L et S TalK Pgﬂlon

Young Coders build software -

Pavel] Anni

-~ """ﬁ_j“m}
&\) T
Sy >4 ‘a‘»‘_‘j_
s - T
N - :
- \(‘\"«:S 7z N\]
| 1 |
.\) y
2 y

M MANNING

MEAP Edition
Manning Early Access Program

Let's Talk Python

Version 02

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to

manning.com

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://www.manning.com/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

welcome

Thank you for purchasing MEAP for Let’s Talk Python.

This book is based on a real story. My son Erik liked to go to Starbucks and try drinks with different flavors and
toppings. One day he decided to prepare drinks himself and treat his friends. He took his tablet to collect orders
from them, but I suggested create a simple program for that. He tried to learn programming before but most of the
exercises were boring for him. This time he saw a real problem he could solve with programming and he got
interested. This is how this book was started. I hope you, dear reader, will find your own problem that can be solved
with programming. And I hope this book will help you.

A couple pieces of advice.

Don’t rush. I understand your desire to go directly to the last chapter, download the code of the final version of
the program, and run it. Don’t do it. Go step by step, write the code yourself (don‘t copy and paste, please!), try it,
and move forward. Sometimes you will have to return and re-read the chapter. Sometimes you will need a break.
Don’t worry, take a break, repeat the chapter. Just don’t drop out.

Make mistakes. You don't learn when everything goes perfectly well. The only way to learn is to make mistakes.
Don’t be afraid of mistakes. Experiment with the code, change things, get error messages, read them. Search for
the error message on the Internet and discover thousands of other people who made the same mistake. Learn how
they fix it and fix yours. Move ahead and don't drop out.

Ask questions. Ask your friends, ask parents and grandparents, ask Internet. Explain your problem to somebody
- sometimes that’s enough to find the answer yourself. There is no such thing as “stupid questions”, don’t be shy.
Ask questions and don’t drop out.

Go further. Modify the application you create with this book. Change something to make it look more like your own
app. Think about other applications you can create. Look around you: what can be automated? Can you create an
app that is similar to the app or website you know? Tell your friends about your ideas - maybe you will create
something together? Programming is cool. Don’t drop out.

Speak out. Please let me know your thoughts in the liveBook Discussion forum on what’s been written so far and
what you’d like to see in the rest of the book. Your feedback will be invaluable in improving Let’s Talk Python.

—Pavel Anni

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion
https://livebook.manning.com/#!/book/lets-talk-python/discussion

brief contents

~

Coffee for friends: first steps

Lists: What's on the menu?

Functions: Don’t repeat yourself!

User errors: Everybody mafkes mistakes
Working with files: Being a shop manager
Main menu: Next customer!

Creating functions: Get the order and print it

Working with | SON: Save the order

NS O L S s T N SO Y

Complete the menn: A real program

~
S

Learning Flask: Your first web application
Web form for orders: Coffee shop on the web

~
~

12 Styles: Making it pretty

13 Next steps: plans for the future
APPENDIXES

A deas for your first application

B How to install Mu Editor and Python environment

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

Coffee for friends:. first steps

This chapter covers

Erik gets an idea

Erik and Simon discuss the future application

Erik installs a code editor and tries to run his first program in Python
Simon explains how to use variables

Erik writes his first dialogue in Python

1.1 A Great Idea

It all started on a sunny summer day. Erik came home with an idea: he wanted to prepare coffee
drinks for his friends. Who knew that he would create his own online application for that?

"I will make it just like at Starbucks, with many flavors and toppings," he thought. "I think I have
everything I need: coffee, three or four flavors to add, and some chocolate cream for toppings.
Great!"

"Where is my iPad?" he asked his older brother Simon.
"Where you left it. Why?"
"I need it to collect orders for my coffee shop!"

He came back several minutes later with notes on his iPad, prepared four drinks for his friends,
and left again.

"Wasn’t it a good idea?" he asked Simon when he came home with four empty plastic cups.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, great idea," Simon said. "But..."

"What 'BUT??" Erik asked. He felt that his older brother wanted to ruin his day. As he usually
did.

"You used your iPad to take orders, but you used it just as a plain paper notepad. You could
create a simple application for your coffee shop and use it to take orders."

"You mean—Iike in an online shop? With menus and all that?" Erik already imagined his own
web store with a huge title at the top: "Erik’s Coffee Shop."

"Yes, of course. You know a bit of Python from that online course you’ve taken, don’t you?"

"Yes, but I don’t remember much. We did some exercises... I think it will be difficult—to make
it look like a real online shop."

"Don’t worry," Simon said. "We’ll do it step by step. I did several projects like this for my
robotics team at school."

NOTE Don’t worry if you didn’t have any programming experience before. Erik didn’t
remember much from his classes anyway so we’ll start from the very
beginning.

Simon was in his last year in high school. He learned Python several years ago and used it in the
school’s Computer Science club and, more recently, in his Robotics team.

"So you are saying we can build a real online application?" Erik was not convinced.

"Yes, sure. If you don’t drop out from my class," Simon smiled, "you will build it in a couple of
weeks. Then, your customers will be able to choose whatever drink they want, add flavors..."

"And toppings!" Erik added.

"Yes, and toppings. And after they confirm the order, you’ll see it on the orders page. And you
will know what to prepare and for whom. Something like this," and Simon took a piece of paper
and started to draw a simple web page.

"This will be your order page."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Erik's Cof€ee Shop

Eanter your name: ‘\{oUr nawme

ChooSe \our drink

ChooSe Youv {m\m

ChooSe \our

+oqqinc_al

OO

If_\l
—

O Cof€ee O Cavamel O Chotolate

O Chotolate O MavShmallow O Cavamel

@® Vecat @ Stvawbevvy @ Cinnawon

O Vawilia
"And this will be your list of orders."
Evik's Cof€ee Shop OO0
Ovdevs

rawme Peoduct Flavoe Topging
Alex, Cof€ee Cavomel Vanilia
Dvew Decat Steawboervy Chocolate

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Cool! Do you think we can do it??" Erik still couldn’t believe his brother.

"Of course! As I said: just don’t drop out. You have plenty of time to finish it during your

summer break."

NOTE We have several other project ideas that you can use if you don'’t like the
coffee shop idea. Some of them will be discussed when Erik’s friends join him
in the following chapters. Look for more details in the Appendix A.

1.2 First things first: installation

"Let’s start with some simple things. You will remember Python very quickly. Do you have it
installed on your laptop?" Simon asked.

"No, I don’t think so."

"Here is a great Python editor, designed specifically for beginners like you. It’s called Mu Editor.
Try to find it and install it. You can do it, I’'m sure."

Erik found the website: https://codewith.mu/, where he could download it.
@ Download About Tutorials How to..? Discuss Developers Language «

Code with Mu: a simple Python editor for beginner programmers.

P ())& (P)0K) (E)M (@) Q)(C) () ?)O

Mode New Load Save Run Debug REPL Plotter Zoom-in Zoom-out Theme Check Help Quit
hellopy * ¥

1 print("Hello from Mu!")
2

Saved file: /home/ntoll/mu_code/hello.py Python -a-

© 2022 Nicholas H.Tollervey. Mu wouldn't be possible without these people. % () EEmEE This site is licensed under the Creative Commons by-nc-sa 4.0 International License.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://codewith.mu/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

He downloaded the installation program from this page: https://codewith.mu/en/download.

@ Download About Tutorials How to..? Discuss Developers Language v

Download Mu

The simplest and easiest way to get Mu is via the official installer for Windows or Mac OSX (we no longer support
32bit Windows). We also have an experimental Applmage for Linux users running on Intel based hardware.

The current recommended version is Mu 1.2.0. We advise people to update to this version via the links for each
supported operating system. All previous beta versions of Mu can be downloaded from here.

- Windows Installer

. Download Instructions

Mac OSX Installer

Download Instructions

Linux Applmage Package (Experimental)

y Download Instructions

He clicked Instructions and found an instructions page with all the steps for his computer (at that
time he was using a Macbook, but the site contains instructions for all three operating systems:
Windows, macOS, and Linux.)

You can find all necessary links and instructions in Appendix B.

"Don’t worry, it’s not a toy. It’s a perfect editor," Simon said. "We use it in our robotics team to
work with microcontrollers. As you see, there are versions for Windows, macOS, and Linux. |
use the Linux version in my team."

"Are there other editors for Python?" Erik didn’t want just to follow his brother’s directions.

"Yes, of course, many of them. Another good option for beginners is Thonny. Look here:
https://thonny.org/ "

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://codewith.mu/en/download
https://thonny.org/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

ThO nny . Download version 4.0.1 for

“=“ Windows « Mac » Linux
Python IDE for beginners

- Thonny — O X
File Edit View Run Tocls Help
DB 0% 2239 @
factorial.py Variables
def fact(n): Name Value
if n == @:
return 1 fact <function fact :
else: = 3

return fact(n-1) * n
n = int(input("Enter a natural number
print("Its factorial is", ffact3)) fact

def fact(n):
if n == @ def fact(n):

fact

retur if n ==
else: return 1
@ else:
Feturn_ fact®D * n
Shell
>»> Local variables

Local variables
Entar a2 natural numbas: 3
Name Value

Name Value
n 3

n 2

"I like it!" said Erik. "And the name is funny."
"And, of course, there are other code editors that work on every platform:

® VS Code (https://code.visua studio.com/),
® Sublime Text (http://www.sublimetext.com/").

"They all work perfectly with Python. Even the very old editors like Vim (https://www.vim.org/)
and Emacs (https://www.gnu.org/software/emacs/) support Python, but you have to be a very
serious programmer to use them," and Simon winked at his brother.

"Mu Editor and Thonny," Simon continued, "both include Python when you install them. To use
Python with other editors, you have to install it first. On some systems, like Linux and macOS,
Python is already installed from the beginning. On Windows, you should install it. I can show

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.gnu.org/software/emacs/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

you later if you want."

YOUR TURN Install your Python environment

Now it’s your turn. Open your laptop or desktop, and install Mu Editor. You can
find the complete instructions for different platforms in Appendix B (it is
available on Windows, macOS, Linux).

If you prefer some other editor, feel free to install it instead of Mu. Don’t
be afraid to experiment!

1.3 How to talk to a computer

"Let’s start Mu Editor and begin writing your coffee shop program," Simon said.

Erik launched Mu and saw its first window:

Mu 1.1

P (+) (&) (&) (p)O) (2) M (@) Q) (¢)|(4)(=Z)(?2) (O

Mode New Load Save Run Debug REPL Plotter Zoom-in Zoom-out Theme Check Tidy Help Quit

[] & Select Mode

Please select the desired mode then click "OK".Otherwise,click "Cancel".

ESP MicroP ython A
Write MicroP ython on ESP8266/ESP32 boards.

Lego MicroPython
Write MicroP ython directly on Lego Spike devices.

Pyboard MicroP ython
Use MicroPython on the Pyboard line of boards.

Jugn Pygame Zero
" g games with Pygame Zero.

Create code uging standard Python 3.

Change de at any time by clicking the "Mode" button containing Mu's logo.

Cancel

/ / Python3 ¥

L L

1. Choose Python 3 [2. Click OK]

"Select Python 3 from the menu and click OK," Simon suggested.

Erik did what Simon said. "From now on," Simon continued, "Mu Editor will remember that you
prefer to use Python 3. Maybe you noticed that there are some other modes that can be used to
work with microcontrollers, build web applications, and others. We will learn about them later."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Now Erik had the editor window in front of him.

Mu 1.1.1 -untitled ®

P+ ()&)k (@m) () (@) (@) (&) (

=)(? 0]
Mode New Load Save Run Debug REPL Plotter | Zoom-in Zoom-out Theme | Check Tidy Help Quit
untitled 3
1 # Write your code here :-)

2

Python 3 a
"What should I write here?" Erik asked.

"What do you want your program to do first?"
"It should say "Welcome to Erik’s Coffee Shop!""

"Great! Let’s write it. Remember the function pri nt () in Python?"

Erik started to write. This first step was easy.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

) (=02 o

Quit

M Q) (¢

Zoom-out Theme Check Tidy Help

F)(+) (&) (&) () K
REPL Plotter

Save Run

Mode New Load Debug Zoom-in

coffee_shop.py
Write your code here :-)

1
print("wWelcome to Erik's Coffee Shop!")

2
3

Python 3 a

"Now what?"

"Now you run it. Click Run Run .

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

10

Click Run
?)G

-
r)(+)(x) (& Q;)n E) (W) (@) (&) (&) (b .
Mode Mew Load Save um Debug REPL Plotter Zoom-in Zoom-out Theme Check Tidy Help Quit

coffee_shop.py X

1 # Write your code here :-)
2 print("welcome to Erik's Coffee Shop!")
3

Python 3 a

Erik clicked the button, and suddenly another window appeared asking if he wanted to save the
program. That was easy. Erik typed the name of the file: "coffeeshop" and was ready to press
ENTER to save the file when Simon said:

"Wait, wait... Don’t forget to add . py to the file name. You have to let your text editor know
that it’s a Python program. Mu Editor will add it automatically, but other editors won’t. So make
sure all your Python files are named with . py at the end."

Erik added . py to the file name and saved the file. Immediately after, he noticed another window
at the bottom of the editor’s window. There was the coffee shop greeting—precisely as he
wanted it!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

11

+ L) X% B (&) Q) Q) (&) ()(=)(2 O
Mode New Load Save Stop Debug REPL Plotter | Zoom-in Zoom-out Theme = Check Tidy Help Quit

coffeeshop.py X
1 # Write your code here :-)

2 print("welcome to Erik's Coffee Shop!")

Running: coffeeshop.py

Welcome to Erik's Coffee Shop!
>>>

Python 3 a

"It works!" Erik was delighted.

"Of course, it works. Why shouldn’t it?" Simon answered. "But you wanted to collect orders,
didn’t you?"

"Yes, I would ask my client’s name and what they want..."
"And then?..." Simon obviously knew the answer, but he wanted Erik to find it himself.

"And then I would print 'Hello! Here is your order:' and show their name, flavor and topping.
Like on a real receipt."”

"Good idea," Simon said. "But look: when you are writing your program, you don’t know what
your friend wants to order, right? So you can’t write in your program "You ordered caramel.'
Also, different clients order different things. It will be caramel for Alex and strawberry for
Emily. So you see: your flavor varies from order to order, as well as the client’s name.
Remember what this thing is called in programming?"

"It’s a variable!" Erik was glad he remembered it from the Python course he took several months
ago.

"Right!" Simon was glad too. "Variable is like a box: you can put something into it, and then
open and see what’s in the box. You can replace what’s in the box with something else."

"In our case," Simon continued, "let’s start with a box called 'answer' and store whatever you
hear from your client in that box. You ask your client their name and they answer 'Alex,' for

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

12

example. You put this answer in the box called 'answer' and keep it there. When you want to
print it out, you tell Python: 'please print whatever is now in the box called 'answer'. The next
client’s name is Emily, and now you put 'Emily' in the box. And next time, Python will print
'Emily' not 'Alex' because it is what is now in the box called 'answer.' Let’s write the code for
this."

"Right here, in the same file?" Erik asked.

"Sure, go ahead and continue in the same file. To get something from the client, we use the
function called i nput (). When you call it, it waits for the user to enter something. So the user
types something on the keyboard and presses ENTER. And then the function returns whatever the

user entered."

"Wait, wait," Erik stopped Simon. "What does it mean--"returns'? And also, you are talking about
functions. Of course, I know what they are, but can you tell me what you mean by 'functions'?"
Erik didn’t want to show that he barely remembered something about functions from his
previous class.

"A function is a piece of code that does something. Almost any piece of code does something,
but some pieces of code we use more often than the others. Later, you will create your own
functions, but for now, we will use the functions written by somebody else. There are operations
that people use very often, such as print something. You didn’t notice it, but you already used a
function when you wrote print () in your previous program. In programming we say that you
call a function."

"A-ha, I see," Erik said. "Something with parentheses is called a 'function'.”

"Right. And you can put something inside those parentheses, and the function will do something
with it. For example, it will print your message. What you pass into a function is called
arguments. Sometimes it’s a string, sometimes it’s a number, sometimes there are several
arguments."

"We call it 'to pass arguments' to a function,” Simon continued. "The function will do something
with the arguments and get something as a result. For example, it can calculate something, or do
something with the string that you passed, like converting it to ALL CAPS or encrypting it. And
then it returns that result to your main program."

"But how do I see the result?" Erik asked. "Will the function print it?"

"No, it won’t. Here is where we need variables. We tell Python: 'please call this function with
these arguments and please put whatever it returns into this box, sorry, this variable'. And all
that is done using a simple 'equal' sign, like this =. For example, if you want to call the function
i nput () and put what it returns to the variable answer , you simply write:"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

13

answer = input()

"And after you save the client’s answer, you can print it. You call the pri nt () function and pass

your variable as an argument."

"Great," Erik said, "now I see how to write it." He started writing in the editor. In a minute or
two, he’s got this:

print("Wlcone to Erik's Coffee Shop!")

answer = input()

print (answer)

"Should I run it?" he asked Simon.

"Sure, go ahead, click [Run] > Run .

Erik clicked [Run] > Run .

"It says 'Welcome to Erik's coffee shop' and then nothing."
"What did you expect?" Simon asked.

"That it will ask me my name."

"But you didn’t tell Python that it should ask something. Now it’s waiting for your input. Type
something."

Erik typed: "Erik" and pressed ENTER.

Python printed: "Erik".

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

14

Mu 1.1.1 - coffeeshop.py

+ (2 (X (% E M (A Q) C)) =)2)0

Mode New Load Save Stop Debug REPL Plotter | Zoom-in Zoom-out Theme | Check Tidy Help Quit

coffeeshop.py x
1 # Write your code here :-)
2 print("Welcome to Erik's Coffee Shop!")
3
4 answer = input()
5 print(answer)

Running: coffeeshop.py
Welcome to Erik's Coffee Shop!
Erik
Erik
>>>

Python 3 ¢-

"It works!" Erik said.

YOUR TURN Write your first dialogue

Write the dialogue program that Erik just wrote. It’'s a short program, we
recommend to type it yourself instead of copying from the book. Create a
name for your coffee shop and use it the first "Welcome" message. You can
create some other shop if you want. What will it sell? Ice cream? Flowers? Pet
toys?

Try to run your program. Does it do what you expect it to do? If it doesn’t,
copy it from the book or from our web site:
https://github.com/pavelanni/lets-talk-python-book and run it again. It should
work.

"Yes, it works," Simon said, "but let’s make it more user-friendly. Remember, you were
confused when it said nothing except 'Welcome'? You should tell your user what you expect
from them. And also, instead of printing just 'Erik', you could add something like 'Here is your
order, Erik"."

"You can pass this string to the i nput () function as an argument. We call it a prompt string. It
explains what we expect from the user. And in the pri nt () function, you can add the string you
want to print before the answer variable. Let me help you."

Simon helped Erik to add those strings to the code, and this is what it looked like after that:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book
https://livebook.manning.com/#!/book/lets-talk-python/discussion

15

print("Welcone to Erik's Coffee Shop!")

answer = input("Please enter your name: ")
print("Here is your order, ", answer)

Simon noticed that Erik was looking for the [Run] > Run button and explained: "Before

clicking [Run] > Run again, you have to stop your previous Python session. See these three
angle brackets here? They mean that Python is running and waiting for your input. We will use it

x
later, but for now, just click [Stop] Run and then click [Run] > Run again."

Now the program asked for the order and answered exactly as Erik programmed it.

Wel cone to Erik's Coffee Shop
Pl ease enter your nane: Erik
Here is your order, Erik

>>>

YOUR TURN Make your program more user-friendly

Add the prompt and the output string to your first program. Create a different
prompt asking the client their name, like "Glad to see you! What’s your
name? "

"Looks much more user-friendly, doesn’t it?" Simon said. "Always think about your users and
ask yourself: Is it clear enough what I expect from the user? Can they possibly make a mistake
here?"

"Now," Simon continued, "we have to ask your client about their order. You said you have
coffee and chocolate. And also you said something about flavors and toppings?"

"Yes," Erik said, "I want to ask them which topping and flavor they want."

"Well, go ahead and ask them. You can just repeat the same code—but don’t forget to change the
prompts. And I think you should print the whole order at the end, not after each question. Try it."

Erik wrote this code and stopped at the last line.

print ("Wl cone to Erik's Coffee Shop!")

answer = input("Please enter your nane: ")
answer = input("Please enter your drink: ")
answer = input("Please enter your flavor: ")
answer = input("Please enter your topping: ")
print("Here is your order: ", answer)

"You told me to put the answers in the answer variable. But how do I know now which is the
flavor and the topping?" Erik was confused.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

16

"Yes, I told you to put the answers in a variable, for example called 'answer'," Simon answered.
Here we come to one of the most difficult problems in computer science: naming variables", he
smiled. "Of course, you don’t store all the answers in the variable called answer. Let’s use
different variables for different answers and give them meaningful names. For the client’s name
we’ll use a variable called name--that’s easy. If you ask about a main drink, put the answer in the

variable dri nk or product . For the flavor and topping answers use the variables f | avor and

t oppi ng."

"At the end," Simon continued, "print each variable on a separate line, using several pri nt ()
functions. Go ahead. I will help you if necessary."

Erik worked on his code and finally produced this:

Listing 1.1 coffeeshop.py

print ("Wl cone to Erik's Coffee Shop!")

nanme = input("Please enter your name: ")

drink = input("Please enter your drink: ")
flavor = input("Please enter your flavor: ")
topping = input("Pl ease enter your topping: ")
print("Here is your order, ", nane)
print("Min product: ", drink)

print("Flavor: ", flavor)

print("Topping: ", topping)

print("Thanks for your order!")

Erik clicked Run, and his program started a dialogue. Erik answered all the questions and got a

nice output:

Wel cone to Erik's Coffee Shop

Pl ease enter your nane: Erik

Pl ease enter your drink: coffee
Pl ease enter your flavor: carane
Pl ease enter your topping: chocol ate
Here is your order, Erik

Mai n product: coffee

Fl avor: carane

Toppi ng: chocol ate

Thanks for your order

>>>

Simon noticed the last line and praised Erik for his initiative: "It’s always good to thank your

customers."

"Yes, I saw that on several receipts in coffee shops," Erik said. He was glad he had done
something on his own besides what his older brother told him.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

17

YOUR TURN Add more options to the dialogue. Use variables.

Edit your previous program and add the other lines to the dialogue. Again, feel
free to change the prompts and strings you print to something more suitable
to your project.

Change your printed output. Look at the receipts from the places you visit
(coffee shops, restaurants, groceries, other shops). Try to make your printed
output look similar. Use text symbols like |, _, =, +, and others to make your
output look interesting.

Simon decided it was time to wrap up for today.

"I think it was a good start today," he said. "Let’s see what we have done today. First, we
installed your programming environment."

"Yes," Erik said. "I like this Mu Editor. It uses colors to show me different parts of the program.
And also it shows my string in red until I put the quotes at the end. And it has a dark mode! I
know that real programmers always use the dark mode! I think I will continue using it."

"Second," Simon said, "we used a function for the first time. What was it?"

"It was the pri nt () function," Erik said. "I told it what to print and it printed it."
"Right. You called the function and passed and argument to it."

"Third," Simon continued, "you used another function to get information from the user."
"It was i nput () ," said Erik. "And I saved the answers in variables."

"Great!" Simon was really proud of his brother. "You are making good progress."

YOUR TURN Explain it yourself

Try to explain it in your own words.

What is a function? Give some examples.

What are function arguments? Give some examples.
How do you call a function?

What is a variable? Why do we need them?

How should we name our variables? Why?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

18

1.4 What is a program?

"Finally, let’s add a bit more theory," Simon said. "We just built a very simple program. But it
has all the main components of any other program. We have asked the user for some input. After
we received data from the user, we did something with that data. We usually call it processing.
In our case, we just stored that data, but we could do something else with it, right?"

"For example?" Erik asked.

"For example, you’ve entered 'coffee' in lower case, but we may want to start all products and
flavors from a capital letter. There is a special function in Python for that. So we can process the

data after we received it."
"Great idea, I want to add it!" Erik said.

"Sure, we’ll do it. And finally, after we processed the data, we printed it out. In other words, we

nn

produced some output. Look here.

Taput PTOCE"%Gian outeut

Usev

"Input doesn’t always come from a user," Simon continued. "Sometimes there is no interaction
with a user, and the program takes data from somewhere else. For example, from the Internet,
like recent sports results. Sometimes from sensors, like in robotics. Or from documents and
images."

"Very often the output is not just a print output. In my robotics team we get inputs from sensors,
we process them in the microcontroller, and our output is the signals to motors like: 'turn left,
move forward.' But the structure is still the same: input — processing — output."

"Enough theory," Simon said. "Tomorrow we’ll work on improving your program."
"Improving?" Erik was surprised. "But it works fine already, doesn’t it?"

"What if your user enters something you don’t have in your shop?" Simon asked. "Like 'maple
syrup'? What will you do? You should tell your user what you have in your coffee shop and what
they can order. So, tomorrow we’ll work on menus. And also, we’ll see what we can do in case
of errors."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

19

1.5 New terms we have learned today

®* Variable

aplace (abox) where we can store some values. For example, we can store numbers,
letters, strings. A variable can hold only one thing at atime.

® Function
apiece of code that does something and that we want to be able to do it again.
® Function arguments
information that the function needsto do its job.
® Tocall afunction
to write the name of the function with parenthesis and arguments between them.

1.6 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch01

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch01
https://livebook.manning.com/#!/book/lets-talk-python/discussion

20

Lists: What’s on the menu?

This chapter covers

Erik starts using menus in his coffee shop

Erik uses Python lists to keep his drinks, flavors, and toppings
Erik uses for-loops to print our his lists

Simon explains how computers store numbers and strings
Erik learns an important thing about list indexes

Next day Erik was ready to continue working on his Coffee Shop application. He remembered
that Simon said something about missing products that customers might enter in the dialogue. He
came to his brother and asked:

"You said yesterday that customers can enter something that I don’t have in the shop. What
should I do about it?"

"Remember the last time you were in a coffee shop or restaurant. How did you know what you
can order?"

"They had a menu with a list of products that they have in this shop."

"Right!" Simon said. "A menu! This is what we are going to create today. How does a menu look
like in a coffee shop?"

"It’s a list. A list of main drinks like coffee, chocolate, decaf. And a list of flavors I can add. Like
caramel, mint, and others. And a list of toppings."

"Right, lists!" Simon was very glad the Erik used that word. "Like this, right?" and he quickly
drafted something that looked like a menu.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

21

Menv

Drinks

Coffee .OO
(‘.hocnla+e_ .60
Decaf LSO
Flavors
C‘_ar‘a\me__[O.EO
Vanilla 0.495
T’oppinf{s
Chocolate. 0.30
Cinnamon 0.0

"Lists is what we need! We have lists in Python—you may remember that. Lists are very useful
in Python. They can contain numbers, strings, even other lists. For example," Simon took another
piece of paper and wrote several examples.

Fruts = [*apple_’, 'veach’, 'banana'l
numbers = L4y, 356, 1000]

constants = LS.I‘HG, RIIE, L4143

Let’s create lists for your menu. You just give the list a name—Ilike f | avor s, for example, and
then list your flavors in square brackets. And the same for your toppings and main drinks. Don’t
forget that your flavors, toppings, drinks are strings so they should be in quotes. You can start a
new file in your editor and call it nenu. py, for example."

Erik opened his editor and started writing. Here is what he’s got in several minutes.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

22

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]

"Very good," Simon said. "Now let’s print them as menus."
"Just pri nt (dri nks) ?" Erik suggested.
"You can do that, but it won’t be pretty. Try it."

Erik added the pri nt () statement at the end.

drinks = ["chocol ate", "coffee", "decaf"]
flavors = [“caranel ", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = [“chocol ate", "cinnanmon", "caranel"]

print(drinks)

"Click Run Run ," Simon said.

Erik clicked and saw the output at the bottom of the editor window.

['chocol ate', 'coffee', 'decaf']
>>>

"If your menu is a list, we should print is as a list," Simon said. "And also you should give your

user a way to choose from the list. For example, you can ask to type a letter. But here we have

chocolate and coffee. So you can’t use the letter 'C' for both. Let’s use numbers instead. For each

menu item we’ll print a number. Then your user will type a number for their choice. For

example, 1 for chocolate, 2 for coffee. Something like this." Simon took a piece of paper and

draw a simple menu.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

23

Erik's Cof€ee Shop OO0

Choo%e Jour deink
| chocolate

1 co€fee

% decat

Tyee the wuwber-

ChooSe Jouv Clavor
\ cavamel

1 vawilla

% peppevwmint

Tyee the wuwber.

"Yes, I saw that in a Chinese restaurant—each dish had a number," Erik remembered. "But how
do I do it in Python?"

"You have a list of several items," Simon started his explanation. "You have to print each item
adding a number in front of it. When we have to repeat something in Python we use a loop. In
this case it will be a for-loop. You tell Python that for each item in the list it has to do something.
Like print it, for example."

"Write a simple for-loop," Simon continued. "Let me write the first one for you." Simon took
Erik’s keyboard and added a couple of lines to his code.

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranel"]

for d in drinks:
print(d)

Simon clicked [Run] and they saw the output:

chocol at e
cof fee
decaf

>>>

"Now it’s your turn," Simon said. "Write the same code for the other two lists. Note that I used

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

24

another variable to print list items. The list is called dri nks. I used just a d for each drink in the
list. It is usually recommended to use meaningful names for your variables, like dri nks for the
list of drinks. But if a variable will be used just in one loop to go through a list, it can be short,
one or two letters. It’s not a rule, but it’s easier to type."

"Another important thing," Simon continued, "is that in Python spaces mean a lot. You see that
the print () function call is shifted four spaces to the right? This is how we tell Python what
should be repeated in the loop. The part that is shifted is called a block. Everything you put in
this block will be repeated for each list item. Now there is only one function call, but we’ll add
something later.

"You also noticed that I didn’t type four spaces on the keyboard. Our editor did it for us
automatically. All programming editors that you would use for Python have this feature. When
they see the colon (:) they automatically shift the next line. It is called 'starting a block'. Now go

ahead and write the loops."

Erik created two more loops to print the other two lists. He liked the idea to use shorter variable
names (less typing!). He also noticed that the editor shifted the line after colon automatically.
Very useful! Here is what he’s got.

drinks = ["chocol ate", "coffee", "decaf"]
flavors = [“caranel ", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caramel"]

for d in drinks:
print(d)

for f in flavors:
print(f)

for t in toppings:
print(t)

He saved the program and ran it.

YOUR TURN Create your list of products and print it

Open you code editor and create a program similar to what Erik just created.
It should contain three or more lists of items. Then use loops to print out the
content of those lists.

You can use Erik’s menu item or you can create your own. Ice cream
flavors, bagels, minifigures, anything you want!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

25

chocol at e
cof fee
decaf

car anel
vanil |l a
pepper m nt
raspberry
plain
chocol at e
ci nnanmon
car anel
>>>

"Very good," Simon said. "But we don’t have the numbers. We have to fix it. Remember I told
you that we can add something else to the block? Here is what I propose. We’ll create a variable
which will keep the item’s number in the list. Each time we go to the next item we add one to
that variable. In that case 'chocolate' will be number one, 'coffee'—number two, and so on."

"Let me show you," and Simon took Erik’s keyboard again.

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanon", "caramel"]
i =1
for d in drinks:
print(i, d)
i =i +1

for f in flavors:
print(f)

for t in toppings:
print(t)

He ran the program and they saw this:

1 chocol ate
2 coffee
3 decaf
car anel
vanil |l a
pepper m nt
raspberry
plain
chocol ate
ci nnanmon
car anel
>>>

"You see: | added the i variable. For each list item now I print not only its value, but also its
number. And then I add one to the number to move from 1 to 2, then from 2 to 3, and so on. Now
go ahead and change the rest," Simon said.

Erik made the changes:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

26

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]
i =1
for d in drinks:
print(i, d)
i =i +1

for f in flavors
print(i, f)
i =i +1

for t in toppings
print(i, t)
i =i +1

When he ran the program he saw this output:

chocol at e
cof f ee
decaf

car anel
vanil |l a
pepper m nt
raspberry
plain

9 chocol ate
10 ci nnanon
11 carane
>>>

O~NO U WNPE

"But this is not what I wanted!" Erik said. "I think it should be: one, two, three for the drinks,
then one, two, three for the flavors, and one, two three for the toppings again."

"Right!" Simon agreed. "How would you do this?"
"Use a different variable?"

"Yes, that’s possible too. But you can use the same i variable. The important thing is to set it to
one before each loop. We call it to initialize the variable."

Erik addedi = 1 before each loop and got this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

27

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]
i =1
for d in drinks
print(i, d)
i =i +1
i =1

for f in flavors
print(i, f)
i =i +1

i =1

for t in toppings
print(i, t)
i =i +1

YOUR TURN Print three (or more) menus with numbers

Modify your previous program to add numbers to your menu items. Use the
loops. Don’t forget to reset the item counter with each new list.

He clicked Run and got the output:

chocol ate
cof fee
decaf

car anel
vanilla
pepper m nt
raspberry
pl ain
chocol at e
ci nnanon
car anel
>>>

WNPFPORMWNEWNPRP

"Now let’s make it a bit prettier," Simon said. "Add titles like 'Our drinks' before each list.
Remember, we should let the user know what they see and what they should do."

Erik added the titles. He even added an extra line under each title. He was sure it will make it
look like a real menu.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

28

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]

print("Erik's Coffee Shop drinks")

print("-----cemmee e)
i =1
for d in drinks:

print(i, d)

i =i +1

print("Erik's Coffee Shop flavors")

Print("-----mmm e)
i =1
for f in flavors:

print(i, f)

i =i +1

print("Erik's Coffee Shop toppings")

Print("----mmmmmm oo)
i =1
for t in toppings:

print(i, t)

i =i +1

YOUR TURN Add titles to your menus

Add titles to your menus to make the output beautiful. Use your shop’s name
in the titles. Try to use other symbols instead of dashes.

And the output was beautiful, as he expected:

Eri k' s Coffee Shop drinks
1 chocol ate

2 coffee

3 decaf

Eri k's Coffee Shop flavors
1 caranel

2 vanilla

3 pepperm nt
4 raspberry

5 plain

Eri k' s Cof fee Shop toppi ngs
1 chocol ate

2 ci nnanon

3 caranel

>>>

"Looks good," Simon said. "What is also good about this format is that now you have three lists
in your menu and three lists in your program."

"Let’s write this code," Simon continued. "For each list in the menu, you have to ask the user to
choose an item and get that information from them. How do you get information from a user?
You did it yesterday, remember?"

"With i nput () ?" asked Erik.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

29

"Of course!" Simon was glad Erik remembered the previous lesson. "You can write it yourself,

can’t you?"

"Let me try," Erik said and started editing his code. He remembered that he should use the
i nput () function. Then he put the prompt inside the parentheses and on the left side he used a
variable. He remembered that he shouldn’t use the same variable for different questions.

Here is what he wrote:

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranel"]

print("Erik's Coffee Shop drinks")
@0 ME(P=cc=ccccccsccsccsccosscas ")

=1
for d in drinks:
print(i, d)

i =i +1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("------mi s ")
i =1
for f in flavors:
print(i, f)
i =i +1
flavor = input("Choose your flavor: ")
print("Erik's Coffee Shop toppings")
print("---------mi o ")
i =1
for t in toppings:
print(i, t)
i =i +1
t oppi ng = i nput (" Choose your topping: ")

YOUR TURN Add user inputs to your menus
Add the i nput () functions to your menus. Use appropriate variable names to
store the user’s answers.

"Now what?" he asked Simon.

"Now your user types a number and you use that number to find the item. In Python we call this
number a list index. If you put this number in square brackets next to the list name, you get that

item. Like this," and he wrote an example:

drinksLdrink

"So after you know the number you can find the item in the list. And you can print 'Here is your
order' like you did yesterday, but now you’ll take those items from the menu. Try it, I’ll help you
if necessary."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

30

That was a bit more difficult. Erik looked at his yesterday’s program and copied the lines from it
to the bottom of this program. Then he replaced variables like dri nk with the list items like
Simon suggested.

Here is his code:

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")

Print("-----mmmme e)
i =1
for d in drinks:

print(i, d)

i =i +1

drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("------------miiaoaa oo ")
i =1
for f in flavors:
print(i, f)
i =i +1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")

Print("-----cmm e)
i =1
for t in toppings:

print(i, t)

i =i +1

t oppi ng = i nput (" Choose your topping: ")

print("Here is your order: ")

print("Min product: ", drinks[drink])
print("Flavor: ", flavors[flavor])
print("Topping: ", toppings[topping])

print("Thanks for your order!")

"Now run it and let’s see what it gives us," Simon said.

Erik clicked [Run] and the program printed the drinks menu and asked for his choice. So far it
worked. Erik quickly entered numbers for all three menus and saw this output:

Here is your order:

Traceback (nmost recent call last):
File "/home/erik/ mu_code/ menu. py", line 30, in <nodul e>
print("Main product: ", drinks[drink])
TypeError: list indices nust be integers or slices, not str
>>>

"What’s this?" he was puzzled.
"Congratulations!" Simon said.

"What are you so happy about? That my program doesn’t work?" Erik started getting angry at his
brother.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

31

"Not at all!" Simon said. "You got your first error message from Python and it’s a good sign!
Making errors and fixing them is the only way to learn. You’ve got an error message—now let’s
try to fix the problem. Usually Python gives you the reason why this happened. Start from
reading the last message. What does it say?"

"Something about slices... Must be integers not str. What’s that?"

"I agree, it takes some practice to learn to read Python error messages. Here it tells you that when
you use a variable as an index of a list, that variable should be an integer number, like one, two,
three."

"But [entered numbers!" Erik was still confused.

"Yes, you fyped numbers on your keyboard. But for Python everyting you enter from a keyboard
is a string. Python makes a difference between a string containing the number '1' and the integer
number 1."

"This comes from the way computers keep things in memory," Simon continued. "The computer
keeps the number 1 in memory, but when it shows it to you, it converts it to a string '1'. The
same way computers convert numbers they get from the keyboard. You type '123' on your
keyboard and the computer gets this string and converts it to a number 123. Look here," and
Simon draw a picture with a computer, keyboard, display, and a user.

sends string 1’

ot‘S I 1

*,...—-—-'—_'_‘_—‘--._ +o S_‘,_r‘;ns !11'
+o dis la
rypes 11 ploy
S~ \ converts string ‘1’
O gends s-l-r‘ing 1 +o number 00OOOEEO1

"So we should tell Python to convert the strings you type on the keyboard to integer numbers.
There is a special function for that called i nt () . Let me show how to use it."

Simon changed Erik’s program in one place and let him do the same in the other two places.
Here is what Erik’s program looked like after that:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

32

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]

print("Erik's Coffee Shop drinks")
print("-------cmme o ")

=1
for d in drinks:
print(i, d)

i =i +1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("----------m ")
i =1
for f in flavors
print(i, f)
i =i +1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")

Primt("------mmmm oo)
i =1
for t in toppings

print(i, t)

i =i +1

t oppi ng = i nput (" Choose your topping: ")

print("Here is your order: ")

print("Miin product: ", drinks[int(drink)])
print("Flavor: ", flavors[int(flavor)])
print("Topping: ", toppings[int(topping)])

print("Thanks for your order!")

Erik ran the program, entered his choices (coffee, caramel, chocolate) and got this output:

Here is your order:
Mai n product: decaf
Fl avor: wvanilla
Toppi ng: ci nnanon
Thanks for your order
>>>

"What?? It’s all wrong!" Erik exclaimed. "This is not what I chose!"

"I didn’t tell you one important thing about Python lists. Their indices start with zero, not one. So
if you want to get the first item from the list, you should put zero in the square brackets. If you
want the second item, you use one as the index."

"But why??" Erik was shocked by such a strange thing.

"It’s a long story," Simon answered. "It comes from the way computers store lists in memory.
The index you use is the number of items you should skip from the beginning of the list to get
the item you want. If you want the first item of the list you don’t have to skip any items. You just
take it from the beginning of the list. So the number of items you should skip is zero, right?
That’s why the first element’s index is zero. Look here," and Simon draw another picture.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

33

Eeginning of +he. hsﬁ' i e

 J
"o Ibf Icf rotr
T sTk'IP I Hems
5!(7.[.: & Hems
SJ('IP | Hem
skip O items

kLod | kL1 | kLaJ | kL3]

"So what should I do now?" Erik asked. He thought that he understood Simon’s explanation, but
still he was annoyed by this inconvenience.

"I see that you’re annoyed," Simon said. "Don’t worry, you’ll get used to it very quickly. And
you will, like all real programmers, start counting everything from zero," Simon smiled. "Now
you just subtract one from each index in the square brackets. But be careful: you have to add that
- 1 after you converted your input to integer, not before. Like this: dri nks[int (drink) - 1]

"

Erik fixed his code and now it looked like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

34

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]

print("Erik's Coffee Shop drinks")

print("-----cemmee e)
i =1
for d in drinks:

print(i, d)

i =i +1

drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("----------m ")
i =1
for f in flavors:
print(i, f)
i =i +1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")

Primt("------mmmm oo)
i =1
for t in toppings:

print(i, t)

i =i +1

t oppi ng = i nput (" Choose your topping: ")

print("Here is your order: ")

print("Miin product: ", drinks[int(drink) - 1])
print("Flavor: ", flavors[int(flavor) - 1])
print("Topping: ", toppings[int(topping) - 1])

print("Thanks for your order!")

YOUR TURN Modify your program to print the order

Modify your program similar to what Erik just did and print the order. Don’t
forget to convert the input strings to numbers. Don’t forget to subtract one (1)
from each number—list indexes start with zero, remember?

He ran the program, entered 2, 1, 1 and finally got what he wanted:

Here i s your order:

Mai n product: chocol ate
Fl avor: caranel

Toppi ng: chocol ate
Thanks for your order!
>>>

"Cool! It works!" Erik was definitely happy. "I like my coffee shop program! Are we done with
1it?"

"Almost," Simon answered. "Look, you wrote almost exactly the same code three times."
"What’s wrong with that?"

"Imagine you want to change something in you code. For example, change the way you print the
menu items. You’ll have to change it in all three places. Or in even more places if you decide to

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

35

add other menu lists. Imagine you want to add desserts to your coffee shop. That means you’ll
have to copy this code one more time. What if you made a mistake in the code? Programmers
call them bugs (I’ll tell you later why). Then you would have to fix that bug in four places,
repeating yourself. Programmers like the DRY principle: Don’t Repeat Yourself."

"But I don’t see how I can do that," Erik was confused. "If I have three menu lists, I have to print
them three times. And I have to ask the user for input three times."

"We can use a function here," Simon explained. "Remember when we started using the pri nt ()
function, I told you that for operations that we want to repeat over and over we use functions. So
far we used functions written by somebody else. Now we’ll create our own function and use it."

"This is cool, I like it," Erik said.

"Great, let’s do it tomorrow. I think we have done enough for today. You did a great job, Erik,"
Simon indeed was glad that his brother is making progress. "Let’s recap what we have learned
today. What was the first thing?"

"First, we created /ists," Erik said. "We put all our drinks, flavors, and toppings in the lists."
"Good, what was next?"

"Then we printed the lists using loops. And then we printed the numbers next to each drink or
flavor."

"Yes, exactly," Simon confirmed. "Go on, what was after that?"

"And then I tried to print drinks from the list, but I got an error from Python. And then you
explained to me how numbers are stored in computer memory. Then we converted the numbers
and I tried to print my order again. And just because you didn’t tell me that indices start with
zero," (Erik didn’t forget that!) "my order was printed all wrong items!"

"Please, forgive me," Simon smiled. "But now you’ll remember it much better, ’'m sure!"
"Finally I fixed it and now it works well!" Erik finished.

"Great job!" Simon gave Erik the thumbs up. "We’ll continue tomorrow and write our first
function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

36

2.1 New things you have learned today

® List
acollection of itemsin Python. Y ou can have strings or numbersin alist, or even amix
of them.

® Listindex
the number we can use to retrieve an item from alist. Indicesin lists always start with
zero and increase by one for each next element: 0, 1, 2, 3, etc.

® Numbersand strings
these are different types of variablesin Python. When you print something on the screen,
or get input from the keyboard, you always use strings. When you want to do any math
operations with numbers you received form the user you have to convert them from
strings to numbers.

2.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch02

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch02
https://livebook.manning.com/#!/book/lets-talk-python/discussion

37

Functions: Don’t repeat yourself!

This chapter covers

Simon explains how to avoid repeating yourself (and why)

Erik writes his first Python function

Erik starts using Python’s interactive tool

Erik improves his function to make his receipt look professional

"Where did we stop yesterday?" Simon asked Erik on the next day.

"You said that I should not repeat myself. And also you said we are going to write our own
function today."

"Right! First, tell me what you know about functions so far."

"We used a couple functions already," Erik started to answer. "We used print () and i nput ().
You said that somebody has written them so we can use them. We can use arguments with
functions. We just have to put them between the parentheses and the function will do something
with the arguments, like print them."

"Everything is right! You are a great student!" Simon smiled. "The important thing about
functions is that they can do the same thing but with different arguments. So if you see that you
are doing the same thing several times you should look at whether it can be turned into a
function. To decide you should look at your repeating code and ask yourself which parts are the
same and which are different. Where is your script from yesterday?"

"Here," Erik opened the nmenu. py file in the editor.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

38

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caranmel"]

print("Erik's Coffee Shop drinks")

print("-----cemmee e)
i =1
for d in drinks:

print(i, d)

i =i +1

drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("-------------------------- ")
i =1
for f in flavors:
print(i, f)
i =i +1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")

Primt("------mmmm oo)
i =1
for t in toppings:

print(i, t)

i =i +1

t oppi ng = i nput (" Choose your topping: ")

print("Here is your order: ")

print("Min product: ", drinks[int(drink) - 1])
print("Flavor: ", flavors[int(flavor) - 1])
print("Topping: ", toppings[int(topping) - 1])

print("Thanks for your order!")

"Look: what is repeating here?" Simon asked and started drawing a diagram with Erik’s code.

repeatest _'“'* argument - +itle

. @ - O\F¢3UMe,n‘l" - choices
repeated

"The loop. The pri nt () in the beginning and the i nput () in the end."
"And what is different in these three cases?"
"The prompt for the i nput () is different," Erik answered. "Also the title is slightly different."

"And also you are running for-loops through different lists, like drinks, flavors, and toppings,
right?" Simon decided to help Erik. "So we will pass as arguments those things that are different.
In our case they will be the list of choices, the menu title, and the input prompt."

"Let’s start a new file in the editor, call it menu_f uncti on. py, and write our function there."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

39

Erik clicked [New] in the editor, then [Save], typed menu_f uncti on. py, and was ready to write
code.

"Functions in Python start with the word def followed by the name of the function," Simon
continued. "Let’s call our function nmenu. Then you open the parentheses and list your
arguments."

Erik wrote def nenu(and wasn’t sure what to do next.

Simon helped: "We just talked about your arguments. | see you are thinking how to name them.
Remember, naming variables and arguments is one of the most difficult problems in computer
science? You are not alone. Let’s name them: choi ces, title, and pronpt. Just type them

between the parentheses and put a colon after the closing one."

Erik typed the following:

def nenu(choices, title, pronpt):

He noticed that after he pressed ENTER, the cursor moved to the next line, but four spaces to the
right. "Should I write here?" he asked Simon.

"Yes, sure!" Simon answered. "You see: the editor is helping you to write your function! Now
look at your yesterday code and start copying what you want to put in the function. Look: first
we print the title. Let’s do it here too, but instead of the actual string we just print the argument
called ti t1e. You can even put the line of dashes after it, like you did before."

Erik wrote:

def nenu(choices, title, pronpt):
print(title)

"Now write the loop," Simon continued. "But instead of drinks or flavors, your list is now called

"rn

choi ces. And you can use the variable ¢ in the loop, as the first letter of 'choice'.

Erik copied the loop from his previous script. He got the idea now and added the i nput ()
function with the prompt even without asking his brother.
def menu(choices, title, pronpt):

print(title)
Print("----mmm o ")

i =1
for c in choices:
print(i, c)

i =i +1
choi ce = i nput (pronpt)

"Great!" Simon said when he saw Erik’s code. "Now we have to refurn the choice."”

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

40
"Can’t we just print the choi ce variable in our main program?" Erik asked.

"No! And this is a very important thing about functions," Simon was glad that Erik asked this
question. "The variables you have inside your function are visible only within the function. Look
here, I’ll draw a picture."

Ptfl'hcm MO progrom
can't see Insiole_ function

PtfH«on function ‘sum'

\

5
3
=a +b only what's
retum s _ returned

w o9
W

printla) «—— errorl

r‘e:-;ul-t' = ‘SUM()
prin-t'(re,sul-t')

Visible means that you can’t see what’s inside those variables when you are not inside the
function. So if we want our main program to see their values we have to refurn these variables.
Usually we have many variables inside a function, but we want to return only one or two as a
result. In this case we can return the number that the user entered, which is stored in the variable
choi ce."

Simon paused and thought for a moment.
"But we can do better," he said. "Look at your yesterday code again. What else is repeating?"

Erik looked and said: "Those i nt () functions and also that we had to add - 1 three times. That

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

41

was annoying," he still hasn’t gotten used to the fact that list indices start with zero.

"Okay, let’s add them to the function too," Simon suggested. "We will convert the user’s answer
to integer, get the item from the list, and return the item, not its index. That will make our
function even more useful. The main program that calls it will get the user’s choice, not just
some number. Let me show you," and Simon added the conversion operations and the r et urn
statement to the function.

def menu(choices, title, pronpt):

print(title)
Print (M- e e e e ")
i =1
for c in choices:
print(i, c)
i =i +1
choi ce i nput (pronpt)
answer choi ces[int (choice) - 1]

return answer

"Now let’s test it," Simon said. "In our main program that goes just below the function we will
call it and print the answer we get. But first, we need our lists with drinks and everything. Copy
them from the top of your yesterday’s program."

Erik added three lists just below the function. This time all the lines were not shifted and began
in the first position.

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caramel"]

"Good," Simon said. "Now you are ready to call your function. Pass the title, the list of drinks,
and the input prompt. The result from the function assign to a variable. Call it choi ce, for
example. And then print it."

Erik followed Simon’s instructions and here is what he’s got:

def menu(choices, title, pronpt):
print(title)

Print (M- e e e ")
i =1
for ¢ in choices:

print(i, c)

i =i +1

choi ce = input (pronpt)
answer = choi ces[int(choice) - 1]

return answer

drinks = ["chocol ate", "coffee", "decaf"]

flavors = [“caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = [“chocol ate", "cinnanmon", "caranel"]

choi ce = nenu(drinks, "Erik's drinks", "Choose your drink: ")

print (choice)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

42

YOUR TURN Create your own function

Create your own function similar to what Erik just created. Use your menu
lists, titles, and prompts. Try to run it (before Erik!).

"Should I run it?" Erik asked.
"Yes, it’s now ready, go ahead!"

Erik clicked [Run] and the program asked him about his drink, exactly the same way it did
before. Erik answered and got the result he expected.

Erik's drinks

1 chocol at e

2 coffee

3 decaf

Choose your drink: 2
cof fee

>>>

"It works!" he said. "I’ll add the other menus here," and he started writing. In 10 minutes or less
he was ready to test the whole program. Now it looked like this:

def menu(choices, title, pronpt):

print(title)
Print (M- e e e e ")
i =1
for c in choices:
print(i, c)
i =i +1
choi ce i nput (pronpt)

answer choi ces[int (choice) - 1]

return answer

drinks = ["chocol ate", "coffee", "decaf"]

flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanon", "caramel"]

drink = nenu(drinks, "Erik's drinks", "Choose your drink: ")

flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")

t oppi ng = nmenu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")

print("Min product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)

print("Thanks for your order!")

YOUR TURN Add other menus
Add other menus to your program. They will use the same function but with
different arguments: lists of choices, titles, and prompts. Try to run it and test
with your menu choices.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

43

And it worked as expected! Erik ran the script, entered 2, 2, 1 again and got his order:

Here is your order:
Mai n product: coffee
Flavor: vanilla

Toppi ng: chocol ate
Thanks for your order!
>>>

Simon said: "Notice that your program became shorter. And now if you have to change
something, you change it only in one place."

"Why would I want to change it? It works well already," Erik said.

"Oh, there are always ways to improve your code!" Simon answered. "Let’s make its title a little
bit better. Did you notice that your line of dashes is now longer than the title?"

"Really? Oh, yes, you are right," Erik said. "It’s because I changed the title to just 'Erik’s drinks'.
I can make it shorter, that’s easy."

"Sure, you can make it shorter, but look—in the 'drinks' menu the title is shorter, in the 'toppings'
menu it’s longer. You have to print the line of dashes that will be the same length as your title
string."

"But how can I do it? Maybe, it’s better to remove that line of dashes?" Erik was confused.

"No, I like your line here; it makes your receipt look more real. I want you to keep it. But we
have to calculate the length of our title and make it the same length. We’ll learn one new
function and one new operation here. The function we are going to use is called | en() . You just
put a string argument inside the parentheses and it returns the length of the string. Let me show
you. We’ll use another feature of Mu Editor, called REPL. It stands for 'Read-Eval-Print-Loop'
and means that you can use Python interactively. I usually use it when I want to test something
quickly. Or to show something to somebody, like now," and Simon smiled.

"Click [REPL] REPL ," Simon continued.
Erik clicked and another window opened at the bottom of the Mu Editor window.

Python3 (Jupyter) REPL

Jupyter QtConsole 4.7.7 o
Python 3.8.12 (default, Mar 12 2022, 19:58:23)

Type 'copyright', 'credits' or 'license' for more information

IPython 8.1.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]: |

v

Python 3 ﬁ

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

44

"You see—you have interactive Python here," Simon said. "You can type any Python code here
and it will be executed. You can even use it as a calculator," Simon smiled. "Try to type
print('hello world) or2 + 2and see."

Erik typed and Simon was right indeed!

In [1]: print('hello world")
hell o world

In[2]: 2 + 2
Qut[2]: 4

"Now let’s calculate the length of a string. Type: | en(' abcd') ."

Erik typed and got this:

In [3]: len('abcd")
Qut[3]: 4

"Now you see that the length of the string 'abcd' is 4," Simon said. "You can do the same with
string variables too. Use the variable s, put the string 'hello' into it and calculate its length. I'm
sure now you know how to do it."

Erik typed in the REPL window and got the result:

In [4]: s = "hello

In [5]: len(s)
Qut[5]: 5

"Good," Simon said. "Now you know that if you have a string you can always get its length.
Even more, you can get the length of a list this way. Create a list of numbers: 1, 2, 3, and get its
length. Call it n, for example."

Erik typed:
In[6]: n=1[1, 2, 3]
In [7]: len(n)

Qut[7]: 3

"We will use it later, but now let me show you one trick," Simon continued. "What will Python
give me if I ask it to take a number 2 and multiply it by 2?"

"4?7" Erik wasn’t sure if it’s a trick already. The question was too simple.
"Right. What will Python give me if | take a letter 'A' and multiply it by 2?"

"I don’t know? 2A, maybe?"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

45

"Go ahead and try it with interactive Python!" Simon suggested.

Erik typed and got the result:

In[8: 2* " 'A
Qut[8]: ' AA

"Interesting!" Erik was surprised.
"Now what if you take a dash instead of 'A' and multiply by 10?"

Erik started to guess where Simon is leading him to and typed:

In[9]: 10 * '~
QUE[9]: "-ommmm-- '

rn

"And now replace the number 10 with the length of the string 'hello'.

Erik got Simon’s idea now and typed:

In [10]: len('hello") * '-'
Qut[10]: '----- !

YOUR TURN Use REPL and experiment with the | en() function
Start REPL by clicking its icon in the editor. Repeat all Erik’s experiments.

Try to multiply a number to a string of two or three letters. Can you guess
what will be the output?

"I see it now!" he said. "We take the tit| e argument, we calculate its length, and we print the
line of dashes of exactly the same size!"
"Can you change your function now?" Simon asked.

"Yes, sure, | know what to do!" Erik started typing already. He changed only the third line (look
for the label 1) and now his function looked like this:

def menu(choices, title, pronpt):

print(title)
print(len(title) * '-")
i =1
for c in choices:
print(i, c)
i =i +1
choi ce i nput (pronpt)

answer choi ces[int(choice) - 1]

return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

46

YOUR TURN Change your function to print the correct line of dashes
Make a change in your program to print the correct number of dashes, similar
to what Erik just did. Try to use a different symbol (equal sigh = or underscore
_ or something else).

He tested the main program and now all lines of dashes were exactly of the same size that their
titles.

Simon commented, "Now you see that not only the result that your function returns is dependent
on the arguments, but even what it prints can be dependent as well."

"It’s always a good idea to analyze the arguments you receive in your function," Simon
continued. "In this case we checked the title’s length. What would your function do if it received
an empty string with length zero?"

"I don’t know," Erik answered. "I think it will print an empty string, nothing."

"Right," Simon said. "But maybe we can still print something reasonable, even if the title is
empty. Maybe just a word 'Menu' and a line of dashes. For such cases in Python we have default
values for function arguments. In your function I would change the first line to this," and Simon
edited Erik’s file:

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

"In this case we tell Python, 'If there is an argument ti t | e then accept its value. If you didn’t use
it when you called your function, then use its default value, which is just 'Menu'. It is usually
recommended to set default values. You can always change them to something else when you
call your function."

"Let’s test it," Simon suggested. "In your first call with dri nks remove both the title and the
prompt. Leave only dri nks as a single argument."

Erik did what Simon suggested and now the first function call looked like this:

drink = nenu(drinks)

He ran the program again and saw the first menu:

Eri k's Menu

1 chocol at e

2 coffee

3 decaf

Choose your item

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

47

Here is Erik’s full program.

Listing 3.1 menu_function.py

def nenu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)
print(len(title) * "-")
i =1
for c in choices:
print(i, c)
i =i +1
choi ce i nput (pronpt)

answer choi ces[int (choice) - 1]

return answer

drinks = ["chocol ate", "coffee", "decaf"]
flavors = ["caranel", "vanilla", "peppermnt", "raspberry", "plain"]
toppi ngs = ["chocol ate", "cinnanmon", "caramel"]

drink = nenu(drinks)
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
t oppi ng = nmenu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")

print("Min product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)

print("Thanks for your order!")

YOUR TURN Use default arguments in your function

Add default values for the title and prompt arguments. Try to call your
function without those arguments and make sure it uses the default values.

"Of course, it’s not telling the user that it’s a drinks menu, but still it’s better than just an empty
string. It’s helpful when you want to test something quickly. You can always add more

descriptive titles and prompts later."

"I think that’s enough for today," Simon said. "Let’s recap what we have learned. What was the
first thing today?"

"We looked at my program I wrote yesterday and found things that were repeated three times.
And you told me that we can write our own function. You told me about the word def and the

arguments."
"Good, go ahead," Simon encouraged Erik. "What about those arguments?"

"I used the list of choices, the title, and the prompt as arguments in my function." Erik liked to
talk about Ais function—he wrote it himself for the first time!

"Then you showed me that REPL thing in the editor," Erik continued. "I like it! And then we
calculated the string’s length."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

48

"And what did we use it for?" Simon asked.

"Yes, we used it to print our receipts and now they look beautiful. And then we tried to use

default values for arguments. It was a bit boring but it worked."

Simon said: "This is a very important thing that you just said. Very often good programming
solutions look boring. But they work. Programming is not always about fancy tricks and hacks.
Most of the time you have to do very boring things, like check user’s input, check for errors, and
so on. But if doing this boring stuff makes your program work—it’s worth it. Tomorrow we’ll
see what we have to do to make sure your program works even if your user enters wrong values.
But for now—take some rest! You did a great job today!"

3.1 New things you have learned today

® Function
A piece of programming code that can be used (called) repeatedly. A function can be
written by you or somebody else. If it’s written by somebody else then usualy it’s part of
alibrary or amodule in Python.

* Arguments
Variables that we pass to the function when we call it. The function takes the arguments
and uses them to prepare its output. The output can be printed or returned to the main
program.

* REPL
Read-Eval-Print-Loop, away to run Python interactively. Very useful to test some
functions quickly.

3.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch03

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch03
https://livebook.manning.com/#!/book/lets-talk-python/discussion

49

User errors: Everybody makes mistakes

This chapter covers

® Erik discovers that users don’t always do what you tell them to do
® Erik learns about using loops to repeat his question to the user
® Simon helps Erik to make the menus more robust

"Yesterday you did a great job, Erik," Simon continued the next day. "You wrote a very good
function, you added default arguments, you tested it."

"Yes," Erik answered. "I think it’s a good program. I want to show it to my friends!"
"Wait, wait," Simon said. "I don’t think it’s ready to use yet."
"Why? I think it works perfectly!"

"Oh, really? Let me try," Simon looked like he had something in mind. He started Erik’s
program again and at the first menu he entered: "coffee."

Eri k's drinks

1 chocol ate

2 coffee
3 decaf
Choose your drink: coffee
Traceback (nost recent call last):
File "/hone/erik/ m_code/ menu_function.py", line 18, in <nodul e>
drink = nenu("Erik's drinks", drinks, "Choose your drink: ")
File "/home/erik/ mi_code/ menu_function.py", line 9, in nmenu

answer = choices[int(choice) - 1]
Val ueError: invalid literal for int() with base 10: 'coffee
>>>

"What are you doing???" Erik was enraged. "You should enter only numbers and not words!"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

50

"But you gave me a list and asked what I want. I wanted coffee so I entered 'coffee.'! What’s
wrong?" Simon tried to look innocent but he couldn’t hide his smile.

"Well, for such stupid users like you I will print in ALL CAPS that you should enter A
NUMBER!" Erik grumbled.

"Okay, okay, let me try again," asked Simon. He started the script again and at the first menu
entered: "42".

Choose your drink: 42

Traceback (nmost recent call last):
File "/ home/erik/ mu_code/ menu_function.py", line 18, in <nodul e>
drink = nmenu("Erik's drinks", drinks, "Choose your drink: ")
File "/home/erik/ mu_code/ menu_function.py", line 9, in nmenu
answer = choi ces[int(choice) - 1]
IndexError: list index out of range

>>>

"Again?? You broke it again??" Erik was ready to slap Simon’s hands on the keyboard. "Didn’t
you see that there are only three choices? Why did you enter 427?"

"First, because 42 is my favorite number. Second, yes, it was my mistake. Users make mistakes,
you know. Seriously, I wanted to show you that your program should be ready for that. You can
print whatever you want, in all caps, but there will be users who won’t read it. There will be
users who make mistakes."

"What should I do about it?" Erik was still angry at his brother, but he tended to agree with him.
He made mistakes with programs himself.

"You should check what the user enters and tell them if the input was wrong. Let’s think what
we can do here."

4.1 If your user doesn’t do what you expected

"What do you think the user should enter in the first menu?" Simon continued.
"They should enter 1, 2, or 3," Erik answered.

"Okay, so we can check if their answer was 'l', or '2', or '3', then we pass it and pick that item
from the list of options. But is it’s not, we should tell the user that something is wrong."

"Yes, I remember, we can use i f - el se in Python," Erik suggested.

"Okay, let’s try it," Simon said. "How are you going to do that? Try to explain it to me as if I
didn’t know abouti f - el se."

"I will add to my function: 'if the user’s choice is 1, or 2, or 3, then go ahead and use it. If not

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

51

(else), print that the user should enter one of those numbers'."
"Good, let’s code it," Simon said.

Erik opened his editor and changed the function (four lines just before r et ur n):

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):
print(title)
print(len(title) * "-")

=1
for c in choices
print(i, c)

i =i +1

choi ce = i nput (pronpt)

if choice == "'1'" or choice == '2' or choice == "'3":
answer = choi ces[int(choice) - 1]

el se
print("Enter nunber 1, 2, or 3!")

return answer
"Now let’s try it," Simon said.
Erik started the program and at the first menu he typed: "2".
"Why did you enter '2'?" Simon asked.
"Because I wanted coffee," Erik answered.

"But we should test your program for wrong answers!" Simon said. "Yes, I know, it’s your
program and you don’t want to break it, but as a developer you have to try to break your
program. You have to imagine all possible ways your users will use your program in a wrong
way. It’s hard and very uncomfortable, I know, but you have to overcome it and try to enter all
possible wrong values."

"Okay, okay," Erik said and restarted his program. At the first menu he entered "42" like Simon
did the last time.

Eri k's Menu

1 chocol at e

2 coffee

3 decaf

Choose your item 42
Enter nunber 1, 2, or 3!

Traceback (nmost recent call last):
File "/ home/erik/ mu_code/ menu_function.py", line 21, in <nodul e>
drink = nmenu(drinks)
File "/hone/erik/ mu_code/ menu_function.py", line 14, in menu

return answer
UnboundLocal Error: |ocal variable 'answer' referenced before assignnent
>>>

"Let’s see what’s going on here," Simon said. "First of all, when you entered '42' your program

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

52

printed the message that the user should enter only 1, 2, 3. This is good. But then something went
wrong. Look, it says that the variable answer was referenced before assignment:

UnboundLocal Error: |ocal variable 'answer' referenced before assignnent

In simple words it means that you didn’t create answer but you tried to use it. And Python shows
you exactly where: you tried to return answer but Python didn’t know anything about the

variable answer ."
"But why?" Erik said. "I have this answer = line in my code."

"Yes, you have it, but the important thing is where this line is used. In your code you create the
answer variable only when the user entered the right choice. If the user entered something else,
answer is not even created."

"In other words," Simon continued, "even when the user answered with wrong number, or even a
word, you still had to return some answer. It’s a very important rule: never use a variable before
you create it and assign some value to it. What value can we assign to answer here in case the
user made a mistake? I think an empty string like ' * should work here. Add it to your function
and check if it helps."

Erik changed the function to this:

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):
print(title)
print(len(title) * "-")

=1
for c in choices:
print(i, c)

i =i +1
choi ce = input(pronpt)

if choice == "'1'" or choice == '2' or choice == "'3":
answer = choi ces[int(choice) - 1]

el se:
print("Enter nunber 1, 2, or 3!")
answer = "'

return answer

YOUR TURN Add checking the user’'s answer

In your menu function, add the code that Erik just added. Test whether it
really checks your answers.

He tested the program again and this time it didn’t give him an error. It printed the message
Enter nunber 1, 2, or 3! and jumped to the next menu.

"Do you think your program did it right?" Simon asked.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

53

"It printed the message that you should enter 1, 2, or 3," Erik answered. "I think it’s right."

"But you didn’t get the user’s choice for drink. If they entered a wrong number, you should give
them a chance to enter a right one. It’s not a test like in school where you have just one chance to
answer. You should keep asking the user until you get one of the right answers."

"How should I do that?" Erik asked.

"We have another kind of /loop for that," Simon started to explain to his brother. "It’s called a
while loop. It repeats something over and over again, and with every cycle it checks the
condition. When the condition is true, it continues. If it becomes false, the while loop ends.

Sometimes we check the condition in the beginning on the loop if we already know it. In this
case we say 'while something is true, do this'. But sometimes, like in our case, we don’t have the
answer when we start the loop because we haven’t asked our user about their choice yet. So we
start an infinite loop and check the condition inside the loop after we receive the answer from the
user. We exit the loop if the condition becomes true. We call it break from the loop. Let me show
it on a diagram," Simon said and started drawing.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

54

. we alrepgd know +his condition

C >/ . it Shoufd be Trve or +he Ioop
condition won't Stonrt

F-Y

check” Hhe condition

+his 'do SDme:!'ln.mg should c_hom?e_

"'"'""—-‘-i'he_ condition
’ do somezt'hing TI or the loop will never endl

EXAMPLE

n=>5

while. n > O

n=n—|

Simon explained, "In this example we already know the condition before we start the loop. We
check the condition and decide if we should start. It should be Tr ue, otherwise the loop won’t
even start. [used a rhombus figure for this check; this is how programmers usually draw decision
points.

"If it’s true then we do something. The important thing is that this 'do something' should change
the condition, among other things. Otherwise the loop will continue forever and we don’t want
that.

"After we have done that 'something,' we go to the beginning of the loop and check the condition
again. If it’s still true, we repeat that 'do something.' If not, it’s the end of the loop and we go
outside it to continue with our program.

"Look at this simple example: we want to count down from five to zero. First we set the variable
n to five and in the beginning of the loop we check if it’s greater than zero. Yes, it’s greater, so
we start the loop. Remember that we have to change the condition at some point, otherwise the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

55

loop will never end. In our example, we subtract 1 from n each time we go through the loop. So,
eventually, the variable n will become equal to zero and the loop will stop.

"The important thing is that in this case, before we start the loop, we already know what is in the
variable n and we know that it’s greater than zero.

"What if we don’t know what’s in the variable or the variable doesn’t even exist? Like in our
case: we can check the user’s answer only after we ask to choose one of the items from the

menu. So we have to do this," and Simon drew another diagram.

we. don't check omyﬁn‘ms
start without — n the be_rjv‘mnimjr

condition
+his ‘do 50me_+hinrjv' should chanrjre_
. +he condition
——V{ do Something or the loolu will never endl

check™ the. condition

EXAMPLE

while. Trve;
answer = input
W onswer == 'I"

break

Simon continued his explanation, "Here we start the loop without checking any condition. We do
something first and only affer that, we check the condition. Sometimes this loop is called
'do-until,’ which means 'do something until the condition is true.! When the condition is true, exit
the loop and continue with the rest of the program.

In the example here I used your situation with i nput () . You ask for input, then you check that
input. This is your condition: if the input is valid, you should exit the loop. In Python we use the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

56

operator br eak for that."

Erik was a bit overwhelmed by this long explanation, but he felt like he knew what to do. He
asked his brother, "So you’re saying that I should just put a whi | e in front of my i nput () line
and add a br eak after I get a correct answer?"

"Yes," Simon answered, "exactly right! Just don’t forget to indent all the lines that are part of the
loop by four spaces to the right. Your editor will help you, don’t worry."

Erik started working on his program. After several minutes his function looked like this:

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)

print(len(title) * "-")

i =1

for c in choices
print(i, c)
i =i +1

whil e True

choi ce = input(pronpt)

if choice =="1'" or choice == "'2' or choice =="'3":
answer = choi ces[int(choice) - 1]
br eak

el se
print("Enter nunmber 1, 2, or 3!")
answer = ''

return answer

"Right?" Erik asked his brother.

"I told you that your editor can help you. Click Check - Check ."
Erik did as his brother suggested and saw this:

def menu(choices, title="Erik's Menu'", prompt="Choose your item: "):
print(title)
print(len(title) = "-")
i=1
for ¢ 1in choices:
print(i, c)
i+=1
while True:
~Ghoice = input(prompt)
1+ Syntax error. Python cannot understand this line. Check for missing characters!
1+ Expected an indented block

if choice == '1' or choice == '2' or choice == '3"':
answer = choices[int(choice) - 1]
break
else:
print("Enter number 1, 2, or 3!")
answer = "'

return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

57

"You see now?" Simon said. "You forgot to indent the lines to the right. That’s why it says that it
expects an indented block here. Move all the lines that are part of the loop to the right."

Erik changed his function and checked the code again.

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)
print(len(title) * "-")
i =1
for c in choices:
print(i, c)
i =i +1
whil e True:
choi ce = input (pronpt)
if choice == "1' or choice == '2' or choice == '3":
answer = choi ces[int(choice) - 1]
br eak
el se:
print("Enter nunber 1, 2, or 3!")
answer = ''

return answer

YOUR TURN Add the while-loop to your function

Add the loop like Erik just did. Try to use the Check button to find if there are
errors in your code. Try to make errors and see if the editor can find them.

Now the Check button showed a green thumbs-up ’ Check good for a moment so Erik knew
it was okay. He clicked Run to test the program. At the first menu he entered '42' like Simon did
last time. The program reported the he should choose a number 1, 2, or 3 and returned to the
prompt again! It didn’t crash, it worked!

"What was the other wrong thing Simon did with my program?" Erik tried to remember. "Right,
he tried to enter 'coffee'! Let’s try that too."

He entered 'coffee' and his program responded as he expected again! Finally Erik typed '2' and
got the next menu. Here is what he saw in the editor window (we marked Erik’s input with bold

):

Eri k's Menu

1 chocol ate

2 coffee

3 decaf

Choose your item 42
Enter nunber 1, 2, or 3!
Choose your item coffee
Enter nunber 1, 2, or 3!
Choose your item 2
Erik's flavors

At the next menu he typed 4 for Raspberry and got the same message:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

58

Erik's flavors

1 caranel

2 vanilla

3 pepperm nt

4 raspberry

5 plain

Choose your flavor: 4
Enter nunmber 1, 2, or 3!
Choose your flavor:

"Why is that?" he asked Simon.

"Your program behaves exactly as you wrote it," Simon answered. Of course, he knew where the
problem was.

"How did you write your condition?" he asked.

Erik said, "If the answer is 1, 2, or 3. A-ha, [understand now! I entered '4' so the program thinks
it’s a wrong answer! But how can I fix this?"

"It looks like we need a list of valid answers for each menu list," Simon said. "You can pass it as
another argument. But I think you know enough already to create a better solution."

"What is it?" Erik asked. "Something with loops again?"

"Not only," Simon answered. "We’ll learn something new about lists, too. Yes, I see that you are
tired of my lectures, but let’s finish it today. It will make your program work right again—isn’t it
worth it?" and he winked at his brother.

Erik was tired indeed, but that bug (yes, he has learned that word!) with the flavors menu was
really annoying and he wanted to fix it. "Okay," he sighed, "let’s fix it. What did you want to tell
me about lists?"

"Look at your condition," Simon said. "You used a simple 'if-else' check and you checked the
input against three valid answers: 1, 2, and 3. But what if your list of items is long, like 20 items?
Your 'if-else' block will be too long. There is another way in Python. We can check if a certain
item is in the list. In our case, we can check if the answer we got from the user is in the list of 1,
2, 3. We can try that for the first menu. Let me show you."

Simon took Erik’s keyboard and changed the i f choice == ...line in his function to the

following:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

59

whil e True

choi ce = input (pronpt)

if choice not in["1, "2', '3"]
answer = choi ces[int(choice) - 1]
br eak

el se
print("Enter nunber 1, 2, or 3!")
answer = "'

"This needs some explanation," he said. "Look, the user enters a string that can be 'l' or can be
'42'. We test whether this string is in the list of allowed answers, which is 1, 2, 3. If it’s not in the
list, then we print the error message and continue with the loop. If it is in the list of allowed

answers, then we convert it and pick that item from the menu list."

"Yes, I understand," Erik said. "But what about the second menu where I got the error? It didn’t
let me choose number 4 because it wasn’t in my i f . With your list I will have the same problem.

I have five flavors, so I need another list of answers here, right?"

"Excellent question!" Simon said. "I was just about to ask it myself. Yes, you are right. Each
menu list should have its own list of allowed answers. Not a big problem; we can build one when
we know what’s in our menu list. Let me write it first and then I’ll explain it step-by-step." And
Simon added the following lines just before the i f block he added previously:

whil e True

choi ce = input (pronpt)

al | oned_answers = []

for a in range(l, len(choices)+1)
al | owed_answer s. append(str(a))

if choice not in all owed_answers:
answer = choices[int(choice) - 1]
br eak

el se
print("Enter nunber 1, 2, or 3!")
answer = '

"First (look at the label 1) we create an empty list for allowed answers. Then (label 2) we
measure the length of the menu list using the function | en() . For your drinks, the result will be
three, and for the flavors it will be five. Then we use the function r ange() to create a sequence
of numbers from one to the length of the menu. For drinks the sequence will be 1, 2, 3. For
flavors it will be 1, 2, 3, 4, 5. You get the idea. Just notice that in the range() function we
shouldn’t use the last element of the sequence, but the one after the last which is not included in
the sequence. That’s why we have to add one to the length of the menu like this:"

I en(choi ces) +1
"And finally in this loop (label 3), we convert each number from the sequence to a string and add
it to the and of the list of allowed answers. This function is called append()." Simon finished his

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

60

explanation and added: "Yes, it’s a bit complicated for the first time, but try to read the Python
code here yourself and you’ll understand it as if it’s plain English."

"Now we have to change our list with 1, 2, 3 to the list of allowed answers that we just built,"
Simon made that change, looked at the code, and slapped his forehead: "Oh, I just noticed!"

"What?" Erik thought they have finished already. But it looked like there was something else.

"We also have to change our message," Simon said. "Because our function now can accept menu
lists of any length, we should tell the user something like: 'Enter a number from 1 to 6' or 'from 1
to 12,' depending on the length of our menu. Remember how we can get the length of a list?"

"With the | en() function?" asked Erik.

"Of course!" Simon said, and made the final change in the function. It now looked like this:

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)
print(len(title) * "-")
i =1
for c in choices:
print(i, c)
i =i +1
whil e True:
choi ce = input (pronpt)
al | oned_answers = []

for a in range(l, |en(choices)+l):
al | owed_answer s. append(str(a))

if choice in all owed_answers:
answer = choices[int(choice) - 1]
br eak
el se:
print("Enter nunber from1 to ", I|en(choices))
answer = ''

return answer

YOUR TURN Add the allowed_answers list

Add the list of allowed answers to your function. Test whether it allows you to
use menu lists of different length.

"Now we are protected from user errors!" Simon said. "Try it and see if it works!"

Erik ran the program again and entered '42', 'coffee’, 'weryiuryt587456' but the program didn’t
crash like before. Every time, it gave him a reminder that he should use a number and it should
be between 1 and 3 or 5, depending on the menu.

"This is cool! It works and it doesn’t crash!" Erik was really happy that he created such a robust

program.

"One more thing," Simon said. "This one will be really-really final for today, I promise!"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

61

"Okay," said Erik. He started to like this programming thing. He liked that his program now
looked like a real one, and it worked! Even if it wasn’t an online or mobile application yet, it
worked like a chat with a shop. Erik imagined that he was texting with his favorite coffee shop,
ordering his drinks, and then coming to pick them up.

Simon said, "Your program now doesn’t let me enter anything except the numbers from 1 to 3 or
5. But what if I want to skip somthing? Like I don’t want any toppings on my drink?"

"In my flavors menu I have 'plain,’ which means 'no flavor.' I can add the same to toppings," Erik
answered.

"That works too," Simon said. "But in general with every menu you should give your user an
option to exit the menu. Usually people use something like 'Click X to exit from this menu.'
think we should add this to our menu function too."

"How do we do it?" Erik asked. He thought a little and said, "I know! We will add 'X' to the list
of allowed answers! Am I right?"

"Absolutely!" Simon was very glad to see his brother making such a good progress. "Remember,
we used the function called append() to add items to the list? We can use it here, right after we
finished adding numbers to the al | owed_answers."

"Let me try," Erik said and started typing.

"Sure, go ahead," Simon encouraged his brother. "Just make sure you add it after that for-loop.
Better to add an empty line after it; that way you will be able to see that it’s not part of the loop."

Here is Erik’s new version of the menu function:

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):
print(title)
print(len(title) * "-")
i =1
for ¢ in choices:
print(i, c)
i =i +1
whil e True:
choi ce = i nput (pronpt)
al | owed_answers = []
for ain range(l, |en(choices)+1):
al | owed_answer s. append(str(a))

al | owed_answer s. append(' X')

if choice in allowed_answers:
answer = choices[int(choice) - 1]
br eak
el se:
print("Enter nunber from1l to ", |en(choices))
answer = ''

return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

62

"Nice," Simon said. "I would also add the lower-case letter 'x', because that’s what most people
would type. Now what should we do if the user types 'x'?"

"Exit the menu loop?" Erik said.

"Right! But what are we going to return to the main program? Normally we return the user’s
choice from the menu: coffee or chocolate or whatever. What if the user types 'x'? What should
we return?"

"Nothing?" Erik suggested.

"Yes, we just return an empty string," Simon said. "If the user types 'x' you just assign to answer
an empty string like this: " and return the answer the same way you return it if the answer is in
the menu."

Simon continued, "Important thing: you should do that check before you try to convert it into a
number, but after you check whether it’s in the al | owed_answer s list. Do you see where to put
this check?"

"Yes, right after this line: i f choice in all owed_answers."

"Great! Go ahead an add it! In this case you will have a nested if statement: one i f inside of
another i f . This is pretty common, sometimes you see three levels of nested 'ifs' or even more.
Just make sure your indentations are correct. This is how Python tells the computer what to do it
the condition is true of false."

Erik worked more on his code and finally got this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

63

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)
print(len(title) * "-")
i =1
for c in choices:
print(i, c)
i =i +1
whil e True:

choi ce = i nput (pronpt)

al | owed_answers = []

for a in range(l, len(choices)+l):
al | owed_answer s. append(str(a))

al | owed_answer s. append(' X')
al | owed_answer s. append(' x")

if choice in allowed_answers:
if choice == 'X or choice == 'x":
answer = "'
br eak
el se:
answer = choices[int(choice) - 1]
br eak
el se:
print("Enter nunber from1 to ", I|en(choices))
answer = ''

return answer

YOUR TURN Add the exit option

Add the 'X' option to the list of allowed answers. Add the nested 'if' to check it.
Test whether it works. What if you enter 'x' in all menus? What order will you
get in that case?

He tested the program, entering 'x' in all three menus and he got what he expected:

Eri k's Menu

1 chocol ate

2 coffee

3 decaf

Choose your item x
Erik's flavors

1 caranel

2 vanilla

3 pepper m nt

4 raspberry

5 plain

Choose your flavor: x
Eri k's toppings

1 chocol ate

2 ci nnanon

3 caranel

Choose your topping: x
Here is your order:
Mai n product:

Fl avor:

Toppi ng:

Thanks for your order!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

64

"An empty order!" he said.

"Right, exactly as it should be," Simon confirmed. "I like your program," he continued. "It
works—that’s the first and the most important part. It’s user-friendly, and it gives the user
instructions on what to do—that’s the second part. It checks the input and it doesn’t let the user
enter wrong values—that’s the third part."

"Let’s quickly recap what you learned today," Simon said. "What was the first thing?"

"First, you broke my program again!" Erik answered. He wasn’t very angry this time because he
knew that together with Simon they have fixed the program. "And you told me that I should
always think how my users can use program in a bad way."

"Right, dealing with stubborn users who don’t want to follow your instructions is a part of
programmer’s job," Simon smiled.

"Then we wrote a menu loop where we checked what the user entered and didn’t allow them to
use answers that are not allowed. Then you told me about that append() function to add
something to a list."

Erik continued, "Then I wrote nested if checks and now my code looks like real programs they
show in movies."

Simon smiled, "Trust me, what they show in movies are very rarely real programs. But you are
right, your program is getting more complex, it uses different Python operators, all these loops,
and ifs, and lists."

"And then we added the 'x' option in the menu and now any user can get an empty order!" Erik
giggled.

"Yes, why not," Simon said. "You shouldn’t force your users to always order something. You
should give them an option to cancel their order or to exit from the menu."

Simon continued, "The program is really good now. Tomorrow I’ll ask you stop being a
programmer and become the coffee shop manager."

"Am I not a manager already?" Erik asked.

"Yes, you are," Simon smiled. "Now imagine you, the coffee shop manager, just received a new
flavor component for your coffee drinks. And you want to add that flavor to the menu. Oh, and
also a couple of new toppings. What would you do?"

"I would add those toppings to the list of toppings, not a big deal," Erik answered.

"Yes, but what if you are just a manager and not a programmer? You know nothing about this

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

65

program, you don’t know Python, but you want to add those flavors and toppings to the menu.
You, as a programmer, should give the manager an easy way to add something ot the menu."

"How do you suggest to do that?" Erik asked. He knew already that Simon has something in
mind.

"I think we should put menus in files and read your lists from those files."
"Like in Word documents?" Erik asked.

"Yes, almost," Simon said. "Your program will open those files and read from them. I think the
easiest will be to have one file per menu. One file will have all drinks, another one—all flavors,
and another—all toppings. Then your manager will just edit those files instead of editing your
Python code. Sounds good?"

"Yes, interesting," Erik said. He wondered how his Python program would open files the same
way Word does.

"Great," Simon said. "This is what we are going to do tomorrow. Take some rest now."

4.2 New things you have learned today

® Users make mistakes
Y ou have learned that user not always follow the directions you give them in your
program. Y ou have to be ready for that and check their input for errors, wrong types, etc.

® |ndentation
When you create a block in Python (like whi | e, for example) you have to make sure all
code in the block is indented, i.e. shifted to the right.

® How to exit froma menu
Y ou have to give your users away to exit from each menu. For example, if they don’t
want to order any topping and they want to skip it.

4.3 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch04

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch04
https://livebook.manning.com/#!/book/lets-talk-python/discussion

66

Working with files: Being a shop manager

This chapter covers

® Erik learns what a coffee shop manager needs
® Erik reads his menus from files
® Erik writes his second Python function

"Last time you said something about a coffee shop manager," Erik started with his brother the
next day. "Something about changing menus. I forgot."

"Yes, I said it might be good if your coffee shop manager could change the menus without going
into Python code," Simon said.

"Yes, good idea," Erik said. "Not everyone knows Python."

"My idea is to create simple text files for each menu—call them dri nks.txt,
flavors. txt and toppings.txt. Then your program can read from those files and create
lists from the items in the files."

"Why did you name them all with the . t xt at the end?" Erik asked. "Shouldn’t they be . docx so
the manager could edit them in Microsoft Word?"

"Good point," Simon said. "Yes, the manager might be more familiar with Word, but in our case
we need just a plain text file, without fonts, or headers, or table of contents. It’s similar to your
Python code—these files should have nothing but lines of plain text, and the manager should use
a plain text editor to work with them. When I name them with . t xt at the end I tell the operating
system—whether it’s Windows, or macOS, or Linux-- that this file should be opened with a
plain text editor and not a word processor like Word. In all those systems there is always a text

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

67

editor that can edit these files. And you can also install another application for that, like we with
did with Mu Editor. Also, for Python it’s much easier to read from a plain text file than from a
. docx file."

"Let’s create these files," Simon continued. "You can use your Mu Editor for that. Just don’t
forget to add the . t xt extension when saving the files. Otherwise it will automatically add . py.
Create a new file, enter your drinks, each on a separate line, and save it with the name
drinks. t xt. Then do the same for flavors and toppings."

Erik started working. After several minutes he’s got three files.

Listing 5.1 dri nks. t xt

cof fee
chocol ate
decaf

Listing 5.2 f | avor s. t xt

car arel
vanilla
pepper m nt
raspberry
plain

Listing 5.3 t oppi ngs. t xt

chocol at e
ci nnanmon
car anel

YOUR TURN Create your own menu files

Create the text files with menu items like Erik just did. Make sure they are
plain text files. Try to use your favorite flavors and toppings in your menus.

"Now what?" he asked his brother.

"Now let’s learn how to work with files in Python. Let’s create a new program for that. We’ll
practice a little bit and then we’ll add this code to our main program. I usually do this when I
learn something new—try it in a separate simple program before adding to the main application."

Simon continued, "Create another file in the editor and save itas fi |l es. py."
Erik has done that several times already so it took him just a couple seconds.

"Working with files is a difficult topic, so let me start with a diagram," Simon said.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

68

compurer Python variable
ope_n("otrink's.-rx’r"r)

o Ble handle P]

“drinks et

— readQ)

— write()

—peloge)

"When you work with a file in your computer you use its name. You tell your editor program to
open a file called 'drinks.txt'. Your editor program then reads the file and shows you its content.
Then you edit the file and save it which means you write the file on the computer disk. So far, so
good?" Simon asked.

"Yes," Erik said. "But disks are used only in very old computers. In my computer it’s called SSD
drive and it’s not a disk anymore. My friend Alex told me."

"You’re absolutely right!" Simon was glad to hear that from his brother. "Yes, it’s SSD now in
most of the computers and yes, it’s not a disk and it is not spinning. By the way, maybe your
friend Alex would like to join us? It seems that he is interested in computers. Maybe he wants to
learn some programming too?"

"I’ll ask him," Erik said. "But let’s get back to my files. I see that you wrote 'computer' and
'Python' at the top of your picture. What does that mean?"

"That means," Simon started his explanation, "that in Python if you want to work with a file you
have to create a special object which is usually called a file handle. You use this object to read
and write the file. You use a function called open() to create such an object. You call the
function open() and you pass the file name as an argument. In our case it will be
open("drinks. txt"). The function returns the file handle which you put in a variable. In this
case the variable is called f , but you can use any name here."

"Why is it so complicated?" Erik asked. "Why can’t we just use the file name?"

"Yes, it looks a bit complicated for the first time. The reason for that is that the file name is just a
string, remember? When we want to read from the file we want to read from the file with that
name, not from the string. The file name and the file itself are different things. When we use the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

69

function open() we create a connection between the file name and the file itself. We tell Python:
'please find the file named dri nks. t xt inside the computer and use it as a file.' Don’t worry too
much about it right now. Sometimes the best way to understand something is to start using it."

"Okay," Erik said. He was still a bit confused about all that but we wanted to see how he can
read his menus from the text files he just created.

"Now let’s write a simple Python program to work with files," Simon said. "Now go to the tab in
your editor where you have your fi | es. py program opened.

Look at my diagram: you have to call the function open(), pass the file name such as 'drinks.txt',
and store the result in the variable f . Can you write it?"

computer Python variable
operCdrinks 4t r_

clrinks et o Ble hondle &]

— read()

» wi-t'e_()

—peloge)

"Let me try," Erik said and wrote this.

f = open("drinks.txt")

"Good!" Simon said. "Now you have a file object named f and you can read from it. To do that
you call a method called read(). Methids look and behave very similar to functions, but
methods are applied to objects. We’ll talk about objects later but for now all you have to know is
that to call a method of an object you use the object’s name, then you put a dot and then the
method name with parentheses, similar to calling a function. Like this: f . r ead() . Methods also
can return something, similar to functions. So you have to store the result somewhere. What do
you think this method r ead() will return when you call it?"

"What’s inside the file, I think," Erik answered.
"Absolutely correct!" Simon said. "Save it in a variable called dr i nks and then try to print it."

Erik wrote the following.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

70

f = open("drinks.txt")
drinks = f.read()
print(drinks)

"Now try to run it," Simon suggested.

Erik clicked Run and got the output.

cof fee
chocol at e
decaf

>>>

YOUR TURN Read from file

Write the same short program and try to read from the 'drinks.txt' file. Make
sure you can print out the whole file’s content.

"It works!" he was really glad. His Python program opened a file, read it, and printed it on the
page! "Now I know how to print my menus from Python! Let me write the same for the other

two files!"
"Right," Simon said. "But that’s not exactly what we want."
"Why?" Erik couldn’t understand.

"Remember, in your program you don’t only print out your menus, but you also let the user
choose from the menu and then you find that item in the list, right?"

"Yes, but isn’t it a list here? It looks like a list," Erik asked.

"It may look like a list, but it’s not a list. It’s a string," Simon said. "When you called the r ead()
method you copied the whole file’s content into a variable called dri nks. So this variable is just
one large string. If you don’t believe me, you can test it right here. See these three angle brackets
in the output window? You can type any Python command here to continue working with your
program, the same way we did it with REPL, remember? Type here this: t ype(dri nks) and you
will see the type of this variable."

Erik did and saw this:

>>> type(drinks)
<class 'str'>
>>>

"You see, Python says it’s a string," Simon said. "And we need a list."

"What should we do?" Erik asked.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

71

"Luckily, Python developers knew that we might need this and created another method for the
file object. It’s called r eadl i nes(). Try to change your read() to readl i nes() and see what
happens. Don’t forget to click Stop before running your program again."

Erik changed his program to the following.

f = open("drinks.txt")
drinks = f.readlines()
print(drinks)

He clicked Stop and then Run again and got this output.

['coffee\n', 'chocolate\n', 'decaf\n']
>>>

"Try to check its type again," Simon suggested.

Erik switched to the output window and typed:

>>> type(drinks)
<class 'list'>
>>>

YOUR TURN Check Python types

Repeat the checks that Erik just did. Do you see the difference between a
string and a list?

"It’s a list!" he said. "But what are those slash-n characters? I don’t have them in my file with
drinks."

"You don’t see them in your file, but they are there. These are invisible characters. When you see
this backslash-n it’s a single character that is called a 'newline' character. It tells the computer
that it should print the next item at the beginning of the next line. Without it all your drinks
would be printed like this: cof f eechocol at edecaf . You don’t want that, right?" Simon smiled.

"Of course, not!" Erik said. "But we don’t need them in the list, right? I think the menu lists

should look like in my main program, right?"

"You are absolutely right. And again, Python developers created a very useful method for that.
It’s called strip() and it removes invisible characters from both ends of the string. We just
have to apply it to every item in the list. What do you think we should use here?"

"A loop?" Erik suggested.

"Right, a loop!" Simon said. "We will go over the list and remove those newline characters with
the stri p() method."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

72

Simon paused for a moment, thinking. Then he continued, "There are several ways to do it. Some
are shorter, but they are more difficult to understand. Let’s use the one that is easier to read and
follow. Actually this is a good rule in programming: when choosing between different ways of
doing something, always use the one that is easier to read and follow. If somebody is reading
your code, they will thank you for that. Even yourself—if you are reading your own code three

months later."

He quickly drew a diagram.

drinks At

open('drinks 4sxt')
'Pile_ gal
l +—— P.readlines()

(_xeme J

‘Ld-—— CONVErsion Inop

[olﬁnk'sj

"Let’s use a temporary list to read into from the file. Then we’ll go through that temporary list,

convert each item, and append it to the new list. And that new list we’ll call dri nks. Then we’ll
repeat the same for flavors and toppings. We can use the same temporary variable for all of
them. Let me help you," and Simon started typing in Erik’s program. Here is what it looked like
after he finished.

f = open("drinks.txt")
tenp = f.readlines()
drinks =[]
for itemin tenp:
new item= itemstrip()
drinks. append(new_i tem

print(drinks)

He clicked Run and they saw the result:

["coffee', 'chocolate', 'decaf']
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

73

YOUR TURN Remove the newline characters

Remove the newline characters from the menu items using the strip()
method.

"Looks better, doesn’t it?" he asked Erik. "Now go ahead and do the same thing for the other
menu files."

Erik started working on his program and when he was almost done with the f| avors. t xt file he
exclaimed, "Wait! [am repeating myself! You told me I should not repeat myself."

Simon smiled. He was happy that his little brother grasped this concept so quickly. "What should
we do to not repeat ourselves?" he asked.

"Write a function?" Erik said.

"Yes, exactly! Look at this code: what is the same and what is changing? What is going to be an
argument and what is this function going to return?"

Erik started thinking out loud, "I open different files, so the file name should be an argument,
right?"

"Correct!" Simon confirmed. "What do you want to return?"

"I think I return the list with menu options. After we removed those newline characters, of
course. But how should I call this list?"

"You can call it any way you want because it’s not visible from the outside. Call it resul t, for
example. Then you can write return result at the end of the function. When you call the
function that resul t list is assigned to, the variable in the main program, like dri nks or
f1 avors depending on the file you are reading from. Inside the function the variable will be
always called r esul t , but outside the function, in the main program, you can assign the result to

any variable."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

74

MAIN Pm?ro;m 'Punc,-ﬁon

/C_a\” ‘Pvnc-ﬁcn_{ _E:-‘;a
olnnl(s FunctionQ =

avors) = 'Punc,hon()

ca“ Punchon-—b[retuvmn FQ_SUI'l'

"Go ahead and write that function!" Simon encouraged his brother. "Remember how to do it?
Start with def ; name the function r ead_menu, for example; pass fi | enane as an argument; and
copy the code we just have written."

"Okay, I’ll try," Erik said and started writing his second Python function.

Simon helped his brother a little bit and here is what they wrote together.

Listing 5.4 fi | es. py

def read_nenu(filenane):
f = open(filenane)
tenmp = f.readlines()
result =[]
for itemin tenp:
new item= itemstrip()
resul t.append(new_i tem

return result

drinks = read_nenu("drinks.txt")
print(drinks)

flavors = read_menu("flavors.txt")
print(flavors)

t oppi ngs = read_nenu("toppi ngs.txt")
print (toppings)

Erik saved the file and clicked Run. Of course, he got the expected result.

['coffee', 'chocolate', 'decaf']

["caranel', 'vanilla', 'peppermint', 'raspberry', 'plain']
['chocol ate', 'cinnanpbn', 'caranel']

>>>

YOUR TURN Create the r ead_nenu function

Create the read nenu function the same way Erik did. Make sure you don’t
have typos in the file names. What if you do? Try to change the file name and
see what error Python gives you. Don’t forget to fix the file name so your
program works again.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

75

"It’s my second function and it works!" he proudly said to his brother.

"Yes, you are building your own function library already, great!" Simon said. "Now let’s copy
your new function to the main program. Don’t copy the print () lines—we used them just for

testing. I think that file is called menu_f uncti on. py, right?"

"Right," Erik said. "But where should I put my function in that file? In the beginning or in the
end?"

"The rule in Python is that you should define your function before you start using it. Because of
that usually all functions are placed in the beginning of the file, before the main program. You
can place it right after your first function."

"Okay," Erik said and started working. Here is what he’s got.

Listing 5.5 menu_fil es. py

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):
this function didn't change
return answer

def read_nenu(filenane):
f = open(filenane)
tenmp = f.readlines()
result =[]
for itemin tenp:
new item= itemstrip()
resul t.append(new_i tem

return result
drinks = read_nmenu("drinks.txt")
flavors = read_nenu("flavors.txt")
t oppi ngs = read_nenu("toppings.txt")
drink = nenu(drinks)
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")

t oppi ng = nmenu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")

print("Min product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)

print("Thanks for your order!")

YOUR TURN Copy your function to your main program
Copy the new r ead_nenu() function to your main program and try it.
He tested the program and it worked exactly as before!

"This is good," Simon said. "Now try to add something to the toppings file, for example. And see

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

76

if it changes the menu."

Erik opened the t oppi ngs. t xt file and added 'vanilla powder' to the end of file and saved it. He
ran the program again and indeed there was the additional line at the last menu: 4 vanilla
powder !

YOUR TURN Add another item

Add a new item to one of the menus. Change one of the items. Don’t forget to
save the menu files after you changed them. Check whether your program
prints the updated menus.

"This is good, I like it!" he said. "Now anybody who can edit a text file can change the menu!
Wait..." he had an idea. "So I can put anything in these menus! Ice cream or sandwiches or...
Cool, I like it! I should tell my friend Alex about it—he likes LEGO minifigures. Maybe he can
use this program to exchange figures with friends!"

"Exactly right!" Simon said. "I’'m glad you have so many ideas on how to use your program, this
is great! I have some ideas too but we’d better talk about them tomorrow. Also tomorrow we
have to create the main menu."

"What do you mean?"

"You see, currently you have to start your program every time you want to take an order. You
take the order, you print it, and your program finishes. It would be better if your program could
return to the initial dialogue where you ask the customer’s name."

"Yes, right," Erik agreed. "It should be like a kiosk where you order something, press 'Done', and
it goes to the first screen with "Welcome to our shop'. Yes, let’s do it!"

"Let’s recap today’s progress," Simon suggested. "What did we do today?"

"First, you said that the coffee shop manager will want to edit our menus in files. Then I wrote
three files with menus for main drinks, flavors, and toppings."

"Very good, what’s next?"

"Then I opened the files and read from them. I could read line by line but then I had those
strange 'backslash-n' characters. And then we used the st ri p() method to remove them."

"Good," Simon said. "And did you remember what I told you about objects?"

"Not really. You said that the file is an object in Python and it’s not the same as its name. And

"rn

also you said that functions with objects are called 'methods'.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

77

"Yes, everything is right," Simon said. "Objects is a difficult topic, we will talk about it more
later. For now we just use them and their methods, but we will learn more about them later. And
we’ll create our own objects and methods too—Ilike we did with functions."

"Right!" Erik said. "You reminded me—I wrote my second Python function! And it worked!"

"Indeed! You are becoming a serious programmer now!" Simon said and smiled. "Let’s take a
rest for now. Tomorrow we’ll make your program even better!"

5.1 New things you have learned today

* \What it meansto open a file
Y ou have learned the difference between the file name and the file handle inside the
program.

® What is\ n and how to remove it from strings
Y ou have learned that the \ n symbol means "start anew line". We don’'t need it in our
menu items so we used the st ri p() function to removeit.

® WWhat you return froma function is assigned to a variable in the main program
Y ou have learned that the variable inside afunction is not visible in the main program. To
pass its value we have to return that variable from the function and assign its value to
another variable in the main program.

5.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch05

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch05
https://livebook.manning.com/#!/book/lets-talk-python/discussion

78

Main menu: Next customer!

This chapter covers

® Erik creates the main menu to serve many customers
® Erik learns about Python dictionaries
® Simon explains the 'top-down' development approach

"Remember, we decided that we have to create the main menu?" Simon asked Erik.

"Yes, you said if [want to use this program to serve many customers, [have to repeat the menus
for each customer. Ask their name and what they want to order."

"Exactly right!" Simon said. "And what are you going to use for that?"

"A loop, maybe? Like we did with menus. Repeat until the customer types the right numbers or
types 'X"."

"You are absolutely right!" Simon was really glad that his brother caught this programming idea
so quickly. "We will ask the customer their name, like in our first program, remember? Then
we’ll get their order with all the flavors and toppings."

"Yes," Erik continued, "and then we’ll ask them: Order or Cancel? I saw that on some web
sites."

"Right. When they click Order, we save the order and print it for the barista. If they cancel, we
just forget about it. In both cases we go back to the beginning of the main menu and ask the next
customer their name."

Simon took a piece of paper and started drawing. "We should first plan this algorithm visually.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

79

When we both agree how it should behave you can start writing the code. It’s always a good

practice to discuss your future program in plain words and diagrams before you start writing any
code."

"The first thing we do here is getting an order," Simon started explaining. "You see, I put it here
as 'Get order"."

Get r‘cie.r }

[Saxve_ order F»| Doatabase

:

Print order

|

Mext customer

"And where are all our menus with flavors and toppings? Why didn’t you put them here?" Erik
asked.

"I decided to use a block called 'Get order' that contains all the menus. It’s a common way to
think in big blocks first and then work on each block’s details separately. By the way, it’s

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

80

another reason why programmers use functions. They think about the program in big blocks first
and then describe each block in a separate diagram. Imagine if we placed every minor detail of
our program on a single diagram! It would be impossible to understand the main algorithm!"

"Let’s continue," Simon said. "So we get the order and we ask the customer to confirm it. They
can cancel and then we return to the very first menu: 'Welcome to Erik’s Coffee Shop' and all
that.""

"If the customer confirms the order," Simon continued, "then we should save and print it."

"Okay, I understand that we should print it to prepare the drinks," Erik said. "But why should we
save it? And what do you mean by saving the order?"

"First of all, it would be good at the end of the day check how many of your friends you served
in your coffee shop, don’t you think?"

"But I know already," Erik said. "I prepared five drinks that day."

"But we’re talking about a real coffee shop, don’t forget. They work every day and they serve
tens and hundreds of customers. A couple of my friends worked in different coffee shops and I
can assure you—they know very well how many customers they serve each day."

"The other reason," Simon continued, "is that the coffee shop manager should know what they
have in the shop what they should order for their inventory. Remember we talked about changing
menus? For example, they didn’t order the caramel flavor in time and they had to remove it from
the menu. Why didn’t they order it? Because they didn’t count how many portions of caramel
flavor their customers have ordered. So we have to save all orders, analyze them, and order
flavors and toppings if we don’t have enough."

"I didn’t think about it," Erik said. "Yes, it’s a good idea to save the orders; you are right. But
how are we going to do that?"

"There are several ways," Simon said. "We can use files, or we can use databases. Of course, all
serious applications use databases. I think we should start with files and then, if you are brave
enough, we can use databases t0o0."

"Yes, I want my program be like those serious applications!" Erik said. "I want to try databases
too!"

"Good," Simon said, "but for now let’s finish with the main menu. We’ll get to saving orders
very soon. Speaking of orders," Simon took another piece of paper, "here is what’s inside that
'Get order' block."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

81

—

Ce:!'vm order

YOUR TURN Create your own diagram

If you decided to work on a different kind of shop, create a diagram for your
get order () function.

"We have written this function already. We just didn’t call it a function. You see: we have
already created these dialogues to ask the customer’s name, the drink, flavor, and topping. Only
one thing that we haven’t done yet. Do you see it?"

"Return order?" Erik asked. "I see that we didn’t do it, but I don’t know what it means here."

"Look at the right side of the diagram. Here’s what your order looks like, agreed?"

order:

name; Erik

drink: decaf
Plavnr‘: Vami“au
-l‘oppin?: C.]r\ﬂc.c:lad'e_

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

82

"We use the function get _or der () to collect all this information, but instead of returning four
separate values for name, drink, flavor, and topping, I want to return a single thing that I would
call an order. And that single thing contains several values that go together as a whole."

"I know, you want to use a list here!" Erik shared his insight.

"That’s one of the options, but I have in mind something better. In Python we have dictionaries.

What is a normal dictionary?"

"Oh, it’s a book with words and their meaning," Erik answered. "Or translations, if it’s an
English-German dictionary."

"Right!" Simon said. "You have a word and a value that is related to this word. Like this," and he

draw a diagram.

Who+t is o olic,ﬁona.ry?

apple_ P Appd

peach » PRirsich

olog P' Hund

"It could be its meaning or translation. In Python we have a similar thing. A dictionary in Python
uses words that we call keys to get the values that are related to them. Let’s look at your order.
You have a key called 'name' and its value is 'Erik'. You have another key called 'drink' and its
value is 'decaf'. And so on. The whole dictionary is called or der and this is what we are going to

return as a result from this function."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

83

Dictionaries in F’tfl'hon:

(*ey) H_valve)

e e |
| Dictionary ‘order” i
i |
E noAme._ —p Erk i
| deinke o decal |
| :
i Piavnr ¥ C.aur‘a\me[E
E -I'oppin::! » vmi”a i
I I
i |

"Let’s practice with REPL again," Simon suggested. "Click REPL to get to the interactive
session."

Erik clicked the REPL icon and switched to the window with an interactive session. It looked
like this (your version might be different from the example below—that’s okay):

Jupyter Q Console 4.7.7

Pyt hon 3.8.12 (default, Mar 12 2022, 19:58:23)

Type 'copyright', 'credits' or 'license' for nore information

I Python 8.1.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

"We start with creating an empty dictionary called or der. To create a dictionary in Python we
use curly braces {} to make them look different from lists, that use square brackets [] . Type
order = {} and then ENTER. This will be your order."

Erik typed:
In [1]: order = {}

In [2]:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

84

"Now we can add items to your order. Let’s start with the name. Type order[' name'] =
"Erik'. Then try to print the order with a simple pri nt () function."

Erik typed:

In [2]: order['nane'] = 'Erik'

In [3]: print(order)
{'nane': "Erik'}

In [4]:

"But you said that dictionaries should use curly braces. Why do we use square brackets here?"
Erik asked.

"Good question," Simon was so used to this Python feature that he couldn’t find a good way to
explain it right away. He started his answer, "Well, we use curly braces to create a dictionary.
But we use square brackets to access the dictionary, when we want to get an item from it. In this
sense it’s similar to lists—when you want to get an item from a list you use square brackets. The
difference is that with lists you use indexes that are integer numbers. With dictionaries you use

keys that are usually strings. If you had a normal dictionary to get a word’s meaning or
translation, and you used its index—Ilike 546—that would be very inconvenient, don’t you
agree? Instead, you use the word itself, like 'dog' and find is fast."

"Yes, right," Erik said. "Should I add the drink, flavor, and topping now?"
"Great idea, go ahead!" Simon said.

And Erik continued in his interactive session:

In [4]: order['drink'] = 'decaf’
In [5]: order['flavor'] = 'vanilla'
In [6]: order['topping'] = 'chocol ate'

In [7]: print(order)
{"nane': "Erik', 'drink': 'decaf', 'flavor': 'vanilla', 'topping : 'chocolate'}

In [8]:

"Notice here," Simon said, "that your keys and values always go in pairs with a colon : between
them."

YOUR TURN Learn dictionaries with REPL

Open REPL and work with dictionaries. You can repeat Erik's commands or
create your own dictionaries. Try using different keys. Try to store a number
instead of a string. Does it work?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

85

"This is cool, I like it!" Erik said. "But can I print it in a better way, like I printed it before?"

"Of course," Simon said. "I think you should write a new function for that. But we’d better
switch back to the editor for that."

"That will be my third function," Erik said.

"Are you still counting?" Simon smiled. "I’m sure pretty soon you’ll lose count of the functions
you’ve written!"

"Now let’s get back to your editor and start writing the main menu program," Simon continued.
We will use a top-down design approach here."

"What is it?" Erik asked.

"It’s like what I just showed you: first we develop the algorithm for the whole program. We
decide what are the big blocks and how we go from one to another. That usually includes
decisions like confirm or cancel the order. We can develop the main program and use functions
like get _order () or print_order (). It’s not a problem if we don’t have these functions yet.
Before we write the real ones we can write very simple functions that would just print a message
'T am a function print_order()' and that’s it. Some people call them 'placeholders'. When we see
that the main menu works well and calls the right functions—then we’ll add the real functions."

"Let me help you," and Simon took the keyboard. "First, I create a new file and save it as
mai n_nenu. py. Then I create a new function called mai n_nmenu() with the def keyword and

parentheses."
"Another function?" Erik asked.

"Yes, in programming we usually create functions for everything. The main program is usually
very short and it calls one of those functions. Then that function calls other functions and so on.
So it’s a good practice to write even your main menu as a function."

Simon continued, "Now look at the diagram. Do you see these arrows that go back to the 'Start'?
They usually mean that in your algorithm you are going to repeat something. As soon as we
return to the 'Start', we continue going through the same algorithm again and again. And to
repeat something in a program we use... what?"

"A loop!" Erik answered.

"Exactly right!" Simon confirmed. "We used two types of loops already: for-loop and
while-loop. Which one are you going to use here?"

"I think it should be a while-loop," Erik said. "This main menu looks similar to what we did in
the drinks menu: repeat questions and check what the user answered."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

86

"I agree," Simon said. "Look at your code where you wrote menu as a function. Remember, we
used whi | e True: there and checked what the user entered. What do you think we should check
here? Hint: on diagrams these moments when we have to make a decision are usually drawn as
rhombus."

C_onfirm
+he order

"I see it!" Erik said. "It’s where we ask the user if they want to confirm or cancel the order."
"Okay, let’s start writing it," Simon suggested.

Erik wrote:

def nmin_menu():
whil e True:

"What’s next?" he asked.

"Look at the diagram," Simon said.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

87

C_onfirm
+he order

[Sa\ve_ order F» Database

b

Print Drvte,r

|

Mext customer

"Get order?" Erik said.

"Right! And remember, that function get _or der () will return a dictionary with the order. The
dictionary will contain the customer’s name, drink, flavor, and all that. We will put that
dictionary into a variable called or der in our main menu. Let’s write this piece," and Simon
added a line to Erik’s code.

def mai n_nenu():
whil e True:
order = get_order()

"What’s next?" he asked his brother.
"Now we have to ask the customer if they confirm the order," Erik said.

"Good. But we have to show them the order before asking, I think," and Simon added a couple of

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

88

lines.

def mai n_nenu():
whil e True:
order = get_order()
print("Check your order:")
print_order (order)
confirm= input("Confirn? Press Y to confirm N to cancel: ")

"Look here," Simon said to Erik, "I used the or der variable that I received from get order ()
as an argument for the next function, pri nt_order (). This is very common in programming:
we call one function to do something, it returns a result, and then we use that result as an input
for another function."

MAIN progrom 3e:l'_nroler0

e
og ge:'r_crol::l)lfmmu{ rﬁu@f—j
=

print_ordeorder)

"I see," Erik said. "Like in a movie theater: the cashier prints a ticket and gives it to you. Then

_/

you take the ticket, go to the entrance, you give the ticket to the guys at the entrance and they
check it."

"Yes, good analogy, Erik! Let’s continue it: we just received an answer to the question if the
customer wants to confirm the order. Now, as you just said, we have to check the answer and
decide what to do next. Like in a movie theater: they check if your ticket is correct and decide
whether to let you in or not. Let’s add these lines. Look at the diagram. If the user answers 'Yes',
what shall we do?"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

89

C_onfirm
+he order

[Sa\ve_ order F» Database

b

Print Drvte,r

|

Mext customer

"Save the order and print the order," Erik answered looking at Simon’s drawing.
"Okay, and if the user wants to cancel and responds 'No'?"

"We should do nothing, just return to the beginning. But I don’t know how to do it. You just
have an arrow here."

"There is a simple word for this arrow in Python and the word is conti nue. It means 'don’t
execute the rest of the loop and continue the loop from the beginning'. Pretty easy, huh?" and
Simon added these lines to the function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

90

def mai n_nenu():
whil e True:

order = get_order()

print("Check your order:")

print_order (order)

confirm= input("Confirn? Press Y to confirm N to cancel: ")

if confirm=="Y" or confirm=="y":
save_or der (order)
print("Thanks for your order:")
print_order (order)

el se:
conti nue

"I see that you’ve added two more functions: save_order () and pri nt_order()," Erik said.
"But we don’t have them here..."

"Let’s write them now!" Simon exclaimed. "We’ll write very simple functions for now. They
won’t do anything, they will just print something like ‘saving order...' so we will see that they
were called. Later, we’ll improve them to do more useful things."

Simon added the functions below the mai n_menu() function:

def get_order():
return {}

def print_order(order):
print (order)
return

def save_order (order):
print("Saving order...")
return

He explained it to Erik: "The get _or der () function is what you have written already. We will
transfer your code here, but for now it does nothing. No menus, no dialogue, but it has to return
the order. Remember, the order is a dictionary with keys like 'name', 'drink’, and others. In this
case the function returns just an empty dictionary, which is a pair of curly braces. So far, so
good?"

"Yes," Erik answered. "So you mean we will copy my previous functions from that previous file
into this one, right?"

"Right," Simon said. "Sometimes when a program becomes larger it’s a good idea to group
functions in separate files. But in our case it’s easier to keep everything in one file."

"The print_order () function," Simon continued, "just prints the order that it gets via the
argument. In this case we use the standard Python print (), but we will make it prettier later.
You have done that already, remember?"

"Sure!" Erik said. "I think we can make it look like a real coffee shop receipt."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

91

"Good idea," Simon said. "The save_order () function does nothing except printing 'Saving
order...' That’s okay for now, we’ll write it later. Now we are ready to call the mai n_menu()
function and test our algorithm. Go ahead and add the call for the mai n_nenu() at the end and

run it. You main program will consist of only this function call."

Erik added the function call so the whole program now looked like this:

Listing 6.1 nai n_nenu. py

def main_nmenu():
whil e True:

order = get_order()

print("Check your order:")

print_order (order)

confirm= input("Confirn? Press Y to confirm N to cancel: ")

if confirm=="Y" or confirm== "y":
save_order (order)
print("Thanks for your order:")
print_order (order)

el se:
conti nue

def get_order():
return {}

def print_order(order):
print (order)
return

def save_order (order):
print("Saving order...")
return

mai n_nenu()

YOUR TURN Create main menu

Write a main menu function similar to the one Erik just created. Feel free to
change the dialogue messages.

He clicked Run and saw the output:

Check your order:

{}
Confirn Press Y to confirm N to cancel:

He typed "y" and got this:

Savi ng order. ..
Thanks for your order:
{}

Check your order:

{}

Confirn Press Y to confirm N to cancel:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

92

"Why does it give me the 'Check your order' again?" Erik asked.

"Because it’s a loop!" Simon said. "After you answered 'y' to the confirmation question it returns
to the beginning of the loop. And as soon as we haven’t added your menu dialogue yet, it prints
the empty order. Everything works as expected. Now try to answer 'n' to the question."

Erik typed 'n' and got the output.

Confirn? Press Y to confirm N to cancel: n
Check your order:

{}

ConfirnP Press Y to confirm N to cancel:

"Do you see the difference?" Simon asked.

"I see that it didn’t print 'Saving order..." this time. That means it went on the short arrow on the

right side of your diagram."

Get rcle.r }

C_onfirm
+he. order

[Saxve_ order F»| Doatabase

:

Print order

|

Mext customer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

93

"Excellent!" Simon was glad to see that Erik really understood his algorithm diagram.

"I think we made a good progress today: our main menu is working. Tomorrow we’ll write the
actual functions that will do what we want. For now, let’s wrap up and review what we learned
today."

"We used the while-loop again!" Erik said.
"Right! And you used what you’ve learned while working on menus," Simon confirmed.

"Also we learned about dictionaries. They are like normal dictionaries, but you can store
anything there, not just word descriptions."

"Yes, exactly! In our simple or der dictionary we keep names, drinks, and flavors. But in a more
complex dictionary you can keep numbers—prices, for example—and even lists and other
dictionaries. dictionaries are really useful in Python and you will use them all the time."

"Also I liked how you created simple functions just to test the main menu," Erik said. "You said
it’s called 'top-down', right?"

"Exactly," Simon said. "There is also a 'bottom-up' approach, as you could guess. In that case
people create functions first, test them properly, and then combine them into a large program. In
some sense we used this approach too when you created and tested your first nenu() function.

Now we are going to use your function in our large program."

"Time to take some rest now," Simon continued. "We’ll work tomorrow on the functions we
used in our main menu."

6.1 New things you have learned today

® Top-down approach
First you develop the "big picture” of your application and use simple functions that just
print something instead of doing real work. When the main algorithm works right you
develop the actual functions.

® Dictionary
In Python dictionaries can store pairs of keys and values. Y ou can assign values to keys
and you can quickly find them by their keys.

® Flowchart diagram symbols
Programmers usually use diagrams to discuss their algorithms before they start writing
code. Usually arectangle means some process, a rhombus means a decision point with a
Y es/No question. There are also symbols for input, using documents, using databases,
and others. We will introduce them later.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

94

6.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch06

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch06
https://livebook.manning.com/#!/book/lets-talk-python/discussion

95

Creating functions.: Get the order
and print it

This chapter covers

Erik creates the actual functions to get orders and print them
Erik uses a dictionary to store and print a customer’s order
Erik’'s program now works as planned!

Erik and Simon plan to write the function to save orders

"Yesterday we created the main menu, right?" Simon began his conversation with Erik. "We
even tested the main menu functionality."

"Yes, but it didn’t do anything useful," Erik said.

"Right!" Simon said. "Remember, we talked about the 'top-down' approach? We created empty
functions just to test the main menu. Now it’s time to make them do something real. Open your
Python file where we created menus from files. It’s called menu_fi | es. py."

Erik opened that file and now he had two tabs in his editor: one with the mai n_nmenu. py file and
another with the nenu_fi | es. py file.

"Switch to the mai n_nenu. py file and let’s look which functions we have to write here," Simon
said. "You see, three functions: get _order (), pri nt_order (), and save_order (). Let’s begin
with get _or der (). Where is our diagram?"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

96

—

3e;r_Piavnr]

I

[_ger—topping |

return order

"Let’s start with get _name. What do we do here?" Simon asked.
"We just ask 'what is your name?'," Erik answered.

"Right, and then?"

"And then we save it in a variable, like nane."

"Almost right," Simon said. "Remember, we decided that or der will be a dictionary. And we
will save everything related to that order in this dictionary. For example, to save the customer’s
name instead of nane = ' Eri k' we should write order[' name'] = 'Erik'. Only instead of
'Erik' we will use the function i nput () like you did in your first program."”

"Let me try," Erik said and wrote this function:

def get_order():
order['nane'] = input("Wiat's your nane: ")
return {}

"Now try it," Simon said.
Erik clicked Run, the program asked his name and he entered 'Erik'. But then he’s got several

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

97

lines of error messages.

What's your nane: Erik
Traceback (nmost recent call last):
File "/hone/erik/ mi_code/ mai n_nenu. py", line 41, in <nmodul e>
mai n_nenu()
File "/home/erik/ mi_code/ mai n_nenu. py", line 3, in main_nmenu
order = get_order()
File "/ home/erik/ mu_code/ mai n_nenu. py", line 27, in get_order
order['nane'] = input("Wiat's your nane: ")
NanmeError: nane 'order' is not defined
>>>

"What’s that???" he asked Simon.
"Look, Python tells you where your problem is occurring. Read the last line."
"Name 'order' is not defined," Erik read it.

"It’s very simple," Simon explained. "You tried to put something in the dictionary but you
haven’t created it yet. It’s easy to fix. Let’s create an empty dictionary. Remember, we used
curly braces for that? Just write or der = {} before the line with i nput () ."

Erik changed his function to this:

def get_order():
order = {}
order['nanme'] = input("Wat's your nane: ")
return {}

and ran it again. This time it didn’t give him any errors.

What's your nane: Erik
Check your order:

{}

Confirn? Press Y to confirm N to cancel: y
Savi ng order. ..
Thanks for your order:

{}

What's your nane:

"It’s better now," he said.

"Yes, better, but look: it still prints an empty order. You created an order and even entered your

name into it, but your function returns an empty dictionary. See this line: return {} ?"
"But this is how you wrote it!" Erik was sure it’s not his fault.

"Yes, I wrote it this way to test the main menu function. But now we have to return the actual
or der dictionary. Change it to ret urn order and let’s see if it prints your name."

Erik changed the function to this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

98

def get_order():
order = {}
order['nane'] = input("What's your nane: ")
return order

and ran it again. This time he saw:

What's your nane: Erik

Check your order:

{'nane': "Erik'}

Confirn? Press Y to confirm N to cancel:

"Yes, it prints my name now!"

"Congratulations!" Simon said. "Now you know how to work with dictionaries!

YOUR TURN Create your get _order () function

Start writing your own get _or der () function in the mai n_nenu. py file. Add the
first input to get the customer’s name. Test it by running the main menu
program.

7.1 What are your choices?

"Let’s move on," Simon continued. "We have to add your nenu() function now to fill drinks and
flavors. But we also need the r ead_nenu() function to read your menus from files. Copy both of
them (menu() and read_nenu()) from the menu_fil es. py file and paste them here in the

mai n_menu. py. Paste them right before the def get_order (): line."

"What if I paste it after that line?" Erik wanted to know why his older brother gave him such
strict orders.

"Then it won’t work," Simon gave him a simple answer and smiled. "Okay, if you really want to
know: we are going to use these two functions in the get _order () function. First we have to
read the menu contents from files: your drinks, your flavors, your toppings. Then we call the

menu() function three times to get the customer choices. And before we can use these functions
we should define them. In other words, we should tell Python that such functions exist and what
they do. That’s why they need to be pasted before the def get _order (): line." By the way, this

is why we use the word def to start a function—we define it."

"Okay," Erik said and started copying the functions. In a couple of moments his mai n_nmenu. py
file looked like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

99

Listing 7.1 main_menu.py

def nmin_menu():
whil e True:

order = get_order()

print ("Check your order:")

print_order (order)

confirm= input("Confirn? Press Y to confirm N to cancel: ")

if confirm=="Y" or confirm=="
save_order (order)
print("Thanks for your order:")
print_order (order)

el se:
conti nue

y !

def menu(choices, title="Erik's Menu", pronpt="Choose your item "):

print(title)
print(len(title) * "-")
i =1
for ¢ in choices:
print(i, c)
i =i +1
whil e True:

choi ce = input (pronpt)

al | oned_answers = []

for ain range(l, len(choices) + 1):
al | owed_answer s. append(str(a))

al | owed_answer s. append(" X")
al | owed_answer s. append("x")

if choice in allowed_answers:
if choice == "X" or choice == "x":
answer = ""
br eak
el se:
answer = choices[int(choice) - 1]
br eak
el se:
print("Enter nunber from1 to ", I|en(choices))
answer = ""
return answer

def read_nenu(filenane):

f = open(fil enane)

tenp = f.readlines()

result =[]

for itemin tenp:
new item=itemstrip()
resul t.append(new_item

return result

def get_order():
order = {}
order["name"] = input("Wuat's your nanme: ")
return order

def print_order(order):
print (order)
return

def save_order (order):
print("Saving order...")

return

mai n_nenu()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

100

"Correct!" Simon said. "Now you know the rule: define something before using it. You just saw
the problem when you got errors with the or der dictionary, and now you see it with the menu()
and r ead_nenu() functions here."

"Now we are ready to use these functions in get _order ()," he continued. "Look at your
menu_fil es. py program. What did we do first?"

"We read the menus from files," Erik answered.
"Good, let’s do it here, but inside the function."

Erik added three lines to the get _or der () function:

def get_order ()
order = {}
order["nane"] = input("Wiat's your nane: ")
drinks = read_nenu("drinks.txt")
flavors = read_nenu("flavors.txt")
t oppi ngs = read_menu("toppings.txt")
return order

He had to adjust the lines by adding four spaces before each line so they were all indented at the
same level.

"And now the same with three nenu() functions?" he asked Simon.
"Sure, go ahead!"

Erik changed his function to this:

def get_order ()
order = {}
order["nanme"] = input("Wat's your nane: ")
drinks = read_nenu("drinks.txt")
flavors = read_nenu("flavors.txt")
toppi ngs = read_nenu("toppings.txt")
drink = nenu(drinks, "Erik's drinks", "Choose your drink: ")
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
toppi ng = nenu(toppings, "Erik's toppings", "Choose your topping: ")
return order

He was proud of his work and looked at Simon.

"Almost right," Simon said. "You copied it right, but you have to change the code a bit to store
the answers in the or der dictionary. It should be an easy change, you know how to do it."

"Ah, I see," Erik said and changed the function. Now the function looked like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

101

Listing 7.2 main_menu.py

def get_order():
order = {}
order["nane"] = input("Wat's your nane: ")
drinks = read_nenu("drinks.txt")
flavors = read_menu("flavors.txt")
t oppi ngs = read_menu("toppi ngs.txt")
order["drink"] = menu(drinks, "Erik's drinks", "Choose your drink: ")
order["flavor"] = menu(flavors, "Erik's flavors", "Choose your flavor: ")
order["topping"] = nenu(toppings, "Erik's toppings", "Choose your topping: ")
return order

Simon encouraged him: "Go ahead, run it!"

Erik ran the program.

What's your nane: Erik
Eri k's drinks

1 coffee

2 chocol ate

3 decaf

Choose your drink: 1
Erik's flavors

1 caranel

2 vanilla

3 pepperm nt

4 raspberry

5 plain

Choose your flavor: 2
Eri k' s toppi ngs

1 chocol ate

2 ci nnanon

3 caranel

4 vanilla powder
Choose your topping: 3
Check your order:

{"nane': "Erik', 'drink': 'coffee', 'flavor': 'vanilla', 'topping' : 'caranel"'}
Confirn? Press Y to confirm N to cancel: y

Savi ng order. ..

Thanks for your order:

{*nane': 'Erik', 'drink': 'coffee', 'flavor': 'vanilla', 'topping' : 'caranel'}

What' s your nane:
"Wow!" he was really happy. "I wrote a program of more than 70 lines and it works!"

"Yes, you did! And it really works!" Simon confirmed and smiled.

YOUR TURN Add menu choices to your program
Add the two functions nenu() and read nenu() like you see in the preceding
program to your file mai n_nmenu. py. Test the program by running it and
entering your choices. Try entering wrong choices and make sure the nenu()
function doesn’t allow you to do it.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

102

7.2 Print it!

"But something is still missing... The order doesn’t look very professional. It doesn’t look like a
real coffee shop..." Simon continued.

"I see, it should be in the “print_order() function, right?" Erik suggested.

"Yes, right. Go to the print_order () function in your mai n_nenu. py file. Let’s start printing
the order."

Erik’s pri nt _order () function looked like this:

def print_order(order):
print (order)
return

"Here we use the default printing function provided by Python," Simon continued. "Python can
print your dictionary, but it’s not pretty. It’s okay for debugging, but for real orders and receipts
we have to make it more beautiful. And you have done that already, right?"

"Y ou mean—when I printed lines of dashes? Yes, it was prettier than this."

"Okay, let’s do something similar to what you did at the end of the nenu_fi | es. py file. You
can copy those lines starting with print from there. Just don’t forget to keep the right
indentation and make sure you use the dictionary and not simple variables. Ah, and don’t forget
that now we have the customer’s name. I think you should use it in your function. Ready?"

"Yes," Erik answered and started working on the function. He ended up with this:

def print_order(order):
print("Here is your order, ", order["nane"])
print("Min product: ", order["drink"])
print("Flavor: ", order["flavor"])
print("Topping: ", order["topping"])
print("Thanks for your order!")
return

YOUR TURN Add the print_order () function

Add the print _order () function to the file mai n_nenu. py. Feel free to use
decorations like dashes (-), underscores (_), or equal signs (=) to make your
printed order look like the ones you saw somewhere else. Try to find receipts
from restaurants, coffee shops, ice cream shops and see if you can make
yours look similar.

He ran the program again and got much prettier output:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

103

Here is your order, Erik

Mai n product: coffee

Fl avor: wvanilla

Toppi ng: car anel

Thanks for your order!

Confirn? Press Y to confirm N to cancel:

"Yes, this is much better!" Simon said. "Yes, you can add decorations like dashes and vertical
lines, it’s up to you. But I can tell you that you did a great job as a programmer. You wrote
several very useful functions, you organized them properly, and you tested them. Good job, Erik,
I’'m really proud of you!"

"Also we learned about dictionaries and I used them," Erik sensed that it’s a "wrap-up time" and
he should mention everything he learned and used today.

"Yes, right," Simon confirmed. "Dictionaries are very important in Python. We use them all the
time in our programs. Later we’ll learn more about them."

"You said we should also save our orders somehow. Will we do it tomorrow?" Erik asked.
"Yes, sure," Simon said. "Do you know about JSON?" he asked.
"Jason? Yes, we go together to our math class. What about him?"

"No, not that Jason," Simon laughed. "JSON is a file format that we can use to save your coffee
shop orders. We’ll learn about it tomorrow, okay?"

"Okay," Erik said and off he went.

7.3 New things you have learned today

® Variable and function definitions
In Python we have to define variables and functions before we can use them. For
variablesit is as simple as assigning an empty valueto it. For adictionary it is: order =
{},forastringitis: name = "". Functions should be defined using the keyword def .

7.4 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch07

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch07
https://livebook.manning.com/#!/book/lets-talk-python/discussion

104

Working with JSON. Save the order

This chapter covers

Erik learns about JSON format and files
Erik learns about Python modules
Erik creates a list of orders

[}
[]
[}
® Simon and Erik write the function to save orders in a JSON file

"You said something about Jason yesterday," Erik asked Simon. "But you said it’s another Jason,
not the one from my math class."

"Yes, that’s another Jason," Simon smiled. "It’s JSON, J-S-O-N, the file format we use to store
data."

"Like files we used to store menus?"
"Yes, similar," Simon answered. "This format is very good to store structured data."
"What is that?" Erik asked.

"Sometimes you want to store just a piece of text, or an image. Usually, they don’t have any
fixed structure. A text is just a text. An image can be large and small, it can be black-and-white
or it can have color. But it doesn’t have any structure—it’s just a bunch of pixels. This is what is
called unstructured data. But in your case, each order has a structure. Each order has the
customer’s name and all the components of the drink you are going to prepare. No more, no less.
It always has the main drink, the flavor, the topping. Because of the menu you wrote, the
customer should answer all these questions before you can print of save the order. On the other
hand, the customer can’t add anything to the order."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

105
"Like another topping?" Erik asked.

"Yes," Simon said. "You order is an example of structured data."

Erik didn’t think that he just created something with such a serious name.

"Your order is stored in a dictionary," Simon continued, "and you know for sure that for each

rn

order, there are dictionary keys (remember what that is?) called 'name', 'drink’, flavor', 'topping'.
Simon pulled one of his diagrams.

Dictionaries in Ptfl'hon:

Creg ——oe)

| e e 1
| Dictionary “order’ i
i i
E nAME. — Erk !
| ek o decal |
: i
i Pimzc:r ¥ c.aFD\meJ i
E -l'opping P vmi"a i
I 1
I |

"The JSON format is created to store this kind of structured data. Let’s practice with it a little.
Like we did before, we’ll create a simple program first, and try some simple operations. Then, as
previously, we’ll use what we learned with this simple program and make our main program
save orders in a file. That’s a lot for one day, so maybe we’ll do it tomorrow."

Simon continued: "Now open your editor and create a new file. Save it with the name
di ct _j son. py, for example."

Erik opened his editor window, clicked New, then Save, entered di ct _j son. py, and clicked
Save again. He was already familiar with the procedure.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

106

"Now," Simon said, "create a sample order."
"What is a sample order?"

"Your order is a dictionary, right?" Simon started to explain. "In your main program you created
an empty dictionary and then started to fill it with the values you were getting from the customer.
Here we want to skip that step and imagine that our or der dictionary is already filled with the
customer’s choices. Let me start it for you," Simon said and wrote in Erik’s editor:

order = {
"nane": "Erik",

"You can continue now," he said. "Don’t forget to close the curly braces."

Erik finished the order dictionary and closed the curly braces. Now it looked like this:

order = {
"nanme": "Erik",
"drink": "coffee",
"flavor": "caranel",
"t oppi ng": "chocol at e"
}

"I noticed that you indented the lines in this dictionary," he asked his brother. "Is it also a rule for
dictionaries in Python?"

"No," Simon answered, "in this case I did it just to make it look better. And to be more readable.
I could put all items together in one line, or start from the beginning of the line, but I think this
way it looks better."

"Now," he continued, "we have a dictionary. And we want to save it in a file. I guess I should
remind you about files operations with dictionaries."

"Yes," Erik said, "it was s0-0-o long ago, I don’t remember much."

"Sure," Simon said. "Also you’ll learn a couple of new things about files. First, we have to open
a file. To open a file we should call a function named open() --of course!--and pass the file name
as an argument. You know everything about functions and their arguments, right? That function
returns a file handle. It’s a special object that our program can now use to work with this file."

Simon wrote one more line below the dictionary that Erik created.

order = {
"name": "Erik",
"drink": "coffee",
"flavor": "caranel",
"t oppi ng": "chocol at e"
}
f = open("orders.json", "w')

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

107

"Here is the first new thing. See this 'w' letter? It means that we are going to write into the file."

f = open("orders.json", "w')
"But when we opened the menu files we didn’t use any letters," Erik remembered.

"You are right! Good thing you remembered it," Simon said. "Yes, we didn’t use any
letters—they are called modes, by the way—because by default, when I don’t use any letters,
Python opens files for reading. This time we want to write to this file so we tell Python about it."

"And I see that you named the file 'orders.json'. Is it because you want to use that JSON format
you were talking about?"

"Yes, exactly," Simon answered. "It’s not mandatory, but it’s a convention to add the 'json’
extension to JSON files. Another difference is that when we use the 'write' mode, Python will
create the file with this name if it doesn’t exist."

"What now?" Erik asked. "How do we write to this JSON file? Last time we used 'methods'; is
this what they are called?"

"Yes, you remembered it correctly," Simon said. "But this time we’ll do it differently. It’s all
because we are going to write structured data, not just plain text. We are going to use a Python
module called j son."

"What is a module?" Erik asked immediately.

"I’'m going to explain it right now," Simon smiled. "Remember, you wrote several Python
functions recently? For example, to read menu items from a file and return a list. Imagine one of
your friends wants to write their own program for a coffee shop or something similar."

"Yes," Erik said, "I spoke with Emily recently and she said she wanted to create a program for an
ice cream shop."

"Great!" Simon said. "Now you may want to help her and share the functions that you wrote. It
will save her some time so her program will be ready earlier. It’s very common among
programmers to share their work to help each other. In Python you can group your functions that
you want to share in a file and give it to Emily. She can copy that file to her computer and then
import it into her program. Because she imported it she can use your functions in her application.
Now your file with functions is called a module."

"What if I don’t want to share my functions?" Erik said. "I spent several days writing them!"

"Yes, you did," Simon said. "And you did a great job. But remember, a lot of people spent many
days writing other functions in Python, and even Python itself. And they shared their work with
other programmers so you can use Python and other functions completely free. That way we help

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

108

each other to work on our projects. It would be much slower if you and I had to write everything
ourselves from scratch. That’s why people use somebody else’s code and also share their code
with others. It’s usually called the Open Source community."

"Back to JSON," Simon continued. "We are going to use the module called j son, written by
other people. That module can read Python dictionaries and convert them to JSON files. Go to
the beginning of your file and add a line: i nport j son. It should be the very first line of the
file."

Erik did. Here is his updated file.

import json

order = {
"nanme": "Erik",
"drink": "coffee",
"flavor": "caranel",
"topping": "chocol ate"
}

f = open("orders.json", "w')

"Now we have to convert your example dictionary to JSON and write it to the file we just
opened," Simon said. "In the j son module, this function is called dunp. We call it in your
program, but we have to tell Python that it should look for this function in the module j son. So
we call it like this: j son. dunp(). You just have to pass two arguments: the dictionary and the
file object. Add this function to the end of the file. You dictionary is or der , your file object is f

"

Erik added this line to the end of the program:

j son. dunp(order, f)

Simon continued: "Now here is another thing that we didn’t do with files before. We should
close the file. This is important, so let’s draw another diagram."

"Look, here are three main component of a computer: the processor, the memory, and the drive.
Your Python program is running on the processor. Your file is stored on the drive in a file
system. A file system is what you see in Finder on a Mac, and in Explorer on Windows: folders
and files. When you want to work with a file in Python you open it, like you just did. That
creates a file object in your program. When you write to the file, you write to the computer
memory. Then when you want your file to be really written to the file system on the drive, you
close it."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Processor Memory
PY‘H'\D'H PPD?PD\M / — \

Fle objgp_—t' File in memory
. 2) L)

openQ) clogeO)

File on drive

"This is so complicated!" Erik was confused. "Why don’t we write straight to the drive?"

"Computers are complicated, you are right!" Simon agreed. "The reason for that is that computer
engineers try to make computers work faster. Writing to drive is slow—much slower than
writing to memory. Imagine you are writing your program in a text editor. If it saved every letter
you type immediately to drive it would be very slow. You don’t like working with slow
computers, do you?"

"I hate slow computers!" Erik answered emotionally.

"To make computers work faster," Simon continued, "engineers decided to store data in memory
and save it to the drive only when necessary. There are a lot of tricks they use to make computers
run faster, and, of course, I don’t know all of them. Maybe I’ll learn more about them in
college."

"Let’s get back to our program. Remember: file objects use methods. In this case we call
f.cl ose(). That will make sure our order is written to the file. Now add it after the last line in

your program."

That was easy—after such a long explanation! Erik added it quickly and got this.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

110

import json

order = {
"name": "Erik",
"drink": "coffee",
"flavor": "caranel",
"t oppi ng": "“chocol ate"
}
f = open("orders.json", "w')
j son. dunp(order, f)
f.close()

"Now run it," Simon said.

Erik clicked Run and saw the familiar >>> at the bottom of the window. "Now what?" he asked

Simon.

"Nothing happened?" Simon smiled, feeling Erik’s confusion. "Of course, because you didn’t tell
Python to print anything. But still, something happened behind the scenes. Python opened a file
called orders. j son, wrote your dictionary into it, and closed it. Now we have to open it to
check if it did it right. Use a plain text editor to open the file. You are on a Mac so it will be
TextEdit from your Applications folder. On Windows it’s Notepad, on Linux it’s gedit or Kate.
Start the editor and open the file. It’s in your home folder, under mu_code and it’s called

orders.json."

Erik started TextEdit, found the file, and opened it. Indeed, he saw his order:

o [] orders.json
"name": "Erik", "drink": "coffee", "flavor": "caramel", "topping": "chocolate"}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

111

YOUR TURN Save your example order in a JSON file

Write the program Erik just wrote. Try to use a slightly different order. Run the
program and check the resulting JSON file with a text editor on your platform.
Try to change the order and run the program again. Did your JSON file
change? (You may have to reload the file in your text editor.)

"You see," Simon said, "it’s your sample order, stored in a file. Let me add something and you
will see why JSON files are ideal for storing Python dictionaries."
Simon took the keyboard and changed the j son. dunp() call to this:

j son. dunp(order, f, indent=4)

He ran the script again and re-opened the or der s. j son file. Now it looked like this:

[] [] orders.json
i .

"name": "Erik",

"drink": "coffee",

"flavor": "caramel",

"topping": "chocolate"

YOUR TURN Make it beautiful
Add the i ndent =4 argument to your previous program and check if your JSON
file has changed.

"It looks exactly like my dictionary!" Erik said.

"I told you!" Simon exclaimed. "We’ll be using JSON to store your orders. I said 'orders,' which

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

112

means now we have to learn how to keep several orders and store them in a file. We know
already how Python stores several items that come in order—you used it for you menus."

"A list!" Erik said.

"Correct! A list in Python can contain different things: strings, numbers, even dictionaries. In this
case we’ll have a list of dictionaries. Each dictionary will contain an order we’ll add them one by
one to the list. A new customer, a new order, a new dictionary in the list. Let me draw a
diagram."

List of orders

[nome; Erik || drink: coffee || flavor: choco | . .] order

order |

[noame; /-ue_x drink: choco | [Rlavor: vawilla] . . J

L L L L L L L L LT T T T e ey ———

[name_} Emily drink: choco || Rlavor: piodn ..]

"Let’s create a list of orders," Simon continued. "Copy the existing order in the code and call it
or der 1, for example.

Then change the order’s content: the name, the drink, and others."

Erik worked on his code for a while and finally got this additional order, just below the first one.

orderl = {
"name": "Al ex",
"drink": "choco",
"flavor": "vanilla",
"toppi ng": "caranel"
}

"Good," Simon said, "now create an empty list called or der s. Note that it’s plural—'orders'. It’s
very similar to creating an empty dictionary—you have done that already. Just instead of curly
braces use square brackets."

Erik added the following line below the second order:

orders =[]

"And now we will add both orders to the list," Simon said. "Believe it or not, but the list or der s

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

113

that you just created is also an object. In Python, actually, everything is an object. And each
object has methods that you can use. You just have to know what methods exist for each object.
For example, for all lists there is a method called append() . It adds the element you pass as an
argument to the end of the list. Look here, I’ll use it to add or der and or der 1 to the list or ders
." And Simon added these two lines below the line where the list or der s was created.

orders. append(or der)
orders. append(or der 1)

"But how do you know that you should use append() here?" Erik asked.

"I read it in Python documentation when I learned Python," Simon answered with a smile. "You
can use Google to search for 'Python list methods' and you’ll find everything you need to know."

"Now we can try to save this list as JSON," Simon continued. "The only thing we need to change
1s what we want to 'dump' into the file. We used or der as an argument for the dunp() function
to write out one order. Now let’s replace it with or der s (plural!) and see what changes."

Erik changed the line with j son. dunp() to this:

json. dunmp(orders, f, indent=4)

He ran the program and opened the or der s. j son file again.

[] [] orders.json
It
{
"name": "Erik",
"drink": "coffee",
"flavor": "caramel",
"topping": "chocolate"
H
{
"name": "Alex",
"drink": "chocolate",
"flavor": "vanilla",
"topping": "caramel"
}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

114

YOUR TURN Save a list

Add another example order. Call is or der 2. Create a list of orders. Save the
list in the same JSON file. Check the result with a text editor. Add as more
orders as you can think of and write them out to the file. Is there any limit to
how many orders you can save?

"So, what would you say?" Simon asked. "Does it look like your orders?"

"Yes, it’s exactly like Python!" Erik said. "But why did we write my orders in a separate file? If
it looks like Python, why don’t we write my orders into our Python program?"

"Great question!" Simon was really glad that Erik wanted to understand things. "First of all, we
always want to separate programs from data. Remember, when you run your Word application,
you don’t write your documents into the Word program. You save them in separate files. It’s
exactly what we do here. Your program can save orders in different files, for example, for
different days. All you would have to do is change the name of the output file such as
orders. Monday. j son, orders. Tuesday. j son, etc.

"Second reason," Simon continued, "is that this format called JSON for a reason. It stands for
JavaScript Object Notation. First it was invented by people who used the JavaScript
programming language, and then other languages started using it. So you can use Python to write
your orders in a JSON file, and then some of your friends may want to create another program in
JavaScript that would read from that file and print your orders on the web page, for example."

"Yes, I heard some people in my class said they know JavaScript!" Erik said.

"Good! You may want to create a programming team and work on applications together," Simon
said. "But let’s continue with our sample program. Now we will read the orders from the JSON
file and save them into a new list. Let’s call it saved_or ders."

"Why are we reading it if we just have written it to the file?" Erik was confused.

"Maybe I didn’t explain it properly," Simon answered. "In this sample program we are practicing
some operations with JSON files, so we know them well and can use in our main program.
Programmers do this very often: they create simple programs to test some concepts and ideas.
Let me show you my plan for our main program so you better understand where we are going."

Simon took another piece of paper and started drawing.

"First, we check if the file called 'orders.json' exists. If it exists, we open it and read from it our
previous orders."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

115

r '

Your program

orders

\,

i
w_orole;‘s()

£ %t

order order |order &

"Why do we need our previous orders? We have prepared them already," Erik asked.

"Yes, but remember, we may want to count how many customers we served today or yesterday
or last month. Or count how many portions of caramel we have used and if it’s time to buy more.
You need all the orders if you want to manage your coffee shop business seriously. That’s why
all businesses keep these records for a long period of time."

"What if we don’t have this file?" Erik asked.

"That means we just have opened our business and started working," Simon smiled. "In this case
we create an empty list and start getting orders. The file will be created automatically when we

open it for writing."

[Your program)
nrole.r's
[\ i J
orders.json

"Look at this diagram: here we have our 'orders' list either filled with our previous days orders or
empty. And we start getting orders and save them into this list. After we are done for the day, we
close the file and that saves all our orders on the drive. Next day we open the file again and
continue taking orders. All the new orders will be added to the previous day’s orders."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

116

(Your progroam)

orders

clumpQ)
\

cmle_r"s. .jsnn

YOUR TURN Draw your own diagrams

Try to draw the diagrams for your program without looking in the book.
Drawing diagrams helps you to understand how programs work.

"Is this how real coffee shops work? Like Starbucks?" Erik asked.

"Yes, pretty much," Simon smiled. "Of course, they use a database for reliability and security.
Their order records are more complex than ours. But the whole process is very similar."

"Now when you know the grand plan, let’s continue with our simple program and read from the
file. We will read the previous orders into a new list called 'saved orders' and then we’ll just
print it to see if we read it correctly. To do that, in the j son module there is a function called

| oad() . It works the same way as dunp() : first we open a file, but this time for reading, not
writing. Then we call j son. | oad() and pass the file object as an argument. The function returns
the object it read from the file and we assign that object to a variable. In our case it will be a list
of orders—that are dictionaries, as you remember. Sounds complicated? Let me help you. It’s
much shorter in Python," and Simon started adding lines to Erik’s code. Here is what he added at
the end of the program:

f = open("orders.json", "r")

saved_orders = json.|oad(f)
print(saved_orders)

He clicked Run and Erik saw the output:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

17

Running: dict_json.py

[{'name': 'Erik', 'drink': 'coffee', 'flavor': 'caramel', 'topping': 'chocolate'}, {'name': 'Alex', 'drink':
'chocolate', 'flavor': 'vanilla', 'topping': 'caramel'}]

>>> |

YOUR TURN Read from the JSON file

Add the preceding lines to your program and try to read from the JSON file you
have created. Do you get the same orders as in your example orders?

"We learned a lot today," Simon said. "Let’s take a break until tomorrow. Tomorrow we’ll add

these functions to our main program and then it’ll become a real coffee shop application. Can

you quickly recap what we did today?"

"We created a JSON file from my Python dictionary and it looked very much like Python. Then

you explained me all about files, and memory, and drives. And also we created a list of

dictionaries and saved it in the file to0o."

"And also we learned about Python modules and how to import them," Simon added. "So far, so

good," he said, "Let’s continue tomorrow. We are very close to finishing the first version of your

application."

8.1 New things you have learned today

JSON, JavaScript Object Notation
A format that is used to store structured data and can be used to exchange information
between programs.

Python modules
Groups of Python functions that can used by other programmers. Usually they are
grouped in files. You havetoi nport modules before using them.

List of dictionaries
Lists can contain different types: strings, numbers, dictionaries, other lists.

File operations
Y ou can open files for reading and writing. Y ou can write datato files, but it’s written in
computer’s memory. Y ou should close files to save the data onto the computer drive.

Open Source Community
People who share programs they write and help each other write better code.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

118

8.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch08

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch08
https://livebook.manning.com/#!/book/lets-talk-python/discussion

119

Complete the menu: A real program

This chapter covers

® Erik and Simon create load and save functions in the main program

® Simon adds the exit function to the main menu and get _or der () function
® Simon explains why he thinks Erik just created a real program

® The brothers discuss future plans

"Now let’s get real," Simon said. "Yesterday we played with sample orders and simple programs.
Today it’s time to use what we learned in our real program."

"Yes, let’s do it!" Erik said.

"Open your file mai n_menu. py where we wrote the main menu. We should add a couple of
functions to work with the JSON file. Let’s recall what we have to do first," and Simon pulled

his diagram from yesterday.

r '

Your progrom

orders
[\ 1 J
orole_rs .js.on

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

120

"So we have to write a function that will load the list of orders from a JSON file. But first it has
to check if the file exists. If it doesn’t, we create an empty list and return it from this function. If
it exists, we read from it, convert JSON to a Python list and return that list."

"Let me help you," Simon felt that it’s a bit confusing for Erik. "Usually, in functions that work
with files we pass the file name as an argument," and Simon started the function at the bottom of
the file, right before the last line with nmai n_menu() :

def | oad_orders(fil enane)

"Now we have to check if the file exists. There is a special function for that and we can find it in
the os module."

"What is 'os'?" Erik asked.

"OS stands for 'operating system.' Operating system in the computer manages all files and
programs. It works with your screen, your keyboard, your speakers, and video camera. On a
typical computer, the OS can be Windows, macOS, or Linux. In our case we are going to ask the
operating system if a file with such a name exists on this computer," and Simon added a line:

def | oad_orders(fil enane)
if os.path.exists(filenane):

"Look, we used the os module here. That means we have to import it the same way we imported
the j son module. In this program we haven’t imported it yet, so let’s import them both."

Simon moved the cursor to the very beginning of the file and added two lines:

import os
import json

He returned the cursor to the | oad_or der s() function and continued his explanation. "If the file
exists, we open it for reading, use the j son. | oad() function to read from the file to the list
or der s and return the list." He added three lines to the function.

def | oad_orders(filenane):
if os.path.exists(filenane)
f = open(filenanme, "r")
orders = json.|oad(f)
return orders

"What if it doesn’t exist? We just create an empty list and return it."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

121

def | oad_orders(filenane)

if os.path.exists(filenane)
f = open(filenanme, "r")
orders = json.load(f)
return orders

el se
orders = []
return orders

"Now load function is ready!" he said and looked at Erik.
"I don’t think I could write it myself," Erik said.

"Of course, it looks complicated when you do it first time. But look, you can read it as if it was
plain English, can’t you?"

Erik looked at the function again and tried to read it. "If the file with 'filename' exists, then open
the file. Save it in the object called 'f'. Then load from that 'f' file into 'orders'. Hmmm... yes, I
can read it." He was surprised. He could read Python now and understand it!

"The next function is easier," Simon continued. "I think you can write it yourself if you look at
our file where we practiced with sample orders. Look, right after the two append() operations
there are three lines that we need here. We already have a function called save_or der () that
does nothing except printing 'Saving order...". Let’s replace it with a real one. I think it should be
called save_or der s() —plural, because now we know how to save a list of orders in a JSON
file, right?"

Simon wrote the beginning of the function:

def save_orders(orders, filenane):

He explained: "We pass the list of orders as a first argument. Then we pass the name of the file
where we want to store it. Now you can add those three lines from our yesterday’s program."

Erik looked at the 'dict_json.py' file and copied three lines from it. Now the function looked like
this:
def save_orders(orders, filenane):

f = open(filenane, "wW')

j son. dunp(orders, f, indent=4)
return

"Can we test it now?" he asked Simon.

"We are almost ready," Simon answered. "Look at the bottom of our file. Now we just call the
mai n_nmenu() function. Remember my second diagram from yesterday?" and he pulled the

drawing.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

122

r '

Your program

orders

\,

i
w_orole;‘s()

£ %t

order order |order &

"This is what we do in the mai n_nenu() function. We just have to edit it a little bit to serve
several customers and save their orders in the list 'orders.' To do that we have to pass that list into
the mai n_nenu() function."

He moved the cursor to the beginning of the file and added the orders argument to the
mai n_menu() definition.

def mai n_nenu(orders)

"Now," he continued, "each time the customer enters a new order it will be added to the 'orders'
list. Before we added the list as an argument, mai n_nenu() didn’t know where to add the new
order. Now we can use the append() method and add it to 'orders.' Right after the customer
confirms the order, we add it to the list of orders. We won’t use the save_order () function
here. We’ll save all orders when you close the program." And Simon changed the nmai n_nenu()
function to this:

def mai n_nmenu(orders)
whil e True

order = get_order()

print("Check your order:")

print_order (order)

confirm= input("Confirn? Press Y to confirm N to cancel: ")

if confirm=="Y" or confirm=="y"
orders. append(order)
print("Thanks for your order:")
print_order (order)

el se
conti nue

"And we also change the main program to three steps: load the orders, main menu (get the
orders), and save the orders." And he added those three lines to the bottom of the file. Now it
looks like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

123

orders = | oad_orders("orders.json")
mai n_menu(or der s)
save_orders(orders, "orders.json")

"Can I try it now?" Erik asked.
"Sure, go ahead!" Simon said.

Erik ran the program, entered his name at the first prompt, then selected his drink components.
When the program asked to confirum the order, he typed "Y." The program got back to the
"What’s your name: " prompt.

"Okay," Erik said, "it works. But how can I check my orders? Are they saved in the file?"
"Let’s check," Simon said.

The brothers opened the 'orders.json' file and were surprised to see that it still contained the old
orders from their yesterday’s experiments. Even Simon was confused.

"Let’s see," he said. "We open the file, we read from it, we get the order... But we never write to
the file because we are still in the main menu! And we never reach that save_orders()
function! Hmmm... let me think how to fix it."

Erik smiled. His know-it-all brother didn’t know what to do.
That lasted only a moment.

Simon said: "I see. We didn’t give the user a way to exit the main menu. We keep asking the
user their name, but what if we want to finish the program?"

"I saw that you pressed CONTROL C when you wanted to stop my program,” Erik said.

"Yes, I did it, but that’s a not normal way of finishing programs. When I did that, the program
was interrupted. Usually Python gives you an error message when you do that. When a program
is interrupted that means it doesn’t do anything else: it doesn’t write our orders to the file, it
doesn’t close the file. Pressing CONTROL C is a bad way to finish a program."”

Simon paused for bit and continued: "We should give the user a normal way of finishing our
program."

"Like Exit in the menu in Word?"

"Yes, like that. Let’s tell the user that if they want to exit they should enter 'X' and only 'X' when
asked about their name. The probability that we’ll have a customer with a real full name X' is
very low. Almost zero, actually. So let’s do this: if in the get _order () function the customer
enters name 'X,' then we don’t ask any other questions and return an empty order, like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

124

order = {}. Then this order goes to the mai n_nenu() function and it decides: if the order is
empty, it will save the order into the file and exit. If it’s not empty, it will add the order to the list
and continue working. Let’s draw a diagram."

P bttt alalalel s NN NS E S S S S ———

| noame?
O
Mo
[continve.) :
. lgerting order,

b }

r ™

retumn 'P‘UI I return e_mp-ry
order order

&

T

"This will be our updated get _order () function. Let me help you write it," and Simon took
Erik’s keyboard and started editing the get _or der () function.

def get_order():

order = {}
name = input("Enter your nane or enter 'X to exit: ")
if name == "X" or name == "x":
return {}
el se

order["nane"] = name
drinks = read_nenu("drinks.txt")
flavors = read_nenu("flavors.txt")
t oppi ngs = read_menu("toppi ngs.txt")
order["drink"] = menu(drinks, "Erik's drinks", "Choose your drink: ")
order["flavor"] = nmenu(flavors, "Erik's flavors", "Choose your flavor: ")
order["toppi ng"] = nenu(toppings, "Erik's toppings", "Choose your topping: ")
return order

"Why did you check both X" and 'x'? You told the user to type 'X' so they should type capital 'X",
right?" Erik asked.

"Users usually don’t bother pressing the Shift key. They may enter either 'X' or 'x'. So we should
check both. The rest of the function should be clear to you—I just followed the diagram we

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

125
created together."

"Now for the main menu," Simon continued. "Here is another diagram," and he started drawing.

mauin_menvo
get_order)
Yes
i s order empty? ;
Wo
lis-t' MOIN_ MmNV
save_ordersQ)

"As we discussed, if get _order () returns an empty order, we exit from the main menu. After
that our program saves the orders in the file." Simon edited the mai n_nmenu() function to the
following:

def mai n_nenu(orders):
whil e True:

order = get_order ()

if order == {}:
print("You entered ' X, exiting...")
return

print("Check your order:")

print_order (order)

confirm= input("Confirn? Press Y to confirm N to cancel, X to finish: ")

if confirm=="Y" or confirm=="y":
orders. append(order)
print ("Thanks for your order:")
print_order (order)

elif confirm=="X" or confirm== "x":
return

el se:
conti nue

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

126

YOUR TURN Edit the main menu function

Edit the main menu function similar to what Simon did. If you need help, the
full program text for this chapter is here

"And this is it," Simon said. "Let’s test it. Just enter a different name this time so you will see
that it was added to the JSON file."

Erik started the program. He answered "Jason" when the program asked about his name. He
entered the rest of his order and typed "Y" to confirm the order. The program asked for his name
again.

"Now let’s enter 'x' and see if it exits properly," Simon suggested.
Erik typed 'x' and pressed ENTER.

You entered 'X , exiting...the program said and returned to the familiar >>> Python
prompt.

"Now check the or der s. j son file," Simon said.

Erik started TextEdit and opened the JSON file. Right at the bottom of the file he found his
recent order from 'Jason'.

"It worked!" he said. "It saved all the orders in the file and now I can see them all!"

"Yes, you can," Simon said and smiled. He was happy to see a complete working program that
took orders, stored them in the file, and was written by his little brother!

"Congratulations, Erik!" Simon said. "I think now you can say that you created a real application.
Look, it has input and output. It has data structures and algorithms. It checks for errors. It has
data storage. And most importantly: it works and it’s very useful—it collects orders. I am
absolutely serious: it a good program and I am very proud of you."

As usual, Simon drew a diagram of what he called a rea/ program.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09
https://livebook.manning.com/#!/book/lets-talk-python/discussion

127

A real p "
Mome. & ~
dota algorﬂ‘hms: ;
E structures: — 3.&1" of‘o'e_r' ;
~ lists — main menv

"Yes, I like my program too," Erik said. "It does what I want, and it looks good. It prints orders
almost the same way I saw it in Starbucks. Yes, almost... Maybe I can add a couple of lines or
stars to make it better. [have some other ideas about what to add to this program."

"What else do you want to add?" Simon asked.

"First of all, I want to make it a web application. You know, with menus and buttons. It it should
be online so I could take my iPad with me and use it."

"Great idea!" Simon said. "Let’s start working on it next week. I have a couple of ideas too," and
he smiled.

"Why are you smiling?" Erik asked.
"I remembered how you thought you were done with the program after our first day."

"Ha, yes, I remember that too," Erik said. "Of course, the program was not quite ready then.
What are you other ideas?"

Simon said: "I would add a couple of things to our data structure. For example, we can add the
date and time when the order was made. That way we’ll be able to see how many customers we
served each day or each month."

"Yes, I think that will be good," Erik agreed.

"Then, maybe we should save orders in the data storage right after they are entered. That will
make sure we keep all the previous orders even if the program fails and crashes."

"But you said it will make it slower," Erik remembered.

"Just a tiny bit. But it’s worth it—otherwise we risk losing all our orders. I am thinking about

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

128

using a database for that."

"Also," Simon continued, "we need functions like 'print all orders' and 'count how many portions
of vanilla flavor we used'. If we want to make your program a real business application."

"Of course, I want it," Erik said. "But first I want to make it a web application and make it
beautiful."

"Sure, we can start working on it next week."

NOTE To the reader
In the following chapters of this book we’ll continue Erik and Simon’s journey
and develop a web application with them.

If you want to look at the other improvements that Simon suggested,
you’ll find them on the book companion site https://github.com/pavelanni/
lets-talk-python-book.

9.1 New things you have learned today

® Howto checkif afile exists
We used the os Python module for that and the method os. pat h. exi st s() . You pass
the file name and it returns Tr ue or Fal se.

® Pressing CONRTOL C is not the right way to finish a program
We use it when we want to stop a program that behaves abnormally. Good programs
should always give you away to finish it normally.

® What areal programis
We learned that real programs have input and output, data structures and algorithms, data
storage and error checking.

9.2 Code for this chapter

You can find the code for this chapter here:
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09
https://livebook.manning.com/#!/book/lets-talk-python/discussion

129

Learning Flask: Your first web application

This chapter covers

Erik creates his first simple web application
Simon explains how Flask works (and what it is)
Emily and Erik work on a web form

The first coffee shop web-based menu is ready!

[]

[J

[]

[}
"You said you wanted to create a web application?" Simon asked Erik the other day.
"Yes, sure!" Erik said. "Otherwise how could I use my program on my iPad?"

"Okay, but be prepared: it’s not an easy task. It will require all your attention. Maybe you won’t
completely understand everything we do here. But not to worry, I’ll help you when you need it."

"I know, you are a good brother," Erik said and there was almost no irony in the way he said it.

"We will use our good friend Mu Editor for our web application. It has a special mode for that.
Start the editor and click Mode in the top-left corner."

Erik did and saw this menu:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

130

P (+) (&) (&) (»)) (@) (MW (@) (@) (¢) (&

=)\? o
Mode New Load Save Run Debug REPL Plotter

Zoom-in Zoom-out Theme Check Tidy Help Quit

Select Mode

Please select the desired mode then click "OK".Otherwise,click "Cancel".

ESP MicroP ython A
Write MicroP ython on ESP8266/ESP32 boards.

9 Lego MicroPython
r4

Write MicroPython directly on Lego Spike devices.
Pyboard MicroPython
Use MicroP ython on the Pyboard line of boards.

Pygame Zero

€7 Make games with Pygame Zero.

ﬁ Python 3

Create code using standard Python 3.

Change mode at any time by clicking the "Mode" button containing Mu's logo.

Cancel OK

e ————————

Python 3 o

"Scroll to the bottom," Simon said. "Find the Web mode and click it. Then click Ok."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

131

r) (+) &) &) (p) K (@) (M) (@ Q) (C) () (=)(?2) (O

Mode New Load Save Run Debug REPL Plotter Zoom-in Zoom-out Theme Check Tidy Help Quit

Select Mode

Please select the desired mode then click "OK".Otherwise, click "Cancel".

Pyboard MicroPython A
Use MicroPython on the Pyboard line of boards.

Pygame Zero
&7 Make games with Pygame Zero.

P Python 3
Create code using standard Python 3.

Web
Build simple websites with the "Flask" web framework.

RP2040
Write MicroP ython directly on a Raspberry Pi Pico.

Change mode at any time by clicking the "Mode" button containing Mu's logo.

Cancel OK

e ———————

Python 3 o

After Erik did that, Simon pointed to the bottom-right corner and said: "See this word 'Web' next
to the cogwheel? We switched to the Web mode. Now let’s see what we can do with it. Click

New.

Erik did and immediately Python code appeared in the editor window.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

132

e (+) 22 (») (@ B (@ (@ (@) (¢ (i) (=) (2) (0
Mode New Load Save Run Browse Templates CSss Images Zoom-in Zoom-out Theme Check Tidy Help Quit
untitled €

1 # A simple web application.
from flask import Flask, render_template

2
3
4
5 app = Flask(__name__)
6
7
8

@app.route("/")
9 def dindex():
10 return render_template('index.html')

Web o

"Interesting," he said. "Mu already wrote something for me. Can I run it?"
"Sure, go ahead. First you’ll have to save it. Call it 'first_app.py'."

Erik clicked Run, entered 'first app.py' in the Save dialog and saw this output at the bottom of
the window.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

133

[] Mu 1.1.1 - first_app.py

+)(2) (&) (x) (@ @ B (@ @ @ (¢ (&) (=) (2) (0
Mode New Load Save Stop Browse Templates CSss Images Zoom-in Zoom-out Theme Check Tidy Help Quit

first_app.py %
A simple web application.
from flask import Flask, render_template

app = Flask(__name__)

NOoobhwNn-a

8 @app.route("/")

9 def index():

10 return render_template('index.html')
"

12

Running:

Serving Flask app 'first_app.py' (lazy loading)
Environment: development

Debug mode: on

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
Restarting with stat

Debugger 1is active!

Debugger PIN: 255-968-929

L A S S T

Web o

"What is it?" he asked.

"This tells you that you first web application is running. See this message: 'Running on
http://127.0.0.1:5000/'. It means that you can go to your browser and enter this address:
http://127.0.0. 1: 5000/ . Sometimes this address is also called URL or Uniform Resource
Locator—you will hear this word all the time when working with web. Or just click the Browse

@ Run button in the editor. Try and see what you’ve got."

Erik opened a new tab in his browser and entered the address. Here is what he saw:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

http://127.0.0.1:5000/'
http://127.0.0.1:5000/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

134

Hello from Mu! :-) -+

O D 1270.01:5000

© Hello from Mul

This is a very simple dynamic web application built using Python and the Flask web framework.

Why not try adding the following route to your Python code?

@app.route('/hello/<name>")
def greet(name='Stranger'):
return render_template("greeting.html", name=name)

Now add the following template with the filename, "greeting.html".

{% extends "base.html" %}

{% block content %}

<p>Helle {{name}}, how are you?</p>
{% endblock %}

Once you've done that, go visit /hello/yourname (but replace "yourname" in the address bar with, you know, your actual name). :-)

"Wait, is this all written by my editor?" he asked Simon.

"Yes, but look, Mu suggests that the rest you write yourself," Simon said and pointed to the code
example on the page. "Mu recommends you to copy the code from the first gray window to your
program. Go ahead and do 1it."

That was easy. Erik quickly copied the text and pasted it below the existing code.

"Now Mu tells you to create a new file," Simon continued, "copy the text from the second
window, and save it as a new file 'greeting.html]"

Erik knew how to do it. He clicked New in the Mu Editor, removed the program Mu put into it,
and copy-pasted the text from the second gray window. Then he clicked Save.

Simon helped him: "Use the drop-down menu to change from '*.py' to 'Other (*.*)', otherwise
Mu will think you are trying to save a Python program. We should tell it that this time it’s a
different type of file. In the 'Save As' field type greeting. htm ."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

135

Save file

Save As: greeting.htm'

Tags:

Where: | @ mu_code

Other (**)

Cancel

"Now stop the program and run it again," Simon said. "Don’t forget to switch to the 'first_app.py'
tab."

Erik switched to the application tab, clicked Stop and Run again. He saw the same output at the
bottom of the window.

'

"Now go back to your browser and do what it suggests. Look, it says 'go visit /hello/yourname
and tells you to use your own name. Go ahead, add / hel | o/ Eri k in the address bar, right after
5000."

Now it looked like real hacking. Erik entered what Simon suggested and pressed ENTER.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

136

Hello from Mut! :-) X

O D 127.0.0.1:5000/hello/Erik

Hello!

Hello Erik, how are you?

"Wow! It talks to me!" He was really impressed.
"It’s already your program that talks to you," Simon said. "That was easy, huh?"

"Wait," Erik said, "if we are going to work on this web stuff, I should call Emily. She told me
she learned HTML and this is what we need for web, right?"

"Absolutely correct," Simon agreed. "Go ahead, call her. It’s always good to work together."

YOUR TURN Create your first web application

Switch to the web mode in Mu Editor and create your first web application by
copying the example from the browser’s page, just like Erik did. Try to run it
with your name. Try other names. Show it to your friends and ask them to use
their names.

Emily lived nearby and she arrived in about 15 minutes, very excited about the project. She
asked immediately: "Erik, show me your HTML!"

Erik showed her the greeting. ht m file and said: "Well, it’s not my code, it’s from this Mu
Editor."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

137

r (+) &) &) (> (@& B B (@ @ (@) (¢

Mode New Load Save Run Browse Templates CSS Images Zoom-in Zoom-out Theme

first_app.py ¢ basehtml 2 greeting.html X
{% extends "base.html" %}

{% block content %}

<hi1>Hello!</h1>

<p>Hello {{name}}, how are you?</p>
{% endblock %}

Do E WN

"Wow, interesting," Emily said. "I’ve never seen these curly braces in HTML."

"Right," Simon said, "because this is not pure HTML, it’s a template. We use the program called
Flask here and it uses templates to generate HTML."

"I see," Emily said. "But I know these <h1> tags, and <p> tags."
"Tags? What are 'tags'?" Erik asked.

"Tags are these small pieces of code that you put in your text to change how it looks. Look here,
you place <h1> before 'Hello!' and </ h1> after it and it looks larger. This is what in HTML is

called headers, like chapter headers."
"What about <p>?" Erik asked.

"It means 'paragraph'," Emily explained. "In HTML you can write your text how you want: in
one long line, or in many short lines, or even one word per line. But if it has <p> at the beginning
and </ p> at the end, it will be one paragraph in the browser."

"There are a lot of other tags," she continued. "You can make your text bold or italic, change
colors, and all that."

"Emily, do you know anything about HTML forms?" Simon asked.

"They told us in the class that we can create forms in HTML to enter text or use menus," Emily
answered. "But [haven’t tried them myself."

"Menus is what we want!" Erik exclaimed.

"I’1I help you," Simon said. "First we should use the mandatory HTML tags. We should always
have <ht nl > at the beginning of the file and </ ht m > at the end. Also we should use the <body>
tags around our text. Again, we use <body> to open the text and </ body> to close it. That’s why

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

138

the tags with slash / are called closing tags."

Listing 10.1 templates/forms.html

<ht m >
<body>

</ body>
</htm >

"They are like brackets in a list in Python," Erik said. He wanted to show Emily that he knew
Python already.

"You are right," Simon confirmed. "These tags enclose some text and explain its meaning. Some
pieces of text are headers, some are paragraphs. But now we want to create a menu. For that
we’ll need a tag <forne first and then a tag <sel ect > inside it. Let’s create a very simple

menu," and he started writing.

Listing 10.2 templates/forms.html

<ht m >
<body>
<fornp
<sel ect >
<opt i on>Cof f ee</ opti on>
<opt i on>Decaf </ opti on>
</ sel ect >
<i nput type="subnmt" val ue="Submt">
</fornp
</ body>
</htnm >

YOUR TURN Create your first web form

Create the file forns. ht i and save it under nu_code/ t enpl at es. Copy the
preceding code and test it in your browser. Try to change the options; try to
add more options.

Simon finished writing, clicked Save, and saved the file as forms. htl under the
mu_code/ t enpl at es directory. "Look, how many elements enclosed in tags do you see here?
Emily, you should be more familiar with that."

Emily started counting. "First, the <ht m > tag, then the <body> tag. Inside the body we have a
<f or >, then inside the form we have <sel ect >. It’s for the menu, correct? And then in the

'select' we have two <opt i on> elements."

"Right. You did a great job, Emily," Simon said. "And also don’t forget the <i nput > element
that is a part of the 'form.' It doesn’t have a closing tag. It exists just by itself. We use it to create
the 'Submit' button."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

139

"Let’s see how it looks like in the browser," Simon continued.
"Can you open files in the browser?" Erik asked. "I thought browsers are only for web sites."

"Of course, you can," Emily answered. "We did it all the time in our HTML class! You just use
the menu File in your browser, then Open File..., then find your file, and that’s it."

Erik did what Emily just said and opened the file f or ms. ht nl . He saw a menu, very similar to

what he saw and used on many sites. He clicked the menu and it opened:

-

00 @ forms.html? X <+
& C @ file:///Users/erik/mu_codef/templates/forms.html
Decaf

"I didn’t know that you can create forms so easily," Emily said.

"Yes, it’s pretty easy to create a simple form like this, but there are some missing parts," Simon
said.

"It looks good to me," Erik said. "What’s missing?"

"Yes, it looks good, but it doesn’t do anything," Simon said. "We have to get data from the user
and then pass that data to the program. How can we pass the data?" Simon asked, and answered
his own question. "We should use variables and values, very similar to Python. Let me add
something to this form."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

140

Listing 10.3 templates/forms.html

<htm >
<body>
<form acti on="/order" method="post">
<sel ect nane="dri nk">
<option val ue="">- Choose drink -</option> (3]
<option val ue="cof f ee" >Cof f ee</ opt i on> o
<option val ue="decaf " >Decaf </ opti on>
</ sel ect >
<input type="subnmit" val ue="Submt">
</fornp
</ body>
</htnm >

Simon started his explanation.

1. "Look at the number (1)," Simon said. "Here we define the variable we want to return
from this menu. In this menu the variable is called dr i nk.

2. "Now, on the line with number (2) and the line after it we define the value this menu
option will return. It'svery similar to what we did when we chose items from the text
menu, remember?"’

3. "And in the line with number (3) | just added an option that tells the user what to do. This
option will show first in the menu and work as a prompt. Asyou can see, itsvalueis
empty. If the user haven’t chosen a drink, we should tell them about it. Y ou can’t prepare
their order without thisinformation, can you?"

"Can I try it?" Erik asked.
"Of course, go ahead and open this file again. Or just reload it in the browser."

Erik reloaded the file, chose "Decaf" from the menu, clicked "Submit" and got this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

141

® @ fileyjjorder x 4
< C @ File | Jorder M %

Your file couldn’t be accessed

It may have been moved, edited, or deleted.

ERR_FILE_NOT_FOUND

"What’s that?" he asked, visibly puzzled.

"Oh, I forgot to tell you," Simon said. "Look, I changed the f or mtag a little bit."

Listing 10.4 templates/forms.html

<form action="/order" method="post">

"Each form should have an action," he started to explain. "Action is something that our
application will do when the user submits the form. When the user made their choice—coffee or
decaf—they should pass this information to some function. That function should know what to

do with this information: store it in the file or database, print the order, and such."
"Like what we did in our previous program?" Erik asked.
"You keep talking about your 'previous' program, can you show it to me?" Emily demanded.

"I’'m sorry, Emily," Simon said. "I should have explained it earlier. We worked with Erik on a
program that collects orders in a coffee shop. Similar to Starbucks, where you can order a drink,
add flavors and toppings, and all that. Erik wrote a program that shows menus and asks the
customer what they want to order. When they choose their drinks, flavors, and toppings, the
program prints the order. But the program now works only in a terminal, in text mode. Erik
needs your help to convert it to a web application."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

142

"I see now," Emily said. "This sounds like a cool project! I hope Erik will teach me Python too."
"Of course," Simon said. "Teaching somebody is the best way to learn."

"Back to our form," he continued. "That acti on attribute tells the browser: 'After the user
submits the form, open this address and pass the information from the form there. In our case the
address is called / or der . Don’t worry, it only sounds scary, I’ll show you what to do with it,"

Simon added because he noticed the confusion on Emily and Erik’s faces.
"I still don’t understand," Erik asked. "Where is this address that you are talking about?"

"Look at your first application," Simon said. "See this greet function?" "This function was
written by the Mu Editor for us—or, rather, its authors," Simon said. "You see now the familiar
function definition that’s starting with def, but also, right above it, you can see something new:
@pp. rout e(' / hel | o/ <name>') . In Python it’s called decorator, but we are not going to learn

about decortators today.

Listing 10.5 first_app.py

@pp. route(' / hel |l o/ <name>')
def greet(name='Stranger'):
return render _tenplate("greeting. htm ", nane=nane)

What’s important for us today is that you can use it to tell your program which function to use
for which address."

"Ah-ha, the address is that / hel | o/ Eri k that I entered in the browser, I see now!" Erik said.
"Let’s show Emily how it works," and he opened the tab with the first_app. py script in the
editor, clicked Run and then Browse. His browser opened a page with greetings from Mu.

"Emily, look, I can type the address here, right after these numbers: 127. 0. 0. 1: 5000 and look
what it shows us!" Erik typed: / hel | o/ Eni | y, pressed ENTER and the browser showed:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

mailto:@app.route('/hello/
mailto:@app.route('/hello/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

143

< C ® 127.0.0.1:5000/hello/Emily

Hello!

Hello Emily, how are you?

"Wow, I like it!" Emily said. "Can I try?" and she changed "Emily" to "Erik". Of course, the
browser showed the page with "Hello Erik, how are you?"

"Interesting!" she said. "In our HTML class we could change pages, but we had to edit HTML.
This is much easier!"

"Right," Simon said, "this is what we call dynamic pages—pages that change depending on what
you enter. You can enter your information in the address, like / hel | o/ Eni | y or you can use
forms. Then the page will be generated using the information you entered. I’m sure, you’ve seen
this kind of pages many times—for example when you enter a comment, or chat with someone
on the web. You click 'Submit' or just press ENTER and the page is updated, right? Now you will
learn how to make such pages yourself."

"Let me show it on a diagram," he said and started drawing.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

144

address or URL

___________________________________ browser o Pyon
@p://m.o.o.l:fsc:o&rdep O0Q] | | '
K @app.ro#e_(.

L def order):

— Clhoose. drink/— function code

___ WA
| v

{Porm action= omle_r' mcrhoo(="Pos+")

: Lseleet name="dlrink™>

(op-ﬁon valve="">~ Choose drink —-4/op-ﬁon>

"This combination of letters and numbers at the top of your browser is called 'address' or 'URL'. I
marked it blue. Usually you see the site’s name here, like googl e. com In our case it uses
numbers called the site’s IP address. We use your own computer and for every computer in the
world the address 127. 0. 0. 1 means 'this computer.' But don’t worry about that now."

Simon pointed to the first red circle around the word 'order’ in the address and said: "This is what
we should care about. Look, it’s part of the address. When we open this address we see the form
with the drinks menu. When you click Submit," and he followed the arrow down his diagram,
"the form knows that it should find the function responsible for the address / or der. You see, it’s

here, in the f or m act i on field.

And then," he followed the arrow up to the 'Python' block, "the form finds the Python function
that can work with it, because we used this decorator, @pp. rout e(' /order'). You see, these
three things are connected; you just have to use the same name in the address, in the form, and in
the Python program."

"I see that the function is also called 'order'--is it the fourth place where we use it?" Erik asked.

"You have a very sharp eye!" Simon said and smiled. "No, in this case, the function can have a
different name. I could call it 'new_order' or 'get order'. But now we have to write the actual
function. I’ll help you here. It will look a bit scary, but don’t worry. I’'m learning this Flask
system myself and usually I follow the online tutorial and take examples from there. Don’t think
that [remember all these things myself."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

mailto:@app.route('/order
mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

145

And Simon wrote the function, looking at the example he kept opened in the browser. He added
numbers at the end of the lines to help him in his explanation.

"At the line with (1) you see two words: 'GET' and 'POST'". These are the methods that we use
with web servers. We use GET when we want to get something from a web server, like a web
page. We use POST to send some information to the web server. Like in this case—we want to
send or POST the drink chosen by the customer. Put it another way: when you load a page in the
browser—you use GET; when you click Submit in your form—you use POST. You will
understand it better when we start using it, don’t worry.

"And here, at the line with number (2), we start using one of the words. Look what it says: if the
method is POST--which means somebody filled the form and clicked Submit—we read the

information they entered in the form and print it.

"Now look at the number (3). Remember in the form we used <sel ect nanme="dri nk">? This is
the name we use here, in the squaare brackets. Later we’ll add other menus—for flavors and
toppings. In the form they will have names like 'flavor' and 'topping'. Here in the code we’ll use
them as request.forni' flavor'] andrequest.forn{'topping]."

"Under number (4) we just print whatever we receeived from the form. You will see it in the
editor.

"In the line with number (5) we tell our web server to print this page with the menu. It’s like a
menu loop that we used in our program before—you get the information from the customer, print
it out and return to the menu to get another order. And you repeat this loop until you are done
entering orders."

Listing 10.6 first_app.py

@pp.route('/order', nethods=('GET', 'POST')) o
def order():

if request.nethod == ' PCST" : (2]

drink = request.forni'drink'] (3]

print("Drink: ", drink) (4]

(5]

return render _tenplate("forns. htm")

Methods that we are going to use with this form
Method POST means we are submitting information
We get the customer choice from the form’sfield called dri nk

Print the choice we' ve received

®© 6 © © o

Display the template f or ns. ht

"Let me add one more thing," Simon said and added r equest to the first line with i nport. "This

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

146

module called r equest is a part of Flask. If we use it we have to import it." Now the first line
looked like this:

fromflask inport Flask, render_tenplate, request

YOUR TURN Write your own or der () function

Add the order () function from above to your first_app. py program. Don’t
forget to change the i nport line. Try to run it. Open a new tab in the browser
and use the http://127.0.0.1: 5000/ order address. If you are having
problems, continue reading and follow what Emily and Erik are doing.

"Can I run it now?" Erik asked. He was a bit tired after such a long explanation. Emily, on the
other hand, listened to Simon’s explanations as if he was a wizard. She liked all this
programming magic and couldn’t wait to try the program.

"Can I run it?" Emily asked.
"Of course," Erik said. "Just click Save and then Run."
"Now click Browse," Simon said.

Emily did and the following page opened in a new browser tab.

[] @ @ Hello from Mu! :-) X +

C ® 127.0.0.1:5000

© Hello from Mul!

This is a very simple dynamic web application built using Python and the Flask web framework.

Why not try adding the following route to your Python code?

@app.route('/hello/<name>")
def greet(name='Stranger'):
return render template('greeting.html", name=name)

"Now we have to add / or der to the address, remember?" Simon helped her.

Emily did and the address line in the browser became this: http://127.0. 0. 1: 5000/ or der .
The page showed the menu they just created together.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

http://127.0.0.1:5000/order
http://127.0.0.1:5000/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

147

@ Hello from Mu! :-) X +

® 127.0.0.1:5000/order

- Choose drink - v~ SUBMIT

"Go ahead, choose your drink and click Submit," Simon said.
Emily chose Decaf and clicked Submit. She’s got the same page with the 'Choose drink' menu.
"Did it work?" she asked. She looked confused.

"Let’s check," Simon said. "Go back to the editor. Look at the bottom window."

Running:

127.0.0.1 - — [16/0ct/2022 12:22:56] " [36mGEl /static/img/Llogo.png HITP/1.1 [Um"™ 304 -
127.0.0.1 - - [16/0ct/2022 12:27:22] "GET /order HTTP/1.1" 200 -

127.0.0.1 - - [16/0ct/2022 12:27:22] " [36mGET /static/css/normalize.css HTTP/1.1 [Om" 304 -
127.0.0.1 - - [16/0ct/2022 12:27:22] " [36mGET /static/css/skeleton.css HTTP/1.1 [Om" 304 -
Drink: decaf

1277078+ 1—— [16/0ct/2022 12:30:23] "POST /order HTTP/1.1" 200 -

127.0.0.1 - - [16/0ct/2022 12:30:23] " [36mGET /static/css/normalize.css HTTP/1.1 [Om" 304 -
127.0.0.1 - - [16/0ct/2022 12:30:23] " [36mGET /static/css/skeleton.css HTTP/1.1 [Om" 304 -

"Do you see this line: Drink: decaf ? It’s what our program is printing," Simon said. "That

means it works!"
"But I thought," Emily said, "that it would print the order on the page."

"It will, trust me," Simon said. "We haven’t written that part yet. We are getting there, right

n

now.

He took the keyboard and changed the fi rst _app. py file by adding one line after the pri nt ()
line. Simone explained: "When we first open the address / or der in the browser that means we
use the GET method. We want to get the page first, right? We don’t have anything to POST yet. In
that case we use the template f or ns. ht m that displays our drink menu. But after we have
chosen a drink and clicked Submit we use the POST method. We want to send this information to

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

148

the program. And in that case we collect the data from the form—the drink choice—and use
another template. I called it pri nt. ht i because we want to print the order."

The or der () function now looked like this:

@pp.route('/order', nethods=('GET', 'POST'))
def order():

if request.nethod == ' POST" :
drink = request.forn{'drink']
print("Drink: ", drink)

return render _tenplate("print.htm", drink=drink)

return render_tenplate("forns. htm")

"But we don’t have a file called pri nt. ht i ," Emily said.

"Right, I am going to create it right now," and Simon created another file in the editor and saved
itas print.htm undertenpl ates.

Emily looked at his code and said: "Oh, this I can understand! You print the header 'Thanks for
your order' and then you open a new paragraph and print "Your drink' and then in bold you print
the drink itself. And this dri nk in double curly braces works the same way it worked with my
name when it printed 'Hello Emily', right?"

"Exactly right!" exclaimed Simon. "You are absolutely correct, Emily!"

Listing 10.7 templates/print.html

{% extends "base.html" %

{% bl ock content %

<h1>Thanks for your order!</hl>

<p>Your drink: {{drink}}</p>
{% endbl ock %

YOUR TURN Edit your web form to print the drink choice on the page

Copy the template above into your print. htm file. Feel free to change the
title and the text. Change the first_app. py by adding the line with ret urn
and save it too. Try to run your program.

"Can I try it?" Emily asked.
"Sure, go ahead and click Run," Simon said.

Emily clicked Run, chose "Coffee" from the menu and saw this page:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

149

@ Hello from Mul! :-)

C © 127.0.01

Thanks for your order!

Your drink: coffee

"Yeah, it works!" she exclaimed.

"It’s like calling the pri nt _or der () function in our previous program," Erik said.
"Yes, exactly!" Simon said.

"But how do I get back to the order page?" Erik asked.

"You see, the address in the browser is still pointing to / or der. That means if you click the
address line with mouse and press ENTER you’ll reload the order page. Just don’t click the reload
button or it will create another order."

Emily did what Simon said and saw the order page again.

"But there is a better way," Simon said. "You were looking for a button on the print page, like
Back to the order page, weren’t you?"

"Yes, that would be easier," Emily agreed.

"We can use another form for that," Simon said. "It will be very simple," and he added several
lines to the t enpl at es/ print. htm file.

"Look, we created another form that has only the Submit button. We just renamed it to '"New
order'. Look, it points to / or der in its act i on field. That means when we click the 'New order'
button it will send us to the / or der page. And it will show the drink menu again. Try it!"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

150

Listing 10.8 templates/print.html

{% extends "base.htm " %

{% bl ock content %

<hl1>Thanks for your order!</hl>

<p>Your drink: {{drink}}</p>

<form acti on="/order">
<input type="submt" val ue="New order" />

</fornp
{% endbl ock %

Emily did and after she clicked Submit she saw a page with the new button.

@ Hello from Mu! :-)

C (@ 127.0.0.1:5000/order

Thanks for your order!

Your drink: decaf

NEW ORDER

She clicked the button and got back to the order page.

Erik noted: "It’s like our main menu with a loop. Order, then confirm, then print, then back to the
order menu."

"You are right!" Simon confirmed. "Let me show on a diagram."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

151

browser Python

@:/A;?.O.O.J:Ecpoo/order 000 Qapp.rovtel'/order’)
def orderl):
o(n‘nk-“-re_que_s.-r.f-‘om
@ Scbwit primtAlrind ()
retum ole_r_-t'e,mpla-k 5
\ A
\(D 7
\H‘mz.

\ l Text

Q) N browser

Wbt pi//A1.0.0.1:5000 fordds OO

’

New order

"Look at the diagram. Step one: you choose Decaf from the menu. This assigns the value decaf
to the variable dri nk in the form."

"Step two: that value decaf is passed to our Python program via request.form Now the
variable dr i nk in the Python program has the value decaf ."

"Step three: we pass the value of variable dri nk from Python—which is decaf --to the variable
dri nk in the template print. ht ni ."

"Step four: we call render _t enpl at e() with the variable dri nk which is replaced with its
value, decaf . And now decaf is printed on the web page."

"Finally, step five: we click 'New order' and return to the order page."

YOUR TURN Change the print. ht il template

Add the 'New order' button to the t enpl ates/ print. ht i template. Test it.
Can you return to the order page?

"Emily and Erik, you did a great job today," Simon said. "Most importantly, you didn’t fall
asleep during all those long explanations."

"I almost did," Erik said.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

152

"Yes, I noticed," Simon smiled. "But seriously, creating web applications is 10 times more
difficult than working on text menus and dialogues. I admire your patience!"

"But it was worth it," Emily said. "The program works now!"
"We also need to add flavors and toppings," Erik said.

"Right!" Simon exclaimed. "We have to create all the menus but in the web form. I’m pretty sure
Emily will help you with that."

"Sure," Emily said, "looks like we need to add more sel ect forms to the template. Erik, will you

show me your previous program? We can start working on the web application tomorrow."
"Of course," Erik said. "Let’s get together tomorrow and work on that."

"I’1l be happy to help," Simon said. "Please let me know when you start."

10.1 New things you have learned today

®* Web modein Mu Editor
In addition to the standard Python mode Mu editor also has aweb mode. It hasasimple
web application example.

®* HTML Forms
Thisisaway to get information from users into a web application. We can have menus,
text fields, buttons. When we click Submit, the form sends information to a special
address configured in the act i on field. From that address the information can be
processed by a program.

® Flask
A program to help us create web applications. It is being developed by the Open Source
community, it has good tutorials and examples. It is used by many online sites and web

applications.
10.2 Code for this chapter
You can find the code for this chapter here:

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch10

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch10
https://livebook.manning.com/#!/book/lets-talk-python/discussion

153

Ideas for your first application

Creating a coffee shop application doesn’t look very attractive to you? Create something else!
All programming ideas and methods we discuss in this book are applicable to a lot of other
projects. Just look around and you’ll get ideas for other applications.

For example:

A.1 Pizza place

This should be very similar to what we do with the coffee shop application. Look—we ask the

customer:

® What istheir main drink?
® What isthe flavor they want?
* What isthe topping?

We give the customer a list of options for each question and the customer chooses from the
menu.

What should we ask the customer in a pizza place?

® What kind of crust do you want? Thin or thick?
® What size? Small, medium, or large?
® Which sauce do you want? Red or white?

* What kind of pizza do you want? Margherita, pepperoni, veggie,... Go to your favorite
pizza place and see what they have.

® What additional topping do you want to add?

A.2 Ice cream shop

Go to your favorite ice cream shop and watch how they prepare your order. What do they ask
you? What are the options they give you? Those will be in your application’s menus.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

154

Most likely they ask:

What type of cone? Sugar, waffle, cake?
How many scoops?

Which flavors?

Any topping?

Here it’s becoming slightly different from what we did for the coffee shop. After you asked "
How many scoops?" you have to ask that many times about the flavor. Think about it: how
would you do it in Python?

Hint: there is a function r ange() in Python that can be used in a f or loop. We used it in our
menus. Try to use it to ask about the ice cream flavor the exact number of times.

A.3 LEGO® minifigures

You have a good collection of LEGO minifigures and their parts. You want to helm your friends
to build something new. What questions are you going to ask them and what options will you
give them?

® Choose the head: smiley face, sunglasses face, face with abeard,...

® Choose the headwear: dark hair, blond hair, hard hat, police hat,...

® Choose the torso: mechanic, police officer, shirt with tie, t-shirt,...

® Choose the legs: blue jeans, green shorts, brown cargo pants, ...

® Choose the accessory: asword, aradio, a hammer, a magnifying glass,...

You can add special conditions to your application. For example if your friend have chosen a
police hat then they can’t choose a baseball bat as an accessory. Think about adding this
condition to your menus.

What about choosing parts at random? That might create some funny minifigures. How would
you add a random option to your menu? How would you implement it?

Hint: there is a module called r andomin Python. You should import it with the i npor t statement
in the beginning of your script and use the function choi ce() . That function works like this: you
give it a list of choices and it chooses randomly one of them. Next time you call it the function
randomly chooses something else (or, maybe, the same item—it’s random!). For example, create
this short script and run it. In this script we ask Python 5 times to choose randomly an item from
the list of three types of hair.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

155

Listing A.1 choi ce. py

i mport random

for _ in range(5):
print(random choice(["dark hair", "blond hair", "red hair"]))

Run this script and you’ll see something like this:

bl ond hair
red hair
bl ond hair
bl ond hair
dark hair

Of course, in your case the list will be different and will have 5 other random choices in different
order.

A.4 Other project ideas

Do you have other project ideas? Please share them in the liveBook forum:
https://livebook.manning.com/book/lets-talk-python/discussion.

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/book/lets-talk-python/discussion
https://livebook.manning.com/#!/book/lets-talk-python/discussion

156

How to install Mu Editor and
Python environment

In this Appendix we’ll explain how to install Python on your computer. The easiest way is to
install a programming editor that contains Python in it. We recommend to install Mu Editor. We
use it in this book so it will be easier to follow the book’s dialogues and instructions.

We’ll also give you links to other ways to install Python—feel free to try them too.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

157

B.1 Mu Editor
1. Inyour web browser open the Mu Editor’ s web page: https://codewith.mu/.

Code with Mu: a simple Python editor for beginner programmers.

P (+)(&)(&)(p)0K) () (M) (&) Q)(C) () 2)O

Mode New Load Save Run Debug REPL Plotter Zoom-in Zoom-out Theme Check Help Quit
hello.py X
1 print("Hello from Mu!")
2
I

Python O

© 2022 Nicholas H.Tollervey. Mu wouldn't be possible without these people. ¥ [{e) EXEX=EE) This site is licensed under the Creative Commons by-nc-sa 4.0 International License.

2. Click Download (the green button), Y ou will see the following page:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://codewith.mu/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

o &

You can also use Mu Editor to program microcontrollers and build robots, but it’s a topic for

158

@ Download About Tutorials How to..? Discuss Developers Language v

Download Mu

The simplest and easiest way to get Mu is via the official installer for Windows or Mac OSX (we no longer support
32bit Windows). We also have an experimental Applmage for Linux users running on Intel based hardware.

The current recommended version is Mu 1.2.0. We advise people to update to this version via the links for each
supported operating system. All previous beta versions of Mu can be downloaded from here.

- Windows Installer

. Download Instructions

Mac OSX Installer

Download Instructions

A Linux Applmage Package (Experimental)
. Download Instructions
£ E23

Click Download for your operating system. Y ou browser will download the installation
file for your operating system.

" For Windowsit will bedownload the installation file for your operating system.
" For Windowsit will bean . nsi file.

® For macOSit will bea. dny file.

® For Linux it will bean . Appl nage file.

Click Instructions for your operating system and follow the instructions.

Open Mu Editor as you normally open applications in your operating system. You are
ready to work on your project!

another book.

B.2 Thonny

Thonny is another great Python editor created with beginners in mind. You can find it here:

https://thonny.org/

Right on the first page you’ll find the installers for Windows, macOS, and Linux. For Windows

download the . exe file and run it. For macOS download the . pkg file and install it. For Linux

run the script provided in the instructions.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://thonny.org/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

Thonny

Python IDE for beginners

- Thonny

File Edit View Run Tocls Help

i % 33D

0 &

factorial.py

def fact(n):
if n ==
return 1
else:
return fact(n-1) * n

n=

-

int(input(“"Enter a natural numbe

print("Its factorial is", fact(3)))

fact

Shell
>33

Entas 3 Natusal Numbas: 3

B.3 Python

Both editors described above include Python in their installation packages. But for some reason
you may want to install Python separately.

159

def fact(n):
ifn==20

retur

else:

Eetur

Local variables

Name Value

n

3

Download version 4.0.1 for
Windows « Mac « Linux

- O X
Variables
Name Value
fact «<function fact :
n 3
fact
def fact(n):
if n ==
return 1
else:

feturn_ fact(E-1 * n

Local variables

Name

n

Value

rd

After you installed the application start it and expore its settings. You can choose color theme
from a dozen of options, editor and terminal fonts, and many other things.

Thonny has a very helpful feature called Assistant. In the Options menu you can configure it to
start each time when there is a warning in your code. Also it starts when your program shows an
error. Assistant gives you several suggestions on what could be wrong with your code. Try to
make a minor mistake in your code (a typo in a variable name, for example), then run the
program and you will see Assistant in action.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

160

If you are on macOS or Linux, your operating system already have Python installed. Most likely
it is not the latest version of Python, but it’s not a problem at all: all programs we develop in this
book will work with Python versions starting from 3.5. No need to install anything on these
operating systems—at least not for this book.

If you are on Windows you will have to go to the official Python site:
https://www.python.org/downloads/windows/ and download the installer from there.

Please read the notes carefully (see the screenshot below) and choose the right Python version
for your Windows version.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://www.python.org/downloads/windows/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

161

Python Releases for Windows

» Latest Python 3 Release - Python 3.11.0

Stable Releases

= Python 3.11.0 - Oct. 24, 2022

Note that Python 3.11.0 cannot be used on Windows 7 or earlier.

Download Windows embeddable package (32-bit)

Download Windows embeddable package (64-bit)

Download Windows embeddable package (ARM64)

Download Windows installer (32-bit)

Download Windows installer (64-bit)

Download Windows installer (ARM64)
= Python 3.9.15- Oct. 11, 2022

Note that Python 3.9.15 cannot be used on Windows 7 or earlier.

= No files for this release.

= Python 3.8.15- Oct. 11,2022

Note that Python 3.8.15 cannot be used on Windows XP or earlier.

= No files for this release.
L] Python 3.10.8 - Oct. 11, 2022

Note that Python 3.10.8 cannot be used on Windows 7 or earlier.

Another way to install Python on Windows is to open a PowerShell window and type pyt hon.
Windows will suggest to install the right version of Python. You just have to accept it.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion

	Let's Talk Python MEAP V02
	Copyright
	welcome
	brief contents
	Chapter 1: Coffee for friends: first steps
	1.1 A Great Idea
	1.2 First things first: installation
	1.3 How to talk to a computer
	1.4 What is a program?
	1.5 New terms we have learned today
	1.6 Code for this chapter

	Chapter 2: Lists: What’s on the menu?
	2.1 New things you have learned today
	2.2 Code for this chapter

	Chapter 3: Functions: Don’t repeat yourself!
	3.1 New things you have learned today
	3.2 Code for this chapter

	Chapter 4: User errors: Everybody makes mistakes
	4.1 If your user doesn’t do what you expected
	4.2 New things you have learned today
	4.3 Code for this chapter

	Chapter 5: Working with files: Being a shop manager
	5.1 New things you have learned today
	5.2 Code for this chapter

	Chapter 6: Main menu: Next customer!
	6.1 New things you have learned today
	6.2 Code for this chapter

	Chapter 7: Creating functions: Get the order and print it
	7.1 What are your choices?
	7.2 Print it!
	7.3 New things you have learned today
	7.4 Code for this chapter

	Chapter 8: Working with JSON: Save the order
	8.1 New things you have learned today
	8.2 Code for this chapter

	Chapter 9: Complete the menu: A real program
	9.1 New things you have learned today
	9.2 Code for this chapter

	Chapter 10: Learning Flask: Your first web application
	10.1 New things you have learned today
	10.2 Code for this chapter

	Appendix A: Ideas for your first application
	A.1 Pizza place
	A.2 Ice cream shop
	A.3 LEGO® minifigures
	A.4 Other project ideas

	Appendix B: How to install Mu Editor and Python environment
	B.1 Mu Editor
	B.2 Thonny
	B.3 Python

