

MEAP Edition
Manning Early Access Program

Let's Talk Python

Version 02

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://www.manning.com/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

welcome
Thank you for purchasing MEAP for Let’s Talk Python.

This book is based on a real story. My son Erik liked to go to Starbucks and try drinks with different flavors and
toppings. One day he decided to prepare drinks himself and treat his friends. He took his tablet to collect orders
from them, but I suggested create a simple program for that. He tried to learn programming before but most of the
exercises were boring for him. This time he saw a real problem he could solve with programming and he got
interested. This is how this book was started. I hope you, dear reader, will find your own problem that can be solved
with programming. And I hope this book will help you.

A couple pieces of advice.

Don’t rush. I understand your desire to go directly to the last chapter, download the code of the final version of
the program, and run it. Don’t do it. Go step by step, write the code yourself (don’t copy and paste, please!), try it,
and move forward. Sometimes you will have to return and re-read the chapter. Sometimes you will need a break.
Don’t worry, take a break, repeat the chapter. Just don’t drop out.

Make mistakes. You don’t learn when everything goes perfectly well. The only way to learn is to make mistakes.
Don’t be afraid of mistakes. Experiment with the code, change things, get error messages, read them. Search for
the error message on the Internet and discover thousands of other people who made the same mistake. Learn how
they fix it and fix yours. Move ahead and don’t drop out.

Ask questions. Ask your friends, ask parents and grandparents, ask Internet. Explain your problem to somebody
– sometimes that’s enough to find the answer yourself. There is no such thing as “stupid questions”, don’t be shy.
Ask questions and don’t drop out.

Go further. Modify the application you create with this book. Change something to make it look more like your own
app. Think about other applications you can create. Look around you: what can be automated? Can you create an
app that is similar to the app or website you know? Tell your friends about your ideas – maybe you will create
something together? Programming is cool. Don’t drop out.

Speak out. Please let me know your thoughts in the liveBook Discussion forum on what’s been written so far and
what you’d like to see in the rest of the book. Your feedback will be invaluable in improving Let’s Talk Python.

—Pavel Anni

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

https://livebook.manning.com/#!/book/lets-talk-python/discussion
https://livebook.manning.com/#!/book/lets-talk-python/discussion

brief contents
 1 Coffee for friends: first steps

 2 Lists: What’s on the menu?

 3 Functions: Don’t repeat yourself!

 4 User errors: Everybody makes mistakes

 5 Working with files: Being a shop manager

 6 Main menu: Next customer!

 7 Creating functions: Get the order and print it

 8 Working with JSON: Save the order

 9 Complete the menu: A real program

10 Learning Flask: Your first web application

11 Web form for orders: Coffee shop on the web

12 Styles: Making it pretty

13 Next steps: plans for the future

APPENDIXES

 A Ideas for your first application

 B How to install Mu Editor and Python environment

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

1
This chapter covers

It all started on a sunny summer day. Erik came home with an idea: he wanted to prepare coffee
drinks for his friends. Who knew that he would create his own online application for that?

"I will make it just like at Starbucks, with many flavors and toppings," he thought. "I think I have
everything I need: coffee, three or four flavors to add, and some chocolate cream for toppings.
Great!"

"Where is my iPad?" he asked his older brother Simon.

"Where you left it. Why?"

"I need it to collect orders for my coffee shop!"

He came back several minutes later with notes on his iPad, prepared four drinks for his friends,
and left again.

"Wasn’t it a good idea?" he asked Simon when he came home with four empty plastic cups.

Coffee for friends: first steps

Erik gets an idea
Erik and Simon discuss the future application
Erik installs a code editor and tries to run his first program in Python
Simon explains how to use variables
Erik writes his first dialogue in Python

1.1 A Great Idea

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

1

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, great idea," Simon said. "But…"

"What ' '??" Erik asked. He felt that his older brother wanted to ruin his day. As he usuallyBUT
did.

"You used your iPad to take orders, but you used it just as a plain paper notepad. You could
create a simple application for your coffee shop and use it to take orders."

"You mean—like in an online shop? With menus and all that?" Erik already imagined his own
web store with a huge title at the top: "Erik’s Coffee Shop."

"Yes, of course. You know a bit of Python from that online course you’ve taken, don’t you?"

"Yes, but I don’t remember much. We did some exercises… I think it will be difficult—to make
it look like a real online shop."

"Don’t worry," Simon said. "We’ll do it step by step. I did several projects like this for my
robotics team at school."

NOTE Don’t worry if you didn’t have programming experience before. Erik didn’tany
remember much from his classes anyway so we’ll start from the very
beginning.

Simon was in his last year in high school. He learned Python several years ago and used it in the
school’s Computer Science club and, more recently, in his Robotics team.

"So you are saying we can build a real online application?" Erik was not convinced.

"Yes, sure. If you don’t drop out from my class," Simon smiled, "you will build it in a couple of
weeks. Then, your customers will be able to choose whatever drink they want, add flavors…"

"And toppings!" Erik added.

"Yes, and toppings. And after they confirm the order, you’ll see it on the orders page. And you
will know what to prepare and for whom. Something like this," and Simon took a piece of paper
and started to draw a simple web page.

"This will be your order page."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

2

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"And this will be your list of orders."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

3

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Cool! Do you think we can do it??" Erik still couldn’t believe his brother.

"Of course! As I said: just don’t drop out. You have plenty of time to finish it during your
summer break."

NOTE We have several other project ideas that you can use if you don’t like the
coffee shop idea. Some of them will be discussed when Erik’s friends join him
in the following chapters. Look for more details in the Appendix A.

"Let’s start with some simple things. You will remember Python very quickly. Do you have it
installed on your laptop?" Simon asked.

"No, I don’t think so."

"Here is a great Python editor, designed specifically for beginners like you. It’s called Mu Editor.
Try to find it and install it. You can do it, I’m sure."

Erik found the website: , where he could download it.https://codewith.mu/

1.2 First things first: installation

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

4

https://codewith.mu/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

He downloaded the installation program from this page: .https://codewith.mu/en/download

He clicked Instructions and found an instructions page with all the steps for his computer (at that
time he was using a Macbook, but the site contains instructions for all three operating systems:
Windows, macOS, and Linux.)

You can find all necessary links and instructions in Appendix B.

"Don’t worry, it’s not a toy. It’s a perfect editor," Simon said. "We use it in our robotics team to
work with microcontrollers. As you see, there are versions for Windows, macOS, and Linux. I
use the Linux version in my team."

"Are there other editors for Python?" Erik didn’t want just to follow his brother’s directions.

"Yes, of course, many of them. Another good option for beginners is Thonny. Look here:
 "https://thonny.org/

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

5

https://codewith.mu/en/download
https://thonny.org/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"I like it!" said Erik. "And the name is funny."

"And, of course, there are other code editors that work on every platform:

VS Code (),https://code.visualstudio.com/
Sublime Text ().http://www.sublimetext.com/"

"They all work perfectly with Python. Even the very old editors like Vim ()https://www.vim.org/
and Emacs () support Python, but you have to be a https://www.gnu.org/software/emacs/ very

 programmer to use them," and Simon winked at his brother.serious

"Mu Editor and Thonny," Simon continued, "both Python when you install them. To useinclude
Python with editors, you have to it first. On some systems, like Linux and macOS,other install
Python is already installed from the beginning. On Windows, you should install it. I can show

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

6

https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
http://www.sublimetext.com/
https://www.gnu.org/software/emacs/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

you later if you want."

YOUR TURN Install your Python environment

Now it’s your turn. Open your laptop or desktop, and install Mu Editor. You can
find the complete instructions for different platforms in Appendix B (it is
available on Windows, macOS, Linux).

If you prefer some other editor, feel free to install it instead of Mu. Don’t
be afraid to experiment!

"Let’s start Mu Editor and begin writing your coffee shop program," Simon said.

Erik launched Mu and saw its first window:

"Select Python 3 from the menu and click OK," Simon suggested.

Erik did what Simon said. "From now on," Simon continued, "Mu Editor will remember that you
prefer to use Python 3. Maybe you noticed that there are some other modes that can be used to
work with microcontrollers, build web applications, and others. We will learn about them later."

1.3 How to talk to a computer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

7

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Now Erik had the editor window in front of him.

"What should I write here?" Erik asked.

"What do you want your program to do first?"

"It should say 'Welcome to Erik’s Coffee Shop!'"

"Great! Let’s write it. Remember the function in Python?"print()

Erik started to write. This first step was easy.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

8

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now what?"

"Now you run it. Click Run Run ."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

9

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Erik clicked the button, and suddenly another window appeared asking if he wanted to save the
program. That was easy. Erik typed the name of the file: "coffeeshop" and was ready to press

 to save the file when Simon said:ENTER

"Wait, wait… Don’t forget to add to the file name. You have to let your text editor know.py

that it’s a Python program. Mu Editor will add it automatically, but other editors won’t. So make
sure all your Python files are named with at the end.".py

Erik added to the file name and saved the file. Immediately after, he noticed another window.py

at the bottom of the editor’s window. There was the coffee shop greeting—precisely as he
wanted it!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

10

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"It works!" Erik was delighted.

"Of course, it works. Why shouldn’t it?" Simon answered. "But you wanted to collect orders,
didn’t you?"

"Yes, I would ask my client’s name and what they want…"

"And then?…" Simon obviously knew the answer, but he wanted Erik to find it himself.

"And then I would print 'Hello! Here is your order:' and show their name, flavor and topping.
Like on a real receipt."

"Good idea," Simon said. "But look: when you are writing your program, you don’t know what
your friend wants to order, right? So you can’t write in your program 'You ordered caramel.'
Also, different clients order different things. It will be caramel for Alex and strawberry for
Emily. So you see: your flavor from order to order, as well as the client’s name.varies
Remember what this thing is called in programming?"

"It’s a !" Erik was glad he remembered it from the Python course he took several monthsvariable
ago.

"Right!" Simon was glad too. "Variable is like a box: you can put something into it, and then
open and see what’s in the box. You can replace what’s in the box with something else."

"In our case," Simon continued, "let’s start with a box called 'answer' and store whatever you
hear from your client in that box. You ask your client their name and they answer 'Alex,' for

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

11

https://livebook.manning.com/#!/book/lets-talk-python/discussion

example. You put this answer in the box called 'answer' and keep it there. When you want to
print it out, you tell Python: 'please print whatever is now in the box called 'answer'. The next
client’s name is Emily, and now you put 'Emily' in the box. And next time, Python will print
'Emily' not 'Alex' because it is what is in the box called 'answer.' Let’s write the code fornow
this."

"Right here, in the same file?" Erik asked.

"Sure, go ahead and continue in the same file. To get something from the client, we use the
 called . When you call it, it waits for the user to enter something. So the userfunction input()

types something on the keyboard and presses . And then the function whatever theENTER returns
user entered."

"Wait, wait," Erik stopped Simon. "What does it mean--'returns'? And also, you are talking about
. Of course, I know what they are, but can you tell me what mean by 'functions'?"functions you

Erik didn’t want to show that he remembered something about functions from hisbarely
previous class.

"A function is a piece of code that something. Almost piece of code does something,does any
but some pieces of code we use more often than the others. Later, you will create your own
functions, but for now, we will use the functions written by somebody else. There are operations
that people use very often, such as print something. You didn’t notice it, but you already used a
function when you wrote in your previous program. In programming we say that you print()

 a function."call

"A-ha, I see," Erik said. "Something with parentheses is called a 'function'."

"Right. And you can put something inside those parentheses, and the function will somethingdo
with it. For example, it will print your message. What you pass into a function is called

. Sometimes it’s a string, sometimes it’s a number, sometimes there are severalarguments
arguments."

"We call it 'to arguments' to a function," Simon continued. "The function will do somethingpass
with the arguments and get something as a . For example, it can calculate something, or doresult
something with the string that you passed, like converting it to ALL CAPS or encrypting it. And
then it that result to your main program."returns

"But how do I see the result?" Erik asked. "Will the function print it?"

"No, it won’t. Here is where we need . We tell Python: 'variables please call this function with
'. And allthese arguments and please put whatever it returns into this box, sorry, this variable

that is done using a simple 'equal' sign, like this . For example, if you want to call the function =

 and put what it returns to the variable , you simply write:"input() answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

12

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"And after you save the client’s answer, you can print it. You call the function and passprint()

your variable as an argument."

"Great," Erik said, "now I see how to write it." He started writing in the editor. In a minute or
two, he’s got this:

"Should I run it?" he asked Simon.

"Sure, go ahead, click [Run] Run ."

Erik clicked [Run] Run .

"It says 'Welcome to Erik's coffee shop' and then nothing."

"What did you expect?" Simon asked.

"That it will ask me my name."

"But you didn’t tell Python that it should ask something. Now it’s waiting for your input. Type
something."

Erik typed: "Erik" and pressed .ENTER

Python printed: "Erik".

answer = input()

print("Welcome to Erik's Coffee Shop!")

answer = input()
print(answer)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

13

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"It works!" Erik said.

YOUR TURN Write your first dialogue

Write the dialogue program that Erik just wrote. It’s a short program, we
recommend to type it yourself instead of copying from the book. Create a
name for your coffee shop and use it the first "Welcome" message. You can
create some other shop if you want. What will it sell? Ice cream? Flowers? Pet
toys?

Try to run your program. Does it do what you expect it to do? If it doesn’t,
copy it from the book or from our web site:

 and run it again. It shouldhttps://github.com/pavelanni/lets-talk-python-book
work.

"Yes, it works," Simon said, "but let’s make it more user-friendly. Remember, you were
confused when it said nothing except 'Welcome'? You should tell your user what you expect
from them. And also, instead of printing just 'Erik', you could add something like 'Here is your
order, Erik'."

"You can pass this string to the function as an argument. We call it a string. Itinput() prompt
explains what we expect from the user. And in the function, you can add the string youprint()

want to print before the variable. Let me help you."answer

Simon helped Erik to add those strings to the code, and this is what it looked like after that:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

14

https://github.com/pavelanni/lets-talk-python-book
https://livebook.manning.com/#!/book/lets-talk-python/discussion

Simon noticed that Erik was looking for the [Run] Run button and explained: "Before

clicking [Run] Run again, you have to stop your previous Python session. See these three
angle brackets here? They mean that Python is running and waiting for your input. We will use it

later, but for now, just click [Stop] Run and then click [Run] Run again."

Now the program asked for the order and answered exactly as Erik programmed it.

YOUR TURN Make your program more user-friendly

Add the prompt and the output string to your first program. Create a different
prompt asking the client their name, like "Glad to see you! What’s your
name? "

"Looks much more user-friendly, doesn’t it?" Simon said. "Always think about your users and
ask yourself: Is it clear enough what I expect from the user? Can they possibly make a mistake
here?"

"Now," Simon continued, "we have to ask your client about their order. You said you have
coffee and chocolate. And also you said something about flavors and toppings?"

"Yes," Erik said, "I want to ask them which topping and flavor they want."

"Well, go ahead and ask them. You can just repeat the same code—but don’t forget to change the
prompts. And I think you should print the whole order at the end, not after each question. Try it."

Erik wrote this code and stopped at the last line.

"You told me to put the answers in the variable. But how do I know now which is theanswer

flavor and the topping?" Erik was confused.

print("Welcome to Erik's Coffee Shop!")

answer = input("Please enter your name: ")
print("Here is your order, ", answer)

Welcome to Erik's Coffee Shop!
Please enter your name: Erik
Here is your order, Erik
>>>

print("Welcome to Erik's Coffee Shop!")

answer = input("Please enter your name: ")
answer = input("Please enter your drink: ")
answer = input("Please enter your flavor: ")
answer = input("Please enter your topping: ")
print("Here is your order: ", answer)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

15

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, I told you to put the answers in a variable, ," Simon answered.for example called 'answer'
Here we come to one of the most difficult problems in computer science: naming variables", he
smiled. "Of course, you don’t store all the answers in the variable called . Let’s useanswer

different variables for different answers and give them meaningful names. For the client’s name
we’ll use a variable called --that’s easy. If you ask about a main drink, put the answer in thename

variable or . For the flavor and topping answers use the variables and drink product flavor

."topping

"At the end," Simon continued, "print each variable on a separate line, using several print()
functions. Go ahead. I will help you if necessary."

Erik worked on his code and finally produced this:

Listing 1.1 coffeeshop.py

Erik clicked Run, and his program started a dialogue. Erik answered all the questions and got a
nice output:

Simon noticed the last line and praised Erik for his initiative: "It’s always good to thank your
customers."

"Yes, I saw that on several receipts in coffee shops," Erik said. He was glad he had done
something on his own besides what his older brother told him.

print("Welcome to Erik's Coffee Shop!")

name = input("Please enter your name: ")
drink = input("Please enter your drink: ")
flavor = input("Please enter your flavor: ")
topping = input("Please enter your topping: ")
print("Here is your order, ", name)
print("Main product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)
print("Thanks for your order!")

Welcome to Erik's Coffee Shop!
Please enter your name: Erik
Please enter your drink: coffee
Please enter your flavor: caramel
Please enter your topping: chocolate
Here is your order, Erik
Main product: coffee
Flavor: caramel
Topping: chocolate
Thanks for your order!
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

16

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Add more options to the dialogue. Use variables.

Edit your previous program and add the other lines to the dialogue. Again, feel
free to change the prompts and strings you print to something more suitable
to project.your

Change your printed output. Look at the receipts from the places you visit
(coffee shops, restaurants, groceries, other shops). Try to make your printed
output look similar. Use text symbols like , , , , and others to make your| _ = +

output look interesting.

Simon decided it was time to wrap up for today.

"I think it was a good start today," he said. "Let’s see what we have done today. First, we
installed your programming environment."

"Yes," Erik said. "I like this Mu Editor. It uses colors to show me different parts of the program.
And also it shows my string in red until I put the quotes at the end. And it has a dark mode! I
know that always use the dark mode! I think I will continue using it."real programmers

"Second," Simon said, "we used a for the first time. What was it?"function

"It was the function," Erik said. "I told it what to print and it printed it."print()

"Right. You the function and to it."called passed and argument

"Third," Simon continued, "you used another function to get information from the user."

"It was ," said Erik. "And I saved the answers in ."input() variables

"Great!" Simon was really proud of his brother. "You are making good progress."

YOUR TURN Explain it yourself

Try to explain it in your own words.

What is a function? Give some examples.
What are function arguments? Give some examples.
How do you call a function?
What is a variable? Why do we need them?
How should we name our variables? Why?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

17

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Finally, let’s add a bit more theory," Simon said. "We just built a very simple program. But it
has all the main components of any other program. We have asked the user for some . Afterinput
we received data from the user, we did something with that data. We usually call it .processing
In our case, we just stored that data, but we could do something else with it, right?"

"For example?" Erik asked.

"For example, you’ve entered 'coffee' in lower case, but we may want to start all products and
flavors from a capital letter. There is a special function in Python for that. So we can theprocess
data after we received it."

"Great idea, I want to add it!" Erik said.

"Sure, we’ll do it. And finally, after we processed the data, we printed it out. In other words, we
produced some . Look here.""output

"Input doesn’t always come from a user," Simon continued. "Sometimes there is no interaction
with a user, and the program takes data from somewhere else. For example, from the Internet,
like recent sports results. Sometimes from sensors, like in robotics. Or from documents and
images."

"Very often the output is not just a print output. In my robotics team we get inputs from sensors,
we process them in the microcontroller, and our output is the signals to motors like: 'turn left,
move forward.' But the structure is still the same: input → processing → output."

"Enough theory," Simon said. "Tomorrow we’ll work on improving your program."

"Improving?" Erik was surprised. "But it works fine already, doesn’t it?"

"What if your user enters something you don’t have in your shop?" Simon asked. "Like 'maple
syrup'? What will you do? You should tell your user what you have in your coffee shop and what
they can order. So, tomorrow we’ll work on . And also, we’ll see what we can do in casemenus
of errors."

1.4 What is a program?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

18

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Variable
a place (a box) where we can store some values. For example, we can store numbers,
letters, strings. A variable can hold only one thing at a time.
Function
a piece of code that does something and that we want to be able to do it again.
Function arguments
information that the function needs to do its job.
To call a function
to write the name of the function with parenthesis and arguments between them.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch01

1.5 New terms we have learned today

1.6 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

19

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch01
https://livebook.manning.com/#!/book/lets-talk-python/discussion

2
This chapter covers

Next day Erik was ready to continue working on his Coffee Shop application. He remembered
that Simon said something about missing products that customers might enter in the dialogue. He
came to his brother and asked:

"You said yesterday that customers can enter something that I don’t have in the shop. What
should I do about it?"

"Remember the last time you were in a coffee shop or restaurant. How did you know what you
can order?"

"They had a menu with a list of products that they have in this shop."

"Right!" Simon said. "A menu! This is what we are going to create today. How does a menu look
like in a coffee shop?"

"It’s a list. A list of main drinks like coffee, chocolate, decaf. And a list of flavors I can add. Like
caramel, mint, and others. And a list of toppings."

"Right, lists!" Simon was very glad the Erik used that word. "Like this, right?" and he quickly
drafted something that looked like a menu.

Lists: What’s on the menu?

Erik starts using in his coffee shopmenus
Erik uses Python to keep his drinks, flavors, and toppingslists
Erik uses to print our his listsfor-loops
Simon explains how computers store numbers and strings
Erik learns an important thing about list indexes

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

20

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Lists is what we need! We have lists in Python—you may remember that. Lists are very useful
in Python. They can contain numbers, strings, even other lists. For example," Simon took another
piece of paper and wrote several examples.

Let’s create lists for your menu. You just give the list a name—like , for example, andflavors

then list your flavors in square brackets. And the same for your toppings and main drinks. Don’t
forget that your flavors, toppings, drinks are strings so they should be in quotes. You can start a
new file in your editor and call it , for example."menu.py

Erik opened his editor and started writing. Here is what he’s got in several minutes.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

21

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Very good," Simon said. "Now let’s print them as menus."

"Just ?" Erik suggested.print(drinks)

"You can do that, but it won’t be pretty. Try it."

Erik added the statement at the end.print()

"Click Run Run ," Simon said.

Erik clicked and saw the output at the bottom of the editor window.

"If your menu is a list, we should print is as a list," Simon said. "And also you should give your
user a way to choose from the list. For example, you can ask to type a letter. But here we have
chocolate and coffee. So you can’t use the letter 'C' for both. Let’s use numbers instead. For each
menu item we’ll print a number. Then your user will type a number for their choice. For
example, 1 for chocolate, 2 for coffee. Something like this." Simon took a piece of paper and
draw a simple menu.

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]
print(drinks)

['chocolate', 'coffee', 'decaf']
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

22

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, I saw that in a Chinese restaurant—each dish had a number," Erik remembered. "But how
do I do it in Python?"

"You have a list of several items," Simon started his explanation. "You have to print each item
adding a number in front of it. When we have to something in Python we use a . Inrepeat loop
this case it will be a . You tell Python that for each item in the list it has to do something.for-loop
Like print it, for example."

"Write a simple for-loop," Simon continued. "Let me write the first one for you." Simon took
Erik’s keyboard and added a couple of lines to his code.

Simon clicked [Run] and they saw the output:

"Now it’s your turn," Simon said. "Write the same code for the other two lists. Note that I used

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

for d in drinks:
 print(d)

chocolate
coffee
decaf
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

23

https://livebook.manning.com/#!/book/lets-talk-python/discussion

another variable to print list items. The list is called . I used just a for each drink in thedrinks d

list. It is usually recommended to use meaningful names for your variables, like for thedrinks

list of drinks. But if a variable will be used just in one loop to go through a list, it can be short,
one or two letters. It’s not a rule, but it’s easier to type."

"Another important thing," Simon continued, "is that in Python spaces mean . You see thata lot
the function call is shifted four spaces to the right? This is how we tell Python print() what
should be repeated in the loop. The part that is shifted is called a . Everything you put inblock
this block will be repeated for each list item. Now there is only one function call, but we’ll add
something later.

"You also noticed that I didn’t type four spaces on the keyboard. Our editor did it for us
automatically. All programming editors that you would use for Python have this feature. When
they see the colon () they automatically shift the next line. It is called 'starting a block'. Now go:

ahead and write the loops."

Erik created two more loops to print the other two lists. He liked the idea to use shorter variable
names (less typing!). He also noticed that the editor shifted the line after colon automatically.
Very useful! Here is what he’s got.

He saved the program and ran it.

YOUR TURN Create your list of products and print it

Open you code editor and create a program similar to what Erik just created.
It should contain three or more lists of items. Then use loops to print out the
content of those lists.

You can use Erik’s menu item or you can create your own. Ice cream
flavors, bagels, minifigures, anything you want!

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

for d in drinks:
 print(d)

for f in flavors:
 print(f)

for t in toppings:
 print(t)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

24

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Very good," Simon said. "But we don’t have the numbers. We have to fix it. Remember I told
you that we can add something else to the block? Here is what I propose. We’ll create a variable
which will keep the item’s number in the list. Each time we go to the next item we add one to
that variable. In that case 'chocolate' will be number one, 'coffee'—number two, and so on."

"Let me show you," and Simon took Erik’s keyboard again.

He ran the program and they saw this:

"You see: I added the variable. For each list item now I print not only its value, but also itsi

number. And then I add one to the number to move from 1 to 2, then from 2 to 3, and so on. Now
go ahead and change the rest," Simon said.

Erik made the changes:

chocolate
coffee
decaf
caramel
vanilla
peppermint
raspberry
plain
chocolate
cinnamon
caramel
>>>

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

i = 1
for d in drinks:
 print(i, d)
 i = i + 1

for f in flavors:
 print(f)

for t in toppings:
 print(t)

1 chocolate
2 coffee
3 decaf
caramel
vanilla
peppermint
raspberry
plain
chocolate
cinnamon
caramel
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

25

https://livebook.manning.com/#!/book/lets-talk-python/discussion

When he ran the program he saw this output:

"But this is not what I wanted!" Erik said. "I think it should be: one, two, three for the drinks,
then one, two, three for the flavors, and one, two three for the toppings again."

"Right!" Simon agreed. "How would you do this?"

"Use a different variable?"

"Yes, that’s possible too. But you can use the same variable. The important thing is to set it toi

one before each loop. We call it to the variable."initialize

Erik added before each loop and got this:i = 1

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

i = 1
for d in drinks:
 print(i, d)
 i = i + 1

for f in flavors:
 print(i, f)
 i = i + 1

for t in toppings:
 print(i, t)
 i = i + 1

1 chocolate
2 coffee
3 decaf
4 caramel
5 vanilla
6 peppermint
7 raspberry
8 plain
9 chocolate
10 cinnamon
11 caramel
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

26

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Print three (or more) menus with numbers

Modify your previous program to add numbers to your menu items. Use the
loops. Don’t forget to reset the item counter with each new list.

He clicked Run and got the output:

"Now let’s make it a bit prettier," Simon said. "Add titles like 'Our drinks' before each list.
Remember, we should let the user know what they see and what they should do."

Erik added the titles. He even added an extra line under each title. He was sure it will make it
look like a real menu.

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

i = 1
for d in drinks:
 print(i, d)
 i = i + 1

i = 1
for f in flavors:
 print(i, f)
 i = i + 1

i = 1
for t in toppings:
 print(i, t)
 i = i + 1

1 chocolate
2 coffee
3 decaf
1 caramel
2 vanilla
3 peppermint
4 raspberry
5 plain
1 chocolate
2 cinnamon
3 caramel
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

27

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Add titles to your menus

Add titles to your menus to make the output beautiful. Use your shop’s name
in the titles. Try to use other symbols instead of dashes.

And the output was beautiful, as he expected:

"Looks good," Simon said. "What is also good about this format is that now you have three lists
in your menu and three lists in your program."

"Let’s write this code," Simon continued. "For each list in the menu, you have to ask the user to
choose an item and get that information from them. How do you get information from a user?
You did it yesterday, remember?"

"With ?" asked Erik.input()

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1

Erik's Coffee Shop drinks

1 chocolate
2 coffee
3 decaf
Erik's Coffee Shop flavors

1 caramel
2 vanilla
3 peppermint
4 raspberry
5 plain
Erik's Coffee Shop toppings

1 chocolate
2 cinnamon
3 caramel
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

28

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Of course!" Simon was glad Erik remembered the previous lesson. "You can write it yourself,
can’t you?"

"Let me try," Erik said and started editing his code. He remembered that he should use the
 function. Then he put the prompt inside the parentheses and on the left side he used ainput()

variable. He remembered that he shouldn’t use the same variable for different questions.

Here is what he wrote:

YOUR TURN Add user inputs to your menus

Add the functions to your menus. Use appropriate variable names toinput()

store the user’s answers.

"Now what?" he asked Simon.

"Now your user types a number and you use that number to find the item. In Python we call this
number a list . If you put this number in square brackets next to the list name, you get thatindex
item. Like this," and he wrote an example:

"So after you know the number you can find the item in the list. And you can print 'Here is your
order' like you did yesterday, but now you’ll take those items from the menu. Try it, I’ll help you
if necessary."

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1
topping = input("Choose your topping: ")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

29

https://livebook.manning.com/#!/book/lets-talk-python/discussion

That was a bit more difficult. Erik looked at his yesterday’s program and copied the lines from it
to the bottom of this program. Then he replaced variables like with the list items likedrink

Simon suggested.

Here is his code:

"Now run it and let’s see what it gives us," Simon said.

Erik clicked [Run] and the program printed the drinks menu and asked for his choice. So far it
worked. Erik quickly entered numbers for all three menus and saw this output:

"What’s this?" he was puzzled.

"Congratulations!" Simon said.

"What are you so happy about? That my program doesn’t work?" Erik started getting angry at his
brother.

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1
topping = input("Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drinks[drink])
print("Flavor: ", flavors[flavor])
print("Topping: ", toppings[topping])
print("Thanks for your order!")

Here is your order:
Traceback (most recent call last):
 File "/home/erik/mu_code/menu.py", line 30, in <module>
 print("Main product: ", drinks[drink])
TypeError: list indices must be integers or slices, not str
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

30

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Not at all!" Simon said. "You got your first error message from Python and it’s a good sign!
Making errors and fixing them is the only way to learn. You’ve got an error message—now let’s
try to fix the problem. Usually Python gives you the reason why this happened. Start from
reading the last message. What does it say?"

"Something about slices… Must be integers not str. What’s that?"

"I agree, it takes some practice to learn to read Python error messages. Here it tells you that when
you use a variable as an index of a list, that variable should be an integer number, like one, two,
three."

"But I entered numbers!" Erik was still confused.

"Yes, you numbers on your keyboard. But for Python everyting you enter from a keyboardtyped
is a . Python makes a difference between a string containing the number '1' and the integerstring
number 1."

"This comes from the way computers keep things in memory," Simon continued. "The computer
keeps the 1 in memory, but when it shows it to you, it converts it to a '1'. Thenumber string
same way computers convert numbers they get from the keyboard. You type '123' on your
keyboard and the computer gets this string and it to a 123. Look here," andconverts number
Simon draw a picture with a computer, keyboard, display, and a user.

"So we should tell Python to convert the strings you type on the keyboard to integer numbers.
There is a special function for that called . Let me show how to use it."int()

Simon changed Erik’s program in one place and let him do the same in the other two places.
Here is what Erik’s program looked like after that:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

31

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Erik ran the program, entered his choices (coffee, caramel, chocolate) and got this output:

"What?? It’s all wrong!" Erik exclaimed. "This is not what I chose!"

"I didn’t tell you one important thing about Python lists. Their indices start with zero, not one. So
if you want to get the first item from the list, you should put zero in the square brackets. If you
want the second item, you use one as the index."

"But why??" Erik was shocked by such a strange thing.

"It’s a long story," Simon answered. "It comes from the way computers store lists in memory.
The index you use is the number of items you should skip from the beginning of the list to get
the item you want. If you want the first item of the list you don’t have to skip any items. You just
take it from the beginning of the list. So the number of items you should skip is , right?zero
That’s why the first element’s index is zero. Look here," and Simon draw another picture.

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1
topping = input("Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drinks[int(drink)])
print("Flavor: ", flavors[int(flavor)])
print("Topping: ", toppings[int(topping)])
print("Thanks for your order!")

Here is your order:
Main product: decaf
Flavor: vanilla
Topping: cinnamon
Thanks for your order!
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

32

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"So what should I do now?" Erik asked. He thought that he understood Simon’s explanation, but
still he was annoyed by this inconvenience.

"I see that you’re annoyed," Simon said. "Don’t worry, you’ll get used to it very quickly. And
you will, like all real programmers, start counting everything from zero," Simon smiled. "Now
you just subtract one from each index in the square brackets. But be careful: you have to add that

 you converted your input to integer, not before. Like this: - 1 after drinks[int(drink) - 1]

."

Erik fixed his code and now it looked like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

33

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Modify your program to print the order

Modify your program similar to what Erik just did and print the order. Don’t
forget to convert the input strings to numbers. Don’t forget to subtract one (1)
from each number—list indexes start with zero, remember?

He ran the program, entered 2, 1, 1 and finally got what he wanted:

"Cool! It works!" Erik was definitely happy. "I like my coffee shop program! Are we done with
it?"

"Almost," Simon answered. "Look, you wrote almost exactly the same code three times."

"What’s wrong with that?"

"Imagine you want to change something in you code. For example, change the way you print the
menu items. You’ll have to change it in all three places. Or in even more places if you decide to

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1
topping = input("Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drinks[int(drink) - 1])
print("Flavor: ", flavors[int(flavor) - 1])
print("Topping: ", toppings[int(topping) - 1])
print("Thanks for your order!")

Here is your order:
Main product: chocolate
Flavor: caramel
Topping: chocolate
Thanks for your order!
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

34

https://livebook.manning.com/#!/book/lets-talk-python/discussion

add other menu lists. Imagine you want to add desserts to your coffee shop. That means you’ll
have to copy this code one more time. What if you made a mistake in the code? Programmers
call them (I’ll tell you later why). Then you would have to fix that bug in four places,bugs
repeating yourself. Programmers like the DRY principle: Don’t Repeat Yourself."

"But I don’t see how I can do that," Erik was confused. "If I have menu lists, I have to printthree
them three times. And I have to ask the user for input three times."

"We can use a function here," Simon explained. "Remember when we started using the print()
function, I told you that for operations that we want to repeat over and over we use functions. So
far we used functions written by somebody else. Now we’ll create our own function and use it."

"This is cool, I like it," Erik said.

"Great, let’s do it tomorrow. I think we have done enough for today. You did a great job, Erik,"
Simon indeed was glad that his brother is making progress. "Let’s recap what we have learned
today. What was the first thing?"

"First, we created ," Erik said. "We put all our drinks, flavors, and toppings in the lists."lists

"Good, what was next?"

"Then we printed the lists using loops. And then we printed the numbers next to each drink or
flavor."

"Yes, exactly," Simon confirmed. "Go on, what was after that?"

"And then I tried to print drinks from the list, but I got an error from Python. And then you
explained to me how numbers are stored in computer memory. Then we converted the numbers
and I tried to print my order again. And just because you didn’t tell me that indices start with

," (Erik didn’t forget that!) "my order was printed all wrong items!"zero

"Please, forgive me," Simon smiled. "But now you’ll remember it much better, I’m sure!"

"Finally I fixed it and now it works well!" Erik finished.

"Great job!" Simon gave Erik the thumbs up. "We’ll continue tomorrow and write our first
function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

35

https://livebook.manning.com/#!/book/lets-talk-python/discussion

List
a collection of items in Python. You can have strings or numbers in a list, or even a mix
of them.

List index
the number we can use to retrieve an item from a list. Indices in lists always start with
zero and increase by one for each next element: 0, 1, 2, 3, etc.

Numbers and strings
these are different of variables in Python. When you print something on the screen,types
or get input from the keyboard, you always use strings. When you want to do any math
operations with numbers you received form the user you have to convert them from
strings to numbers.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch02

2.1 New things you have learned today

2.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

36

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch02
https://livebook.manning.com/#!/book/lets-talk-python/discussion

3
This chapter covers

"Where did we stop yesterday?" Simon asked Erik on the next day.

"You said that I should not repeat myself. And also you said we are going to write our own
function today."

"Right! First, tell me what you know about functions so far."

"We used a couple functions already," Erik started to answer. "We used and .print() input()

You said that somebody has written them so we can use them. We can use arguments with
functions. We just have to put them between the parentheses and the function will do something
with the arguments, like print them."

"Everything is right! You are a great student!" Simon smiled. "The important thing about
functions is that they can do but with different arguments. So if you see that youthe same thing
are doing the same thing several times you should look at whether it can be turned into a
function. To decide you should look at your repeating code and ask yourself which parts are the
same and which are different. Where is your script from yesterday?"

"Here," Erik opened the file in the editor.menu.py

Functions: Don’t repeat yourself!

Simon explains how to avoid repeating yourself (and why)
Erik writes his first Python function
Erik starts using Python’s interactive tool
Erik improves his function to make his receipt look professional

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

37

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Look: what is repeating here?" Simon asked and started drawing a diagram with Erik’s code.

"The loop. The in the beginning and the in the end."print() input()

"And what is different in these three cases?"

"The prompt for the is different," Erik answered. "Also the title is slightly different."input()

"And also you are running for-loops through different lists, like drinks, flavors, and toppings,
right?" Simon decided to help Erik. "So we will as arguments those things that are different.pass
In our case they will be the list of choices, the menu title, and the input prompt."

"Let’s start a new file in the editor, call it , and write our function there."menu_function.py

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

print("Erik's Coffee Shop drinks")
print("-------------------------")
i = 1
for d in drinks:
 print(i, d)
 i = i + 1
drink = input("Choose your drink: ")

print("Erik's Coffee Shop flavors")
print("--------------------------")
i = 1
for f in flavors:
 print(i, f)
 i = i + 1
flavor = input("Choose your flavor: ")

print("Erik's Coffee Shop toppings")
print("---------------------------")
i = 1
for t in toppings:
 print(i, t)
 i = i + 1
topping = input("Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drinks[int(drink) - 1])
print("Flavor: ", flavors[int(flavor) - 1])
print("Topping: ", toppings[int(topping) - 1])
print("Thanks for your order!")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

38

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Erik clicked [New] in the editor, then [Save], typed , and was ready to writemenu_function.py

code.

"Functions in Python start with the word followed by the name of the function," Simondef

continued. "Let’s call our function . Then you open the parentheses and list yourmenu

arguments."

Erik wrote and wasn’t sure what to do next.def menu(

Simon helped: "We just talked about your arguments. I see you are thinking how to name them.
Remember, naming variables and arguments is one of the most difficult problems in computer
science? You are not alone. Let’s name them: , , and . Just type themchoices title prompt

between the parentheses and put a colon after the closing one."

Erik typed the following:

He noticed that after he pressed , the cursor moved to the next line, but four spaces to theENTER

right. "Should I write here?" he asked Simon.

"Yes, sure!" Simon answered. "You see: the editor is helping you to write your function! Now
look at your yesterday code and start copying what you want to put in the function. Look: first
we print the title. Let’s do it here too, but instead of the actual string we just print the argument
called . You can even put the line of dashes after it, like you did before."title

Erik wrote:

"Now write the loop," Simon continued. "But instead of drinks or flavors, your list is now called
. And you can use the variable in the loop, as the first letter of 'choice'."choices c

Erik copied the loop from his previous script. He got the idea now and added the input()
function with the prompt even without asking his brother.

"Great!" Simon said when he saw Erik’s code. "Now we have to the choice."return

def menu(choices, title, prompt):

def menu(choices, title, prompt):
 print(title)
 print("--------------------------------")

def menu(choices, title, prompt):
 print(title)
 print("--------------------------------")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

39

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Can’t we just print the variable in our main program?" Erik asked.choice

"No! And this is a very important thing about functions," Simon was glad that Erik asked this
question. "The variables you have inside your function are only within the function. Lookvisible
here, I’ll draw a picture."

Visible means that you can’t see what’s inside those variables when you are not inside the
. So if we want our main program to see their values we have to these variables.function return

Usually we have many variables inside a function, but we want to return only one or two as a
result. In this case we can return the number that the user entered, which is stored in the variable

."choice

Simon paused and thought for a moment.

"But we can do better," he said. "Look at your yesterday code again. What else is repeating?"

Erik looked and said: "Those functions and also that we had to add three times. Thatint() - 1

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

40

https://livebook.manning.com/#!/book/lets-talk-python/discussion

was annoying," he still hasn’t gotten used to the fact that list indices start with zero.

"Okay, let’s add them to the function too," Simon suggested. "We will convert the user’s answer
to integer, get the item from the list, and return the item, not its index. That will make our
function even more useful. The main program that calls it will get the user’s choice, not just
some number. Let me show you," and Simon added the conversion operations and the return
statement to the function.

"Now let’s test it," Simon said. "In our main program that goes just below the function we will
call it and print the answer we get. But first, we need our lists with drinks and everything. Copy
them from the top of your yesterday’s program."

Erik added three lists just below the function. This time all the lines were not shifted and began
in the first position.

"Good," Simon said. "Now you are ready to call your function. Pass the title, the list of drinks,
and the input prompt. The result from the function assign to a variable. Call it , forchoice

example. And then print it."

Erik followed Simon’s instructions and here is what he’s got:

def menu(choices, title, prompt):
 print(title)
 print("--------------------------------")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)
 answer = choices[int(choice) - 1]

 return answer

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

def menu(choices, title, prompt):
 print(title)
 print("--------------------------------")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)
 answer = choices[int(choice) - 1]

 return answer

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]
choice = menu(drinks, "Erik's drinks", "Choose your drink: ")
print(choice)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

41

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Create your own function

Create your own function similar to what Erik just created. Use your menu
lists, titles, and prompts. Try to run it (before Erik!).

"Should I run it?" Erik asked.

"Yes, it’s now ready, go ahead!"

Erik clicked [Run] and the program asked him about his drink, exactly the same way it did
before. Erik answered and got the result he expected.

"It works!" he said. "I’ll add the other menus here," and he started writing. In 10 minutes or less
he was ready to test the whole program. Now it looked like this:

YOUR TURN Add other menus

Add other menus to your program. They will use the same function but with
different arguments: lists of choices, titles, and prompts. Try to run it and test
with menu choices.your

Erik's drinks

1 chocolate
2 coffee
3 decaf
Choose your drink: 2
coffee
>>>

def menu(choices, title, prompt):
 print(title)
 print("--------------------------------")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)
 answer = choices[int(choice) - 1]

 return answer

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

drink = menu(drinks, "Erik's drinks", "Choose your drink: ")
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
topping = menu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)
print("Thanks for your order!")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

42

https://livebook.manning.com/#!/book/lets-talk-python/discussion

And it worked as expected! Erik ran the script, entered 2, 2, 1 again and got his order:

Simon said: "Notice that your program became shorter. And now if you have to change
something, you change it only in one place."

"Why would I want to change it? It works well already," Erik said.

"Oh, there are always ways to improve your code!" Simon answered. "Let’s make its title a little
bit better. Did you notice that your line of dashes is now longer than the title?"

"Really? Oh, yes, you are right," Erik said. "It’s because I changed the title to just 'Erik’s drinks'.
I can make it shorter, that’s easy."

"Sure, you can make it shorter, but look—in the 'drinks' menu the title is shorter, in the 'toppings'
menu it’s longer. You have to print the line of dashes that will be the same length as your title
string."

"But how can I do it? Maybe, it’s better to remove that line of dashes?" Erik was confused.

"No, I like your line here; it makes your receipt look more real. I want you to keep it. But we
have to calculate the length of our title and make it the same length. We’ll learn one new
function and one new operation here. The function we are going to use is called . You justlen()

put a string argument inside the parentheses and it returns the length of the string. Let me show
you. We’ll use another feature of Mu Editor, called . It stands for 'Read-Eval-Print-Loop'REPL
and means that you can use Python interactively. I usually use it when I want to test something
quickly. Or to show something to somebody, like now," and Simon smiled.

"Click [REPL] REPL ," Simon continued.

Erik clicked and another window opened at the bottom of the Mu Editor window.

Here is your order:
Main product: coffee
Flavor: vanilla
Topping: chocolate
Thanks for your order!
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

43

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"You see—you have interactive Python here," Simon said. "You can type any Python code here
and it will be executed. You can even use it as a calculator," Simon smiled. "Try to type

 or and see."print('hello world') 2 + 2

Erik typed and Simon was right indeed!

"Now let’s calculate the length of a string. Type: ."len('abcd')

Erik typed and got this:

"Now you see that the length of the string 'abcd' is 4," Simon said. "You can do the same with
string variables too. Use the variable , put the string 'hello' into it and calculate its length. I’ms

sure now you know how to do it."

Erik typed in the REPL window and got the result:

"Good," Simon said. "Now you know that if you have a string you can always get its length.
Even more, you can get the length of a list this way. Create a list of numbers: 1, 2, 3, and get its
length. Call it , for example."n

Erik typed:

"We will use it later, but now let me show you one trick," Simon continued. "What will Python
give me if I ask it to take a number 2 and multiply it by 2?"

"4?" Erik wasn’t sure if it’s a trick already. The question was too simple.

"Right. What will Python give me if I take a letter 'A' and multiply it by 2?"

"I don’t know? 2A, maybe?"

In [1]: print('hello world')
hello world

In [2]: 2 + 2
Out[2]: 4

In [3]: len('abcd')
Out[3]: 4

In [4]: s = 'hello'

In [5]: len(s)
Out[5]: 5

In [6]: n = [1, 2, 3]

In [7]: len(n)
Out[7]: 3

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

44

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Go ahead and try it with interactive Python!" Simon suggested.

Erik typed and got the result:

"Interesting!" Erik was surprised.

"Now what if you take a dash instead of 'A' and multiply by 10?"

Erik started to guess where Simon is leading him to and typed:

"And now replace the number 10 with the length of the string 'hello'."

Erik got Simon’s idea now and typed:

YOUR TURN Use REPL and experiment with the functionlen()

Start REPL by clicking its icon in the editor. Repeat all Erik’s experiments.

Try to multiply a number to a string of two or three letters. Can you guess
what will be the output?

"I see it now!" he said. "We take the argument, we calculate its length, and we print thetitle

line of dashes of exactly the same size!"

"Can you change your function now?" Simon asked.

"Yes, sure, I know what to do!" Erik started typing already. He changed only the third line (look
for the label) and now his function looked like this:1

In [8]: 2 * 'A'
Out[8]: 'AA'

In [9]: 10 * '-'
Out[9]: '----------'

In [10]: len('hello') * '-'
Out[10]: '-----'

def menu(choices, title, prompt):
 print(title)
 print(len(title) * '-')
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1

 choice = input(prompt)
 answer = choices[int(choice) - 1]

 return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

45

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Change your function to print the correct line of dashes

Make a change in your program to print the correct number of dashes, similar
to what Erik just did. Try to use a different symbol (equal sign or underscore =

 or something else)._

He tested the main program and now all lines of dashes were exactly of the same size that their
titles.

Simon commented, "Now you see that not only the result that your function returns is dependent
on the arguments, but even what it prints can be dependent as well."

"It’s always a good idea to analyze the arguments you receive in your function," Simon
continued. "In this case we checked the title’s length. What would your function do if it received
an empty string with length zero?"

"I don’t know," Erik answered. "I think it will print an empty string, nothing."

"Right," Simon said. "But maybe we can still print something reasonable, even if the title is
empty. Maybe just a word 'Menu' and a line of dashes. For such cases in Python we have default
values for function arguments. In your function I would change the first line to this," and Simon
edited Erik’s file:

"In this case we tell Python, 'If there an argument then accept its value. If you didn’t useis title

it when you called your function, then use its default value, which is just 'Menu'. It is usually
recommended to set default values. You can always change them to something else when you
call your function."

"Let’s test it," Simon suggested. "In your first call with remove both the title and thedrinks

prompt. Leave only as a single argument."drinks

Erik did what Simon suggested and now the first function call looked like this:

He ran the program again and saw the first menu:

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):

drink = menu(drinks)

Erik's Menu

1 chocolate
2 coffee
3 decaf
Choose your item:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

46

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Here is Erik’s full program.

Listing 3.1 menu_function.py

YOUR TURN Use default arguments in your function

Add default values for the title and prompt arguments. Try to call your
function without those arguments and make sure it uses the default values.

"Of course, it’s not telling the user that it’s a menu, but still it’s better than just an emptydrinks
string. It’s helpful when you want to test something quickly. You can always add more
descriptive titles and prompts later."

"I think that’s enough for today," Simon said. "Let’s recap what we have learned. What was the
first thing today?"

"We looked at my program I wrote yesterday and found things that were repeated three times.
And you told me that we can write our own function. You told me about the word and thedef

arguments."

"Good, go ahead," Simon encouraged Erik. "What about those arguments?"

"I used the list of choices, the title, and the prompt as arguments in my function." Erik liked to
talk about function—he wrote it himself for the first time!his

"Then you showed me that thing in the editor," Erik continued. "I like it! And then weREPL
calculated the string’s length."

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)
 answer = choices[int(choice) - 1]

 return answer

drinks = ["chocolate", "coffee", "decaf"]
flavors = ["caramel", "vanilla", "peppermint", "raspberry", "plain"]
toppings = ["chocolate", "cinnamon", "caramel"]

drink = menu(drinks)
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
topping = menu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)
print("Thanks for your order!")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

47

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"And what did we use it for?" Simon asked.

"Yes, we used it to print our receipts and now they look beautiful. And then we tried to use
default values for arguments. It was a bit boring but it worked."

Simon said: "This is a very important thing that you just said. Very often good programming
solutions look boring. But they work. Programming is not always about fancy tricks and hacks.
Most of the time you have to do very boring things, like check user’s input, check for errors, and
so on. But if doing this boring stuff makes your program work—it’s worth it. Tomorrow we’ll
see what we have to do to make sure your program works even if your user enters wrong values.
But for now—take some rest! You did a great job today!"

Function
A piece of programming code that can be used (called) repeatedly. A function can be
written by you or somebody else. If it’s written by somebody else then usually it’s part of
a or a in Python.library module

Arguments
Variables that we pass to the function when we call it. The function takes the arguments
and uses them to prepare its output. The output can be printed or to the mainreturned
program.

REPL
Read-Eval-Print-Loop, a way to run Python interactively. Very useful to test some
functions quickly.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch03

3.1 New things you have learned today

3.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

48

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch03
https://livebook.manning.com/#!/book/lets-talk-python/discussion

4
This chapter covers

"Yesterday you did a great job, Erik," Simon continued the next day. "You wrote a very good
function, you added default arguments, you tested it."

"Yes," Erik answered. "I think it’s a good program. I want to show it to my friends!"

"Wait, wait," Simon said. "I don’t think it’s ready to use yet."

"Why? I think it works perfectly!"

"Oh, really? Let me try," Simon looked like he had something in mind. He started Erik’s
program again and at the first menu he entered: " ."coffee

"What are you doing???" Erik was enraged. "You should enter only numbers and not words!"

User errors: Everybody makes mistakes

Erik discovers that users don’t always do what you tell them to do
Erik learns about using loops to repeat his question to the user
Simon helps Erik to make the menus more robust

Erik's drinks

1 chocolate
2 coffee
3 decaf
Choose your drink: coffee
Traceback (most recent call last):
 File "/home/erik/mu_code/menu_function.py", line 18, in <module>
 drink = menu("Erik's drinks", drinks, "Choose your drink: ")
 File "/home/erik/mu_code/menu_function.py", line 9, in menu
 answer = choices[int(choice) - 1]
ValueError: invalid literal for int() with base 10: 'coffee'
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

49

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"But you gave me a list and asked what I want. I wanted coffee so I entered 'coffee.' What’s
wrong?" Simon tried to look innocent but he couldn’t hide his smile.

"Well, for such users like you I will print in ALL CAPS that you should enter Astupid
NUMBER!" Erik grumbled.

"Okay, okay, let me try again," asked Simon. He started the script again and at the first menu
entered: " ".42

"Again?? You broke it again??" Erik was ready to slap Simon’s hands on the keyboard. "Didn’t
you see that there are only three choices? Why did you enter 42??"

"First, because 42 is my favorite number. Second, yes, it was my mistake. Users make mistakes,
you know. Seriously, I wanted to show you that your program should be ready for that. You can
print whatever you want, in all caps, but there be users who won’t read it. There will bewill
users who make mistakes."

"What should I do about it?" Erik was still angry at his brother, but he tended to agree with him.
He made mistakes with programs himself.

"You should check what the user enters and tell them if the input was wrong. Let’s think what
we can do here."

"What do you think the user should enter in the first menu?" Simon continued.

"They should enter 1, 2, or 3," Erik answered.

"Okay, so we can check if their answer was '1', or '2', or '3', then we pass it and pick that item
from the list of options. But is it’s not, we should tell the user that something is wrong."

"Yes, I remember, we can use in Python," Erik suggested.if-else

"Okay, let’s try it," Simon said. "How are you going to do that? Try to explain it to me as if I
didn’t know about ."if-else

"I will add to my function: 'if the user’s choice is 1, or 2, or 3, then go ahead and use it. If not

4.1 If your user doesn’t do what you expected

Choose your drink: 42
Traceback (most recent call last):
 File "/home/erik/mu_code/menu_function.py", line 18, in <module>
 drink = menu("Erik's drinks", drinks, "Choose your drink: ")
 File "/home/erik/mu_code/menu_function.py", line 9, in menu
 answer = choices[int(choice) - 1]
IndexError: list index out of range
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

50

https://livebook.manning.com/#!/book/lets-talk-python/discussion

(else), print that the user should enter one of those numbers'."

"Good, let’s code it," Simon said.

Erik opened his editor and changed the function (four lines just before):return

"Now let’s try it," Simon said.

Erik started the program and at the first menu he typed: "2".

"Why did you enter '2'?" Simon asked.

"Because I wanted coffee," Erik answered.

"But we should test your program for answers!" Simon said. "Yes, I know, it’s yourwrong
program and you don’t want to break it, but as a developer you to try to break yourhave
program. You have to imagine all possible ways your users will use your program in a wrong
way. It’s hard and very uncomfortable, I know, but you have to overcome it and try to enter all
possible wrong values."

"Okay, okay," Erik said and restarted his program. At the first menu he entered "42" like Simon
did the last time.

"Let’s see what’s going on here," Simon said. "First of all, when you entered '42' your program

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)

 if choice == '1' or choice == '2' or choice == '3':
 answer = choices[int(choice) - 1]
 else:
 print("Enter number 1, 2, or 3!")

 return answer

Erik's Menu

1 chocolate
2 coffee
3 decaf
Choose your item: 42
Enter number 1, 2, or 3!
Traceback (most recent call last):
 File "/home/erik/mu_code/menu_function.py", line 21, in <module>
 drink = menu(drinks)
 File "/home/erik/mu_code/menu_function.py", line 14, in menu
 return answer
UnboundLocalError: local variable 'answer' referenced before assignment
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

51

https://livebook.manning.com/#!/book/lets-talk-python/discussion

printed the message that the user should enter only 1, 2, 3. This is good. But then something went
wrong. Look, it says that the variable was referenced before assignment:answer

In simple words it means that you didn’t create but you tried to use it. And Python showsanswer

you exactly where: you tried to but Python didn’t know anything about thereturn answer

variable ."answer

"But why?" Erik said. "I have this line in my code."answer =

"Yes, you have it, but the important thing is this line is used. In your code you create the where
 variable when the user entered the right choice. If the user entered something else, answer only
 is not even created."answer

"In other words," Simon continued, "even when the user answered with wrong number, or even a
word, you still had to return answer. It’s a very important rule: never use a variable beforesome
you create it and assign value to it. What value can we assign to here in case thesome answer

user made a mistake? I think an empty string like should work here. Add it to your function''

and check if it helps."

Erik changed the function to this:

YOUR TURN Add checking the user’s answer

In your menu function, add the code that Erik just added. Test whether it
really checks your answers.

He tested the program again and this time it didn’t give him an error. It printed the message
 and jumped to the next menu.Enter number 1, 2, or 3!

"Do you think your program did it right?" Simon asked.

UnboundLocalError: local variable 'answer' referenced before assignment

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 choice = input(prompt)

 if choice == '1' or choice == '2' or choice == '3':
 answer = choices[int(choice) - 1]
 else:
 print("Enter number 1, 2, or 3!")
 answer = ''

 return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

52

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"It printed the message that you should enter 1, 2, or 3," Erik answered. "I think it’s right."

"But you didn’t get the user’s choice for drink. If they entered a wrong number, you should give
them a chance to enter a right one. It’s not a test like in school where you have just one chance to
answer. You should keep asking the user until you get one of the right answers."

"How should I do that?" Erik asked.

"We have another kind of for that," Simon started to explain to his brother. "It’s called a loop
. It repeats something over and over again, and with every cycle it checks the while loop

. When the condition is true, it continues. If it becomes false, the while loop ends.condition

Sometimes we check the condition in the beginning on the loop if we already know it. In this
case we say 'while something is true, do this'. But sometimes, like in our case, we don’t have the
answer when we start the loop because we haven’t asked our user about their choice yet. So we
start an and check the condition the loop after we receive the answer from theinfinite loop inside
user. We exit the loop if the condition becomes true. We call it from the loop. Let me showbreak
it on a diagram," Simon said and started drawing.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

53

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Simon explained, "In this example we already know the condition before we start the loop. We
check the condition and decide if we should start. It should be , otherwise the loop won’tTrue

even start. I used a figure for this check; this is how programmers usually draw decisionrhombus
points.

"If it’s true then we do something. The important thing is that this 'do something' should change
the condition, among other things. Otherwise the loop will continue forever and we don’t want
that.

"After we have done that 'something,' we go to the beginning of the loop and check the condition
. If it’s still true, we repeat that 'do something.' If not, it’s the end of the loop and we goagain

outside it to continue with our program.

"Look at this simple example: we want to count down from five to zero. First we set the variable
 to five and in the beginning of the loop we check if it’s greater than zero. Yes, it’s greater, son

we start the loop. Remember that we have to change the condition at some point, otherwise the
©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/lets-talk-python/discussion

54

https://livebook.manning.com/#!/book/lets-talk-python/discussion

loop will never end. In our example, we subtract 1 from each time we go through the loop. So,n

eventually, the variable will become equal to zero and the loop will stop.n

"The important thing is that in this case, before we start the loop, we already know what is in the
variable and we know that it’s greater than zero.n

"What if we don’t know what’s in the variable or the variable doesn’t even exist? Like in our
case: we can check the user’s answer only we ask to choose one of the items from theafter
menu. So we have to do this," and Simon drew another diagram.

Simon continued his explanation, "Here we start the loop without checking any condition. We do
something first and only , we check the condition. Sometimes this loop is calledafter that
'do-until,' which means 'do something until the condition is true.' When the condition is true, exit
the loop and continue with the rest of the program.

In the example here I used your situation with . You ask for input, then you check thatinput()

input. This is your condition: if the input is valid, you should exit the loop. In Python we use the
©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/lets-talk-python/discussion

55

https://livebook.manning.com/#!/book/lets-talk-python/discussion

operator for that."break

Erik was a bit overwhelmed by this long explanation, but he felt like he knew what to do. He
asked his brother, "So you’re saying that I should just put a in front of my linewhile input()

and add a after I get a correct answer?"break

"Yes," Simon answered, "exactly right! Just don’t forget to indent all the lines that are part of the
loop by four spaces to the right. Your editor will help you, don’t worry."

Erik started working on his program. After several minutes his function looked like this:

"Right?" Erik asked his brother.

"I told you that your editor can help you. Click Check Check ."

Erik did as his brother suggested and saw this:

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 if choice == '1' or choice == '2' or choice == '3':
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number 1, 2, or 3!")
 answer = ''

 return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

56

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"You see now?" Simon said. "You forgot to indent the lines to the right. That’s why it says that it
expects an indented block here. Move all the lines that are part of the loop to the right."

Erik changed his function and checked the code again.

YOUR TURN Add the while-loop to your function

Add the loop like Erik just did. Try to use the Check button to find if there are
errors in your code. Try to make errors and see if the editor can find them.

Now the Check button showed a green thumbs-up Check good for a moment so Erik knew
it was okay. He clicked Run to test the program. At the first menu he entered '42' like Simon did
last time. The program reported the he should choose a number 1, 2, or 3 and returned to the
prompt again! It didn’t crash, it worked!

"What was the other wrong thing Simon did with my program?" Erik tried to remember. "Right,
he tried to enter 'coffee'! Let’s try that too."

He entered 'coffee' and his program responded as he expected again! Finally Erik typed '2' and
got the next menu. Here is what he saw in the editor window (we marked Erik’s input with bold
):

At the next menu he typed for Raspberry and got the same message:4

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 if choice == '1' or choice == '2' or choice == '3':
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number 1, 2, or 3!")
 answer = ''

 return answer

Erik's Menu

1 chocolate
2 coffee
3 decaf
Choose your item: 42
Enter number 1, 2, or 3!
Choose your item: coffee
Enter number 1, 2, or 3!
Choose your item: 2
Erik's flavors

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

57

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Why is that?" he asked Simon.

"Your program behaves exactly as you wrote it," Simon answered. Of course, he knew where the
problem was.

"How did you write your condition?" he asked.

Erik said, "If the answer is 1, 2, or 3. A-ha, I understand now! I entered '4' so the program thinks
it’s a wrong answer! But how can I fix this?"

"It looks like we need a list of valid answers for each menu list," Simon said. "You can pass it as
another argument. But I think you know enough already to create a better solution."

"What is it?" Erik asked. "Something with loops again?"

"Not only," Simon answered. "We’ll learn something new about lists, too. Yes, I see that you are
tired of my lectures, but let’s finish it today. It will make your program work right again—isn’t it
worth it?" and he winked at his brother.

Erik was tired indeed, but that bug (yes, he has learned that word!) with the flavors menu was
really annoying and he wanted to fix it. "Okay," he sighed, "let’s fix it. What did you want to tell
me about lists?"

"Look at your condition," Simon said. "You used a simple 'if-else' check and you checked the
input against three valid answers: 1, 2, and 3. But what if your list of items is long, like 20 items?
Your 'if-else' block will be too long. There is another way in Python. We can check if a certain
item is in the list. In our case, we can check if the answer we got from the user is in the list of 1,
2, 3. We can try that for the first menu. Let me show you."

Simon took Erik’s keyboard and changed the line in his function to theif choice == …

following:

Erik's flavors

1 caramel
2 vanilla
3 peppermint
4 raspberry
5 plain
Choose your flavor: 4
Enter number 1, 2, or 3!
Choose your flavor:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

58

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"This needs some explanation," he said. "Look, the user enters a string that can be '1' or can be
'42'. We test whether this string is in the list of allowed answers, which is 1, 2, 3. If it’s not in the
list, then we print the error message and continue with the loop. If it in the list of allowedis
answers, then we convert it and pick that item from the menu list."

"Yes, I understand," Erik said. "But what about the second menu where I got the error? It didn’t
let me choose number 4 because it wasn’t in my . With your list I will have the same problem.if

I have five flavors, so I need another list of answers here, right?"

"Excellent question!" Simon said. "I was just about to ask it myself. Yes, you are right. Each
menu list should have its own list of allowed answers. Not a big problem; we can build one when
we know what’s in our menu list. Let me write it first and then I’ll explain it step-by-step." And
Simon added the following lines just before the block he added previously:if

"First (look at the label) we create an empty list for allowed answers. Then (label) we1 2
measure the length of the menu list using the function . For your drinks, the result will belen()

three, and for the flavors it will be five. Then we use the function to create a range() sequence
of numbers from one to the length of the menu. For drinks the sequence will be 1, 2, 3. For
flavors it will be 1, 2, 3, 4, 5. You get the idea. Just notice that in the function werange()

shouldn’t use the element of the sequence, but the one which is not included inlast after the last
the sequence. That’s why we have to add one to the length of the menu like this:"

"And finally in this loop (label), we convert each number from the sequence to a string and add3
it to the and of the list of allowed answers. This function is called ." Simon finished hisappend()

. . .
 while True:
 choice = input(prompt)
 if choice not in ['1', '2', '3']:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number 1, 2, or 3!")
 answer = ''
. . .

. . .
 while True:
 choice = input(prompt)
 allowed_answers = []
 for a in range(1, len(choices)+1):
 allowed_answers.append(str(a))
 if choice not in allowed_answers:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number 1, 2, or 3!")
 answer = ''
. . .

len(choices)+1

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

59

https://livebook.manning.com/#!/book/lets-talk-python/discussion

explanation and added: "Yes, it’s a bit complicated for the first time, but try to read the Python
code here yourself and you’ll understand it as if it’s plain English."

"Now we have to change our list with 1, 2, 3 to the list of allowed answers that we just built,"
Simon made that change, looked at the code, and slapped his forehead: "Oh, I just noticed!"

"What?" Erik thought they have finished already. But it looked like there was something else.

"We also have to change our message," Simon said. "Because our function now can accept menu
lists of any length, we should tell the user something like: 'Enter a number from 1 to 6' or 'from 1
to 12,' depending on the length of our menu. Remember how we can get the length of a list?"

"With the function?" asked Erik.len()

"Of course!" Simon said, and made the final change in the function. It now looked like this:

YOUR TURN Add the allowed_answers list

Add the list of allowed answers to your function. Test whether it allows you to
use menu lists of different length.

"Now we are protected from user errors!" Simon said. "Try it and see if it works!"

Erik ran the program again and entered '42', 'coffee', 'weryiuryt587456' but the program didn’t
crash like before. Every time, it gave him a reminder that he should use a number and it should
be between 1 and 3 or 5, depending on the menu.

"This is cool! It works and it doesn’t crash!" Erik was really happy that he created such a robust
program.

"One more thing," Simon said. "This one will be really-really final for today, I promise!"

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 allowed_answers = []
 for a in range(1, len(choices)+1):
 allowed_answers.append(str(a))

 if choice in allowed_answers:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number from 1 to ", len(choices))
 answer = ''

 return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

60

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Okay," said Erik. He started to like this programming thing. He liked that his program now
looked like a real one, and it worked! Even if it wasn’t an online or mobile application yet, it
worked like a chat with a shop. Erik imagined that he was texting with his favorite coffee shop,
ordering his drinks, and then coming to pick them up.

Simon said, "Your program now doesn’t let me enter anything except the numbers from 1 to 3 or
5. But what if I want to skip somthing? Like I don’t want any toppings on my drink?"

"In my flavors menu I have 'plain,' which means 'no flavor.' I can add the same to toppings," Erik
answered.

"That works too," Simon said. "But in general with every menu you should give your user an
option to exit the menu. Usually people use something like 'Click X to exit from this menu.' I
think we should add this to our menu function too."

"How do we do it?" Erik asked. He thought a little and said, "I know! We will add 'X' to the list
of allowed answers! Am I right?"

"Absolutely!" Simon was very glad to see his brother making such a good progress. "Remember,
we used the function called to add items to the list? We can use it here, right after weappend()

finished adding numbers to the ."allowed_answers

"Let me try," Erik said and started typing.

"Sure, go ahead," Simon encouraged his brother. "Just make sure you add it that for-loop.after
Better to add an empty line after it; that way you will be able to see that it’s not part of the loop."

Here is Erik’s new version of the menu function:

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 allowed_answers = []
 for a in range(1, len(choices)+1):
 allowed_answers.append(str(a))

 allowed_answers.append('X')

 if choice in allowed_answers:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number from 1 to ", len(choices))
 answer = ''

 return answer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

61

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Nice," Simon said. "I would also add the lower-case letter 'x', because that’s what most people
would type. Now what should we do if the user types 'x'?"

"Exit the menu loop?" Erik said.

"Right! But what are we going to return to the main program? Normally we return the user’s
choice from the menu: coffee or chocolate or whatever. What if the user types 'x'? What should
we return?"

"Nothing?" Erik suggested.

"Yes, we just return an empty string," Simon said. "If the user types 'x' you just assign to answer
an empty string like this: '' and return the answer the same way you return it if the answer is in
the menu."

Simon continued, "Important thing: you should do that check you try to convert it into abefore
number, but you check whether it’s in the list. Do you see where to putafter allowed_answers

this check?"

"Yes, right after this line: ."if choice in allowed_answers

"Great! Go ahead an add it! In this case you will have a if statement: one inside ofnested if

another . This is pretty common, sometimes you see three levels of nested 'ifs' or even more.if

Just make sure your indentations are correct. This is how Python tells the computer what to do it
the condition is true of false."

Erik worked more on his code and finally got this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

62

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Add the exit option

Add the 'X' option to the list of allowed answers. Add the nested 'if' to check it.
Test whether it works. What if you enter 'x' in all menus? What order will you
get in that case?

He tested the program, entering 'x' in all three menus and he got what he expected:

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 allowed_answers = []
 for a in range(1, len(choices)+1):
 allowed_answers.append(str(a))

 allowed_answers.append('X')
 allowed_answers.append('x')

 if choice in allowed_answers:
 if choice == 'X' or choice == 'x':
 answer = ''
 break
 else:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number from 1 to ", len(choices))
 answer = ''

 return answer

Erik's Menu

1 chocolate
2 coffee
3 decaf
Choose your item: x
Erik's flavors

1 caramel
2 vanilla
3 peppermint
4 raspberry
5 plain
Choose your flavor: x
Erik's toppings

1 chocolate
2 cinnamon
3 caramel
Choose your topping: x
Here is your order:
Main product:
Flavor:
Topping:
Thanks for your order!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

63

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"An empty order!" he said.

"Right, exactly as it should be," Simon confirmed. "I like your program," he continued. "It
works—that’s the first and the most important part. It’s user-friendly, and it gives the user
instructions on what to do—that’s the second part. It checks the input and it doesn’t let the user
enter wrong values—that’s the third part."

"Let’s quickly recap what you learned today," Simon said. "What was the first thing?"

"First, you broke my program again!" Erik answered. He wasn’t very angry this time because he
knew that together with Simon they have fixed the program. "And you told me that I should
always think how my users can use program in a bad way."

"Right, dealing with stubborn users who don’t want to follow your instructions is a part of
programmer’s job," Simon smiled.

"Then we wrote a menu loop where we checked what the user entered and didn’t allow them to
use answers that are not allowed. Then you told me about that function to addappend()

something to a list."

Erik continued, "Then I wrote if checks and now my code looks like real programs theynested
show in movies."

Simon smiled, "Trust me, what they show in movies are very rarely real programs. But you are
right, your program is getting more complex, it uses different Python operators, all these loops,
and ifs, and lists."

"And then we added the 'x' option in the menu and now any user can get an empty order!" Erik
giggled.

"Yes, why not," Simon said. "You shouldn’t your users to always order something. Youforce
should give them an option to cancel their order or to exit from the menu."

Simon continued, "The program is really good now. Tomorrow I’ll ask you stop being a
programmer and become the coffee shop manager."

"Am I not a manager already?" Erik asked.

"Yes, you are," Simon smiled. "Now imagine you, the coffee shop manager, just received a new
flavor component for your coffee drinks. And you want to add that flavor to the menu. Oh, and
also a couple of new toppings. What would you do?"

"I would add those toppings to the list of toppings, not a big deal," Erik answered.

"Yes, but what if you are a manager and not a programmer? You know nothing about thisjust

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

64

https://livebook.manning.com/#!/book/lets-talk-python/discussion

program, you don’t know Python, but you want to add those flavors and toppings to the menu.
You, as a programmer, should give the manager an easy way to add something ot the menu."

"How do you suggest to do that?" Erik asked. He knew already that Simon has something in
mind.

"I think we should put menus in files and read your lists from those files."

"Like in Word documents?" Erik asked.

"Yes, almost," Simon said. "Your program will open those files and read from them. I think the
easiest will be to have one file per menu. One file will have all drinks, another one—all flavors,
and another—all toppings. Then your manager will just edit those files instead of editing your
Python code. Sounds good?"

"Yes, interesting," Erik said. He wondered how his Python program would open files the same
way Word does.

"Great," Simon said. "This is what we are going to do tomorrow. Take some rest now."

Users make mistakes
You have learned that user not always follow the directions you give them in your
program. You have to be ready for that and check their input for errors, wrong types, etc.

Indentation
When you create a in Python (like , for example) you have to make sure allblock while

code in the block is , i.e. shifted to the right.indented

How to exit from a menu
You have to give your users a way to exit from each menu. For example, if they don’t
want to order any topping and they want to skip it.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch04

4.2 New things you have learned today

4.3 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

65

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch04
https://livebook.manning.com/#!/book/lets-talk-python/discussion

5
This chapter covers

"Last time you said something about a coffee shop manager," Erik started with his brother the
next day. "Something about changing menus. I forgot."

"Yes, I said it might be good if your coffee shop manager could change the menus without going
into Python code," Simon said.

"Yes, good idea," Erik said. "Not everyone knows Python."

"My idea is to create simple text files for each menu—call them , drinks.txt

. Then your program can read from those files and createflavors.txt`and `toppings.txt

lists from the items in the files."

"Why did you name them all with the at the end?" Erik asked. "Shouldn’t they be so.txt .docx

the manager could edit them in Microsoft Word?"

"Good point," Simon said. "Yes, the manager might be more familiar with Word, but in our case
we need just a , without fonts, or headers, or table of contents. It’s similar to yourplain text file
Python code—these files should have nothing but lines of plain text, and the manager should use
a plain text editor to work with them. When I name them with at the end I tell the operating.txt

system—whether it’s Windows, or macOS, or Linux-- that this file should be opened with a
plain text editor and not a word processor like Word. In all those systems there is always a text

Working with files: Being a shop manager

Erik learns what a coffee shop manager needs
Erik reads his menus from files
Erik writes his second Python function

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

66

https://livebook.manning.com/#!/book/lets-talk-python/discussion

editor that can edit these files. And you can also install another application for that, like we with
did with Mu Editor. Also, for Python it’s much easier to read from a plain text file than from a

 file.".docx

"Let’s create these files," Simon continued. "You can use your Mu Editor for that. Just don’t
forget to add the extension when saving the files. Otherwise it will automatically add ..txt .py

Create a new file, enter your drinks, each on a separate line, and save it with the name
. Then do the same for flavors and toppings."drinks.txt

Erik started working. After several minutes he’s got three files.

Listing 5.1 drinks.txt

Listing 5.2 flavors.txt

Listing 5.3 toppings.txt

YOUR TURN Create your own menu files

Create the text files with menu items like Erik just did. Make sure they are
 files. Try to use your favorite flavors and toppings in your menus.plain text

"Now what?" he asked his brother.

"Now let’s learn how to work with files in Python. Let’s create a new program for that. We’ll
practice a little bit and then we’ll add this code to our main program. I usually do this when I
learn something new—try it in a separate simple program before adding to the main application."

Simon continued, "Create another file in the editor and save it as ."files.py

Erik has done that several times already so it took him just a couple seconds.

"Working with files is a difficult topic, so let me start with a diagram," Simon said.

coffee
chocolate
decaf

caramel
vanilla
peppermint
raspberry
plain

chocolate
cinnamon
caramel

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

67

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"When you work with a file in your computer you use its name. You tell your editor program to
 a file called 'drinks.txt'. Your editor program then the file and shows you its content.open reads

Then you edit the file and save it which means you the file on the computer disk. So far, sowrite
good?" Simon asked.

"Yes," Erik said. "But disks are used only in very old computers. In my computer it’s called SSD
drive and it’s not a disk anymore. My friend Alex told me."

"You’re absolutely right!" Simon was glad to hear that from his brother. "Yes, it’s SSD now in
most of the computers and yes, it’s not a disk and it is not spinning. By the way, maybe your
friend Alex would like to join us? It seems that he is interested in computers. Maybe he wants to
learn some programming too?"

"I’ll ask him," Erik said. "But let’s get back to my files. I see that you wrote 'computer' and
'Python' at the top of your picture. What does that mean?"

"That means," Simon started his explanation, "that in Python if you want to work with a file you
have to create a special which is usually called a . You use this object to readobject file handle
and write the file. You use a function called to create such an object. You call theopen()

function and you pass the file name as an argument. In our case it will be open()

. The function returns the file handle which you put in a variable. In thisopen("drinks.txt")

case the variable is called , but you can use any name here."f

"Why is it so complicated?" Erik asked. "Why can’t we just use the file name?"

"Yes, it looks a bit complicated for the first time. The reason for that is that the file name is just a
string, remember? When we want to read from the file we want to read from the file with that

, not from the string. The file and the file are different things. When we use thename name itself

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

68

https://livebook.manning.com/#!/book/lets-talk-python/discussion

function we create a connection between the file name and the file itself. We tell Python:open()

'please find the file named inside the computer and use it .' Don’t worry toodrinks.txt as a file
much about it right now. Sometimes the best way to understand something is to start using it."

"Okay," Erik said. He was still a bit confused about all that but we wanted to see how he can
read his menus from the text files he just created.

"Now let’s write a simple Python program to work with files," Simon said. "Now go to the tab in
your editor where you have your program opened.files.py

Look at my diagram: you have to call the function , pass the file name such as 'drinks.txt',open()

and store the result in the variable . Can you write it?"f

"Let me try," Erik said and wrote this.

"Good!" Simon said. "Now you have a file object named and you can read from it. To do thatf

you call a called . Methids look and behave very similar to functions, butmethod read()

methods are applied to objects. We’ll talk about objects later but for now all you have to know is
that to call a method of an object you use the object’s name, then you put a dot and then the
method name with parentheses, similar to calling a function. Like this: . Methods alsof.read()

can return something, similar to functions. So you have to store the result somewhere. What do
you think this method will return when you call it?"read()

"What’s inside the file, I think," Erik answered.

"Absolutely correct!" Simon said. "Save it in a variable called and then try to print it."drinks

Erik wrote the following.

f = open("drinks.txt")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

69

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now try to run it," Simon suggested.

Erik clicked Run and got the output.

YOUR TURN Read from file

Write the same short program and try to read from the 'drinks.txt' file. Make
sure you can print out the whole file’s content.

"It works!" he was really glad. His Python program opened a file, read it, and printed it on the
page! "Now I know how to print my menus from Python! Let me write the same for the other
two files!"

"Right," Simon said. "But that’s not exactly what we want."

"Why?" Erik couldn’t understand.

"Remember, in your program you don’t only print out your menus, but you also let the user
choose from the menu and then you find that item in the list, right?"

"Yes, but isn’t it a list here? It looks like a list," Erik asked.

"It may look like a list, but it’s not a list. It’s a string," Simon said. "When you called the read()
method you copied the whole file’s content into a variable called . So this variable is justdrinks

one large string. If you don’t believe me, you can test it right here. See these three angle brackets
in the output window? You can type any Python command here to continue working with your
program, the same way we did it with REPL, remember? Type here this: and youtype(drinks)

will see the type of this variable."

Erik did and saw this:

"You see, Python says it’s a string," Simon said. "And we need a list."

"What should we do?" Erik asked.

f = open("drinks.txt")
drinks = f.read()
print(drinks)

coffee
chocolate
decaf

>>>

>>> type(drinks)
<class 'str'>
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

70

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Luckily, Python developers knew that we might need this and created another method for the
file object. It’s called . Try to change your to and see whatreadlines() read() readlines()

happens. Don’t forget to click Stop before running your program again."

Erik changed his program to the following.

He clicked Stop and then Run again and got this output.

"Try to check its type again," Simon suggested.

Erik switched to the output window and typed:

YOUR TURN Check Python types

Repeat the checks that Erik just did. Do you see the difference between a
string and a list?

"It’s a list!" he said. "But what are those characters? I don’t have them in my file withslash-n
drinks."

"You don’t them in your file, but they are there. These are characters. When you seesee invisible
this it’s a single character that is called a 'newline' character. It tells the computerbackslash-n
that it should print the next item at the beginning of the next line. Without it all your drinks
would be printed like this: . You don’t want that, right?" Simon smiled.coffeechocolatedecaf

"Of course, not!" Erik said. "But we don’t need them in the list, right? I think the menu lists
should look like in my main program, right?"

"You are absolutely right. And again, Python developers created a very useful method for that.
It’s called and it removes invisible characters from both ends of the string. We juststrip()

have to apply it to every item in the list. What do you think we should use here?"

"A loop?" Erik suggested.

"Right, a loop!" Simon said. "We will go over the list and remove those newline characters with
the method."strip()

f = open("drinks.txt")
drinks = f.readlines()
print(drinks)

['coffee\n', 'chocolate\n', 'decaf\n']
>>>

>>> type(drinks)
<class 'list'>
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

71

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Simon paused for a moment, thinking. Then he continued, "There are several ways to do it. Some
are shorter, but they are more difficult to understand. Let’s use the one that is easier to read and
follow. Actually this is a good rule in programming: when choosing between different ways of
doing something, always use the one that is easier to read and follow. If somebody is reading
your code, they will thank you for that. Even yourself—if you are reading your own code three
months later."

He quickly drew a diagram.

"Let’s use a temporary list to read into from the file. Then we’ll go through that temporary list,
convert each item, and append it to the new list. And that new list we’ll call . Then we’lldrinks

repeat the same for flavors and toppings. We can use the same temporary variable for all of
them. Let me help you," and Simon started typing in Erik’s program. Here is what it looked like
after he finished.

He clicked Run and they saw the result:

f = open("drinks.txt")
temp = f.readlines()
drinks = []
for item in temp:
 new_item = item.strip()
 drinks.append(new_item)

print(drinks)

['coffee', 'chocolate', 'decaf']
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

72

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Remove the newline characters

Remove the newline characters from the menu items using the strip()
method.

"Looks better, doesn’t it?" he asked Erik. "Now go ahead and do the same thing for the other
menu files."

Erik started working on his program and when he was almost done with the file heflavors.txt

exclaimed, "Wait! I am repeating myself! You told me I should not repeat myself."

Simon smiled. He was happy that his little brother grasped this concept so quickly. "What should
we do to repeat ourselves?" he asked.not

"Write a function?" Erik said.

"Yes, exactly! Look at this code: what is the same and what is changing? What is going to be an
argument and what is this function going to return?"

Erik started thinking out loud, "I open different files, so the file name should be an argument,
right?"

"Correct!" Simon confirmed. "What do you want to return?"

"I think I return the list with menu options. After we removed those newline characters, of
course. But how should I call this list?"

"You can call it any way you want because it’s not from the outside. Call it , forvisible result

example. Then you can write at the end of the function. When you call thereturn result

function that list is to, the variable in the main program, like or result assigned drinks

 depending on the file you are reading from. the function the variable will beflavors Inside
always called , but the function, in the main program, you can assign the result toresult outside
any variable."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

73

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Go ahead and write that function!" Simon encouraged his brother. "Remember how to do it?
Start with ; name the function , for example; pass as an argument; anddef read_menu filename

copy the code we just have written."

"Okay, I’ll try," Erik said and started writing his second Python function.

Simon helped his brother a little bit and here is what they wrote together.

Listing 5.4 files.py

Erik saved the file and clicked Run. Of course, he got the expected result.

YOUR TURN Create the functionread_menu

Create the function the same way Erik did. Make sure you don’tread_menu

have typos in the file names. What if you do? Try to change the file name and
see what error Python gives you. Don’t forget to fix the file name so your
program works again.

def read_menu(filename):
 f = open(filename)
 temp = f.readlines()
 result = []
 for item in temp:
 new_item = item.strip()
 result.append(new_item)

 return result

drinks = read_menu("drinks.txt")
print(drinks)
flavors = read_menu("flavors.txt")
print(flavors)
toppings = read_menu("toppings.txt")
print(toppings)

['coffee', 'chocolate', 'decaf']
['caramel', 'vanilla', 'peppermint', 'raspberry', 'plain']
['chocolate', 'cinnamon', 'caramel']
>>>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

74

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"It’s my second function and it works!" he proudly said to his brother.

"Yes, you are building your own function library already, great!" Simon said. "Now let’s copy
your new function to the main program. Don’t copy the lines—we used them just forprint()

testing. I think that file is called , right?"menu_function.py

"Right," Erik said. "But where should I put my function in that file? In the beginning or in the
end?"

"The rule in Python is that you should define your function you start using it. Because ofbefore
that usually all functions are placed in the beginning of the file, before the main program. You
can place it right after your first function."

"Okay," Erik said and started working. Here is what he’s got.

Listing 5.5 menu_files.py

YOUR TURN Copy your function to your main program

Copy the new function to your main program and try it.read_menu()

He tested the program and it worked exactly as before!

"This is good," Simon said. "Now try to add something to the toppings file, for example. And see

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
. . .
this function didn't change
. . .
 return answer

def read_menu(filename):
 f = open(filename)
 temp = f.readlines()
 result = []
 for item in temp:
 new_item = item.strip()
 result.append(new_item)

 return result

drinks = read_menu("drinks.txt")
flavors = read_menu("flavors.txt")
toppings = read_menu("toppings.txt")

drink = menu(drinks)
flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
topping = menu(toppings, "Erik's toppings", "Choose your topping: ")

print("Here is your order: ")
print("Main product: ", drink)
print("Flavor: ", flavor)
print("Topping: ", topping)
print("Thanks for your order!")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

75

https://livebook.manning.com/#!/book/lets-talk-python/discussion

if it changes the menu."

Erik opened the file and added 'vanilla powder' to the end of file and saved it. Hetoppings.txt

ran the program again and indeed there was the additional line at the last menu: 4 vanilla
!powder

YOUR TURN Add another item

Add a new item to one of the menus. Change one of the items. Don’t forget to
save the menu files after you changed them. Check whether your program
prints the updated menus.

"This is good, I like it!" he said. "Now anybody who can edit a text file can change the menu!
Wait…" he had an idea. "So I can put in these menus! Ice cream or sandwiches or…anything
Cool, I like it! I should tell my friend Alex about it—he likes LEGO minifigures. Maybe he can
use this program to exchange figures with friends!"

"Exactly right!" Simon said. "I’m glad you have so many ideas on how to use your program, this
is great! I have some ideas too but we’d better talk about them tomorrow. Also tomorrow we
have to create the main menu."

"What do you mean?"

"You see, currently you have to start your program every time you want to take an order. You
take the order, you print it, and your program finishes. It would be better if your program could
return to the initial dialogue where you ask the customer’s name."

"Yes, right," Erik agreed. "It should be like a kiosk where you order something, press 'Done', and
it goes to the first screen with 'Welcome to our shop'. Yes, let’s do it!"

"Let’s recap today’s progress," Simon suggested. "What did we do today?"

"First, you said that the coffee shop manager will want to edit our menus in files. Then I wrote
three files with menus for main drinks, flavors, and toppings."

"Very good, what’s next?"

"Then I opened the files and read from them. I could read line by line but then I had those
strange 'backslash-n' characters. And then we used the method to remove them."strip()

"Good," Simon said. "And did you remember what I told you about objects?"

"Not really. You said that the file is an object in Python and it’s not the same as its name. And
also you said that functions with objects are called 'methods'."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

76

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, everything is right," Simon said. "Objects is a difficult topic, we will talk about it more
later. For now we just use them and their methods, but we will learn more about them later. And
we’ll create our own objects and methods too—like we did with functions."

"Right!" Erik said. "You reminded me—I wrote my second Python function! And it worked!"

"Indeed! You are becoming a serious programmer now!" Simon said and smiled. "Let’s take a
rest for now. Tomorrow we’ll make your program even better!"

What it means to open a file
You have learned the difference between the file name and the file handle inside the
program.

What is and how to remove it from strings\n
You have learned that the symbol means "start a new line". We don’t need it in our\n

menu items so we used the function to remove it.strip()

What you return from a function is assigned to a variable in the main program
You have learned that the variable inside a function is not in the main program. Tovisible
pass its value we have to that variable from the function and its value toreturn assign
another variable in the main program.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch05

5.1 New things you have learned today

5.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

77

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch05
https://livebook.manning.com/#!/book/lets-talk-python/discussion

6
This chapter covers

"Remember, we decided that we have to create the main menu?" Simon asked Erik.

"Yes, you said if I want to use this program to serve many customers, I have to repeat the menus
for each customer. Ask their name and what they want to order."

"Exactly right!" Simon said. "And what are you going to use for that?"

"A loop, maybe? Like we did with menus. Repeat until the customer types the right numbers or
types 'X'."

"You are absolutely right!" Simon was really glad that his brother caught this programming idea
so quickly. "We will ask the customer their name, like in our first program, remember? Then
we’ll get their order with all the flavors and toppings."

"Yes," Erik continued, "and then we’ll ask them: Order or Cancel? I saw that on some web
sites."

"Right. When they click Order, we save the order and print it for the barista. If they cancel, we
just forget about it. In both cases we go back to the beginning of the main menu and ask the next
customer their name."

Simon took a piece of paper and started drawing. "We should first plan this algorithm visually.

Main menu: Next customer!

Erik creates the main menu to serve many customers
Erik learns about Python dictionaries
Simon explains the 'top-down' development approach

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

78

https://livebook.manning.com/#!/book/lets-talk-python/discussion

When we both agree how it should behave you can start writing the code. It’s always a good
practice to discuss your future program in plain words and diagrams before you start writing any
code."

"The first thing we do here is getting an order," Simon started explaining. "You see, I put it here
as 'Get order'."

"And where are all our menus with flavors and toppings? Why didn’t you put them here?" Erik
asked.

"I decided to use a block called 'Get order' that all the menus. It’s a common way tocontains
think in big blocks first and then work on each block’s details separately. By the way, it’s

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

79

https://livebook.manning.com/#!/book/lets-talk-python/discussion

another reason why programmers use functions. They think about the program in big blocks first
and then describe each block in a separate diagram. Imagine if we placed every minor detail of
our program on a single diagram! It would be impossible to understand the main algorithm!"

"Let’s continue," Simon said. "So we get the order and we ask the customer to confirm it. They
can cancel and then we return to the very first menu: 'Welcome to Erik’s Coffee Shop' and all
that.""

"If the customer confirms the order," Simon continued, "then we should save and print it."

"Okay, I understand that we should print it to prepare the drinks," Erik said. "But why should we
save it? And what do you mean by the order?"saving

"First of all, it would be good at the end of the day check how many of your friends you served
in your coffee shop, don’t you think?"

"But I know already," Erik said. "I prepared five drinks that day."

"But we’re talking about a coffee shop, don’t forget. They work every day and they servereal
tens and hundreds of customers. A couple of my friends worked in different coffee shops and I
can assure you—they know very well how many customers they serve each day."

"The other reason," Simon continued, "is that the coffee shop manager should know what they
have in the shop what they should order for their inventory. Remember we talked about changing
menus? For example, they didn’t order the caramel flavor in time and they had to remove it from
the menu. Why didn’t they order it? Because they didn’t count how many portions of caramel
flavor their customers have ordered. So we have to save all orders, analyze them, and order
flavors and toppings if we don’t have enough."

"I didn’t think about it," Erik said. "Yes, it’s a good idea to save the orders; you are right. But
how are we going to do that?"

"There are several ways," Simon said. "We can use files, or we can use databases. Of course, all
serious applications use databases. I think we should start with files and then, if you are brave
enough, we can use databases too."

"Yes, I want my program be like those applications!" Erik said. "I want to try databasesserious
too!"

"Good," Simon said, "but for now let’s finish with the main menu. We’ll get to saving orders
very soon. Speaking of orders," Simon took another piece of paper, "here is what’s inside that
'Get order' block."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

80

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Create your own diagram

If you decided to work on a different kind of shop, create a diagram for your
 function.get_order()

"We have written this function already. We just didn’t call it a function. You see: we have
already created these dialogues to ask the customer’s name, the drink, flavor, and topping. Only
one thing that we haven’t done yet. Do you see it?"

"Return order?" Erik asked. "I see that we didn’t do it, but I don’t know what it means here."

"Look at the right side of the diagram. Here’s what your order looks like, agreed?"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

81

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"We use the function to collect all this information, but instead of returning fourget_order()

separate values for name, drink, flavor, and topping, I want to return a single that I wouldthing
call an order. And that single thing contains several values that go together as a whole."

"I know, you want to use a list here!" Erik shared his insight.

"That’s one of the options, but I have in mind something better. In Python we have .dictionaries
What is a normal dictionary?"

"Oh, it’s a book with words and their meaning," Erik answered. "Or translations, if it’s an
English-German dictionary."

"Right!" Simon said. "You have a word and a value that is related to this word. Like this," and he
draw a diagram.

"It could be its meaning or translation. In Python we have a similar thing. A dictionary in Python
uses words that we call to get the that are related to them. Let’s look at your order.keys values
You have a key called 'name' and its value is 'Erik'. You have another key called 'drink' and its
value is 'decaf'. And so on. The whole dictionary is called and this is what we are going toorder

return as a result from this function."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

82

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Let’s practice with REPL again," Simon suggested. "Click REPL to get to the interactive
session."

Erik clicked the REPL icon and switched to the window with an interactive session. It looked
like this (your version might be different from the example below—that’s okay):

"We start with creating an empty dictionary called . To create a dictionary in Python weorder

use curly braces to make them look different from lists, that use square brackets . Type {} []

 and then . This will be your order."order = {} ENTER

Erik typed:

Jupyter QtConsole 4.7.7
Python 3.8.12 (default, Mar 12 2022, 19:58:23)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.1.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

In [1]: order = {}

In [2]:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

83

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now we can add items to your order. Let’s start with the name. Type order['name'] =
. Then try to print the order with a simple function."'Erik' print()

Erik typed:

"But you said that dictionaries should use curly braces. Why do we use square brackets here?"
Erik asked.

"Good question," Simon was so used to this Python feature that he couldn’t find a good way to
explain it right away. He started his answer, "Well, we use curly braces to a dictionary.create
But we use square brackets to the dictionary, when we want to get an item from it. In thisaccess
sense it’s similar to lists—when you want to get an item from a list you use square brackets. The
difference is that with lists you use that are integer numbers. With dictionaries you use indexes

 that are usually strings. If you had a normal dictionary to get a word’s meaning orkeys
translation, and you used its index—like 546—that would be very inconvenient, don’t you
agree? Instead, you use the word itself, like 'dog' and find is fast."

"Yes, right," Erik said. "Should I add the drink, flavor, and topping now?"

"Great idea, go ahead!" Simon said.

And Erik continued in his interactive session:

"Notice here," Simon said, "that your keys and values always go in pairs with a colon between:

them."

YOUR TURN Learn dictionaries with REPL

Open REPL and work with dictionaries. You can repeat Erik’s commands or
create your own dictionaries. Try using different keys. Try to store a number
instead of a string. Does it work?

In [2]: order['name'] = 'Erik'

In [3]: print(order)
{'name': 'Erik'}

In [4]:

In [4]: order['drink'] = 'decaf'

In [5]: order['flavor'] = 'vanilla'

In [6]: order['topping'] = 'chocolate'

In [7]: print(order)
{'name': 'Erik', 'drink': 'decaf', 'flavor': 'vanilla', 'topping': 'chocolate'}

In [8]:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

84

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"This is cool, I like it!" Erik said. "But can I print it in a better way, like I printed it before?"

"Of course," Simon said. "I think you should write a new function for that. But we’d better
switch back to the editor for that."

"That will be my third function," Erik said.

"Are you still counting?" Simon smiled. "I’m sure pretty soon you’ll lose count of the functions
you’ve written!"

"Now let’s get back to your editor and start writing the main menu program," Simon continued.
We will use a design approach here."top-down

"What is it?" Erik asked.

"It’s like what I just showed you: first we develop the algorithm for the whole program. We
decide what are the big blocks and how we go from one to another. That usually includes
decisions like confirm or cancel the order. We can develop the main program and use functions
like or . It’s not a problem if we don’t have these functions yet.get_order() print_order()

Before we write the real ones we can write very simple functions that would just print a message
'I am a function print_order()' and that’s it. Some people call them 'placeholders'. When we see
that the main menu works well and calls the right functions—then we’ll add the real functions."

"Let me help you," and Simon took the keyboard. "First, I create a new file and save it as
. Then I create a new called with the keyword andmain_menu.py function main_menu() def

parentheses."

"Another function?" Erik asked.

"Yes, in programming we usually create functions for everything. The main program is usually
very short and it calls one of those functions. Then that function calls other functions and so on.
So it’s a good practice to write even your main menu as a function."

Simon continued, "Now look at the diagram. Do you see these arrows that go back to the 'Start'?
They usually mean that in your algorithm you are going to something. As soon as werepeat
return to the 'Start', we continue going through the same algorithm again and again. And to
repeat something in a program we use… what?"

"A loop!" Erik answered.

"Exactly right!" Simon confirmed. "We used two types of loops already: for-loop and
while-loop. Which one are you going to use here?"

"I think it should be a while-loop," Erik said. "This main menu looks similar to what we did in
the drinks menu: repeat questions and check what the user answered."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

85

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"I agree," Simon said. "Look at your code where you wrote menu as a function. Remember, we
used there and checked what the user entered. What do you think we should checkwhile True:

here? Hint: on diagrams these moments when we have to make a decision are usually drawn as
rhombus."

"I see it!" Erik said. "It’s where we ask the user if they want to confirm or cancel the order."

"Okay, let’s start writing it," Simon suggested.

Erik wrote:

"What’s next?" he asked.

"Look at the diagram," Simon said.

def main_menu():
 while True:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

86

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Get order?" Erik said.

"Right! And remember, that function will return a dictionary with the order. Theget_order()

dictionary will contain the customer’s name, drink, flavor, and all that. We will put that
dictionary into a variable called in our main menu. Let’s write this piece," and Simonorder

added a line to Erik’s code.

"What’s next?" he asked his brother.

"Now we have to ask the customer if they confirm the order," Erik said.

"Good. But we have to show them the order before asking, I think," and Simon added a couple of

def main_menu():
 while True:
 order = get_order()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

87

https://livebook.manning.com/#!/book/lets-talk-python/discussion

lines.

"Look here," Simon said to Erik, "I used the variable that I received from order get_order()

as an argument for the next function, . This is very common in programming:print_order()

we call one function to do something, it returns a result, and then we use that result as an input
for another function."

"I see," Erik said. "Like in a movie theater: the cashier prints a ticket and gives it to you. Then
you take the ticket, go to the entrance, you give the ticket to the guys at the entrance and they
check it."

"Yes, good analogy, Erik! Let’s continue it: we just received an answer to the question if the
customer wants to confirm the order. Now, as you just said, we have to the answer andcheck
decide what to do next. Like in a movie theater: they check if your ticket is correct and decide
whether to let you in or not. Let’s add these lines. Look at the diagram. If the user answers 'Yes',
what shall we do?"

def main_menu():
 while True:
 order = get_order()
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel: ")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

88

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Save the order and print the order," Erik answered looking at Simon’s drawing.

"Okay, and if the user wants to cancel and responds 'No'?"

"We should do nothing, just return to the beginning. But I don’t know how to do it. You just
have an arrow here."

"There is a simple word for this arrow in Python and the word is . It means 'don’tcontinue

execute the rest of the loop and continue the loop from the beginning'. Pretty easy, huh?" and
Simon added these lines to the function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

89

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"I see that you’ve added two more functions: and ," Erik said.save_order() print_order()

"But we don’t have them here…"

"Let’s write them now!" Simon exclaimed. "We’ll write very simple functions for now. They
won’t do anything, they will just print something like `saving order…' so we will see that they
were called. Later, we’ll improve them to do more useful things."

Simon added the functions below the function:main_menu()

He explained it to Erik: "The function is what you have written already. We willget_order()

transfer your code here, but for now it does nothing. No menus, no dialogue, but it has to return
the order. Remember, the order is a dictionary with keys like 'name', 'drink', and others. In this
case the function returns just an empty dictionary, which is a pair of curly braces. So far, so
good?"

"Yes," Erik answered. "So you mean we will copy my previous functions from that previous file
into this one, right?"

"Right," Simon said. "Sometimes when a program becomes larger it’s a good idea to group
functions in separate files. But in our case it’s easier to keep everything in one file."

"The function," Simon continued, "just prints the order that it gets via theprint_order()

argument. In this case we use the standard Python , but we will make it prettier later.print()

You have done that already, remember?"

"Sure!" Erik said. "I think we can make it look like a real coffee shop receipt."

def main_menu():
 while True:
 order = get_order()
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel: ")
 if confirm == "Y" or confirm == "y":
 save_order(order)
 print("Thanks for your order:")
 print_order(order)
 else:
 continue

def get_order():
 return {}

def print_order(order):
 print(order)
 return

def save_order(order):
 print("Saving order...")
 return

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

90

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Good idea," Simon said. "The function does nothing except printing 'Savingsave_order()

order…' That’s okay for now, we’ll write it later. Now we are ready to call the main_menu()
function and test our algorithm. Go ahead and add the call for the at the end andmain_menu()

run it. You main program will consist of only this function call."

Erik added the function call so the whole program now looked like this:

Listing 6.1 main_menu.py

YOUR TURN Create main menu

Write a main menu function similar to the one Erik just created. Feel free to
change the dialogue messages.

He clicked Run and saw the output:

He typed "y" and got this:

def main_menu():
 while True:
 order = get_order()
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel: ")
 if confirm == "Y" or confirm == "y":
 save_order(order)
 print("Thanks for your order:")
 print_order(order)
 else:
 continue

def get_order():
 return {}

def print_order(order):
 print(order)
 return

def save_order(order):
 print("Saving order...")
 return

main_menu()

Check your order:
{}
Confirm? Press Y to confirm, N to cancel:

Saving order...
Thanks for your order:
{}
Check your order:
{}
Confirm? Press Y to confirm, N to cancel:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

91

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Why does it give me the 'Check your order' again?" Erik asked.

"Because it’s a loop!" Simon said. "After you answered 'y' to the confirmation question it returns
to the beginning of the loop. And as soon as we haven’t added your menu dialogue yet, it prints
the empty order. Everything works as expected. Now try to answer 'n' to the question."

Erik typed 'n' and got the output.

"Do you see the difference?" Simon asked.

"I see that it didn’t print 'Saving order…' this time. That means it went on the short arrow on the
right side of your diagram."

Confirm? Press Y to confirm, N to cancel: n
Check your order:
{}
Confirm? Press Y to confirm, N to cancel:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

92

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Excellent!" Simon was glad to see that Erik really understood his algorithm diagram.

"I think we made a good progress today: our main menu is working. Tomorrow we’ll write the
actual functions that will do what we want. For now, let’s wrap up and review what we learned
today."

"We used the while-loop again!" Erik said.

"Right! And you used what you’ve learned while working on menus," Simon confirmed.

"Also we learned about dictionaries. They are like normal dictionaries, but you can store
anything there, not just word descriptions."

"Yes, exactly! In our simple dictionary we keep names, drinks, and flavors. But in a moreorder

complex dictionary you can keep numbers—prices, for example—and even lists and other
dictionaries. dictionaries are really useful in Python and you will use them all the time."

"Also I liked how you created simple functions just to test the main menu," Erik said. "You said
it’s called 'top-down', right?"

"Exactly," Simon said. "There is also a 'bottom-up' approach, as you could guess. In that case
people create functions first, test them properly, and then combine them into a large program. In
some sense we used this approach too when you created and tested your first function.menu()

Now we are going to use your function in our large program."

"Time to take some rest now," Simon continued. "We’ll work tomorrow on the functions we
used in our main menu."

Top-down approach
First you develop the "big picture" of your application and use simple functions that just
print something instead of doing real work. When the main algorithm works right you
develop the actual functions.

Dictionary
In Python dictionaries can store pairs of keys and values. You can assign values to keys
and you can quickly find them by their keys.

Flowchart diagram symbols
Programmers usually use diagrams to discuss their algorithms before they start writing
code. Usually a rectangle means some process, a rhombus means a decision point with a
Yes/No question. There are also symbols for input, using documents, using databases,
and others. We will introduce them later.

6.1 New things you have learned today

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

93

https://livebook.manning.com/#!/book/lets-talk-python/discussion

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch06

6.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

94

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch06
https://livebook.manning.com/#!/book/lets-talk-python/discussion

7
This chapter covers

"Yesterday we created the main menu, right?" Simon began his conversation with Erik. "We
even tested the main menu functionality."

"Yes, but it didn’t do anything useful," Erik said.

"Right!" Simon said. "Remember, we talked about the 'top-down' approach? We created empty
functions just to test the main menu. Now it’s time to make them do something real. Open your
Python file where we created menus from files. It’s called ."menu_files.py

Erik opened that file and now he had two tabs in his editor: one with the file andmain_menu.py

another with the file.menu_files.py

"Switch to the file and let’s look which functions we have to write here," Simonmain_menu.py

said. "You see, three functions: , , and . Let’s beginget_order() print_order() save_order()

with . Where is our diagram?"get_order()

Creating functions: Get the order
and print it

Erik creates the actual functions to get orders and print them
Erik uses a dictionary to store and print a customer’s order
Erik’s program now works as planned!
Erik and Simon plan to write the function to save orders

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

95

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Let’s start with . What do we do here?" Simon asked.get_name

"We just ask 'what is your name?'," Erik answered.

"Right, and then?"

"And then we save it in a variable, like ."name

"Almost right," Simon said. "Remember, we decided that will be a dictionary. And weorder

will save related to that order in this dictionary. For example, to save the customer’severything
name instead of we should write . Only instead ofname = 'Erik' order['name'] = 'Erik'

'Erik' we will use the function like you did in your first program."input()

"Let me try," Erik said and wrote this function:

"Now try it," Simon said.

Erik clicked Run, the program asked his name and he entered 'Erik'. But then he’s got several

def get_order():
 order['name'] = input("What's your name: ")
 return {}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

96

https://livebook.manning.com/#!/book/lets-talk-python/discussion

lines of error messages.

"What’s that???" he asked Simon.

"Look, Python tells you where your problem is occurring. Read the last line."

"Name 'order' is not defined," Erik read it.

"It’s very simple," Simon explained. "You tried to put something in the dictionary but you
haven’t created it yet. It’s easy to fix. Let’s create an empty dictionary. Remember, we used
curly braces for that? Just write before the line with ."order = {} input()

Erik changed his function to this:

and ran it again. This time it didn’t give him any errors.

"It’s better now," he said.

"Yes, better, but look: it still prints an empty order. You created an order and even entered your
name into it, but your function returns an empty dictionary. See this line: ?"return {}

"But this is how wrote it!" Erik was sure it’s not his fault.you

"Yes, I wrote it this way to test the main menu function. But now we have to return the actual
 dictionary. Change it to and let’s see if it prints your name."order return order

Erik changed the function to this:

What's your name: Erik
Traceback (most recent call last):
 File "/home/erik/mu_code/main_menu.py", line 41, in <module>
 main_menu()
 File "/home/erik/mu_code/main_menu.py", line 3, in main_menu
 order = get_order()
 File "/home/erik/mu_code/main_menu.py", line 27, in get_order
 order['name'] = input("What's your name: ")
NameError: name 'order' is not defined
>>>

def get_order():
 order = {}
 order['name'] = input("What's your name: ")
 return {}

What's your name: Erik
Check your order:
{}
Confirm? Press Y to confirm, N to cancel: y
Saving order...
Thanks for your order:
{}
What's your name:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

97

https://livebook.manning.com/#!/book/lets-talk-python/discussion

and ran it again. This time he saw:

"Yes, it prints my name now!"

"Congratulations!" Simon said. "Now you know how to work with dictionaries!

YOUR TURN Create your functionget_order()

Start writing your own function in the file. Add theget_order() main_menu.py

first input to get the customer’s name. Test it by running the main menu
program.

"Let’s move on," Simon continued. "We have to add your function now to fill drinks andmenu()

flavors. But we also need the function to read your menus from files. Copy both ofread_menu()

them (and) from the file and paste them here in the menu() read_menu() menu_files.py

. Paste them right before the line."main_menu.py def get_order():

"What if I paste it after that line?" Erik wanted to know why his older brother gave him such
strict orders.

"Then it won’t work," Simon gave him a simple answer and smiled. "Okay, if you want toreally
know: we are going to use these two functions in the function. First we have toget_order()

read the menu contents from files: your drinks, your flavors, your toppings. Then we call the
 function three times to get the customer choices. And before we can use these functionsmenu()

we should them. In other words, we should tell Python that such functions exist and whatdefine
they do. That’s why they need to be pasted before the line." By the way, thisdef get_order():

is why we use the word to start a function—we it."def define

"Okay," Erik said and started copying the functions. In a couple of moments his main_menu.py
file looked like this:

7.1 What are your choices?

def get_order():
 order = {}
 order['name'] = input("What's your name: ")
 return order

What's your name: Erik
Check your order:
{'name': 'Erik'}
Confirm? Press Y to confirm, N to cancel:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

98

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Listing 7.1 main_menu.py

def main_menu():
 while True:
 order = get_order()
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel: ")
 if confirm == "Y" or confirm == "y":
 save_order(order)
 print("Thanks for your order:")
 print_order(order)
 else:
 continue

def menu(choices, title="Erik's Menu", prompt="Choose your item: "):
 print(title)
 print(len(title) * "-")
 i = 1
 for c in choices:
 print(i, c)
 i = i + 1
 while True:
 choice = input(prompt)
 allowed_answers = []
 for a in range(1, len(choices) + 1):
 allowed_answers.append(str(a))

 allowed_answers.append("X")
 allowed_answers.append("x")

 if choice in allowed_answers:
 if choice == "X" or choice == "x":
 answer = ""
 break
 else:
 answer = choices[int(choice) - 1]
 break
 else:
 print("Enter number from 1 to ", len(choices))
 answer = ""
 return answer

def read_menu(filename):
 f = open(filename)
 temp = f.readlines()
 result = []
 for item in temp:
 new_item = item.strip()
 result.append(new_item)
 return result

def get_order():
 order = {}
 order["name"] = input("What's your name: ")
 return order

def print_order(order):
 print(order)
 return

def save_order(order):
 print("Saving order...")
 return

main_menu()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

99

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Correct!" Simon said. "Now you know the rule: define something before using it. You just saw
the problem when you got errors with the dictionary, and now you see it with the order menu()

and functions here."read_menu()

"Now we are ready to use these functions in ," he continued. "Look at your get_order()

 program. What did we do first?"menu_files.py

"We read the menus from files," Erik answered.

"Good, let’s do it here, but inside the function."

Erik added three lines to the function:get_order()

He had to adjust the lines by adding four spaces before each line so they were all indented at the
same level.

"And now the same with three functions?" he asked Simon.menu()

"Sure, go ahead!"

Erik changed his function to this:

He was proud of his work and looked at Simon.

"Almost right," Simon said. "You copied it right, but you have to change the code a bit to store
the answers in the dictionary. It should be an easy change, you know how to do it."order

"Ah, I see," Erik said and changed the function. Now the function looked like this:

def get_order():
 order = {}
 order["name"] = input("What's your name: ")
 drinks = read_menu("drinks.txt")
 flavors = read_menu("flavors.txt")
 toppings = read_menu("toppings.txt")
 return order

def get_order():
 order = {}
 order["name"] = input("What's your name: ")
 drinks = read_menu("drinks.txt")
 flavors = read_menu("flavors.txt")
 toppings = read_menu("toppings.txt")
 drink = menu(drinks, "Erik's drinks", "Choose your drink: ")
 flavor = menu(flavors, "Erik's flavors", "Choose your flavor: ")
 topping = menu(toppings, "Erik's toppings", "Choose your topping: ")
 return order

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

100

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Listing 7.2 main_menu.py

Simon encouraged him: "Go ahead, run it!"

Erik ran the program.

"Wow!" he was really happy. "I wrote a program of more than 70 lines and it works!"

"Yes, you did! And it really works!" Simon confirmed and smiled.

YOUR TURN Add menu choices to your program

Add the two functions and like you see in the precedingmenu() read_menu()

program to your file . Test the program by running it andmain_menu.py

entering your choices. Try entering wrong choices and make sure the menu()
function doesn’t allow you to do it.

def get_order():
 order = {}
 order["name"] = input("What's your name: ")
 drinks = read_menu("drinks.txt")
 flavors = read_menu("flavors.txt")
 toppings = read_menu("toppings.txt")
 order["drink"] = menu(drinks, "Erik's drinks", "Choose your drink: ")
 order["flavor"] = menu(flavors, "Erik's flavors", "Choose your flavor: ")
 order["topping"] = menu(toppings, "Erik's toppings", "Choose your topping: ")
 return order

What's your name: Erik
Erik's drinks

1 coffee
2 chocolate
3 decaf
Choose your drink: 1
Erik's flavors

1 caramel
2 vanilla
3 peppermint
4 raspberry
5 plain
Choose your flavor: 2
Erik's toppings

1 chocolate
2 cinnamon
3 caramel
4 vanilla powder
Choose your topping: 3
Check your order:
{'name': 'Erik', 'drink': 'coffee', 'flavor': 'vanilla', 'topping': 'caramel'}
Confirm? Press Y to confirm, N to cancel: y
Saving order...
Thanks for your order:
{'name': 'Erik', 'drink': 'coffee', 'flavor': 'vanilla', 'topping': 'caramel'}
What's your name:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

101

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"But something is still missing… The order doesn’t look very professional. It doesn’t look like a
real coffee shop…" Simon continued.

"I see, it should be in the `print_order() function, right?" Erik suggested.

"Yes, right. Go to the function in your file. Let’s start printingprint_order() main_menu.py

the order."

Erik’s function looked like this:print_order()

"Here we use the default printing function provided by Python," Simon continued. "Python can
print your dictionary, but it’s not pretty. It’s okay for debugging, but for real orders and receipts
we have to make it more beautiful. And you have done that already, right?"

"You mean—when I printed lines of dashes? Yes, it was prettier than this."

"Okay, let’s do something similar to what you did at the end of the file. Youmenu_files.py

can copy those lines starting with from there. Just don’t forget to keep the rightprint

indentation and make sure you use the dictionary and not simple variables. Ah, and don’t forget
that now we have the customer’s name. I think you should use it in your function. Ready?"

"Yes," Erik answered and started working on the function. He ended up with this:

YOUR TURN Add the functionprint_order()

Add the function to the file . Feel free to useprint_order() main_menu.py

decorations like dashes (), underscores (), or equal signs () to make your- _ =

printed order look like the ones you saw somewhere else. Try to find receipts
from restaurants, coffee shops, ice cream shops and see if you can make
yours look similar.

He ran the program again and got much prettier output:

7.2 Print it!

def print_order(order):
 print(order)
 return

def print_order(order):
 print("Here is your order, ", order["name"])
 print("Main product: ", order["drink"])
 print("Flavor: ", order["flavor"])
 print("Topping: ", order["topping"])
 print("Thanks for your order!")
 return

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

102

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, this is much better!" Simon said. "Yes, you can add decorations like dashes and vertical
lines, it’s up to you. But I can tell you that you did a great job as a programmer. You wrote
several very useful functions, you organized them properly, and you tested them. Good job, Erik,
I’m really proud of you!"

"Also we learned about dictionaries and I used them," Erik sensed that it’s a "wrap-up time" and
he should mention everything he learned and used today.

"Yes, right," Simon confirmed. "Dictionaries are very important in Python. We use them all the
time in our programs. Later we’ll learn more about them."

"You said we should also save our orders somehow. Will we do it tomorrow?" Erik asked.

"Yes, sure," Simon said. "Do you know about JSON?" he asked.

"Jason? Yes, we go together to our math class. What about him?"

"No, not that Jason," Simon laughed. "JSON is a file format that we can use to save your coffee
shop orders. We’ll learn about it tomorrow, okay?"

"Okay," Erik said and off he went.

Variable and function definitions
In Python we have to variables and functions before we can use them. Fordefine
variables it is as simple as assigning an empty value to it. For a dictionary it is: order =

, for a string it is: . Functions should be defined using the keyword .{} name = "" def

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch07

7.3 New things you have learned today

7.4 Code for this chapter

Here is your order, Erik
Main product: coffee
Flavor: vanilla
Topping: caramel
Thanks for your order!
Confirm? Press Y to confirm, N to cancel:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

103

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch07
https://livebook.manning.com/#!/book/lets-talk-python/discussion

8
This chapter covers

"You said something about Jason yesterday," Erik asked Simon. "But you said it’s another Jason,
not the one from my math class."

"Yes, that’s another Jason," Simon smiled. "It’s JSON, J-S-O-N, the file format we use to store
data."

"Like files we used to store menus?"

"Yes, similar," Simon answered. "This format is very good to store data."structured

"What is that?" Erik asked.

"Sometimes you want to store just a piece of text, or an image. Usually, they don’t have any
fixed structure. A text is just a text. An image can be large and small, it can be black-and-white
or it can have color. But it doesn’t have any structure—it’s just a bunch of pixels. This is what is
called data. But in your case, each order has a . Each order has theunstructured structure
customer’s name and all the components of the drink you are going to prepare. No more, no less.
It always has the main drink, the flavor, the topping. Because of the menu you wrote, the
customer should answer all these questions before you can print of save the order. On the other
hand, the customer can’t anything to the order."add

Working with JSON: Save the order

Erik learns about JSON format and files
Erik learns about Python modules
Erik creates a list of orders
Simon and Erik write the function to save orders in a JSON file

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

104

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Like another topping?" Erik asked.

"Yes," Simon said. "You order is an example of data."structured

Erik didn’t think that he just created something with such a serious name.

"Your order is stored in a dictionary," Simon continued, "and you know for sure that for each
order, there are dictionary (remember what that is?) called 'name', 'drink', flavor', 'topping'."keys
Simon pulled one of his diagrams.

"The JSON format is created to store this kind of structured data. Let’s practice with it a little.
Like we did before, we’ll create a simple program first, and try some simple operations. Then, as
previously, we’ll use what we learned with this simple program and make our main program
save orders in a file. That’s a lot for one day, so maybe we’ll do it tomorrow."

Simon continued: "Now open your editor and create a new file. Save it with the name
, for example."dict_json.py

Erik opened his editor window, clicked New, then Save, entered , and clickeddict_json.py

Save again. He was already familiar with the procedure.
©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/lets-talk-python/discussion

105

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now," Simon said, "create a sample order."

"What is a sample order?"

"Your order is a dictionary, right?" Simon started to explain. "In your main program you created
an empty dictionary and then started to fill it with the values you were getting from the customer.
Here we want to skip that step and imagine that our dictionary is already filled with theorder

customer’s choices. Let me start it for you," Simon said and wrote in Erik’s editor:

"You can continue now," he said. "Don’t forget to close the curly braces."

Erik finished the order dictionary and closed the curly braces. Now it looked like this:

"I noticed that you indented the lines in this dictionary," he asked his brother. "Is it also a rule for
dictionaries in Python?"

"No," Simon answered, "in this case I did it just to make it look better. And to be more .readable
I could put all items together in one line, or start from the beginning of the line, but I think this
way it looks better."

"Now," he continued, "we have a dictionary. And we want to save it in a file. I guess I should
remind you about files operations with dictionaries."

"Yes," Erik said, "it was so-o-o long ago, I don’t remember much."

"Sure," Simon said. "Also you’ll learn a couple of new things about files. First, we have to open
a file. To open a file we should call a function named --of course!--and pass the file nameopen()

as an argument. You know everything about functions and their arguments, right? That function
returns a file . It’s a special object that our program can now use to work with this file."handle

Simon wrote one more line below the dictionary that Erik created.

order = {
 "name": "Erik",

order = {
 "name": "Erik",
 "drink": "coffee",
 "flavor": "caramel",
 "topping": "chocolate"
 }

order = {
 "name": "Erik",
 "drink": "coffee",
 "flavor": "caramel",
 "topping": "chocolate"
 }

f = open("orders.json", "w")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

106

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Here is the first new thing. See this 'w' letter? It means that we are going to write into the file."

"But when we opened the menu files we didn’t use any letters," Erik remembered.

"You are right! Good thing you remembered it," Simon said. "Yes, we didn’t use any
letters—they are called , by the way—because by default, when I don’t use any letters,modes
Python opens files for reading. This time we want to write to this file so we tell Python about it."

"And I see that you named the file 'orders.json'. Is it because you want to use that JSON format
you were talking about?"

"Yes, exactly," Simon answered. "It’s not mandatory, but it’s a convention to add the '.json'
extension to JSON files. Another difference is that when we use the 'write' mode, Python will
create the file with this name if it doesn’t exist."

"What now?" Erik asked. "How do we write to this JSON file? Last time we used 'methods'; is
this what they are called?"

"Yes, you remembered it correctly," Simon said. "But this time we’ll do it differently. It’s all
because we are going to write structured data, not just plain text. We are going to use a Python

 called ."module json

"What is a module?" Erik asked immediately.

"I’m going to explain it right now," Simon smiled. "Remember, you wrote several Python
functions recently? For example, to read menu items from a file and return a list. Imagine one of
your friends wants to write their own program for a coffee shop or something similar."

"Yes," Erik said, "I spoke with Emily recently and she said she wanted to create a program for an
ice cream shop."

"Great!" Simon said. "Now you may want to help her and share the functions that you wrote. It
will save her some time so her program will be ready earlier. It’s very common among
programmers to share their work to help each other. In Python you can group your functions that
you want to share in a file and give it to Emily. She can copy that file to her computer and then

 it into her program. Because she imported it she can use your functions in her application.import
Now your file with functions is called a ."module

"What if I don’t want to share my functions?" Erik said. "I spent several days writing them!"

"Yes, you did," Simon said. "And you did a great job. But remember, a lot of people spent many
days writing other functions in Python, and even Python itself. And they shared their work with
other programmers so you can use Python and other functions completely free. That way we help

f = open("orders.json", "w")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

107

https://livebook.manning.com/#!/book/lets-talk-python/discussion

each other to work on our projects. It would be much slower if you and I had to write everything
ourselves from scratch. That’s why people use somebody else’s code and also share their code
with others. It’s usually called the ."Open Source community

"Back to JSON," Simon continued. "We are going to use the module called , written byjson

other people. That module can read Python dictionaries and convert them to JSON files. Go to
the beginning of your file and add a line: . It should be the very first line of theimport json

file."

Erik did. Here is his updated file.

"Now we have to convert your example dictionary to JSON and write it to the file we just
opened," Simon said. "In the module, this function is called . We call it in yourjson dump

program, but we have to tell Python that it should look for this function in the module . Sojson

we call it like this: . You just have to pass two arguments: the dictionary and thejson.dump()

file object. Add this function to the end of the file. You dictionary is , your file object is order f

."

Erik added this line to the end of the program:

Simon continued: "Now here is another thing that we didn’t do with files before. We should
 the file. This is important, so let’s draw another diagram."close

"Look, here are three main component of a computer: the processor, the memory, and the drive.
Your Python program is running on the processor. Your file is stored on the drive in a file
system. A file system is what you see in Finder on a Mac, and in Explorer on Windows: folders
and files. When you want to work with a file in Python you it, like you just did. Thatopen
creates a file object in your program. When you write to the file, you write to the computer
memory. Then when you want your file to be written to the file system on the drive, you really

 it."close

import json

order = {
 "name": "Erik",
 "drink": "coffee",
 "flavor": "caramel",
 "topping": "chocolate"
 }

f = open("orders.json", "w")

json.dump(order, f)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

108

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"This is so complicated!" Erik was confused. "Why don’t we write straight to the drive?"

"Computers complicated, you are right!" Simon agreed. "The reason for that is that computerare
engineers try to make computers work faster. Writing to drive is slow—much slower than
writing to memory. Imagine you are writing your program in a text editor. If it saved every letter
you type immediately to drive it would be slow. You don’t like working with slowvery
computers, do you?"

"I hate slow computers!" Erik answered emotionally.

"To make computers work faster," Simon continued, "engineers decided to store data in memory
and save it to the drive only when necessary. There are a lot of tricks they use to make computers
run faster, and, of course, I don’t know all of them. Maybe I’ll learn more about them in
college."

"Let’s get back to our program. Remember: file objects use methods. In this case we call
. That will make sure our order is written to the file. Now add it after the last line inf.close()

your program."

That was easy—after such a long explanation! Erik added it quickly and got this.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

109

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now run it," Simon said.

Erik clicked Run and saw the familiar at the bottom of the window. "Now what?" he asked>>>

Simon.

"Nothing happened?" Simon smiled, feeling Erik’s confusion. "Of course, because you didn’t tell
Python to print anything. But still, something happened behind the scenes. Python opened a file
called , wrote your dictionary into it, and closed it. Now we have to open it toorders.json

check if it did it right. Use a plain text editor to open the file. You are on a Mac so it will be
 from your Applications folder. On Windows it’s , on Linux it’s or .TextEdit Notepad gedit Kate

Start the editor and open the file. It’s in your home folder, under and it’s called mu_code

."orders.json

Erik started , found the file, and opened it. Indeed, he saw his order:TextEdit

import json

order = {
 "name": "Erik",
 "drink": "coffee",
 "flavor": "caramel",
 "topping": "chocolate"
 }

f = open("orders.json", "w")
json.dump(order, f)
f.close()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

110

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Save your example order in a JSON file

Write the program Erik just wrote. Try to use a slightly different order. Run the
program and check the resulting JSON file with a text editor on your platform.
Try to change the order and run the program again. Did your JSON file
change? (You may have to reload the file in your text editor.)

"You see," Simon said, "it’s your sample order, stored in a file. Let me add something and you
will see why JSON files are ideal for storing Python dictionaries."

Simon took the keyboard and changed the call to this:json.dump()

He ran the script again and re-opened the file. Now it looked like this:orders.json

YOUR TURN Make it beautiful

Add the argument to your previous program and check if your JSONindent=4

file has changed.

"It looks exactly like my dictionary!" Erik said.

"I told you!" Simon exclaimed. "We’ll be using JSON to store your orders. I said 'orders,' which

json.dump(order, f, indent=4)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

111

https://livebook.manning.com/#!/book/lets-talk-python/discussion

means now we have to learn how to keep several orders and store them in a file. We know
already how Python stores several items that come in order—you used it for you menus."

"A list!" Erik said.

"Correct! A list in Python can contain different things: strings, numbers, even dictionaries. In this
case we’ll have a list of dictionaries. Each dictionary will contain an order we’ll add them one by
one to the list. A new customer, a new order, a new dictionary in the list. Let me draw a
diagram."

"Let’s create a list of orders," Simon continued. "Copy the existing order in the code and call it
, for example.order1

Then change the order’s content: the name, the drink, and others."

Erik worked on his code for a while and finally got this additional order, just below the first one.

"Good," Simon said, "now create an empty list called . Note that it’s plural—'orders'. It’sorders

very similar to creating an empty dictionary—you have done that already. Just instead of curly
braces use square brackets."

Erik added the following line below the second order:

"And now we will add both orders to the list," Simon said. "Believe it or not, but the list orders

order1 = {
 "name": "Alex",
 "drink": "choco",
 "flavor": "vanilla",
 "topping": "caramel"
}

orders = []

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

112

https://livebook.manning.com/#!/book/lets-talk-python/discussion

that you just created is also an object. In Python, actually, everything is an object. And each
object has methods that you can use. You just have to know what methods exist for each object.
For example, for all lists there is a method called . It adds the element you pass as anappend()

argument to the end of the list. Look here, I’ll use it to add and to the list order order1 orders

." And Simon added these two lines below the line where the list was created.orders

"But how do you know that you should use here?" Erik asked.append()

"I read it in Python documentation when I learned Python," Simon answered with a smile. "You
can use Google to search for 'Python list methods' and you’ll find everything you need to know."

"Now we can try to save this list as JSON," Simon continued. "The only thing we need to change
is we want to 'dump' into the file. We used as an argument for the functionwhat order dump()

to write out one order. Now let’s replace it with (plural!) and see what changes."orders

Erik changed the line with to this:json.dump()

He ran the program and opened the file again.orders.json

orders.append(order)
orders.append(order1)

json.dump(orders, f, indent=4)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

113

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Save a list

Add another example order. Call is . Create a list of orders. Save theorder2

list in the same JSON file. Check the result with a text editor. Add as more
orders as you can think of and write them out to the file. Is there any limit to
how many orders you can save?

"So, what would you say?" Simon asked. "Does it look like your orders?"

"Yes, it’s exactly like Python!" Erik said. "But why did we write my orders in a separate file? If
it looks like Python, why don’t we write my orders into our Python program?"

"Great question!" Simon was really glad that Erik wanted to understand things. "First of all, we
always want to separate programs from data. Remember, when you run your Word application,
you don’t write your documents into the Word program. You save them in separate files. It’s
exactly what we do here. Your program can save orders in different files, for example, for
different days. All you would have to do is change the name of the output file such as

, , etc.orders.Monday.json orders.Tuesday.json

"Second reason," Simon continued, "is that this format called JSON for a reason. It stands for
JavaScript Object Notation. First it was invented by people who used the JavaScript
programming language, and then other languages started using it. So you can use Python to write
your orders in a JSON file, and then some of your friends may want to create another program in
JavaScript that would read from that file and print your orders on the web page, for example."

"Yes, I heard some people in my class said they know JavaScript!" Erik said.

"Good! You may want to create a programming team and work on applications together," Simon
said. "But let’s continue with our sample program. Now we will read the orders from the JSON
file and save them into a new list. Let’s call it ."saved_orders

"Why are we reading it if we just have written it to the file?" Erik was confused.

"Maybe I didn’t explain it properly," Simon answered. "In this sample program we are practicing
some operations with JSON files, so we know them well and can use in our main program.
Programmers do this very often: they create simple programs to test some concepts and ideas.
Let me show you my plan for our main program so you better understand where we are going."

Simon took another piece of paper and started drawing.

"First, we check if the file called 'orders.json' exists. If it exists, we open it and read from it our
previous orders."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

114

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Why do we need our previous orders? We have prepared them already," Erik asked.

"Yes, but remember, we may want to count how many customers we served today or yesterday
or last month. Or count how many portions of caramel we have used and if it’s time to buy more.
You need all the orders if you want to manage your coffee shop business seriously. That’s why
all businesses keep these records for a long period of time."

"What if we don’t have this file?" Erik asked.

"That means we just have opened our business and started working," Simon smiled. "In this case
we create an empty list and start getting orders. The file will be created automatically when we
open it for writing."

"Look at this diagram: here we have our 'orders' list either filled with our previous days orders or
empty. And we start getting orders and save them into this list. After we are done for the day, we
close the file and that saves all our orders on the drive. Next day we open the file again and
continue taking orders. All the new orders will be added to the previous day’s orders."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

115

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Draw your own diagrams

Try to draw the diagrams for your program without looking in the book.
Drawing diagrams helps you to understand how programs work.

"Is this how real coffee shops work? Like ?" Erik asked.Starbucks

"Yes, pretty much," Simon smiled. "Of course, they use a database for reliability and security.
Their order records are more complex than ours. But the whole process is very similar."

"Now when you know the grand plan, let’s continue with our simple program and read from the
file. We will read the previous orders into a new list called 'saved_orders' and then we’ll just
print it to see if we read it correctly. To do that, in the module there is a function called json

. It works the same way as : first we open a file, but this time for reading, notload() dump()

writing. Then we call and pass the file object as an argument. The function json.load() returns
the object it read from the file and we assign that object to a variable. In our case it will be a list
of orders—that are dictionaries, as you remember. Sounds complicated? Let me help you. It’s
much shorter in Python," and Simon started adding lines to Erik’s code. Here is what he added at
the end of the program:

He clicked Run and Erik saw the output:

f = open("orders.json", "r")
saved_orders = json.load(f)
print(saved_orders)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

116

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Read from the JSON file

Add the preceding lines to your program and try to read from the JSON file you
have created. Do you get the same orders as in your example orders?

"We learned a lot today," Simon said. "Let’s take a break until tomorrow. Tomorrow we’ll add
these functions to our main program and then it’ll become a real coffee shop application. Can
you quickly recap what we did today?"

"We created a JSON file from my Python dictionary and it looked very much like Python. Then
you explained me all about files, and memory, and drives. And also we created a list of
dictionaries and saved it in the file too."

"And also we learned about Python modules and how to import them," Simon added. "So far, so
good," he said, "Let’s continue tomorrow. We are very close to finishing the first version of your
application."

JSON, JavaScript Object Notation
A format that is used to store structured data and can be used to exchange information
between programs.

Python modules
Groups of Python functions that can used by other programmers. Usually they are
grouped in files. You have to modules before using them.import

List of dictionaries
Lists can contain different types: strings, numbers, dictionaries, other lists.

File operations
You can open files for reading and writing. You can write data to files, but it’s written in
computer’s memory. You should close files to save the data onto the computer drive.

Open Source Community
People who share programs they write and help each other write better code.

8.1 New things you have learned today

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

117

https://livebook.manning.com/#!/book/lets-talk-python/discussion

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch08

8.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

118

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch08
https://livebook.manning.com/#!/book/lets-talk-python/discussion

9
This chapter covers

"Now let’s get real," Simon said. "Yesterday we played with sample orders and simple programs.
Today it’s time to use what we learned in our real program."

"Yes, let’s do it!" Erik said.

"Open your file where we wrote the main menu. We should add a couple ofmain_menu.py

functions to work with the JSON file. Let’s recall what we have to do first," and Simon pulled
his diagram from yesterday.

Complete the menu: A real program

Erik and Simon create load and save functions in the main program
Simon adds the exit function to the main menu and functionget_order()

Simon explains why he thinks Erik just created a real program
The brothers discuss future plans

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

119

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"So we have to write a function that will load the list of orders from a JSON file. But first it has
to check if the file exists. If it doesn’t, we create an empty list and return it from this function. If
it exists, we read from it, convert JSON to a Python list and return that list."

"Let me help you," Simon felt that it’s a bit confusing for Erik. "Usually, in functions that work
with files we pass the file name as an argument," and Simon started the function at the bottom of
the file, right before the last line with :main_menu()

"Now we have to check if the file exists. There is a special function for that and we can find it in
the module."os

"What is 'os'?" Erik asked.

"OS stands for 'operating system.' Operating system in the computer manages all files and
programs. It works with your screen, your keyboard, your speakers, and video camera. On a
typical computer, the OS can be Windows, macOS, or Linux. In our case we are going to ask the
operating system if a file with such a name exists on this computer," and Simon added a line:

"Look, we used the module here. That means we have to import it the same way we importedos

the module. In this program we haven’t imported it yet, so let’s import them both."json

Simon moved the cursor to the very beginning of the file and added two lines:

He returned the cursor to the function and continued his explanation. "If the fileload_orders()

exists, we open it for reading, use the function to read from the file to the list json.load()

 and return the list." He added three lines to the function.orders

"What if it doesn’t exist? We just create an empty list and return it."

def load_orders(filename):

def load_orders(filename):
 if os.path.exists(filename):

import os
import json

def load_orders(filename):
 if os.path.exists(filename):
 f = open(filename, "r")
 orders = json.load(f)
 return orders

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

120

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now load function is ready!" he said and looked at Erik.

"I don’t think I could write it myself," Erik said.

"Of course, it looks complicated when you do it first time. But look, you can read it as if it was
plain English, can’t you?"

Erik looked at the function again and tried to read it. "If the file with 'filename' exists, then open
the file. Save it in the object called 'f'. Then load from that 'f' file into 'orders'. Hmmm… yes, I
can read it." He was surprised. He could read Python now and understand it!

"The next function is easier," Simon continued. "I think you can write it yourself if you look at
our file where we practiced with sample orders. Look, right after the two operationsappend()

there are three lines that we need here. We already have a function called thatsave_order()

does nothing except printing 'Saving order…'. Let’s replace it with a real one. I think it should be
called —plural, because now we know how to save a list of orders in a JSONsave_orders()

file, right?"

Simon wrote the beginning of the function:

He explained: "We pass the list of orders as a first argument. Then we pass the name of the file
where we want to store it. Now you can add those three lines from our yesterday’s program."

Erik looked at the 'dict_json.py' file and copied three lines from it. Now the function looked like
this:

"Can we test it now?" he asked Simon.

"We are almost ready," Simon answered. "Look at the bottom of our file. Now we just call the
 function. Remember my second diagram from yesterday?" and he pulled themain_menu()

drawing.

def load_orders(filename):
 if os.path.exists(filename):
 f = open(filename, "r")
 orders = json.load(f)
 return orders
 else:
 orders = []
 return orders

def save_orders(orders, filename):

def save_orders(orders, filename):
 f = open(filename, "w")
 json.dump(orders, f, indent=4)
 return

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

121

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"This is what we do in the function. We just have to edit it a little bit to servemain_menu()

several customers and save their orders in the list 'orders.' To do that we have to pass that list into
the function."main_menu()

He moved the cursor to the beginning of the file and added the argument to the orders

 definition.main_menu()

"Now," he continued, "each time the customer enters a new order it will be added to the 'orders'
list. Before we added the list as an argument, didn’t know where to add the newmain_menu()

order. Now we can use the method and add it to 'orders.' Right after the customerappend()

confirms the order, we add it to the list of orders. We won’t use the functionsave_order()

here. We’ll save all orders when you close the program." And Simon changed the main_menu()
function to this:

"And we also change the main program to three steps: load the orders, main menu (get the
orders), and save the orders." And he added those three lines to the bottom of the file. Now it
looks like this:

def main_menu(orders):

def main_menu(orders):
 while True:
 order = get_order()
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel: ")
 if confirm == "Y" or confirm == "y":
 orders.append(order)
 print("Thanks for your order:")
 print_order(order)
 else:
 continue

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

122

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Can I try it now?" Erik asked.

"Sure, go ahead!" Simon said.

Erik ran the program, entered his name at the first prompt, then selected his drink components.
When the program asked to confirum the order, he typed "Y." The program got back to the
"What’s your name: " prompt.

"Okay," Erik said, "it works. But how can I check my orders? Are they saved in the file?"

"Let’s check," Simon said.

The brothers opened the 'orders.json' file and were surprised to see that it still contained the old
orders from their yesterday’s experiments. Even Simon was confused.

"Let’s see," he said. "We open the file, we read from it, we get the order… But we never write to
the file because we are still in the main menu! And we never reach that save_orders()
function! Hmmm… let me think how to fix it."

Erik smiled. His know-it-all brother didn’t know what to do.

That lasted only a moment.

Simon said: "I see. We didn’t give the user a way to exit the main menu. We keep asking the
user their name, but what if we want to finish the program?"

"I saw that you pressed when you wanted to stop my program," Erik said.CONTROLC

"Yes, I did it, but that’s a not way of finishing programs. When I did that, the programnormal
was . Usually Python gives you an error message when you do that. When a programinterrupted
is interrupted that means it doesn’t do anything else: it doesn’t write our orders to the file, it
doesn’t close the file. Pressing is a bad way to finish a program."CONTROLC

Simon paused for bit and continued: "We should give the user a way of finishing ournormal
program."

"Like Exit in the menu in Word?"

"Yes, like that. Let’s tell the user that if they want to exit they should enter 'X' and only 'X' when
asked about their name. The probability that we’ll have a customer with a real full name 'X' is
very low. Almost zero, actually. So let’s do this: if in the function the customerget_order()

enters name 'X,' then we don’t ask any other questions and return an empty order, like this:

orders = load_orders("orders.json")
main_menu(orders)
save_orders(orders, "orders.json")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

123

https://livebook.manning.com/#!/book/lets-talk-python/discussion

. Then this order goes to the function and it decides: if the order isorder = {} main_menu()

empty, it will save the order into the file and exit. If it’s not empty, it will add the order to the list
and continue working. Let’s draw a diagram."

"This will be our updated function. Let me help you write it," and Simon tookget_order()

Erik’s keyboard and started editing the function.get_order()

"Why did you check both 'X' and 'x'? You told the user to type 'X' so they should type capital 'X',
right?" Erik asked.

"Users usually don’t bother pressing the Shift key. They may enter either 'X' or 'x'. So we should
check both. The rest of the function should be clear to you—I just followed the diagram we

def get_order():
 order = {}
 name = input("Enter your name or enter 'X' to exit: ")
 if name == "X" or name == "x":
 return {}
 else:
 order["name"] = name
 drinks = read_menu("drinks.txt")
 flavors = read_menu("flavors.txt")
 toppings = read_menu("toppings.txt")
 order["drink"] = menu(drinks, "Erik's drinks", "Choose your drink: ")
 order["flavor"] = menu(flavors, "Erik's flavors", "Choose your flavor: ")
 order["topping"] = menu(toppings, "Erik's toppings", "Choose your topping: ")
 return order

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

124

https://livebook.manning.com/#!/book/lets-talk-python/discussion

created together."

"Now for the main menu," Simon continued. "Here is another diagram," and he started drawing.

"As we discussed, if returns an empty order, we exit from the main menu. Afterget_order()

that our program saves the orders in the file." Simon edited the function to themain_menu()

following:

def main_menu(orders):
 while True:
 order = get_order()
 if order == {}:
 print("You entered 'X', exiting...")
 return
 print("Check your order:")
 print_order(order)
 confirm = input("Confirm? Press Y to confirm, N to cancel, X to finish: ")
 if confirm == "Y" or confirm == "y":
 orders.append(order)
 print("Thanks for your order:")
 print_order(order)
 elif confirm == "X" or confirm == "x":
 return
 else:
 continue

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

125

https://livebook.manning.com/#!/book/lets-talk-python/discussion

YOUR TURN Edit the main menu function

Edit the main menu function similar to what Simon did. If you need help, the
full program text for this chapter is here

"And this is it," Simon said. "Let’s test it. Just enter a different name this time so you will see
that it was added to the JSON file."

Erik started the program. He answered "Jason" when the program asked about his name. He
entered the rest of his order and typed "Y" to confirm the order. The program asked for his name
again.

"Now let’s enter 'x' and see if it exits properly," Simon suggested.

Erik typed 'x' and pressed .ENTER

You entered 'X', exiting… the program said and returned to the familiar Python>>>

prompt.

"Now check the file," Simon said.orders.json

Erik started and opened the JSON file. Right at the bottom of the file he found hisTextEdit
recent order from 'Jason'.

"It worked!" he said. "It saved all the orders in the file and now I can see them all!"

"Yes, you can," Simon said and smiled. He was happy to see a complete working program that
took orders, stored them in the file, and was written by his little brother!

"Congratulations, Erik!" Simon said. "I think now you can say that you created a real application.
Look, it has input and output. It has data structures and algorithms. It checks for errors. It has
data storage. And most importantly: it works and it’s very useful—it collects orders. I am
absolutely serious: it a good program and I am very proud of you."

As usual, Simon drew a diagram of what he called a program.real

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

126

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, I like my program too," Erik said. "It does what I want, and it looks good. It prints orders
almost the same way I saw it in Starbucks. Yes, almost… Maybe I can add a couple of lines or
stars to make it better. I have some other ideas about what to add to this program."

"What else do you want to add?" Simon asked.

"First of all, I want to make it a web application. You know, with menus and buttons. It it should
be online so I could take my iPad with me and use it."

"Great idea!" Simon said. "Let’s start working on it next week. I have a couple of ideas too," and
he smiled.

"Why are you smiling?" Erik asked.

"I remembered how you thought you were done with the program after our first day."

"Ha, yes, I remember that too," Erik said. "Of course, the program was not quite ready then.
What are you other ideas?"

Simon said: "I would add a couple of things to our data structure. For example, we can add the
date and time when the order was made. That way we’ll be able to see how many customers we
served each day or each month."

"Yes, I think that will be good," Erik agreed.

"Then, maybe we should save orders in the data storage right after they are entered. That will
make sure we keep all the previous orders even if the program fails and crashes."

"But you said it will make it slower," Erik remembered.

"Just a tiny bit. But it’s worth it—otherwise we risk losing all our orders. I am thinking about
©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/lets-talk-python/discussion

127

https://livebook.manning.com/#!/book/lets-talk-python/discussion

using a database for that."

"Also," Simon continued, "we need functions like 'print all orders' and 'count how many portions
of vanilla flavor we used'. If we want to make your program a real business application."

"Of course, I want it," Erik said. "But first I want to make it a web application and make it
beautiful."

"Sure, we can start working on it next week."

NOTE To the reader
In the following chapters of this book we’ll continue Erik and Simon’s journey
and develop a web application with them.

If you want to look at the other improvements that Simon suggested,
you’ll find them on the book companion site https://github.com/pavelanni/
lets-talk-python-book.

How to check if a file exists
We used the Python module for that and the method . You passos os.path.exists()

the file name and it returns or .True False

Pressing is not the right way to finish a programCONRTOLC
We use it when we want to stop a program that behaves abnormally. Good programs
should always give you a way to finish it normally.

What a real program is
We learned that real programs have input and output, data structures and algorithms, data
storage and error checking.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09

9.1 New things you have learned today

9.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

128

https://github.com/pavelanni/lets-talk-python-book
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch09
https://livebook.manning.com/#!/book/lets-talk-python/discussion

10
This chapter covers

"You said you wanted to create a web application?" Simon asked Erik the other day.

"Yes, sure!" Erik said. "Otherwise how could I use my program on my iPad?"

"Okay, but be prepared: it’s not an easy task. It will require all your attention. Maybe you won’t
completely understand we do here. But not to worry, I’ll help you when you need it."everything

"I know, you are a good brother," Erik said and there was almost no irony in the way he said it.

"We will use our good friend Mu Editor for our web application. It has a special mode for that.
Start the editor and click Mode in the top-left corner."

Erik did and saw this menu:

Learning Flask: Your first web application

Erik creates his first simple web application
Simon explains how Flask works (and what it is)
Emily and Erik work on a web form
The first coffee shop web-based menu is ready!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

129

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Scroll to the bottom," Simon said. "Find the Web mode and click it. Then click Ok."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

130

https://livebook.manning.com/#!/book/lets-talk-python/discussion

After Erik did that, Simon pointed to the bottom-right corner and said: "See this word 'Web' next
to the cogwheel? We switched to the Web mode. Now let’s see what we can do with it. Click
New."

Erik did and immediately Python code appeared in the editor window.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

131

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Interesting," he said. "Mu already wrote something for me. Can I run it?"

"Sure, go ahead. First you’ll have to save it. Call it 'first_app.py'."

Erik clicked Run, entered 'first_app.py' in the Save dialog and saw this output at the bottom of
the window.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

132

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"What is it?" he asked.

"This tells you that you first web application is running. See this message: 'Running on
. It means that you can go to your browser and enter this address: http://127.0.0.1:5000/'

. Sometimes this address is also called URL or Uniform Resourcehttp://127.0.0.1:5000/

Locator—you will hear this word all the time when working with web. Or just click the Browse

 Run button in the editor. Try and see what you’ve got."

Erik opened a new tab in his browser and entered the address. Here is what he saw:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

133

http://127.0.0.1:5000/'
http://127.0.0.1:5000/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Wait, is this all written by my editor?" he asked Simon.

"Yes, but look, Mu suggests that the rest you write yourself," Simon said and pointed to the code
example on the page. "Mu recommends you to copy the code from the first gray window to your
program. Go ahead and do it."

That was easy. Erik quickly copied the text and pasted it below the existing code.

"Now Mu tells you to create a new file," Simon continued, "copy the text from the second
window, and save it as a new file 'greeting.html'"

Erik knew how to do it. He clicked New in the Mu Editor, removed the program Mu put into it,
and copy-pasted the text from the second gray window. Then he clicked Save.

Simon helped him: "Use the drop-down menu to change from '*.py' to 'Other (*.*)', otherwise
Mu will think you are trying to save a Python program. We should tell it that this time it’s a
different type of file. In the 'Save As' field type ."greeting.html

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

134

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Now stop the program and run it again," Simon said. "Don’t forget to switch to the 'first_app.py'
tab."

Erik switched to the application tab, clicked Stop and Run again. He saw the same output at the
bottom of the window.

"Now go back to your browser and do what it suggests. Look, it says 'go visit /hello/yourname'
and tells you to use your own name. Go ahead, add in the address bar, right after /hello/Erik

."5000

Now it looked like real hacking. Erik entered what Simon suggested and pressed .ENTER

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

135

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Wow! It talks to me!" He was really impressed.

"It’s already program that talks to you," Simon said. "That was easy, huh?"your

"Wait," Erik said, "if we are going to work on this web stuff, I should call Emily. She told me
she learned HTML and this is what we need for web, right?"

"Absolutely correct," Simon agreed. "Go ahead, call her. It’s always good to work together."

YOUR TURN Create your first web application

Switch to the web mode in Mu Editor and create your first web application by
copying the example from the browser’s page, just like Erik did. Try to run it
with your name. Try other names. Show it to your friends and ask them to use
their names.

Emily lived nearby and she arrived in about 15 minutes, very excited about the project. She
asked immediately: "Erik, show me your HTML!"

Erik showed her the file and said: "Well, it’s not code, it’s from this Mugreeting.html my
Editor."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

136

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Wow, interesting," Emily said. "I’ve never seen these curly braces in HTML."

"Right," Simon said, "because this is not pure HTML, it’s a . We use the program calledtemplate
Flask here and it uses templates to generate HTML."

"I see," Emily said. "But I know these tags, and tags."<h1> <p>

"Tags? What are 'tags'?" Erik asked.

"Tags are these small pieces of code that you put in your text to change how it looks. Look here,
you place before 'Hello!' and after it and it looks larger. This is what in HTML is<h1> </h1>

called , like chapter headers."headers

"What about ?" Erik asked.<p>

"It means 'paragraph'," Emily explained. "In HTML you can write your text how you want: in
one long line, or in many short lines, or even one word per line. But if it has at the beginning<p>

and at the end, it will be one paragraph in the browser."</p>

"There are a lot of other tags," she continued. "You can make your text bold or italic, change
colors, and all that."

"Emily, do you know anything about HTML forms?" Simon asked.

"They told us in the class that we can create forms in HTML to enter text or use menus," Emily
answered. "But I haven’t tried them myself."

"Menus is what we want!" Erik exclaimed.

"I’ll help you," Simon said. "First we should use the mandatory HTML tags. We should always
have at the beginning of the file and at the end. Also we should use the <html> </html> <body>

tags around our text. Again, we use to the text and to close it. That’s why<body> open </body>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

137

https://livebook.manning.com/#!/book/lets-talk-python/discussion

the tags with slash are called tags."/ closing

Listing 10.1 templates/forms.html

"They are like brackets in a list in Python," Erik said. He wanted to show Emily that he knew
Python already.

"You are right," Simon confirmed. "These tags some text and explain its meaning. Someenclose
pieces of text are headers, some are paragraphs. But now we want to create a menu. For that
we’ll need a tag first and then a tag inside it. Let’s create a very simple<form> <select>

menu," and he started writing.

Listing 10.2 templates/forms.html

YOUR TURN Create your first web form

Create the file and save it under . Copy theforms.html mu_code/templates

preceding code and test it in your browser. Try to change the options; try to
add more options.

Simon finished writing, clicked Save, and saved the file as under the forms.html

 directory. "Look, how many elements enclosed in tags do you see here?mu_code/templates

Emily, you should be more familiar with that."

Emily started counting. "First, the tag, then the tag. Inside the body we have a <html> <body>

, then inside the form we have . It’s for the menu, correct? And then in the<form> <select>

'select' we have two elements."<option>

"Right. You did a great job, Emily," Simon said. "And also don’t forget the element<input>

that is a part of the 'form.' It doesn’t have a closing tag. It exists just by itself. We use it to create
the 'Submit' button."

<html>
<body>

</body>
</html>

<html>
<body>
<form>
 <select>
 <option>Coffee</option>
 <option>Decaf</option>
 </select>
 <input type="submit" value="Submit">
</form>
</body>
</html>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

138

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Let’s see how it looks like in the browser," Simon continued.

"Can you open in the browser?" Erik asked. "I thought browsers are only for web sites."files

"Of course, you can," Emily answered. "We did it all the time in our HTML class! You just use
the menu File in your browser, then Open File…, then find your file, and that’s it."

Erik did what Emily just said and opened the file . He saw a menu, very similar toforms.html

what he saw and used on many sites. He clicked the menu and it opened:

"I didn’t know that you can create forms so easily," Emily said.

"Yes, it’s pretty easy to create a simple form like this, but there are some missing parts," Simon
said.

"It looks good to me," Erik said. "What’s missing?"

"Yes, it good, but it doesn’t anything," Simon said. "We have to get data from the userlooks do
and then that data to the program. How can we pass the data?" Simon asked, and answeredpass
his own question. "We should use variables and values, very similar to Python. Let me add
something to this form."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

139

https://livebook.manning.com/#!/book/lets-talk-python/discussion

1.

2.

3.

Listing 10.3 templates/forms.html

Simon started his explanation.

"Look at the number (1)," Simon said. "Here we define the we want to returnvariable
from this menu. In this menu the variable is called .drink

"Now, on the line with number (2) and the line after it we define the this menuvalue
option will return. It’s very similar to what we did when we chose items from the text
menu, remember?"
"And in the line with number (3) I just added an option that tells the user what to do. This
option will show first in the menu and work as a prompt. As you can see, its value is
empty. If the user haven’t chosen a drink, we should tell them about it. You can’t prepare
their order without this information, can you?"

"Can I try it?" Erik asked.

"Of course, go ahead and open this file again. Or just reload it in the browser."

Erik reloaded the file, chose "Decaf" from the menu, clicked "Submit" and got this:

<html>
<body>
<form action="/order" method="post">
 <select name="drink">
 <option value="">- Choose drink -</option>
 <option value="coffee">Coffee</option>
 <option value="decaf">Decaf</option>
 </select>
 <input type="submit" value="Submit">
</form>
</body>
</html>

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

140

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"What’s that?" he asked, visibly puzzled.

"Oh, I forgot to tell you," Simon said. "Look, I changed the tag a little bit."form

Listing 10.4 templates/forms.html

"Each form should have an ," he started to explain. "Action is something that ouraction
application will do when the user submits the form. When the user made their choice—coffee or
decaf—they should this information to some function. That function should know what topass
do with this information: store it in the file or database, print the order, and such."

"Like what we did in our previous program?" Erik asked.

"You keep talking about your 'previous' program, can you show it to me?" Emily demanded.

"I’m sorry, Emily," Simon said. "I should have explained it earlier. We worked with Erik on a
program that collects orders in a coffee shop. Similar to Starbucks, where you can order a drink,
add flavors and toppings, and all that. Erik wrote a program that shows menus and asks the
customer what they want to order. When they choose their drinks, flavors, and toppings, the
program prints the order. But the program now works only in a terminal, in text mode. Erik
needs your help to convert it to a web application."

<form action="/order" method="post">

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

141

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"I see now," Emily said. "This sounds like a cool project! I hope Erik will teach me Python too."

"Of course," Simon said. "Teaching somebody is the best way to learn."

"Back to our form," he continued. "That attribute tells the browser: 'After the useraction

submits the form, open this address and pass the information from the form there. In our case the
address is called . Don’t worry, it only sounds scary, I’ll show you what to do with it,"/order

Simon added because he noticed the confusion on Emily and Erik’s faces.

"I still don’t understand," Erik asked. "Where is this address that you are talking about?"

"Look at your first application," Simon said. "See this function?" "This function wasgreet

written by the Mu Editor for us—or, rather, its authors," Simon said. "You see now the familiar
function definition that’s starting with , but also, right above it, you can see something new: def

. In Python it’s called , but we are not going to learn@app.route('/hello/<name>') decorator
about decortators today.

Listing 10.5 first_app.py

What’s important for us today is that you can use it to tell your program which function to use
for which address."

"Ah-ha, the address is that that I entered in the browser, I see now!" Erik said./hello/Erik

"Let’s show Emily how it works," and he opened the tab with the script in thefirst_app.py

editor, clicked Run and then Browse. His browser opened a page with greetings from Mu.

"Emily, look, I can type the address here, right after these numbers: and look127.0.0.1:5000

what it shows us!" Erik typed: , pressed and the browser showed:/hello/Emily ENTER

@app.route('/hello/<name>')
def greet(name='Stranger'):
 return render_template("greeting.html", name=name)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

142

mailto:@app.route('/hello/
mailto:@app.route('/hello/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Wow, I like it!" Emily said. "Can I try?" and she changed "Emily" to "Erik". Of course, the
browser showed the page with "Hello Erik, how are you?"

"Interesting!" she said. "In our HTML class we could change pages, but we had to edit HTML.
This is much easier!"

"Right," Simon said, "this is what we call pages—pages that change depending on whatdynamic
you enter. You can enter your information in the address, like or you can use/hello/Emily

forms. Then the page will be using the information you entered. I’m sure, you’ve seengenerated
this kind of pages many times—for example when you enter a comment, or chat with someone
on the web. You click 'Submit' or just press and the page is updated, right? Now you willENTER

learn how to make such pages yourself."

"Let me show it on a diagram," he said and started drawing.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

143

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"This combination of letters and numbers at the top of your browser is called 'address' or 'URL'. I
marked it blue. Usually you see the site’s name here, like . In our case it usesgoogle.com

numbers called the site’s IP address. We use your own computer and for every computer in the
world the address means 'this computer.' But don’t worry about that now."127.0.0.1

Simon pointed to the first red circle around the word 'order' in the address and said: "This is what
we should care about. Look, it’s part of the address. When we open this address we see the form
with the drinks menu. When you click Submit," and he followed the arrow down his diagram,
"the form knows that it should find the function responsible for the address . You see, it’s/order

here, in the field.form action

And then," he followed the arrow up to the 'Python' block, "the form finds the Python function
that can work with it, because we used this decorator, . You see, these@app.route('/order')

three things are connected; you just have to use the same name in the address, in the form, and in
the Python program."

"I see that the function is also called 'order'--is it the fourth place where we use it?" Erik asked.

"You have a very sharp eye!" Simon said and smiled. "No, in this case, the function can have a
different name. I could call it 'new_order' or 'get_order'. But now we have to write the actual
function. I’ll help you here. It will look a bit scary, but don’t worry. I’m learning this Flask
system myself and usually I follow the online tutorial and take examples from there. Don’t think
that I remember all these things myself."

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

144

mailto:@app.route('/order
mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

And Simon wrote the function, looking at the example he kept opened in the browser. He added
numbers at the end of the lines to help him in his explanation.

"At the line with (1) you see two words: 'GET' and 'POST'. These are the that we usemethods
with web servers. We use GET when we want to get something from a web server, like a web
page. We use POST to some information to the web server. Like in this case—we want tosend
send or the drink chosen by the customer. Put it another way: when you load a page in thePOST

browser—you use GET; when you click Submit in your form—you use POST. You will
understand it better when we start using it, don’t worry.

"And here, at the line with number (2), we start using one of the words. Look what it says: if the
method is --which means somebody filled the form and clicked Submit—we read thePOST

information they entered in the form and print it.

"Now look at the number (3). Remember in the form we used ? This is<select name="drink">

the name we use here, in the squaare brackets. Later we’ll add other menus—for flavors and
toppings. In the form they will have names like 'flavor' and 'topping'. Here in the code we’ll use
them as and ."request.form['flavor'] request.form['topping']

"Under number (4) we just print whatever we receeived from the form. You will see it in the
editor.

"In the line with number (5) we tell our web server to print this page with the menu. It’s like a
menu loop that we used in our program before—you get the information from the customer, print
it out and return to the menu to get another order. And you repeat this loop until you are done
entering orders."

Listing 10.6 first_app.py

Methods that we are going to use with this form

Method means we are submitting informationPOST

We get the customer choice from the form’s field called drink

Print the choice we’ve received

Display the template forms.html

"Let me add one more thing," Simon said and added to the first line with . "Thisrequest import

@app.route('/order', methods=('GET', 'POST'))
def order():
 if request.method == 'POST':
 drink = request.form['drink']
 print("Drink: ", drink)

 return render_template("forms.html")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

145

mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

module called is a part of Flask. If we use it we have to import it." Now the first linerequest

looked like this:

YOUR TURN Write your own functionorder()

Add the function from above to your program. Don’torder() first_app.py

forget to change the line. Try to run it. Open a new tab in the browserimport

and use the address. If you are havinghttp://127.0.0.1:5000/order

problems, continue reading and follow what Emily and Erik are doing.

"Can I run it now?" Erik asked. He was a bit tired after such a long explanation. Emily, on the
other hand, listened to Simon’s explanations as if he was a wizard. She liked all this
programming magic and couldn’t wait to try the program.

"Can I run it?" Emily asked.

"Of course," Erik said. "Just click Save and then Run."

"Now click Browse," Simon said.

Emily did and the following page opened in a new browser tab.

"Now we have to add to the address, remember?" Simon helped her./order

Emily did and the address line in the browser became this: .http://127.0.0.1:5000/order

The page showed the menu they just created together.

from flask import Flask, render_template, request

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

146

http://127.0.0.1:5000/order
http://127.0.0.1:5000/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Go ahead, choose your drink and click Submit," Simon said.

Emily chose Decaf and clicked Submit. She’s got the same page with the 'Choose drink' menu.

"Did it work?" she asked. She looked confused.

"Let’s check," Simon said. "Go back to the editor. Look at the bottom window."

"Do you see this line: ? It’s what our program is printing," Simon said. "ThatDrink: decaf

means it works!"

"But I thought," Emily said, "that it would print the order on the page."

"It will, trust me," Simon said. "We haven’t written that part yet. We are getting there, right
now."

He took the keyboard and changed the file by adding one line after the first_app.py print()

line. Simone explained: "When we first open the address in the browser that means we/order

use the method. We want to the page first, right? We don’t have anything to yet. InGET get POST

that case we use the template that displays our drink menu. But after we haveforms.html

chosen a drink and clicked Submit we use the method. We want to this information toPOST send

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

147

https://livebook.manning.com/#!/book/lets-talk-python/discussion

the program. And in that case we collect the data from the form—the drink choice—and use
 template. I called it because we want to print the order."another print.html

The function now looked like this:order()

"But we don’t have a file called ," Emily said.print.html

"Right, I am going to create it right now," and Simon created another file in the editor and saved
it as under .print.html templates

Emily looked at his code and said: "Oh, this I can understand! You print the header 'Thanks for
your order' and then you open a new paragraph and print 'Your drink' and then in you printbold
the drink itself. And this in double curly braces works the same way it worked with mydrink

name when it printed 'Hello Emily', right?"

"Exactly right!" exclaimed Simon. "You are absolutely correct, Emily!"

Listing 10.7 templates/print.html

YOUR TURN Edit your web form to print the drink choice on the page

Copy the template above into your file. Feel free to change theprint.html

title and the text. Change the by adding the line with first_app.py return

and save it too. Try to run your program.

"Can I try it?" Emily asked.

"Sure, go ahead and click Run," Simon said.

Emily clicked Run, chose "Coffee" from the menu and saw this page:

@app.route('/order', methods=('GET', 'POST'))
def order():
 if request.method == 'POST':
 drink = request.form['drink']
 print("Drink: ", drink)
 return render_template("print.html", drink=drink)

 return render_template("forms.html")

{% extends "base.html" %}
{% block content %}
<h1>Thanks for your order!</h1>
<p>Your drink: {{drink}}</p>
{% endblock %}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

148

mailto:@app.route('/order
https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yeah, it works!" she exclaimed.

"It’s like calling the function in our previous program," Erik said.print_order()

"Yes, exactly!" Simon said.

"But how do I get back to the order page?" Erik asked.

"You see, the address in the browser is still pointing to . That means if you click the/order

address line with mouse and press you’ll reload the order page. Just don’t click the reloadENTER

button or it will create another order."

Emily did what Simon said and saw the order page again.

"But there is a better way," Simon said. "You were looking for a button on the print page, like
Back to the order page, weren’t you?"

"Yes, that would be easier," Emily agreed.

"We can use another form for that," Simon said. "It will be very simple," and he added several
lines to the file.templates/print.html

"Look, we created another form that has only the Submit button. We just renamed it to 'New
order'. Look, it points to in its field. That means when we click the 'New order'/order action

button it will send us to the page. And it will show the drink menu again. Try it!"/order

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

149

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Listing 10.8 templates/print.html

Emily did and after she clicked Submit she saw a page with the new button.

She clicked the button and got back to the order page.

Erik noted: "It’s like our main menu with a loop. Order, then confirm, then print, then back to the
order menu."

"You are right!" Simon confirmed. "Let me show on a diagram."

{% extends "base.html" %}
{% block content %}
<h1>Thanks for your order!</h1>
<p>Your drink: {{drink}}</p>

<form action="/order">
<input type="submit" value="New order" />
</form>
{% endblock %}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

150

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Look at the diagram. Step one: you choose Decaf from the menu. This assigns the value decaf
to the variable in the form."drink

"Step two: that value is passed to our Python program via . Now thedecaf request.form

variable in the Python program has the value ."drink decaf

"Step three: we pass the value of variable from Python—which is --to the variable drink decaf

 in the template ."drink print.html

"Step four: we call with the variable which is replaced with itsrender_template() drink

value, . And now is printed on the web page."decaf decaf

"Finally, step five: we click 'New order' and return to the order page."

YOUR TURN Change the templateprint.html

Add the 'New order' button to the template. Test it.templates/print.html

Can you return to the order page?

"Emily and Erik, you did a great job today," Simon said. "Most importantly, you didn’t fall
asleep during all those long explanations."

"I almost did," Erik said.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

151

https://livebook.manning.com/#!/book/lets-talk-python/discussion

"Yes, I noticed," Simon smiled. "But seriously, creating web applications is 10 times more
difficult than working on text menus and dialogues. I admire your patience!"

"But it was worth it," Emily said. "The program works now!"

"We also need to add flavors and toppings," Erik said.

"Right!" Simon exclaimed. "We have to create all the menus but in the web form. I’m pretty sure
Emily will help you with that."

"Sure," Emily said, "looks like we need to add more forms to the template. Erik, will youselect

show me your previous program? We can start working on the web application tomorrow."

"Of course," Erik said. "Let’s get together tomorrow and work on that."

"I’ll be happy to help," Simon said. "Please let me know when you start."

Web mode in Mu Editor
In addition to the standard Python mode Mu editor also has a web mode. It has a simple
web application example.
HTML Forms
This is a way to get information from users into a web application. We can have menus,
text fields, buttons. When we click Submit, the form sends information to a special
address configured in the field. From that address the information can beaction

processed by a program.
Flask
A program to help us create web applications. It is being developed by the Open Source
community, it has good tutorials and examples. It is used by many online sites and web
applications.

You can f i nd the code fo r t h i s chap te r he re :
https://github.com/pavelanni/lets-talk-python-book/tree/main/ch10

10.1 New things you have learned today

10.2 Code for this chapter

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

152

https://github.com/pavelanni/lets-talk-python-book/tree/main/ch10
https://livebook.manning.com/#!/book/lets-talk-python/discussion

A
Creating a coffee shop application doesn’t look very attractive to you? Create something else!
All programming ideas and methods we discuss in this book are applicable to a lot of other
projects. Just look around and you’ll get ideas for other applications.

For example:

This should be very similar to what we do with the coffee shop application. Look—we ask the
customer:

What is their main drink?
What is the flavor they want?
What is the topping?

We give the customer a list of options for each question and the customer chooses from the
menu.

What should we ask the customer in a pizza place?

What kind of crust do you want? Thin or thick?
What size? Small, medium, or large?
Which sauce do you want? Red or white?
What kind of pizza do you want? Margherita, pepperoni, veggie,… Go to your favorite
pizza place and see what they have.
What additional topping do you want to add?

Go to your favorite ice cream shop and watch how they prepare your order. What do they ask
you? What are the options they give you? Those will be in your application’s menus.

Ideas for your first application

A.1 Pizza place

A.2 Ice cream shop

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

153

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Most likely they ask:

What type of cone? Sugar, waffle, cake?
How many scoops?
Which flavors?
Any topping?

Here it’s becoming slightly different from what we did for the coffee shop. After you asked "
" you have to ask about the flavor. Think about it: howHow many scoops? that many times

would you do it in Python?

Hint: there is a function in Python that can be used in a loop. We used it in ourrange() for

menus. Try to use it to ask about the ice cream flavor the exact number of times.

You have a good collection of LEGO minifigures and their parts. You want to helm your friends
to build something new. What questions are you going to ask them and what options will you
give them?

Choose the head: smiley face, sunglasses face, face with a beard,…
Choose the headwear: dark hair, blond hair, hard hat, police hat,…
Choose the torso: mechanic, police officer, shirt with tie, t-shirt,…
Choose the legs: blue jeans, green shorts, brown cargo pants,…
Choose the accessory: a sword, a radio, a hammer, a magnifying glass,…

You can add special conditions to your application. For example if your friend have chosen a
police hat then they can’t choose a baseball bat as an accessory. Think about adding this
condition to your menus.

What about choosing parts at random? That might create some funny minifigures. How would
you add a random option to your menu? How would you implement it?

Hint: there is a module called in Python. You should import it with the statementrandom import

in the beginning of your script and use the function . That function works like this: youchoice()

give it a list of choices and it chooses randomly one of them. Next time you call it the function
randomly chooses something else (or, maybe, the same item—it’s random!). For example, create
this short script and run it. In this script we ask Python 5 times to choose randomly an item from
the list of three types of hair.

A.3 LEGO minifigures®

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

154

https://livebook.manning.com/#!/book/lets-talk-python/discussion

Listing A.1 choice.py

Run this script and you’ll see something like this:

Of course, in your case the list will be different and will have 5 random choices in differentother
order.

Do you have other project ideas? Please share them in the liveBook forum:
.https://livebook.manning.com/book/lets-talk-python/discussion

A.4 Other project ideas

import random

for _ in range(5):
 print(random.choice(["dark hair", "blond hair", "red hair"]))

blond hair
red hair
blond hair
blond hair
dark hair

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

155

https://livebook.manning.com/book/lets-talk-python/discussion
https://livebook.manning.com/#!/book/lets-talk-python/discussion

B
In this Appendix we’ll explain how to install Python on your computer. The easiest way is to
install a programming editor that contains Python in it. We recommend to install Mu Editor. We
use it in this book so it will be easier to follow the book’s dialogues and instructions.

We’ll also give you links to other ways to install Python—feel free to try them too.

How to install Mu Editor and
Python environment

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

156

https://livebook.manning.com/#!/book/lets-talk-python/discussion

1.

2.

In your web browser open the Mu Editor’s web page: .https://codewith.mu/

Click Download (the green button), You will see the following page:

B.1 Mu Editor

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

157

https://codewith.mu/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

2.

3.

4.
5.

Click Download for your operating system. You browser will download the installation
file for your operating system.

For Windows it will bedownload the installation file for your operating system.
For Windows it will be an file..msi

For macOS it will be a file..dmg

For Linux it will be an file..AppImage

Click Instructions for your operating system and follow the instructions.
Open Mu Editor as you normally open applications in your operating system. You are
ready to work on your project!

You can also use Mu Editor to program microcontrollers and build robots, but it’s a topic for
another book.

Thonny is another great Python editor created with beginners in mind. You can find it here:
https://thonny.org/

Right on the first page you’ll find the installers for Windows, macOS, and Linux. For Windows
download the file and run it. For macOS download the file and install it. For Linux.exe .pkg

run the script provided in the instructions.

B.2 Thonny

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

158

https://thonny.org/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

After you installed the application start it and expore its settings. You can choose color theme
from a dozen of options, editor and terminal fonts, and many other things.

Thonny has a very helpful feature called Assistant. In the Options menu you can configure it to
start each time when there is a warning in your code. Also it starts when your program shows an
error. Assistant gives you several suggestions on what could be wrong with your code. Try to
make a minor mistake in your code (a typo in a variable name, for example), then run the
program and you will see Assistant in action.

Both editors described above include Python in their installation packages. But for some reason
you may want to install Python separately.

B.3 Python

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

159

https://livebook.manning.com/#!/book/lets-talk-python/discussion

If you are on macOS or Linux, your operating system already have Python installed. Most likely
it is not the latest version of Python, but it’s not a problem at all: all programs we develop in this
book will work with Python versions starting from 3.5. No need to install anything on these
operating systems—at least not for this book.

If you are on Windows you will have to go to the official Python site:
 and download the installer from there.https://www.python.org/downloads/windows/

Please read the notes carefully (see the screenshot below) and choose the right Python version
for your Windows version.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

160

https://www.python.org/downloads/windows/
https://livebook.manning.com/#!/book/lets-talk-python/discussion

Another way to install Python on Windows is to open a PowerShell window and type .python

Windows will suggest to install the right version of Python. You just have to accept it.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/lets-talk-python/discussion

161

https://livebook.manning.com/#!/book/lets-talk-python/discussion

	Let's Talk Python MEAP V02
	Copyright
	welcome
	brief contents
	Chapter 1: Coffee for friends: first steps
	1.1 A Great Idea
	1.2 First things first: installation
	1.3 How to talk to a computer
	1.4 What is a program?
	1.5 New terms we have learned today
	1.6 Code for this chapter

	Chapter 2: Lists: What’s on the menu?
	2.1 New things you have learned today
	2.2 Code for this chapter

	Chapter 3: Functions: Don’t repeat yourself!
	3.1 New things you have learned today
	3.2 Code for this chapter

	Chapter 4: User errors: Everybody makes mistakes
	4.1 If your user doesn’t do what you expected
	4.2 New things you have learned today
	4.3 Code for this chapter

	Chapter 5: Working with files: Being a shop manager
	5.1 New things you have learned today
	5.2 Code for this chapter

	Chapter 6: Main menu: Next customer!
	6.1 New things you have learned today
	6.2 Code for this chapter

	Chapter 7: Creating functions: Get the order and print it
	7.1 What are your choices?
	7.2 Print it!
	7.3 New things you have learned today
	7.4 Code for this chapter

	Chapter 8: Working with JSON: Save the order
	8.1 New things you have learned today
	8.2 Code for this chapter

	Chapter 9: Complete the menu: A real program
	9.1 New things you have learned today
	9.2 Code for this chapter

	Chapter 10: Learning Flask: Your first web application
	10.1 New things you have learned today
	10.2 Code for this chapter

	Appendix A: Ideas for your first application
	A.1 Pizza place
	A.2 Ice cream shop
	A.3 LEGO® minifigures
	A.4 Other project ideas

	Appendix B: How to install Mu Editor and Python environment
	B.1 Mu Editor
	B.2 Thonny
	B.3 Python

