

 LearningJupyter

Table of Contents

Learning Jupyter

Credits

About the Author

About the Reviewer

www.PacktPub.com

Why subscribe?

Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback

Customer support

Downloading the example code

Downloading the color images of this book

Errata

Piracy

Questions

1. Introduction to Jupyter

First look at Jupyter

Installing Jupyter on Windows

Installing Jupyter on Mac

Notebook structure

Notebook workflow

Basic notebook operations

File operations

Duplicate

Rename

Delete

Upload

New text file

New folder

New Python 2

Security in Jupyter

Security digest

Trust options

Configuration options for Jupyter

Summary

2. Jupyter Python Scripting

Basic Python in Jupyter

Python data access in Jupyter

Python pandas in Jupyter

Python graphics in Jupyter

Python random numbers in Jupyter

Summary

3. Jupyter R Scripting

Adding R scripting to your installation

Adding R scripts to Jupyter on a Mac

Adding R scripts to Jupyter on Windows

Adding R packages to Jupyter

R limitations in Jupyter

After adding R scripts to Jupyter

Basic R in Jupyter

R dataset access

R visualizations in Jupyter

R 3D graphics in Jupyter

R 3D scatterplot in Jupyter

R cluster analysis

R forecasting

Summary

4. Jupyter Julia Scripting

Adding Julia scripting to your installation

Adding Julia scripts to Jupyter on a Mac

Adding Julia scripts to Jupyter on Windows

Adding Julia packages to Jupyter

Basic Julia in Jupyter

Julia limitations in Jupyter

Standard Julia capabilities

Julia visualizations in Jupyter

Julia Gadfly scatterplot

Julia Gadfly histogram

Julia Winston plotting

Julia Vega plotting

Julia PyPlot plotting

Julia parallel processing

Julia control flow

Julia regular expressions

Julia unit testing

Summary

5. Jupyter JavaScript Coding

Adding JavaScript scripting to your installation

Adding JavaScript scripts to Jupyter on Mac

Adding JavaScript scripts to Jupyter on Windows

JavaScript Hello World Jupyter Notebook

Adding JavaScript packages to Jupyter

Basic JavaScript in Jupyter

JavaScript limitations in Jupyter

Node.js d3 package

Node.js stats-analysis package

Node.js JSON handling

Node.js canvas package

Node.js plotly package

Node.js asynchronous threads

Node.js decision-tree package

Summary

6. Interactive Widgets

Installing widgets

Widget basics

Interact widget

Interact widget slider

Interact widget checkbox

Interact widget text box

Interact dropdown

Interactive widget

Widgets

Progress bar widget

Listbox widget

Text widget

Button widget

Widget properties

Adjusting properties

Widget events

Widget containers

Summary

7. Sharing and Converting Jupyter Notebooks

Sharing notebooks

Sharing notebooks on a notebook server

Encrypted sharing notebooks on a notebook server

Sharing notebooks on a web server

Sharing notebooks through Docker

Sharing notebooks on a public server

Converting notebooks

Notebook format

JavaScript format

HTML format

Markdown format

reStructuredText format

PDF format

Summary

8. Multiuser Jupyter Notebooks

Sample interactive notebook

JupyterHub

Installation

Operation

Continuing with operations

JupyterHub summary

Docker

Installation

Starting Docker

Building your Jupyter image for Docker

Docker summary

Summary

9. Jupyter Scala

Installing the Scala kernel

Scala data access in Jupyter

Scala array operations

Scala random numbers in Jupyter

Scala closures

Scala higher-order functions

Scala pattern matching

Scala case classes

Scala immutability

Scala collections

Named arguments

Scala traits

Summary

10. Jupyter and Big Data

Apache Spark

Mac installation

Windows installation

Our first Spark script

Spark word count

Sorted word count

Estimate Pi

Log file examination

Spark primes

Spark text file analysis

Spark - evaluating history data

Summary

 LearningJupyter

 Learning Jupyter

Copyright 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2016

Production reference: 1241116

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78588-487-0

www.packtpub.com

 Credits

	

Author

Dan Toomey

	

Copy Editors

Vikrant Phadke

Safis Editing

	

Reviewer

Jesse Bacon

	

Project Coordinator

Nidhi Joshi

	

Commissioning Editor

Veena Pagare

	

Proofreader

Safis Editing

	

Acquisition Editor

Manish Nainani

	

Indexer

Mariammal Chettiyar

	

Content Development Editor

Aishwarya Pandere

	

Graphics

Disha Haria

	

Technical Editor

Prasad Ramesh

	

Production Coordinator

Nilesh Mohite

 About the Author

Dan Toomey

 has been developing applications for over 20 years. He has worked in a variety of industries and size companies in roles from sole contributor to VP/CTO level. For the last 10 years or so, he has been contracting to companies in the eastern Massachusetts area.Dan has been contracting under Dan Toomey Software Corp. Again, as a contractor developer in the area.Danhas also written
R for Data Sciences

 with Packt Publishing.

 About the Reviewer

Jesse Bacon

 is a hobbyist programmer and technologist in the Washington D.C. metro area. In his free time, he mostly works through a new title about an interesting technology or spends time at the gym. Mr. Bacon values the opinions of the development community and looks forward to a new generation of programmers with all the gifts of today's computing environments.

 www.PacktPub.com

For support files and downloads related to your book, please visitwww.PacktPub.com
 .

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version atwww.PacktPub.com
 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us atservice@packtpub.com for more details.

Atwww.PacktPub.com
 , you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: www.PacktPub.com]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Preface

Learning Jupyter

 discusses using Jupyter to record your scripts and results for a data analysis project. Jupyter allows the data scientist to record their complete analysis process, much in the same way other scientists use a lab notebook for recording tests, progress, results and conclusions. Jupyter works in a variety of operating systems and the book covers the use of Jupyter in Windows and Mac OS X along with the various steps necessary to enable your specific needs. Jupyter supports a variety of scripting languages by the addition of language engines so the user can portray their script natively in it.

 What this book covers

Chapter 1
 ,
Introduction to Jupyter

 , takes a first look at the Jupyter user interface, walks through installing Jupyter on Windows and Mac OS X, examines the basic operations of Jupyter Notebook available through the user interface for all engines, and gives an overview of the security features available and configuration options.

Chapter 2
 ,
Jupyter Python Scripting

 , walks through a simple Python notebook and the underlying structure. This chapter also shows an example of using pandas, graphics, and using random numbers in a Python script.

Chapter 3
 ,
Jupyter R Scripting

 ,adds the ability to use R scripts in your JupyterNotebook, adds an R library not included in the standard R installation, makes a Hello World script in R, and shows R data access against built-in libraries and some of the simpler graphics and statistics that are automatically generated. We use an R script to generate 3D graphics in a couple of different ways, perform a cluster analysis, and use one of the forecasting tools available in R.

Chapter 4
 ,
Jupyter Julia Scripting

 , adds the ability to use Julia scripts in your Jupyter Notebook, adds a Julia library not included in the standard Julia installation, and shows the basic features of Julia. We outline some of the limitations encountered with using Julia in Jupyter and display graphics using some of the graphics packages available, including Gadfly, Winston, Vega, and Pyplot. We show parallel processing in action, a small control flow example, and how to add unit testing to your Julia script.

Chapter 5
 ,
Jupyter JavaScript Coding

 , shows how to add JavaScript to a Jupyter Notebook, some of the limitations of using Javascript in Jupyter and examples of several packages that are exemplary of Node.js coding, including d3 for graphics, stats-analysis for statistics, built-in JSON handling, Canvas for creating graphics files and Plotly used for generating graphics with a third-party tool. You learn how multi-threaded applications can be developed using Node.js under Jupyter and use machine learning to develop a decision tree.

Chapter 6
 ,
Interactive Widgets, adds widgets to our Jupyter installation

 , uses interact and interactive widgets to produce a variety of user input controls. We explain the widgets package in depth to investigate the user controls available, properties available in the containers, and events that are available emitting from the controls. You will see how to build containers of controls.

Chapter 7

, Sharing and Converting Jupyter Notebooks

 , shares notebooks on a notebook server, adds a notebook to a web server, distributes at notebook using GitHub, and looks into converting our notebooks into different formats, such as HTML and PDF.

Chapter 8

, Multiuser Jupyter Notebooks

 , exposes a notebook so that multiple users can use a notebook at the same time, and shows an example of the multiuser
error

 occurring. We will install a Jupyter server that overcomes the multiuser issue and use Docker to alleviate the issue as well.

Chapter 9
 ,
Jupyter Scala

 , installs Scala for Jupyter, uses Scala coding to access larger datasets, shows how Scala can manipulate arrays, and generates random numbers in Scala. There are examples of higher-order functions and pattern matching, uses case classes, and immutability in Scala. We build collections using Scala packages and show the use of Scala traits.

Chapter 10

,Jupyter and Big Data

 , uses Spark functionality via Python coding for Jupyter, installs the Spark additions to Jupyter on a Windows machine and a Mac machine, and displays an initial script that just reads lines from a text file. We also determine the word counts in that file, sort the results, usea script to estimate pi, evaluate web log files for anomalies, determine a set of prime numbers, and evaluate a text stream for some characteristics.

 What you need for this book

The steps in this book assume you have a modern Windows or Macintosh machine with Internet access. There are several points where you will need to install software, so you need administrative privileges to the machine to do so.

 Who this book is for

This book is written for the user who wants to portray software to others in a natural programming context. Jupyter provides the mechanism to execute a number of different languages and stores the results for display as if the user ran those scripts on their machine.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Interestingly, the max
 function does not work as expected."

A block of code is set as follows:

{
 "cells": [
 <<same format as seen earlier for the cells>>
],
 "metadata": {
 "kernelspec": {
 "display_name": "Javascript (Node.js)",
 "language": "javascript",
 "name": "javascript"
 },
 "language_info": {
 "file_extension": ".js",
 "mimetype": "application/javascript",
 "name": "javascript",
 "version": "4.2.4"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}

Any command-line input or output is written as follows:

Pkg.add("DataFrames")

Pkg.add("RDatasets")

Pkg.add("Gadfly")

quit();

New terms

 and
important words

 are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "The
Upload

 button is used to add files to the notebook space."

 Note

Warnings or important notes appear in a box like this.

 Tip

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply e-mailfeedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide atwww.packtpub.com/authors
 .

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the
SUPPORT

 tab at the top.

	Click on
Code Downloads & Errata

 .

	Enter the name of the book in the
Search

 box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on
Code Download

 .

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Jupyter
 . We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/
 . Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/LearningJupyter_ColorImages.pdf
 .

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata
 , selecting your book, clicking on the
Errata Submission Form

 link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the
Errata

 section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us atcopyright@packtpub.comwith a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us atquestions@packtpub.com, and we will do our best to address the problem.

 Chapter1.Introduction to Jupyter

Jupyter is a tool that allows data scientists to record their complete analysis process, much in the same way other scientists use a lab notebook to record tests, progress, results, and conclusions.

The Jupyter product was originally developed as part of the
IPython

 project. The IPython project was used to provide interactive online access to Python. Over time it became useful to interact with other data analysis tools, such as R, in the same manner. With this split from Python, the tool grew into its current manifestation of Jupyter. IPython is still an active tool that's available for use. The name Jupyter itself is derived from the combination of Julia, Python, and R.

Jupyter is available as a web application from a number of places. It can also be used locally over a wide variety of installations. In this book, we will be exploring using Jupyter on a Mac and a Windows PC and over the Internet with other providers.

In this chapter, we will cover the following topics:

	First look at Jupyter

	Installing Jupyter on Windows

	Installing Jupyter on Mac

	Notebook structure

	Notebook workflow

	Basic notebook operations

	Security in Jupyter

	Configuration options for Jupyter

 First look at Jupyter

Here is a sample opening page when using Jupyter (this screenshot is on a Windows machine):

[image: First look at Jupyter]

You should get yourself acquainted with the environment. The Jupyter user interface has a number of components:

	Product title,
Jupyter

 , in the top left (as expected). The logo and the title name are clickable and will return you to the Jupyter Notebook home page.

	There are three tabs displayed:
Files

 ,
Running

 , and
Clusters

 :[image: First look at Jupyter]

	The
Files

 tab shows the list of files in the current directory of the page (described later on in this section).

	The
Running

 tab presents another screen of the currently running processes and notebooks. The drop-down lists for
Terminals

 and
Notebooks

 are populated with their running members:[image: First look at Jupyter]

	The
Clusters

 tab presents another screen to display the list of clusters available. This topic is covered in a later chapter:[image: First look at Jupyter]

	In the top right corner of the screen are three buttons:
Upload

 ,
New

 (menu), and a Refresh button.

	The
Upload

 button is used to add files to the notebook space. You may also just drag and drop as you would when handling files. Similarly, you can drag and drop notebooks into specific folders as well.

	The menu with
New

 at the top presents a further menu of
Text File

 ,
Folder

 ,
Terminals Unavailable

 ,
Notebooks

 , and
Python 2

 :[image: First look at Jupyter]

	The
Text File

 option is used to add a text file to the current directory. Jupyter will open a new browser window for you running a text editor. The text entered is automatically saved and will be displayed in your notebook's
Files

 display:[image: First look at Jupyter]

 Note

The default filename, untitled.txt
 , is editable.

	The
Folder

 option creates a new folder with the name Untitled Folder
 . Remember, all of the file/folder names are editable:[image: First look at Jupyter]

	The
Terminals Unavailable

 option is disabled for Windows. On a Mac, the option allows you to start an IPython session.

	The
Notebooks

 option will be activated when additional notebooks are available in your environment.

	The
Python 2

 option is used to begin a
Python 2

 session interactively in your notebook. The interface looks like the following screenshot. You have full file editing capabilities for your script, including saving as a new file. You also have a complete working IDE for your Python script:[image: First look at Jupyter]

 Note

Like the
Text File

 and
Folder

 option, you have created a Python script file in your notebook and it is running!

[image: First look at Jupyter]

	The refresh button is used to update the display. It's not really necessary as the display is reactive to any changes in the underlying file structure.

	At the top of the
Files

 tab's item list is a checkbox, a drop-down menu, and a home button:

	The checkbox is used to toggle all the checkboxes in the Items list

	The drop-down menu presents a list of the choices available,
Folders

 ,
All Notebooks

 ,
Running

 , and
Files

 , as shown in the following screenshot:[image: First look at Jupyter]

	The
Folders

 selection will select all the folders in the display and present a count of the folders in the small box

	The
All Notebooks

 selection will change the count to the number of notebooks and provide you with three options:

	Duplicate the current notebook

	Shut down the current notebook

	Trash the current notebook

	You can see them in the following screenshot:[image: First look at Jupyter]

	The
Running

 selection will select any running scripts and update the count to the number selected[image: First look at Jupyter]

	The
Files

 selection will select all of the files in the notebook display and update the count accordingly

	The homebutton brings you back to the home screen of the notebook.

On the left-hand side of every item is a checkbox, an icon, and the item's name:

[image: First look at Jupyter]

	The checkbox is used to build a set of files to operate upon.

	The icon is indicative of the type of item. In this case, all of the items are folders.

	The name of the item corresponds to the name of the object. In this case, the filenames are as used on the disk.

 Installing Jupyter on Windows

Jupyter requires Python to be installed (it is based on the Python language). There are a couple of tools that will automate the installation of Jupyter (and optionally Python) from a GUI. In this case, we are showing how to install using
Anaconda

 , which is a Python tool for distributing software. You first have to install Anaconda. It is available on Windows and Mac environments. Download the executable from https://www.continuum.io/
 (company that produces Anaconda) and run it to install Anaconda. The software provides a regular installation setup process, as shown in the following screenshot:

[image: Installing Jupyter on Windows]

The installation process goes through the regular steps of making you agree to the distribution rights license:

[image: Installing Jupyter on Windows]

The standard Windows installation allows you to decide whether all users on the machine can run the new software or not. If you are sharing a machine with different levels of users, then you can decide the appropriate action:

[image: Installing Jupyter on Windows]

After clicking on
Next

 , it will ask for a destination for the software to reside (I almost always keep the default paths):

[image: Installing Jupyter on Windows]

And, most importantly, make sure that Python installed with Anaconda provides your Python basis going forward (by being placed in the execution path). Remember, Anaconda uses Python tool itself, so this is important.

 Note

This process takes some time to download and install.

Once Anacondais installed, you need to run a command-line instruction to install Jupyter. The command is as follows:

conda install jupyter

This will invoke a process to download all the necessary components for Jupyter onto your PC. Your output should look something like this:

C:\Users\Dan>conda install jupyter

Using Anaconda Cloud api site https://api.anaconda.org

Fetching package metadata:

Solving package specifications:

packages in environment at C:\Users\Dan\Anaconda2:

#

jupyter 1.0.0 py27_2

 Note

Additional lines will be present for an install. I have abbreviated the output. You now have Jupyter installed on your machine. You can start the process using the following command:

C:\Users\Dan>jupyter notebook

This command is starting a Jupyter Notebook server on your machine. Once the server is started, a browser instance will be opened at the starting point of the notebook. You should see logging statements similar to the following on your machine as the server starts:

[I 16:21:59.144 NotebookApp] Writing notebook server cookie secret to C:\Users\Dan\AppData\Roaming\jupyter\runtime\notebook_cookie_secret

[I 16:21:59.846 NotebookApp] Serving notebooks from local directory: C:\Users\Dan

[I 16:21:59.846 NotebookApp] 0 active kernels

[I 16:21:59.846 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/

[I 16:21:59.862 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

Once Jupyter is running, you will notice a running icon for Jupyter (two inverted crescents) at the bottom of your screen:

[image: Installing Jupyter on Windows]

Note, the last line of the log is the instruction you must use to stop the server (press
Ctrl

 +
C

 in the command-line window where the server is running).

If you press
Ctrl

 +
C

 in that window, the Jupyter server will shut down gracefully:

[W 17:26:36.688 NotebookApp] 404 GET /favicon.ico (::1) 62.00ms referer=None

[W 17:26:36.750 NotebookApp] 404 GET /favicon.ico (::1) 0.00ms referer=None

[I 17:28:24.891 NotebookApp] Interrupted...

[I 17:28:24.891 NotebookApp] Shutting down kernels

You will notice that the Anaconda package has been installed on your application menu for further use:

[image: Installing Jupyter on Windows]

 Installing Jupyter on Mac

On Mac, you can use the same Anaconda GUI (for Mac) as described in the previous section. You may also use the command-line tools available for Linux on your Mac.

You must first install Anaconda. Download the latest version and execute the embedded shell script to install.

Installing Jupyter on Mac is done through the command line using the conda install
 command:

bmac:~ dtoomey$ conda install jupyter

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment /Users/dtoomey/anaconda:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 mistune-0.7.2 | py27_1 178 KB

 setuptools-20.3 | py27_0 453 KB

 conda-4.0.5 | py27_0 185 KB

 pexpect-4.0.1 | py27_0 63 KB

 traitlets-4.2.1 | py27_0 108 KB

 ipython-4.1.2 | py27_2 931 KB

 jupyter_core-4.1.0 | py27_0 51 KB

 jupyter_client-4.2.2 | py27_0 96 KB

 jupyter_console-4.1.1 | py27_0 24 KB

 notebook-4.1.0 | py27_2 4.4 MB

 qtconsole-4.2.1 | py27_0 160 KB

 jupyter-1.0.0 | py27_2 2 KB

 --

 Total: 6.6 MB

The following packages will be updated:

 conda: 3.19.3-py27_0 --> 4.0.5-py27_0

 ipython: 4.1.2-py27_0 --> 4.1.2-py27_2

 jupyter: 1.0.0-py27_1 --> 1.0.0-py27_2

 jupyter_client: 4.1.1-py27_0 --> 4.2.2-py27_0

 jupyter_console: 4.1.0-py27_0 --> 4.1.1-py27_0

 jupyter_core: 4.0.6-py27_0 --> 4.1.0-py27_0

 mistune: 0.7.1-py27_0 --> 0.7.2-py27_1

 notebook: 4.1.0-py27_0 --> 4.1.0-py27_2

 pexpect: 3.3-py27_0 --> 4.0.1-py27_0

 qtconsole: 4.1.1-py27_0 --> 4.2.1-py27_0

 setuptools: 20.1.1-py27_0 --> 20.3-py27_0

 traitlets: 4.1.0-py27_0 --> 4.2.1-py27_0

Proceed ([y]/n)? y

Fetching packages ...

mistune-0.7.2- 100% |#################| Time: 0:00:00 1.87 MB/s

setuptools-20. 100% |#################| Time: 0:00:00 3.53 MB/s

conda-4.0.5-py 100% |#################| Time: 0:00:00 2.47 MB/s

pexpect-4.0.1- 100% |#################| Time: 0:00:00 1.26 MB/s

traitlets-4.2. 100% |#################| Time: 0:00:00 1.71 MB/s

ipython-4.1.2- 100% |#################| Time: 0:00:00 1.77 MB/s

jupyter_core-4 100% |#################| Time: 0:00:00 2.34 MB/s

jupyter_client 100% |#################| Time: 0:00:00 1.58 MB/s

jupyter_consol 100% |#################| Time: 0:00:00 7.82 MB/s

notebook-4.1.0 100% |#################| Time: 0:00:00 4.75 MB/s

qtconsole-4.2. 100% |#################| Time: 0:00:00 1.37 MB/s

jupyter-1.0.0- 100% |#################| Time: 0:00:00 2.71 MB/s

Extracting packages ...

[COMPLETE]|###| 100%

Unlinking packages ...

[COMPLETE]|###| 100%

Linking packages ...

[COMPLETE]|###| 100%

 Note

You have installed Jupyter.

 Notebook structure

A Jupyter Notebook is fundamentally a JSON file with a number of annotations. The main parts of the Notebook are as follows:

	

Metadata

 : A data dictionary of definitions used to set up and display the notebook

	

Notebook

format

 : Version numbers of the software used to create the notebook (the version number is used for backward compatibility)

	

List

of

cells

 :There are different types of cell for markdown (display), code (to execute), and output (of the code type cells)

 Notebook workflow

The typical workflow is as follows:

	Create a new notebook for a project or data analysis.

	Add your analysis steps, coding, and output.

	Surround your analysis with organizational and presentation markdown to communicate an entire story.

	Interactive notebooks (that include widgets and display modules) would then be used by others by modifying parameters and data to note the effects of their changes. Your markdown would present the cases that a user may want to investigate and probable results.

 Basic notebook operations

In this section, we describe the different operations that you can perform on your Jupyter Notebook. Most of the operations are menu functions that will change your display accordingly.

 File operations

Let's walk through the basic file operations.

From the
Files

 tab, we see a list of files and folders in the current notebook/disk folder. If we select (check) one of the files, we see the top-left menu change:

[image: File operations]

We now have choices of
Duplicate

 ,
Rename

 , and delete (the trashcan icon). Note the number of files selected,
1

 , is displayed in the box as well.

 Duplicate

If we hit the
Duplicate

 button, we get a confirmation prompt with the name of the file selected for duplication:

[image: Duplicate]

Cancel

 will close the dialog.
Duplicate

 will create another copy of the file with an appended copy number, as in the following screenshot. The original filename has been used with the addition of -Copyn
 in the filename, where n
 is the copy number. Note the original file extension, .properties
 , has been maintained in the new file:

[image: Duplicate]

 Rename

Similarly, if we hit the
Rename

 button, another dialog box will appear to prompt the new filename to apply. The main filename has been highlighted as it assumes you want to maintain the file extension as the file type has not changed:

[image: Rename]

 Delete

We can also delete the file by clicking on the trashcan icon. This brings up a confirmation dialog box:

[image: Delete]

At the top right of the screen we have options for
Upload

 and
New

 (
Text File

 ,
Folder

 , or
Python 2

).

 Upload

The
Upload

 button is more meaningful when the notebook is stored on a web server. When running it on your desktop, it allows you to move files easily from one part of your notebook to another. If you click the button, you are presented with a file selector dialog box. The following screenshot is specific to a Windows environment, but a similar display is presented on a Mac. Once you select a file, it will be added to your notebook space:

[image: Upload]

 New text file

If we opt to create a
New Text File

 , we are presented with a new browser panel in the Jupyter text editor (Note that I have shrunk down the size of the screen so the display fits the boundaries of this book):

[image: New text file]

There are several points of interest on this screen:

	We are in a new browser panel (the notebook display is still present in the other tab).

	The name of the new file is untitled1.txt
 . Using the same convention as duplication, the new filename starts with untitled.txt
 and is incremented as needed.

	Curiously, it mentions when the file was created.

	In the top-right corner, we see
Plain Text

 . So, we might expect to see some other description here for other file types.

	We have a new menu,
File

 ,
Edit

 ,
View

 , and
Language

 .

	The
File

 menu has the following options:

	

New

 : Start another new text window

	

Save

 : Save/update the current text file into the notebook area

	

Rename

 : Change the name of the file (unlikely you would want to keep the untitledn
 name provided)

	

Download

 : Again, an option that makes more sense if your notebook is running on the Web. As explained for
Upload

 ,
Download

 on a desktop installation allows you to copy a file to another part of your machine.

	The
Edit

 menu has the following options:

	

Find

 : Search for a string.

	

Find & Replace

 : Search for and replace a string.

	

Separator

 : The options for adjusting the text editor in use are below this line.

	

Key Map

 : Set your own function mapping for your keyboard.

	

Default

 : Checked as it is the default choice. This means to use the default text editor.

	

Sublime text

 : If you would prefer to use the Sublime editor.

	

Vim

 : If you would prefer to use Vim.

	

Emacs

 : If you would prefer to use Emacs.

	The
View

 menu only has an option to
Toggle Line Numbers

 . I imagine future revisions of the package will have additional features. Similarly, for other file types, the menu may change.

	The
Language

 menu allows you to specify whether this text file is a specific type of programming file. This allows syntax highlighting, which is a major feature of source editors. The list is extensive:

[image: New text file]

 New folder

The
New Folder

 option creates a new folder with the naming convention Untitled Folder n
 .

 New Python 2

The
New Python 2

 option creates a new Python 2 session. You are presented with a new browser panel with a similar naming convention, as seen in the following screenshot.

This is a very different presentation, where Python code is expected to be entered in the cells on the page with results displayed below each cell.

There is an extensive menu with
File

 ,
Edit

 ,
View

 ,
Insert

 ,
Cell

 ,
Kernel

 , and
Help

 options. We have a fairly complete
Integrated

Development

Environment

 (
IDE

) for creating Python coding:

[image: New Python 2]

The
File

 menu has the following options:

	

New Notebook

 : Start a new notebook (another browser panel like this one)

	

Open...

 : Select a file to open from the notebook
Files

 view

	

Make a Copy...

 : Copy the current notebook completely into another browser panel

	

Rename...

 : Rename the current notebook

	

Save and Checkpoint

 : Save the current notebook and record a checkpoint

 Note

A checkpoint is a point in time where all information about a notebook is preserved. You can have many checkpoints and return the state of your notebook to the previous checkpoint state at any time. This is an excellent way to give yourself the room to try out a new angle on your analysis without risking losing what you have done so far.

	

Revert to Checkpoint

 : Revert your notebook to a previous checkpoint

	

Print Preview

 : Present a preview of the printed form of your notebook

	

Download as

 : Download the notebook in a variety of formats:

	IPython notebook (its current form)

	IPython

	HTML representation

	Markdown-a specialized display format

	reST--
reStructuredText

 -an easy to read, plain text markup

	PDF

	Presentation

	

Close and

Halt

 : Close the current notebook and stop any running scripts

The
Edit

 menu has the following options:

	

Cut Cells

 : Cut the currently selected cells to the clipboard

 Note

Each of the rectangular work areas in your notebook is a cell. The innermost text area is where you enter code. Below that (but within the surrounding rectangle), the results of each code stop will be displayed.

	

Copy Cells

 : Copy cells from the clipboard to the current cursor position

	

Paste Cells Above

 : Paste cells from the clipboard above the current cell

	

Paste Cells Below

 : Paste cells from the clipboard below the current cell

	

Paste Cells & Replace

 : Paste the cells from the clipboard on top of the current cell

	

Delete Cells

 : Delete the current cells

	

Undo Delete Cells

 : Revert the last Delete Cells invocation

	

Split Cell

 : Split up a cell from the current cursor position

	

Merge Cell Above

 : Merge the current cell with the one above

	

Merge Cell Below

 : Merge the current cell with the one below

	

Edit Notebook Metadata

 : Every notebook has underlying
metadata

 that describes the characteristics of the notebook. Advanced users can manipulate this data directly in order to adjust features more readily. For example, the current notebook metadata looks like the following screenshot:

[image: New Python 2]

	

Find and Replace

 : Allow us to find and replace among the selected cells. There is a standardized dialog box for this, as shown in the following screenshot:

[image: New Python 2]

As seen in the preceding screenshot, the parameters and their functions are as follows:

	The
Aa

 icon toggle determines whether a case-insensitive search is made

	The
*

 icon toggle determines whether a regex search is made

	The stacked lines icon toggle is whether a replace will be made

	The
Find

 text block presents the search criteria

	The
Replace

 text block is used for the replacement text

The
View

 menu has the following options:

	

Toggle Header

 : Toggles the display of the Jupyter logo and filename

	

Toggle Toolbar

 : Toggles the display of the toolbar

	

Cell Toolbar

 : Toggles the display of the cell action icons

The
Insert

 menu has the following options:

	

Insert Cell Above

 : Add a new cell above the current one

	

Insert Cell Below

 : Add a new cell below the current one

The
Cell

 menu has the following options:

	

Run Cells

 : Run the selected (or all) cells.

	

Run Cells and Select Below

 : Run the current cells down and create a new one below.

	

Run Cells and Insert Below

 : Run the current cells and create a new one above.

	

Run All

 : Run all cells.

	

Run All Above

 : Run all cells prior to the current cell.

	

Run All Below

 : Run all cells below the current cell.

	

Cell Type

 : Change the type of cell selected to
Code

 ,
Markdown

 , or
Raw NBConvert

 . There is an automatic message that is displayed noting that all cells are by default Code type.

	

Current Outputs and All Output

 have options to toggle their display.

The
Kernel

 menu has the following options:

	

Interrupt

 : Send a keyboard interrupt,
Ctrl

 +
C

 , to the kernel. This is useful if your code is in an endless loop.

	

Restart

 : Restart the kernel.

	

Restart & Clear Output

 : Restart the kernel and clear all output anew.

	

Restart & Run All

 : Restart the kernel and run all cells.

	

Reconnect

 : Connect back to a remote notebook.

	

Change Kernel

 : Not useful as only
Python 2

 is available at this point.

The
Help

 menu has the following options:

	

User Interface Tour

 : Walk the user through a UI tour

	

Keyboard Shortcuts

 : Presents a list of built-in keyboard shortcuts

	

Notebook Help

 : Help topics on the notebook

	

Markdown

 : Description of the markdown available within a notebook

	

Python

 ,
IPython

 ,
NumPy

 ,
SciPy

 ,
Matplotlib

 ,
SymPy

 ,
Pandas

 : Help topics on the various languages and packages that can be used in notebooks

	

About

 : A standard about box

There is an icon panel below the menu that has shortcut icons for the following functions:

	

Floppy disk icon

 : Save and Checkpoint

	

Plus sign

 : Insert Cell Below

	

Scissors

 : Cut Cell

	

Duplicate pages

 : Copy Cell

	

Up arrow

 : Move Cell Up

	

Down arrow

 : Move Cell Down

	

An icon that looks like a speaker

 : Run the current cell

	

Black square

 : Interrupt Kernel

	

Circular arrow:

 Restart the Kernel

	There's a drop-down menu for display characteristics:

	

Code

	

Markdown

	

Raw

NBConvert

	

Heading

	

Keyboard:

 Open the command palette

	Change the current toolbar in use. Clicking on the
Cell Toolbar

 button auto-displays the
Cell Toolbar

 choice from the
View

 menu:

[image: New Python 2]

 Security in Jupyter

Jupyter notebooks are created in order to be shared with other users, in many cases over the Internet. However, Jupyter notebooks can execute arbitrary code and generate arbitrary code. This can be a problem if malicious aspects have been placed in a notebook. The default security mechanisms for Jupyter notebooks include the following:

	Raw HTML is always sanitized (checked for malicious coding). Further information can be found at https://developers.google.com/caja
 .

	You cannot run external JavaScript.

	Cell contents (especially HTML and JavaScript) are not trusted (requires user validation to continue).

	The output from any cell is not trusted.

	All other HTML or JavaScript is never trusted. Clearing the output will cause the notebook to become trusted when saved.

 Security digest

Notebooks can also use a security digest to ensure the correct user is modifying the contents. A digest takes into account the entire contents of the notebook and a secret (only known by the notebook creator). This combination ensures that malicious coding is not going to be added to a notebook.

You add a security digest to a notebook using the following command:

~/.jupyter/profile_default/security/notebook_secret

Here, you replace the notebook_secret
 part with your secret.

 Trust options

You can specifically apply your trust to a notebook using a command-line option:

jupyter trust /path/to/notebook.ipynb

Or you can do it once the notebook is opened by the
File |

Trusted

Notebook

 menu option.

 Configuration options for Jupyter

You can configure some of the display parameters used when presenting notebooks. These are configurable due to the use of a product (CodeMirror) to present and modify the notebook. CodeMirror is a JavaScript-based editor for use within web pages (notebooks).

The list of configurable options is still in development. Some of the options are as follows:

	
lineSeparator
 : The character used to separate text lines

	
theme
 : The overall theme of presentation used in the notebook

	
indentUnit
 : How many spaces to indent blocks of coding

To change the configuration of one of the options, you open the JavaScript window of your browser, enter the coding to modify an option, and then load your notebook. Then the modifications you made would be applied to the notebook presentation. There is further documentation available at https://codemirror.net/doc/manual.html#option_indentUnit
 .

For example, to change the indentation (indent-unit) for your notebook, you would use the following JavaScript:

var mycell = Jupyter.notebook.get_selected_cell();

var cell_config = mycell.config;

var code_patch = {

 CodeCell:{

 cm_config:{indentUnit:2}

 }

 }

cell_config.update(code_patch)

You have now seen all of the standard operations available to you in a Jupyter Notebook.

 Summary

In this chapter, we investigated the various user interface elements available in a notebook. We learned how to install the software on a Mac or a PC. We were exposed to the notebook structure. We saw the typical workflow used when developing a notebook. We walked through the user interface operations available in a notebook. And lastly, we saw some of the configuration options available to advanced users for their notebook.

In the next chapter, we will learn all about Python scripting in a JupyterNotebook.

 Chapter2.Jupyter Python Scripting

Jupyter was originally IPython-an interactive version of Python to be used as a development environment. As such, most of the features of Python are available to you when developing your notebook.

In this chapter, we will cover the following topics:

	Basic Python scripting

	Python dataset access (from a library)

	Python pandas

	Python graphics

	Python random numbers

 Basic Python in Jupyter

In this chapter, we will be using Python scripts in a Jupyter Notebook. Jupyter does not interact with your scripts as much as it executes your script and records results. I think this is how Jupyter Notebooks have been extended to use other languages besides Python-the notebook just takes a script, runs it against a language engine, and records the output from the engine-all the while not really knowing what kind of script is being executed.

Similarly, I have not noticed any particular limitations when using Python in Jupyter. Some of the scripts I have run have taken a lot of time to run, used a lot of memory, opened new windows, and so on, all without failing. There are known issues running Python scripts that contain a __main__
 execution loop and multithreaded applications.

We must open a Python section to our notebook to use Python coding. So, start your notebook, then, in the upper-right menu, select
Python 2

 .

 Note

I installed Jupyter in the Spring of 2016 on a Windows machine and on a Mac. They both show the menu choice for
Python 2

 . I know that elsewhere, requirements talk about later versions of Python being a requirement, but the installed version with Jupyter was 2. (Actually, in the metadata displays, it was 2.7)

The menu is shown in the following screenshot:

[image: Basic Python in Jupyter]

This will open a Python window to work in, as shown in the following screenshot:

[image: Basic Python in Jupyter]

As mentioned in the previous chapter, the new window shows an empty cell for you to enter Python code.

Let's give the new work area a name, Learning Jupyter Chapter 2
 . Autosave should be on (as you can see next to the title). With an accurate name, we can find this section again easily from the notebook home page. If you select your browser's
Home

 tab and refresh, you will see this new window name displayed, as shown in the following screenshot:

[image: Basic Python in Jupyter]

Note, it has an item icon versus a folder icon. The automatically assigned extension is IPYNB (IPython Notebook). And since the item is in a browser in a Jupyter environment, it is marked as running. There is a file by that name in your directory on disk as well, as shown in the following screenshot:

[image: Basic Python in Jupyter]

If you open the IPYNB file in a text editor, you will see the basic contents of a Jupyter node (as mentioned in the
Notebook

structure

 section in the previous chapter). We have one empty cell and metadata about the notebook:

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {
 "collapsed": true},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 2",
 "language": "python",
 "name": "python2"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 2
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython2",
 "version": "2.7.11"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}

We can now enter Python coding into cells:

	Type in some Python in the first cell.

	Add another cell to the end (using
Insert

 |
Insert

Cell

Below

 the menu command):

name = "Dan"

age = 37

	In the second cell, we enter Python code that references the variables from the first cell:

print(name + ' is ' + str(age) + ' years old.')

	We have this display:[image: Basic Python in Jupyter]

Note that Jupyter color-codes your Python (just as a decent editor would) and we have empty braces to the left of each code block.

If we execute
Cell

 |
Run All Cells

 , the results are displayed inline:

[image: Basic Python in Jupyter]

We now have the braces filled in with cell numbers, and the output of cells is appended to the bottom of each cell. It's important to note that cell 2 was able to reference variables declared in cell 1.

If we either wait for autosave to kick in or hit the save icon (the leftmost icon of a diskette) we will update the IPYNB file on disk with our results:

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {
 "collapsed": true
 },
 "outputs": [],
 "source": [
 "name = "Dan"\n",
 "age = 37"
]
 },
 {
 "cell_type": "code",
 "execution_count": 2,
 "metadata": {
 "collapsed": false
 },
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Dan is 37 years old.\n"
]
 }
],
 "source": [
 "print(name + ' is ' + str(age) + ' years old.')"
]
 }
],
... metadata as above
}

It's interesting that Jupyter keeps track of the output last generated in the saved version of the file and in saved checkpoints. You can also clear the output using the
Cell

 |
All

Ouput

 |
Clear

 command.

If you were then to re-run your cells (using
Cell

 |
Run

All

), the output would be regenerated (and saved via autosave). The cell numbering is incremented if you do this-Jupyter is keeping track of the latest version of each cell.

Similarly, if you were to close the browser tab, refresh the display in the
Home

 tab, find the new item we created (Learning Jupyter Chapter 2.pynb
), and click on it, the new tab (as created previously) will be displayed, showing the outputs that we generated when last run.

If you open the server command-line window (where the Jupyter service is running) you see a listing of the actions that we have made during our session, as shown in the following screenshot:

[image: Basic Python in Jupyter]

The logging entries are at a high level. There may be a way to increase the logging level if there is some difficulty being encountered.

 Python data access in Jupyter

Now that we have seen how Python works in Jupyter, including the underlying encoding, then how does Python accessing a large dataset work in Jupyter?

I started another view for pandas using Python Data Access
 as the name. From here, we will read in a large dataset and compute some standard statistics on the data. We are interested in seeing how we use pandas in Jupyter, how well the script performs, and what information is stored in the metadata (especially if it is a larger dataset).

Our script accesses the iris
 dataset that's built into one of the Python packages. All we are looking to do is to read in a slightly large number of items and calculate some basic operations on the dataset. We are really interested to see how much of the data is cached in the IPYNB file

The Python code is as follows:

import the datasets package

from sklearn import datasets

pull in the iris data

iris_dataset = datasets.load_iris()

grab the first two columns of data

X = iris_dataset.data[:, :2]

calculate some basic statistics

x_count = len(X.flat)

x_min = X[:, 0].min() - .5

x_max = X[:, 0].max() + .5

x_mean = X[:, 0].mean()

display our results

x_count, x_min, x_max, x_mean

I broke these steps into a couple of cells in Jupyter, as shown in the following screenshot:

[image: Python data access in Jupyter]

Now, run the cells (using
Cell

 |
Run

All

) and we get the following display. The only difference is the last Out
 line where our values are displayed:

[image: Python data access in Jupyter]

It seemed to take longer to load the library (the first time I ran the script) than to read the data and calculate the statistics.

If we look in the IPYNB file for this notebook, we see that none of the data is cached in the IPYNB file. We simply have code references to the library, our code, and the output from when we last calculated the script:

{
 "cell_type": "code",
 "execution_count": 4,
 "metadata": {
 "collapsed": false
 },
 "outputs": [
 {
 "data": {
 "text/plain": [
 "(300, 3.7999999999999998, 8.4000000000000004, 5.8433333333333337)"
]
 },
 "execution_count": 4,
 "metadata": {},
 "output_type": "execute_result"
 }
],
 "source": [
 "# calculate some basic statistics\n",
 "x_count = len(X.flat)\n",
 "x_min = X[:, 0].min() - .5\n",
 "x_max = X[:, 0].max() + .5\n",
 "x_mean = X[:, 0].mean()\n",
 "\n",
 "# display our results\n",
 "x_count, x_min, x_max, x_mean"
]
}

 Python pandas in Jupyter

One of the most widely used features of Python is pandas. It is a third-party library of data analysis packages that can be used freely. In this example, we will develop a Python script that uses pandas to see if there is any effect to using it in Jupyter.

I am using the Titanic dataset from http://www.kaggle.com/c/titanic-gettingStarted/download/train.csv
 . I am sure the same data is available from a variety of sources.

Here is the Python script that we want to run in Jupyter:

from pandas import *

training_set = read_csv('train.csv')

training_set.head()

male = training_set[training_set.sex == 'male']

female = training_set[training_set.sex =='female']

womens_survival_rate = float(sum(female.survived))/len(female)

mens_survival_rate = float(sum(male.survived))/len(male)

The result is we calculate the survival rates of the Titanic's passengers based on their sex.

We create a new notebook, enter the script into appropriate cells, include adding displays of calculated data at each point, and produce our results.

Here is our notebook laid out; we added displays of calculated data in each cell, as shown in the following screenshot:

[image: Python pandas in Jupyter]

 Note

When I ran this script, I had two problems.

On Windows, it is common to use abackslash (\) to separate parts of a filename. However, this coding uses the backslash as a special character.

So, I had to change over to use forward slash (/) in my CSV file path. I originally had a full path to the CSV in the preceding code example.

The dataset column names are taken directly from the file and are case sensitive. In this case, I was originally using the sex
 field in my script, but in the CSV file, the column is named Sex
 . Similarly, I had to change survived
 to Survived
 .

The final script and results look like the following screenshot when we run it:

[image: Python pandas in Jupyter]

I have used the head()
 function to display the first few lines of the dataset. It is interesting to see the amount of detail that is available for all of the passengers.

If you scroll down, you see the results, as shown in the following screenshot:

[image: Python pandas in Jupyter]

We see 74% of the survivors were women versus just 19% men. I would like to think chivalry is not dead.

It's curious the results do not add up to 100%. However, like every other dataset I have seen, there is missing and/or inaccurate data present.

 Python graphics in Jupyter

How does Python graphics work in Jupyter?

I started another view for this named Python Graphics
 so as to distinguish the work from the previous work.

If we were to build a sample dataset of baby names and thenumber of births in a year of that name, we could then plot the data.

The Python coding is simple:

import pandas

import matplotlib

%matplotlib inline

baby_name = ['Alice','Charles','Diane','Edward']

number_births = [96, 155, 66, 272]

dataset = list(zip(baby_name,number_births))

df = pandas.DataFrame(data = dataset, columns=['Name', 'Number'])

df['Number'].plot()

The steps of the script are as follows:

	Import the graphics library (and data library) that we need.

	Define our data.

	Convert the data into a format that allows easy graphical display.

	Plot the data.

We would expect a graph of the number of births by baby name.

If we take the preceding script and place it into cells of our JupyterNotebook, we get something that looks like the following screenshot:

[image: Python graphics in Jupyter]

I have broken the script into different cells for easier readability. Having different cells also allows you to develop the script easily step by step, and you can display the values computed so far to validate your results. I have done this in most of the cells by displaying the dataset
 and DataFrame
 at the bottom of those cells.

When we run this script (
Cell

 |
Run

All

), we see the results at each step displayed as the script progresses:

[image: Python graphics in Jupyter]

And finally, we see our plot of the births
 , as shown in the following screenshot:

[image: Python graphics in Jupyter]

I was curious what metadata was stored for this script. Looking into the IPYNB file, you can see the expected value for the formula cells.

The tabular data display of the DataFrame
 is stored as HTML-convenient:

{
 "cell_type": "code",
 "execution_count": 43,
 "metadata": {
 "collapsed": false
 },
 "outputs": [
 {
 "data": {
 "text/html": [
 "<div>\n",
 "<table border="1" class="dataframe">\n",
 "<thead>\n",
 "<tr style="text-align: right;">\n",
 "<th></th>\n",
 "<th>Name</th>\n",
 "<th>Number</th>\n",
 "</tr>\n",
 "</thead>\n",
 "<tbody>\n",
 "<tr>\n",
 "<th>0</th>\n",
 "<td>Alice</td>\n",
 "<td>96</td>\n",
 "</tr>\n",
 "<tr>\n",
 "<th>1</th>\n",
 "<td>Charles</td>\n",
 "<td>155</td>\n",
 "</tr>\n",
 "<tr>\n",
 "<th>2</th>\n",
 "<td>Diane</td>\n",
 "<td>66</td>\n",
 "</tr>\n",
 "<tr>\n",
 "<th>3</th>\n",
 "<td>Edward</td>\n",
 "<td>272</td>\n",
 "</tr>\n",
 "</tbody>\n",
 "</table>\n",
 "</div>"
],
 "text/plain": [
 " Name Number\n",
 "0 Alice 96\n",
 "1 Charles 155\n",
 "2 Diane 66\n",
 "3 Edward 272"
]
 },
 "execution_count": 43,
 "metadata": {},
 "output_type": "execute_result"
 }
],
(... continued as above)
}

The graphic output cell is stored like this:

{
 "cell_type": "code",
 "execution_count": 27,
 "metadata": {
 "collapsed": false
 },
 "outputs": [
 {
 "data": {
 "text/plain": [
 "<matplotlib.axes._subplots.AxesSubplot at 0x47cf8f0>"
]
 },
 "execution_count": 27,
 "metadata": {},
 "output_type": "execute_result"
 },
 {
 "data": {
 "image/png":
 "<a few hundred lines of hexcodes>
 .../wc/B0RRYEH0EQAAAABJRU5ErkJggg==\n",
 "text/plain": [
 "<matplotlib.figure.Figure at 0x47d8e30>"
]
 },
 "metadata": {},
 "output_type": "display_data"
 }
],
 "source": [
 "# plot the data\n",
 "df['Number'].plot()\n"
]
}
], (... similar coding as above for the file trailer)

The "image/png"
 tag contains a large hex digit string representation of the graphical image displayed on screen (I abbreviated the display in the coding shown). So, the actual generated image is stored in the metadata for the page.

So, rather than a cache, Jupyter is remembering the output from when each cell was last executed.

 Python random numbers in Jupyter

For many analyses, we are interested in calculating repeatable results. However, a lot of analysis relies on random numbers being used. In Python, you can set the seed for the random number generator to achieve repeatable results with the random_seed()
 function.

In this example, we simulate rolling a pair of dice and looking at the outcome.

The script we are using is this:

import pylab

import random

random.seed(113)

samples = 1000

dice = []

for i in range(samples):

 total = random.randint(1,6) + random.randint(1,6)

 dice.append(total)

pylab.hist(dice, bins= pylab.arange(1.5,12.6,1.0))

pylab.show()

Once we have the script in Jupyter and execute it, we have this result:

[image: Python random numbers in Jupyter]

I had added some more statistics. I'm not sure I would have counted on such a high standard deviation. If we increased the number of samples, this would increase.

The resulting graph was opened in a new window, much as it would be if you ran this script in another Python development environment:

[image: Python random numbers in Jupyter]

The toolbar at the top of the graphic is extensive, allowing you to manipulate the graphic in many ways.

 Summary

In this chapter, we walked through a simple notebook and the underlying structure. Then, we saw an example of using pandas. We looked at a graphics example. Finally, we looked at an example using random numbers in a Python script.

In the next chapter, we will learn all about R scripting in a Jupyter Notebook.

 Chapter3.Jupyter R Scripting

Jupyter's native language is Python. Once Jupyter (essentially, IPython before being renamed) became popular for data analysis, a number of people were interested in using the suite of R programming analysis tools that are available in a JupyterNotebook.

In this chapter, we will cover the following topics:

	Adding R scripting to your installation

	Basic R scripting

	R dataset access (from a library)

	R graphics

	R cluster analysis

	R forecasting

 Adding R scripting to your installation

Two big installation platforms are Mac and Windows. There are separate, but similar, steps required to make R scripting available in your Jupyter installation.

 Adding R scripts to Jupyter on a Mac

If you are operating a Mac, you can add Rscripting using the command-line:

conda install -c r r-essentials

This will start off with a large installation of the R environment, which contains a number of common packages:

bos-mpdc7:~ dtoomey$ conda install -c r r-essentials

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment /Users/dtoomey/miniconda3:
 The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 jbig-2.1 | 0 31 KB

 jpeg-8d | 2 210 KB

 libgcc-4.8.5 | 1 785 KB

... <<many packages>>

 r-caret-6.0_62 | r3.2.2_0a 4.3 MB

 r-essentials-1.1 | r3.2.2_1a 726 B

 --

 Total: 101.0 MB

 The following NEW packages will be INSTALLED:

 jbig: 2.1-0

 jpeg: 8d-2

... <<many packages>>

 r-xts: 0.9_7-r3.2.2_0a

 r-yaml: 2.1.13-r3.2.2_1a

 r-zoo: 1.7_12-r3.2.2_1a

 zeromq: 4.1.3-0

Proceed ([y]/n)? y

Fetching packages ...

jbig-2.1-0.tar 100% |################################| Time: 0:00:00 1.59 MB/s

jpeg-8d-2.tar. 100% |################################| Time: 0:00:00 2.69 MB/s

... <<many packages>>

r-caret-6.0_62 100% |################################| Time: 0:00:00 11.16 MB/s

r-essentials-1 100% |################################| Time: 0:00:00 537.43 kB/s

Extracting packages ...

[COMPLETE]|###| 100%

Linking packages ...

[COMPLETE]|###| 100%

From there, you invoke your notebook as you normally would:

ipython notebook

 Adding R scripts to Jupyter on Windows

If you are operating a Windows machine, you are in for quite a few steps to get R in Jupyter. This environment was really developed for Linux.

On my machine, Anacondawas installed in my user directory. This is probably because I selected to install it just for myself. If you open a command-line window in the Anaconda
 /scripts
 directory, you should first make sure your notebook software is up to date using the following command:

conda update notebook

This produces the following output (for me - your results may be different so as to update different aspects as needed):

C:\Users\Dan\Anaconda2\Scripts>conda update notebook

Using Anaconda Cloud api site https://api.anaconda.org

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment C:\Users\Dan\Anaconda2:
 The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 notebook-4.2.0 | py27_0 5.2 MB

 The following packages will be updated:

 notebook: 4.1.0-py27_2 --> 4.2.0-py27_0

Proceed ([y]/n)? y

Fetching packages ...

notebook-4.2.0 100% |###############################| Time: 0:00:04 1.12 MB/s

Extracting packages ...

[COMPLETE]|##| 100%

Unlinking packages ...

[COMPLETE]|##| 100%

Linking packages ...

[COMPLETE]|##| 100%

Then we take the plunge and add R scripting:

conda install -c r notebook r-irkernel

This produces a detailed view of the packages that are updated. In my case, it installed a full set of R packages and runtimes even though I had used R elsewhere on the machine earlier:

C:\Users\Dan\Anaconda2\Scripts>conda install -c r notebook r-irkernel

Using Anaconda Cloud api site https://api.anaconda.org

Fetching package metadata:

Solving package specifications:

Package plan for installation in environment C:\Users\Dan\Anaconda2:

The following packages will be downloaded:

 package | build

 ---------------------------|-----------------

 msys2-conda-epoch-20160418 | 0 420 B

 m2w64-expat-2.1.1 | 1 164 KB

 m2w64-gmp-6.1.0 | 1 638 KB

 m2w64-gsl-2.1 | 1 2.3 MB

... <<many packages>>

 r-evaluate-0.8.3 | r3.2.4_0 44 KB

 r-irkernel-0.6 | r3.2.4_0 78 KB

 --

 Total: 100.5 MB

The following NEW packages will be INSTALLED:

 m2w64-bwidget: 1.9.10-1

 m2w64-bzip2: 1.0.6-5

 m2w64-expat: 2.1.1-1

 r-stringi: 1.0_1-r3.2.4_0

 r-stringr: 1.0.0-r3.2.4_0

 r-survival: 2.38_3-r3.2.4_0

 r-uuid: 0.1_2-r3.2.4_0

... <<many packages>>

Proceed ([y]/n)? y

Fetching packages ...

msys2-conda-ep 100% |#####################| Time: 0:00:00 26.25 kB/s

m2w64-expat-2. 100% |#####################| Time: 0:00:00 1.19 MB/s

m2w64-gmp-6.1. 100% |#####################| Time: 0:00:00 1.90 MB/s

m2w64-gsl-2.1- 100% |#####################| Time: 0:00:00 3.27 MB/s

m2w64-libiconv 100% |#####################| Time: 0:00:00 2.82 MB/s

... <<many packages>>

r-evaluate-0.8 100% |#####################| Time: 0:00:00 964.72 kB/s

r-irkernel-0.6 100% |#####################| Time: 0:00:00 508.94 kB/s

Extracting packages ...

[COMPLETE]|##| 100%

Linking packages ...

[COMPLETE]|##| 100%

 Adding R packages to Jupyter

The standard installation for R under Jupyter has many packages that are commonly used in R programming. However, if you do need to add another package, it is a small number of steps:

	Close down your notebook (including the server).

	In the command-line window, type the following:

R

install.packages("name of the R package you want to add")

quit()

answer Yes to save

	Restart your notebook, and the package should be available for use in your R script. To use an installed package, type library
 (name of the R package you want to add).

Note, you may still have problems in R if the core version of R that you have installed is out of date and you need to upgrade to use a particular library.

 R limitations in Jupyter

In this chapter, we used a variety of packages, both pre-installed and installed especially for the example. I have exercised a variety of materials available in R under Jupyter and have not found any limitations; you can do most of the steps in Jupyter that you would have done under the standard R implementations. The only limitation appears to be when you are using
Shiny

 or if you are attempting to use extensive markdown:

	For Shiny, I think you are mixing purposes-Jupyterprovides a web experience and so does Shiny-so I'm not sure how to even decide if this should work. This issue is being addressed by the Jupyter development group.

	Using extensive markdown also does not appear to be a good idea. The intent of markdown was to allow notebook developers to augment the standard output (of R) in a more illustrative manner. I think if you are adding extensive markdown to your notebook you really need to develop a website, maybe using Shiny-then you would have all HTML markdown available.

 After adding R scripts to Jupyter

Once the notebook is up and running (you should be able to use the command-line jupyter notebook
), if you open the
New

 menu in the top-right, you will see a choice has been added for R scripting:

[image: After adding R scripts to Jupyter]

 Basic R in Jupyter

Start a new
R

 notebook and call it R Basics
 . We can enter a small script just so we can see how the steps progress for an R script. Enter the following into separate cells of your notebook:

myString <- "Hello, World!"

print (myString)

You will end up with a starting screen that looks like this:

[image: Basic R in Jupyter]

We should note the aspects of the R notebook view:

	We have the R logo in the upper-right corner. You will see this logo running in other R installations.

	There is also the peculiar
R O

 just below the R icon. The unfilled circle indicates that the kernel is at rest, and the filled circle indicates the kernel is working.

	The rest of the menu items are the same as we have seen before.

This is a very simple script-set a variable in one cell then print out its value in another cell. Once executed (
Cell

 |
Run All

), you will see your results:

[image: Basic R in Jupyter]

So, just as if you ran the script in an R interpreter, you get your output (with the numerical prefix). Jupyter has counted the statements so we have incremental numbering of the cells. Jupyter has not done anything special to print out variables for debugging, you would have to do that separately.

If we look at the R server-logging statements (a command-line window was created when we started Jupyter), we see the actions that took place:

$ jupyter notebook

[I 11:00:06.965 NotebookApp] Serving notebooks from local directory: /Users/dtoomey/miniconda3/bin

[I 11:00:06.965 NotebookApp] 0 active kernels

[I 11:00:06.965 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/

[I 11:00:06.965 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

[I 11:00:17.447 NotebookApp] Creating new notebook in

[I 11:00:18.199 NotebookApp] Kernel started: 518308da-460a-4eb9-9959-1411e31dec69

[1] "Got unhandled msg_type:" "comm_open"

[I 11:02:18.160 NotebookApp] Saving file at /Untitled.ipynb

[I 11:08:27.340 NotebookApp] Saving file at /R Basics.ipynb

[1] "Got unhandled msg_type:" "comm_open"

[I 11:14:45.204 NotebookApp] Saving file at /R Basics.ipynb

We started the server, created a new notebook, and saved it as R Basics
 . If we open the IPYNB file on disk (using a text editor), we can see the following:

{
 "cells": [
 ...<similar to previously displayed>
],
 "metadata": {
 "kernelspec": {
 "display_name": "R",
 "language": "R",
 "name": "ir"
 },
 "language_info": {
 "codemirror_mode": "r",
 "file_extension": ".r",
 "mimetype": "text/x-r-source",
 "name": "R",
 "pygments_lexer": "r",
 "version": "3.2.2"
 }
 },
 ...<omitted>
}

This is a little different than what we saw in the prior chapter on Python notebook coding. Particularly, the metadata clearly tells the script cells to be R script. Note, the actual cells are not specific to a language-they are just scripts that will be executed as per the metadata directives.

 R dataset access

For this example, we will use the
Iris

 dataset. Iris is built into R installations and is available directly. Let's just pull in the data, gather some simple statistics, and plot the data. This will show R accessing a dataset in Jupyter, using an R built-in package, as well as some available statistics (since we have R), and the interaction with R graphics.

The script we will use is as follows:

dataset(iris)

summary(iris)

plot(iris)

If we enter this small script into a new R notebook, we get an initial display that looks like the following:

[image: R dataset access]

I would expect the standard R statistical summary as output, and I know the Iris plot is pretty interesting. We can see exactly what happened in the following screenshot:

[image: R dataset access]

The plot continues in the following screenshot as it wouldn't fit into a single screenshot:

[image: R dataset access]

 R visualizations in Jupyter

A common use of R is to use several visualizations, which are available depending on the underlying data. In this section, we will go over some of them to see how R interacts with Jupyter.

 R 3D graphics in Jupyter

One of the packages available for 3D graphics is persp
 . The persp
 package draws perspective plots over a 2D space.

We can enter a basic persp
 command in a new notebook and have something like this:

[image: R 3D graphics in Jupyter]

Once we run the step (
Cell

 |
Run All

), we can see the display in the following screenshot. The first part is the script involved to generate the graphic (this is part of the example code):

[image: R 3D graphics in Jupyter]

Then we see the following graphic display:

[image: R 3D graphics in Jupyter]

 R 3D scatterplot in Jupyter

The R lattice package has a cloud function that will produce 3D scatterplots.

The script we will use is as follows:

make sure lattice package is installed

install.package("lattice")

in a standalone R script you would have a command to download the lattice library - this is not needed in Jupyter

library("lattice")

use the automobile data from ics.edu

mydata <- read.table("http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")

define more meaningful column names for the display

colnames(mydata) <- c("mpg", "cylinders", "displacement", "horsepower", "weight", "acceleration", "model.year", "origin", "car.name")

3-D plot with number of cylinders on x axis, weight of the vehicle on the y axis and miles per gallon on the z axis.

cloud(mpg~cylinders*weight, data=mydata)

Prior to running, we have something like this:

[image: R 3D scatterplot in Jupyter]

Notice, we are using markup type cells for comments about the script steps. They are also denoted without a script line number in the left-hand column.

 Note

If you are copying R script into a Jupyter window, you may run across an issue where the print copy you are using has non-standard double quote characters (quotes on the left lean to the left, quotes on the right lean to the right). Once copied into Jupyter, you need to change this to normal double quotes (they don't lean but are vertical).

After running this, we see the following display:

[image: R 3D scatterplot in Jupyter]

 R cluster analysis

In this example, we use R's cluster analysis functions to determine the clustering in the wheat dataset from http://www.ics.uci.edu/
 .

The R script we want to use in Jupyter is the following:

load the wheat data set from uci.edu

wheat <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt", sep="\t")

define useful column names

colnames(wheat) <-c("area", "perimeter", "compactness", "length", "width", "asymmetry", "groove", "undefined")

exclude incomplete cases from the data

wheat <- wheat[complete.cases(wheat),]

calculate the clusters

fit <- kmeans(wheat, 5)

fit

Once entered into a notebook, we have something like this:

[image: R cluster analysis]

The resultinggenerated cluster information is K-means clustering with five clusters of sizes 29, 57, 65, 15, and 32. (Note that, since I had not set the seed value for random number to use, your results may vary.)

Cluster means are:

 area perimeter compactness length width asymmetry

1 16.45345 15.35310 0.8768000 5.882655 3.462517 3.913207

2 14.06456 14.17175 0.8788158 5.463825 3.211526 2.496354

3 11.91292 13.26692 0.8496292 5.237477 2.857908 4.844477

4 19.58333 16.64600 0.8877267 6.315867 3.835067 5.081533

5 18.95781 16.39563 0.8862125 6.250469 3.742781 2.719813

Clustering vectors are:

 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2

...

Within cluster sum of squares by cluster are:

[1] 54.16095 146.71080 147.29278 25.81297 30.06596

 (between_SS / total_SS = 85.0 %)

The available components are:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

So, we generated information about five clusters (the parameter passed in the fit
 statement).

 R forecasting

For this example, we will forecast the Fraser River levels given the data from https://datamarket.com/data/set/22nm/fraser-river-at-hope-1913-1990#!ds=22nm&display=line
 . I was not able to find a suitable source so I extracted the data by hand from the site into a local file.

We will be using the R forecast package. You have to add this package to your setup (as described at the start of this chapter).

The R script we will be using is as follows:

library(forecast)

fraser <- scan("fraser.txt")

plot(fraser)

fraser.ts <- ts(fraser, frequency=12, start=c(1913,3))

fraser.stl = stl(fraser.ts, s.window="periodic")

monthplot(fraser.stl)

seasonplot(fraser.ts)

The output of interest in this example are the three plots: simple plot, monthly, and computed seasonal.

The simple plot (using the R plot
 command) is like the following screenshot. There is no apparent organization or structure:

[image: R forecasting]

The monthly plot (using the monthplot
 command) is like the following screenshot. River flows appear to be very consistent within a month:

[image: R forecasting]

Finally, the seasonal plotshows quite dramatically what we have been trying to forecast, that is, definite seasonality to the river flows:

[image: R forecasting]

 Summary

In this chapter, we added the ability to use R scripts in your JupyterNotebook. We added an R library not included in the standard R installation and we made a Hello World
 script in R. We then saw R data access built-in libraries and some of the simpler graphics and statistics that are automatically generated. We used an R script to generate 3D graphics in a couple of different ways. We then performed a standard cluster analysis (which I think is one of the basic uses of R) and used one of the available forecasting tools.

In the next chapter, we will learn all about Julia scripting in a JupyterNotebook.

 Chapter4.Jupyter Julia Scripting

Julia is a language specifically designed to be used for high performance, numerical computing. Most importantly, it differs from the previous scripting languages covered in this book (R and, to a certain extent, Python) in that Julia is a full language, not limited to data handling.

In this chapter, we will cover the following topics:

	Adding Julia scripting to your installation

	Basic Julia in Jupyter

	Julia limitations in Jupyter

	Standard Julia capabilities

	Julia visualizations in Jupyter

	Julia Vega plotting

	Julia parallel processing

	Julia control flow

	Julia regular expressions

	Julia unit testing

 Adding Julia scripting to your installation

We will install on Mac and Windows. There are separate steps for making Julia scripting available in your Jupyter installation.

 Adding Julia scripts to Jupyter on a Mac

If you are running on a Mac, you are in luck. The Mac installation of Jupyter includes Julia 0.4.5, as can be seen in the
New

 menu:

[image: Adding Julia scripts to Jupyter on a Mac]

 Adding Julia scripts to Jupyter on Windows

If you are running on a Windows machine, there are a few steps to get Julia on Jupyter. Remember, this environment was really developed for Linux.

First, we need to install Julia on your Windows machine. Navigate to the Julia download page (http://julialang.org/downloads/
), download the correct version, which is Julia 0.4.5 for Windows (in my case, I used the Windows self-extracting EXE file for 32-bit machines), and run the installation with standard defaults.

 Note

You must run the Julia installation as Administrator on your machine. After downloading the file, open the Downloads
 folder, right-click on the Julia executable, and select
Run as administrator

 .

Once the install is complete, you should verify that everything worked. Select Julia from the programs list and run the Julia program. You should see the Julia command-line, as shown in the following screenshot:

[image: Adding Julia scripts to Jupyter on Windows]

In the Julia window, run the following command to add Julia to Jupyter:

Pkg.add("IJulia")

This will result in
IJulia

 (Interactive Julia) being downloaded and installed on your machine. There are many sub-packages that will get automatically installed as well. Your display will look something like the following screenshot:

[image: Adding Julia scripts to Jupyter on Windows]

Julia uses font color as feedback. I entered the text Pkg.add
 in white at the top of the screen, successful execution steps are in blue, and possible problems are shown in red. You must wait for the installation to complete. The last line should have read as follows:

INFO: Package database updated

At this point, you can close the Julia window (using the quit()
 command).

One last step is to open your notebook (using the jupyter notebook
 command), and if you open the
New

 menu (in the upper-right corner of the screen), you should see a Julia type available as shown in the following screenshot:

[image: Adding Julia scripts to Jupyter on Windows]

 Adding Julia packages to Jupyter

The standard installation for Juliain Jupyter has many packages that are commonly used in Julia programming. However, if you do need to add another package, it is a small number of steps:

	Close down your notebook (including the server).

	Run the Julia command-line program and type the following:

Pkg.add("DataFrames")

Pkg.add("RDatasets")

Pkg.add("Gadfly")

quit();

	Restart your notebook and the package should be available in your Julia script. To use an installed package, type library
 (name of the R package you want to add).

I would recommend adding the three preceding packages right away as they are needed for many scripts.

 Note

The first time you use a package in Julia you will see a line highlighted in light red that shows Julia is precompiling, such as this:

INFO: Precompiling module Dataframes...

You can use the Pkg.add()
 function directly in your script, but that doesn't seem correct. Every time you run your script, the system will attempt to validate whether you have the specified package or not, install it into your environment if needed, and even tell you if you are out of date. None of these steps belong as part of your script.

 Basic Julia in Jupyter

In this example we will use the Iris dataset for some standard analysis. So, start a new Julia notebook and call it Julia Iris
 . We can enter a small script to see how the steps progress for a Julia script.

This script uses another package for plotting, Gadfly
 . You would have to go through similar steps as before to install the package before operating the script.

Enter the following script into separate cells of your notebook:

using RDatasets, DataFrames, Gadfly

set_default_plot_size(5inch, 5inch/golden);

plot(dataset("datasets","iris"), x="SepalWidth",
 y="SepalLength", color="Species")

RDataSets
 is a library containing several of the commonly used R datasets, such as Iris. This is a simple script-we define our libraries that we are going to use, set the size of the plot area, and plot out the Iris data points (color coded to species).

So, you would end up with a starting screen that looks like the following screenshot:

[image: Basic Julia in Jupyter]

We should take note of a few aspects of the Julia notebook view:

	We have the Julia logo (the three colored circles) in the upper-right corner. You will have seen this logo running in other Julia installations (as we saw earlier when we ran the Julia command line).

	The circle to the right of the Julia logo is a busy indicator. When your script starts, the title of the table says
Busy

 as Julia is starting. When your script is running, the circle is filled in black. When it is not running, it is empty.

	The rest of the menu items are the same as before.

 Note

On my Windows machine, it took quite a while for the Julia notebook to start the first time. The
Kernel starting, please wait...

 message was displayed for several minutes.

If you run the script (using the
Cell

 |
Run All

 menu command), your output should look like the following screenshot:

[image: Basic Julia in Jupyter]

I noticed that if you hover the mouse over a graphic, you get grid lines displayed and a slide bar to adjust the zoom level (as shown in the upper-right part of the preceding screenshot).

So, just as if you ran the script in the Julia interpreter, you get your output (with the numerical prefix). Jupyter has counted the statements so we have incremental numbering of the cells. Jupyter has not done anything special to print out variables or the like.

We started the server, created a new notebook, and saved it as Julia Iris
 . If we open the IPYNB file on disk (using a text editor), we can see the following:

{
 "cells": [
 ...<similar to previously displayed>
],
 "metadata": {
 "kernelspec": {
 "display_name": "Julia 0.4.5",
 "language": "julia",
 "name": "julia-0.4"
 },
 "language_info": {
 "file_extension": ".jl",
 "mimetype": "application/julia",
 "name": "julia",
 "version": "0.4.5"
 }
 ...<omitted>
 }

This is a little different than what we saw in the previous chapters with other notebook language coding. Particularly, the metadata clearly targets the script cells to be Julia script.

 Julia limitations in Jupyter

I have written Julia scripts and accessed different Julia libraries without issue in Jupyter. I have not noticed any limitations on its use or any performance degradation. I imagine some aspects of Julia that are very screen dependent (such as using the Julia Webstack to build a website) may be hampered by conflicting uses of the same concept.

I have repeatedly seen updates being run when I am attempting to run a Julia script, as in the following screenshot. I am not sure why they decided to always update the underlying tool rather than use what is in play and have the user specify whether to update libraries:

[image: Julia limitations in Jupyter]

I have also noticed that once a Julia notebook is opened, even though I have closed the page, it will still display
Running

 on the home page. I don't recall seeing this behavior with the other script languages available.

Another issue has been trying to use a secured package in my script, for example, plotly
 . It appears to be a clean process to get credentials, but using the prescribed methods for passing your credentials to plotly
 does not work under Windows. I am hesitant to provide examples that do not work in both environments.

Further interactions with Windows are also limited, for example, attempting to access environment variables by calls to standard C libraries that are normally not present on a Windows installation.

I have another issue with Julia itself-regardless of whether it's running in Jupyter or not. When using a package, it will complain about features that are used in the package that have been deprecated or improved. As a user of the package, I have no control over this behavior, so it does not help me in my work.

 Standard Julia capabilities

Similar to functions in other languages, Julia can perform most of the rudimentary statistics on your data using the describe
 function, as in the example script that follows:

using RDatasets

describe(dataset("datasets", "iris"))

This script accesses the Iris dataset and displays summary statistics on the dataset.

If we were to build a notebook to show describe
 in use against the iris
 dataset (loaded in theprevious example), we would end up with a display like this:

[image: Standard Julia capabilities]

You can see the standard statistics generated for each of the variables in the dataset. I thought it was interesting that the count and percentage of NA values in the dataset are provided. I have found that I usually have to double-check to exclude this data using other languages. Here, it is a quick, built-in reminder.

 Julia visualizations in Jupyter

The most popular tool for visualizations in Julia is the Gadfly
 package. We can add the Gadfly
 package (as described at the beginning of this chapter) using the add function:

Pkg.add("Gadfly")

From then on, we can make reference to the Gadfly
 package in any script using the following command:

using Gadfly

 Julia Gadfly scatterplot

We can use the plot()
 function with standard defaults (no type arguments) to generate a scatterplot. For example, with the simple script:

using Gadfly

srand(111)

plot(x=rand(7), y=rand(7))

 Note

We use the srand()
 function in all examples that use random results. The srand()
 function sets the random number seed value, so all results in this chapter are reproducible.

We generate a nice, clean scatterplot, as shownin the following screenshot:

[image: Julia Gadfly scatterplot]

 Julia Gadfly histogram

We can produce other graph types as well, for example, a histogram using this script:

using Gadfly

srand(111)

plot(x=randn(113), Geom.histogram(bincount=10))

This script generates 113 random numbers and generates a histogram of the results.

We see something like the following screenshot:

[image: Julia Gadfly histogram]

 Julia Winston plotting

Another graphics package in Julia is Winston
 . It has similar plotting capabilities to Gadfly
 (I think Gadfly
 is more up-to-date). We can produce a similar plot of random numbers using the following script:

using Winston

fix the random seed so we have reproducible results

srand(111)

generate a plot

pl = plot(cumsum(rand(100) .- 0.5), "g", cumsum(rand(100) .- 0.5), "b")

display the plot

display(pl)

Note that, you have to specifically display the plot. The Winston
 package assumes you want to store the graphic as a file, so the plot
 function generates an object for handling.

Moving this into a notebook, we get the following screenshot:

[image: Julia Winston plotting]

 Julia Vega plotting

Another popular graphics package is Vega
 . The main feature of Vega
 is the ability to describe your graphic using language primitives, such as JSON. Vega
 produces most of the standard plots. Here is an example script using Vega
 for a pie chart:

#Pkg.add("Vega")

#Pkg.add("Compat")

#Pkg.add("Patchwork")

using Vega

using Compat

using Patchwork

Patchwork.load_js_runtime()

stock = ["chairs", "tables", "desks", "rugs", "lamps"];

quantity = [15, 10, 10, 5, 20];

piechart(x = stock, y = quantity)

The generated graphic produced in Jupyter is shown in the following screenshot:

[image: Julia Vega plotting]

 Note

Vega gives you the option on the resultant display to
Save As PNG

 .

 Julia PyPlot plotting

Another plotting package available is PyPlot
 . PyPlot
 is one of the standard Python visualization libraries and is directly accessible from Julia. We can take this small script to produce an interesting visualization:

#Pkg.add("PyPlot")

using PyPlot

precipitation = [0,0,0,0,0,0,0,0,0,0,0.12,0.01,0,0,0,0.37,0,0,0,0,
 0.01,0,0,0,0.01,0.01,0,0.17,0.01,0.11,0.31]

date = collect(1:31)

fig = figure(1, figsize=(4, 4))

plot(date, precipitation, ".")

title("Boston Precipitation")

xlabel("May 2013")

ylabel("Precipitation")

The resultant output in Jupyter will look like the following screenshot:

[image: Julia PyPlot plotting]

 Julia parallel processing

An advanced built-in feature of Julia is to use parallel processing in your script. Normally, you can specify the number of processes that you want to use, directly in Julia. However, in Jupyter, you would use the addproc()
 function to add an additional process available for use in your script. For example, this small script:

addprocs(1)

srand(111)

r = remotecall(rand, 2, 3, 4)

s = @spawnat 2 1 .+ fetch(r)

fetch(s)

This example makes a call to rand
 , the random number generator with that code executing on the 2nd
 parameter to the function call (process 2), and then passes the remaining arguments to the rand
 function there (making rand
 generate a 3 x 4 matrix of random numbers). spawnat
 is a macro that evaluates the processes mentioned. Then, fetch
 accesses the result of the spawned processes.

We can see the results in the example in Jupyter as shown in the following screenshot:

[image: Julia parallel processing]

 Julia control flow

Julia has a complete set of control flows. As an example, we could have a small function that determines the larger of two numbers:

function larger(x, y)

 if (x>y)

 return x

 end

 return y

end

println(larger(7,8))

There are several features that you must note:

	The end
 statement for the if
 statement

	
end
 the closing of the function

	Indentation of the statements within the function

	Indentation of the handling of a true
 condition within an if
 statement

If we run this in Jupyter, we see the output shown in the following screenshot:

[image: Julia control flow]

 Julia regular expressions

Julia has built-in regular expression handling-as do most modern programming languages. There is no need for a using
 statement, as regular expressions are basic features of strings in Julia.

We could have a small script that verifies whether a string matches a phone number, for example:

ismatch(r"^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$", "(781)244-1212")

ismatch(r"^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$", "-781-244-1212")

When run in Jupyter, we see the following results, that is the first number is conformant to the format and the second is not:

[image: Julia regular expressions]

 Julia unit testing

As a full language, Julia has unit testing abilities to make sure your code is performing as expected. The unit tests usually reside in the tests
 folder.

Two of the standard functions available for unit testing in Julia are FactCheck
 and Base.Test
 . They both do the same thing, but react differently to failed tests. FactCheck
 will generate an error message that will not stop processing on a failure. If you provide an error handler, that error handler can take control of the test.

Base.Test
 will throw an exception and stop processing on the first test failure. In that regard, it is probably not useful as a unit testing function so much as a runtime test that you may put in place to make sure parameters are within reason, or otherwise, just stop processing before something bad happens.

Both packages are built-in to the standard Julia distributions.

As an example, we can create a unit tests
 notebook that does the same tests and see the resulting, different responses for errors (that is, test failures).

For FactCheck
 , we will use this script:

using FactCheck

f(x) = x^3

facts("cubes") do

 @fact f(2) --> 8

 @fact f(2) --> 7

End

We are using the FactCheck
 package. The simple function we are testing is cubing a number, but it could be anything. We wrap our tests in a facts () do...end
 block. Each of the tests is run within the block separate from any other block-so as to group our unit tests together-and is prefixed with @fact
 . Also, note we are testing whether the function result following -->
 is the right-hand argument.

When we run this in Jupyter, we see the results shown in the following screenshot:

[image: Julia unit testing]

You can see the failed test, why it failed, what line it was on, and so on, as well as the summary of the facts block that was executed, that is, the number of tests that passed (verified) and the number of tests that failed. Note that, the script continued to run onto the next line.

For Base.Test
 , we have a similar script:

using Base.Test

f(x) = x^3

@test f(2) == 8

@test f(2) == 7

We are using the Base.Test
 package. The function definition we are using is, again, cubing. Then each test is individually-not as part of a test block-prefixed with @test
 . Running this script in Jupyter, we see similar results, as shown in the following screenshot:

[image: Julia unit testing]

The failed test information is displayed. However, in this case, the script stopped executing at this point. Hence, I would only consider this for runtime checks to validate input formats.

 Summary

In this chapter, we added the ability to use Julia scripts in your Jupyter Notebook. We added a Julia library not included in the standard Julia installation. We saw basic features of Julia in use. We outlined some of the limitations encountered using Julia in Jupyter. We displayed graphics using some of the graphics packages available, including Gadfly
 , Winston
 , Vega
 , and PyPlot
 . We saw parallel processing in action. We saw a small control flow example, and lastly, we saw how to add unit testing to your Julia script.

In the next chapter, we will learn all about using JavaScript in a Jupyter Notebook.

 Chapter5. Jupyter JavaScript Coding

JavaScript is a high-level, dynamic, untyped, and interpreted programming language. There are several, languages that are based on JavaScript. In the case of Jupyter, the underlying JavaScript is really Node.js. Node.js is an event-based framework that uses JavaScript that can be used to develop large, scalable applications. Note, this is in contrast to the earlier languages covered in this book that are primarily used for data analysis (Python is a general language as well, but has clear aspects that deal with its capabilities of performing data analysis).

In this chapter, we will cover the following topics:

	Adding JavaScript packages to Jupyter

	JavaScript Hello World Jupyter Notebook

	Basic JavaScript in Jupyter

	Node.js d3 package

	Node.js stats-analysis package

	Node.js JSON handling

	Node.js canvas package

	Node.js plotly package

	Node.js asynchronous threads

	Node.js decision-tree package

 Adding JavaScript scripting to your installation

In this section, we will install JavaScript scripting on Mac and Windows. There are separate steps for getting JavaScript scripting available on your Jupyter installation for each environment. The Mac installation was very clean. The Windows installation appears to still be in flux and I would expect the following instructions to change over time.

 Adding JavaScript scripts to Jupyter on Mac

Using JavaScript in Jupyter on Mac takes several steps. Jupyter on Mac is also known as
IJavascript

 . The definitive site for this is https://www.npmjs.com/package/ijavascript
 specifically earmarked as providing the JavaScript kernel for Jupyter.

On the
Installation

 page (http://n-riesco.github.io/ijavascript/doc/install.md.html
) we can follow the guidelines given for macOS(the current operating system for Mac):

ruby -e "$(curl -fsSL
 https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install pkg-config node zeromq

sudo easy_install pip

sudo pip install -U jupyter

npm install ijavascript

We can start our notebook with the ijs
 command.

 Note

The command is not available under OSX unless the-g
 option was specified.

You should see a JavaScript notebook available, as shown in the following screenshot:

[image: Adding JavaScript scripts to Jupyter on Mac]

 Adding JavaScript scripts to Jupyter on Windows

There are multiple instructions available on the internet to use JavaScript in Jupyter on Windows. When I originally wrote this chapter I followed one set of instructions that worked. Subsequently, I had made other adjustments to my installation for Jupyter using other languages.

 Note

When I went back to make edits for this chapter and I found the JavaScript implementation is no longer working on Windows. Something along the way disabled and broke the feature. I could not follow the same steps I had taken earlier to enable JavaScript.

I would assume as progress is made onJupyterthat JavaScript will be re-enabled for Jupyter users on Windows.

 JavaScript Hello World Jupyter Notebook

Once it's installed, we can attempt the first JavaScript notebook by clicking on the
New

 menu and selecting JavaScript. We name the notebook Hello World Javascript
 and put the following lines in this script:

var msg = "Hello, World!"

console.log(msg)

This script sets a variable and displays the contents of the variable. After entering the script and running (
Cell

 |
Run All

) we end up with a notebook screen that looks like the following screenshot:

[image: JavaScript Hello World Jupyter Notebook]

We should point out some of the highlights of this page:

	We have the now-familiar language logo in the upper-right that depicts the type of script in use.

	There is output (Out
) from every line of the notebook. This appears to be a work in progress as line numbering is not meaningful.

	More importantly, we see the true output of the notebook (line 2 in the preceding screenshot) where the string is echoed.

	Otherwise, the notebook looks as familiar to the other types we have seen.

If we look at the contents of the notebook on disk, we see similar results as well:

{
 "cells": [
 <<same format as seen earlier for the cells>>
],
 "metadata": {
 "kernelspec": {
 "display_name": "Javascript (Node.js)",
 "language": "javascript",
 "name": "javascript"
 },
 "language_info": {
 "file_extension": ".js",
 "mimetype": "application/javascript",
 "name": "javascript",
 "version": "4.2.4"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}

So, using the same notebook, in the JSON file format, Jupyter provides a different language for use in the notebook by changing the metadata
 and language_info
 values appropriately.

 Adding JavaScript packages to Jupyter

The JavaScript language does not normally install additional packages-it makes reference to other packages via the runtime include
 directive used in your programs. Other packages can be referenced across the network or copied locally into your environment. It is assumed that accessing a library across the network via a CDN is a more efficient and faster mechanism.

However, Node.js adds the require
 verb to the JavaScript syntax. In this case, your code requires another module to be loaded, assumed to be installed in your current environment. To install another module, use npm
 :

npm install name-of-module

This would install the module referenced (including any embedded packages that are required) on your machine so that a require statement will work correctly.

 Basic JavaScript in Jupyter

JavaScript, and even Node.js, are not usually noted for data handling, but for application (website) development. This differentiates JavaScript coding in Jupyter from the languages covered earlier. But, the examples in this chapter will highlight using JavaScript for application development with data access and analysis features.

 JavaScript limitations in Jupyter

JavaScript was originally used specifically to address the need for scripting inside of an HTML page, usually on the client side (in a browser). As such, it was built to be able to manipulate HTML elements on the page. Several packages have been developed to further this feature, even creating a web server, especially using extensions such as Node.js.

The use of any of the HTML manipulation and generation features inside of Jupyter runs into a roadblock since Jupyter expects to control presentation to the user.

 Node.js d3 package

The d3
 package has data access functionality. In this case, we will read from a tab-separated file and compute an average. Note the use of the underscore variable name for lodash
 . Variable names starting with anunderscore are assumed to be private, although, in this case, it is just a play on the name of the package we are using, lodash
 , or underscore. Also, lodash
 is a widely used utility package.

The script we use is as follows:

var fs = require("fs");

var d3 = require("d3");

var _ = require("lodash");

//read in the animals file

fs.readFile("data/animals.tsv", "utf8", function(error, data) {

 data = d3.tsv.parse(data);

//display on screen

 console.log(JSON.stringify(data));

//compute the maximum weight

 var maxWeight = d3.max(data, function(d) { return d.avg_weight; });

//display the max on screen

 console.log(maxWeight);

});

This assumes we have previously loaded the fs
 and d3
 packages using npm
 , as described in the previous script.

For this example, I created a data
 sub-directory in the same directory my notebook is located (usually the user's home directory) and created a tabbed file (animal.tsv
) in that directory:

 Note

The use of <tab>
 contains an actual tab character.

name<tab>avg_weight
lion<tab>400
tiger<tab>400
human<tab>150
elephant<tab>2000

If we load this script into a notebook and run it, we getthe following output, as expected:

[image: Node.js d3 package]

Interestingly, the max
 function does not work as expected. I would have expected that the 2000
 pounds of the elephant
 value would be displayed. I have since been informed that if the script property converted the strings to numbers the correct results would have been portrayed.

 Node.js stats-analysis package

The stats-analysis
 package has many of the common statistics you may want to perform on your data. You would have to install this package using npm
 as explained previously.

If we had a small set of people's temperatures to work with, we could get some of the statistics on the data readily, using this script:

const stats = require("stats-analysis");

var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5];

//standard deviation

var my_stddev = stats.stdev(arr).toFixed(2);

//mean

var my_mean = stats.mean(arr).toFixed(2);

//median

var my_median = stats.median(arr);

//median absolute deviation

var my_mad = stats.MAD(arr);

// Get the index locations of the outliers in the data set

var my_outliers = stats.indexOfOutliers(arr);

// Remove the outliers

var my_without_outliers = stats.filterOutliers(arr);

//display our stats

console.log("Raw data is ", arr);

console.log("Standard Deviation is ", my_stddev);

console.log("Mean is ", my_mean);

console.log("Median is ", my_median);

console.log("Median Abs Deviation is " + my_mad);

console.log("The outliers of the data set are ", my_outliers);

console.log("The data set without outliers is ", my_without_outliers);

When this script is entered in a notebook we get something similar to the following screenshot:

[image: Node.js stats-analysis package]

When run, we get the results shown in the following screenshot:

[image: Node.js stats-analysis package]

Interestingly, the 98.5
 is considered an outlier. I assume there is an optional parameter to the command that would change the limits used. Otherwise, the results are as expected.

The outliers are coming from dealing with the raw data as pure mathematical items. So, from the data provided we have identified the outliers. However, we would probably use a different method to determine outliers, since we know the domain-average human temperatures.

 Node.js JSON handling

In this example, we will load a JSON dataset and perform some standard manipulations of the data. I am referencing the list of Ford models from http://www.carqueryapi.com/api/0.3/?callback=?&cmd=getModels&make=ford
 . I could not reference this directly as it is not a flat file but an API call. So, I downloaded the data into a local file,fords.json
 . Also, the output from the API call wraps the JSON like ?(json);
 which would have to be removed before parsing.

The scripting we will use is as follows. In the script, JSON is a built-in package of Node.js so we can reference this package directly. The JSON package provides many of the standard tools that you need to handle your JSON files and objects.

Of interest here is the JSON file reader that constructs a standard JavaScript array of objects. Attributes of each object can be referenced by name, for example, model.model_name
 .We can see this feature in action with this script that reads in a JSON file and parses out the data elements of interest, based on the field names in the JSON file:

//load the JSON dataset

//http://www.carqueryapi.com/api/0.3/
 ?callback=?&cmd=getModels&make=ford

var fords = require('/Users/dtoomey/fords.json');

//display how many Ford models are in our data set

console.log("There are " + fords.Models.length +
 " Ford models in the data set");

//loop over the set

var index = 1

for(var i=0; i<fords.Models.length; i++) {

 //get this model

 var model = fords.Models[i];

 //pull it's name

 var name = model.model_name;

 //if the model name does not have numerics in it

 if(! name.match(/[0-9]/i)) {

 //display the model name

 console.log("Model " + index + " is a " + name);

 index++;

 }

 //only display the first 5

 if (index>5) break;

}

If we pull this script into a new notebook entry, we get the following screen:

[image: Node.js JSON handling]

When the lines are executed, we get the expected results, as follows:

[image: Node.js JSON handling]

 Node.js canvas package

The canvas
 package is used for generating graphics in Node.js. We can use the example from the Canvas home page (https://www.npmjs.com/package/canvas
).

First we need to install canvas
 and its dependencies. There are directions on the home page for the different operating systems, but it is very familiar to the tools we have seen before (we have seen them for macOS):

npm install canvas

brew install pkg-config cairo libpng jpeg giflib

With the canvas
 package installed on your machine, we can use a small Node.js script to create a graphic:

// create a canvas 200 by 200 pixels

var Canvas = require('canvas')

 , Image = Canvas.Image

 , canvas = new Canvas(200, 200)

 , ctx = canvas.getContext('2d')

 , string = "Jupyter!";

// place our string on the canvas

ctx.font = '30px Impact';

ctx.rotate(.1);

ctx.fillText(string, 50, 100);

var te = ctx.measureText(string);

ctx.strokeStyle = 'rgba(0,0,0,0.5)';

ctx.beginPath();

ctx.lineTo(50, 102);

ctx.lineTo(50 + te.width, 102);

ctx.stroke();

//create an html img tag, with embedded graphics

console.log('');

This script is creating a canvas, writing the string Jupyter!
 across the canvas and then generating an HTML img
 tag with the graphic.

After we run the script in a notebook, we get the img
 tag as the output:

[image: Node.js canvas package]

We can take the img
 tag, save it to an HTML page, and then open the HTML file with a browser to display our graphic:

[image: Node.js canvas package]

 Node.js plotly package

plotly
 is a package that works differently to most. To use their software, you must register with a username and be provided an API key (at https://plot.ly/
). You then place the username and API key in your script. At that point you can use all of the plotly
 features.

Firstly, like other packages, we need to install it:

npm install plotly

Once installed, we can reference the plotly
 package as needed. Using a simple script, we can generate a histogram with plotly
 :

//set random seed

var seedrandom = require('seedrandom');

var rng = seedrandom('Jupyter');

//setup plotly

var plotly = require('plotly')(username="<username>", api_key="<key>")

var x = [];

for (var i = 0; i < 500; i ++) {

 x[i] = Math.random();

}

require('plotly')(username, api_key);

var data = [

 {

 x: x,

 type: "histogram"

 }

];

var graphOptions = {filename: "basic-histogram", fileopt: "overwrite"};

plotly.plot(data, graphOptions, function (err, msg) {

 console.log(msg);

});

Once loaded and run in Jupyter as a notebook, we get the following screenshot:

[image: Node.js plotly package]

Instead of creating a local file, or just displaying the graphic on screen, any graphic is created and stored on the plotly site and the output of the plot command is a set of return values from your graphic creation. Most important is the URL where you can access the graphic.

So ideally, what should happen is that I should be able to access my graphic (histogram) using the URL provided, which is https://plot.ly/~dantoomey/1
 . The returned URL works as expected,inserting a tilde character in the URL. However, when I looked around the plotly site, I did find my graphics in slightly different paths than expected. All of your graphics are in your home page, for example, https://plot.ly/~dantoomey
 . I can now access all of my graphics and the histogram is shown:

[image: Node.js plotly package]

 Node.js asynchronous threads

Node.js has built-in mechanisms for creating threads and having them fire asynchronously. Using an example from http://book.mixu.net/node/ch7.html
 , we have the following:

//thread function - invoked for every number in items array

function async(arg, callback) {

 console.log('cube ''+arg+'', and return 2 seconds later');

 setTimeout(function() { callback(arg * 3); }, 2000);

}

//function called once - after all threads complete

function final() { console.log('Done', results); }

//list of numbers to operate upon

var items = [0, 1, 1, 2, 3, 5, 7, 11];

//results of each step

var results = [];

//loop the drives the whole process

items.forEach(function(item) {

 async(item, function(result){

 results.push(result);

 if(results.length == items.length) {

 final();

 }

 })

});

This script creates an asynchronous function that operates on a number. For every number (item), we call upon the inline function passing the number to the function that applies the number to the results list. In this case, it just triples the number and waits for two seconds. The main loop (at the bottom of the script) creates a thread for each number in the list and then waits for them all to complete before calling the final()
 routine.

The notebook page looks like this:

[image: Node.js asynchronous threads]

When we run the script, we get something like this output:

[image: Node.js asynchronous threads]

It is odd to see the delay for the last line of output (from the final()
 routine) to display, although we specifically stated to add a delay when we coded the async
 function.

Also, when I played around with other functions, such as cubing each number, the results list came back in a very different order. I would not have thought such a basic math function would have any effect on performance.

 Node.js decision-tree package

The decision-tree
 package is an example of a machine learning package. It is available at https://www.npmjs.com/package/decision-tree
 . The package is installed using the following command:

npm install decision-tree

We need a dataset to use for training/developing our decision tree. I am using the car MPG dataset on this page: https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.DecisionTrees
 . It did not seem to be available directly, so I copied it into Excel and saved it as a local CSV.

The logic for machine learning is very similar:

	Load our dataset

	Split into a training set and a testing set

	Use the training set to develop our model

	Test the mode on the test set.

 Tip

Typically, you might use two-thirds of your data for training and one-third for testing.

Using the decision-tree
 package and the car MPG dataset we would have a script similar to the following:

//Import the modules

var DecisionTree = require('decision-tree');

var fs = require("fs");

var d3 = require("d3");

var util = require('util');

//read in the car/mpg file

fs.readFile("/Users/dtoomey/car-mpg.csv", "utf8", function(error, data)
 {

 //parse out the csv into a dataset

 var dataset = d3.tsv.parse(data);

 //display on screen - just for debugging

 //console.log(JSON.stringify(dataset));

 var rows = dataset.length;

 console.log("rows = " + rows);

 var training_size = rows * 2 / 3;

 console.log("training_size = " + training_size);

 var test_size = rows - training_size;

 console.log("test_size = " + test_size);

 //Prepare training dataset

 var training_data = dataset.slice(1, training_size);

 //Prepare test dataset

 var test_data = dataset.slice(training_size, rows);

 //Setup Target Class used for prediction

 var class_name = "mpg";

 //Setup Features to be used by decision tree

 var features = ["cylinders","displacement","horsepower",
 "weight","acceleration", "modelyear", "maker"];

 //Create decision tree and train model

 var dt = new DecisionTree(training_data, class_name, features);

 console.log("Decision Tree is " + util.inspect
 (dt, {showHidden: false, depth: null}));

 //Predict class label for an instance

 var predicted_class = dt.predict({

 cylinders: 8,

 displacement: 400,

 horsepower: 200,

 weight: 4000,

 acceleration: 12,

 modelyear: 70,

 maker: "US"

 });

 console.log("Predicted Class is " + util.inspect
 (predicted_class, {showHidden: false, depth: null}));

 //Evaluate model on a dataset

 var accuracy = dt.evaluate(test_data);

 console.log("Accuracy is " + accuracy);

 //Export underlying model for visualization or inspection

 var treeModel = dt.toJSON();

 console.log("Decision Tree JSON is " +
 util.inspect(treeModel, {showHidden: false, depth: null}));

});

There is wide use of console.log to display progressive information about the processing that is occurring. I am using the util()
 function further, to display members of objects in use.

 Note

The packages must also be installed using npm
 .

If we run this in a notebook, we end up with the results shown in the following screenshot:

[image: Node.js decision-tree package]

We arrive at a model for determining whether the MPG for a vehicle is acceptable or not, based on the vehicle characteristics. In this case, we have a
bad

 predictor as noted in the results.

 Summary

In this chapter, we learned how to add JavaScript to our Jupyter Notebook. We saw some of the limitations of using JavaScript in Jupyter. We had a look at examples of several packages that are typical of Node.js coding, including d3
 for graphics, stats-analysis
 for statistics, built-in JSON handling, canvas
 for creating graphics files, and plotly
 used for generating graphics with a third party tool. We also saw how multi-threaded applications can be developed using Node.JS under Jupyter. Lastly, we saw how to use machine learning to develop a decision tree.

In the next chapter, we will see how to create interactive widgets that can be used in your notebook.

 Chapter6. Interactive Widgets

There is a mechanism built for Jupyter to gather input from the user as the script is running. To do this, we put in coding in the form of a
widget

 or user interface control in the script. The widgets we will use in this chapter are defined at http://ipywidgets.readthedocs.io/en/latest/
 .

There are widgets for the following:

	

Text input

 : Notebook users enter a string that will be used later in the script.

	

Button clicks

 : The user is presented with multiple options in the form of buttons; then, depending on which button is selected (clicked on), your script can change direction according to the user.

	

Slider

 : You can provide the user with a
slider

 with which the user can select a value within the range you specify, and then your script can use that value accordingly.

	

Toggle box and checkboxes

 : The user selects the different options of your script that they are interested in working with.

	

Progress bar

 : If your script will take some time to process, it would be considerate to present a progress bar so they have some idea of how long it might take to finish. Similarly, a progress bar can be used to show how far along they are in a multi-step process.

	There are a few constraints to the types of input you can gather from the user. So, you could make really interesting widgets that do not fit the standard user input control paradigm. For example, there is a widget (ipyleaflet
) allowing a user to click on a geographical map where the underlying script will get the geographic data point selected and operate accordingly.

In this chapter, we will cover the following topics:

	Installing widgets

	Widget basics

	Interact widget

	Interactive widget

	Widgets package

 Installing widgets

The widgets package is an upgrade to the standard Jupyter installation. You can update the widgets package using this command:

pip install ipywidgets

Note that, if ipywidgets
 is already installed on your machine you may need to use this command for the upgrade to take effect:

pip install -upgrade ipywidgets

Once complete, you must then upgrade your Jupyter installation using this command:

jupyter nbextension enable -py widgetsnbextension

 Tip

You may have to restart your notebook for the extensions to take effect.

If you do not install the package and the upgrade, then when you run your widgets script you will get a warning message in the display
The installed widget JavaScript is the wrong version

 :

[image: Installing widgets]

 Note

I updated my installation, but still received the warning message for some screens. I assume it is a matter of time before this warning message bug is resolved in a future version of the software.

 Widget basics

All widgets work the same, generally:

	You create or define an instance of a widget.

	You can preset attributes of a widget, such as its initial value or a label to be displayed.

	Widgets can react to different inputs from a user. The inputs are gathered by a handler or a Python function that is invoked when a user performs some action on a widget; for example, a function could be set up to call the handler if the user clicks on a button.

	The value of a widget can be used later in your script in the same way as any other variable; for example, you could use a widget to determine how many circles to draw.

 Interact widget

Interact

 is the basic widget that is often used to derive all other widgets. It has variable arguments, and, depending on these arguments, can affect many different variations of user input control.

 Interact widget slider

We can use interact to produce a slider by passing in an extent. Take the following script:

from ipywidgets import interact

define a function to work with (cubes the number)

def myfunction(arg):

 return arg+1

interact(myfunction, arg=9);

Here, we have a script that does the following:

	References the package we want to use

	Defines a function (which is called for every user input of a value)

	Calls out to interact, passing our
handler

 and a range of values

When we run this script, we get a scrollbar that is modifiable by the user:

[image: Interact widget slider]

The user is able to
slide

 the vertical bar over the range of values. The upper end is
27

 and the lower end is
-9

 (assume we could pass additional arguments to interact to set the range of values that are selectable). myfunction
 is called every time the value in the interact
 widget is changed and the result printed. As a result, we see
27

 selected and the number
28

 displayed below the slider (following the processing of myfunction
 -27 +1).

 Interact widget checkbox

We can change the type of control generated based on the arguments passed to interact. Take the following script:

from ipywidgets import interact

def myfunction(x):

 return x

interact(myfunction, x=False);

We are going through the same steps as before; however, the value passed is False
 (could also be True
). The interact
 function examines the argument passed, determines that it is a Boolean value, and presents the appropriate control for a Boolean-a checkbox:

[image: Interact widget checkbox]

 Interact widget text box

We can generate a text input control again by passing in different arguments to interact
 . For example, take the following script:

from ipywidgets import interact

def myfunction(x):

 return x

interact(myfunction, x= "Hello World ");

The script produces a text input control with the initial value of "Hello World"
 :

[image: Interact widget text box]

 Interact dropdown

We can also use the interact function to produce a drop-down list box for the user to select from. In the following script, we produce a dropdown with two choices:

from ipywidgets import interact

def myfunction(x):

 return x

interact(myfunction, x=('red','green'));

This script does the following:

	Pulls in the interact reference

	Defines a function that will be called whenever the user changes the value of the control

	Calls interact with a set of values-interact will interpret this to mean create a dropdown for the user to select from.

If we run this script in a notebook, we get a display like the following:

[image: Interact dropdown]

The value printed at the bottom will change according to what is selected in the dropdown by the user.

 Interactive widget

There is also an
interactive

 widget. The interactive widget works like the interact widget, but does not display the user input control until called upon directly by the script. This would be useful if you had some calculations that had to be performed for the parameters of the widget display, or even if you wanted to decide whether you needed a control at runtime.

For example, we could have the following script (similar to the preceding script):

from ipywidgets import interactive

def myfunction(x):

 return x

w = interactive(myfunction, x= "Hello World ");

from IPython.display import display

display(w)

There are a couple of changes to the script:

	We are referencing the interactive widget

	The interactive
 function returns a widget, rather than immediately displaying a value

	We must script the display of the widget ourselves

If we run this script, it looks very similar to the result of the previous script:

[image: Interactive widget]

 Widgets

There is another package of widgets, called
ipywidgets

 , that has all of the standard controls that you might want to use, with many optional parameters available to customize your display.

 Progress bar widget

One of the widgets available in this package displays a progress bar to the user. Take the following script:

import ipywidgets as widgets

widgets.FloatProgress(

 value=45,

 min=0,

 max=100,

 step=5,

 description='Percent:',

)

This would display our progress bar as shown here:

[image: Progress bar widget]

 Listbox widget

We could also use the list box widget, called as Dropdown
 , in this script:

import ipywidgets as widgets

from IPython.display import display

w = widgets.Dropdown(

 options={'Pen': 7732, 'Pencil': 102, 'Pad': 33331},

 description='Item:',

)

display(w)

w.value

This script will display a list box to the user with the displayed values of Pen
 , Pencil
 , and Pad
 . When the user selects one of the values, the associated value is returned to the w
 variable, which we display:

[image: Listbox widget]

 Text widget

The text widget gathers a text string from the user for reuse elsewhere in your script. A text widget has a description (label) and a value (entered by the user, or preset in your script).

In this example we will just gather a text string and display it on screen as part of the output for the script. We will use the following script:

from ipywidgets import widgets

from IPython.display import display

text.on_submit(handle_submit)

display(text)

def handle_submit(sender):

 print(text.value)

text.on_submit(handle_submit)

The Python package that contains the basic widgets is ipywidgets
 , so we need to reference that. We define a handler for the text field that will be called when the user clicks on
Submit

 (after entering their text value). We are using the Text
 widget:

[image: Text widget]

We should point out some of the highlights of this page:

	The ordering of the elements of the page is not important. The page is driven by the text = ...
 statements near the top of the page, where they might appear.

	When invoking a widget, the widget automatically looks for any handlers that might be associated in the script. In this case, we have a submit
 handler. There are many other handlers available. The text.on_submit
 assigns the handler to the widget.

	If no handlers are available, we have a standard Python notebook.

If we run the script (
Cell

 |
Run All

) we get the following screen (waiting for us to enter a value in the textbox):

[image: Text widget]

Once we enter a value and hit the
Enter

 key, the script progresses and we have the following output:

[image: Text widget]

So, our script has set up a widget for gathering input from the user and then, later, has done something with that value (we are just displaying here, but we could use the input for further processing).In the example, I entered the word test
 into the widgetand hit
Enter

 . This caused the script to invoke the on_submit
 handler which printed out the value typed into the field.

 Button widget

Similarly, we can use a button widget in our script. For example, take the following script:

from ipywidgets import widgets

from IPython.display import display

button = widgets.Button(description="Submit");

display(button)

def on_button_clicked(widget):

 print("Clicked Button:" + widget.description);

button.on_click(on_button_clicked);

This script does the following:

	References the features we want to use from the widgets packages.

	Creates our button
 .

	Defines a handler for the click event on a button. The handler receives the button
 object that was clicked upon (widget).

	In the handler, we display information about the button clicked on (you can imagine that if we had several buttons in a display, we would want to determine which button was clicked).

	Lastly, it assigns the defined handler to the button object we created.

 Note

The indentation of the coding for the handler��this is the standard Python style that must be followed.

If we run this script in a notebook, we get a display like the following:

[image: Button widget]

Note the
Submit

 button at the bottom of the screenshot. You could change other attributes of the button, such as its position, size, color, and so on.

If we then click on the
Submit

 button, we get a display like the following:

[image: Button widget]

Our message about the button clicked is now displayed.

 Widget properties

All of the widgets' controls have a set of properties that can be adjusted as needed for your display. You can see the list of properties by taking an instance of a control and running the control.keys
 command in a notebook. For example, look at the following script:

from ipywidgets import *

w = IntSlider()

w.keys

This script pulls in a blanket reference to all of the controls available in widgets. We then create an IntSlider
 instance and display the possible list of properties that we can adjust:

[image: Widget properties]

As you can see, the list is extensive. The following table shows the list in more detail:

	

Property

	

Description

	

orientation

	
Whether left-aligned, right-aligned, or justified

	

color

	
Color of font

	

height

	
Height of control

	

disabled

	
Whether control is disabled or not

	

visible

	
Is the control displayed?

	

font_style

	
Style of font, for example, italics

	

min

	
Minimum value (used in range list)

	

background_color

	
Background color of control

	

width

	
Width of control

	

font_family

	
Font family to be used for text in control

	

description

	
The description field is used for documentation purposes

	

max

	
Maximum value (of range)

	

padding

	
Padding applied (to edges of control)

	

font_weight

	
Weight of font used in control, for example, bold

	

font_size

	
Size of font used for text in control

	

value

	
Selected, entered value for control

	

margin

	
Margin to use when displaying control

We could adjust any of these in our scripts using something like the following sample script where we disable a text box (the text box will display, but the user cannot enter a value into the text box):

from ipywidgets import *

Text(value='You can not change this text!', disabled=True)

[image: Widget properties]

When a field is disabled, the textbox is grayed out, and when the user hovers the cursor over the field they get a red circle with a slash through it, meaning it cannot be changed.

 Adjusting properties

All of the properties shown previously are accessible to read and write. We can show this transition with a small script:

from ipywidgets import *

w = IntSlider()

original = w.value

w.value = 5

original, w.value

The script creates a slider, retrieves its current value, changes the value to 5
 , and then displays the original and current value of the control.

If we were to run this script in a notebook, we would see the following results:

[image: Adjusting properties]

 Widget events

All of the controls work by reacting to user actions, either with a mouse or keyboard. The default actions for controls are built into the software, but you can add your own handling of events (user actions).

We have seen this kind of event handling earlier-for example, in the section on the slider, a function is called whenever the slider value is changed by the user��but let's explore it in a little more depth. We could have the following script:

from ipywidgets import widgets

from IPython.display import display

button = widgets.Button(description="Click Me!")

display(button)

def on_button_clicked(b):

 print("Button clicked.")

button.on_click(on_button_clicked)

This script does the following:

	Creates a button.

	Displays the button (to the user).

	Defines handler click events. It prints a message that you clicked on screen. You can have any Python statements in the handler.

	Lastly, it associates the click handler with the button we created. So, now, when the user clicks on our button, the handler is called and the Button clicked
 message is displayed on screen (as shown in the following screenshot).

If we run this script in a notebook and click on the button a few times, we get the following display:

[image: Widget events]

 Widget containers

You can also assemble containers of widgets directly using Python syntax by passing the child elements in the constructor. For example, we could have the following script:

from ipywidgets import *

from IPython.display import display

slider = widgets.FloatSlider()

message = widgets.Text(value='Hello World')

container = widgets.Box(children=[slider, message])

container.layout.border = '1px black solid'

display(container)

Here, we are creating a container (which is a box widget) where we are specifying the children contained controls. The call to display the container will iteratively display the child elements as well. So, we end up with a display like the following:

[image: Widget containers]

You can see the border around the box and the two controls in the box.

Similarly, we could have added the children to the container after the container was displayed by using syntax like this:

from ipywidgets import *

from IPython.display import display

container = widgets.Box()

container.layout.border = '1px black solid'

display(container)

slider = widgets.FloatSlider()

message = widgets.Text(value='Hello World')

container.children=[slider, message]

When we add the child to the container, the container repaints, which will cause a repaint of any children.

If we run this script in another notebook, we get a very similar result to the previous example:

[image: Widget containers]

 Summary

In this chapter, we added widgets to our Jupyter installation and used the interact and interactive widgets to produce a variety of user input controls. We then looked in the widgets package in depth to examine some of the user controls available, the properties available in the containers, the events that are available emitting from the controls, and to work out how to build containers of controls.

In the next chapter, we will learn about sharing notebooks with other users. The typical method for sharing a notebook is to post it on a website so anyone can access the notebook. We will also cover how to convert notebooks to different formats. This allows users who don't have direct access to your notebook to see the effects.

 Chapter7.Sharing and Converting Jupyter Notebooks

Once you have developed your notebook, you will want to share it with others. There is a typical mechanism available for sharing that we will cover in this chapter-placing your notebook on an accessible server on the Internet.

When you provide a notebook to another person, they may need the notebook in a different format given their system requirements. We will also cover some mechanisms available for providing your notebook to others in a different format as well.

In this chapter, we will cover the following topics:

	Sharing notebooks

	Converting notebooks

 Sharing notebooks

The typical mechanism for sharing notebooks is to provide your notebook on a website. A website runs on a server or on allocated machine space. The server takes care of all the bookkeeping involved in running a website, such as keeping track of multiple users and logging people on and off.

In order for the notebook to be of use, though, the website must have notebook logic installed. A typical website knows how to deliver content as HTML given some source files. The most basic form is pure HTML, where every page you access on the website corresponds exactly to one HTML file on the web server. Other languages could be used to develop the website (such as Java or PHP), so then the server needs to know how to access the HTML it needs from those source files. In our context, the server needs to know how to access your notebook in order to deliver HTML to users.

Even when notebooks are just running on your local machine, they are running in a browser that is accessing your local machine (server) instead of the Internet-so the Web, HTML, and Internet access has already been provided.

If a notebook is on true website, it is available to everyone who can access that website-whether the server is running on your machine in an office environment accessible over the local area network or if your website is available to all users over the Internet.

You can always add security around the website so that the only people who can use your notebook are given access by you. Security mechanisms depend on the type of web server software involved.

 Sharing notebooks on a notebook server

Built into the Jupyter process is the ability to expose the notebook as its own web server. Assuming the server is a machine accessible by other users, you can configure Jupyter to run on that server. You must provide the configuration information to Jupyter so it knows how to proceed. The command to generate a configuration file for your Jupyter installation is as follows:

jupyter notebook -generate-config

This command will generate a jupyter_notebook_config.py
 file in your ~./jupyter
 directory. For Microsoft users, that directory is a subdirectory of your home user directory.

The configuration file contains the settings that you can use to expose your notebook as a server:

c.NotebookApp.certfile = u'/path/to/your/cert/cert.pem'
c.NotebookApp.keyfile = u'/ path/to/your/cert/key.key'
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'hashed-password'
c.NotebookApp.open_browser = False
c.NotebookApp.port = 8888

The settings in the file are explained in this table:

	

Setting

	

Description

	

c.NotebookApp.certfile

	
This is the path to the location of the certificate for your site. If you have an SSL certificate, you will need to change the setting to the location of the file. It may not be a PEM extension file. There are several SSL certificate formats.

	

c.NotebookApp.keyfile

	
This is the path to the location of the key to access the cert
 for your site.

Rather than specify the key to your certificate, you would have stored the key in a file. So, if you want to apply an SSL certificate to your notebook, you need to specify the file location.

The key is normally a very large, hexadecimal number. So, it is stored in its own file. Also, storing in a file offers additional protection, as the directory where keys are stored on a machine usually has limited access.

	

c.NotebookApp.ip

	
This is the IP address of the machine. Use the wildcard '*'
 to open to all.

Here, we are specifying the IP address of the machine where the notebook website is accessed.

	

c.NotebookApp.password

	
Hashed password-the password will have to be provided by users accessing your notebook in response to a standard login challenge.

	

c.NotebookApp.open_browser

	

True
 /False
 -does starting the notebook server open a browser window?

	

c.NotebookApp.
 port

	
Port to access your server-it should be open to the machine.

 Note

Every website is addressed at the lower levels by an IP address. An IP address is a four-part number that identifies the locale of the server involved. An IP address might look like 172.32.88.7
 .

Web browsers in concert with Internet software know how to use the IP address to locate the server of interest. The set of software also knows how to translate the URL you mentioned in your browser, such as http://www.microsoft.com
 , into an IP address.

Note that, the example configuration provided is notenterprise ready. You need to coordinate with your security personnel to configure correctly. Once you have changed the settings appropriately, you should be able to point a browser at the URL configured and access your notebook. The URL would be the concatenation of either HTTP or HTTPS (depending on whether you applied an SSL certificate), the IP address, and the port, for example, HTTPS://123.45.56.9:8888
 .

 Encrypted sharing notebooks on a notebook server

Two of the preceding settings can be used if you have an SSL certificate to apply. Without the SSL certificate, the password (refer to the previous section) and all other interactions will be transmitted from the user's browser to the server in the clear. If you are dealing with sensitive information in your notebook, you should obtain an SSL certificate and make the appropriate settings changes for your server.

If you need more security for access to your notebook, the next step would be to provide an SSL certificate (placed on your machine and the path provided in the configuration file). There are a number of companies that provide SSL certificates. The cheapest at the time of writing is Let's Encrypt, which will provide a low-level SSL certificate for free. (There are gradations of SSL certificates that are not free.)

Again, once you have set the preceding settings with regard to your certificate, you should be able to access your notebook server using the https://
 prefix-knowing that all the transmissions between the user's browser and the notebook server are encrypted and therefore secure.You may need to add your certificate to the keychain on the host machine before browser authentication will work.

 Sharing notebooks on a web server

In order to add your notebook to an existing web server, you need to take the preceding steps and add a little more information to the notebook configuration file:

c.NotebookApp.tornado_settings = {
 'headers': {
 'Content-Security-Policy': "frame-ancestors 'https://yourwebsite.com' 'self' "
 }
}

Here, you replace yourwebsite.com
 with the URL of your website.

Once complete, you can access the notebook through your website.

 Sharing notebooks through Docker

Docker is an open lightweight container for distributing software. A typical Docker instance has an entire web server and a specific web application running on a port in a machine. The specifics about the software running in a Docker instance are governed by the Dockerfile
 file. This file provides commands to the Docker environment regarding which components to use to configure this instance. Sample Dockerfile
 contents for a Jupyter implementation are as follows:

ENV TINI_VERSION v0.6.0
ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini /usr/bin/tini
RUN chmod +x /usr/bin/tini
ENTRYPOINT ["/usr/bin/tini", "--"]
EXPOSE 8888
CMD ["jupyter", "notebook", "-port=8888", "-no-browser", "-ip=0.0.0.0"]

Here is a discussion about each of the commands in the Dockerfile
 :

	The ENV
 command tells Docker to use a specialized operating system. This is necessary to overcome a deficiency of Jupyter that keeps obtaining and releasing resources from your machine.TINI is third-party software that provides a minimum Docker initialization.

	The ADD
 command tells Docker where the tini
 code is located.

	The RUN
 command is changing the access rights to the tini
 directory.

	The ENTRYPOINT
 command tells Docker what to use as the operating system of the Docker instance.

	The EXPOSE
 command tells Docker which port to expose your notebook on.

	The CMD
 command tells Docker which commands to run (once the environment is set up).

	Once the Docker instance is deployed to your Docker machine, you can access the Docker instance on the machine at the port specified (8888), for example, http://machinename.com:8888
 .

The instructions mentioned previously assume you are new to Docker. If you have an existing Docker installation the Dockerfile configuration and access to your Jupyter instance in Docker, the instructions would probably change.

 Sharing notebooks on a public server

Currently, one of thehosting companies that allows you to host your notebook(s) for free is GitHub. GitHub is the standard web provider of source control (Git source control) systems. Source control is used to maintain historical versions of your files to allow you to retrace your steps.Other hosts include NBViewer, Anaconda, and Wakari.

GitHub's implementation includes all of the tools that you need to use in your notebook already installed on the server. For example, in prior chapters, to use R programming in your notebook you would have had to install the R tool set on your machine. GitHub has already done all of these steps.

In order to host your notebook on GitHub, go to https://github.com/
 and sign up for a free website.

Once logged in, you are provided with a website that can be added to. If you have development tools to use (git push
 commands are programmer commands to store files on a Git server), you can do that or simply drag and drop your notebook (IPYNB) file onto your GitHub website.

I created an account there with a notebooks
 directory, and placed one of the notebooks on that site. My GitHub site looks like this:

[image: Sharing notebooks on a public server]

You can see the Stats Analysis.ipynb
 file near the bottom of the screen.

If you click on that notebook file, you see the expected notebook up and running in your browser:

[image: Sharing notebooks on a public server]

If you look back to this chapter, you can see the same display (less the GitHub adornments).

This notebook is directly accessible by others using the URL https://github.com/danieltoomey/notebooks/blob/master/Stats%20Analysis.ipynb
 . So, you can provide your notebook on GitHub to other users and just hand them the URL.

 Tip

You are logged into GitHub, so the display will look slightly different as you will have more control over GitHub's contents.

 Converting notebooks

The standard tool for converting notebooks to other formats is the nbconvert
 utility. It is built-in to your Jupyter installation. You can access the tool directly in the user interface for your notebook. If you open a notebook, select the Jupyter
File

 menu item, and you will see several options for
Download as

 :

[image: Converting notebooks]

The choices are as follows:

	

Format type

	

File extension

	
Notebook

	

.ipynb

	
JavaScript

	

.js

	
HTML

	

.html

	
Markdown

	

.md

	
Restructured text

	

.rst

	
PDF

	

.pdf

For these examples, if we take a notebook from a previous chapter, the JupyterNotebook looks like this:

[image: Converting notebooks]

 Notebook format

The notebook format (IPYNB) is the native format for your notebook. We have looked into this IPYNB file in earlier chapters to see what Jupyter is storing for your notebook.

You would use the notebook format if you wanted to give another user complete access to your notebook since they would run your notebook from their system.

You may also want to do this to save your notebook in another medium.

 JavaScript format

JavaScript (.js
) format corresponds to the JavaScript implementation of your notebook. If you used JavaScript as the language for your notebook, this is a direct export of the notebook page.

If you used another language for the script of the notebook, such as Python, then the
Downloadas

 option would change appropriately, that is,
Downloadas

 |
Python

(.py)

 .

Using our example, as expected, the JS format is equivalent to the Jupyter display:

const stats = require("stats-analysis");
var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5]
//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);
//mean
var my_mean = stats.mean(arr).toFixed(2);
//median
var my_median = stats.median(arr);
//median absolute deviation
var my_mad = stats.MAD(arr);
// Outlier detection. Returns indexes of outliers
var my_outliers = stats.indexOfOutliers(arr);
...

With the JS format, you can run the script directly using a JavaScript interpreter. On a Mac, there is the js
 command. Similar tools exist for Windows machines.

Also, for other script languages, you should be able to run the script in the appropriate interpreter, such as Python.

If we run this JavaScript file (from a command-line window) we see these results in the cell output:

$ node Stats+Analysis.js

Raw data is [98, 98.6, 98.4, 98.8, 200, 120, 98.5]

Standard Deviation is 35.07

Mean is 116.04

Median is 98.6

Median Abs Deviation is 0.20000000000000284

The outliers of the data set are [4, 5, 6]

The data set without outliers is [98, 98.6, 98.4, 98.8]

 HTML format

The HTML (.html
) format corresponds to the HTML needed to display the page as it appears in your notebook in a web browser. The generated HTML does not have any coding logic-it only has the HTML necessary to display a similar page.

The HTML format would be useful to convey to another user the results of your notebook. You may want to do this if you wanted to e-mail your notebook to another user (where the raw HTML would be transported and viewable in an e-mail client application).

HTML is also useful if you have a web service available where you can insert new pages. If the web server does not have support for Jupyter files (refer to the first section of this chapter), HTML may be your only choice. Similarly, you may not want to hand over your source JupyterNotebook (IPYNB) file even if the web server does support Jupyter.

The exported HTML format looks like this in a browser:

[image: HTML format]

Notice that none of the Jupyter heading information is displayed or available. Otherwise, it does look the same as the Jupyter display.

 Markdown format

Markdown (.md
) format is a looser version of HTML (remember that HTML stands for Hypertext Markup Language). MD files can be used by some tools. It is normally used as the format of README files for software distributions (where the client's capabilities for display can be very limited).

For example, the Markdown format of the same notebook is as follows:

```javascript 
const stats = require("stats-analysis"); 
var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5]; 
//standard deviation  
var my_stddev = stats.stdev(arr).toFixed(2); 
//mean  
var my_mean = stats.mean(arr).toFixed(2); 
//median  
var my_median = stats.median(arr); 
//median absolute deviation  
var my_mad = stats.MAD(arr); 
// Outlier detection. Returns indexes of outliers  
var my_outliers = stats.indexOfOutliers(arr); 
// Remove the outliers  
var my_without_outliers = stats.filterOutliers(arr); 
//display our stats 
console.log("Raw data is ", arr); 
...

Obviously, the Markdown format is a very low-level display. There are only minor text markings that help the reader determine the different formatting in use. I used the Atom editor to see what this looks like interpreted:

[image: Markdown format]




Again, a very clean display -still close to the JupyterNotebook display.








 reStructuredText format







The reStructuredText (.rst
 ) format is a simple, plain-text markup language that is sometimes used for programming documentation.

For example, the RST format for the example page looks like this:

.. code:: python 
    const stats = require("stats-analysis"); 
    var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5];     
    //standard deviation  
    var my_stddev = stats.stdev(arr).toFixed(2);      
    //mean  
    var my_mean = stats.mean(arr).toFixed(2);      
    //median  
    var my_median = stats.median(arr);      
    //median absolute deviation  
    var my_mad = stats.MAD(arr);      
    // Outlier detection. Returns indexes of outliers  
    var my_outliers = stats.indexOfOutliers(arr);      
    // Remove the outliers  
    var my_without_outliers = stats.filterOutliers(arr);     
    //display our stats 
    console.log("Raw data is ", arr); 
...


As you can see, it is similar to the Markdown in the previous example-just gives a rudimentary breakout of the code into chunks.

Using Atom for display the RST file results in this:

[image: reStructuredText format]




The RST display is not as nice as some of the others.








 PDF format







The PDF (.pdf
 ) format is a well-known display format used for many sources. PDF is a good format for conveying unmodifiable content to other users. The other users will not be able to modify results in any way, but they will be able to see and understand your logic.

Jupyter uses the 
LaTeX

 package to export the image of the notebook to a PDF file. You have to install this package on your machine in order for this to work. On Mac, this involves the following:



	Install LaTex-there are separate installations for Windows and Mac

	The following (Mac) commands for fonts:







sudo tlmgr install adjustbox





sudo tlmgr install collection-fontsrecommended








 Note

Note this installation was pretty cumbersome. I installed the full LaTeX, then another note said to install a mini version of LaTeX. And then it was tricky to install the fonts. I have very little confidence these steps will work correctly on a Windows machine.



If you do not have the full set of the packages needed, when you try to download the PDF file, a new screen will open in your notebook and a long error message will be displayed showing what piece is missing.

For our example, the generated PDF file looks like this:

[image: PDF format]




I think this is a nice, clean display of your notebook.











 Summary







In this chapter, we shared notebooks on a notebook server. We added a notebook to our web server. And we distributed at notebook using GitHub. We also looked into converting our notebooks into different formats, such as HTML and PDF.

In the next chapter, we will learn about overcoming problems where multiple users are accessing our notebook at the same time.









 Chapter8.Multiuser Jupyter Notebooks







Jupyter notebooks have the inherent ability to be modified by users as and when the user enters data or makes a selection. However, there is an issue with the standard implementation of the notebook server software that does not account for more than one person working on a notebook at the same time. The notebook server software is the underlying Jupyter software that displays the page and interacts with the user-itfollows the directions in your notebook for display and interaction.

A notebook server, really a specialized internet web server, typically creates a new path or thread of execution for each user to allow for multiple users. A problem comes up when a lower level subroutine, used for all instances, does not properly account for multiple users where each has their own set of data.



 Note

Some of the coding/installs of this chapter may not work in a Windows environment.



In this chapter, we will do the following:



	We will give an example of the issue that occurs when multiple users access the same notebook in a standard Jupyter installation

	We will use a new version of Jupyter, JupyterHub, that was built by extending upon Jupyter to specifically address the multiple user problem

	We will also use Docker, a tool to allow for multiple instances of any software, to address the issue










 Sample interactive notebook







For this chapter, we will use a simple notebook that asks the user for some information and displays other information.

For example, we could have a script such as this (taken from Chapter 7
 , 
Sharing and Converting Jupyter Notebooks

 ):



from ipywidgets import interact





def myfunction(x):





    return x





interact(myfunction, x= "Hello World ")






The script presents a textbox to the user with the original value of the box containing the "Hello World"
 string. As the user interacts with the input field and changes the value, the value of the variable x
 in the script changes accordingly and is displayed on screen. For example, I have changed the value to the letter A
 :

[image: Sample interactive notebook]




We can see the multiuser problem if we just open the same page in another browser window (copy the URL, open a new browser window, paste in the URL, and hit 
Enter

 )-we get the exact same display pulling up the last checkpoint. The new window should have started with a new script, just prompting you with the default "Hello World"
 message. However, since the Jupyter server software is only expecting one user, there is only one copy of the variable x
 , so it displays its value.











 JupyterHub







Once Jupyter notebooks were shared, it became obvious that the multiuser problem had to be solved. A new version of the Jupyter software was developed, called JupyterHub. JupyterHub was specifically designed to handle multiple users, giving each user their own set of variables to work with. Actually, the system will give each user a whole new instance of the Jupyter software to each user-a brute force approach, but it works.

When JupyterHub starts up, it initiates a hub or controlling agent. The hub will start an instance of a listener or proxy for Jupyter requests. When the proxy gets requests for Jupyter it turns them over to the hub. If the hub decides that this is a new user, it will generate a new instance of the Jupyter server and attach all further interactions between that user and Jupyter to their own version of the server.






 Installation







JupyterHub requires Python 3.3 or newer, and we will use the pip3
 Python tool to install JupyterHub. You can check the version of Python you are running by just entering Python
 on a command line; the prologue will echo out the current version:



Python





Python 3.6.0a4 (v3.6.0a4:017cf260936b, Aug 15 2016, 13:38:16) 





[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin





Type "help", "copyright", "credits" or "license" for more information.






If you need to upgrade to a new version, consult the directions on https://www.python.org/
 as the directions are operating system and Python version-specific.

JupyterHub is installed much like other software, using the following commands:



npm install -g configurable-http-proxy





pip3 install jupyterhub 






First, we install the proxy. The -g
 on the proxy install makes that software available to all users:



npm install -g configurable-http-proxy





/usr/local/bin/configurable-http-proxy -> /usr/local/lib/node_modules/configurable-http-proxy/bin/configurable-http-proxy





/usr/local/lib





└─┬ configurable-http-proxy@1.3.0 





  ├─┬ commander@2.9.0 





  │ └── graceful-readlink@1.0.1 





  ├─┬ http-proxy@1.13.3 





  │ ├── eventemitter3@1.2.0 





  │ └── requires-port@1.0.0 





  ├─┬ lynx@0.2.0 





  │ ├── mersenne@0.0.3 





  │ └── statsd-parser@0.0.4 





  ├── strftime@0.9.2 





  └─┬ winston@2.2.0 





    ├── async@1.0.0 





    ├── colors@1.0.3 





    ├── cycle@1.0.3 





    ├── eyes@0.1.8 





    ├── isstream@0.1.2 





    ├── pkginfo@0.3.1 





    └── stack-trace@0.0.9 






Then we install JupyterHub:



pip3.6 install jupyterhub





Collecting jupyterhub





  Downloading jupyterhub-0.6.1-py3-none-any.whl (1.3MB)





    100% |████████████████████████████████| 1.4MB 789kB/s 





Collecting requests (from jupyterhub)





  Downloading requests-2.11.1-py2.py3-none-any.whl (514kB)





    100% |████████████████████████████████| 522kB 1.5MB/s 





Collecting traitlets>=4.1 (from jupyterhub)





  Downloading traitlets-4.2.2-py2.py3-none-any.whl (68kB)





    100% |████████████████████████████████| 71kB 4.3MB/s 





Collecting sqlalchemy>=1.0 (from jupyterhub)





  Downloading SQLAlchemy-1.0.14.tar.gz (4.8MB)





    100% |████████████████████████████████| 4.8MB 267kB/s 





Collecting jinja2 (from jupyterhub)





  Downloading Jinja2-2.8-py2.py3-none-any.whl (263kB)





    100% |████████████████████████████████| 266kB 838kB/s 





...













 Operation







We can now start JupyterHub directly from the command line:



jupyterhub






This results in the following display, which will appear in the command console window:



[I 2016-08-28 14:30:57.895 JupyterHub app:643] Writing cookie_secret to /Users/dtoomey/jupyterhub_cookie_secret





[W 2016-08-28 14:30:57.953 JupyterHub app:304] 





    Generating CONFIGPROXY_AUTH_TOKEN. Restarting the Hub will require restarting the proxy.





    Set CONFIGPROXY_AUTH_TOKEN env or JupyterHub.proxy_auth_token config to avoid this message.





[W 2016-08-28 14:30:57.962 JupyterHub app:757] No admin users, admin interface will be unavailable.





[W 2016-08-28 14:30:57.962 JupyterHub app:758] Add any administrative users to `c.Authenticator.admin_users` in config.





[I 2016-08-28 14:30:57.962 JupyterHub app:785] Not using whitelist. Any authenticated user will be allowed.





[I 2016-08-28 14:30:57.992 JupyterHub app:1231] Hub API listening on http://127.0.0.1:8081/hub/





[E 2016-08-28 14:30:57.998 JupyterHub app:963] Refusing to run JuptyterHub without SSL. If you are terminating SSL in another layer, pass -no-ssl to tell JupyterHub to allow the proxy to listen on HTTP.








 Note

Notice that the script completed, and a window did not open for you in your default browser as it would in the standard Jupyter installation.



The most important feature of this is the last line of output (which is also printed on screen in red) Refusing to run JupyterHub without SSL
 . JupyterHub is specifically built to account for multiple users logging in and using a single notebook, so it is complaining that it expected to have SSL running (to secure user interactions).

The last half of the last line gives us a clue what to do-we need to tell JupyterHub that we are not using a certificate/SSL. We can do that with the -no-ssl
 argument, as follows:



Jupyterhub -no-ssl






This leads to the expected result in the console, and leaves the server still running:



[I 2016-08-28 14:43:15.423 JupyterHub app:622] Loading cookie_secret from /Users/dtoomey/jupyterhub_cookie_secret





[W 2016-08-28 14:43:15.447 JupyterHub app:304] 





    Generating CONFIGPROXY_AUTH_TOKEN. Restarting the Hub will require restarting the proxy.





    Set CONFIGPROXY_AUTH_TOKEN env or JupyterHub.proxy_auth_token config to avoid this message.





[W 2016-08-28 14:43:15.450 JupyterHub app:757] No admin users, admin interface will be unavailable.





[W 2016-08-28 14:43:15.450 JupyterHub app:758] Add any administrative users to `c.Authenticator.admin_users` in config.





[I 2016-08-28 14:43:15.451 JupyterHub app:785] Not using whitelist. Any authenticated user will be allowed.





[I 2016-08-28 14:43:15.462 JupyterHub app:1231] Hub API listening on http://127.0.0.1:8081/hub/





[W 2016-08-28 14:43:15.468 JupyterHub app:959] Running JupyterHub without SSL. There better be SSL termination happening somewhere else...





[I 2016-08-28 14:43:15.468 JupyterHub app:968] Starting proxy @ http://*:8000/





14:43:15.867 - info: [ConfigProxy] Proxying http://*:8000 to http://127.0.0.1:8081





14:43:15.871 - info: [ConfigProxy] Proxy API at http://127.0.0.1:8001/api/routes





[I 2016-08-28 14:43:15.900 JupyterHub app:1254] JupyterHub is now running at http://127.0.0.1:8000/






If we now go to that URL (http://127.0.0.1:8000/
 ) shown on the last line of the output, we get to a login screen for JupyterHub:

[image: Operation]




So, we have avoided requiring SSL, but we still need to configure the users for the system.Note that, not using SSL will expose aspects of the machine that you may not want.

The JupyterHub software uses a configuration file to determine how it should work. You can generate a configuration file using JupyterHub, and provide default values using the following command:



jupyterhub -generate-config





Writing default config to: jupyterhub_config.py






The file will be generated in the current directory. You need to move the file to the jupyterhub
 directory to enact your changes. The generated configuration file has close to 500 lines available. The start of the sample file is shown here:

# Configuration file for jupyterhub. 
c = get_config()   
#------------------------------------------------------------------------------ 
 
# JupyterHub configuration 
 
#------------------------------------------------------------------------------ 
# An Application for starting a multiuser Jupyter Notebook server. 
# JupyterHub will inherit config from: Application 
# Include any kwargs to pass to the database connection. See 
# sqlalchemy.create_engine for details. 
# c.JupyterHub.db_kwargs = {} 
# The base URL of the entire application 
# c.JupyterHub.base_url = '/' 
...


As you can see, most of the configuration settings are prefixed with a pound sign (#
 ) denoting that they are commented out. The setting that is mentioned is the default value that will be applied. If you needed to change one of the settings you would remove the prefix sharp symbol and change the right-hand side of the equal sign (=
 ) to your new value. By the way, this is a good way to test out changes: make one change, save the file, try out your change, and continue with any additional changes. As you progress, if one change does not work as expected, you need only to replace the pound sign and you are back to a working position.

We will look at a few of the configuration options available. It is interesting to note that many of the settings in this file are Python settings, not particular to JupyterHub. The list of items includes the following:








	


Area




	


Description







	
JupyterHub


	
Settings for JupyterHub





	
LoggingConfigurable


	
Logging information layout





	
SingletonConfigurable


	
A configurable that only allows one instance





	
Application


	
Date format and logging level





	
Security


	
SSL certificate





	
Spawner


	
How the hub starts new instances of Jupyter for new users





	
LocalProcessSpawner


	
Uses Popen
 to start local processes as users





	
Authenticator


	
The method(s) used to authenticate the user





	
PAMAuthenticator


	
Interaction with Linux to login





	
LocalAuthenticator


	
Checks for local users, and can attempt to create them if they exist
















 Continuing with operations







I made no changes to the configuration file to get my installation up and running. By default, the configuration uses the PEM system, which will use the user credentials manually added into the form and operating system that you are running on to pass in credentials (as if they were logging into the machine) for validation.Note that, there are cases where an SSL error occurs in this step, which will require you to rename the ./jupyter
 directory.

If you are seeing the message 
JupyterHub single-user server requires notebook >= 4.0

 in the console log when trying to login to your JupyterHub installation, you need to update the base Jupyter using the following command:



pip3 install jupyter






This will update your base jupyter
 to the latest version, currently 4.1.



 Tip

If you do not have pip3
 installed, you need to upgrade to Python 3 or newer. See the documentation at https://www.python.org/
 for the steps for your system.



Now, you can start JupyterHub using the following command line:



jupyterhub -no-ssl






Alternatively, you may use a certificate from the previous chapter. Log in on the login screen using the same credentials you use to login to the machine (remember, JupyterHub is using PEM, which calls into your operating system to validate credentials). You will end up in something that looks very much like your standard Jupyter homepage:

[image: Continuing with operations]




It looks very similar, except there are now two additional buttons in the top right of the screen:



	

Control Panel



	

Logout







Clicking on the 
Logout

 button logs you out of JupyterHub and redirects you to the login screen.

Clicking on the 
Control Panel

 button brings you to a new screen with two options, shown here:



	

Stop My Server



	

My Server







[image: Continuing with operations]




Clicking on the 
Stop My Server

 button stops your Jupyter installation and brings you to a page with one button: 
My Server

 (as shown after this section). You might also have noticed the changes that have occurred in the console log of your command line:



[I 2016-08-28 20:22:16.578 JupyterHub log:100] 200 GET /hub/api/authorizations/cookie/jupyter-hub-token-dtoomey/[secret] (dtoomey@127.0.0.1) 13.31ms





[I 2016-08-28 20:23:01.181 JupyterHub orm:178] Removing user dtoomey from proxy





[I 2016-08-28 20:23:01.186 dtoomey notebookapp:1083] Shutting down kernels





[I 2016-08-28 20:23:01.417 JupyterHub base:367] User dtoomey server took 0.236 seconds to stop





[I 2016-08-28 20:23:01.422 JupyterHub log:100] 204 DELETE /hub/api/users/dtoomey/server (dtoomey@127.0.0.1) 243.06ms






[image: Continuing with operations]




Clicking on the 
My Server

 button brings you back to the Jupyter home page. If you had hit the 
Stop 
My Server



 button earlier, then the underlying Jupyter software would be restarted, as you may notice in the console output (which I have shown here):



I 2016-08-28 20:26:16.356 JupyterHub base:306] User dtoomey server took 1.007 seconds to start





[I 2016-08-28 20:26:16.356 JupyterHub orm:159] Adding user dtoomey to proxy /user/dtoomey => http://127.0.0.1:50972





[I 2016-08-28 20:26:16.372 dtoomey log:47] 302 GET /user/dtoomey (127.0.0.1) 0.73ms





[I 2016-08-28 20:26:16.376 JupyterHub log:100] 302 GET /hub/user/dtoomey (dtoomey@127.0.0.1) 1019.24ms





[I 2016-08-28 20:26:16.413 JupyterHub log:100] 200 GET /hub/api/authorizations/cookie/jupyter-hub-token-dtoomey/[secret] (dtoomey@127.0.0.1) 10.75ms













 JupyterHub summary







So, in summary, with JupyterHub we have an installation of Jupyter that will maintain a separate instance of the Jupyter software for each user, thereby avoiding any collision due to variable values. The software knows whether to instantiate a new instance of Jupyter since the user logs in to the application and the system maintains a user list.











 Docker







Docker is another mechanism that can be used to allow multiple users of the same notebook without collision. Docker is a system that allows you to construct sets of applications into an 
image

 that can be run in a container. It runs in most environments. Docker allows for many instances of an image to be run in the same machine, but maintains separate address space, so each user of a Docker image has their own instance of the software and their own set of data/variables.

Each image is a complete stack of software necessary to run, for example, a web server, web application(s), API(s), and so on.

It is not a large leap to think of an image of your notebook. The image contains Jupyter server code and your notebook. The result is a completely intact unit that does not share any space with another's instance.






 Installation







Installing Docker involves downloading the latest version (the docker.dmg
 file for a Mac and the EXE install for Windows) and then copying the Docker applications into your Applications folder. Older Mac editions may need to use Docker toolbox instead.



Docker QuickStart Terminal

 is the go-to application for most developers. Docker QuickStart will start Docker on your local machine, allocate an IP address/port for addressing the Docker application(s), and bring you into the Docker terminal. Once QuickStart has completed, if you have installed your image, you could access your application (in this case your JupyterNotebook).

From the Docker terminal, you can load images, remove images, check status, and so on.








 Starting Docker







If you run Docker Quickstart, you will be brought to the Docker terminal window with a display like this:



bash --login '/Applications/Docker/Docker Quickstart Terminal.app/Contents/Resources/Scripts/start.sh'





Last login: Tue Aug 30 08:25:11 on ttys000





bos-mpdc7:Applications dtoomey$ bash -login '/Applications/Docker/Docker Quickstart Terminal.app/Contents/Resources/Scripts/start.sh'





Starting "default"...





(default) Check network to re-create if needed...





(default) Waiting for an IP...





Machine "default" was started.





Waiting for SSH to be available...





Detecting the provisioner...





Started machines may have new IP addresses. You may need to re-run the `docker-machine env` command.





Regenerate TLS machine certs?  Warning: this is irreversible. (y/n): Regenerating TLS certificates





Waiting for SSH to be available...





Detecting the provisioner...





Copying certs to the local machine directory...





Copying certs to the remote machine...





Setting Docker configuration on the remote daemon...





                        ##         .





                  ## ## ##        ==





               ## ## ## ## ##    ===





           /"""""""""""""""""\___/ ===





      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~





           \______ o           __/





             \    \         __/





              \____\_______/





docker is configured to use the default machine with IP 192.168.99.100





For help getting started, check out the docs at https://docs.docker.com






(The odd graphic near the end of the display is a character representation of a whale-the logo for Docker.)

You can see the following from the output:



	The Docker machine was started-the Docker machine controls the images that are running in your space.

	If you are using certificates, the certificates are copied into your Docker space.

	Lastly, it tells you the IP address to use when accessing your Docker instances-it should be the IP address of the machine you are using.












 Building your Jupyter image for Docker







Docker knows about images that contain the entire software stack necessary to run an application. We need to build an image with a notebook and place it in Docker.

We need to download all of the Jupyter-Docker coding necessary. In the Docker terminal window, we run the docker pull jupyter/all-spark-notebook
 command:



docker pull jupyter/all-spark-notebook





Using default tag: latest





latest: Pulling from jupyter/all-spark-notebook





8b87079b7a06: Pulling fs layer 





872e508604af: Pulling fs layer 





8e8d83eda71c: Pull complete 





...






This is a large download that will take some time. It is downloading and installing all of the possibly necessary components needed to run Jupyter in an image. Remember, each image is completely self-contained, so each image has 
all

 of the software needed to run Jupyter.

Once the download is complete, we can start an image for our notebook using a command such as the following:



docker run -d -p 8888:8888 -v /disk-directory:/virtual-notebook jupyter/all-spark-notebook






The parts of this command are as follows:



	
docker run
 : The command to Docker to start executing an image.

	
-d
 : Run the image as a server (daemon) that will continue running until manually stopped by the user.

	
-p 8888:8888
 : Expose the internal port 8888
 to external users with the same port address. Notebooks use port 8888
 by default already, so we are saying just expose the same port.

	
-v /disk-directory:/virtual-notebook
 : Take the notebook from the disk directory and expose it as the virtual notebook name.

	The last argument is to use the all-spark-notebook
 as the basis for this image.





In my case, I used the following command:



$ docker run -d -p 8888:8888 -v /Users/dtoomey:
    /dan-notebook jupyter/all-spark-notebook





b59eaf0cae67506e4f475a9861f61c01c5af3556489992104c4ce39343e8eb02






The big hex number displayed is the image identifier.

We can make sure the image is running using the docker ps -l
 command, which lists out the images in our docker
 :



$ docker ps -l





CONTAINER ID        IMAGE                        COMMAND                 
    CREATED             STATUS               PORTS                       
    NAMES





b59eaf0cae67        jupyter/all-spark-notebook   "tini -- start-
    notebo"   8 seconds ago       Up 7 seconds        0.0.0.0:8888-
    >8888/tcp   modest_bardeen






The parts of the display are as follows:



	The first name,b59eaf0cae67
 , is the assigned ID
 of the container. Each image in Docker is assigned to a container.

	The IMAGE
 is Jupyter/all-spark-notebook
 -it contains all of the software needed to run your notebook.

	The command is telling Docker to start the image.

	The port access point is as we expected: 8888
 .

	Lastly, Docker assigns random names to every running image; ours ismodest bardeen
 (I'm not sure why they do this).





At this point, we should be able to access the notebook from an external browser at http:// 192.168.99.100:8888
 . We saw this IP address when Docker started (192.168.99.100
 ), and we are using port 8888
 as we specified.You can subsequently shut down the existing server:

[image: Building your Jupyter image for Docker]




You can see the URL in the top-left corner. Below that we have a standard empty notebook.

The Docker image used has all of the latest software, so you do not have to do anything special to get updated software or components for your notebook. You can see the language options available by pulling down the 
New

 menu:

[image: Building your Jupyter image for Docker]




We will discuss using Scala in a notebook in the next chapter.








 Docker summary







We have installed Docker and created an image with our notebook. We then placed the Docker image into Docker and accessed our Docker notebook image.











 Summary







In this chapter, we learned how to expose a notebook so that multiple users can use a notebook at the same time. We saw an example of the 
error

 occurring and installed a Jupyter server that addresses the problem. We then used Docker to alleviate the issue.

In the next chapter, we will lookusing Scala in a notebook.









 Chapter9. Jupyter Scala







The Scala language has become very popular. It is built on top of Java, so it has full interoperability, including resorting to inline Java in your Scala code. However, the syntax is much cleaner and intuitive, reworking some of the quirks in Java.

In this chapter, we will cover the following topics:



	Installing Scala for Jupyter

	Using Scala's features










 Installing the Scala kernel







There is currently no process for installing the Scala kernel in a Windows environment. I'm not sure why. I expect this to change over time.

The steps for Mac OS/X are given here (taken from https://developer.ibm.com/hadoop/2016/05/04/install-jupyter-notebook-spark
 ):



	Install GIT using this:

yum install git








	Copy the Scala package locally:

git clone https://github.com/alexarchambault/jupyter-scala.git








	Install thesbt
 build tool by running this:

sudo yum install sbt








	Move to the Scala package directory:

cd jupyter-scala








	Build the package:

sbt cli/packArchive








	To launch the Scala shell, use this command:

./jupyter-scala








	Check the kernels installed by running this command: (you should see Scala in the list now):

 jupyter kernelspec list








	Launch the Jupyter Notebook:

jupyter notebook








	You can now choose to use a Scala 2.11 shell.At this point, if you start Jupyter, you will see the choice for Scala listed:

[image: Installing the Scala kernel]












If we create a Scala notebook, we end up with the familiar layout with an icon displaying that we are running Scala and the engine type string identified as Scala 2.11:

[image: Installing the Scala kernel]




So, by naming our notebook as Scala Notebook
 and saving, we get the familiar display of notebooks on the home page, where the new notebook is called Scala Notebook.ipynb
 .

If we look in the IPYNB file, we can see the similar markup as other notebook types, with special markings for Scala:

{ 
 ... 
 "metadata": { 
  "kernelspec": { 
   "display_name": "Scala 2.11", 
   "language": "scala211", 
   "name": "scala211" 
  }, 
  "language_info": { 
   "codemirror_mode": "text/x-scala", 
   "file_extension": ".scala", 
   "mimetype": "text/x-scala", 
   "name": "scala211", 
   "pygments_lexer": "scala", 
   "version": "2.11.8" 
  } 
... 
} 


Now, we can enter Scala coding into some of the cells. Following the previous language examples (from earlier chapters), we can enter this:



val name = "Dan"





val age = 37





show(name + " is " + age)






The show
 command may not work in some environments, and you can use the print
 command instead. Scala has changeable variables (var
 ) and fixed variables (val
 ). We are not going to be changing the fields, so they are val
 variables. The last statement, show
 , is a Jupyter extension for use in Scala to display a variable.

If we run this script in Jupyter, we see the following:

[image: Installing the Scala kernel]




Note that, there is currently an issue connecting using Safari, connecting with Firefox works well. In the output area of the cell, we see the expected Dan is 37
 . Interestingly, Scala also displays the current type and value for each variable in the script at that point as well.











 Scala data access in Jupyter







There is a copy of the iris dataset on the University of California, Irvine website at https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
 . We will access this data and perform some simpler statistics on the same.

The Scala code is as follows:



import scala.io.Source;





//copied file locally https://archive.ics.uci.edu/ml/
      machine-learning-databases/iris/iris.data





val filename = "iris.data"






//DEBUGGING Uncomment this line to display more information -





println("SepalLength, SepalWidth, PetalLength, PetalWidth, Class");





val array = scala.collection.mutable.ArrayBuffer.empty[Float]





for (line <- Source.fromFile(filename).getLines) {





    var cols = line.split(",").map(_.trim);





    //println(s"${cols(0)}|${cols(1)}|${cols(2)}|
          ${cols(3)} |${cols(4)}");





    val i = cols(0).toFloat





    array += i;





}





val count = array.length;





var min:Double = 9999.0;





var max:Double = 0.0;





var total:Double = 0.0;





for ( x <- array ) {





    if (x < min) { min = x; }





    if (x > max) { max = x; }





    total += x;     





}





val mean:Double = total / count;






Scala will complain bitterly about any excess spaces that may be in the original file. Be sure to trim the file exactly. There seems to be an issue with accessing the CSV file over the Internet. So, I copied the file locally (to the same directory where the notebook resides).

Of note in this script is that we do not have to wrap the Scala code in an object, as would normally be requiredsince Jupyter is providing the wrapper
 class.

When we run the script, we see these results:

[image: Scala data access in Jupyter]




This is a different version of the Iris data; hence, we see different results in the statistics than we saw in Chapter 2
 , 
Jupyter Python Scripting

 .









 Scala array operations







Scala does not have pandas, but we can emulate some of that logic with our own coding. We will use the same Titanic dataset used in Chapter 2
 , 
Jupyter Python Scripting

 , from http://www.kaggle.com/c/titanic-gettingStarted/download/train.csv
 , which we have downloaded in our local space.

We can then use similar coding as was used in Chapter 2
 , 
Jupyter Python Scripting

 , on pandas:



import scala.io.Source;





val filename = "train.csv"





//PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,
      Parch,Ticket,Fare,Cabin,Embarked





//1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S





var males = 0





var females = 0





var males_survived = 0





var females_survived = 0





for (line <- Source.fromFile(filename).getLines) {





    var cols = line.split(",").map(_.trim);





    var sex = cols(5);





    if (sex == "male") { 





        males = males + 1;





        if (cols(1).toInt == 1) {





            males_survived = males_survived + 1;





        }





    }





    if (sex == "female") { 





        females = females + 1; 





        if (cols(1).toInt == 1) {





            females_survived = females_survived + 1;





        }





    }    





}





val mens_survival_rate = males_survived.toFloat/males.toFloat





val womens_survival_rate = females_survived.toFloat/females.toFloat






In the code, we read the file line by line, parse out the columns (it is a CSV), and then make calculations based on the sex
 column of the data. Interestingly Scala arrays are not zero-based!

When we run this script, we see very similar results as before:

[image: Scala array operations]












 Scala random numbers in Jupyter







In this example, we simulate a rolling dice and count how many times each combination appears. We then present a simple histogram for illustrative purposes.

The script is as follows:



val r = new scala.util.Random





r.setSeed(113L)





val samples = 1000





var dice = new Array[Int](12)





for( i <- 1 to samples){





    var total = r.nextInt(6) + r.nextInt(6)





    dice(total) = dice(total) + 1





}





val max = dice.reduceLeft(_ max _)





for( i <- 0 to 11) {





    var str = ""





    for( j <- 1 to dice(i)/3) {





        str = str + "X"





    }





    print(i+1, str, "\n")





}






We first pull in the Scala random library. We set the seed (in order to have repeatable results). We are drawing 1,000 rolls. For each roll, we increment a counter of how many times the total of pips on die 1 and die 2 appear. Then we present an abbreviated histogram of the results.

Scala has a number of shortcut methods for quick scanning through a list/collection, as seen in the reduceLeft(_ max _)
 statement. We can also find the minimum value by using min
 instead of max
 in the reduceLeft
 statement.

When we run the script, we have these results:

[image: Scala random numbers in Jupyter]




We can see the crude histogram and the follow-on display of the current values of scalar variables in the script. Note that I divided by three so the results would fit on a page.









 Scala closures







A closure is a function. The resultantfunctionvalue depends on the value of the variable(s) declared outside the function.

We can use this small script to illustrate it:



var factor = 7





val multiplier = (i:Int) => i * factor





val a = multiplier(11)





val b = multiplier(12)






We define a function named multiplier
 . The function expects an integer argument. For each argument, we take the argument and multiply it by the external variable factor.

We see this result:

[image: Scala closures]












 Scala higher-order functions







A higher-order function either takes other functions as arguments or returns a function as its result.

We can use this example script:



def squared(x: Int): Int = x * x





def cubed(x: Int): Int = x * x * x





def process(a: Int, processor: Int => Int): Int = {processor(a) }





val fiveSquared = process(5, squared)





val sevenCubed = process(7, cubed)






We define two functions; one squares the number passed and the other cubes the number passed.

Next, we define the higher-order function that takes the number to work on and the processor to apply.

Lastly, we call each one. For example, we call process()
 with 5
 and the squared()
 function. The process()
 function passes the 5
 to the squared()
 function and returns the result:

[image: Scala higher-order functions]




We take advantage of the Scala's engine automatically printing out variable values to see the result expected.









 Scala pattern matching







Scala has very useful, built-in pattern matching. Pattern matching can be used to test for exact and/or partial matches of entire values, parts of objects, and so on; you name it!

We can use this sample script for reference:



def matchTest(x: Any): Any = x match {





  case 7 => "seven"





  case "two" => 2





  case _ => "something"





}





val isItTwo = matchTest("two")





val isItTest = matchTest("test")





val isItSeven = matchTest(7)






We define a function called matchTest
 . It takes any kind of argument and can return any type of result (not sure if that is real-life programming!).

The keyword of interest is match
 . This means the function will walk down the list of choices until it gets a match on the value x
 passed and then returns it.

As you can see, we have numbers and strings as input and output.

The last case
 statement is a wildcard, catchall-if the code gets that far, it will match any argument.

We can see the output here:

[image: Scala pattern matching]












 Scala case classes







A case class is a simplified type that can be used without calling out new Classname(..)
 . For example, we could have this script, which defines a case class and uses it:



case class Car(brand: String, model: String)





val buickLeSabre = Car("Buick", "LeSabre")






So, we have a case class called Car
 . We make an instance of that class called buickLeSabre
 .

Case classes are most useful for pattern matchingsince we can easily construct complex objects and examine their contents. Here's an example:



def carType(car: Car) = car match {





  case Car("Honda", "Accord") => "sedan"





  case Car("GM", "Denali") => "suv"





  case Car("Mercedes", "300") => "luxury"





  case Car("Buick", "LeSabre") => "sedan"





  case _ => "Car: is of unknown type"





}





val typeOfBuick = carType(buickLeSabre)






We define a pattern match block (as in the previous section of this chapter). In the match, we look at a Car
 object that has brand = GM
 , model = Denali
 , and so on. For each of the models of interest, we classify its type. We also have catchall at the end, so we can catch unexpected values.

We can exercise case classes in Jupyter, as shown in this screenshot:

[image: Scala case classes]




We defined and used theCar
 case class. We then did pattern matching using the Car
 case class.









 Scala immutability







Immutable means you cannot change something. In Scala, all variables are immutable unless specifically marked otherwise. This is the opposite of languages such as Java, where all variables are mutable unless specifically marked otherwise.

In Java, we can have the following function:

public void calculate(integer amount) { 
} 


We can modify the value of amount
 inside the calculate
 function. We can tell Java not to allow changing the value if we use the final
 keyword:

public void calculate(final integer amount) { 
} 


Whereas in Scala, the similar routine is as follows:



def calculate (amount: Int): Int = { 





  amount = amount + 1;





  return amount;





}






The preceding code leaves the value of the amount
 variable as it was before the routine was called.

[image: Scala immutability]




We can see in the display that even though balance is a variable (marked as var
 ), Scala will not allow you to change its value inside of the function.









 Scala collections







In Scala, collections are automatically mutable or immutable depending on your usage. All collections in scala.collections.immutable
 are immutable, and vice versa for scala.collections.immutable
 . Scala picks immutable collections by default, so your code will then draw automatically from the mutable collections:



var List mylist;






This happens unless you prefix your variable with immutable
 :



var mylist immutable.List;






We can see this in this small amount of code, for example:



var mutableList = List(1, 2, 3);





var immutableList = scala.collection.immutable.List(4, 5, 6);





mutableList.updated(1,400);





immutableList.updated(1,700);






As you can see in this screenshot of the notebook:

[image: Scala collections]




Note that Scala cheated a little here; it created a new collection when we updated immutableList
 , as you can see, with the variable name as real_3
 instead.









 Named arguments







Scala allows you to specify parameter assignment by name rather than just ordinal position. For example, we can have this code:



def divide(dividend:Int, divisor:Int): Float = 





{ dividend.toFloat / divisor.toFloat }





divide(40, 5)





divide(divisor = 40, dividend = 5)






If we run this in a notebook, we can see the results:

[image: Named arguments]




The first call is to divide
 assigned parameters by position. The second call set them accordingly.









 Scala traits







A 
trait

 in Scala defines a set of features that can be implemented by classes. A trait is similar to an interface in Java.

A trait can be partially implemented, forcing the user (class) of the trait to implement the details.

For example, we can have this code:



trait Color {





    def isRed(): Boolean





}





class Red extends Color {





    def isRed() = true





}





class Blue extends Color {





    def isRed() = false





}





var red = new Red();





var blue = new Blue();





red.isRed()





blue.isRed()






The code creates a trait
 called Color
 with one partially implemented function, isRed
 . So, every class that uses Color
 will have to implement isRed()
 .

We then implement two classes, Red
 and Blue
 , that extend the Color
 trait (this is the Scala syntax for using a trait). Since the isRed()
 function is partially implemented, both classes have to provide implementations for the trait
 function.

We can see how this operates in the following screenshot of the notebook display:

[image: Scala traits]




We see (in the output section at the bottom) the trait and classes created, the two instances created, and the result of calling upon the trait
 function for both classes.









 Summary







In this chapter, we installed Scala for Jupyter. We used Scala coding to access data sets. We also saw how Scala can manipulate arrays. And we generated random numbers in Scala. There were examples of higher-order functions and pattern matching. We used case classes, saw examples of immutability in Scala, built collections using Scala packages, and looked at Scala traits.

In the next chapter, we will be looking at using big data in Jupyter.









 Chapter10.Jupyter and Big Data







Big data is the topic on everyone's mind. I thought it would be good to see what can be done with big data in Jupyter. An up-and-coming language for dealing with large datasets is Spark. Spark is an open source big data processing framework. Spark can run over Hadoop, in the cloud, or standalone. We can use Spark coding in Jupyter much like the other languages we have seen.

In this chapter, we will cover the following topics:



	Installing Spark for use in Jupyter

	Using Spark's features










 Apache Spark







One of the tools we will be using is Apache Spark. Spark is an open source toolset for cluster computing. While we will not be using a cluster, the typical usage for Spark is a larger set of machines or cluster that operate in parallel to analyze a big data set. An installation guide is available at https://www.dataquest.io/blog/pyspark-installation-guide
 .In particular, you will need to add two settings to your bash profile: SPARK_HOME
 and PYSPARK_SUBMIT_ARGS
 . SPARK_HOME
 is the directory where the software is installed. PYSPARK_SUBMIT_ARGS
 sets the number of cores to use in the local cluster.






 Mac installation







To install, we download the latest TGZ file from the Spark download page at https://spark.apache.org/downloads.html
 , unpack the TGZ file, and move the unpacked directory to our Applications folder.

Spark relies on Scala's availability. We installed Scala in Chapter 7
 , 
Sharing and Converting Jupyter Notebooks

 .

Open a command-line window to the Spark directory and run this command:



brew install sbt






This may take a while.

Now set the configuration for Spark (for Mac) in your .bash_profile
 file:



# location of spark code





export SPARK_HOME="/Applications/spark-2.0.0-bin-hadoop2.7"





# machine to run on





export SPARK_MASTER_IP=127.0.0.1





export SPARK_LOCAL_IP=127.0.0.1





# python location





export PYTHONPATH=$SPARK_HOME/python/:$PYTHONPATH





export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.10.1-src.zip:$PYTHONPATH






Note that, the paths used will correspond to your installation

You should now be able to run this command (from inside your Spark directory), successfully opening a command-line window in Spark:



bin/pyspark






It looks something like this (depending on the version):



Welcome to





      ____              __





     / __/__  ___ _____/ /__





    _\ \/ _ \/ _ `/ __/  '_/





   /__ / .__/\_,_/_/ /_/\_\   version 2.0.0





      /_/





Using Python version 2.7.12 (default, Jul  2 2016 17:43:17)





SparkSession available as 'spark'.





>>>






You can enter quit()
 to exit.

Now, when we run our notebook, when using a Python kernel, we can access Spark.








 Windows installation







We have already installed Python as part of the Jupyter installation much earlier in this book. We need to download and install the latest Spark version from http://spark.apache.org/downloads.html
 . Unpack the TGZ file and move the resulting directory to the C:\spark directory
 .

You will need to have winutils.exe
 available as well (this seems to be a problem with the Hadoop installation, but it may get fixed at some time). Download the file from http://public-repo-1.hortonworks.com/hdp-win-alpha/winutils.exe
 and install at C:\winutils\bin
 .

Now need to set up environment variables for all of these:



HADOOP_HOME=C:\winutils





SPARK_HOME=C:\spark





PYSPARK_DRIVER_PYTHON=ipython





PYSPARK_DRIVER_PYTHON_OPTS=notebook






You can start Jupyter using the pyspark
 command. You should not notice anything different about your notebook.



 Note

We are using the Python script to invoke Spark functionality, so the language format needs to conform to Python.















 Our first Spark script







Our first script reads in a text file and sees how much the line lengths add up to:



import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





lines = sc.textFile("Spark File Words.ipynb")





lineLengths = lines.map(lambda s: len(s))





totalLength = lineLengths.reduce(lambda a, b: a + b) 





print(totalLength)






In the script, we are first initializing Spark-only if we have not done already. Spark will complain if you try to initialize it more than once, so all Spark scripts should have this if
 prefix statement.

The script reads in a text file (the source of this script), takes every line, and computes its length; then it adds all the lengths together.

A lambda
 function is an anonymous (not named) function that takes arguments and returns a value. In the first case, given a string s
 , it returns its length.

A reduce
 function takes an argument, applies the second argument to it, replaces the first value with the result, and then proceeds with the rest of the list. In our case, it walks through the line lengths and adds them all up.

Then, running this in a notebook, we see the following result:

[image: Our first Spark script]




Note that the size of the file for you may be slightly different. Also, the first time you begin the Spark engine (using the sc = pyspark.SparkContext()
 line), it may take a while and your script may not complete successfully. If that happens, just try it again.









 Spark word count







Now that we have seen some of the functionality, let's explore further. We can use a similar script to count the word occurrences in a file, as follows:



import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





text_file = sc.textFile("Spark File Words.ipynb")





counts = text_file.flatMap(lambda line: line.split(" ")) \





             .map(lambda word: (word, 1)) \





             .reduceByKey(lambda a, b: a + b)





for x in counts.collect():





    print x






We have the same preamble to the coding. Then we load the text file into memory.

Once the file is loaded, we split each line into words. Use a lambda
 function to tick off each occurrence of a word. The code is truly creating a new record for each word occurrence. If a word appears in the stream, a record with the count of 1
 is added for that word and for every other instance the word appears, new records with the same count of 1
 are added. The idea is that this process could be split over multiple processors, where each processor generates these low-level information bits. We are not concerned with optimizing this process at all.

Once we have all of these records, we reduce/summarize the record set according to the word occurrences mentioned.

The counts
 object is called a
Resilient Distributed Dataset

 (
RDD

 ) in Spark. It is resilient as care is taken to persist the dataset. The RDD is distributed as it can be manipulated by all nodes in the operating cluster. And of course, it is a dataset consisting of a variety of data items.

The last for
 loop runs a collect()
 against the RDD. As mentioned, this RDD could be distributed amongst many nodes. The collect()
 function pulls all copies of the RDD into one location. Then we loop through each record.

When we run this in Jupyter, we see something akin to this display:

[image: Spark word count]




The listing is abbreviated as the list of words continues for some time. Curiously, the word splitting logic in Spark does not appear to work very well! Some of the results are not words, such as the first entry-the empty string.









 Sorted word count







Using the same script with a slight modification, we can make one more call and have sorted results. The script now looks like this:



import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





text_file = sc.textFile("Spark File Words.ipynb")





sorted_counts = text_file.flatMap(lambda line: line.split(" ")) \





            .map(lambda word: (word, 1)) \





            .reduceByKey(lambda a, b: a + b) \





            .sortByKey()





for x in sorted_counts.collect():





    print x






Here, we have added another function call to the RDD creation, sortByKey()
 . So, after we have map/reduced and arrived at list of words and occurrence, we can easily sort the results.

The resultant output looks like this:

[image: Sorted word count]












 Estimate Pi







We can use map/reduce to estimate the Pi. Suppose we have code like this:



import pyspark





import random





if not 'sc' in globals():





    sc = pyspark.SparkContext()





NUM_SAMPLES = 1000





def sample(p):





    x,y = random.random(),random.random()





    return 1 if x*x + y*y < 1 else 0





count = sc.parallelize(xrange(0, NUM_SAMPLES)) \





            .map(sample) \





            .reduce(lambda a, b: a + b)





print "Pi is roughly %f" % (4.0 * count / NUM_SAMPLES)






This code has the same preamble. We are using the random
 Python package. There is a constant for the number of samples to attempt.

We are building an RDD called count
 . We call upon the parallelize
 function to split up this process over the nodes available. The code just maps the result of the sample
 function call. Finally, we reduce the generated map set by adding all the samples.

The sample
 function gets two random numbers and returns a 1
 or a 0
 depending on where the two numbers end up in size. We are looking for random numbers in a small range and then comparing whether they occur within a circle of the same diameter. With a large enough sample, we would end up with Pi (3.141...).

If we run this in Jupyter, we see the following:

[image: Estimate Pi]




When I ran this with NUM_SAMPLES = 10000
 , I ended up with this:



PI = 3.138000.














 Log file examination







I downloaded one of the access_log
 files from http://www.monitorware.com/
 . Like any other web access log, we have one line per entry, like this:



64.242.88.10 - - [07/Mar/2004:16:05:49 -0800] "GET /twiki/bin/edit/Main/Double_bounce_sender?topicparent=Main.ConfigurationVariables HTTP/1.1" 401 12846








	The first part is the IP address of the caller, followed by timestamp, type of HTTP access, URL referenced, HTTP type, resultant HTTP Response code, and finally, the number of bytes in the response.

	We can use Spark to load in and parse out some statistics of the log entries, as in this script:







import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





textFile = sc.textFile("access_log")





print(textFile.count(),"access records")





gets = textFile.filter(lambda line: "GET" in line)





print(gets.count(),"GETs")





posts = textFile.filter(lambda line: "POST" in line)





print(posts.count(),"POSTs")





other = textFile.subtract(gets).subtract(posts)





print(other.count(),"Other")





for x in other.collect():





        print x






This script has the same preamble as others.

We read in the access_log
 file. Then we print the count of records.

Similarly, we find out how many log entries were GET
 and POST
 operations. GET
 is assumed to be the most prevalent.

When I first did this, I really didn't expect anything else, so I removed the gets
 and the posts
 from the set and printed out the outliers to see what they were.

When we run this in Jupyter, we see the expected output:

[image: Log file examination]




The text processing was not very fast (especially for so few records).

I liked being able to work with the data frames in such a way. There is something pleasing about being able to do basic algebra with sets in a programmatic way without having to be concerned about edge cases.

By the way, a HEAD
 request works just like a GET
 but does not return the HTTP body. This allows a caller to determine what kind of response would have come back and respond appropriately.









 Spark primes







We can run a series of numbers through a filter to determine whether each number is prime or not. We can use this script:



import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





def is_it_prime(number):





    # make sure n is a positive integer





    number = abs(int(number))





    # simple tests





    if number < 2:





        return False





    # 2 is prime





    if number == 2:





        return True





    # other even numbers aren't





    if not number & 1:





        return False





    # check whether number is divisible into it's square root





    for x in range(3, int(number**0.5)+1, 2):





        if number % x == 0:





            return False





    #if we get this far we are good





    return True





# create a set of numbers to 100,000





numbers = sc.parallelize(xrange(100000))





# count out the number of primes we found





print numbers.filter(is_it_prime).count()






The script generates numbers up to 100,000.

We then loop over each of the numbers and pass it to our filter. If the filter returns true, we get a record. Then we just count how many results we found.

Running this in Jupyter, we see the following:

[image: Spark primes]




This was very fast. I was waiting and didn't notice that it happened so quickly.









 Spark text file analysis







In this example, we will look through a news article to determine some basic information from it.

We will be using the following script against the 2600raidnews article (from http://newsitem.com/
 ):



import pyspark





if not 'sc' in globals():





    sc = pyspark.SparkContext()





sentences = sc.textFile('2600raid.txt') \





    .glom() \





    .map(lambda x: " ".join(x)) \





    .flatMap(lambda x: x.split("."))





print(sentences.count(),"sentences")





bigrams = sentences.map(lambda x:x.split()) \





    .flatMap(lambda x: [((x[i],x[i+1]),1) for i in range(0,len(x)-1)])





print(bigrams.count(),"bigrams")





frequent_bigrams = bigrams.reduceByKey(lambda x,y:x+y) \





    .map(lambda x:(x[1],x[0])) \





    .sortByKey(False)





frequent_bigrams.take(10)






The code reads in the article and splits up the article into sentences as determined by ending with a period. From there, the code maps out the bigrams present. A bigram is a pair of words that appear next to each other. We then sort the list and print out the top 10 most prevalent pairs.

When we run this in a notebook, we see these results:

[image: Spark text file analysis]




I really had no idea what to expect from the output. It's curious that you can glean some insights into the article as 'the'
 and 'mall'
 appear 15 times and 'the'
 and 'guards'
 appear 11 times-a raid must have occurred in a mall and included the security guards in some manner!









 Spark - evaluating history data







In this example, we combine the previous sections to look at some historical data and determine some useful attributes.

The historical data we are using is the guest list for 
The Jon Stewart Show

 . A typical record from the data looks like this:



1999,actor,1/11/99,Acting,Michael J. Fox






It contains the year, occupation of the guest, date of appearance, logical grouping of the occupation, and the name of the guest.

For our analysis, we will be looking at number of appearances per year, the most appearing occupation, and the most appearing personality.

We will be using this script:



import pyspark





import csv





import operator





import itertools





import collections





if not 'sc' in globals():





    sc = pyspark.SparkContext()





years = {}





occupations = {}





guests = {}





#The file header contains these column descriptors





#YEAR,GoogleKnowlege_Occupation,Show,Group,Raw_Guest_List





with open('daily_show_guests.csv', 'rb') as csvfile:    





    reader = csv.DictReader(csvfile)





    for row in reader:





        year = row['YEAR']





        if years.has_key(year):





            years[year] = years[year] + 1





        else:





            years[year] = 1





        occupation = row['GoogleKnowlege_Occupation']





        if occupations.has_key(occupation):





            occupations[occupation] = occupations[occupation] + 1





        else:





            occupations[occupation] = 1





        guest = row['Raw_Guest_List']





        if guests.has_key(guest):





            guests[guest] = guests[guest] + 1





        else:





            guests[guest] = 1





syears = sorted(years.items(), key=operator.itemgetter(1), reverse=True)





soccupations = sorted(occupations.items(), key=operator.itemgetter(1), reverse=True)





sguests = sorted(guests.items(), key=operator.itemgetter(1), reverse=True)





print syears[:5]





print soccupations[:5]





print sguests[:5]






The script has a number of features:



	We are using several packages.

	It has the familiar context preamble.

	We start dictionaries for the years, occupations, and guests. A dictionary contains a key and a value. For this use, the key will be the raw value from the CSV. The value will be the number of occurrences in the dataset.

	We open the file and start reading line by line using a reader object.

	On each line, we take the value of interest (years
 , occupations
 , guests
 ):

	See whether the value is present in the appropriate dictionary

	If it is there, increment the value (counter)

	Otherwise, initialize an entry in the dictionary

	We then sort each of the dictionaries in reverse order of the number of appearances of the item

	Finally, we display the top five values for each dictionary











If we run this in a notebook, we have an output like this:

[image: Spark - evaluating history data]




We have the first part of our script down to handling the years and occupation accumulators. Here is the rest of the script:

[image: Spark - evaluating history data]




There may be a smarter way to do all of this, but I am not aware of it! The build-up of the accumulators is pretty standard, regardless of what language you are using. I think there is an opportunity to use a map()
 function here.We could add each collection to the Spark Context as lists and then apply map.distinct.count
 .

I really liked just trimming off the lists/arrays so easily instead of having to call some function. The number of guests per year is very consistent. Actors are prevalent-probably the people of most interest to the audience. The guest list was a little surprising. The guests are mostly actors, but I think all have strong political direction.









 Summary







In this chapter, we used Spark functionality via Python coding for Jupyter. First, we installed the Spark additions to Jupyter on a Windows machine and a Mac machine. We wrote an initial script that just read lines from a text file. We went further and determined the word counts in that file. We added sorting to the results. There was a script to estimate Pi. We evaluated web log files for anomalies. We determined a set of prime numbers. And we evaluated a text stream for some characteristics.



OEBPS/Image00007.jpg
O © Untitied Folder






OEBPS/Image00128.jpg
O

Home

€)a

(3] Most Visitea -

= Jupyter

192168.99.100:8888 tree

A, Scrabble Word Fin...

Fies |~ Running  Clusters
Select items to perform actions on them.

o [-|#

c

¥ Authentication an...

Q search

X, programs

Notebook list empty.

"B 93 A

X cetsession

7 Portal Codelne Un..

Upload || New +






OEBPS/Image00006.jpg
ZJUpYter untited.ot v afew seconds ago

File  Edt  View Language






OEBPS/Image00127.jpg
ZJupyter

@ Logout






OEBPS/Image00009.jpg
B & Untitled ipynb

Runnin






OEBPS/Image00130.jpg
Upesd B

Text File.
Folder

Terminal

Notebooks
Javascript (Nodes)
Julia0.4.5

Python 3
Scala2.11






OEBPS/Image00008.jpg
- JupytEr Untitled Last Checkpoint: a minute ago (unsaved changes)
Fle Edt  View et Cell Kemel Help

+ @B 4 VM EC coe [] [ =] ceimoolbar

[=on0






OEBPS/Image00129.jpg
Upload E

Text File
Folder

Terminal

Notebooks
Apache Toree - Scala
Python 2

Python 3
R






OEBPS/Image00011.jpg
Files

K

Running ~ Clusters

- &






OEBPS/Image00132.jpg
ZJupyter simple Scala wsescrsen [

File  Edit View Inset Cell  Kemel Widgets  Help Scala211 O

= | CellToolbar

+ 3 @ B A ¥ M B C Code

In [3]: val name = "Dan"
val age = 37
show(name + " is " + age)

“Dan is 37"

name: String = "Dan"
age: Int = 37






OEBPS/Image00010.jpg
© Folders

& Al Notebooks
& Running

O3 Files

& L1 connguration






OEBPS/Image00131.jpg
000  ycwmsews x|C e &

€ localhost:8888/notebooks/Untitled.ipynb?kernel_name=s € | Q search w8 + Ah O 7|- | =

& Most Visted ~ A, Scrabble Word Fin.. ¥ Authenticationan.. X, Programs X, Get Session B} Portal Codeline Un... (3 Pulsar Properties »
Z JUPYLEr Untitied wesssomwses ]
File Edit View Insert Cell Kernel Widgets Help rd ‘ Scala2.11 O

+ 3 @ B A ¥ M B C Code & || CelToolbar






OEBPS/Image00012.jpg
& Untitled ipynb

Running






OEBPS/Image00003.jpg
Z Jupyter

Files | Running | Clusters

Currently running Jupyter processes

Terminals

Notebooks +

There are no notebooks running.






OEBPS/Image00124.jpg
ZJupyter

Username:

Password:






OEBPS/Image00123.jpg
ZJupyter Number of Users asosacs

Fie ~ Edit  View Inset Cel  Kemel  Widgets  Help

=

@+ 3 & B 4+ ¥ M B C Coe

In (3): from ipywidgets import interact
def myfunction(x):
return x
interact(myfunction, x= "Hello World ");

CellToolbar

(]

| Python2 O






OEBPS/Image00005.jpg
Upload

Text File
Folder

Terminals Unavailabl






OEBPS/Image00126.jpg
ZJjupyter

Stop My Server My Server

@ Logout






OEBPS/Image00004.jpg
Z Jupyter

Files  Running | Clusters

Clusters tab is now provided by IPython parallel. See IPython parallel for installation details






OEBPS/Image00125.jpg
Z Jupyter

Fies |~ Running  Clusters

Select items to perform actions on them.

o |[-|#

anaconda

O AndroidStudioProjects

Control Panel || Logout

Upload || New +






OEBPS/Image00018.jpg





OEBPS/Image00139.jpg
ZJupyter scalaCase Classes wmsesssen

Fle  Edit View Inset Cell  Kemel Widgets Help

e || CelToolbar

+ @ B 4 ¥ M B C|Code

In [4]: case class Car(brand: String, model: String)

val buickLeSabre = Car("Buick", "LeSabre")

defined class Car
buickLeSabre: $user.Car = Car("Buick”, "LeSabre")

In [5]: def carType(car: Car) = car match {

case Car("Honda", "Accord") => "sedan”
case Car("Gi", "Denali") => "suv"

case Car("Mercedes”, "300") => "luxury"
case Car("Buick’, "LeSabre') => "sedan”
case _ => "Car: is of unknown type"

}

val typeofBuick = carType(buickLeSabre)

defined function carType
typeofBuick: String = "sedan"

Scala211 O






OEBPS/Image00017.jpg
O Anaconda2 400 (32-bit) Setup

Choose Install Location

) ANACONDA  choos e fidr i it ol A2 0.0 3264

Setup wilnstal Anaconda? 40.0 (32-bit) n the folowing folder. To nstal in a different
Folder, cick Browse and select another folder. Cick Next to contie.

Destination Folder

Space required: 280.6M8
Space avaiable: 322.568

Bose

<Back

Next >

Cancel






OEBPS/Image00138.jpg
o Ju pyter Scala Pattern Matching ucsaes ’

File  Edit View Inset Cell  Kemel Widgets  Help # |Scaia2.11 O

+ 3 @ B A ¥ M B C Code & | CelToolbar

In [1]: def matchTest(x: Any): Any = x match {
case 7 => "seven"

"two" => 2

"something”

val isTtTwo = matchTest("two")
val isItTest = matchTest("test")
val isTtSeven = matchTest(7)

defined function matchTest

isTtTwo: Any = 2

isTtTest: Any = something
Any = seven






OEBPS/Image00020.jpg
Files

Running

Duptcate | Porame] Y

e

oE

© anaconda

Clusters






OEBPS/Image00141.jpg
ZJupyter scala Coliections wse

Fle  Edit View Inset Cell  Kemel  Widgets

+

@ B A ¥ M B C Code

In (2]: var mutableList = List(l, 2, 3);

var immutableList = scala.collection.immitable.List(4, 5, 6);

mutableList.updated (1,400
immutableList.updated(1,700);

mutableList: List(Int] = List(1, 2, 3)
immutableList: List(Int] = List(4, 5,
resl 2: List[Int] = List(l, 400, 3)
resl 3: List[Int] = List(4, 700, 6)

Help

=

6)

CellToolbar

Scala211 O






OEBPS/Image00019.jpg
Anaconda2 (32-bit)
O Anaconda Cloud
e
8 Anaconda Prompt
1P Python

Jupyter Notebook
= Jupyter QTConsole
© Reset Spyder Settings

@ Spyder





OEBPS/Image00140.jpg
ZJupyter  scala Immutability e o E |

File  Edit View Inset Cell  Kemel Widgets  Help Scala211 O

& || CelToolbar

+ 3 @ B A ¥ M B C Code

In [0]: def calculate (amount: Int): Int = { amount = amount + 1; return amount; }

var balance = 100
val result = calculate(balance);

Main.scala:23: reassignment to val
def calculate (amount: Int): Int = { amount = amount + 1; r

eturn amount; } ; var balance = { () =>






OEBPS/Image00022.jpg
B D addDrop-Copy1.properties

[ [ addDrop-est propetties

[ addDrop.propetties






OEBPS/Image00021.jpg
Duplicate

Are you sure you want to duplicate: addDrop properties?






OEBPS/Image00142.jpg
ZJupyter scala Named Arguments wesses ’

Fie ~ Edit  View Inset Cel  Kemel  Widgets  Help Scala2.11 O

4% @B (4 ¥ W W Ccue | (=] celoobar

In [1]: def divide(dividend:Int, divisor:Int): Float = { dividend.toFloat / divisor
divide(40, 5)
divide(divisor = 40, dividend = 5)

defined function divide
res0_l: Float = 8.0F
res0_2: Float = 0.125F






OEBPS/Image00133.jpg
ZJupyter scaia s Data e ’

File  Edit View Inset Cell Kemel  Widgets  Help # |Scala2.11 O

+3 @ B 4 ¥ M B CCode

totar += x;

& || CelToolbar

¥

val mean:Double = total / count;

import scala.io.Source
filename: String = "iris.data”
array: collection.mutable.ArrayBuffer(Float] = ArrayBuffer(

5.1F,

4.9%,

4.7F,

4.6F,

5.0F,

5.4F,

4.6F,

5.0F,

4.4F,

4.9%,

5.4F,

4.8F,

4.8F,

4.37,

5.8F,

5.7F,

5.4F,

5.1F,

5.7F,

count: Int = 150
min: Double = 4.300000190734863
max: Double = 7.900000095367432
total: Double = 876.4999990463257
mean: Double = 5.843333326975505






OEBPS/Image00014.jpg
Anaconda2 400 (32-bit Setup

Welcome to the Anaconda2 4.0.0
(32-bit) Setup Wizard

This wizard wil quide you through the instaltion of
Anaconda2 4.0.0 (321).

Itis recommended that you dose al other appications

PARXSIO DY  ocfore starting Setup. This will make it possible to update.

relevant system fles without having to reboot your
computer.

Clck Next to contine.

CONTINUUM






OEBPS/Image00135.jpg
ZJupyter scala Random NUmMbers wusessss

File  Edit View Inset  Cell  Kemel Help

=

Widgets

B+ & B[4 ¥ [0 B Ccoe

is
val max = dice.reduceLeft(_ max _)
for( i <- 0 to 11) {

var str = "

for( j <- 1 to dice(i)/3) {

str = str + "x"

}

print(itl, str, "\n")

}

(1, XKXXRXX,
) (2, XXKKXXKKXXKKXKKX

) (3, XXXKXXKKXXKKXXKKXXKKXXKKX

) (4, XXXKXXKKXXKXXXKXXXKKXXXKKXKKKXKKXXKKX

¢ |scala211 0O

CellToolbar

) (5, XXKKXXKKXXKXXKKKXXKKXXXKXXKKXXXXXKKKXXKKXKXKXKKKX,
) (6, XXXKKXKKKXKXXXKXXXKKXXXKXXKKKXKKXXKXXXKKXXXKKXKKKXKKXK,
) (7, KXKKKXKKXXKXXXKXXXKKXXKKXXKKXXKXXXKKXXKKXKKKK |

) (8, XKXKXKXXXXKXXKXKXXKXKXXXXKKXKXKKXKXKKXK,

) (9, KRXXXXKKXXXXXKKXXXXKKXXXK,
) (10, XXXXXKXKXXXXKKKXXXKKKXXX

) (11, KKKXXKKKXK

)az,,

)

r: util.Random scala.util.Random@aS5edf54
samples: Int = 1000

dice: Array[Int]

0)
maxs

Array(23, 48, 76, 112,

Int = 164

148,

164, 135, 114, 78, 71,

a1,

[ ]






OEBPS/Image00013.jpg
O [ addDrop
O O Anaconda2






OEBPS/Image00134.jpg
= pyter Scala Array Operations Last Checkpoint: 3 minutes ago (autosaved)

File  Edit View Inset Cell  Kemel

+//32 @ B 4 ¢ M B C|Code

r females_survived = 0

Widgets  Help

| | e || ceiootar

for (line < Source.fromFile(filename).getLines) {

var cols = line.split(","
r sex = cols(5);
if (sex == "male”) {
nales = males + 1;
if (cols(l).toInt
males_survived

}
¥

if (sex == "female’) {
females - females + 1

if (cols(l).toInt
females_survived

}
3

1 mens_survival rate = male

import scala.io.Source

filename: String = "train.csv
males: Int = 577

females: Int = 314
males_survived: Int = 109

females_survived: Int = 233
mens_survival_rate: Float = 0
womens_survival_rate: Float

).map(_.trim);

1 {

males_survived + 1;

1 {
= females_survived + 1;

s_survived.toFloat/males.toFloat

1 womens_survival_rate = females_survived.toFloat/females.toFloat

.18890814F
0.7420382F

# |Scaia2.11 O






OEBPS/Image00016.jpg
[ )

O Anaconda2 40 (32-bit) Setup

Select Installation Type.

") ANACONDA  peae ec e e af st ou woid e o perorm for
Anaconda2 4.0.0 (32-bit).

Instal or:

© JustMe (recommended)

AllUsers (requires adin privieges)






OEBPS/Image00137.jpg
Z Jupyter scala Higher Order Functions wsss
File Edit View Insert Cell Kernel Widgets. Help

+||s< | B| 4| | M B C|coe

In [10]: def squared(x: Int): Int = x * x

def cubed(x: Int): Int = x * x * x

def process(a: Int, processor: Int => Int): Int

val fivesquared = process(5, squared)

val sevenCubed = process(7, cubed)

defined function squared
defined function cubed
defined function process
fiveSquared: Int = 25
sevenCubed: Int = 343

CellToolbar

{processor(a) }

Scala211 O






OEBPS/Image00015.jpg
O Anaconda2 40,0 (32-bit) Setup. =

License Agreement
§_) ANACONDA  piease revien the lcense terms before instaling Anaconda2 4.0.0
(32510,

Press Page Down to see the rest of the agreement,

|Anaconda License.

(Copyright 2016, Continuum Analytcs, Tnc.
|l rights reserved under the 3-cause BSD License:
[Redistribution and use in source and binary forms, with or without modificatin, are

lpermitted provided that the following concifions e met:

1f you accept the terms of the agreement, cick  Agree to continue. You must accept the.
agreement o install Anaconda 4.0.0 (32i).

o ) ireee ) (o






OEBPS/Image00136.jpg
ZJupyter scala Closure woses [

Fie  Edit  View Inset Cel  Kemel  Widgets  Help Scala2.11 O

+ 3 B B 4 ¥ N B C coe & || Celloolbar

In (1): var factor = 7
val multiplier = (i:Int) => i * factor

multiplier(11l)

multiplier(12)

factor: Int = 7
multiplier: Int => Int = <functionl>
a: Int = 77
b: Int = 84






OEBPS/Image00106.jpg
e Ju pyter Widget Textbox Last Checkpoint: 22 minutes ago (unsaved changes)

Fle  Edit View Inset Cell Kemel Widgets Help

+|[= @[+ | n m[c|cue | = || Celoolbar

In [4]: £rom ipywidgets import widgets
from IPython.display import display
text = widgets.Text()
display(text)

| test|

test

In [5]: def handle_submit(sender):
print (text.value)

In [6]: text.on_submit(handle_submit)

L

|Python2 O






OEBPS/Image00105.jpg
= Ju pyter Widget Textbox Last Checkpoint: 38 minutes ago (unsaved changes)

Fle  Edit

In [7]:

In [8]:

In [9]:

+//%2 @ B+ ¥ | M B C|coe

View Inset  Cell  Kemel  Widgets  Help

& || Celoolbar

from ipywidgets import widgets
from IPython.display import display
text = widgets.Text()

display(text)

def handle_submit(sender):
print(text.value)

text.on_submit (handle_submit)

L

|Python2 ©






OEBPS/Image00108.jpg
ZJupyter Bsuton widget

File  Edt  View Inset  Cell  Kemel Help

+ 5x A B (A v M EC coe [] =] ceimoolbar

In [13): from ipywidgets import widgets
£rom Ipython.display import display

button = widgets.Button (description="Submit") ;
display (button)

def on_button_clicked (widget) :
print("Clicked Button:" + widget.description);

button.on_click(on_button_clicked);

2

| Python 2 ©

Submit

Clicked Button:Submit






OEBPS/Image00107.jpg
ZJupyter sutton widget e
File  Edit  View Inset  Cell  Kemel  Help | Python 2 O

+x m B[4 v M B C coe [] =] ceimoolbar

In [13): from ipywidgets import widgets
£rom Iython.display import display

button = widgets.Button (description="Submit");
display (button)

def on_button_clicked (widget) :
print("Clicked Button:” + widget.description);

button.on_click(on_button_clicked);

Submit






OEBPS/Image00110.jpg
Zjupyter Adjust Property e e
File  Edit View Insert Cell Kemel  Widgets Help # |Python2 O

+ 5 B B A v M B C code || Celoolbar

In [1): from ipywidgets import *
Text (value='You can not change this text!', disabled=True)|

You can not change this text!






OEBPS/Image00109.jpg
out[1]:

['_view_name',
‘orientation’,
‘color’,
‘_view_module’,

height',
‘disabled’,
‘visible',
‘border_radius',
‘border_width',
*_model_module',
‘font_style',
*layout',
‘min’,
'_range’,
‘background_color’,
‘slider_color',
‘width',
‘continuous_update’
‘font_family’,
*_dom_classes',
‘description’,

_model_name’,

max',

‘border_color',

‘readout ',

‘padding’,

'font_weight',

‘step’,

‘border_style',

‘font_size',

‘msg_throttle',

‘value',

‘margin’]






OEBPS/Image00112.jpg
ZJupyter Ciick Handler wuescress

File  Edit View Inset Cell  Kemel  Widgets Help

& || Celoolbar

+ % @ B A ¥ M B C Code

In [3]: from ipywidgets import widgets
from Ipython.display import display

L

# |Python2 O

In [4]: button = widgets.Button(description="Click Mell')
display (button)

Click Me!

Button clicked.
Button clicked.
Button clicked.
Button clicked.

In [5]: def on_button_clicked(b):
print("Button clicked.”)

button.on_click(on_button_clicked)






OEBPS/Image00111.jpg
ZJu pytEF Change Properties ssses é

File  Edit View Insert Cell Kemel  Widgets Help |Python2 ©

& || CellToolbar

+ % @ B A v M B C Code

In [2]: from ipywidgets import *
w = IntSlider()
original = w.value
w.value = 5
original, w.value

out[2]: (0, 5)






OEBPS/Image00104.jpg
ZJupyter widget Textbox weesscrmsen

Fle  Edit View Inset Cell  Kemel  Widgets

+ % @ B A ¥ M B C Code

In [1): from ipywidgets import widgets
from IPython.display import display

In [2]: def handle_submit(sender):
print (text.value)

In [3]: text = widgets.Text()
text.on_submit (handle submit)
display(text)

Dan

Dan

Help

=

CellToolbar

| Python3 ©






OEBPS/Image00103.jpg
ZJUpYer Listbox wamesens [
File  Edit View Inset Cell Kemel  Widgets  Help | Python2 ©

B +[3< & B+ v W B C coe | |= ] celmoolbar

In (5): import ipywidgets as widgets
from IPython.display import display

In [6): w = widgets.Dropdown(
options={'Pen’: 7732, 'Pencil

description='Ttem:',

102, 'Pad': 33331},

)
display(w)

ftem: Pencil j

| Pendil

Pen
In (7]t w.value o4

out[7]: 102






OEBPS/Image00117.jpg
File  Edit  View Insert  Cell  Kemnel

New Notebook Y4 v N mC oo
Open...

n

median = stats.medi:
Make a Copy.
Rename.. In absolute deviatio

mad = stats.MAD(arr
Save and Checkpoint

lier detection. Retu;
Revert to Checkpoint » Outliers = stats.in

we the outliers

Print Preview
Download as. > Notebook (ipynb)

Javascript (j5) |
HTML (-htmi) Ls
Markdown (md) f
vonsuss 16T (rst)

console  ppE yia LaTeX (pdf)
console

Trusted Notebook

Close and Halt






OEBPS/Image00116.jpg
Eranch: master = notebooks / Stats Analysi

ipynb

' danieltoomey Add files via upload

1 contributor

85 lines (84 sloc) | 2.1 KB

In [17]:

const stats = require("stats-analysis"’

var arr = [98, 98.6, 98.4, 98.8,

//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);

var my mean = stats.mean(arr) .toFixed(2);

//median

var my median = stats.median(arr);

dian absolute deviation
var my mad = stats.MAD(arz);

// outlier detection. Returns indexes of ou

var my_outliers = stats.indexOfOutliers (arz);






OEBPS/Image00119.jpg
In [17): const stats = require("stats-analysis

var arr = (98, 98.6, 98.4, 98.8, 200, 120, 98.5];

//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);

//mean
var my_mean

stats.mean(arr).toFixed(2);

//median
var my_median = stats.median(arr);

//median absolute deviation
ar my_mad = stats.MAD(arr);

// outlier detection. Returns indexes of outliers
var my_outliers = stats.index0fOutliers(arr);

// Remove the outliers
var my_without_outliers = stats.filterOutliers(arr);

//display our stats
console.log("Raw data is ", arr);
console.log("Standard Deviation is
console.log("Mean is ", my_mean);
console.log("Median is ", my_median);
console.log("Median Abs Deviation is
console.log("The outliers of the data set are
console.log("The data set without outliers is

, my_stddev);

+ my_mad);
", my_outliers);
, my_without_outliers);

Raw data is [ 98, 98.6, 98.4, 98.8, 200, 120, 98.5 ]
standard Deviation is 35.07

Mean is 116.04

Median is 98.6

Median Abs Deviation is 0.20000000000000284

The outliers of the data set are [ 4, 5, 6 |

The data set without outliers is [ 98, 98.6, 98.4, 98.8 ]

Out[17]: undefined






OEBPS/Image00118.jpg
s Ju pyter Stats Analysis Last Checkpoint: 06/13/2016 (autosaved)

Fle  Edit  View Insert Cell  Kemel  Widgets  Help

+/|x/@ B |[+[¢|n m Clcoe | | =] ceimoolbar

In [17]: comst stats = require("stats-analysis’);
var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5];

//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);

//mean
var my_mean = stats.mean(arr).toFixed(2);

//median
var my_median = stats.median(arr);

//median absolute deviation
var my_mad = stats.MAD(arr);

// outlier detection. Returns indexes of outliers
var my outliers = stats.indexofoutliers(arr);

// Remove the outliers
var my_without_outliers = stats.filteroutliers(arr);

//display our stats
console.log("Raw data is ", arr);






OEBPS/Image00121.jpg
R I——
Stats+Analysis-1.rst

6 var arr = (98, 98.6, 98.4, 98.8, 200, 120, 98.5];

7

8 //standard deviation

9 var my_stddev = stats.stdev(arr).toFixed(2);

10

11 //mean

12 var my_mean = stats.mean(arr).toFixed(2);

13

14 //median

15 var my_median = stats.median(arr);

16

17 //median absolute deviation

18 var my_mad = stats.MAD(arr);

19

20 // Outlier detection. Returns indexes of outliers
21 var my_outliers = stats. index0fOutliers(arr);

22

23 // Remove the outliers

24 var my_without_outliers = stats.filterOutliers(arr);
25

26 //display our stats

% console. log("Raw data is ", arr);

28 console. Log("Standard Deviation is ", my_stddev);
29 console.log("Mean is ", my_mean);

30 console. log("Median is *, my_median);

31 console. log("Median Abs Deviation is * + my_mad);
32 console. log("The outliers of the data set are ", my_outliers);
33 console. log("The data set without outliers is ", my_without_outliers.
34

35

36

37

38 .. parsed-literal

39

40 Raw data is [ 98, 98.6, 98.4, 98.8, 200, 120, 98.5 ]





OEBPS/Image00120.jpg
StatssAnalysis-Trst | StatssAnalysis.md
const stats = require("stats-analysi:

var a

= [98, 98.6, 98.4, 98.8, 200, 120, 98.5];

var my_stddev

tion
stats.stdev(arr).toFixed(2);

var my_mean = stats.mean(arr). toFixed(2);

var my_median = stats.median(arr);

var my_mad

// Outlier detection. tliers

var my_outliers = stats

ndex0fOutliers(arr);

e ou

/1 Remove
var my_without_outliers = stats.filterOutliers(a

//dis
console. log("Raw data is ", arr);
console. log("Standard Deviation is
console. log("Mean is ", my_mean);
console. log("Median is ", my_median
console. log(“"Median Abs Deviation is " + my_mad);

console. log("The outliers of the data set are ", my_outliers);
console. log("The data set without outliers is ", my_without_outliers);

Raw data is [ 98, 98.6, 98.4, 98.8, 200, 120, 98.5 ]





OEBPS/Image00122.jpg
Stats Analysis

July 14,2016

In [17]: const stats = require("stats-analysis");
var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5];

//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);

//mean
var my_mean = stats.mean(arr).toFixed(2);

//median
var my_median = stats.median(arr);






OEBPS/Image00113.jpg
ZJupyter widget Container 1 s
File Edit View Insert Cell Kernel Widgets Help

B+ (% @B + ¥ M E Clcode | = || Celoolbar

In [2]: from ipywidgets import *
from Ipython.display import display

slider = widgets.FloatSlider()
message = widgets.Text (value='Hello World')
container = widgets.Box(children=(slider, message])
container.layout.border = 'lpx black solid’

display(container)

e

|Python2 O

67

Hello World






OEBPS/Image00115.jpg
danieltoomey / notebooks O Umatch~ 1

<> Code Issues 0 Pull requests 0 Wiki Pulse Graphs Settings

No description or website provided. — Edit

@2 commits b Lbranch © 0 releases
.. ——————————————...... ...

Branch: master~ | New pull request Createnew file | Upload files Finy
danieltoomey committed on GitHub Add files via upload Lates
[E) READMEmd first commit

B) Stats Analysisipynb Add files via upload

README.md

notebooks






OEBPS/Image00114.jpg
ZJupyter widget Container 2 s ererses

File  Edit
B+ s
In [1]:

@ B A v M B C Code

View Inset  Cel  Kemel  Widgets  Help

=]

from ipywidgets import *
from Ipython.display import display

container = widgets.Box()
container.layout.border = 'lpx black solid’
display (container)

slider = widgets.FloatSlider()
message = widgets.Text (value='Hello World')
container.children=(slider, message|

CelToolbar

L

|Python2 O

67

Hello World






OEBPS/Image00087.jpg
ZJUPYTEr Node.s Load JSON Last checkpoint: o minues ago autosaved) ®

File  Edit View Inset Cell Kemel Help # | Javascript (Node,s) O

+|[/ @B [+ ¢ H W[Ccote | = || Celoolbar

In (27): //load the JSON dataset
//http:/ /wew. carqueryapi .com/api/0.3/?cal 1back=?6cmd=getNodelssmake=ford
var fords = require('/Users/dtoomey/fords.json');

//display how many Ford models are in our data set
console.log("There are " + fords.Models.length + " Ford models in the data set’);

//100p over the set
var index = 1
for(var i=0; i<fords.Models.length; i++) {

//get this model
var model = fords.Models[i];

//pull it's name
var name = model.model_name;

//if the model name does not have numerics in it
i£(1 name.mateh(/(0-91/1)) {
//display the model name
console.log("Model " + index + " is a " + name);
index++;

}

//only display the first 5
if (index>5) break;






OEBPS/Image00086.jpg
Raw data is [ 98, 98.6, 98.4, 98.8, 200, 120, 98.5 ]
Standard Deviation is 35.07

Mean is 116.04

Median is 98.6

Median Abs Deviation is 0.20000000000000284

The outliers of the data set are [ 4, 5, 6 ]

The data set without outliers is [ 98, 98.6, 98.4, 98.8 ]






OEBPS/Image00089.jpg
:’Jupyter Node.js Canvas aucsmes ®

File  Edit  View Inset Cell  Kemel  Help # | Javascript (Node.js) O

+//< @ B+ ¥ M B C|coe || Celoolbar

In (8]:|// create a canvas 200 by 200 pixels
var Canvas = require('canvas')

Image = Canvas.Image

canvas = new Canvas(200, 200)

ctx = canvas.getContext('2d")

string = "Jupyter!";

// place our string on the canvas
ctx.font = '30px Impact';

ctx.rotate(.1);|
ctx.fillText(string, 50, 100);

var te = ctx.measureText(string);
ctx.strokestyle = 'rgba(0,0,0,0.5)";
ctx.beginPath();

ctx.lineTo(50, 102);

ctx.lineTo(50 + te.width, 102);
ctx.stroke();

//create an html ing tag, with embedded graphics
console.log('<img src="' + canvas.toDataURL() + '" />');

<img src="data:image/png;base64 , iVBORWOKGGOAAAANSUNEUGAAAMGARADTCAYARACEH
K6eAAAABMILROQA/WD/AP+gvaeTARAJ YELEQVR4NO03dadwV 2 XnABT8LRY iWUNhLEWhTagW2Vm
MIRRGjbdoVFStEGO9IUaNMA7SePVgLXTpF0ULTka/aLVpqomXSqxaLBSqtKEGKVraAt ZSFra






OEBPS/Image00088.jpg
out[27]:

There
Model
Model
Model
Model
Model

5

are 147 Ford models in the data set
is a Aerostar

is a Anglia

is a Artic

is a Aspire

is a Bantam

a
a
a
a






OEBPS/Image00091.jpg
ZJupyter Node.js Plotly wemsons ®
File  Edit View Inset Cell  Kemel Help # | Javascript (Nodejs) O

B+ & B +[v [0 B ccoe & || CellToolbar

In [14]: //set random seed
var seedrandom = require('seedrandom');
var rng = seedrandom('Jupyter');

//setup plotly

var plotly = require(’'plotly') (username="<username>", ="<api key>")

var x = [];

for (var i =0; i< 500; i ++) {
x(i] = Math.random();

}
require('plotly’) (username, api_key);

var data = [
 §
¥ix;
type: "histogram"
¥
1i
var graphoptions = {filename: "basic-histogram’, fileopt: "overwrite'};
plotly.plot(data, graphOptions, function (err, msg) {
console.log(msg) ;

Out[14]: undefined

{ streamstatus: undefined,
url: 'https://plot.ly/-dantoomey/1',






OEBPS/Image00090.jpg
lupyten






OEBPS/Image00092.jpg
. plotly

-

SHOW || x] plots | [ Grias | [ | Foisers | [ x  prwvate | | public| ~

& Home
‘ i x
R o 0387097295607 a
O Recent 0279918756103

0833789543016
PSR 023877594457
B Trash 0244038771605

0995356167449

0156761112856

0540174414404

0.148360050982

basic-histogram basic-histogram Grid

afew seconds ago Oviews a few seconds ago 0views






OEBPS/Image00083.jpg
ZJUpYter Helio World Javascript wssssswses
File Edit View Insert Cell Kernel Help

B+ @ B A v M B C Code

In [1]: var msg = "Hello, World!"

Out[1]: undefined

In [2]: console.log(msg)

Hello, World!

Out[2]: undefined

=]

CellToolbar

®

Javascript (Node,s) O






OEBPS/Image00085.jpg
s Ju pyter Stats Analysis ussedchanges)
File Edit View Insert Cell Kernel Help

& || Celoolbar

+//%2 @ B+ ¥ | M B C|code

®

# | Javascript (Node,s) O

In [17): const stats = require("stats-analysis');

var arr = [98, 98.6, 98.4, 98.8, 200, 120, 98.5];

//standard deviation
var my_stddev = stats.stdev(arr).toFixed(2);

//mean
var my mean = stats.mean(arr).toFixed(2);

//median
var my_median = stats.median(arr);

//median absolute deviation
var my_mad = stats.MAD(arr);

// outlier detection. Returns indexes of outliers
var my_outliers = stats.indexOfOutliers(arr);

// Remove the outliers
var my_without_outliers = stats.filterOutliers(arr);
//display our stats

console.log("Raw data is ", arr);
console.log("Standard Deviation is
console.log("Mean is ', my_mean);
console.log("Median is ", my_median);
console.log("Median Abs Deviation is
console.log("The outliers of the data set are
console.log("The data set without outliers is

. my_stddev);

“ 4 my_mad);

, my_outliers);
, my_without_outliers);






OEBPS/Image00084.jpg
ZJupyter using D3 wus

®

Fle  Edit View Inset Cell  Kemel Help Javascript (Node,s) O

+ < BB A v M B C code & || Celoolbar

In [1): var fs = require("fs");
var d3 = require("d3");
var require("lodash”);

fs.readFile("data/animals.tsy", "utf8", function(error, data) {
data = d3.tsv.parse(data);
console.1og(JSON.stringify(data));

var maxWeight = d3.max(data, function(d) { return d.avg_weight; });
console.log(maxWeight) ;

Hi

Out[1]: undefined

[{"name":"lion", "avg_weight":"400"},{"name":"tiger", "avg_weight":"400"},{
human”, "avg_weight":"150"},{"name": "elephant”, "avg_weight":"2000"

“name

H
400






OEBPS/Image00098.jpg
ZJupyter interact Checkbox mses

File  Edit

B+ % @B ¥

In [4]:

In [5]:

In [6]:

View Inset  Cell Kemel  Widgets

» m | C|code

£rom ipywidgets import interact

def myfunction(x):
return x

interact (myfunction, x=False);

x

True

Help

=

CelToolbar

e

| Python2 O






OEBPS/Image00097.jpg
ZJu pyter INteract wnssves changes)

File  Edit

+ [

In [19):

In [20]:

In [21):

@ B 4 ¥ M B C Code

View Insert  Cell  Kemel  Widgets  Help

& || CellToolbar

£rom ipywidgets import interact

# define a function to work with (cubes the number)
def myfunction(arg):
return arg+l

interact (myfunction, arg=s);

arg D 27

28

e

| Python2 O






OEBPS/Image00002.jpg
Z Jupyter

Files | Running

Clusters






OEBPS/Image00100.jpg
ZJupyter interact Dropdown wsesses

e

File  Edit View Insert Cell Kemel  Widgets Help # |Python2 O
+ 5 BB A v M EC cue || CellToolbar
| In [4]: from ipywidgets import interact
In [5]: def myfunction(x):
return x
In (6]: interact(myfunction, x=('red’,'green’));

x green -

u'green’






OEBPS/Image00099.jpg
ZJUPYter interact Text Box s

File  Edit

B+ 3 & B 4 ¥ M B C Coe

(4

m (5

In [6]:

View Inset  Cell Kemel  Widgets Help

=

from ipywidgets import interact

def myfunction(x):
return x

interact (myfunction, x="Hello World");

X | Hello World

u'Hello World'

CelToolbar

2

| Python2 O






OEBPS/Image00153.jpg
Learning
Jupyter

Learn how to write code, mathematics, graphics, and
output, all in a single document as well as in a web
browser using Project Jupyter






OEBPS/Image00000.jpg
Mapt





OEBPS/Image00102.jpg
ZJupyter progress Bar s a
File  Edit View Inset Cell Kemel  Widgets  Help | Python2 ©

+ % & B A ¢ M B Ccoe & || CellToolbar

In (5): import ipywidgets as widgets

In [6]: widgets.FloatProgress(
value=i5,

description='Percent: ',

Percent: NN






OEBPS/Image00001.jpg
FEile Edit View History Bookmarks Tools Help

B & @ localhostasastree

e || Qinstallupytervindon > & A B

Vahtaee 5] Scrabble Word Finder.. &

SCRABBLE® Sprint M. 1A Scrabble Word Finder . Y drawio

= Jupyter

Files = Running  Clusters

Select items to perform actions on them.
-

3 2ddDrop

3 Anaconda2

Uploag | New~






OEBPS/Image00101.jpg
ZJuUpyter interactive Text Box wmes
Fle  Edit View Inset Cell  Kemel Widgets  Help

B+ < & B4 ¥ [N B Ccoe & || CellToolbar

In (5): from ipywidgets import interactive

In [6]: def myfunction(x):
return x

In (7): w = interactive(myfunction, x= "Hello World ");

In (8): from IPython.display import display
display (w)

X | Hello World

u'ello World '

e

| Python2 O






OEBPS/Image00094.jpg
seconds later
seconds later
seconds later
seconds later
seconds later

triple '0', and return
triple '1', and return
triple '1', and return
triple '2', and return
triple '3', and return
triple 's', and return 2 seconds later
triple '7', and return 2 seconds later
triple '11', and return 2 seconds later

Out[5]: undefined

Done [ 0, 3, 3, 6, 9, 15, 21, 33 ]






OEBPS/Image00093.jpg
= Ju pyter Node.js Asynch Threads tsses changes)

Fle  Edit View Inset Cell  Kemel Help Javascript (Node,s) O

+|[s</@B® [+ | W[ C|cote | = || Celoolbar

In [5]: | //thread function - invoked for every number in items array
function async(arg, callback) {
console.log('triple \''+arg+'\', and return 2 seconds later');
setTimeout (function() { callback(arg * 3); }, 2000);
3

//function called once - after all threads complete
function final() { console.log('Done’, results); }

//1ist of numbers to operate upon
var items = [ 0, 1, 1, 2, 3, 5, 7, 11 11

//results of each step
var results = [];

//loop the drives the whole process
itens. forEach(function(item) {
async(item, function(result){
results.push(result);
if(results.length
final();
¥

items.length) {

b
hi






OEBPS/Image00096.jpg
=Ju pytEF Widget Container 1 (uesaves

Fle  Edit View Inset Cell  Kemel Help

B[+ @ B+ v M B[ C | coe | (=] celmoobar

In [2]: from ipywidgets import *
from IPython.display import display

slider = widgets.Floatslider()
message = widgets.Text(value='Hello World')
container = widgets.Box(children=(slider, message])
container.layout.border = 'lpx black solid'

display(container)

The installed widget Javascript is the wrong version.

e

| Python3 o






OEBPS/Image00095.jpg
out(23

undefined

rows = 42
training_size = 28
test_size = 14
Decision Tree is { data:
[ { 'mpg,cylinders,displacement,horsepover,weight,acceleration,modelye
ar,maker': 'Bad,8,400,170,4746,12,71,America’ },
{ 'mpg,cylinders,displacement,horsepower,weight,acceleration,modelye






OEBPS/Image00072.jpg
ZJupyter Juia Gadfly Scatterplot K
File Edit View Insert Cell Kernel Help. Julia045 O

+ 5x A B (A v M EC coe [] [ =] ceimoolbar

In [1]: using Gadfly
srand (111)
plot (x-rand(7), y-rand(7))

out[1]:

i

ors






OEBPS/Image00065.jpg
A fresh approach to technical computing
Docunentation: http://docs. julialang.org
Type "Thelp” for help.

Uersion 0.4.5 (2016-83-18 08:58 UTC)
Official htip:/7julialang.org/ release
1686-u64-mingu32






OEBPS/Image00064.jpg
upeas B

Text File
Folder

Terminal

Notebooks
Julia 0.4.5
Python 3
R






OEBPS/Image00067.jpg
Upload

Text File
Folder

Terminals Unavailable

Julia 0.4.5

Python 2
R






OEBPS/Image00066.jpg
Julin> Ply-add< Tdulia">
Cloning cache of HinDeps from git://github.con Julialang/Bindeps j1.git
Cloning cache of Compat frem git:/ eithub.consdulishangsCompat
Cloning cache of Conda From it://uithub.comsLuthat -Conda 3
: Cloning cache af Idulis frem git:/sgithub.consduliaiang/]Jul
Cloning cache of JSON from git://github.comsduliabang, JON.
el O B i A e 51 i

: Cloning cache of Mettle from git://github.con/staticfloat/Mettle. jl.git
Cloning cache of SHA from giti//github.con/statict loat SHAL il gil
Cloning cache of URIParser from git://github.con/Julialeh il Parser. j1.git

iiﬁiiﬁiiﬁiﬁ 833 5333

: Cloning cache of WinBPN from git://github.com/JuliaLang/WinkPN. j1.git
Cloning cache of ZMQ from git://github.com/Julialang/ZNQ. §

Gloning cache of Z1ib fran’giti/gichub.consde jomes/Z11h 31 gie

in ing BinDeps v8.3.21

Installing Compat v8.7.i8

installing Conda v@.2.8

Installing

installing

Installing LibExp

installing Nettle

Installing SHA va.

installing URIPar:

Installing WinRPH

installing ZMQ

Installing

Building WinRPN

RNING: skipping repodata/repond.xnl, not in cache — call WinRPM.update() to d|

i
i
i
i
i
i
i
i
i
i
i
i

nd.xnl. not in cache —— call UinRPN.update<> to dl






OEBPS/Image00069.jpg
In [7]:

using RDatasets, DataFrames

define the size of the plot area

In [8]: set_default plot_size(Sinch, Sinch/golden);
plot out the iris sepal width by the sepal length
In [9]: ot(dataset("datasets”,"iris"), x="SepalWidth", y="Sepallength”, color="Species")

]

SepalLength

20 25 30 25 0
SepalWidth

Species
# setosa

= Versiobr
= vighica






OEBPS/Image00068.jpg
Q€
ZJupyter Julia iris wsses e

File

Edt  View Inset  Cell  Kemel Help
+|< ;B +[v|[n m|c|coe [2] ‘= | ceimoolbar
In [ 1: using RDatasets, DataFrames, Gadfly

define the size of the plot area
In [ 1: set defeult plot size(Sinch, Sinch/golden);

plot out the iris sepal width by the sepal length
In [ ]: describe(dataset("datasets","iris"))
In [ ]:

localhost 2888/ notebooks/Julia e || Q searcn

+ A wB

»

Juia045 O

plot (dataset ("datasets", "iris"), x="SepalWidth", y="Sepallength”, color="Specie:

]






OEBPS/Image00071.jpg
ZJupyter uia describe wsmes

File  Edt  View Inset  Cell  Kemel  Help

+ 3 @A B 4 ¥ M B C cCoe

In [1]: using RDatasets
describe (dataset ("datasets", "

Sepallength
Min 4.
1st gu.
Median 5.
Mean, .843333333333332

3rd gu.
Max
Nas
et

Sepalwidth
Min 2.0

Hl=

CellToolbar

Juia045 O






OEBPS/Image00070.jpg
ZJUpYter scatterplot s s

File  Edit
B+
In [4]:

View Inset  Cell  Kemel  Help

using Gadfly
Plot (x-rand(7), y-rand(7))

INFO: Recompiling stale cache file C:\Users\Dan\.

3i for module ArrayViews.

INFO: Recompiling stale cache file C:\Users\Dan\.

i for module StatsBase.
INFO: Recompiling stale cache file
i for module StatsFuns.

INFO: Recompiling stale cache file C:\Users\Dan\.

or module Gadfly.
INFO: Recompiling stale cache file
or module Codecs.

INFO: Recompiling stale cache file C:\Users\Dan\.

umbers.ji for module FixedPointNumbers.

INFO: Recompiling stale cache file C:\Users\Dan\.

or module Colors.

Users\Dan\ .

:\Users\Dan\.

@ B4 v M m Ccue [2] [ = || ceimoolbar

Julia\lib\v0
Julia\lib\v0
Julia\lib\v0
ulia\lib\v0
Julia\lib\v0
Julia\lib\v0

Julia\lib\v0

L)
Julia 045 @

-4\ArrayViews.
.4\StatsBase.j
.4\StatsFuns.j
.4\Gadfly.ji £
-4\Codecs. 31 £
-4\FixedPointN

.4\Colors.31 £






OEBPS/Image00063.jpg
4000 6000 8000 10000

2000

— T T T T T T T T T T T
Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec

Month






OEBPS/Image00076.jpg
0.40

0.35

e © o ©
2NN W
G S o o

Precipitation

Boston Precipitation

5

10 15 20 25 30
May 2013

35






OEBPS/Image00075.jpg
Group
ehaie

© tables
e

® g
lamps.






OEBPS/Image00078.jpg
In [3]:

function larger(x, y)
if (wy)
return x
end
return y
end
println(larger(7,8))






OEBPS/Image00077.jpg
ZJupyter i Parallel Processing

File  Edt  View Inset  Cell  Kemel  Help

+ 3 @A B 4 ¥ M B C coe

In [1]: addprocs (1)
srand (111)
= = remotecall(rand, 2, 3, 4)
s = gspaunat 2 1 .+ fetch(r)
fetoh(s)

Out(i]: 3x4 Array(Float6d,2):
1.17558 1.35232 1.9891  1.22328
1.36165 1.2355 1.39344 1.17494
1.95311 1.30926 1.54958 1.84229

[2] ‘= ceimootbar

Juia045 O






OEBPS/Image00080.jpg
ZJupyter Juia Unit Tests

File  Edt  View Inset  Cell Kemel Help

+ 5x A B (A v M EC coe [] [ =] ceimoolbar

In [13]: using FactCheck
£(x) = x°3
facts ("cubes") do
@fact £(2) -—> 8
@fact £(2) -> 7

end
cubes
Failure :: (Linei-1) :: fact was false
Expression: £(2) -=> 7

Expected: 7
Occurred: &
out of 2 total facts:
Verified: 1
Failed: 1

0st[13]: delayed handler (gemeric function with 4 methods)

Juia045 O






OEBPS/Image00079.jpg
File  Edit

+] 5

In [2]:

out[2]:

In [1]:

out[1]:

foo Ju pyter Julia Regex

View Inset  Cell  Kemel  Help

@ B[4 v 4 W Clcme BRE

1smatch (z"~\ ([0-2] {3}\) [0-9] {3}-[0-2] {4}5",

true

1smatch (z"~\ ([0-9] {3]\) [0-9] {3}-[0-2] {4}5",

false

Juia045 O

CellToolbar

" (781) 244-121.






OEBPS/Image00082.jpg
Upload B

Text File
Folder

Terminal

Notebooks
Javascript (Nodejs)
Julia 0.4.5

Python 2






OEBPS/Image00081.jpg
In [9]: using Base.Test

£(x) = x°3
est £(2
etest £(2)

LoadError: test faile
in expression: £(2)
while loading In[8], in expression starting on line 4

in error at error.jli2l
in default handler at test.j
in do_test at test.jl:53






OEBPS/Image00074.jpg
ZJupyter winston Plotting

File  Edit  View Inset  Cell  Kemel  Help # |Jia045 O

43 @ B[4 ¥ M B C coe [] | = | ceimoolbar

In [8]: using Winston
srand(111)

ate a plot
L = plot (cunsun(rand (100) .- 0.5), "g", cumsum(rand(100) .- 0.5)
# display the plot

display (pl)

<[ il ’

e

0 20 40 60 80 100






OEBPS/Image00073.jpg
ZJupyter Juia Histogram A

File Edit View Insert Cell Kenel Help ‘ Julia 045 O
B+ @B+ v nmcCcou || CelToolbar |
B
In [1]: using Gadfly
srand(111)
plot (x-randn(113), Geom.histogram(bincount=10))
Out[1]:
2
2
15 =|






OEBPS/Image00051.jpg
ZJupyter RBasics wemom

Fle  Edit View Inset Cell  Kemel Help

B 4+ 3 @B 4 ¥ N B C Coe

In [1): string <- "Hello, World!"

In [2]: print (string)

[1] "Hello, World!"

=]

CellToolbar

|ro






OEBPS/Image00050.jpg
ZJupyter RBasics wees

Fle  Edit View Inset Cell  Kemel Help

B 4+ 3 @B 4 ¥ N B C Coe

In [ ): string <- "Hello, World!"

In [ ]: print (string)

=

CellToolbar

|ro






OEBPS/Image00052.jpg
ZJUpyter Riris womes R
Fle  Edit View Inset Cell  Kemel Help s |rRO

+ 5 A B A v M B C code || CelToolbar

In [ ]: data(iris)

In [ ]: summary(iris)

In [ ): plot(iris)






OEBPS/Image00043.jpg
Z JUpPYter python Pandas wesmea

File  Edit  Vie Inset  Cell  Kemel  Help | Python 2 O
+ 5 m B[4 ¥ M B Ccoe CellToolbar
ST . : Heath e - _— =
(Lily May
Peel)
Allen, M.
4|5 0 3 wiliam  |male 3500 |0 |373450 |8.05
Henry
In [221: t of male vs femal
male = training set[training_set.Sex — 'male’]
female = training set[training_set.Sex —'female']
In [23]: | # calculate the different survival rat

womens_survival rate = float(sum(female.Survived))/len(female)
mens_survival _rate = float(sum(male.Survived))/len (male)
womens_survival rate, mens_survival rate

out[23]: (0.7420382165605095, 0.18890814558058924)

2






OEBPS/Image00045.jpg
Z JUpyter pyton Graphics e asroes e
File  Edit  View Inset  Cell  Kemel  Help | Python 2 ©

+(scm B[4 v N W Ccoe [] | =] ceimoolbar

# Enable inline plotting
#matplotlib inline

baby name = ['Alice’,’Charles’,'Diane’, 'Edw
number_births = [96, 155, 66, 272]

m the tvo columns

In [42]: | # create a data set
dataset = 1ist(zip(baby_name, number_births))
dataset

out[42]: [('Alice', 96), ('Charles', 155), ('Diane’, 66), ('Edward’, 272)]

In [431: | # create a Bython dataf: rom the dataset
df = pandas.DataFrane (data = dataset, columns=['Neme', 'Number'l)
af

£[43]:

Name |Number

o|Alce |96

1|Charles | 155

2|Diane |66

3|Edward |272






OEBPS/Image00044.jpg
ZJupyter python Graphics wuses

File  Edt  View Inset  Cell  Kemel  Help

+x ma B[4 ¢ M B C oo [] | = | celoolbar

In [ ]: import pandas
import matplotlib

# Ena plottin,
matplotlib inline

In [ 1: | # define our tvo o
baby name = ['Alice’,'Charles’,'Diane’, 'Edvard’]
number_births = [96, 155, 66, 272]

In [ 1:|# create a data set from the tvo columns
dataset = 1ist(zip(baby_name, number_births))
dataset

In [ ]:) £
at
at

ate a Bython dataf:
pandas.DataFrame (data = dataset, columns=['Name',

rom the dataset

In [ 1: | # plot the data
dE['Number'].plot ()

"Number'])

2

|Python 2 ©






OEBPS/Image00047.jpg
ZJupyter python Random Numbers weses

File  Edt  View Inset  Cell Kemel  Help

+sc m B[4 v W B Ccoe [] | = | ceimoolbar

e

|Python 2 @

In [*]: import pylab
import random

randon. seed (113)
samples = 1000

dice = ]

for 1 in range(samples):
total = random.randint(1,6) + random.randint(1,6)
dice.append (total)

print "Ihzow two dice”, samples, "times."
print Mean of", pylab.mean(dice)

Pprint Mgedian of", pylab.median(dice)
print "Std Dev”, pylab.std(dice)

pylab.hist (dice, bins= pylab.arange(1.5,12.6,1.0)
Ppylab.xlabel ('Pips’
pylab.ylabel ('Count’

pylab. show()

Throw two dice 1000 times.
Mean of 6.905

Median of 7.0

Std Dev 2.45397127123






OEBPS/Image00046.jpg
In [27]: | # plot the data
dE['Number'].plot ()

0ut(27]: <matplotlib.axes. subplots.hxesSubplot at Ox47c£B8£0>

00

0

20

150

100

B
00 05 10 13 20 25 30






OEBPS/Image00049.jpg
Upload

Text File
Folder

Terminals Unavailable






OEBPS/Image00048.jpg
Figure 1

POO +¢

=1 K4

==

180

160

140

120

100

Count

Pips






OEBPS/Image00062.jpg
T
00or

T
000¢

T
0002

T
0004

Jeuoseas

T
0

T
0001~

T
0002~






OEBPS/Image00061.jpg
fraser

4000 6000 8000 10000

2000






OEBPS/Image00054.jpg
In (3]: plot(iris)

20 30 40

0s 15 25

Ii!%’

Sepal Length

75

#

6‘

A
e

b [l A

50

Petal Length

.l 1

fﬁ?}

%

50

F

Petal Width

Species

45 55 65 75

1234567

0 15 20 25 30






OEBPS/Image00053.jpg
ZJUpYter Riris womes

Fle  Edit View Inset Cell  Kemel Help

B 4|3 @B 4+ ¥ [N B C Coe

In [1]: data(iris)

In [2]: summary(iris)

Out[2]:  Sepal.Length  Sepal.Width
Min. .300  Min.  :2.000
1st Qu.:5.100  lst Qu.:2.800
Median :5.800 Median :3.000
Mean .843  Mean  :3.057
3rd Qu.:6.400  3rd Qu.:3.300
Max. 900  Max. .400

Species
setosa 150

versicolor:50
virginica :50

| e || ceimoolbar

Petal.Length
Min.  :1.000
1st Qu.:1.600
Median :4.350
Mean  :3.758
3rd Qu.:5.100
Max.  :6.900

Petal.width
Min.  :0.100
1st Qu.:0.300
Median :1.300
Mean  :1.199
3rd Qu.:1.800
Max.  :2.500

|ro






OEBPS/Image00056.jpg
ZJUPYLEr persp wrses e

File  Edt  View

+

persp>
pezsp>
pezsp>
persp>
pezsp>
pezsp>
persp>
persp>
persp>
pezsp>
persp>
persp>

pezsp>

pezsp>
)

persp>

Inset  Cell  Kemel

@ B[4 ¥ W mC coe [2] [ = || celmootbar

example (persp)

require (grDevices) # for transid

#

#2 More examples in demo(persp) !!

# (1) The Obligatory Mathematical surface.

i

2l1s.
op <=

persp(x, y, z, theta

Rotated sinc function.

seq(-10, 10, length= 30)

function(x, y) [ T < sqrt(x2+y*2); 10 * sin(x)/z }
outer(x, v, f)
na(z)] < 1

paz(bg = "white")

30, phi = 30, expand = 0.5, col = "lightblue"

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue"






OEBPS/Image00055.jpg
() localhost:5838 notebooks/persy | C

(=3

1 Yahtzee D) Scrabble Word Finder ...

ZJupyter persp e

File  Edt  View Inset  Cell  Kemel

3 G B 4 ¥ MW B C|code

In [ 1: example(persp)

Help

=

L 2 gl =]

SCRABBLE® Sprint | ... A, Scrabble Word Finder

CellToolbar

B drwio

»






OEBPS/Image00058.jpg
ZJupyter iatice cloud wumesmersen

File  Edit
+| 5
In [11]:
In [12]:
In [13]:
In [ 1:

View Inset  Cell  Kemel  Help |rO

@ B[4 v 0w Ccoue [2] [ = || ceimoolbar

make sure lattice package is installed
library("lattice")
Use the automobile data from ics eduuse the automobile data from ics edu

mydata <- read.table ("http://archive.ics.uci.edu/nl/machine-learning-databases/:

<[ il 1 »

define more meaningful column names for the display

Golnames (mydata) <- c("mpg", "cylinders”, "displacement”, "horsepower”, "weight!

4 m I y

3-D plot with number of cylinders on x axis, weight of the vehicle on the y axis and miles per gallon
on the z axis

cloud (mpg~cylinders*ueight, data=mydata)






OEBPS/Image00057.jpg





OEBPS/Image00060.jpg
ZJupyter cluster wome

File  Edit  View Inset  Cell  Kemel  Help s |RO

4+ 5@ B[+ v 0 W CMakdown [1] = | Celoolbar

In [ 1: wheat < read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/002
<] i ] v
define useful column names

In [ 1: | colnames(wheat) <-c("area”, "perimeter”, "compactness”, "length”, "width”, "asyl
En i ] y
exclude incomplete cases from the data

In [ ]: wheat <- wheat[complete.cases (wheat),]

In [ 1: calculate the clusters

In [ 1: £it <- kneans(wheat, 5)

In

fit






OEBPS/Image00059.jpg
mpg

cylinders






OEBPS/Image00029.jpg
Edit Notebook Metadata

Manually edit the JSON below to manipulate the metadata for this Notebook. We recommend putting custom
metadata attributes in an appropriately named sub-structure, so they don't confiict with those of others.

1 {

"kernelspec”: {

3 “name": "python2",
“display_name": "Python 2",
“language": "python”

b

"language_info": {
“mimetype”: "text/x-python",
“nbconvert_exporter”: "python",
“name": "python",
“pygments_lexer": "ipythonz",

2 “version": "2.7.11",
“file_extension": ".py"

“codemirror_mode": {

- B






OEBPS/Image00150.jpg
~ Jupyter spark Bigrams from News wusees A

File  Edt  View nset  Cell  Kemel Help # |Python2 O

+5c m B[4 ¢ M B C oo [] | =] ceimoolbar

import pyspark

if mot 'sc' in globala():
sc = pyspark. SparkContext ()

sentences = sc.textFile('2600zaid. txt’) \
-glom() \
‘map(lambda x: " ".join(x)) \
“£latlap (lambda x: x.split("."))
print (sentences. count (), "sentences")

bigrams = sentences.map (lambda x:x.split()) \
-£latlap (lambda x: [((x[1],x[1+1]),1) for i in range(0,len(x)-1)])
print (bigrans.count (), "bigrams")

£requent bigrams = bigrams.reduceByRey (lambda x,yixty) \
-map (Lambda x: (x[1],x[0])) \
.sortByRey(False)

£requent_bigrams.take (10)

(220, *sentences’)
(3463, 'bigrams’)

out

[(36, (u'of', u'the')),
(15, (u'the’, u'mall')),
(12, (w'at’, w'this')),
(12, (u'en’, u'the')),
(12, (a'to’, u'the')),
(11, (u'the’, u'guards')),






OEBPS/Image00028.jpg
@ (€ O localhostssss/notebooks/Untit | G || Q Search 3+ A wB 4 » » =
Zjupyter untitied wome a
File  Edit  View Inset  Cell  Kemel  Help | Python 2 ©
+ % & B 4+ ¥ M EC coe [x] = celmoolbar

lIn[]: ‘






OEBPS/Image00149.jpg
ZJupyter spark Primes wumea a

File  Edt  View Inset  Cell  Kemel Help # |Python2 O

+|[ 4 v M mC coe [] [ = | ceimoolbar

abs (int (numbex) )

# simple tests
if number < 2:
return False

# 2 is prime
if number = 2:
return True
# other even numbers aren't
if not number & 1
return False

# check vhether number is divisible into it's squa
for x in range(3, int(number**0.5)+1, 2):
if number ¥ x = 0:
return False

#if ve get this far ve are good
return True

# create a set of numbers to 100,000
numbers = sc.parallelize (xrange (100000))

# count out the number of primes ve found
print numbers. filter(is_it_prime) .count()

9502






OEBPS/Image00031.jpg
Zjupyter untitled wuomes

File  Edit Inset  Cell  Kemel  Help

+ [ 5| Toggle Header B[ C | cose
Toggle Toolbar

None
Edit Metadata

Raw Cell Format
Slideshow

5 = (o]






OEBPS/Image00152.jpg
guest = row['Raw_Guest_List'l
if guests.has_key(guest
gquestsguest] = guestslguest] + 1
else:
questslguest] = 1

syears = sorted(years.items(), key=operator.itemgetter(l), reverse=True)
soccupations = sorted(occupations.items(), key=operator.itemgetter(l), reverse=:
sguests = sorted (guests.items(), key=operator.itemgetter(1), reverse=True)

print syears[:5]
print soccupations([:5]
print sguests[:5]

<[ i ] ’

[('2000", 168), ('1999', 166), (*2003', 166), ('2013', 166), ('2010', 165)]
[("actor’, 5%), ('actress', 271), ('journalist', 180), ('author’, 102), (*
Journalist’, 72)]

[('Fareed Zakaria', 19), ('Denis Leary', 17), ('SBrian Williams', 16), (*Bau
1 Rudd’, 13), (‘Ricky Gervais', 13)]






OEBPS/Image00030.jpg
Find and Replace.

"






OEBPS/Image00151.jpg
= Jupyter

File  Edit

+][

View
@B

import
import
import
import
import

if not

Spark Daily Show Guests (suossves)

Inset  Cell  Kemel Help

4 v M mC coe [2] | =] ceimoolbar
pyspark

operator

itertools

collections

*sc’ in globals():
= pyspark. SparkContext ()

years = ()
oceupations = |

4]

quests

#YEAR, Goo;

with open('dai;

how_guests.csv',

reader = csv.DictReader (csvEile)
for row in reader:

year = row['YEAR']
if years.has key(year):
yearsiyear] = yearslyeaz] + 1
else:
yearsiyear] = 1

occupation = row['GoogleKnowlege Occupation']
if occupations.has_key (occupation) :

occupations[occupation] = occupationsloccupation] + 1
else:

occupationsoccupation] = 1

L

| Python 2 ©






OEBPS/Image00032.jpg
Uplosa o

Text File
Folder

Terminal

Notebooks
Julia 0.4.5
Python 2






OEBPS/Image00023.jpg
Rename file

Enter a new file name:

propertes

[ [






OEBPS/Image00144.jpg
ZJUpyter spark File Line Lengths s
File Edit View Insert Cell Kernel Help

+ 5x A B (4 v M EC coe [] [ =] ceimoolbar

2

# |Python2 O

In [2]: | import pyspark
if not 'sc’ in globals():
sc = pyspark. SparkContext ()

lines = sc.textFile("Spark File Words.ipynb")
linelLengths = lines.map(lambda s: len(s))|
totallength = lineLengths.reduce (lambda a, b: a + b)
print (sotallength)

21116






OEBPS/Image00143.jpg
ZJupyter scalaTraits womes |
File  Edit View Inset  Cell  Kemel  Widgets  Help # |Scaa2.11 O

+ /< & B 4/v [N B Ccoe & || CellToolbar

In [1]: trait Color {
def isRed(): Boolean

3

class Red extends Color {
def isRed() = true

b

Blue extends Color {
def isRed() = false

}

var red = new Red();
var blue = new Blue();
red.isRed()
blue.isRed()

defined trait Color
defined class Red

defined class Blue

Suser.Red = cmd0$SusersRed@1029c76%
blue: $user.Blue = cmd0$$usersBlue€29bd267d
res0_5: Boolean = true

res0_6: Boolean = false






OEBPS/Image00025.jpg
[@rievpons - s S N
oo =x

Organize = Newfolder
Fe Favortes S Neme S
3 Dropbox Libraries
B Desitop & Homegroup
] Recent Places B 0o
5 Downloads 15 Computer
G Network
Libraries (& CertAid for Intemnet Explorer
3 Documents B PaintNET
& Music B8 WinMerge
5 Pictures i backbone-master
H Videos 3 Cindy
Wre -

& Homearoun [ ————] D;
File name: ~| (A Files






OEBPS/Image00146.jpg
ZJupyter spark Sort Words from File sses anges

File  Edt  View Inset  Cell  Kemel Help

+sx m B[4 v M m Ccoe [] =] ceimoolbar

In [2]: import pyspark
if mot 'sc' in globals():
sc = pyspark. SparkContext ()

text _file = sc.textFile("Spark File Words.ipynb")

sorted_counts = text_file.flatMap(lambda line: line.split(" ")) \
-map (Lawbda word: (word, 1)) \
.reduceByRey(lanbda a, b: a + b) \
-sortByRey ()

for x in sorted counts.collect():

print x
(a'r, 779)
(", 4)

L ey
(a'" (u\" (<ipython-input-5-78880£28c2305,\", ', 1)
(a'" (a\" (word,\", *, 1)

e

| Python 2 ©






OEBPS/Image00024.jpg
Delete

Are you sure you want to permanently delete: addDrop properties?






OEBPS/Image00145.jpg
ZJupyter spark File Words wusses

File  Edt  View Inset  Cell Kemel Help

+5x A B (4 v M EC coe [2] [ = || ceimoolbar

d

# |Python2 O

In [6]: import pyspark
if mot 'sc’ in globals():
sc = pyspark. SparkContext ()

text_file = sc.textFile("Spark File Words.ipynb")
counts = text_file.flatMap(lambda line: line.split(" ")) \
“map (lambda word: (word, 1)) \
.reduceByRey (lanbda a, b: a + b)
for x in counts.collect():
print x

(a'r, 238)
(a'counts.collect () :\\a", *, 1)
(a' "outputs": ", 1)

(a'false’, 1)

(a'"source": ', 1)

(a (word, ", 1)
(u’"codemirror_mode":', 1)






OEBPS/Image00027.jpg
Language

JSON-D
Jinja2
Julia

Kotlin
LESS

LiveScript
Lua

Markdown






OEBPS/Image00148.jpg
ZJuUpyter Log File Examination wueses [
File  Edit  View Inset  Cell  Kemel  Help # |Python2 O

+5x m B[4 ¥ M EC coe [2] [ = || ceimoolbar

In [12]: import pyspark
if not 'sc’ in globals():
sc = pyspark. SparkContext ()

textFile = sc.textFile("access_log")
print (textFile.count (), "access records”)

gets = textPile.filter(lambda line: "GEI" in line)
print (gets. count (), "GETs")

posts = textFile.filter(lambda line: "FOST" in line)
print (posts. count (), "BOSTa")

other = textPile. subtract (gets) .subtract (posts)|
print (other.count () , "Other")
Zor x in other.collect(

print x

(1546, *access records’)
(1525, 'cers’)

(14, "rosts’)

(1, *other’)

64.246.94.152 - - [08/Mar/2004:20:09:57 -0800] "HEAD /twiki/bin/view/Main/s
pamAssassinDeleting HTTP/1.1" 200 0






OEBPS/Image00026.jpg
File Edit View History Bookmarks Tools Help.

= untitiedLbt

ocshotagzR cduriiedion | G || O searcn [+ & %

& i Yahizee ] Scrabble Word Fnder.. 5 SCRABBLE® Sprnt | M... A\ Scrabble Word Fnder

B drwio

ZJupyter unitledt.oxt v afew seconds ago

File Edt  View Language

Plain Text






OEBPS/Image00147.jpg
ZJupyter Estimate Pl wuses

File  Edt  View Inset  Cell  Kemel Help

B+ @ B[4 v nm Clcoue [2] [ = || ceimoolbar

import pyspark
import random

if not 'sc' in globals():
sc = pyspark. SparkContext ()

NUM_SAMPLES = 1000

def sample(p):
%,y = random. randon() , random. random ()
return 1 if x*x + y'y < 1 else 0

count = sc.parallelize (xrange (0, NUM_SAMPLES)) \

-map (sample) \
.reduce (lanbda a, b: a + b)

print "Bi is roughly R£" % (4.0 * count / NUM SAMPLES)

i is roughly 3.208000

e

| Python 2 O






OEBPS/Image00040.jpg
Z JUPYtEr python Data Access wmsescansen a

File  Edit  View Inset  Cell  Kemel Help | Python2 ©

+[sc/m B[4 v 0 m c e [2] [ = || ceimoolbar

In [11: | # import the datasets package
from sklearn import datasets

In [2]: |# pull in the iris data

iris_dataset = datasets.load iris()
b the
iris_dataset.datal:, :2]

st tvo columns of data

In [3]: | # calculate some basic statistics
x_count = len(X.flat)

xmin = X[z, 0l.min() - .5

*_max = X[z, 0].max() + .5

% mean = X[:, 0].mean()

In [41: | # display our results
x_count, x_min, x_max, x mean

out[4]: (300, 3.7999999999999998, §.4000000000000004, 5.8433333333333337)






OEBPS/Image00039.jpg
ZJupYter python Data Access wrmes e

File

-

In

I

In

[

Edit

5

1

i

1

View Inset  Cell  Kemel  Help

@B+ v [ n/m cllcoue El=

# import the datasets package
from sklearn import datasets

in the iris data
datasets.load iris()

t tvo columns of data

iris dataset
# grab the

X = iris dataset.datals, :2]

# calculate some basic statistics
x_count = len(X.flat)

xmin = X[z, 0].min() - .5
0l.max() + .5

x_max = X[
x_mean = X[:, 0].mean()

CellToolbar

e

# |Python2 O

In

[

1=

# display our results
x_count, x_min, X max, X mean






OEBPS/Image00042.jpg
Z JUPYLEr Python Pandas wumes cres e

Help | Python 2 ©

File  Edt  Vie Insert  Cell

B[+ @ B[+ v 0 m[C coe [] | =] ceimoolbar

el

training set = read csv('C:/book2/chapt:
training set.head()

Passengerld | Survived |Pclass [Name  |Sex |Age|SibSp|Parch|Ticket |Fare

Braund,
of1 0 3 Mr. Owen |male |22.0(1 0 AI5 21171 |7.25
Harris.

Cumings,

Mrs_ John

Bradley

1|2 1 1 female|38.01 0 PC 17599 |71.2
(Florence.

Briggs

Th

Heikkinen,

STON/O2
2|3 1 3 Miss. female |26.0 0 0 Tor2s2 |792
Laina






OEBPS/Image00041.jpg
ZJUpyter python Pandas wmes

File

+

In

In

Edit

5

1:

View Inset  Cell  Kemel  Help

@ B4 v nm Ccoe [2] [ = || ceimoolbar

# ve are just using csv handling, but pandas are extensive
f£rom pandas import *

# ve are using the machine learning training set

training set = read cav('train.cav')

training set.head()

# break out the set of male vs female
male = training set[training set.sex
female = training set([training set.sex

L

# |Python2 O

nt survival rates
£loat (sun(female. survived)) /len(£emale)
£loat (sun(male. survived)) /len (male)

# calculate the diff
womens_survival rate

mens_survival rate
womens_survival rate
mens_survival rate






OEBPS/Image00034.jpg
O

Home

€)a

(& Most Visited ~
Z Jupyter

3 webex-cps-common

localhost:8888/treet

A, Scrabbe Word Fin.

3 Workspaces
B Learning Jupyter Chapter 2.ipynb

8 Untitied.ipynb

Learning Jupyter Ghapter 2

+

¥ Authentication and...

€ | Q search

"B 93 AOH-

X APiBost ff RAPID X, Programs X, Get Session

Running






OEBPS/Image00155.jpg





OEBPS/Image00033.jpg
O

Home

| © | localhost:3888/notebooks/Untitied c

(3] Most Vised ~ 4, Scrabole Word Fin.

Untiteat
Q search wB 93 AOH»- =
X APiBest  f§ RAPD X, Programs XX, Gt Session >

¥ Authentication and...

ZJupyter untitiedt wesmes

File  Edit  View Insert

B+ % @B ¥

[=0

Cell  Kemel

» m|C|code

Help

=

CelToolbar

e

| Python2 O






OEBPS/Image00154.jpg





OEBPS/Image00036.jpg
o Home %/ = Loaming upyter Chapter2 +

(€) ) oarnostassanotssonisisamng iy | @ | Q Searn "EO 4 AOH =

(5 MostVisted ~ 4, Scrabble Word Fin... ' Authenticationand.. X, APIBest fff RAPD X, Programs X, Get Session »
a4 Jupyter Learning Jupyter Chapter 2 ssss changes) '3‘
File  Edit View Insert Cell  Kernel  Help # |Python2 O

+ % @& B [+ ¥ M B CCode & || CellToolbar

“ban-
37

In [ ]: print(name + ' is ' + str(age) +

years old.')






OEBPS/Image00157.jpg





OEBPS/Image00035.jpg
eoe @ dtoomey
< H = EENERE N R=] Q

Favorites. Name ~  Date Modified
& iCloud Drive W _Learning Jupyter Chapter 2.ipynb Today, 3:46 PM






OEBPS/Image00156.jpg





OEBPS/Image00038.jpg
ece % dtoomey — jupyter_mac.command — python2.7 — 118x17

Last login: Tue Apr 26 15:28:27 on ttysesl B,
dtoomeys /Users/dtoomey/anaconda/bin/jupyter_mac.command ; exit

.31 NotebookApp] Serving notebooks from local directory: /Users/dtoomey

1331 NotebookApp] © active Kernels

1331 NotebookApp] The Jupyter Notebook is running at: http://localhost:B888/

£331 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation)

£489 NotebookApp] Creating new notebook in

-104 NotebookApp] Kernel started: 034517bb-0173-4814-901f-f53a4d0efaes

1062 NotebookApp] Saving file at /Untitledl.ipynb

-651 NotebookApp] Saving file at /Learning Jupyter Chapter 2.ipynb

1949 NotebookApp] Saving file at /Learning Jupyter Chapter 2.ipynb

£985 NotebookApp] Saving file at /Learning Jupyter Chapter 2.ipynb
2
2

1798 NotebookApp] Saving file at /Learning Jupyter Chapter 2.ipynb
1945 NotebookApp] Saving file at /Learning Jupyter Chapter 2.ipynb






OEBPS/Image00160.jpg
Learning
Jupyter






OEBPS/Image00037.jpg
ece - e S ooy oz % \
| @ localhost:a888/notebooks/Leaming . | @ Q Search wB + A #l | =
(5] MostVistod ~ 4, Scrabble Word Fn... ¥ Auentcationand... X, APiBsst fff RAPID X, Programs X, Get Session
BJu pytET Learning Jupyter Chapter 2 fucsses é‘
File  Edit View Inset  Cell  Kemel Help | Python2 ©

&= || CellToolbar

B+ & B[4 & [0 B C|cue

In (1]: name = "Dan"
age = 37

In [2]: print(name + ' is ' + str(age) + ' years old.')

Dan is 37 years old.






OEBPS/Image00158.jpg





