
Lecture Notes in Computer Science 1608
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

S. Doaitse Swierstra Pedro R. Henriques
José N. Oliveira (Eds.)

Advanced
Functional Programming

Third International School, AFP’98
Braga, Portugal, September 12-19, 1998
Revised Lectures

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

S. Doaitse Swierstra
Utrecht University, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
E-mail: doaitse@cs.uu.nl

Pedro R. Henriques
José N. Oliveira
University of Minho, Department of Informatics
Campus de Gualtar, 4709 Braga Codex, Portugal
E-mail: {prh,jno}@di.uminho.pt

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advanced functional programming : third international school ;
revised lectures / AFP’98, Braga, Portugal, September 12 - 19, 1998.
S. Doaitse Swierstra ... (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo
: Springer, 1999

(Lecture notes in computer science ; Vol. 1608)
ISBN 3-540-66241-3

CR Subject Classification (1998): D.1.1, D.3.2, D.2.2, D.2.10

ISSN 0302-9743
ISBN 3-540-66241-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10704973 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

V

Preface

In this volume you will find the lecture notes corresponding to the presen-
tations given at the 3rd summer school on Advanced Functional Programming,
held in Braga, Portugal from September 12–19, 1998.
This school was preceded by earlier ones in B̊astad (1995, Sweden, LNCS 925)

and Olympia, WA (1996, USA, LNCS 1129). The goal of this series of schools is
to bring recent developments in the area of functional programming to a large
group of students. The notes are published in order to enable individuals, small
study groups, and lecturers to become acquainted with recent work in the fast
developing area of functional programming.
What made this school particularly interesting was the fact that all lectures

introduced useful software, that was used by the students in the classes to get
hands-on experience with the subjects taught. We urge readers of this volume to
download the latest version of this software from the Internet and try to do the
exercises from the text themselves; the proof of the program is in the typing.
The first lecture, on Sorting Morphisms, serves as a gentle introduction to the

things to come. If you have always been afraid of the word “morphism”, and you
have been wondering what catamorphisms, anamorphisms, hylomorphims, and
paramorphims were about, this is the paper to read first; you will discover that
they are merely names for recursion patterns that occur over and over again when
writing functional programs. The algorithms in the paper are all about sorting,
and since you are likely to know those algorithms by heart already, seeing them
structured and analyzed in a novel way should serve as a motivation to read on
to the second lecture.
The second lecture, on Generic Programming, is almost a book in a book.

The notes can be seen as the culminating point of the STOP-project, sponsored
by the Dutch government at the end of the 80’s and the beginning of the 90’s. Its
overall goal was the development of a calculational way of deriving programs. The
project has provided deeper insight into real functional programming and into
the theory behind many things commonly written by functional programmers.
One of the main achievements of the project has been to make people aware
of the fact that many algorithms can be described in a data-independent way.
The PolyP system introduced in these notes is one of the translations to the
Haskell-world of this theoretical underpinning.
The third lecture, on Generic Program Transformation, can also be seen as

an application of the theory introduced in lecture two. Many efficiency-improving
program transformations can be performed in a mechanical way, and these would
not have been possible without insight into the correctness of such transforma-
tions gained in the lecture on Generic Programming.
The fourth lecture, on Designing and Implementing Combinator Languages,

introduces an easy to write formalism for writing down the catamorphisms intro-
duced in earlier chapters. It is shown how quite complicated catamorphisms, that
at first sight seem rather forbidding by making extensive use of higher-order do-

VI Preface

mains, can actually be developed in a step-wise fashion, using an attribute gram-
mar view; it is furthermore shown how to relate this way of programming with
concepts from the object-oriented world thus making clear what the strengths
and weaknesses of each world are.
The fifth lecture, titled Using MetaML: A Staged Programming Language,

introduces the concept of partial evaluation. It serves as another instance of
the quest for “the most generic of writing programs at the lowest cost”. The
staging techniques show how costs that were introduced by adding extra levels
of abstraction, may be moved from run-time to compile-time.
It has been common knowledge to users of modern functional languages that

the type system can be a great help in shortening programs and reducing errors.
In the extreme one might see a type as a predicate capturing the properties
of any expression with that type. In the sixth lecture on Cayenne – Spice up
your Programming with Dependent Types it is shown in what direction functional
languages are most likely to develop, and what may be expected of the new type
systems to be introduced.
The last lecture, titled Haskell as an Automation Controller, shows that

writing functional programs does not have to imply that one is bound to remain
isolated from the rest of the world. Being able to communicate with software
written by others in a uniform way, is probably one of the most interesting
new developments in current computer science. It appears that the concept of a
monad together with the Haskell typing rules, is quite adequate to describe the
interface between Haskell programs and the outer world.
Finally we want to thank everyone who contributed to this school and made

it such a successful event: sponsors, local system managers, local organizers,
students, and last but not least the lecturers. We are convinced that everyone
present at the school enjoyed this event as much as we did, and we all hope that
you will feel some of the spirit of this event when studying these lecture notes.

March 1999 Doaitse Swierstra
Pedro Henriques
José Oliveira

VII

Sponsorship

The school has received generous sponsorship from:
FCT - Fundação para a Ciência e Tecnologia, Ministério da Ciência e
Tecnologia

Adega Cooperativa de Ponte de Lima
Agência Abreu
CGD - Caixa Geral de Depósitos
CIUM - Centro de Informática da Universidade do Minho
DI - Departamento de Informática da Universidade do Minho
GEPL - Grupo de Especificação e Processamento de Linguagens
LESI - Direcção de Curso de Engenharia de Sistemas e Informática
Enabler
Lactolima
Latićınios das Marinhas, Lda
Novabase Porto - Sistemas de Informação SA
Primavera Software
Projecto Camila - Grupo de Métodos Formais
Sidereus - Sistemas de Informação e Consultoria Informática Lda
SIBS - Sociedade Interbancária de Serviços
Vieira de Castro

Local Committee:

José Almeida, Minho
Lúıs Barbosa, Minho
José Barros, Minho
M. João Frade, Minho
Pedro Henriques, Minho
F. Mário Martins, Minho
F. Luis Neves, Minho
Carla Oliveira, Minho
Jorge Pinto, Lix
Jorge Rocha, Minho
Cesar Rodrigues, Minho
João Saraiva, Minho
M. João Varanda, Minho

IX

Table of Contents

Sorting Morphisms . 1
Lex Augusteijn

1 Introduction . 1
2 Morphisms on Lists . 2
2.1 The List Catamorphism . 2
2.2 The List Anamorphism . 4
2.3 The List Hylomorphism . 5
2.4 Insertion Sort . 6
2.5 Selection Sorts . 7

3 Leaf Trees . 9
3.1 The Leaf-Tree Catamorphism . 9
3.2 The Leaf-Tree Anamorphism . 10
3.3 The Leaf-Tree Hylomorphism . 11
3.4 Merge Sort . 12

4 Binary Trees . 13
4.1 The Tree Catamorphism . 13
4.2 The Tree Anamorphism . 14
4.3 The Tree Hylomorphism . 14
4.4 Quicksort . 15
4.5 Heap Sort . 16

5 Paramorphisms . 18
5.1 The List Paramorphism . 18
5.2 Insert As Paramorphism . 18
5.3 Remove As Paramorphism . 19

6 Generalizing Data Structures . 20
6.1 Generalizing Quicksort . 20
6.2 Generalizing Heap Sort . 21

7 Conclusions . 23

Generic Programming – An Introduction – . 28
Roland Backhouse, Patrik Jansson, Johan Jeuring, Lambert Meertens

1 Introduction . 28
1.1 The Abstraction-Specialisation Cycle . 28
1.2 Genericity in Programming Languages . 29
1.3 Path Problems . 30
1.4 The Plan . 33
1.5 Why Generic Programming? . 35

2 Algebras, Functors and Datatypes . 36
2.1 Algebras and Homomorphisms . 36
2.2 Functors . 43

X Table of Contents

2.3 Polynomial Functors . 46
2.4 Datatypes Generically . 54
2.5 A Simple Polytypic Program . 67

3 PolyP . 68
3.1 Regular Functors in PolyP . 69
3.2 An Example: psum . 70
3.3 Basic Polytypic Functions . 72
3.4 Type Checking Polytypic Functions . 73
3.5 More Examples of Polytypic Functions . 75
3.6 PolyLib: A Library of Polytypic Functions . 76

4 Generic Unification . 83
4.1 Monads and Terms . 85
4.2 Generic Unification . 89

5 From Functions to Relations . 94
5.1 Why Relations? . 94
5.2 Parametric Polymorphism . 95
5.3 Relators . 99
5.4 Occurs-In . 101

6 Solutions to Exercises . 104

Generic Program Transformation . 116
Oege de Moor and Ganesh Sittampalam

1 Introduction . 116
2 Abstraction versus Efficiency . 117
2.1 Minimum Depth of a Tree . 117
2.2 Decorating a Tree . 118
2.3 Partitioning a List . 119

3 Automating the Transition: Fusion and Higher Order Rewriting 120
4 The MAG System . 125
4.1 Getting Acquainted . 125
4.2 Accumulation Parameters . 128
4.3 Tupling . 131
4.4 Carrying On . 133

5 Matching Typed λ-Expressions . 134
5.1 Types . 134
5.2 Expressions . 135
5.3 Substitutions . 138
5.4 Matching . 138

6 Concluding Remarks . 140
7 Answers to Exercises . 143

Designing and Implementing Combinator Languages . 150
S. Doaitse Swierstra, Pablo R. Azero Alcocer, João Saraiva

1 Introduction . 150
1.1 Defining Languages . 150
1.2 Extending Languages . 151

Table of Contents XI

1.3 Embedding Languages . 151
1.4 Overview . 152

2 Compositional Programs . 153
2.1 The Rep Min Problem . 153
2.2 Table Formatting . 159
2.3 Defining Catamorphisms . 170
2.4 Discussion . 175

3 Attribute Grammars . 177
3.1 The Rep Min Problem . 177
3.2 The Table Formatting Problem . 181
3.3 Comparison with Monadic Approach . 184

4 Pretty Printing . 185
4.1 The General Approach . 187
4.2 Improving Filtering . 188
4.3 Loss of Sharing in Computations . 193
4.4 Discussion . 196

5 Strictification . 201
5.1 Introduction . 201
5.2 Pretty Printing Combinators Strictified . 201

6 Conclusions . 203

Using MetaML: A Staged Programming Language . 207
Tim Sheard

1 Why Staging? . 207
2 Relationship to Other Paradigms . 210
3 Introducing MetaML . 211
3.1 The Bracket Operator: Building Pieces of Code 212
3.2 The Escape Operator: Composing Pieces of Code 213
3.3 The run Operator: Executing User-Constructed Code 214
3.4 The lift Operator: Another Way to Build Code 215
3.5 Lexical Capture of Free Variables: Constant Pieces of Code 216

4 Pattern Matching Against Code . 217
5 A Staged Term Rewriting System . 218
6 Safe Reductions under Brackets . 222
6.1 Safe-Beta . 222
6.2 Safe-Eta . 222
6.3 Safe-Let-Hoisting . 223

7 Non-standard Extensions . 223
7.1 Higher Order Type Constructors . 223
7.2 Local Polymorphism . 224
7.3 Monads . 225
7.4 Monads in MetaML . 226
7.5 An Example Monad . 226
7.6 Safe Monad-Law-Normalization Inside Brackets 227

8 From Interpetors to Compilers Using Staging . 228
8.1 The While-Language . 228

XII Table of Contents

8.2 The Structure of the Solution . 229
8.3 Step 1: Monadic Interpreter . 231
8.4 Step 2: Staged Interpreter . 233

9 Typing Staged Programs . 236
9.1 Type Questions Still to be Addressed . 236

10 Conclusion . 238
11 Exercises . 238

Cayenne — A Language with Dependent Types . 240
Lennart Augustsson

1 Introduction . 240
1.1 The Type of printf . 241
1.2 The Set “Package” . 242
1.3 The Eq Class . 243

2 Core Cayenne . 246
2.1 Functions . 246
2.2 Data Types . 247
2.3 Records . 248
2.4 The Type of Types . 248

3 Full Cayenne . 249
3.1 Hidden Arguments . 249
3.2 Syntactic Sugar . 250
3.3 Modules . 251

4 The Cayenne Type System . 252
4.1 Translucent Sums . 252
4.2 Typing and Evaluation Rules . 253
4.3 Type Checking . 254
4.4 Undecidability in Practice . 257

5 Cayenne as a Proof System . 258
6 Implementation . 258
6.1 Erasing Types . 258
6.2 Keeping Types . 260
6.3 The Current Implementation . 260

7 Related Work . 260
8 Future Work . 261
9 Acknowledgments . 261
A The Eq Class . 264
B The Tautology Function . 266

Haskell as an Automation Controller . 268
Daan Leijen, Erik Meijer, James Hook

1 Introduction . 268
2 Minuscule Introduction to Haskell . 269
3 Using COM Components . 270
3.1 MS Agents in Haskell . 271
3.2 Exercises . 273

Table of Contents XIII

4 Essential COM . 273
4.1 Interface Types . 274
4.2 Inheritance . 274
4.3 IDL . 275

5 Automation . 276
5.1 Using Automation . 276
5.2 Methods . 277
5.3 Properties . 277
5.4 HaskellDirect . 278
5.5 Exercises . 278

6 Advanced Automation . 278
6.1 Variants . 279
6.2 Optional Arguments . 279

7 Advanced Example . 280
7.1 Webster . 281
7.2 Exercises . 282

8 Interacting with other Languages . 282
8.1 The Script Server Interfaces . 283
8.2 Exporting Values from Haskell . 284
8.3 Visual Basic and Haskell . 285
8.4 Importing Values into Haskell . 286
8.5 Handling Events . 286
8.6 Exercises . 288

9 Conclusions . 288

Sorting Morphisms

Lex Augusteijn

Philips Research Laboratories, Eindhoven
lex@natlab.research.philips.com

Abstract. Sorting algorithms can be classified in many different ways.
The way presented here is by expressing the algorithms as functional
programs and to classify them by means of their recursion patterns. These
patterns on their turn can be classified as the natural recursion patterns
that destruct or construct a given data-type, the so called cata- and
anamorphisms respectively. We show that the selection of the recursion
pattern can be seen as the major design decision, in most cases leaving
no more room for more decisions in the design of the sorting algorithm.
It is also shown that the use of alternative data structures may lead to
new sorting algorithms.
This presentation also serves as a gentle, light-weight, introduction into
the various morphisms.

1 Introduction

In this paper we present several well known sorting algorithms, namely insertion
sort, straight selection sort, bubble sort, quick sort, heap sort and merge sort (see
e.g. [8,11]) in a non-standard way. We express the sorting algorithms as func-
tional programs that obey a certain pattern of recursion. We show that for each
of the sorting algorithms, the recursion patterns forms the major design decision,
often leaving no more space for additional decisions to be taken. We make these
recursion patterns explicit in the form of higher-order functions, much like the
well-known map function on lists.
A different approach to the classification of sorting algorithms can be found in
[3], where formal specifications of sorting functions are made more and more
specific in a step-wise fashion, thus deriving the structure of merge sort, quick
sort, insertion sort and selection sort.
In order to reason about recursion patterns, we need to formalize that notion.
Such a formalization is already available, based on a category theoretical mod-
eling of recursive data types as can e.g. be found in [4,9]. In [2] this theory is
presented together with its application to many algorithms, including selection
sort and quicksort. These algorithms can be understood however only after ab-
sorbing the underlying category theory. There is no need to present that theory
here. The results that we need can be understood by anyone having some basic
knowledge of functional programming, hence we repeat only the main results
here. These results show how to each recursive data type a number of mor-
phisms is related, each capturing some pattern of recursion which involve the

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 1–27, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

2 Lex Augusteijn

recursive structure of the data type. Of these morphisms, we use the so called
catamorphism, anamorphism, hylomorphism and paramorphism on linear lists
and binary trees. The value of this approach is not so much in obtaining a nice
implementation of some algorithm, but in unraveling its structure.
This presentation gives the opportunity to introduce the various morphisms in
a simple way, namely as patterns of recursion that are useful in functional pro-
gramming, instead of the usual approach via category theory, which tends to be
needlessly intimida ting for the average programmer.
In this paper, we assume that all sorting operations transform a list l into a list
s that is a permutation of l, such that the elements of s are ascending w.r.t. to
a total ordering relation <. Moreover, we assume the existence of an equivalence
relation == on the elements, such that for all elements a, b, either a<b, a==b
or b<a.
We express the sorting algorithms in the functional language Hugs [7], which
is a dialect of Haskell [6]. We assume that the reader is familiar with, but not
necessarily an expert in, functional programming.
This paper is organized as follows. In Sect. 2 we present the morphisms on the
list data type and show that insertion sort, selection sort and bubble sort can be
expressed in terms of these morphisms. In Sect. 3 we present the leaf tree data
type and show how merge sort can be expressed as a morphism over that data
type. In Sect. 4 we present the binary tree data type with its morphisms, which
are used to express both quick sort and heap sort. In Sect. 5 paramorphisms on
lists are presented, which can be used to express the recursion pattern of several
auxiliary functions used by the different sorting algorithms. We show in Sect.
6 that rose trees form a generalization of lists, binary trees and leaf trees. This
fact enables a derivation of pairing heap sort and reveals a novel generalization
of quick sort. It also opens the door for a taxonomy of algorithms, based on a hi-
erarchy of data structures and on recursion patterns over those data structures.
Section 7 presents the conclusions of this paper.

2 Morphisms on Lists

The list data type can be described by the following pseudo data type definition
in Haskell.

data [x] = []

| x : [x]

In this section we present three recursion patterns over this data type, and
show how insertion sort, selection sort and bubble sort can be expressed by means
of these recursion patterns.

2.1 The List Catamorphism

A catamorphism on a type T is a function of type T → U that destruct and
object of type T according to the structure of T , calls itself recursively of any

Sorting Morphisms 3

components of T that are also of type T and combines this recursive result with
the remaining components of T to a U .
A simple example is the function that computes the product of a list of

integers:

prod [] = 1

prod (x:l) = x * prod l

A list catamorphism can thus be characterized by two components (a,f),
corresponding to the two forms of the list type. The first is a part that maps the
empty list onto a U . This is just the constant a (for prod this is 1). A non-empty
list can be destructed into a head h and a tail t. The tail t is recursively mapped
onto a u by rec t and then combined with the head by means of the expression
f h (rec t), where f is the second part of the catamorphism. For prod this
is (*).
We can present this structure in a diagram where the nodes form the types of
the (intermediate) results and the edges the mappings between them.

[x]

��/ SSw destruct [x]

x,[x]

?
? recurse

u
SSw ��/

x, u
construct u

Recursive functions over lists that have this structure can be written by
means of a higher order function of (a,f) that captures this recursive patterns.
As this recursion pattern is generally called catamorphism (κατα means down-
wards), we call this higher order function list cata. As described above, it
returns a on the empty list and applies f to the head and the recursive call
on the tail. the more experienced reader will recognize this function as the well
known foldr.
The (a,f) is usually called an algebra, more specifically a list algebra. We

abbreviate its type by List alg.

> type List_alg x u = (u, x->u->u)

> list_cata :: List_alg x u -> [x] -> u

> list_cata (a,f) = cata where

> cata [] = a

> cata (x:l) = f x (cata l)

With this definition we can rewrite prod as follows:

> prod = list_cata (1, (*))

4 Lex Augusteijn

It can be observed that this catamorphism replaces the empty list by a and
the non-empty list constructor (:) by f. This is what a catamorphism does in
general: replacing the constructors of a data type by other functions. As a conse-
quence, recursive elements are replaced by the application of the catamorphism
to them, i.e. l is replaced by cata l.

Exercise 1: Write the list reversal function as a list catamorphism.

2.2 The List Anamorphism

Apart from a recursion pattern that traverses a list, we can specify a converse
one that constructs a list. A simple example is the function that constructs the
list [n,n-1..1].

count 0 = []

count n = n : count (n-1)

An anamorphism over a type T is a function of type U → T that destructs
the U in some way into a number of components. On the components that are of
type U , it applies recursion to convert theme to T ’s. After that it combines the
recursive results with the other components to a T , by means of the constructor
functions of T .
The structure of this pattern for the list type can be obtained by inverting

the catamorphism diagram above.

u

��/ SSw destruct u

x, u

?
? recurse

[x]
SSw ��/

x,[x]
construct [x]

We need some destructor function of u that tells us whether to map u onto
the empty list, or to destruct it, be means of some function f into the head of
the resulting list x and another u. This other u can then recursively be mapped
onto a list, which forms the tail of the final result.
To this end, we define use the type that represents the disjoint sum of to values.

data Either a b = Left a | Right b

Again, this pattern of recursion can be captured in a higher order function.
As this recursion pattern is generally called anamorphism (αναmeans upwards),
we call this higher order function list ana.
The type u-> Either () (x,u) is usually called a co-algebra, more specifi-

cally a list co-algebra. We abbreviate this type by List coalg.

Sorting Morphisms 5

> type List_coalg u x = u -> Either () (x,u)

> list_ana :: List_coalg u x -> u -> [x]

> list_ana a = ana where

> ana u = case a u of

> Left _ -> []

> Right (x,l) -> x : ana l

The function count can be rewritten as:

> count = list_ana destruct_count

> destruct_count 0 = Left ()

> destruct_count n = Right (n,n-1)

Exercise 2: Write a prime number generator as a list anamorphism.

2.3 The List Hylomorphism

Given a general way to construct a list and to destruct one, we can compose
the two operations into a new one, that captures recursion via a list. For some
philosophical reason, this recursion patterns is called hylomorphism (ύλη means
matter).
The list hylomorphism can be defined as

list_hylo (a,c) = list_cata c . list_ana a

As an example, we could define the factorial function as
fac = prod . count, or more explicitly as:

fac = list_cata (1,(*)) . list_ana destruct_count

This straightforward composition forms an intermediate list, which appears
to be unnecessary as the following diagrams exhibits.

u

��/ SSw destruct u

x, u

?
? recurse

[x]
SSw ��/

x,[x]
construct [x]

��/ SSw destruct [x]

x,[x]

?
? recurse

v
SSw ��/

x, v
construct v

u

��/ SSw destruct u

x, u

?
? recurse

v
SSw ��/

x, v
construct v

6 Lex Augusteijn

Instead of construction the list in the middle, we can immediately map the
(x,u)-pair onto the (x,v)-pair by recursively applying the hylomorphism to
the u.
The implementation is obtained from the list ana by replacing the empty

list by a and the list constructor (:) by f.

> type List_hylo u x v = (List_coalg u x, List_alg x v)

> list_hylo :: List_hylo u x v -> u -> v

> list_hylo (d,(a,f)) = hylo where

> hylo u = case d u of

> Left _ -> a

> Right (x,l) -> f x (hylo l)

Applying this to the factorial function, it can be written as:

> fac = list_hylo (destruct_count, (1,(*)))

Substitution of list hylo and destruct count then leads to the usual def-
inition of fac:

fac 0 = 1

fac n = n * fac (n-1)

Exercise 3: Write the function xn as a list hylomorphism.

2.4 Insertion Sort

We can use the list cata recursion pattern to sort a list. In order to analyze
the structure of such a sorting algorithm, we first draw a little diagram.

x : l �
��
destruct

x l �
�� recurse

x sort l �
�� insert

insert x (sort l)

The catamorphism must destruct a list x:l into a head x and a tail l, by
virtue of its recursive structure. Next it is applied recursively to the tail, which
in this case means: sorting it. So we are left with a head x and a sorted tail.
There is only one way left to construct the full sorted list out of these: insert x
at the appropriate place in the sorted tail. We see that apart from the recursion
pattern, we are left with no more design decision: the resulting algorithm is an
insertion sort.

Sorting Morphisms 7

> insertion_sort l = list_cata ([],insert) l where

> insert x [] = [x]

> insert x (a:l) | x < a = x:a:l

> | otherwise = a : insert x l

Observe that insert x is a recursive function over lists as well. As it does
not correspond to the recursive structures introduced so far, we postpone its
treatment until Sect. 5.2.

2.5 Selection Sorts

In applying the anamorphism recursion pattern to sorting, we are faced with the
following structure.

l �
��
extract minimum

m l’ �
��
recurse

m sort l’ �
�� construct

m : sort l’

First of all, the unsorted list l is mapped onto an element m and a remainder
l’. This remainder is sorted by recursion and serves as the tail of the final result.
From this structure, we can deduce that m must be the minimum of l and l’
should equal some permutation of l with this minimum removed from it. It is the
permutation which gives us some additional design freedom. Two ways to exploit
this freedom lead to a straight selection sort and a bubble sort respectively. Here
we abstract from the way of selection and define the general selection sort as:

> selection_sort extract = list_ana select where

> select [] = Left ()

> select l = Right (extract l)

Straight Selection Sort. When we first compute the minimum of l and then
remove it from l, maintaining the order of the remaining elements, we obtain a
straight selection sort. It has the following recursive structure.

8 Lex Augusteijn

l �
��
select minimum

m remove m l �
��
recurse

m sort (remove m l) �
�� construct

m : sort (remove m l)

Its implementation as an anamorphism is as follows.

> straight_selection_sort l = selection_sort extract l where

> extract l = (m, remove m l) where m = minimum l

> remove x [] = []

> remove x (y:l) | x == y = l

> | otherwise = y : remove x l

Observe that remove x is a recursive function over lists as well. As it does
not correspond to the recursive structures introduced so far, we postpone its
treatment until Sect. 5.3, where we also give an implementation of minimum as
a catamorphism as well.

Bubble Sort. Selection sort seems a little too expensive as select traverses
the list twice, once for obtaining the minimum and once for removing it. We can
intertwine these to operations to let the minimum ’bubble’ to the head of the
list by exchanging elements and then split the minimum and the remainder.

l �
�� bubble

m l’ �
�� recurse

m sort l’ �
��
construct

m : sort l’

> bubble_sort l = selection_sort bubble l where

> bubble [x] = (x,[])

> bubble (x:l) = if x < y then (x,y:m) else (y,x:m) where

> (y,m) = bubble l

Observe that bubble is a recursive function over lists as well. It appears to
be a catamorphism, as the following alternative definition shows:

Sorting Morphisms 9

> bubble_sort’ l = selection_sort bubble l where

> bubble (x:l) = list_cata ((x,[]),bub) l

> bub x (y,l) = if x < y then (x,y:l) else (y,x:l)

3 Leaf Trees

The sorting algorithms that can be described by list-based recursion patterns
all perform linear recursion and as a result behave (at least) quadratically. The
O(n logn) sorting algorithms like quick sort and merge sort use at least two
recursive calls per recursion step. In order to express such a recursion pattern
we need some binary data structure as a basis for the different morphisms. In
this section we concentrate on leaf trees with the elements in their leaves. The
next section treats binary trees with the elements at the branches.
One form of binary trees are so-called leaf-trees. These trees hold their elements
on their leaves. The leaf-tree data type is given by:

> data LeafTree x = Leaf x

> | Split (LeafTree x) (LeafTree x)

3.1 The Leaf-Tree Catamorphism

The structure of the leaf-tree catamorphism is completely analogous to that
of the list catamorphism. First destruct the tree, recurse on the sub-trees and
combine the recursive results.
An example is the sum of all elements in a leaf tree:

tree_sum Leaf x = x

tree_sum (Split l r) = tree_sum l + tree_sum r

The leaf-tree catamorphism needs a function on the element, rather than a
constant, to construct its non-recursive result. This corresponds to the following
diagram, where T stands for BinTree x.
The recursion pattern diagram is:

T

��/
x

SSw destruct T

T,T

? ? recurse?

u
SSw
x

��/
u,u

construct u

Capturing the recursion pattern in a higher order function leaftree cata,
gives the following definition (again, just replace the tree constructors Leaf and
Split by other functions, fl and fs respectively).

10 Lex Augusteijn

> type Leaftree_alg x u = (x -> u, u -> u -> u)

> leaftree_cata :: Leaftree_alg x u -> LeafTree x -> u

> leaftree_cata (fl,fs) = cata where

> cata (Leaf x) = fl x

> cata (Split l r) = fs (cata l) (cata r)

Using the function leaftree cata, we can define tree sum as:

> tree_sum = leaftree_cata (id, (+))

3.2 The Leaf-Tree Anamorphism

The structure of the leaf-tree anamorphism is analogous to that of the list
anamorphism. First decide by means of a destructor d between the tree construc-
tors to be used (Tip or Branch). This results in an element or in two remaining
objects which are recursively mapped onto two trees. Then combine the element
or these subtrees.
An example is the construction of a Fibonacci tree:

fib_tree n

| n < 2 = Leaf 1

| otherwise = Branch (fib_tree (n-1)) (fib_tree (n-2))

The anamorphism procedure corresponds to the following diagram.

u

��/
x

SSw destruct u

u,u

? ? recurse?

T
SSw
x

��/
T,T

construct T

Capturing the recursion pattern in a higher order function leaftree ana,
gives the following definition.

> type Leaftree_coalg u x = u -> Either x (u,u)

> leaftree_ana :: Leaftree_coalg u x -> u -> LeafTree x

> leaftree_ana d = ana where

> ana t = case d t of

> Left l -> Leaf l

> Right (l,r) -> Split (ana l) (ana r)

Sorting Morphisms 11

Rewriting fib tree with this higher order function gives:

> fib_tree = leaftree_ana destruct_fib

> destruct_fib n | n < 2 = Left 1

> | otherwise = Right (n-1,n-2)

3.3 The Leaf-Tree Hylomorphism

As expected, the leaf-tree hylomorphism can be obtained by composing the ana-
and the catamorphism.
An example is the Fibonacci function

fib = tree sum . fib tree, or more explicitly as:

fib = leaftree_cata (id,(+)) . leaftree_ana destruct_fib

Again the tree in the middle need not be constructed at all as the following
diagram illustrates. We can apply recursion to map the two u’s into v’s, without
constructing the trees.

u

��/
a

SSw destruct u

u,u

? ? recurse?

v
SSw
a

��/
v,v

construct v

and its implementation with no further comment:

> type Leaftree_hylo u x v

> = (Leaftree_coalg u x, Leaftree_alg x v)

> leaftree_hylo :: Leaftree_hylo u x v -> u -> v

> leaftree_hylo (d,(fl,fs)) = hylo where

> hylo t = case d t of

> Left l -> fl l

> Right (l,r) -> fs (hylo l) (hylo r)

Using this definition of leaftree hylo we can define the Fibonacci
function as:

> fib = leaftree_hylo (destruct_fib, (id,(+)))

This can of course be simplified by substituting the functions leaftree hylo
and destruct fib into:

12 Lex Augusteijn

fib n | n < 2 = 1

| otherwise = fib (n-1) + fib (n-2)

Exercise 4: Write the factorial function as a leaf-tree hylomorphism.
Exercise 5: Write the function xn as a leaf-tree hylomorphism. What is its

complexity? Can you write it as a hylomorphism with O(logn) complexity?

3.4 Merge Sort

The leaf-tree hylomorphism can be used to sort lists via leaf-trees. The recursion
pattern can be depicted as follows.

list �
��
split

left right �
��
recurse

sort left sort right �
�� merge

merge (sort left) (sort right)

In the recursive case, the list is split into two sub-list, which are sorted, and
then combined. The main choice left here is to make the sub-lists dependent or
independent of the elements of the other sub-lists.
When we assume independence, the combination of the recursive results must
merge two unrelated sorted lists, and we obtain merge sort.
The choice of two sub-lists which are dependent on each other does not buy
us much. If we assume that we can only apply an ordering and an equality
relation to the elements, we can’t do much more than separating the elements
into small and large ones, possibly w.r.t. to the median of the list (which would
yield quicksort). We do not pursue this way of sorting any further here.
The implementation of merge sort as an hylomorphism from lists, via leaf-trees,
onto lists is given below. The non-recursive case deals with lists of one element.
The empty list is treated separately from the hylomorphism.

> merge_sort [] = []

> merge_sort l = leaftree_hylo (select,(single,merge)) l

> where

> single x = [x]

> merge (x:xs) (y:ys) | x < y = x : merge xs (y:ys)

> | otherwise = y : merge (x:xs) ys

> merge [] m = m

> merge l [] = l

> select [x] = Left x

> select l = Right (split l)

Sorting Morphisms 13

The function split splits a list into two sub-list, containing the odd and
even elements. We present it here in the form of a list catamorphism.

> split = list_cata (([],[]),f) where

> f x (l,r) = (r,x:l)

4 Binary Trees

Another form of binary trees are trees that hold the values at their branches
instead of their leaves. This binary tree data type is defined as follows.

> data BinTree x = Tip

> | Branch x (BinTree x) (BinTree x)

4.1 The Tree Catamorphism

The structure of the tree catamorphism should be straight-forward now. First
destruct the tree, recurse on the sub-trees and combine the element and the
recursive results. This corresponds to the following diagram, where T stands for
BinTree x.

T

��/ SSw destruct T

x,T,T

?
? recurse?

u
SSw ��/

x,u,u
construct u

Capturing the recursion pattern in a higher order function bintree cata,
gives the following definition.

> type Bintree_alg x u = (u, x -> u -> u -> u)

> bintree_cata :: Bintree_alg x u -> BinTree x -> u

> bintree_cata (a,f) = cata where

> cata Tip = a

> cata (Branch x l r) = f x (cata l) (cata r)

Observe again that a catamorphism replaces constructors (Tip by a and
Branch by f) and recursive elements by recursive calls (l by cata l and r by
cata r).

14 Lex Augusteijn

4.2 The Tree Anamorphism

The binary tree catamorphism is again obtained by reversing the previous one.

u

��/ SSw destruct u

x,u,u

?
? recurse?

T
SSw ��/

x,T,T
construct T

Capturing the recursion pattern in a higher order function bintree ana,
gives the following definition.

> type Bintree_coalg u x = u -> Either () (x,u,u)

> bintree_ana :: Bintree_coalg u x -> u -> BinTree x

> bintree_ana d = ana where

> ana t = case d t of

> Left _ -> Tip

> Right (x,l,r) -> Branch x (ana l) (ana r)

4.3 The Tree Hylomorphism

The binary tree hylomorphism should be straightforward now. We present only
its diagram

u

��/ SSw destruct u

x,u,u

?
? recurse?

v
SSw ��/

x,v,v
construct v

The implementation of the binary tree hylomorphism is obtained from the
anamorphism by replacing Tip by a and the Branch constructor by f.

> type Bintree_hylo u x v = (Bintree_coalg u x, Bintree_alg x v)

> bintree_hylo :: Bintree_hylo u x v -> u -> v

> bintree_hylo (d,(a,f)) = hylo where

> hylo t = case d t of

> Left _ -> a

> Right (x,l,r) -> f x (hylo l) (hylo r)

Sorting Morphisms 15

Exercise 6: Write the factorial function as a binary tree hylomorphism.

Exercise 7: Write the function xn as a binary tree hylomorphism. What is
its complexity?

Exercise 8: Write the towers of Hanoi as a binary tree hylomorphism.

4.4 Quicksort

We can apply the binary tree hylomorphism recursion pattern to sorting by
sorting a list via binary trees (which are never really constructed of course). The
following diagram exhibits the recursion pattern.

l �
�� split

x l1 l2 �
�� recurse

x sort l1 sort l2 �
��
join

join x (sort l1) (sort l2)

A list l is split into an element x and two other lists l1 and l2. These lists
are sorted by recursion. Next x and the sorted sub-lists are joined. We are left
with a two design decisions here.

– The choice of x. Sensible choices here are the head of the list, using the
structure of the list, or the minimum or median of the list, exploiting the
ordering relation. If we take the minimum, we obtain a variant of heap
sort. A derivation of heap sort is given in Sect. 4.5. For quicksort, we
choose to take the head of the list. Taking the median is left to the reader.

– The choice of the two sub-lists. An essential choice here is to make them
dependent on the element x or not. If not, there seems to be no particular
reason to separate x. If we do not use the head x at all, the algorithm
obeys a different recursion pattern, which we treat in Sect. 3.
The remaining option, making the sub-lists depend on x, still leaves some
choices open. The most natural one seems to let them consists of the ele-
ments that are smaller than, respectively at least x, exploiting the ordering
relation. This can be done for x being either the head or the median of
the list, where the latter gives a better balanced algorithm with a superior
worst case behavior. We will take the head for simplicity reasons here.

Given the decisions that we take x to be head of the list and split the tail
into small and large elements w.r.t. to x, the only way in which we can combine
the sorted sub-lists with x is to concatenate them in the proper order.

16 Lex Augusteijn

x : l �
��
split

x small large �
��
recurse

x sort small sort large �
�� join

sort small ++ [x] ++ sort large

The final result is an implementation of quicksort as a hylomorphism from
lists, via trees, onto lists.

> quick_sort l = bintree_hylo (split,([],join)) l where

> split [] = Left ()

> split (x:l) = Right (x,s,g) where (s,g) = partition (<x) l

> join x l r = l ++ x : r

The function partition which splits a list into two lists w.r.t. to some pred-
icate p appears to be a list catamorphism.
Exercise 9: Write the function partition as a list catamorphism.

4.5 Heap Sort

In this section we analyze the recursion pattern of heap sort. This algorithm
operates by first constructing a binary tree that has the so called heap property,
which means that for such a tree Branch m l r, m is the minimum element in
the tree. The two sub-trees l and r must also have the heap property, but are
not related to each other.
After constructing such a heap, the heap is mapped onto a sorted list. Therefore,
the definition of heap sort is simply:

> heap_sort l = (heap2list . list2heap) l

Such a tree is transformed into a sorted list in the following way, where
combine l r combines two heaps into a new one. It is clearly a list anamorphism.

Branch x l r �
��
extract

x combine l r �
�� recurse

x sort (combine l r) �
�� construct

x : sort (combine l r)

Sorting Morphisms 17

Thus, heapsort can be implemented as below, leaving list2heap, which
transforms an unsorted list into a heap, to be specified. The b@(Branch x l r)
construction in Hugs matches an argument to the pattern Branch x l r as
usual, but also binds the argument as a whole to b.

> heap2list l = list_ana extract l where

> extract Tip = Left ()

> extract (Branch x l r) = Right (x, combine l r)

> combine :: Ord a => BinTree a -> BinTree a -> BinTree a

> combine t Tip = t

> combine Tip t = t

> combine b@(Branch x l r) c@(Branch y s t)

> | x < y = Branch x l (combine r c)

> | otherwise = Branch y (combine b s) t

Three recursion patterns that could be applicable to the function list2heap
are a list catamorphism, a tree anamorphism, or a hylomorphism over some ad-
ditional data type. Let us analyze the recursion pattern of such a function, where
we assume that we use list2heap recursively in a binary tree pattern (note that
this a design decision), more particularly, let us choose the tree anamorphism.
The other options work just as well, but for simplicity, we do not persue them
here.

l �
��
extract minumum and split rest

m l1 l2 �
�� recurse

m h1 h2 �
�� construct tree

Branch m h1 h2

The decomposition is a variant of bubble: it should not only select the min-
imum but also split the remainder of the list into two sub-lists of (almost) equal
length. This bubbling is once more a list catamorphism.

> list2heap l = bintree_ana decompose l where

> decompose [] = Left ()

> decompose l = Right (bubble l)

> bubble (x:l) = list_cata ((x,[],[]),bub) l

> bub x (y,l,r) = if x < y then (x,y:r,l) else (y,x:r,l)

Thus, heap sort can be written as the composition of a binary tree anamor-
phism and a list anamorphism.

18 Lex Augusteijn

5 Paramorphisms

Several sub-functions, like insert and remove used above where almost cata-
morphisms on lists. They deviate by the fact that in the construction of the
result, they do not only use the recursive result of the tail, but also the tail
itself. This recursion pattern is known as paramorphism, after the Greek word
παρα, which among other things means ’parallel with’.
Paramorphisms can be expressed as catamorphisms by letting the recursive call
return its intended result, tupled with its argument. Here, we study them as a
separate recursion pattern however.

5.1 The List Paramorphism

The list paramorphism follows the recursion patterns of the following diagram.

[x]

��/ SSw destruct [x]

x,[x]

?
? recurse

u
SSw ��/
x,[x],u

construct u

Its implementation is straight-forward, just supply the tail l as an additional
argument to the constructor function f.

> type List_para x u = (u, x -> [x] -> u -> u)

> list_para :: List_para x u -> [x] -> u

> list_para (a,f) = para where

> para [] = a

> para (x:l) = f x l (para l)

5.2 Insert As Paramorphism

The insertion operation insert x of the insertion sort from Sect. 2.4 can be
expressed as a paramorphism. First we analyze its recursive structure.

a : l �
��
destruct

a l �
�� recurse

a l insert x l �
�� combine

x : a : l if x < a

a : insert x l otherwise

Sorting Morphisms 19

The list a:l is split into head a and tail l. Recursively, x is inserted into
l. Depending on where x < a, we need to use the original tail, or the recursive
result.
Although it may seem inefficient to construct the recursive result and then op-
tionally throw it away again, laziness comes to help here. If the recursive result
is not used, it is simply not computed.

> insertion_sort’ l = list_cata ([],insert) l where

> insert x = list_para ([x],combine) where

> combine a l rec | x < a = x : a : l

> | otherwise = a : rec

5.3 Remove As Paramorphism

The selection operation remove x of the straight selection sort from Sect. 2.5 can
be expressed as a paramorphism as well. First we analyze its recursive structure.

y : l �
�� destruct

y l �
��
recurse

y l remove x l �
��
f

l x == y

y : remove x l
otherwise

It destructs the list into the head y and tail l. It recursively removes x from l.
Next, it chooses between using the non-recursive tail l (when x == y, it suffices
to remove y), or, in the other case, to maintain y and use the recursive result.

Below, we give the paramorphic version of the straight selection sort algorithm.
Observe that minimum has been written as a catamorphism.

> straight_selection_sort’ l = selection_sort extract l where

> extract l = (m, remove m l) where m = minimum l

> minimum (x:l) = list_cata (x,min) l

> remove x = list_para ([],f) where

> f y l rec | x == y = l

> | otherwise = y : rec

20 Lex Augusteijn

6 Generalizing Data Structures

The previous sections have shown that the use of patterns of recursion gives rise
to a classification of sorting algorithms. One can obtain a refined taxonomy of
sorting algorithms by introducing yet another level of generalization. This extra
level is the generalization of data types. We illustrate this by generalizing the
binary tree data type to the rose tree data type. This type is equivalent to the
so called B-trees in [8], where they are used for searching.

> data RoseTree a = RoseTree [a] [RoseTree a]

A binary tree has 1 element and 2 branches, a rose tree n elements and m
branches. The empty rose tree is represented by the m = n = 0 case. Since
quicksort is a hylomorphism on binary trees, a hylomorphism on rose trees is
expected to be a generalization of quicksort. The rose tree hylomorphism is given
by the following diagram and definition.

u

? destruct u

[x], [u]

? recurse

[x], [v]

? construct v

v

> type Rosetree_alg x v = [x] -> [v] -> v

> type Rosetree_coalg u x = u -> ([x],[u])

> type Rosetree_hylo u x v

> = (Rosetree_coalg u x, Rosetree_alg x v)

> rosetree_hylo :: Rosetree_hylo u x v -> u -> v

> rosetree_hylo (f,g) = hylo where

> hylo t = g x (map hylo l) where (x,l) = f t

6.1 Generalizing Quicksort

The generalization of quicksort can be obtained by using n pivots, rather than
1. These n pivots are sorted, e.g. by insertion sort for small n, and the re-
maining elements are grouped into n+1 intervals w.r.t. the pivots. I.e. the first
internal contains all elements less than the first pivot, the second internal con-
tains all remaining elements less than the second pivot, etc., while the n+ 1-th
interval contains all elements not less than the n-th pivot. These intervals are
sorted recursively, and the intervals and pivots are joined together. The following
diagram illustrates this process.

Sorting Morphisms 21

xs ++ l’ �
��
break

x1 . . .xn l0 · · · ln �
��
sort recursively

x1 . . .xn s0 · · ·
sn �

�� join

s0++[x1]++s1 + + . . .+ +[xn]++sn

The implementation is relatively straight-forward after this design. The case
where l==[] needs to be treated specially to ensure termination. First, l is split
into its first (at most) n elements xs and the remainder l’. Next xs is sorted to
obtain sx. Then l’ is split w.r.t. to sx.

> rose_sort n l = rosetree_hylo (break,join) l where

> break [] = ([],[])

> break l = (sx,split sx l’) where

> (xs,l’) = take_drop n l

> sx = insertion_sort xs

> split sx l = list_cata ([l],f) sx where

> f x (a:l) = s:g:l where (s,g) = partition (<x) a

> join xs [] = xs

> join xs (s:l) = s++concat (zipWith (:) xs l)

> take_drop 0 l = ([],l)

> take_drop n [] = ([],[])

> take_drop n (x:l) = (x:a,b) where (a,b) = take_drop (n-1) l

Experiments show that this algorithm behaves superior to the quick sort
function when applied to random list of various sizes. The optimal value of n
appears to be independent of the length of the list (it equals 3 in this imple-
mentation). A decent analysis of the complexity of this algorithm should reveal
why this is the case. The split size can be adapted to the length of the list L
by replacing n by some function of L. It is an open problem which function will
give the best behavior.
Since rose trees can be viewed as a generalization of linear lists, binary trees

and leaf trees together, the other sorting algorithms generalize as well. E.g. the
two-way merge sort becomes a k-way merge sort. We leave this generalization
as an exercise to the reader.

6.2 Generalizing Heap Sort

Heap sort can be generalized by means of rose trees as well. The obvious way is
to define a heap on rose trees, instead of binary trees, construct the tree from a
list and map it onto a sorted list.

22 Lex Augusteijn

The empty heap is represented by Rosetree [] [], the non-empty heap by
Rosetree [x] l, where x is the minimum element and l a list of heaps. We aim
at keeping l balanced, that is, let the sub heaps vary in sizes as little as possible,
to obtain a good worst-case behavior.

This variant of heap sort is known in the literature as pairing sort [5].

> pairingSort l = (rose2list . list2rose) l

The function rose2list is a variant of heap2list. Instead of combining two
heaps into a new heap, it should combine (meld) a list of heaps into heap. we
postpone the treatment of this function roses meld.

> rose2list :: (Ord a) => RoseTree a -> [a]

> rose2list = list_ana destruct where

> destruct (RoseTree [] ts) = Left ()

> destruct (RoseTree [a] ts) = Right (a, roses_meld ts)

Mapping a list into a heap is simple if we use the postponed function
roses meld.

> list2rose :: (Ord a) => [a] -> RoseTree a

> list2rose = roses_meld . map single where

> single a = RoseTree [a] []

The function roses meld can be designed best by first defining a function
that melds two heaps onto a new heap. This is the rose tree variant of the
function combine from Sect. 4.5.

> rose_meld :: Ord a => RoseTree a -> RoseTree a -> RoseTree a

> rose_meld (RoseTree [] _) u = u

> rose_meld t (RoseTree [] _) = t

> rose_meld t@(RoseTree [a] ts) u@(RoseTree [b] us)

> | a < b = RoseTree [a] (u:ts)

> | otherwise = RoseTree [b] (t:us)

The function roses meld is now a simple list catamorphism over rose meld.
Implementing it that way has one draw-back however: it is not balanced. A list
catamorphisms groups the elements together in a linear way. If the combining
function is associative, the grouping can take place in a tree-shaped way as well,
giving a balanced heap. We call this form of folding a list of values into a single
value treefold and it is a leaf-tree hylomorphism.

Sorting Morphisms 23

∆ . . . ∆ �
��
split

∆ . . .∆ ∆ . . .∆ �
��
recursively build two heaps

∆ ∆ �
�� meld

∆

> roses_meld :: Ord a => [RoseTree a] -> RoseTree a

> roses_meld = treefold rose_meld no_roses

> treefold :: (a -> a -> a) -> a -> [a] -> a

> treefold f e l = leaftree_hylo (select,(id,f)) l where

> select [] = Left e

> select [a] = Left a

> select l = Right (split l)

> no_roses = RoseTree [] []

7 Conclusions

We have shown that it is possible to express the most well-known sorting al-
gorithms as functional programs, using fixed patterns of recursion. Given such
a pattern of recursion there is little or no additional design freedom left. The
approach shows that functional programming in general and the study of re-
cursion patterns in particular form a powerful tool in both the characterization
and derivation of algorithms. In this paper we studied the three data types lin-
ear lists, binary trees and binary leaf trees. Generalizing these data types to
rose trees revealed a generalization of quick-sort, which is, as far as the author
knows, a novel sorting algorithm. It may well be that other data types, and
their corresponding recursion patterns, can be used to derive even more sorting
algorithms.
By distinguishing a hierarchy of data structures on the one hand, and dif-

ferent patterns of recursions on the other hand, a taxonomy of algorithms can
be constructed. It would be nice to compare this with other techniques for con-
structing algorithm taxonomies as e.g. presented in [10].
Of course, other algorithms than sorting can be classified by means of their

pattern of recursion. See e.g. [1], where similar techniques were used to charac-
terize parsing algorithms.
The question whether the presentation of the algorithms as such is clari-

fied by their expression in terms of morphisms has not been raised yet. When
we compare the catamorphic version of insertion sort to the following straight
implementation, the latter should be appreciated over the first.

24 Lex Augusteijn

insertion_sort [] = []

insertion_sort (x:l) = insert x (insertion_sort l) where

insert x [] = [x]

insert x (a:l) | x < a = x :a:l

| otherwise = a : insert x l

The value of this approach is not so much in obtaining a nice presentation
or implementation of some algorithm, but in unraveling its structure. Especially
in the case of heap sort, this approach gives a very good insight in the structure
of the algorithm, compared for instance to [8] or [11].
We based the recursion patterns on the natural recursive functions over data

types, the catamorphism, anamorphism, hylomorphism and paramorphism. This
let to a very systematic derivation of recursion patterns. The category theory
that underlies these morphisms was not needed in this presentation. There de-
finition follows so trivially from the data type definition that any functional
programmer should be able to define them. A generation of these recursion pat-
terns by a compiler for a functional language is even more desirable: then there
is not need at all for a programmer to write them.

Acknowledgements
Above all, I wish to thank Frans Kruseman Aretz for the patient and careful
supervision during the writing of my thesis, of which this contribution is a nat-
ural continuation. I am also grateful to Doaitse Swierstra and Tanja Vos for
stimulating discussions about the different morphisms, to Erik Meijer for his
illuminating thesis and to Herman ter Horst for his refereeing.

References

1. Lex Augusteijn. Functional Programming, Program Transformations and Compiler
Construction. PhD thesis, Eindhoven Technical University, October 1993. 23

2. R.S. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1994. 1
3. K.L. Clark and J.Darlington. Algorithm classification through synthesis. The Com-
puter Journal, 23(1):61–65, 1980. 1

4. Maarten M. Fokkinga. Law and order in algorithmics. PhD thesis, Twente Univer-
sity, 1992. 1

5. Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.
The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129,
1986. 22

6. Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn, Joseph Fasel,
Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil,
Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan Young. Report on
the Programming Language Haskell, A Non-Strict, Purely Functional Language,
Version 1.2. ACM SIGPLAN Notices, 27(5):Section R, 1992. 2

7. Mark P. Jones and John C. Peterson. Hugs 1.4 User Manual, November 1998. In-
cluded as part of the Hugs distribution, http://www.cs.nott.ac.uk/ mpj/hugs14/.
2

Sorting Morphisms 25

8. Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley,
1973. Sorting and Searching. 1, 20, 24

9. Erik Meijer. Calculating Compilers. PhD thesis, Utrecht State University, Utrecht,
the Netherlands, 1992. 1

10. Bruce W. Watson. Taxonomies and Toolkits of Regular Language Algorithms. PhD
thesis, Eindhoven University of Technology, 1995. 23

11. Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice Hall, 1976.
1, 24

Solutions to Exercises

Solution to exercise 1: Write the list reversal function as a list catamorphism.
The empty list is reversed onto the empty list. The construct function takes the
original head and the reversed tail. There only one way to combine these: append
the head to the reversed tail.

> rev1 = list_cata ([],construct) where

> construct x r = r++[x]

Solution to exercise 2: Write a prime number generator as a list anamorphism.
We will filter a list of prime candidates onto a list of primes. The head p of the
candidate list is a prime, which will be the head of the result. The multiples of
p are removed from the tail, which is recursively mapped onto a list of primes.

> primes = sieve [2..]

> sieve = list_ana destruct where

> destruct (p:l) = Right (p, [x | x <- l, x ‘rem‘ p /= 0])

Solution to exercise 3: Write the function xn as a list hylomorphism.
We destruct an integer n onto a list of n x’s, which is than folded by the cata-
morphism part of the hylomorphism onto the product of the’s n x’s.

> power x = list_hylo (destruct, (1,(*))) where

> destruct 0 = Left ()

> destruct n = Right (x,n-1)

Solution to exercise 4: Write the factorial function as a leaf-tree hylomorphism.
A tree hylomorphism contains two recursive calls. We therefore choose to com-
pute the product of the interval (1, n) which can be recursively split into halves.

> tree_fac n = leaftree_hylo (destruct, (id,(*))) (1,n) where

> destruct (a,b)

> | a > b = Left 1

> | a == b = Left a

> | otherwise = Right ((a,m), (m+1,b)) where m = (a+b)/2

26 Lex Augusteijn

Solution to exercise 5: Write the function xn as a leaf-tree hylomorphism. What
is its complexity? Can you write it as a hylomorphism with O(logn) complexity?

The exponent n can be divided by 2 and the recursive results can be multiplied.

> pow2 x = leaftree_hylo (destruct,(id,(*))) where

> destruct 0 = Left 1

> destruct 1 = Left x

> destruct n | even n = Right (n/2,n/2)

> | otherwise = Right (n/2,n/2+1)

The complexity is O(n), since the hylomorphism has no information about
the two recursively being identical. This can be fixed by using a list hylomor-
phism, that uses only one recursively call and squaring the result of that call.
We need an addi tional factor x in the case of n being odd.

> pow3 x = list_hylo (destruct, (1,construct)) where

> destruct 0 = Left ()

> destruct n | even n = Right (1,n/2)

> | otherwise = Right (x,n/2)

> construct y p = y * p * p

Solution to exercise 6: Write the factorial function as a binary tree hylomor-
phism.
Again, we split the the interval (1, n) recursively in halves. Since we not only
need two sub-intervals, but also an additional value (as required by the binary
tree structure), we use the middle value of the interval for that.

> btree_fac n =

> bintree_hylo (destruct, (1,construct)) (1,n) where

> construct m x y = m*x*y

> destruct (a,b)

> | a > b = Left ()

> | otherwise = Right (m, (a,m-1), (m+1,b)) where

> m = (a+b)/2

Solution to exercise 7: Write the function xn as a binary tree hylomorphism.
What is its complexity?
This solution is close the leaf-tree solution. It split n into halves and use the
remainder as the addtional binary tree value. The complexity is O(n), as the
tree hylomorphism has no idea about its two recursive calls being equal. Observe
that this solution is very close to the linear list hylomorphism of complexity
O(logn). In general, a binary-tree hylomorphism with equal recursive calls can
be rewritten into a linear list hylomorphism with improved complexity.

Sorting Morphisms 27

> pow4 x = bintree_hylo (destruct,(1,construct)) where

> destruct 0 = Left ()

> destruct n | even n = Right (1,n/2,n/2)

> | otherwise = Right (x,n/2,n/2)

> construct y p q = y * p * q

Solution to exercise 8: Write the towers of Hanoi as a binary tree hylomorphism.

The towers of Hanoi has a natural binary tree-shaped solution:

hanoi 0 a b c = []

hanoi n a b c = hanoi (n-1) a c b ++

[a++"-"++c] ++

hanoi (n-1) b a c

This is easily written as a hylomorphism:
> hanoi = bintree_hylo (destruct, ([],construct)) where

> construct m l r = l ++ [m] ++ r

> destruct (0,a,b,c) = Left ()

> destruct (n,a,b,c) =

> Right (a++"-"++c, (n-1,a,c,b), (n-1,b,a,c))

> h_test n = hanoi (n,"a","b","c")

Solution to exercise 9: Write the function partition as a list catamorphism.
The empty list is mapped onto the pair of empty lists, ([],[]). the tail of a non-
empty list is recursively mapped onto a pair of lists, and the head is prepended
to the left of these in case of p and to the right otherwise. Observe that the
fuction definition below is much shorter than this description in English.

> partition p l = list_cata (([],[]),f) l where

> f x (a,b) = if p x then (x:a,b) else (a,x:b)

Generic Programming

– An Introduction –

Roland Backhouse1 , Patrik Jansson2 , Johan Jeuring3 , and Lambert Meertens4

1 Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513
5600 MB Eindhoven
The Netherlands
rolandb@win.tue.nl

http://www.win.tue.nl/~rolandb/

2 Department of Computing Science
Chalmers University of Technology

S-412 96 Göteborg
Sweden

patrikj@cs.chalmers.se

http://www.cs.chalmers.se/~patrikj/

3 Department of Computer Science
Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands
johanj@cs.uu.nl

http://www.cs.uu.nl/~johanj/

4 CWI & Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands
lambert@cwi.nl

http://www.cwi.nl/~lambert/

1 Introduction

1.1 The Abstraction-Specialisation Cycle

The development of science proceeds in a cycle of activities, the so-called ab-
straction-specialisation cycle. Abstraction is the process of seeking patterns or
commonalities, which are then classified, often in a formal mathematical frame-
work. In the process of abstraction, we gain greater understanding by eliminating
irrelevant detail in order to identify what is essential. The result is a collection of
general laws which are then put to use in the second phase of the cycle, the spe-
cialisation phase. In the specialisation phase the general laws are instantiated to

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 28–115, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Generic Programming 29

specific cases which, if the abstraction is a good one, leads to novel applications,
yet greater understanding, and input for another round of abstraction followed
by specialisation.

The abstraction-specialisation cycle is particularly relevant to the development of
the science of computing because the modern digital computer is, above all else,
a general-purpose device that is used for a dazzling range of tasks. Harnessing
this versatility is the core task of software design.

Good, commercially viable, software products evolve in a cycle of abstraction and
customisation. Abstraction, in this context, is the process of identifying a single,
general-purpose product out of a number of independently arising requirements.
Customisation is the process of optimizing a general-purpose product to meet
the special requirements of particular customers. Software manufacturers are
involved in a continuous process of abstraction followed by customisation.

1.2 Genericity in Programming Languages

The abstraction-specialisation/customisation cycle occurs at all levels of soft-
ware design. Programming languages play an important role in facilitating its
implementation. Indeed, the desire to be able to name and reuse “programming
patterns” —capturing them in the form of parametrisable abstractions— has
been a driving force in the evolution of high-level programming languages to the
extent that the level of “genericity” of a programming language has become a
vital criterion for usability.

To determine the level of genericity there are three questions we can ask:

– Which entities can be named in a definition and then referred to by that
given name?

– Which entities can be supplied as parameters?
– Which entities can be used “anonymously”, in the form of an expression, as
parameters? (For example, in y = sin(2×x), the number resulting from 2×
x is not given a name. In a language allowing numeric parameters, but not
anonymously, we would have to write something like y = sin(z) where z =
2× x.)

An entity for which all three are possible is called a first-class citizen of that
language.

In one of the first high-level programming languages, Fortran (1957), proce-
dures could be named, but not used as parameters. In Algol 60 procedures
(including functions) were made almost first-class citizens: they were allowed
as parameters, but only by name. In neither language could types be named,
nor passed as parameters. In Algol 68 procedures were made true first-class
citizens, making higher-order functions possible (but not practical, because of
an awkward scope restriction1). Further, types could be named, but not used as
parameters.

1 Anything that —in implementation terms— would have required what is now known
as a “closure”, was forbidden.

30 Roland Backhouse et al.

Functional programming languages stand out in the evolution of programming
languages because of the high-level of abstraction that is achieved by the combi-
nation of higher-order functions and parametric polymorphism. In, for example,
Haskell higher-order functions are possible and practical. But the level of gener-
icity still has its limitations. Types can be defined and used as parameters, but
. . . types can only be given as parameters in “type expressions”. They cannot
be passed to functions. The recent Haskell-like language Cayenne [2] which ex-
tends Haskell with dependent types does allow types as arguments and results
of functions.

In these lecture notes we introduce another dimension to the level of abstraction
in programming languages, namely parameterisation with respect to classes of
algebras of variable signature. This first chapter is intended to introduce the key
elements of the lectures in broad terms and to motivate what is to follow. We
begin by giving a concrete example of a generic algorithm. (The genericity of
this algorithm is at a level that can be implemented in conventional functional
programming languages, since the parameter is a class of algebras with a fixed
signature.) This is followed by a plan of the later chapters.

1.3 Path Problems

A good example of parameterising programs by a class of algebras is provided
by the problem of finding “extremal” paths in a graph.

Extremal path problems have as input a finite, labelled graph such as the one
shown below.

��
��
a ��

��
b

��
��
d ��

��
c

-3

?

4

6

2

@
@
@
@
@
@
@R

5

� 2
-

8

Formally, a directed graph consists of a finite set of nodes, V , a finite set of edges,
E, and two functions source and target, each with domain E and range V . If
source e is the node x and target e is the node y, we say that e is from x to y. (In
the figure the nodes are circled and an edge e is depicted by an arrow that begins
at source e and points to target e.) A path through the graph from node s to node
t of edge length n is a finite list of edges [e1, e2 , . . . , en] such that s = source e1
and t = target en and, for each i, 0 < i < n, target ei = source ei+1. A graph is
labelled if it is supplied with a function label whose domain is the set of edges, E.

Generic Programming 31

In an extremal path problem the edge labels are used to weight paths, and
the problem is to find the extreme (i.e. best or least, in some sense) weight of
paths between given pairs of nodes. We discuss three examples: the reachability
problem, the least-cost path problem and the bottleneck problem.

Reachability The reachability problem is the problem of determining for each
pair of nodes x and y whether there is a path in the graph from x to y. It is
solved by a very elegant (and now well-known) algorithm discovered by Roy [42]
and Warshall [46]. The algorithm assumes that the nodes are numbered from 1
to N (say) and that the existence of edges in the graph is given by an N×N
matrix a where aij is true if there is an edge from node numbered i to the node
numbered j, and false otherwise. The matrix is updated by the following code.
On termination aij is true if there is a path from node i to node j of edge length
at least one; otherwise aij is false.

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ∨ (aik ∧ akj)

end for

end for

(The order in which the nodes are numbered, and the order in which pairs of
nodes (i,j) are chosen in the inner loop, is immaterial.)

The reachability problem is an extremal path problem in which all edges have
the same label and all paths have the same weight, namely true.

Least-Cost Paths About the same time asWarshall’s discovery of the reachability
algorithm, Floyd [17] discovered a very similar algorithm that computes the cost
of a least cost path between each pair of nodes in the graph. The algorithm
assumes that the matrix a is a matrix of numbers such that aij represents the
least cost of traversing an edge from node i to node j. If there is no edge from i
to j then aij is ∞. The cost of a path is the sum of the costs of the individual
edges on the path. Floyd’s algorithm for computing the cost of a least cost path
from each node to each other node is identical to the Roy-Warshall algorithm
above except for the assignment statement which instead is:

aij := aij ↓ (aik + akj)

where x ↓ y denotes the minimum of x and y.

Bottleneck Problem A third problem that can be solved with an algorithm of
identical shape to the Roy-Warshall algorithm is called the bottleneck problem.
It is most easily explained as determining the best route to negotiate a high
load under a series of low bridges. Suppose an edge in a graph represents a road
between two cities and the label is the height of the lowest underpass on the
road. The height of a path between two nodes is defined to be the minimum

32 Roland Backhouse et al.

of the heights of the individual edges that make up the path. The problem is
to determine, for each pair of nodes i and j, the maximum of the heights of
the paths from node i to node j (thus the maximum of the minimum height
underpass on a path from i to j).

The bridge height problem is solved by an algorithm identical to the Roy-
Warshall algorithm above except for the assignment statement which in this
case is:

aij := aij ↑ (aik ↓ akj)

where x ↓ y denotes the minimum of x and y and x ↑ y denotes their maximum.
(In the case that there is no edge from i to j then the initial value of aij is 0.)

A Generic Path Algorithm If we abstract from the general shape of these three
algorithms we obtain a single algorithm of the form

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ⊕ (aik⊗akj)

end for

end for

where ⊕ and ⊗ are binary operators. The initial value of aij is the label of the
edge from i to j if such an edge exists, and is a constant 0 otherwise. (For the
purposes of exposition we assume that there is at most one edge from i to j for
each pair of nodes i and j.) The algorithm is thus parameterised by an algebra.
In the case of the Roy-Warshall algorithm the carrier of the algebra is the two-
element set containing true and false, the constant 0 is false, the operator ⊕ is
disjunction and the operator ⊗ is conjunction. In the case of the least-cost path
problem the carrier is the set of positive real numbers, the constant 0 is ∞, the
operator ⊕ is the binary minimum operator, and the operator ⊗ is addition.
Finally, in the case of the bridge height problem the carrier is also the set of
positive real numbers, the operator ⊕ is the binary maximum operator, and the
operator ⊗ is minimum.

Correctness The above generic algorithm will compute “something” whatever
actual parameters we supply for the formal parameters ⊕, ⊗ and 0, the only
proviso being that the parameters have compatible types. But, that “something”
is only guaranteed to be meaningful if the operators obey certain algebraic prop-
erties. The more general transitive closure algorithm shown below

for each k, 1 ≤ k ≤ N

do for each pair (i,j), 1 ≤ i,j ≤ N

do aij := aij ⊕ (aik ⊗ (akk)∗ ⊗ akj)

end for

end for

Generic Programming 33

is guaranteed to be correct if the algebra is regular [6,8]2. By correctness is meant
that if initially

aij = Σ〈e: e is an edge from i to j: label e〉 ,

where Σ is the generalisation of the binary operator ⊕ to arbitrary bags, then
on termination

aij = Σ〈p: p is a path of positive edge length from i to j: weight p〉

where weight p is def ined recursively by

weight [] = 1

for the empty path [], and for paths e : p (the edge e followed by path p)

weight (e : p) = (label e) ⊗ (weight p) .

Exercise 1.1 Suppose that the edges of a graph are coloured. (So there are
blue edges, red edges, etc.) We say that a path has colour c if all the edges on
the path have colour c. Suggest how to use the above algorithm to determine
for each pair of nodes x and y the set of colours c such that there is a path of
colour c from x to y in the graph.

2

1.4 The Plan

The difference between executability and correctness is an important one that
shows up time and time again, and it is important to stress it once more. The
transitive closure algorithm presented above can be executed provided only that
instantiations are given for the two constants 0 and 1, the two binary operators
⊕ and ⊗, the unary operator ∗, the number N and the matrix a. An imple-
mentation of the algorithm thus requires just the specification of these seven
parameters. Moreover, if we bundle the first five parameters together into an al-
gebra, all that is required for the implementation is the signature of the algebra:
the knowledge that there are two binary operators (with units) and one unary
operator. For the correctness of the algorithm much, much more is needed. We
have to supply a specification relative to which correctness is asserted, and es-
tablishing correctness demands that we require the algebra to be in a certain
class of algebras (in this case the class of regular algebras).

2 Without going into complete details, an algebra is regular if it has two constants 0
and 1, two binary operators ⊕ and ⊗, and one unary operator ∗. The constants 0 and
1 and operators ⊕ and ⊗ should behave like 0, 1, + and × in real arithmetic except
that × is not required to be commutative, and + is required to be idempotent. The
∗ operator is a least fixed point operator. The three algebras mentioned above are
all regular, after suitably defining the constant 1 and defining a∗ to be 1 for all a.

34 Roland Backhouse et al.

As for conventional programs, the specification is absent from a generic pro-
gram’s implementation. Nevertheless, it is the complete process of program con-
struction —from program specification to a systematic derivation of the final
implementation— that will dominate the discussion in the coming pages. Our
aim is not to show how to derive functional programs but to show how to derive
functional programs that are correct by construction. To this end we borrow a
number of concepts from category theory, emphasising the calculational proper-
ties that these concepts entail.

Algebras, Functors and Datatypes The emphasis on calculational properties be-
gins right at the outset in chapter 2 where we introduce the notion of a functor
and an initial algebra and rela te these notions to datatypes.

An algebra (in its simplest form) is a set, called the carrier of the algebra, to-
gether with a number of operations on that set. A Boolean algebra, for example,
has as carrier a set with two elements, commonly named true and false and binary
operations ∧ (conjunction) and ∨ (disjunction) and unary operation ¬ (nega-
tion). The signature of the algebra specifies the types of the basic operations in
the algebra.

In order to implement a generic algorithm we need to provide the compiler with
information on the signature of the operators in the algebra on which the algo-
rithm is parameterised. In order to calculate and reason about generic algorithms
we also need a compact mechanism for defining signatures. The use of functors
provides such a mechanism, compactness being achieved by avoiding naming the
operators of the algebra. The use of functors entails much more however than
just defining the signature of an algebra. As we shall see, a datatype is a func-
tor and inductively defined datatypes are (the carriers of) initial algebras. The
concepts of functor, datatype and algebra are thus inextricably intertwined.

PolyP Following the discussion of algebras and datatypes, we introduce PolyP,
an extension of the Haskell programming language in which generic functions
can be implemented.

The name of PolyP is derived from “polytypic programming”, polytypic pro-
grams being generic programs defined on a particular class of datatypes, the
so-called regular datatypes. Writing programs in PolyP means that one can get
hands-on experience of generic programming thus reinforcing one’s understand-
ing and, hopefully, leading to further insights.

A Unification Algorithm Chapter 4 presents a more substantial example of
generic programming — a generic unification algorithm. The basis for the al-
gorithm is a generic construction of a type representing terms with variables,
and substitution of terms for variables. The algorithm is implemented using
type classes in a style similar to object-oriented programming.

Generic Programming 35

Relations The discussion in chapters 2 and 3 is on functional programs. In
chapter 5 we outline how the concepts introduced in chapter 2 are extended to
relations, and we show how the extension is used in establishing one element of
the correctness of the generic unification algorithm.

There are several reasons for wanting to take the step from functions to relations.
The most pressing is that specifications are relations between the input and the
output, and our concern is with both specifications and implementations. Re-
lated to this is that termination properties of programs are typically established
by appeal to a well-founded relation on the state space. We will not go into ter-
mination properties in these lecture notes but the use of well-founded relations
will play an integral part in our discussion of one element of the correctness of
a generic unification algorithm in chapter 4.

Another reason for wanting to extend the discussion to relations lies in the
theoretical basis of generic programming. In chapter 5 we demonstrate how every
parametrically polymorphic function satisfies a so-called logical relation.

The final reason is why not? As we shall see, extending the theory to relations
does not significantly increase the complexity whilst the benefits are substantial.

1.5 Why Generic Programming?

The form of genericity that we present in the coming pages is novel and has
not yet proved its worth. Our goal is to stimulate your interest in exploring it
further, and to provide evidence of its potential value.

Generic programming has indeed, potentially, major advantages over “one-shot”
programming, since genericity makes it possible to write programs that solve a
class of problems once and for all, instead of writing new code over and over
again for each different instance. The two advantages that we stress here are
the greater potential for reuse, since generic programs are natural candidates for
incorporation in library form, and the increased reliability, due to the fact that
generic programs are stripped of irrelevant detail which often makes them easier
to construct. But what we want to stress most of all is that generic programming
is fun. Finding the right generic formulation that captures a class of related
problems can be a significant challenge, whose achievement is very satisfying.

Acknowledgements The work that is presented here emerged out of the Dutch
STOP (Specification and Transformation of Programs) project which ran for-
mally from 1988 to 1992. The project was particularly successful because of the
real spirit of cooperation among those participating. Project members (both of-
ficial and unofficial) included, in alphabetical order, Roland Backhouse, Richard
Bird, Henk Doornbos, Maarten Fokkinga, Paul Hoogendijk, Johan Jeuring, Grant
Malcolm, Lambert Meertens, Erik Meijer, Oege de Moor , Frans Rietman, Doaitse
Swierstra, Jaap van der Woude, Nico Verwer, Ed Voermans. Our thanks go to
all who made participation in the project such an enjoyable and stimulating
experience.

36 Roland Backhouse et al.

Development of both practical applications of generic programming and the
underlying theory is continuing: see the bibliography for a selection of recent
(formally-published and web-published) papers.

2 Algebras, Functors and Datatypes

This chapter introduces the concepts fundamental to generic programming. The
first section (section 2.1) introduces algebras and homomorphisms between al-
gebras. In this section we see that datatypes (like the natural numbers) are also
algebras, but of a special kind. The presentation in section 2.1 is informal. In
section 2.4 we make precise in what way datatypes are special: we introduce the
all-important notion of an “initial” algebra and the notion of a “catamorphism”
(a special sort of homomorphism). The link between the two sections is provided
by the intermediate sections on functors. The first of these (section 2.2) provides
the formal definition of a functor, motivating it by examples from functional
programming. Then section 5 introduces further examples of functors forming a
class called the “polynomial functors”. Section 2.4 augments the class of poly-
nomial functors with so-called type functors; the resulting class is called the
class of “regular functors”, and generic programs defined over the regular func-
tors are called “polytypic” programs. The final section (section 2.5) presents an
elementary example of a polytypic program.

2.1 Algebras and Homomorphisms

In this section we review the notion of an algebra. The main purpose is to
introduce several examples that we can refer to later. The examples central to
the discussion are datatypes. At the end of the section we consider how we might
formalise the notion of an algebra. We recall a formulation typical of ones in texts
on Universal Algebra and remark why this is inadequate for our purposes. We
then present the definition of an algebra in category theory based on the notion
of a “functor” and outline how the latter expresses the content of the traditional
definitions much more succinctly and in a much more structured way.

Algebras An algebra is a set, together with a number of operations (functions)
that return values in that set. The set is called the carrier of the algebra. Here
are some concrete examples of algebras:

(IN , 0 , (+)), with 0 :: 1→ IN , (+) :: IN× IN → IN
(IN , 0 , (↑)), with 0 :: 1→ IN , (↑) :: IN× IN → IN
(IR , 1 , (×)), with 1 :: 1→ IR , (×) :: IR× IR → IR
(IB , true , (≡)), with true :: 1→ IB , (≡) :: IB× IB → IB
(IB , false, (∨)), with false :: 1→ IB , (∨) :: IB× IB → IB
(IB , true , (∧)), with true :: 1→ IB , (∧) :: IB× IB → IB
(A?, ε , (++)), with ε :: 1→A?, (++) ::A?×A?→A?

In the last line A? stands for the words over some alphabet A, with “++” denot-
ing word concatenation, and “ε” the empty word. This is, of course, basically

Generic Programming 37

the same algebra as (List A, [], (++)), the (finite) lists of A-elements with list
concatenation. Note that in the typing of the operations we use the notation
“source-type→ target-type”. In an algebra all operations have the same target
type3: its carrier. Note further that we use the “uncurried” view in which a bi-
nary operation takes a pair (2-tuple) of arguments and so has some type like
A×B→C. To make fixed elements, like 0 ∈ IN, fit in, they are treated here as
nullary operations: operations with a 0-tuple of arguments. This is indicated by
the source type 1, which in Haskell would be denoted as “()”. Sometimes we
will instantiate a generic program to a specific Haskell program, and in doing
so we will switch back to the curried view for binary operations, having some
type A→ (B→C), and to the view of nullary operations as plain elements, hav-
ing type A rather than 1→A. Conversely, going from a Haskell program to an
algebraic view, we will uncurry n-ary functions, n ≥ 2, and treat constants as
nullary functions.

The concrete algebras above were chosen in such a way that they all have the
same number of operations with the same typing pattern. They can be unified
generically into the following abstract algebra:

(A, e,⊕), with e :: 1→A, ⊕ ::A×A→A

So they all belong to the same class of algebras. An example of another class of
algebras is:

(IN, (+), (+1)), with (+) :: IN×IN→ IN, (+1) :: IN→ IN
(IR, (×), (×2)), with (×) :: IR×IR→ IR, (×2) :: IR→ IR
(A, ⊕ , f), with ⊕ :: A×A→A, f :: A→A

Here, the first two are concrete, while the last is the generic algebra.

By just looking at an algebra, it is not possible (in general) to tell what class
of algebras it belongs to: a given algebra can belong to several different classes.
So the class information has to be supplied additionally. Take for example the
following class:

(IN , 0 , (+)), with 0 :: 1→ IN , (+) :: IN× IN → IN
(IN , 0 , (↑)), with 0 :: 1→ IN , (↑) :: IN× IN → IN
(List IN, [], (:)), with [] :: 1→List IN, (:) :: IN×List IN→List IN
(A , e , ⊕), with e :: 1→ A , ⊕ :: IN× A → A

The first two concrete algebras also occur in the first class treated above, but
the generic algebra reveals that this is a different class.

To give a concluding example of an algebra class:

(IN, 0 , (+1)), with 0 :: 1→ IN, (+1) :: IN→ IN
(IR, 1 , (×2)), with 1 :: 1→ IR, (×2) :: IR→ IR
(IB, true , (¬)), with true :: 1→ IB, (¬) :: IB→ IB
(IB, false, (¬)), with false :: 1→ IB, (¬) :: IB→ IB
(A, e , f), with e :: 1→A, f :: A→A

3 We freely identify types and sets whenever convenient.

38 Roland Backhouse et al.

A recursively defined datatype determines, in a natural way, an algebra. A simple
example is the datatype Nat defined by4:

data Nat = zero | succ Nat

The corresponding algebra is:

(Nat , zero, succ), with zero :: 1→Nat , succ :: Nat→Nat

This belongs to the last class mentioned; in fact, if we ignore the possibility of
infinite data structures —made possible by lazy evaluation— this is essentially
the same algebra as (IN, 0, (+1)). Another example is:

data Natlist = nil | cons IN Natlist

The corresponding algebra is:

(Natlist, nil, cons), with nil :: 1→Natlist, cons :: IN×Natlist→Natlist

This is basically the same as (List IN, [], (:)). Both of these examples illustrate
the general phenomenon that a recursively defined datatype determines an alge-
bra in which the carrier of the algebra is the datatype itself, and the constructors
of the datatype are the operations of the algebra.

Homomorphisms A homomorphism between two algebras, which must be
from the same class, is a function between their carrier sets that “respects the
structure” of the class. For example, the function exp :: IN→ IR is a homomor-
phism with as source algebra (IN, 0, (+)) and as target algebra (IR, 1, (×)). In
this case, respecting the structure of this algebra class means that it satisfies the
following two properties:

exp 0 = 1
exp(x+ y) = (exp x)× (exp y)

Another example in the same class is length :: (A?, ε, (++))→ (IN, 0, (+)). (This
notation is shorthand for the statement that the function length :: A?→ IN is a
homomorphism from source algebra (A?, ε, (++)) to target algebra (IN, 0, (+)).
In this case, respecting the structure means:

length ε = 0
length(x++y) = (length x) + (length y)

In general (for this class of algebras), h :: (A, u, ⊗)→ (B, e, ⊕) means:

h :: A→B
h u = e
h(x⊗ y) = (h x)⊕ (h y)

4 We use Haskell syntax for defining datatypes, except that we write constructors
using a sans serif font where Haskell would capitalize the first letter. The Haskell
definition of Nat would be data Nat = Zero | Succ Nat.

Generic Programming 39

So to apply h to a value in A that resulted from a u-operation (and there is only
one such value), we may equally apply h to the operands (of which there are
none) and apply e to the resulting 0-tuple. Similarly, to apply h to a value in A
that resulted from a ⊗-operation, we may equally well apply h to the operands
(which gives two B-values) and combine these with the operation ⊕. Here are
some more examples of homomorphisms in this class:

(↓ 1) :: (IN, 0 , (+))→ (IN, 0 , (↑))
even :: (IN, 0 , (+))→ (IB, true , (≡))
(> 0) :: (IN, 0 , (↑))→ (IB, false, (∨))
(¬) :: (IB, false, (∨))→ (IB, true , (∧))
(¬) :: (IB, true , (∧))→ (IB, false, (∨))

If we have two homomorphisms in which the target algebra of the first homomor-
phism h :: (A, e, ⊕)→ (B, u, ⊗) is the source algebra of the second homomor-
phism k :: (B, u, ⊗)→ (C, z, �), then their composition is also a homomorphism
k•h :: (A, e, ⊕)→ (C, z, �). For example,

(> 0) • (↓ 1) :: (IN, 0 , (+))→ (IB, false, (∨))
(¬) • (¬) :: (IB, false, (∨))→ (IB, false, (∨))

Now (> 0) • (↓ 1) = (> 0) on IN, and (¬) • (¬) = idIB (the identity function
on IB), so we have

(> 0) :: (IN, 0 , (+))→ (IB, false, (∨))
id :: (IB, false, (∨))→ (IB, false, (∨))

The identity function idA is of course a homomorphism between any algebra
with carrier A and itself.

For the class of algebras whose generic algebra is

(A, e,⊕), with e :: 1→A, ⊕ :: IN×A→A

we have that h :: (A, e, ⊕)→ (B, u, ⊗) means:

h :: A→B
h e = u
h(x⊕ y) = x⊗ (h y)

So why is h for this class not applied to the occurrence of x in the righthand side
of the second equality? The answer is that that would not make sense, since h
has source type A, but x is of type IN. (Later, after we have introduced functors,
we shall see how to define the notion of homomorphism generically, independent
of the specific algebra class.) We have:

sum :: (List IN, [], (:))→ (IN, 0, (+))
foldr ⊕ e :: (List IN, [], (:))→ (A, e, ⊕)

In fact, sum = foldr (+) 0 .

40 Roland Backhouse et al.

Uniqueness We have given several examples of algebra classes and their homo-
morphisms. The first class had generic algebra

(A, e, ⊕) with e :: 1→A, ⊕ :: A×A → A .

Note that the fact that a function is a homomorphism of algebras in this class
does not uniquely define the function. For example, we observed above that
length is a homomorphism with source (A∗, ε, (++)) and target (IN, 0, (+)). But
the function that is constantly 0 for all lists is also a homomorphism with exactly
the same source and target algebras. Indeed, in the case of all the examples we
gave of homomorphisms between algebras in this class the constant function
returning the value e of the target algebra has the same homomorphism type as
the given function.

Contrast this with the third class of algebras. The generic algebra has the form

(A, e, ⊕) with e :: 1→A, ⊕ :: IN×A → A

Again, the fact that a function is a homomorphism of algebras in this class
does not uniquely define the function. But there is something rather special
about the algebra (List IN, [], (:)) in this class of algebras. Specifically, foldr ⊕ e
is the unique homomorphism with source algebra (List IN, [], (:)) and target
algebra (A, e, ⊕). For example, sum is the unique homomomorphism with source
(List IN, [], (:)) and target (IN, 0, (+)). That is, function h satisfies the equations

h :: List IN→ IN
h [] = 0
h(x:xs) = x+ (h xs)

if and only if h = sum.

This uniqueness is an important property that will be a focus of later discussion.

Isomorphisms Above, we said several times that two algebras were “basically”
or “essentially” the same. We want to make this notion precise. The technical
term for this is that these algebras are isomorphic. In set theory, two sets A
and B are called isomorphic whenever there exists a bijection between A and B.
Equivalently, A and B are isomorphic whenever there exist functions f ::A→B
and g ::B→A that cancel each other, that is:

f•g = idB

g•f = idA

The generalisation for algebras is now that we require these functions to be
homomorphisms between the algebras involved. A homomorphism that has a
cancelling homomorphism is called an isomorphism. ¿From the examples above
we see that the algebras (IB, true, (∧)) and (IB, false, (∨)) are isomorphic.

Generic Programming 41

Algebras with laws Although we will hardly use this, no account of the notion
of algebra is complete without mentioning the following. A class of algebras can
be further determined by a set of laws. In a “lawful” class of algebras, all al-
gebras satisfy the same set of (possibly conditional) equational laws. Monoids
form the best-known example of a lawful algebra class. The generic monoid is
(A, e,⊕), with e :: 1→A, ⊕ :: A×A→A , and the monoid laws are the follow-
ing two:

⊕ is associative: (x⊕ y) ⊕ z = x⊕ (y ⊕ z)
e is neutral for ⊕: e⊕ x = x = x⊕ e

If an operation ⊕ has a neutral element, it is unique, and we denote it as ν⊕.
For example, ν+ = 0 and ν× = 1. The examples of concrete algebras from the
first class treated in this chapter are actually all monoids. For lawful algebras
the definition of homomorphism is the same as before.

Graphs The notion of homomorphism is more general than that of a “structure-
respecting” function between algebras. Homomorphisms can generally be defined
for anything having structure. As an example, we consider homomorphisms be-
tween directed graphs. Recall that a directed graph is a structure

(V, E, source, target), with source ::E→ V, target ::E→ V

in which the elements of V are called “vertices” or “nodes”, and the elements of E
are called “edges” or “arcs”. If edge e is an edge from nodem to node n, we have:
source e = m and target e = n. Directed graphs are just like an algebra class,
except that we have two “carrier sets”: V and E. (There is a term for algebras
with more carrier sets: heterogeneous or multi-sorted algebras.) A homomor-
phism from graph (V0, E0, source0, target0) to graph (V1, E1, source1, target1)
is a pair of functions, one with the typing V0→ V1 and one with the typ-
ing E0→E1, and if we overload the identifier h to denote both functions,
they satisfy:

h(source a) = source(h a)
h(target a) = target(h a)

As before for algebras, two graphs are isomorphic whenever there are cancelling
homomorphisms between them. Informally, this means that one graph can be
obtained from the other by systematic renaming. In standard Graph Theory, for
unlabelled graphs like the ones we are considering here, two isomorphic graphs
are usually considered identical. Still, there can be non-trivial automorphisms,
that is, isomorphisms between a graph and itself that are not the identity iso-
morphism.

Summarising and looking ahead In this section we have introduced the notion
of a class of algebras and homomorphisms between algebras in the same class.
We have observed that datatype definitions in a functional programming lan-
guage define an algebra, the carrier of the algebra being the datatype itself and

42 Roland Backhouse et al.

the operations being the constructors of the datatype. We have also made the
important observation that in some cases a function is uniquely characterised
by its homomorphism type (the fact that it is a homomorphism combined with
knowledge about its source and target algebras).

In the remaining sections of this chapter our goal is to formalise all these ideas
in a way that facilitates the calculational construction of programs. Let us give
an outline of what is in store.

The notion of an algebra is formalised in many textbooks on Universal Algebra.
Here is an example of such a definition. This is not the definition we intend to
use so you don’t need to understand it in detail.

Σ-algebra A Σ-algebra with respect to a signature with operators Σ = (S,Γ) is
a pair (V ,F) such that

– V is an S-sorted set, and
– F = {γ: γ ∈ ∪ Γ : fγ} is a set of functions such that

γ ∈ Γ〈〈s0,...,sn−1〉,r〉 ⇒ fγ ∈ Vs0× . . .×Vsn−1 → Vr

γ ∈ Γ〈s,r〉 ⇒ fγ ∈ Vs→Vr

V is called the carrier set of the Σ-algebra and set F is its operator set.

Contrast this with the definition we are going to explain in the coming sections.

F -algebra Suppose F is a functor. Then an F -algebra is a pair(A,α) such that
α ∈ FA→A.

Neither definition is complete since in the first definition the notion of a signature
has not been defined, and in the second the notion of a functor hasn’t been
defined. In the first definition, however, it’s possible to guess what the definition
of a signature is and, after struggling some time with the subscripts of subscripts,
it is possible to conclude that the definition corresponds to the “intuitive” notion
of an algebra. The disadvantage is that the definition is grossly unwieldy. If the
definitions of one’s basic concepts are as complicated as this then one should
give up altogether any hope that one can calculate with them.

The second definition is very compact and, as we shall see, gives an excellent
basis for program construction. Its disadvantage, however, is that it is impossible
to guess what the definition of a functor might be, and it is difficult to see how
it corresponds to the familiar notion of an algebra. How is it possible to express
the idea that an algebra consists of a set of operations? On the face of it, it
would appear that an F -algebra has just one operation α. Also, how does one
express the fact that the operations in an algebra have various arities?

The answer to these questions is hidden in the definition of a “functor”. And,
of course, if its definition is long and complicated then all the advantages of

Generic Programming 43

the compactness of the definition of an algebra are lost. We shall see, however,
that the definition of a functor is also very compact. We shall also see that
functors can be constructed from primitive functors in a systematic way. The
“disjoint sum” of two functors enables one to express the idea that an algebra
has a set of operations; the “cartesian product” of functors allows one to express
the arity of the various operations; “constant functors” enable the expression of
the existence of designated constants in an algebra. An additional major bonus
is that the categorical notion of an “initial algebra” leads to a very compact
and workable definition of inductively defined datatypes in a programming lan-
guage. The remaining sections of this chapter thus provide a veritable arsenal of
fundamental concepts whose mastery is tremendously worthwhile.

Exercise 2.1 Check the claim that even :: (IN, 0, (+))→ (IB, true, (≡)) is a ho-
momorphism.

2

Exercise 2.2 Give the composition of the following two homomorphisms:

(¬) :: (IB, false, (∨))→ (IB, true , (∧))
(> 0) :: (IN, 0 , (+))→ (IB, false, (∨))

2

Exercise 2.3 An automorphism is an isomorphism with the same source and
target algebra. Show that the only automorphism on the algebra (IB, true, (≡))
is the trivial automorphism id.

2

Exercise 2.4 Give an example of a non-trivial automorphism on the algebra
(IR, 0, (×)).

2

2.2 Functors

To a first approximation, datatypes are just sets. A second approximation, which
we have just seen, is that a datatype is the carrier of an algebra. In this section we
identify parameterised datatypes with the categorical notion of functor, giving
us a third approximation to what it is to be a datatype. It is in this section that
we take the first steps towards a generic theory of datatypes.

Examples The best way to introduce the notion of a functor is by abstraction
from a number of examples. Here are a few datatype definitions:

data List a = nil | cons a (List a)

data Maybe a = none | one a

44 Roland Backhouse et al.

data Bin a = tip a | join (Bin a) (Bin a)

data Rose a = fork a (List(Rose a))

Each of these types can be viewed as a structured repository of information, the
type of information being specified by the parameter a in the definition. Each of
these types has its own map combinator. “Mapping” a function over an instance
of one of these datatypes means applying the function to all the values stored in
the structure without changing the structure itself. The typings of the individual
map combinators are thus as follows.

mapList :: (a→ b)→ (List a→List b)
mapMaybe :: (a→ b)→ (Maybe a→Maybe b)
mapBin :: (a→ b)→ (Bin a→Bin b)
mapRose :: (a→ b)→ (Rose a→Rose b)

A datatype that has more than one type parameter also has a map combinator,
but with more arguments. For instance, defining the type of trees with leaves of
type a and interior nodes of type b by

data Tree a b = leaf a | node (Tree a b) b (Tree a b)

the corresponding map combinator has type

mapTree :: (a→c)→ (b→d)→ (Tree a b→Tree c d)

Given a tree of type Tree a b, the combinator applies a function of type a→c
to all the leaves of the tree, and a function of type b→d to all the nodes, thus
creating a tree of type Tree c d.

In general, the map combinator for an n-ary datatype maps n functions over
the values stored in the datatype. (This also holds for the case that n is zero.
Datatypes having no type parameter also have a map combinator, but with
no functional arguments! The map in this case is the identity function on the
elements of the datatype.)

Functors Defined The idea that parameterised datatypes are structured reposi-
tories of information over which arbitrary functions can be mapped is captured
by the concept of a functor. We first explain the concept informally for unary
functors. Consider the world of typed functions. Functors are the structure-
respecting functions for that world. So what is the structure involved? First,
that world can be viewed as a directed graph, in which the nodes are types and
the arcs are functions. So, as for graphs, we require that a functor is a pair of
mappings, one acting on types and one acting on functions, and if we overload
the identifier F to denote both functions, they satisfy the typing rule:

f :: a → b

Ff :: Fa → Fb

Generic Programming 45

Further, functions can be composed with the operation “•”, which is associative
and has neutral element the identity function, id, so this world forms a monoid
algebra. Functors also respect the monoid structure:

F (f • g) = (F f) • (F g)
F ida = idFa

The first of these laws says that there is no difference between mapping the
composition of two functions over an F structure in one go and mapping the
functions over the structure one by one. The second law says that mapping the
identity function over an F structure of a’s has no effect on the structure.

To be completely precise, the world of functions is not quite a monoid, since
the algebra is partial: the meaning of f •g is only defined when this composition
is well-typed, that is, when the source type of f is the target type of g. The
first equality above should therefore only be applied to cases for which f •g is
defined, and from now on we assume this as a tacit condition on such equations.
It follows from the typing rule that then also the composition (F f) • (F g) is
well-typed, so that is not needed as a condition.

Now, in general, an n-ary functor F is a pair of mappings that maps an n-
tuple of types a0, . . . , an−1 to a type F a0 · · · an−1 and an n-tuple of functions
f0, . . . , fn−1 to a function F f0 · · · fn−1 in such a way that typing, composition
and identity are respected:

fi :: ai → bi for i = 0, . . . , n− 1
Ff0 · · ·fn−1 :: Fa0 · · ·an−1 → Fb0 · · · bn−1

F (f0•g0) · · · (fn−1•gn−1) = (F f0 · · · fn−1) • (F g0 · · · gn−1)
F id · · · id = id

Examples Revisited As anticipated in the introduction to this section, the pairs of
mappings F (on types) and mapF (on functions) for F = List,Maybe, etcetera,
are all unary functors since they satisfy the typing rule

f :: a → b

mapF f :: Fa → Fb

and the functional equalities

mapF (f•g) = (mapF f) • (mapF g)
mapF id = id .

An example of a binary functor is the pair of mappings Tree and mapTree since
the pair satisfies the typing rule

f :: a → c
g :: b → d

mapTree f g :: Tree a b → Tree c d

and the functional equalities

mapTree (f•g) (h•k) = (mapTree f h) • (mapTree g k)
mapTree id id = id .

46 Roland Backhouse et al.

Notational convention Conventionally, the same notation is used for the type
mapping and the function mapping of a functor, and we follow that convention
here. Moreover, when applicable, we use the name of the type mapping. So, from
here on, for function f , we write List f rather than mapList f .

Exercise 2.5 Consider the following datatype declarations. Each defines a
mapping from types to types. For example, Error maps the type a to the type
Error a. Extend the definition of each so that it becomes a functor.

data Error a = error String | ok a

data Drawing a = above (Drawing a) (Drawing a)
| beside (Drawing a) (Drawing a)
| atom a

2

2.3 Polynomial Functors

Now that we have defined the notion of a functor and have seen some non-trivial
examples it is time to consider more basic examples. Vital to the usefulness of
the notion is that non-trivial functors can be constructed by composing more
basic functors. In this section we consider the polynomial functors. As the name
suggests, these are the functors that can be obtained by “addition” and “multi-
plication” possibly combined with the use of a number of “constants”.

The technical terms for addition and multiplication are “disjoint sum” and
“cartesian product”. The use of disjoint sum enables one to capture in a sin-
gle functor the fact that an algebra has a set of operations. The use of cartesian
product enables one to express the fact that an operator in an algebra has an
arity greater than one. We also introduce constant functors and the identity
functor; these are used to express the designated constants (functions of arity
zero) and unary functions in an algebra, respectively. For technical reasons, we
also introduce a couple of auxiliary functors in order to complete the class of
polynomial functors. We begin with the simpler cases.

The identity functor The simplest example of a functor is the identity functor
which is the trivial combination of two identity functions, the function that maps
every type to itself and the function that maps every function to itself. Although
trivial, this example is important and shouldn’t be forgotten. We denote the
identity functor by Id.

Constant functors For the constant mapping that maps any n-tuple of arguments
to the same result x we use the notation xK. As is easily verified, the pair of
mappings aK and ida

K, where a is some type, is also a functor. It is n-ary for
all n.
Following the naming convention introduced above, we write aK to denote

both the mapping on types and the mapping on functions. That is, we write

Generic Programming 47

aK where strictly we should write idaK. So, for functions f0 . . . fn−1, we have
aK f0 . . . fn−1 = ida.
A constant functor that we will use frequently is the constant functor asso-

ciated with the unit type, 1. The unit type is the type that is denoted () in
Haskell. It is a type having exactly one element (which element is also denoted
() in Haskell). This functor will be denoted by 1 rather than 1K.

Extraction Each extraction combinator

Exni z0 · · · zn−1 = zi, for i = 0, . . . , n− 1

is an n-ary functor. The extractions that we have particular use for are the
identity functor Id, which is the same as Ex10, and the binary functors Ex

2
0 and

Ex21, for which we use the more convenient notations Par and Rec. (The reason
for this choice of identifiers will become evident in chapter 3. When defining
recursive datatypes like List , we identify a binary “pattern functor”. The first
parameter of the pattern functor is the parameter of the recursive datatype —
and is thus called the Par parameter— and the second parameter is used as the
argument for recursion —and is thus called the Rec parameter.)

The sum functor The binary sum functor + gives the “disjoint union” of two
types. We write it as an infix operator. It is defined by:

data a+ b = inl a | inr b

f + g = h where
h(inl u) = inl(f u)
h(inr v) = inr(g v)

f5 g = h where
h(inl u) = f u
h(inr v) = g v

The datatype definition introduces both the type a+b, called the disjoint sum of
a and b, and the two constructor functions inl ::a→a+ b and inr ::b→a+ b. The
name “disjoint sum” is used because a+b is like the set union of a and b except
that each element of the sets a and b is, in effect, tagged with either the label
inl, to indicate that it originated in set a, or inr, to indicate that it originated in
set b. In this way a+a is different from a since it effectively contains two copies
of every element in a, one with label inl and one with label inr. In particular 1+1
has two elements. The constructors inl and inr are called injections and are sa
id to inject elements of a and b into the respective components of a+b.

In order to extend the sum mapping on types to a functor we have to define the
sum of two functions. This is done in the definition of f+g above. Its definition
is obtained by type considerations — if + is to be a functor, we require that if
f :: a→b and g :: c→d then f+g :: a+c→ b+d. It is easily checked that the

48 Roland Backhouse et al.

above definition of f+g meets this requirement; indeed, there is no other way to
do so.

In addition to defining f+g we have defined another way of combining f and g,
namely f5g, which we pronounce f “junc” g. (“Junc” is short for “junction”.)
As we’ll see shortly, f5g is more basic than f+g. The meaning of f5g is only
defined when f and g have the same target type; its source type is a disjoint sum
of two types. Operationally, it inspects the label on its argument to see whether
the argument originates from the left or right component of the disjoint sum.
Depending on which component it is, either the function f or the function g is
applied to the argument after first stripping off the label. In other words, f5g
acts like a case statement, applying f or g depending on which component of
the disjoint sum the argument comes from.

The typing rule for 5 is a good way of memorising its functionality:

f :: a →c
g :: b→c

f5 g :: a+b→c

(Haskell’s prelude contains a definition of disjoint sum:

data Either a b = Left a | Right b

with either playing the role of 5.)

Now that we have defined + on types and on functions in such a way as to
fulfill the typing requirements on a (binary) functor it remains to verify that it
respects identities and composition. We do this now. In doing so, we establish
a number of calculational properties that will prove to be very useful for other
purposes.

Note first that the definitions of + (on functions) and of 5 can be rewritten in
point-free style as the following characterisations:

h = f+g ≡ h • inl = inl • f ∧ h • inr = inr • g
h = f 5g ≡ h • inl = f ∧ h • inr = g

This style is convenient for reasoning. For example, we can prove the identity
rule:

inl5inr = id

by calculating as follows:

id = α 5 β

≡ { characterisation of 5 }

id•inl = α ∧ id•inr = β

≡ { id is the identity of composition }

inl = α ∧ inr = β .

Generic Programming 49

This last calculation is a simple illustration of the way we often derive programs.
In this case the goal is to express id in terms of 5. We therefore introduce the
unknowns α and β, and calculate expressions for α and β that satisfy the goal.

If we substitute f + g or f5 g for h in the corresponding characterisation, the
left-hand sides of the equivalences become trivially true. The right-hand sides
are then also true, giving the computation rules:

(f+g) • inl = inl • f (f+g) • inr = inr • g
(f5 g) • inl = f (f5 g) • inr = g

The validity of the so-called 5-fusion rule:

h • (f5g) = (h•f)5 (h•g)

is shown by the following calculation5:

h • f5g = α5β

≡ { characterisation of 5 }

h • f5g • inl = α ∧ h • f5g • inr = β

≡ { computation rules for 5 }

h • f = α ∧ h • g = β .

Note once again the style of calculation in which the right side of the law is
constructed rather than verified.

It is also possible to express + in terms of 5, namely by:

f + g = (inl•f)5 (inr•g)

We derive the rhs of this rule as follows:

f+g = α5β

≡ { characterisation of 5 }

f+g • inl = α ∧ f+g • inr = β

≡ { computation rules for + }

inl•f = α ∧ inr•g = β .

Another fusion rule is the 5-+ fusion rule:

(f5g) • (h+ k) = (f•h)5 (g•k)

We leave its derivation as an exercise.

5 We adopt the convention that composition has lower precedence than all other op-
erators. Thus h • f5g should be read as h • (f5g). In the statement of the basic
rules, however, we always parenthesise fully.

50 Roland Backhouse et al.

These rules are useful by themselves, but they were proved to lead to the result
that + respects function composition:

(f + g) • (h+ k) = (f•h) + (g•k)

The proof is simple:

f+g • h+k

= { definition of + }

(inl•f) 5 (inr•g) • h+k

= { 5-+ fusion }

(inl•f •h) 5 (inr•g•k)

= { definition of + }

(f •h) + (g•k) .

The proof that + also respects id, that is,

id+ id = id

is also left as an exercise.

An important property that we shall use is that the mapping 5 is injective,
that is:

f5 g = h5k ≡ f = h ∧ g = k .

Just two simple steps are needed for the proof. Note, in particular, that there is
no need for separate “if” and “only if” arguments.

f5g = h5k

≡ { characterisation }

f5g • inl = h ∧ f5g • inr = k

≡ { computation rules }

f = h ∧ g = k .

Further, the mapping is surjective (within the typing constraints): if h::a+ b→ c,
then there exist functions f :: a→ c and g :: b→ c such that h = f5g. In fact,
they can be given explicitly by f = h•inl and g = h•inr.

The product functor While sums give a choice between values of two types,
products combine two values. In Haskell the product type former and the pair
constructor are syntactically equal. However, we want to distinguish between the
type former × and the value constructor (,). The binary product functor × is
given by:

Generic Programming 51

data a× b = (a, b)

exl(u, v) = u
exr(u, v) = v

f × g = h where
h(u, v) = (f u, g v)

f4 g = h where
h u = (f u, g u)

The functions exl :: a× b→a and exr :: a× b→ b are called projections and are
said to project a pair onto its components.

Just as for disjoint sum, we have defined f×g in such a way that it meet the
type requirements on a functor. Specifically, if f :: a→b and g :: c→d then
f×g :: a×c→ b×d, as is easily checked. Also, we have defined a second com-
bination of f and g, namely f4g, which we pronounce f “split” g.

The operational meaning of f×g is easy to see. Given a pair of values, it produces
a pair by applying f to the first component and g to the second component. The
operational meaning of f4g is that it constructs a pair of values from a single
value by applying both f and g to the given value. (In particular, id4id constructs
a pair by “splitting” a given value into two copies of itself.)

A curious fact is the following. All the rules for sums are also valid for products
under the following systematic replacements: replace + by ×, 5 by 4, inl and inr
by exl and exr, and switch the components f and g of each composition f •g. (In
category theory this is called dualisation.) This gives us the characterisations:

h = f×g ≡ exl • h = f • exl ∧ exr •h = g • exr
h = f4 g ≡ exl • h = f ∧ exr •h = g

the identity rule:

exl4exr = id

the computation rules:

exl • (f×g) = f • exl exr • (f×g) = g • exr
exl • (f4 g) = f exr • (f4 g) = g

the 4-fusion rule:

(f4g) • h = (f•h)4 (g•h)

× expressed in terms of 4:

52 Roland Backhouse et al.

f × g = (f•exl)4(g•exr)

the ×-4-fusion rule:

(f × g) • (h4k) = (f•h)4 (g•k)

and finally the fact that × is a binary functor:

(f × g) • (h× k) = (f•h)× (g•k)
id× id = id

Functional Composition of Functors It is easily verified that the composition of
two unary functors F and G is also a functor. By their composition we mean
the pair of mappings, the first of which maps type a to F (Ga) and the second
maps function f to F (Gf). We use juxtaposition —thus FG— to denote the
composition of unary functors F and G. For example, Maybe Rose denotes the
composition of the functors Maybe and Rose . The order of composition is im-
portant, of course. The functor Maybe Rose is quite different from the functor
Rose Maybe .

It is also possible to compose functors of different arities. For instance we may
want to compose a binary functor like disjoint sum with a unary functor like
List. A simple notational device to help define such a functor is to overload the
meaning of the symbol “+” and write List+List , whereby we mean the functor
that maps x to (List x) + (List x). Similarly we can compose disjoint sum with
two unary functors F and G: we use the notation F+G and mean the functor
that maps x to (F x) + (G x).

Two ways of reducing the arity of a functor are specialisation and duplication.
An example of specialisation is when we turn the binary disjoint sum functor
into a unary functor by specialising its first argument to the unit type. We write
1+Id and mean the functor that maps type a to the type 1+a, and function f to
the function id1+f . Duplication means that we duplicate the argument as many
times as necessary. For example, the mapping x 7→ x+x is a unary functor.

Both duplication and specialisation are forms of functional composition of func-
tors. To formulate them precisely we need to extend the notion of functor so
that the arity of the target of a functor may be more than one. (Up till now we
have always said that a functor maps an n-tuple of types/functions to a single
type/function.) Then a tuple of functors is also a functor, and, for each n, there
is a duplication functor of arity n. In this way duplication and specialisation can
be expressed as the composition of a functor with a tuple of functors. (In the
case of specialisation, one of the functors is a constant functor.)

For our current purposes, a complete formalisation is an unnecessary complica-
tion and the ad hoc notation introduced above will suffice. Formalisations can
be found in [18,19,37,22].

Generic Programming 53

Polynomial functors A functor built only from constants, extractions, sums,
products and composition is called a polynomial functor.

An example of a polynomial functor isMaybe introduced in section 2.2. Recalling
its definition:

data Maybe a = none | one a

we see that, expressed in the notation introduced above, Maybe = 1+Id

The remaining examples introduced in section 2.2 are not polynomial because
they are defined recursively. We need one more mechanism for constructing func-
tors. That is the topic of the next section.

Exercise 2.6 (5-4 abide) Prove that, for all f , g, h and k,

(f5g)4(h5k) = (f4h)5(g4k) .

2

Exercise 2.7 (Abide laws) The law proved in exercise 2.6 is called the
5-4 abide law because of the following two-dimensional way of writing the law
in which the two operators are written either above or beside each other. (The
two-dimensional way of writing is originally due to C.A.R.Hoare, the catchy
name is due to Richard Bird.)

f 5 g f g
4 = 4 5 4

h 5 k h k

What other operators abide with each other in this way? (You have already
seen examples in this text, but there are also other examples from simple arith-
metic.)

2

Exercise 2.8 Consider the mapping Square that takes a type a to a× a and a
function f to f × f . Check that Square is a functor.

2

Exercise 2.9 In checking that something is a functor, we must check that it
respects composition and identity. The last part may not be omitted, as is shown
by the existence of “almost-functors”. Call F an almost-functor when F is a pair
of mappings on types and functions (just like true functors) that respects typing
and composition, but fails to respect identity: F id 6= id. Can you find a simple
example of such an almost-functor? (Hint: Look at constant mappings.)

2

54 Roland Backhouse et al.

Exercise 2.10 If inl :: a→ a+ b and inr :: b→a+ b, what is the typing of id in
the identity rule inl5inr = id?

2

Exercise 2.11 Complete the verification that + is a functor by proving the 5-+
fusion rule and the identity rule (id + id = id). In the calculation you may use
all the other rules stated before these two rules.

2

2.4 Datatypes Generically

By now the notion of a functor should be becoming familiar to you. Also, it
should be clear how to extend the definition of non-inductive datatypes not
involving function spaces to a polynomial functor. In this section we take the
step to inductively defined datatypes.

The basic idea is that an inductively defined datatype is a fixed point of a functor,
which functor we call the pattern functor of the datatype. For the simplest
examples (such as the natural numbers) the pattern functor is polynomial but
for more complicated examples (like the Rose datatype) it is not. We therefore
need to extend the class of functors we can define beyond the polynomial functors
to the so-called regular functors by adding the type functors. The basic technical
device to achieve this is the catamorphism, which is a generalisation of the fold
function on lists.

We begin by discussing pattern functors following which we can, at long last,
define the notion of an F -algebra. Catamorphisms form the next —substantial—
topic, following which we introduce type functors and the class of regular
functors.

Pattern functors and recursion We first look at a simple inductively (= re-
cursively) defined datatype, that of the Peano naturals, which we also saw in
section 2.1:

data Nat = zero | succ Nat

There is only one number zero, which we can make explicit by:

data Nat = zero 1 | succ Nat

Instead of fancy constructor function names like succ and zero we now employ
boring standard ones:

data Nat = inl 1 | inr Nat

The choice here is that afforded by sum, so we replace this by

data Nat = in(1 + Nat)

in which there is one explicit constructor function left, called “in”.

Generic Programming 55

Now note that Nat occurs both on the left and the right of the datatype definition
(which is why it is called an inductively defined or recursive datatype). In order
to view this as a fixed point definition, let us abstract from Nat on the right
side replacing it by the variable z. In this way we are led to consider the unary
functor N defined by

N z = 1+ z

(Note that, although we have only defined N explicitly on types, we understand
its extension to a functor. Using the notations introduced earlier, this functor is
expressed as N = 1K+ Id.) The functor N captures the pattern of the inductive
formation of the Peano naturals. The point is that we can use this to rewrite the
definition of Nat to

data Nat = in(N Nat)

Apparently, the pattern functor N uniquely determines the datatype Nat . When-
ever F is a unary polynomial functor, as is the case here, a definition of the form
data Z = in(F Z) uniquely determines Z.

We need a notation to denote the datatype Z that is obtained, and write
Z = µF . So Nat = µN . Replacing Z by µF in the datatype definition, and
adding a subscript to the single constructor function in in order to disambiguate
it, we obtain:

data µF = inF (F µF)

Now inF is a generic function, with typing

inF :: F µF →µF

We can “reconstruct” the original functions zero and succ by defining:

zero = inN •inl :: 1 →Nat
succ = inN •inr :: Nat→Nat

Conversely, inN ::N Nat→Nat is then of course

inN = zero5succ

Playing the same game on the definition of List gives us:

data List a = in(1 + (a× List a))

Replacing the datatype being defined, List a, systematically by z, we obtain the
“equation”

data z = in(1 + (a × z))

Thus, we see that the pattern functor here is (z 7→ 1 + (a × z)). It has a
parameter a, which we make explicit by putting

56 Roland Backhouse et al.

L a = (z 7→ 1 + (a × z))

Now List a = µ(L a), or, abstracting from a:

List = (a 7→ µ(L a))

Exercise 2.12 What is the pattern functor for Bin? Is it polynomial? What is
the pattern functor for Rose? Is it polynomial?

2

F -algebras Before we traded in the names of the constructor functions for the
uniform ‘in’, we saw that the algebra naturally corresponding to the datatype
Nat , together with the generic algebra of its class, were:

(Nat , zero, succ), with zero :: 1→Nat , succ :: Nat→Nat
(A , e , f), with e :: 1→ A , f :: A → A

Using ‘in’, this should be replaced by:

(Nat , inN), with inN :: 1+Nat→Nat
(A , ϕ), with ϕ :: 1+ A → A

in which the relation between ϕ and the pair (e, f) is, of course,

ϕ = e5f
e = ϕ•inl
f = ϕ•inr

Using the pattern functor N , we can also write:

(Nat , inN), with inN ::N Nat→Nat
(A , ϕ), with ϕ ::N A → A

In general, for a functor F , an algebra (A, ϕ) with ϕ :: FA→A is called an F -
algebra and A is called the carrier of the algebra. So Nat is the carrier of an
N -algebra, and likewise List a is the carrier of an (La)-algebra.

Catamorphisms In the class of F -algebras, a homomorphism h :: (A, ϕ)→ (B, ψ)
is a function h ::A→B that satisfies:

h•ϕ = ψ•Fh

This can be expressed in a diagram:

FA
ϕ
→ A

î.

FB

Fh

↓

ψ
→ B

↓

h

Generic Programming 57

The smiley face signifies that the diagram commutes: the two paths from FA to
B are equivalent.

A specific example of such a diagram is given by the homomorphism even from
the natural numbers to the booleans:

1+Nat
zero5succ

→ Nat

î.

1+Bool

1+even

↓

true5not
→ Bool

↓

even

which expresses the equation

even•(zero5succ) = (true5not)•(1+even) .

Rather than use such a diagram, the standard way of defining a function on an
inductive datatype is by “pattern matching” on the argument, giving a clause
for each constructor function. For the naturals, the typical definition has this
form:

data Nat = zero | succ Nat

h zero = e
h (succ n) = f (h n)

For example, the function even is defined by the equations:

even zero = true
even (succ n) = not (even n)

(Exercise 2.13 asks you to show that these two equations are equivalent to the
commuting diagram above.) For lists, the typical pattern-matching has the form:

data List a = nil | cons a (List a)

h nil = e
h (cons x xs) = x ⊕ h xs

In these definitions, the function being defined, h, is “pushed down” recursively
to the components to which the constructor functions are applied. The effect
is to replace the constructor functions by the corresponding arguments in the
definition of h — in the case of the natural numbers, zero is replaced by e and
succ is replaced by f , and in the case of lists nil is replaced by e and cons is
replaced by ⊕.

For the naturals, the function h defined above is determined uniquely by e and f .
Likewise, for lists, h is uniquely determined by e and ⊕, and there is a standard
notation for the function thus defined, namely foldr ⊕ e. Generalizing this, we
get the following:

58 Roland Backhouse et al.

data µF = inF (F µF)

h (inF x) = ϕ ((F h) x)

in which simple typing considerations show that ϕ has to have a typing of the
form FA→A, and then h has the typing µF→A; in other words, ϕ is the
operation of some F -algebra whose carrier is the target type of h. The function h
thus defined is uniquely determined by ϕ. We call such functions catamorphisms
and use the following notation: h = ([ϕ]). So ([]) is defined by:

([ϕ]) = h where
h (inF x) = ϕ ((F h) x)

In words, when catamorphism ([ϕ]) is applied to a structure of type µF , this
means it is applied recursively to the components of the structure, and the results
are combined by applying its “body” ϕ. Specialised to lists, the ([])-combinator
becomes foldr restricted to finite lists. The importance of having generic catamor-
phisms is that they embody a closed expression for a familiar inductive definition
technique and thereby allow the generic expression of important programming
rules.

Exercise 2.13 Show that the single equation

even • zero5succ = true5not • 1+even

is equivalent to the two equations

even zero = true
even (succ n) = not (even n) .

2

Initial Algebras Catamorphisms enjoy a number of attractive calculational prop-
erties which we now discuss.

We start with giving the typing rule for ([]):

ϕ :: Fa→ a

([ϕ]) :: µF → a

Taking the definition

h (inF x) = ϕ ((F h) x)

we can rewrite this equivalently as:

(h•inF) x = (ϕ •F h) x

or, abstracting from x :

h • inF = ϕ •F h

Generic Programming 59

This functional equation in h has a unique solution, so we conclude that ([ϕ]) is
characterised by

h = ([ϕ]) ≡ h • inF = ϕ •Fh

The right-hand side of this equivalence states that h is a homomorphism, and if
A is the carrier of ϕ, we can also express this characterisation as:

h = ([ϕ]) ≡ h :: (µF, inF)→ (A, ϕ)

In words, every F -algebra is the target algebra of a unique homomorphism with
(µF, inF) as its source algebra, and the catamorphisms consist of these unique
homomorphisms. Source algebras that have the property that there is a unique
homomorphism to any target algebra are known as initial algebras. So (µF, inF)
is an initial algebra. It is easy to prove that all initial algebras in a given algebra
class are isomorphic.

The following diagram expresses the fact that ([ϕ]) :: (µF, in)→ (A, ϕ) (but not
the uniqueness):

F µF
in
→ µF

î.

FA

F ([ϕ])

↓

ϕ
→ A

↓

([ϕ])

In formula form we get the computation rule for catamorphisms:

([ϕ]) • in = ϕ •F ([ϕ])

The function in is itself an F -algebra, so ([in]) is defined. What is it? By substi-
tuting (A, ϕ) := (µF, in) in the last equivalence above, we obtain:

h = ([in]) ≡ h :: (µF, in)→ (µF, in)

But we know that id :: (µF, in)→ (µF, in) ! The conclusion is the identity rule for
catamorphisms:

([in]) = idµF

This generalises the equality for lists: foldr cons nil = id.

60 Roland Backhouse et al.

Further properties of catamorphisms The identity rule is easy to remember if one
thinks of a catamorphism as a function that replaces the constructor functions
of the datatype by the supplied arguments. Thus foldr cons nil is the identity
function on lists because cons is replaced by cons and nil is replaced by nil.
In general, ([in]) replaces all occurrences of in by itself in an element of the
datatype µF .

The identity rule is surprisingly important. As an illustration of its importance,
we prove that in is a bijection between µF and FµF . That is, we use the rule
to construct a function out of type µF → FµF such that in•out = idµF and
out•in = idFµF . Our calculation starts with the first requirement and derives a
candidate for out in a systematic way:

in•out = idµF

≡ { identity rule }

in•out = ([in])

≡ { catamorphism characterisation }

in•out•in = in•F (in•out)

⇐ { cancel in• from both sides }

out•in = F (in•out)

≡ { F respects composition }

out•in = F in • F out

≡ { catamorphism characterisation }

out = ([F in]) .

This completes the first step in the calculation: we have derived the candidate
([F in]) for out.

Note that the identity rule is not used to simplify ([in]) to idµF in this calculation;
rather, it is used in quite the opposite way to complicate idµF to ([in]). There
is a tendency to view algebraic properties as left-to-right rewrite rules, where
the left side is the complicated side and the right side is its simplified form.
Calculations that use the rules in this way are straightforward and do not require
insight. On the other hand, calculations (such as the one above) which include
at least one complication step are relatively difficult and do require insight.
The importance of the identity rule for catamorphisms is its use in introducing a
catamorphism into a calculation (see also the MAG system [38], in which identity
catamorphisms are introduced in calculations in order to be able to apply fusion).
It can require ingenuity to use because it involves replacing an identity function
which is not visible. That is, a step in a calculation may involve replacing some
composition f •g by f •([in])•g, the invisible intermediate step being to replace f •g
by f •idµF •g. This is valid if f has source µF (equivalently, g has target µF) so
it is important to be aware of the types of the quantities involved.

To complete the calculation we have to check that the candidate ([F in]) we have
derived for out satisfies the second requirement on out. That is, we have to verify

Generic Programming 61

that ([F in])•in = idFµF . This is an exercise in the use of the computation rule
which we leave to the reader (specifically, exercise 2.14).

As another illustration of the use of the properties of catamorphisms we derive
a condition under which it is possible to fuse a post-composed function with
a catamorphism. The goal of the calculation is to eliminate the catamorphism
brackets from the equation.

h•([ϕ]) = ([ψ])

≡ { characterisation of ([ψ]) }

h•([ϕ])•in = ψ•F (h•([ϕ]))

≡ { computation rule for ([ϕ]) }

h•ϕ•F ([ϕ]) = ψ•F (h•([ϕ]))

≡ { F respects composition }

h•ϕ•F ([ϕ]) = ψ•Fh•F ([ϕ])

⇐ { cancel •F ([ϕ]) from both sides }

h•ϕ = ψ•Fh .

So we have derived the ([])-fusion rule:

h • ([ϕ]) = ([ψ]) ⇐ h •ϕ = ψ •Fh

Note that the condition states that h is a homomorphism. So the rule states that
composing a homomorphism after a catamorphism is a catamorphism.

The way this rule is typically used is that we want to fuse a given function h
into a given catamorphism ([ϕ]), for example to improve efficiency. In order to
do so, we try to solve the equation h•ϕ = ψ•Fh for the unknown ψ. If we find
a solution, we know that the answer is ([ψ]).

An example We show this in action on a simple example: sum•concat on lists of
lists of numbers. Recall that the pattern functor of List Nat is

L Nat = (z 7→ 1 + (Nat × z)) .

By definition, concat = ([nil 5 (++)]), so we try to fuse sum and concat into a
catamorphism. Applying the fusion rule we have:

sum•concat = ([ψ])

⇐ { concat = ([nil 5 (++)]), fusion }

sum • nil 5 (++) = ψ • (L Nat) sum .

Now, the pattern functor (L Nat) is a disjoint sum of two functors. Also, the
composition on the left side can be fused together:

sum • nil 5 (++)

= { 5 fusion }

(sum • nil) 5 (sum • (++)) .

62 Roland Backhouse et al.

This suggests that we should try instantiating ψ to α5β for some α and β. In
this way, we get:

sum•concat = ([ψ])

⇐ { two steps above, definition of (L Nat) }

(sum • nil) 5 (sum • (++)) = ψ • (id + (id × sum))

≡ { postulate ψ = α5β, fusion }

(sum • nil) 5 (sum • (++)) = (α•id) 5 (β • id×sum)

≡ { 5 is injective, simplification }

sum • nil = α ∧ sum • (++) = β • id×sum .

We now continue with each conjunct in turn. The first conjunct is easy, we have:
sum•nil = zero. For the second conjunct, we have:

sum • (++)

= { property of summation }

(+) • sum×sum

= { × is a binary functor }

(+) • sum×id • id×sum .

And thus we have found that the function β = (+) • sum×id satisfies the equal-
ity sum • (++) = β • id×sum.

Combining everything, we have found that

sum•concat = ([zero 5 ((+) • sum×id)])

or, expressed in a more familiar sty le:

sum•concat = foldr � 0 where
xs � y = sum xs + y

This derivation was not generic but specific for lists of lists. Meertens [37] shows
how to do this generically, and also that the generic solution is no more compli-
cated to obtain than this specific one, whilst being much more general.

Exercise 2.14 We calculated above that out = ([F in]) satisfies in•out = idµF .
Verify that out•in = idFµF .

2

Exercise 2.15 Suppose that (A, ϕ) is an initial F -algebra. Prove that (A, ϕ)
is isomorphic to (µF, inF). Hint. Consider the unique homomorphism h of type
h :: (A, ϕ)→ (µF, inF).

2

Generic Programming 63

Exercise 2.16 Consider the datatype Bin a for some arbitrary type a. The
pattern functor for this type is F where Ff = ida + (f×f). Catamorphisms
over this type take the form ([f5�]) where f is a function and � is a binary
operator.
Define a catamorphism that counts the number of tips in a Bin . Define, in

addition, a catamorphism that counts the number of joins in a Bin . Use the
fusion rule for catamorphisms to determine a relation between the number of
tips and the number of joins in a Bin. That is, derive the definition of a function
f such that

f • NoOfTips = NoOfJoins .

2

Banana split In this subsection we demonstrate the beauty of generic program-
ming. We solve the following problem. Suppose we have two catamorphisms
([f]) :: µF → a and ([g]) :: µF → b, and we want to have a function that
returns the combined result of both. One solution is the program ([f]) 4 ([g]), but
this can be inefficient since, computationally, the source data value is traversed
twice, once for each of the two catamorphisms. So the question we want to solve
is: can we combine these two into a single catamorphism ([χ])?

This generic problem is motivated by our knowledge of specific cases. Take, for
example, the problem of finding both the sum and the product of a list of num-
bers. The sum can of course be expressed as a catamorphism —it is the catamor-
phism ([05add]), where add is ordinary addition of real
numbers— . Similarly the product function is a catamorphism, namely ([15mul]),
where mul is the ordinary multiplication of real numbers. Equally obvious is that
it should be possible to combine the sum and product of a list of numbers into
one catamorphism. After all, the function sp = sum4product is straightforward
to express as a fold in Haskell:

sp = foldr � e where
x� (u, v) = (x+ u, x× v)
e = (0, 1)

We can try to derive this special case in our calculus but more effective is to
derive the solution to the generic problem. The benefit is not only that we then
have a very general result that can be instantiated in lots of ways (one of which is
the sum4product problem), but also that the derivation is much simpler because
it omits irrelevant detail.

We begin the calculation of χ as follows:

([f]) 4 ([g]) = ([χ])

≡ { There is a choice here. We can either use the

characterisation of ([χ]) or the characterisation

of f4g. For no good reason, we choose the latter. }

([f]) = exl • ([χ]) ∧ ([g]) = exr • ([χ]) .

64 Roland Backhouse et al.

This first step involves a difficult choice. At this point in time there is no reason
why the use of one characterisation is preferable to the other (since both are
equivalences). In fact, choosing to use the characterisation of ([χ]) first does lead
to a successful calculation of χ of a similar length. We leave it as an exercise.

We now have to satisfy two conjuncts. Since the two conjuncts are symmetrical
we proceed with just the first.

([f]) = exl • ([χ])

⇐ { Fusion }

f • F exl = exl • χ

≡ { • χ := α4β . }

f • F exl = exl • α4β

≡ { 4 computation }

f • F exl = α .

The crucial step here (indicated by the bullet) is where we postulate the form
of the solution, the motivation being the step that immediately follows.

In summary we have calculated that

([f]) = exl • ([χ]) ⇐ χ = α4β ∧ α = f • F exl .

Similarly,

([g]) = exr • ([χ]) ⇐ χ = α4β ∧ β = g • F exr .

Putting everything together, we conclude that

([f]) 4 ([g]) = ([(f • F exl) 4 (g • F exr)]) .

This is affectionately called the banana-split theorem (because the brackets de-
noting a catamorphism look like bananas, and the 4 operator is pronounced
“split”).

Exercise 2.17 Calculate χ but start by using the characterisation of ([f]). In
other words, calculate χ as a solution of the equation

([f]) 4 ([g]) • in = χ • F (([f]) 4 ([g])) .

(You may find that you get a solution that is equivalent to the one above but
not syntactically identical.)

2

Generic Programming 65

Type functors In general, a binary functor gives rise to a new functor by a com-
bination of parameterisation and constructing an initial algebra. For example,
the binary pattern functor L that maps x and y to 1+(x×y) gives rise to the
functor List . Such functors are called type functors. Here we show how this is
done.

For greater clarity we will use an infix notation for binary functors. Suppose that
� is a binary functor, which we write as an infix operator. That is, for types a
and b, a�b is a type and, for functions f :: a→b and g :: c→d, f�g is a function
of type a�c → b�d. Suppose a is an arbitrary type. Then the pair of mappings
b 7→ a�b and f 7→ ida�f is a functor (the functor formed by specialising the
first operand of � to the type a). We denote this functor by (a�) and call it a
parameterised functor.

Now, since (a�) is a unary functor, we can consider an initial (a�)-algebra with
carrier µ(a�). Abstracting from a we have constructed a mapping from types to
types. Let us introduce a special notation for this mapping:

τ(�) = (a 7→ µ(a�))

So List = τ(L), with L the binary functor defined above.

For τ(�) to be a functor, we need, in addition to the action on types, an action
on functions, which has to satisfy, for a function f :: a→ b,

τ(�) f :: τ(�) a→ τ(�) b .

We derive a candidate for τ(�) f from type considerations. In the calculation,
catamorphisms are (a�) catamorphisms and inb� is an initial (b�)-algebra.

τ(�) f :: τ(�) a → τ(�) b

≡ { definition of τ(�) on types }

τ(�) f :: µ(a�) → µ(b�)

⇐ { • τ(�) f := ([ϕ]) , typing rule for ([]) }

ϕ :: a � µ(b�) → µ(b�)

⇐ { • ϕ := inb� • ψ , type of in }

ψ :: a � µ(b�) → b � µ(b�)

⇐ { f :: a→b, idµ(b�) :: µ(b�)→ µ(b�),

� respects typing }

ψ = f � idµ(b�) .

Performing the collected substitutions gives us this candidate definition

τ(�) f = ([inb� • (f � idµ(b�))])

Exercise 2.20 is to show that τ(�) respects composition and identities. According
to the notational convention introduced earlier the action of τ(�) on functions
can also be written mapτ(�).

66 Roland Backhouse et al.

A final comment: The parameter a in a parameterised functor may actually be
an n-tuple if functor � is (n+1)-ary, and then τ(�) is an n-ary functor. However,
we only consider unary type functors, derived with τ(�) from binary functors in
these lectures.

Exercise 2.18 Consider the datatype Bool = µ((1+1)K). Define false =
inBool•inl, true = inBool •inr. Examine and explain the meaning of the catamor-
phism ([u5v]) for Bool .

2

Exercise 2.19 (cata-map fusion) Derive a fusion rule of the form

([f]) • (τ(�) g) = ([h]) .

Hint: instantiate the fusion rule for catamorphisms with F := (b�). Note also
that τ(�)g is a catamorphism.

2

Exercise 2.20 Complete the verification of the fact that τ(�) is a functor
by showing that τ(�) ida = idτ(�)a and τ(�) (f •g) = (τ(�) f) • (τ(�) g). (Hint:
make use of exercise 2.19.)

2

Exercise 2.21 Specialise the definition of τ(�)f for� = L, the bifunctor giving
the type functor List = τ(L), using in = nil5cons, and verify that this is the
familiarmap function for lists. Also, instantiate your solution to exercise 2.19 and
use it to express the sum of the squares of a list of numbers as a catamorphism.
(That is, express the sum of a list of numbers as a catamorphism, and the list
of squares of a list on numbers as a map. Then fuse the two functions together.)

2

Regular Functors and Datatypes We are now in a position to complete our dis-
cussion of the datatypes introduced in section 2.2 by giving a complete analysis
of the definition of the Rose datatype. As we saw in exercise 2.12, its pattern
functor is a�z = a×(List z), or, in terms of the extraction functors Par and
Rec, (�) = Par×(List Rec), which is not a polynomial functor, because of the
appearance of the type functor List . Yet τ(�) is well defined. Incorporating type
functors into the ways of constructing functors extends the class of polynomial
functors to the class of regular functors.

A functor built only from constants, extractions, sums, products, composition
and τ() is called a regular functor. All the datatypes we have seen, including
List and Rose are regular functors, and their constructor functions (combined
together using the 5 combinator) are initial algebras with respect to the pattern
functors of the datatype.

This concludes the theory development. We have shown precisely what it means
to say that a datatype is both an algebra and a functor.

Generic Programming 67

2.5 A Simple Polytypic Program

We began section 2.2 with four representative examples of datatypes: List ,
Maybe , Bin and Rose. For each of these datatypes we can define a summa-
tion function that sums all the values stored in an instance of the datatype —
assuming the values are numbers. Here is how one would do that in a non-generic
programming style.

sumList nil = 0
sumList (cons u us) = u + sumList us

sumMaybe none = 0
sumMaybe (one u) = u

sumBin (tip u) = u
sumBin (join x y) = sumBin x + sumBin y

sumRose (fork u rs) = u + sumList (mapList sumRose rs)

We now want to replace all these definitions by a single generic definition sumF
for arbitrary unary functor F , which can be specialised to any of the above
datatype constructors and many more by taking F to be List , Maybe , Bin , and
so on. We do this by induction on the structure of the regular functors. That is,
we define summation for a constant functor, for the extraction functors, for the
composition of functors, for disjoint sum and cartesian product, and finally for
a type functor. Let us begin with the type functors since this is where we see
how to formulate the induction hypothesis.

For the type functor τ(�), the requirement is to construct a function sumτ(�) of
type µ(IN�)→ IN. The obvious thing to do here is to define sum as a catamor-
phism, ([f]) say. In that case, the type requirement on f is that f :: IN�IN → IN.
Note that the two arguments to the binary functor � are both IN. This suggests
the inductive hypothesis that there is a sum function of type F IN→ IN for all
unary regular functors F obtained from an arbitrary non-constant n-ary regular
functor by copying the (single) argument n times. We also need to define sum
for the constant functor 1. With this preparation, we can begin the analysis.

For the constant functor 1, we define

sum1 = 0 .

This is because the sum of zero numbers is zero.

For the extraction functors, it is clear that

sumEx = idIN

since the sum of a single number is that number itself.

68 Roland Backhouse et al.

For disjoint sum and cartesian product, we have:

sumF+G = sumF5sumG

sumF×G (x, y) = sumF x + sumG y .

In the case of disjoint sum, either the sumF function has to be applied, or the
sumG function, depending on the type of the argument. In the case of cartesian
product, an element of an F×G structure is a pair consisting of an element of
an F structure and an element of a G structure, and the two sums have to be
added together.

For the composition of two functors, we have:

sumFG = sumF • F sumG .

Here the argument is that an FG structure is an F structure of G structures.
The function F sumG applies sumG to all the individual G structures, and

then sumF adds their values.

The final case is a type functor, which we have already discussed.

sumτ(�) = ([sum�]) .

We leave it to the reader to check that application of the above rules results in
the particular instances of sum given above.

3 PolyP

The previous chapter introduces datatypes and functions on datatypes such as
the catamorphism. The formal language used to introduce datatypes and func-
tions is the language of category theory. The language of category theory is
not a programming language, and although the accompanying text mentions
programming, it is impossible to ‘run’ catamorphisms. This chapter introduces
PolyP, a programming language with which generic functions such as the cata-
morphism can be implemented. The name of PolyP is derived from ‘polytypic
programming’, an alternative name for generic programming.

PolyP is an extension of (a subset of) the functional programming language
Haskell. The extension consists of a new kind of top level definition: the
polytypic construct, which is used to define functions by induction over pattern
functors, which describe the structure of (a subset of) regular datatypes. PolyP
is based on the initial algebra approach to datatypes and work in the Squiggol
community on datatypes. It is a tool that supports polytypic programming, and
as such it has spurred the development of new polytypic programs.

In Haskell, datatypes are defined by means of the data construct, examples of
which have been given in chapter 2. PolyP extracts the pattern functor from a
datatype definition, and uses this structure information to instantiate generic

Generic Programming 69

programs on particular datatypes. We will use the name polytypic function for
a generic program in PolyP.

PolyP has a number of limitations. The datatypes PolyP can handle are a subset
of the datatypes induced by the regular functors defined in the previous chap-
ter: PolyP’s pattern functors are binary and the type functors are unary which
means that it can only handle datatypes with one type argument. Furthermore,
datatypes cannot be mutually recursive.

Information about PolyP and polytypic programming in general can be found on

http://www.cs.chalmers.se/~patrikj/poly/

The names of pattern functors in PolyP differ slightly from the names in the pre-
vious chapter. Section 3.1 introduces PolyP’s functor names. Section 3.2 gives an
implementation of the polytypic function sum from section 2.5. Section 3.3 de-
fines most of the basic polytypic concepts. Type checking of polytypic functions
is explained in section 3.4. Since we will use a number of polytypic functions in
the rest of these notes, section 3.5 gives more examples of polytypic functions,
and section 3.6 introduces PolyLib: a library of polytypic functions.

3.1 Regular Functors in PolyP

The previous chapter explains how datatypes are defined by means of pattern
functors. A pattern functor is a regular functor, i.e., a polynomial functor possi-
bly extended with a type functor. PolyP defines polytypic functions by induction
over the pattern functor of a datatype. The names for the pattern functors con-
structors used in PolyP differs slightly from the names in the previous chapter.
This section defines the syntax for pattern functors used in PolyP.

PolyP’s functors are specified by the following context-free grammar:

f,g ::= f + g | f * g | Empty | Par | Rec | d @ g | Const t

The following table relates this syntax to the functors introduced in the previous
chapter.

+ * Empty Par Rec d @ g Const t

+ × 1K exl exr a 7→ b 7→ d(g a b) tK

+ and * are the standard sum and product functors lifted to act on functors.
Empty is the constant binary version of functor 1K. Par and Rec are mentioned in
chapter 2, and are exl and exr, respectively. Composition of functors d and g is
denoted by d @ g and is only defined for a unary functor d and a binary functor g.
Finally, Const t is the binary variant of tK. The t stands for a monotype such
as Bool, Char or (Int,[Float]).

In PolyP, as in Haskell, type functors (recursive datatypes) are introduced by
the data construct. Every Haskell datatype constructor d is equal to τ(f) for
some pattern functor f. In PolyP this f is denoted by FunctorOf d. A datatype

70 Roland Backhouse et al.

d a is regular (satisfies Regular d) if it contains no function spaces, and if the
argument of the type constructor d is the same on the left- and right-hand side of
its definition. For each one parameter regular datatype d a, PolyP automatically
generates FunctorOf d using roughly the same steps as those used manually in
section 2.4. For example, for

data Error a = Error String | Ok a

data List a = Nil | Cons a (List a)

data Bin a = Tip a | Join (Bin a) (Bin a)

data Rose a = Fork a (List (Rose a))

PolyP generates the following functors:

FunctorOf Error = Const String + Par

FunctorOf List = Empty + Par * Rec

FunctorOf Bin = Par + Rec * Rec

FunctorOf Rose = Par * (List @ Rec)

Pattern functors are only constructed for datatypes defined by means of the
data construct. If somewhere in a program a polytypic function is applied to a
value of type Error (List a), PolyP will generate an instance of the polytypic
function on the datatype Error b, not on the type (Error @ List) a. This
also implies that the functor d in the functor composition d @ g is always a type
functor.

3.2 An Example: psum

PolyP introduces a new construct polytypic for defining polytypic functions by
induction on the structure of a binary pattern functor:

polytypic p :: t = case f of {fi -> ei}

where p is the name of the value being defined, t is its type, f is a functor
variable, fi are functor patterns and ei are PolyP expressions. The explicit
type in the polytypic construct is needed since we cannot in general infer the
type from the cases.

The informal meaning is that we define a function that takes (a representation
of) a pattern functor as its first argument. This function selects the expression in
the first branch of the case matching the functor, and the expression may in turn
use the polytypic function (on subfunctors). Thus the polytypic construct is a
(recursive) template for constructing instances of polytypic functions given the
pattern functor of a datatype. The functor argument of the polytypic function
need not (and cannot) be supplied explicitly but is inserted by the compiler
during type inference.

As an example we take the function psum defined in figure 1. (The subscripts
indicating the type are included for readability and are not part of the defin-
ition.) Function psum sums the integers in a structure with integers. It is the

Generic Programming 71

psumd :: Regular d => d Int -> Int

psumd = catad fsumFunctorOf d

polytypic fsumf :: f Int Int -> Int

= case f of

g + h -> fsumg ‘either‘ fsumh
g * h -> \(x,y) -> fsumg x + fsumh y

Empty -> \x -> 0

Par -> id

Rec -> id

d @ g -> psumd . (pmapd fsumg)

Const t -> \x -> 0

Fig. 1. The definition of psum

PolyP implementation of the function sum defined in section 2.5. The function
either :: (a -> c) -> (b -> c) -> Either a b -> c (corresponding to 5) and
datatype Either a b (corresponding to a+b) are defined in Haskell’s prelude.
The definition of functions cata and pmap (the implementations in PolyP of
the catamorphism and the map, see chapter 2) will be given later. When psum is
used on an element of type Bin Int, the compiler performs roughly the following
rewrite steps to construct the actual instance of psum for Bin:

psumBin → cataBin fsumFunctorOf Bin

It follows that we need an instance of cata for the type functor Bin, and an
instance of function fsum for the pattern functor FunctorOf Bin = Par + Rec
* Rec. For the latter instance, we use the definition of fsum to transform as
follows:

fsumFunctorOf Bin → fsumPar+Rec∗Rec → fsumPar ‘either‘ fsumRec∗Rec

We transform the functions fsumPar and fsumRec∗Rec separately. For fsumPar we
have

fsumPar → id

and for fsumRec∗Rec we have

fsumRec∗Rec
→ \(x,y) -> fsumRec x + fsumRec y
→ \(x,y) -> id x + id y

The last function can be rewritten into uncurry (+), and thus we obtain the
following function for summing a tree:

cataBin (id ‘either‘ (uncurry (+)))

By expanding cataBin in a similar way we obtain a Haskell function for the
instance of psum on Bin. The function we obtain is the same as the function
sumBin defined in section 2.5.

72 Roland Backhouse et al.

3.3 Basic Polytypic Functions

In the definition of function psum we used functions like cata and pmap. This
subsection defines these and other basic polytypic functions.

Since polytypic functions cannot refer to constructor names of specific datatypes,
we introduce the predefined functions out and inn. Function out is used in poly-
typic functions instead of pattern matching on the constructors of a datatype.
For example out on Bin is defined as follows:

outBin :: Bin a -> Either a (Bin a,Bin a)

outBin (Tip x) = Left x

outBin (Join l r) = Right (l,r)

Function inn is the inverse of function out. It collects the constructors of a
datatype into a single constructor function.

out :: Regular d => FunctorOf d a (d a) <- d a

inn :: Regular d => FunctorOf d a (d a) -> d a

Function inn is an implementation of in from chapter 2. The following calculation
shows that the type of inn really corresponds to the type of in:

FunctorOf d a (d a) -> d a

= { d = τ(f) for some regular functor f. }
FunctorOf τ(f) a (τ(f) a) -> τ(f) a

= { Definition of FunctorOf }
f a (τ(f) a) -> τ(f) a

= { Definition of τ() }
f a µ(f a) -> µ(f a)

PolyP generates definitions of inn and out for all datatypes.

As explained in chapter 2, a functor is a mapping between categories that pre-
serves the algebraic structure of the category. Since a category consists of objects
(types) and arrows (functions), a functor consists of two parts: a definition on
types, and a definition on functions. A pattern functor f in PolyP is a function
that take two types and return a type. The part of the functor that takes two
functions and returns a function is called fmapf, see figure 2.

Using fmap we can define the polytypic version of function map, pmap, as follows:

pmap :: Regular d => (a -> b) -> d a -> d b

pmap f = inn . fmap f (pmap f) . out

where out takes the argument apart, fmap applies f to parameters and (pmap f)
recursively to substructures and inn puts the parts back together again. Function
pmapd is the function action of the type functor d.

Generic Programming 73

polytypic fmapf :: (a -> c) -> (b -> d) -> f a b -> f c d

= \p r -> case f of

g + h -> (fmapg p r) -+- (fmaph p r)

g * h -> (fmapg p r) -*- (fmaph p r)

Empty -> id

Par -> p

Rec -> r

d @ g -> pmapd (fmapg p r)

Const t -> id

(-*-) :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)

(f -*- g) (x,y) = (f x , g y)

(-+-) :: (a -> c) -> (b -> d) -> Either a b -> Either c d

(f -+- g) = either (Left . f) (Right . g)

Fig. 2. The definition of fmap.

Function cata is also defined in terms of function fmap:

cata :: Regular d => (FunctorOf d a b -> b) -> (d a -> b)

cata f = f . fmap id (cata f) . out

Note that this definition is a copy of the computation rule for the catamorphism
in section 2.4, with in on the left-hand side replaced by out on the right-hand
side.

3.4 Type Checking Polytypic Functions

We want to be sure that functions generated by polytypic functions are type
correct, so that no run-time type errors occur. For that purpose PolyP type
checks definitions of polytypic functions. This subsection briefly discusses how
to type check polytypic functions, the details of the type checking algorithm can
be found in [25].

Functor expressions contain +, *, etc., and such expressions have to be trans-
lated to real types. For this translation we interpret functor constructors as type
synonyms:

type (f + g) a b = Either (f a b) (g a b)

type (f * g) a b = (f a b , g a b)

type Empty a b = ()

type Par a b = a

type Rec a b = b

type (d @ g) a b = d (g a b)

type Const t a b = t

74 Roland Backhouse et al.

So, for example, interpreting the functors in the pattern functor for List as type
synonyms, we have:

FunctorOf List a b

= { FunctorOf List = Empty + Par * Rec }
(Empty + Par * Rec) a b

= { Type synonym for + }
Either (Empty a b) ((Par * Rec) a b)

= { Type synonyms for Empty and * }
Either () (Par a b,Rec a b)

= { Type synonyms for Par and Rec }
Either () (a,b)

To infer the type of a polytypic definition from the types of the expressions in
the case branches, higher-order unification would be needed. As general higher-
order unification is undecidable we require inductive definitions of polytypic
functions to be explicitly typed, and we only check that this type is valid. Given
an inductive definition of a polytypic function

polytypic foo :: ... f ...

= case f of

g + h -> bar

...

where f is a functor variable, the rule for type checking these definitions checks
among other things that the declared type of function foo, with g + h substituted
for f, is an instance of the type of expression bar. For all of the expressions in
the branches of the case it is required that the declared type is an instance of
the type of the expression in the branch with the left-hand side of the branch
substituted for f in the declared type. The expression g + h is an abstraction of a
type, so by substituting g + h (or any of the other abstract type expressions) for
f in the type of foo we mean the following: substitute g + h for f, and rewrite
the expression obtained thus by interpreting the functor constructors as type
synonyms. As an example we take the case g * h in the definition of fsum:

polytypic fsum :: f Int Int -> Int

= case f of

...

g * h -> \(x,y) -> fsum x + fsum y

...

The type of the expression \(x,y) -> fsum x + fsum y is (r Int Int, s Int Int)
-> Int. Substituting the functor to the left of the arrow in the case branch, g * h,
for f in the declared type f Int Int -> Int gives (g * h) Int Int -> Int, and
rewriting this type using the type rewrite rules, gives (g Int Int, h Int Int)
-> Int. This type is α-convertible to (and hence certainly an instance of) the
type of the expression to the right of the arrow in the case branch, so this part
of the polytypic function definition is type correct.

Generic Programming 75

3.5 More Examples of Polytypic Functions

This section describes some polytypic functions that will be used in the sequel.
These functions can be found in PolyLib, the library of PolyP. The next section
gives an overview of PolyLib.

Function flatten takes a value of type d a and flattens it into a list of values
of type [a]. It is defined using function fflatten :: f a [a] -> [a], which
takes a value v of type f a [a], and returns the concatenation of all the values
(of type a) and lists (of type [a]) occurring at the top level in v. The definition
of flatten and fflatten is given in figure 3. As an example, we unfold the

flattend :: Regular d => d a -> [a]

flattend = catad fflattenFunctorOf d

polytypic fflattenf :: f a [a] -> [a]

= case f of

g + h -> either fflatteng fflattenh
g * h -> \(x,y) -> fflatteng x ++ fflattenh y

Empty -> nil

Par -> singleton

Rec -> id

d @ g -> concat . flattend . pmapd fflatteng
Const t -> nil

nil x = []

singleton x = [x]

Fig. 3. The definition of flatten and fflatten.

definition of fflatten when used on the type List a (remember that FunctorOf
List = Empty+Par*Rec):

fflattenEmpty+Par∗Rec
→ either fflattenEmpty fflattenPar∗Rec
→ either nil (\(x,y) -> fflattenPar x ++ fflattenRec y)

→ either nil (\(x,y) -> id x ++ id y)

→ either nil (uncurry (++))

The expression pequal eq x y checks whether or not the values x and y are
equivalent using the equivalence operator eq to compare the elements pairwise. It
is defined in terms of function fequal eq (pequal eq), where the first argument,
eq, compares parameters for equality and the second argument, (pequal eq),
compares the subterms recursively. The third and fourth arguments are the two
(unfolded) terms to be compared. These functions are defined in figure 4.

76 Roland Backhouse et al.

polytypic fequalf :: (a -> b -> Bool) -> (c -> d -> Bool) ->

f a c -> f b d -> Bool

= \p r -> case f of

g + h -> sumequal (fequalg p r) (fequalh p r)

g * h -> prodequal (fequalg p r) (fequalh p r)

Empty -> _ _ -> True

Par -> p

Rec -> r

d @ g -> pequald (fequalg p r)

Const t -> (==)

pequal :: (a -> b -> Bool) -> d a -> d b -> Bool

pequal eq x y = fequal eq (pequal eq) (out x) (out y)

sumequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

Either a c -> Either b d -> Bool

sumequal f g (Left x) (Left v) = f x v

sumequal f g (Right y) (Right w) = g y w

sumequal f g _ _ = False

prodequal :: (a -> b -> Bool) -> (c -> d -> Bool) ->

(a,c) -> (b,d) -> Bool

prodequal f g (x,y) (v,w) = f x v && g y w

Fig. 4. The definition of pequal and fequal.

3.6 PolyLib: A Library of Polytypic Functions

Using different versions of PolyP (and its predecessors) we have implemented a
number of polytypic programs. For example, we have implemented a polytypic
equality function, a polytypic show function, and a polytypic parser. Further-
more, we have implemented some more involved polytypic programs for pattern
matching, unification and rewriting. These polytypic programs use several basic
polytypic functions, such as the relatively well-known cata and pmap, but also
less well-known functions such as propagate and thread. We have collected
these basic polytypic functions in the library of PolyP: PolyLib [27, app. B]. This
paper describes the polytypic functions in PolyLib, motivates their presence in
the library, and gives a rationale for their design. This section first introduces the
format used for describing polytypic library functions, then it gives an overview
of the contents of the library, followed by a description of each of the submodules
in the library.

Describing Polytypic Functions The description of a polytypic function
consists of (some of) the following components: its name and type; an (in)formal
description of the function; other names the function is known by; known uses of

Generic Programming 77

the function; and its background and relationship to other polytypic functions.
For example:

pmap :: (a -> b) -> d a -> d b

Function pmap takes a function f and a value x of datatype d a, and
applies f . . . Also known as: map [31], mapn [29]. Known uses:
Everywhere! Background: This was one of the first . . .

A problem with describing a library of polytypic functions is that it is not com-
pletely clear how to specify polytypic functions. The most basic combinators
have immediate category theoretic interpretations that can be used as a specifi-
cation, but for more complicated combinators the matter is not all that obvious.
Thus, we will normally not provide formal specifications of the library functions,
though we try to give references to more in-depth treatments.

The polytypic functions in the library are only defined for regular datatypes d
a. In the type this is indicated by adding a context Regular d => ..., but we
will omit this for brevity.

Library Overview We have divided the library into six parts, see figure 5.
The first part of the library contains powerful recursion combinators such as
map, cata and ana. This part is the core of the library in the sense that it is
used in the definitions of all the functions in the other parts. The second part
deals with zips and some derivates, such as the equality function. The third part
consists of functions that manipulate monads (see section 4.1). The fourth and
fifth parts consist of simpler (but still very useful) functions, like flattening and
summing. The sixth part consists of functions that manipulate constructors and
constructor names. The following sections describe each of these parts in more
detail.

Recursion Operators

pmap :: (a -> b) -> d a -> d b
fmap :: (a -> c) -> (b -> d) -> f a b -> f c d

Function pmap takes a function f and a value x of datatype d a, and applies f
recursively to all occurrences of elements of type a in x. With d as a functor acting
on types, pmapd is the corresponding functor action on functions. Function fmapf
is the corresponding functor action for a pattern functor f. Also known as:
map [31], mapn [29]. In charity [13] mapd f x is written d{f}(x). Known uses:
Everywhere! Function fmap is used in the definition of pmap, cata, ana, hylo,
para and in many other PolyLib functions. Background: The map function
was one of the first combinators distinguished in the work of Bird and Meertens,

78 Roland Backhouse et al.

pmap, fmap, cata
ana, hylo, para
crush, fcrush

(a) Recursion op’s

pzip, fzip
punzip, funzip

pzipWith, pzipWith’
pequal, fequal
(b) Zips etc.

pmapM, fmapM, cataM
anaM, hyloM, paraM
propagate, cross
thread, fthread
(c) Monad op’s

flatten, fflatten
fl par, fl rec, conc

(d) Flatten functions

psum, size, prod
pand, pall

por, pany, pelem

(e) Miscellaneous

constructorName, fconstructorName
constructors, fconstructors

constructor2Int, fconstructor2Int
int2constructor, int2fconstructor

(f) Constructor functions

Fig. 5. Overview of PolyLib

[12,35]. The traditional map in functional languages maps a function over a list
of elements. The current Haskell version of map is overloaded:

map :: Functor f => (a->b) -> f a -> f b

and can be used as the polytypic pmap if instance declarations for all regular
type constructors are given. Function pmap can be used to give default instances
for the Haskell map.

cata :: (FunctorOf d a b -> b) -> (d a -> b)
ana :: (FunctorOf d a b <- b) -> (d a <- b)
hylo :: (f a b -> b) -> (c -> f a c) -> (c -> b)
para :: (d a -> FunctorOf d a b -> b) -> (d a -> b)

Four powerful recursion operators on the type d a: The catamorphism, cata,
“evaluates” a data structure by recursively replacing the constructors with func-
tions. The typing of cata may seem unfamiliar but with the explanation of
FunctorOf above it can be seen as equivalent to:

cata :: (f a b -> b) -> (τ(f) a -> b)

The anamorphism, ana, works in the opposite direction and builds a data struc-
ture. The hylomorphism, hylo, is the generalisation of these two functions that
simultaneously builds and evaluates a structure. Finally, the paramorphism,
para, is a generalised form of cata that gives its parameter function access
not only to the results of evaluating the substructures, but also the structure
itself. Also known as:

Generic Programming 79

PolyLib Functorial ML [9] Squiggol charity [13]
cata i fold1 i ([i]) {| i |}

ana o - [(o)] (| o |)

Functions cata and para are instances of the Visitor pattern in [21]. Known
uses: Very many polytypic functions are defined using cata: pmap, crush,
thread, flatten, propagate, and all our applications use it. Function para
is used in rewrite. Background: The catamorphism, cata, is the generalisa-
tion of the Haskell function foldr and the anamorphism, ana, is the (category
theoretic) dual. Catamorphisms were introduced by Malcolm [33,34]. A hylo-
morphism is the fused composition of a catamorphism and an anamorphism
specified by: hylo i o = cata i . ana o. The paramorphism [36], para, is the
elimination construct for the type d a from Martin–Löf type theory. It captures
the recursion pattern of primitive recursive functions on the datatype d a.

crush :: (a->a->a) -> a -> d a -> a
fcrush :: (a->a->a) -> a -> f a a -> a

The function crush op e takes a structure x and inserts the operator op from
left to right between every pair of values of type a at every level in x. (The
value e is used in empty leaves.) Known uses: within the library see section 6.
Many of the functions in that section are then used in the different applications.
Background: The definition of crush is found in [37]. For an associative oper-
ator op with unit e, crush op e can be defined as foldr op e . flatten. As
crush has the same arguments as fold on lists it can be seen as an alternative
to cata as the generalisation of fold to regular datatypes.

Zips

pzip :: (d a,d b) -> Maybe (d (a,b))
punzip :: d (a,b) -> (d a,d b)
fzip :: (f a b,f c d) -> Maybe (f (a,c) (b,d))
funzip :: f (a,c) (b,d) -> (f a b,f c d)

Function punzip takes a structure containing pairs and splits it up into a pair of
structures containing the first and the second components respectively. Function
pzip is a partial inverse of punzip: it takes a pair of structures and zips them
together to Just a structure of pairs if the two structures have the same shape,
and to Nothing otherwise. Also known as: zipm [29], zip.×.d [23], Known
uses: Function fzip is used in the definition of pzipWith. Background: The
traditional function zip

zip :: [a] -> [b] -> [(a,b)]

80 Roland Backhouse et al.

combines two lists and does not need the Maybe type in the result as the longer
list can always be truncated. (In general such truncation is possible for all types
that have a nullary constructor, but not for all regular types.) A more general
(“doubly polytypic”) variant of pzip: transpose (called zip.d.e in [23])

transpose :: d (e a) -> e (d a)

was first described by Fritz Ruehr [43]. For a formal and relational definition,
see Hoogendijk & Backhouse [23].

pzipWith :: ((a,b) -> Maybe c) -> (d a,d b) -> Maybe (d c)
pzipWith’ :: (FunctorOf d c e -> e) -> ((d a,d b) -> e) ->

((a,b) -> c) -> (d a,d b) -> e

Function pzipWith op works like pzip but uses the operator op to combine the
values from the two structures instead of just pairing them. As the zip might
fail, we also give the operator a chance to signal failure by giving it a Maybe-type
as a result.6

Function pzipWith’ is a generalisation of pzipWith that can handle two
structures of different shape. In the call pzipWith’ ins fail op, op is used as
long as the structures have the same shape, fail is used to handle the case when
the two structures mismatch, and ins combines the results from the substruc-
tures. (The type of ins is the same as the type of the first argument to cata.)
Also known as: zipopm [29]. Known uses: Function pzipWith’ is used in the
definition of equality, matching and even unification. Background: Function
pzipWith is the polytypic variant of the Haskell function zipWith

zipWith :: (a->b->c) -> [a] -> [b] -> [(a,b)]

but pzipWith’ is new. Function pzip is just pzipWith Just.

pequal :: (a->b->Bool) -> d a -> d b -> Bool
fequal :: (a->b->Bool) -> (c->d->Bool) -> f a c -> f b d -> Bool

The expression pequal eq x y checks whether or not the structures x and y are
equivalent using the equivalence operator eq to compare the elements pairwise.
Known uses: fequal is used in the unification algorithm to determine when
two terms are top level equal. Background: An early version of a polytypic
equality function appeared in [44]. Function pequal can be instantiated to give
a default for the Haskell Eq-class for regular datatypes:

6 The type constructor Maybe can be replaced by any monad with a zero, but we didn’t
want to clutter up the already complicated type with contexts.

Generic Programming 81

(==) :: Eq a => d a -> d a -> Bool

(==) = pequal (==)

In Haskell the equality function can be automatically derived by the compiler,
and our polytypic equality is an attempt at moving that derivation out of the
compiler into the prelude.

Monad Operations

pmapM :: Monad m => (a -> m b) -> d a -> m (d b)
pmapMr :: Monad m => (a -> m b) -> d a -> m (d b)
fmapM :: Monad m => (a->m c) -> (b->m d) -> f a b -> m (f c d)
cataM :: Monad m => (FunctorOf d a b->m b) -> (d a -> m b)
anaM :: Monad m => (b->m (FunctorOf d a b)) -> (b -> m (d a))
hyloM :: Monad m => (f a b->m b) -> (c->m (f a c)) -> c -> m b
paraM :: Monad m => (d a->FunctorOf d a b->m b) -> d a -> m b

Function pmapM is a variant of pmap that threads a monad m from left to right
through a structure after applying its function argument to all elements in the
structure. Function pmapMr is the same but for threading a monad m from right to
left through a structure. For symmetry’s sake, the library also contains a function
pmapMl, which is equal to pmapM. Furthermore, the library also contains the left
and right variants of functions like cataM etc. A monadic map can, for example,
use a state monad to record information about the elements in the structure
during the traversal. The other recursion operators are generalised in the same
way to form even more general combinators. Also known as: traversals [29].
Known uses: in unify and in the parser. Background: Monadic maps and
catamorphisms are described in [20]. Monadic anamorphisms and hylomorphisms
are defined in [39]. The monadic map (also called active traversal) is closely
related to thread (also called passive traversal):

pmapM f = thread . pmap f

thread = pmapM id

propagate :: d (Maybe a) -> Maybe (d a)
cross :: d [a] -> [d a]

Function propagate propagates Nothing to the top level. Function cross is the
cross (or tensor) product that given a structure x containing lists, generates a list
of structures of the same shape. This list has one element for every combination of
values drawn from the lists in x. These two functions can be generalised to thread
any monad through a value. Known uses: propagate is used in the definition
of pzip. Background: Function propagate is an instance of transpose [43],

82 Roland Backhouse et al.

and both propagate and cross are instances of thread below.

thread :: Monad m => d (m a) -> m (d a)
fthread :: Monad m => f (m a) (m b) -> m (f a b)

Function thread is used to tie together the monad computations in the elements
from left to right. Also known as: distd [20]. Known uses: Function thread
can be used to define the monadic map: pmapM f = thread . pmap f. Function
fthread is also used in the parser to thread the parsing monad through different
structures. Function thread can be instantiated (with d = []) to the Haskell
prelude function

accumulate :: Monad m => [m a] -> m [a]

but also orthogonally (with m = Maybe) to propagate and (with m = []) to
cross.

Flatten Functions

flatten :: d a -> [a]
fflatten :: f a [a] -> [a]
fl par :: f a b -> [a]
fl rec :: f a b -> [b]

Function flatten x traverses the structure x and collects all elements from left
to right in a list. The other three function are variants of this for a pattern
functor f. Also known as: extractm,i [29], listify [23]. Known uses: fl rec
is used in the unification algorithm to find the list of immediate subterms of a
term. Function fflatten is used to define flatten

flatten = cata fflatten

Background: In the relational theory of polytypism [23] there is a membership
relation mem.d for every relator (type constructor) d. Function flatten can
be seen as a functional implementation of this relation:

a mem.d x ≡ a ‘elem‘ (flattend x)

Generic Programming 83

Miscellaneous A number of simple polytypic functions can be defined in terms
of crush and pmap. For brevity we present this part of PolyLib below by pro-
viding only the name, the type and the definition of each function.

psum :: d Int -> Int

prod :: d Int -> Int

conc :: d [a] -> [a]

pand :: d Bool -> Bool

por :: d Bool -> Bool

psum = crush (+) 0

prod = crush (*) 1

conc = crush (++) []

pand = crush (&&) True

por = crush (||) False

size :: d a -> Int

flatten :: d a -> [a]

pall :: (a->Bool) -> d a -> Bool

pany :: (a->Bool) -> d a -> Bool

pelem :: Eq a => a -> d a -> Bool

size = psum . pmap (_->1)

flatten = conc . pmap (:[])

pall p = pand . pmap p

pany p = por . pmap p

pelem x = pany (\y->x==y)

Constructors

constructorName :: d a -> String
fconstructorName :: f a b -> String
constructors :: [d a]
fconstructors :: [f a b]
constructor2Int :: d a -> Int
fconstructor2Int :: f a b -> Int
int2constructor :: Int -> d a
int2fconstructor :: Int -> f a b

Function constructorName takes a value of type d a and returns its outer-
most constructor name. Function constructors returns a list with all the con-
structors of a datatype d a. For example, for the datatype Bin it returns [Tip
undefined,Join undefined undefined]. The functions constructor2Intand
int2constructor take constructors to integers and vice versa. Known uses:
constructorName is used in pshow, the polytypic version of the derived show
function in Haskell, constructors is used in showing, parsing and compress-
ing values, and both int2constructor and constructor2Int in compressing
values.

4 Generic Unification

This chapter presents a substantial application of the techniques that have been
developed thus far. The topic is a generic unification algorithm.

Briefly, unification is the process of making two terms (such as arithmetic ex-
pressions or type expressions) equal by suitably instantiating the variables in the

84 Roland Backhouse et al.

terms. It is very widely used in, for example, pattern matching, type checking
and theorem proving. For those who haven’t already encountered it, let us first
give an informal explanation before giving a summary of the development of the
generic algorithm.

We explain the process in terms of a specific case before considering the generic
version. Consider the datatype definition

data Expr = var V
| number Nat
| plus Expr Expr
| times Expr Expr

This can be read as the datatype of abstract syntax trees for a context-free
grammar

E ::= V | N | (E +E) | (E *E)

for terms like “((1+x)*3)” when V produces variables andN produces numbers.

Another view is that a term of the datatype Expr is a tree with the constructors
var, number, plus and times at the nodes, and numbers and variables at the
leaves. In this view, the constructors are uninterpreted, which means that trees
corresponding to equal but non-identical arithmetic expressions are considered
different. For example, the trees corresponding to ((1+x)*3) and (3+(x*3)) are
different. It is this view of terms as tree structures that is used in unification.
Nevertheless, for ease of writing we shall use the concrete syntax of arithmetic
expressions to write terms.

Now consider two terms, say ((1+x)*3) and ((y+z)*3). “Unifying” these terms
means substituting terms for the variables x, y and z so that the terms become
identical. One possibility, in this case, is to substitute z for x and 1 for y. After
this substitution both terms become equal to ((1+z)*3). There are many other
possibilities. For example, we could substitute 1 for all of x, y and z, thus unifying
the two terms in the term ((1+1)*3). This latter substitution is however less
general than the former. Unification involves seeking a “most general” unifier
for two given terms. Of course, some pairs of terms are not unifiable: a trivial
example is the pair of terms 0 and 1. These are not unifiable because they
contain no variables. The pair of terms x and (1+x) is also not unifiable, but
for a different reason: namely, the first term will always have fewer constructors
than the second whatever substitution we make for x.

We have described unification for arithmetic expressions but unification is also
used for other term algebras. A major application is in polymorphic type in-
ference, as in most modern functional languages. In this application it is type
expressions that are unified. Suppose that a program contains the function ap-
plication f x, and at that stage the term representing the type inferred for f is
(p->q), and for x it is r. Then first p and r are unified. If that fails, there is
a type error. Otherwise, let (p′->q′) be the result of applying the most general

Generic Programming 85

unifier to (p->q). That is the new type inferred for f, while we get p′ for x, and
q′ for the application f x.

In a generic unification algorithm we make the term structure a parameter of
the algorithm. So, one instance of the algorithm unifies arithmetic expressions,
another type expressions. In order to formalise this we use F to denote a functor
(the pattern functor of the constant terms we want to unify) and show how to
extend F to a functor F ? such that F ?V , for type V of variables, is the set of
all terms. We also define substitution of variables, and most general unifiers.

The functor F ? is (the functor part of) a monad. In the last ten years, mon-
ads have been recognised to be an important concept in many applications of
functional programming. We therefore begin in section 4.1 by introducing the
concept at first without reference to unification. There is much that can be said
about monads but our discussion is brief and restricted to just what we need to
present the unification algorithm. The monad F ? defined by an arbitrary functor
F is then discussed along with the definition of a substitution.

The discussion of the unification algorithm proper begins in section 4.2. Here
the discussion is also brief since we assume that the non-generic algorithm is
known from the literature. In order to compare the calculational method of
proof with traditional proofs, chapter 5 presents a generic proof of one aspect of
the algorithm’s correctness, namely that a non-trivial expression is not unifiable
with any variable that occurs properly in it.

4.1 Monads and Terms

Monads and Kleisli composition A monad is a concept introduced in category
theory that has since proved its worth in functional programming. It is a general
concept which we introduce via a particular instance, the Maybe monad.

Suppose we have two functions

f :: a→Maybe b
g :: b→Maybe c

Think of these total functions as modelling partial functions: f computes a b-
value from an a-value, or fails, and likewise, g computes a c-value from a b-value,
or fails. Can we combine these functions into a single function

g � f :: a→Maybe c

that combines the computations of f and g when both succeed, and fails when
either of them fails? The types don’t fit for normal composition, but here is how
to do it:

(g � f) x = h (f x) where
h none = none
h (one y) = g y

86 Roland Backhouse et al.

This form of composition is calledKleisli composition. Kleisli composition shares
some pleasant properties with normal composition. First, the operation is asso-
ciative:

f � (g �h) = (f � g) � h

for f , g and h such that the expressions involved are well-typed. We may there-
fore drop the parentheses in chains of Kleisli compositions and write f � g � h.
Moreover, � has neutral element one, which we call the Kleisli identity :

one � f = f = f � one .

Kleisli composition gives a convenient way to fit functions together that would
not fit together with normal composition. Kleisli composition is not just pos-
sible for Maybe , but for many other functors as well. A functor with a Kleisli
composition and Kleisli identity —that satisfy a number of laws to be discussed
shortly— is called a monad. A trivial example is the functor Id: take normal
function composition as its Kleisli composition. A less trivial example is the
functor Set . For this functor, Kleisli composition takes the form

(f�g)x = {z | ∃(y:: y∈gx ∧ z∈fy)} .

Its Kleisli identity is the singleton former { }. We shall encounter more monads
later.

Formally, the triple (M, � , η) is a monad, where M is a functor, � and η are its
Kleisli composition and Kleisli identity, if the following properties hold. First, �
is a function of polymorphic type

(b→Mc)×(a→Mb)→ (a→Mc)

and η is a function of polymorphic type

a→Ma .

Second, � is associative with η as neutral element. Finally, the following rules
are satisfied:

Mf • (g � h) = (Mf • g) � h
(f � g) •h = f � (g •h)
(f • g) � h = f � (Mg • h)

In fact, these equalities are automatically satisfied in all the monads that we
consider here. They are consquences of the so-called free theorem for � . Their
validity depends on a property called (polymorphic) parametricity that is sat-
isfied by Haskell restricted to total functions which we discuss in section 5.2.

Exercise 4.1 Let (M, � , η) be a monad. Express Mf in terms of Kleisli
composition and identity. Define

mul = id � id ::MMa→ Ma

Generic Programming 87

(The function mul is called the multiplier of the monad.) What is the function
mul for the case M = Set?
Prove that f � g = mul •Mf • g. Also prove the following three equalities:

mul • mul = mul •Mmul

mul • η = id = mul •Mη .

2

Terms with variables Recall the datatype Expr introduced at the beginning of
this section. We can regard it as a datatype for terms involving numbers, addition
and multiplication to which has been added an extra alternative for variables.

Let F be the pattern functor corresponding to the definition of Expr without
variables. Then Expr = µG, where Ga = V +Fa. This can be done generically.
Consider, for unary functor F , the unary functor V K+F . This, we recall, is
defined by

(V K+F)a = V + Fa

where a ranges over types, and

(V K+F)f = idV + Ff

where f ranges over functions. For fixed F , the mapping a 7→ µ(aK+F) is a
functor, namely the type functor τ(�) of the bifunctor a�b = a+Fb. Denote this
type functor by F ? (so F ?V = µ(V K+F))7. Its action on functions is as follows.
For f :: a→ b:

F ?f = ([aK+F ; inbK+F • f+id])

Note that we have specified the pattern functor “aK+F ” inside the catamorphism
brackets here since there is a possibility of confusion between different algebras.
Note also that

(V K+F)F ?V = V + FF ?V

so that

inV K+F :: V + FF ?V → F ?V .

Given a datatype µF , we can then extend it with variables by switching to F ?V .
We define two embeddings by:

emblV :: V → F ?V

emblV = inV K+F • inl

embrV :: F F ?V → F ?V

embrV = inV K+F • inr

7 The star notation is used here to suggest a link with the Kleene star, denoting
iteration in a regular algebra. F ? can be seen as iterating functor F an arbitrary
number of times. More significantly, the notation highlights a formal link between
monads and closure operators. See, for example, [3] for more details.

88 Roland Backhouse et al.

The functor F ? forms the substitution monad (F ?,�,η) with, for some functions
f :: a→ F ?b and g :: b→ F ?c,

g�f = ([bK+F ; g 5 embrc]) • f

η = embl .

Note that the catamorphism in the definition of g�f has pattern functor bK+F ,
as indicated by the parameter before the semicolon. We omit explicit mention of
this information later, but it is vital to the correct use of the computation and
other laws. In addition we omit type information on the initial algebra, although
again it is vitally important.

Exercise 4.2 Take F to be a× for some type a. What is the type (a×)?1?
What is the multiplier, what is Kleisli identity and what is Kleisli composition?
(Hint: use exercise 4.1 for the last part of this exercise.)

2

Exercise 4.3 Consider the case F = (1+). Show that (1+)?V ∼= IN×(V+1).
Specifically, construct an initial algebra.

in :: V + (1 + (IN×(V+1))) → IN×(V +1)

and express catamorphisms on elements of type IN×(V+1) in terms of catamor-
phisms on IN.

2

Exercise 4.4 Verify that Kleisli composition as defined above is indeed asso-
ciative and that embl is its neutral element.

2

Assignments and Substitutions An assignment is a mapping of variables to terms,
for example { x := (y+x) ,y := 0 }. An assignment can be performed on a term.
This means a simultaneous and systematic replacement of the variables in the
term by the terms to which they are mapped. For example, performed on the
term (x+y) our example assignment gives ((y+x)+0) . We model assignments
as functions with the typing V → F ?V . Because we want functions to be to-
tal, this means we also have to define the assignment for all variables in V .
If V = { x , y , z }, we can make the above assignment total by writing it as
{ x := (y+x) , y := 0 , z := z }. Note that to the left of “:=” in an assignment we
have an element of V , and to the right an element of F ?V . So to be precise,
if assignment f has “ z := z ”, this means that f z = η z . In particular, the
(empty) identity assignment is η.

Given an assignment f :: V → F ?V , we want to define the substitution subst f
as a function performing f on a term. The result is again a term. The term
consisting of the single variable x is η x. Applying subst f to it, the result should
be f x. So

Generic Programming 89

(subst f) • η

= { desired result }

f

= { Kleisli identity }

f � η

= { monad equality }

(f�id) • η .

Since subst f is clearly a catamorphism that distributes through constructors —
for example, (substf)(x+y) = ((substf x)+(substf y))— it is fully determined
by its action on variables. We have found:

subst :: (V→F ?V)→ (F ?V→F ?V)

subst f = f�id

Two substitutions can always be merged into a single one:

(subst f) • (subst g)

= { definition of subst }

(f � id) • (g � id)

= { monad equalities }

f � (id • (g � id))

= { id is identity of • }

f � (g � id)

= { � is associative }

(f � g) � id

= { definition of subst }

subst (f � g) .

4.2 Generic Unification

Unifiers Two terms x and y containing variables can be unified if there is some
assignment f such that performing f on x gives the same result as performing
f on y. For example, the two terms

(u+((1*v)*2)) and ((w*v)+(u*2))

can be unified by the assignment

{u := (1*(z+3)), v := (z+3), w := 1}

into the unification

((1*(z+3))+((1*(z+3))*2))

90 Roland Backhouse et al.

Such a unifying assignment is called a unifier of the terms. Unifiers are not
unique. Another unifier of the same two terms of the example is

{u := (1*z), v := z, w := 1}

which results in the unification

((1*z)+((1*z)*2))

This last unification is more general. If f is a unifier, then, for any assignment
h, the combined substitution h � f is also a unifier, since

h � f is a unifier of (x,y)

≡ { definition of unifier }

subst (h � f) x = subst (h � f) y

≡ { combined substitutions }

(subst h) (subst f x) = (subst h) (subst f y)

⇐ { cancel (subst h) }

subst f x = subst f y

≡ { definition of unifier }

f is a unifier of (x,y) .

In the example, the first, less general unifier, can be formed from the more general
one by taking h = {v := (z+3)}. This notion of generality gives a pre-ordering
on unifiers (and actually on all assignments): define

f v g ≡ ∃(hsuch thatf = h � g)

The relation v is obviously transitive and reflexive, but in general not anti-
symmetric. If two unifiers are equally general: f v g ∧ g v f , then f and g can
be different. But they are to all intents and purposes equivalent: they differ at
most in the choice of names for the variables in the result.

If two terms are unifiable at all, then among all unifiers there is a most general
unifier. That term is commonly abbreviated to mgu. Clearly, any two mgu’s are
equivalent. In the example, the second unifier is an mgu.

A generic shell for unification We develop the unification algorithm in two
stages. In this stage we give a generic “shell” in terms of type classes. In the
second stage, we show how to make any regular functor into an instance of the
classes involved.

Terms may have children, they may happen to be variables, and we should be
able to see if superficially —at the top level of the term trees— the construc-
tors are equal. As before, we assume a fixed type V for variables. Here are the
corresponding class declarations:

class Children t where children :: t→List t
mapChildren :: (t→ t)→ (t→ t)

class VarCheck t where varcheck :: t→Maybe V
class TopEq t where topEq :: t× t→Bool

class (Children t,VarCheck t ,TopEq t) ⇒ Term t

Generic Programming 91

We give a concrete instantiation as an example — illustrating some fine points
at the same time. Let C be some type for representing constructors. Here is the
datatype we will use to instantiate the classes:

data T = Var V | Con C (List T)

First we make T into an instance of Children:

instance Children T where
children (Var v) = nil
children (Con c ts) = ts
mapChildren f (Var v) = Var v
mapChildren f (Con c ts) = Con c (List f ts)

Note here that mapChildren f only maps function f over the immediate children
of its argument. No recursion is involved.

Here is how T fits in the VarCheck class:

instance VarCheck T where
varcheck (Var v) = one v
varcheck (Con c ts) = none

For TopEq we assume that eq is an equality test on C and on V :

instance TopEq T where
topEq (Var v0 ,Var v1) = eq v0 v1
topEq (Con c0 ts0 ,Con c1 ts1) = eq c0 c1 ∧

length ts0 = length ts1
topEq (,) = false

Note that for this test the children of the terms are irrelevant. This is why we
give it the name topEq .

Having made T an instance of the three superclasses of Term, we can now
proudly announce:

instance Term T

So much for this concrete instantiation. We continue with the generic problem.
Here is a function to collect all subterms of a term in the Term class (or actually
the Children class):

subTerms :: Children t ⇒ t→List t
subTerms x = cons x (concat (List subTerms (children x)))

and here is a function that uses a list comprehension to collect all variables
occurring in a term:

vars :: Term t ⇒ t→List V
vars x = [v | one v ← List varCheck (subTerms x)]

92 Roland Backhouse et al.

Earlier we saw a treatment of assignments as functions. Here we introduce a class
for assignments, so that it is also possible to make other concrete representations
into instances. The parameter t stands for terms.

class Assig t where idAssig :: V → t
modBind :: V × t → ((V → t)→ (V → t))
lookupIn :: (V → t)× V → Maybe t

The type F ?V can be made into a generic instance by:

instance Assig (F ?V) where
idAssig = embl
modBind (v, x) = (f 7→ (v′ 7→ if eq v′ v then x else f v′))
lookupIn (f, v) = if eq (f v) (idAssig v) then none else one (f v)

in which we see both the Kleisli identity embl of the substitution monad, and
one of the Maybe monad. The result none signifies that v is mapped to itself
(embedded in the term world).

We have chosen a particular implementation for assignments: assignments are
functions. If Haskell would allow multiple parameter type classes we could ab-
stract from the particular implementation, and replace the occurrences of V → t
in the types of the functions of the class Assig by a type variable a. Thus we
could obtain a more concrete instance of Assig by taking list of pairs (v, x), with
v a variable and x a term, instead of functions. Then idAssig is the empty list,
modBind can simply cons the pair onto the list, and lookupIn looks for the first
pair with the given variable and returns the corresponding term. If the given
variable is not found, it fails. An efficient implementation of Assig would use
balanced trees, or even better hash tables. With the class mechanism the imple-
mentation can be encapsulated, that is, hidden to the rest of the program, so that
the program can first be developed and tested with a simple implementation. It
can later be replaced by a more efficient sophisticated implementation without
affecting the rest of the program. It should be clear that this is an important
advantage.

The unification algorithm proper We give the algorithm — which is basically the
algorithm found in the literature — without much explanation. As to notation,
we use the monad (Maybe , � , η).

unify :: (Term t ,Assig t) ⇒ t× t→Maybe (V → t)
unify ′ :: (Term t ,Assig t) ⇒ t× t→ ((V → t)→Maybe (V → t))

Generic Programming 93

The definition of unify is now simply to start up unify′ with the empty as-
signment. The function unify ′ is defined as a higher order function, threading
“assignment transformations” together with � .

unify (x, y) = unify ′ (x, y) idAssig
unify ′ (x, y) = uni (varCheck x , varCheck y) where
uni (none , none) | topEq (x , y) = uniTerms (x , y)

| otherwise = const none
uni (one u , one v) | eq u v = η
uni (one u ,) = u 7→ y
uni (, one v) = v 7→ x

uniTerms (x , y) =
threadList(List unify ′ (zip (children x) (children y)))

All the right-hand sides here are functions that return maybe an assignment,
given an assignment. The function threadList is simply the list catamorphism
with Kleisli composition:

threadList :: Monad m⇒ List (a→ m a)→ (a→ m a)

threadList = foldr (�) η

The auxiliary operator (7→) should “modBind” its arguments into the unifier
being collected, but there are two things to be taken care of. No binding may be
introduced that would mean an infinite assignment. This is commonly called the
occurs check. And if the variable is already bound to a term, that term must be
unified with the new term, and the unifier obtained must be threaded into the
assignment being collected.

(7→) :: (Term t ,Assig t) ⇒ V × t→ ((V → t)→Maybe (V → t))
(v 7→ x) s = if occursCheck (v , s, x)

then none
else case lookupIn (s, v) of

none → (η •modBind (v , x)) s
one y → ((η •modBind (v , x)) � unify ′ (x , y)) s

The following is a hack to implement the occurs check. This is basically a reach-
ability problem in a graph — is there a cycle from v to itself?, or rather: are we
about to create a cycle? We must take account both of the unifier collected al-
ready, and the new term. Because we know no cycles were created yet, the graph
is more like a tree, so any search strategy terminates. The approach here is not
optimally efficient, but in practice quite good with lazy evaluation (and horrible
with eager evaluation). There exist linear-time solutions, but they require much
more bookkeeping.

occursCheck :: (Term t ,Assig t) ⇒ V × (V → t)× t→Bool
occursCheck (v , s, x) = v ∈ reachlist (vars x) where
reachlist vs = vs ++ concat (List reachable vs)
reachable v = reachlist (mayvars (lookupIn (s, v)))
mayvars none = []
mayvars (one y) = vars y

94 Roland Backhouse et al.

Here, reachlist collects the variables reachable from a list of variables, while
reachable collects the variables reachable from a single variable.

The generic Term instance All we have to do now is make F ?V an instance of
the Term class. That is surprisingly easy. For the Children class:

instance Children (F ?V) where
children = ((nil • !) 5 fl rec) • out
mapChildren f = in • (idV + Ff) • out

where fl rec is defined in PolyLib, see Section 6. For the VarCheck class:

instance VarCheck (F ?V) where
varcheck = (one 5 (none • !)) • out

For TopEq we use the fact that fequal tests on equality of functor structures.
fequal is defined in PolyLib, see Section 6.

instance TopEq (F ?V) where
topEq (t, t′) = fequal (==) (x 7→ y 7→ True) (out t) (out t′)

For a complete implementation of the generic unification program, see [26].

5 From Functions to Relations

In the preceding chapter we have done what we ourselves have decried: we have
presented an algorithm without even a verification of its correctness, let alone
a construction of the algorithm from its specification. An excuse is that a full
discussion of correctness would have distracted from the main goal of that chap-
ter, which was to show how the generic form of the —known to be correct—
algorithm is implemented. That is, however, only an excuse since, so far as we
know, no proof of correctness of the generic algorithm has ever been constructed.
In section 5.4 we remedy this lacuna partially by presenting one lemma in such a
proof of correctness. To that end, however, we need to extend the programming
calculus from total functions to relations.

5.1 Why Relations?

In a summer school on advanced functional programming, it may seem odd to
want to introduce relations but there are several good reasons for making it
an imperative. In the first place, specifications are typically relations, not total
functions. The specification of the unification algorithm is a case in point since it
embodies both nondeterminism and partiality. Nondeterminism is embodied in
the requirement to compute a most general unifier, not the most general unifier.
It would be infeasible to require the latter since, in general, there is no single
most general unifier of two terms. Partiality is also present in the fact that a most
general unifier may not exist. Partiality can be got around in the implementation

Generic Programming 95

by using the Maybe monad as we did here, but avoiding nondeterminism in the
specification is undesirable.

A second reason for introducing relations is that termination arguments are
typically based on well-founded relations. Our discussion of the correctness of
the unification algorithm in section 5.4 is based on the construction of a well-
founded relation, although in this case termination is not the issue at stake.

A third, compelling reason for introducing relations is that the “free theorem”
for polymorphic functions alluded to above and discussed in detail below is based
on relations on functions and necessitates an extension of the concept of functor
to relations. Also, the most promising work we know of that aims to be precise
about what is really meant by “generic” is that due to Hoogendijk [22] which is
based on a relational semantics of higher-order polymorphism .

5.2 Parametric Polymorphism

Space does not allow us to consider the extension to relations in full depth and so
we will have to make do with a brief account of the issues involved. For more de-
tail see [11,1]. We believe, nevertheless, that a discussion of generic programming
would be incomplete without a summary of Reynolds’ [40] abstraction theorem
which has since been popularised under the name “theorems for free” by Wadler
[45]. (This summary is taken from [23] which may be consulted for additional
references.)

Reynolds’ goal in establishing the abstraction theorem was to give a precise
meaning to the statement that a function is “parametrically polymorphic”. Sup-
pose we have a polymorphic function f of type Tα for all types α. That is, for
each type A there is an instance fA of type TA. The action of T is extended
—in a way to be made precise shortly— to binary relations, where if relation
R has type A ∼ B, relation TR has type TA ∼ TB. Then parametricity of the
polymorphism of f means that for any binary relation R of type A ∼ B we have
(fA , fB) ∈ TR. Reynolds’ abstraction theorem is the theorem that any poly-
morphic function expressible in the language defined in his paper is parametric.
Wadler called this a “theorem for free” because, as we show shortly, the para-
metricity of a polymorphic function predicts algebraic properties of that function
just from knowing the type of the function! Another way of viewing the theorem
is as a healthiness property of functions expressible in a programming language
— a programming language that guarantees that all polymorphic functions are
parametric is preferable to one that cannot do so.

In order to make the notion of parametricity completely precise, we have to be
able to extend each type constructor T in our chosen programming language to
a function R 7→ TR from relations to relations. Reynolds did so for function
spaces and product. For product he extended the (binary) type constructor ×
to relations by defining R×S for arbitrary relations R of type A ∼ B and S of
type C ∼ D to be the relation of type A×C ∼ B×D satisfying

((u, v) , (x, y)) ∈ R×S ≡ (u, x) ∈ R ∧ (v, y) ∈ S .

96 Roland Backhouse et al.

For function spaces, Reynolds extended the → operator to relations as follows.
For all relations R of type A ∼ B and S of type C ∼ D the relation R→S is
the relation of type (A→C) ∼ (B→D) satisfying

(f, g) ∈ R→S ≡ ∀(x, y:: (x, y) ∈ R ⇒ (fx, gy) ∈ S) .

Note that if we equate a function f of type A→B with the relation f of type
B ∼ A satisfying

b = fa ≡ (b, a) ∈ f

then the definition of f×g, for functions f and g, coincides with the defini-
tion of the cartesian product of f and g given in section 5. Thus, not only
does Reynolds’ definition extend the definition of product beyond types, it also
extends the definition of the product functor. Note also that the relational com-
position f•g of two functions is the same as their functional composition. That
is, a = f(gc) ≡ (a, c) ∈ f •g. So relational composition also extends functional
composition. Note finally that h→k is a relation even for functions h and k. It
is the relation defined by

(f, g) ∈ h→k ≡ ∀(x, y:: x = hy ⇒ fx = k(gy)) .

Simplified and expressed in point-free form this becomes:

(f, g) ∈ h→k ≡ f•h = k•g .

Writing the relation h→k as an infix operator makes the rule easy to remember:

f (h→k) g ≡ f•h = k•g .

An example of Reynolds’ parametricity property is given by function application.
The type of function application is (α→β)×α→ β. The type constructor T is
thus the function mapping types A and B to (A→B)×A→ B. The extension
of T to relations maps relations R and S to the relation (R→S)×R → S. Now
suppose @ is any parametrically polymorphic function with the same type as
function application. Then Reynolds’ claim is that @ satisfies

(@A,C , @B,D) ∈ (R→S)×R → S

for all relations R and S of types A ∼ B and C ∼ D, respectively. Unfolding the
definitions, this is the property that, for all functions f and g, and all c and d,

∀(x, y:: (x, y) ∈ R ⇒ (fx, gy) ∈ S) ∧ (c, d) ∈ R ⇒ (f@c, g@d) ∈ S .

The fact that function application itself satisfies this property is in fact the basis
of Reynolds’ inductive proof of the abstraction theorem (for a particular lan-
guage of typed lambda expressions). But the theorem is stronger because func-
tion application is uniquely defined by its parametricity property. To see this,
instantiate R to the singleton set {(c, c)} and S to the singleton set {(fc , fc)}.
Then, assuming @ satisfies the parametricity property, (f@c , f@c) ∈ S. That

Generic Programming 97

is, f@c = fc. Similarly, the identity function is the unique function f satisfy-
ing the parametricity property (fA , fB) ∈ R→R for all types A and B and all
relations R of type A ∼ B —the parametricity property corresponding to the
polymorphic type, α→α for all α, of the identity function—, and the projec-
tion function exl is the unique function f satisfying the parametricity property
(fA,B , fC,D) ∈ R×S → R for all types A, B, C and D and all relations R
and S of types A ∼ B and C ∼ D, respectively —the parametricity property
corresponding to the polymorphic type, α×β → α for all α and β, of the exl
function.

The import of all this is that certain functions can be specified by a parametric-
ity property. That is, certain parametricity properties have unique solutions.
Most parametricity properties do not have unique solutions however. For ex-
ample, both the identity function on lists and the reverse function satisfy the
parametricity property of function f , for all R :: A ∼ B ,

(fA , fB) ∈ List R → List R .

Here List R is the relation holding between two lists whenever the lists have the
same length and corresponding elements of the two lists are related by R.

Free Theorem for Monads Let us show the abstraction theorem at work on
Kleisli composition. Kleisli composition is a polymorphic function of type

(b→Mc) × (a→Mb)→ (a→Mc)

for all types a, b and c. If it is parametrically polymorphic then it satisfies the
property that, for all relations R, S and T and all functions f0, f1, g0 and g1, if

((f0 , g0) , (f1 , g1)) ∈ (S→MT) × (R→MS)

then

(f0�g0 , f1�g1) ∈ R→MT .

This assumes that we have shown how to extend the functor M to relations.
For our purposes here, we will only need to instantiate R, S and T to functions,
and it simplifies matters greatly if we use the point-free definition of h→k given
above. Specifically, we have, for all functions h, k and l,

((f0 , g0) , (f1 , g1)) ∈ (k→Ml) × (h→Mk)

≡ { definition of × }

f0 (k→Ml) f1 ∧ g0 (h→Mk) g1

≡ { point-free definition of → for functions }

f0 • k = Ml • f1 ∧ g0 • h = Mk • g1 .

In this way, we obtain the property that for all functions f0 , f1 , g0, g1, h, k
and l, if

f0 • k = Ml • f1 ∧ g0 • h = Mk • g1(1)

98 Roland Backhouse et al.

then

(f0�g0) • h = Ml • (f1�g1) .(2)

With its seven free variables, this is quite a complicated property. More man-
ageable properties can be obtained by instantiating the functions in such a way
that the premise becomes true. An easy way to do this is to reduce the premise
to statements of the form

fi = . . . ∧ gj = . . . ,

where i and j are either 0 or 1, by instantiating suitable combinations of h,
k and l to the identity function. For instance, by instantiating h and k to the
identity function the premise (1) reduces to

f0 = Ml • f1 ∧ g0 = g1 .

Substituting the right sides for f0 and g0 in the conclusion (2) together with the
identity function for h and k, we thus obtain

(Ml • f1) � g1 = Ml • (f1�g1) .

for all functions l, f1 and g1. This is the first of the “free theorems” for Kleisli
composition listed in section 4.1.

Exercise 5.1 Derive the other two “free theorems” stated in section 4.1
from the above parametricity property. Investigate other properties obtained by
setting combinations of f0 , f1 , g0, g1 to the identity function.

2

Exercise 5.2 Instantiating M to the identity functor we see that the free
theorem for Kleisli composition predicts that any parametrically polymorphic
function with the same type as (ordinary) function composition is associative.
Can you show that function composition is uniquely defined by its parametricity
property?

2

Exercise 5.3 Derive the free theorem for catamorphisms from the polymor-
phic type of f 7→ ([f]). Show that the fusion law is an instance of the free
theorem.

2

Generic Programming 99

5.3 Relators

As we have argued, an extension of the calculus of datatypes to relations is
desirable from a practical viewpoint. In view of Reynolds’ abstraction theorem,
it is also highly desirable from a theoretical viewpoint, at least if one’s goal is
to develop generic programming. We have also shown how the product functor
is extended to relations. In a relational theory of datatypes, all functors are
extended to relations in such a way that when restricted to functions all their
algebraic properties remain unchanged. Functors extended in this way are called
relators.

The formal framework for this extension is known as an allegory . An allegory
is a category with additional structure, the additional structure capturing the
most essential characteristics of relations. The additional axioms are as follows.
First of all, relations of the same type are ordered by the partial order ⊆ and
composition is monotonic with respect to this order. That is,

S1•T1 ⊆ S2•T2 ⇐ S1 ⊆ S2 ∧ T1 ⊆ T2 .

Secondly, for every pair of relations R , S :: A ∼ B, their intersection (meet)
R∩S exists and is defined by the following universal property, for
each X :: A ∼ B,

X ⊆ R ∧ X ⊆ S ≡ X ⊆ R ∩ S .

Finally, for each relation R :: A ∼ B its converse R
∪ :: B ∼ A exists. The

converse operator satisfies the requirements that it is its own Galois adjoint,
that is,

R
∪
⊆ S ≡ R ⊆ S

∪
,

and is contravariant with respect to composition,

(R•S)
∪
= S

∪
• R

∪
.

All three operators of an allegory are connected by the modular law , also known
as Dedekind’s law [41]:

R•S ∩ T ⊆ (R cap T •S
∪
) • S .

Now, a relator is a monotonic functor that commutes with converse. That is,
the functor F is a relator iff,

FR • FS = F (R•S) for each R :: A ∼ B and S :: B ∼ C,(3)

F idA = idFA for each A,(4)

FR ⊆ FS ⇐ R ⊆ S for each R :: A ∼ B and S :: A ∼ B,(5)

(FR)
∪
= F (R

∪
) for each R :: A ∼ B.(6)

100 Roland Backhouse et al.

Relators extend functors A design requirement which led to the above definition
of a relator [4,5] is that a relator should extend the notion of a functor but in
such a way that it coincides with the latter notion when restricted to functions.
Formally, relation R :: A ∼ B is everywhere defined or total iff

idB ⊆ R
∪
•R ,

and relation R is single-valued or simple iff

R•R
∪
⊆ idA .

A fu nction is a relation that is both total and simple. It is easy to verify that total
and simple relations are closed under composition. Hence, functions are closed
under composition too. In other words, the functions form a sub-category. For
an allegory A, we denote the sub-category of functions by Map(A). Moreover,
it is easily shown that our definition guarantees that relators preserve simplicity
and totality, and thus functionality of relations.

Having made the shift from categories to allegories, the extension of the func-
tional theory of datatypes in chapter 2 is surprisingly straightforward (which is
another reason why not doing it is short-sighted). The extension of the disjoint
sum functor to a disjoint sum relator can be done in such a way that all the prop-
erties of + and 5 remain valid, as is the case for the extension of the theory of
initial algebras, catamorphisms and type functors. For example, catamorphisms
with relations as arguments are well-defined and satisfy the fusion property, the
map-fusion property etc. There is, however, one catch — the process of dualising
properties of disjoint sum to properties of cartesian product is not valid. Indeed,
almost all of the properties of cartesian product that we presented are not valid,
in the form presented here, when the variables range over arbitrary relations.
(The banana split theorem is a notable exception.)

An example of what goes wrong is the fusion law. Consider id4id • R and R4R,
where R is a relation. If R is functional —that is, if for each y there is at most
one x such that (x, y) ∈ R then these two are equal. This is an instance of the
fusion law presented earlier. However, if R is not functional then they may not
be equal. Take R to be, for example, the relation {(0, 0) , (1, 0)} in which both
0 and 1 are related to 0. Then,

id4id • R = {((0, 0) , 0) , ((1, 1) , 0)}

whereas

R4R = {((0, 0) , 0) , ((1, 1) , 0) , ((0, 1) , 0) , ((1, 0) , 0)} .

The relation id4id is the doubling relation: it relates a pair of values to a single
value whereby all the values are equal. Thus, id4id • R relates a pair of equal
values to 0. On the other hand, R4R relates a pair of values to a single value,
whereby each component of the pair is related by R to the single value. The
difference thus arises from the nondeterminism in R.

Generic Programming 101

In conclusion, extending the functional theory of datatypes to relations is desir-
able but not without pitfalls. The pitfalls are confined, however, to the properties
of cartesian product. We give no formal justification for this. The reader will just
have to trust us that in the ensuing calculations, where one or more argument
is a relation, that the algebraic properties that we exploit are indeed valid.

Membership We have argued that a datatype is not just a mapping from types
to types but also a functor. We have now argued that a datatype is a relator.
For the correctness of the generic unification algorithm we also need to know
that a membership relation can be defined on a datatype.

The full theory of membership and its consequences has been developed by
Hoogendijk and De Moor [24,22]. Here we give only a very brief account.

Let F be a relator. A membership relation on F is a parametrically polymor-
phic relation mem of type a ∼ Fa for all a. Parametricity means that for all
relations R,

mem • FR ⊇ R • mem .

In fact, mem is required to be the largest parametrically polymorphic relation
of this type.

The existence of a membership relation captures the idea that a datatype is a
structured repository of information. The relationmema holds between a value x
of type a and an F -structure of a’s if x is stored somewhere in the F -structure.
The parametericity property expresses the fact that determining membership
is independent of the type a, and the fact that mem is the largest relation of
its type expresses the idea that determining membership is independent of the
position in the data structure at which a value is stored.

The parametricity property has the following consequence which we shall have
occasion to use. For all (total) functions f of type a→b,

f • mema = memb • Ff .

5.4 Occurs-In

This section contains a proof of the generic statement that two expressions
are not unifiable if one occurs in the other. We define a (generic) relation
occurs properly in and we then show that occurs properly in is indeed a proper or-
dering on expressions (that is, if expression x occurs properly in expression y then
x and y are different). We also show that the occurs properly in relation is invari-
ant under substitution. Thus, if expression x occurs properly in expression y no
substitution can unify them. To show that occurs properly in is proper we define
a (generic) function size of type F ?V → IN and we show that size is preserved
by the relation occurs properly in. The definition of size involves a restriction on
the relator F which is used to guarantee correctness of the algorithm8.

8 A more general proof [7] using the generic theory of F -reductivity [15,14,16] avoids
this assumption and, indeed, avoids the introduction of the size function altogether.

102 Roland Backhouse et al.

Definition 7 The relation occurs properly in of type F ?V ∼ F ?V is defined by

occurs properly in = (mem • embrV
∪)+ .

(Recall that mem is the membership relation of F and that embrV = inV K+F • inr
where (F ?V , inV K+F) is an initial algebra.) Informally, the relation embrV

∪

(which has type FF ?V ∼ F ?V) destructs an element of F ?V into an F structure
and then mem identifies the data stored in that F structure. Thus mem • embrV

∪

destructs an element of F ?V into a number of immediate subcomponents. Ap-
plication of the transitive closure operation repeats this process thus breaking
the structure down into all its subcomponents.

2

In our first lemma we show that the occurs properly in relation is closed under
substitutions. That is, for all substitutions f ,

x occurs properly in y ⇒ (fx) occurs properly in (fy) .

The property is formulated without mention of the points x and y and proved
using point-free relation algebra.

Lemma 8 For all substitutions f ,

occurs properly in ⊆ f∪ • occurs properly in • f .

Proof Suppose f is a substitution. That is, f = g�id for some g. Since the
relation occurs properly in is the transitive closure of the relation mem • embrV

∪

it suffices to establish two properties: first, that f∪ • occurs properly in • f is
transitive and, second,

mem • embrV
∪ ⊆ f∪ • occurs properly in • f .

The first of these is true for all functions f (i.e. relations f such that
f • f∪ ⊆ id). (To be precise, if R is a transitive relation and f is a function
then f∪ • R • f is transitive.) We leave its simple proof to the reader. The sec-
ond is proved as follows:

f∪ • occurs properly in • f

⊇ { R+ ⊇ R }

f∪ • mem • embrV
∪
• f

⊇ { embrV is a function, definition of embrV }

f∪ • mem • embrV
∪
• f • in • inr • embrV

∪

= { f = g�id = ([g5embrV]), computation }

f∪ • mem • embrV
∪
• g5embrV • id+Ff • inr • embrV

∪

= { computation }

f∪ • mem • embrV
∪
• embrV • Ff • embrV

∪

= { embrV
∪
• embrV = id }

Generic Programming 103

f∪ • mem • Ff • embrV
∪

⊇ { parametricity of mem }

mem • Ff∪ • Ff • embrV
∪

⊇ { F is a relator and f is a total function.

Thus, Ff∪ • Ff ⊇ id }

mem • embrV
∪ .

2

We now define a function size of type F ?V → IN by

size = ([zero 5 (succ • Σmem)]) .

Here, Σ is the summation quantifier. That is, for an arbitrary relation R with
target IN,

(ΣR)x = Σ(m: m R x: m) .

The assumption in the definition of size is that F is finitely branching: that is,
for each F structure x, the number of m such that m mem x is finite.

Expressed in terms of points, the next lemma says that if a term x occurs
properly in a term y then the size of x is strictly less than the size of y.

Lemma 9

occurs properly in ⊆ size∪ • < • size .

Proof Note that occurs properly in and < are both transitive relations. This
suggests that we use the leapfrog rule:

a • b∗ ⊆ c∗ • a ⇐ a•b ⊆ c•a

which is easily shown to extend to transitive closure:

a • b+ ⊆ c+ • a ⇐ a•b ⊆ c•a .

We have:

occurs properly in ⊆ size∪ • < • size

≡ { size is a total function,

definition of occurs properly in }

size • (mem • embrV
∪)+ ⊆ < • size

⇐ { < is transitive. Thus, < = <+ .

Leapfrog rule }

size • mem • embrV
∪ ⊆ < • size

≡ { embrV is a total function }

size • mem ⊆ < • succ • embrV

≡ { definition of size, embrV and computation }

104 Roland Backhouse et al.

size • mem ⊆ < • succ • Σmem • F size

≡ { < • succ = ≤ }

size • mem ⊆ ≤ • Σmem • F size

⇐ { property of natural numbers: for all R, R ⊆ ≤ • ΣR

That is, m R x ⇒ m ≤ Σ(m: m R x: m). }

size • mem ⊆ mem • F size

≡ { size is a total function,

parametricity of mem for functions }

true .

2

Corollary 10 Suppose F is a finitely branching relator. Then

x occurs properly in y ⇒ x 6= y .

Proof By the above lemma,

x occurs properly in y ⇒ size x < size y .

Thus, since m < n⇒ m 6= n,

x occurs properly in y ⇒ x 6= y .

2

Corollary 11 If x occurs properly in y then x and y are not unifiable.

Proof By lemma 8, if x occurs properly in y then, fx occurs properly in fy, for
every substitution f . Thus, for every substitution f , fx 6= fy.
2

Exercise 5.4 Take F to be (1+). What is occurs properly in? Show that the
relation is proper. (Note that the membership relation for (1+) is inr∪.)
Take F to be a× for some fixed a. What is occurs properly in?

2

6 Solutions to Exercises

1.1 Take ⊗ to be set intersection, ⊕ to be set union, 0 to be the empty set and
1 to be the universe of all colours. The initial value of a[i, j] is the singleton set
containing the edge colour as its element
2

Generic Programming 105

2.5
mapError f (error s) = error s
mapError f (ok x) = ok (fx)

mapDrawing f (above x y) = above (mapDrawing f x) (mapDrawing f y)
mapDrawing f (beside x y) = beside (mapDrawing f x) (mapDrawing f y)
mapDrawing f (atom x) = atom (f x)

2

2.6

(f5g)4(h5k) = (f4h)5(g4k)

≡ { 4-characterisation }

f5g = exl • (f4h)5(g4k) ∧ h5k = exr • (f4h)5(g4k)

≡ { 5-fusion }

f5g = (exl • (f4h)) 5 (exl • (g4k))

∧ h5k = (exr • (f4h)) 5 (exr • (g4k))

≡ { injectivity of 5 }

f = exl • (f4h) ∧ g = exl • (g4k)

∧ h = exr • (f4h) ∧ k = exr • (g4k)

≡ { 4- computation }

true .

2

2.7 The most obvious example is multiplication and division in ordinary arith-
metic. (Indeed this is where the two-dimensional notation is commonly used.)
Addition and subtraction also abide with each other.
Examples in the text are: disjoint sum and composition, and cartesian prod-

uct and composition. (Indeed all binary functors abide with composition.)
The example used by Hoare was conditionals. The binary operator if p, where

p is a proposition, (which has two statements as arguments) abides with if q,
where q is also a proposition.
2

2.11 First, the 5-+ fusion rule:

f5g • h+k = (f •h) 5 (g•k)

≡ { 5 characterisation }

f5g • h+k • inl = f •h•inl ∧ f5g • h+k • inr = g•k•inr

≡ { computation rules (applied four times) }

true .

Second, the identity rule:

id+id

106 Roland Backhouse et al.

= { definition of + }

inl5inr

= { above }

id .

2

2.12 The pattern functor for Bin is Exl + (Exr×Exr) and the pattern functor
for Rose is (Exl × (List Exr)) . That is, for Bin it is the binary functor mapping
a and z to a + (z×z), which is polynomial, and for Rose it is the binary functor
mapping a and z to a × (List z), which is not polynomial.
2

2.13

even • zero5succ = true5not • 1+even

≡ { 5 fusion and 5-+ fusion,

definition of functor +1 }

(even•zero) 5 (even•succ) = (true•id1) 5 (not•even)

≡ { true•id1 = true, 5 is injective }

even•zero = true ∧ even•succ = not•even

≡ { extensionality, identifying values zero and true

with functions zero and true with domain 1 }

even(zero) = true ∧ ∀(n:: even(succ n) = not(even n)) .

2

2.14

out•in

= { definition of out }

([F in])•in

= { computation rule }

F in•F ([F in])

= { F is a functor }

F (in•([F in]))

= { definition of out }

F (in•out)

= { in•out = idµF }

F idµF

= { F is a functor }

idFµF .

2

Generic Programming 107

2.16 We have

NoOfTips = ([1K5add0])

where add0(m, n) = m+n, and

NoOfJoins = ([0K5add1])

where add1(m, n) = m+n+1. Now,

f • NoOfTips = NoOfJoins

⇐ { definitions and fusion }

f • 1K5add0 = 0K5add1 • id + (f×f)

≡ { fusion }

(f • 1K) 5 (f • add0) = 0K 5 (add1 • f×f)

≡ { injectivity }

f • 1K = 0K ∧ f • add0 = add1 • f×f

≡ { pointwise definitions, for all m and n }

f1 = 0 ∧ f(m+n) = fm+1+fn

⇐ { arithmetic, for all m }

fm = m−1 .

We conclude that there is always one less join in a Bin than there are tips.
2

2.17

([f]) 4 ([g]) • in = χ • F (([f]) 4 ([g]))

≡ { 4 fusion }

(([f]) • in) 4 (([g]) • in) = χ • F (([f]) 4 ([g]))

≡ { catamorphism computation }

(f • F ([f])) 4 (g • F ([g])) = χ • F (([f]) 4 ([g]))

≡ { 4 characterisation }

f • F ([f]) = exl • χ • F (([f]) 4 ([g]))

∧ g • F ([g]) = exr • χ • F (([f]) 4 ([g])) .

Once again, we continue with just one of the conjuncts, the other being solved
by symmetry.

f • F ([f]) = exl • χ • F (([f]) 4 ([g]))

≡ { postulate χ = α4β }

f • F ([f]) = exl • α4β • F (([f]) 4 ([g]))

≡ { 4 computation }

f • F ([f]) = α • F (([f]) 4 ([g]))

108 Roland Backhouse et al.

≡ { postulate α = f •γ }

f • F ([f]) = f • γ • F (([f]) 4 ([g]))

⇐ { F respects composition, 4 computation }

γ = F exl .

Combining the two postulates with the final statement, we get

([χ]) = ([f]) 4 ([g]) ⇐ χ = (f•F exl) 4 (g•F exr) .

2

2.19 Substituting (a�) for F in the catamorphism rule we get the rule:

h•([ϕ]) = ([ψ]) ⇐ h•ϕ = ψ • ms1id�h .

This is the fusion rule used below.

([f]) • (τ(�) g) = ([h])

≡ { τ(�) g = ([in • g�id]) }

([f]) • ([in • g�id]) = ([h])

⇐ { fusion rule }

([f]) • in • g�id = h • id�([f])

≡ { catamorphism computation }

f • id�([f]) • g�id = h • id�([f])

≡ { � is a binary functor. Thus,

id�([f]) • g�id = g�([f]) = g�id • id�([f]) }

f • g�id • id�([f]) = h • id�([f])

⇐ { cancellation }

f • g�id = h .

We have thus established the rule:

([f]) • (τ(�) g) = ([f • g�id]) .

2

2.20 First,

τ(�) ida

= { definition }

([in • id�id])

= { � respects identities,

identity is the unit of composition }

([in])

= { identity rule }

idτ(�) a .

Generic Programming 109

Second,

τ(�) (f •g)

= { definition }

([in • (f •g)�id])

= { id = id•id, � respects composition }

([in • f�id • g�id])

= { exercise 2.19 }

([in • f�id]) • (τ(�) g)

= { definition }

(τ(�) f) • (τ(�) g) .

2

4.1 To express Mf we use the last of the three monad equalities:

Mf

= { identities }

η � (Mf • id)

= { monad equality }

(η • f) � id .

Using mul = id�id, we obtain that, for the functor Set ,

mul x = {z | ∃(y:: z∈y ∧ y∈x)} .

The equalities are proven as follows: First,

mul • Mmul

= { mul = id�id }

(id�id) • Mmul

= { 2nd monad equality, id is identity of composition }

id�Mmul

= { id is identity of composition,

3rd monad equality, id is identity of composition }

mul�id

= { mul = id�id, Kleisli composition is associative,

mul = id�id }

id�mul

= { id is identity of composition, 2nd monad equality }

(id�id) • mul

= { mul = id�id }

mul • mul .

110 Roland Backhouse et al.

Second,

mul • η

= { mul = id�id, 2nd monad equality }

id�η

= { η is unit of Kleisli composition }

id .

Third,

mul • Mη

= { mul = id�id, 2nd monad equality }

id�Mη

= { id is identity of composition, 3rd monad equality,

id is identity of composition }

η�id

= { η is unit of Kleisli composition }

id .

2

4.2 (a×)?1 is List a. The Kleisli identity is the function mapping x to [x].
The multiplier is the function concat that concatenates a list of lists to a list,
preserving the order of the elements. The Kleisli composition g�f first applies
f to a value x of type a, which results in a list of b’s. Then g is mapped to all
the elements of this list, and the resulting list of lists of c’s is flattened to a list
of c’s.
2

4.3 Since (1+)?∅ = IN we obtain from the fusion theorem that

(1+)?V = IN×(V +1).

Specifically,

IN×(V +1) is an initial X:: V +(1+X) algebra

⇐ { fusion, IN is an initial 1+ algebra }

∀(X:: (1+X)×(V +1) ∼= V +(1+(X×(V +1))))

⇐ { rig }

true .

The witness to the last step, rig, is the inverse of a natural isomorphism rig of
type

Y+(1+(X×(Y+1)))→ (1+X)×(Y +1) .

Generic Programming 111

It is easily constructed:

rig = ((inl•!)4inl) 5 ((inl4inr) 5 (inr×id)) .

The initial algebra is in(1+)? = (zero5succ) × id • rig.
2

4.4

f�(g�h) = (f�g)�h

≡ { definition }

([f 5 embr]) • (g�h) = ([(f�g) 5 embr]) • h

⇐ { definition of f�g, cancel •h }

([f 5 embr]) • ([g 5 embr]) = ([(f�g) 5 embr])

⇐ { fusion, definition of embr }

([f 5 embr]) • g 5 (in • inr) = (f�g) 5 (in • inr) • id + F ([f 5 embr])

≡ { fusion properties of disjoint sum,

5 is injective }

([f 5 embr]) • g = f�g

∧ ([f 5 embr]) • in • inr = in • inr • F ([f 5 embr])

≡ { definition of f�g, computation laws }

true .

The verification that embl is its neutral element is a straightforward use of the
computation rules.
2

5.1 Substituting the identity function for h and l, we get

f0 � (Mk • g1) = (f0 • k) � g1 .

Substituting the identity function for k and h, we get

(f0 � g0) • l = f1 � (g0 • l) .

2

5.2 Suppose ◦ is a function that has the same polymorphic type as function
composition. Then, if it satisfies the parametricity property of composition, it is
the case that, for all relations R, S and T and all functions f0, f1 , g0 and g1, if

(f0 , f1) ∈ S→R ∧ (g0 , g1) ∈ T→S

then

(f0◦f1 , g0◦g1) ∈ T→R .

Take R to be the singleton set {(f(gc) , f(gc))}, S to be the singleton set
{(gc , gc)} and T to be the singleton set {(c, c)}, where f and g are two func-
tions, and c is some value such that f(gc) is defined. Then (f , f) ∈ S→R

112 Roland Backhouse et al.

and (g , g) ∈ T→S. So (f◦g , f◦g) ∈ T→R. That is, (f◦g)(c) = f(gc). Thus,
by extensionality, f◦g = f•g. The parametricity property does indeed uniquely
characterise function composition!
2

5.3 The type of an F -catamorphism is

(Fa→a)→ (µF → a) .

The free theorem is thus that, for all relations R and all functions f and g, if

(f , g) ∈ FR→R

then

(([f]) , ([g])) ∈ idµF→R .

Taking R to be a function h and use the point-free definition of →, this is the
statement that

f • Fh = h • g ⇒ ([f]) = h • ([g]) .

2

5.4 Instantiating F to (1+) we get

occurs properly in1+
= { definition }

(mem1+ • (in(1+)? •inl)
∪)+

= { mem1+ = inr
∪, in(1+)? = (zero5succ) × id • rig }

((zero5succ) × id • rig • inl • inr)∪+

= { definition of rig, computation }

(succ × id)∪+ .

A pair (m, x) “occurs properly in” a pair (n, y) if m < n and x = y. This par-
ticular instance of occurs properly in is thus proper in the sense that if u “occurs
properly in” v then u and v are not equal.

F ?1 is List a, membership is the projection exr and occurs properly in is the
relation “is a (proper) tail of”.
2

References

1. C.J. Aarts, R.C. Backhouse, P. Hoogendijk, T.S. Voermans, and J. van der
Woude. A relational theory of datatypes. Available via World-Wide Web at
http://www.win.tue.nl/cs/wp/papers, September 1992. 95

2. Lennart Augustsson Cayenne, a language with dependent types. This volume,
1999. 30

Generic Programming 113

3. R. C. Backhouse, M. Bijsterveld, R. van Geldrop, and J.C.S.P. van der Woude. Cat-
egory theory as coherently constructive lattice theory. Department of Mathematics
and Computing Science, Eindhoven University of Technology. Working document.
Available via World-Wide Web at http://www.win.tue.nl/cs/wp/papers, Last
revision: March 1997, 146 pages, 1995. 87

4. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology
and Software Technology, AMAST’91, pages 303–326. Springer-Verlag, Workshops
in Computing, 1992. 100

5. R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der
Woude. Relational catamorphisms. In Möller B., editor, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications,
pages 287–318. Elsevier Science Publishers B.V., 1991. 100

6. R.C. Backhouse and B.A. Carré. Regular algebra applied to path-finding problems.
Journal of the Institute of Mathematics and its Applications, 15:161–186, 1975. 33

7. Roland Backhouse. Fixed point calculus applied to generic programming: Part
1. In Zoltan Esik, editor, Proceedings, Workshop on Fixed Points in Computer
Science, August 1998. 101

8. Roland C. Backhouse, J.P.H.W. van den Eijnde, and A.J.M. van Gasteren. Cal-
culating path algorithms. Science of Computer Programming, 22(1–2):3–19, 1994.
33

9. G. Bellè, C.B. Jay, and E. Moggi. Functorial ML. In PLILP96, volume 1140 of
LNCS . Springer-Verlag, 1996. 79, 114

10. Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional program-
ming with types and relations. J. of Functional Programming, 6(1):1–28, January
1996.

11. Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall Inter-
national, 1996. 95

12. R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design. Springer-Verlag, 1987. NATO ASI
Series, vol. F36. 78

13. Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Dep. of Computer Science, Univ. of Calgary, 1992. 77, 79

14. H. Doornbos. Reductivity arguments and program construction. PhD thesis, Eind-
hoven University of Technology, Department of Mathematics and Computing Sci-
ence, June 1996. 101

15. Henk Doornbos and Roland Backhouse. Induction and recursion on datatypes. In
B. Möller, editor, Mathematics of Program Construction, 3rd International Con-
ference, volume 947 of LNCS, pages 242–256. Springer-Verlag, July 1995. 101

16. Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer Pro-
gramming, 26(1–3):217–236, 1996. 101

17. R.W. Floyd. Algorithm 97. Shortest Path. Comm. ACM, 5(6):345, June 1962. 31
18. Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit
Twente, The Netherlands, 1992. 52

19. Maarten M. Fokkinga. Datatype laws without signatures. Mathematical Structures
in Computer Science, 6:1–32, 1996. 52

20. M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda
Informatica 94-28, University of Twente, June 1994. 81, 82

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995. 79

114 Roland Backhouse et al.

22. Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Department of
Mathematics and Computing Science, Eindhoven University of Technology, 1997.
52, 95, 101

23. Paul Hoogendijk and Roland Backhouse. When do datatypes commute? In Eugenio
Moggi and Giuseppe Rosolini, editors, Category Theory and Computer Science, 7th
International Conference, volume 1290 of LNCS, pages 242–260. Springer-Verlag,
September 1997. 79, 80, 80, 82, 82, 95

24. Paul Hoogendijk and Oege de Moor. What is a datatype? Technical Report
96/16, Department of Mathematics and Computing Science, Eindhoven University
of Technology, 1996. Submitted to Science of Computer Programming. Available
via World-Wide Web at http://www.win.tue.nl/cs/wp/papers. 101

25. P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension.
In POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 470–482. ACM Press, 1997. 73

26. P. Jansson and J. Jeuring. Functional pearl: Polytypic unification. Journal of
Functional Programming, 1998. In press. 94

27. Patrik Jansson. Functional polytypic programming — use and implementation.
Technical report, Chalmers Univ. of Tech., Sweden, 1997. Lic. thesis. Available
from http://www.cs.chalmers.se/~patrikj/lic/. 76

28. C.B. Jay. A semantics for shape. Science of Computer Programming, 25(251–283),
1995.

29. C.B. Jay, G. Bellè, and E. Moggi. Functorial ML. Extended version of [9] in press
for Journal of Functional Programming ’98, 1998. 77, 77, 79, 80, 81, 82

30. C.B. Jay and J.R.B. Cockett. Shapely types and shape polymorphism. In D. San-
nella, editor, ESOP ’94: 5th European Symposium on Programming, pages 302–
316. Springer Verlag Lecture Notes in Computer Science, April 1994.

31. J. Jeuring. Polytypic pattern matching. In Conference Record of FPCA ’95,
SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages
and Computer Architecture, pages 238–248, 1995. 77, 77

32. J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer,
and T. Sheard, editors, Proceedings of the Second International Summer School
on Advanced Functional Programming Techniques, pages 68–114. Springer-Verlag,
1996. LNCS 1129.

33. G. Malcolm. Algebraic data types and program transformation. PhD thesis,
Groningen University, 1990. 79

34. G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14(2–3):255–280, October 1990. 79

35. L. Meertens. Algorithmics – towards programming as a mathematical activity. In
Proceedings of the CWI Symposium on Mathematics and Computer Science, pages
289–334. North-Holland, 1986. 78

36. L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424, 1992.
79

37. Lambert Meertens. Calculate polytypically! In Herbert Kuchen and S. Doaitse
Swierstra, editors, Proceedings of the Eighth International Symposium PLILP ’96
Programming Languages: Implementations, Logics and Programs, volume 1140 of
Lecture Notes in Computer Science, pages 1–16. Springer Verlag, 1996. 52, 62, 79

38. Oege de Moor and Ganesh Sittampalam Generic program transformation. This
volume, 1999. 60

39. A. Pardo. Monadic corecursion —definition, fusion laws, and applications—. Elec-
tronic Notes in Theoretical Computer Science, 11, 1998. 81

Generic Programming 115

40. J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,
editor, IFIP ’83, pages 513–523. Elsevier Science Publishers, 1983. 95

41. J. Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de
la Société Mathématique de France, 76:114–155, 1948. 99

42. B. Roy. Transitivité et connexité. C.R. Acad. Sci., 249:216, 1959. 31
43. Fritz Ruehr. Analytical and Structural Polymorphism Expressed Using Patterns
Over Types. PhD thesis, University of Michigan, 1992. 80, 81

44. Tim Sheard. Automatic generation and use of abstract structure operators. ACM
TOPLAS, 13(4):531–557, 1991. 80

45. P. Wadler. Theorems for free! In 4’th Symposium on Functional Programming
Languages and Computer Architecture, ACM, London, September 1989. 95

46. S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, 1962. 31

Generic Program Transformation

Oege de Moor and Ganesh Sittampalam

Programming Research Group, Oxford University Computing Laboratory, Wolfson
Building, Parks Road, OX1 3QD, United Kingdom

1 Introduction

When writing a program, especially in a high level language such as Haskell,
the programmer is faced with a tension between abstraction and efficiency. A
program that is easy to understand often fails to be efficient, while a more
efficient solution often compromises clarity.
Fortunately Haskell permits us to reason about programs, so that we can start

out with a program that is clear but inefficient, and transform it into a program
that is efficient, but perhaps less readable. Indeed, such a transformational style
of programming is as old as the subject of functional programming itself.
Programs developed in this style continue to suffer from a lack of readability,

however: typically a functional programmer will develop his program on the
back of an envelope, and only record the final result in his code. Of course he
could document his ideas in comments, but as we all know, this is rarely done.
Furthermore, when the programmer finds himself in a similar situation, using
the same technique to develop a new piece of code, there is no way he can reuse
the development recorded as a comment.
We claim that there is a handful of techniques that functional programmers

routinely use to transform their programs, and that these techniques can them-
selves be coded as meta programs, allowing one to reuse the same optimisation
technique on different pieces of code. In these lectures we shall explore this claim,
and ways in which such meta programs might be implemented.
The structure of these notes is as follows. We first discuss three motivat-

ing examples, to clarify what type of optimisation we have in mind, and how
an inefficient program might be annotated with transformations that effect the
optimisation. Next, we discuss how the application of transformations can be
mechanised. Our main design decision at this point is that transformations are
never applied backwards. These ideas are then put to practice in a series of
practical assignments, with a toy transformation system especially developed to
accompany these notes. Finally, we discuss the matching problem in some de-
tail, and explain how we have chosen to circumvent the undecidability inherent
in matching of λ-terms.
Throughout, we shall take a cavalier attitude towards semantics. In particu-

lar, we have chosen to ignore all issues of strictness: some of our transformation
rules ought to state side conditions about strictness. While it is admittedly in-
correct to ignore such side conditions, they would clutter the presentation and
detract from the main thesis of these lectures.

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 116–149, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Generic Program Transformation 117

2 Abstraction Versus Efficiency

For concreteness, let us first examine a number of examples of the type of optimi-
sation that we wish to capture, and the kind of programs on which they operate.
This will give us a specific aim when developing the machinery for automating
the process, and a yardstick for evaluating our results.

2.1 Minimum Depth of a Tree

Consider the data type of leaf labelled binary trees:

dataBtreea = Leaf a |Bin (Btreea)(Btreea)

The minimum depth of such a tree is returned by the function mindepth ::
Btreea → Int :

mindepth (Leaf a) = 0

mindepth (Bins t) = min (mindepth s)(mindepth t) + 1

This program is clear, but rather inefficient. It traverses the whole tree, regardless
of leaves that may occur at a small depth. A better program would keep track
of the ‘minimum depth so far’, and never explore subtrees beyond that current
best solution. One possible implementation of that idea is

mindepth t = md t 0∞

md (Leaf a)dm = mindm

md (Bins t)dm = if d ′ ≥ m
thenm
elsemd sd ′ (md t d ′m)
where d ′ = 1 + d

The second parameter of md is called d , and it represents the current depth. The
third parameter, called m, is the ‘minimum depth so far’. When computing the
minimum depth of a leaf, we simply take the minimum of m and d . To compute
the minimum depth of a composite tree, we first see whether there is any point
in exploring beyond this node: if the new depth d ′ = 1 + d is greater or equal
to m, we can cut the search. Otherwise, we first compute the minimum depth
of the right subtree t , and using that as the new ‘minimum depth so far’ we
explore the left subtree as well.

Our purpose in these lectures is to explore whether we could annotate the
original, clear program for mindepth with the optimisations needed to obtain
the second, efficient program. We could then leave the generation of the efficient
code to a computer. Here, to obtain the efficient program, we need to know the
definition of md in terms of the original function mindepth:

md t dm = min (mindepth t + d)m

118 Oege de Moor and Ganesh Sittampalam

as well as some facts about minimum and addition: (a, b and c are assumed to
be natural numbers)

0 + a = a

(a + b) + c = a + (b + c)

min(minab)c = mina (minbc)

minab + c = min (a + c)(b + c)

min (a + b)c = ifb ≥ c then c elsemin (a + b)c

The full annotated program, as presented to a transformation system, might
thus read as follows (the syntax is ad hoc, and won’t be used in the practical
exercises):

mindepth (Leaf a) = 0
mindepth (Bins t) = min (mindepth s)(mindepth t) + 1

transform mindepth t = md t 0∞
where md t dm = min (mindepth t + d)m
with 0 + a = a

(a + b) + c = a + (b + c)
min (minab)c = mina (minbc)
minab + c = min (a + c)(b + c)
min (a + b)c = if b ≥ c then c else min (a + b)c

Would it not be much preferable to write the program in this form, and have
the efficient program automatically generated? Obviously a system that allows
one to do so would have to offer an inspection of the generated code, so that
the programmer can be sure that he has indeed specified the efficient program
he wished to write in the first place.

Some readers may object that we have left out an important transformation
rule necessary to obtain the efficient program, namely some form of induction.
As shown in the lectures by Backhouse and Jeuring at this summer school, such
induction principles (and their associated program structures, known as folds or
catamorphisms) can be deduced from the type definition of trees. For this reason,
we do not need to state them in annotating a program for optimisation. Some
practical restrictions apply, however, and we shall return to this point below.

2.2 Decorating a Tree

We stay with leaf labelled binary trees, and consider their decoration with a
list. That is, we wish to implement the function decorate :: Btreea → [b] →
Btree (a, b) defined by

decorate (Leaf a)bs = Leaf (a, head bs)

decorate (Bins t)bs = Bin (decorate s bs) (decorate t (drop(size s)bs))

Generic Program Transformation 119

Here the function size s returns the number of leaves in s, and dropnbs leaves
off the first n elements of bs. Clearly the definition of decorate t bs makes sense
only if size t ≤ length bs, but we shall not need that assumption below.
Consider a left skewed tree t of size n, where every right hand child of Bin is

a leaf. To evaluate decorate t bs, we will have to compute each of drop(n − 1)bs,
drop(n − 2)bs, and so on, until drop1bs. Because dropi bs takes about i steps
to evaluate, it follows that the decoration takes θ(n2) time: the above program
is clear, but of unacceptable inefficiency.
Here is the program that a skilled Haskell programmer would write:

decorate t bs = fst (dect bs)

dec (Leaf a)bs = (Leaf (a, head bs), drop1bs)

dec (Bins t)bs = (Bins ′ t ′, bs ′′)

where (s ′, bs ′) = decs bs
(t ′, bs ′′) = dect bs ′

The function dect bs decorates t , and also returns what is left over of bs after
the decoration. When we decorate a leaf, we have to drop one element from
the supply bs of decorations. To decorate a composite tree, we first decorate
the left subtree, and then, with what is left over of the decorations (here called
bs ′) we decorate the right subtree. What is left over after decorating the right
subtree (in the above program bs ′′), is the net result of the whole decoration. It
is immediate from the above program that at each node of the tree, we spend
only constant time, and therefore its time complexity is linear in the size of the
tree.
How is the efficient program obtained from the first definition of decorate?

What is the reasoning that the skilled Haskell programmer implicitly applied in
writing dec? First of all, the original function decorate is related to dec by:

dect bs = (decorate t bs, drop(size t)bs)

Furthermore, the function drop satisfies the identity

drop(n +m)x = dropm (dropnx)

No further facts are needed. It does of course take a bit of a specialist to know
that only these rules are needed to make the program efficient: but it is such
knowledge that turns programming from a craft (where the rules are acquired by
each programmer through experience) into a science (where the rules are made
explicit, and communicated between programmers).

2.3 Partitioning a List

Finally, we consider a rather mundane example, which is representative of a large
class of functions that occur frequently. In the standard List library of Haskell,
there exists a function called partition :: (a → Bool) → [a] → ([a], [a]). It takes
a predicate p and a list x , and it splits the list x into two subsequences: one

120 Oege de Moor and Ganesh Sittampalam

that contains those elements of x that do satisfy the predicate p, and the other
containing those elements of x that fail to satisfy p. A neat program for partition
might read

partitionpx = (filter px , filter (not · p)x)

The function filter q x retains those elements of x that satisfy the predicate q .
Using filter to code partition is pretty, but it requires two passes over the list x ,
and for each element of x , the predicate p will be evaluated twice.
A more efficient program (and indeed the definition found in the library) is

partitionp [] = ([], [])

partitionp(a : x) = ifpa then (a : y , z)else (y , a : z)

where (y , z) = partitionpx

The only way to split the empty list is into two copies of itself. Furthermore, if
we have partitioned x into (y , z), and a satisfies the predicate p, we append it
to y . If a fails to satisfy p we append it to z .
To develop the more efficient program, we need to know the following facts

about if-then-else:

ifnot c then e1 elsee2 = ifc then e2 elsee1

ifc then (ifc then e1 elsee2) else e3 = ifc then e1 elsee3

ifc then e1 else (ifc then e2 elsee3) = ifc then e1 elsee3

f (ifc then e1 elsee2) = ifc then f e1 else f e2

Of course these rules are not particular to the problem in hand. In fact, they
are themselves instances of more general transformations involving case expres-
sions [19].

Exercises

2.1 Can the computation of the maximum depth of a tree be made more effi-
cient in the same way as the computation of the minimum depth? If not, which
property of min fails for max?
2.2 A leaf labelled binary tree is said to be perfectly balanced if for every subtree
t , the size of the left hand child is precisely size t ‘div ‘ 2. Given a list x , the
function build x produces a perfectly balanced tree whose inorder traversal is x .
First give a naive program for computing build , and then show how it can be
made efficient.
2.3 Are there circumstances where the original definition of partition is as effi-
cient as the ‘improved’ version?

3 Automating the Transition:
Fusion and Higher Order Rewriting

The time has come to be more precise about the mechanical application of
transformation rules. The main principle in designing a transformation system

Generic Program Transformation 121

is that its operation should be transparent: the programmer must be able to
predict its results without running experiments. For that reason, we reject any
form of artificial intelligence, and also sophisticated procedures from automated
theorem proving. Approaches based on such sophisticated techniques have been
tried, and shown to fail. Few transformation systems have been used outside the
laboratory of their creators, and we believe this is due to the lack of transparency
in their operation.
The most obvious strategy is therefore a simple process of rewriting, where

the rules are applied from left to right. That still leaves some freedom in spec-
ifying the order in which rules are tried, and on which subexpressions. It does
seem rather restrictive, however, for it does not allow for the application of rules
in reverse direction. In particular, program development by means of the well
known unfold/fold strategy [7] is not applicable: we can use a function definition
in its evaluating direction, but never backwards, matching the right hand side
and producing an instance of the left hand side.
Instead, all inductive arguments must be carried out through so-called fusion

rules, which encapsulate the induction in a higher order function called a fold
(or, by residents of the Netherlands, a catamorphism). There is precisely one
fold and an accompanying fusion rule for each data type.
To illustrate, consider the data type of lists. Its fold operator foldr has type

(a → b → b)→ b → [a]→ b, and is defined by

foldr stepe [] = e

foldr stepe (a : x) = stepa (foldr stepe x)

If we write a ⊕ y for stepay , we can visualise the computation of foldr by

foldr (⊕)e (a0 : (a1 : (a2 : . . . (an : [])))) = a0 ⊕ (a1 ⊕ (a2 ⊕ . . . (an ⊕ e)))

From this equation, it is apparent that foldr stepe replaces the cons operator (:)
by step, and the empty list by e. This is the general pattern of a fold : it replaces
the constructor functions of a given type by new functions.
Many functions on lists can be expressed as instances of foldr . For example,

concat = foldr (++)[] is the function that concatenates the components of a list
whose elements are lists themselves, and

filter p = foldr step []

where stepay = ifpa thena : y else y

The advantage of expressing a function through foldr is that the definition be-
comes nonrecursive, and therefore much easier to manipulate. In particular, we
get a simple way of doing induction that only requires us to apply rewrite rules
in one direction.
Suppose that we apply a function f to the result of foldr :

f (a0 ⊕ (a1 ⊕ (a2 ⊕ . . . (an ⊕ e))))

In a sense this is a two pass computation: first we compute the sum of the ai ,
and then we apply f to that sum. If we know that f (a ⊕ z) = a ⊗ f z , (for all a

122 Oege de Moor and Ganesh Sittampalam

and z) we can distribute f through the sum, to get a single pass computation:

f (a0 ⊕ (a1 ⊕ (a2 ⊕ . . . (an ⊕ e)))) =

a0 ⊗ f (a1 ⊕ (a2 ⊕ . . . (an ⊕ e))) =

a0 ⊗ (a1 ⊗ f (a2 ⊕ . . . (an ⊕ e))) =

. . .

a0 ⊗ (a1 ⊗ (a2 ⊗ . . . (an ⊗ f e))))

That last line is of course nothing but an application of foldr (⊗)(f e). This
principle can be formally stated as the fusion rule:

f (foldr (⊕)e x) = foldr (⊗)cx , if f e = c and
λa z → f (a ⊕ z) = λa z → a ⊗ f z

As remarked above, the distributivity condition should hold for all a and x : here
we have encoded that by abstracting over these variables, and requiring the two
functions to be equal.
As a simple example of the fusion rule, consider sum(foldr (++)[]x). Because

sum [] = 0 and sum (a ++ z) = suma + sumz , we have

sum (foldr (++)[]x) = foldr (λay → suma + y)0x

In the mechanical application of the fusion rule, we first match the pattern
f (foldr(⊕)e x) with sum (foldr (++)[]x). That match succeeds, with f = sum,
(⊕) = (++), and e = []. Next, we attempt to prove the provisos, starting with
the second equation. We rewrite its left hand side until no more rules apply:

λa z → sum (a ++ z) = λa z → suma + sumz

The result of the rewriting process (here λa z → suma+ sumz) is then matched
with the pattern λa z → a ⊗ sumz in the right hand side of the condition.
That match yields a definition for the operator (⊗), namely a ⊗ y = suma + y .
This completes the verification of the distributivity condition, and next we prove
sum [] = 0: this only involves rewriting.
It is worthwhile to reflect on the mechanical application of fusion before pro-

ceeding further. Most of the work goes into the matching process: in particular,
the definition of (⊗) is ‘invented’ by matching the right hand side of the dis-
tributivity condition against a fully rewritten version of the left hand side. A
matching algorithm that performs the synthesis of function definitions is said to
be a higher order matching algorithm. The observation that higher order match-
ing should be a key ingredient of any program transformation tool was first made
by Huet and Lang [13].
While fusion is elegant and amenable to mechanisation, it may appear that

it only applies to programs that were written in terms of foldr to start with.
What if we wish to improve a program that uses explicit recursion? The answer
is that the identity function is itself an instance of foldr :

id = foldr (:)[]

Generic Program Transformation 123

Therefore, if we wish to write a function f in terms of foldr , we just apply fusion
to the expression

λx → f (foldr (:)[]x)

The reader may care to work out for herself how this can be used to write sum
(the function that returns the sum of a list) as an instance of foldr .
Our insistence on the principle that rules are never applied backwards, com-

bined with a matching procedure that is unable to synthesise function definitions
that involve pattern matching, sometimes forces us to use multiple variants of the
fusion rule. When doing program derivation by hand, a single rule suffices, but
in mechanised program synthesis, multiple variants are required. Fortunately,
these variants are again dictated by type considerations, just as the fusion rule
itself can be deduced from the type to which it applies.
To appreciate why multiple variants of fusion are needed, recall the function

partition, defined by

partitionpx = (filter px , filter (not · p)x)

Now let us try and write partitionp as an instance of foldr , by applying fusion to

partitionp(foldr (:)[]x)

We start by rewriting

partitionp(a : x)

= {definition of partition}

(filter p(a : x), filter (not · p)(a : x))

= {definition of filter (twice)}

(ifpa thena : filter px elsefilter px ,
ifnot(pa) then a : filter (not · p)x elsefilter (not · p)x)

= {various facts about if }

ifpa then (a : filter px , filter (not · p)x)
else (filter px , a : filter (not · p)x)

Our procedure for the mechanical application of fusion requires that we match
the expression derived above,

λax → ifpa then (a : filter px , filter (not · p)x)
else (filter px , a : filter (not · p)x)

against the pattern

λax → a ⊗ partitionpx

This clearly fails, because we do not rewrite the right hand side of the pattern
before matching, as that would go against our design principle that no rule is
applied backwards. Nevertheless, let us assume for the moment that the pattern

124 Oege de Moor and Ganesh Sittampalam

is rewritten, which results in the definition of partition to be expanded. We then
have to find (⊗) so that

λax → ifpa then (a : filter px , filter (not · p)x)
else (filter px , a : filter (not · p)x)

= λax → a ⊗ (filter px , filter (not · p)x)

The only solution is

a ⊗ (y , z) = ifpa then (a : y , z)else (y , a : z)

Now observe that this requires (⊗) to perform pattern matching on its right
hand argument. To make the matching algorithm synthesise such definitions that
involve pattern bindings is rather complicated: to be consistent, it would have
to cope not only with tuples, but also with types that have multiple constructor
functions.
The conclusion is that to make the above example work with standard fusion,

we would have to compromise our guiding design principle (no backward steps),
as well as the matching algorithm. Clearly it is preferable to have a specialised
fusion rule for dealing with examples such as partition. Define the function
split :: (a → b)→ (a → c)→ a → (b, c) by

split f g a = (f a, ga)

This higher order operator captures the idea of two separate functions applied
to the same argument. For example, we have

partitionp = split (filter p)(filter (not · p))

We can now formulate a specialised fusion rule that applies to instances of split :

split f g (foldr stepe x) = foldr (λa → uncurry (ha))cx

provided

split f g e = c, and

λay → split f g (stepay) = λay → ha (f y)(g y)

The function uncurry is defined by

uncurry k (a, b) = k ab

It explicitly introduces the pattern binding that our matching algorithm cannot
synthesise.
Cognoscenti will recognise the above variant of fusion as the tupling principle,

a well studied technique in transformational program development You will have
a chance to explore its applications in the next section, which consists entirely
of practical assignments.

Generic Program Transformation 125

Exercises

3.1 Define the fold operator on natural numbers. Its type is

foldn :: (a → a)→ a → Int → a

You could think of the first argument as replacing the successor function (+1)
and the second argument as replacing 0. If there were a data type Nat of natural
numbers in Haskell, the type of the third argument would be Nat and not Int .
What is the fusion rule for foldn?

3.2 Define the fold operator on leaf labelled binary trees. Its type is

foldbtree :: (a → a → a)→ (b → a)→ Btree b → a

What is its fusion rule?

4 The MAG System

Before we proceed to explore the intricacies of pattern matching with function
variables, it is important to gain some experience with the concepts introduced
so far. We have produced a little system for this purpose, called MAG, after the
place where it was written, Magdalen College, Oxford. The name also reminds us
of its overriding design principle, famously coined by a former British prime min-
ister, Margaret Thatcher: the lady is not for turning! In MAG, transformation
rules are applied in one direction only.

MAG is not a serious research tool, it is just a little program rather hastily
written for these lectures. It is also an experiment in the use of the pretty print-
ing, parsing and attribute grammar libraries provided by Swierstra and his col-
leagues at Utrecht University [20]: by using their libraries, we aimed to produce
a system that is truly light weight and easy to modify. Finally, we took inspi-
ration from an unpublished term rewriting system by Mike Spivey. An elegant
exposition of Spivey’s program, with a number of important improvements, can
be found in [5]. Bird also shows how Spivey’s program can be used as a tool
in program verification. A much more advanced tool for transforming Haskell
programs is the HYLO system [16]. Other systems that perform the type of
transformation considered here are described in [2,14].

4.1 Getting Acquainted

MAG takes two kinds of input file: programs and theories. A program is just a
program in a functional programming language that is a small subset of Haskell.
A theory is a set of conditional equations that are applied in the rewriting
process. The program file merely exists to infer the types of all the constants in
a theory. If you wish the definitions to be used as rewrite rules, they have to be
repeated in the theory.

126 Oege de Moor and Ganesh Sittampalam

Getting started If you use MAG as a precompiled binary, simply invoke mag.
If you use MAG from Hugs (this may be slow!) start up Hugs with a heap of at
least 1M, load the file Main.hs, and evaluate the function main. The system will
respond with the message:

MAG calculator

Type program name <filename>.p:

Respond by typing program, followed by a carriage return. This loads a program
from the file program.p. The system will now ask you to specify a theory:

Type theory name <filename>.eq:

Respond by typing sumsq, followed by a carriage return. This loads a set of equa-
tions from the file sumsq.eq. The system is ready to transform an expression,
and it prompts:

Type expression:

Type sumsq, followed by a carriage return. In response, the system applies rewrite
rules from sumsq.eq to sumsq, until no more apply. It will show the result of
each rewrite step, as follows:

sumsq

= { sumsq }

sum . map sq

= { compose }

\a -> sum (map sq a)

= { sum }

\a -> foldr (+) 0 (map sq a)

= { map }

\a -> foldr (+) 0 (foldr ((:) . sq) [] a)

= { compose }

\a -> foldr (+) 0 (foldr (\d -> (:) (sq d)) [] a)

= { fusion

foldr (+) 0 []

= { foldr0 }

0

\b c -> foldr (+) 0 (sq b : c)

= { foldr1 }

\b c -> sq b + foldr (+) 0 c

}

foldr (\b -> (+) (sq b)) 0

There are a couple of things worth noting here. First of all, in order to apply
the definition of function composition, the system introduces a new argument
called a. Furthermore, when fusion is applied, it does two nested calculations,

Generic Program Transformation 127

one for each of the applicability conditions of fusion. In the resulting expression,
the argument a is no longer needed, and therefore it is not displayed.
After the calculation is completed, MAG asks you again for a theory file, and

then an expression. When you enter an empty name for the theory file (just a
carriage return) it stops executing. It will also halt when certain errors occur;
we discuss error reporting in more detail below.

Program files Have a look at the contents of program.p. It contains definitions
of all functions that you need to carry out the exercises below: it follows that in
principle, all can be done in a single session with MAG, only giving program.p
as the program file. It should not be necessary to modify program.p. A typical
fragment of program.p is

{

map f [] = [];

map f (a : x) = f a : map f x

}

{

foldr f e [] = e;

foldr f e (x : xs) = f x (foldr f e xs)

}

{

data Tree a = Node a [Tree a]

}

{

foldtree f step e (Node a ts) = f a (foldr (step . r) e ts)

where r = foldtree f step e

}

As you can see, it looks a lot like Haskell, but each definition or family of mutually
recursive definitions have to be grouped together in curly braces. Also, there is
no offside rule, so all definitions within such a group have to be separated by
semicolons. Finally, you can only use functions that have been defined earlier in
the file: it would be incorrect to define foldr after foldtree, for example. These
restrictions are necessary because MAG does not perform dependency analysis
on program files.

Theory files A theory file contains a set of conditional rewrite rules. If you
wish to use definitions from a program file as rewrite rules, you have to repeat
them in the theory file. The syntax for rewrite rules is fairly obvious, except that
local definitions (let and where) are not allowed: the matching algorithm does
not know how to cope with them.

128 Oege de Moor and Ganesh Sittampalam

As an example, here are the contents of sumsq.eq:

sumsq: sumsq = sum . map sq;

compose: (f . g) x = f (g x);

sum: sum = foldr (+) 0;

map: map f = foldr ((:).f) [];

foldr0: foldr step e [] = e;

foldr1: foldr step e (a:x) = step a (foldr step e x);

fusion: f (foldr step e x) = foldr g c x,

if {f e = c;

\ a y -> f (step a y) = \ a y -> g a (f y)}

Each rule starts with an identifier that is the name of the rule, followed by a
colon, followed by an equation. Equations are separated by semicolons. When
an equation has side conditions (in the above example, only fusion has side
conditions), they are introduced by a comma, followed by if, followed by the
conditions in braces, separated by semicolons. For reasons of efficiency, it is
advisable to put the conditions in order of increasing complexity, so that the
most stringent condition (the last in the list) is tried first. Equations should
never introduce variables on the right hand side of equations that do not occur
on the left.

Expressions for transformation Expressions to be transformed should not
contain any local definitions, and no free variables at all. If you want to transform
an expression with variables, bind them with λ. There is no way of transforming
local definitions, except by writing them as λ-abstractions.

Error reporting Error reporting from Swierstra’s parsing combinators is ex-
cellent, so you should get fairly comprehensible messages about syntax errors:
these occur when the files are read in. Due to lazy evaluation, there is no telling
when a type inference error might occur, and the messages do not give any in-
dication which input line is at fault. Should this occur, eyeball your code, and
if there is no obvious mistake, call one of the authors for help.

4.2 Accumulation Parameters

The first set of practical exercises is about accumulation parameters. This is
a technique for improving functional programs where the original, inefficient
definition is generalised by introducing an extra parameter. The parameter is
used to accumulate additional information during a computation — hence the
name. The technique was studied in [4]; see also [11].

Generic Program Transformation 129

Fast reverse A naive definition of the function reverse is

reverse [] = []

reverse (a : x) = reverse x ++ [a]

Write down the recursive definition of (++), and estimate how much time it takes
to evaluate reverse x when x has length n.
The time complexity of reverse can be improved by defining:

fastrev x y = reverse x ++ y

Why is this a generalisation of reverse? Using the fact that (++) is associative

(x ++ y) ++ z = x ++ (y ++ z)

one can synthesise an efficient program for fastrev .
The above definitions, and the associativity of (++), have been recorded in

the theory file reverse.eq. There is one peculiarity, however: the definition of
fastrev reads

fastrev x y = reverse (foldr (:)[]x) ++ y

Why is the instance of foldr there? Confirm your answer by loading the theory file
reverse.eq in MAG, and transforming fastrev . Estimate the time complexity
of the resulting program.

Postorder traversal The example of fast reverse is in fact representative of a
much larger class of programs, where the concatenation operator is eliminated
by introducing an extra parameter, and exploiting the fact that concatenation
(++) is associative.
Consider the data type of rose trees, defined by

dataTreea = Nodea [Treea]

The fold operator on this type of tree is

foldtree f stepe (Nodea ts) = f a (foldr (step · r)e ts)

where r = foldtree f stepe

In particular, the identity function on rose trees is given by foldtreeNode (:)[].
The postorder traversal of a rose tree lists all the elements in the descendants

of a node, followed by the label of that node itself:

postorder (Nodea ts) = concat (mappostorder ts) ++ [a]

This definition is inefficient, because of the concatenation operator. It is your
task to produce an efficient definition through the use of MAG.
The theory file postorder.eq contains the relevant fusion law, and the de-

finitions of the functions involved. In analogy with the preceding exercise, add
the definition of fastpost :: Treea → [a] → [a] (that is postorder with an extra

130 Oege de Moor and Ganesh Sittampalam

parameter), and also the associativity of concatenation. Load the theory file,
and if there are no error messages, transform fastpost .

Now consult Section 7.3 of Bird’s text Introduction to functional program-
ming in Haskell. (If you do not have a copy of this book, we warmly recommend
you get one. It teaches you functional programming with taste.) In particular,
read section 7.3.2. Congratulations! With the help of MAG, you have beaten an
Oxford professor at his own game! Your program solves a slightly more com-
plicated problem (postorder instead of preorder), is much simpler than his, and
obtained in exactly the same way as fast reverse.

Breadth first traversal It would be wrong to suggest that the technique of
accumulating parameters only applies to examples that involve simple concate-
nation. One can exploit accumulation parameters in almost every program where
a tree is traversed using an associative operator.

Consider, for example, the problem of listing the elements of a rose tree in
breadth first order. This can be achieved by listing the elements level by level,
and then concatenating the result:

breadthfirst = concat · levels

The function levels :: Treea → [[a]] first gives the elements that occur at depth
0, then the elements at depth 1, depth 2 and so on. It is defined by

levels (Nodea ts) = [a] : glues (maplevels ts)

glues [] = []

glues (x : xs) = lzcx (glues xs)

lzc []x = x

lzc (a : x)y = ifnull y
thena : lzcx []
else (a ++ head y) : lzcx (tail y)

Here lzc stands for long zip with concatenation. What is the difference between
lzc and zipWith (++)? Is lzc associative? What is the time complexity of levels?
You know what has to be done: all the definitions can be found in the theory

file levels.eq. Produce an efficient program with MAG. This program and
its derivation were first discovered and presented by [10], and Jeremy Gibbons
suggested it as an exercise in the use of MAG. His paper also presents another,
arguably more elegant, method of computing the breadth first traversal.

Minimum depth Let us now return to the problem discussed at the beginning
of these lectures, namely computing the minimum depth of a leaf labelled binary
tree. It was claimed there that apart from the definitions, all we need to produce

Generic Program Transformation 131

an efficient program is the following set of rules:

0 + a = a

(a + b) + c = a + (b + c)

min(minab)c = mina (minbc)

minab + c = min (a + c)(b + c)

min (a + b)c = ifb ≥ c then c elsemin (a + b)c

Unfortunately, there is a problem when this set of equations is implemented by
rewriting. Why?
In this particular example, the most elegant solution might be to single out

rules that should be applied at most once. However, we wish to avoid any ad
hoc features in the code of MAG itself, so instead we modify the rules. One can
take the last two rules together in a single, composite rule:

min (minab + c)d = ifc ≥ d
thend
elsemin (min (a + c)(b + c))d

Even with this fix, however, we cannot directly generate an efficient program.
The mindepth example is different from those that went before in that there
are two accumulation parameters. Due to certain limitations in our matching
algorithm (which will be discussed in depth later), we have to slightly adapt the
fusion rule to cope with the two parameters at once.

These modifications have been installed for you in the file mindepth.eq, and
transforming the expression md will produce the efficient program we discussed
above. Because of the large number of free variables in the fusion rule, its gen-
eration can take a while: on a Pentium 90 running Linux and Hugs 1.4, it took
almost 28 minutes. Which variables in the fusion rule could be bound to improve
efficiency of the transformation process? Make that change in mindepth.eq, and
generate an efficient program for mindepth.

4.3 Tupling

The next set of exercises is about tupling: improving the efficiency of a program
by computing several values at once. Tupling is in a sense the dual of accumu-
lation parameters: in the first case, we generalise the range of a function, and in
the second case the domain. There is quite a large body of literature on tupling,
e.g. [3,6,8,12,17]. In the exercises below, you will have the opportunity to explore
its versatility: many programs can be improved through tupling. One could even
say that the attribute grammar system presented by Swierstra at this summer
school is a specialised tool for tupling.

Fibonacci The standard example of tupling, found in any introductory text
on programming, is the Fibonacci function. This function, which is amazingly

132 Oege de Moor and Ganesh Sittampalam

ubiquitous in computer science, is defined by

fib0 = 0

fib1 = 1

fib (n + 2) = fib (n + 1) + fibn

This program is inefficient because there are many duplicated calls to fib.

To improve the efficiency, we compute fibn simultaneously with fib (n + 1).
That is, we aim to apply the tupling transformation to

fastfib = split fib (λn → fib(n + 1))

Of course one also needs some arithmetic to do that transformation. Which two
facts about addition are needed? Install these equations in the file fib.eq, and
generate the efficient program.

As an aside, we remark that there exists a much better program still, which
exploits the identity

(
1 1
1 0

)n (
1
0

)
=

(
fib (n + 1)
fibn

)

together with the fact that exponentiation can be performed in logarithmic time.

Steep sequences A list of numbers is said to be steep if each element is greater
than the sum of the elements that follow it. We might define the predicate
steep :: [Int]→ Bool by

steep [] = True

steep(a : x) = a > sumx ∧ steepx

Estimate the time complexity of steep.

How would you improve the efficiency of steep? The file steep.eq contains
the rules you need to apply tupling. Add a definition of

faststeep :: [Int]→ (Bool , Int)

note the type carefully!) and generate an efficient program for faststeep. In this
case you need no rules besides the definitions.

Partition Need we say more? Just do it, and imagine how tedious and error
prone it would be to do a derivation by hand! All you need is in partition.eq.
In this example, the ordering of the rules in the theory file is rather important:
in the rewriting process, they are tried in the order they occur. Why does the
rule about distributing a function over a conditional come last?

Generic Program Transformation 133

Decorate Finally, recall the problem of decorating a leaf labelled binary tree.
The original, inefficient program is

decorate (Leaf a)bs = Leaf (a, head bs)

decorate (Bins t)bs = Bin (decorate s bs)(decorate t (drop(size s)bs))

We aim to improve decorate by defining a new function

dect bs = (decorate t bs, drop(size t)bs)

This does not conform exactly to the pattern in our previous examples of tupling,
because dec is not an instance of split . We do have

dect = split (decorate t) (drop · size t)

but this does not make the repeated use of t explicit — and that use must be
explicit to obtain a single pass algorithm. Instead, what we need here is

split2f g a b = (f a b, gab)

We then have

dec = split2decorate (λt bs → drop(size t)bs)

Furthermore, associated with split2, one obtains the double tupling rule

split2f g (foldbtree join start x)
=
foldbtree (uncurry2h)k x ,
if λa → split2f g (start a) = λa → k a
λx y → split2f g (joinx y) = λx y → h (f x) (g x) (f y) (g y)

The function uncurry2 in the conclusion of this rule is defined by

uncurry2e fg hk = e (fst · fg)(snd · fg)(fst · hk)(snd · hk)

While this may all seem a bit complicated, once split2 is defined, the rest follows
purely from type considerations.
Returning to the problem of optimising decorate, the above machinery can

be found in the file decorate.eq. Run MAG on dec. Is the result identical to the
program discussed earlier in the lectures? What further transformation needs to
be performed?

4.4 Carrying On

In the above examples, we have illustrated the use of MAG in only two kinds of
optimisation, namely accumulation parameters and tupling. There is no reason
why MAG could not apply more sophisticated transformations. Indeed, one ex-
ercise that any transformation tool must tackle is the derivation of the so-called
maximum segment sum problem. The file mss.eq shows how that is done. You
now have sufficient knowledge to attempt such exercises yourself. The authors
would be pleased to hear of your experience.

134 Oege de Moor and Ganesh Sittampalam

5 Matching Typed λ-Expressions

The choice of matching algorithm (for matching the left hand side of rewrite rules
to expressions) determines the scope of applicability of transformation rules such
as fusion. If we had been able to implement an ‘ideal’ matching algorithm, all
programming exercises in these notes would have been applications of a sin-
gle formulation of fusion. Put another way, it is the matching algorithm which
determines how generic our program transformations are.

In the light of this observation, it is perhaps unsurprising that no such ideal
algorithm exists: in its full generality, the matching problem is not computable.
To cope with that incomputability, we have to somehow restrict the matching
problem.

In the context of program transformation, the most popular restriction is
to second-order matching: roughly speaking, this restricts pattern variables to
be of base type (such as Int , Bool or [Int]), or functions between base types.
For example, the KORSO transformation system, developed at Bremen, uses
second-order matching [9].

Unfortunately the restriction to second-order variables is not a natural one
when transforming Haskell programs. Consider, for example, our synthesis of
a fast program for reverse: this would be beyond the scope of a second-order
matching algorithm.We therefore investigate a different restriction of the match-
ing problem, which seems better suited to the applications we have in mind.

We start by reviewing matching of types, both because this will refresh the
elementary definitions in the reader’s mind, and because we shall need these
operations on types later on. We then turn to the definitions on expressions that
include λ-bound variables. After these elementary definitions, we introduce sub-
stitutions and some related operations. Finally, we discuss a number of variants
of the matching problem. We conclude with a rigorous specification of our re-
stricted matching problem, which pins down the algorithm that is implemented
in MAG.

This section admittedly requires a little bit more background knowledge than
the preceding material: a good introduction to the concepts used here can be
found in [18].

5.1 Types

Expressions are typed in the Hindley-Milner discipline, without any modern
extensions such as type classes [15]. More precisely, we shall be working with
type schemes, as defined by the declaration

dataType = TidTname | TconCname [Type] derivingEq

That is, a type scheme is a variable (a type identifier), or a constructor applied to
a list of argument types. Equality on types is straightforward structural equality.

Generic Program Transformation 135

Substitution. A type substitution is a mapping from type variables to types:

typeTsub = Tname → Type

The function tapply :: Tsub → Type → Type applies a substitution to a type in
the obvious way.

Generality. We say that τ is less general than σ if there exists another substi-
tution φ so that

tapply τ = tapplyφ · tapplyσ

Matching. Consider the problem of matching one type against another. Given
types p and t a match is a substitution τ such that

tapply τ p = t

If there exists a match at all, there exists a most general match. The function
tmatchpt returns a singleton list [σ] of that most general match σ, or (if no
matches exist) it returns the empty list. Here, most general means that σ leaves
any variable not occurring in p unchanged.

5.2 Expressions

An expression is a constant, a variable, an application, or a λ-abstraction. Fur-
thermore, each expression is decorated with its type:

dataExp = ConConstant Type |
VarNameType |
ApExpExpType |
LamNameExpType

This representation is highly redundant, because much of the type information
is duplicated. In our experience, however, this redundancy is worth the overhead
when programming a system such as MAG: in any form of meta programming,
it is very easy to produce terms that are ill-typed. Carrying around the types
everywhere makes it easier to track such errors down. In the examples below, we
shall often leave the type information implicit to improve readability.

α-conversion In λ-expressions, the names of bound variables do not matter. We
have, for example, the identity

λx → x + z = λy → y + z

Note, however, that

λx → x + z 6= λz → z + z

because z is a free variable on the left hand side. This principle, that bound
variables can be renamed to any identifier that is not free in the body of a
λ-abstraction, is called α-conversion. The function

alphaconvertible :: Exp → Exp → Bool

tests whether two expressions are equal up to renaming of bound variables.

136 Oege de Moor and Ganesh Sittampalam

η-conversion If you do not use a bound variable in an abstraction body, there
is no need to mention it. We have, for instance,

map = λf → mapf

Again we have to be careful with free variables, however:

e = λx → e x

only if x does not occur free in e. This principle is called η-conversion. One can
write a function

etacontract :: Exp → Exp

that systematically applies η-conversion to eliminate all redundant abstractions.
Conversely, it is also possible to expand a term so that every expression of func-
tion type is an abstraction, or applied to an argument. Expansion is a bit trickier
to code in Haskell than contraction, however, because of the need to generate
fresh identifiers — a notorious difficulty in a purely functional setting [1].

Equality. We define two expressions to be equal if one can be obtained from the
other through repeated application of α- and η-conversion. That test could be
coded in Haskell as follows:

instanceEq Expwhere
e1 == e2 = alphaconvertible (etacontract e1) (etacontract e2)

β-reduction. It is important to realise that e1 == e2 is not the same as saying
that e1 and e2 represent the same value. That is because our notion of equality
does not entail any notion of evaluation. For example

(λx → x + 1)2 /= 2 + 1

The fundamental evaluation rule for expressions is

(λx → e1)e2 = subst x e2e1

That is, all free occurrences of x in e1 are replaced by e2. The substitution
function subst is defined in the usual way (we assume that all naming conflicts
are resolved by appropriate renaming). This evaluation rule is called β-reduction.
The function betareduce :: Exp → Exp exhaustively applies the β-reduction

rule to all subexpressions of its argument. It is a fact that betareduce will always
terminate, thanks to the type system that we employ (provided we ignore user-
defined types). Furthermore, it does not matter in what order the reductions are
carried out: the result is always the same.
If we ignore the semantics of constants, two expressions e1 and e2 represent

the same value iff betareduce e1 == betareduce e2. Because betareduce is termi-
nating, we could have taken this as our definition of equality, but we want to
vary the notion of β-reduction in our discussion of matching below.

Generic Program Transformation 137

One step reduction. In particular, we shall consider the function betastep, which
carries out one pass over an expression, applying β-reduction where possible:

betastep(Var x t) = Var x t

betastep(Conct) = Conct

betastep(Lamx e t) = Lamx (betastepe)t

betastep(Ape1e2 t) = casee
′
1of

Lamx b → subst x e′2b
→ Ape ′1e

′
2 t

where e ′1 = betastepe1
e ′2 = betastepe2

Its name derives from the fact that it captures the notion of one parallel reduction
step. To appreciate the difference between betareduce and betastep, consider the
expression

e = (λf a → 1 + f a)(λb → b + 2)

We have

betareduce e = λa → 1 + (a + 2)

However, application of betastep yields

betastepe = λa → 1 + (λb → b + 2)a

because the result of applying a substitution is not reduced again. It is not the
case, therefore, that betareduce e == betastepe. Note that (for the particular e
defined above) we do have

betastep(betastepe) == betareduce e

More generally, for any expression e, there exists a natural number n so that

betastepn e == betareduce e

In this sense betastep is an approximation of betareduce. The importance of
betastep is that it can be undone in the process of matching against a pattern.

Exercises

5.1 Write a program for alphaconvertible.

5.2 Write a program for etacontract .

5.3 Write a program for subst , assuming that there are no name conflicts.

5.4 Write a program for betareduce.

138 Oege de Moor and Ganesh Sittampalam

5.3 Substitutions

An expression substitution is a mapping from variables to expressions:

typeEsub = Name → Type

Note that an expression substitution applies only to variables in the expression,
not to type identifiers that might occur in the type attributes of an expression.
A substitution is a pair of an expression substitution and a type substitution

typeSub = (Esub,Tsub)

The application of such a substitution (ε, τ) applies ε to the variables in an
expression, and τ to all the type attributes (ε and τ should be consistent with
each other so that the result of applying a substitution is well-typed):

apply (ε, τ)(Var x t) = εx

apply (ε, τ)(Conct) = Conc (tapply τ t)

apply (ε, τ)(Ape1e2 t) = Ap (apply (ε, τ)e1) (apply (ε, τ)e2) (tapply τ t)

apply (ε, τ)(Lamx e t) = Lam x (apply (ε, τ)e) (tapply τ t)

In the last clause of this definition, we tacitly assumed that there are no name
clashes: ε does not substitute for x , and x does not occur in the range of ε. If
this cannot be guaranteed, the variable x has to be removed from the domain of
ε before processing the body of Lamx e t , and the bound occurrence of x has to
be renamed.
A substitution (ε, τ) is closed if all variables substituted for by ε are mapped

to closed λ-terms (since closed λ-terms can contain free type variables, we cannot
impose this restriction on the type substitution τ too).
Generality of substitutions is defined the same as for type substitutions. A

substitution Ψ is said to be less general than Φ if there exists another substitution
∆ so that

applyΨ e == apply∆(applyΦe) , for all e.

We write Ψ ≤ Φ when Ψ is less general than Φ. Two substitutions are incompa-
rable if neither is more general than the other.

5.4 Matching

Simple matching We are now in a position to define what we mean exactly
by simple matching of λ-expressions. Given a pattern p and a closed λ-term e, a
simple match is a closed substitution Φ which satisfies the additional restriction
that variables are only mapped to beta-normal forms (i.e. fully beta-reduced
expressions), such that

applyΦp == e

As in the case of types, if there exists a simple match, there exists a most general
simple match.

Generic Program Transformation 139

It is fairly easy to extend standard matching algorithms to cope with bound
variables and η-conversion. Let

simplematch :: Exp → Exp → [Sub]

be the function so that simplematchpe returns a singleton containing the most
general match if a match exists at all, and the empty list otherwise.

Ideal matching Now suppose that we modify the condition in the above defi-
nition of simple matching to read

betareduce(applyΦp) == betareduce e

A substitution Φ that satisfies this equation is said to be an ideal match. Ideal
matches may be incomparable in the generality order, and not have a common
generalisation. To see this, let

p = f x and e = 0

then both{
f := λa → a
x := 0

}
and
{
f := λa → 0

}

are ideal matches, the two are incomparable, and there exists no ideal match
that generalises both.
It follows that we need to modify the concept of a ‘most general match’.

Given p and e, the ideal match set is a set X of ideal matches for p and e
such that

– for each ideal match Φ there exists Ψ in X so that Φ ≤ Ψ
– the elements of X are pairwise incomparable.

The first clause is a completeness condition: it says that every ideal match is
represented in X . The second clause says that there are no redundant elements
in X .
Unfortunately, it is not even decidable whether an ideal match set is empty

or not [13]. It follows that we cannot hope to solve the matching problem in
its full generality. Intuitively, this is unsurprising because the inverse image of
betareduce is potentially infinite. This is also true of betastep, but because it is
an approximation of betareduce, it is easier to invert it in the process of matching
against a pattern.

One-stepmatching We are thus led to the followingdefinition. Given a pattern
p and an expression e, a one-step match is a substitution Φ such that

betastep(applyΦp) == betareduce e

The definition of a one-step match set is analogous to that of an ideal match set.
The matching algorithm in MAG computes this one-step match set.

140 Oege de Moor and Ganesh Sittampalam

To understand the behaviour of MAG, it is important that the reader devel-
ops an intuition for one-step matching, so that she can adapt the transformation
rules (as we have done in the mindepth exercise). As a simple but typical exam-
ple, consider the pattern and term

λax → f a ((++)x) and λax y → x ++ (a : y)

The one-step match set of this pair is a singleton, namely{
f := λabc → b (a : c)

}
To illustrate the difference between one-step matching and ideal matching, con-
sider f x and λa → 1 + (a + 2). The match{

f := λga → 1 + ga
x := λb → b + 2

}

is in the ideal match set, but since

betastep((λga → 1 + ga)(λb → b + 2)) == λa → 1 + (λb → b + 2)a

which is not the same as λa → 1 + (a + 2), it is not in the one-step match set.
It is beyond the scope of these notes to go into the details of an algorithm for

computing one-step match sets. Essentially it proceeds by repeatedly extracting
subexpressions. Such an algorithm, its proof of correctness and a performance
comparison with similar algorithms are the subject of a forthcoming paper.

6 Concluding Remarks

In these lectures, we have attempted to demonstrate that the fusion transforma-
tion is itself a generic program, whose parameters are the distributivity condi-
tions needed in its application. The scope of its applicability is marred only by
the limitations of the matching algorithm used to implement rewriting.
We have proposed the one-step matching algorithm for typed λ-expressions,

which appears not to be commonly known. Compared to more traditional match-
ing algorithms (which restrict the order of variables), this algorithm greatly en-
hances the applicability of transformations such as fusion. It is however still
necessary to state special cases of fusion as separate rules, most notably for
tupling.
These ideas were illustrated by a cheap-and-cheerful Haskell program, the

MAG system. We found the libraries for pretty printing and parsing from Utrecht
University an invaluable tool. The attribute grammar system from Utrecht made
it easy to experiment with different versions of the type checker.

Acknowledgements

Mike Spivey’s rewriting system was the starting point of these investigations.
He also commented on a draft of these notes, suggesting several corrections

Generic Program Transformation 141

and improvements. Richard Bird generously shared insights gained while imple-
menting his own Functional Calculator, and also commented on a draft. We are
grateful for his advice and friendship. Jeremy Gibbons suggested many examples
— unfortunately, time and space did not allow us to include them all. Doaitse
Swierstra provided all three tools used in building MAG: the pretty-printing
and parsing libraries, as well as his attribute grammar system. He furthermore
provided encouragement and many suggestions during a visit to Oxford at the
beginning of August. Ivan Sanabria pointed out a number of mistakes in an early
draft.

References

1. L. Augustsson, M. Rittri, and D. Synek. Functional pearl: On generating unique
names. Journal of Functional Programming, 4:117–123, 1994. 136

2. F. Bellegarde. A transformation system combining partial evaluation with term
rewriting. In Higher-Order Algebra, Logic and Term Rewriting, volume 816 of
Lecture Notes in Computer Science, pages 40–55. Springer-Verlag, 1994. 125

3. R. S. Bird. Tabulation techniques for recursive programs. Computing Surveys,
12(4):403–417, December 1980. 131

4. R. S Bird. The promotion and accumulation strategies in functional programming.
ACM Transactions on Programming Languages and Systems, 6(4):487–504, 1984.
128

5. R. S Bird. Introduction to Functional Programming in Haskell. International Series
in Computer Science. Prentice Hall, 1998. 125

6. E. A. Boiten. Improving recursive functions by inverting the order of evaluation.
Science of Computer Programming, 18(2):139–179, 1992. 131

7. R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977. 121

8. W. N. Chin. Fusion and tupling transformations: Synergies and conflicts (invited
paper). In Fuji International Workshop on Functional and Logic Programming,
pages 176–195. World Scientific, 1995. 131

9. R. Curien, Z. Qian, and H. Shi. Efficient second-order matching. In 7th Inter-
national Conference on Rewriting Techniques and Applications, volume 1103 of
Lecture Notes in Computer Science, pages 317–331. Springer Verlag, 1996. 134

10. J. Gibbons and G. Jones. The under-appreciated unfold. In 3rd ACM SIGPLAN
International Conference on Functional Programming 1998, 1998. 130

11. Z. Hu, H. Iwasaki, and M. Takeichi. Calculating accumulations. Technical Report
METR 96-0-3, Department of Mathematical Engineering, University of Tokyo,
Japan, 1996. Available from URL:
http://www.ipl.t.u-tokyo.ac.jp/ hu/pub/tech.html. 128

12. Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates
multiple data traversals. In 2nd ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97), pages 164–175, 1997. 131

13. G. Huet and B. Lang. Proving and applying program transformations expressed
with second-order patterns. Acta Informatica, 11:31–55, 1978. 122, 139

14. J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from recursive
definitions. In Functional Programming Languages and Computer Architecture,
pages 314–323. Association for Computing Machinery, 1995. 125

142 Oege de Moor and Ganesh Sittampalam

15. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978. 134

16. Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system
hylo. In R. S. Bird and L. Meertens, editors, IFIP TC2 Working Conference on
Algorithmic Languages and Calculi, pages 76–106. Chapman and Hall, 1997. 125

17. A. Pettorossi. Methodologies for transformations and memoing in applicative lan-
guages. Ph.D. thesis CST-29-84, University of Edinburgh, Scotland, 1984. 131

18. S. L. Peyton-Jones. The Implementation of Functional Programming Languages.
Foundations of Computing Series. Prentice-Hall International, 1994. 134

19. S. L. Peyton-Jones and A. L. M. Santos. A transformation-based optimiser for
haskell. Science of Computer Programming, 32(1–3):3–48, 1998. 120

20. S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting combinator
parsers. In J. Launchbury, E. Meijer, and T. Sheard, editors, Second International
Summer School on Advanced Functional Programming, volume 1126 of Lecture
Notes in Computer Science, pages 184–207. Springer-Verlag, 1996. 125

Generic Program Transformation 143

Generic Program Transformation
Answers to exercises

1 Introduction

No exercises.

2 Abstraction versus Efficiency

Exercises

2.1 Can the computation of the maximum depth of a tree be made more effi-
cient in the same way as the computation of the minimum depth? If not, which
property of min fails for max?
Answer: The property max (a + b)c = ifb ≤ c then c else max (a + b)c fails to
hold. It is thus not possible to cut the search for a maximum depth leaf in the
same way as we cut the search for a minimum depth leaf.
2.2 A leaf labelled binary tree is said to be perfectly balanced if for every subtree
t , the size of the left hand child is precisely size t div2. Given a list x , the function
build x produces a perfectly balanced tree whose inorder traversal is x . First give
a naive program for computing build , and then show how it can be made efficient.
Answer: The obvious algorithm follows the divide-and-conquer strategy, split-
ting the input into half at each step, and recursing on each half. That may be
coded as follows

build [a] = Leaf a

build x = Bin (build y)(build z)

where (y , z) = splitAt nx
n = length x div 2

This is not efficient, because splitAt nx takes n steps to evaluate; the cost adds
up to Ω(n log n) for the evaluation of build x where n is the length of x . To make
this more efficient, we compute

build ′nx = (build (takenx), dropnx)

Note that this is very similar to the way we optimised decorate. The efficient
program for build ′ reads

build ′1(a : x) = (Leaf a, x)

build ′nx = (Bins t , z)

where (s, y) = build ′ (n div 2)x
(t , z) = build ′ (n − n div 2)y

2.3 Are there circumstances where the original definition of partition is as effi-
cient as the ‘improved’ version?
Answer: Yes, for instance when we select only one of the two components of its
result.

144 Oege de Moor and Ganesh Sittampalam

3 Automating the Transition:
Fusion and Higher Order Rewriting

Exercises

3.1 Define the fold operator on natural numbers. Its type is

foldn :: (a → a)→ a → Int → a

You could think of the first argument as replacing the successor function (+1)
and the second argument as replacing 0. If there were a data type Nat of natural
numbers in Haskell, the type of the third argument would be Nat and not Int .
What is the fusion rule for foldn?
Answer: The definition of foldn is

foldn stepstart 0 = start

foldn stepstart (n + 1) = step(foldn stepstart n)

The fusion rule is what allows you to push you another operator through this
computation, in the following intuitive fashion:

f (step(step(step . . . (stepstart)))) =

g(f (step(step . . . (stepstart)))) =

g(g(f (step . . . (stepstart)))) =

g(g(g(f . . . (stepstart)))) =

. . .

g(g(g . . . f (stepstart))) =

g(g(g . . .g(f start))) =

g(g(g . . .g e))

Formally, we have

f (foldn stepstart x) = foldng e x ,

provided we have

f (stepn) = g (f n) all n, and

f start = e

3.2 Define the fold operator on leaf labelled binary trees. Its type is

foldbtree :: (a → a → a)→ (b → a)→ Btree b → a

What is its fusion rule?
Answer: The fold operator is

foldbtree bin leaf (Leaf a) = leaf a

foldbtree bin leaf (Bins t) = bin (foldbtree bin leaf s) (foldbtree bin leaf t)

Generic Program Transformation 145

The fusion rule says that

f (foldbtree bin leaf x) = foldbtree ghx

provided we have

f (bin s t) = g (f s) (f t), all s and t

f (leaf a) = ha, all a

4 The MAG System

Model solutions to the practical assignments of this section are distributed with
the MAG system. The MAG system is available from URL:

http://www.comlab.ox.ac.uk/oucl/groups/progtools/mag.htm

Below we answer the in-lined questions only.

4.1 Getting Acquainted

No exercises.

4.2 Accumulation Parameters

Fast reverse A naive definition of the function reverse is

reverse [] = []

reverse (a : x) = reverse x ++ [a]

Write down the recursive definition of (++), and estimate how much time it takes
to evaluate reverse x when x has length n.
Answer: The recursive definition of (++) is:

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

The time to evaluate a concatenation is thus proportional to the length of the left-
hand argument. It follows that reverse takes quadratic time. End of answer.
The time complexity of reverse can be improved by defining:

fastrev x y = reverse x ++ y

Why is this a generalisation of reverse?
Answer: Because

fastrev x [] = reverse x ++ [] = reverse x

End of answer.

146 Oege de Moor and Ganesh Sittampalam

Using the fact that (++) is associative

(x ++ y) ++ z = x ++ (y ++ z)

one can synthesise an efficient program for fastrev .
The above definitions, and the associativity of (++), have been recorded in

the theory file reverse.eq. There is one peculiarity, however: the definition of
fastrev reads

fastrev x y = reverse (foldr (:)[]x) ++ y

Why is the instance of foldr there?
Answer: It acts as a seed for the the use of fusion: if there is no foldr in the
program, fusion cannot be applied. End of answer.
Confirm your answer by loading the theory file reverse.eq in MAG, and

transforming fastrev . Estimate the time complexity of the resulting program.
Answer: The result is an instance of foldr where each of the operators takes
constant time to evaluate, so the total time complexity is linear. End of answer.

Postorder traversal No in-lined exercises.

Breadth first traversal . . .
The function levels :: Treea → [[a]] first gives the elements that occur at

depth 0, then the elements at depth 1, depth 2 and so on. It is defined by

levels (Nodea ts) = [a] : glues (maplevels ts)

glues [] = []

glues (x : xs) = lzcx (glues xs)

lzc []x = x

lzc (a : x)y = ifnull y
thena : lzcx []
else (a ++ head y) : lzcx (tail y)

Here lzc stands for long zip with concatenation. What is the difference between
lzc and zipWith (++)? Is lzc associative? What is the time complexity of levels?
Answer: zipWith truncates its result to the length of the shortest argument.
By contrast, the length of the result of lzc is the maximum of the lengths of
its arguments. Yes, lzc is associative. The time complexity of levels is at least
quadratic. End of answer.

Minimum depth Let us now return to the problem discussed at the beginning
of these lectures, namely computing the minimum depth of a leaf labelled binary

Generic Program Transformation 147

tree. It was claimed there that apart from the definitions, all we need to produce
an efficient program is the following set of rules:

0 + a = a

(a + b) + c = a + (b + c)

min(minab)c = mina (minbc)

minab + c = min (a + c)(b + c)

min (a + b)c = ifb ≥ c then c elsemin (a + b)c

Unfortunately, there is a problem when this set of equations is implemented by
rewriting. Why?
Answer: The last rule can be applied to its own result, so application of this
set of rules does not terminate. End of Answer.

4.3 Tupling

Fibonacci No in-lined exercises.

Steep sequences A list of numbers is said to be steep if each element is greater
than the sum of the elements that follow it. We might define the predicate
steep :: [Int]→ Bool by

steep [] = True

steep(a : x) = a > sumx ∧ steepx

Estimate the time complexity of steep.
Answer: The time complexity of sum is linear. We call sum on each suffix of
the argument of steep, so that makes for a quadratic program. End of answer.

Partition In this example, the ordering of the rules in the theory file is rather
important: in the rewriting process, they are tried in the order they occur. Why
does the rule about distributing a function over a conditional come last?
Answer: When applied in favour of if contraction (to a nested if statement)
this rule is applicable to its own result. So it should come after if contraction.
End of answer.

Decorate . . .
Returning to the problem of optimising decorate, the above machinery can

be found in the file decorate.eq. Run MAG on dec. Is the result identical to the
program discussed earlier in the lectures? What further transformation needs to
be performed?
Answer:We need to perform common sub-expression elimination. That is not
easily expressed as a rewrite rule, and it is typical of the kind of transformation
that MAG cannot do. End of answer.

148 Oege de Moor and Ganesh Sittampalam

4.4 Carrying On

No exercises.

5 Matching Typed λ-Expressions

Exercises

5.1 Write a program for alphaconvertible.
Answer:

dataBinding = FreeName | Bound Int

derivingEq

alphaconvertible e1e2 = ac [] []e1e2

where acxs ys (Var x s)(Var y t) = (s == t) ∧
getbinding xs x == getbindingys y

where getbindingas a | a ‘elem‘as = Bound (getpos aas)

| otherwise = Freea

getpos a (b : bs) = if (a == b) then 0 else 1 + getpos abs
acxs ys (Conx s)(Cony t) = (s == t) ∧ (x == y)

acxs ys (Apf1a1 s)(Apf2a2 t) = (s == t) ∧ acxs ys f1 f2 ∧ acxs ys a1a2

acxs ys (Lamp1e1 s)(Lamp2e2 t) = (s == t) ∧ acxs ′ ys ′e1e2

where xs ′ = p1 : xs

ys ′ = p2 : ys
ac = False

5.2 Write a program for etacontract .
Answer:

etacontract exp@(Lamv1(Ape (Var v2))) =

if(v1 == v2 ∧ and (map(v1/=)(freevars e)))

then (etacontract e)

elseexp

etacontract (Lampat bod t) = Lampat (etacontract bod)t

etacontract (Apf a t) = Ap(etacontract f)(etacontract a)t

etacontract (Var x t) = Var x t

etacontract (Conct) = Conct

Generic Program Transformation 149

5.3 Write a program for subst , assuming that there are no name conflicts.
Answer:

subst x e (Var y t) = ifx == y then e elseVar y t

subst x e (Conct) = Conct

subst x e (Ape1e2 t) = Ap(subst x e e1)(subst x e e2)t

subst x e (Lamybt) = ifx == y then (Lamybt)
elseLamy (subst x e b)t

5.4 Write a program for betareduce.
Answer:

betareduce (Var x t) = Var x t

betareduce (Conct) = Conct

betareduce (Lamx e t) = Lamx (betareduce e)t

betareduce (Ape1e2 t) = casee
′
1of

Lamx b → betareduce(subst x e′2b)
→ Ape ′1e

′
2 t

where e ′1 = betareduce e1
e ′2 = betareduce e2

Designing and Implementing

Combinator Languages

S. Doaitse Swierstra1, Pablo R. Azero Alcocer1 , and João Saraiva2,1

1 Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB
Utrecht,The Netherlands,

{doaitse,pablo,saraiva}@cs.uu.nl
2 University of Minho, Braga, Portugal

1 Introduction

1.1 Defining Languages

Ever since the Computer Science community has discovered the concept of a
programming language there has been a continuous quest for the ideal, all-
encompassing programming language; despite this we have been overwhelmed
by an everlasting flow of all kinds of special purpose programming languages.
Attempts to bridge this gap between a single language and infinitely many caused
research into so-called extensible programming languages.
In a certain sense every programming language with a binding construct

is extensible. In these lectures we will show that it is the unique combination
of higher order functions, an advanced type system (polymorphism and type
classes) and the availability of lazy evaluation that makes Haskell one of the
most promising candidates for the “ideal extensible language”.
Before we start with giving many examples and guidelines of how to use

the features just mentioned, we want to spend some time on explaining what
actually constitutes a programming language. A proper programming language
description contains at least:
• a concrete context-free grammar, describing the appearance of the lan-
guage

• an abstract context-free grammar, describing the structure of the language
• context sensitive conditions that capture the constraints that are not easily
expressed at the context-free level, like correct name introduction and use
and type checking; usually such context conditions can either be directly
expressed in a compositional way, or in terms of a fixed-point of a function
that itself may be computed in a compositional way; with compositional
we mean here that a property of a construct can be expressed in terms of
properties of its constituents.

• a mechanism of assigning a “meaning” to a program; one of the most
common ways of doing so is by giving a denotational semantics, which
boils down to describing how a function representing the meaning of that
program can be derived from the abstract program structure.

Of course one can design a new language by defining all the above components
from scratch. Languages, however, do have a lot in common like definitions, type

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 150–206, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Designing and Implementing Combinator Languages 151

systems, abstraction mechanism, IO-systems etc. It would be a lot of work to
implement this anew for every new language and it would be nice if we could
borrow this from some existing language.

1.2 Extending Languages

There are many ways in which one can extend an existing language:
• By far the most common way to extend a language is by including some
form of macro preprocessor. Such extensions are almost all syntactic and
do not use any form of global analysis to steer their behavior. An exception
to this is the C++ template mechanism, in which the programmer also
gets access to the types of the manipulated expressions.

• By incorporating a term-rewriting system, which makes it in principle
possible to acquire information about parts of the program and to move
this information to other places where it may be used. The disadvantage
of this approach is that on the one hand the method is very elaborate,
and on the other hand it is hard to keep track of what happens if two
independently designed term rewriting systems are used to transform the
same program text: composition of two confluent term-rewriting systems
is usually not confluent.

• By giving access to an underlying interpreter, providing reflection. In this
way an almost endless world of possibilities appears. Unfortunately there
is a price to be paid: as a consequence of constructs being analyzed dy-
namically one can in general not guarantee that the program will not
terminate erroneously, and especially strong typing is easily lost.

Besides these approaches there is a fourth one, that we call embedding, described
in the next subsection.

1.3 Embedding Languages

When we embed a language in another language we are not so much extending
that other language, but we make it look as if this were the case. It is here
that the concept of a combinator language shows up: we use the already avail-
able mechanisms in the language for describing the components mentioned in
subsection 1.1:
• for describing the concrete representation (or syntax if you prefer that
term) of our extension we introduce new operators and functions. It would
be nice if we had an underlying language with distfix operators (like
if..then..else..fi) available, but in practice we can do quite well with a
sufficient number of operator priorities and the possibility to define new
infix operators.

• for the representation of the abstract syntax we may use Haskell data
types, that nicely correspond to abstract syntax trees.

• for describing context sensitive restrictions we will use catamorphisms (see
the chapter on Generic Programming of these lecture notes and [15]),
since they capture the notion of exploiting the compositional nature of
our restrictions.

152 S. Doaitse Swierstra et al.

• for describing the semantic domains we will again use Haskell types. The
way they are composed is again by using catamorphisms. It is here that
the fact that we can use higher order functions plays a crucial role. For
the domains and co-domains of the functions denoting the semantics we
may use Haskell types again.

We want to emphasize that this approach has been very fruitful and has already
led to several nice combinator libraries[2,3,5,13]. The main advantage of this
approach is that when extending a language through the definition of a set of
combinators, we get the naming, abstraction and typing mechanism for free,
since this was already part of the underlying language.
There are two important aspects of the Haskell tping system that makes this

approach even more attractive:
• polymorphism allows the language extension to be conservative. I.e. it may
be possible to manipulate values of the original programs and at the same
time we may guarantee that this is done in a safe way. We will see an
example of this when we introduce the parser combinators.

• type classes allow us to link the new constructs to existing types, and
to manipulate existing kind of values in a type-safe way without limiting
ourselves to a fixed set of predefined types.

As we will see, it is not always attractive to explicitly code the catamorphisms
needed, and thus we introduce a special notation for them based on attribute
grammars: they can be seen as a way of defining catamorphisms in a more
“programmer friendly” way.
Attribute grammars have traditionally been used for describing implemen-

tations of programming languages, and their use in describing programming
language extensions should thus not come as a surprise. Using attribute gram-
mars has always been limited by the need to choose a specific language for
describing the semantic functions and a specific target language. Fortunately,
as we will show, it is quite straightforward to use the attribute grammar based
way of thinking when programming in the setting of a modern, lazily evaluated
functional language: it is the declarative way of thinking in both formalisms that
bridges the gap, and when using Haskell you get an attribute grammar evaluator
almost for free [11,16].
Thinking in terms of attribute grammars is useful when writing complicated

functions and their associated calls. By explicitly naming argument and result
positions (by the introduction of attribute names), we are no longer restricted
to the implicit positional argument passing enforced by conventional function
definitions.

1.4 Overview

In section 2 we will describe a number of so-called circular programs. This intro-
duction serves to make you more familiar with lazy evaluation, what can be done
with it, and how to exploit it in a systematic way. It also serves to make you once
more familiar with the algebraic approach to programming [7,4], and with how
to design programs by way of defining algebras and combining them. Although

Designing and Implementing Combinator Languages 153

this all works nicely when done in a systematic way, we will also show why this
approach is extremely cumbersome if things are getting more complicated: soon
one needs to be a book-keeping genius to keep track of what you are writing,
calculating and combining. In the course of this discussion it will become clear
that an approach that solely relies on monads in attacking these problems will
not work out as expected.
In section 3 we will solve the same example problems again, but now by

taking an attribute grammar based approach.
Section 4 forms a large case study in which we attack the pretty printing

problem as described in [5]. Hughes defines a set of operators that may be used
to describe the two-dimensional layout of documents, and especially documents
that contain structured text that is to be formatted according to that structure.
Designing this language has been a long standing testbed for program design
techniques and we hope to show that when such problems are attacked in a step-
wise fashion and with proper administrative support one may easily generate
quite complicated programs, which many would not dare to write by hand.
Next we will show some of the consequences of our techniques when it is

taken in its simplest form, and describe some program transformations, that
finally may result in a large set of relatively small strict, pure functions. So even
ML-programmers should be happy in the end. Finally we will summarise the
approach taken.

2 Compositional Programs

We start by developing a somewhat unconventional way of looking at functional
programs, and especially those programs that make heavy use of functions that
recursively descend over data structures. In our case one may think about such
data structures as abstract syntax trees. When computing a property of such
a recursive object (i.e. the representation of a program in a new language) we
define two kinds of functions: those for describing how to recursively visit the
nodes of a tree (the catamorphisms), and those used in forming algebras that
describes what to compute at each visited node.
One of the most important steps in this process is deciding what the carrier

type of such algebras is to be. Once this step has been taken, these types will be
a guideline for further design steps. We will see that such carrier types may be
functions themselves, and that deciding on the type of such functions may not
always be simple. In this section we will present a view on recursive computations
that will enable us to “design” the carrier type in an incremental way. We will
do so by constructing algebras out of other algebras. In this way we define the
meaning of a language in a semantically compositional way. We will give three
examples of the techniques involved, followed by a conclusion about the strengths
and weaknesses of this approach.

2.1 The Rep Min Problem

One of the famous examples in which the power of lazy evaluation is demon-
strated is the so-called Rep Min problem ([12]). Many have wondered how this

154 S. Doaitse Swierstra et al.

data Tree = Leaf Int

| Bin Tree Tree

type Tree_Algebra a = (Int -> a, a -> a -> a)

5

cata_Tree :: Tree_Algebra a -> Tree -> a

cata_Tree alg@(leaf, _) (Leaf i) = leaf i

cata_Tree alg@(_ , bin) (Bin l r) = bin (cata_Tree alg l)

10 (cata_Tree alg r)

Listing 1: rm.start

program achieves its goal, since at first sight it seems that it is impossible to
compute anything with this program. We will use this problem, and a sequence of
different solutions, to build up understanding of a whole class of such programs.

In listing 1 we present the data type of interest, i.e. a Tree, which in this
case stands for simple binary trees, together with their associated signature. The
carrier type of an algebra is that type describing the objects of the algebra. We
represent it by a type parameter to the signature type Tree_Algebra:

type Tree_Algebra a = (Int -> a, a -> a -> a)

The associated evaluation function cata Tree systematically replaces the con-
structors Leaf and Bin by their corresponding operations from the algebra alg
that is passed as an argument.1

We now want to construct a function rep min :: Tree -> Tree that returns
a Tree with the same “shape” as its argument Tree, but with the values in its
leaves replaced by the minimal value occurring in the original tree. In figure 1
an example of an argument with its result is given.

Bin

BinLeaf 3

Leaf 4 Leaf 5

Bin

BinLeaf 3

Leaf 3 Leaf 3

Fig. 1. The function rep min

1 Note that this function could have been defined using the language PolyP from the
second lecture of this volume.

Designing and Implementing Combinator Languages 155

min_alg = (id, min::(Int->Int->Int))

replace_min :: Tree -> Tree

replace_min t = cata_Tree rep_alg t

where m = cata_Tree min_alg t

5 rep_alg = (const (Leaf m), Bin)

Listing 2: rm.sol1

Straightforward Solution The straightforward solution to the Rep Min prob-
lem consists of a function in which cata Tree is called twice: once for computing
the minimal leaf value, and once for constructing the resulting Tree. The func-
tion replace min that solves the problem in this way is given in listing 2. Notice
that the variable m is used as a global variable in the rep algebra, that in its
turn is an argument to the tree constructing call of cata Tree. In figure 2 we
have shown the flow of the data in a recursive call of cata Tree, when comput-
ing the minimal value. One of the disadvantages of this solution is that, since

Bin

Leaf

min

3 4Bin

Leaf

min

4 5Leaf

3

3

4 5

Fig. 2. Computing the minimum value

we call cata Tree twice, in the course of the computation the pattern matching
associated with the inspection of the tree nodes is performed twice for each node
in the tree. Although this is not a real problem in this solution we will try to con-
struct a solution that calls cata Tree only once. We will do so by transforming
the current program in a number of steps.

156 S. Doaitse Swierstra et al.

rep_alg = (\ _ -> \m -> Leaf m

,\lfun rfun -> \m -> let lt = lfun m

rt = rfun m

in Bin lt rt

5)

replace_min’ t = (cata_Tree rep_alg t) (cata_Tree min_alg t)

Listing 3: rm.sol2

Lambda Lifting Our first step results in listing 3. In this program the global
variable m has been removed. The second call of cata Tree now does not
construct a Tree anymore, but instead a tree constructing function of type
Int -> Tree, that takes the computed minimal value as an argument. Notice
how we have emphasized the fact that a function is returned through some su-
perfluous notation: the first lambda in the lambda expressions constituting the
algebra rep alg is there because of the signature of the algebra requires so, the
second lambda is there because the carrier set of the algebra contains functions of
type Int -> Tree. This process is done routinely by functional compilers and
is known as lambda-lifting. In figure 3 we have shown the flow of information
when this function is called. The down-arrows to the left of the non-terminals
correspond to the parameters of the constructed function, and the up-arrows
to the right correspond to the results of the constructed functions. When we
look at the top level node we see that the final value is a function that takes
one argument (down-arrow), in our case the minimum value, and that returns a
Tree (up-arrow). The call of cata Tree constructs this final function by using
the small functions from the rep alg algebra as building blocks. These small
functions can be identified with the small data flow graphs in figure 4.

Tupling Computations In the next formulation of our solution cata Tree is
called only once. Note that in the last solution the two calls of cata Tree don’t
interfere with each other. As a consequence we may perform both computation of
the tree constructing function and the minimal value in one traversal, by tupling
the results of the computations. The solution is given in listing 4. First a function
tuple tree is defined. This function takes two Tree Algebras as arguments and
constructs a third Tree Algebra, that has as its carrier tuples of the carriers of
the original algebra’s. The resulting computation is shown in figure 5.

Merging Tupled Functions In the next step we transform the type of the
carrier set in the previous example, i.e. (Int, Int -> Tree), into a, for this
purpose equivalent, type Int -> (Int, Tree). This transformation is not es-
sential here, but we use it to demonstrate that if we compute a cartesian product
of functions, we may transform that type into a new type in which we compute
a single function, that takes as its arguments the cartesian product of all the

Designing and Implementing Combinator Languages 157

Bin

Bin

Bin

Bin

Leaf

Leaf

3

Leaf

Leaf

4

Leafm

Leaf

5

Fig. 3. The flow of information when building the result

m
Leaf

Leaf

_

Bin

rfunlfun

m

m m

Bin

lt rt

Fig. 4. The building blocks

Bin

rl

m

m m

min

lm rm

Bin

lt rt

Fig. 5. Tupling the computations

158 S. Doaitse Swierstra et al.

infix 9 ‘tuple_tree‘

tuple_tree :: Tree_Algebra a -> Tree_Algebra b -> Tree_Algebra (a,b)

(leaf1, bin1) ‘tuple_tree‘ (leaf2, bin2)

5 = (\i -> (leaf1 i , leaf2 i)

,\l r -> (bin1 (fst l) (fst r), bin2 (snd l) (snd r))

)

min_tup_rep :: Tree_Algebra (Int, Int -> Tree)

10 min_tup_rep = (min_alg ‘tuple_tree‘ rep_alg)

replace_min’’ t = r m

where (m, r) = cata_Tree min_tup_rep t

Listing 4: rm.sol3

arguments of the functions in the tuple, and returns as its result the cartesian
product of the result types. In our example the computation of the minimal value
may be seen as a function of type () -> Int. As a consequence the argument of
the new type is ((), Int), that is isomorphic to just Int, and the result type
becomes (Int, Tree), so as the carrier we get the type Int -> (Int, Tree).2

We want to mention here too that the reverse is in general not true; given
a function of type (a, b) -> (c, d), it is in general not possible to split this
function into two functions of type a -> c and b -> d, that together achieve
the same effect. The new version of our program is given in listing 5.

Notice how we have again introduced extra lambdas in the definition of the
functions making up the algebra, in an attempt to make the different rôles of the
parameters explicit. The parameters after the second lambda are there because
we construct values in a higher order carrier set. The parameters after the first
lambda are there because we deal with a Tree Algebra. A curious step taken
here is that part of the result, in our case the value m, is passed back as an
argument to the result of (cata Tree merged alg t). Lazy evaluation makes
this work!

That such programs were possible came originally as a great surprise to many
functional programmers, and especially to those who used to program in LISP or
ML, languages that require arguments to be evaluated completely before the call
is evaluated (so-called strict evaluation in contrast to lazy evaluation). Because
of this surprising behavior this class of programs became known as circular
programs. Notice however that there is nothing circular in this program. Each
value is defined in terms of other values, and no value is even defined in terms
of itself (as in ones=1:ones), although this would not have been a problem.

2 Notice that the first component of the result does not depend on the Int-argument; it
is just computed “at the same time” as the Tree that does depend on the argument.

Designing and Implementing Combinator Languages 159

merged_alg :: Tree_Algebra (Int -> (Int,Tree))

merged_alg = (\i -> \m -> (i , Leaf m)

,\lfun rfun -> \m -> let (lm,lt) = lfun m

(rm,rt) = rfun m

5 in (lm ‘min‘ rm, Bin lt rt)

)

replace_min’’’ t = r

where (m, r) = (cata_Tree merged_alg t) m

Listing 5: rm.sol4

replace_min’’’’ t = r

where (m, r) = tree t m

tree (Leaf i) = \m -> (i, Leaf m)

tree (Bin l r) = \m -> let (lm, lt) = tree l m

5 (rm, rt) = tree r m

in (lm ‘min‘ rm, Bin lt rt)

Listing 6: rm.sol5

Finally we give in listing 6 the version of this program in which the func-
tion cata Tree has been unfolded, thus obtaining the original solution given in
Bird[12].

Recapulating we have systematically transformed a program that inspects
each node twice into an equivalent program that inspects each node only once.
In doing so we were forced to pass part of the result of a call as an argument to
that very same call. Lazy evaluation made this possible.

2.2 Table Formatting

In this section we will treat a more complicated example, in which we show how
to systematically design the algebra’s involved. Our goal is to develop a program
that recognizes and formats (possibly nested) HTML style tables, as described
by the following grammar:

table → <TABLE> rows </TABLE>

rows → row∗

row → <TR> elems </TR>

elems → elem∗

elem → <TD> string | table </TD>

An example of accepted input and the associated output is given in figure 6.

160 S. Doaitse Swierstra et al.

<TABLE>

<TR><TD>the</TD>

<TD>table</TD>

</TR>

<TR><TD><TABLE>

<TR><TD>formatter</TD>

<TD>in </TD>

</TR>

<TR> <TD>functional</TD>

<TD>polytypic </TD>

</TR>

</TABLE>

</TD>

<TD>style</TD>

</TR>

</TABLE>

(a) HTML input

|----------------------------|

|the |table|

|----------------------------|

||--------------------||style|

||formatter |in || |

||--------------------|| |

||functional|polytypic|| |

||--------------------|| |

|----------------------------|

(b) Output

Fig. 6. Table formatting

A Parser for Tables We start defining the parser for the input language. As
we will see the parser actually is a combination of the parsing process and the
computation of a catamorphism over the abstract syntax tree constructed by
the parsing process.

The parser is written with so-called parser combinators [13] – here mostly
defined as infix operators: functions that construct parsers out of more elemen-
tary parsers, completely analogous to the well-known recursive descent parsing
technique. An example of the advantages of embedding a formalism (in our
case context-free grammars) in a language that provides powerful abstraction
techniques is that this automatically gives us an abstraction mechanism for the
embedded language (in our case the context-free grammars). Although it is not
the main purpose of this paper to treat combinator parsers we have incorporated
this part for the sake of completeness, and to show how to link the semantics of
a language to recognized program structures.

Parsing with combinators: discovering structure In the first section we have men-
tioned that, when defining a programming language, we may want to distinguish
the concrete syntax from the abstract syntax. In this paper we will assume the
availability of a set of parsing combinators, that enables us to construct such a
mapping without almost any effort.

Before we describe the structure of the combinator taggedwith that will
be used to construct a parser for recognizing HTML-tagged structures, we will
briefly discuss the basic combinators used in its construction.

The types of the basic combinators used in this example are:

Designing and Implementing Combinator Languages 161

<*> :: Eq s => Parser s (a -> b) -> Parser s a -> Parser s b

<|> :: Eq s => Parser s a -> Parser s a -> Parser s a

succeed :: a -> Parser s a

sym :: Eq s => s -> Parser s s

--

<$> :: Eq s => (a -> b) -> Parser s a -> Parser s b

<*-> :: Eq s => Parser s a -> Parser s b -> Parser s a

<-*> :: Eq s => Parser s b -> Parser s a -> Praser s a

<$-> :: Eq s => (a -> b) -> Parser s c -> Parser s (a -> b)

The type Parser is rather complicated and has been taken from [13]. Here it
suffices to know that a Parser s a will recognize a sequence of tokens ([s])
and return a value of type a as the result of the parsing process. The sequence
combinator <*>, composes two parsers sequentially. The meaning of the com-
bined result is computed by applying the result of the first component to the
result of the second. The choice combinator <|> constructs a new parser that
may perform the role of either argument parser. The parser combinator succeed
creates a parser that always succeeds (recognizes the empty string) and returns
the argument of succeed as its semantic value. The parser combinator sym re-
turns a parser that recognizes the terminal symbol represented by its argument.
Sequence, choice, succeed and sym form the basic constructors for parsers for
context-free languages. In our example we will assume that we have a scanner
that maps the input onto a sequence of Tokens, and that such tokens may be
recognized by elementary parsers for keywords (constructed with pKey), and for
lower case identifiers (pVarid).
One of the things to notice here is that the type of the parsers is completely

polymorphic in the result of the parsers, and that the definitions of the parser
combinators only allow us to combine partial results to the results of complete
trees in a type safe manner. Furthermore we have introduced a context Eq s to
precisely contrain the kind of token sequences we are able to parse.
A fifth combinator is defined for describing further processing of the semantic

values returned by the parsers. It is the application defined as:

f <$> p = succeed f <*> p

Thus, it applies the function f, the so called semantic function, to the result of
parser p. We will see how, by a careful combination of such semantic functions
and parser combinators, we can prevent a parse tree from coming into existence
at all [8,10].
Now let us take a look at the program in listing 7, and take the combina-

tor taggedwith. This combinator takes two arguments: a String providing the
text of the tag and the Parser for the structure enclosed between the tags. Its
semantics are: recognize the ‘open’ tag s, then (combinator <*>) recognize the
structure p, then (again <*>) parse the ‘close’ tag. The combinators <*->, <$->
and <-*> combine parsers, but throw away the result at the side of the --symbol
in their name. As a result of this the result of a call taggedwith s p returns
only the result recognized by the call of p in its body.

162 S. Doaitse Swierstra et al.

type Alg_List a b = (a -> b -> b, b)

type Alg_Table table rows row elems elem

= (rows -> table, Alg_List row rows

5 , elems -> row , Alg_List elem elems

, (String -> elem, table -> elem))

taggedwith :: Eval a

=> String -> Parser Token a -> Parser Token a

10 taggedwith s p = topen s <-*> p <*-> tclose s

where topen s = pKey ("<") <*-> pKey s <*-> pSym ’>’

tclose s = pKey ("</") <*-> pKey s <*-> pSym ’>’

format_table :: Alg_Table table rows row elems elem

15 -> Parser Token table

format_table (sem_table, sem_rows, sem_row

, sem_elems, (sem_selem,sem_telem)) = pTable

where

pTable = sem_table <$> taggedwith "TABLE"

20 (pFoldr sem_rows (taggedwith "TR"

(sem_row <$>

pFoldr sem_elems (taggedwith "TD"

(sem_selem <$> pVarid

<|> sem_telem <$> pTable

25)))))

Listing 7: Parsing tables

pFoldr :: Eq s => Alg_List a b -> Parser s a -> Parser s b

pFoldr alg@(op,zero) p = pfm

where pfm = op <$> p <*> pfm <|> succeed zero

5 -- Some useful algebras

init_list = ((:), [])

max_alg = (max, 0) -- Take the max element; sizes are positive

sum_alg = ((+), 0) -- Sum all elements

Listing 8: List manipulation

Designing and Implementing Combinator Languages 163

The Kleene ∗ in two grammar rules of our Table Formatting problem are re-
alized by the combinator pFoldr (see listing 8). The first argument of pFoldr is
a tuple of two values: (zero,op) :: Alg_List, an algebra that uniquely defines
the homomorphism from the carrier set of the initial algebra to the carrier set of
the argument algebra (in our case the type b). The second argument of pFoldr is
a parser for p-structures. A parser pFoldr (op,zero) p recognises a sequence
of p-structures, and foldrs the results using the binary operator op to com-
bine results and using zero as its unit element; so pFoldr sum_alg p_Integer
recognises a sequence of integers and returns their sum as a result, provided that
pInteger recognises a single integer.
Finally we have a look at the function format_table. We see that it takes

for each nonterminal of the describing grammar an algebra consisting of func-
tions that describe how to construct the semantic value for a production out
of the semantic values of the elements in its right hand side. From the type of
Alg_Table we see that it takes a set of carrier types as argument. As a result
the whole parser is polymorphic in all these domains: all it does is recognizing
the structure of a table and composing the recognized elements once it is told
how to compose them by the argument of type Alg_Table.

Exercise 1. A more traditional solution to linking the parsing phase with the
semantic phase would have been to construct a tree first, that is subsequently
mapped onto a final semantic domain using a catamorphism. Define appropriate
data types, and the associated catamorphisms. How should the Alg_Table show
up in your program?

Simulating structure walks: adding semantics By providing different definitions
for the algebras passed to the pFoldr-calls and for the sem_antic functions we
may compute quite different results. The set of definitions:

type Table = Rows

type Rows = [Row]

type Row = Elems

type Elems = [Elem]

data Elem = SElem String | TElem Table

table = format_table (id,init_list,id,init_list,(SElem,TElem))

describes the data structure holding the table as the result of the parsing process.
The type of the element to be returned by table is Table. It is already possible
in the previous functions to see the role played by the semantic functions and the
list algebras – figure 7(a). The latter apply functions to the collected elements,
and the former provide intermediate computations such as transforming data
types, collecting intermediate values and computing new values. In the following
sections we will focus on the systematic description of these functions.

Walks, trees: where are they? In the previous section we have seen how we
can define an algebra that describes the computation of the abstract syntax tree

164 S. Doaitse Swierstra et al.

sem_telem

sem_selem

Table

RowsRow

Elem

Elem

sem_elems

sem_rows

sem_row

sem_table

Rows

Elems

Elems

nil

(a) Building the AST

sum_alg

max r1 + max r2 + ...

id

1

Table

RowsRow

Elem

Elem

max_alg

id

id

Rows

Elems

Elems

nil

(b) Computing the heights

Fig. 7. Computations over trees

Designing and Implementing Combinator Languages 165

itself: the initial algebra. For defining the semantics of such a tree we now have
to define the catamorphism from the initial algebra (the abstract syntax trees)
to some other algebra (the meaning). An interesting consequence of trees being
initial is that this function is completely defined by the target-algebra. Expressed
in computer science terms this is just saying that the structure of the recursion
follows directly from the data type definition; a fact well known to (functional)
programmers and attribute grammar system users.
A direct consequence of this is that it is possible to compute the meaning of

a structure directly, without going through an explicit tree-form representation:
instead of referring to the initial algebra (constructed from the data type con-
structors) we use the meaning-algebra (constructed from the semantic functions)
whenever we are performing a reduction (i.e. would construct a tree-node) in the
parsing process. The construction of the abstract syntax tree is fused with the
catamophism giving a meaning to this tree, and thus the actual tree never comes
into existence.

Computing Heights As a first step to a solution to the Table Formatting
problem we will focus on computing the height of the elements, the rows and
the table itself. We will ignore the sizes taken by the dividing lines for a while.
Figure 7(b) depicts an attribute grammar view of the solution. The height of an
element is the height of a simple element, 1, or the height of a nested table. The
height of a row is the maximum of the heights of the elements of the row, and
the height of a table is the sum of the heights of all the rows. This computational
structure is actually what pFoldr is capturing: roll over the elements of the list,
taking every element into account, accumulating a result. Thus the list algebra,
in the parser known as sem_elems, for computing the height of a row is max_alg.

The height of the table is the sum of the heights of the rows. Again we can use
a list algebra to express that computation, thus for sem_rows we use sum_alg.
The complete algebra for computing heights now is:

height_table = (id, sum_alg, id, max_alg, (const 1, id))

Note that sem_table and sem_row do not need special attention in this case:
they only pass on their argument.

We observe the following relation between the set of functions defined and an
attribute grammar: (a) the results of applying the semantic functions to the chil-
dren nodes correspond to synthesized attributes and, (b) attribute computations
are nicely described by algebras.

Computing theWidths At the table level, the computation of widths deserves
a bit of attention. We will not be able to deduce any width of a column until we
have recognized the last row of the table. But instead of keeping the widths of all
the elements, we maintain a list with the maximumwidth found for each column.
Whenever a complete new row has been recognized, the width of each element has
to be compared with the thus far computed width of its corresponding column.

166 S. Doaitse Swierstra et al.

width_table = (sum, star max_alg, id, init_list, (length, id))

star :: Alg_List a b -> Alg_List [a] [b]

star (op, zero) = (zipWith op, repeat zero)

5

hw_table = (id ‘x‘ sum, sum_alg ‘tuple_list‘ star max_alg

, id ‘x‘ id , max_alg ‘tuple_list‘ init_list

, ((const 1) ‘split‘ length , id ‘x‘ id))

10 f ‘x‘ g = h where h (u,v) = (f u, g v)

f ‘split‘ g = h where h u = (f u, g u)

tuple_list :: Alg_List b a -> Alg_List b’ a’ -> Alg_List (b,b’) (a,a’)

(f, e) ‘tuple_list‘ (f’, e’)

15 = (\(x, x’) (xs, xs’) -> (f x xs, f’ x’ xs’), (e, e’))

Listing 9: Computing heights and widths

For this purpose we introduce the star combinator that lifts an algebra to the
corresponding algebra on lists:

star :: Alg_List a b -> Alg_List [a] [b]

star (op, zero) = (zipWith op, repeat zero)

The combinator star takes an algebra, and returns an algebra that has as carrier
set lists of elements of the original algebra. In this way, once we have defined
the algebra for computing a maximum, max_alg, we can define an algebra for
computing the pairwise maxima of two lists: star max_alg and this is what we
need to compute the widths at the table level.
Now we want to combine the computations of the height and the width.

Again, thinking in an attribute grammar style, we need another synthesized
attribute. Because functions can only return a single value, we have to pair both
results (height and widths), and deliver them together. With a row we have
associated the list of the widths of all its the elements: init_list.
Following our algebraic style of programming we define a tupling combinator

that takes two algebras and returns an algebra that computes a pair of values.
In this way it is possible to structure the computations even more. Note that
the composition is at the semantic level and not only syntactic.

infixr ‘tuple_list‘

tuple_list :: Alg_List b a -> Alg_List b’ a’

-> Alg_List (b,b’) (a,a’)

(f, e) ‘tuple_list‘ (f’, e’)

= (\(x, x’) (xs, xs’) -> (f x xs, f’ x’ xs’), (e, e’))

Thus we use max_alg ‘tuple_list‘ list_init for synthesizing the height
of the row paired with the list of widths of the elements of the

Designing and Implementing Combinator Languages 167

row. We do the same at the table level and obtain the algebra
sum_alg ‘tuple_list‘ star max_alg.
Finally, the result of the computation for a table must be a pair, but we obtain

a list of widths from the application of pFoldr. Thus we need a further transfor-
mation id ‘x‘ sum. The product combinator x applies its argument functions
to the corresponding left and right elements of the pair. The new version of the
program is shown in listing 9.
Let us note that:
• we can compute several properties of a tree at the same time by tupling
them

• computations for such tuples can be constructed out of computations for
the elements of the tuples (tuple_list, star, split and x)

• the operators on algebras: composition and star, and split and product
are independent of the problem at hand and could have been taken from
a library

• these operators could have been automatically derived using the language
PolyP

Exercise 2. Can you provide a tupling operator for table algebras?

Formatting Once we have computed the widths of all columns and the heights
of all rows we can start to work on the formatting of the table. The approach
will be very similar to the one taken in the Rep Min problem. Instead of com-
puting the formatted table directly we will compute a function that, once it gets
passed the widths of the columns, builds the formatted table. Furthermore the
computation of these functions will again be tupled with the computation for
the widths and the heights. These table building functions will be constructed
out of row-building functions that will construct a formatted row, once they get
passed the height of that row and the widths of the columns.
To format the table we do the following: elements are made to be the top-left

element of a quarter plane (we call them Boxes), extending to the east and the
south, see figure 8. The table layout is constructed by placing these boxes beside
and on top of each other. The code for the semantic functions and the algebras
is shown in figure listing 10.
To simplify, we always place the element in the upper left corner of the

box. Additional horizontal and vertical glue – blank text lines – are padded to
the elements to fit in their actual layout space. All elements are furthermore
equipped with a nice top left corner frame – delineating the quarter plane – as
you can see in figure 8.
At the row level, elements are h_composed, laying out one row of the table.

The composition is done as follows: concatenate the next text line from each
element, until there are no more lines. Because all the elements in the row have
been filled with vertical glue at the end, this process also creates blank spaces if
the element is not large enough to fill the vertical space.
When the processing of a row has finished we shape the row hori-

zontally. This is possible because the final height of the row is known,

168 S. Doaitse Swierstra et al.

layout_table

= (bot_right . mk_table

, v_compose ‘tuple_list‘ sum_alg ‘tuple_list‘ star max_alg

, \(fmtrow, hwds@(h, wds)) -> (fmtrow h, hwds)

5 , h_compose ‘tuple_list‘ max_alg ‘tuple_list‘ init_list

, (mk_box . ((:[]) ‘split‘ (const 1) ‘split‘ length)

, mk_box

)

)

Listing 10: Computing the formatted table

AAAAAAAA
AAAAAAAA

AAAAAA
AAAAAA
AAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

one two

AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

one

two

three

four
AAA
AAA

h_glue

AAA
AAA v_glue

oneAAAAAA
AAAAAA

AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

top left

bottom right

frame boundary

Fig. 8. Superposition of boxes

Designing and Implementing Combinator Languages 169

mk_box = to_box ‘x‘ (+1) ‘x‘ (+1)

to_box t rh rw = map (take rw) . take rh . top_left . add_glue $ t

top_left t = map (’|’:) (h_line:t)

5 mk_table = \(fmttable, (h, wds)) -> (fmttable wds, (h, sum wds))

bot_right (t,(h,w)) = (close_grid, (h + 1, w + 1))

where close_grid = map (++"|") (t ++ [take w (’|’:h_line)])

h_compose = (fork <||> decons <=>> zipWith (++), nil_table)

10 v_compose = (lift (++) , nil_row)

nil_table _ _ = repeat ""

nil_row _ = []

15 h_glue = repeat ’ ’

v_glue = repeat h_glue

add_glue t = map (++ h_glue) t ++ v_glue

h_line = repeat ’-’

Listing 11: Functions for manipulating boxes

and can be passed on to all the boxes. This surgery is performed by
\(fmtrow, hwds@(h, wds)) -> (fmtrow h, hwds). We have written this
function in a pointwise style, in order to show how the flow of data proceeds.

At the table level, the rows already formatted are v_composed. This task is
reduced to concatenating text lines. Finally, once all rows have been processed,
the actual width of each column is known and thus, the table can be shaped
vertically. This is done in mk_table. Finally the grid is closed, with bot_right
placing the bottom and right lines, and correcting the actual size of the table.
The implementation of box manipulation functions is given in listing 11.

Observe that the size of the boxes is flexible, but once we know the corre-
sponding height and width, it is possible to actually obtain the nicely formatted
table. Even without noticing, we also put the grid in the table, placing the el-
ements besides and on top of each other. We only need to take care of closing
the grid, and providing each element with a top-left grid.

The simplicity of h_compose and v_compose is suspicious. Let us take a look
inside h_compose. In terms of text elements it’s only string manipulation, but
let us take the attribute grammar view. At the Elems level we have the situation
depicted in figure 9(a): an Elems cons node takes two arguments, the height and
a list of widths, and returns a formatted row, the layout of the element. The
arguments are passed down to its children: the height is distributed as it is (it is
a global value for the row), but the widths have to be split element by element.
The synthesized attributes are combined together using the zipWith (++) (but
in general any f). Thus the dataflow pattern in the leftmost graph in figure 9(a)
is composed of three subgraphs: pass down a global value (fork), pass down and

170 S. Doaitse Swierstra et al.

split a composed value (decons if the value is a list and we want to decompose a
list into its head and tail), combine those subcomputations (<||>) and combine
this with the upflowing part of the dataflow graph (<=>>), see figure 9(b).

(w:ws)

w ws

decons<||>

rsr

nrs

zipWith (++)
<=>>

h

h h

 fork

(w:ws)

Elem Elems

Elems

r rs

nrs

w ws

h

h h

(a) (b)

Fig. 9. Attribute computation: (a) example and (b) combining patterns

Once more, thanks to the abstraction and higher orderness of the language,
these patterns can be abstracted and used in a compositional way to express a
computation of h_compose. The code of these combinators is shown in listing 12.

We believe that this program clearly captures the notion of attribute gram-
mar: a context-free grammar is represented by the use of parser combinators,
while attributes and attribute computations are expressed in terms of algebras
and parameterized functions. Note that there are no inherited attributes as such.
We create partially parameterized functions and once we know the dependent
value, we apply the function(s) to the value(s). Thus some attributes play a
double role: they are synthesized (like the height of a row), but once their value
has been computed they can be used in a subsequent computation; thus acting
as inherited attributes.
Furthermore, the program can be generalized rather straightforwardly to a

polytypic function [6] because the constructors are general. Although not pre-
sented here, the tupling operator tuple_list can be defined for any arbitrary
data type constructor f.
As a final remark we notice that probably the hardest part of the derivation

was the design of the combinators <||>, <=>>, fork and decons, and using them
to construct the data-flow patterns of figure 9(a). On the one hand it is nice that
we can define such patterns of passing values around by the introduction of extra
combinators; on the other hand it is quite cumbersome to have to keep track of
which element in the tuples represent what values.

2.3 Defining Catamorphisms

In previous subsections we have defined the catamorphisms needed for the data
types involved explicitly. The question arises whether this can be done in a more
generic way.
In the chapter on generic programming it has been shown how we can, given

a functor, define the initial data type, corresponding to that functor. How to

Designing and Implementing Combinator Languages 171

lift op f g = \x -> (f x) ‘op‘ (g x)

fork = id ‘split‘ id

decons = head ‘split‘ tail

5 (<||>) :: (a->(b,c)) -> (d->(e,f)) -> a -> d -> ((b,e),(c,f))

forkl <||> forkr

= \inh_l inh_r -> let (inh_ll,inh_lr) = forkl inh_l

(inh_rl,inh_rr) = forkr inh_r

in ((inh_ll,inh_rl),(inh_lr,inh_rr))

10

(<=>>) :: (a -> d -> ((b,e),(c,f)))

-> (g -> h -> k) -> (b -> e -> g) -> (c -> f -> h)

-> a -> d -> k

fork <=>> merge_op

15 = \fsyn_l fsyn_r -> \inh_l inh_r

-> let ((inh_ll,inh_rl),(inh_lr,inh_rr)) = fork inh_l inh_r

syn_l = fsyn_l inh_ll inh_rl

syn_r = fsyn_r inh_lr inh_rr

in merge_op syn_l syn_r

Listing 12: Attribute computation combinators

define the catamophism corresponding to that functor in Haskell is by now well
known: in listing 13 we provide the definitions taken from [14]. Note that if we
take this approach we still have to indicate that a specific data type constructor
is a functor, by defining the appropriate class instance. In the language PolyP
it is no longer necessary to do this last step explicitly since there we can define
the function cata once and for all as a polytypic function.

Unfortunately these approaches do not readily extend to the case where
we have to deal with several mutually recursive data types, like the Ta-
ble Formatting problem. Although this is not a problem at all from a theoretical
point of view, the actual coding is quite elaborate. In the next subsection we will
show how to define two mutually recursive data types and we hope that from
that it will be clear how to proceed in the general case.

Mutually Recursive Data Types As the running example we will take the
definition of and the code generation for a small block-structured language. The
language has two nonterminals: Expr and Decls. Since our language has two
nonterminals, we want to define two mutually recursive data types and thus we
start with the definition of a class Functor_2 for bi-functors (see listing 14).
For getting hold of the joint fixpoint of two functors we define the data type
constructor Rec_2, a straightforward extension of the Rec we have seen before.
In listing 14 we have used two arguments, but in the most general case we would
have n arguments, and by rotating the arguments one step at each next element

172 S. Doaitse Swierstra et al.

data Rec f = In (f (Rec f))

out :: Rec f -> f (Rec f)

out (In o) = o

5

class Functor f where

map :: (a -> b) -> (f a -> f b)

cata :: Functor f => (f a -> a) -> Rec f -> a

10 cata phi = phi . map (cata phi) . out

Listing 13: Catamorphisms for a single recursive data type

data Rec_2 f1 f2 = In_2 (f1 (Rec_2 f1 f2) (Rec_2 f2 f1))

out_2 :: Rec_2 f -> f (Rec_2 f)

out_2 (In_2 t) = t

5

class Functor_2 f where

map_2 :: (a1 -> b1, a2 -> b2) -> (f a1 a2 -> f b1 b2)

cata_2 :: (Functor_2 f, Functor_2 g)

10 => (f e d -> e, g d e -> d)

-> (Rec_2 f g -> e, Rec_2 g f -> d)

cata_2 phis@(phi1, phi2) = (r1, r2)

where r1 = phi1 . map_2 (r1, r2) . out_2

r2 = phi2 . map_2 (r2, r1) . out_2

Listing 14: Catamorphisms for two recursive data types

Designing and Implementing Combinator Languages 173

data Expr e d = Con_Int Int

| Var String

| If e e e

| Apply e e

5 | Where e d

data Decls d e = Dec d String e

| None

type Expr_Algebra e d = (Int -> e -- integer constant

10 , String -> e -- variable

, e -> e -> e -> e -- conditional expr.

, e -> e -> e -- application

, e -> d -> e -- where clause

)

15 type Decls_Algebra d e = (d -> String -> e -> d

, d

)

Listing 15: Bi-functors and its associated algebras

in the right and side of Rec_n they would all make it once to the first place in
the argument list of Rec_n.
Finally in listing 14 we define the corresponding mutually recursive bi-

catamorphism cata_2.

The Block-Structured Language Since our language has two nonterminals
we need two recursive data types, and thus define two bi-functors Expr and
Decls in listing 15. Having done this we may define the associated algebras
Expr_Algebra and Decls_Algebra.
Since we have taken a slightly different shape of our algebras in our def-

inition of cata_2 we also introduce two functions that transform such a tu-
pled representation of an algebra into functions with type Expr e d -> e and
Decls d e -> d:

expr_choose :: Expr_Algebra e d -> (Expr e d -> e)

expr_choose (f_Con_Int, f_Var, f_If, f_Apply, f_Where) e

= case e of

Con_Int i -> f_Con_Int i

Var s -> f_Var s

If ce te ee -> f_If ce te ee

Apply e1 e2 -> f_Apply e1 e2

Where e d -> f_Where e d

decls_choose :: Decls_Algebra d e -> (Decls d e -> d)

decl_choose (f_Dec, f_None) d

174 S. Doaitse Swierstra et al.

instance Functor_2 Expr where

map_2 (ef, df) e = case e of

Con_Int i -> Con_Int i

Var s -> Var s

5 If ce te ee -> If (ef ce) (ef te) (ef ee)

Apply f arg -> Apply (ef f) (ef arg)

Where body decl -> Where (ef body)

(df decl)

10 instance Functor_2 Decls where

map_2 (df, ef) d = case d of

Dec decls s e -> Dec (df decls) s (ef e)

None -> None

Listing 16: Functor 2 instances

= case d of

Dec d s e -> f_Dec d s e

None -> f_None

When taking the combined fix-point of these functors the parameter e is going
to be replaced by the type of an expression tree, and the parameter d by the list
of declarations.

Having done this our next step is to make make the bi-functors Expr and
Decls instance of the class Functor2. The definitions are shown in listing 16.

Code Generation Having set up all the above machinery all we have to do is
to define the appropriate algebras. We will not go deeply into the kind of code
to generate. The following should serve as a good enough description of what we
want to achieve:

expression | generated code

-----------------------|---

if 3 then x else y | Enter 2, Loadint 4, Store (1,0),

where x = 4 | Loadint 5, Store (1,1),

y = 5 | Loadint 3, Brfalse 0,

| Load (1,0), Bralways 1,

| Label 0, Load (1,1),

| Label 1,

| Leave 2

Notice that we need to introduce an environment that for each declared identifier
keeps track of its lexical level and its displacement, and besides that we have to
keep track of a label counter for compiling the conditional expressions. We first
provide some auxiliary declarations:

Designing and Implementing Combinator Languages 175

type Index = Int

type Lex_level = Int

type Address = (Lex_level, Index)

type Env = String -> Address

type Lab = Int

data Code = Loadint Int | Loadbool Bool

| Enter Int | Leave Int

| Brfalse Lab | Bralways Lab

| Label Lab

| Load Address | Store Address

| Call

deriving Show

Having done all this we can now define the two algebras. As the carrier set for the
expressions we take functions mapping the cartesian product of an environment
and a lexical level and a label counter onto the generated code and an updated
label counter, whereas for the declarations we take functions mapping an envi-
ronment/level pair and a label counter onto generated code, an integer counting
the number of declarations contained in the list processed and an updated la-
bel counter. Now, once we have defined two appropriate algebras sl_expl and
sl_decls (see listing 17) we can define our compiler by:

compile_expr = code

where

(exprf, declf) = cata_2 (expr_choose sl_expr,decl_choose sl_decl)

(code, _) = exprf (null_env, 0) 0

2.4 Discussion

In this section we have treated three different algorithms: the Rep Min problem,
the Table Formatting problem, and the definition of a small compiler for expres-
sions. In the Rep Min problem we have shown how we may construct circular
programs. In the Table Formatting problem we have shown how we may de-
fine algebra’s in a step wise fashion and define special combinators to construct
new algebra’s out of other algebra’s. Finally we have shown that we may define
the concept of a catamorphism once and for all once we know with how many
mutually recursive data types we have to deal with.
There is however also a somewhat sobering conclusion: although everything

can be done in a very systematic way, it is still a lot of work. We identify the
following problems:

1. when moving to higher order domains and composite results we have to
keep track of which value is at which parameter position, or at which
position in the resulting cartesian products.

2. extending the nonterminals with an extra alternative makes us go through
all the data types, algebra’s and instance declarations.

176 S. Doaitse Swierstra et al.

sl_expr = (\ i -> _ -> \lc -> ([Loadint i], lc)

, \ s -> \(env,_) -> \lc -> ([Load (env s)], lc)

, \ ce te ee -> \ el -> \lc

-> let (cc, clc) = ce el (lc + 2)

5 (tc, tlc) = te el clc

(ec, elc) = ee el tlc

in (cc

++ [Brfalse lc]

++ tc

10 ++ [Bralways (lc + 1)]

++ [Label lc]

++ ec

++ [Label (lc + 1)]

, elc)

15 , \ e1 e2 -> \el -> \lc -> let (e1c, lc1) = e1 el lc

(e2c, lc2) = e2 el lc1

in (e2c++e1c++[Call],lc2)

, \ e d -> \(env,lev) lc ->

let (ec,elc) = e (denv, lev+1) lc

20 (dc,dnum,denv,dlc) = d (env , lev+1) elc

in ([Enter dnum]++dc ++ ec++[Leave dnum]

, dlc

)

)

25 sl_decl = (\ d s e -> \el@(env,lev) lc

-> let (dc,dnum,denv,dlc) = d el lc

(ec, elc) = e (denv,lev) dlc

nenv = \ss -> if s == ss

then (lev,dnum)

30 else denv ss

in (dc++ec++[Store (nenv s)]

, dnum+1

, nenv

, elc

35)

, \(env,_) lc -> ([], 0, env, lc)

)

Listing 17: Algebras for compiling the expression language

Designing and Implementing Combinator Languages 177

3. the construction of the related catamorphisms is cumbersome, especially
when we add another related data type. Furthermore the approach taken
is unnecessarily complicated since it in principle deals with the case that
each data type is reachable from all others in a set of mutually recursive
data types. In general this will not be the case.

In the next section we will introduce special syntax in order to cope with these
three problems. Unfortunately we will have to leave the semantic composition-
ality, and replace it with a syntactic one.

3 Attribute Grammars

In the previous section we have developed programs for the Rep Min and Ta-
ble Formatting problems. In both cases we computed a tuple of values as the
result of a catamorphism and at least one of the elements of those tuples was a
function that at some point was applied to another element of the tuple. In the
Rep Min example the tree constructing function was applied to the computed
minimal value, and in the Table Formatting example we had two occurrences of
this phenomenon: the row-constructing function was applied to the computed
maximum height of the row, and the table constructing function was applied to
the list of computed row widths.
Since this pattern is quite common and the composition and invention of all

the algebras was not so straightforward, we will introduce an attribute grammar
based notation, out of which we may easily generate equivalent Haskell code.
The conclusion will be that we can design programs like the ones in the previous
section by drawing pictures like the ones presented in the Rep Min example.
The price to be paid is that instead of having semantic compositionality, we
have to fall back on syntactic compositionality provided by a preprocessor. Our
current opinion however is that the advantages of our approach for developing
combinator libraries by using a separate attribute grammar formalism allows
transformations and ease of formulation that are hard to beat by an approach
completely based on semantic composition.
We also hope to show that by taking the attribute grammar approach it will

become much easier to extend the library or to make efficiency improvements.
The next section, in which we develop a set of pretty printing combinators in
a sequence of steps, is an example of the allowed flexibility. Since we anticipate
that people will want to experiment with different implementations and designs
we have tried to design our attribute grammar formalism in such a way that
definitions can easily be changed and expanded without having to change the
original program texts.

3.1 The Rep Min Problem

In listing 18 we show the formulation of the Rep Min problem, using our attribute
grammar notation.

178 S. Doaitse Swierstra et al.

DATA Tree

| Leaf int: Int

| Bin left, right: Tree

5 DATA Root | Root tree: Tree

-- Computation of the minimum value

ATTR Tree [-> m: Int]

10 SEM Tree

| Leaf LHS .m = int

| Bin LHS .m = "left_m ‘min‘ right_m"

ATTR Tree [minval: Int <-]

15 SEM Tree

| Bin left .minval = lhs_minval

right.minval = lhs_minval

-- Computation of the resulting tree

20

ATTR Tree [-> res: Tree]

SEM Tree

| Leaf LHS .res = "Leaf lhs_minval"

| Bin LHS .res = "Bin left_res right_res"

25

-- Use the computed minimal value

ATTR Root [-> res: Tree]

SEM Root

30 | Root tree .minval = tree_m

LHS .res = tree_res

Listing 18: RepMin1.ag

Designing and Implementing Combinator Languages 179

The first two DATA declarations introduce the grammar corresponding to
the structure of our problem. The ATTR declarations specify the inherited and
synthesized attributes of the nonterminals. Attributes occurring before a <- are
inherited attributes, corresponding to downward arrows in the pictures we have
seen, and attributes following a -> are synthesized attributes, corresponding to
the upgoing arrows in the pictures. Declarations between <- and -> introduce
two attributes of the same name, one inherited and one synthesized. In the
SEM parts we specify the way attributes are computed out of other attributes.
The actual definitions are pieces of Haskell text, that are neither parsed nor
typechecked, and are copied literally into the generated program. References to
other attributes in such rules follow a naming convention: a synthesized attribute
res of a child left is referred to as left_res, whereas an inherited attribute
minval is referred to as lhs_minval, since it is an attribute of the nonterminal
at the left hand side of the production. In each semantic rule we have to specify
what nonterminal (SEM Tree), what alternative (|Leaf), what component of the
production (LHS or left) and what attribute (.res) is specified by the rule.
If we put this text through our small system the code in listing 19 is generated.

Exercise 3. Use the parser combinators together with the generated file to con-
struct a solution for the Rep Min problem, that reads a tree from a file, and
writes the result into another file.
One might wonder what progress has been made since both the input and the

generated program are much longer than the original program in the previous
section.
In the first place we have presented the input in the most elaborate form

of our notation, thus making explicit all different components of the definition.
Many abbreviations exist in order to cope with often occurring patterns of at-
tribute use. A completely equivalent input is given in listing 20. Here we see that
attributes may be declared together with the introduction of a new nonterminal,
a new alternative or a new semantic rule. Furthermore many straightforward
so-called copy rules can easily be inferred by the system. It is the extension
of the notation that makes things really work well. So is the attribute minval
automatically made available in all nodes of the tree by the rule that if both
a child and a father node have an inherited attribute with the same name, it
is automatically passed on from the father to the child if no semantic rule has
been defined (actually the rules for doing so are a bit more complicated, but this
description will do for the time being). This rule captures the pattern that is
normally associated with a reader monad. This approach has the advantage that
if we have several attributes following this pattern we do not have to introduce
a new monad describing this joint passing around of values.
Furthermore there are a lot of small but convenient conventions; if an ele-

ment in the right hand side of a production is not explicitly named, its name
is constructed from the type by converting the first letter to lower case. As a
consequence we do not have to be creative in inventing a name for the value at
a Leaf, it is just called int.

180 S. Doaitse Swierstra et al.

module RepMin where

---------------------- Tree -------------------------

data Tree = Tree_Leaf Int| Tree_Bin Tree Tree

deriving Show

5 -- semantic domains

type T_Tree = Int ->(Tree,Int)

-- catas

sem_Tree (Tree_Leaf i) = sem_Tree_Leaf i

sem_Tree (Tree_Bin left right)

10 = sem_Tree_Bin (sem_Tree left) (sem_Tree right)

-- funcs

sem_Tree_Leaf i lhs_minval = ((Leaf lhs_minval), int)

sem_Tree_Bin left right lhs_minval

= let{ (left_res, left_m) = left lhs_minval

15 ; (right_res, right_m) = right lhs_minval

}in ((Bin left_res right_res), (left_m ‘min‘ righth_m))

---------------------- Root -------------------------

data Root = Root_Root Tree

deriving Show

20 -- semantic domains

type T_Root = Tree

-- catas

sem_Root (Root_Root tree) = sem_Root_Root (sem_Tree tree)

-- funcs

25 sem_Root_Root tree = let{ (tree_res, tree_m) = tree tree_m}in tree_res

Listing 19: RepMin

DATA Tree

| Leaf Int

| Bin left, right: Tree

5 SEM Tree [minval: Int <- -> m: Int res: Tree]

| Leaf LHS.m = int

.res = "Leaf lhs_minval"

| Bin LHS.m = "left_m ‘min‘ righth_m"

.res = "Bin left_res right_res"

10

DATA Root [-> res: Tree] | Root Tree

SEM Root | Root tree.minval = tree_m

Listing 20: RepMin2.ag

Designing and Implementing Combinator Languages 181

DATA Table | Table Rows

DATA Rows | Nil

| Cons Row Rows

DATA Row | Row Elems

5 DATA Elems | Nil

| Cons Elem Elems

DATA Elem | Str String

| Tab Table

Listing 21: TableData.ag

--< TableData.ag

ATTR Table Row Elem [-> mh : Int]

SEM Table

5 | Table LHS . mh = "rows_mh + 1"

ATTR Rows [-> mh USE "+" "0": Int]

ATTR Elems [-> mh USE "‘max‘" "0": Int]

SEM Elem

| Str LHS . mh = "2"

10 | Tab LHS . mh = "table_mh + 1"

Listing 22: TableHeight.ag

3.2 The Table Formatting Problem

In this section we will treat the Table Formatting problem again, and do so
again in a number of steps. Remember that in the previous section, by combining
algebras we really had semantic compositionality: the algebras could be defined
and compiled separately only to be composed at the very last moment.
Since we are dealing with the generation of Haskell code (i.e. we use Haskell

instead of C++ as our “assembly” language), we do not have to adhere strictly to
the typing, naming and lexical rules of the language: we have much more freedom
in designing the attribute grammar formalism in such a way that we may express
ourselves in the most convenient way. To emphasize the compositional nature of
our approach we split up the attribute grammar in many separate pieces of text
that are to be combined by the system.
We start with the grammar in listing 21 that directly corresponds to the

type of the abstract syntax trees presented before. In the program in listing 22
we import the previous file (the line --< TableData.ag) and introduce for each
nonterminal a synthesized attribute containing its minimal height in the format-
ted table. In listing 23 this version is extended further with the attributes and
semantic functions for computing the minimal widths; note how the tupling is
now done implicitly by the system, and that we do not have to introduce special
combinators to merge the height and the widths algebras into a combined one.

182 S. Doaitse Swierstra et al.

--< TableHeight.ag

SEM Table [-> mws: Int]

| Table LHS .mws = "lmw + 1"

5 LOC .lmw = "sum rows_mws"

SEM Rows [-> mws: Rowwidths]

| Nil LHS .mws = "repeat zero"

| Cons LHS .mws = "zipWith max row_mws rows_mws"

ATTR Row [-> mws: Rowwidths]

10 ATTR Elems [-> mws USE ":" "[]" : Rowwidths]

SEM Elem [-> mws: Int]

| Str LHS .mws = "length string + 1"

| Tab LHS .mws = "table_mws + 1"

-->type Rowwidths = [Int]

Listing 23: TableWidths.ag

In listing 23 we see some other language elements. Lines preceded with --> are
literally copied into the generated file. In this way additional Haskell functions
and type definitions can be passed on to the generated program, thus obviating
the need to edit the generated file to contain import .. lines. The semantic rule
LOC.lmw = ... introduces a local attribute, that in the generated semantic
function results in the declaration of a local variable lmw.

Furthermore it is possible to provide a binary operator and a unit element,
together with the introduction of a synthesized attribute (see the USE ":" "[]"
phrase in the introduction of attribute mws). If no semantic rule is given for this
attribute the attributes of the children with the same name are combined using
the binary operator, and if no such attributes exist the unit element is taken as
its value. We go however a step beyond the kind of polytypism in PolyP since
the composition here depends on the name of a part of the result of a child;
something that cannot be expressed in the current version of PolyP.

In the next step the downwards distribution of the computed final heights and
widths to the individual elements is described, so each element can be formatted
according to the actual size it occupies in the formatted table (listing 24). Here
the advantages of the attribute grammar based formulation show up most clearly:
we do not have to invent combinators for combining subcomputations and all we
have to do is to indicate how the computed heights and widths flow back into
the abstract syntax tree. Finally we add the computation of the final formats,
i.e. sequences of lines in listing 25.

In listing 25 we see another extension of the formalism: the EXT clause.
The effect of this clause here is to extend the alternative Cons of nonterminal
Elems with an extra element: top_Left : Top_Left. Although the nonterminal
Top_Left has been introduced, it was not given productions and thus is inter-
preted as an external nonterminal. It does not show up as a parameter referring
to a child in the generated semantic functions, but nevertheless a call is gen-

Designing and Implementing Combinator Languages 183

--< TableWidths.ag

ATTR Elems [ah : Int <-]

SEM Row

5 | Row elems . ah = elems_mh

ATTR Rows Row Elems [aws : Rowwidths <-]

SEM Table

| Table rows . aws = rows_mws

10 SEM Elems

| Cons elems . aws = "tail lhs_aws"

Listing 24: TableDistr.ag

--< TableDistr.ag

SEM Table [-> lines : Lines]

| Table LHS .lines = "bot_right lmw rows_lines"

5 ATTR Rows [-> lines USE "++" "[]" : Lines]

ATTR Row [-> lines : Lines]

SEM Elems [-> lines : Lines]

| Nil LHS .lines = "repeat []"

| Cons LHS .lines = "zipWith (++) top_Left_ls elems_lines"

10 LOC .haws = "head lhs_aws"

SEM Elem [-> lines : Lines]

| Str LHS .lines = "[string]"

-->type Lines = [String]

15

DATA Top_Left [haws elem_mws lhs_ah elem_mh elem_lines <- -> ls]

EXT Elems

| Cons Top_Left

Listing 25: TableFormats.ag

184 S. Doaitse Swierstra et al.

--< TableFormats.ag

-->

-->-- ---

-->-- Additional layout functions -----------------------------

5 -->

-->sem_top_Left lines mh ah mw aw

--> = ("|" ++ hor_line (aw - 1))

--> : ["|" ++ l ++ hor_glue (aw-mw) | l <- lines]

--> ++ ["|" ++ vg | vg <- ver_glue (aw - 1) (ah-mh)]

10 -->

-->bot_right mw lines = [l ++ "|"

--> | l <- lines ++ ["|" ++ hor_line (mw - 1)]

-->]

-->

15 -->hor_glue h = take h (repeat ’ ’)

-->ver_glue h v = take v (repeat (hor_glue h))

-->hor_line n = take n (repeat ’-’)

-->

-->-- ---

20 -->

Listing 26: TableFinal.ag

erated. In this way we may incorporate calls to external computations in the
generated semantic functions.
We now come to a final convention: if an inherited attribute has been declared

and in the rule an attribute with that name would be allowed as a semantic
function such semantic functions are generated automatically. So in listing 25
we actually have inserted a call to an external function, passing on some of the
available attributes. The final addition of some glue is given in listing 26.

3.3 Comparison with Monadic Approach

As mentioned before many have tried to employ monads for capturing often
occurring patterns of parameter passing and use. Unfortunately monads do not
compose well. Recognizing this problem we have, in our formalism, taken a purely
syntactic approach.
Reader Monads correspond in our formalism to an inherited attribute that

is automatically passed on to all the elements in the tree by the copy rule gen-
eration process, provided they have indicated their interest in that value by
declaring an inherited attribute, and provided all their parent types have done
so too. Thus parameterizing a whole computation by a global value is easily
done. Furthermore this can be repeated as often as needed, so the effort for the
programmer is almost nothing.
State Monads correspond to so-called chained attributes, i.e. pairs of an in-

herited and a synthesized attribute, that have the same name. In order to support

Designing and Implementing Combinator Languages 185

the generation of the copy rules here too, we now explain the complete process
underlying the copy rule generation. Each element in the right hand side of the
production has a context that steers the generation of non-specified semantic
functions. For each attribute at for which no function is defined we first check
whether there exists an element elem that defines a synthesized attribute def
such that at = elem_def; this includes the inherited attributes of the parent too
(lhs_def). If this is the case, that value is taken. If not it is checked whether its
left hand side neighbor l has a synthesized attribute with name at. If it does
l_at is taken, and if not, the element one step further left is checked and so on.
If nothing appropriate is found during this search finally the inherited attributes
are checked. This rule also applies to the synthesized attributes of the left hand
side, in which case the searching process starts at the last element of the right
hand side.
So if we want to maintain e.g. a label counter, supplying new label numbers

when generating code, we define the attribute labels to be both inherited and
synthesized:

DATA Expr[<-labels: Int ->]

| If ce,te,ee: Expr

SEM Expr

| If ce. labels = "lhs_labels +2"

In the generated code we now find:

sem_Expr_If ce te ee lhs_labels

= let{ (ce_code, ce_labels) = ce (lhs_labels +2)

; (te_code, te_labels) = te ce_labels

; (ee_code, ee_labels) = ee te_labels

}in ((ite_code ce_code te_code ee_code lhs_labels), ee_labels)

and we see that the Labels-value is nicely passed on. Again this can be done for
many attributes at the same time, without having to worry about the composi-
tion of those instances.
Writer Monads somehow correspond to synthesized attributes that are com-

posed with the USE clause.

4 Pretty Printing

In this section we attack the pretty-printing problem as described in [5,1]. Pretty-
printing deals with representing tree-based structures in a width-bounded area
in a top-down, left to right order, and in such a way that the logical structure
of the tree is clearly represented in the layout. In this chapter we develop a set
of combinators for describing such layouts.
Suppose we want to pretty-print an IF-THEN-ELSE-FI structure. We may

display it with different layouts as depicted in figure 10(a). The layout chosen
will normally depend on the page width. Thus, with page width at least 31,

186 S. Doaitse Swierstra et al.

layout a. is preferred, between 30 and 17 b. is chosen and in the range from 16 to
10 c. wins. Any attempt however to display inside a page less than 10 characters
wide is bound to fail.

a. IF c THEN t ELSE e FI

b. IF c THEN t

ELSE e

FI

c. IF c

THEN t

ELSE e

FI

(a) Possible layouts

pp_ites c t e

= ifc >|< thent >|< elsee >|< fi

>^< ifc >|< (thent >-< elsee) >-< fi

>^< ifc >-< thent >-< elsee >-< fi

where ifc = text "if" >|< c

thent = text "then" >|< t

elsee = text "else" >|< e

fi = text "fi"

(b) Specification

Fig. 10. Pretty-printing an IF-THEN-ELSE-FI structure

We define a layout to be optimal (nicest or prettiest) if it takes the least
number of lines, while still not overflowing the right page margin. The examples
in figure 10(a) are optimal for page widths 40, 28, and 15 respectively. Taking
the layout b. with respect to a page width of 35 is thus considered non optimal.

Our approach is based on the relation between the height and the width of a
layout: higher when elements cannot be placed next to each other horizontally
because of the limited page width and wider otherwise. We prefer the wider
solutions, since they will lead to a smaller overall height, as is evident in the
examples of figure 10(a).

Since potentially many solutions have to be taken into account, this can be
a cause of gross inefficiency. Fortunately we are saved by the fact that not all
possible combinations have to be inspected. Of all the possible solutions with the
same height, only a limited number of candidates has to be taken into account.
Many combinations can be discarded from the overall computation by selecting
only the narrowest solution for each height, and inspect only those candidate
solutions that have at most the height of the final solution.

A possible description of the possible layouts is shown in figure 10(b).

A possible description of the possible layouts is shown in figure 10(b). The
function text converts strings into layouts, >|< places its two arguments beside
each other, >-< places them above each other and >^< combines two possible
layouts. In addition to these combinators we also have indent that inserts a
specific amount of white space in front of its argument and empty that repre-
sents the empty document and is a unit element for >-< and >|<. The effect of
operations >|< and >-< is sketched in figure 11(a).

Designing and Implementing Combinator Languages 187

l

r

u

l

l >|< r u >-< l

(a) Specification

l

r

lw

rw

rl

ll

(b) Implementation of
>|<

Fig. 11. Pretty-printing operations

Before going into implementation details we want to fix the interface (or the
concrete grammar if you prefer) and the semantic domains involved:

infixr 2 >|<

infixr 1 >-<

infixr 0 >^<

empty :: Formats

text :: String -> Formats

indent :: Int -> Formats -> Formats

(>|<) :: Formats -> Formats -> Formats

(>-<) :: Formats -> Formats -> Formats

(>^<) :: Formats -> Formats -> Formats

In the next sections we will, by improving on our search process, develop in-
creasingly sophisticated versions of these combinators.

4.1 The General Approach

We start out by defining a basic set of combinators based on the context-free
grammar of listing 27. We rely on the existence of a set of basic combinators that
generate alternative layouts as lists sorted by decreasing width and increasing
height, assuming that their arguments are sorted lists too. Take for example the
>|< combinator and assume

type Formats = [Format]

The combined solution is found by merging all lists that are obtained by putting
an element from the left argument list besides all elements of the right argument
list. Since we work in a lazy language the resulting list will be generated in an
incremental way as need arises. The other operations are implemented in an

188 S. Doaitse Swierstra et al.

analogous way. A detailed description of the implementation of the underlying
basic machinery can be found in [9].
In the attribute grammar of listing 27 the specification of the pretty-printing

operations is thus reduced to producing the appropriate basic function calls.

4.2 Improving Filtering

Since many potential candidates are taken into account, and every new choice
point doubles the amount of work to be done, detecting solutions wider than the
page width as early as possible will improve the efficiency of the process.

Filtering on the page width Our first filter is based in the idea of com-
municating to each node the page width, preventing candidates wider than the
page width to be constructed. Adding this filter to our first program is trivial:
declaring an extra inherited attribute for all nonterminals introduced thus far
(i.e. including the pseudo nonterminals that stand for external function calls),
as you can see in listing 28. 3

Since we want to be able to work with many different versions of our basic
combinators we indicate the system to prefix all generated calls with pw_ using
the directive PRE pw.
A change in the underlying machinery is necessary because we now need to

pass the width to be filtered on to the basic combinators, in which the actual
combination process takes place. Take again the >|< operation depicted in fig-
ure 11(b). We now construct new solutions only when the width of the resulting
layout (computed as ll + rw, where ll is the length of the last line of l and rw
is the width of r) is less than the “global” page width pw.

Narrowing the Estimates Further Actually the page width may be seen as
an upper bound on the space available to all nodes. We want to improve on this
bound by taking the context of the node into account. Once we know for two
nodes to be placed besides each other how much space each of them will take at
least, and how much is available to both of them together, we may compute an
estimate of how much space is at most available to each of them. The bound on
the available space replaces the attribute pw and is called the frame. A frame
contains two values: one describing the total width available for representing the
text in the tree it is associated with and one for describing how much space is
at most available to the last line of that text.
Now have a look at the example in figure 12, and assume a page width of

20. At the root node we start with (20, 20), that is the bound on the total width
and the length of the last line of the formats generated by that node.
Let us compute the frame of its left subtree b. Since the minimal width

of the subtree c is 9, b has to fit inside a frame (20,11) (see figure 11(b)).

3 One might compare this with the effort to convert the program into monadic form
in order to use a reader monad.

Designing and Implementing Combinator Languages 189

-- Context-free grammar

DATA PP [-> fmts : Formats]

| Empty

| Text String

5 | Indent Int PP

| Beside left, right : PP

| Above upper, lower : PP

| Choice opta, optb : PP

10 -- Calling external functions

EXT PP

| Empty Empty_fmts | Text Text_fmts

| Indent Indent_fmts | Beside Beside_fmts

| Above Above_fmts | Choice Choice_fmts

15

-- Introducing external functions

DATA Empty_fmts [-> fmts]

DATA Text_fmts [string <- -> fmts]

DATA Indent_fmts [pP_fmts, int <- -> fmts]

20 DATA Beside_fmts [right_fmts, left_fmts <- -> fmts]

DATA Above_fmts [lower_fmts, upper_fmts <- -> fmts]

DATA Choice_fmts [optb_fmts, opta_fmts <- -> fmts]

PRE sim

25 -- Display the solution found

DATA Root [-> fmts : Output]

| Best PP

SEM Root

30 | Best LHS.fmts = "putStr . display best $ pP_fmts"

-->type Output = IO ()

Listing 27: Simple pretty-printer (SPP.ag)

--< SPP.ag

ATTR PP Root [pw : T_PW <-]

5 ATTR Empty_fmts Text_fmts Indent_fmts

Beside_fmts Above_fmts Choice_fmts [lhs_pw <-]

PRE pw

Listing 28: Filtering with page width

190 S. Doaitse Swierstra et al.

Similar, since the end of the last line of the subtree b is at least 7 units from
the left, the frame for the subtree c is (13,13). Since the frame (13,13) cannot
accommodate the string set of functions the left alternative of the choice
node c can be discarded locally, and thus will not be combined elsewhere with
other candidates, only to be discarded as part of an impossible solution at the
top of the computation.

>|<

>|< >^<

s1

s2 s3

t

pretty

set of functions set of
functions

this is
a

b c

20

20 13

20
19

9
16

6

1

Fig. 12. The frame limit

In listing 29 we show how to compute the minimal space used by a node, that
is needed to compute the frames for its fellow nodes. In figure 13(a) we depict
the attribute computations involved in the operation >|<.
In listing 30 the semantic functions for passing frames downwards are shown,

and an illustration of the data flow for the operation >|< is shown in figure 13(b).
Recall that we do not have to code all data flows, only the relevant computations
are made explicit. Copy rules involving passing information around are generated
automatically as explained in chapter 3. Also note that at the top level we are
initiating the attribute computations with the frame (lhs_pw,lhs_pw). Finally
in listing 31 we add the synthesis of the formats and an attribute for handling
error conditions.

Exercise 4. Note that up to now we do not need to compute the height of the
document. Can you anticipate a situation where it is needed? Modify the pro-
gram FRPP.ag so that the computation of heights is included.

Before starting to read the next section it is useful if you try to solve the
following problem. The combinator hv :: Formats -> Formats -> Formats
has the following behavior:

Designing and Implementing Combinator Languages 191

--< SPP.ag

SEM PP [-> minw USE " ‘max‘ " "0" : Int

minll USE " ‘max‘ " "0" : Int]

5 | Text LOC.minw = "length string"

LHS.minll = "minw"

| Indent LHS.minw = "int + pP_minw"

.minll = "int + pP_minll"

| Beside LHS.minw = "left_minw ‘max‘ (left_minll + right_minw)"

10 .minll = "left_minll + right_minll"

| Above LHS.minll = "lower_minll"

| Choice LHS.minw = "opta_minw ‘min‘ optb_minw"

.minll = "opta_minll ‘min‘ optb_minll"

Listing 29: Computing min bounds: FRPP.ag

>|<

rl

minwminll minllminw

minwminll

max+

+

(a) Min limits for >|<

>|<

rl

minwminll minllminw

(w,ll)

(wl,lll) (wr,llr)

narrow_ll
narrow_frame

(b) Frame limits for >|<

Fig. 13. Computing the frame

192 S. Doaitse Swierstra et al.

SEM PP [frame : T_Frame <-]

| Indent pP .frame = "narrow_frame int lhs_frame"

| Beside left .frame = "narrow_ll right_minw lhs_frame"

right.frame = "narrow_frame left_minll lhs_frame"

5

SEM Root [pw : T_PW <-]

| Best pP.frame = "(lhs_pw,lhs_pw)"

-->narrow_frame i (s,l) = (s-i, l-i)

10 -->narrow_ll i (s,l) = (s , l-i)

Listing 30: Computing and communicating the frame: FRPP.ag(cont)

ATTR Empty_fmts Text_fmts Indent_fmts

Beside_fmts Above_fmts Choice_fmts [lhs_frame <-]

PRE frame

5 -- Display the solution found

SEM Root

| Best LHS.fmts

:= "putStr (if null pP_error then display best pP_fmts

else pP_error)"

10

-- Error handling

SEM PP [-> error USE "++" "[]": T_Error]

| Indent LHS.error = "err (int < 0) 1"

15 TXT err

-->type T_Error = String

-->err cond message

--> | not cond = ""

--> | cond = case message of

20 --> 1 -> "negative indentation"

Listing 31: Error and formats: FRPP.ag(end)

Designing and Implementing Combinator Languages 193

? render (hv (text "aaaa") (text "bbbb")) 15

aaaabbbb

? render (hv (text "aaaa") (text "bbbb")) 7

aaaa

bbbb

?

The combinator places its arguments either vertically or horizontally, depending
on the available frame.
Note that the type of Formats in our latest version of the combinators is:

type T_Formats = (Int, Int) -> (Error,Minw,Minll,OrigFormats)

type Minw = Int

type Minll = Int

type Error = String

where OrigFormats is the type of the elements manipulated by the underlying
machinery.

Exercise 5. Write the combinator hv.

4.3 Loss of Sharing in Computations

You may have given the following solution in the last exercise:

hv a b = a >|< b >^< a >-< b

Unfortunately you have in this way given an very inefficient solution too. Why
the previous definition of hv does not solve our problem? Because the arguments,
a and b, of the expression are not plain values, but functions to which secretly
a frame is passed. Thus each occurrence of a and b in the body of hv leads to a
separate computation. We have thus lost sharing as an unfortunate consequence
of moving to a higher order domain.
In order to get back the situation in which the computations are shared we

have now to collect all the arguments that are passed at the different occurrences
of the same expression. Fortunately we have a pleasant property of the filters and
the generators: the program is thus far constructed in such a way that if we filter
at some place with a value v and elsewhere with a value w, and v<w, then the
solutions generated at the call with w may also be used at the place where the
call with v is occurring. So if we manage to collect all the arguments of places
where the same expression is occurring, we may compute the maximal value of
the argument, and perform the call only once.
The problem is solved with the introduction of the following two new com-

binators:

par acts as placeholder for a shared expression
apply binds the shared expression to their placetakers as a form of β-reduction

Given the new combinators we have to write the previous definition as:

194 S. Doaitse Swierstra et al.

--< FRPP.ag

DATA PPC [-> fmts : Formats]

| Indent Int PPC

5 | Beside left , right: PPC

| Above upper, lower: PPC

| Choice opta , optb : PPC

| Par

10 DATA PP

| Apply PPC PPList

DATA PPList

| Nil

15 | Cons PP PPList

Listing 32: Extending the PP to PPC

hv a b = (par >|< par >^< par >-< par) ‘app‘ [a, b]

example = hv (text "hello") (text "world!")

Now, not even knowing the actual values of a or b, we can still construct efficient
combinators for pretty-printing structures.

Extending the grammar with Par and Apply We introduce a different non-
terminal in the grammar for those “complicated formats” as shown in listing 32.
text and empty nodes are excluded since they can not contain placeholders.
For the implementation of the par and app we proceed as follows:
• Compute for each >-< and >|< nodes the number (numpars) of par oc-
currences in both its subtrees (figure 14(a) and listing 33)
• Compute the minimal sizes of the arguments (fillmins) and distribute
this information over the tree, using the numpars computed in the first
step (figure 14(b) and listing 34)
• Now all sizes of all leaves have become available, we may compute the
minimal sizes (minll and minw) of all nodes (in listing 35), that in their
turn may be used to
• Compute the frames for all nodes, that also will provide a frame to all
the par nodes (in listing 35), which information (reqs) can be
• Collected, and compared on the way up (figure 15(a) and listing 33), and
• Be used at the right argument list of the app node to filter the list of
solutions of the shared arguments, which
• Lists have to be passed down (fillfmts) and distributed over the tree
(figure 15(b) and listing 34)
• When these solutions have reached their final destinations the original
computation can take place (figure 16 and listing 36).

Designing and Implementing Combinator Languages 195

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

1 1 1 1

+

2 2

+

2

(a) Collect number of par

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

mins1

 [mins1,mins2]

 [mins2]

[]

mins2

mins2

 [mins1,mins2]

 [mins1,mins2]
 [mins1,mins2]

mins2 mins1mins1

(b) Collect fillmins and distribute them

Fig. 14. Attribute computations with par and app

196 S. Doaitse Swierstra et al.

SEM PPC [-> reqs : T_Reqs numpars : Int]

| Beside LHS.reqs = "left_reqs ++ right_reqs"

.numpars = "left_numpars + right_numpars"

| Above LHS.reqs = "upper_reqs ++ lower_reqs"

5 .numpars = "upper_numpars + lower_numpars"

| Choice LHS.reqs = "zipWith max opta_reqs optb_reqs"

.numpars = "opta_numpars"

| Par LHS.reqs = "[lhs_frame]"

.numpars = "1"

10

TXT

-->type T_Reqs = [T_Frame]

Listing 33: Collecting placeholders

Note that because we keep track of the number of placeholders at each node it
is possible to detect ill formed expressions: insufficient (or too many) arguments
in the rhs of an app node, i.e. when the shape of the required argument does not
match the shape of the actual argument.

4.4 Discussion

In this section we developed combinators for a language whose elements are not
taken from a flat domain: instead they depend on values that are not known
statically. By going to a higher-order domain not all the properties of first class
elements are available (in our case we lost sharing). We lost thus support from
the host language, having to reintroduce the mechanism to recover those proper-
ties. The presented mechanism is still incomplete, because we can have common
subexpressions that we may want to share. Back to the example of figure 10, we
now can write:

pp_ite c t e

= par >>|<< par >>|<< par >>|<< par

>>^<< par >>|<< (par >>-<< par) >>-<< par

>>^<< par >>-<< par >>-<< par >>-<< par

>>$< [text "if" >|< c

, text "then" >|< t

, text "else" >|< e

, text "fi"

]

As we can see, there are still subexpressions that are combinations similar to the
previous hv structure and we may want to share. A solution of this problem is to
extend the combinator app to accept placeholders in the list of placetakers. This
extension together with a complete mechanism for error manipulation is used in

Designing and Implementing Combinator Languages 197

SEM PPC [fillfmts : T_Fills fillmins : T_Mins <-]

| Beside LOC .e@(lfs,rfs) = "splitAt left_numpars lhs_fillfmts"

.m@(lfm,rfm) = "splitAt left_numpars lhs_fillmins"

left .fillfmts = "lfs"

5 .fillmins = "lfm"

right.fillfmts = "rfs"

.fillmins = "rfm"

| Above LOC .e@(ufs,lfs) = "splitAt upper_numpars lhs_fillfmts"

.m@(ufm,lfm) = "splitAt upper_numpars lhs_fillmins"

10 upper.fillfmts = "ufs"

.fillmins = "ufm"

lower.fillfmts = "lfs"

.fillmins = "lfm"

15 SEM PP

| Apply pPC . fillfmts = "pPList_fillfmts"

. fillmins = "pPList_fillmins"

SEM PPList [reqs : T_Reqs <-

20 -> fillfmts : T_Fills fillmins : T_Mins len : Int]

| Nil LHS . fillfmts = "[]"

. fillmins = "[]"

. len = "0"

| Cons pP . frame = "head lhs_reqs"

25 pPList . reqs = "tail lhs_reqs"

LHS . fillfmts = "(pP_error,pP_fmts):pPList_fillfmts"

. fillmins = "(pP_minw ,pP_minll):pPList_fillmins"

. len = "pPList_len + 1"

30 TXT

-->type T_Fills = [(T_Error, Formats)]

-->type T_Mins = [(Int, Int)]

Listing 34: Collecting placetakers and distributing them

198 S. Doaitse Swierstra et al.

SEM PPC [frame: T_Frame <-]

| Indent pPC . frame = "narrow_frame int lhs_frame"

| Beside left . frame = "narrow_ll right_minw lhs_frame"

right . frame = "narrow_frame left_minll lhs_frame"

5

SEM PPC [-> minw, minll: Int]

| Beside LHS . minw = "left_minw ‘max‘ (left_minll + right_minw)"

. minll = "left_minll + right_minll"

| Above LHS . minw = "upper_minw ‘max‘ lower_minw"

10 | Choice LHS . minw = "opta_minw ‘min‘ optb_minw"

. minll = "opta_minll ‘min‘ optb_minll"

SEM PPC

| Par LOC . m@(minw,minll) = "head lhs_fillmins"

Listing 35: Computing the minimal values

SEM PPC

| Indent LHS.fmts = "frame_indent_fmts lhs_frame int pPC_fmts"

| Beside LHS.fmts = "frame_beside_fmts lhs_frame left_fmts right_fmts"

| Above LHS.fmts = "frame_above_fmts lhs_frame upper_fmts lower_fmts"

5 | Choice LHS.fmts = "frame_choice_fmts lhs_frame opta_fmts optb_fmts"

| Par LOC.e@(error,fmts) = "head lhs_fillfmts"

SEM PPC [-> error USE " ++ " "[]" : T_Error]

| Indent LHS . error = "err (int < 0) 1"

10 | Choice LHS . error = "err (length opta_reqs /= length optb_reqs) 3

++ opta_error ++ optb_error"

SEM PP | Apply LHS . error = "err (pPList_len /= length pPC_reqs) 2"

15 TXT err

--> 2 -> "incomplete parameter list"

--> 3 -> "incomplete parameter list in choice"

Listing 36: Producing the final formats and error messages

Designing and Implementing Combinator Languages 199

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

f11 f12
f21 f22

[f11] [f12] [f21]
[f22]

++

[f11,f12] [f21,f22]

++

[fm1,fm2]

zipWith max

(a) Compute frames at par positions and collect them upwards

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

fmts2

[fm1,fm2] [fm1,fm2]

fm1

fm2 []

[fm2]

[fmts1,fmts2]

[fmts2]

[]

fmts1

(b) Distribute frames and collect fillfmts

Fig. 15. Attribute computations with par and app (cont.)

200 S. Doaitse Swierstra et al.

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

fmts1

 [fmts1,fmts2]

 [fmts2]

[]

fmts2

fmts2

 [fmts1,fmts2]

 [fmts1,fmts2]
 [fmts1,fmts2]

fmts2 fmts1
fmts1

(a) Distribute formats

app

cons>^<

>|< >-<

par par par par

cons

nilPP

PP

fmts2

fmts2

fmts1>-<fmts2

fmts1 fmts1 fmts2

fmts1

fmts1>|<fmts2

 fmts1>|<fmts2
 >^< fmts1>-<fmts2

 fmts1>|<fmts2

 >^< fmts1>-<fmts2

fmts1 fmts2 fmts2

>^<

>|< >-<

(b) Compute final result

Fig. 16. Attribute computations with par and app (final)

Designing and Implementing Combinator Languages 201

the actual version of our pretty printing combinator library.4 We think it is a
convincing example of the need of mechanical support for the implementation
of advanced combinator languages. The attribute grammar paradigm has been
indispensable in getting the correct implementation.

5 Strictification

5.1 Introduction

In a previous section we have remarked that it is always possible to com-
bine a function f:: a -> b and a function g:: c -> d into a single function
fg:: (a, c) -> (b, d) that has the combined effect. It is this fact that en-
ables our small system to generate one large catamorphism walking over the
tree “once”, taking as its argument all inherited attributes and returning as its
result all synthesized attributes. From a programmers point of view having this
merging of all the separate functionalities into a single function makes it quite
easy to refer in one computation to results computed in another computation.
However one may wonder whether also the reverse transformation is possible
and what it might be good for.
For attribute grammars there exists a long tradition in optimizing their im-

plementations in order to achieve efficiencies similar to hand written compilers.
In this section we will present some of the analyses and the results of these with
respect to our pretty printing combinators. The work we present here is well
known in the attribute grammar world, but translates nicely into a functional
setting. The overall effect will be that instead of having a single large function
that, lazily evaluated, manages to deal with dependencies from its results to its
arguments, we will now construct a set of smaller functions that do not exhibit
such behavior, and can thus be evaluated in a strict way. This implementation
technique was chosen in the course of a project in which we wanted to evaluate
attribute grammars in an incremental way, using function caching. For this func-
tion caching to work well we implemented the transformations needed to convert
the program into strict functions, since the memoisation of lazy functions, albeit
possible, is not what we want to use at a large scale.

5.2 Pretty Printing Combinators Strictified

If we look at the type of the Tree catamorphism generated for the Rep Min
problem we see that it returns as result a function that takes the computed
minimal value as an argument and returns a tuple containing the minimal value
and the new tree as a result, so its type is Int->(Int,Tree). When analyzing
the overall dependencies between the argument and the result of this function
however we may deduce that actually the first component of the result does not
depend on the argument in any computation higher up in the tree (only the
production Root in our case). If we augment the type with arrows indicating
this dependency we get its flow type, that we have given in figure 5.2.

4 See the combinator’s web site: http://www.cs.uu.nl/groups/ST/Software.

202 S. Doaitse Swierstra et al.

Tree

minval: Int m: Int res: tree

Fig. 17. Flow type of Tree

With the dashed arrow we indicate the dependencies occurring in the context
in which the tree catamorphism is used. The trick in getting rid of these right-
to-left dependencies, that demand lazy evaluation, is to split the function into
two functions, as shown in figure 18. If we inspect the dependencies between the

Tree1

m: Int minval: Int

Tree2

res: Tree

Fig. 18. Flow types of Tree1 and Tree2

attributes in the pretty printing libraries (and this can be done automatically)
we find the dependencies for the complicated pretty printing type PPC as shown
in figure 19.

Initially we may compute the number of par occurrences (numpars), since
this is a purely syntactical issue, and the number does not depend on any other
attribute value. Next we can use this number to split the list of minimal sizes the
fill-ins will have (fillmins) at the above and beside nodes. This constitutes a
“second pass”. Once all the sizes of the pars have become available we may now
return the minw and minll attributes. They can in their turn be used to adjust
the value with which the filtering has to be done (frame) when it is passed down
the tree. Now it has become possible to collect the maximal sizes available for
the corresponding par occurrences, that are collected, compared and returned
in the synthesized attribute reqs. This will be used in the application node to
compute the actual list of formats (fillfmts) to be used at the par-occurrences,
and having available this we may at last construct the sought list of candidate

Designing and Implementing Combinator Languages 203

fillmins

frame

fillfmts

PPC

numpars

minll, minw

reqs

fmtsvisit 2

visit 3

visit 4

visit
1

Fig. 19. Flow type of PPC

formats for each node in the tree. Although the constructor at each node is
only inspected once in this process, thanks to the deforestated approach we have
taken, we may say that the tree is “traversed” four times.
The code generated by the attribute grammar system LRC5 for the combi-

nator >-<, in the case children may contain par nodes, is given in listing 37.
Each of the generated functions takes three kinds of arguments:

• values computed in previous visits and still needed in this or one of
the later visits. These dependencies make the purely algebraic approach
cumbersome to use when more and more computations get intertwined.
• functions constructed at earlier visits that encompass the rest of the work
to be done at each of the children (if not completed). The subscripts refer
to the visit number they stand for.
• inherited attributes that became available since the previous visit and
that are enabling further computation in this visit.

6 Conclusions

In the beginning of this lecture we have argued that one should not take the step
to designing a new language too easily, and in one of the later chapters we have
introduced a new language ourselves for describing attribute grammars. The
question that thus arises immediately is whether it would have been possible to
describe this way of programming again by the introduction of a suitable set of
combinators. Recently steps have been taken in pursuing this direction by Oege
de Moor in Oxford based on the concept of extensible records. Although we think
that our notation still has a lot to offer we hope it will be feasible with future
versions of the Haskell type system to achieve the ease of formulation provided
by our small system. Wouldn’t it be nice if we could describe the threading

5 http://www.cs.uu.nl/groups/ST/Software

204 S. Doaitse Swierstra et al.

lambda_BesideC_1 left_1 right_1

= ((lambda_BesideC_2 left_numpars right_numpars

left_2 right_2)

, numpars)

5 where

(right_2,right_numpars) = right_1

(left_2 ,left_numpars) = left_1

numpars = left_numpars + right_numpars

10 lambda_BesideC_2 left_numpars right_numpars

left_2 right_2

fillsmins

= ((lambda_BesideC_3 left_minll left_numpars right_minw right_numpars

left_3 right_3)

15 , minll , minw)

where

left_fillsmins = take left_numpars fillsmins

(left_3,left_minll , left_minw) = left_2 left_fillsmins

right_fillsmins = drop right_numpars fillsmins

20 (right_3, right_minll , right_minw) = right_2 right_fillsmins

minll = left_minll + right_minll

minw = max left_minw (left_minll + right_minw)

lambda_BesideC_3 left_minll left_numpars right_minw right_numpars

25 left_3 right_3

frame

= ((lambda_BesideC_4 frame left_numpars right_numpars

left_4 right_4) , reqs)

where

30 left_frame = narrow_ll right_minw frame

(left_4,left_reqs) = left_3 left_frame

right_frame = narrow_frame left_minll frame

(right_4,right_reqs) = right_3 right_frame

reqs = left_reqs + right_reqs

35

lambda_BesideC_4 frame left_numpars right_numpars

left_4 right_4

fillsfmts

= (fmts)

40 where

left_fillsfmts = take left_numpars fillsfmts

left_fmts = left_4 left_fillsfmts

right_fillsfmts = drop right_numpars fillsfmts

right_fmts = right_4 right_fillsfmts

45 fmts = beside_fmts frame left_fmts right_fmts

Listing 37: Code generated by LRC for the combinator >-<

Designing and Implementing Combinator Languages 205

of an attribute by means of a function manipulating a grammatical structure,
and wouldn’t it even be nicer if we could have programs analyse themselves
and transform themselves into the strict form as shown in the previous section,
without having to go through a separate system.
For the time being we hope to have shown that thinking in terms of attribute

grammars allows one to design new combinator languages in an incremental way,
and to implement them in an efficient way. The pretty printing combinators have
been a joy to study and implement and we hope that you agree with us.
AknowledgementsWe want to thank all the people who have been working

with us in recent years on the problems described. We want to thank especially
Johan Jeuring, David Barton and Eelco Visser for providing comments on the
paper and Oege de Moor, Ganesh Sittampalam and our students at Utrecht
University for using the attribute grammar system.

References

1. Wadler P. A prettier printer. Available at:
http://cm.bell-labs.com/cm/cs/who/wadler/topics/recent.html, March
1998. 185

2. Fokker J. Functional parsers. In Jeuring J. and Meijer E., editors, Advanced
Functional Programming, number 925 in Lecture Notes in Computer Science, pages
1–52. Springer-Verlag, Berlin, 1995. 152

3. Hudak P. Haskore music tutorial. In Meijer E. Launchbury J. and Sheard T.,
editors, Advanced Functional Programming: Second International School, number
1129 in Lecture Notes in Computer Science, pages 38–67. Springer-Verlag, Berlin,
1996. 152

4. O. de Moor and R. Bird. Algebra of Programming. Prentice-Hall, London, 1997.
152

5. Hughes J. The design of a pretty-printing library. In Jeuring J. and Meijer E.,
editors, Advanced Functional Programming, number 925 in Lecture Notes in Com-
puter Science, pages 53–96. Springer-Verlag, Berlin, 1995. 152, 153, 185

6. Jeuring J. and Jansson P. Polytypic programming. In Meijer E. Launch-
bury J. and Sheard T., editors, Advanced Functional Programming: Second Inter-
national School, number 1129 in Lecture Notes in Computer Science, pages 68–114.
Springer-Verlag, Berlin, 1996. 170

7. Kieburtz R. and Lewis J. Programming with algebras. In Jeuring J. and Meijer
E., editors, Advanced Functional Programming, number 925 in Lecture Notes in
Computer Science, pages 267–307. Springer-Verlag, Berlin, 1995. 152

8. S.D. Swierstra and O. de Moor. Virtual data structures. In Partsch H. Möller B.
and Schuman S., editors, Formal Program Development, number 755 in Lecture
Notes in Computer Science, pages 355–371. Springer-Verlag, Berlin, 1993. 161

9. Azero P. and Swierstra S.D. Optimal pretty-printing combinators. Available at:
http://www.cs.ruu.nl/groups/ST/Software/PP/, April 1998. 188

10. Wadler P. Deforestation transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–48, 1990. 161

11. T. Johnsson. Attribute grammars as a functional programming paradigm. In
G. Kahn, editor, Functional Programming Languages and Computer Architecture,
volume 274 of Lecture Notes in Computer Science, pages 154–173. Springer-Verlag,
September 1987. 152

206 S. Doaitse Swierstra et al.

12. Bird R. Using circular programs to eliminate multiple travesals of data. Acta
Informatica, 21:239–50, 1984. 153, 159

13. Swierstra S.D. and Duponcheel L. Deterministic, error correcting combinator
parsers. In Meijer E.and Sheard T. Launchbury J., editor, Advanced Functional
Programming: Second International School, number 1129 in Lecture Notes in Com-
puter Science, pages 184–207. Springer-Verlag, Berlin, 1996. 152, 160, 161

14. M. P. Jones. Functional programming with overloading and higher-order polymor-
phism. In Jeuring J. and Meijer E., editors, Advanced Functional Programming,
number 925 in Lecture Notes in Computer Science, pages 97–136. Springer-Verlag,
Berlin, 1995. 171

15. Fokkinga M. Meijer E. and Paterson R. Functional programming with bananas,
lenses and barbed wire. In Hughes J., editor, Proceedings of the 1991 ACM Confer-
ence on Functional Programming Languages and Computer Architecture, number
523 in Lecture Notes in Computer Science, pages 124–44. Springer-Verlag, Berlin,
1991. 151

16. M. Kuiper and S. D. Swierstra. Using attribute grammars to derive efficient
functional programs. In Computing Science in the Netherlands CSN’87, Novem-
ber 1987. ftp://ftp.cs.ruu.nl/pub/RUU/CS/techreps/CS-1986/1986-16.ps.gz.
152

Using MetaML: A Staged Programming

Language

Tim Sheard

Oregon Graduate Institute

1 Why Staging?

The purpose of staged programming in general, and MetaML in particular, is
to produce efficient programs. We wish to move beyond programs that compute
the “correct” output, to those that also have better control over resources (both
space and time). The mechanism for doing this is to use program annotations
to control the order of evaluation of terms. It should come as no surprise to
those who have studied the λ-calculus that the number of steps in a reduction
is strongly influenced by the order of evaluation. Since the number of steps in
a reduction relates strongly to the resources it consumes, controlling evaluation
order gives programmers better control over resources consumed. MetaML allows
programmers to move beyond a fixed evaluation strategy, and to specify precisely
the desired evaluation order.

This provides a mechanism which allows general purpose programs (written
in an interpretive style that eases both maintenance and construction) to perform
without the interpretive overhead usually associated with such programs.

Much of the rivalry between lazy functional languages (such as Haskell) and
strict functional languages (such as Standard ML) comes from the perceived
superiority of one fixed evaluation order (outermost for lazy, innermost for strict)
over another. But this perceived superiority is just that, perceived. Recent work,
especially that of Chris Okasaki [8] on functional data structures, has shown
that no single fixed evaluation order is superior in all cases.

There have been attempts at controlling evaluation order in the past. Strict-
ness annotations in lazy languages temporarily employ an eager evaluation strat-
egy, and constructs such as force and delay employ a lazy strategy in an strict
language. It is also possible (in an strict language) to simulate laziness by using
the delaying effect of lambda abstraction. For example, a typical simulation of
lazy lists in a strict language might be defined as:

datatype ’a lazylist =

lazyNil | lazyCons of ’a * (unit -> ’a lazylist);

fun count n = lazyCons(n, fn () => count (n+1))

Where the tail of a list is a function that forces the computation of the next
element, but only when applied.

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 207–239, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

208 Tim Sheard

The lambda expression, the basis of a language with first class functions, is
both a blessing and a curse. It is a blessing since it allows us to build abstrac-
tions, which can be used many times. As illustrated, it allows programmers to
construct lazy, infinite data structures even in a strict language, but it is a curse
because it never allows computation under lambda until the lambda is applied.
This profound limitation applies equally to lazy and strict languages. Sometimes
computation under the lambda is exactly what is called for, yet we have no way
of expressing this. I will try and illustrate this point below:

fun power n = (fn x => if n=0 then 1 else x * (power (n-1) x))

map (power 2) [1,2,3,4,5]

This defines a generic power function, and a small program where the power
function is specialized to the square function (the exponent n is fixed at 2), and
then this specialization is repeatedly applied many times by the map function.
The most efficient strategy is to unfold the definition of power once, but since

the result of unfolding power 2 is a lambda no computation is really performed.
Suppose we could direct which reductions were to be done, even under lambda.
Then, by using the comments to choose which reduction step to employ, we
proceed as follows

map (power 2) [1,2,3,4,5]

(* unfold the definition *)

map (fn x => if 2=0 then 1 else x * (power (2-1) x)) [1,2,3,4,5]

(* perform the if, under the lambda *)

map (fn x => x * (power (2-1) x)) [1,2,3,4,5]

(* unfold power again *)

map (fn x => x * ((fn x => if 1=0 then 1 else x * (power (1-1) x)) x))

[1,2,3,4,5]

(* use the beta rule to apply the explicit lambda to x *)

map (fn x => x * (if 1=0 then 1 else x * (power (1-1) x))) [1,2,3,4,5]

(* perform the if *)

map (fn x => x * (x * (power (1-1) x))) [1,2,3,4,5]

(* unfold power again *)

map (fn x => x * (x * (fn x => if 0=0 then 1 else x *(power (0-1) x)) x))

[1,2,3,4,5]

(* use the beta rule to apply the explicit lambda to x *)

map (fn x => x * (x * (if 0=0 then 1 else x * (power (0-1) x))))

[1,2,3,4,5]

(* perform the if *)

map (fn x => x * (x * 1)) [1,2,3,4,5]

(* apply the map *)

[1,4,9,16,25]

Only after completely unfolding the power function do we use the map func-
tion to repeatedly apply the squaring function. We could only unfold power by
applying reduction rules under lambda. This saves the duplicated reductions
which would unfold the power function each time power 2 is applied.

Using MetaML: A Staged Programming Language 209

In MetaML we annotate a program to provide exactly this kind of knowledge.
We use three annotations. One to delay the reduction of an expression, one to
splice two delayed expressions together to build a larger delayed expression, and
one to force a delayed expression to be reduced.

– We use brackets (< >) to surround expressions to indicate that reduction
should not occur on the expression inside the brackets. We call such a
delayed expression a piece of code. Brackets are the introduction rule for
code.

– Inside brackets we use escape (˜) to relax the restriction that no reductions
may occur brackets inside brackets. That is, only escaped expressions may
be reduced inside brackets. This provides a mechanism to splice two pieces
of code together to form a larger piece. Inside brackets, if an escaped
expression reduces to a bracketed one, then both the escape and the inner
bracket my be removed (e.g. < ... ˜ <e> ...> reduces to <... e ...>).
This is the first elimination rule for code.

– Finally, we use run to remove outermost brackets. This forces a piece of
code to be evaluated (run < e > reduces to e). This rule only applies
when no escapes remain in the bracketed expression e. This is the second
elimination rule for code

It is the first elimination rule for code (escape bracket cancellation) that
makes MetaML so expressive. The escaped expression can be anywhere, even
under a lambda! E.g. <fn x => ... ẽ ...> forces evaluation of e even though
it would ordinarily be delayed until the lambda was applied. This is a very
powerful and expressive construct as we shall see.
After all brackets have been eliminated the default evaluation strategy applies

to the remaining term. With these annotations we rewrite the power example as
follows:

fun power n = fn x => if n=0

then <1>

else < ~x * ~(power (n-1) x) >)

map (run <fn z => ~(power 2 <z>)>) [1,2,3,4,5]

This is just an annotated version of the original example (except that context
requires the call to (power 2) to be eta-expanded).
Using (the default) strict1 evaluation strategy, but following the order implied

by the annotations (rather than using explicit comments to direct evaluation
under lambda as in the previous example), we proceed:

map (run <fn z => ~(power 2 <z>)>) [1,2,3,4,5]

map (run <fn z => ~(if 2=0 then <1> else < ~<z> * ~(power (2-1) <z>) >)>)

[1,2,3,4,5]

1 by strict we mean a leftmost, innermost strategy

210 Tim Sheard

map (run <fn z => ~< ~<z> * ~(power (2-1) <z>) >>) [1,2,3,4,5]

map (run <fn z => ~< z * ~(power (2-1) <z>) >>) [1,2,3,4,5]

map (run <fn z => ~< z * ~(if 1=0 then <1>

else < ~<z> * ~(power (1-1) <z>) >) >>)

[1,2,3,4,5]

map (run <fn z => ~< z * ~< ~<z> * ~(power (1-1) <z>) >>>) [1,2,3,4,5]

map (run <fn z => ~< z * ~< z * ~(power (1-1) <z>) >>>) [1,2,3,4,5]

map (run <fn z => ~< z * ~< z * ~(power 0 <z>) >>>) [1,2,3,4,5]

map (run <fn z => ~< z * ~< z * ~<1> >>>) [1,2,3,4,5]

map (run <fn z => ~< z * ~< z * 1 >>>) [1,2,3,4,5]

map (run <fn z => ~< z * z * 1 >>) [1,2,3,4,5]

map (run <fn z => z * z * 1 >) [1,2,3,4,5]

map (fn z => z * z * 1) [1,2,3,4,5]

[1,4,9,16,25]

This simple idea is the key to staged programming. It can have a profound
effect on the way programs are constructed and used. The ability to direct reduc-
tion under a lambda makes this paradigm strictly more powerful than traditional
paradigms with a single fixed evaluation strategy. The staged paradigm does not
allow more programs to be expressed, but instead allows all programs to con-
trol their own evaluation order, and thus have more control over their resource
consumption.

2 Relationship to Other Paradigms

MetaML is strongly related to several other programming paradigms. In par-
ticular lisp-like macros with eval, meta-programming, program generation, and
partial evaluation.

Lisp-like macros. MetaML’s three annotations, bracket, escape and run,
are analagous to Lisp’s back-quote, comma and eval. Brackets are similar to
back-quote. Escape is similar to comma. Run is similar to eval in the empty
environment. However, the analogy is not perfect. Lisp does not ensure that
variables (atoms) occurring in a back-quoted expression are bound according
to the rules of static scoping. For example ‘(plus 3 5) does not bind plus in
the scope where the back-quoted term appears. This is an important feature of

Using MetaML: A Staged Programming Language 211

MetaML. In addition, Lisp employs a dynamic typing discipline, while MetaML
employs a static typing discipline, an important distinction.

Meta-programming. In MetaML a bracketed expression is considered a
piece of code. We think of code as a data structure which can be manipulated
like any other, but with the additional ability that it can be run.
Because a MetaML program manipulates programs (represented by code)

MetaML is a meta-programming system. In MetaML both the meta-language
(the language that describes the manipulations) and the object language (the
language of the programs being manipulated) are the same: ML.

Program generation.One solution to inefficient interpretive programs is to
write a program generator. Rather than write a general purpose but inefficient
program, one writes a program generator that generates an efficient solution
from a specification. This provides a natural staging to the solution. The use of
the parser generator Yacc is an illustrative example. Rather than using a general
purpose parsing program, we generate an efficient parser from a specification, i.e.
a language grammar. MetaML provides a uniform environment for constructing
program generators in a single paradigm. It provides an approach radically dif-
ferent from, and superior to, the ad-hoc “programs-as-strings” view that seems
to predominate in most software generation systems.

Partial evaluation. Partial evaluation optimizes a program using a-priori
information about some of that program’s inputs. The goal is to identify and
perform as many computations as possible in a program before run-time.
The most common type of partial evaluation, Off-line partial evaluation,

has two distinct steps, binding-time analysis (BTA) and specialization. BTA
determines which computations can be performed in an earlier stage given the
names of inputs available before run-time (static inputs).
In essence, BTA performs automatic staging of the input program. After

BTA, the actual values of the inputs are made available to the specializer. Follow-
ing the annotations, the specializer either performs a computation, or produces
text for inclusion in the output (residual) program.
The relationship between partial-evaluation and staged programming is that

the intermediate data structure between the two steps is a two-stage annotated
program [1], and that the specialization phase is the execution of the first stage
in the two-stage annotated program produced by BTA.

3 Introducing MetaML

This section provides a gentle introduction to MetaML [12,6]. We designed
MetaML as a meta-programming system, i.e. a system which is used to write
programs (meta-programs) whose sole purpose is to build and manipulate other
programs (object-programs). MetaML provides built-in support for a number
of hard problems that repeatedly occur in meta-programming and generation
systems. This support includes:

212 Tim Sheard

– A type system ensuring the well-formedness (type-safety) of object pro-
grams from a type analysis of the meta-program which produces them.
This is crucial when debugging multi-stage programs because it reports
type errors in the object-programs at the compile-time of the
meta-programs, not when the object-programs are executed.

– The capability to use arbitrary values from the meta-program as constants
in the generated program. This provides a solution to the hygienic macro
problem in a typed language, i.e. it supports macro-like constructs which
bind identifiers in the environment of definition, not in the environment of
their expansion. This completely eliminates inadvertent “capture” prob-
lems, and is an implementation of static scoping in a staged language.

– The capability to display code. When debugging, it is important for users
to observe the code produced by their programs. This implies a display
mechanism (pretty-printer) for values of type code.

– The capability to perform “generation-time” optimization on generated
code. Generated code is a first class piece of data and can be manipulated
to effect optimizations etc.

– The capability to “execute” the code built for testing and prototyping
purposes.

MetaML programs are simplyML programs which are annotated with staging
operators. In the next section we describe each of the staging operators and
introduce the MetaML language by using short, self-contained “sessions” of the
actual implementation. MetaML uses a read-typecheck-eval-print top level loop.
An expression is entered after the prompt (|-), it is type checked, evaluated,
and then its name, value and type are printed.

3.1 The Bracket Operator: Building Pieces of Code

In MetaML, a stage-1 expression is denoted by enclosing it between meta-
brackets. For instance, the pieces of code denoting the constant 23 is illustrated
by the following MetaML session:

-| <23>;

val it = <23> : <int>

The expression <23> (pronounced “bracket 23”) has type <int> (pronounced
“code of int”). The types int and <int> are not the same. Trying to use <23>
as an integer fails in the type checking stage, and the system complains:

-| <23> + 2;

Type Error:

Cannot unify the types: in type application the type constructors

do not match: int is not equal to <int>

in expression: (<23>,2)

Consider the following example where length refers to a previously defined
function.

Using MetaML: A Staged Programming Language 213

-| <length [1,2]>;

val it = <%length [1,2]> : <int>

The % in the returned value indicates that length has been lifted from a
value to a constant piece of code. We call this lexical capture of free variables or
cross stage persistence. This is explained in more detail in section 3.5. Because
in MetaML operators (such as + and *) are also identifiers, free occurrences of
operators often appear with % in front of them when code is displayed.
Bracketed lambdas. Any expression can be delayed, including higher order

(functional) expressions. Consider the examples:

-| val idCode = <fn x => x>;

val idCode = <fn a => a> : [’b].<’b -> ’b>

-| <fn n => n + 1>;

val it = <fn a => a %+ 1> : <int -> int>

idCode is the code representing a pure MetaML function, the type associated
to idCode is [’b].<’b -> ’b> which is a polymorphic piece of code with poly-
morphic2 variable ’b. Note that the display mechanism for code alpha-renames
bound variables hence the (fn a => a). <fn n => n + 1> denotes the repre-
sentation of a function. It is the encoding of the increment function over integers.
The level of any piece of code is the number of surrounding brackets minus

the number of surrounding escapes. Simple values such as 13 and (fn n => n+1)
are level-0 code. In <fn n => n + 1>, the function inside the brackets is level-1
code. Finally, in term <fn n => <n + 1>>, the sub-term n + 1 is a level-2 piece
of code.

-| <fn n => <n + 1>>;

val it = <fn a => <a %+ 1>> : <int -> <int>>

<fn n => <n + 1>> denotes a three stage program. In stage-0 it is simply
a piece of data which represents a program (<fn n => <n+1>>). The result of
running that program is a function that can be used in stage 1 (fn n => <n+1>).
When applied to an integer that function produces another piece of code, which
can be used in stage 2 (<%n %+ 1>).

3.2 The Escape Operator: Composing Pieces of Code

Bracketed expressions can be viewed as delayed, i.e. evaluation does not apply
under brackets. However, it is often convenient to allow some reduction steps
inside a large delayed expression while it is being constructed. MetaML allows
one to escape from a delayed expression by prefixing a sub-expression within it
with a tilde (˜). Because tilde must only appear inside brackets, it can only be
used at level 1 and higher. For instance, let us examine the function pair below:

2 The treatment of polymorphism in MetaML is actually quite subtle, the full treat-
ment of polymorphism is beyond the scope of this paper. See [6] for more details

214 Tim Sheard

-| fun pair x = <(~x , ~x)>;

val pair = Fn : [’b].<’b> -> <(’b * ’b)>

The function pair takes a piece of code (of type <’b>) as input, and produces
a new piece of code (of type <(’b * ’b)>). It transforms the input code x into
the code of the pair (x, x). To do this we must “splice” x into the resulting code
in two places. This is done by escaping the occurrences of x in the definition of
pair.
When ˜ e appears inside brackets at level 1, the system evaluates e to a

piece of code <v>. Then v is spliced into the bracketed expression in the context
where the original escaped expression occurred. This is the first elimination rule
for code. It is an elimination rule since it shows how escape removes brackets.
The purpose of escape is to construct larger pieces of code by splicing smaller

pieces of code together. Consider the function pair, which is used to construct
new code from old:

-| (pair <17-4>);

val it = <(17 %- 4,17 %- 4)> : <(int * int)>

By using the first elimination rule for code (~<e> rewrites to e), this reduction
proceeds as follows:

pair <17 %- 4>

<(~<17 %- 4>, ~<17 %- 4>)>

<(17 %- 4, 17 %- 4)>

3.3 The Run Operator: Executing User-Constructed Code

The run operator is the explicit annotation used to indicate that it is now time
to execute a delayed computation (i.e. a piece of code).

-| val z = <27 - 15>;

val z = <27 %- 15> : <int>

-| run z;

val it = 12 : int

The run operator allows us to reduce a piece of code to a value by executing
the code. Computation is no longer deferred and the resulting value is a pure
value. The second elimination rule for code (run <e> rewrites to e) can only
be applied if e does not contain escaped expressions. If e does contain escaped
expressions, they must be evaluated and then eliminated using the first elimina-
tion rule for code before the run elimination rule applies. This is an important
rule, since it forces a piece of code to be “fully expanded” before it can be run.

run <1 + ~((fn x => x) <2+3>)>

Using MetaML: A Staged Programming Language 215

run <1 + ~(<2+3>) >

run <1 + ~<2+3> >

run <1 + 2+3 >

1 + 2+3

6

N -stage code is executed by N applications of the run annotation.

-| val x = <fn n => <n + 1> >;

val x = <fn a => <a %+ 1> > : <int -> <int>>

-| val y = run x;

val y = fn : int -> <int>

-| val z = y 6;

val z = <%n %+ 1> : <int>

-| run z

val it = 7 : int

3.4 The Lift Operator: Another Way to Build Code

Similar to meta-brackets, lift transforms an expression into a piece of code.
But lift differs in that it reduces its input before delaying it. This is contrasted
in the examples below.

-| <4+1>;

val it = <4 %+ 1> : <int> (* no execution *)

-| lift (4+1); (* 4+1 executed *)

val it = <5> : <int>

Lift can be used to make the 2 stage example of the previous section more
comprehensible. By using lift in the second stage the bound variable n appears
as a literal constant (6 below) rather than a lexically captured constant (%n in
the previous example).

-| val x = <fn n => < ~(lift n) + 1> >;

val x = <fn a => <~(lift a) %+ 1> > : <int -> <int>>

-| val y = run x;

val y = fn : int -> <int>

-| val z = y 6;

val z = <6 %+ 1> : <int>

216 Tim Sheard

-| run z

val it = 7 : int

It should also be noted that lift can not be applied to a higher-order (i.e.
functional) arguments, as it is undefined on them.

3.5 Lexical Capture of Free Variables: Constant Pieces of Code

As illustrated in the two stage example, it is often useful to construct code
containing variables referring to values previously defined in an earlier stage.
For example:

-| val n = 10;

val n = 10 : int

-| val codePair = <(n,3)>;

val codePair = <(%n,3)> : <(int * int)>

Here, the variable n is defined at stage 0, but inside codePair (where it
occurs free), it is referenced at stage 1. At runtime, when the expression <(n,3)>
is evaluated, the system has to compute a piece of code related to the value of n.
This piece of code will be a constant, because n is known to be 10. We call this
phenomenon cross stage persistence[12]. The pretty printer for code prints all
lexically captured constants with the annotation %, followed by the name of the
free variable whose value was used to construct the constant. All free variables
(regardless of type) inside meta brackets construct these constants. This is the
way functions are made into code.

Differences between lift and lexical capture. The lift operator cannot be used
on functional values. This is because lift must construct an expression, which
when evaluated returns the same result. For functions this is not always possible.
With cross stage persistence we can lift a function into a piece of code. Cross
stage persistence constructs a constant, which needs no evaluation when it is
finally run. This allows us to construct code for functions.

-| val inc = fn a => a+1;

val inc = fn : int -> int

-| val encodeInc = <inc 5>;

val encodeInc = <%inc 5> : <int>

-| run encodeInc;

val it = 6 : int

We use lift when we want value in a previous stage to appear as a literal
constant in the code representing a future stage.

Using MetaML: A Staged Programming Language 217

4 Pattern Matching Against Code

Since code is just a data structure it is possible to pattern match against pieces
of code. Code patterns are constructed by placing brackets around code. For
example a pattern that matches the litteral 5 can be constructed by:

-| fun is5 <5> = true

| is5 _ = false;

val is5 = fn : <int> -> bool

-| is5 (lift (1+4));

val it = true : bool

-| is5 <0>;

val it = false : bool

The function is5 matches its argument to the constant pattern <5> if it succeeds
it returns true else false.
Pattern variables in code patterns are indicated by escaping variables in the

code pattern.

-| fun parts < ~x + ~y > = SOME(x,y)

| parts _ = NONE;

val parts = fn : <int> -> (<int> * <int>) option

-| parts <6 + 7>;

val it = SOME (<6>,<7>) : (<int> * <int>) option

-| parts <2>;

val it = NONE : (<int> * <int>) option

The function parts matches its argument against the pattern < ˜ x + ˜ y >.
If its argument is a piece of code which the is the addition of two sub terms, it
binds the pattern variable x to the left subterm and the pattern variable y to
the right subterm.
Code patterns which contain pieces of code with binding occurrences must

use higher-order pattern variables. A higher-order pattern variable is indicated
by an escaped application. This application must have a special form. It must be
the application of a variable to arguments. This introduces a higher-order pattern
variable. The arguments of the variable must be explicit bracketed variables, one
for each variable bound in the code pattern at the context where the escaped
application appears. For example consider the following patterns:

<fn x => ˜ (f <x>)> legal
<fn x => ˜ (f <2>) illegal, <2> is not a bracketed

variable
<fn x => ˜ f> illegal, f, under lambda, is not

applied to an argument
<fn x => fn y => ˜ (f <x>)> illegal, f not applied to all bound

variables
<fn (x,y) => ˜ (f <x> <y>) + 1> legal

218 Tim Sheard

A higher order pattern variable is used like a function on the right hand side
of a matching construct. For example a function which applies the rule that 0 is
the identity of addition to the body of function is written as:

-| fun f <fn x => ~(g <x>) + 0> = <fn y => ~(g <y>)>

| f x = x;

val f = Fn : [’b].<’b -> int> -> <’b -> int>

-| f <fn x => (x-4) + 0>;

val it = <(fn a => a %- 4)> : <int -> int>

In the next sections we give several substantial examples which illustrate
program staging.

5 A Staged Term Rewriting System

One may think of a term-rewriting system as a set of directed rules. Each rule
is made of a left-hand side and a right-hand side. Both the left-hand side and
right-hand side of a rule are made of patterns. A pattern is a term with pattern
matching variables as subterms.
A rule may be applied to a term t if a subterm s of t matches the left-hand

side under some substitution σ. A rule is applied by replacing s with t′, where
t′ is the result of applying the substitution σ to the right-hand side. We say “t
rewrites (in one step) to t′”, and write t⇒ t′. As an example, here are the rules
for a Monoid [2]:

r1 : x+ 0→x
r2 : 0 + x→x
r3 : x+ (y + z)→(x+ y) + z

Variables x, y, and z in the rules can each match any term. If a variable
occurs more than once on the left-hand side of a rule, all occurrences must
match identical terms.
Generally, the rules do not change over the life of the system. At the same

time, the basic form of the matching function is a simultaneous traversal of a
subject term and the left-hand side of the rule it is being matched against. This
offers an opportunity for staging: We can “specialize” matching over the rules
in a first stage, and eliminate the overhead of traversing the left-hand side of
the rules. Not only that, but as we will see, we can also remove a significant
amount of administrative computations involved in constructing and applying
the substitution σ. One would expect that this would significantly speed up the
rewriting system.
In our system we have both patterns (with variables) and terms (without

variables) We capture this with the following data structures:

Using MetaML: A Staged Programming Language 219

datatype ’a Structure =

Op of (’a * string * ’a) (* e.g. (1 + 5) *)

| Int of int; (* e.g. 5 *)

datatype term = Wrap of term Structure;

datatype pat =

Var of string

| Term of pat Structure;

In the following algorithm it is necessary to compare two terms for equality
if a pattern variable occurs more than once in the same pattern. Such a function
is easy to write as a simultaneous traversal over two terms.

fun termeq (Wrap t1) (Wrap t2) =

case t1 of

Op(m,s,n) =>

(case t2 of Op(a,b,c) =>

if s=b

then (if termeq m a

then termeq n c

else false)

else false

| _ => false)

| Int n =>

(case t2 of

Int m => n=m

| _ => false);

Because we are constructing a staged version of a pattern matcher, it is nec-
essary to define a staged version of the substitution function. The subst function
takes a substitution (binding variable names to code of terms) a pattern (con-
taining variables) and produces the code of a term (without any variables). Since
substitutions are implemented as lists, we need a auxillary function for looking
things up in lists. The difference between this function and normal subsitution is
that subst manipulates pieces of code (which will compute a term) rather than
terms themselves.

fun find s [] = NONE

| find s ((a,z)::xs) =

if a=s then SOME z else find s xs

(* subst: (string * <term>) list -> pat -> <term> *)

fun subst sigma pat =

case pat of

Var v =>

(case find v sigma of

SOME w => w)

| Term(Int i) => <Wrap(Int ~(lift i))>

220 Tim Sheard

| Term(Op(t1,s,t2)) =>

<Wrap(Op (~(subst sigma t1),

~(lift s),

~(subst sigma t2)))>

Note the use of staging annotations to construct the code corresponding to the
pattern.
A staged matcher takes a pattern and produces the code which matches

a term against that pattern. The pattern is completely known, and the code
produced depends upon the pattern. In the rewrite system the code we want to
produce will build an instance of the right-hand side of a rule if the left-hand
side matches the term. The instance depends upon the substitution built by the
matching. Rather than returning a substitution (which is then applied to the
right-hand side) the matching function is given a continuation which it should
apply to the substitution. It is the continuation that builds the instance of the
right-hand side, not the matching function.

type substitution = ((string * <term>) list) option;

type continuation = substitution -> <term>;

fun unWrap (Wrap x) = x;

fun unWrapCode <Wrap ~t> = t

| unWrapCode e = <unWrap ~e>;

(* match: pat -> continuation -> substitution -> <term> -> <term> *)

fun match pat (* the pattern being matched, completely known *)

k (* the continuation to build the code. Must be applied *)

(* to a substitution *)

msigma (* the substitution that is built when matching occurs *)

term (* code for the term being matched against the pattern *)

=

case (msigma) of

NONE => k NONE

| SOME (sigma) =>

(case pat of

Var u =>

(case find u sigma of

NONE =>

k (SOME ((u,term) :: sigma))

| SOME w =>

<if termeq ~w ~term

then ~(k (SOME sigma))

else ~(k NONE)>)

| Term(Int n) =>

<case ~(unWrapCode term) of

Int u => if u= ~(lift n)

then ~(k msigma)

else ~(k NONE)

| _ => ~(k NONE)>

Using MetaML: A Staged Programming Language 221

| Term(Op(p1,s1,p2)) =>

<case ~(unWrapCode term) of

Op(t1,s2,t2) =>

if ~(lift s1) = s2

then ~(match p1

(fn msig => match p2 k msig <t2>)

msigma

<t1>)

else ~(k NONE)

| _ => ~(k NONE)>

)

Rewriting builds the code of a term from a rule. We do this as follows:

fun rewrite (lhs,rhs) =

<fn (Wrap t) =>

~(match lhs

(fn NONE => <Wrap t> (* the initial continuation *)

| SOME s => subst s rhs)

(SOME [])

<Wrap t>)>;

Note how we build a continuation to apply the substitution to the right-hand
side of the rule, and pass it to the match function. If the continuation is ever
passed the failure substitution (NONE) it simply returns the original term.

When we apply the rewrite function to a rule some code is constructed.

val r3 = (** (x + y) + z => x + (y + z) **)

(Term(Op(Term (Op(Var "x","+",Var "y")), "+", Var "z")),

Term(Op(Var "x","+",Term(Op(Var "y","+",Var "z")))));

-| rewrite r3;

val it =

<(fn Wrap a =>

(case a of

Op(d,c,b) =>

if "+" %= c

then (case %unWrap d of

Op(g,f,e) =>

if "+" %= f

then Wrap (Op(g,"+",Wrap (Op(e,"+",b))))

else Wrap a

| _ =>

Wrap a)

else Wrap a

| _ => Wrap a))>

: <term -> term >

222 Tim Sheard

6 Safe Reductions Under Brackets

The purpose of MetaML is to control evaluation order. The bracket annotation
is the mechanism used to delay evaluation. It is used to say “do not apply any
reduction rules in this term until I say so”. Even so, there are reduction rules that
are safe to apply even inside brackets. These rules never change the semantics or
the termination properties of term, or the order in which sub-terms are evaluated.
The reason we wish to apply such rules is that they can significantly reduce the
size and complexity of a piece of code without affecting any of its important
properties. To write multi-stage programs effectively, one needs to observe the
programs produced, and these programs should be as simple as possible. For this
reason, it is important that code produced be as simple as possible.

6.1 Safe-Beta

There is one safe case which is particularly well known, namely instances of
Plotkin’s βv rule [9]. Whenever an application is constructed where the function
part is an explicit lambda abstraction, and the argument part is a value, then
that application can be symbolicly beta reduced. In order to avoid duplicating
code we restrict our safe-beta reductions to those terms where the argument is
a constant or a variable (while Plotkin’s βv rule also allows the values to be
lambda expressions). For example in:

val g = <fn x => x * 5>;

val h = <fn x => (~g x) - 2>;

The variable h evaluates to: <fn d1 => (d1 * 5) - 2> rather than
<fn d1 => ((fn d2 => d2 * 5) d1) - 2>.

6.2 Safe-Eta

Another simple example is eta-reduction, i.e terms of the form: (fn x => e x)
where e is a value (an explicit lambda or a variable) and x does not occur free
in e. Such terms can be eta-reduced to e without changing their meaning or
termination behavior. To see how this works in MetaML see the example below:

-| <fn f => (fn x => f x)>;

val it = <(fn a => a)> : [’b,’c].<(’c -> ’b) -> ’c -> ’b>

-| <fn (f,y) => (fn x => (f y) x)>;

val it = <(fn (b,a) => (fn c => b a c))> :

[’b,’c,’d].<((’d -> ’c -> ’b) * ’d) -> ’c -> ’b>

Notice how the eta-rule is applied in the first example, but not in the second.
This is because the conditions for safety are not met (the function part is an
application not a value) in the second example.

Using MetaML: A Staged Programming Language 223

6.3 Safe-Let-Hoisting

Let-hoisting is illustrated by the following examples:

-| <let val x = (let val y = 5 in y+1 end) in x + 2 end>;

val it = <let val a = 5 val b = a %+ 1 in b %+ 2 end> : <int>

-| <let val y = 5 in let val x = y+1 in x+2 end end>;

val it = <let val a = 5 val b = a %+ 1 in b %+ 2 end> : <int>

Safe-beta, safe-eta, and safe-let-hoisting are instances of Wadler and Sabry’s
call-by-value equivalence rules [10]. Applying these rules makes it harder to un-
derstand why a particular program was generated, but in our experience, the
resulting programs are smaller, simpler, and easier to understand. These advan-
tages make this tradeoff worthwhile.

7 Non-standard Extensions

We built MetaML to investigate new paradigms of programming. As we used
MetaML we discovered several simple extensions to ML in addition to the staging
annotations that were quite useful. These extensions are not not original to
MetaML. All are well thought-out ideas that have appeared in the literature,
and several have appeared as features in other languages.

7.1 Higher Order Type Constructors

It is sometimes useful to define a parameterized type constructor, parameterized
not just by a type, but by another type constructor. In MetaML this can be
done by placing a kind annotation on the parameter that indicates it is a type
constructor. For example consider the definition below for a tree of integers with
an arbitrary branching factor:

datatype (’F : * -> *) tree = tip of int | node of (’F tree) ’F;

datatype ’a binary = bin of ’a * ’a;

The branching factor of a tree is specified by the parameter ’F which is itself a
type constructor. The notation: ’F : * -> * means ’F has kind “type to type”,
which means it is a type constructor taking one type (*) to another type (*).
For example the tree: node(bin(tip 4, tip 7)) has type binary tree,

and the tree constructed by: node[tip 4, tip 0, tip 6] has type list tree.
It is possible to define type constructors parameterized by several higher

order type constructors by definitions of the form:
datatype (’F : * -> *, ’G: * -> *) T = ...

or by a type constructor that takes several arguments by a definition of the form:
datatype (’F : * -> * -> *) S =

224 Tim Sheard

The postfix application (e.g. (int,string) T) of type constructors in ML
causes a little subtlety. A unary type constructor can be constructed from a
binary type constructor by partial application. But this requires some special
syntax since in ML all arguments are “grouped together” inside parentheses.
We think of the normal (parenthesized) notation of ML as a shorthand for our
special syntax which allows partial application. Thus the normal (’a,’b,’c)
T is a shorthand for the more verbose (but more flexible since it allows partial
application) ’a (’b (’c T)).
For example by defining the binary type constructor state

datatype (’a,’b) state = St of (’a -> (’b * ’a));

we can construct an instance: node(St(fn x => (4,x))), which has type (int
state) tree where the parameter to tree is a partial application of state

7.2 Local Polymorphism

It is often convenient to build records where a component of a record is a poly-
morphic function. This allows a limited form of “local polymorphism”. By “local”
we mean non-Hindley-Milner because all of the forall quantifications are not
at the outermost level.
For example consider the specification of a list monoid as a record containing

three polymorphic elements: an injection function, a plus function, and a zero
element. In MetaML we specify this with an extension to the datatype definition
which allows polymorphic record components:

datatype list_monoid = LM of

{ inject : [’a].’a -> ’a list,

plus : [’a]. ’a list -> ’a list -> ’a list,

zero : [’a].’a list

};

The notation inject: [’a]. ’a -> ’a list declares that the inject compo-
nent of the record must be a polymorphic function.
We could construct an instance of list monoid by:

val lm1 = LM{inject = fn x => [x],

plus = fn x => fn y => x@y,

zero = []}

We can exploit the polymorphism of the record by using pattern matching:

fun f (LM{inject=inj, plus = sum, zero = z}) =

(sum z (inj 2), sum (inj true) (inj false));

When applied to list monoid we obtain:

-| f lm1;

val it = ([2],[true ,false]) : (int list * bool list)

Using MetaML: A Staged Programming Language 225

Note that the sum and inj functions are used polymorphically. Because of
the explicit type annotations in the datatype declaration MetaML knows to
generalize polymorphic names introduced by pattern matching and to enforce
that construction of such records is only allowed on truly polymorphic objects.
The effect of local polymorphism and higher order type constructors on the
Hindley-Milner type inference system has been well studied[3,7].

7.3 Monads

Amonad is a type constructorM (a type constructor is a function on types, which
given a type produces a new type), and two polymorphic functions
unit : ’a → (’a M) and bind: (’a M) → (’a → ’b M) → (’b M). The usual way
to interpret an expression with type ’a M is as a computation which represents
a potential action that also returns a value of type ’a.

Actions might include things like performing I/O, updating a mutable vari-
able, or raising an exception. It is possible to emulate such actions in a purely
functional setting by explicitly threading “stores”, “I/O streams”, or “exception
continuations” in and out of all computations. We sometimes call such an em-
ulation the reference implementation, since it describes the actions in a purely
functional manner, though it may be inefficient.

The two polymorphic functions unit and bind must meet the following three
axioms:

(left id) bind (unit x) (λy.e[y]) = e[x/y]

(right id) bind e (λy.unit y) = e

(bind assoc) bind (bind e (λx.f [x])) (λy.g[y]) = bind e (λz.bind (f [z/x])(λw.g[w/y]))

where on the left side of an equation e[x] indicates that e is an expression that
contains occurrences of the free variable x, and on the right side of an equation
e[x/y] means substitute y for all free occurrences of x in e.

The monadic operators, unit and bind, are called the standard morphisms
of the monad, and are used to create empty actions (unit), and sequence two
actions (bind). A particular monad must also have non-standard morphisms that
describe the primitive actions of the monad (like fetch the value from a variable
and update a variable in the monad of mutable state).

A useful property of monads is that they encapsulate their actions in an
abstract datatype (ADT), where the only access to the encapsulation is through
unit, bind, and the non-standard morphisms. Like any ADT, it is possible to use
different implementations without affecting the behavior of the system built on
top of the ADT. Thus it is possible for a purely functional language to use a
primitive implementation of a monad that actually side-effects the world[5], and
for the applications built on top of this ADT to still appear purely functional. As
long as the primitive implementation behaves like the reference implementation
(that might passes stores etc.) everything works out.

226 Tim Sheard

Monads perform two useful functions. First, they abstract away all the
“plumbing” that all the explicit threading implies, and second, they make ex-
plicit actions that can be used to effect the world.

7.4 Monads in MetaML

In MetaML a monad is a data structure encapsulating the type constructor M
and the unit and bind functions[14].

datatype (’M : * -> *) Monad = Mon of

([’a]. ’a -> ’a ’M) * ([’a,’b]. ’a ’M -> (’a -> ’b ’M) -> ’b ’M);

This definition uses two of the other non-standard extensions to ML. First,
it declares that the argument (’M : * -> *) of the type constructor Monad is
itself a unary type constructor. Second, it declares that the arguments to the
constructor Mon must be polymorphic functions.
In MetaML, Monad is a first-class, although pre-defined type. In particular,

there are two syntactic forms which are aware of the Monad datatype: Do and
Return [5]. Both are parameterized by an expression of type ’M Monad. Users
may freely construct their own monads, though they must be careful that their
instantiation meets the monad axioms listed above.
Do is MetaML’s interface to the monadic bind and Return is MetaML’s in-

terface to the monadic unit. In MetaML these are really nothing more than
syntactic sugar for the following:

Syntactic Sugar Derived Form

Do (Mon(unit,bind)) { x <- e; f } = bind e (fn x => f)

Return (Mon(unit,bind)) e = unit e

In addition the syntactic sugar of the Do allows a sequence of xi <- ei forms,
and defines this as a nested sequence of Do’s. For example:

Do m { x1 <- e1; x2 <- e2 ; x3 <- e3 ; e4 } =

Do m { x1 <- e1; Do m { x2 <- e2 ; Do m { x3 <- e3 ; e4 }}}

7.5 An Example Monad

A simple example is the intState monad which encapsulates read and write
actions on a single, mutable, integer variable.We give a reference implementation
which encodes the mutable integer value as an integer. This integer is threaded
into and out of every computation. Read’s will access the value, and Write’s will
pass out a new updated value.

datatype ’a St = St of (int -> (’a * int));

fun unSt (St f) = f;

(* unit : ’a -> St ’a *)

Using MetaML: A Staged Programming Language 227

fun unit x = St(fn n => (x,n));

(* bind : (St ’a) -> (’a -> St ’b) -> (St ’b) *)

fun bind e f = St(fn n => let val (a,n’) = (unSt e) n

in unSt(f a) n’ end);

val intState : St Monad = Mon(unit,bind);

We encapsulate the type constructor of the monad as the algebraic datatype
St, the regular morphisms as functions over this datatype, and then encapsulate
them with the Mon data constructor.
The non-standard morphisms of the intState monad are the actions read

and write. Because there is only one variable they need not take a variable as
an argument.

(* read : int St *)

val read = St(fn n => (n,n));

(* write : int -> unit St *)

fun write n’ = St(fn n => ((), n’));

It is interesting to unfold all these definitions by hand on a simple example:

Do intState { x <- read ; write (x+1) } =

Do (Mon(unit,bind)) { x <- read ; write (x+1) } =

bind read (fn x => write (x+1)) =

St(fn n => let val (a,n’) = (unSt read) n in unSt(write (a+1)) n’ end) =

St(fn n => let val (a,n’) = (n,n) in ((), n’+1) end)

There are three important things to notice about this example. First, by
writing it in monadic style, the sequencing (the read before the write) is enforced
by the data dependencies of the result. Second, the “plumbing” of passing the
int valued state is completely abstracted away in the source. Third, it makes
the read and write “actions” that must be performed explicit.

7.6 Safe Monad-Law-Normalization Inside Brackets

Like safe-beta, safe-eta, and safe-let-hoisting the monad laws are reduction rules
that can safely be applied inside brackets without changing the evaluation order,
termination behaviour, or any other semantic property. We give several examples
below which illustrate the effect of monad law normalization on constructed code:

(* left id *)

-| <Do intState {x <- Return intState 5; Return intState x + 2}>;

228 Tim Sheard

val it = <Return %intState 5 %+ 2> : <int St>

(* right id *)

-| <fn e => Do intState { x <- e; Return intState x}>;

val it = <(fn a => a)> : [’b].<’b St -> ’b St>

When monadic code is constructed, the monad normalization laws are auto-
matically applied in the MetaML interpreter.

8 From Interpetors to Compilers Using Staging

In this section, we construct a compiler by annotating a monadic interpretor for
a small imperative while-language. We proceed in two steps. First, we introduce
the language and its denotational semantics by giving a monadic interpreter as
a one stage MetaML program. Second, we stage this interpreter by using a two
stage MetaML program in order to produce a compiler.

8.1 The While-Language

In this section, we introduce a simple while-language composed from the syn-
tactic elements: expressions (Exp) and commands (Com). In this simple language
expressions are composed of integer constants, variables, and operators. A sim-
ple algebraic datatype to describe the abstract syntax of expressions is given in
MetaML below:

datatype Exp =

Constant of int (* 5 *)

| Variable of string (* x *)

| Minus of (Exp * Exp) (* x - 5 *)

| Greater of (Exp * Exp) (* x > 1 *)

| Times of (Exp * Exp) ; (* x * 4 *)

Commands include assignment, sequencing of commands, a conditional (if
command), while loops, a print command, and a declaration which introduces
new statically scoped variables. A declaration introduces a variable, provides
an expression that defines its initial value, and limits its scope to the enclos-
ing command. A simple algebraic datatype to describe the abstract syntax of
commands is:

datatype Com =

Assign of (string * Exp) (* x := 1 *)

| Seq of (Com * Com) (* { x := 1; y := 2 } *)

| Cond of (Exp * Com * Com) (* if x then x := 1 else y := 1 *)

| While of (Exp * Com) (* while x>0 do x := x - 1 *)

| Declare of (string * Exp * Com) (* declare x = 1 in x := x - 1 *)

| Print of Exp; (* print x *)

A simple while-program in concrete syntax, such as

Using MetaML: A Staged Programming Language 229

declare x = 150 in

declare y = 200 in {while x > 0 do {x := x - 1; y := y - 1}; print y}

is encoded abstractly in these datatypes as follows:

val S1 =

Declare("x",Constant 150,

Declare("y",Constant 200,

Seq(While(Greater(Variable "x",Constant 0),

Seq(Assign("x",Minus(Variable "x",Constant 1)),

Assign("y",Minus(Variable "y",Constant 1)))),

Print(Variable "y"))));

8.2 The Structure of the Solution

Staging is an important technique for developing efficient programs, but it re-
quires some forethought. To get the best results one should design algorithms
with their staged solutions in mind.
The meaning of a while-program depends only on the meaning of its com-

ponent expressions and commands. In the case of expressions, this meaning is a
function from environments to integers. The environment is a mapping between
names (which are introduced by Declare) and their values.
There are several ways that this mapping might be implemented. Since we

intend to stage the interpreter, we break this mapping into two components. The
first component, a list of names, will be completely known at compile-time. The
second component, a list of integer values that behaves like a stack, will only be
known at the run-time of the compiled program.
The functions that access this environment distribute their computation into

two stages. First, determining at what location a name appears in the name list,
and second, by accessing the correct integer from the stack at this location. In a
more complicated compiler the mapping from names to locations would depend
on more than just the declaration nesting depth, but the principle remains the
same. Since every variable’s location can be completely computed at compile-
time, it is important that we do so, and that these locations appear as constants
in the next stage.
Splitting the environment into two components is a standard technique (often

called a binding time improvement) used by the partial evaluation community[4].
We capture this precisely by the following purely functional implementation.

type location = int;

type index = string list;

type stack = int list;

(* position : string -> index -> location *)

fun position name index =

let fun pos n (nm::nms) = if name = nm then n else pos (n+1) nms

in pos 1 index end;

230 Tim Sheard

(* fetch : location -> stack -> int *)

fun fetch n (v::vs) = if n = 1 then v else fetch (n-1) vs;

(* put: location -> int -> stack -> stack *)

fun put n x (v::vs) = if n = 1 then x::vs else v::(put (n-1) x vs);

The meaning of Com is a stack transformer and an output accumulator. It
transforms one stack (holding the values of the variables in scope) into another
stack (with presumably different values for the same variables) while accumu-
lating the output printed by the program.
To produce a monadic interpreter we could define a monad which encapsu-

lates the index, the stack, and the output accumulation. Because we intend to
stage the interpreter we do not encapsulate the index in the monad. We want
the monad to encapsulate only the dynamic part of the environment (the stack
of values where each value is accessed by its position in the stack, and the output
accumulation).
The monad we use is a combination of monad of state and the monad of

output.
The part corresponding to the monad of state is similar to the monad de-

scribed in section 7.5, except the mutable value is not an integer, but instead a
vector of mutable integers that will be managed like a stack.

datatype ’a M = StOut of (int list -> (’a * int list * string));

fun unStOut (StOut f) = f;

fun unit x = StOut(fn n => (x,n,""));

fun bind e f = StOut(fn n => let val (a,n1,s1) = (unStOut e) n

val (b,n2,s2) = unStOut(f a) n1

in (b,n2,s1 ^ s2) end);

val mswo : M Monad = Mon(unit,bind); (* Monad of state with output *)

The non-standard morphisms must describe how the stack is extended (or
shrunk) when new variables come into (or out of) scope; how the value of a
particular variable is read or updated; and how the printed text is accumulated.
Each can be thought of as an action on the stack of mutable variables, or an
action on the print stream.

(* read : location -> int M *)

fun read i = StOut(fn ns => (fetch i ns,ns,""));

(* write : location -> int -> unit M *)

fun write i v = StOut(fn ns =>((), put i v ns, ""));

(* push: int -> unit M *)

fun push x = StOut(fn ns => ((), x :: ns, ""));

(* pop : unit M *)

val pop = StOut(fn (n::ns) => ((), ns, ""));

(* output: int -> unit M *)

fun output n = StOut(fn ns => ((), ns, (toString n)^" "));

Using MetaML: A Staged Programming Language 231

8.3 Step 1: Monadic Interpreter

Because expressions do not alter the stack, or produce any output, we could
give an evaluation function for expressions which is not monadic, or which uses
a simpler monad than the monad defined above. We choose to use the monad of
state with output throughout our implementation for two reasons. One, for sim-
plicity of presentation, and two because if the while language semantics should
evolve, using the same monad everywhere makes it easy to reuse the monadic
evaluation function with few changes.
The only non-standard morphism evident in the eval1 function is read,

which describes how the value of a variable is obtained. The monadic interpre-
tor for expressions takes an index mapping names to locations and returns a
computation producing an integer.

(* eval1: Exp -> index -> int M *)

fun eval1 exp index =

case exp of

Constant n => Return mswo n

| Variable x => let val loc = position x index

in read loc end

| Minus(x,y) =>

Do mswo { a <- eval1 x index ;

b <- eval1 y index;

Return mswo (a - b) }

| Greater(x,y) =>

Do mswo { a <- eval1 x index ;

b <- eval1 y index;

Return mswo (if a ’>’ b then 1 else 0) }

| Times(x,y) =>

Do mswo { a <- eval1 x index ;

b <- eval1 y index;

Return mswo (a * b) };

The interpreter for Com uses the non-standard morphisms write, push, and
pop to transform the stack and the morphism output to add to the output
stream.

(* interpret1 : Com -> index -> unit M *)

fun interpret1 stmt index =

case stmt of

Assign(name,e) =>

let val loc = position name index

in Do mswo { v <- eval1 e index ; write loc v } end

| Seq(s1,s2) =>

Do mswo { x <- interpret1 s1 index;

y <- interpret1 s2 index;

Return mswo () }

| Cond(e,s1,s2) =>

Do mswo { x <- eval1 e index;

232 Tim Sheard

if x=1

then interpret1 s1 index

else interpret1 s2 index }

| While(e,body) =>

let fun loop () =

Do mswo { v <- eval1 e index ;

if v=0 then Return mswo ()

else Do mswo { interpret1 body index ;

loop () } }

in loop () end

| Declare(nm,e,stmt) =>

Do mswo { v <- eval1 e index ;

push v ;

interpret1 stmt (nm::index);

pop }

| Print e =>

Do mswo { v <- eval1 e index;

output v };

Although interpret1 is fairly standard, we feel that two things are worth
pointing out. First, the clause for the Declare constructor, which calls push
and pop, implicitly changes the size of the stack and explicitly changes the
size of the index (nm:index), keeping the two in synch. It evaluates the initial
value for a new variable, extends the index with the variables name, and the
stack with its value, and then executes the body of the Declare. Afterwards it
removes the binding from the stack (using pop), all the while implicitly threading
the accumulated output. The mapping is in scope only for the body of the
declaration.
Second, the clause for the While constructor introduces a local tail recursive

function loop. This function emulates the body of the while. It is tempting
to control the recursion introduced by the While by using the recursion of the
interpret1 function itself by using a clause something like:

| While(e,body) =>

Do mswo { v <- eval1 e index ;

if v=0 then Return mswo ()

else Do mswo { interpret1 body index ;

interpret1 (While(e,body)) index }

}

Here, if the test of the loop is true, we run the body once (to transform
the stack and accumulate output) and then repeat the whole loop again. This
strategy, while correct, will have disastrous results when we stage the interpreter,
as it will cause the first stage to loop infinitely.
There are two recursions going on here. First the unfolding of the finite data

structure which encodes the program being compiled, and second, the recursion
in the program being compiled. In an unstaged interpreter a single loop suffices.
In a staged interpreter, both loops are necessary. In the first stage we only unfold

Using MetaML: A Staged Programming Language 233

the program being compiled and this must always terminate. Thus we must plan
ahead as we follow our three step process. Nevertheless, despite the concessions
we have made to staging, this interpreter is still clear, concise and describes the
semantics of the while-language in a straight-forward manner.

8.4 Step 2: Staged Interpreter

To specialize the monadic interpreter to a given program we add two levels of
staging annotations. The result of the first stage is the intermediate code, that
if executed returns the value of the program. The use of the bracket annotation
enables us to describe precisely the code that must be generated to run in the
next stage. Escape annotations allow us to escape the recursive calls of the
interpreter that are made when compiling a while-program.

(* eval2: Exp -> index -> <int M> *)

fun eval2 exp index =

case exp of

Constant n => <Return mswo ~(lift n)>

| Variable x =>

let val loc = position x index

in <read ~(lift loc)> end

| Minus(x,y) =>

<Do mswo { a <- ~(eval2 x index) ;

b <- ~(eval2 y index);

Return mswo (a - b) }>

| Greater(x,y) =>

<Do mswo { a <- ~(eval2 x index) ;

b <- ~(eval2 y index);

Return mswo (if a ’>’ b then 1 else 0) }>

| Times(x,y) =>

<Do mswo { a <- ~(eval2 x index) ;

b <- ~(eval2 y index);

Return mswo (a * b) }>;

The lift operator inserts the value of loc as the argument to the read
action. The value of loc is known in the first-stage (compile-time), so it is
transformed into a constant in the second-stage (run-time) by lift.
To understand why the escape operators are necessary, let us consider a

simple example: eval2 (Minus(Constant 3,Constant 1)) []. We will unfold
this example by hand below:

eval2 (Minus(Constant 3,Constant 1)) [] =

< Do mswo

{ a <- ~(eval2 (Constant 3) []);

b <- ~(eval2 (Constant 1) []);

Return mswo (a-b)} > =

234 Tim Sheard

< Do mswo

{ a <- ~<Return mswo 3>;

b <- ~<Return mswo 1>;

Return mswo (a - b)} > =

< Do mswo

{ a <- Return mswo 3;

b <- Return mswo 1;

Return mswo (a - b)} > =

< Do %mswo

{ a <- Return %mswo 3;

b <- Return %mswo 1;

Return %mswo (a %- b)} >

Each recursive call produces a bracketed piece of code which is spliced into
the larger piece being constructed. Recall that escapes may only appear at level-
1 and higher. Splicing is axiomatized by the the first elimination rule for code:
˜ <x> −→ x, which applies only at level-1. The final step, where mswo and -
become %mswo and %-, occurs because both are free variables and are lexically
captured.

Interpreter for Commands. Staging the interpreter for commands proceeds in a
similar manner:

(* interpret2 : Com -> index -> <unit M> *)

fun interpret2 stmt index =

case stmt of

Assign(name,e) =>

let val loc = position name index

in <Do mswo { n <- ~(eval2 e index) ;

write ~(lift loc) n }>

end

| Seq(s1,s2) =>

<Do mswo { x <- ~(interpret2 s1 index);

y <- ~(interpret2 s2 index);

Return mswo () }>

| Cond(e,s1,s2) =>

<Do mswo { x <- ~(eval2 e index);

if x=1

then ~(interpret2 s1 index)

else ~(interpret2 s2 index)}>

| While(e,body) =>

<let fun loop () =

Do mswo { v <- ~(eval2 e index);

if v=0

then Return mswo ()

else Do mswo { q <- ~(interpret2 body index); loop ()}

}

Using MetaML: A Staged Programming Language 235

in loop () end>

| Declare(nm,e,stmt) =>

<Do mswo { x <- ~(eval2 e index) ;

push x ;

~(interpret2 stmt (nm::index)) ;

pop }>

| Print e =>

<Do mswo { x <- ~(eval2 e index) ;

output x }>;

An example. The function interpret2 generates a piece of code from a Com
object. To illustrate this we apply it to the simple program: declare x = 10
in { x := x - 1; print x } and obtain:

<Do %mswo

{ a <- Return %mswo 10

; %push a

; Do %mswo

{ e <- Do %mswo

{ d <- Do %mswo

{ b <- %read 1

; c <- Return %mswo 1

; Return %mswo b %- c

}

; %write 1 d

}

; g <- Do %mswo

{ f <- %read 1

; %output f

}

; Return %mswo ()

}

; %pop

}>

By applying the safe monad normalization laws while constructing the above
program we obtain the more satisfying:

<Do %mswo

{ %push 10

; a <- %read 1

; b <- Return %mswo a %- 1

; c <- %write 1 b

; d <- %read 1

; e <- %output d

; Return %mswo ()

; %pop

}>

The difference in the complexity of the two programs illustrates why pro-
gram normalization is important if constructed programs are to be observed. In

236 Tim Sheard

the MetaML implementation the normalization laws can be turned on and off.
They are all on by default. The side effecting function feature can be used to
control the normalization laws. feature 0 displays the normalization modes,
and feature n toggles the nth feature.

-| feature 0;

1 Safe-beta is on.

2 Safe-eta is on.

3 Let-hoisting is on.

4 Monad-law-normalization is on.

val it = false : bool

-| feature 4;

Monad-law-normalization is off.

val it = false : bool

9 Typing Staged Programs

In Figure 9 the derivation rules for typing a subset of MetaML are given. The
interesting rules are Br n which addresses the typing of bracketed expressions,
Esc n+1 which addresses the typing of escaped expressions, and Run n. Note
thatBr n raises the level n of the term bracketed, and that Esc n+1 only applies
at levels 1 and higher. This ensures that escaped expressions only appear inside
brackets.

9.1 Type Questions Still to be Addressed

The type system presented in Figure 9 represents the type system in the MetaML
implementation. This type system has some drawbacks. In particular it types
the program <fn x => ˜ (run <x>)> which leads to a runtime error.

-| <fn x => ~(run <x>)>;

Error: The term:

x

in file ’top level’ 18 - 19

variable bound in phase 1 used too early in phase 1

This is because the rule Run n removes brackets without lowering the level
n. This is the normal course of affairs, and is the right thing to do, except if run
is applied to a piece of code with free variables which are bound at a level higher
than the level at which run is executed. This is the case for the example above
because x is bound at level 1, and run is executed at level 0.
Designing a type system to keep track of this is quite hard. We have de-

signed several type systems to invalidate such programs[11,13]. Unfortunately
these systems either also throw away other good programs, or require elaborate
annotations.

Using MetaML: A Staged Programming Language 237

Domains and Relations

levels n → 0 | 1 | n+ 1 | n+ 2 | . . .
integers i → . . . | − 2 | − 1 | 0 | 1 | 2 | . . .
types τ → int | τ → τ | 〈 τ 〉 | α
terms e → i | x | e e | λxτ . e | <e> | ẽ | run e | ↑ v
type environments ∆ → ◦ | ∆,x 7→ (τ, α)n

where (∆,x 7→ (τ)n)y ≡
if x = y then (τ, α)n else ∆ y

term typing at level n ∆
n

` e : τ

Static Semantics

Int n: ∆
n

` i : int Var:
∆ x = (τ)i i ≤ n

∆
n

` x : τ

Br n:
∆

n+1

` e : τ

∆
n

` <e> : 〈 τ 〉

Esc n+1:
∆

n

` e : 〈 τ 〉

∆
n+1

` ẽ : τ

App n:

∆
n

` e1 : τ1 → τ

∆
n

` e2 : τ1

∆
n

` e1 e2 : τ

Abs n:
∆, x 7→ (τ1)

n
n

` e : τ2

∆
n

` λxτ1 . e : τ1 → τ2

Run n:
∆

n

` e : 〈 τ 〉

∆
n

` run e : τ

Fig. 1. The Static Semantics of MetaML

238 Tim Sheard

In the MetaML implementation we take the position that such errors are
similar to errors such as taking the head or tail of an empty list: Typeable, but
leading to a runtime error. Avoiding such errors are the responsibility of the
programmer. We have written many staged programs and always avoided this
error.
Research into improving the type system is an area of continued research.

10 Conclusion

A staged programming language gives the programmer a new paragdigm for
constructing efficient programs. We have illustrated this by building staged pro-
grams for interpreters and polytypic programs.
We have also found that several other“advanced” features such as higher-

order type constructors, local polymorphism, and monads have many uses.
We believe that languages with these features help programmers construct

programs which are easier to maintain because they are generic, yet they are
still efficient.

11 Exercises

– Staged member function.Write a staged membership function, where
the list is known in the first stage, but the element being searched for
is not known till the second phase. Experiment with the use of the lift
annotation to make your generated code more readable.

– 3 level inner product function. The inner product function can be
staged in three stages. The 1 stage innner product function is given below.

fun inner_prod n x y =

if n = 0

then 1

else (nth n x)*(nth n y) + inner_prod (n-1) x y;

The three stage function is written to proceed as follows: In the first stage
the arrival of the size of the vectors offers an opportunity to specialize
the inner product function on that size, removing the overhead of looping
over the body of the computation n times. The arrival of the first vector
affords a second opportunity for specialization. If the inner product of that
vector is to be taken many times with other vectors it can be specialized
by removing the overhead of looking up the elements of the first vector
each time. This is exactly the case when computing the multiplication of
2 matrixes. For each row in the first matrix, the dot product of that row
will be taken for each column of the second. In addition the second stage
affords the opportunity for additional optimization. Since the first vector
is known multiplications by 1 or 0 can be elminated in the third stage.

– Simple Compiler. Define a language. Write an interpreter for the lan-
guage. Stage the interpreter to construct a compiler.

– Post code generation optimization.Use the pattern matching for code
feature of MetaML to construct a simple code optimization phase.

Using MetaML: A Staged Programming Language 239

References

1. Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In
20thACM Symposium on Principles of Programming Languages, pages 493–501,
January 1993. 211

2. Nachum Dershowitz. Computing with rewrite systems. Information and Control,
65:122–157, 1985. 218

3. Mark P. Jones. A system of constructor classes: Overloading and implicit higher-
order polumorphism. In FPCA’93: Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Denmark, pages 52–61, New York,
June 1993. ACM Press. 225

4. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Series editor C. A. R. Hoare. Prentice Hall In-
ternational, International Series in Computer Science, June 1993. ISBN number
0-13-020249-5 (pbk). 229

5. John Launchbury and Simon Peyton-Jones. Lazy functional state threads. In
PLDI’94: Programming Language Design and Implementation, Orlando, Florida,
pages 24–35, New York, June 1994. ACM Press. 225, 226

6. Matthieu Martel and Tim Sheard. Introduction to multi-stage programming using
metaml. Technical report, OGI, Portland, OR, September 1997. 211, 213

7. Martin Odersky and Konstantin Läufer. Putting type annotations to work. In
Proc. 23rd ACM Symposium on Principles of Programming Languages, pages 54–
67, January 1996. 225

8. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998. 207

9. G. D. Plotkin. Call-by-name, call-by-value- and the lambda-calculus. Theoretical
Computer Science, 1:125–159, 1975. 222

10. Amr Sabry and Philip Wadler. A reflection on a call-by-value. ACM Transactions
on Programming Languages and Systems, 19(6):916–941, November 1997. 223

11. Walid Taha, Zine-el-abidine Benaissa, and Tim Sheard. The essence of staged
programming. Technical report, OGI, Portland, OR, December 1997. 236

12. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the ACM-SIGPLAN Symposium on Partial Evaluation and se-
mantic based program manipulations PEPM’97, Amsterdam, pages 203–217. ACM,
1997. 211, 216

13. Walid Taha and Tim Sheard. Metaml: Multi-stage programming with explicit
annotations. Theoretical Computer Science, To Appear. 236

14. Philip Wadler. Comprehending monads. Proceedings of the ACM Symposium on
Lisp and Functional Programming, Nice, France, pages 61–78, June 1990. 226

Cayenne — A Language with Dependent Types

Lennart Augustsson

Department of Computing Sciences
Chalmers University of Technology
S-412 96 Göteborg, Sweden
augustss@cs.chalmers.se

http://www.cs.chalmers.se/~augustss

Abstract. Cayenne is a Haskell-like language. The main difference be-
tween Haskell and Cayenne is that Cayenne has dependent types, i.e., the
result type of a function may depend on the argument value, and types of
record components (which can be types or values) may depend on other
components. Cayenne also combines the syntactic categories for value
expressions and type expressions; thus reducing the number of language
concepts.

Having dependent types and combined type and value expressions makes
the language very powerful. It is powerful enough that a special mod-
ule concept is unnecessary; ordinary records suffice. It is also powerful
enough to encode predicate logic at the type level, allowing types to be
used as specifications of programs. However, this power comes at a cost:
type checking of Cayenne is undecidable. While this may appear to be a
steep price to pay, it seems to work well in practice.

Keywords: Type systems, language design, dependent types, module
systems

1 Introduction

Languages like Haskell [Hud92] and SML [MTH90] have type systems that are
among the most advanced of any language. Despite this there are things that are
inexpressible in these type systems. Dependent types, i.e., having types depend
on values, increases the expressiveness of type systems and many of the problems
of Hindley-Milner typing can be overcome.
Cayenne is a Haskell-like language that combines dependent types and first

class types, i.e., types can be used like values. The syntax for value and type
expressions is the same. Cayenne does not have a separate notion of modules;
records are used as modules, this means that the language for combining mod-
ules is also the usual expression language. This is in contrast with Haskell and
SML. Haskell has similar but different syntax for type and value expressions and
definitions. SML has different syntax for value, type, and module expressions
and definitions. It can be argued that they should look different, because they
are different. But we want to argue the opposite, the facilities for the three types
of expressions are similar, so why should they be different? In Cayenne they are

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 240–267, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Cayenne — A Language with Dependent Types 241

the same and exactly the same program constructs can be used on all levels,
thus reducing the number of concepts that you need to master.
Although dependent types have been used before in proof systems, e.g.,

[CH88], to our knowledge this is the first time that the full power of depen-
dent types has been integrated into a programming language.
We will now give some motivating examples, where we show problems in

Haskell that are solved in Cayenne. The differences between Haskell and Cayenne
will be explained as they occur.

1.1 The Type of printf

The C standard I/O library has a very useful function for doing output, namely
printf. The function printf takes a formatting string as the first argument
and then some additional arguments. The number of arguments and their types
depends on the formatting string. It is simple to write a similar function in
Haskell, but it will not type check.1

printf fmt = pr fmt "" where

pr "" res = res

pr (’%’:’d’:cs) res =

\ i -> pr cs (res ++ show (i::Int))

pr (’%’:’s’:cs) res =

\ s -> pr cs (res ++ s)

pr (’%’: c :cs) res =

pr cs (res ++ [c])

pr (c:cs) res =

pr cs (res ++ [c])

This is a very simplified version of printf, but as in the real version, the sub-
string “%d” marks an integer argument and “%s” marks a string argument. The
type of printf clearly varies with its first argument; e.g.,

printf "%d" :: Int -> String

printf "%s owes %d SEK to %s" ::

String -> Int -> String -> String

As we can see, the function is easy to write and works perfectly, but cannot
be given a type in Haskell.2

Cayenne solution The type of printf can easily be computed from the first
argument. All we need to do is to write a function that computes the right type.
The type of all types is called “#”3 in Cayenne.

1 The code given here is very inefficient, but that is easy to remedy.
2 Olivier Danvy has recently shown, [Dan98], that functions similar to printf can be
given a type with Hindley-Milner typing with a clever trick.

3 We would like to use the more familiar notation “*” for the type of types. This
might be possible, but it interacts badly with the use of “*” as an infix operator.

242 Lennart Augustsson

PrintfType :: String -> #

PrintfType "" = String

PrintfType (’%’:’d’:cs) = Int -> PrintfType cs

PrintfType (’%’:’s’:cs) = String -> PrintfType cs

PrintfType (’%’: _ :cs) = PrintfType cs

PrintfType (_ :cs) = PrintfType cs

printf :: (fmt::String) -> PrintfType fmt

printf fmt = pr fmt ""

pr :: (fmt::String) -> String -> PrintfType fmt

pr "" res = res

pr (’%’:’d’:cs) res =

\ (i::Int) -> pr cs (res ++ show i)

pr (’%’:’s’:cs) res =

\ (s::String) -> pr cs (res ++ s)

pr (’%’: c :cs) res =

pr cs (res ++ [c])

pr (c:cs) res =

pr cs (res ++ [c])

The function PrintfType mimics the recursive structure of printf, but it com-
putes the type instead of the value. E.g.,
PrintfType "%d" 7−→ Int -> String

The typing of printf is now
printf :: (fmt::String) -> PrintfType fmt

This example differs from Haskell in that the first argument (which has type
String) has a name, fmt, which can be used in the type expression. A minor
point to note is that λ-expressions in Cayenne have an explicit type on the bound
variable, whereas they do not in Haskell.
Another example of a function with a dependent type can be found in ap-

pendix B.

1.2 The Set “package”

Record types in Haskell (and SML) can contain values, but not types; sometimes
this can be inconvenient. To show an example of this we will use a simple set
of integers. It should support creating the empty set, the singleton set, taking
union, and testing for set membership. There are many possible ways to imple-
ment these sets and sometimes you want to have multiple implementations in a
program and choose dynamically which one to use (e.g., depending on the use
pattern). To be able to do this we would like to be able to store different set
implementations in a data structure.
We would want to define the set type something like

Cayenne — A Language with Dependent Types 243

data IntSet = IntSet {

type T,

empty :: T,

singleton :: Int->T,

union :: T->T->T,

member :: Int->T->Bool

}

Unfortunately, this is not possible since we cannot have a type in a record and
the name T would also not be in scope. This kind of construct is only available at
the module level in Haskell, but modules are definitely not first class objects in
Haskell; there are no operations on modules except for the importation of them.
SML allows this kind of definitions on the module level and has a rich language
for combining them, but they are still not first class objects, so they cannot be
put in a run-time data structure.4

Cayenne solution Cayenne records are different from Haskell records in several
respects: Cayenne records are not data types, they can contain types, and when
defining a record object the labels are bound within the record expression. The
sig keyword starts a record type and the struct keyword starts a record value.

The IntSet type could be defined like this

type IntSet = sig

type T

empty :: T

singleton :: Int->T

union :: T->T->T

member :: Int->T->Bool

An implementation could look like this

naÔveSet :: IntSet

naÔveSet = struct

abstract type T = Int->Bool

empty x = False

singleton x x’ = x == x’

union s t x = s x || t x

member x s = s x

This kind of record borrows features from Haskell modules, but they are still
first class objects.

4 It is not obvious that the first class modules proposed here extend easily to a language
like SML that supports side effects.

244 Lennart Augustsson

1.3 The Eq Class

The Eq class in Haskell has the following definition:5

class Eq a where

(==) :: a -> a -> Bool

This, quite correctly, states that (==) takes two arguments of the same type
and returns a boolean, but surely this is not all we expect from an equality. We
expect it to be a “real” equality, i.e., we most likely want it to be an equivalence
relation.6 The equivalence property of equality cannot be expressed in Haskell.
The best we can do is to have it as a comment, and hope that each equality
defined in the program is really an equivalence relation.

Cayenne solution Cayenne has no type classes so the Eq class problem must
be reformulated slightly. A class definition in Haskell would correspond to a type
definition of a record in Cayenne, and instance declarations in Haskell correspond
to values of that type. All dictionaries will thus be passed explicity in Cayenne.

The Eq “class” in Cayenne would be

type Eq a = sig

(==) :: a -> a -> Bool

To include an equivalence proof we must first have a way of expressing logical
properties. This is, in fact, easy since Cayenne types can, through the Curry-
Howard isomorphism, encode predicate calculus as types, see figure 1. Terms of
the different types correspond to the proof of the corresponding properties. This
is all well known from constructive type theory [NPS90], and well before that
[How80].

Predicate calculus Cayenne type

⊥ Absurd (or any empty type)
> any non-empty type
x ∨ y Either x y
x ∧ y Pair x y

∀x ∈ A.P (x) (x::A) -> P (x)
∃x ∈ A.P (x) {x::A; y::P (x)}

data Absurd =

data Pair x y = pair x y

data Either x y = Left x | Right y

Fig. 1. “Encoding” predicate logic as Cayenne types.

5 It also has a definition of (/=), but it is of no use in this example so we disregard it.
6 Or, even better, a congruence relation.

Cayenne — A Language with Dependent Types 245

We encode the absurd proposition (i.e., falsity) by the empty type, and all
types with elements encode truth. The dependent function type encodes uni-
versal quantification and records encode existential quantification. Proving a
property correspond to finding an element (i.e., constructing a value) in a type.
Since false logical statements correspond to the empty type we cannot find any
values in them, but in (constructively) true logical statements we can.
One way of solving our problem in Cayenne is to extend the Eq type like this:

type Eq a = sig

(==) :: a -> a -> Bool

equiv :: Equiv (LiftBin (==))

LiftBin is a function that maps a binary operation yielding a Boolean into a
corresponding relation. Equiv is a predicate on relations stating that the relation
is an equivalence relation.
The following auxiliary definitions are used above. Further differences be-

tween Haskell and Cayenne appear below: type variables must be bound, but
are often used as hidden arguments, introduced by the |-> function arrow, see
section 3.1 for further discussion.

data Absurd =

data Truth = truth

Lift :: Bool -> #

Lift (False) = Absurd

Lift (True) = Truth

LiftBin :: (a :: #) |-> (a -> a -> Bool) -> Rel a

LiftBin |a op = \ (x::a) -> \ (y::a) -> Lift (op x y)

type Rel a = a -> a -> #

Refl :: (a :: #) |-> Rel a -> #

Refl |a R = (x::a) -> x ‘R‘ x

Symm :: (a :: #) |-> Rel a -> #

Symm |a R = (x::a) -> (y::a) -> x ‘R‘ y -> y ‘R‘ x

Trans :: (a :: #) |-> Rel a -> #

Trans |a R = (x::a) -> (y::a) -> (z::a) ->

x ‘R‘ y -> y ‘R‘ z -> x ‘R‘ z

Equiv :: (a :: #) |-> Rel a -> #

Equiv R = sig

refl :: Refl R

symm :: Symm R

trans :: Trans R

Appendix A contains the complete code for this example with some instances.

246 Lennart Augustsson

2 Core Cayenne

Cayenne has three basic type forming constructs: dependent functions, data
types (sums), and dependent records (products).7 Core Cayenne is the subset
of Cayenne that has no syntactic bells and whistles, just the basic constructs.
We will start by looking at Core Cayenne and then at the various syntactic
shorthands. The syntax of Core Cayenne is given in figure 2. The grammar
disregards certain minor concrete syntax issues. There is no syntactic distinction
between expressions and types in Cayenne, as is reflected in the grammar.

expr ::= (varid :: type) -> expr function type
\ (varid :: type) -> expr λ expression
expr expr application
data { conid { type } | } sum type
conid @ type constructor
case varid of { arm } :: type sum scrutinization
sig { sign } record type
struct { defn } record formation
expr . lblid record selection
id variable
#n type of types

arm ::= (conid { varid }) -> expr ;
varid -> expr ;

sign ::= lblid :: type ;
lblid :: type = expr ;

defn ::= vis lblid :: type = expr ;
vis ::= private— public abs
abs ::= abstract— concrete
type ::= expr
varid ::= id
conid ::= id
lblid ::= id

Fig. 2. Core Cayenne abstract syntax grammar. Metasyntax: { } are used to
denote repetition of an arbitrary number of items.

2.1 Functions

Function expressions are written as λ-expressions. The bound variable must be
given a type. The function type is written like the λ-expression, but without the
leading “\”.

7 The terminology is a little confusing here, what in constructive type theory is usually
called dependent products is called dependent functions in this paper and what in
CTT is called dependent sums is called dependent records here. The latter termi-
nology is more in the tradition of programming languages.

Cayenne — A Language with Dependent Types 247

The big difference between the Cayenne function type and the Haskell func-
tion is that since the bound variable is available to the right of the arrow, the
result type of a function may depend on the value of the argument.

Function application is written with juxtaposition as usual.

Example:
\ (x::Int) -> inc x

which has type
(x::Int) -> Int

2.2 Data Types

Unlike Haskell, a data type (sum type) does not have to be given a name; there
is an expression that denotes each data type. E.g., “data False | True” is the
type of booleans.

Constructors are written in a way that is very different from Haskell. The con-
structor names used in a data type expression have no name restrictions (unlike
Haskell where they have to be capitalized) and need not be unique. Consequently,
given only the name of a constructor it is impossible tell what type it constructs.
Therefore, constructors are given with their types in Cayenne. E.g., “True@(data
False | True)” is one of the constructors for the boolean type, or, if “Bool”
has been defined, it can be written “True@Bool”. Constructor names are not
part of the usual name space; they can only occur in “@”-expressions and case
expressions and in the latter the type that they construct can be deduced.

Case expressions in Core Cayenne look a little different from Haskell. Only
simple patterns are allowed and all constructor patterns have to be parenthesised
to distinguish them from variable patterns. Apart from the scrutinized variable
and the case arms, the case expression also has a type attached. This type
expression gives the type of the arms of the case expression. Note that this
expression can contain the scrutinized variable so the type may depend on it.
The reason for having this type is that with dependent types it is not in general
possible to figure out the type of the case expression.

Example:
case l of

(Nil) -> True;

(Cons x xs) -> False;

:: Bool

An example with a dependent type:
case l of

(True) -> 1;

(False) -> "Hello";

:: (case l of (True) -> Int;

(False) -> String)

248 Lennart Augustsson

2.3 Records

The record type (product type) in Cayenne is the most complicated of the type
formers. The reason for this is that records also serve the purpose of modules in
most other languages.
A record type is written as sig followed by a signature for each component

of the record. The signature normally gives only the type of the component, but
it can also give the value of it. This feature is sometimes called a translucent
sum, and is described in more detail in section 4.1.
A record is formed by the struct keyword followed by bindings for all the

record components. Each binding gives the type and value of the component
as well as its visibility. The names of the record components (the labels) are in
scope within the record expression. This means that the bindings are mutually
recursive.8

The visibility for a record component determines how it will show up in the
type of the record. A private component does not show up at all in the type
of the record, a public abstract component has only its type, and a public
concrete component has both its type and value in the type of the record.
A record component, which occurs in (i.e., which is not private) the type

of the record, can be extracted with the usual dot notation.
Examples:

struct

private x :: Int = 1

public abstract y :: Int = x+1

public concrete z :: Int = x+2

has type
sig

y :: Int

z :: Int=3

Selection: r.y + r.z

2.4 The Type of Types

The type of types is #1, this type has type #2 which has type #3 etc. The reasons
for using a stratified type system are twofold: first, using “# :: #” would, even in
the absence of recursion, make the Cayenne type system unsound as a logic as it
would allow Girard’s paradox; second, the unstratified type system would make
it impossible during type checking to determine if an expression corresponds to
a type or a real value and it would be impossible to remove the types at runtime,
see section 6.1.
Note that there is no elimination construct for the # type, i.e., no casetype

construct. It would be possible and useful to have such a construct, but Cayenne
currently lacks it, partly because having it would make it impossible to remove
runtime type information, see 6.1.

8 Though there are restrictions on how the recursion may occur in the signatures to
ensure that the type can be viewed as a fixpoint of a Σ-type.

Cayenne — A Language with Dependent Types 249

3 Full Cayenne

Using Core Cayenne would be feasible, but quite tedious, just like using the bare
λ-calculus is. Cayenne has many syntactic constructs to make it more palatable
and closer to an ordinary functional language.

3.1 Hidden Arguments

Many functions have type arguments that seem to serve no purpose, except to
irritate the user. E.g.
if :: (a :: #) -> Bool -> a -> a -> a

for each use of if the type of the two branches must be given as the first argu-
ment.

To lessen this problem Cayenne uses a mechanism for leaving out certain
arguments at the application site. However, the arguments still must be given
when the function is defined. Hidden arguments introduce a new version of the
function type, the function abstraction, and the function application.

The function arrow in both the type and abstraction notation is written
|-> for hidden arguments. Application of a hidden argument uses infix |, but
normally a hidden argument does not need to be given at all.

In function definitions the hidden arguments should not be present on the left
hand side unless preceded by a |, i.e., the left hand side looks like an application.

Example:

if :: (a :: #) |-> Bool -> a -> a -> a

if (True) x y = x

if (False) x y = y

This “if” function can the be used as “if True 1 2”, or more explicitly “if
|Int True 1 2”.

The concept of hidden arguments is a syntactic device without any deep se-
mantic properties. The function type for hidden arguments should not be viewed
as a new type. It is completely compatible with the normal function type. It only
serves as a marker to aid the insertion of the hidden arguments. This view of
hidden arguments was presented in [ACN90] and later used in other systems like
Lego, [LP92], where the concept was formalized. Similar mechanism exist e.g.,
in Quest, [Car94], and Russell, [BDD89].

The current implementation of hidden arguments is quite weak and cannot
always find the hidden arguments even when it seems reasonable that it should.
It can find a hidden argument if the variable (a in the example) occurs in a
later argument type or the result type. In the future we will probably switch to
a more powerful method that introduces metavariables (in the sense of logical
frameworks) and tries to derive their values using more powerful methods such
as unification.

250 Lennart Augustsson

3.2 Syntactic Sugar

This is a brief list of syntactic extensions that can be regarded as mere “sugar”.

– If the variable bound in the function type does not occur anywhere it
can be dropped and the function type is thus written as in Haskell. E.g.
“(x::Int)->Int” can be written as “Int->Int” instead.

– Infix operators (with a fixed set of precedences) can be used. The same
conventions as in Haskell are used.

– The patterns in case arms can be written in the normal Haskell style with
nested patterns etc. The type part of case expression is only necessary if
the type of the right hand sides depend on the scrutinized expression.

– public can be omitted, since it is the default. concrete is the default for
type definitions, and abstract for other definitions.

– Function definitions can be written in the normal Haskell style with type
signatures and pattern matching. E.g.,

last :: (a::#) |-> List a -> a =

\ (a :: #) |-> \ (l::List a) ->

case l of

(x : (Nil)) -> x

(x : xs) -> last xs

can be written

last :: (a::#) |-> List a -> a

last (x : (Nil)) = x

last (x : xs) = last xs

– If a definition is preceded by the keyword type it is assumed to have type
and all its arguments have default type #. E.g.
P :: # -> # = \ (a :: #) -> a->Bool

can be written
type P a = a->Bool

– A data type definition can be written in the same way as in Haskell. This
corresponds to several bindings. First one for the type itself, then one for
each constructor in the type. E.g. the definition
data Maybe a = Nothing | Just a

correspends to the definitions

Maybe :: # |-> # =

\(a::#) |-> data Nothing | Just a

Nothing :: (a::#) |-> Maybe a =

\(a::#) |-> Nothing@(Maybe a)

Just :: (a::#) |-> a -> Maybe a =

\(a::#) |-> \(x::a) -> Just@(Maybe a) x

– Cayenne has a let expression that is like the Haskell let expression. This
can be translated into a record expression.

Cayenne — A Language with Dependent Types 251

– To make access to record components more convenient there is an open
expression that “opens” a record and makes its components available.
The open construct explicitly names the components that should be vis-
ible. E.g. “open movePoint d p use x, y in dist x y”. The “open”
expression can easily be translated to a “let” expression.

– A value of record type can be coerced to a value of a different record type
if the result type is the same as the original except that it has fewer fields.
The coercion is written “expr :: type” and translates to a let expression.

– Type signatures can be omitted in many places. Even if the basic rule is
that all Cayenne definitions should have a type signature it is easy to relax
this rule somewhat. With the relaxed rule Cayenne programs have about
the same number of type signatures as the corresponding Haskell program
would have and they place no big burden on the programmer.

– #1 can be written as #.
– A Haskell-like “do” notation can be used for monads.
– The Haskell layout rule is used to avoid braces and semicolons. The key-
words case, do, let, sig, and struct triggers it.

3.3 Modules

Cayenne does not really have any modules in the traditional sense, all it has is
named expressions that exist in a global name space. Module names are distigu-
ished by having a “$” in their names. The module name space can be viewed as
hierarchical with “$” as the name separator (like how UNIX path names use “/”
or how Java names use “.”). Module identifiers can be used freely in expressions
without any explicit import declaration (just as in Java).
A module definition looks like a simple definition except that it is preceeded

by the keyword module. The type in the definition is not necessary and it can
be left out. A module can also have concrete visibility. This plays the same
role here as it does for records, i.e., you can make the value of a module known
instead of only its type.
Some sample modules:

module foo$bar = struct

data Nat = Zero | Succ Nat

module foo$baz =

open System$Int use Int, (+) in

struct

inc :: Int -> Int

inc x = x+1

dec :: Int -> Int

dec x = x-1

Modules are the units of separate compilation. To compile a module, only
the types of the modules it refers to need be known.

252 Lennart Augustsson

4 The Cayenne Type System

4.1 Translucent Sums

Many Haskell modules export types in a non-abstract way, i.e., the type is ex-
ported so that not only the name of the type, but also its constructors are known.
E.g.

module Tree(Tree(..), depth) where

data Tree a = Leaf | Node (Tree a) a (Tree a)

depth :: Tree a -> Int

depth Leaf = 0

depth (Node l _ r) = 1 + (depth l ‘max‘ depth r)

If we try to write the corresponding Cayenne record we get

module ex$Tree = struct

data Tree a = Leaf | Node (Tree a) a (Tree a)

depth :: (a :: #) |-> Tree a -> Int

depth (Leaf) = 0

depth (Node l _ r) = 1 + (depth l ‘max‘ depth r)

which has type

sig

Tree :: # -> #

depth :: (a :: #) |-> Tree a -> Int

This is definitely not what we had in mind, because from this signature we can
only see that Tree is a type constructor, but we cannot see its definition. We
could try and remedy this by saying that to use a module, not only must its
signature be known, but its actual value as well. This way, we would have the
definition of Tree available. But this is also not what we intended, because this
would reveal the definition of depth, which we may not want to reveal to users
of the ex$Tree module.
For this reason we introduce the possibility for each record component to

specify if it should be fully known or only known with its type. We then write9

module ex$Tree = struct

concrete

data Tree a = Leaf | Node (Tree a) a (Tree a)

abstract

depth :: (a :: #) |-> Tree -> Int

depth (Leaf) = 0

depth (Node l _ r) = 1 + (depth l ‘max‘ depth r)

9 The abstract and concrete keywords are actually superfluous in this example be-
cause the default visibility is the same as those indicated by the keywords.

Cayenne — A Language with Dependent Types 253

which has type

sig

Tree :: # -> # =

data Leaf | Node (Tree a) a (Tree a)

Leaf :: (a::#) |-> Tree a =

\ (a::#) |-> Leaf@(Tree a)

Node :: (a::#) |-> Tree a -> a -> Tree a

-> Tree a =

\ (a::#) |-> \ (l::Tree a) -> \ (x::a) ->

\ (r::Tree a) -> Node@(Tree a) l x y

depth :: (a :: #) |-> Tree a -> Int

This is a very peculiar type because it not only specifies the types of the
Tree, Leaf, and Node components, but also their exact values. Any record of
this type will have a Tree etc. with exactly these values, whereas the value of
depth may differ.
This idea comes from the type system for the SML module system where

these types are called translucent sums, [Lil97], or the similar notion of singleton
kinds. A similar construct is also present in Cardelli’s Quest, where it is called
manifest definitions, [Car94].

4.2 Typing and Evaluation Rules

The Cayenne typing rules are given in table 1 and table 2.
Some simplifications have been made to the typing rules for the purpose of

presentation. In data type each constructor has exactly one argument which
must be of value type. Furthermore, the order of the definitions in a struct/sig
does not matter in real Cayenne, where as they do in the rules.
The stratification showed in the typing rules is also a simplification of the one

used in Cayenne. The type of types as used in the rules is #n, but in actuality
it is #n,m. The first subscript is derived as shown in the typing rules and the
second we get by replacing min by max in the Prod rule. The reason for two
subscripts is that the first number is necessary for getting the type erasure to
be possible, and the second one is necessary if we want the logic to be sound (if
recursion is removed).
The environment (or assumtions), Γ , in the typing rules may contain vari-

ables with their types, as is usually the case. But they may also contain variables
with their types as well as their values. The reason for the values is that we some-
times need values to enable reductions during type checking. It is the Rec rule
that introduces values into Γ .
The fact that Cayenne has dependent types shows up in a few places in the

typing rules. In the App rule the term f a has a type that may depend on x, so
x is replaced with the actual value in B. Furthermore, in the Case rule in each
arm the type of the arm may depend of the scrutinized variable so a substitution
is performed here as well.

254 Lennart Augustsson

The translucent sums show up in the SelE rule where a term e.l can be
reduced even if only the type of e is known. This reduction is only performed
during type checking and never during normal reduction (execution).
Because of a lack of time, we have not yet proved essential theorems about

the Cayenne type system, such as soundness and the subject reduction theorem.
While we believe them to be true, and they have been proved similar systems,
they have not proved for a system with dependent types and translucent sums.
The Cayenne evaluation rules, table 4, are unsurprising. Note that because

definitions in a struct are recursive some care has to be exercised.

A problem with substitution Substitution in Core Cayenne as described by
the rules in this section suffers from a problem: it does not really work; there are
some unavoidable name clashes. We illustrate the problem with an example. To
make the example shorter we omit types and use a let expression which could
be translated to a record expression.

struct

x = 1

z = let y = x

in struct x = y

As we can easily see the z component of this record is a record with an x
component with value 1. Let us apply the standard reduction rule for let, namely
let x = e in e′ 7−→ e′[x 7→ e].

struct

x = 1

z = struct x = x

This is clearly not the same value as we had before; the x has been captured
when it should not be. Note that we cannot rename either of the two xs since the
name of the labels appear in the type; renaming them would change the type.
This problem is annoying, but can be handled easily. All we need to do is to

have two different names for all labels. One name is the label itself as it appears
in the type and the other name is the name that is bound inside the record.
The second name is not part of the type and can clearly be α-converted when
necessary. To avoid cluttering the typing rules even more we will not introduce
any notation for this in the rules, instead we assume that the problem can be
handled if needed. A similar solution is used in [Bet98].

4.3 Type Checking

Type checking of Cayenne is basically simple, just because it is type checking
rather than type deductions, like e.g. Haskell uses. Type checking proceeds in
a single traversal of the syntax tree. On the way down the environment (Γ)
is extended with the types (and sometimes values) of bound identifiers. Since
Cayenne has explicit types the type of each bound identifier is known. On the

Cayenne — A Language with Dependent Types 255

Γ ` #n ∈ #n+1
Star

Γ ` A ∈ s
Γ, x ∈ A ` x ∈ A

Var

Γ ` A ∈ s Γ, x ∈ A ` B ∈ t

Γ ` (x::A)->B ∈ t
Pi

Γ, x ∈ A ` b ∈ B Γ ` (x::A)->B ∈ t

Γ `\(x::A)->b ∈ (x::A)->B
Lam

Γ ` f ∈ (x::A)->B Γ ` a ∈ A

Γ ` f a ∈ B[x 7→ a]
App

Γ ` A1 ∈ #1 . . . Γ ` An ∈ #1
Γ ` data C1 A1|. . .| Cn An ∈ #1

Data

Γ ` T ∈ #1
Γ ` Ck@T ∈ Ak->T

Con

where T ≡ data C1 A1|. . .| Cn An

Γ ` x ∈ data C1 A1|. . .| Cn An
Γ, x1 ∈ A1 ` e1 ∈ A[x 7→ C1 x1]

...
Γ, xn ∈ An ` en ∈ A[x 7→ Cn xn]

Γ `case x of { C1 x1->e1;. . .;Cn xn->en}::A∈ A
Case

Γ ` A1 ∈ #u1
Γ, l1 ∈ A1 ` A2 ∈ #u2

...
Γ, l1 ∈ A1, · · · , ln−1 ∈ An−1 ` An ∈ #un

...
Γ, l1 ∈ A1, · · · , ln ∈ An ` ej ∈ Aj

...

Γ `sig{ l1::γ1;. . . ln::γn} ∈ #min{ui}
Prod

where each γi is either Ai or “Ai = ej”

Table 1. Core Cayenne typing rules

256 Lennart Augustsson

Γ ` A1 ∈ s1
Γ,∆ ` e1 ∈ A1

Γ, l1 ∈ A1 ` A2 ∈ s2
Γ,∆ ` e2 ∈ A2

...
Γ, l1 ∈ A1, · · · , ln−1 ∈ An−1 ` An ∈ sn

Γ,∆ ` en ∈ An

Γ `
struct{ p1 a1 l1::A1=e1;. . . pn an ln::An=en}

∈ sig{ . . . li::γi;. . .}

Rec

where li is present iff pi = public,
γi is “Ai = ei” if ai = concrete otherwise Ai

∆ ≡ l1 ∈ A1 = e1, · · · , ln ∈ An = en

Γ ` e ∈ sig{ . . . li::γi;. . .}

Γ ` e.li ∈ Ai[. . . , lk 7→ e.lk, . . .]
Sel

Γ ` a ∈ A Γ ` B ∈ s Γ ` A ≈ B
Γ ` a ∈ B

Conv

Γ ` A ∈ s Γ ` δ
Γ, x ∈ A ` δ

Weak

Γ ` a ∈ A Γ, x ∈ A ` δ

Γ, x ∈ A = a ` δ
WeakE

Table 2. Core Cayenne typing rules, continued

Γ ` a ∈ A Γ ` b ∈ A Γ ` a ≈ b
Γ ` C[a] ≈ C[b]

Congr

where C[] is any context

Γ ` a ∈ A a 7−→ b
Γ ` a ≈ b

Red

Γ, x ∈ A = e ` Γ ` x ≈ e
Lookup

Γ ` e ∈ sig{ . . . li::Ai = ei;. . .}

Γ, l1 ∈ A1, · · · , ln ∈ An ` e.li ≈ ei
SelE

Table 3. Core Cayenne equality rules

Cayenne — A Language with Dependent Types 257

(“x::t->f)e 7−→ f [x 7→ e]
e.lk 7−→ ek[. . . , lk 7→ e.lk, . . .]

where e ≡ struct{. . . public ak lk::tk=ek;. . .}
case Ck@t e of . . . Ck xk-> ek;. . . 7−→ ek[xk 7→ e]

Table 4. Core Cayenne evaluation rules

(“(x::t)->f)∗ → “x->f∗, if t ∈ #1
(“(x::t)->f)∗ → f∗, if t /∈ #1

(f e)∗ → f∗ e∗, if e ∈ t and t ∈ #1
(f e)∗ → f∗, if e ∈ t and t /∈ #1

((x::t)->f)∗ → •
struct{ l1::t1=e1;. . . ln::tn=en}

∗ → struct{. . . lk=e
∗
k . . .}, for those lk

where tk ∈ #1
(e.l)∗ → e∗.l

sig{ . . . }∗ → •
(C@t)∗ → C

(case e of C1 x1-> e1;. . . Cn xn-> en)
∗ → case e∗ of C1-> e∗1;. . . Cn-> e

∗
n

data . . . ∗ → •
#∗n → •
x∗ → x, if x ∈ t, t ∈ #1
x∗ → •, if x ∈ t, t /∈ #1

Table 5. Type erasure transformation

(“x->f)e 7⇀ f [x 7→ e]
e.lk 7⇀ ek[. . . , lk 7→ e.lk, . . .]

where e ≡ struct{. . . ak lk=ek;. . .}
case Ck e of . . . Ck xk-> ek;. . . 7⇀ ek[xk 7→ e]

Table 6. Core Cayenne typeless evaluation rules

258 Lennart Augustsson

way up the type of each subexpression can the be computed and checked. A
complication arises when a typing rules has more than one occurence of a type,
like A in the App rule in table 1. For these cases we need to check if the two
types derived from the bottom up derivation are the same, and if they are not
identical the Conv rule can be used to make them equal (assuming the program
is type correct). For a strongly normalizing language without translucent types
the Conv rule is uses =β for ≈. This relation is easy to implement; just compute
the normal forms of the two types and compare those. Since Cayenne is not
strongly normalizing this is not an option. The equivalence of two arbitrary
expression is undeciable. For this reason, we can not implement anything but an
approximation of the Conv rule and the equality rules (table 3). This is a tricky
part of the Cayenne type checker since if the equivalence test is implemented in
a naÔve way type checking can easily loop.

4.4 Undecidability in Practice

So type checking Cayenne is undecidable. This is unfortunate, but unavoidable
for a language like Cayenne. How bad is it in practice to have an undecidable
type checker? This question can only be answered by practical experiments.
The Cayenne programs we have tried to date range from ordinary Haskell style
programs, to programs using dependent types, to proofs of mathematical propo-
sitions. The total size of these programs are only a few thousand lines, but so
far the experience shows that it works remarkably well.
Having undecidable type checking means that the type checker might loop.

This is clearly not a user friendly type checker. So instead the implemented
type checker has an upper bound on the number of reduction steps that it may
perform. If this limit is exceeded the type checker will report this. Most of
the type errors from the Cayenne compiler are similar to those that any other
language would give. Very infrequently does the type checker report that it did
not terminate within the prescribed number of steps. Most often, this is the
result of a type error, but sometimes the type expression is just too complicated
and the number of reduction steps must be increased (the number of reduction
steps is a compiler flag).
The type checker can thus give one of three answers: type correct (meaning

that the program will not go wrong when run), type incorrect, or “don’t know”10.
There are other languages with undecidable type checking, e.g., Quest [Car94]

(which has a type system based on Fω<) and Gofer [Jon94], but it is usually
more difficult to make these systems loop.

5 Cayenne as a Proof System

Since Cayenne has unrestricted recursion, this means that every type is inhabited
by at least one element, namely ⊥. Thus, proofs made in Cayenne cannot really

10 On a real machine Hindley-Milner type checking has the same problem, but the
third alternative is usually spelled “Out of memory” instead.

Cayenne — A Language with Dependent Types 259

be trusted as proofs, since any proposition can be proved by ⊥. If proper checking
is done, it is often11 possible to ensure that a proof is valid, but no such checking
is done at the moment.
Even if a proofs expressed in Cayenne cannot be trusted because they pass

the type checker it is still valuable to have the encoding of predicate logic in the
language. Firstly, it allows us to express properties about programs within the
language even if we provide no proofs at all. It is better to have this ability within
the language than to use comments or leave out those properties completely.
Secondly, even if a proof cannot be trusted one can argue that a proof that has
been checked, but may be ⊥, is better than a proof that is not checked at all.

6 Implementation

Implementing Cayenne is fairly straight forward; it is like any other functional
language. One decision that has to be made is what to do with types at runtime.

6.1 Erasing Types

Cayenne treats types like first class values. Does that mean that the types have
to be present at run time, passed around as arguments, stored in data structures,
etc? No, they do not. There is no language construct, e.g., casetype, that allows
a ground value — which is all that can be observed in a program — to depend
on a type. Hence, types do not have to be present at run time. Erasing types
consists of removing all arguments and record components that have type #n
or are functions computing something of type #n. In [Car88] it is claimed that
type erasing is not possible and that the distinction between compile-time and
run-time is blurred with dependent types. We claim that this is not the case
with the variant of dependent types used in Cayenne.
What we need to show is that evaluating an expression with types erased

yields the same result as evaluating it with the types left in.
Definition An expression, e, has value type if e ∈ t and t ∈ #1
Theorem If e has value type and e 7−→∗ v then e∗ 7⇀∗ v∗.
We first prove a useful lemma.
Lemma If e has value type, then e∗ contains no •.
Proof We assume that the expression to transform is of value type, and

show that each invocation of the transformation on a subexpression is also on
an expression of value type.
Cases A λ-expression “(x::t)->f has type (x::t)->r, where r is the type

of f . According to the assumption (x::t)->r has type #1 and typing rule Pi
shows that then r has type #1 as well. Thus the transformation of f is also on
an expression of value type.
For an application f e, according to the definition of ∗, the transformation

is only applied to e if it is of value type. f has type (x::t)->r and f e has type

11 Not always, of course, since then we would have to solve the halting problem.

260 Lennart Augustsson

r, if r has type #1 then, again according to typing rule Pi, (x::t)->r has type
#1, so the transformation of f fulfills the assumption.

The transformation cannot be applied to a function type since this does not
have value type.
For a record value struct{ . . . } the transformation is only applied to subex-

pressions of value type according to the definition of ∗.

If a record selection e.l is of value type then the field l must be of value type.
If one field of a record type type has type #1 then the whole record type has
type #1 according to typing rule Prod (which takes the min of all the types), so
the subexpression e (of e.l) must have value type.
The transformation cannot be applied to a sig{ . . . } value since it is not of

value type.

The lemma is trivially true for a contructor expression.

For a case expression the transformation is applied to the scrutinized expres-
sion, which is always of value type (typing rule Data) and to all the right hand
sides. The right hand sides are of value type if the whole case expressions is.

The transformation cannot be applied to a data value since it is not of
value type.

The transformation cannot be applied #1 since it is not of value type.

The lemma is true for variables according to the definition of ∗.

Corollary A transformed expression of value type contains no variables that
were not of value type in the original expression.

Proof Variables that are not of value types are translated to •, but there are
no • in the expression, hence there can be such variables.

Lemma The substitution lemma states that type erasure commutes with
substittion: (e[x 7→ t])∗ = e∗[x 7→ t∗].
Proof By structural induction over the expression syntax.

We can now return to proving the type erasure theorem. First we prove that
if e has value type and e 7−→ f then e∗ 7⇀ f∗ or e∗ = f∗. The theorem then
follows simply by induction on the length of the reduction sequence.

The single step version of the theorem is proved by case analysis on the three
different (typed) reduction kinds.

Cases If the reduction is (“x::t->f)e 7−→ f [x 7→ e] then the translation of
the redex is either (“x->f∗)e∗ in which case there is a corresponding untyped
reduction step (according to the substitution lemma). Or the translation of the
redex is f (if x and e do not have value type). In this case f∗ = f∗[x 7→ e∗]∗
since x does not occur in f∗ (according to the corollary).

If the reduction is a selection the selected label could either be left in the
transformed struct or it could have been erased. But since the expression e.l
has value type this means that the label has value type and it must thus be left
in the struct. There is then an exactly corresponding untyped reduction.

If the reduction is a case reduction there is an exactly corresponding untyped
reduction.

QED

Cayenne — A Language with Dependent Types 261

6.2 Keeping Types

By keeping types at runtime it is possible to do computations on types and
base control decision on the dynamic type of values. With runtime types we
could have a casetype language construct. Keeping types around at runtime
have some advantages, like mostly tag-free garbage collection, as used in TIL,
[TMC+96,Mor95].

6.3 The Current Implementation

The current implementation of Cayenne is written in Haskell and translates
Cayenne to untyped LML. The compiler consists of about 5500 lines, a third
of which is the actual type checker. The compiler parses Cayenne, does type
checking and various other checks, erases types and then translates the resulting
code into LML. The LML code is then compiled with the LML compiler, [AJ89],
with type checking turned off. This works because the LML compiler does not
rely on a the fact that the program is type correct in the Hindley-Milner type
system; all the compiler assumes is that the program “makes sense”.
A snapshot of the current implementation can be found on the Web at

http://www.cs.chalmers.se/~augustss/cayenne/.

7 Related Work

There are many logical frameworks (proof checking systems) that are based on
dependent types. Some examples, among many, are ALF [MN94,Nor93,ACN90],
CoC[CH86,CH88], ELF[Pfe89,Fra91,HHP93], Lego[Pol94], and NuPRL[Con86].
All these systems are primarily designed for making (constructive) proofs even
if many of them can also execute the resulting proofs or extract a program
from them. Our approach is different in that we want to make a programming
language, not a proof system, but of course there are big similarities.
There are few programming languages with dependent types.

Cardelli’s Quest, [Car94], have similarities with Cayenne, but the final version
of Quest does not have the full dependency where types can depend on values.
Russell, [BDD89], has dependent types, but the notion of type equality is “name
equality” rather than the “structural equality” of Cayenne. Russell does not
do full evaluation during type checking so it would not be able to do, e.g., the
printf example. Russell also has a different notion of what a type is.

8 Future Work

There are many ways to continue the work on Cayenne and related languages.
First, and foremost, is to gain more experience with a language with dependent
types, both to see how dependent types can be used and to see how undecidable
type checking works out.

262 Lennart Augustsson

Another interesting line of work is to make a partial evaluator for this kind
of language. Since types and values are combined, a partial evaluator would
serve both as a type specializer (as used in, e.g., [Aug93,PJ93]) and a traditional
partial evaluator.
To make the record types more useful, subtyping could be added. Subtyping

in the presence of dependent types has been studied in [Bet98].
As a proof of concept the Cayenne compiler should, of course, be rewritten

in Cayenne.

9 Acknowledgments

A big thanks to Jessica for improving my English. The programming logic group
at Chalmers has over the years provided me with enough background material
to finally try to make a programming language with dependent types. A special
thanks to Theirry Coquand for fruitful discussions and examples of how to write
type checkers for dependent types. Thomas Johnsson, Niklas Röjemo and Dan
Synek provided me with feedback on this paper as did the anonymous ICFP
referees.

References

ACN90. L. Augustsson, T. Coquand, and B. Nordström. A short description of An-
other Logical Framework. In Proceedings of the First Workshop on Logical
Frameworks, Antibes, pages 39–42, 1990. 249, 261

AJ89. L. Augustsson and T. Johnsson. The Chalmers Lazy-ML Compiler. The
Computer Journal, 32(2):127–141, 1989. 261

Aug93. Lennart Augustsson. Implementing Haskell Overloading. In Proc. 6th Int’l
Conf. on Functional Programming Languages and Computer Architecture
(FPCA’93), pages 65–73. ACM Press, June 1993. 262

BDD89. H. Boehm, A. Demers, and J. Donahue. A Programmer’s Introduction to
Russell. Technical report, Cornell University, 1989. 249, 261

Bet98. Gustavo Betarte. Dependent Record Types and Algebraic Structures in
Type Theory. PhD thesis, Department of Computing Science, University
of Göteborg, Göteborg, Sweden, February 1998. 254, 262

Car88. Luca Cardelli. Phase Distinction in Type Theory. Research report, DEC
SRC, 1988. 259

Car94. Luca Cardelli. The Quest Language and System. Research report, DEC
SRC, 1994. 249, 253, 258, 261

CH86. Thierry Coquand and Gérard Huet. The Calculus of Constructions. Tech-
nical Report 530, INRIA, Centre de Rocquencourt, 1986. 261

CH88. Thierry Coquand and Gérard Huet. The Calculus of Constructions. Infor-
mation and Computation, 76(2/3):95–120, 1988. 241, 261

Con86. R. L. Constable et al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986. 261

Dan98. Olivier Danvy. Formatting Strings in ML. Technical Report RS-98-5,
BRICS, Department of Computer SCience, University of Aarhus, Denmark,
March 1998. 241

Cayenne — A Language with Dependent Types 263

Fra91. Logical Frameworks. Logic programming in the LF logical framework. In
GÈrard Huet and Gordon Plotkin, editors, LICS’89, pages 149–181. Cam-
bridge University Press, 1991. 261

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defin-
ing Logics. JACM, 40(1):143–184, 1993. 261

How80. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, London,
1980. 244

Hud92. Paul Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language,March 1992. Version 1.2. Also in Sigplan
Notices, May 1992. 240

Jon94. Mark P. Jones. The implementation of the Gofer functional programming
system. Technical Report YALEU/DCS/RR-1030, Department of Com-
puter Science, Yale University, New Haven, Connecticut, USA, May 1994,
May 94. 258

Lil97. Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Mod-
ule Systems. PhD thesis, School of Computer Science, Carnegie Mellon
University, May 1997. CMU-CS-97-122. 253

LP92. Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual.
Technical report, LFCS Technical Report ECS-LFCS-92-211, 1992. 249

MN94. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof
engine. In Types for Proofs and Programs, LNCS, pages 213–237, Nijmegen,
1994. Springer-Verlag. 261

Mor95. Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon Uni-
versity, 1995. 261

MTH90. R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, 1990. 240

Nor93. Bengt Nordström. The ALF proof editor. In Proceedings 1993 Informal
Proceedings of the Nijmegen workhop on Types for Proofs and Programs,
1993. 261

NPS90. Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory. An Introduction. Oxford University Press, 1990.
244

Pfe89. Frank Pfenning. Elf: A language for logic definition and verified meta-
programming. In LICS’89, pages 313–322. IEEE, June 1989. 261

PJ93. John Peterson and Mark P. Jones. Implementing Type Classes. In Proceed-
ings of ACM SIGPLAN Symposium on Programming Language Design and
Implementation, June 1993. 262

Pol94. Robert Pollack. The Theory of Lego A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, University of Edinburgh, 1994. 261

TMC+96. David Tarditi, Greg Morrisett, Pery Cheng, Chris Stone, Robert Harper,
and Peter Lee. TIL: A Type-directed Optimizing Compiler for ML. Techni-
cal Report CMU-CS-96-108, School of Computer Science, Carnegie Mellon
University, February 1996. 261

264 Lennart Augustsson

A The Eq Class

module example$Eq =
#include Prelude
struct

data Absurd =

data Truth = truth

absurd :: (a :: #) |-> Absurd -> a
absurd i = case i of { }

type (<=>) a b = sig { impR :: a->b; impL :: b->a; }

concrete
Lift :: Bool -> #
Lift (False) = Absurd
Lift (True) = Truth

concrete
LiftBin :: (a:: #) |-> (a -> a -> Bool) -> Rel a
LiftBin |a op = \(x::a) -> \(y::a) -> Lift (op x y)

type Rel a = a -> a -> #

concrete
Refl :: (a :: #) |-> Rel a -> #
Refl |a R = (x::a) -> x ‘R‘ x

concrete
Symm :: (a :: #) |-> Rel a -> #
Symm |a R = (x,y::a) -> x ‘R‘ y -> y ‘R‘ x

concrete
Trans :: (a :: #) |-> Rel a -> #
Trans |a R = (x,y,z::a) -> x ‘R‘ y -> y ‘R‘ z -> x ‘R‘ z

concrete
Equiv :: (a :: #) |-> Rel a -> #
Equiv R = sig
refl :: Refl R
symm :: Symm R
trans :: Trans R

-- The Eq "class", with equivalence proof
type Eq a = sig
(==) :: a -> a -> Bool
equiv :: Equiv (LiftBin (==))

-- Equality on Unit
Eq_Unit :: Eq Unit
Eq_Unit = struct

Cayenne — A Language with Dependent Types 265

(==) (unit) (unit) = True

equiv = struct
refl (unit) = truth
symm (unit) (unit) p = p
trans (unit) (unit) (unit) p q = p

-- Equality on Bool
Eq_Bool :: Eq Bool
Eq_Bool = struct
(==) (False) (False) = True
(==) (True) (True) = True
(==) _ _ = False

equiv = struct
refl (False) = truth
refl (True) = truth
symm (False) (False) p = p
symm (False) (True) p = absurd p
symm (True) (False) p = absurd p
symm (True) (True) p = p
trans (False) (False) (False) p q = q
trans (False) (False) (True) p q = absurd q
trans (False) (True) _ p q = absurd p
trans (True) (False) _ p q = absurd p
trans (True) (True) (False) p q = absurd q
trans (True) (True) (True) p q = q

private
liftAndL :: (x,y::Bool) ->

Lift (x && y) -> Pair (Lift x) (Lift y)
liftAndL (False) _ a = absurd a
liftAndL (True) (False) a = absurd a
liftAndL (True) (True) t = (t, t)

private
liftAndR :: (x,y::Bool) ->

Pair (Lift x) (Lift y) -> Lift (x && y)
liftAndR (False) _ (a, _) = a
liftAndR (True) (False) (_, a) = a
liftAndR (True) (True) (t, _) = t

private
isoEquiv :: (a :: #) |->

(p, q :: Rel a) -> ((x, y :: a) ->
p x y <=> q x y) -> Equiv p -> Equiv q

isoEquiv p q iso eqp = struct
refl x = (iso x x).impR (eqp.refl x)
symm x y lp =
(iso y x).impR (eqp.symm x y ((iso x y).impL lp))

trans x y z lp lq = (iso x z).impR
(eqp.trans x y z ((iso x y).impL lp) ((iso y z).impL lq))

266 Lennart Augustsson

-- Equality on pairs.
Eq_Pair :: (a,b :: #) |-> Eq a -> Eq b -> Eq (Pair a b)
Eq_Pair eqa eqb = struct
(==) (x, x’) (y, y’) = eqa.(==) x y && eqb.(==) x’ y’

private
eq :: Pair a b -> Pair a b -> #
eq (x, x’) (y, y’) =
Pair (LiftBin eqa.(==) x y) (LiftBin eqb.(==) x’ y’)

private
eqEq :: (x,y::Pair a b) -> eq x y <=> Lift (x == y)
eqEq (x, x’) (y, y’) = struct
impR p = liftAndR (eqa.(==) x y) (eqb.(==) x’ y’) p
impL p = liftAndL (eqa.(==) x y) (eqb.(==) x’ y’) p

private
equivEq :: Equiv eq
equivEq = struct
refl (x, x’) = (eqa.equiv.refl x, eqb.equiv.refl x’)
symm (x, x’) (y, y’) (pxy, pxy’) =
(eqa.equiv.symm x y pxy, eqb.equiv.symm x’ y’ pxy’)

trans (x, x’) (y, y’) (z, z’) (pxy, pxy’) (pyz, pyz’) =
(eqa.equiv.trans x y z pxy pyz,
eqb.equiv.trans x’ y’ z’ pxy’ pyz’)

equiv = isoEquiv eq (LiftBin (==)) eqEq equivEq

B The Tautology Function

module example$taut =
#include Prelude
struct
data Nat = Zero | Succ Nat

concrete
TautArg :: Nat -> #
TautArg (Zero) = Bool
TautArg (Succ m) = Bool->TautArg m

taut :: (n::Nat) -> TautArg n -> Bool
taut (Zero) x = x
taut (Succ m) x = taut m (x True) && taut m (x False)

module example$tauttest =
#include Prelude
open example$taut use Nat, Zero, Succ, taut, TautArg in

Cayenne — A Language with Dependent Types 267

let id :: Bool -> Bool
id x = x

implies :: Bool -> Bool -> Bool
implies x y = not x || y

equ :: Bool -> Bool -> Bool
equ x y = implies x y || implies y x

in do Monad_IO
putStrLn (System$Bool.show (taut Zero True))
putStrLn (System$Bool.show (taut (Succ Zero) id))
putStrLn (System$Bool.show (taut (Succ (Succ Zero)) equ))

Haskell as an Automation Controller

Daan Leijen, Erik Meijer, and James Hook

Utrecht University
Department of Computer Science

{erik,daan}@cs.uu.nl

1 Introduction

Component-based programming and scripting support a style of rapid prototyp-
ing program development where reusable off-the-shelf software components are
glued together to build new applications. One of the reasons of Visual Basic’s
popularity is its ability to script ‘ready made’ GUI components in a fancy devel-
opment environment. Since all the hard work is done inside the components, not
only professional programmers but also end-users are able to create non-trivial
applications in a short period of time.
Visual Basic uses COM as the underlying component framework. COM is

a language independent binary standard for implementing and using software
components[2,1]. Vendors can use C++, Java, COBOL or any other language
suited for the specific task to create COM components. The second ingredient
that Visual Basic needs is the “glue” to compose different components together.
ActiveX is a standard set of COM interfaces that specify how components can
be composed and how they interact in an interactive and graphical environment
[5,4]. The ActiveX interfaces deal with things as drawing, event notification and
persistence. The language independence of COM allowed us to create a COM
binding for Haskell [14,16,17,15,10]. Through this COM binding, we can take
advantage of the enormous set of software components that is available to the
Visual Basic programmer.
Of course Haskell in not the only possible alternative to Visual Basic. How-

ever most contemporary scripting languages such as ECMAScript, Perl, Tcl,
etc. lack some of the essential properties of a truly high-level scripting language:
strong typing, parametric polymorphism and overloading for flexibility of compo-
sition without sacrificing type safety, the unconditional principles of abstraction,
parameterization and correspondence to exploit regularity and support reuse in
the small, lazyness to hide non-termination effects and monads to hide other
side-effects.
Many people consider monads and higher-order functions esoteric features,

but they are essential to make objects and methods first-class values and thus
composable and reusable. Strong typing catches many potential bugs at compile
time; most modern scripting languages issue the bug at run-time at the client-
site!
After a short introduction to Haskell, we start with a simple example that

uses a standard COM component (section 3). In section 4, we explain the basics

S.D. Swierstra et al. (Eds.): Advanced Functional Programming, LNCS 1608, pp. 268–289, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Haskell as an Automation Controller 269

Fig. 1. Visual Basic uses ActiveX to script components

of COM and show how these concepts carry over to Haskell. Section 5 focuses on
a special COM technology, called automation. After explaining how automation
is used in Haskell, section 6 will discuss some advanced features and constraints of
automation. The next section discusses a more involved example using automa-
tion and three COM components to create an interactive dictionary. Section 8
discusses various ways of exposing Haskell as a COM component and focuses
on one of them; the Script Server interface. This interface is explained in the
context of Haskell with some Visual Basic, DHTML and Java examples.

All the needed software and examples can be found at the HaskellScript
web-site at www.haskell.org/haskellscript.

2 Minuscule Introduction to Haskell

When interacting with the outside world or accessing object models, we have to
deal with side-effects. In Haskell [12], effectful computations live in the IO monad
[11,7,6]. A value of type IO a is a latently effectful computation that, when
executed, will produce a value of type a. The command getChar :: IO Char
will read a character from the standard input when it is executed.

Like any other type, latently effectful computations are first class citizens
that can be passed as arguments, stored in list, and returned as results. For
example putChar :: Char -> IO () is a function that takes a character and

270 Daan Leijen et al.

then returns a computation that, when executed, will print that character on
the standard output.

Effectful computations can be composed using the do{}-notation. The com-
pound command do{ a <- ma; f a } :: IO b is a latent computation, that,
when executed, first executes the command ma :: IO a to obtain a value
a :: a, passes that to the action-producing function f :: a -> IO b and then
executes (f a) to obtain a value of type IO b. For example, when executed the
command do{ c <- getChar; putChar c } reads a character from the stan-
dard input and copies it to the standard output.
In this paper we adopt style conventions that emphasize when we are dealing

with effectful computations. Specifically, all expressions of type IO are written
with an explicit do{}. In the same vein, values of functional type a -> b are
written as lambda-expressions \a -> b. To reflect the influence of the OO style,
we will use postfix function application object#method = method object to
mimic the object.method notation. Since methods are first class values, we can
compose them using the (##) operator, f##g = \a -> do{ b <- f a; g b }.
These conventions result in highly stylized programs from which it is easy to tell
the type of an expression by looking at its syntactic shape.

3 Using COM Components

In this section we will show how we can use a COM component in Haskell.
The Microsoft Agent Server is a COM component [3] that supports cartoon
characters (Genie, Merlin, and Robby) that can talk, move, perform animations
and even listen to commands. Agents can provide user-friendly user interaction
in applications such as Word or Excel, or interactively guide users through an
internet site.

Fig. 2. Three of the Agent characters

Haskell as an Automation Controller 271

3.1 MS Agents in Haskell

The following example is a deluxe version of the mother of all examples; we will
pop up the Genie character and have it say “Hello World!”. In order to use the
Agents, we must first import the module AgentScript.hs1.
To create an instance of a COM component, we use the coCreateObject

function. It takes the name of the component and the interface identifier (IID,
see section 4.1) of the initial interface that we want to talk to:

server <- coCreateObject "Agent.Server" iidIAgent

Once we created an instance of the agent server and thus obtained a reference
to the IAgent interface, we can use the methods of the IAgent interface. The
loadCharacter method loads a fresh character from a specified animation file,
while the unloadCharacter method discards the character.

loadCharacter :: String -> IAgent a -> IO (IAgentCharacter ())

unloadCharacter :: IAgentCharacter b -> IAgent a -> IO ()

Note how the self argument is the last argument in Haskell. This allows us
to use the (#) operator when calling the method:

genie <- server # loadCharacter "genie"

The IAgentCharacter interface has various method for animating the char-
acter:

showUp :: Int -> IAgentCharacter a -> IO ReqID

speak :: String -> IAgentCharacter a -> IO ReqID

play :: String -> IAgentCharacter a -> IO ReqID

hide :: Int -> IAgentCharacter a -> IO ReqID

The server processes the animations asynchronously, so that we can have sev-
eral characters acting in parallel. This enables our application code to continue
while the method is completing. Each of the animations returns a request-id
ReqID that uniquely identifies the command being executed. These request ids
are used for synchronizing multiple parallel agents. For our simple example they
can be ignored; the genie will show itself, greet the audience, speak a timeless
sentence and disappear without interacting with other agents:

module AgentDemo where

import AgentScript

slow :: Int

slow = 0

main :: IO ()

main =

1 This module is automatically generated, see section 5.4.

272 Daan Leijen et al.

do{ server <- coCreateObject "Agent.Server" iidIAgent

; genie <- server # loadCharacter "genie"

; genie # showUp slow

; genie # play "Greet"

; genie # speak "Hello world!"

; genie # hide slow

; server # unloadCharacter genie

}

Since methods and properties of COM components are exposed as normal
Haskell functions, a given interface can be seamlessly extended with new methods
and properties. The syntax for calling new, compound methods is exactly the
same as for primitive methods.
As an example, we will extend the characters repertoire with smooth anima-

tions. Besides animations like Greet, the characters also have a closing anima-
tions like GreetReturn. Such animation smoothly transitions the character back
to its normal state.

smoothPlay :: String -> IO b -> IAgentCharacter a -> IO ReqID

smoothPlay = \anim -> \action -> \character ->

do{ character # play anim

; action

; character # play (anim ++ "Return")

}

nothing :: IO ()

nothing = do{ return () }

This newly defined method can be used in just the same way as ‘primitive’
methods:

genie # show

genie # smoothPlay "Greet" nothing

genie # speak "Hello World!"

genie # smoothPlay "Wave" nothing

genie # hide

In this simple example, we are already reaping the benefits of explicitly
monadic functional programming by passing “latently effectfull computations”
as values to other functions. Ultimately scripting languages describe IO behav-
iors. By having IO behaviors as first-class values, and not just the side effect of
evaluation, we are able to support a compositional style of abstraction that is
not possible in traditional scripting languages. This benefit of using Haskell as a
scripting language is featured in earlier work, in which we develop parallel and
sequential combinators for animation behaviors of Microsoft Agents [14].
Because all methods are first-class values, we can also define custom control

structures. For example, Visual Basic language has the with keyword that allows
the programmer to execute a list of methods on a single object:

Haskell as an Automation Controller 273

With Genie

.Show

.Play "Greet"

End With

In Haskell, we can define a function ourselves with the same effect:

does :: object -> [(object -> IO a)] -> IO ()

Using this new function, we can rewrite the core of our example as:

genie ‘does‘ [showUp 0, play "Greet", speak "Hello", hide]

3.2 Exercises

1. Load and run the agent example yourself2.

2. Let Genie read the contents of a text-file instead of a fixed string.

3. Give a possible definition of the does function.

4 Essential COM

The only way to interact with a COM component is through one of its interfaces.
Each interface is uniquely identified by its interface identifier (IID). This allows
us to ask for a specific interface at run-time. In the previous example we used the
IID of the IAgent interface (iidIAgent) as an argument to the coCreateObject
function.

Every COM interface inherits from the IUnknown interface. The IUnknown
interface has three methods: addRef, release and queryInterface. The first
two methods manage the life-time of the component. A client never explicitly de-
stroys a component; it will call release to indicate that, as far as it is concerned,
the component may destroy itself. The component ultimately decides when it will
commit suicide, presumably when its reference count drops to zero. In garbage
collected languages like Haskell, the programmer never needs to worry about
calling release or addRef since the garbage collector will take care of that.

The queryInterface method navigates between all the interfaces that the
component supports. For example, we can ask an agent character if it also sup-
ports the IAgentBalloon interface:

balloon <- genie # queryInterface iidIAgentBalloon

If the call succeeds, balloon will be a new IAgentBalloon interface pointer
on the character component.

2 www.microsoft.com/msagent.

274 Daan Leijen et al.

4.1 Interface Types

What would the type of queryInterface look like ? Its argument is an inter-
face identifier and it returns a specific interface pointer with that interface ID;
in other words, the return type is dependent on the value of its argument. In
languages like C++ or Java, there is no way to express this dependency and
hence queryInterface is untyped and a type cast is needed. For example, in
C++ we would write:

IAgentCharacter* genie;

IAgentBalloon* balloon;

...

HRESULT hr;

hr = genie->QueryInterface(iidIAgentBalloon, (void**)balloon);

Luckily, we don’t need the full generality of dependent types to assign a type
to queryInterface. Parametric polymorphism can be used to create a typed
connection between the passed IID and the returned interface. In some sense,
queryInterface resembles a function like head :: [a] -> a where polymor-
phism ensures that the returned element is of the same type as the list elements.
In the same way, we ensure that the returned interface is of the same type as the
IID of the interface by parametrising the IID type with the resulting interface
type:

queryInterface :: IID iface -> IUnknown a -> IO iface

The above type expresses that if we query with IID of an interface iface,
we will have an interface iface as a result. The same trick can be used with the
coCreateObject function that takes the interface ID of initial interface that we
want to use. Actually, the type of both functions is less general since they can
not return any interface, but only interfaces that inherit from IUnknown (since
the garbage collector will call release). The real (and final) types are therefore:

queryInterface :: IID(IUnknown iface)

-> IUnknown a

-> IO (IUnknown iface)

coCreateObject :: String

-> IID(IUnknown iface

-> IO (IUnknown iface)

4.2 Inheritance

Surprisingly, polymorphism can also be used to express the inheritance relation-
ship of COM interfaces.
A method like queryInterface should accept both IUnknown, IDispatch

and IAgentCharacter interfaces (and in general any other interface inheriting
from IUnknown) but a method as Play should only accept interfaces inheriting

Haskell as an Automation Controller 275

from IAgentCharacter. Haskell does not have subtyping, but it is possible to
use polymorphism to model the inheritance relation.
The self argument in queryInterface has type IUnknown a, and the self

argument in play has type IAgent a. Both interfaces are parametrised with a
type variable. This type variable is used to encode the inheritance relation. For
each interface we will have an abstract data type that identifies that interface:

data Dispatch a

data Agent a

data AgentCharacter a

The next step is to define type synonyms for each interface that use these
abstract data types to encode the inheritance relation between them:

type IUnknown a = ...

type IDispatch a = IUnknown (Dispatch a)

type IAgent a = IDispatch (Agent a)

type IAgentCharacter a = IDispatch (AgentCharacter a)

That is, every interface pointer for an IAgentCharacter also is an interface
pointer for an IDispatch or an IUnknown! We can thus use queryInterface on
agent characters but we can’t use play on IUnknown interfaces. We can now also
understand the type for interface ID’s:

iidIDispatch :: IID (IDispatch ())

iidIAgent :: IID (IAgent ())

An iidIAgent is an interface ID for an IAgent exactly, expressed by instan-
tiating the type parameter to ().

4.3 IDL

We are have been talking about interfaces all the time but how are interfaces
actually specified? Normally, interfaces are defined using the interface description
language (IDL). Another possibility is to ship the interface specification in a
binary form, called a type library. The (freely available) OleView utility shows
IDL information for most available components on the system.

As an example of IDL, we show part of the IAgentCharacter specification:

[uuid(A7B93C8F-7B81-11D0-AC5F-00C04FD97575),

dual, oleautomation

]

interface IAgentCharacter : IDispatch {

HRESULT Play([in] BSTR animation, [out] long* reqid);

HRESULT Speak([in] BSTR text, [out] long* reqid);

...

};

276 Daan Leijen et al.

Everything between square brackets is an attribute. The [uuid] attribute
specifies the IID of the IAgentCharacter interface. The interface has methods
play and speak. Both return a HRESULT; COM’s standard way of returning
errors. HRESULT’s do not show up in Haskell since they are automatically checked
within the IO monad. Both return a request id (attribute [out]) and take a BSTR
as an argument (attribute [in]). The BSTR type is a unicode string with length
information. Haskell strings are translated to the BSTR layout when calling these
functions. This process is called marshalling [16]. The dual and oleautomation
attributes mark this interface as an automation interface. Before explaining how
we can define Haskell functions that call the methods of the IAgentCharacter,
we will first explain more about the automation technology.

5 Automation

At the most primitive level, calling methods on an interface is very much like
calling a virtual method on a C++ object. While this is great for compiled code,
it is not so good in an interpreted or highly dynamic environment. Interpreted
languages need to be able to build method calls at run-time: dynamic binding.
Automation is a technology that enables dynamic binding in COM. Any compo-
nent that implements the IDispatch interface supports dynamic binding. The
IDispatch interface implements four methods. Two of them allow a client to
obtain type information about the interfaces of the component while the other
two allow a client to dynamically construct a method call on the component.

Today, almost any COM component exposes its entire functionality through
both pure COM interfaces and through an IDispatch interface (so called dual
interfaces). Although Haskell can call both pure COM and automation interfaces,
this article will focus on automation interfaces.

Languages supporting automation interfaces are so-called automation con-
trollers. Haskell is an automation controller through the Automation module.
This module contains all the functionality to make automation just as easy to
use as in VB.

5.1 Using Automation

In Haskell, there is no (outside) difference between an automation and a COM
call. Actually, the agent example uses automation when calling the agent inter-
faces. In the Agent IDL specification, the dual attribute tells that this interface
can be both used as an automation interface and as a pure COM interface.
The oleautomation tells the IDL processor to check for conformance with the
automation calling requirements.

The methods of the Agent component are defined in Haskell with functions
from the Automation module. It exports a set of functions that make it very
easy to call methods on automation interfaces. The following sections show how
these functions are used to define automation methods and properties in Haskell.

Haskell as an Automation Controller 277

5.2 Methods

The Automation module exports a family of functions method n m that define
automation methods that take n arguments and return m results (section 5.2
explains these functions in more detail).
For example, some methods of the agent component can be defined as:

play :: String -> IAgentCharacter a -> IO ReqID

play = \animation -> \agent ->

do{ agent # method_1_1 "Play" animation }

moveTo :: Int -> Int -> IAgentCharacter a -> IO ReqID

moveTo = \x -> \y -> \agent ->

do{ agent # method_2_1 "MoveTo" x y }

The first argument of a method n m function is the name of the method that
we want to call.
Sometimes, the IDL specification also specifies a retval attribute besides an

out attribute. In this case, we should use the function n m family to define the
method. For example, the Play method could have been defined as:

HRESULT Play([in] BSTR animation, [out,retval] long* reqid);

The play definition in Haskell would then be:

play :: String -> IAgentCharacter a -> IO ReqID

play = \animation -> \agent ->

do{ agent # function_1_1 "Play" animation }

5.3 Properties

Besides methods, automation interfaces can also expose properties that can
be read and sometimes written (when there is no readonly attribute). The
propertyGet n family defines property reads that can take n arguments. The
propertySet n m family defines property writes that can take n arguments.
For example, a selection in a Word document is represented by the ISelection
interface. Among its properties are the font of the selection or the text in the
selection:

[..., dual, oleautomation]

interface IDocument : IDispatch {

[propget] ISelection* Selection;

...

};

[..., dual, oleautomation]

interface ISelection : IDispatch {

[propget] BSTR Text;

278 Daan Leijen et al.

[propget] IFont* Font;

...

};

In Haskell, we can define the properties of the ISelection interface as:

getText :: ISelection a -> IO String

getText = \selection ->

do{ selection # propertyGet_0 "Text" }

setText :: String -> ISelection a -> IO ()

setText = \text -> \selection ->

do{ selection # propertySet_1 "Text" text }

getFont :: ISelection a -> IO (IFont ())

getFont = \selection ->

do{ selection # propertyGet_0 "Font" }

setFont :: IFont a -> ISelection b -> IO ()

setFont = \font -> \selection ->

do{ selection # propertySet_1 "Font" font }

5.4 HaskellDirect

Although defining automation properties and methods by hand is fairly easy,
it can be quite cumbersome to translate a substantial interface. In collabora-
tion with Sigbjorn Finne and Simon Peyton-Jones, we have constructed an IDL
compiler, called HaskellDirect3 [16,17], that automatically generates appropri-
ate interface, method and property definitions. HaskellDirect can also generate
Haskell for pure COM interfaces and is able to package Haskell programs as
COM components.

5.5 Exercises

1. Use the OleView4 tool to view the type library for the Agent component.
2. Use OleView to generate IDL for JMail5.

6 Advanced Automation

We have seen how the [oleautomation] attribute checks an interface for con-
formance with the automation requirements. This section describes the require-
ments of automation and some other automation attributes.

3 http://www.dcs.gla.ac.uk/fp/software /hdirect/.
4 www.microsoft.com/com/resource/oleview.asp.
5 www.dimac.net.

Haskell as an Automation Controller 279

6.1 Variants

The [oleautomation] attribute checks that only VARIANT’s are used as argu-
ment or result. A VARIANT structure can contain a limited set of data types:
automation types. The most important are integers, doubles, strings, interface
pointers and arrays of variants.
In Haskell, constructor classes[18] are used to enforce the VARIANT contstraint

on automation types. Every automation type is an instance of the Variant class.
This class contains functions to marshal Haskell values to- and from VARIANT
structures. By constraining automation arguments to the Variant class, the type
checker will guarantee that no non-automation types are used as an argument.

method_n_m :: (

n≥0
︷ ︸︸ ︷

. . .,Variant a, . . .,

m≥0
︷ ︸︸ ︷

. . .,Variant b, . . .)
=> String -> ... -> a -> ... -> IDispatch d

-> IO (...,b,...)

function_n_m :: (

n≥0
︷ ︸︸ ︷

. . .,Variant a, . . .,

m>0
︷ ︸︸ ︷

. . .,Variant b, . . .)
=> String

-> ... -> a -> ... -> IDispatch d

-> IO (...,b,...)

propertyGet_n :: (

n≥0
︷ ︸︸ ︷

. . .,Variant a, . . .,Variant b)
=> String

-> ... -> a -> ... -> IDispatch d -> IO b

propertySet_n :: (

n>0
︷ ︸︸ ︷

. . .,Variant a, . . .)
=> String

-> ... -> a -> ... -> IDispatch d -> IO ()

6.2 Optional Arguments

Automation supports optional arguments via the [optional] attribute. When
the argument is left out, the object will choose some default value, which can
be specified using the [default] attribute. In Haskell, optional arguments are
always given, but have the Maybe type. This means that a programmer can either
pass Nothing, or use the Just constructor to pass a value.
For example, the ADO framework, a COM interface on top of the standard

ODBC database binding, defines the RecordSet interface:

[uuid(...),dual,oleautomation]

interface IRecordSet : IDispatch {

void Move([in] long NumRecords,

[in, optional] VARIANT Start);

...

};

280 Daan Leijen et al.

The Move method changes the current record. When the Start argument
is not given, it simple moves NumRecords ahead. However, instead of counting
from the current record, the Start argument can specify a (string) bookmark
to count from or a number specifying the start or end of the recordset. This
method is defined in Haskell as:

move :: Variant start => Int -> Maybe start -> IRecordSet a -> IO ()

move = \numrec -> \start -> \rs ->

do{ rs # method_2_0 "Move" numrec start }

7 Advanced Example

In this section we will develop a more advanced example that explains the mean-
ing of an English word. To achieve this it will use MS Word to retrieve the word,
Internet Explorer to look up the meaning in an on-line dictionary and Agents
to tell the meaning to the user.
As a first step, the agent character will say the selected word in an active

MS Word document.

module ReadDoc where

import AgentScript

main =

do{ server <- coCreateObject "Agent.Server" iidIAgent

; merlin <- server # loadCharacter "merlin"

; merlin ‘does‘

[showUp slow

, smoothPlay "Greet" nothing

, readSelection

, smoothPlay "Wave" nothing

, hide slow

]

The readSelectionmethod connects to the currently running Word applica-
tion using getActiveObject. The returned interface is the IDocument interface
of the currently active document. To retrieve the selected text, we first read
the Selection property that contains the active selection interface. The Text
property of this interface returns the text as a string.

readSelection = \merlin ->

do{ word <- getActiveObject "Word.Application"

; text <- word # getSelection ## getText

; merlin # speak text

}

Note how method calls are composed with the ## operator. Both getText
and getSelection are defined in the Word97module. However, since this module
is so big, we define the two properties by hand:

Haskell as an Automation Controller 281

getText :: IDispatch a -> IO String

getText = \selection ->

do{ selection # propertyGet_0 "Text" }

getSelection :: IDispatch a -> IO (IDispatch ())

getSelection = \document ->

do{ document # propertyGet_0 "Selection" }

7.1 Webster

Fig. 3. Merlin tells the meaning of “computer”

We will now extend the previous program such that Merlin tells the meaning
of a selected word instead of just repeating it. Merlin will retrieve the meaning of
the word the Webster online dictionary using the Internet Explorer component
to connect to the Webster web-site.

merlin # smoothPlay "Read"

(do{ merlin # tellMeaning (words text) })

The navigatemethod of the browser opens an URL. This is used to execute a
search on the Webster web-site. Using the Document property we get the interface
of the returned HTML document. From this document we retrieve the HTML
text with the InnerText property. The HTML source is than analysed and genie
will speak all found meanings:

tellMeaning = \words -> \merlin ->

case words of

{ [] -> do{ merlin # speak

282 Daan Leijen et al.

"Sorry, you have to specify a valid word" }

; (word:ws)

-> do{ ie <- coCreateObject

"InternetExplorer.Application"

iidIBrowser

; ie # queryWebster word

; txt <- ie # (getDocument

getBody

getInnerText)

; merlin # speak (meanings txt)

}

}

queryWebster :: String -> IWindow -> IO ()

queryWebster = \word -> \ie ->

do{ ie # navigate "http://www.m-w.com/cgi-bin/dictionary?va="

++word }

The meanings function parses the HTML and extracts the possible meanings
of the word. We will not define this function here but state that the powerful
list processing functions of Haskell are very convenient here.

7.2 Exercises

1. Using the InnerText property, write a console application that renders
user input directly in a web page.

2. Using a pretty printer and parser combinators, write a program that pretty
prints some program text in a Word document.

8 Interacting with other Languages

In the previous sections we discussed how Haskell can use components. How-
ever, it is also possible to use Haskell from a component. We currently offer the
following choices:

– Using HaskellDirect we can generate the wrapper code that encapsulates
a Haskell program as a COM component[17]. A client of the component
never needs to know that the component is written in Haskell. This is
a very attractive option that completely integrates Haskell with existing
tools and languages.

– There is an ActiveX Script Engine for Hugs. Any language that imple-
ments these interfaces can be used to script any ActiveX Script Host.
Examples of such hosts are the Internet Explorer, Windows 95/NT and
Internet Information Server. With this scripting engine, Haskell can be
used to do web page scripting, both on the server and client site[15].

Haskell as an Automation Controller 283

– We have implemented an automation interface around the Hugs inter-
preter. Using this interface, other components can load and execute Haskell
functions. The ActiveX Script Engine uses this interface internally to exe-
cute the Haskell code. In this article we will describe this interface and how
it enables Haskell to be integrated with Visual Basic and Java programs.

8.1 The Script Server Interfaces

The interfaces that we implemented around the Hugs interpreter are called
the Script Server interfaces. They basically represent the minimal functional-
ity needed to program a language from an external application. Any language
implementing those interfaces is called a script server. We designed the Script
Server interface in a language neutral way, it can be implemented for any lan-
guage; we are currently working on a script server implementation for the new
Haskell run-time system[8] and even for general dynamic link libraries (DLL’s).
Since a Script Server is a COM component, it can also be used from any COM
compliant language, like Visual Basic or Java.
A script is loaded with the LoadScriptmethod. The source can be specified

with a file path but also for example with an IStorage object. This feature
is used in the ActiveX script engine to load a script that resides in memory.
LoadScript returns an IScript interface.

[dual,oleautomation] interface IScriptServer : IDispatch

{

HRESULT LoadScript([in] VARIANT* source

, [out,retval] IScript** script);

};

Once we have obtained an IScript interface, we can use the Start method
to execute the main function of the script.

[dual,oleautomation] interface IScript : IDispatch

{

HRESULT Start (void);

HRESULT AddHostItem ([in] BSTR name

, [in] IDispatch* item);

HRESULT GetScriptItem([in] BSTR name

, [out,retval] IScriptItem** item);

HRESULT Expr ([in] BSTR expr

, [out,retval] IScriptItem** item);

};

For example, the following Visual Basic program starts the Haskell script
server and runs the main function of a script:

Dim scriptServer as IScriptServer

Dim script as IScript

284 Daan Leijen et al.

Set scriptServer = CreateObject("HugsScript")

Set script = scriptServer.LoadScript("Test.hs")

script.Start

8.2 Exporting Values from Haskell

Of course, we want to be able to call other functions than main. A client can get
access to Haskell functions with the GetScriptItem method. Before a function
in Haskell is visible to a client through GetScriptItem, it should be exposed
using the addScriptItem n m function, where n is the number of arguments and
m the number of results of the function. Since the function is exposed as an
automation method, its arguments and results should be in the Variant class.

addScriptItem_n_m :: (

n≥0
︷ ︸︸ ︷

. . .,Variant a, . . .,

m≥0
︷ ︸︸ ︷

. . .,Variant b, . . .)
=> String

-> (... -> a -> ... -> IO (...,b,...))

-> IO ()

For example, getChar :: IO Char is exported as:

main = do{ addScriptItem_0_1 "GetChar" getChar }

Note that a function like length :: [a] -> Int can only be exported by
constraining its polymorphic type to a type that belongs to the Variant class:

strLen :: String -> Int

strLen = length

main = do{addScriptItem "StrLen" (\s -> do{return (strLen s))}}

When a client calls GetScriptItem, it obtains an IScriptItem interface to
the exported Haskell function.

[dual,oleautomation] interface IScriptItem : IDispatch

{

HRESULT Eval([in] int numArgs,

[in,sizeis(numArgs)] VARIANT* args,

[out] VARIANT* result);

};

The Evalmethod calls the function and returns its results. The method takes
the number of arguments, an array of arguments and a pointer to the result
variant. However, this signature is only used with pure COM calls (i.e. C++).
When automation is used, the Eval method simply takes a variable number
of arguments6. This makes it much more convenient to use this interface from
languages as Visual Basic or Java.

6 This mechanism is implemented by intercepting an automation call at run-time and
coercing the arguments to the Eval signature above.

Haskell as an Automation Controller 285

8.3 Visual Basic and Haskell

Fig. 4. Computing the factorial with Haskell and VB.

As an example, we will create a hybrid program in Visual Basic and Haskell
that computes the factorial of a number. Haskell is well suited to compute the
factorial since it can use infinite precision integers to represent the possibly huge
numbers. Visual Basic is well suited for programming the interface to the user
since it has an excellent graphical environment where the interface can be ‘drawn’
by the programmer.
The front end is created in Visual Basic with a text input field, a button and

a text field in which the result is displayed. The program will create an instance
of the Haskell script server and will invoke the Haskell function Factorial on a
button click and update the result field accordingly.

Dim Script As IScript

Private Sub Form_Load()

Dim ScriptServer As IScriptServer

Set ScriptServer = CreateObject("HugsScript")

Set Script = ScriptServer.LoadScript("FacDemo.hs")

Script.Start

End Sub

Private Sub Button_Click()

Set Fac = Script.GetScriptItem("Factorial")

OutputBox.Caption = Fac.Eval(InputBox.Text)

End Sub

The Haskell program uses infinite precision Integer types to compute the
factorial:

module FacDemo where

import HScript

main =

do{ addScriptItem_1_1 "Factorial"

(\n -> do{return (factorial n)})

286 Daan Leijen et al.

}

factorial :: Integer -> Integer

factorial = \n ->

case n of

{ 0 -> 1

; n -> n * factorial (n-1)

}

8.4 Importing Values into Haskell

In the previous example, we exposed Haskell values using addScriptItem and
imported Haskell values using GetScriptItem. Dual, a client can expose val-
ues to Haskell using AddHostItem, which can be imported in Haskell using the
getHostItem function.
The AddHostItem method takes an IDispatch interface and a name as an

argument. For example, with clientside web scripting [15], Internet Explorer
will call AddHostItem with the its current window interface and the name
"window". An embedded Haskell script will access this window interface by call-
ing getHostItem. The functionality of the window can than be accessed from
the script.

<HTML>

<BODY>

<SCRIPT LANGUAGE="HaskellScript">

module Alert where

import HtmlScript

main = do{ window <- getHostItem "window"

; window # alert "An embedded Haskell script"

}

</SCRIPT>

</BODY>

</HTML>

8.5 Handling Events

Besides exposing Haskell functions, we can also register Haskell functions as
event handlers. The onEvent n m family of functions register a Haskell function,
that takes n arguments and returns m results, as an event handler.

onEvent_n_m :: (

n≥0
︷ ︸︸ ︷

. . .,Variant a, . . .,

m≥0
︷ ︸︸ ︷

. . .,Variant b, . . .)
=> String

-> (... -> a -> ... -> IO (...,b,...))

-> IDispatch d -> IO ()

Haskell as an Automation Controller 287

We can now redo the factorial example where we handle all events of the
VB program in Haskell. All the application logic is moved to Haskell and VB is
only used to draw the user interface. The VB program will create an instance of
HugsScript, add the button, the input field and the result field to the script and
run the main function.

Dim Script As IScript

Private Sub Form_Load()

Dim Server As IScriptServer

Set Server = CreateObject("HugsScript")

Set Script = Server.LoadScript("FacDemo2.hs")

Script.AddHostItem "button", Button

Script.AddHostItem "output", OutputBox

Script.AddHostItem "input", InputBox

Script.Start

End Sub

The Haskell program installs an event handler for the button and simply
returns. The click function is now automatically called when the user presses
the button.

module FacDemo where

import HScript

import MSForms

main :: IO ()

main =

do{ button <- getHostItem "button"

; button # onEvent_0_0 "Click" click

; return ()

}

click :: IO ()

click =

do{ input <- getHostItem "input"

; output <- getHostItem "output"

; text <- input # getText

; output # setCaption (show (factorial (read text)))

}

The script server interface is used extensively in a front end to the Hawk
system. Hawk is language to describe hardware circuits[13]. By using the Haskell
script server, it is possible to draw hardware circuits in the Visio CAD/CAM
application. The script server attaches events to the drawn Visio objects and
automatically generates appropriate Hawk code.

288 Daan Leijen et al.

8.6 Exercises

1. Import the Script Server type library in J++ and program a infinite pre-
cision calculator with Java and Haskell.

2. Implement a Tic-Tac-Toe game algorithm in Haskell ([9]) and construct
the user interface with some other tool (for example, DHTML, Delphi or
MFC).

9 Conclusions

We have shown how Haskell can be used as a scripting language for COM com-
ponents. Before the use of monads, interaction with the outside world was diffi-
cult to achieve in a functional language; now we can not only use a functional
language to interact with standard mass-market components, but it is even ad-
vantageous to do so. Although there are many scripting languages around, the
use of a strongly typed, higher-order language makes scripting considerably safer
and easier.

Acknowledgments

We would like to thank Sigbjorn Finne for continuous support and motivation
to adapt the HaskellDirect compiler to our needs.

References

1. Microsoft. The COM reference. Microsoft Press, 1992. 268
2. Dale Rogerson. Inside COM. Microsoft Press, 1997. 268

3. Microsoft. Programming Microsoft Agent. Microsoft Press, 1997. 270

4. David Chappel. Understanding ActiveX and OLE. Microsoft Press, 1996. 268
5. Kraig Brockschmidt. Inside Ole (second edition). Microsoft Press, 1995. 268

6. Philip Wadler. The essence of functional programming. 19’th Annual symposium
on Principles of Programming Languages, January 1992. 269

7. Simon Peyton Jones and John Launchbury. State in haskell. Lisp and symbolic
computation, 8(4):293–341, 1995. 269

8. Simon Marlow and Simon Peyton Jones. The new ghc/hugs runtime system.
http://research.microsoft.com/Users/simonpj/Papers/new-rts.ps.gz. 283

9. R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall,
1988. 288

10. Daan Leijen. Functional Components, Using COM components in
Haskell. Master’s thesis, University of Amsterdam, August 1998.
http://www.haskell.org/haskellscript. 268

11. Simon Peyton Jones and Philip Wadler. Imperative functional programming.
POPL, 20:71–84, 1993. 269

12. John Peterson (editor). Report on the programming language haskell, version 1.4.
Technical report, Yale university, http://www.haskell.org, April 1997. 269

Haskell as an Automation Controller 289

13. John Matthews, Byron Cook and John Launchbury. Microprocessor specification
in Hawk. ICCL, Chicago, Illinois, May 1998. 287

14. Simon Peyton-Jones, Erik Meijer and Daan Leijen. Scripting com components in
haskell. Fifth International Conference on Software Reuse, Victoria, BC, Canada,
June 1998. 268, 272

15. Erik Meijer, Daan Leijen and James Hook. Client side web scripting with
HaskellScript. Practical Aspects of Declarative Languages, Austin, Texas, Janu-
ary 1999. 268, 282, 286

16. Sigbjorn Finne, Daan Leijen, Simon Peyton Jones and Erik Meijer. H/direct,
a binary language interface for haskell. International Conference on Functional
Programming, Baltimore, September 1998. 268, 276, 278

17. Sigbjorn Finne, Daan Leijen, Simon Peyton Jones and Erik Meijer. Calling hell
from heaven and heaven from hell; creating com components in haskell. submitted to
the International Conference on Functional Programming, Paris, September 1999.
268, 278, 282

18. Mark P. Jones. A system of constructor classes: Overloading and implicit higher-
order polymorphism. FPCA’93: Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Denmark, pages 52–61, June
1993. 279

	front-matter
	fulltext
	Introduction
	Morphisms on Lists
	The List Catamorphism
	The List Anamorphism
	The List Hylomorphism
	Insertion Sort
	Selection Sorts

	Leaf Trees
	The Leaf-Tree Catamorphism
	The Leaf-Tree Anamorphism
	The Leaf-Tree Hylomorphism
	Merge Sort

	Binary Trees
	The Tree Catamorphism
	The Tree Anamorphism
	The Tree Hylomorphism
	Quicksort
	Heap Sort

	Paramorphisms
	The List Paramorphism
	Insert As Paramorphism
	Remove As Paramorphism

	Generalizing Data Structures
	Generalizing Quicksort
	Generalizing Heap Sort

	Conclusions

	fulltext_001
	Introduction
	The Abstraction-Specialisation Cycle
	Genericity in Programming Languages
	Path Problems
	The Plan
	Why Generic Programming?

	Algebras, Functors and Datatypes
	Algebras and Homomorphisms
	Functors
	Polynomial Functors
	Datatypes Generically
	A Simple Polytypic Program

	PolyP
	Regular Functors in PolyP
	An Example: psum
	Basic Polytypic Functions
	Type Checking Polytypic Functions
	More Examples of Polytypic Functions
	PolyLib: A Library of Polytypic Functions

	Generic Unification
	Monads and Terms
	Generic Unification

	From Functions to Relations
	Why Relations?
	Parametric Polymorphism
	Relators
	Occurs-In

	Solutions to Exercises

	fulltext_002
	Introduction
	Abstraction Versus Efficiency
	Minimum Depth of a Tree
	Decorating a Tree
	Partitioning a List

	Automating the Transition: Fusion and Higher Order Rewriting
	The MAG System
	Getting Acquainted
	Accumulation Parameters
	Tupling
	Carrying On
	Matching Typed lambda-Expressions
	Types
	Expressions
	Substitutions
	Matching

	Concluding Remarks
	Introduction
	Abstraction versus Efficiency
	Automating the Transition: Fusion and Higher Order Rewriting
	The MAG System
	Getting Acquainted
	Accumulation Parameters
	Tupling
	Carrying On
	Matching Typed lambda-Expressions

	fulltext_003
	Introduction
	Defining Languages
	Extending Languages
	Embedding Languages
	Overview

	Compositional Programs
	The Rep_Min Problem
	Table_Formatting
	Defining Catamorphisms
	Discussion

	Attribute Grammars
	The Rep_Min Problem
	The Table_Formatting Problem
	Comparison with Monadic Approach

	Pretty Printing
	The General Approach
	Improving Filtering
	Loss of Sharing in Computations
	Discussion

	Strictification
	Introduction
	Pretty Printing Combinators Strictified

	Conclusions

	fulltext_004
	Why Staging?
	Relationship to Other Paradigms
	Introducing MetaML
	The Bracket Operator: Building Pieces of Code
	The Escape Operator: Composing Pieces of Code
	The Run Operator: Executing User-Constructed Code
	The Lift Operator: Another Way to Build Code
	Lexical Capture of Free Variables: Constant Pieces of Code

	Pattern Matching Against Code
	A Staged Term Rewriting System
	Safe Reductions Under Brackets
	Safe-Beta
	Safe-Eta
	Safe-Let-Hoisting

	Non-standard Extensions
	Higher Order Type Constructors
	Local Polymorphism
	Monads
	Monads in MetaML
	An Example Monad
	Safe Monad-Law-Normalization Inside Brackets

	From Interpetors to Compilers Using Staging
	The While-Language
	The Structure of the Solution
	Step 1: Monadic Interpreter
	Step 2: Staged Interpreter

	Typing Staged Programs
	Type Questions Still to be Addressed

	Conclusion
	Exercises

	fulltext_005
	Introduction
	The Type of printf
	The Set ``package''
	The Eq Class

	Core Cayenne
	Functions
	Data Types
	Records
	The Type of Types

	Full Cayenne
	Hidden Arguments
	Syntactic Sugar
	Modules

	The Cayenne Type System
	Translucent Sums
	Typing and Evaluation Rules
	Type Checking
	Undecidability in Practice

	Cayenne as a Proof System
	Implementation
	Erasing Types
	Keeping Types
	The Current Implementation

	Related Work
	Future Work
	Acknowledgments
	The Eq Class
	The Tautology Function

	fulltext_006
	Introduction
	Minuscule Introduction to Haskell
	Using COM Components
	MS Agents in Haskell
	Exercises

	Essential COM
	Interface Types
	Inheritance
	IDL

	Automation
	Using Automation
	Methods
	Properties
	HaskellDirect
	Exercises

	Advanced Automation
	Variants
	Optional Arguments

	Advanced Example
	Webster
	Exercises

	Interacting with other Languages
	The Script Server Interfaces
	Exporting Values from Haskell
	Visual Basic and Haskell
	Importing Values into Haskell
	Handling Events
	Exercises

	Conclusions

