/11/11 6:47 PM

ptg999

Debugging in Xcode 669

Figure 25.8 Hovering the mouse pointer over an NSDictionary

Figure 25.9 The variable view contextual menu

Figure 25.10 Console output after selecting the Print Description
menu item

Turner_Book.indb 669 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging670

That might be more information than you really want to know about options, but
the keys and values are all present. A second option is to just use the console command
line directly. The po command in the console is shorthand for “print object.” It calls
the object’s –description method and prints the result. As Figure 25.11 shows, it is
sometimes easier to understand than the contextual menu’s version.

Debugging Example: External Display Code
While writing Chapter 23’s sample code for using external displays, there was a puz-
zling bug at one point. Although the app was running a slideshow on an external dis-
play, the images were off-center. They were too low and off to the left, leaving a large
black L-shaped space along the top and right side of the display.

Experimenting with different ways to reproduce the bug didn’t turn up a lot of
information. The problem occurred anytime a slideshow started, and always in the
same way. Well, almost always.

The bug first showed up when using a 720p television as an external display via
AirPlay. This meant that the external display resolution was 1280 × 720. At that size,
the L-shaped black area was approximately half the width of the screen and half the
height. It might have been exactly half but it was hard to be sure it wasn’t off by a few
pixels. That might suggest a math error, or that the code might somehow be acciden-
tally using the center point of the window someplace where it should have been using
the origin. But on iOS the origin is at the top left corner—using the center instead of
the origin would move the photo down and to the right, not down and to the left as
was happening.

Further investigation showed that the bug varied depending on the size of the
screen. By running the app in the iOS Simulator, I could simulate several differ-
ent external display sizes. With a simulated 1024 × 768 display, the L-shaped area
was thinner, occupying maybe one-quarter of the display width and one-third of the
height. With a 720 × 480 or 640 × 480 simulated display, the photos disappeared com-
pletely, although the page-curl animation still occurred.

Figure 25.11 Using the po command in the debug console

Turner_Book.indb 670 12/11/11 6:47 PM

ptg999

Debugging Example: External Display Code 671

It seemed possible that the code in SlideShowViewController that displays
the photos might be at fault. The code looked okay, but plainly something was not
right. Maybe the photo view was off-center for some reason. I set a breakpoint in
–setCurrentIndex:, just after setting the photo view’s frame. When the app reached
the breakpoint, I checked the frame in the debug console (Figure 25.12).

Look at the debug command in Figure 25.12. The p command is shorthand for
“print.” Here I’m printing the value of newPhotoView’s frame. When using p, you
usually need to typecast the result so that the debugger knows how to format its
output. A UIView’s frame is a CGRect, so that’s what I used here. Another detail to
notice is that the command is calling a method on newPhotoView to get the frame.
I’m making Objective-C method calls right from the console, which interprets and
executes them and then prints the result.

In Figure 25.12 the frame’s size is 768 × 1004. That indicates that the view is on the
internal display, since the simulated external display was 1024 × 768. So I hit the con-
tinue button and the code hit the breakpoint again. This time the frame matched the
external display size, so I knew it was the right view (Figure 25.13).

The frame’s size is okay, but the origin is way off. The photo’s origin should be at
(0, 0), the same as the display origin. In the code editor you’ll see that the previous
line of code set newPhotoView’s frame to be the same as [self view]’s frame. That
meant that [self view]’s frame must also have a bad origin value, and checking on
it confirmed that this was the case.

Now I needed to check where the view’s origin was set. This happens over in
MainSlideShowViewController, in the –configureExternalScreen: method.

Figure 25.12 Checking a view’s frame in the debug console, first pass

Turner_Book.indb 671 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging672

That method creates a new UIWindow and a new view controller and adjusts the
view controller’s view to fit the screen. I wasn’t sure which step might be wrong, so I
decided to set a breakpoint at the beginning of the method and step through it line by
line, checking on each part of the process.

As I stepped through the method, I found that the window was the right size. The
CGRect I was using to set the external display’s view also looked correct. I found this
in the console, as shown in Figure 25.14.

The view controller’s view was off-center, though, in the same way as the photo
view. What could have caused that? Looking through the code, I decided that this line
was suspect:

 [[externalSlideController view] setBounds:externalViewFrame];

The problem with that line is that it mixes up a view’s bounds with its frame.
These are closely related but they are not the same. A view’s frame uses its parent
view’s coordinate system, while its bounds uses its own coordinate system. The frame’s
origin gives the view’s location in its parent view, and the bounds origin is usually
(though not always) at (0, 0). Mixing up bounds and frame is a bad idea and can lead
to weirdly misplaced views. Sound familiar? Sometimes this happens because although
the bounds origin is usually (0, 0), the frame origin usually is not. When this is the
case, setting the bounds origin to the frame origin usually won’t do what you want.
Here, though, we already know that the frame origin in externalViewFrame is

Figure 25.13 Checking a view’s frame in the debug console,
second pass

Turner_Book.indb 672 12/11/11 6:47 PM

ptg999

Debugging Example: External Display Code 673

at (0, 0), so that shouldn’t be a problem. The other factor is that changing a view’s
bounds will change its size relative to its center point, not relative to its origin. That
seemed more likely to be the cause of this bug.

Based on this, I suspected that I would fix the bug if I changed the suspect line to
read

 [[externalSlideController view] setFrame:externalViewFrame];

I could use the debugger to verify this hypothesis, without restarting the app and
without editing code until I was sure of what I needed (Figure 25.15).

The first command in the console executes the new line of code, as if it were in the
app. The call command is used to call functions and methods in code. As with p,
you need to tell the debugger what the return type of the function or method is. Here
there is no return value, so I used void.

On the second line I checked the view to make sure the frame was what it should
be. It was! I pressed the continue button and the slideshow started. This time the
external display images were in the right place, so I changed the code.

Before declaring the problem to be fixed, I went through the tests I had done ear-
lier. In the simulator, I tried the app on multiple external display sizes. Then I tried it
using an iPad and a real external display. It still looked good, so I decided the bug was
now fixed.

Figure 25.14 Investigating the external display bug

Turner_Book.indb 673 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging674

When You Really Need NSLog
Despite all the power the debugger offers, sometimes you just really need to use
NSLog. Even the most experienced developers do, at least some of the time. The
problems mentioned earlier still exist, though. NSLog statements have a way of outliv-
ing their usefulness and cluttering up code. They also fill up the device console with
needless messages if you leave them in place when you release the app.

The second problem, at least, is easy to address. Using a compiler macro and a defi-
nition, you can arrange for NSLog statements to appear automatically only in debug
builds. Here the basic macro is called DLog, for “debug log,” and is shown in Listing
25.1. You can call it whatever you like.

Listing 25.1 Defining a Macro for Debug-Only NSLog

#ifdef DEBUG

#define DLog(...) NSLog(__VA_ARGS__)

#else

#define DLog(...)

#endif

Figure 25.15 Fixing the view’s frame in the debugger console

Turner_Book.indb 674 12/11/11 6:47 PM

ptg999

675When You Really Need NSLog

This creates a macro called DLog. A compiler macro tells the compiler that some
defined text should be replaced by some other text. The replacement happens before
the code is compiled, as part of the preprocessing stage.

In this case, if DEBUG is defined in the app, any use of DLog will be replaced by
a call to NSLog. It is not simply equivalent to calling NSLog; it literally is a call to
NSLog once preprocessing is complete. Any arguments to DLog will become NSLog
arguments. If DEBUG is not defined, any call to NSLog is replaced by an empty
string—so when the code compiles, the NSLog is already gone. There are numerous
variations on this macro online that modify or add to the NSLog arguments. In this
case what you get is exactly what you would get if you used NSLog, but only when
DEBUG is defined.

If you put this code in your project’s precompiled header file (the .pch file), it will
be available throughout the app without requiring any extra #import statements.

To use DLog you need to arrange for DEBUG to be defined for debug builds but not
for any other builds. You do this in the app’s Build Settings, by adding a new compiler
f lag that will be used only in debug builds. The easiest way to find the f lags section is
to type cflags in the Build Settings search field (Figure 25.16).

Xcode automatically creates both debug and release configurations. If you double-
click next to Debug in the Other C Flags section, a popover view appears where you
can add custom f lags (Figure 25.17).

The compiler option to create a #define is –D, and we want to define DEBUG, so
adding –DDEBUG as shown in Figure 25.17 will make the DLog macro work. With
this bit of setup, turning NSLog on for debug builds only is completely automatic.

Figure 25.16 Compiler flags in Xcode

Turner_Book.indb 675 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging676

Profiling Code with Instruments
Some code bugs don’t show up as incorrect data or screen layouts. Maybe the app is
using more memory than you think it should. Maybe it is just too slow in places. The
debugger won’t help much with this kind of issue.

Xcode includes a separate tool called Instruments, designed for cases just like this.
Instruments is a graphical profiling tool that helps you understand what is really hap-
pening when an app runs. A profiler, like the debugger, is a tool that can run another
application and monitor its activities. It is unlike the debugger in that it doesn’t work
with breakpoints or do anything that would stop the app. Instead, it sits back and lets
you interact with the app while it collects data, such as how much memory is in use
or how much time the app spends in each method. Instruments provides graphs and
detailed statistics about the app’s behavior, which can give deep insights into where
performance issues occur and how to fix them.

It is common to think that you can prevent performance issues by writing better
code. Some code seems obviously inefficient and in need of speed improvements. This
is often a mistake and can lead to what is known as premature optimization. The code
that looks as if it should be slow is often not a bottleneck, but it’s easy to spend a lot
of time optimizing it based on incorrect assumptions. There are a variety of reasons
for this. Modern compilers are capable of quite a bit of optimization, so inefficiencies
in source code may not remain once the app is compiled. Other times, the code that
actually takes more time is not obviously any less efficient than other code. As a result
of this, profiling code should be an integral part of any attempts at optimization. It’s
better to see what is actually slow instead of spending lots of time analyzing your code
only to find out that your guess was wrong.

Figure 25.17 Defining DEBUG for debug builds

Turner_Book.indb 676 12/11/11 6:47 PM

ptg999

Profiling Code with Instruments 677

Even before profiling, though, consider whether you actually have a problem. It
is almost always possible to find a way to make code run a little faster, but it doesn’t
always make sense to do so. If the app has no appreciable performance problems, it is
often not worth the time to try to make it even more efficient. You want to have a
great app, of course, but you also want to release it someday, and optimization can be
a never-ending challenge. Better code is, well, better, but it’s important to keep things
in perspective.

Instruments works with both simulator and device builds. You should work with a
device whenever possible. Performance on simulator builds is very different from that
of device builds. Even relative performance, such as finding that one method takes
longer than another without considering absolute time, can be different. Memory
issues will usually be more similar, but they probably won’t be identical.

To start Instruments, select Product > Profile in Xcode (or press �-I). Xcode
builds the app, if needed, and launches Instruments. Instruments starts by showing a
scrollable window with various profiling options, as shown in Figure 25.18.

Instruments offers numerous profiling tools. The Allocations and Leaks tools moni-
tor memory usage over time. The Time Profiler tool monitors the time spent in each

Figure 25.18 Startup options for Instruments

Turner_Book.indb 677 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging678

function or method in the app, to help find performance bottlenecks. Other tools
monitor overall system usage, network activity, and graphics performance. You can
use more than one tool during the same run if you need data in multiple areas. The
startup window lets you select only one, but once Instruments is running, others can
be added.

Once you select a tool, Instruments starts the app and shows its main window (Fig-
ure 25.19). The current tools are shown on the left, next to graphs showing activity
over time. The bottom part of the window is the data display, which shows statistics
related to the currently selected tool and options for configuring and filtering those
numbers.

It’s also possible to attach Instruments to an app that is already running. This is
handy because often you want to monitor only a specific action in an app. Collecting
data from the time the app starts until you reach the area of interest can fill up Instru-
ments with data that is not relevant to the problem you’re investigating. To do this,
you first start the app, then click the Target popup menu. In the Attach to Process
section of the menu, locate your app. Instruments starts recording data for the app.
Figure 25.20 shows how you might do this for a simulator build.

Figure 25.19 Main Instruments window, with the Allocations tool

Turner_Book.indb 678 12/11/11 6:47 PM

ptg999

Profiling Code with Instruments 679

Profiling Example: Slideshow UI Control Updates
One area that looks ripe for performance improvement is in the code that handles the
play/pause buttons in the slideshow. As you may recall, when the user presses “play” or
“pause” in the slideshow, the app rebuilds the entire set of buttons. The buttons aren’t
cached or reused; they’re thrown out and replaced. Even the forward and back buttons
get replaced, and they never change. It doesn’t seem as if the app is running slowly
here, but at the same time the code is clearly doing more work than it needs to do.
What changes might make it better?

The code of interest executes whenever the user presses “play” or “pause.” To make
Instruments collect data that focuses on this task, let’s use Instruments as follows:

1. Start up the app and navigate to the slideshow.

2. Start Instruments using the Time Profiler tool and attach it to the running
process.

3. Press “play” and “pause” over and over for a while.

4. Click on the Stop button in Instruments to make it stop recording data.

The effect is that while Instruments is running, the app is spending most of its time
in the code under investigation. After doing this, Instruments looks like Figure 25.21.

The graph next to the Time Profiler tool shows CPU activity over time. Below the
graph is a list of call trees found while Instruments was recording data. The list shows
the deepest method call and can be expanded to show more detail. In this case you can
see that the call to –updateNavBarButtonsForPlayingState: consumed the most
CPU at 159ms. Instruments also shows that this method was called from two other
methods, –pause: and –play:, and that the 159ms was close to evenly distributed
between calls from those methods. Several other call trees are listed, but they didn’t
use anywhere near as much time.

The box on the lower left has several check boxes that control how call tree informa-
tion is displayed. Two that are often useful when finding slow points in your code are

n Hide System Libraries. This option limits the display so that it includes only
methods and functions in your code. When this is unchecked, the call tree area

Figure 25.20 Attaching Instruments to a running process

Turner_Book.indb 679 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging680

includes entries that relate to code used by iOS and frameworks but that your
code did not directly call. This can be interesting to see, but it can also mean
you have a lot of detail that is not directly relevant to the problem you’re trying
to solve.

n Show Obj-C Only. When this option is checked, the call tree display filters
out detail that is not directly related to Objective-C method calls. Again, this
can be useful information, but it often includes unnecessary detail.

The section on the right shows the stack trace with the greatest impact on the
selected call tree. In Figure 25.21 this would show the call from –pause: to
–updateNavBarButtonsForPlayingState:. The call from –play: is also impor-
tant, but it took slightly less CPU time overall, so it is not the “heaviest” stack trace.

None of this is really surprising yet. The steps taken pretty much guaranteed that
–updateNavBarButtonsForPlayingState: would take the most time, since that is
the method that updates the slideshow control buttons. The goal was to find out what
parts of that method are consuming most of the time when that method executes.

To get this information, double-click on that method in the Heaviest Stack
Trace display. Instruments then replaces the call tree area with the source code for
the method. Every line that took a significant portion of the method’s run time is

Figure 25.21 Instruments showing time profile results for PhotoWheel’s
slideshow

Turner_Book.indb 680 12/11/11 6:47 PM

ptg999

Profiling Code with Instruments 681

highlighted. A number by these lines shows the percentage of time taken by that line.
Figure 25.22 shows the results for this method.

The code shown covers creating the AirPlay button, adjusting it to fit, and then
updating the toolbar with a new set of buttons. One surprising finding is that the code
to re-create the back, play, pause, and forward buttons takes so little time that none of
the lines were highlighted. They are not shown here, but that’s because Instruments
reported nothing of interest for them. Re-creating them is redundant but takes hardly
any time compared to other parts of the method.

The most expensive line is the one updating the toolbar items, at 57.9 percent of
the total in this method. That is probably unavoidable unless we redesign the but-
tons completely. This time wouldn’t be reduced by caching copies of buttons or
other tricks—as long as we’re updating the toolbar’s buttons, we need this line. If this
method were presenting a significant slowdown, the time taken by this line would be
a good argument for reconsidering how the buttons are managed.

One area that could be optimized is creating the AirPlay button. Creating the button
is 17 percent of the total method time. Add in other lines that resize the button and
create a UIBarButtonItem for it and the total comes to 21.4 percent. But this button
never changes. We could create it once and then reuse the existing copy. Of all the
toolbar button items, this is the only one for which changing the code would improve
the overall speed of the method.

A possible extra optimization is the last line shown, where the code updates
the navigation item with the new buttons. As it stands, the code creates a new

Figure 25.22 Source code display in Instruments

Turner_Book.indb 681 12/11/11 6:47 PM

ptg999

Chapter 25 Debugging682

UIBarButtonItem each time it runs, with a custom view containing the toolbar.
Then it sets this item as the right bar button item on the navigation item. But the
customView property of UIBarButtonItem is writable. It might be faster to keep a
reference to customBarButtonItem around and just update its customView in this
method. The benefit here is not as obvious as with the AirPlay button, because we
would be replacing relatively slow code with different code. That new code might
be just as slow or even slower. It’s not obvious how much time it takes to update
customView. If we made this change, we would need to do some more profiling to
check whether it improved things.

Summary
Bugs are an unfortunate fact of any software developer’s life. The real question is how
effective a developer is at finding and fixing those problems. With Xcode’s debugger
and Instruments, you are well equipped to deal with unexpected problems in code.
Logic errors, incorrect data and settings, and a variety of performance issues can be
diagnosed by examining and manipulating code while it is running. When you see a
problem, put on your debugging tool belt and fix it!

Effective debugging is crucial not just for a good user experience; it is also a fun-
damental part of launching an app. An app crashing during Apple’s review testing is
grounds for immediate rejection. Except in extreme cases, poor performance usually
doesn’t stop an app from being approved. But it is one of the easiest ways to rack up
one-star reviews in the App Store, and that in turn is one of the easiest ways to make
an app f lop. Take it seriously and deal with performance problems in advance. Fixing
bugs and improving performance can be a challenge, but it’s far, far better to deal with
problems privately instead of publicly.

Speaking of the App Store, the next chapter discusses how to get your app ready for
submission to Apple so that you can sell it through the App Store.

Turner_Book.indb 682 12/11/11 6:47 PM

ptg999

26
Distributing Your App

Finally, PhotoWheel is complete! Or at least it’s ready for a good round of beta testing.
So far you have learned how to build and install PhotoWheel on your own iPad, but eventu-
ally you’ll want to make it available to other people. During development you’ll want to have
other people test the app, both while you’re working on finishing it and as a final test stage before
releasing it to the world. When your app is ready, you’ll want to upload it to the App Store for
approval.

This chapter covers how you can prepare and distribute your app for testing and approval.

Distribution Methods
Until now you have deployed apps from Xcode to your own devices. Preparing your
app to run on other people’s devices requires some extra steps. You can distribute apps
using one of two methods:

n Ad Hoc distribution: You use this method to distribute your app to testers. Ad
Hoc distribution does not go through the App Store. Instead, you build the app
and provide copies to testers by whatever means you find convenient. Ad Hoc
builds can only go to devices listed in your iOS Provisioning Portal account,
which limits the number of testers. Testers install the app on their devices using
iTunes. People who install Ad Hoc builds of apps don’t need to belong to the
iOS Developer Program; anyone with a device that supports the app can be a
tester.

n App Store distribution: You use this method when the app is ready to be
released to the App Store. An App Store build of the app can’t be installed
directly on any devices. Instead, you upload the build to Apple. Apple reviews
the app and, if accepted, it becomes available through the App Store.

This chapter covers both methods.
The first thing you need to do, for either distribution method, is set up a new sign-

ing certificate for distribution builds. The steps to do this are nearly the same as those
discussed in Chapter 6, “Provisioning Your iPad,” for development certificates. There

Turner_Book.indb 683 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App684

are two differences. One is that in the Certificates section of the Provisioning Portal,
you click the Distribution tab instead of Development. The process of creating
and downloading a certificate is the same. The second difference is that distribution
certificates can be created only by the Team Agent, who is normally the person who
created the iPhone Developer Program account. If you’re working independently, this
is you, but if you’re part of a team, it might be someone else.

Building for Ad Hoc Distribution
Now let’s tackle the process for Ad Hoc distribution. You’ll need to set up provision-
ing and prepare an Ad Hoc build of the app before you can send it out for testing.

Provisioning for Ad Hoc Distribution
Provisioning for Ad Hoc builds is very similar to provisioning for development. There
are only a couple of minor differences. To create an Ad Hoc provisioning profile, use
the Provisioning section of the Provisioning Portal site, and the Distribution tab
within that section (Figure 26.1).

When you click New Profile, the screen that appears is similar to the one used for
development profiles, but not quite. Next to Distribution Method, select the Ad Hoc
option (Figure 26.2). From this point forward, the provisioning process is the same as
for development builds. Name the profile and select an App ID and whichever devices
should be included, and then create the profile as in Chapter 6, “Provisioning Your
iPad.” If you’re planning to send the build to other people for testing, you’ll need to
have their device IDs in your account and include them in the profile.

Prepare the (Ad Hoc) Build!
To build an app for Ad Hoc distribution, you need to use the new Ad Hoc provision-
ing profile. You could just switch between Development and Ad Hoc distribution
profiles in Xcode, but that’s going to get awkward pretty fast. You can’t just use one

Figure 26.1 Distribution Provisioning profile section of the
Provisioning Portal

Turner_Book.indb 684 12/11/11 6:47 PM

ptg999

Building for Ad Hoc Distribution 685

profile either. While it is possible to build and run with an Ad Hoc profile, you can’t
debug an app built this way. Conversely, it’s not possible to distribute an app built with
a development profile. You need to have both profiles available for different build
requirements. Fortunately, Xcode provides a way to use both in the project and have
the right one selected automatically when you build the app.

When building for Ad Hoc distribution, what you’ll actually build is an archive
file. The archive contains the compiled app and the provisioning profile and can be
used by testers to install the app on their iOS device. Archive settings are found in
the default scheme for the project (Figure 26.3). You can display the scheme editor by
selecting Product > Edit Scheme (�-<) in Xcode’s menu bar.

By default the archive section of the scheme uses the Release build configuration.
Since you’ll build an archive for Ad Hoc distribution, the Release configuration will
determine what provisioning profile is used. If you take a look at the Test section of
the scheme editor, you’ll see that it uses the Debug build configuration instead. Xcode
automatically creates these configurations when you create a new project.

Code signing settings for the Debug and Release configurations are found in the
Build Settings for the app. To use the Ad Hoc provisioning profile for archive builds,
you need to tell Xcode to use that profile for the Release configuration.

Figure 26.2 Creating an Ad Hoc distribution profile

Turner_Book.indb 685 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App686

Figure 26.4 shows the configurations for PhotoWheel. These settings are part of the
project settings for the PhotoWheel project.

To build the Ad Hoc archive, select Product > Archive in Xcode. Xcode builds
the app, creates the archive file, and opens the Organizer window to show the archive
(Figure 26.5). The window also lists both current and previous archives.

The archive is what you will send to testers. You do this by saving the archive as
a file. Click the Share... button, shown in Figure 26.5. Select “iOS App Store Pack-
age (.ipa)” for the contents, and then select your Ad Hoc provisioning profile from the
Identity popup menu (Figure 26.6).

Figure 26.3 Archive settings in the default build scheme

Figure 26.4 Selecting the Ad Hoc provisioning profile for release builds

Turner_Book.indb 686 12/11/11 6:47 PM

ptg999

Building for Ad Hoc Distribution 687

Figure 26.5 Xcode’s Organizer window showing an archived build

Figure 26.6 Exporting an app archive from Xcode

Turner_Book.indb 687 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App688

When you click Next, Xcode prompts you to save the file somewhere. Xcode auto-
matically adds the .ipa extension to the file name.

When you’re ready to send a build to testers, all you need to do is send them this
file. They can install it on their devices by dragging it into iTunes and then syncing
their device.

Building for App Store Distribution
The build process for the App Store is very similar to the Ad Hoc build process. You’ll
need to complete a slightly different provisioning process. You’ll also need to update
the project settings for the new build type.

Provisioning for the App Store
Getting an app ready for the App Store requires yet another provisioning profile. Start
off as for the Ad Hoc profile. This time, select App Store as the distribution method
(Figure 26.7).

This time the devices are grayed out. App Store profiles aren’t tied to specific
devices, so there is no need to select them. Create and download the profile, and drag
it into Xcode.

Figure 26.7 Creating an App Store distribution profile

Turner_Book.indb 688 12/11/11 6:47 PM

ptg999

Building for App Store Distribution 689

Prepare the (App Store) Build!
Building for the App Store, as with Ad Hoc builds, involves creating an archive. But
we have already used the archive setting in the current build scheme for Ad Hoc
builds. Again, you could switch back and forth between provisioning profiles, choos-
ing either the Ad Hoc or the App Store profile as needed. A much better solution
would be to create a new build scheme and make its archive setting use the new App
Store profile. Switching between schemes is much more convenient than changing
provisioning profiles within a scheme.

In Xcode’s menu, select Product > Manage Schemes. The scheme manager win-
dow appears, showing the original build scheme you have been using (Figure 26.8).

Select the existing profile, and then click on the gear menu at the bottom of the
window and select Duplicate. The scheme editor appears. Name the scheme something
obvious, like PhotoWheel App Store, and then click OK to save the new scheme.
Once you have done this, you’ll be able to choose which scheme to use from the
popup menu at the top of Xcode’s main window (Figure 26.9). Choose the original
PhotoWheel scheme for development and Ad Hoc builds, and choose the new Photo-
Wheel App Store scheme for App Store builds. Now whenever you build the app, the
settings for the currently selected build scheme apply automatically.

Figure 26.8 Managing build schemes

Figure 26.9 Selecting a build scheme

Turner_Book.indb 689 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App690

To go with the new build scheme, you’ll also need a new build configuration. In
the project settings, select the Info tab. In the Configurations section, click the + but-
ton at the bottom of the list, and then select Duplicate “Release” Configuration from
the popup (Figure 26.10).

Name the configuration so that it is obvious that it will be used for App Store
builds. Next, switch over to the Build Settings and locate the Code Signing settings.
You’ll see that there is a new entry for the new build configuration. Select the App
Store provisioning profile from the list so it will be used with the new build configu-
ration (Figure 26.11).

Finally, you need to configure the App Store build scheme to use the App Store
build configuration for archive builds. This works the same as with the Ad Hoc
changes, discussed earlier. This time make sure you’re editing the new App Store build
scheme, and set the archive options to use the new App Store build configuration.

Figure 26.10 Adding a new build configuration

Figure 26.11 Changing Code Signing settings for the App Store
build configuration

Turner_Book.indb 690 12/11/11 6:47 PM

ptg999

The App Store Process 691

Next Steps
Submitting apps to the App Store takes a lot more than just building the app. Launch-
ing software always does. For iPad apps, you need to prepare all of the other information
that will appear in the App Store listing. If the app isn’t free, you need to set up banking
information with Apple so that you can get paid. You also need to be ready to provide
support for your app’s users. And all of that is just to get the app into the App Store; you
also need to consider how to market the app and find your audience. The next sections
will cover the various requirements before you can submit your app to Apple.

The App Store Process
If you have never submitted an app to the App Store, the process can seem opaque and
confusing at first. There are several steps that need to be done in the right order to
complete the process. These steps are as follows:

1. Build the app for the App Store, as described earlier. You can do this at any time
during the app development process. It’s worth setting up your project for this
early to avoid last-minute confusion. You might want to deal with this at the
same time as you begin sending out Ad Hoc builds to testers. You’ll be work-
ing with certificates and provisioning profiles at that point already, and the App
Store requirements are similar.

2. Gather or create various metadata and images related to the app. You’ll need to
provide everything that will be visible in the store as well as other information
used by the store to categorize the app and help people search for apps. These
requirements are described in the following sections. It’s a good idea to get this
started in parallel with app development if possible to avoid rushing the process
at the last second.

3. Log in to iTunes Connect and create a listing for the application. You’ll need all
of the information from the previous step here. This creates an entry in Apple’s
app database with information about the app but doesn’t begin the approval pro-
cess yet.

4. If your app is not free, go to the Contracts, Tax, and Banking section of iTunes
Connect. You’ll need to approve the iOS Paid Applications contract, which is
a legal agreement between Apple and you or your company. It basically allows
Apple to sell your app in the App Store, but you should review the contract
before agreeing to it. You’ll also need to enter banking information so that
Apple can send payments for app sales.

5. Back in Xcode, build an app archive and use the built-in app submission tool.
Xcode will validate the app and upload it to iTunes Connect. This is when the app
review process begins. (This process is described in more detail later in this section.)

6. Wait. Apple will review your app to decide whether to allow it into the App
Store. Apple doesn’t guarantee that the review will be done in any specific time

Turner_Book.indb 691 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App692

frame. Typically, it takes about a week. In some cases it can be much quicker or,
unfortunately, much longer. Apple sends automatic emails as your app moves
through the approval process, notifying you of events such as when the review
process has started and when it has finished.

If Apple approves your app, the final status is Ready for Sale. Congratulations! Your
app is public!

What If Apple Rejects the App?
Apple has the final say over whether an app is permitted into the App Store. The vast
majority of apps are accepted, but not all. If your app is rejected, Apple will notify you
and describe the reasons for the rejection. Apple provides a detailed list of restrictions
in the iOS Developer Program Agreement. You should review these restrictions care-
fully. Be aware, though, that this is not a complete list. Apple can reject an app for any
reason it feels is appropriate, and the company has been known to reject apps for previ-
ously unknown reasons.

The most common reasons for rejection are purely technical. Usually this means
that the app crashed while being reviewed. Crashing is grounds for automatic rejec-
tion. Another common technical issue is nonfunctional user interface items—buttons
that are visible and appear enabled but that don’t work, for example. With technical
issues you generally have a clear picture of what is wrong. Fix the issues and resubmit
the app.

If you have used undocumented APIs in your app, it’s more than just a technical
issue. Apple provides detailed documentation of frameworks and other APIs avail-
able to applications. iOS has many more methods that are not documented, which are
intended for internal use by Apple. It’s possible to write software that uses these APIs,
but doing so is specifically against App Store rules. If you have used undocumented
APIs, you need to rewrite code so that you don’t use them anymore. How difficult
this is depends on what specifically the API does and how hard it is to write replace-
ment code.

Apps can also be rejected because of content included with the app. For example,
Apple specifically forbids pornographic material. Again, the rejection notice will be
clear about the reasons, and you can take steps to address those issues.

If your app has been rejected for what you believe to be invalid reasons, you can
appeal the rejection. Ultimately, though, Apple is not obligated to accept your app. As
noted earlier, most apps are accepted, and it’s unlikely yours will be rejected unless you
have done something egregious.

App Information for the App Store
When you submit your app to Apple, you’ll need to provide a variety of information
related to the app. This section summarizes the information needed. Except where
noted, all of these are required.

Turner_Book.indb 692 12/11/11 6:47 PM

ptg999

App Information for the App Store 693

j App name. You probably already know this. If you haven’t yet decided among
multiple possibilities, it’s time to do so. Make sure you are not infringing any
copyrights or trademarks in the name, as this is grounds to reject the app. The
app name can’t be one that someone else is already using.

j SKU number. This is any unique code you want to use to identify your app.
It is your own product ID for the app, and it will appear in sales reports. You
can use any text that makes sense to you, but think ahead to when you might
have multiple apps. You might choose to number apps sequentially, or use a date
string or any other string that will help you keep track of your apps. SKU num-
bers are not displayed in the App Store.

j Bundle ID. You will need to know the Bundle ID of the app. This corresponds
to the App ID in the Provisioning Portal for your account.

j Availability date. You can indicate the date when your app should appear in
the store. This is the earliest possible date when this can happen, but the actual
date could be later. If Apple has not approved your app by this date, the app
won’t automatically go into the App Store. Instead, it will appear as soon as it
has been approved.

j Price. If your app isn’t free, this is where you set the price. You don’t get to
specify the actual price; instead, you decide which price tier should be used.
Each tier corresponds to a specific price in a variety of world currencies. For
example, tier 2 corresponds to $1.99 in the United States, Canada, and Australia;
€1.59 in most of Europe; £1.49 in the UK, and so on.

j Availability by country. Apple operates the App Store in most countries in the
world. Not all apps are available in all countries. You decide in which countries
your app should be available. Most apps are available in all stores. If your app
contains content that you have licensed for use, you may need to restrict avail-
ability based on that license.

j Version number. The version number for your app is up to you, but it’s best to
follow typical versioning schemes to avoid confusing users. This information will
be displayed in the App Store.

j App description. This is where you tell potential customers about your app.
The text you provide will appear in the App Store and will be one of the factors
people use to decide whether to buy your app. You have up to 4,000 characters.
Proofread the text carefully, since spelling or grammar errors will make the app
seem amateurish.

j Primary and secondary category. The category determines where the app
will appear in the App Store. Every app must have a primary category and may
also have a secondary category. To get an idea of what apps go in what cat-
egories, visit the App Store in iTunes and tap the Categories tab. If you’re not
sure what category to use, browse the categories and see which ones seem most
appropriate. For PhotoWheel the primary category would be “Photography” and
the secondary might be “Lifestyle.”

Turner_Book.indb 693 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App694

j Keywords. Decide on one or more keywords that describe the app. Keywords
are used when people search for apps in the store, so choose yours carefully.
Keep in mind that Apple forbids using the names of other apps in the keyword
list, so don’t list competing apps in the hope of getting more notice in search
results. The keyword list is limited to 100 characters.

j Copyright. This describes the ownership of the app and will appear in the App
Store. Don’t include the copyright symbol (©), which is added automatically.

j Contact email address. Apple will use this address to get in touch with you
about the app if necessary. This address will not be displayed in the store.

j Support URL. Supply the URL that users can visit for support issues related to
your app. This will be a clickable link in the App Store.

j App URL. This is the app’s home page, with information about the app. This
will be a clickable link in the App Store and is optional.

j Review notes. Use this area for any information Apple’s app review team might
need when evaluating your app. If your app requires login information of some
kind, include information on a testing account here. This information is optional.

j Rating. You’ll need to rate your app in a variety of categories so that Apple can
determine an age rating for it. Age ratings go from 4+, which is available to any-
one, to 17+ for apps that contain more mature content. The categories include
things like violent or sexual content. In each area you can rate your app as hav-
ing the content never, infrequently, or frequently.

j EULA (End User License Agreement). You can provide your own license
agreement for your app, if Apple’s standard EULA doesn’t meet your needs. If
you do, the agreement will be visible in the App Store. This is optional.

App Store Assets
In addition to metadata about the app, you’ll need to have several images ready when
you submit the app. These are listed here:

n Large app icon. You already have an icon that is used by the app, but you need a
much larger version for the App Store. The App Store will use this icon for fancy
screen layouts if your app is chosen as one of the featured apps. The large icon
must be 512 × 512 pixels and can be saved as JPEG, TIFF, or PNG. This is required.

n Screen shots. When users browse the App Store, they’ll want to see what your
app looks like. Since the App Store doesn’t allow users to try apps before buy-
ing them, this is one of the main factors people will use when deciding whether
to buy your app. Your screen shots should highlight your app’s features. Ideally
they should cover all of the most interesting ones. Try to make the screen shots
resemble how users might actually use the app. For PhotoWheel that would mean
naming albums with names people might actually use on photo albums instead
of fake names you might have used in testing. The app will seem more appealing

Turner_Book.indb 694 12/11/11 6:47 PM

ptg999

Using iTunes Connect 695

with album names such as “Vacation in Hawaii” or “First Day of School,” rather
than with names like “Test Album 1,” “Test Album 2,” and so on.

You must provide at least one screen shot of your app. You can provide up to five, and
if it’s possible without being repetitious, you should. Screen shots should be full-
screen images.

Using iTunes Connect
You submit and manage apps through iTunes Connect (itunesconnect.apple.com).
You can also get to iTunes Connect after logging in to the iOS Developer Center
(developer.apple.com/ios). Figure 26.12 shows the main iTunes Connect page (as of
September 2011).

Figure 26.12 iTunes Connect home page

Turner_Book.indb 695 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App696

User Roles
Multiple users can have access to the same iTunes Connect account. Different users
can be assigned to different roles, depending on what operations they need to perform.
You create and manage user accounts in the Manage Users section of the site (see Fig-
ure 26.12).

Five roles exist:
n Admin users can manage the iTunes Connect account, including creating and

deleting users.
n Legal users can enter into legal agreements like the iOS Paid Applications con-

tract and can request promotional codes for paid apps.
n Finance users can manage financial details, including sales and banking infor-

mation as well as contracts.
n Technical users can upload and manage apps.
n Sales users can access sales reports.

Users can be assigned to multiple roles, if it makes sense to do so.

Managing Applications
The Manage Your Applications section is where you’ll set up new applications and
make changes for new versions of apps. This is where you’ll use the app information
and assets you gathered for the app. When you’re ready to submit the first version of
an app, you need to create an entry for the app in iTunes Connect before you’ll be able
to upload the app archive. Likewise, when updating to a new version of an app, you’ll
need to create the new version in iTunes Connect before uploading it. Start the pro-
cess by clicking the Manage Your Applications link, and then the Add New App
button in the window that appears.

iTunes Connect will walk you through the process of entering the app metadata
and uploading screen shots, beginning with the App Name, SKU Number, and Bun-
dle ID (Figure 26.13).

The rest of the information and assets will come in later stages, which progress
wizard-style until you have finished. At that point you will have created the app in the
iTunes Connect database, and the status will be Waiting for Upload.

Submitting the App
It’s time! All the preliminaries are complete, and it’s time to upload your app. You can
upload apps to iTunes Connect directly from Xcode. To start the process, build an
App Store archive as described earlier in this chapter. The Organizer window (shown
in Figure 26.14) will open, showing the new archive and any previous archives. It’s
useful to double-click in the Comment column to add a brief descriptive note to the
archive, so that later on you’ll know why each archive was created.

Turner_Book.indb 696 12/11/11 6:47 PM

ptg999

Submitting the App 697

Figure 26.13 Beginning the app submission process in iTunes Connect

Figure 26.14 Xcode Organizer showing an archive ready for the
App Store

Turner_Book.indb 697 12/11/11 6:47 PM

ptg999

Chapter 26 Distributing Your App698

When you upload the app, iTunes Connect will perform several automatic checks
on the app to verify details like proper code signing and valid icon files. You can run
these checks without submitting the app by using the Validate… button, shown in
Figure 26.14. You can use this button at any time after the app’s entry has been created
in iTunes Connect, even if you’re not ready to submit the app yet.

If the app passes validation, you’re ready to go! Click Submit… to begin the
upload process. Xcode will prompt you to log in to your iTunes Connect account
(Figure 26.15).

Once you have logged in to iTunes Connect, Xcode prompts you for your Applica-
tion ID and code signing information. The Application popup menu is populated based
on the apps in your account that are in the Waiting for Upload stage. If you see No
Value in the Application popup (as shown in Figure 26.16), make sure that you have
completed the process described earlier for creating an app entry in iTunes Connect.

As with the iTunes Connect Web site, Xcode walks you through the rest of the
upload process.

Next: Take a well-earned break. Writing apps is hard, and you deserve a rest.

Going Further
Or perhaps not.

One common misconception is that all you need to do to sell an app is get it
into the App Store. However, in case you haven’t been keeping score, there are over

Figure 26.15 Logging in to iTunes Connect from Xcode

Turner_Book.indb 698 12/11/11 6:47 PM

ptg999

Summary 699

Figure 26.16 Choosing the Application and code signing Identity

500,000 apps in the App Store. Even a great app is going to get lost in that crowd if
you don’t take some extra steps to get your app noticed.

Marketing and promotion are a major part of what makes some apps more success-
ful than others. Technical aspects are vitally important but are not sufficient to turn a
great app idea into a successful app. An app needs a good Web site that provides more
information than the App Store, including demo videos when possible. That’s just the
minimum, though. If you’re not experienced in promoting apps, a good start is Dave
Wooldridge and Michael Schneider’s book The Business of iPhone App Development
(Apress, 2010). Don’t neglect this step, or your app may languish in obscurity regard-
less of how compelling or well written it may be.

Summary
In this chapter you have gone from having an app that you can run on your own
iPad to having one that you can share with testers and release to the world. The steps
sometimes seem convoluted, but they’re the last steps leading to a real app that people
around the world can download and use. Building and releasing an app is a big deal
and can be a lot of work. But if it were easy, everyone would do it.

You did it! Congratulations!

Turner_Book.indb 699 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

27
The Final Word

Whew! You made it to the end of the book. You can confidently say you are an iPad
programmer, but more important, you can say you are an iOS programmer. See,
without you knowing it, we have surreptitiously taught you all the key things you’ll
need to launch your career as an iOS developer. While you have been building Photo-
Wheel, you may not have noticed that we have shown you how to

n Effectively use Xcode and Interface Builder (Chapters 2 and 3)
n Master Objective-C (Chapter 4)
n Program with Cocoa Touch (Chapter 5)
n Build user interfaces with a storyboard (Chapter 14)
n Leverage Core Data (Chapter 13) and iCloud syncing (Chapter 22)
n Create multi-touch gestures (Chapter 11)
n Build custom views (Chapters 10 and 16)
n Use view controllers (Chapter 15) and perform custom view transitions (Chap-

ters 15 and 17)
n Make use of scroll views in different ways (Chapters 16 and 17)
n Add print (Chapter 19) and email (Chapter 20) capabilities to your apps
n Incorporate AirPlay into your apps (Chapter 23)
n Apply image filters and effects using Core Image (Chapter 24)
n Diagnose and fix bugs in your apps (Chapter 25)
n Hook into Web services from your apps (Chapter 21)
n Prepare your apps for submission to the App Store (Chapter 26)

You can use this list as a guide for when you’re working on projects in the future.
For example, if you need to work with Core Data, you can f lip to Chapter 13 for a
refresher. Need to add multi-touch gesture support for your app? There’s a chapter for
that, Chapter 11. The best part of all of this is that you have built an app from start to
finish, from concept to App Store submission. Congratulations!

Turner_Book.indb 701 12/11/11 6:47 PM

ptg999

Chapter 27 The Final Word702

What’s Next
This book serves as a jump start for you becoming an iOS programmer, but there is so
much more to learn, especially if being an iOS programmer is a career choice for you.
Here are some things you can do to become an even better iOS programmer:

n Continue reading books. A list of recommended books is available at
learnipadprogramming.com/recommended-books/.

n Search and participate in online forums such as the Apple Developer Forums
(devforums.apple.com) and StackOverf low (stackoverf low.com).

n Read blog sites such as Cocoa Is My Girlfriend (www.cimgf.com), iPhone Devel-
opment (iphonedevelopment.blogspot.com), and Ray Wenderlich’s Tutorials
for iOS Developers (raywenderlich.com).

n Attend conferences such as Apple’s WWDC (developer.apple.com/wwdc/),
360|iDev (360idev.com), Voices That Matter (voicesthatmatter.com), and
NSConference (nsconference.com).

n Attend local meet-ups and developer gatherings such as CocoaHeads
(cocoaheads.org) and NSCoder Night (nscodernight.com).

And, most important, always keep learning.
We wish you all the best, and we can’t wait to hear about and see the many cool

and exciting apps you will build. You can send your questions, comments, and any-
thing else you would like to share with us to Kirby@whitepeaksoftware.com and
tph@atomicbird.com.

Turner_Book.indb 702 12/11/11 6:47 PM

www.cimgf.com

ptg999

A
Installing the Developer Tools

Before you can write your first iPad application, you need the developer’s tools. The
developer tools consist of everything you need to write iOS and Mac OS X applica-
tions, including the integrated development environment (IDE) called Xcode; the user
interface designer called Interface Builder; the compiler compatible for compiling C,
C++, and Objective-C code; the debugger for debugging your code; and Instruments,
a tool for tracking memory leaks and profiling your application. A handful of other
really useful tools are also included. Collectively the developer tools are called Xcode,
with the Xcode IDE being the primary tool in the arsenal.

Xcode is available for free from the Mac App Store. It’s also available for download
to members of the iOS Developer Program, which costs $99 per year.

Which is the better option for you? If you are curious about iPad and iPhone pro-
gramming and do not wish to spend any money up front, download Xcode from the
Mac App Store. After all, it is free. On the other hand, if you are serious about writ-
ing apps for iOS, you need to join the iOS Developer Program. Membership provides
benefits that you do not get by simply downloading Xcode from the Mac App Store.

Membership Has Its Privileges
As a member of the iOS Developer Program, not only do you have access to the
development tools (Xcode), but you also have access to a slew of resources that
are invaluable to iOS developers. These resources include access to sample code,
how-to videos, recent WWDC session videos, and Apple’s own Developer Forums
(devforums.apple.com). Members also have access to the latest beta versions of iOS
and Xcode. But even more important, only members of the iOS Developer Program
can have their apps installed on a real device.

This means that you must be a member of the Developer Program if you wish to
run and test your app on an iPad or iPhone. You must also be a member if you wish
to distribute your app. This includes Ad Hoc distribution and distribution through the
App Store (see Chapter 26, “Distributing Your App,” for more information). Without
a membership to the iOS Developer Program you will be limited to running and test-
ing your app through the simulator.

Turner_Book.indb 703 12/11/11 6:47 PM

ptg999

Appendix Installing the Developer Tools704

Note
iOS Developer Program members should consider downloading Xcode from the Mac App
Store as well. Apple frequently has beta versions of Xcode available to members, and you
can have multiple versions of Xcode installed at the same time. Download Xcode from
the Mac App Store to ensure that you always have the latest official release of Xcode
installed in the default location (/Developer on your hard drive), and manually install beta
versions of Xcode in a separate location, such as /DeveloperBeta.

Joining the iOS Developer Program
When you join the iOS Developer Program, you choose from three program types:
Standard Individual, Standard Company, or Enterprise. Which type you choose
depends on your needs and purpose. The differences are listed in Table A.1.

Note
There is a fourth program type, University, which is available only to higher educational
institutions looking to include iOS development in their curriculum. The University program
type is not covered in this book.

Note
You can register as an Apple Developer for free at developer.apple.com/programs/
register/. As a registered Apple Developer, you have access to the public releases of
Xcode and some resources in the Dev Center, but you still cannot test your apps on
devices or distribute your app to others.

Which Program Type Is Right for You?
Choosing the right program type is important because changing program types in the
future can be a bit troublesome. Companies wishing to deploy proprietary in-house
apps to employees can join the Enterprise Program. A Dun & Bradstreet number is
required for this program type. Individuals and companies wishing to sell their appli-
cations through the App Store should select either the Standard Individual or Standard
Company option. Standard Individual and Standard Company are the two most com-
monly selected program types, so let’s look at them in more detail.

There is one primary difference between Standard Individual and Standard Com-
pany. Standard Company allows you to create development teams. You can add team
programmers to the account at no additional cost. A team programmer has access to all
the same resources as a Standard Individual. You can add and remove team members
at any time, which is handy when you are hiring new iOS programmers or rolling off
contract programmers after finishing a project.

Turner_Book.indb 704 12/11/11 6:47 PM

ptg999

70
5

Table A.1 iOS Developer Program Benefits

Registered
Apple Developer

Standard
Individual

Standard
Company

Enterprise
Program

University
Program

Price Free $99 per year $99 per year $299 per year Free

Dev Center
Resources

Yes (but limited) Yes Yes Yes Yes

iOS SDK Yes Yes Yes Yes Yes

Prerelease Software
and Tools

Yes Yes Yes

Ability to Create
Development Teams

Yes Yes Yes

Access to the Apple
Developer Forums

Yes Yes Yes Yes

Technical Support
Incidents

2 per membership
year

2 per membership
year

2 per membership
year

Test on Devices
(iPod touch, iPhone,
and iPad)

Yes Yes Yes Yes

Ad Hoc Distribution Yes Yes Yes

In-House Distribution Yes

App Store
Distribution

Yes Yes

T
urner_B

ook.indb 705
12/11/11 6:47 P

M

ptg999

Appendix Installing the Developer Tools706

Note
An individual can be a team programmer for one or more Standard Company accounts
while still having her own account. For instance, I sell my own iPhone and iPad apps, so I
enrolled my company under the Standard Company program type. I also do contract pro-
gramming, which means I am also a Team Member for other companies. When I log in to
the iOS Development Center Web site, I am asked to select which team I wish to use for
the current session, as seen in Figure A.1.

The general rule of thumb to follow when deciding what program type is right for
you is this: If you are an individual with no plans to set up a company, sign up as an
individual. If you are already set up as a company, even if you are a one-person com-
pany, sign up as a company. If you sign up as an individual and decide later to set up
a company presence, you can change your program type. It will involve talking with
Apple and it may take time to transition program types, but it is possible. And if you
represent a company with a D-U-N-S number and you need to distribute apps in-
house only, sign up for the Enterprise Program.

What You Need to Register
Collecting the required registration information before beginning the process will help
speed up registration. Table A.2 lists the basic information you will need. Free feel to
make a copy of this table and use it as a worksheet.

Figure A.1 The Select Your Team prompt is displayed during the login
process when you are a member of multiple teams.

Turner_Book.indb 706 12/11/11 6:47 PM

ptg999

Joining the iOS Developer Program 707

Note
The information listed in Table A.2 is based on registration within the United States. Infor-
mation required may differ in other countries.

Table A.2 Information Needed to Complete the Apple Developer and iOS Developer
Program Registration

Personal Profile

Apple ID (Create a new one or use an existing ID.)

Password

Birth date

Security question and answer (for password recov-
ery, etc.)

Name (account holder’s name)

Email address

Company or organization name

Mailing address (street, city, state, ZIP code)

Telephone number

If you plan to sell your app and/or use iAds

Taxpayer identification number (SSN or EIN in the
United States)

Legal entity name (your name, company name,
DBA, etc.)

Address (street, city, state, ZIP code)

Company contacts (name and contact information
for senior management, finance, technical, legal,
and promotions; can be the same person)

Banking Information

Bank country

ABA routing number

Bank name

Bank account number

Account holder name

Bank account type

Bank account currency

Turner_Book.indb 707 12/11/11 6:47 PM

ptg999

Appendix Installing the Developer Tools708

Create or Use an Existing Apple ID
Apple recommends that you create a new Apple ID if you are enrolling in the iOS Devel-
oper Program for business purposes. This is good advice if you are an employee set-
ting up an account for the company you work for. Apple also recommends setting up a
different Apple ID if you currently have an iTunes account to avoid potential accounting
and reporting issues. As an indie developer, I use my iTunes account as my Apple ID
for the iOS Developer Program and I have not experienced any issues. However, your
mileage may vary.

Downloading Xcode
There are two options for downloading Xcode. Option 1 is to download it through
the Mac App Store. Just search for “Xcode” and download it as you would any other
app available in the Mac App Store.

Option 2 is to visit and sign in to the iOS Dev Center (developer.apple.com/
ios/). From there you can download the latest release of Xcode, including the beta
version if available (and only if you are a paid member of the Developer Program).

Note
The Xcode download file tends to be rather large, weighing in at just over 3GB, so the
download will likely take more than a few minutes to complete.

Installing Xcode
If you downloaded Xcode through the Mac App Store, launch the installer app by
selecting it from Launchpad or from the icon available in the Dock. This performs
a default install of Xcode. If you wish to perform a custom install—for example, to
select the destination directory—you must download Xcode from the Dev Center.

If you have downloaded Xcode through the Dev Center, you will find the Xcode
.dmg file in your Downloads directory. Open the Downloads directory in Finder and
double-click the Xcode disk image. This will mount the image on your system.
Double-click the Xcode and iOS SDK package found in the disk image to begin the
installation process.

The installer guides you through the steps of installing Xcode and the iOS SDK.
Generally, you will accept the installer’s default settings. The install process needs
approximately 8GB of drive space.

Note
I recommend having at least 12GB of available space. I have found that the install pro-
cess tends to run slower when there is limited available space on the hard drive.

Turner_Book.indb 708 12/11/11 6:47 PM

ptg999

Installing Xcode 709

The time it takes for the installer to complete the installation will vary based on
machine type, CPU speed, available hard drive space, and available RAM. Approxi-
mately 10 to 20 minutes seems to be the norm.

Note
It is perfectly safe, and recommended, to install the latest version of Xcode on top of a
previous version of Xcode, assuming you no longer need the previous version. It is, how-
ever, possible to have multiple versions of Xcode installed on the same machine.

I tend to install the public release of Xcode in the default directory (/Developer) and beta
versions of newer Xcode releases in a separate directory (/DeveloperBeta). The install
location is an option you can change during the install guide, as seen in Figure A.2. Note,
however, that the install location cannot be changed in the Mac App Store version.

Congratulations! Xcode is now installed on your system. You can find all of the
tools in the Developer folder at the root of your hard drive (/Developer), and Xcode is
found in /Developer/Applications. You can launch Xcode by clicking the Xcode icon in
the Dock or in Launchpad.

Tip
If Xcode is not in your Dock, open Finder, navigate to /Developer/Applications, and drag
the Xcode icon to your Dock.

You are now ready to begin writing your first iOS application.

Figure A.2 Xcode is installed in /Developer by default, but you can
change the location during the install guide.

Turner_Book.indb 709 12/11/11 6:47 PM

ptg999

This page intentionally left blank

ptg999

Index

A
About screen

creating, 344-346
rotating, 511
segues, 346–347

AboutSceneSegue identifier, 347, 355
AboutViewController class, 352–354, 511
Above the fold display, 149
Accessorizer tool, 33
accessoryButtonTappedForRowWithIndex-

Path method, 221–222, 225, 292, 322
Action sheets, 274–278
actionButton property, 495
Actions

IBAction. See IBAction macro
slideshow controls, 623

Ad Hoc distribution, 683
preparing, 684–688
provisioning, 684

Add Devices page, 131
add method, 205, 218
addButton method, 205
addButtonsToNavigationBar method

deleting photos, 490–493, 495
filter containers, 645
slideshows, 623

addChildViewController method, 367–368,
373

Adding
Core Data entities, 308–310
images, 340
photo albums, 400–401, 404, 408–409
photos to albums, 293–297, 323–325,

429–434
slideshows, 612
table view data, 203–220

addPhoto method
adding photos to albums, 431, 434
Flickr, 555
naming photo albums, 416, 420
removing photo albums, 423

addphoto.png file, 579
addPhotoAlbum method, 400–401, 404,

408–409
addPhotosObject method, 313
Admin role in iTunes Connect, 696
Adobe Photoshop, 157
advanceSlide method, 621
Advancing photos, 620–621
Age calculations, 94
AirPlay. See Slideshows
AirPrint. See Printing
ALAssetsLibrary class, 269
Albums. See Photo albums
alertView method, 424
Aligning objects, 49–52
alloc method, 80, 85
Allocations tool, 677–678
allowMultipleSelection property, 445–446
Allows External Storage option, 308
allowsMultipleSelection property, 436–437
alwaysBounceVertical property, 444
Angle brackets (<>)

classes, 175
header files, 73

Angle of spin gesture rotation, 262, 266
angleOffset property, 510
API

external display, 610–611
Flickr, 557–564
GCD (Grand Central Dispatch), 580–582
Printing, 527

Turner_Book.indb 711 12/11/11 6:47 PM

ptg999

Index712

API keys in Flickr, 549–551
App Charters, 141–142, 146–147
App icon, 341
App IDs

iCloud service, 586–587
iOS Provisioning Portal, 133–135
overview, 118–119

App Store distribution, 683
assets, 694–695
information for, 692–694
preparing, 689–690
process, 691–692
provisioning, 688
rejected apps, 692

AppDelegate class
Core Data stack, 304–305, 307
photo albums, 408
PhotoWheel app, 173–177
storyboards, 339
table view data, 229

AppKit framework, 91
Apple IDs, 708
Application bundles, 100
applicationDidBecomeActive method, 181
applicationDidEnterBackground method, 181
applicationFrame property, 618
applicationWillEnterForeground method, 181
applicationWillResignActive method, 180
applicationWillTerminate method, 181
applyFilter method, 652
Applying filters, 651–652
applySpecifiedFilter method, 651–653
Apps, 141

competing products, 145–146
defining, 141–142
delegates, 174–179
distributing. See Distribution
feature lists, 143–145
icons, 154
managing, 696–697
mockup. See Mockup apps
names, 142, 693
prototyping, 160–163
quitting, 172
summaries, 142
target audience, 144–146
templates, 6

types, 704
UI design, 148–154
UIApplication, 103–104

ARC (Automatic Reference Counting),
86–87

arc4random function, 70
arc4random_uniform function, 647
Arithmetic, date, 93
Arrays

creating, 97
property lists, 286–287
strings, 195
table views, 195

Ash, Mike, 581
assetForURL method, 269
Assets Library framework, 269–271
assign attribute, 77
Assistant editor, 35–36, 61–63
Asterisk character (*)

App IDs, 119, 586
Bundle IDs, 118
pointers, 74

Asynchronous photo downloading, 564–570
At signs (@) for string literals, 81
Atomic properties, 77
Attributes. See Properties
Attributes inspector

opening, 11
scenes, 345–346
titles, 15
working with, 54

Authentication, 582
autoAdjustmentFiltersWithOptions method,

637
autoEnhancedVersionOfImage method, 636
Autohiding chrome, 477–482
Automatic image enhancement, 636–637,

652–653
Automatic Reference Counting (ARC), 86–87
automaticallyForwardAppearanceAndRota-

tionMethodsToChildViewControllers
method, 368, 508

Autosizing
objects, 54
rotation, 501–502
scenes, 344–345
text fields, 215–216

Turner_Book.indb 712 12/11/11 6:47 PM

ptg999

Index 713

Availability by country information for apps,
693

Availability date information for apps, 693
availableModes property, 611
awakeFromInsert method, 318–319

B
Background apps, 172
background-landscape-right-grooved.png

file, 506
background-portrait-grooved.png file, 342
backOnePhoto method, 623–624
Backups of key pairs, 127
Balsamiq Mockups app, 160
Bar buttons, 111
Base settings, 38
Base URLs in Flickr, 562
Began state, 258, 261
beginAnimation method, 242
__block directive, 578
.bmp files, 109
Books, recommended, 702
Booleans, 77–78
Bounce effect, 243
Bounds of frames, 672
bounds property, 611
Brackets ([]) in code, 81–82
Brainstorming technique, 143
Breakpoint navigator, 22
Breakpoints, 662–663

customizing, 664–666
debugging example, 671
hitting, 666–667
setting, 663–664

__bridge syntax, 249–250
Bugs. See Debugging
Build Settings, 36
buildFlickrURLWithParameters method,

560–561, 564
Bumgarner, Bill, 265
Bundle Display Name setting, 330
Bundle IDs, 118, 693
Bundle Seed IDs, 118, 134
Bundles, 99–100
Business of iPhone App Development, 699
buttonIndex property, 277

ButtonMaker application, 106
Buttons, 13

bar, 111
classes for, 105–106
identifiers, 345
table views, 205

buttonTapped method, 59–60

C
C programming language, 65
Caching

cells, 200
images, 570
photo albums, 404

CALayer class, 248–249
call command, 673
Camera roll, saving photos to, 283–284
Cameras

checking for, 273–274
full-screen, 280–281

cancel method
filters, 655–656
Flickr, 553, 574
table view data, 212, 214

cancelChromeDisplayTimer method, 480, 482
Cancelled state, 258
canEditRowAtIndexPath method, 220,

225–226
canMoveRowAtIndexPath method, 227
canSendMail method, 537, 539–540
Carousel view, 240–247
cellAtIndex method

DetailViewController, 240
Flickr, 576–577
GridView, 439–440, 445, 450–451
photo album thumbnails, 427–428
photo albums, 403, 406
photo display, 436
WheelView, 387, 396, 398

cellDoubleTapped method, 258
cellForRowAtIndexPath method

albums, 321
photos, 324
property lists, 292, 294
table views, 198–200, 222, 226

cellIndexesToDisplay method, 391–392, 398

Turner_Book.indb 713 12/11/11 6:47 PM

ptg999

Index714

cellIndexForIndex method, 391, 398
Cells

nonvisible rows, 200
table views, 194

cellTapped method
image picker controller, 272–274
property lists, 294
touch gestures, 256

.cer files, 126–127
Certificate Assistant, 121–123, 127
Certificate Revocation Lists (CRLs), 121
Certificate Signing Requests (CSRs), 121,

124–126
Certificates

CSRs, 124–126
development, 121–124
downloading and installing, 126–127
Provisioning Portal, 684

CFNetwork framework, 565
CGAffineTransform setting, 651
CGGeometry class, 361
CGImage format, 635
CGImageRef structure, 249, 651
CGRectContainsPoint function, 446
CGRectInset setting, 654
CGRectNull setting, 654
CGRectOffset function, 361–362, 364
Changed state, 258, 261
Charters, 141–142, 146–147
Child scenes, 369–371
Child view controllers, 371–375
childViewControllers property, 368
Chrome effects, 477–482
chromeHidden variable, 481, 617
chromeHideTimer variable, 418, 617
CIAffineTransform filter, 649
CIColor class, 647
CIColorInvert filters, 633, 649
CIColorMonochrome filters, 649
CIContext class, 632, 635
ciContext variable, 640
CICrop filters, 633, 654
CIDetector class, 637–638
CIDetectorTypeFace class, 638
CIFaceFeature class, 637–638
CIFalseColor filter, 649

CIFilter class, 631–632
effects, 647–651
image enhancement, 637
overview, 633–634
working with, 634–636

CIHueAdjust filters, 633, 649
CIImage class, 631, 635–636, 653
CISepiaTone filters, 633–636
CIVector class, 654
Clair, Robert, 65
Clark, Josh, 148
@class directive, 228–229
Class Extensions Explained, 265
Classes

defining, 74
extensions, 265–266
implementing, 78–82
methods, 78
overview, 71–73

ClearToolbar class, 421–422, 495
clickedButtonAtIndex method

action sheets, 276–277
adding photos, 431–432, 434
deleting photos, 494, 496
email, 542, 545
Flickr, 555–556
printing, 528–529
removing photo albums, 424

clipsToBounds property, 444–445
Clock Radio app, 152–153
Cocoa framework, 61, 89

design patterns, 112–113
Foundation library. See Foundation

library
RESTful Web services, 548–549
stack, 89
UIKit, 103–112

Cocoa Samurai, 32
Cocoa Touch layer, 89–90
Code completion feature, 33
Code folding, 28
Code names, 142
Code Pilot tool, 33
Code Signing settings, 690
Code Snippet library, 24
Coding styles, 30

Turner_Book.indb 714 12/11/11 6:47 PM

ptg999

Index 715

CoinToss project and CoinTosser class, 70–73
algorithm, 69–70
creating, 66–69
declared properties, 75–78
dot syntax, 83–84
implementation, 78–82
instance variables, 74–75
interfaces, 74
methods, 78
selectors, 82–83
working with, 84–85

Collection classes
NSArray and NSMutableArray, 97
NSDictionary and NSMutableDictionary,

97–98
NSSet, NSMutableSet, and NSCounted-

Set, 98–99
Colon characters (:)

class names, 74
methods, 205
parameters, 78

Color settings, 26–27
colorTintFilter method, 648
Combining images, 634
Command Line Tool template, 66–67
Commercial keys in Flickr, 550
commitAnimations method, 242
commonInit method

GridView, 437–438, 444–446
spin gesture recognizers, 262, 266
WheelView, 389, 397

commonInitWithSize method, 452
Competing products, 145–146
Compilers for Objective-C, 65
Concurrent programming, 580–582
Conditional breakpoints, 663–664
configureExternalScreen method, 617–620,

671
confirmDeletePhotoAlbum method, 423–424
Conf licts

Core Data entities, 311
iCloud service. See iCloud service
names, 80

connection method, 103
connectionDidFinishLoading method

images, 568, 570
SimpleDownloader, 103

Connections
classes, 102–103
NIB files to code, 44, 57–63
objects to outlets, 16

Connections inspector, 55–56
Console

apps, 66
debugger messages, 667

Contact email address information for apps,
694

Container IDs, 600
Container view controllers

child scenes, 369–371
child view controllers, 371–375
creating, 369
overview, 367–368
push segues, 375

Containers, iCloud, 590, 600
contentSizeForViewInPopover property,

190–191
Contexts, managed objects. See Managed

object contexts
Continuous gestures, 254
Continuous recognizers, 258
Control-Click

connections, 16, 60–63, 353, 400
Finder, 378
projects, 334, 338
segues, 346–347, 356
views, 330, 399

controllerDidChangeContent method, 450
Controls

slideshows, 622–624
UI design, 152–153

Converting
radians to degrees, 266
strings to dates, 100
UIImage to PNG format, 296

Coordinate systems for grids, 472
copy attribute, 77
Copying

files, 378–380
methods, 184
objects, 48

Copyrights, 694
Core Animation, 243
Core Animation for MacOS X and the iPhone, 243

Turner_Book.indb 715 12/11/11 6:47 PM

ptg999

Index716

Core Animation framework, 242–243
Core Data: Apple's API for Persisting Data on

Mac OS X, 413
Core Data for iOS, 298
Core Data framework, 298

adding, 302–303
changing models, 593
iCloud, 585
managed object contexts, 300–301
managed objects and entity descriptions,

299–300
model editor, 307–308
NSManagedObject subclasses, 310–314
overview, 299
persistent stores and persistent store coor-

dinators, 301, 305–306
photo albums, adding, 408
photo albums, displaying, 326
photo albums, reading and saving,

320–323
photos, adding, 323–325
photos, entities, 308–310
PhotoWheel, 307–315
PhotoWheelPrototype, 302
prototype code, 380–385
stack setup, 303–307
transient attributes, 592–593

Core Foundation, 91
Core Image effects

applying filters, 651–652
auto-enhance, 652–653
CIFilter, 633–635, 647–651
concepts, 631–632
delegate methods, 638–640
face zoom, 653–654
image analysis, 636–638
instance variables, 640
interface additions for, 640–647
utility methods, 655–656

Core OS layer, 90
Core Services layer, 90
Cox, Brad, 79
CPUs for images, 632
Crashing apps, 692
Create a new Xcode project option, 4
Create App ID page, 134–135

Create iOS Development Provisioning Pro-
file page, 136

createCGImage method, 635
createScaledImagesForImage method, 594,

598
CRLs (Certificate Revocation Lists), 121
Cropping images, 654
CSRs (Certificate Signing Requests), 121,

124–126
.cur files, 109
Curly braces ({}) for local variables, 74
Current line with breakpoints, 666
currentAlbumIndex property, 292–293, 320
currentAngle property, 265–266
currentCalendar method, 93
currentIndex property

external displays, 620
PhotoBrowserViewController, 463, 466
slideshows, 613–614, 616, 621, 624–625

currentPhotoView property, 613, 615
Custom breakpoints, 664–666
Custom queues, 580
Custom touch gestures, 258–266
Custom views, 231–232

carousel, 240–247
photo wheel view cell, 248–252
wheel, 233–240

CustomNavigationController class
photo browser, 470, 474–476
pop transitions, 365–366

CustomPushSegue class
container view controllers, 375
implementing, 358–362
photo browser, 467–468, 470, 472–474

D
Data models

data persistence, 285–286
property lists, 287–288

Data persistence, 285
Core Data. See Core Data framework
custom code to model objects, 315–320
data model, 285–286
property lists. See Property lists
SQLite, 326–327

Turner_Book.indb 716 12/11/11 6:47 PM

ptg999

Index 717

Data stores, 299
Data types, 74, 78

NSCalendar, 93
NSData and NSMutableData, 92–93
NSDate, 93
NSDateComponents, 93–94
NSDecimalNumber, 94–95
NSInteger and NSUInteger, 95
NSNull, 96
NSNumber, 95–96
NSObject, 96
NSString and NSMutableString, 96–97

dataSource property
GridView, 436, 554
photo albums, 399
table view, 195
UITableView, 197
UITableViewDataSource, 194
wheel view, 234, 237–238

dateAdded property, 309
Dates

arithmetic, 93
formatting, 100
pick lists, 107

DDEBUG compiler option, 675–676
dealloc method, 602
Debug area, 25–26
Debug build configurations, 685
DEBUG compiler option, 675
Debug navigator, 22
Debugging, 625–626, 661

breakpoints, 662–667
concepts, 661–662
external display code example, 670–674
NSLog, 674–676
problem description, 661–662
profiling codes, 676–682
tools, 662
variable inspection, 667–670
Xcode, 663–670

Declared properties, 75–78
Dedicated development devices, 120
Default.png file, 521
Default-landscape.png file, 521
defaultNameText property, 224–225
defaultPhoto.png file, 250, 406, 426
Degrees, converting, 266

delaysContentTouches property, 444–445
delegate property, 255
Delegates

apps, 174–179
Core Image, 638–640
split view controllers, 185
table view data, 210

deleteImageAtIndex method, 490, 495–497,
639

deletePhoto method, 494, 496
deletePhotoConfirmed method, 493–494,

496
Deleting

objects, 48
photos, 489–497
table view data, 225–226

dequeueReusableCell method
displaying photos, 436
GridView, 439, 445
WheelView, 387, 395, 398

dequeueReusableCellWithIdentifier method,
200

description method, 670
Descriptions for apps, 693
Deserialization, 44
Design patterns, 112–113
Designers, hiring, 153–154
Destination controllers, 361, 468
Destination frames, 474
Destination image view, 362
Detail view controllers, 169
detailNavigationController, 179
DetailView.xib field, 237
DetailViewController class, 173

action sheets, 274–278
Carousel view, 245–247
image picker controllers, 272–273,

279–280
master detail apps, 179, 185–186
photos, 296–297, 323–326
PhotoWheelViewCell, 250
property lists, 293–294
table view data, 229–230
titles, 192
touch gesture recognizers, 255–257
wheel view, 238–240

Detection, face, 637–638

Turner_Book.indb 717 12/11/11 6:47 PM

ptg999

Index718

Dev Center, 708
Developer documentation, 34
Development machines, 121

certificates, 121–124, 126–127
CSRs, 124–126

Development provisioning profiles, 119–120,
135–138

Development setup, 128–130
Device family types, 7
Device IDs

iOS Provisioning Portal, 131–133
overview, 117–118

.deviceids file, 131
Devices

managing, 40
mirroring, 628–629
provisioning. See Provisioning
rotating. See Rotation
schemes, 39
setup, 128–130

DIB (Windows Bitmap Format) format, 109
Dictionaries

classes, 97–98
face detection, 638
Flickr, 563–564
iCloud, 606
property lists, 286–287
variables, 667–669
WheelView, 397

didAccessValueForKey method, 598
didChangeObject method, 402, 405
didChangeValueForKey method, 596
didDeselectCellAtIndex method, 436, 577
didDismissWithButtonIndex method,

276–277
didFailWithError method, 568, 570
didFinishLaunchingWithOptions method

AppDelegate, 176, 179–180
Core Data stack, 307
NIB-based projects, 331
rotation, 501
storyboards, 339
table view data, 229–230

didFinishPickingMediaWithInfo method,
281, 283–284, 295, 324–325

didFinishWithResult method, 540
didMoveToParentViewController method

child view controllers, 371, 373–375
container view controllers, 368
photo albums, 401, 404, 416, 418
selecting photo albums, 414

didReceiveData method, 567, 569
didReceiveResponse method, 567, 569
didRotateFromInterfaceOrientation method,

499, 517
didSelectCellAtIndex method

Flickr, 577
photo albums, 403, 406, 410–412
photo browser, 467
WheelView, 387

didSelectRowAtIndexPath method
photos, 324
property lists, 292–293
table view data, 227, 229

didTap method, 442–443, 446
disablesAutomaticKeyboardDismissal

method, 572, 578
Discrete gestures, 254
dismissModalViewControllerAnimated

method, 353
dispatch_apply function, 651
dispatch_async function, 582, 600–601
dispatch_get_global_queue function, 582
Dispatch queues, 580–581
Display area, 104
Display buttons in table views, 205
displayHelloName method, 14–15
Displaying

external. See External display
Flickr, 555–557
photo albums, 398–408
photos, 297–298, 326, 434–446
slideshows, 613–616
table view data, 197–203

distantFuture method, 623–624
Distribution

Ad Hoc, 684–688
App Store. See App Store distribution
extra steps, 698–699
iTunes Connect, 695–698
methods, 683–684
provisioning profiles, 120
submitting apps, 696–698

DLog macro, 674–675

Turner_Book.indb 718 12/11/11 6:47 PM

ptg999

Index 719

Dock
IB, 46
Xcode in, 3

Documentation, developer, 34
documentsDirectory method, 296
done method

table view data, 213–214
view controllers, 353–354

Don't Repeat Yourself (DRY) principle, 231
Dot syntax, 83–84
Double quotation marks (") for strings, 96
Double tap gesture, 257–258, 487
doubleTapped method, 486
downloaders property, 577, 579
downloadImageAtURL method, 567–569
Downloading

certificates, 126–127
development provisioning profiles, 137
images, 340
photos, 564–570
Xcode, 708

Downloading Images for a Table without Threads
blog post, 565

downloadWithURL method, 102–103
Dragging, 254
drawRect method, 421
DRY (Don't Repeat Yourself) principle, 231
Dudney, Bill, 243
Dynamic arrays, 97
@dynamic directive, 314
Dynamic sets, 98

E
editButtonItem property, 221
Editing

breakpoints, 664
table view data, 220–225

Editor area, 23
Editors, 35–37
Editor's gutter, 664
Email

MFMailComposeViewController, 535
operation, 533–535
SendEmailController, 535–546

emailCurrentPhoto method, 542–543

emailPhotos method, 546
Empty Application template, 6, 334, 336
Enable Entitlements option, 590
Encapsulation, 75
@end directive, 74, 79, 175
End state, 258
End User License Agreement (EULA), 694
enhancedCIImage property, 637
enhanceImage method, 652
Enhancement of images, 636–637, 652–653
Enterprise program type, 704
Entitlements in iCloud, 589–591
Entity descriptions, 299–300
enumerateGroupsWithTypes method,

269–270
EULA (End User License Agreement), 694
Events, touch, 253–254
Exception breakpoints, 663
Exceptions, 61
Exponents, 94
Extensions, classes, 265–266
External display

API, 610–611
debugging example, 670–674
managing, 616–620
options, 609
requirements, 609–610
testing and debugging, 625–626

externalDisplaySlideShowController variable,
617, 620

externalScreenWindow variable, 617, 620

F
Face down orientation, 500
Face up orientation, 500
Faces

detecting, 637–638
zooming, 653–654

faceZoomRect property, 654
Failed state, 258
fakeSave notification, 606
falseColorFilter method, 648
Fault objects, 300
Feature lists for apps, 143–145
featuresInImage method, 638

Turner_Book.indb 719 12/11/11 6:47 PM

ptg999

Index720

fetchedResultsController method
GridView, 449
iCloud, 601
photo albums, 401–402, 404–405

fetchFlickrPhotoWithSearchString method,
575, 579, 581

fetchRequestWithEntityName method, 404
fetchResponseWithURL method, 560,

563–564
Fielding, Roy, 548
File coordinators in iCloud, 584
File Inspector, 38
File Template library, 24
Files

copying, 378–380
header, 72, 174, 177, 183–184
owners, 56

fileURLForAttributeNamed method, 595,
598

filteredLargeImage variable, 640
filteredThumbnailImage variable, 640, 645,

651
filteredThumbnailPreviewImages variable,

640, 642, 652
Filters, 100

applying, 651–652
CIFilter. See CIFilter class
delegate methods, 638–640
face zoom, 653- 655
image analysis, 636–638, 652–653
instance variables, 640
interface additions for, 640–647
types, 632–634
utility methods, 655–656

filterViewContainer property, 641
filterWithAffineTransform method, 648, 651
Finance role in iTunes Connect, 696
Fixed space bar buttons, 111
Flashlight app, 9
Flexible space bar buttons, 111
Flickr, 549–551

displaying, 555–557
downloading photos, 564–570
FlickrViewController class, 570–580
PhotoWheel, 551–553
view controller scene, 553–555
wrapping API, 557–564

f lickrJSONSWithParameters method,
561–564

f lickrPhotos property, 577, 579
FlickrViewController class, 551–554, 557

arrays, 566
implementing, 570–580

f lip method, 78–79, 81–82, 85
Flipping images, 651
Floating-point number format specifiers, 99
FMDB project, 327
Fonts

labels, 346
settings, 26–27

Foreground apps, 172
Format specifiers, 99
forRowAtIndexPath method, 220, 225–226
Forwarding messages, 368
forwardOnePhoto method, 623–624
Foundation.h file, 73
Foundation library, 91–92

collection classes, 97–99
data types, 92–97
utility classes and functions, 99–103

frameForPageAtIndex method, 462, 466
frameForPagingScrollView method, 461–

462, 465
Frames, 672
Framework & Library target, 6
Framework bundles, 100
Full-screen cameras, 280–281

G
Garbage collection, 86
GCD (Grand Central Dispatch) API,

580–582
Gestures. See Touch gestures
getExternalScreen method, 617, 619
getter attribute, 77
Getter methods, 59, 75–77
GIF (Graphic Interchange Format) format,

109
Git source code repositories, 36, 66, 170
Global queues, 580
GlobalPhotoKeys class, 287–288, 290, 294
Glyphish icon set, 158
Google Objective-C Style Guide, 30

Turner_Book.indb 720 12/11/11 6:47 PM

ptg999

Index 721

GPUs for images, 632
Gradient buttons, 106
Grand Central Dispatch (GCD) API,

580–582
Graphic Interchange Format (GIF) format, 109
Grid view

Flickr, 554
photos, 434–446

Grids
coordinate systems, 472
IB, 46

GridView class
photos, 435–446
working with, 446–451

GridViewCell class, 436
gridViewCellSize method, 451, 577
GridViewDataSource protocol, 436, 447, 570
gridViewNumberOfCells method, 450, 576
Grouped tables, 193
GUI PSD template, 157
Guides for object alignment, 49–51

H
Harrington, Tom, 298
Hashes for URI strings, 595
Header (.h) files, 72, 174, 177, 183–184
Heads-Up Display (HUD), 16
Hello World project

creating, 3–10
functionality, 12–17
text, 10–12

Help
online, 236
provisioning, 124
Quick Help, 34

Hide System Libraries option, 679–680
hideChrome method, 480, 482
hideFilters method, 644–645
hideOverlay method, 574–575, 579
HIG, 148
Hillegass, Aaron, 65
Hiring designers, 153–154
Home button, 500–501
Horizontal guides, 49–50
HUD (Heads-Up Display), 16
hueAdjustFilter method, 648

I
IBAction macro

connections, 44
description, 14
NIB code, 57–61
PhotoBrowserViewController, 641
table view data, 215

iBooks, 150–151
IBOutlet macro

connections, 44
description, 14
NIB code, 57–61
PhotoBrowserViewController, 641–643,

646
table view data, 213, 215

IBPlaygroundViewController class, 58–63
IBPlaygroundViewController.xib file, 46–47
iCloud service

changes from, 602–607
concepts, 584
device provisioning, 586–591
entitlements, 589–591
file coordinators and presenters, 584
limitations, 592
overview, 583
PhotoWheel, 592–598
ubiquitous persistent stores, 585
UIDocument and UIManagedDocument,

585
.ico files, 109
Icon*.png files, 341
Icons

apps, 154
sets, 158

IDE (Integrated Development Environment),
19–20

Identity inspector, 52–54, 353
Image picker controllers

action sheets, 274–278
saving photos to camera roll, 283–284
working with, 271–274, 278–282

imageAtIndex method, 460, 469
imageDataForAttributeNamed method, 597
ImageDownloader class, 566–570
imageFilters variable, 640
ImageGridViewCell class, 451–455

Turner_Book.indb 721 12/11/11 6:47 PM

ptg999

Index722

imageGridViewCellWithSize method, 453
imagePickerController method, 281, 431,

433–434
Images

caching, 570
child scenes, 370
classes for, 108
Core Image. See Core Image effects
downloading, 340
enhancement, 636–637, 652–653
face detection, 637–638
f lipping, 651
ImageGridViewCell, 451–455
Mockup apps, 158–160
photo album thumbnails, 425–429
rotating, 520–522
scaling, 594, 596
segues, 360–362
storyboards, 339–340

imageTapped method, 481–482
imageView property, 453–454
Immutable classes, 92
iMockups app, 159–160
@implementation directive, 79, 177
Implementation of classes, 78–82
#import statements, 73, 84
Indentation preferences, 28–29
Index cards, 143
Index paths, 199, 223
index property, 486
indexesForSelectedCells method, 436, 444,

446
indexForSelectedCell method, 436, 444, 446
indexForSelectedGridCell method, 471–472
indexInWheelView property, 396
indexPath property, 223
Indistinct objects, 98
Industrial design, 149–150
info.plist f ile

Bundle IDs, 119
launch images, 521–522
PhotoWheel app, 174
storyboards, 330

Info settings, 36
Information hiding, 75
Inheritance, 175

init method
CoinTosser, 79–81, 85
GridView, 438
ImageGridViewCell, 452–454
prototype code, 389, 397
SimpleDownloader, 102
spin gesture recognizers, 263, 266

Initial view controllers, 341–344
initPhotoViewCache method, 460–461, 464
initWithBarButtonSystemItem method, 204
initWithCalendarIdentifier method, 93
initWithCoder method

GridView, 438, 445
prototype code, 389
spin gesture recognizers, 263, 266

initWithDefaultNib method, 212–213, 219
initWithFrame method

GridView, 438
prototype code, 389
spin gesture recognizers, 263, 266
zooming, 484, 487

initWithNibName method, 189–190, 246,
278–280

initWithSize method, 453–454
initWithViewController method, 537–539
Inspectors area, 24
Installing

certificates, 126–127
development provisioning profiles,

137–138
Xcode, 708–709

Instance methods, 78
Instance variables (ivars), 45

Objective-C, 74–75
renaming, 80

Instruments tool, 41, 676–682
int data type, 74
Integrated Development Environment (IDE),

19–20
Interface Builder (IB), 11, 43–44

aligning objects, 49–52
layout rectangles, 52–53
NIB connections to code, 57–63
operation, 44–45
selecting and copying objects, 48
states, 52–57

Turner_Book.indb 722 12/11/11 6:47 PM

ptg999

Index 723

storyboards, 63–64, 333
working with, 45–48

@interface directive, 74, 175
Interfaces

Objective-C, 74–75
user. See User interface (UI)

Intro to Grand Central Dispatch, 581
invalidatingBarButtonItem method, 183
invertColorFilter method, 648
iOS

device family types, 7
targets, 6
touch gestures, 253–254

iOS Configuration Utility, 131
iOS Dev Center, 125–126
iOS Developer Program, 115, 703

joining, 704–706
membership privileges, 703–704
registration requirements, 706–708
team roles, 116–117

iOS Developer Program Agreement, 692
iOS Human Interface Guidelines, 148
iOS Provisioning Portal, 124, 131

App IDs, 133–135
certificates, 684
development provisioning profile, 135–138
device IDs, 131–133
iCloud, 588
overview, 115–117

iOS Simulator
external display, 626, 670
Printer Simulator, 530

.ipa files, 688
iPad, universal apps for, 8
iPad device family, 7
iPad Simulator, 9–10

iCloud, 589
limitations, 41
working with, 171–172

iPhone device family, 7, 426
iPhone emulator, 8
iPod touch, 128–129
isCameraDeviceAvailable method, 273
isIndexVisible method, 390–391, 397
isSelectedItemForAngle method, 390, 397
isSourceTypeAvailable method, 273, 294
Issue navigator, 22

Isted, Tim, 298
isZoomed method, 484–485, 487
iTunes Connect, 695–698
ivars (instance variables), 45

Objective-C, 74–75
renaming, 80

J
Joint Photographic Experts Group (JPEG)

format, 109, 296, 298
JSON Framework, 549, 562–563
Jump bar, 23

K
kCICategoryStillImage category, 633
kCIContextUseSoftwareRenderer setting, 635
kCIImageAutoAdjustRed Eye setting, 637
Key bindings, 31–32
Key Pair Information window, 122–123
Key pairs for certificates, 122–123, 127
Key-value coding (KVC), 300
Key-value pairs for dictionaries, 97–98
Key windows, 180
Keyboards, virtual, 152
Keychain Access application, 121–124, 127
Keychain data, 119
Keynote Wireframe Toolkit, 158
Keys

dictionary, 286–287
Flickr, 549–551
photos, 298

Keywords for apps, 694
KissXML parser, 101
Kochan, Stephen G., 65
KVC (key-value coding), 300

L
Label class, 11, 15
Labels

copying, 48–49
creating, 11–12
scenes, 346
text property, 201

Labor Mate app icon, 156

Turner_Book.indb 723 12/11/11 6:47 PM

ptg999

Index724

LaMarche, Jeff, 106, 262, 565
Landscape orientation, 504

helper methods, 509
landscape left and landscape right, 500
launch images, 521
photo browser, 474
split view controllers, 169

Large app icon, 694
largeImage attribute, 595
largeImageData attribute, 309, 592–593,

597
Launch images, 520–522
Launch options, 179–180
Launchpad, 3–4
Layout rectangles, 52–53
layoutForLandscape method, 505–506, 509
layoutForPortrait method, 506–507, 509
layoutScrollViewSubviews method, 516–517
layoutSubviews method

GridView, 440–442, 445–446
spin gesture recognizers, 264, 266
WheelView, 236, 395, 398

Leaks tool, 677
Learning iPad Programming blog, 582
Learning Objective-C 2.0, 65
Lee, Mike, 520
Legal role in iTunes Connect, 696
Libraries, 24

Foundation. See Foundation library
Library area, 24–25
Object, 11

Library target type, 6
libxml2 parser, 101
Line wrapping, 29
Literals, string, 81
loadPage method

chrome effects, 478–479
PhotoBrowserViewController, 462, 466
zooming, 488–489

loadSubviewsWithFrame method, 484, 487
Local variables, 45

Objective-C, 74–75
renaming, 80

localUserInfo dictionary, 606
Location Services for photos, 270–271
Log Message actions, 665
Log navigator, 22

Logical conditions in searching and filtering
data, 100

Long, Matt, 243
Long presses, 254

M
.m files, 72, 78–79
Magic Piano app, 149
Mail app, 169, 533
Mail composition view, 534
mailComposeController method, 539
main.m file, 69

CoinTosser, 84–85
PhotoWheel, 174

Main queue, 580
Main screen, 377–378

copying files, 378–380
Core Data model, 380–385
GridView, 446–451
ImageGridViewCell, 451–455
photo albums, adding, 408–409
photo albums, displaying, 398–408
photo albums, managing, 409–410
photo albums, naming, 414–421
photo albums, removing, 422–424
photo albums, selecting, 410–414
photo albums, thumbnails, 425–429
photos, adding, 429–434
photos, displaying, 434–446
rotating, 518–520
toolbar display, 421–422
WheelView, 385–398

Main storyboards, 336–337
Main View Controller Scene, 371
MainSlideShowViewController class

advancing photos, 621
external displays, 620
slideshows, 611–613, 616–620

MainStoryboard.storyboard file
container view controllers, 369
Flickr, 553–554
GridView, 446
naming photo albums, 415
navigation, 356
PhotoBrowserViewController, 641
pop transitions, 366

Turner_Book.indb 724 12/11/11 6:47 PM

ptg999

Index 725

scenes, 356
scroll view, 466
toolbars, 422
View Controller setting, 353–354

MainViewController class
child view controllers, 372
container view controllers, 369
iCloud, 601–602, 606
photo albums, 407, 410–411
rotation, 502–507, 518–520

makeKeyAndVisible method, 179–180, 618
Making Apps That Don't Suck, 520
Manage schemes window, 39
Managed object contexts

creating, 306–307
iCloud, 603
overview, 300–301
photo albums, 318–320, 406–408

Managed objects, 299–300
managedObjectContext property

iCloud, 603
photo albums, 318, 400, 406–408, 413

managedObjectModel method, 664–667
Mantissas, 94
Master-Detail Application template, 6
Master-Detail apps

app delegates, 174–179
creating, 170–171
detail view controller, 185–186
launch options, 179–180
master view controller, 186–187
project structure, 173–174
prototype, 167–173
split view controller delegates, 185
split view controllers, 168–169, 181–184

Master view controllers, 169, 186–187
masterNavigation Controller, 179
MasterViewController class, 173

Core Data stack, 307
displaying data, 197–198
managed objects, 306
master detail apps, 179, 186–187
photo albums, 320–325
property lists, 288–289, 292
table view data, 203, 217–223, 225–226,

228–229

table views, 194–197
titles, 189–192

maximumContentOffset method, 513
Media layer, 90
Media library, 24–25
MediaPlayer framework, 626
Member Center, 589–590
Memory management, 77, 85–87

Allocations tool, 677–678
leaks, 83, 85, 434
photos, 296

Menu items, classes for, 108
mergeChangesFrom_iCloud method,

604
mergeChangesFromContextDidSave-

Notification method, 606
mergeiCloudChanges method, 605–606
Merging iCloud changes, 605–606
Message UI Framework, 533–536
Messages

debugger, 667
forwarding, 368
to nil objects, 214
sending, 99
SMS, 533

Metaphors in UI design, 150–151
Methods

copying, 184
Objective-C, 78

MFMailComposeViewController class,
534–536, 540

MFMailComposeViewControllerDelegate
protocol, 535

Mini toolbar, 23, 25
minimumContentOffset method, 513
Mirror image filters, 651
.mobileprovision files, 138
MockApp template, 158
Mockup apps, 154

necessity, 156
overview, 154–155
PhotoWheel, 167–168
tools, 156–160
wireframes, 158–160

Model editor, 307–308
Model objects, custom code for, 315–320

Turner_Book.indb 725 12/11/11 6:47 PM

ptg999

Index726

Model-View-Controller (MVC) design
pattern, 15, 112–113

mogenerator tool, 314–315
.momd files, 304–305
Motion events, 253
motionBegan method, 253
motionCancelled method, 253
motionEnded method, 253
Mouse clicks in design, 148–149
moveRowAtIndexPath method, 226–227
Moving guides, 49
MPVolumeView class, 626–628
Multiple Xcode versions, 709
Multitasking, 172
Multithreaded applications, 77
Mutable classes, 92
MVC (Model-View-Controller) design

pattern, 15, 112–113
myBalsamiq app, 160

N
Name editor for albums, 322–323
NameEditorView class, 217
NameEditorViewController class

albums, 322
property lists, 292
table view data, 207–212, 215, 217–225

NameEditorViewControllerDelegate
protocol, 210

nameEditorViewControllerDidCancel
method, 210, 214, 218–219

nameEditorViewControllerDidFinish
method

albums, 322–323
property lists, 292–293
table view data, 210, 214, 218–222

Names
albums, 322–323
apps, 142, 693
ivars, 80
organization, 38–39
parameters, 211
photo albums, 414–421
registered devices, 132

Navigation area, 22–23

Navigation bar
classes for, 109–110
scenes, 356–358
segues, 362

navigationItem property, 205
Navigator

debug, 666–667
descriptions, 22

New project window, 4–5
newPhotoAlbumWithName method,

289–290, 292–293
NIB files, 11

connections to code, 57–63
overview, 44
vs. storyboards, 330–331

nibWithNibName method, 426
nil objects, messages to, 214
nil value for properties, 86–87
No Access role, 117
nonatomic attribute, 77
Nonvisible rows, 200
Notifications in iCloud, 601–602
NSArray class

description, 97
property lists, 286–287
table views, 195

NSBundle class, 99–100
NSCalendar class, 93
NSConfinementConcurrencyType setting,

604
NSCountedSet class, 98–99
NSData class, 92–93, 286–287, 290
NSDate class, 93, 286
NSDateComponents class, 93–94
NSDateFormatter class, 100
NSDecimalNumber class, 94–95
NSDefaultRunLoopMode mode, 569
NSDictionary class

description, 97–98
Flickr, 563
iCloud, 606
image picker controllers, 281
property lists, 286–287, 290

NSEntityDescription class, 299
NSError class, 563
NSFetchedResultController class, 606

Turner_Book.indb 726 12/11/11 6:47 PM

ptg999

Index 727

NSFetchedResultsControllerDelegate proto-
col, 400, 404, 447

NSFileCoordinator class, 584
NSFileManager class, 100
NSFilePresenter protocol, 584–585
NSIndexPath type, 194, 294
NSInteger class, 95
NSJSONSerialization class, 549, 562–563
NSLocale keys, 93
NSLocalizedString function, 190
NSLog function

breakpoints, 665
CoinTosser, 85
debugging, 674–676
description, 59, 99
output, 70
for testing, 625

NSMainNibFile setting, 330
NSMainQueueConcurrencyType setting, 603
NSManagedObject class, 299–300, 310–315
NSManagedObjectContext class, 300–301,

413, 606
NSManagedObjectContextDidSaveNotifica-

tion notification, 606
NSMergeByPropertyObjectTrumpMerge-

Policy setting, 604
NSMutableArray class, 97, 288
NSMutableData class, 92–93
NSMutableDictionary class, 97–98, 290
NSMutableOrderedSet class, 201, 288
NSMutableSet class, 98–99
NSMutableString class, 96–97
NSNotification observer, 291
NSNotificationCenter, 602
NSNull class, 96
NSNumber class, 95–96, 286–287
NSNumberFormatter class, 100
NSObject class, 73, 96
NSOrderedSet class, 195
NSPersistentStoreCoordinator class, 301
NSPersistentStoreDidImportUbiquitousCon-

tentChangesNotification notification,
603–605

NSPersistentStoreUbiquitousContentName-
Key setting, 598

NSPersistentStoreUbiquitousContentURL-
Key setting, 598, 600

NSPredicate class, 100
NSPropertyListMutableContainers class, 290
NSPropertyListSerialization class, 290
NSRegularExpression class, 101
NSRunLoopCommonModes mode, 569
NSSet class, 98–99
NSString class, 74, 96–97, 286–287
NSStringFromClass function, 404
NSTimer class, 101, 477, 565, 621
NSUInteger class, 95
NSURL class, 527, 548–549
NSURLConnection class

description, 102, 549
Flickr, 563
photos, 565–570

NSURLConnectionDelegate protocol, 549,
570

NSURLRequest class, 102, 548–549
NSURLResponse class, 563
NSXMLParser class, 101, 549
NSXMLParserDelegate protocol, 101
Null-terminated char array format specifiers,

99
NULL value, 96
numberOfCells method, 389–390, 397
numberOfPhotos method, 460
numberOfRowsInSection method, 198–199
numberOfRowsInTableView method,

198–199
numberOfTapsRequired property, 255
numberOfTouchesRequired property, 255
numberOfVisibleCells method, 390, 397

O
Object library, 11, 24–25
objectAtIndexPath method, 412
objectID property, 413, 595
Objective-C, 13, 19–20, 65

classes, 71–73
declared properties, 75–78
dot syntax, 83–84
implementation, 78–82
instance variables, 74–75
interfaces, 74–75
memory management, 85–87
methods, 78

Turner_Book.indb 727 12/11/11 6:47 PM

ptg999

Index728

Objective-C, (continued)
objects, 70–71
overview, 65–66
selectors, 82–83
working with, 66–70

Objective-C Programming, 65
ObjectiveFlickr framework, 557
Objects

aligning, 49–52
managed, 299–300. See also Managed

object contexts
model, 315–320
overview, 70–71
selecting and copying, 48
size, 54–55

OCSP (Online Certificate Status Protocol),
121

OmniGraff le app, 160
On/Off button, classes for, 108
Online Certificate Status Protocol (OCSP),

121
Online help, 236
OpenGL Game template, 6
Opening header files, 184
Optimization, 676–682
Option key for objects, 51–52
Option-Click

copying objects, 48
documentation popover, 183
names, 184
Quick Help popup, 34

@optional directive, 214
Organization name, 38–39
Organization Profile, 590
Organizer window

app submissions, 696–697
description, 40
device setup, 128–130
UUIDs, 132

Orientation. See also Rotation
launch images, 521
photo browser, 474
split view controllers, 169
supported, 499–501

originalImageData property, 308
Outlets, 57

connecting objects to, 16

defining, 58–61
IBOutlet. See IBOutlet macro

overlayView property, 553
overlayViewTapped method, 575, 579
Owners of files, 56

P
PADDING macro, 465
Page-Based Application template, 6
Page control, 107
Panning, 254
Paper and pencil for Mockup apps, 157
Parameters

Flickr, 562–563
methods, 78
names, 211

Parsers, 101
Paths

attributes, 595
index, 199, 223

pause method, 623–624, 679–681
Penultimate app, 157
perform method for segues

custom, 355
CustomPushSegue, 472–474
implementing, 358–362
push, 375

Performance, 676–682
performBlock method, 603–604
performBlockAndWait method, 603
performSegueWithIdentifier method, 346
performSelector method, 82, 434
Persistence. See Data persistence
Persistent stores and persistent store coordi-

nators, 301
creating, 305–306
iCloud, 585
ubiquitous, 598–602

persistentStoreCoordinator method, 598–
600, 664

Person interface, 76, 177–178
Photo albums, 286

adding, 400–401, 404, 408–409
adding photos to, 293–297, 323–325,

429–434
displaying, 398–408

Turner_Book.indb 728 12/11/11 6:47 PM

ptg999

Index 729

displaying photos in, 297–298, 326
managed object contexts, 318–320
managing, 409–410
naming, 414–421
reading and saving, 288–293, 320–323
removing, 422–424
scene rotation, 507
selecting, 410–414
thumbnails, 425–429
toolbars, 421–422

Photo Albums View Controller Scene, 399
Photo browser

chrome effects, 477–482
deleting photos, 489–497
launching, 467–469
push and pop, 470–477
rotating, 511–517
scroll view, 457–467
slideshows, 624–625
user interface, 466–467
zooming, 482–489

Photo class, 315
email, 539–540
iCloud, 594–596
prototype code, 381–385

Photo entity, 380
PhotoAlbum class, 313–314, 318–320
PhotoAlbum entity, 309–313, 380
photoAlbumPath method, 289–290
photoAlbumSaveNeeded method, 290–291
PhotoAlbumsViewController class

child scenes, 370
child view controllers, 373
container view controllers, 369
implementing, 400–406
managed object context, 406–408
photo albums, adding, 404, 408–409
photo albums, displaying, 399
photo albums, selecting, 410–413
scene rotation, 507–511

PhotoAlbumViewController class
child scenes, 370–371
child view controllers, 373–375
container view controllers, 369
email, 535, 540, 544–546
Flickr, 555–557
grids, 446–447

GridView, 446
iCloud, 602, 606
photo albums, naming, 415–421
photo albums, removing, 422–424
photo albums, selecting, 410–413
photo browser, 467–470, 474
photos, adding, 429–434
photos, deleting, 496–497

PhotoBrowserPhotoView class, 483–487,
511–514

PhotoBrowserViewController class, 457–467,
469

chrome effects, 477–482
Core Image effects, 638
deleting photos, 490–497
email, 535, 540–544
printing, 528–530
rotation, 514–517
slideshows, 612, 616, 624–625
user interface additions, 640–647
zooming, 482, 487–489

PhotoBrowserViewControllerDelegate proto-
col, 458–459

Core Image effects, 638–639
deleting photos, 495
slideshows, 613

photoBrowserViewControllerNumberOf-
Photos method, 469

PhotoBrowserWheelController class, 647
Photos, 269

adding to albums, 293–297, 323–325,
429–434

advancing, 620–621
Assets Library framework, 269–271
custom code for, 315–320
data model, 285
deleting, 489–497
displaying, 297–298, 326, 434–446
downloading, 564–570
iCloud, 598–606
image picker controller. See Image picker

controllers
saving to camera roll, 283–284

photos property, 536
photoSetListWithUserId method, 560
Photoshop, 157
photosWithPhotoSetId method, 560

Turner_Book.indb 729 12/11/11 6:47 PM

ptg999

Index730

photosWithSearchString method, 559, 562
photoTapped method, 620
photoViewCache property, 463
PhotoWheel app, 167

app delegates, 174–181
charter, 146–147
Core Image effects. See Core Image

effects
custom views. See Custom views
data persistence. See Data persistence
debugging. See Debugging
detail view controller, 185–186
device rotation. See Rotation
distributing. See Distribution
email, 535–546
iCloud. See iCloud service
launch options, 179–180
main screen. See Main screen
master view controller, 186–187
photo browser. See Photo browser
photos. See Photo albums; Photos
printing, 527–531
project structure, 173–174
prototype, 167–173
slideshows. See Slideshows
split view controller, 181–185
storyboarding. See Storyboarding
table views. See Table views
target audience, 146
touch gestures. See Touch gestures
utility methods, 655–656
view controllers. See View controllers
Web services. See Web services

PhotoWheel-Info.plist f ile, 338, 341
PhotoWheel-Prefix.pch file, 601
PhotoWheel.xcdatamodeld file, 380
PhotoWheelAppDelegate protocol, 603, 664
PhotoWheelPrototype app, 171–172, 302
PhotoWheelPrototype-Info.plist f ile, 174
PhotoWheelPrototype-Prefix.pch file, 174, 303
PhotoWheelPrototype.xcdatamodeld file,

304, 307, 380
PhotoWheelPrototypeAppDelegate.h file, 304
PhotoWheelViewCell class, 248

header files, 248
implementation, 249–250
photo album thumbnails, 425–429

touch gestures, 255–257
working with, 250–252

photoWheelViewCell method, 425–426
Pick lists, 107
Pinch gesture, 254
placeholder property, 105, 415
Placeholders

code completion, 33
fault objects, 300
File's Owner, 56
text, 105

Plain tables, 193
play method, 679–681
PLDatabase project, 327
plist f iles, 330
Plug-ins, 100
PNG (Portable Network Graphic) format,

109, 296
Pointer address format specifiers, 99
Pointers, 74
pointToCenterAfterRotation method, 513
Pop segues

customizing, 364–367
improving, 470–477

Popover segues, 355
popToRootViewControllerAnimated

method, 356
popToViewController method, 356
popViewControllerAnimated method, 356,

365–366, 475–476
Portable Network Graphic (PNG) format,

109, 296
Portal Resources, 124–125
Portrait orientation, 500

helper methods, 509
launch images, 521
portrait upside down, 500
split view controllers, 169

Position
child content view, 374–375
guides, 49–50

Possible memory leaks, 434
Possible state, 258, 261
Post-It Notes, 143
#pragma mark statements, 184
Pragmatic Programmer: From Journeyman to

Master, 231

Turner_Book.indb 730 12/11/11 6:47 PM

ptg999

Index 731

Predefined touch gestures, 254
Preferences, 26

code completion, 33
coding style, 30
development certificates, 121–122
fonts and colors, 26–27
key bindings, 31–32
text, 27–30

preferredMode property, 611
Premature optimization, 676
prepareForSegue event

Flickr, 556–557
photo browser, 468
scenes, 333
slideshows, 624

Presentation property, 355
presentCamera method, 276, 278, 280, 432
Presenters in iCloud, 584
presentFlickr method, 556–557
presentPhotoLibrary method

adding photos, 432
camera checking, 273–274
image picker controllers, 278, 280

presentPhotoPickerMenu method
action sheets, 276–277
adding photos, 430, 432–433
camera checking, 273–274
Flickr, 555–556

__PRETTY_FUNCTION__ macro,
205–206, 255

Price of apps, 693
Primary app categories, 693
Primitive data types, 74
primitiveValueForKey method, 598
Print Center, 526
Print jobs, 526
printCurrentPhoto method, 528–530
Printer Options view, 525
Printer Simulator, 530–531
printFormatter property, 527
printInfo property, 530
Printing

API, 527
operation, 525–526
PhotoWheel, 527–531
requirements, 526

printingItem property, 530
Private key pairs, 123–124

Private keys, 127
Profiling code with Instruments, 676–682
Programming in Objective-C 2.0, 65
Project navigator, 22
Project options screen, 7
Project template, 5–6
Projects

creating, 3–10, 170–171
settings, 36–39

Properties
declared, 75–78
dot syntax, 83–84
filters, 633–634
objects, 70–71
transient, 592–593
values, 54

@property directive, 58–59, 75–77, 210
Property lists

adding photos to albums, 293–297
data models, 287–288
displaying photos in albums, 297–298
overview, 286–287
reading and saving photo albums,

288–293
Property synthesis, 14
@protocol directive, 613
Prototype apps and code, 160–163, 167–168

copying files, 378–380
Core Data model, 380–385
project creation for, 170–171
reusing, 378
simulators, 171–172
split view controllers, 168–169
WheelView, 385–398

Provisioning, 115
Ad Hoc distribution, 684
App IDs, 118–119
App Store distribution, 688
development machine setup, 121–128
development provisioning profiles, 119–120
device IDs, 117–118
device setup, 128–130
iCloud service, 586–591
iOS Provisioning Portal. See iOS Provi-

sioning Portal
overview, 117

Public key pairs, 123–124
Public keys, 127

Turner_Book.indb 731 12/11/11 6:47 PM

ptg999

Index732

Push segues, 355
container view controllers, 375
improving, 470–477

pushViewController method, 356
PW Default.png file, 522
pw_imageSnapshot method, 363
PWDefault-landscape.png file, 522

Q
QuartzCore.h file, 249
queueNonVisibleCells method, 391, 398
queueReusableCells method

GridView, 439, 445
WheelView, 395, 398

Queues, dispatch, 580–581
Quick Help popup, 34
Quitting apps, 172
Quotation marks (") for strings, 96

R
Radians, converting, 266
RAND_IN_RANGE macro, 647
Random CIFilter effects, 647–651
Random numbers, 70, 81
randomCIColor method, 647
randomCIColorAlpha method, 647
randomizeFilters method, 645, 649–650
Rating apps, 694
Reachability, 582
Reading photo albums, 288–293, 320–323
readonly attribute, 77
readSavedPhotoAlbums method, 289–291
readwrite attribute, 77
receivedData property, 568–570
Receivers in Objective-C, 66
Recipes in Core Image, 631–632
Recognized state, 258
Recognizers

spin gesture, 259–266
touch gesture, 254–258

Recommended books, 702
Red-eye correction, 637
Reference counting, 7, 66, 86–87, 170
Registering devices, 118
Regular expressions, 101

Rejected apps, 692
Relationships with Core Data entities,

309–311
Release build configurations, 685
reload method

GridView, 448–449
naming photo albums, 417–420
selecting photo albums, 413–414

reloadData method
GridView, 439, 445
photo albums, 405
photo display, 436
table view data, 220
WheelView, 387, 396, 398

removeFromParentViewController method,
367–368

removePhotosObject method, 313
Removing

breakpoints, 664
guides, 49
photo albums, 422–424

Renaming ivars, 80
Rentzsch, Jonathan "Wolf", 315
Reordering table view data, 226–227
Requesting development certificates, 121–124
requireGestureRecognizerToFail method,

257–258
resignFirstResponder method, 421
Resizing

labels, 12
scenes, 370

Resolving conf licts. See iCloud service
respondsToSelector method, 214
RESTful Web services

Cocoa, 548–549
description, 548
Flickr, 557

restoreCenterPoint method, 514
resume method, 623–624
retain attribute, 77
reusableCells property, 397
Reverse domain name style, 118
revertToOriginal method, 641, 655–656
Review notes, 694
Roles

iOS Developer Program, 116–117
iTunes, 696

Turner_Book.indb 732 12/11/11 6:47 PM

ptg999

Index 733

Root view controllers, 110
rootViewController property, 179–180, 331
Rotation

About screen, 511
customized, 502–507
gesture type, 254
launch images, 520–522
main screen, 518–520
MainViewController, 502–507
photo browser, 474, 511–517
scenes, 507
spin gesture recognizers, 262, 266
split view controllers, 169
supporting, 499–502
WheelView, 509–511

Round Rect Button, 15
Rounding calculations, 95
row property, 194
Run button, 9
Runtime loops, 565, 569

S
Sales role in iTunes Connect, 696
save method in Flickr, 553, 573–574, 578
saveChanges method, 419–420
saveContext method, 305
saveContextAndExit method, 572
saveImage method

Core Image effects, 639
filters, 655–656
Photo class, 382, 384–385, 594
PhotoBrowserViewController, 641
photos, 315, 317, 325

savePhotoAlbum method, 289–290, 293
saveSelectedPhotos method, 572–573, 578
Saving

images, 296
photo albums, 288–293, 320–323
photos to camera roll, 283–284

scaleAndCropToMaxSize method, 316–317,
383–384

scaleAspectToMaxSize method, 315, 383
scaleToRestoreAfterRotation method, 513
Scaling images, 594, 596
Scenes, 331–332

child, 369–371

creating, 344–346
navigating, 356–358
resizing, 370
rotation, 507
setting, 355–358

Scheme manager window, 689–690
Schemes, 39, 689–690
Schneider, Michael, 699
Scope depth of code, 28
Screen

About, 344–347, 511
classes for, 104
main. See Main screen

Screen shots of apps, 694–695
screens method, 610
Scroll view, 457–467
Scrollable views, 107
Scrolling in design, 150
scrollToIndex method, 461, 465
scrollViewDidScroll method, 463, 466, 517
scrollViewWillBeginDragging method, 479,

482
Search navigator, 22
searchBarCancelButtonClicked method, 576
searchBarSearchButtonClicked method, 576,

579
searchBarShouldBeginEditing method, 575
searchBarTextDidEndEditing method, 576
Searches

for data, 100
text-based, 553

Secondary app categories, 693
section property, 194
Security, 582
segmentedControlValueChanged method, 247
Segments, 111
Segues, 332–333

creating, 346–348, 355
description, 355
implementing, 358–362
improving, 470–477
photo browser, 467–468
push, 375
scene setting, 355–358

selected property, 437, 453
selectedCellFrame method, 470–472, 474, 477
selectedImage method, 470–472

Turner_Book.indb 733 12/11/11 6:47 PM

ptg999

Index734

selectedIndex property, 387
selectedIndicator property, 453–454
selectedWheelViewCellIndex property, 294,

325
Selecting

objects, 48
photo albums, 410–414
table view data, 227–230

@selector directive, 82, 205
Selectors, 82–83
self, 80, 82–83
Semicolon characters (;) for declared proper-

ties, 76
sendEmail method, 537–539
SendEmailController class

overview, 535–540
working with, 540–546

sendEmailController property, 543
SendEmailControllerDelegate protocol,

536–537
sendEmailControllerDidFinish method, 537–

538, 543
sender method in table views, 204
Senders in Objective-C, 66
Sending messages, 99
sepiaImageFromImage method, 635
Serial numbers, 132
Serialization, 44
Session 120 - Simplifying Touch Event Handling

with Gesture Recognizers video, 258
setAngle method

Carousel view, 242–244
spin gesture recognizers, 263–264, 266
WheelView, 235–236, 392, 398, 510

setAngleOffset method, 510
setBounds method, 672
setCurrentIndex method

external displays, 620, 671
PhotoBrowserViewController, 463, 466
slideshows, 614–616

setDetailViewController method, 307
setFilterButtons method, 646
setFrame method, 673
setHeadsCount method, 83
setImage method

photo album thumbnails, 428
PhotoWheelViewCell, 248–249
zooming, 484, 486–487

setImageData method, 596
setLargeImageData method, 595–596
setLastResult method, 82–83
setMaxMinZoomScalesForCurrentBounds

method, 512–513
setPhotoAlbum method, 293, 297, 324, 326
setPrimitiveValue method, 596, 598
sets, 98–99
setScrollViewContentSize method, 461, 464
setSelected method, 453–454
setSmallImageData method, 595–596
setStyle method

Carousel view, 242
spin gesture recognizers, 264–265
WheelView, 395, 398

setter attribute, 77
Setter methods, 59, 75–77
setText method, 429
setThumbnailImageData method, 596
setTitleWithCurrentIndex method, 461, 465
sharedApplication method, 408
Sharing schemes, 39
Shortcut keys

key bindings, 31–32
navigator, 23

shouldAutorotateToInterfaceOrientation
method

About screen, 511
adding, 502–503
autosizing, 501
Flickr, 552, 572
MainViewController, 505–506
overriding, 499
Photo Browser, 511
PhotoBrowserViewController, 515
scenes, 507
slideshows, 616
table view data, 212, 214

Show Obj-C Only option, 680
showActionMenu method

deleting photos, 494
email, 541, 545
naming photo albums, 420
printing, 528–529
removing photo albums, 422–423

showFilters method, 644–645, 649
showFromBarButtonItem method, 277
showFromRect method, 278

Turner_Book.indb 734 12/11/11 6:47 PM

ptg999

Index 735

showFromTabBar method, 277
showFromToolbar method, 277
showOverlay method, 574, 579
showOverlayCount property, 578
Shows Navigation Bar property, 357–358
shrinkToPoint value, 476–477
Signed integer format specifiers, 99
SimpleFlickrAPI class, 558–564
Simulators, 41

iOS Simulator, 530, 626, 670
iPad Simulator. See iPad Simulator
Printer Simulator, 530–531
schemes, 39

Single inheritance, 175
Single View Application template, 6–7
Size

child content view, 374–375
labels, 12
objects, 54–55
rotation, 501–502
scenes, 344–346, 370
text fields, 215–216

Size inspector
autoresizing, 501
description, 54–55
scenes, 344–346

sizeThatFits method, 628
skipRotation property, 520
SKU numbers, 693
slideAdvanceTimer variable, 616
Sliders, 152
slideshow method, 494
Slideshows

adding, 611–612
AirPlay support, 626–629
displaying, 613–616
external display. See External display
photo advancing, 620–621
photo browser, 624–625
profiling example, 679–682
storyboards, 612
user interface controls, 622–624, 679–682

SlideShowViewController class, 611–616,
618, 671

Slow motion animation, 362
smallImage attribute, 382, 595
smallImageAtIndex method, 639
smallImageData attribute, 592, 597

Smalltalk language, 66
SMS messages, 533
SOAP-based Web services, 547–548
Sort descriptor for photo albums, 405
Sorting filter buttons, 646–647
Sound effects, 151–152
Source code repositories, 36–37, 66, 170
Source image view for segues, 361
sourceViewController property, 470
Spaces vs. tabs, 29
Spin gesture recognizers

creating, 259–262
working with, 262–266

spin method
spin gesture recognizers, 265–266
WheelView, 395, 398

SpinGestureRecognizer class, 259–261,
265–266

Split view controllers
delegates, 185
overview, 168–169
working with, 181–184

SQLite, 299, 301, 305, 326–327
stack-add.png file, 343
stack-bg.png file, 343
stack-overlay.png file, 427
stack-viewer-bg-portrait.png file, 343–344
stack-viewer-shadow.png file, 447
Stacks

Cocoa, 89
Core Data, 303–307

Standard Company program type, 704
Standard editor, 35, 47
Standard Individual program type, 704
startAtIndex property, 457, 468
startChromeDisplayTimer method, 480–482
startImmediately property, 569
startIndex property, 613, 616, 618
States

gesture recognizers, 258–259
objects, 52–57

Static sets, 98
statusBarHeight property, 481
Stencils, 160
Step into button, 666
Step out button, 666
Step over button, 666
Stopping apps, 10

Turner_Book.indb 735 12/11/11 6:47 PM

ptg999

Index736

Storyboarding, 8, 63–64
app icon, 341
AppDelegate, 339
Flickr, 553–554
images, 339–340
main, 336–337
overview, 329–330
scenes, 331–332, 344–346
segues, 332–333, 346–348
slideshows, 612
UIMainStoryboardFile setting, 338
view controllers. See View controllers
working with, 330–331
workspace, 333–336

stringByRemovingFlickrJavaScript method,
561, 564

Strings
arrays, 195
classes, 96–97
converting to dates, 100
format specifiers, 99
literals, 81

stringWithData method, 561, 564
strong attribute, 77, 86
Style property

bar buttons, 111
Carousel view, 241–242
segues, 355

Styles, coding, 30
Subclass generation, 314–315
Submitting apps, 9–10, 696–698
Subversion source code repositories, 36, 66
Summaries for apps, 142
super keyword, 81
Swipe gesture, 254
Symbol navigator, 22
Syncing. See iCloud service
@synthesize directive, 80, 83

AppDelegate, 177–178
data instances, 196
description, 59
spin gesture recognizers, 265

T
Tab bar classes, 110–111
Tab key, 29
Tabbed Application template, 6

Table views
adding data, 203–220
classes, 106, 193–194
deleting data, 225–226
displaying data, 197–203
editing data, 220–225
reordering data, 226–227
selecting data, 227–230
simple models, 195–197
working with, 194–195

Tagged Image File Format (TIFF) format, 109
Tap gestures, 254

Flickr, 578
PhotoWheelViewCell, 255–257
zooming, 487

tapped method, 486
Tapworthy apps, 148
Tapworthy: Designing Great iPhone Apps, 148
Target-Action pattern, 113
Target audience for apps, 144–145, 146
Targets

settings, 38
types, 5–6

Team Admins, 116, 126, 132
Team Agents, 116, 132, 134
Team IDs, 590
Team Members, 116, 132
Team roles in iOS Developer Program, 116–117
Technical role in iTunes Connect, 696
Templates, 5–6

creating, 208–209
types, 6

Testing, 625–626
Text

classes for, 104–105
labels. See Labels
preferences, 27–30
on screen, 10–12

Text-based searches, 553
textFieldDidEndEditing method, 419–420
textFieldShouldBeginEditing method,

419–420
textFieldShouldReturn method, 419–421
Third-party apps for photos, 269
Threads

atomic properties, 77
GCD (Grand Central Dispatch), 580–581
NSManagedObjectContext class, 413

Turner_Book.indb 736 12/11/11 6:47 PM

ptg999

Index 737

thumbnailImage property, 595
thumbnailImageData property, 309, 592, 597
Thumbnails for photo albums, 425–429
TIFF (Tagged Image File Format) format, 109
Time

classes, 93
formatting, 100
pick lists, 107

Time Machine, 127
Time Profiler tool, 677–678
Timers

chrome effects, 477
classes, 101
slideshow photos, 621

Titles, 189–192
titleView property, 246
toggleChrome method, 479–480, 482
toggleChromeDisplay method

chrome effects, 479, 482
PhotoBrowserViewController, 641
zooming, 487–489

Toll-free bridging, 92
Toolbars

classes for, 110–111
photo albums, 421–422
PhotoWheel, 641, 645–646
scenes, 344–345
slideshows, 623
workspace window, 20–22

Touch gestures
custom, 258–266
in design, 148–149
events, 253
overview, 253–254
predefined, 254
recognizers, 255–258
types, 254
zooming, 487

Touch Up Inside events, 60
touchesBegan method, 253–254, 258–260
touchesCancelled method, 258–260
touchesEnd method, 259–261
touchesEnded method, 253–254, 258, 260
touchesMoved method, 253, 258–261
TouchJSON library, 549
TouchXML parser, 101
Transient Core Data attributes, 592–593

Transition property for segues, 355
transitionFromViewController method, 368
Transitions

pop, 364–367, 470–477
scenes, 356–357
segues, 332–333

turnOffZoom method, 485–487
TV Out options, 626

U
Ubiquitous content. See iCloud service
Ubiquitous persistent store coordinators,

598–602
Ubiquitous persistent stores, 585
UDIDs (Unique Device Identifiers), 117–

118, 132–133
UI. See User interface (UI)
UIActionSheet class, 274, 277
UIActionSheetDelegate protocol, 277, 422
UIActivityIndicatorView class, 553
UIAlertView view, 423
UIApplication class, 103–104, 408
UIApplicationDelegate class, 179–181
UIApplicationMain function, 174
UIBarButton class, 415
UIBarButtonItem class, 111, 182

profiling example, 681–682
slideshows, 623
table view data, 220

UIBarButtonSystemItemAdd button, 204
UIButton class, 25, 105
UIDatePicker class, 107
UIDocument class, 585
UIGestureRecognizer class, 254–255,

258–259
UIGestureRecognizerDelegate protocol, 255
UIGestureRecognizerStateBegan state, 258
UIGestureRecognizerStateCancelled state,

258
UIGestureRecognizerStateChanged state,

258
UIGestureRecognizerStateEnd state, 258
UIGestureRecognizerStateFailed state, 258
UIGestureRecognizerStatePossible state, 258
UIGestureRecognizerStateRecognized state,

258

Turner_Book.indb 737 12/11/11 6:47 PM

ptg999

Index738

UIGestureRecognizerSubclass.h file,
258–259

UIImage class
conversions with, 296, 318
email, 539–540
with filters, 635–636
format support, 108–109
model objects, 315
slideshows, 615

UIImageJPEGRepresentation method, 296
UIImagePickerController class

adding photos, 324, 430, 434
displaying photos, 297
working with, 271–274, 278–282

UIImagePickerControllerDelegate protocol
adding photos, 272, 429–430
image picker controllers, 279, 281

UIImagePickerControllerSourceTypePhoto-
Library source type, 281

UIImageView class
child scenes, 370
description, 108
photo album thumbnails, 426
PhotoWheelViewCell, 248
storyboards, 341–343
wheel view, 233
zooming, 482, 489

UIImageWriteToSavedPhotosAlbum func-
tion, 283

UIInterfaceOrientationIsLandscape macro,
507

UIInterfaceOrientationIsPortrait macro, 507
UIIpagePickerController class, 294
UIKit classes, 103–112

importing, 234
Printing API, 527

UIKit Framework document, 34
UILabel class, 11, 14, 104
UILongPressGestureRecognizer gesture, 254
UIMainStoryboardFile setting, 338
UIManagedDocument class, 585
UIMarkupTextPrintFormatter class, 527
UIMenuController class, 108
UIMenuItem class, 108
UINavigationBar class, 109
UINavigationController class

description, 110

master detail apps, 179, 186
pop transitions, 364–366
rotation, 518
view controllers, 356, 367

UINavigationControllerDelegate protocol,
279, 429–430

UIPageControl class, 107
UIPanGestureRecognizer gesture, 254
UIPickerView class, 107
UIPinchGestureRecognizer gesture, 254
UIPopoverController class, 182, 191
UIPrintFormatter class, 527
UIPrintInfo class, 527, 530
UIPrintInfoOutputPhoto setting, 530
UIPrintInteractionController class, 527, 530
UIPrintInteractionControllerDelegate proto-

col, 527
UIPrintPageRenderer class, 527
UIPrintPaper class, 527
UIResponder class, 253
UIRotationGestureRecognizer gesture, 254,

259
UIScreen class, 104, 611
UIScreenDidConnectNotification notifica-

tion, 611, 620, 628
UIScreenDidDisconnectNotification notifi-

cation, 611, 620
UIScrollView class, 193

description, 107
displaying photos, 435
photo browser, 457
zooming, 482

UIScrollViewDelegate protocol, 457
UISearchBar class, 553
UISegmentedControl class, 111
UISimpleTextPrintFormatter class, 527
UISlider class, 108, 152–153
UISplitViewController class

container view controllers, 367
iPad Simulator, 172
master-detail apps, 168–169, 179
methods implementation, 185
overview, 181–183

UISplitViewControllerDelegate protocol, 182
UIStoryboardSegue class, 355, 358
UISwipeGestureRecognizer gesture, 254
UISwitch class, 108

Turner_Book.indb 738 12/11/11 6:47 PM

ptg999

Index 739

UITabBar class, 110–111
UITabBarController class, 367
UITableView class

description, 106
displaying data, 197
editing data, 220
overview, 193
reordering data, 226

UITableViewCell class
description, 106, 194
styles, 199–200

UITableViewCellStyleDefault style, 199, 201
UITableViewCellStyleSubtitle style, 199
UITableViewCellStyleValue1 style, 199
UITableViewCellStyleValue2 style, 199
UITableViewController class, 187, 194,

220–221
UITableViewDataSource class, 194–195, 198,

226–227
UITableViewDelegate class, 194–195
UITableViewRowAnimationFade class, 225
UITapGestureRecognizer gesture, 254–255
UITextField class

description, 104–105
photo albums, 415
table view data, 209, 215–216

UITextFieldDelegate protocol, 420
UITextView class, 105
UIToolbar class

description, 110–111
photo albums, 415
slideshows, 623

UIView class
description, 104
events, 253
Flickr, 553–554
photo albums, 399
slideshows, 615
wheel view, 233, 237

UIViewAutoResizing settings, 501
UIViewController class

container view controllers, 367–369
description, 104
storyboards, 351–353

UIViewPrintFormatter class, 527
UIView+PWCategory class, 362–363
UIWebView class, 104

UIWindow class
debugging example, 672
description, 104
external displays, 618
master-detail apps, 179

Underscores (_) for ivars, 179
Unicode characters, 96
Unique Device Identifiers (UDIDs), 117–

118, 132–133
Unique value propositions, 142
Universal apps, 8
Universal device family, 7
universally unique IDs (UUIDs), 296
University program type, 704
unloadPage method, 462, 466, 488–489
Unsigned integer format specifiers, 99
updateNavBarButtonsForPlayingState

method, 622–623, 627–628, 679–680
updateToNewImage method, 639
URI string hashes, 595
URLForUbiquityContainerIdentifier

method, 600
URLs

apps, 694
Flickr, 562–564

Use Automatic Reference Counting option,
7, 66, 170

Use for Development option, 128
Use Storyboard option, 331
User input, 13
User interface (UI)

controls, 152–153
designers for, 153–154
device design, 149–150
HIG, 148
industrial design, 149–150
metaphors, 150–151
Photo browser, 466–467
PhotoWheel, 640–647
rotation, 502–504, 507
slideshow controls, 622–624
sound effects, 151–152
tapworthy apps, 148

User roles in iTunes Connect, 696
userIdForUsername method, 559
userInfo property, 604
userInteractionEnabled f lag, 481

Turner_Book.indb 739 12/11/11 6:47 PM

ptg999

Index740

Utilities area, 24–25
Utility Application template, 6
Utility classes and functions, 99–103
UUIDs (universally unique IDs), 296
uuidString method, 296

V
Variables, 45

inspecting, 663, 667–670
Objective-C, 74–75
renaming, 80

Version editor, 36–37
Versions

apps, 693
Xcode, 709

Vertical guides, 49–50
View controllers

container. See Container view
controllers

detail, 169. See also DetailViewController
class

Flickr, 553–555
iCloud, 601, 606
implementing, 351–354
initial, 341–344
master, 169, 186–187. See also Master-

ViewController class
pop transitions, 364–367
segues, 355–364
split, 168–169, 181–185

View-Master device, 232
ViewController class, 11, 13–15
viewController property, 536
viewDidAppear event, 368, 625
viewDidDisappear event, 368
viewDidLoad method

Carousel view, 246–247
child view controllers, 372
chrome effects, 478, 481
data instances, 196–197
deleting photos, 490–492, 495
external displays, 619
Flickr, 571
iCloud, 601
photo albums, 320–321, 323, 407, 410–

411, 420

PhotoBrowserViewController, 459,
464–465

PhotoWheelViewCell, 250–251
property lists, 291–292
rotation, 505–506, 519
table view data, 201, 203–204, 220–221,

224
titles, 189–190
touch gestures, 256–257
wheel view, 239, 386

viewDidUnload method
Flickr, 571–572
GridView, 446
iCloud, 602
photo albums, 401, 404, 417–418, 420
PhotoBrowserViewController, 459, 464
rotation, 505–506
table view data, 212–214

viewForZoomingInScrollView method,
486–487

Views, 231
carousel, 240–247
custom, 231–232
photo wheel view cell, 248–252
table. See Table views
wheel. See WheelView class

viewWillAppear event
chrome effects, 478, 481
container view controllers, 368
navigation bar, 358
PhotoBrowserViewController, 460, 464,

625
PhotoWheel, 644
rotation, 518–520
slideshows, 616, 621

viewWillDisappear event, 368, 478, 481, 621
Virtual keyboards, 152
visibleCellIndexes property, 397
Visual effects. See Core Image effects

W
wantsFullScreenLayout f lag, 464
Watchpoints, 663
weak attribute, 77, 86
Web services, 547

basics, 547–548

Turner_Book.indb 740 12/11/11 6:47 PM

ptg999

Index 741

concurrent programming, 580–582
Flickr. See Flickr
RESTful, 548–549

WebKit Coding Style Guidelines, 30
Welcome to Xcode screen, 4–5, 66–67
Wenderlich, Ray, 101
Wheeler, Colin, 32
WheelView class, 233

Carousel view, 240–247
defining, 235
header file, 233–235
implementation, 235–240
photo albums, 399
prototype code, 385–398
rotation, 509–511
spin gesture recognizers, 262

WheelViewCell class, 234, 248
defining, 235
prototype code, 386, 396

WheelViewDataSource protocol, 234–235,
238–239, 387

WheelViewDelegate protocol, 387
wheelViewNumberOfCells method, 239,

403, 405
wheelViewNumberOfVisibleCells method,

387, 403, 405
Wildcard App IDs, 128, 134
Wildcard characters (*)

App IDs, 119, 586
Bundle Identifiers, 118

willAccessValueForKey method, 598
willAnimateFirstHalfOfRotationToInterfa-

ceOrientation method, 500
willAnimateRotationToInterfaceOrientation

method
MainViewController, 506–507
overriding, 500, 504
PhotoBrowserViewController, 516–518
scenes, 508–509
WheelView, 510–511

willAnimateSecondHalfOfRotationFromIn-
terfaceOrientation method, 500

willChangeValueForKey method, 596
willHideViewController method, 182
willMoveToParentViewController method,

368, 373
willPresentViewController method, 182
willRotateToInterfaceOrientation method

action sheets, 275, 277
overriding, 499
PhotoBrowserViewController, 515–517

Windows, classes for, 104
Windows Bitmap Format (DIB) format, 109
Windows Cursor format, 109
Windows Icon Format, 109
Wireframe mockups, 154–155, 158–160
Wooldridge, Dave, 699
Workspace window, 20, 48

Debug area, 25–26
Editor area, 23
Navigation area, 22–23
Toolbar area, 20–22
Utilities area, 24–25

Workspaces, creating, 333–336
Wrapping feature, 386
Wrapping Flickr API, 557–564
WWDR intermediate certificates, 126

X
.xbm files, 109
.xcdatamodeld extension, 304–305
Xcode, 19

debugging, 663–670
developer documentation, 34
downloading, 708
editors, 35–37
IDE, 19–20
installing, 708–709
in Launchpad, 3–4
organizer, 40
Preferences, 26–33
project settings, 36–39
schemes, 39
tools, 41
Workspace window, 20–26

Xcode 4 User Guide, 4
.xib files, 11, 44
XML with Flickr, 562
Xmo'd plug-in, 315
XWindow bitmap format, 109

Z
Zarra, Marcus, 243, 413
Zarra Studios Coding Style Guide, 30

Turner_Book.indb 741 12/11/11 6:47 PM

ptg999

Index742

Zooming
faces, 653–654
photos, 482–489

zoomRectForScale method, 485, 487
zoomToFaces method, 653–654
zoomToLocation method, 485, 487

Turner_Book.indb 742 12/11/11 6:47 PM

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	I: Getting Started
	1 Your First App
	Creating the Hello World Project
	Getting Text on the Screen
	Say Hello
	Summary

	2 Getting Started with Xcode
	The IDE
	Workspace Window
	Preferences
	Developer Documentation
	Editors
	Project Settings
	Schemes
	Organizer
	Other Xcode Tools
	Summary

	3 Getting Started with Interface Builder
	Interface Builder
	How Does IB Work?
	Getting Hands-On with IB
	Connecting Your NIB to Your Code
	Storyboards
	Summary

	4 Getting Started with Objective-C
	What Is Objective-C?
	Hands-On with Objective-C
	Using the CoinTosser Class
	Memory Management
	Summary

	5 Getting Started with Cocoa
	The Cocoa Stack
	Foundation
	UIKit
	Common Design Patterns in Cocoa
	Summary

	6 Provisioning Your iPad
	About the iOS Provisioning Portal
	The Provisioning Process: A Brief Overview
	Setting Up Your Development Machine
	Setting Up Your Device
	Using the iOS Provisioning Portal
	Summary

	7 App Design
	Defining Your App
	UI Design Considerations
	Mockups
	Prototyping
	Summary

	II: Building PhotoWheel
	8 Creating a Master-Detail App
	Building a Prototype App
	A Closer Look
	A Tour of UISplitViewController
	Summary
	Exercises

	9 Using Table Views
	First Things First
	A Closer Look
	Working with a Table View
	Summary
	Exercises

	10 Working with Views
	Custom Views
	A Wheel View
	A Carousel View
	A Photo Wheel View Cell
	Summary
	Exercises

	11 Using Touch Gestures
	Touch Gestures Explained
	Custom Touch Gestures
	Summary
	Exercises

	12 Adding Photos
	Two Approaches
	Using the Image Picker Controller
	Summary
	Exercises

	13 Data Persistence
	The Data Model
	Building the Model with Property Lists
	Building the Model with Core Data
	Using Core Data in PhotoWheel
	Adding Custom Code to Model Objects
	Using SQLite Directly
	Summary
	Exercises

	14 Storyboarding in Xcode
	What Is a Storyboard?
	Storyboarding PhotoWheel
	Summary
	Exercises

	15 Doing More with View Controllers
	Implementing a View Controller
	Segue
	Customizing the Pop Transitions
	Container View Controller
	Summary
	Exercises

	16 Building the Main Screen
	Reusing Prototype Code
	Displaying Photo Albums
	Managing Photo Albums
	A Better Photo Album Thumbnail
	Adding Photos
	Displaying Photos
	Summary
	Exercises

	17 Creating a Photo Browser
	Using the Scroll View
	Launching the Photo Browser
	Adding Chrome Effects
	Zooming
	Deleting a Photo
	Summary
	Exercise

	18 Supporting Device Rotation
	How to Support Rotation
	Customized Rotation
	Fixing the Trouble Spots
	Launch Images
	Summary
	Exercises

	19 Printing with AirPrint
	How Printing Works
	Adding Printing to PhotoWheel
	Summary
	Exercises

	20 Sending Email
	How It Works
	The SendEmailController Class
	Summary
	Exercises

	21 Web Services
	The Basics
	Flickr
	One More Thing
	What's Missing
	Summary
	Exercises

	22 Syncing with iCloud
	Syncing Made Simple
	iCloud Concepts
	Device Provisioning, Revisited
	iCloud Considerations for PhotoWheel
	Updating PhotoWheel for iCloud
	Syncing Photos with iCloud
	Summary
	Exercises

	23 Producing a Slideshow with AirPlay
	External Display Options
	App Requirements for External Displays
	External Display API
	Adding a Slideshow to PhotoWheel
	Managing External Displays
	Advancing to the Next Photo
	Adding Slideshow User Interface Controls
	Updating the Photo Browser
	A Note on Testing and Debugging
	Adding AirPlay Support
	Using AirPlay
	Summary
	Exercises

	24 Visual Effects with Core Image
	Core Image Concepts
	Introducing CIFilter
	Image Analysis
	Adding Core Image Effects to PhotoWheel
	Summary
	Exercises

	III: The Finishing Touches
	25 Debugging
	Understand the Problem
	Debugging Concepts
	Debugging in Xcode
	Debugging Example: External Display Code
	When You Really Need NSLog
	Profiling Code with Instruments
	Summary

	26 Distributing Your App
	Distribution Methods
	Building for Ad Hoc Distribution
	Building for App Store Distribution
	The App Store Process
	App Information for the App Store
	App Store Assets
	Using iTunes Connect
	Submitting the App
	Going Further
	Summary

	27 The Final Word
	What's Next

	A: Installing the Developer Tools
	Membership Has Its Privileges
	Joining the iOS Developer Program
	Which Program Type Is Right for You?
	What You Need to Register

	Downloading Xcode
	Installing Xcode

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

