

Visual Basic Quickstart Guide

Improve your programming skills and design applications that
range from basic utilities to complex software

Aspen Olmsted

BIRMINGHAM—MUMBAI

Visual Basic Quick Start Guide
Copyright © 2023 Packt Publishing

All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kunal Sawant
Publishing Product Manager: Akash Sharma
Senior Editor: Rounak Kulkarni
Technical Editor: Shruti Thingalaya
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Joshua Misquitta
DevRel Marketing Coordinator: Sonia Chauhan
Business Development Executive: Samriddhi Murarka

First published: October 2023
Production reference: 1210923

Published by Packt Publishing Ltd
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB

ISBN 978-1-80512-531-0
www.packtpub.com

To the surviving family members of the many computer science students who were taken too soon.
Their creativity was too much for this world and I am sure they are developing great software projects

in the next world.

– Aspen Olmsted

Contributors

About the author
Aspen Olmsted is an associate professor and program director at Wentworth Institute of Technology
in the Computer Science department. He obtained a Ph.D. in Computer Science and Engineering
from the University of South Carolina. Before his academic career, he was CEO of Alliance Software
Corporation. Alliance Software developed N-Tier enterprise applications for the performing arts
and humanities market. Dr. Olmsted’s research focuses on developing algorithms and architectures
for distributed enterprise solutions that guarantee security and correctness while maintaining high
availability. Aspen mentors over a dozen graduate and undergraduate students in his Secure Data
Engineering lab each year.

I would like to, first and foremost, thank my loving and patient wife, Kirsten, and children, Freya and
Seamus, for their continued support, patience, and encouragement throughout the long process of
writing this book.

About the reviewer
Muhammad Hameem Ibne Kabir is passionate about visual coding and secure design and is presently
working as a freelance developer. He studied cybersecurity at New York University. He has also done
a number of courses on computer science from MIT and Harvard. Muhammed has designed user-
friendly and phonetically interrelated keyboard layouts for different languages. He has also developed
web-based and desktop apps to run them.

Preface xiii

Part 1: Visual Basic Programming and Scripting

1
The Visual Basic Family of Programming Languages 3

Technical requirements 3
Programming with Visual Basic.NET
Windows Forms 4
Hello, World! in Visual Basic.NET Windows
Forms 5
Installing Visual Basic.NET 5
Alternative installations of Visual
Basic.NET 6
Coding Visual Basic.NET Windows Forms
Hello, World! 6

Programming with Visual Basic
Classic 7
Hello, World! in Visual Basic Classic 7
Installing Visual Basic 6 8
Alternative installations 9
Running the Visual Basic 6 Hello,
World! program 9

Programming with VBA 9
Hello, World! in VBA 10

Coding a VBA Hello, World! from Excel 10

Programming with VBScript 11
Hello, World! in VBScript 11
Coding a Hello, World! VBScript with
Notepad 11

Programming with Classic ASP 12
Hello, World! in Classic ASP 12
Installing Classic ASP on Windows 12
Alternative installations 13
Coding Classic ASP Hello, World! with
Notepad 13

Programming in ASP.NET 14
Hello, World! in ASP.NET 14
Installing ASP.NET 15
Alternative installations 15
Coding ASP.NET Hello, World! with Visual
Studio 16

Summary 16

Table of Contents

Table of Contentsviii

2
Console Input and Output 17

Technical requirements 17
Programming input and output
with Visual Basic.NET 17
Simple interaction in Visual Basic.NET 18
Coding a simple interaction in Visual
Basic.NET 19

Programming input and output with
Visual Basic Classic 19
Simple interaction in Visual Basic Classic 19
Coding a simple interaction in
Visual Basic 6 20

Programming input and output with
VBA 20
Simple interaction in VBA 20
Coding a simple interaction with VBA
in Excel 21

Programming input and output with
Visual Basic Script 21
Simple interaction in VBScript 22
Coding a simple interaction in VBScript
with Notepad 22

Programming input and output with
Classic ASP 22
Simple interaction in Classic ASP 23
Coding a simple interaction in Classic ASP
with Notepad 23

Programming input and output with
ASP.NET 24
Simple interaction in ASP.NET 25
Coding a simple interaction in ASP.NET
with Visual Studio 26

Summary 28

3
Data Types and Variables 29

Choosing data types 29
Implicit versus explicit variable
declaration 30
Exploring the Option Explicit statement 31

Understanding variable scope 32
Best practices – naming
variables 33
Storing more than one value 34

Differences in data types between
family members 35
Differences in data types between VBScript
and VB6 35
Differences in data types between VBA
and VB6 35
Differences in data types between VB6 and
VB.NET 36

Summary 37

Table of Contents ix

4
Decision Branching 39

If statements 39
Case statements 41
Ternary operators 42
The VB.NET OrElse operator 42

The VB.NET AndAlso operator 43
The GoTo statement 44
Summary 45

5
Iteration 47

For loops 48
While loops 48
Do loops 49

Exit and Continue statements 50
Infinite loops 51
Summary 52

6
Functions and Procedures 53

Modularizing code in functions 53
Modularizing code in procedures 55
Understanding parameters in

functions and procedures 56
Return statement 57
Summary 57

7
Project Part I 59

Technical requirements 59
Building the project in the VB.NET
console 59
Coding a Visual Basic.NET console
calculator 61

Building the project in VB6 61

Coding a Visual Basic 6 calculator 62

Building the project in VBA 63
Coding a VBA calculator in Excel 64

Building the project in VBScript 64
Coding a VBScript calculator with
Notepad 66

Table of Contentsx

Building the project in Classic
ASP 66
Coding a Classic ASP calculator with
Notepad 68

Building the project in
ASP.NET 68
Coding an ASP.NET calculator with Visual
Studio 71

Summary 71

Part 2: Visual Basic Files and Data Structures

8
Formatting and Modifying Data 75

Modifying string data 75
Concatenation 75
Substring extraction 76
String replacement 76
Case conversion 77

Modifying numerical data 78
Mathematical operations 78
Rounding and truncation 79

Type conversion 80

Modifying date and time data 80
Creating date and time values 80
Date and time math 81
Date and time component extraction 82
Formatting numeric values 82
Formatting date and time values 83

Summary 84

9
File Input and Output 85

Working with directories and files 85
Working with files in VB.NET 85
Working with directories in VB.NET 86
Working with files in older VB family
members 88
Working with directories in older VB family
members 88

Writing test into files 89
Writing text in VB6 and VBA 90

Reading text from files 90
Reading text in VB6 and VBA 91

Writing binary data to files 91
Writing binary data in VB6 and VBA 92

Reading binary data from files 92
Reading binary data in VB6 and VBA 93

Summary 94

Table of Contents xi

10
Collections 95

Working with one-dimensional
arrays 96
Utilizing multidimensional
arrays 97
Handling arrays in early VB family
members 98

When and how to use lists 98
Storing data in a dictionary 100
Summary 102

11
Project Part II 103

Technical requirements 103
Building the project in VB.NET
Console 104
Coding the VB.NET console grading
tool 107

Building the project in VB6 107
Coding the VB 6 grading tool 111

Building the project in VBA 112
Coding the VBA grading tool in Excel 115

Building the project in VBScript 115
Coding the VBScript grading tool with

Notepad 118

Building the project in Classic
ASP 118
Coding the Classic ASP grading tool with
Notepad 120

Building the project in
ASP.NET 120
Coding the ASP.NET calculator with
Visual Studio 122

Summary 122

Part 3: Object-Oriented Visual Basic

12
Object-Oriented Programming 125

Classes and fields 126
Class declaration 126
Fields 126

Methods 127
Method declaration 128

Instantiating a class 129

Table of Contentsxii

One-to-one has-a
relationships 130

Summary 131

13
Inheritance 133

Inheritance in VB.NET 133
Inheritance differences in family
members 135
VB6/VBA 135

VB.NET (VB.NET) 135

Exception handling 136
IS-a relationships 137
Summary 137

14
Polymorphism 139

Polymorphism 139
Abstract classes 141

Sealed classes 142
Summary 143

15
Interfaces 145

Interfaces 145
Developing interfaces 146
Interface declaration 146
Implementing an interface 146

Using interface polymorphism 147

Standard interfaces 148
Summary 150

16
Project Part III 151

Technical requirements 151
Building the project in the
VB.NET console 151
Coding the Visual Basic.NET
console grading tool 160

Building the project in
ASP.NET 160
Coding an ASP.NET calculator with
Visual Studio 162
Summary 163

Table of Contents xiii

Part 4: Server-Side Development

17
The Request and Response Model 167

Classic ASP Request object 168
ASP.NET Request object 169
Classic ASP Response object 172

ASP.NET Response object 173
Summary 175

18
Variable Scope and Concurrency 177

Session scope 178
Application scope 179
Request scope and cookies 180

Request scope in ASP 181
Cookies in ASP 181

Summary 182

19
Project Part IV 183

Technical requirements 183
Building the project in Classic
ASP 183
Coding the Classic ASP grading tool with
Notepad 184

Building the project in
ASP.NET 185
Coding the ASP.NET server-side grade
averager with Visual Studio 187

Summary 187

20
Conclusions 189

Summing it all up 189
Variable declaration 189
Data types 190

Scope 190
Decision branching 191
Procedure modularization 192

Table of Contentsxiv

Collections 192
File handling 193
Object encapsulation 193
Inheritance 193
Polymorphism 193
Web application HTTP model and
concurrency 193

Further reading topics 194
VB6 forms development 194
VB.NET WinForms development 195
COM object creation 195

Suggested projects 197
Summary 197

Index 199

Other Books You May Enjoy 212

Preface

In this book, you will learn about the Visual Basic language and all its different use cases. This journey
will enable you to apply that understanding to maintain, enhance, administer, and secure Visual Basic
console or Windows applications, Visual Basic websites, or Visual Basic scripts. This book starts from
an understanding that many programmers will need to use Visual Basic for many different purposes.
In each chapter, we highlight topics across the many different use cases Visual Basic is used for.

When learning how to program in a new language, you always want to give yourself time to digest the
concepts. Many iterations of the topic help to solidify it in your mind. To get the most out of this book,
you are encouraged to have your computer open as you read the book. Another terrific approach is to
read a chapter for the first time and then go to your computer and revisit the examples by plugging
them in yourself on your computer.

I also encourage you to dig deep into your creativity and think of ways to use the skills we cover in a
creative project. I suggest several projects in the last chapter of the book, but you should try to find
something meaningful for you. Good luck!

Who this book is for
If you work in software engineering, information technology, or cybersecurity and need to maintain,
enhance, administer, or secure Visual Basic console or Windows applications, Visual Basic websites,
or Visual Basic scripts, then this book is for you.

At the time of writing this book, Microsoft is reducing its investment in Visual Basic. Despite that,
there are many software development jobs that involve maintaining, enhancing, administering, and
defending Visual Basic programs, websites, and scripts. These jobs will continue to exist for decades
to come. This book is designed for software developers and web developers who find themselves in
one of those jobs or want to acquire one of those jobs. This book presents all the different use cases
of Visual Basic in a concise way.

What this book covers
Chapter 1, The Visual Basic Family of Programming Languages, provides an overview of VB and its
use cases over the years.

Chapter 2, Console Input and Output, teaches you how to retrieve keyboard input and send the results
of computations to the computer screen.

Chapter 3, Data Types and Variables, discusses the different ways to store data in the computer memory
during the program execution.

Prefacexvi

Chapter 4, Decision Branching, talks about how to build different pathways inside of our code based
on an external environment such as input from the user.

Chapter 5, Iteration, shows how to repeat sections of code either a fixed number of times or until an
environment is in a certain state.

Chapter 6, Functions and Procedures, dwells on modularizing sections of code for reuse. This makes
it easier to have fewer bugs by only having one copy of code that does a specific thing.

Chapter 7, Project Part I, enables you to apply the programming skills you have learned to this point.

Chapter 8, Formatting and Modifying Data, explores the concept of rearranging data to use for display
or for saving externally.

Chapter 9, File Input and Output, shows how to read and write data from and to files on the disk drive.

Chapter 10, Collections, discusses storing multiple values in one variable and then accessing those
variables in code.

Chapter 11, Project Part II, provides an opportunity to apply the programming skills we have learned
up to this point.

Chapter 12, Object-Oriented Programming, deals with arranging code into objects. Each object can
have a state and actions it can perform.

Chapter 13, Inheritance, teaches us how to reuse code through the creation of taxonomies where we
specify generic functionality higher in the tree.

Chapter 14, Polymorphism, shows us how to allow VB to execute the proper version of a method at
runtime based on the context of the running program.

Chapter 15, Interfaces, explores code reuse through the definition of contracts for implementations
that can be developed later but executed by our code.

Chapter 16, Project Part III, allows us to apply the programming skills we have learned up to this point.

Chapter 17, The Request and Response Model, discusses the web application communication model
and how we send messages between partitions of our application.

Chapter 18, Variable Scope and Concurrency, explores handling multiple users on a web application.

Chapter 19, Project Part IV, provides a final opportunity to try out what we have learned.

Chapter 20, Conclusions, reviews the topics covered and suggests further learning and projects.

Preface xvii

To get the most out of this book
We cover many different platforms and use cases of Visual Basic in this book. You should focus on
the VB family members that make sense to you at the time of reading and revisit the book later to
think about the other family members. No prior programming experience is required, but if you have
programmed in another language, you will find VB comes easily to you.

Software/hardware covered in the book Operating system requirements
VB.NET Windows, macOS, or Linux
ASP.NET Windows
VB6 Windows
VBA Windows
VBScript Windows

For VB6, we recommend you install Windows XP in a virtual machine such as VirtualBox.

If you are using the digital version of this book, we advise you to type the code yourself or access the code
from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid
any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-. If there’s an update
to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The
following is sample Visual Basic.NET Windows Form code that would be stored in a file, with a name
such as program.vb.”

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

A block of code is set as follows:

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load
 MsgBox("Hello, World!")
 End Sub
End Class

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Choose Standard EXE as the project type.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xix

Share your thoughts
Once you’ve read Visual Basic Quickstart Guide, we’d love to hear your thoughts! Please click here to
go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1805125311
https://packt.link/r/1805125311

Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805125310

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805125310

Part 1:
Visual Basic

Programming and Scripting

In the first part of this book, we will focus on teaching you the basic programming skills needed to
write core code in any of the Visual Basic family members. If you have learned any other programming
language, all of these topics will be familiar, as most programming languages have similar topics.

This part has the following chapters:

• Chapter 1, The Visual Basic Family of Programming Languages

• Chapter 2, Console Input and Output

• Chapter 3, Data Types and Variables

• Chapter 4, Decision Branching

• Chapter 5, Iteration

• Chapter 6, Functions and Procedures

• Chapter 7, Project Part I

1
The Visual Basic Family of
Programming Languages

People have been programming Visual Basic for over 23 years. Microsoft has deployed Visual Basic in
many different environments over the years, including Windows Desktop development with Classic
Visual Basic and Visual Basic.NET Windows Forms. Visual Basic has also been used as a server-side
programming language in Classic ASP and ASP.NET. Visual Basic for Applications has been used to
embed Visual Basic in both Microsoft Office products along with many third-party products. Lastly,
many scripts have been used to control specialized hardware or automate administrative tasks. You
will walk away from this chapter with a strong foundation to meet your Visual Basic requirements.

In this chapter, we’re going to cover the following main topics:

• Visual Basic.NET Windows Forms

• Visual Basic Classic

• Visual Basic for Applications (VBA)

• Visual Basic Scripting Edition (VBScript)

• Classic ASP

• ASP.NET

Technical requirements
Each Visual Basic family member will have different technical requirements. We will provide installation
options and steps in each subsection for the different family members. Some of these products are old and
should be installed in a virtual machine (VM) or development machine that does not need to maintain
security. All example code for this book is available at the following GitHub repository: https://
github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-.

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-

The Visual Basic Family of Programming Languages4

Programming with Visual Basic.NET Windows Forms
Visual Basic.NET Windows Forms is a user interface (UI) framework to create desktop applications
on the Windows operating system. It allows developers to create visually appealing and interactive
applications using a drag-and-drop interface, without needing to write all the code from scratch.

Windows Forms provides a set of pre-built controls such as buttons, textboxes, labels, and menus that
can be easily placed on a form to create a UI. These controls can be customized by changing properties
such as color, size, and font, and they can be programmed to respond to user input and events.

Visual Basic.NET is a programming language that can be used to write code for Windows Forms
applications. It is a high-level language that is easy to learn and use, and it provides a wide range of
features to develop complex applications.

Some of the features of Visual Basic.NET Windows Forms include the following:

• Rapid application development: Windows Forms provides a quick and easy way to create
desktop applications using a visual designer.

• Data binding: Windows Forms supports data binding, which allows developers to connect
controls to data sources such as databases or XML files.

• Advanced controls: Windows Forms includes a set of advanced controls such as DataGridView
and the Chart control, which can be used to create more sophisticated UIs.

• Object-oriented programming (OOP): Visual Basic.NET supports OOP, which allows
developers to write reusable and maintainable code.

OOP
OOP is a programming paradigm based on the concept of objects, which are entities that
contain both data and behavior. In OOP, objects are created from classes, which define the
data and behavior the objects will have. The main principles of OOP include the following:

• Encapsulation: This principle involves bundling data and behavior into objects and hiding
the implementation details from the outside world. Encapsulation helps to ensure that objects
are used correctly and that the data they contain is not modified in unintended ways.

• Inheritance: This principle involves creating new classes by extending existing classes.
Inheritance allows new classes to inherit the data and behavior of their parent classes, and it
also allows them to add their unique features.

• Polymorphism: This principle allows objects of different classes to be treated as the same
object type. Polymorphism is achieved through interfaces or abstract classes, which define a
set of standard methods that can be used by all objects that implement the interface or inherit
from the abstract class.

OOP has many advantages, including improved code organization, increased code reusability,
and better maintainability.

Programming with Visual Basic.NET Windows Forms 5

Overall, Visual Basic.NET Windows Forms is a powerful tool to create desktop applications on the
Windows platform, and it is a popular choice among developers due to its ease of use and wide range
of features.

Unfortunately, Microsoft has announced they will not be evolving the Visual Basic.NET language in
the future. This announcement does not mean the language is dead – on the contrary, billions of lines
of production code out there will continue to execute for many decades. It just means new language
features will not be added to the language. Now that we have familiarized ourselves with Visual Basic.
NET Windows Forms, let us look at coding a simple example.

Hello, World! in Visual Basic.NET Windows Forms

Visual Basic.Net Windows Forms code is stored in text files with an extension of .vb. The following
is sample Visual Basic.NET Windows Form code that would be stored in a file, with a name such
as program.vb. Running the program will display a message box that displays Hello World!
on startup:

Public Class Form1
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles
MyBase.Load
 MsgBox("Hello, World!")
 End Sub
End Class

Next, we will see how to implement this code.

Installing Visual Basic.NET

The following steps will install Visual Basic.NET onto a Windows machine:

1. Download your Visual Studio Community Edition from this link: https://learn.
microsoft.com/en-us/visualstudio/install/install-visual-
studio?view=vs-2022.

2. Double-click the VisualStudioSetup.exe bootstrapper to start the installation.

3. Choose the .NET desktop development workload.

4. Let the installer finish.

Most users will use the Microsoft Windows operating system (OS) and Microsoft’s implementation
of Visual Basic.NET, but there are projects and products that allow installation on different OSs,
which we will discuss next.

https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2022

The Visual Basic Family of Programming Languages6

Alternative installations of Visual Basic.NET

The following list shows other options to work with Visual Basic.NET-compatible code:

• Mono: Mono is an open source development platform based on the .NET framework. It
includes a Visual Basic.NET compiler and VB.NET runtime. You can download Mono from
here: http://mono-project.com.

• .NET SDK: The .NET Software Development Kit (SDK) is a set of tools, libraries, and
components to develop applications that target the .NET platform. It includes everything you
need to build and deploy .NET applications, including a compiler, runtime, and various libraries.

The .NET SDK is available for multiple platforms, including Windows, Linux, and macOS. It
supports multiple programming languages, including C#, F#, and Visual Basic.

With the .NET SDK, developers can build a variety of applications, such as desktop applications,
web applications, mobile applications, games, and more. It also includes tools to build and
manage cloud-based applications, including tools to deploy to Microsoft Azure.

The .NET SDK is constantly evolving, with new features and updates being added regularly. It is
an essential tool for any .NET developer, providing everything they need to create high-quality,
robust applications. It can be downloaded from http://dotnet.microsoft.com.

Next up, we will program a simple example in VB.NET.

Coding Visual Basic.NET Windows Forms Hello, World!

The following steps will allow you to code and execute a Visual Basic.NET Windows Forms version
of Hello World!:

1. Start Microsoft Visual Studio.

2. Choose Create New Project.

3. Choose Windows Forms App and click Next.

4. Accept Default Project Name and Solution Name.

5. Change Location if you prefer your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. When the Designer loads, double-click on the form.

9. Enter the MsgBox line from the code example that we saw earlier.

http://mono-project.com
http://dotnet.microsoft.com

Programming with Visual Basic Classic 7

10. Click the green triangle on the toolbar above your code to run your program.

Figure 1.1 – Running your program

We will work with this same application example in different Visual Basic family members as we
continue our journey.

Programming with Visual Basic Classic
Visual Basic Classic (also known as VB6) is a programming language and integrated development
environment (IDE) that was developed by Microsoft. It was released in 1998 and was widely used to
develop desktop applications for the Windows operating system.

VB6 was the last version of the Visual Basic programming language before the introduction of .NET
Framework, and it uses a syntax similar to earlier versions of Visual Basic. The language was designed
to be easy to learn and use, and it was popular among beginners and experienced developers alike.

VB6 applications can be developed using the Visual Basic IDE, which includes a visual form designer,
code editor, and debugger. The language supports OOP concepts, such as encapsulation, inheritance,
and polymorphism.

Although Microsoft has stopped supporting VB6, many legacy applications continue to use the
language, and it remains a popular choice for small-scale Windows desktop application development.

Hello, World! in Visual Basic Classic

Visual Basic Classic code is stored in text files with an extension of .bas:

Private Sub Form_Load()
 MsgBox "Hello, World!"
End Sub

The Visual Basic Family of Programming Languages8

You will implement this code next.

Installing Visual Basic 6

The following steps are designed to install the original Visual Basic 6 Enterprise onto a Windows
machine. We recommend this is done in a virtual machine or Docker container, as some support files
are very old and vulnerable to legacy attacks.

VM
A VM is a software-based emulation of a physical computer or server. It allows multiple OSs
to run simultaneously on a single physical machine. Each OS can access virtual hardware
resources such as CPU, RAM, and storage.

VMs are commonly used in various contexts, including software development, testing, and
deployment, hosting multiple servers on a single physical machine, and running legacy
applications that require specific OSs.

There are several popular VM software packages, including VMware, VirtualBox, Hyper-V,
and KVM, each with advantages and disadvantages.

1. Download your language/architecture version of cd image for Visual Basic 6.0 Enterprise
from WinWorldPC: https://winworldpc.com/product/microsoft-visual-
bas/60.

2. The downloaded file is a compressed archive in the 7zip format. You can extract it with a ZIP
utility similar to http://www.7-zip.org.

3. Either mount the ISO image as a virtual drive or burn it to a CD.

4. Run the setup.exe program to install Visual Studio. (The key to enter is below the product
links on the WinWorldPC website.)

5. The setup will try to install an old Java VM. You can either allow it to do so, or you can refer to
the many blogs online that describe how to trick the setup program into not trying to install
the VM.

6. The setup program will ask you to reboot if you install the Java VM in the previous step. If
the program does not continue automatically, just go back to step 3 and start again, and it will
continue from where it left off.

7. Choose Product Install.

8. Choose Visual Basic Enterprise.

Again, most users will want to use the Microsoft version of Visual Basic Classic. There are alternatives,
which we will explore next. We will start by looking at some alternatives to Microsoft Visual Basic 6
that try to be compatible with the VB6 syntax.

https://winworldpc.com/product/microsoft-visual-bas/60
https://winworldpc.com/product/microsoft-visual-bas/60
http://www.7-zip.org

Programming with VBA 9

Alternative installations

The following list shows other options to work with Visual Basic 6-compatible code:

• WINE: This is an application that allows you to run Windows programs on Linux systems.
At the time of writing, Visual Basic 6 is listed at silver-level compatibility. Silver level typically
means there will be some visual issues, but the program will still run.

• TwinBasic: TwinBasic is a modern BASIC programming language. The language aims for
100% backward compatibility with existing VB6/VBA projects. In addition, TwinBasic aims
to become a complete replacement development environment, offering considerable new
features and improvements over the VB6 IDE. It can be downloaded from here: https://
twinbasic.com/.

• B4X: The B4X suite includes Basic for Android (B4A), Basic for iOS (B4i), Basic for Java
(B4J), and Basic for Arduino (B4R). The syntax is very much VB-inspired, but it is not 100%
compatible with VB6 syntax. Download it from here: https://www.b4x.com/.

• RAD Basic: The RAD Basic project goal is to have a 100% VB6-compatible development
environment. You can download it from https://www.radbasic.dev/.

• VB6 Installer: This tool makes the native installation of the original Visual Basic 6 smoother on
Windows 10 and 11. Download it from http://nuke.vbcorner.net/VS6Installer/
tabid/125/language/en-US/Default.aspx.

Next up, we will examine how to plug the example code into Visual Basic 6 and run the program.

Running the Visual Basic 6 Hello, World! program

The following steps will allow you to code and execute a Visual Basic 6 version of Hello World!:

1. Start Microsoft Visual Basic 6.

2. Choose Standard EXE as the project type.

3. When the designer loads, double-click inside the rectangle representing your form.

4. Enter the MsgBox line from the code example seen earlier.

5. Click the green triangle on the toolbar above your code to run your program.

Let’s move on to look at VBA.

Programming with VBA
VBA is a programming language that automates tasks in Microsoft Office applications, such as Excel,
Word, PowerPoint, and Access. VBA is primarily used to automate repetitive tasks and interact with
external applications.

https://twinbasic.com/
https://twinbasic.com/
https://www.b4x.com/
https://www.radbasic.dev/
http://nuke.vbcorner.net/VS6Installer/tabid/125/language/en-US/Default.aspx
http://nuke.vbcorner.net/VS6Installer/tabid/125/language/en-US/Default.aspx

The Visual Basic Family of Programming Languages10

VBA is a powerful language that can import and translate data, automate sequences of calculations,
and create custom forms and specialized reports. These powers lead VBA to be used by finance
professionals and data analysts who work with large amounts of data and perform complex analyses.
VBA is a powerful language that allows users to create functions, perform error handling, and use
advanced programming techniques such as loops and conditional statements. VBA is also licensed
from Microsoft or reproduced by third-party companies. A small sample of applications that host
VBA includes WordPerfect, LibreOffice, and CorelDRAW.

Hello, World! in VBA

VBA code is stored in text files with an extension of .bas when exported from the host. Often, the
code is stored in the host document, depending on the application host. The following is sample VBA
macro code, with a macro named test. Running the macro will display a message box that displays
Hello, World! on startup:

Sub test()
 MsgBox ("Hello, World!")
End Sub

You will implement this code shortly.

Installing VBA
VBA is installed by default with Microsoft Office applications. Other hosts may require you to
choose the option in the host installation.

Coding a VBA Hello, World! from Excel

The following steps will allow you to code and execute a VBA macro that displays Hello World!:

1. Start Microsoft Excel.

2. Click on the View menu.

3. Click the Macros button, and choose View Macros from the drop-down menu.

4. Type the name test as the macro name.

5. Click the Create button.

6. When the designer loads, double-click inside the rectangle representing your form.

7. Enter the MsgBox line from the code example seen earlier.

8. Click the green triangle on the toolbar above your code to run your macro.

Up next, we will look at the version of Visual Basic used for scripting.

Programming with VBScript 11

Programming with VBScript
VBScript is a scripting language that is based on the Visual Basic programming language. It is primarily
used to create simple scripts that automate tasks in Windows environments.

VBScript is a lightweight language that is easy to learn and use. It is commonly used to automate
repetitive tasks, such as file manipulation, data processing, and system administration. It can be used
to interact with Windows components, such as the registry, Windows Management Instrumentation
(WMI), and Active Directory.

VBScript is an interpreted language, which means that it is executed directly by the OS without the
need for a compiler. It can be run from the command line or embedded within other applications,
such as Microsoft Excel or Internet Explorer.

VBScript is supported by all modern versions of Windows and is often used in combination with
other scripting languages, such as PowerShell and Batch files.

Hello, World! in VBScript

VBScript code is stored in text files with an extension of .vbs. Often, the code is stored in the filesystem
where the script will be executed. The following is sample VBScript code that is stored in a file named
test.vbs. Running the script will display a message box that displays Hello, World! on startup:

MsgBox "Hello, World!"

You will implement this code shortly.

Installing VBScript
In modern Windows versions, VBScript is part of Windows Script Host. By default, the primary
scripting language with a new Windows installation is VBScript.

Coding a Hello, World! VBScript with Notepad

The following steps will allow you to code and execute a VBScript that displays Hello World:

1. Start Notepad.

2. Enter the MsgBox line from the code example shown earlier.

3. Save the file with the name test.vbs in your root folder.

4. Run CMD to go to Command Prompt.

5. Type cscript test.vbs and press the Enter key.

In the next section, VBScript will be used on the server side of web development.

The Visual Basic Family of Programming Languages12

Programming with Classic ASP
Classic Active Server Pages (ASP) is a server-side scripting technology used to create dynamic web
pages and applications. Microsoft’s first version of ASP was in the late 1990s as part of the Microsoft
ActiveX technology.

Classic ASP uses VBScript as its default scripting language, but it can also be used with other scripting
languages. Some examples of other languages include JScript and PerlScript. VBScript allows
developers to program scripts that run on the server side into HTML pages. This scripting allows for
the creation of dynamic content that changes based on environmental variables, works with data in
databases, and performs other server-side tasks.

Classic ASP historically was used to develop web applications that ran on Microsoft Internet
Information Services (IIS) servers. Classic ASP has often been used with data stored in Microsoft
SQL Server, MySQL, or Oracle databases.

Despite being replaced by ASP.NET, Classic ASP is still widely used in some organizations and
industries, particularly to maintain legacy applications and support older systems.

Hello, World! in Classic ASP

Classic ASP code is stored in text files with an extension of .asp. The code is stored in the filesystem
where Internet Information Services (IIS) hosts websites. The following is sample Classic ASP code
that is stored in a file named test.asp. Displaying the web page will display a message in HTML
with the words Hello, World!:

<!DOCTYPE html>
<html>
<body>
<%
 Response.Write("Hello World!")
%>
</body>
</html>

You will implement this code shortly. The code is a mix of VBScript, with the <% %> tags and HTML
outside the tags. IIS will replace the code in the <% %> tags with the output from the execution.

Installing Classic ASP on Windows

Classic ASP is installed with IIS. Follow these steps to install both IIS and the ASP development
features on your development box or inside a VM:

1. Click Start Menu in Windows.

2. Click on Control Panel.

Programming with Classic ASP 13

3. In Control Panel, click Programs and Features.

4. Click Turn Windows features on or off.

5. Click on the + symbol to expand Internet Information Services.

6. Expand World Wide Web Services.

7. Expand Application Development Features.

8. Select ASP.

9. Click OK.

Classic ASP was so popular that alternative products were developed to be compatible with it, which
we will look at next.

Alternative installations

ASP Classic is not compiled by default, as it is an interpreted language. The server reads the ASP
Classic code, interprets it, and generates HTML output that is sent to the client’s web browser. This
interpretation process can result in slower performance compared to compiled languages, such as
C# or Java.

However, there are third-party tools available that can compile ASP Classic code into machine code,
which can improve performance and provide other benefits, such as increased security and the ability
to obfuscate code. Some popular tools to compile ASP Classic code include the following:

• ASP Compiler: A commercial tool that compiles ASP Classic code into native machine code.
It also provides a number of features such as code optimization and obfuscation.

• SmartAssembly: A commercial tool that can compile ASP Classic code into a native Windows
executable. It also provides features such as code optimization, obfuscation, and error reporting.

• CodeWall: A free tool that can compile ASP Classic code into a native Windows executable.
It provides features such as code obfuscation and resource compression.

It’s worth noting that while these tools can provide performance benefits, they can also introduce
additional complexity and require changes to the deployment process. Therefore, it’s important to
carefully evaluate the benefits and drawbacks of compiling ASP Classic code before deciding to use
one of these tools.

Coding Classic ASP Hello, World! with Notepad

The following steps will allow you to code and execute a VBScript that displays Hello World!:

1. Start Notepad.

2. Enter all the code from the code example shown earlier.

The Visual Basic Family of Programming Languages14

3. Save a file with the name test.asp in the root web directory (this is typically c:\inetpub\
wwwroot).

4. Open a web browser.

5. Enter the URL: http://127.0.0.1/test.asp.

Next, we will look at the newest version of server-side code from Microsoft.

Programming in ASP.NET
ASP.NET is a web application framework developed by Microsoft that allows developers to create
dynamic web applications using a variety of programming languages, such as C# and Visual Basic.NET.
It provides several features and tools that make it easier to build, test, and deploy web applications.

ASP.NET allows developers to build web applications using different programming patterns, including
Model-View-Controller (MVC) and Web Forms architecture. The MVC pattern provides a definite
separation of concerns between the three main components in the architecture – model, view, and
controller. The model represents the data and business logic, the view is used to display the data to
the user, and the controller handles user input and interacts with the model and the view. In contrast,
Web Forms provides more of a desktop development approach, allowing developers to create web
pages containing server-side controls and events.

ASP.NET provides several features that make it easier to build robust and scalable web applications.
These features include built-in support for caching, session management, and authentication. ASP.NET
also integrates with other Microsoft technologies such as SQL Server, Windows Communication
Foundation (WCF), and Windows Workflow Foundation (WF).

ASP.NET is compatible with a wide range of web servers and operating systems, including Microsoft
IIS, Apache, and nginx. ASP.NET also supports a variety of client-side scripting technologies, such
as JavaScript and Ajax. These client-side technologies allow a developer to create interactive and
responsive web applications.

Hello, World! in ASP.NET

ASP.NET code is stored in text files with an extension of .vb. The file is code behind and has the same
starting name as the HTML stored in the ASPX file. The code is stored in the filesystem where IIS hosts
websites. The following is sample ASP.NET code that is stored in a file named WebForm1.aspx.
vb. Displaying the web page will display a message in HTML with the words Hello, World!:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load
 Response.Write("Hello, World!")
End Sub

You will implement this code shortly.

http://127.0.0.1/test.asp

Programming in ASP.NET 15

Installing ASP.NET

ASP.NET Development is installed with Visual Studio Community Edition. Follow these steps to
install the ASP.NET development features:

1. Download Visual Studio Community Edition 2019 (Visual Basic is not supported in ASP.NET
apps in the 2022 edition) from https://visualstudio.microsoft.com/vs/
older-downloads/.

2. Double-click the VisualStudioSetup.exe bootstrapper to start the installation.

3. Choose the ASP.NET and web development workload.

4. Let the installer finish.

ASP.NET is designed to be installed on a production server without the development tools. We will
look at that installation next.

Alternative installations

Windows Server – ASP.NET is installed with IIS in Windows Server production environments. Follow
these steps to install both IIS and the ASP.NET development features in your production box:

1. Click Start Menu in Windows.

2. Click Control Panel.

3. In Control Panel, click Programs and Features.

4. Click Turn Windows Features on or off.

5. Expand and navigate to Internet Information Services | World Wide Web Services | Application
Development Features.

6. Select the latest ASP.NET version.

7. Click OK.

Note
Microsoft maintains instructions on installing ASP.NET on Linux servers: https://learn.
microsoft.com/en-us/dotnet/core/install/linux.

https://visualstudio.microsoft.com/vs/older-downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://learn.microsoft.com/en-us/dotnet/core/install/linux
https://learn.microsoft.com/en-us/dotnet/core/install/linux

The Visual Basic Family of Programming Languages16

Coding ASP.NET Hello, World! with Visual Studio

The following steps will allow you to code and execute an ASP.NET web page that displays Hello
World!:

1. Start Microsoft Visual Studio.

2. Choose Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you prefer your code in a different folder.

6. Accept the default framework.

7. Click the Create button.

8. Choose Web Forms.

9. When the designer loads, navigate in the solution explorer and right-click on the solution.

10. Choose Add from the pop-up menu.

11. Choose New Item from the pop-up menu.

12. Choose Web Form Visual Basic.

13. Click the Add button.

14. Right-click on the HTML editor, and choose View Code from the pop-up menu or Source
from the tabs.

15. Enter the Response.write line from the earlier code example.

16. Click the green triangle on the toolbar above your code to run your program.

That concludes our high-level investigation into the different family members of Visual Basic.

Summary
In this chapter, you were introduced to six different environments where Visual Basic programming
is relevant. Over the past three decades, programmers have used all these methods to solve business
needs with Visual Basic. In future chapters, we will build up your understanding of Visual Basic
syntax and semantics and apply that knowledge to these six different environments. In Chapter 2, we
will specifically look at how we can get data from users as input and send information back to them
as output.

2
Console Input and Output

Every algorithm in computing requires taking in some data as input and outputting the results somehow.
In this chapter, we will discuss simple ways to interact with a user in each Visual Basic family member.
For gathering input from the user in this chapter, we will focus on reading data from a keyboard used
by the user on the client of the applications we will develop. For output, we will send raw data back
to the user's screen in a simple model of rows of text with line delimiters.

In this chapter, we’re going to cover the following main topics:

• Programming input and output with Visual Basic.NET

• Programming input and output with Visual Basic Classic

• Programming input and output with Visual Basic for Applications (VBA)

• Programming input and output with VBScript

• Programming input and output with Classic ASP

• Programming input and output with ASP.NET

Technical requirements
Please make sure you complete the steps to install and code with the Visual Basic family member
from Chapter 1.

Programming input and output with Visual Basic.NET
The Console class in Visual Basic.NET allows a program to interact with a raw console for input
and output. In the previous chapter, we utilized a project template for creating the Windows Forms
app. This chapter will use the Console App project template to give us easy access to the Console
class. Console App projects can run on Microsoft Windows, Linux, and macOS operating systems.

Console Input and Output18

For output, we can utilize the Write and WriteLine methods of the Console class to output
data to the screen. Here are some details to think about:

• The Console.Write and Console.WriteLine methods take a string parameter and
send it to the console

• The Console.Write method leaves the cursor at the end of the output so further output
continues on the same line

• Console.WriteLine sends the cursor to the following line

We can use the ReadLine method of the Console class to input data from the keyboard. Here
are some details to think about:

• Console.ReadLine returns a string of text that was read up to the enter key

• We can use the string returned from the method in any expression

Next, let’s look at a simple interaction between the code and the user.

Simple interaction in Visual Basic.NET

The following Visual Basic.Net code will utilize the Console.WriteLine method to request the
user to give their name. The code uses Console.ReadLine to retrieve the user’s name. Lastly, the
Console.WriteLine displays the greeting to the console.

Module Program
 Sub Main(args As String())
 Dim name As String
 Console.WriteLine("What is your name?")
 name = Console.ReadLine()
 Console.WriteLine("It is nice to meet you " + name)
 End Sub
End Module

The first line in the code declares a variable named Name to store the value returned from the keyboard.
The second line in the code will display the message to the user and a question about their name. The
third line will wait for the user to enter a value followed by the enter key. Finally, the fourth line will
combine the literal string, "It is nice to meet you" with the value stored in the Name
variable and displayed on the screen. You will implement this code next.

Programming input and output with Visual Basic Classic 19

Coding a simple interaction in Visual Basic.NET

The following steps allow you to code and execute a Visual Basic.NET Windows Forms version of
Hello World:

1. Start Microsoft Visual Studio.

2. Choose to Create New Project.

3. Choose Console (.NET Framework) and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you prefer your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. Enter the code example from the earlier section.

9. To run your program, click the green triangle on the toolbar above your code.

As we progress through this chapter, you will see that each VB family member has similar methods
for input and output.

Programming input and output with Visual Basic Classic
VB Classic does not have a method to develop console applications. Visual Basic Classic was designed
to build applications that run only on Windows. For simple input and output, we can use two functions:

• InputBox: Displays a string passed into the method, draws a box for the user to enter their
response to the prompt, and returns the value entered

• MsgBox: Displays a message box with the string passed in

Simple interaction in Visual Basic Classic

Here is the code for a simple interaction between the user and the program in Visual Basic Classic:

Private Sub Form_Load()
 Dim name As String
 name = InputBox("What is your name?")
 MsgBox ("It is nice to meet you " + name)
End Sub

Console Input and Output20

The first line in the code declares a variable named Name to store the value returned from the keyboard.
The second line utilizes the InputBox method to draw an input box for the user to enter their name.
The returned value is stored in the variable named Name. The third line will combine the literal string
"It is nice to meet you" with the value stored in the name variable and display it in a
message box. You will implement this code next.

Coding a simple interaction in Visual Basic 6

The following steps allow you to code and execute a Visual Basic 6 version of Hello World:

1. Start Microsoft Visual Basic 6.

2. Choose Standard EXE as the project type.

3. When the Designer loads, double-click inside the rectangle representing your form.

4. Enter the code from the example in the previous section.

5. To run your program, click the green triangle on the toolbar above your code.

In our next section, we will tackle input and output in VBA, which looks very similar to what we did
in VB 6.

Programming input and output with VBA
VBA, like Visual Basic Classic, will only run in Windows applications. For simple input and output,
we can use two functions:

• InputBox: Displays a string passed into the method, draws a box for the user to enter their
response to the prompt, and returns the value entered

• MsgBox: Displays a message box with the string passed in

Simple interaction in VBA

Running the following macro will display an input box that prompts the user for their name and then
displays a message box greeting the users:

Sub test()
 Name = InputBox("What is your name?")
 MsgBox ("It is nice to meet you " & Name)
End Sub

The first line in the code utilizes the InputBox method to draw an input box for the user to enter
their name. The returned value is stored in the variable named Name. The second line will combine
the literal string "It is nice to meet you" with the value stored in the name variable and
display it in a message box. You will implement this code in the following section.

Programming input and output with Visual Basic Script 21

Coding a simple interaction with VBA in Excel

The following steps allow you to code and execute a VBA macro displaying Hello World:

1. Start Microsoft Excel.

2. Navigate to the View menu.

3. Click the Macros button and choose View Macros from the drop-down menu.

4. Type the name test into the macro name.

5. Click the Create button.

6. When the Designer loads, double-click inside the rectangle representing your form.

7. Enter the two lines from the code example in the previous section.

8. Click the green triangle on the toolbar above your code to run your macro.

We will now move on to input and output in VBScript, which is similar and different from what you
have seen so far.

Programming input and output with Visual Basic Script
CScript and WScript are two scripting engines used in the Windows operating system to run scripts
written in VBScript and other scripting languages.

CScript is a command-line-based scripting engine that runs scripts in a command prompt window.
It is primarily designed for running scripts that require no user interface or graphical output and is
often used for system administration tasks. CScript is typically used for running scripts in batch files
or scheduled tasks, as it provides more control over the execution of the script.

On the other hand, WScript is a GUI-based scripting engine that can display graphical output such
as message boxes and dialog boxes. It is primarily designed for running scripts that require user
interaction or display information to the user. WScript is typically used for running scripts from
within a graphical environment, such as the Windows desktop or Windows Explorer.

CScript and WScript are part of the Windows Script Host (WSH) environment and can run scripts
written in VBScript, JScript, and other scripting languages. The choice between CScript and WScript
depends on the script’s requirements and the environment in which it will be run. For this chapter,
we will utilize CScript.

Confusingly, both CScript and WScript include a built-in object named WScript. The WScript object
contains two beneficial properties for console input and output. The properties we will utilize are
the following:

• StdOut: This property is an object that represents the console’s Standard Output. A method on
this object named Write takes text as a parameter and sends the text to StdOut. By default,
StdOut will be the screen but can be redirected on execution to a file or other output device.

Console Input and Output22

• StdIn: This property is an object that represents the console’s Standard Input. A method
on this object named ReadLine returns data from StdIn. By default, StdIn will be the
keyboard but can be redirected on execution from a file or other input device.

Simple interaction in VBScript

Here is the code for a simple interaction between the user and the program in VBScript:

 Dim name
 WScript.StdOut.Write("What is your name?")
 name = WScript.StdIn.ReadLine()
 WScript.StdOut.Write("It is nice to meet you " & name)

The first line in the code declares a variable named Name to store the value returned from the keyboard.
The second line in the code displays the message to the user with the question about their name. The
third line will wait for the user to enter a value followed by the Enter key. Finally, the fourth line will
combine the literal string "It is nice to meet you" with the value stored in the variable
named Name and displayed on the screen. You will implement this code in the following section.

Coding a simple interaction in VBScript with Notepad

The following steps allow you to code and execute a VBScript displaying Hello World:

1. Start Notepad.

2. Enter the four lines from the code example from the preceding section.

3. Save the file with the name test.vbs in your root folder.

4. Run CMD to go to a command prompt.

5. Type cscript test.vbs and press the Enter key.

We think about input and output from a web application perspective in the following two sections.
It may feel very different, but you will get the hang of it quickly.

Programming input and output with Classic ASP
Classic ASP is a server-side scripting language that allows you to generate dynamic content for web
pages. With Classic ASP, you can interact with users via HTML forms and process the data submitted
by users. For example, to interact with users via HTML, you can create HTML forms that collect user
information and send that data to a Classic ASP script on the server.

Programming input and output with Classic ASP 23

Simple interaction in Classic ASP

To implement the simple interaction example in Classic ASP, we will utilize a single ASP page for
simplicity. The HTML form can be stored separately from the ASP page that receives the data. The
following is a sample Classic ASP code stored in a single file named test.asp. Displaying the web
page will be an input box to enter the user’s name. A submit button will be available that calls back
to the same page, and if the name is passed in, it will display the greeting back to the user:

<!DOCTYPE html>
<html>
<body>
<form method="get">
 What is your name? <input name="name">
 <input type="submit">
</form>
<%
 dim name
 name = Request.QueryString("name")
 if name<>"" then
 Response.Write("It is nice to meet you " & name)
 end if
%>
</body>
</html>

You will implement this code in the next section. The code is a mix of VBScript with the <% %> tags
and HTML outside the tags. IIS will replace the code in the <% %> tags with the output from the
execution. The first line inside the VBScript block declares a variable to hold the name. The second
line inside the VBScript block retrieves the name from the request passed to the page. The third line
checks if a value of the name was passed in. The fourth line only runs if there is a value for the name
passed in, and it will display the greeting back by concatenating the name with the string literal.

Coding a simple interaction in Classic ASP with Notepad

The following steps allow you to code and execute a VBScript displaying Hello World:

1. Start Notepad.

2. Enter all the code from the code example in the previous section.

3. Save the file with the name test.asp in the root web directory (This is typically, c:\
inetpub\wwwroot).

4. Open a web browser.

Console Input and Output24

5. Enter the URL: http://127.0.0.1/test.asp.

Figure 2.1 – Simple interaction with Notepad output

The preceding screenshot shows the desired output as visible on the web browser.

In the last section, we will look at a similar approach for input and output used in ASP.NET.

Programming input and output with ASP.NET
ASP.NET utilizes tags to separate the user interface rendered in HTML, JavaScript, and CSS from the
Visual Basic that runs on the server. ASP.NET tags are used in the Microsoft ASP.NET web development
framework to create dynamic web pages. They are embedded within the HTML markup of an ASP.
NET page and perform various tasks, such as displaying data from a database, creating user interface
elements, and handling user input.

Some common ASP.NET tags include the following:

• <% %>: This tag is used to embed server-side code in an ASP.NET page. The code within these
tags is executed on the server before the page is sent to the client.

• <%@ %>: This tag is used to specify page directives, which are instructions used to configure
the behavior of an ASP.NET page. For example, the <%@ Page %> directive sets properties
such as the page’s language, theme, and master page.

• <asp: %>: This tag creates ASP.NET server controls and user interface elements that can
respond to user events such as clicks or text input. Examples of server controls include buttons,
text boxes, and drop-down lists.

• <%= %>: This tag outputs dynamic content to an ASP.NET page. Any content written within
these tags is evaluated and rendered as HTML when the page is requested.

There are many other ASP.NET tags available, and their use depends on the specific needs of the
application being developed.

Programming input and output with ASP.NET 25

Simple interaction in ASP.NET

The sample code for ASP.NET code will be stored in two text files. The user interface will be in the
ASPX file and contains HTML and ASP.NET tags. The code is stored in the file system where IIS
hosts websites. The following is a sample ASP.NET code stored in a file named WebForm1.aspx:

 <%@ Page Language="vb" AutoEventWireup="false" CodeBehind="WebForm1.
 aspx.vb" Inherits="WebApplication2.WebForm1" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 What is your name?
 <asp:TextBox id="name" runat="server"/>
 <asp:Button text="Submit" runat="server"/>
 </form>
</body>
</html>

The Visual Basic code is stored in the filesystem where IIS hosts websites. The following is some
example VB.NET code stored in a file named WebForm1.aspx.vb:

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.
 EventArgs) Handles Me.Load
 Dim name As String
 name = Request.Form("name")
 If Not name Is Nothing Then
 Response.Write("It is nice to meet you " & name)
 End If
 End Sub

End Class

Console Input and Output26

The first line inside the VB.NET block inside the Page_Load method declares a variable to hold the
name. The second line inside the Page_Load method retrieves the name from the request passed
to the page. The third line in the Page_Load method checks if a value of the name was passed in.
Finally, the fourth line in the Page_Load method only runs if there is a value for the name passed
in, and it will display the greeting back by concatenating the name with the string literal.

You will implement this code next.

Coding a simple interaction in ASP.NET with Visual Studio

The following steps will allow you to code and execute an ASP.NET web page that displays Hello World:

1. Start Microsoft Visual Studio 2019.

2. Choose to Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you prefer your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. Choose Web Forms.

9. When the Designer loads, navigate to the solution explorer and right-click on the solution.

10. Choose Add from the pop-up menu.

11. Choose New Item from the pop-up menu.

Programming input and output with ASP.NET 27

Figure 2.2 – Adding a Web Form to the Solution

12. Choose Web Form Visual Basic.

13. Navigate to the source tab and enter the ASPX code from earlier.

Console Input and Output28

14. Right-click on the ASPX source and choose View Code from the pop-up menu.

15. Enter the VB.NET code from the code example from the earlier section.

16. To run your program, click the green triangle on the toolbar above your code.

Summary
This chapter introduced you to simple input and output in the six different environments where VB
programming is relevant. As we progress in this book, we will build on these tools so you can read
and write complete programs in each environment. In the next chapter, we will explore how to declare
variables and use them in each member of the VB family.

3
Data Types and Variables

In Visual Basic (VB), variable declaration defines a variable’s name, data type, and initial value (if
any) before it is used in the program. Variables are used to store values assigned to them.

In this chapter, we’re going to cover the following main topics:

• Choosing data types

• Understanding variable scope

• How you should name variables

• Storing more than one value

• Differences in data types between family members

Choosing data types
Programming languages typically support several data types that can be used to represent different
kinds of values. Here are some common data types in programming languages:

• Integer: This data type represents whole numbers, both positive and negative

• Float or Double: This data type represents decimal numbers, also called floating-point numbers

• Boolean: This data type represents a logical value, either true or false

• Character: This data type represents a single character or letter, such as a or b

• String: This data type represents a sequence of characters, such as a word or a sentence

• Array: This data type represents a collection of elements of the same data type stored in a
contiguous memory block

• Pointer: This data type represents a memory address, which can be used to access data stored
elsewhere in memory

Data Types and Variables30

• Struct or Class: This data type represents a composite data type that can store multiple data types

• Enumerated: This data type represents a list of named constants

• Void: This data type represents the absence of a value

Different programming languages have different data types available, and some more specific data types
depending on their purpose and design. Choosing a data type that is as precise as possible for what
you want to store in it helps to eliminate bugs in the program by narrowing the possibilities of use.

Here are the most common data types in VB:

• Integer: This data type represents positive and negative whole numbers, with a range of
-2,147,483,648 to 2,147,483,647

• Long : This data type represents more significant whole numbers, with a range of
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• Single: This data type represents single-precision floating-point numbers, with a range of
approximately -3.4 x 10^38 to 3.4 x 10^38

• Double: This data type represents double-precision floating-point numbers, ranging from
approximately -1.7 x 10^308 to 1.7 x 10^308

• Decimal: This data type represents decimal numbers with fixed precision and a scale ranging
from approximately +/- 7.9 x 10^28

• Boolean: This data type represents a logical value, either true or false

• Char: This data type represents a single Unicode character

• String: This data type represents a sequence of Unicode characters

• Date: This data type represents a date and time value

• Object: This data type represents a reference to an object

In addition to these basic data types, many VB family members support arrays, structures, and
enumerations. VB also allows for creating user-defined data types using the Type keyword.

Next, we’ll discuss the difference between implicit and explicit variable declaration.

Implicit versus explicit variable declaration

In VB, you can use explicit variable declaration to specify the data type of a variable. The precise type
declaration contrasts the implicit variable declaration, where VB automatically assigns a data type to
a variable based on the initial value.

Choosing data types 31

To use explicit variable declaration, you can use the As keyword to specify the data type of a variable
when you declare it. Here’s an example:

Dim myInteger As Integer
myInteger = 45

The myInteger variable is explicitly declared as an Integer data type in this example. The declaration
means that VB will not allow any other data types to be assigned to myInteger. When the variable
is assigned a value of 45, VB knows that it is an integer value and can perform integer arithmetic.

By default, VB uses implicit variable declaration if you do not specify a data type. Here’s an example:

Dim myString = "Hello, world!"

The myString variable is not explicitly declared with a data type in this example. However, because
it is initialized with a string value, VB will assign the String data type to it.

The implicit variable declaration can be convenient, but it can also lead to errors if the wrong data type
is assigned to a variable. The explicit variable declaration can help prevent these errors by ensuring
that a variable always has the correct data type.

Exploring the Option Explicit statement

Option Explicit is a statement in VB that requires all variables to be explicitly declared before
they are used in the code. When Option Explicit is enabled, VB will not allow implicit variable
declaration, which can help prevent typographical errors and other mistakes in the code.

To enable Option Explicit, you must include the statement at the beginning of the module
before any other code. Here’s an example:

Option Explicit

Sub mySub()
 myInteger = 45 ' Error: Variable not declared.
 Dim myInteger As String ' Error: Type mismatch.
 myInteger = "Hello, world!"
 Debug.Print myInteger
End Sub

In this example, the first line generates an error because myInteger has not been declared before
it is used. The second line causes an error because myInteger is declared a String data type but
assigned an integer value.

By enabling Option Explicit, you can catch these types of mistakes before the code is run,
which can save time and prevent bugs.

Data Types and Variables32

Next, let’s look at where a variable can be referenced in your program.

Understanding variable scope
In VB, variable scope refers to where a variable can be accessed within a program. Variables can be
declared at different levels of scope, and their visibility and accessibility can depend on where they
are declared.

There are three levels of variable scope in VB:

• Procedure-level scope: Variables declared within a procedure or function are only accessible
within that procedure or function. Once the procedure or function has been completed, the
variables are destroyed, and their values are lost. Here’s an example:

Sub mySub()
 Dim myInteger As Integer
 myInteger = 45
End Sub

In this example, the myInteger variable is declared within the mySub procedure. Therefore,
it can only be accessed within that procedure and is destroyed when completed.

• Module-level scope: Variables declared outside any procedure or function are accessible
throughout the entire module. They can be used in any procedure or function within the
module. Here’s an example:

Dim myString As String

Sub mySub()
 myString = "Hello, world!"
End Sub

In this example, the myString variable is declared outside any procedure or function.
Therefore, it can be accessed within the mySub procedure and any other procedure or function
within the module.

• Global-level scope: Variables declared outside of any module are accessible throughout the
entire project. They can be used in any module within the project. Here’s an example:

Public myDouble As Double

Sub mySub()
 myDouble = 3.14159
End Sub

In this example, the myDouble variable is declared outside of any module. Therefore, it can
be accessed within the mySub procedure and any other module within the project.

Best practices – naming variables 33

It’s important to note that variables with the same name can be declared at different levels of scope.
In this case, the variable with the narrowest scope (that is, the one declared within the procedure or
function) takes precedence over variables with the same name declared at wider scopes.

Best practices – naming variables
Variable naming is an essential aspect of programming as it can affect the code’s readability, maintainability,
and efficiency. Here are some best practices for variable naming:

• Use descriptive names: Choose variable names that indicate what the variable represents. For
example, use totalPrice instead of tp or customerName instead of cn.

• Use camelCase: Use camelCase to separate words in variable names. camelCase is a convention
where the first word is in lowercase, and subsequent words start with an uppercase letter. So,
for example, use firstName instead of first_name.

• Avoid using numbers and special characters: Do not start a variable name with a number or
a special character, except for the underscore (_) character. Also, avoid using special characters
in variable names, as they can make the code harder to read and understand.

• Use singular nouns: Use singular nouns for variable names unless the variable represents a
collection or an array. For example, use book instead of books.

• Be consistent: Use consistent naming conventions throughout your code, and make sure that
variables with similar meanings are named consistently. For example, use firstName and
lastName instead of firstName and lname.

• Use meaningful prefixes or suffixes: Use prefixes or suffixes to indicate the data type or
purpose of the variable. For example, use str for string variables, int for integer variables,
or lst for list variables.

• Use readable names for boolean variables: Use names that are easy to understand for boolean
variables. For example, use isFound instead of flag or bool.

• Avoid using reserved keywords: Do not use them as variable names, as they have a special
meaning in the programming language. For example, do not use Sub, Function, or Dim
as variable names in VB.

By following these best practices for variable naming, you can improve your code’s readability,
maintainability, and efficiency.

Data Types and Variables34

Storing more than one value
An array is a collection of variables of the same data type. In VB, you can create arrays to store multiple
values of the same data type in a single variable. Here’s how to declare an array in VB:

Dim myArray(4) As Integer

In this example, an array called myArray is declared to hold five integer values (0 to 4).

You can also assign values to an array at the time of declaration:

Dim myArray(2) As String
myArray = {"red", "green", "blue"}

In this example, an array called myArray is declared to hold three string values. The values are
assigned to the collection at the time of declaration.

To access the values in an array, you use an index number that specifies the position of the value within
the array. The first element of the array has an index of 0. Here’s an example:

Dim myArray(2) As String
myArray = {"red", "green", "blue"}

Console.WriteLine(myArray(0))
Console.WriteLine(myArray(1))
Console.WriteLine(myArray(2))

In this example, the values of the myArray array are accessed using their index numbers.

You can also use loops (we will cover loops in detail in Chapter 6) to iterate through the values in
an array:

Dim myArray(2) As String
myArray = {"red", "green", "blue"}

For i = 0 To 2
 Console.WriteLine(myArray(i))
Next

In this example, a For loop is used to iterate through the values in the myArray array and then
display them to the console.

Arrays in VB can have up to 2,147,483,647 elements (the maximum value of an Integer data
type). VB also supports multidimensional arrays, which are arrays with more than one dimension.
Multidimensional arrays can help store data in a table format or for work with matrices.

Next, let’s look at the small difference in data types among the different family members of VB.

Differences in data types between family members 35

Differences in data types between family members
When it comes to data types, the different VB family members are mostly the same. There are some
small differences that I will break down into comparisons in this section.

Differences in data types between VBScript and VB6

Some of the differences in data types between VBScript and VB6 include the following:

• VBScript has a more limited set of data types compared to VB6. For example, VBScript does
not have separate data types for Integer and long integer values and instead uses a single
data type called Integer to represent both types of values.

• VBScript does not have a separate data type for decimal values. Instead, decimal values are
stored as floating-point numbers with limited precision.

• VBScript does not have a Variant data type like VB6. Instead, VBScript uses the Empty
keyword to represent a variable with an undefined value.

• VBScript does not support user-defined data types like VB6. This means you cannot define
your data types in VBScript using the Type statement.

• VBScript supports the Null value, which represents the absence of a value. This value is not
supported in VB6.

• VBScript has more limited support for arrays compared to VB6. For example, VBScript does
not support multidimensional arrays or user-defined array types.

Overall, VBScript has a more limited and simplified data type system compared to VB6. This makes
it easier to write simple scripts and automate tasks but may require some adjustments for developers
who are used to the more complex data types in VB6.

Differences in data types between VBA and VB6

Some of the differences in data types between VBA and VB6 include the following:

• VBA and VB6 have similar built-in data types, such as Boolean, Integer, Long, Single,
Double, Currency, Date, String, and Variant.

• VBA and VB6 have slightly different rules for declaring variables. In VB6, variables can be
declared with the Dim statement without an explicit data type, and the data type will be
inferred from the variable’s context. In VBA, variables must be explicitly declared with a data
type using the Dim statement.

• VBA supports user-defined data types using the Type statement, allowing you to define your data
types with named fields. VB6 also supports user-defined data types using the Type statement.

Data Types and Variables36

• VBA and VB6 have slightly different rules for passing variables between procedures. In VB6,
variables are passed by reference by default but can be passed by value using the ByVal
keyword. In VBA, variables are passed by reference by default but can be passed by value using
the ByVal keyword or by reference using the ByRef keyword.

• VBA has slightly different rules for working with arrays compared to VB6. For example,
VBA arrays are always zero-indexed by default, whereas VB6 arrays can be zero-indexed or
one-indexed, depending on the Option Base statement.

Overall, VBA and VB6 have similar data type systems, but there are some differences in the syntax
and rules for declaring and working with variables. Developers familiar with VB6 should be able to
learn VBA relatively quickly but may need to adjust to slightly different syntax and rules.

Differences in data types between VB6 and VB.NET

Some of the differences in data types between VB6 and VB.NET include the following:

• The Variant data type, used in VB6 to store values of any data type, has been deprecated in
VB.NET. Instead, VB.NET has several other data types that can store values of specific data
types, such as Object, String, Integer, Decimal, Double, and so on.

• VB.NET has several new data types not present in VB6, including Boolean, Char, Date,
and Byte. These data types store values of specific data types, such as true/false values,
characters, dates, and byte values, respectively.

• In VB6, variables are declared using the Dim statement, and their data types are determined
by their context. In VB.NET, variables are declared using the Dim statement with an explicit
data type or the Option Infer statement to allow the compiler to infer the data type based
on the variable’s initial value.

• VB.NET has stricter rules for variable declaration and scope than VB6. For example, variables
in VB.NET must be explicitly declared with a data type, and their scope must be explicitly
defined using keywords such as Private, Public, Friend, and so on.

• VB.NET supports arrays and collections with strongly typed elements, meaning that an array
or collection of elements must be of a specific data type.

• VB.NET has built-in support for enumerations and user-defined data types, allowing you to
define a set of named constants.

VB.NET has a more modern and strongly typed data type system compared to VB6, making it easier
to write safe and reliable code. However, the changes in data types between the two languages may
require some adjustments for developers familiar with VB6.

Summary 37

Summary
This chapter introduced data types and variables in the six environments where Visual Basic programming
is relevant. As we progress in this book, we will build on these tools so you can read and write complete
programs in each environment. In the next chapter, we will dive into decision branching, allowing
you to control the pathways of code that get executed based on runtime information.

4
Decision Branching

Decision branching is a programming construct that allows a program to execute different sets of
instructions based on a condition or set of requirements. There are several ways to implement decision
branching in programming languages, but the most common methods include If statements, switch
or Case statements, and ternary operators.

In this chapter, we’re going to cover the following main topics:

• If statements

• Case statements

• Ternary operators

• VB.NET OrElse operator

• VB.NET AndAlso operator

If statements
In Visual Basic, the If statement executes a block of code if a condition is true. The basic syntax of
an If statement in Visual Basic is as follows:

If condition Then
 ' code to execute if condition is true
End If

For example, the following VB6 code checks whether a number is positive:

Dim test As Integer = 12
If test > 0 Then
 MsgBox ("The number is positive")
End If

Decision Branching40

You can also use an Else statement to execute a different block of code if the condition is false. The
basic syntax of an If-Else statement in Visual Basic is as follows:

If condition Then
 ' code to execute if condition is true
Else
 ' code to execute if condition is false
End If

For example, the following VB6 code checks whether a number is positive or negative:

Dim test As Integer = -12
If test > 0 Then
 MsgBox("The number is positive")
Else
 MsgBox("The number is negative")
End If

You can also use ElseIf statements to check additional conditions. The basic syntax of an If-Elseif-
Else statement in Visual Basic is as follows:

If condition1 Then
 ' code to execute if condition1 is true
ElseIf condition2 Then
 ' code to execute if condition2 is true
Else
 ' code to execute if neither condition1 nor condition2 is true
End If

For example, the following VB6 code checks whether a value is positive, negative, or zero:

Dim test As Integer = 0
If test > 0 Then
 MsgBox("The number is positive")
ElseIf test < 0 Then
 MsgBox("The number is negative")
Else
 MsgBox("The number is zero")
End If

Next up, we will look at an alternative approach to modifying the flow of the program with
Case statements.

Case statements 41

Case statements
A Case statement in VB is used to perform different actions based on the value of a variable or
expression. It allows you to evaluate an expression against multiple possible values and execute different
code depending on which value the expression matches.

Here’s the basic syntax of a Case statement in VB:

Select Case expression
 Case value1
 ' Code to execute if expression matches value1
 Case value2
 ' Code to execute if expression matches value2
 Case value3
 ' Code to execute if expression matches value3
 Case Else
 ' Code to execute if expression doesn't match any of the
 above values
End Select

Let’s see an example of how to use a Case statement in VB.NET:

Dim var1 As Integer
var1 = 3
Select Case var1
 Case 1
 Console.WriteLine("The number is one.")
 Case 2
 Console.WriteLine("The number is two.")
 Case 3
 Console.WriteLine("The number is three.")
 Case Else
 Console.WriteLine("The number is not 1, 2, or 3.")
End Select

In the preceding example, the var1 variable is assigned a value of 3; a Case statement is used to
check the value of var1 and execute the appropriate code block. Since var1 equals 3, the code block
for Case 3 is performed, which outputs "The number is three." to the console.

Next, we will look at a particular operator allowing conditional statements within an expression.

Decision Branching42

Ternary operators
In VB, the ternary operator allows you to write more concise code for conditional statements that
evaluate a single value. The ternary operator is a shorthand way of writing an If-Then-Else
statement that assigns a value to a variable based on a condition.

The syntax of the ternary operator in VB is as follows:

variable = If(condition, trueValue, falseValue)

In this syntax, variable is the name of the variable to which the result of the ternary operator is
assigned, condition is the condition that is evaluated, trueValue is the value set to variable
if the condition is true, and falseValue is the value assigned to variable if the condition is false.

Here’s an example of how to use the ternary operator in VB.NET:

Dim var1 As Integer = 5
Dim var2 As Integer = 10

Dim largestNum As Integer = If(var1 > var2, var1, var2)
Console.WriteLine("The largest number is: " & largestNum)

In this example, the ternary operator assigns the larger of two numbers, var1 and var2, to the
largestNum variable. If var1 is greater than var2, var1 is assigned to largestNum, otherwise,
var2 is assigned to largerNum. Finally, the largest number is output to the console using the
Console.WriteLine method.

We will now move on to a new operator for VB.NET that allows faster execution.

The VB.NET OrElse operator
In VB.NET and ASP.NET, the OrElse operator is a logical operator used with If statements to
evaluate multiple conditions. The OrElse operator is like the Or operator but provides short-circuit
evaluation. Short-circuit evaluation means the testing can stop after one condition evaluates to true.

The basic syntax for using the OrElse operator in an If statement is as follows:

If condition1 OrElse condition2 Then
 ' code to execute if either condition is true
End If

In the preceding example, the code block will be executed if either condition1 or condition2
is true. However, unlike the Or operator, the OrElse operator provides short-circuit evaluation,
which means that if condition1 is true, condition2 will not be evaluated. Short-circuiting can
improve performance when considering condition2 is expensive or time-consuming.

The VB.NET AndAlso operator 43

Here’s an example that demonstrates the use of the OrElse operator:

Dim var1 As Integer = 4
Dim var2 As Integer = 8
If var1 > 4 OrElse var2 < 8 Then
 ' This code block will not be run.
End If
If var1 >= 4 OrElse var2 < 4 Then
 ' This code block will be executed.
End if

In this example, the first If statement will not execute the code block because condition1 (var1 >
4) is false. The second If statement will execute the code block because condition1 (var1 >= 4)
is true. Because the OrElse operator is used in both If statements, if condition1 is true, condition2
(var2 < 4) will not be evaluated, which can improve performance. The performance is improved
by only comparing one condition and moving on to the next statement since it knows the result of
the complete expression with just one comparison.

We will now move on to a new operator for VB.NET that allows faster execution for multiple conditions
that must be true.

The VB.NET AndAlso operator
In VB.NET, the AndAlso operator is a logical operator used with If statements to evaluate multiple
conditions. The AndAlso operator is similar to the And operator, but it provides short-circuit evaluation.

The basic syntax for using the AndAlso operator in an If statement is as follows:

If condition1 AndAlso condition2 Then
 ' code to execute if both conditions are true
End If

In the preceding example, the code block will be executed if both condition1 and condition2
are true. However, unlike the And operator, the AndAlso operator provides short-circuit evaluation,
which means that if condition1 is false, condition2 will not be evaluated. Short-circuiting can
improve performance in situations where considering condition2 is expensive or time-consuming.

Here’s an example that demonstrates the use of the AndAlso operator:

Dim var1 As Integer = 4
Dim var2 As Integer = 8

If var1 >= 4 AndAlso var2 < 8 Then
 ' This code block will not be run.
End If

Decision Branching44

If var1 >= 4 AndAlso var2 <= 8 Then
 ' This code block will be run.
End If

In this example, the first If statement will not execute the code block because condition2 (var2
< 8) is false. The second If statement will execute the code block because both conditions (var1
>= 4 and var2 <= 8) are true. Because the AndAlso operator is used in both If statements, if
condition1 is false, condition2 will not be evaluated, which can improve performance.

The GoTo statement
In VB, the GoTo statement transfers control to a specific line or label within your code. While the
GoTo statement is generally discouraged in modern programming practices, it is still supported in
Visual Basic for specific scenarios.

The basic syntax of the GoTo statement in Visual Basic is as follows:

goto line_or_label

Here, line_or_label refers to the line number or label you want to transfer control to. To see
GoTo usage, consider the following example:

Sub GotoProc()
 Dim num1 As Integer = 20

 If num1 > 10 Then
 GoTo Label1
 Else
 GoTo Label2
 End If

Label1:
 Console.WriteLine("The number is above 10.")
 GoTo EndLabel

Label2:
 Console.WriteLine("The number is equal or under 10.")
 GoTo EndLabel

EndLabel:
 Console.WriteLine("Program execution finished.")
End Sub

Summary 45

In this example, we have a subroutine called GotoProc that uses the GoTo statement to transfer
control based on the value of the num1 variable. If num1 is greater than 10, the control is transferred
to Label1 where a message is displayed. Otherwise, control is transferred to Label2 where a
different message is displayed. Control eventually reaches EndLabel, where a completion message
is displayed in both cases.

The history of the GoTo statement is closely related to decision branching. The GoTo statement is a
control transfer statement that allows the program execution to jump to a different part of the code.
It was a fundamental construct in early programming languages such as FORTRAN and BASIC.

However, the extensive use of GoTo statements led to unstructured and hard-to-maintain code. As a
result, programmers often used GoTo statements to create spaghetti code, where the program flow became
unpredictable and challenging to understand. This practice came to be known as “GoTo spaghetti.”

In the late 1960s and early 1970s, structured programming emerged as a discipline to address the
issues caused by the uncontrolled use of GoTo statements. Structured programming emphasizes
using structured control flow constructs such as loops and conditional statements to enhance code
readability and maintainability.

The introduction of structured programming led to a movement against GoTo statements. Influential
computer scientists such as Edsger Dijkstra argued that GoTo statements should be avoided because
they could lead to unmanageable code. Dijkstra’s famous paper, “Goto Statement Considered Harmful,”
published in 1968, significantly changed the perception of GoTo statements.

As a result, modern programming languages and coding practices discourage or even eliminate the
use of GoTo statements. Instead, structured control flow constructs such as conditional statements,
loops, and subroutines are used to achieve decision branching in a more structured and manageable
manner. In addition, these constructs provide greater clarity and maintainability, making it easier for
programmers to reason about the behavior of their code.

Overall, decision branching is an essential concept in programming that allows for the execution of
different code paths based on conditions. However, the history of the GoTo statement demonstrates
how programming languages and practices have evolved to promote structured control flow and
discourage the uncontrolled use of GoTo statements.

Summary
This chapter introduced decision branching with If statements, Case statements, and ternary
operators. Decision branching is used to execute blocks of code based on conditional testing. This
allows different pathways in the code based on input or external conditions. In the next chapter, we
will continue our journey with iteration.

5
Iteration

In programming, iteration refers to the process of repeating a sequence of instructions multiple times.
A programming language that supports iteration provides a way to execute a block of code repeatedly,
either a fixed number of times or until a specific condition is met.

Most programming languages provide some form of iteration control structure, such as a for loop,
while loop, do-while loop, or foreach loop, that allows programmers to perform iterations
in a structured way.

VB is a programming language that supports various forms of iteration, including For loops, While
loops, and Do loops. These loops allow you to repeat a block of code a specific number of times or
until a particular condition is met. VB also supports statements to change the loop flow while inside
the iteration.

In this chapter, we’re going to cover the following main topics:

• For loops

• While loops

• Do loops

• Exit and Continue statements

• Type safety differences in loops between VB.NET and other family members

• Infinite loops

Iteration48

For loops
A For loop is a control structure that allows you to execute a block of code repeatedly for a fixed
number of times. The basic syntax for a For loop in VB is as follows:

For cntr As Integer = start To end Step stepValue
 'code to execute
Next

In this syntax, cntr is the loop variable that is used to control the loop. The loop will start with the
value of start and end with the value of end, incrementing the variable by stepValue each
iteration the loop executes. The stepValue is optional and defaults to 1 if not specified.

Here’s an example of VB.NET code that will loop over a range of numbers and prints each number
to the console:

For x As Integer = 1 To 7
 Console.WriteLine(x)
Next

This code will assign the numbers 1 through 7 to the variable x and then print it to the console.

A For loop can also have a custom step value, for example:

For cntr As Integer = 1 To 20 Step 2
 Console.WriteLine(cntr)
Next

This code will print the odd numbers from 1 to 20 by incrementing the loop cntr variable by two
each time the loop executes. The numbers include the numbers 1,3,5, 7, 9, 11, 13, 15, 17, and 19.

Next, we will look at loops executing zero or more times based on a conditional test.

While loops
In computer programming, a loop with a pre-condition is a control flow structure that repeats a set of
statements while a specific condition is true before executing the loop body. This loop type is called
a While loop because the condition is checked before running the loop body. Since the loop may
never execute, we say a pre-condition loop will always execute zero or more times.

While loops with pre-conditions are helpful when you want to repeat a block of code until a specific
condition is no longer true. While loops are often used in situations where the number of times you
need to repeat the loop is not known in advance. Usually, this is because the code is dependent on
receiving specific input.

Do loops 49

The basic syntax for a While loop in VB is as follows:

While test_condition
 'code to run
End While

Here, test_condition is the Boolean expression evaluated before each loop iteration. The loop
will continue executing the code block if test_condition is true. When test_condition
becomes false, the loop terminates, and execution continues with the statement following the loop.

The following is an example of a While loop in VB. This example iterates over the numbers 1 to 20
and prints each number to the console:

Dim x As Integer = 1
While x <= 20
 Console.WriteLine(x)
 x += 1
End While

Next, we will look at loops executing one or more times based on a conditional test.

Do loops
A post-condition loop is a control flow structure in computer programming that repeatedly executes a
code block until a specific condition is met after completing the loop body. In contrast to a pre-condition
loop, a post-condition loop executes the loop body first and then evaluates the condition to determine
whether it should continue iterating. Because of the first iteration, a post-condition loop will always
run one or more times.

In VB, a Do loop is a control structure that implements a post-condition loop. The basic syntax for a
Do loop in VB is as follows:

Do
 'code to run
Loop While test_condition

In this example, the loop will run the code block if test_condition is true. After executing the loop
body, the Do loop evaluates test_condition at the end of each iteration. If test_condition
is false, the loop terminates, and execution continues with the statement following the loop.

Here’s a VB.NET example of a Do loop in VB that reads user input until a valid integer is entered:

Dim sentinel As Boolean = False
Console.WriteLine("Enter test scores. Enter -1 to stop.")
Do
 Dim input As String = Console.ReadLine()

Iteration50

 If input = "-1" Then
 sentinel = True
 End If
Loop While Not sentinel

A sentinel in programming is a particular value or character that signals the end of a sequence or input
data. A sentinel is used to mark the end of a list when the length of the list is not known at the start
of the loop. The sentinel value is typically chosen not to be mistaken for a valid data value.

In the preceding example, the program reads a sequence of integers from the user, terminated by the
value -1. The program uses -1 as the sentinel value to indicate the end of the input.

Next, we will look at ways to modify how the loop executes.

Exit and Continue statements
In VB, the Exit and Continue statements are used to modify the flow of execution in loops and
conditional statements.

The Exit statement immediately exits a loop or a Select Case or Do Select statement. When
the Exit statement is reached, control passes to the next statement after the loop or the Select
Case or Do Select statement.

Here is a VB.NET example that searches for a specific value in a loop and will exit the loop if found:

Dim test_value As Integer = 7
Dim found As Boolean = False
For x As Integer = 1 To 20
 If x = test_value Then
 Found = True
 Exit For
 End If
Next
If found Then
 Console.WriteLine("The search value was found.")
End If

The Continue statement is used to skip to the next loop iteration immediately. When the Continue
statement is executed, the loop jumps directly to the next iteration without executing any statements
that follow it in the loop body.

Here is a VB.NET example that calculates the sum of all odd numbers in a loop:

Dim sum As Integer = 0
For x As Integer = 1 to 20
 If x Mod 2 = 0 Then

Infinite loops 51

 Continue For
 End If
 sum += x
Next
Console.WriteLine("Sum of even numbers: " & sum)

In this example, the loop utilizes the Mod operator to test whether the number is evenly divisible by
2. If it is, the Continue statement will skip to the next iteration.

Next up, we think about some changes in VB.NET with loops.

Type safety differences in loops between VB.NET and other family members
VB.NET is a strongly typed language, meaning you need to declare the data type of variables.
The type is not necessary for older VB family members. For example, in VB.NET, you would
declare the counter variable in a For loop like this:

For counter As Integer = start To end Step increment

In other VB family members, you would use the following:

For counter = start To end Step increment

Infinite loops
An infinite loop is a loop that continues indefinitely without a condition that can make it terminate.
The endless loop can happen unintentionally or as part of the program’s logic. Infinite loops can cause
a program to become unresponsive, consume excessive system resources, or crash.

Here’s an example of an infinite loop in VB:

While 1=1
 'code to run
End While

In this example, the 1=1 condition always evaluates to true so that the loop will continue indefinitely.
To break out of this loop, you would need to manually interrupt the program execution, such as by
pressing Ctrl + C.

While infinite loops are usually unintended and considered bugs, there are cases where intentionally
creating infinite loops can be helpful. For instance, an infinite loop can be used in server applications
to listen for and handle client requests continuously.

It’s crucial to ensure that the loop condition is appropriately defined and will eventually evaluate to
a false value to avoid unintended infinite loops. Additionally, using loop control statements such as
exit or return inside the loop can provide a way to exit the loop under certain conditions.

Iteration52

Summary
This chapter introduced iteration with For, While, and Do loops. Iteration is used to execute blocks
of code multiple times. We also discussed special statements to break out of loops. In the next chapter,
we will continue our journey with a look at modularizing our code to make it easier to reuse code.

6
Functions and Procedures

Procedures and functions are essential concepts in programming that allow developers to break down
complex tasks into smaller, manageable pieces of code that can be reused throughout a program.

A procedure is a named section of code that performs a specific task. The procedure does not return
a value and typically modifies data within the program. Procedures are used to group related tasks,
such as input/output operations or data validation, and can be called from other program parts.

A function is a named section of code that returns a value. It may or may not modify data within the
program. Functions are used to perform specific calculations or operations and can be called from
other parts of the program.

Both procedures and functions can take arguments; inputs are passed to the code block to perform
the task. For example, arguments can be used to provide a code block with necessary data or modify
the behavior of the code block.

In this chapter, we will cover the following main topics:

• Modularizing code in functions

• Modularizing code in procedures

• Understanding parameters in functions and procedures

Modularizing code in functions
VB provides hundreds of built-in functions. These functions can be used to perform standard
calculations, manipulate strings and arrays, and interact with the user interface of a program. These
out-of-the-box functions are basically code-written and tested for you to reuse. Here are some
commonly used functions in VB:

• Abs: Returns the absolute value of a number without its sign.

• Date: Returns the current date while a program is running.

• Cint: Converts a parameter to an integer.

Functions and Procedures54

• Format: Formats a numeric or date value as a string.

• InStr: Returns the position of the first occurrence of a substring in a string. This is similar
to the find functionality in word processing software.

• Int: Returns the integer portion of a number.

• Lcase: Converts a string to lowercase.

• Left: Extracts a specified number of characters from the beginning of a string. This is similar
to the Mid function but only works from the left side of the string.

• Len: Returns the length of a string. Each character in the string counts as one value.

• Mid: Extracts a specified number of characters from a string, starting at a fixed position. This
is similar to the Left and Right functions but can start from any place in the string.

• MsgBox: Displays a message box with a message and optional buttons.

• Now: Returns the current date and time while a program executes.

• Replace: Replaces one substring with another in a string.

• InStr: Returns the position of the first occurrence of a substring in a string. This is similar
to the replace functionality in word processing software.

• Right: Extracts a specified number of characters from the end of a string. This is similar to
the Mid function but only works from the right side of the string.

• Rnd: Returns a random number between zero and one. The value can be multiplied by an
integer to create larger random values.

• Time: Returns the current time.

• Trim: Removes leading and trailing spaces from a string.

• Ucase: Converts a string to uppercase.

In addition to the built-in functions, VB allows developers to create custom functions to perform
specific tasks within their programs. Custom functions are defined using the Function keyword,
followed by the name of the function, any arguments it takes (if any), and the code that should be
executed when the function is called. Here’s an example:

Function mySum(n1 As Integer, n2 As Integer) As Integer
 Dim s As Integer
 s = n1 + n2
 mySum = s
End Function

Modularizing code in procedures 55

This function takes two integer arguments (n1 and n2), calculates their sum, and returns the result
as an integer. The As Integer statement indicates that the function returns an integer value.

To call the function, you can use its name and pass in the required arguments:

Dim s As Integer
s = mySum(7, 8)
MsgBox("The sum of the two numbers is " & s)

In this example, the resulting variable is assigned the value returned by the mySum function when
passed the arguments, 7 and 8. The MsgBox statement displays a message box with the result of
the calculation.

Custom functions can be used to encapsulate complex calculations or operations and called from any
part of a program when needed. As a result, developers can write code that is easier to read, understand,
and maintain by defining custom functions.

Next, we will look at how to modularize code blocks utilizing procedures.

Modularizing code in procedures
In addition to custom functions, VB allows developers to create custom procedures to perform
specific tasks within their programs. Procedures are defined using the Sub keyword, followed by the
name of the procedure, any arguments it takes (if any), and the code that should be executed when
the procedure is called. Here’s an example:

Sub dspMsg(msg As String)
 MsgBox msg
End Sub

This procedure takes a string argument, msg, and displays it in a message box using the MsgBox
function. The Sub keyword indicates that the procedure does not return a value.

To call the procedure, you can use its name and pass in the required arguments:

dspMsg("Hello and welcome!")

In this example, the DisplayMessage procedure is called with the argument, "Hello and
welcome!", displayed in a message box.

Custom procedures can be used to encapsulate complex tasks or sequences of operations and called
from any part of the program when they are needed. By defining custom procedures, developers can
write code that is easier to read, understand, and maintain. Additionally, procedures can be used to
group related tasks, making managing and modifying code easier.

Next, we will examine how parameters are passed and used in functions and procedures.

Functions and Procedures56

Understanding parameters in functions and procedures
Parameters are used in VB to pass values or objects to a function or procedure when it is called.
Parameters are specified in the function or procedure definition and are used to define the inputs
required by the function or procedure. Here’s an example of a function with two parameters:

Function myMult(n1 As Integer, n2 As Integer) As Integer
 Dim m As Integer
 m = n1 * n2
 myMult = m
End Function

In this example, the myMult function takes two integer parameters, n1 and n2. The function uses
these parameters to multiply them, which is returned as an integer value.

You must pass in the required values or objects when calling a function or procedure that takes
parameters. Here’s an example of calling the myMult function:

Dim res As Integer
res = myMult(7, 8)
Console.WriteLine("Result: " & res)
*

In this example, the myMult function is called with the arguments 7 and 8. These values are passed as
the n1 and n2 parameters, respectively. The result of the calculation is stored in the resulting variable.

VB supports several types of parameters, including the following:

• ByRef: Passes a reference to a variable, allowing the called function or procedure to modify
its value.

• ByVal: Passes a copy of a variable, allowing the called function or procedure to use its value
but not modify it.

• Optional: Allows a parameter to be omitted when calling the function or procedure. Optional
parameters are supported in all family members except VBScript.

• ParamArray: Allows various arguments to be passed to a function or procedure. ParamArray
parameters are supported by all family members except VBScript.

Using parameters in VB allows for more flexible and reusable code, as functions and procedures can
be designed to work with different inputs, depending on the program’s needs.

Return statement 57

Return statement
In VB, the Return statement is used to exit a function or a Sub procedure and return control to the
calling code. It is used to provide a result or value back to the caller if necessary. The Return statement
can be used in different contexts, depending on whether you work with a function or a procedure.

Here is an example of using the Return statement in the VB function:

Function myMult(n1 As Integer, n2 As Integer) As Integer
 Dim m As Integer
 m = n1 * n2
 Return m
End Function

In this example, the Return statement returns the result of the two numbers, n1 and n2, multiplied
together to the caller. We saw earlier that a return value can also be set by assigning the function name
a value. The second method does not stop execution at that point compared to the Return statement,
which will immediately return to the calling code.

Here is an example of using the Return statement in the VB procedure:

Sub DisplayMessage()
 Console.WriteLine("Welcome")
 Return
End Sub

In this example, the Return statement is used to exit the Sub procedure and return control to the
caller without providing a specific value.

It’s important to note that the Return statement is not required in either a procedure or a function.
If a Return statement is omitted, the control automatically returns to the caller when the procedure
or function ends.

In addition to the Return statement, VB also provides the Exit Sub and Exit Function
statements, which can be used to exit a Sub procedure or a function early without executing the
remaining code.

Summary
This chapter introduced functions and procedures to modularize code for reuse. Once we have
modularized our code, we can reuse it without having multiple copies of the code. This allows our
code to have less bugs and also allows for more reusable code. In the next chapter, we will utilize the
skills we have acquired so far in a project.

7
Project Part I

In our first project, we want to use the skills we have learned to build a simple calculator for each
VB family member. The calculator should allow the user to enter a simple mathematical operation
such as addition, subtraction, multiplication, or division. The calculator should also enable the user
to enter the two operands used in the calculation. The calculator will then show the result and allow
for another calculation.

In this chapter, we’re going to cover the following main topics:

• Developing a calculator in the VB.NET console

• Developing a calculator in VB6

• Developing a calculator in Visual Basic for Applications (VBA)

• Developing a calculator in VBScript

• Developing a calculator in Classic ASP

• Developing a calculator in ASP.NET

Technical requirements
Please complete the steps to install and code with the Visual Basic (VB) family member from
Chapter 1. The code for this chapter is available in the GitHub repository for this book: https://
github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/
tree/main/ProjectPartI.

Building the project in the VB.NET console
This simple console application written in VB.NET programming language performs basic arithmetic
operations on two input numbers.

The program first imports the System namespace. Then, it defines a module called program, which
contains a single Sub called Main that takes an array of String arguments.

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartI
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartI
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartI

Project Part I60

Within the Main method, the program declares five variables: n1, n2, oper of type String, a res of
type String initialized to an empty string, and a sentinel of type String initialized to False.

The program enters a Do-While loop until the sentinel is set to True. Within the loop, the program
prompts the user to enter the first number or X to quit. If the user enters X, the sentinel variable is set
to True, and the loop ends. Otherwise, the program prompts the user to enter the second number
and the arithmetic operator.

The program then uses a Select Case statement to perform the appropriate arithmetic operation
based on the user’s input. For example, if the operator is +, the program adds the two numbers; if it is
-, the program subtracts the second number from the first; if it is *, the program multiplies the two
numbers; and if it is /, the program divides the first number by the second, taking care to check for
division by zero. Finally, the program displays an error message if the operator is not one of these.

The program then displays the result of the arithmetic operation. The loop continues until the user
enters X to quit:

Imports System

Module Program
 Sub Main(args As String())
 Dim n1, n2, oper As String
 Dim res As String = ""
 Dim sentinel As String = False
 Do
 Console.WriteLine("Enter the first number or X to quit:")
 n1 = Console.ReadLine()
 If n1 = "X" Then
 sentinel = True
 Else
 Console.WriteLine("Enter the second number:")
 n2 = Console.ReadLine()
 Console.WriteLine("Enter the operator (+, -, *, /):")
 oper = Console.ReadLine()

 Select Case oper
 Case "+"
 res = CInt(n1) + CInt(n2)
 Case "-"
 res = n1 - n2
 Case "*"
 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 Console.WriteLine("Cannot divide by zero!")

Building the project in VB6 61

 Else
 res = n1 / n2
 End If
 Case Else
 Console.WriteLine("Invalid operator!")
 End Select
 Console.WriteLine("The result is: " & res)
 End If
 Loop While Not sentinel = True
 End Sub
End Module

Many small changes can be made to make this program nicer. Please try to experiment with ideas to
see how you can improve the program.

Coding a Visual Basic.NET console calculator

The following steps allow you to code and execute a Visual Basic.NET Windows Forms version of
Hello World:

1. Start Microsoft Visual Studio.

2. Choose Create New Project.

3. Choose Console (.NET Framework) and click Next.

4. Accept the default project name and solution name.

5. Change the location if you want your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. Enter the code example from the preceding section.

9. To run your program, click the green triangle on the toolbar above your code.

Our next section will tackle the calculator example in Visual Basic 6.

Building the project in VB6
We will now build Visual Basic 6 code for a simple calculator program. The program has a form
that loads when the application starts. The form contains a loop that prompts the user to input two
numbers and an operator and then operates on the two numbers. The loop prompts the user until
they enter X to quit. Finally, the program displays the result of the operation in a message box. For
example, if the user tries to divide by zero, a message box says, "Cannot divide by zero!".

Project Part I62

The program uses the Cint function to convert the inputted numbers into integers and handles
errors using message boxes:

Private Sub Form_Load()
 Dim n1, n2, res, operator, sentinel As String
 sentinel = False
 Do
 n1 = InputBox("Enter the first number or X to quit:")
 If n1 = "X" Then
 sentinel = True
 Else
 n2 = InputBox("Enter the second number:")

 operator = InputBox("Enter the operator (+, -, *, /):")

 Select Case operator
 Case "+"
 res = Cint(n1) + Cint(n2)
 Case "-"
 res = n1 – n2
 Case "*"
 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 MsgBox ("Cannot divide by zero!")
 Else
 res = n1 / n2
 End If
 Case Else
 MsgBox ("Invalid operator!")
 End Select
 MsgBox ("The result is: " & res)
 End If
 Loop While Not sentinel = True
End Sub

Again, think of small modifications you can make to this program and give it a try.

Coding a Visual Basic 6 calculator

The following steps allow you to code and execute a Visual Basic 6 version of Hello World:

1. Start Microsoft Visual Basic 6.

2. Choose Standard EXE as the project type.

Building the project in VBA 63

3. When the Designer loads, double-click inside the rectangle representing your form.

4. Enter the code from the example in the preceding section.

5. To run your program, click the green triangle on the toolbar above your code.

In our next section, we will tackle the calculator example in VBA.

Building the project in VBA
What follows is VBA code for a simple calculator that allows the user to enter two numbers and an
operator and then perform the corresponding arithmetic operation on the two numbers.

The code initializes some variables and then enters a Do-While loop allows the user to perform
multiple calculations until they choose to quit. Within the loop, the code displays input boxes for the
user to enter the first, second, and operator numbers.

After the user enters the values, the code uses a Select Case statement to check which operator was
entered and perform the corresponding calculation. If the user enters an invalid operator or attempts
to divide by zero, the code displays a message box with an error message. The result is displayed in a
message box if the calculation is successful.

The loop continues until the user enters X to quit, at which point the sentinel variable is set to
True, and the loop ends:

Option Explicit

Sub VBACalc()

Dim n1, n2, res, operator, sentinel As String
sentinel = False
Do
 n1 = InputBox("Enter the first number or X to quit:")
 If n1 = "X" Then
 sentinel = True
 Else
 n2 = InputBox("Enter the second number:")

 operator = InputBox("Enter the operator (+, -, *, /):")

 Select Case operator
 Case "+"
 res = CInt(n1) + CInt(n2)
 Case "-"
 res = n1 - n2
 Case "*"

Project Part I64

 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 MsgBox ("Cannot divide by zero!")
 Else
 res = n1 / n2
 End If
 Case Else
 MsgBox ("Invalid operator!")
 End Select
 MsgBox ("The result is: " & res)
 End If
Loop While Not sentinel = True

End Sub

Coding a VBA calculator in Excel

The following steps allow you to code and execute a VBA macro displaying Hello World:

1. Start Microsoft Excel.

2. Display the View menu.

3. Click the Macros button and choose View Macros from the drop-down menu.

4. Type the name test as the macro name.

5. Click the Create button.

6. When the Designer loads, double-click inside the rectangle representing your form.

7. Enter the code example from the preceding section.

8. Click the green triangle on the toolbar above your code to run your macro.

We will now move on to input and output in VBScript, which is both similar to and different from what
you have seen. This will be similar in terms of the flow of the program but different in the way the user
input and output are embedded into the VBA host. In this example, the VBA host is Microsoft Excel.

In our next section, we will tackle the calculator example in VBScript.

Building the project in VBScript
The following VBScript program prompts the user to enter two numbers and an operator, performs
the specified arithmetic operation, and displays the result.

The Option Explicit statement enforces explicit variable declaration, which helps to prevent
errors caused by misspelling or mistyping variable names.

Building the project in VBScript 65

The program uses a loop with a sentinel variable to allow the user to enter multiple sets of numbers
and operators until they choose to quit. The sentinel variable is initially set to False.

The program prompts the user to enter the first number or X to quit. If the user enters X, the sentinel
variable is set to True, and the program exits the loop. If the user enters a number, the program
prompts them to enter the second number and the operator.

The program then uses a Select Case statement to determine which arithmetic operation to
perform based on the operator entered by the user. Finally, the program displays an error message if
the operator is not one of the specified options (+, -, *, or /).

The program displays an error message if the operator is division (/) and the second number is 0.
Otherwise, the program performs the arithmetic operation and shows the result in a message box.

The loop continues until the user enters X to quit:

Option Explicit

Dim n1, n2, res, operator,sentinel
sentinel = False
Do
 n1 = InputBox("Enter the first number or X to quit:")
 If n1 = "X" Then
 sentinel = True
 Else
 n2 = InputBox("Enter the second number:")

 operator = InputBox("Enter the operator (+, -, *, /):")

 Select Case operator
 Case "+"
 res = CInt(n1) + CInt(n2)
 Case "-"
 res = n1 - n2
 Case "*"
 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 MsgBox("Cannot divide by zero!")
 Else
 res = n1 / n2
 End If
 Case Else
 MsgBox("Invalid operator!")
 End Select

Project Part I66

 MsgBox("The result is: " & res)
 End If
Loop While Not sentinel

Coding a VBScript calculator with Notepad

The following steps will allow you to code and execute the previous VBScript that runs a calculator program:

1. Start Notepad.

2. Enter the code from the preceding section.

3. Save the file as VBScriptCalc.vbs in your root folder.

4. Run CMD to go to a command prompt.

5. Type cscript VBScriptCalc.vbs and press the Enter key.

In our next section, we will tackle the calculator example in Classic ASP.

Building the project in Classic ASP
A Classic ASP program follows that prompts the user to enter two numbers and an operator, performs
the specified arithmetic operation, and displays the result.

This HTML form allows the user to enter two numbers and an operator, perform the specified
arithmetic operation, and display the result.

The form uses the HTTP GET method to send the user’s input to the server. The form contains three
input fields: n1 for the first number, n2 for the second number, and a drop-down menu, operator,
to select the arithmetic operation.

When the user clicks the Submit button, the values of the input fields are sent to the server as part
of the URL query string.

The code within the <% %> tags is server-side VBScript code that retrieves the values of the input
fields from the query string using the Request.QueryString method. It then uses a Select
Case statement to determine which arithmetic operation to perform based on the operator selected
by the user.

If the operator is division (/) and the second number is 0, the program uses the Response.Write
method to display an error message on the web page.

If the length of the first number entered is greater than 0, the program uses the Response.Write
method to display the result of the arithmetic operation on the web page.

Building the project in Classic ASP 67

This code creates a simple web-based calculator that allows users to perform arithmetic operations
on two numbers:

<!DOCTYPE html>
<html>
<body>
<form method="get">
Enter the first number: <input name="n1">
Enter the second number: <input name="n2">
Enter the operator:
<select name="operator">
<option value="+">+</option>
<option value="-">-</option>
<option value="*">*</option>
<option value="/">/</option>
</select>
<input type="submit">
</form>
<%
Dim n1, n2, res, operator
n1 = Request.QueryString("n1")
n2 = Request.QueryString("n2")
operator = Request.QueryString("operator")
Select Case operator
 Case "+"
 res = CInt(n1) + CInt(n2)
 Case "-"
 res = n1 - n2
 Case "*"
 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 Response.Write("Cannot divide by zero!")
 Else
 res = n1 / n2
 End If
End Select
If len(n1) > 0 then
 Response.Write("The result is: " & res)
End if
%>
</body>
</html>

Project Part I68

Coding a Classic ASP calculator with Notepad

The following steps will allow you to code and execute a VBScript that displays the calculator developed
in this project:

1. Start Notepad.

2. Enter all the code from the preceding section.

3. Save the file called ClassicASPCalc.asp in the root web directory (this is typically c:\
inetpub\wwwroot).

4. Open a web browser.

5. Enter this URL: http://127.0.0.1/ClassicASPCalc.asp.

In our next section, we will tackle the calculator example in ASP.NET.

Building the project in ASP.NET
What follows is an ASP.NET Web Forms page written in VB.NET that provides a simple UI for users
to perform basic arithmetic operations on two input numbers.

The first line is a server-side directive that specifies the page language, event handling, and code-
behind file for the page. The Language attribute is set to vb, which indicates that the page is written
in VB.NET. The AutoEventWireup attribute is false, meaning that the event handlers for the
controls on the page will be explicitly defined in the code-behind file. The CodeBehind attribute
specifies the name and path of the code-behind file for the page. Finally, the Inherits attribute
specifies the fully qualified name of the class in the code-behind file that provides the event-handling
logic for the page.

The rest of the code is HTML markup that defines the UI elements on the page. The asp: prefix
indicates that the elements are ASP.NET server controls that will be processed on the server side.

The <form> element has an id attribute of form1 and a runat attribute of server, which
indicates that the form will be processed on the server side.

Inside the form, there are three text boxes and a drop-down list. The text boxes are defined using the
asp:TextBox server control and have id attributes of n1 and n2 and runat attributes of server,
which indicate that they will be processed on the server side. The drop-down list is defined using
the asp:DropDownList server control and has an id attribute of oper and a runat attribute
of server. It also contains four asp:ListItem elements, which represent the four arithmetic
operators that the user can choose from.

Building the project in ASP.NET 69

Finally, there is an asp:Button server control with a text attribute of Submit and a runat
attribute of server, which indicates that it will be processed on the server side when the user clicks
on it:

<%@ Page Language="vb" AutoEventWireup="false" CodeBehind="
ASPENTCalc.aspx.vb" Inherits=" ASPENTCalc. ASPENTCalc" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:TextBox id="n1" runat="server"/>
 <asp:TextBox id="n2" runat="server"/>
 <asp:DropDownList id="oper" runat="server">
 <asp:ListItem Text="+" Value="+" />
 <asp:ListItem Text="-" Value="-" />
 <asp:ListItem Text="*" Value="*" />
 <asp:ListItem Text="/" Value="/" />

 </asp:DropDownList>
 <asp:Button text="Submit" runat="server"/>
 </form>
</body>
</html>

Next is the code-behind file for an ASP.NET Web Forms page written in VB.NET, which provides a
simple UI for users to perform basic arithmetic operations on two input numbers.

The code defines a class called WebForm1, which inherits from the System.Web.UI.Page class
and is the base class for all ASP.NET Web Forms pages.

The Page_Load event handler is defined and executed when the page is loaded. Inside the event
handler, the values of the n1, n2, and oper variables are obtained from the HTTP POST request
sent when the user clicks the Submit button on the page. The Request.Form method retrieves the
values of the form fields with the corresponding name attributes.

Suppose the n1 variable is not null, meaning the form has been submitted. In that case, a Select
Case statement is used to perform the appropriate arithmetic operation based on the value of the
oper variable. The result of the operation is stored in the res variable.

Project Part I70

If the n1 variable has a length greater than 0, which means that the user has entered a value for the first
number, the result of the operation is displayed on the page using the Response.Write method.

If the n1 variable is null, which means that the page has just been loaded and the user has not submitted
the form yet, nothing is displayed on the page.

Overall, this code defines the event handler for the page load event, retrieves the input values from
the form, performs the arithmetic operation based on the selected operator, and displays the result
on the page:

Public Class ASPENTCalc
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.
EventArgs) Handles Me.Load
 Dim n1, n2, oper As String
 Dim res As String = ""
 n1 = Request.Form("n1")
 n2 = Request.Form("n2")
 oper = Request.Form("oper")
 If Not n1 Is Nothing Then
 Select Case oper
 Case "+"
 res = CInt(n1) + CInt(n2)
 Case "-"
 res = n1 - n2
 Case "*"
 res = n1 * n2
 Case "/"
 If n2 = 0 Then
 Response.Write("Cannot divide by zero!")
 Else
 res = n1 / n2
 End If
 End Select
 If Len(n1) > 0 Then
 Response.Write("The result is: " & res)
 End If
 End If
 End Sub

End Class

Summary 71

Coding an ASP.NET calculator with Visual Studio

The following steps will allow you to code and execute an ASP.NET web page that displays Hello
World:

1. Start Microsoft Visual Studio 2019.

2. Choose Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept the default project name and solution name.

5. Change the location if you want your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. Choose Web Forms.

9. When the Designer loads, navigate to the solution explorer and right-click on the solution.

10. Choose Add Item from the pop-up menu.

11. Choose Web Form Visual Basic.

12. Navigate to the source tab and enter the ASPX code from earlier.

13. Right-click on the ASPX source and choose View Code from the pop-up menu.

14. Enter the VB.NET code from the previous code example.

15. To run your program, click the green triangle on the toolbar above your code.

You now have a good example of what we have learned so far about the different members of the
Visual Basic family. Try to reflect on each of the topics we have discussed so far and how we utilized
them in this chapter.

Summary
In this chapter, we utilized the skills we have gained to build an interactive calculator for each of the
members of the VB family. Make sure you can run the code in the VB family member you are interested
in. In the next chapter, we will drill into formatting and modifying data.

Part 2:
Visual Basic Files

and Data Structures

In the second part of this book, we will focus on building our skills for more advanced programs. You
will learn how to format data and persist it into files on the disk drive. We will also look at advanced
data structures that are provided to you in the Visual Basic programming language.

This part has the following chapters:

• Chapter 8, Formatting and Modifying Data

• Chapter 9, File Input and Output

• Chapter 10, Collections

• Chapter 11, Project Part II

8
Formatting and Modifying Data

Formatting data is a common task in programming languages to present data in a desired format. A
programmer will also have to convert data in the same format or to a different format to allow it to
be used in an algorithm.

In this chapter, we’re going to cover the following main topics:

• Modifying string data

• Modifying numerical data

• Modifying date and time data

• Formatting numeric values

• Formatting date and time values

Modifying string data
In VB, you can modify string data using various built-in functions and operators. Here are some
standard operations you can perform on string data:

Concatenation

There are a few ways to combine strings together in VB:

• The & operator: You can concatenate strings using the & operator. Here is an example:

Dim firstName As String = "Sally"
Dim lastName As String = "Stone"
Dim fullName As String = firstName & " " & lastName

The preceding code will make one string from the three separate strings Sally, a space, and
the last name, Stone. The concatenation operator is available for all VB family members.

Formatting and Modifying Data76

• The String.Concat method: Another way to concatenate strings is using the String.
Concat method. Here is the same example utilizing the String.ConCat method:

Dim firstName As String = "Sally"
Dim lastName As String = "Stone"
Dim fullName As String = String.Concat(firstName, " ",lastName)

The preceding code has the same effect as the concatenation operator example. It will make one string
from the three separate strings Sally, a space, and the last name Stone. The String.Concat
method is only available in the VB.NET family member.

Substring extraction

There are a few ways to pull part of a string out of another string in VB:

• The Mid function: Using the Mid function, you can extract a substring from a string, for example:

Dim myStr As String = "Hello World!"
Dim substr As String = Mid(myStr, 6, 5)

This example extracts the substring starting at index 6 with a length of 5 to pull out the word
World and store it in another variable. The last parameter can be left off.

• The Substring method: Using the Substring method was added to VB.NET so you can
extract a substring from a string, for example:

Dim myStr As String = "Hello World!"
Dim substr As String = myStr.Substring(6, 5)

The preceding example extracts the substring starting at index 6 with a length of 5 to pull out
the word World and store it in another variable. With VB.NET, you can still utilize the Mid
function to do the same.

String replacement

Using the Replace method, you can replace specific occurrences of a substring within a string.
Here is an example in VB.NET:

Dim myStr As String = "Hello World!"
Dim repStr As String = myStr.Replace("World", "Sally")

The preceding code replaces the word "World" with the word "Sally". The repStr variable
will now hold the string "Hello Sally!"

Modifying string data 77

In earlier family members of VB, the Replace function takes the string to operate as the first
parameter. Here is an example in VBA:

Dim myStr As String = "Hello World!"
Dim repStr As String = Replace(myStr,"World", "Sally")

This code works just like the VB.NET version and replaces the word "World" with the word "Sally".
The repStr variable will now hold the "Hello Sally!" string.

Case conversion

Using the ToUpper method, you can convert a string to uppercase. For example, in VB.NET, you
can do the following:

Dim myStr As String = "hello world!"
Dim uppStr As String = MyStr.ToUpper()

This code converts the string to uppercase. The uppStr variable will hold the "HELLO WORLD!" value.

In earlier family members of VB, there is a similar function named Ucase. The UCase function
takes the string to operate as a parameter. Here is an example in VBA:

Dim myStr As String = "hello world!"
Dim uppStr As String = Ucase(MyStr)

This code works like the VB.NET version and converts the string to uppercase. The uppStr variable
will hold the "HELLO WORLD!" value.

Using the ToLower method, you can convert a string to lowercase. For example, in VB.NET, you
can do the following:

Dim myStr As String = "Hello World!"
Dim lowStr As String = MyStr.ToLower()

The preceding code converts the string to uppercase. The lowStr variable will hold the "hello
world!" value.

In earlier family members of VB, there is a similar function named LCase. The LCase function
takes the string to operate as a parameter. Here is an example in VBA:

Dim myStr As String = "hello world!"
Dim lowStr As String = LCase(MyStr)

This code works like the VB.NET version and converts the string to lowercase. The lowStr variable
will hold the "hello world!" value.

Next, we will look at how to modify numerical data in VB.

Formatting and Modifying Data78

Modifying numerical data
In VB, you can modify numerical data using many different operators and functions. We will focus
on three types of numerical operations: mathematical, rounding/truncation, and type conversions.

Mathematical operations

The traditional math operations are supported in VB:

• Addition: You can add numeric values using the + operator. Here is an example:

Dim n1 As Integer = 4
Dim n2 As Integer = 2
Dim n3 As Integer = n1 + n2

The preceding code will declare two integer variables (n1 and n2) and add them together,
storing their result in the third variable named n3.

• Subtraction: You can subtract values using the - operator. Here is an example:

Dim n1 As Integer = 4
Dim n2 As Integer = 2
Dim n3 As Integer = n1 - n2

The preceding code will declare two integer variables (n1 and n2) and subtract n2 from n1,
storing the result in the third variable named n3.

• Multiplication: You can multiply values using the * operator. Here is an example:

Dim n1 As Integer = 4
Dim n2 As Integer = 2
Dim n3 As Integer = n1 * n2

This code will declare two integer variables (n1 and n2) and then multiply them together,
storing their result in the third variable named n3.

• Division: You can divide values using the / operator. The result is a real number. Here is
an example:

Dim n1 As Integer = 5
Dim n2 As Integer = 2
Dim n3 As Double = n1 + n2

The preceding code will declare two integer variables (n1 and n2) and divide them, storing their
result in the third variable named n3 of type Double.

Modifying numerical data 79

• Modular division: We often want the remainder of the division’s operation in computer science.
This operation is called modular division. You can perform modular divisions using the Mod
operator. Here is an example:

Dim n1 As Integer = 5
Dim n2 As Integer = 2
Dim n3 As Integer = n1 Mod n2

The preceding code will declare two integer variables (n1 and n2) and then divide them, storing
the remainder of one in the third variable named n3.

Rounding and truncation

There are several functions that allow you to get a decimal value with less precision:

• Rounding: Using the Round function, you can round a numeric value to the nearest integer.
In VB.NET, you want to call the Round method in the Math namespace, for example:

Dim pi As Double = 3.14159
Dim roundedPi As Double = Math.Round(pi)

The preceding code will store the value 3 in the roundedPi variable.

In earlier VB family members, the same can be accomplished without using the Math namespace:
Dim pi As Double = 3.14159
Dim roundedPi As Double = Round(pi)

In both VB.NET and earlier VB family members, you can also pass a second parameter – the
number of fractional digits to round to, for example:

Dim pi As Double = 3.14159
Dim roundedPi As Double = Math.Round(pi,4)

This code will round to four decimal places, storing the value 3.1416 in the roundedPi variable.

• Truncation: You can truncate a numeric value using the truncate function. Truncation
removes the remaining digits from the real number. In VB.NET, you want to call the truncate
method in the Math namespace, for example:

Dim pi As Double = 3.14159
Dim trunPi As Double = Math.Truncate(pi)

The preceding code will store the value 3 in the trunPi variable.

Formatting and Modifying Data80

In VBA, the same can be accomplished without using the Fix function without the
Math namespace:

Dim pi As Double
Pi = 3.14159
Dim trunPi As Double
trunPi = Fix(pi)

VBScript and VB6 did not have a truncate function. There are other functions, such as Fix
and Int, if you want to remove the decimal portion. A trick to using these functions while
preserving digits to the right of the decimal is multiplying the number by a multiple of 10 and
then dividing the result by the same number. Here is an example in VBScript:

Dim pi
pi = 3.14159
Dim trunPi
trunPi = Int(pi * 10000) / 10000

The preceding code will truncate to four decimal places, storing the value 3.1415 in the trunPi variable.

Type conversion

Using casting operators, you can convert numeric values from one data type to another. Here is
an example:

Dim n1 As Integer = 25
Dim n2 As Double = CDbl(n1)

The preceding example converts the value 25 from an integer to a double. There are many different
numeric conversion functions in VB. They all start with a C followed by the data type they return, as
we saw with CDbl, which returned a double. Another example is Cint, which returns an Integer.

Next, we will examine how to work with date and time data.

Modifying date and time data
In VB, you can modify date and time data using various functions and methods provided by the
language. We will focus on creating date and time values, date and time math, and date and time
component extraction.

Creating date and time values

You can create a Date value using the DateValue function or by specifying a date literal in the
format #MM/dd/yyyy#, for example:

Dim dateVal As Date = DateValue("10/05/1967")

Modifying date and time data 81

The preceding code creates a Date value representing October 5, 1967. The same thing can be
accomplished using the string literal:

Dim dateLit As Date = #10/05/1967#

You can create a Time value using the TimeValue function or by specifying a time literal in the
format #hh:mm:ss AM/PM#, for example:

Dim timeVal As Date = TimeValue("11:30:15 AM")

This example code creates a Time value representing 11:30:15 AM. The same thing can be accomplished
using the time literal:

Dim timeLit As Date = #11:30:15 AM#

Date and time math

You can add or subtract a specific time to a Date or Time value using the DateAdd function,
for example:

Dim curDate As Date = Date.Now
Dim futDate As Date = DateAdd("d", 7, curDate)

This code gets the current date and adds seven days to it, storing the result in the futDate variable.

The DateAdd function’s first parameter is a VB constant to represent the type of value being added
to the third parameter. Here are the possible types and the constants used:

• yyyy: Year

• q: Quarter

• m: Month

• y: Day of year

• d: Day

• w: Weekday

• ww: Week

• h: Hour

• n: Minute

• s: Second

Formatting and Modifying Data82

Date and time component extraction

Using the respective properties or functions, you can extract specific components (year, month,
day, hour, minute, or second) from a Date or Time value. In VB.NET, a property is available on a
Datetime value. In VB6, VBScript, and VBA, there is a function with the same name. Here’s an
example in VB.NET:

Dim curDate As Date = Date.Now
Dim curYear As Integer = curDate.Year
Dim curMonth As Integer = curDate.Month
Dim curDay As Integer = curDate.Day
Dim curHour As Integer = curDate.Hour
Dim curMinute As Integer = curDate.Minute
Dim curSecond As Integer = curDate.Second

The same example in earlier VB members would look like this:

Dim curDate As Date = Now()
Dim curYear As Integer = Year(curDate)
Dim curMonth As Integer = Month(curDate)
Dim curDay As Integer = Day(curDate)
Dim curHour As Integer = Hour(curDate)
Dim curMinute As Integer = Minute(curDate)
Dim curSecond As Integer = Second(curDate)

Next, we will look at formatting numeric values.

Formatting numeric values

In VB, you can format data using various functions and methods to present it in the desired format.
Here are some commonly used techniques for formatting data in Visual Basic:

In VB.NET, you can use the ToString method with format specifiers to format numeric values,
for example:

Dim pi as double = 3.14159
Dim strOut As String = pi.ToString("0.00")

The preceding code in VB.NET will store the value 4314 in the strOut variable.

You can also use string interpolation in VB.NET to format numeric values within a string, for example:

Dim pi = 3.14159
Dim strOut As String = $"{pi:0.00}"

Modifying date and time data 83

In early VB family members (VBScript, VBA, and VB6), you can use the FormatNumber function to
format numbers according to your desired format. Here’s an example of how you can do that in VBScript:

Dim pi
pi = 3.14159
Dim formattedPi
formattedPi = FormatNumber(pi, 2)
WScript.Echo formattedPi

The preceding code will output 3.14 for the value of the formatedPi variable. In this example, the
FormatNumber function takes two parameters: the number you want to format and the number
of decimal places you want to display. Finally, it returns a string representing the formatted number.

The FormatNumber function also has some optional parameters that you can use to customize the
formatting further. For example, you can specify whether to include a thousand separator or a decimal
separator and the format for negative numbers.

Next, we will look at formatting date and time values.

Formatting date and time values

You can use the ToString method in VB.NET with custom format specifiers to format date and
time values, for example:

Dim curDate As Date = Date.Now
Dim fDate As String = curDate.ToString("MM/dd/yyyy")
Dim fTime As String = curDate.ToString("hh:mm:ss tt")

If the preceding code is run on June 5, 2023, at 11:30 A.M., it will format the date as "06/05/2023"
and format the time as "11:30:00 AM".

In early VB family members (VBScript, VBA, and VB6), you can use the FormatDateTime function
to format date and time values according to your desired format. Here’s an example of how you can
do that in VBScript:

Dim curDate
curDate = Date()
Dim fDate
fDate = FormatDateTime(curDate, vbShortDate)
WScript.Echo fDate

The FormatDateTime function formats the date and time according to the custom format provided.

Formatting and Modifying Data84

You can use various predefined constants and custom format strings with the FormatDateTime function
to achieve the desired formatting for dates and times. The predefined constants are vbGeneralDate,
vbLongDate, vbShortDate, vbLongTime, and vbShortTime. Custom format strings can
include multiple placeholders such as yyyy for the year, MM for the month, dd for the day, hh for the
hour, mm for the minute, ss for the second, and AM/PM for the time indicator.

Summary
This chapter introduced functions and procedures to modularize code for reuse. When formatting data,
the syntax varies a little more than other topics based on the VB family member. In the next chapter,
we will look at how we can persist data to the filesystem and read that data back into our programs.

9
File Input and Output

Files stored on disk drives allow our programs to persist data across executions, enabling us to develop
potent tools to help us get our daily work done. In addition, we can treat files as both text and binary
data. We will explore the advantages of using both methods. We will also think about organizing the
files we use in our programs in directories.

In this chapter, we’re going to cover the following main topics:

• Working with directories and files

• Writing text to files

• Writing binary data to files

• Reading text from files

• Reading binary data from files

Working with directories and files
We will utilize two different methods for VB.NET and older VB family members. We will see this
pattern throughout this chapter as Microsoft added new file features to the .NET language that you
can leverage in VB.NET and ASP.NET.

Working with files in VB.NET

In VB.NET, you use the File class from the System.IO namespace to work with files. The File
class provides static methods for performing various file-related operations.

To create a file, you can use the Create method, which returns a FileStream object you can later
use to write data to the file:

Imports System.IO
File.Create("C:\Path\File.txt")

File Input and Output86

To delete a file, you can use the Delete method:

Imports System.IO
File.Delete("C:\Path\ File.txt")

To check whether a file exists, you use the Exists property, which returns a Boolean value indicating
whether the file exists or not:

Imports System.IO
If File.Exists("C:\Path\File.txt") Then
 Console.Writeline("The file exists")
End If

You use the Copy method to copy a file from one location to another:

Imports System.IO
File.Copy("C:\Path\File.txt", "C:\Path\NewFile.txt")

To move or rename a file, you use the Move method:

Imports System.IO
File.Move("C:\Path\File.txt", "C:\Path\ NewFile.txt")

To retrieve the file attributes, use the GetAttributes method and the FileAttributes class:

Imports System.IO
Dim attr As FileAttributes = File.GetAttributes("C:\Path\ File.txt")
If attr.HasFlag(FileAttributes.ReadOnly)Then
 Console.Writeline("The file is read-only")
End If
If attr.HasFlag(FileAttributes.Hidden) Then
 Console.Writeline("The file is hidden")
End If

Next, we will look at working with directories in VB.NET.

Working with directories in VB.NET

In VB.NET, you can use the Directory class from the System.IO namespace to work with directories.
The Directory class provides static methods for performing various directory-related operations.

To create a directory, you use the CreateDirectory method:

Imports System.IO
Directory.CreateDirectory("C:\Path\NewDirectory")

Working with directories and files 87

To delete a directory, you use the Delete method. With the second parameter, you can specify
whether to delete the directory recursively or not:

Imports System.IO
Directory.Delete("C:\Path\Directory", recursive:=True)

To check whether a directory exists, you use the Exists property, which returns a Boolean value
indicating whether the directory exists or not:

Imports System.IO
If Directory.Exists("C:\Path\Directory") Then
 Console.Writeline("The directory exists")
End If

To move or rename a directory, you can use the Move method:

Imports System.IO
Directory.Move("C:\Path\OldDir", "C:\Path\NewDir")

To retrieve the files or subdirectories within a directory, you use the GetFiles and Get
Directories methods:

Imports System.IO
Dim files As String() = Directory.GetFiles("C:\Path\Dir")
Dim dirs As String() = Directory.GetDirectories("C:\Path\Dir")

The GetFiles and GetDirectories methods return collections of values, which we will explore
in Chapter 10.

To retrieve information about a directory, you can use the GetDirectoryInfo method to get a
DirectoryInfo object. You can use this DirectoryInfo object to get files and directories, as
in our last example, but from the object:

Imports System.IO
Dim dirInfo As DirectoryInfo = My.Computer.
FileSystemGetDirectoryInfo("C:\Path\Dir")
Dim files() As FileInfo = dirInfo.GetFiles()

You retrieve various attributes of a directory using the GetAttributes method, just as you did
for a file previously:

Imports System.IO
Dim attr As FileAttributes = File.GetAttributes("C:\Path\Dir")
If attr.HasFlag(FileAttributes.ReadOnly) Then
 Console.Writeline("The directory is read-only")
End If

File Input and Output88

If attr.HasFlag(FileAttributes.Hidden) Then
 Console.Writeline("The directory is hidden")
End if

Next, we will look at working with files in VBScript, VBA, and VB6.

Working with files in older VB family members

Working with files and directories in older VB family members (VBScript, VBA, and VB6) involves
using the file system object (FSO) provided by the Windows Script Host. The FSO allows you to
perform many operations on files and directories.

To create a directory with FSO, you use the CreateFolder method:

Set myFSO = CreateObject("Scripting.FileSystemObject")
myFSO.CreateFolder("C:\Path\Directory")

To delete a directory with FSO, you use the DeleteFolder method. The second parameter specifies
whether to delete the directory recursively or not:

Set myFSO = CreateObject("Scripting.FileSystemObject")
myFSO.DeleteFolder("C:\Path\Directory", True)

To check whether a directory exists with FSO, you can use the FolderExists method, which
returns a Boolean value indicating whether the directory exists or not:

Set myFSO = CreateObject("Scripting.FileSystemObject")
If myFSO.FolderExists("C:\Path\Directory") Then
 Wscript.Echo "The directory exists"
End If

To rename or move a directory with FSO, you use the MoveFolder method:

Set myFSO = CreateObject("Scripting.FileSystemObject")
myFSO.MoveFolder "C:\Path\OldDir", C:\Path\NewDir"

Next, we will look at working with directories in VBScript, VBA, and VB6.

Working with directories in older VB family members

To create a file with FSO, you use the CreateTextFile method, which has optional second and
third parameters to specify whether the file should be overwritten and whether it should be created
in Unicode format:

Set myFSO = CreateObject("Scripting.FileSystemObject")
Set myFile = myFSO.CreateTextFile("C:\Path\File.txt", True)

Writing test into files 89

To delete a file with FSO, you use the DeleteFile method, which has an optional second parameter
to specify whether only read-only files should be deleted:

Set myFSO = CreateObject("Scripting.FileSystemObject")
myFSO.DeleteFile("C:\Path\File.txt")

To check whether a file exists with FSO, you use the FileExists method, which returns a Boolean
value indicating whether the file exists or not:

Set myFSO = CreateObject("Scripting.FileSystemObject")
If myFSO.FileExists("C:\Path\File.txt") Then
 Wscript.Echo "The file exists"
End If

To rename or move a file with FSO, you use the MoveFile method:

Set myFSO = CreateObject("Scripting.FileSystemObject")
myFSO.MoveFile "C:\Path\Old.txt", "C:\Path\New.txt"

Next, we will look at writing data in text format into files.

Writing test into files
We will continue to utilize the two different methods for VB.NET and older VB family members.
For VB.NET, we will use the File class from the System.IO namespace to write text to files. For
VBScript, VBA, and VB6, we will continue to use the FSO we used in the files and directories section.

The File class also provides two methods that make writing text to a file in a single line easy. The
WriteAllText and AppendAllText methods allow you to send the parameter to overwrite or
append the file:

Imports System.IO
Dim myFile As String = "C:\Path\File.txt"
File.WriteAllText(myFile, "This text overwrites the file")
File.AppendAllText(myFile, "This is appended text.")

In VB.NET, the StreamWriter class can also write text to a file. First, you create a StreamWriter
instance, and then use its Write or WriteLine methods to write text:

Imports System.IO
Dim myFile As String = "C:\Path\File.txt"
Using writer As New StreamWriter(myFile)
 writer.Write("Here is some text.")
 writer.WriteLine("This text will end the line.")
End Using

File Input and Output90

In earlier family members of VB, we can utilize the FSO as we did earlier. FSO provides the
CreateTextFile method that we saw earlier. This method creates a new file or opens an existing
file for writing. The CreateTextFile method returns a TextFile object. The Write method of
the TextFile object is then used to write the text to the file. Finally, we need to make sure we close
the file. The Close method of the TextFile object is used to close the file and release the resources:

myFile = "C:\Path\File.txt"
myText = "This text will be written to the file"
Set myFSO = CreateObject("Scripting.FileSystemObject")
Set myTextFile = myFSO.CreateTextFile(myFile, True)
myTextFile.Write myText
MyTextFile.Close

The implementation of the previous code snippet will depend on the VB family member. For VBScript,
this could be run by placing the code in a script file. For VB and VBA, you would place the code in
a larger project.

Writing text in VB6 and VBA

VB6 and VBA have unique methods that are unavailable in VBScript for output operations. For
example, you open a file for a specific mode of operation and give it a file number, which needs to be
between 1 and 511. Once the file is opened, you can write to it and close it:

Open "C:\path\file.txt" For Output As #1
Write #1, "This is the text."
Close #1

Next, we will look at reading data in text format from files.

Reading text from files
We will continue to utilize the two different methods for VB.NET and older VB family members. For
VB.NET, we will use the File class from the System.IO namespace to read text from files. For
VBScript, VBA, and VB6, we will continue to use the FSO we used in the files and directories section.

The File class also provides two methods that make writing text to a file in a single line easy. The
ReadAllText and ReadlAllLines methods pull all the text from the file into a single variable.
The difference between the two methods is that the second method pulls the data line by line into an
array, while the first does not separate the input file lines:

Imports System.IO
Dim myFile As String = "C:\Path\File.txt"
Dim myText As String = File.ReadAllText(myFile)

Writing binary data to files 91

In VB.NET, the StreamReader class allows you to read text from a file. First, you create a
StreamReader instance, and then use its Read or ReadLine methods to read the text:

Imports System.IO
Dim myFile As String = "C:\Path\File.txt"
Dim myLine As String
Using reader As New StreamReader(myFile)
 myLine = reader.ReadLine
End Using

Reading text in VB6 and VBA

VB6 and VBA have unique methods that are unavailable in VBScript for input operations. For
example, you open a file for a specific mode of operation and give it a file number, which needs to be
between 1 and 511. Once the file is opened, you can read from it with the Input or LineInput
statements and close it. Input will read to the next delimiter, and LineInput will read the text
up to the following line:

Dim myValue
Open "C:\path\file.txt" For Input As #1
Input #1, myValue
MsgBox myValue
Close #1

Next, we will look at writing binary data to files.

Writing binary data to files
We will utilize the two methods for VB.NET and older VB family members. For VB.NET, we will use
the File class from the System.IO namespace to write binary data to files. For VBA and VB6, we
will use the file number operations we saw in the last two sections. VBScript can use ADODB.stream
to write binary data to files, but we will leave it out of this section due to its complexity.

The File class also provides a method that makes writing binary data to a file in a single line easy.
The WriteAllBytes method allows you to send an array of bytes to the file:

Imports System.IO
Dim myFile As String = "C:\Path\File.dat"
Dim bData() As Byte = {230, 231, 232, 233, 234, 235}
File.WriteAllBytes(myFile, bData)

File Input and Output92

To write binary data to files in VB.NET, you can also use the FileStream class from the System.
IO namespace. Here’s an example of how to write binary data to a file utilizing a FileStream object:

Imports System.IO
Dim myFile As String = "C:\Path\File.dat"
Dim bData() As Byte = {230, 231, 232, 233, 234, 235}
Using fs As New FileStream(myFile, FileMode.Create, FileAccess.Write)
 fs.Write(bData, 0, bData.Length)
End Using

In the preceding example, the file path where we want to write the binary data is specified in the
myFile variable. The bData array represents the binary data you want to write to the file.

The FileStream object is created with the FileMode.Create file path to create a new file
(overwriting it if it exists), and FileAccess.Write to write access to the file. Inside the Using
block, the Write method of the FileStream object is called to write the binary data to the file.
The parameters passed to the Write method are the bData array, the offset (0 in this case), and
the length of the binary data array.

The Using block ensures that the FileStream object is properly closed and disposed of after
completing the writing operation.

Writing binary data in VB6 and VBA

VB6 and VBA have unique methods that are unavailable in VBScript for binary output operations. You
can open a file for a specific mode of operation and give it a file number, which needs to be between
1 and 511. Once the file is opened, you can write binary bytes with the Put statement:

Open "C:\path\file.dat" For Binary Access Write As #1
Put #1,,230
Close #1

In the preceding example, the second parameter represents the byte offset to write to. In the example,
this is blank, meaning the byte with a value of 230 is written at the current location. VB will maintain
a location pointer in the file as the data is written. You can utilize a seek operation to move the
pointer to a specific location before doing the put operation, or you can utilize the second parameter
to skip forward.

Next, we will look at reading binary data from files.

Reading binary data from files
We will continue to utilize the two different methods for VB.NET and older VB family members. For
VB.NET, we will use the File class from the System.IO namespace to read binary data from files.
For VBA and VB6, we will use the file number operations we saw in the previous sections. VBScript

Reading binary data from files 93

can use ADODB.stream to read binary data from files, but we will leave it out of this section due
to its complexity.

The File class also provides a method that makes reading binary data from a file in a single line easy.
The ReadAllBytes method allows you to receive an array of bytes representing the data from the file:

Imports System.IO
Dim myFile As String = "C:\Path\File.dat"
Dim bData() As Byte
bData = File.ReadAllBytes(myFile)

To read binary data from files in VB.NET, you can also use the FileStream class from the System.
IO namespace. Here’s an example of how to read binary data from a file with a FileStream object:

Imports System.IO
Dim myFile As String = "C:\Path\File.dat"
Dim bData()
Using fs As New FileStream(myFile, FileMode.Open, FileAccess.Read)
 ReDim bData(fs.Length - 1) As Byte
 fs.Read(bData, 0, bData.Length)
End Using

This example specifies the file path from which we want to read the binary data with the myFile
variable. The FileStream object is created with the FileMode.Open file path to open an existing
file and FileAccess.Read to specify read access to the file. Inside the Using block, the bData
byte array is created with a length equal to the size of the file. The Read method of the FileStream
object is then called to read the binary data from the file into the bData array.

After reading the binary data, we can process it within the Using block. The Using block ensures that
the FileStream object is properly closed and disposed of after completing the reading operation.

Reading binary data in VB6 and VBA

VB6 and VBA have unique methods that are unavailable in VBScript for binary input operations. You
can open a file for a specific mode of operation and give it a file number, which needs to be between
1 and 511. Once the file is opened, you can read binary bytes with the Get statement:

Dim myByte as Byte
Open "C:\path\file.dat" For Binary Access Read As #1
Get #1,,myByte
Close #1

In the preceding example, the second parameter represents the Byte offset to read from. In the
example, this is blank, which means Byte is read from the current location.

File Input and Output94

Summary
This chapter introduced reading and writing data from files. We looked at working with both text
and binary data. Storing data in files and reading that data from files is important, as we want our
programs to have the ability to persist the work they have done between executions of the program.

In the next chapter, we will look at how to store many values in a single variable using the many
collections available in the Visual Basic language.

10
Collections

In programming, collections refer to data structures or containers that are used to store and organize
groups of related values or objects. These collections provide various methods and operations that
you can use efficiently to manipulate and access the data they contain.

Several common types of collections are used in computer programming, including the following:

• Arrays: An array is a fundamental collection type that stores a fixed-size sequence of elements
of the same data type. Elements in an array are accessed by their index, which represents their
position in the array.

• Lists: These are dynamic collections that can grow or shrink in size. They allow for efficient
insertion, deletion, and retrieval of elements. Lists can store pieces of different types, often
providing additional operations such as sorting and searching.

• Sets: These are collections that store unique elements without any particular order. They ensure
that each piece appears only once, eliminating duplicates. Sets often provide operations for
union, intersection, and difference between sets.

• Dictionaries: Also known as maps or associative arrays, dictionaries store key-value pairs.
They allow you to efficiently look up values based on their associated keys. Dictionaries provide
operations for inserting, deleting, and retrieving values based on their keys.

• Queues: These follow a First-In, First-Out (FIFO) order, where elements are added at the
end and removed from the front. Queues are commonly used when the processing order is
essential, such as scheduling tasks or processing messages.

• Stacks: These follow a Last-In, First-Out (LIFO) order, where elements are added and removed
from the same end. Stacks are often used in scenarios such as parsing expressions, managing
function calls, or implementing undo/redo functionality.

• Linked lists: These contain nodes that hold data and references to the next node in the sequence.
They provide efficient insertion and deletion at any position in the list, but accessing elements
via an index is less efficient than using arrays.

Collections96

• Tuples: These are ordered collections that can store elements of different types. Unlike arrays,
tuples are typically immutable, meaning their elements cannot be modified after creation.

• Bags or multisets: These are like sets but allow duplicate elements. They store a collection of
pieces without enforcing uniqueness.

There are solutions for each collection type in VB, but we will focus on the core collections needed
and used in a typical program.

In this chapter, we’re going to cover the following main topics:

• Working with one-dimensional arrays

• Utilizing multidimensional arrays

• When and how to use lists

• Storing data in a dictionary

Working with one-dimensional arrays
In VB, one-dimensional arrays are declared and stored in a linear sequence to store a collection of
elements of the same data type. Here’s the syntax for declaring a one-dimensional array in VB:

Dim arrayName(size) As DataType

An example of an array of 10 integers would look like this:

Dim myInts(10) As Integer

The preceding code will create a variable named myInts, which is an array with 10 elements. In VB,
like most programming languages, the elements are indexed from 0 to size-1. In this example, they
would be indexed from 0 to 9.

Array elements in VB are accessed using their index, starting from 0. You can retrieve or assign values
to array elements as follows:

Dim value As Integer = myInts(3)
myInts(3) = 5

This code example accesses the fourth element. First, it retrieves the value and then assigns a new
value to the fourth element.

You can determine the length (number of elements) of a one-dimensional array using the Length property:

Dim len As Integer = myInts.Length

Utilizing multidimensional arrays 97

You can iterate over the elements of an array using various looping constructs, such as a For loop,
as we learned previously in this book:

For ind As Integer = 0 To myInts.Length - 1
 Console.WriteLine(myInts(ind))
Next

The preceding code will output each element in the myInts array using a For loop variable named
ind. The ind variable will be assigned a value of 0 up to the length -1. The ind variable is then
used as an index in the myInts variable.

There is also a specific loop construct in VB to make this easier called, the For Each loop:

For Each num in myInts
 Console.WriteLine(num)
Next

This code will output each element in the myInts array, but it does so without indexing into the
array. The For Each loop will copy each value in the sequence into the variable after the For Each
keywords. In this case, the num variable will get each value from the myInts array.

Next, we will look at working with multidimensional arrays in VB.

Utilizing multidimensional arrays
Multidimensional arrays allow you to store and organize data in a spreadsheet-like structure with
multiple dimensions. You can have arrays with two or more dimensions, such as two-dimensional
arrays, three-dimensional arrays, and so on. Here’s an example of how you can declare an array with
multiple dimensions:

Dim arrayName(size1, size2, ...) As DataType

For example, to declare and initialize a two-dimensional array of integers with five rows and 10
columns, you can use the following code:

Dim myMatrix(5, 10) As Integer

Array elements in multidimensional arrays are accessed using their indices for each dimension. You
can retrieve or assign values to array elements as follows:

Dim value As Integer = myMatrix(4, 9)
myMatrix(4, 9) = 25

The previous code example accesses the element at the fourth row and tenth column. First, it retrieves
the value, then assigns a new value to that cell of the multidimensional array.

Collections98

To get the length or size of each dimension in a multidimensional array, you can use the GetLength
method while passing in the dimension you want to know the size of:

Dim rows As Integer = myMatrix.GetLength(0)
Dim columns As Integer = myMatrix.GetLength(1)

You can iterate over the elements of an array using various looping constructs inside other looping
constructs, such as a For loop, as we learned in Chapter 5:

For row As Integer = 0 To myMatrix.GetLength(0) - 1
 For col As Integer = 0 To myMatrix.GetLength(1) - 1
 Console.WriteLine(myMatrix(row,col))
 Next
Next

Using two loops, the previous code will output each element in the multidimensional myMatrix
array. The outer loop goes through the first dimension, assigning the index to a variable for the row. The
inner For loop goes through the second dimension, assigning the index to a variable for the column.

Handling arrays in early VB family members

There is one difference with arrays in early VB family members from the VB.NET examples that we
saw earlier. The difference is in how you find the array’s size or an array’s dimension. You can use
the UBound function to get the length of the array or the dimension. A number indicates which
dimension’s size is returned. Use 1 for the first dimension, 2 for the second, and so on. If the dimension
is omitted, one is assumed:

Dim rows As Integer = Ubound(myMatrix)
Dim columns As Integer = Ubound(myMatrix,1)

Next, we will look at working with lists in VB.

When and how to use lists
Lists and arrays are data structures that are used in programming to store and organize collections of
elements. However, there are some differences between them in terms of their properties and functionality

• Lists:

 � Dynamic size: In most programming languages, such as Python, lists are dynamic in size,
meaning they can grow or shrink during program execution. You can add or remove elements
from a list without specifying their size.

 � Heterogeneous elements: Lists can store elements of different data types. For example, a
list can contain integers, strings, and objects.

When and how to use lists 99

 � Flexible operations: Lists provide built-in methods for operations, such as appending
elements, inserting elements at specific positions, removing elements, and concatenating lists.

 � Slower access: Accessing elements in a list is slower than using arrays because lists use
pointers to store the elements’ memory addresses. As a result, accessing an element requires
following the pointer to the desired memory location.

 � Higher memory overhead: Lists generally require more memory than arrays due to their
dynamic nature and additional metadata.

• Arrays:

 � Fixed Size: Arrays have a fixed size that’s determined at the time of declaration and cannot
be changed during runtime.

 � Homogeneous elements: Arrays only store elements of the same data type. For example,
an integer array can only hold integer values, and a string array can only hold string values.

 � Efficient access: Arrays provide efficient element access since elements are stored in contiguous
memory locations. Accessing an element requires calculating its memory address using an
index, a simple arithmetic operation.

 � Limited operations: Arrays typically offer fewer built-in operations compared to lists. They
usually support basic operations such as element access, modification, and iteration but may
not have built-in methods for dynamic resizing or complex operations.

 � Lower memory overhead: Arrays generally require less memory than lists because they
have a fixed size and do not require additional metadata.

To summarize the differences, lists are more flexible and versatile regarding dynamic size and
heterogeneous elements. At the same time, arrays offer efficient element access and lower memory
overhead but have a fixed size and homogeneous elements. The choice between lists and arrays
depends on the specific requirements of your program and the operations you need to perform on
the collection of elements.

In VB.NET, a list is represented by the List(Of T) class, which is part of the System.Collections.
Generic namespace. The List(Of T) class provides a dynamic, resizable array-like data structure.

Here’s an example of how to use lists in VB.NET:

Imports System.Collections.Generic
Dim nums As New List(Of Integer)()
nums.Add(10)
nums.Add(20)
nums.Add(30)
For Each num As Integer In nums
Console.WriteLine(num)

Collections100

Next
Console.WriteLine("Count: " & nums.Count)

The preceding VB.NET code demonstrates the usage of a list to store and display a collection of integer
values. Here’s a breakdown of the code’s functionality:

1. The code begins by importing the System.Collections.Generic namespace, which
contains the List(Of T) class for creating and manipulating lists.

2. A new list called nums is declared and instantiated using the New List(Of Integer)
() syntax. This list is specifically designed to store integer values.

3. Using the Add method, the code adds three integer elements (10, 20, and 30) to the nums list.

4. A For Each loop is utilized to iterate over each element in the nums list. During each
iteration, the current element is assigned to the num variable, and its value is then printed to
the console using Console.WriteLine(num).

5. After the loop completes, the code outputs the count of elements in the nums list using the
Count property. The result is printed to the console using Console.WriteLine("Count:
" & nums.Count).

In summary, this VB.NET code creates a list called nums and adds three integer values. It then iterates
over the list and prints each element’s value. Finally, it outputs the count of elements in the list.

There is also an operation to remove items from the list:

Nums.Remove(30)

VB6, VBA, and VBScript did not have native support for lists. You can instantiate COM objects in
these family members as they support lists but you can also use dictionaries to get similar functionality.
We will take a look at dictionaries in the next section.

Storing data in a dictionary
Dictionaries, or associative arrays or hash maps, are widely used data structures in programming.
Dictionaries provide a way to store and retrieve data using key-value pairs. The key is used to store and
retrieve the related data. There are also methods to return the keys as a list that can be iterated over.

In VB.NET, dictionaries are represented by the Dictionary(Of TKey, TValue) class, which is
part of the System.Collections.Generic namespace. Dictionaries provide a data structure that
stores key-value pairs, allowing efficient lookup and retrieval of values based on their associated keys.

Here’s an example of how to use dictionaries in VB.NET:

Dim studGrades As New Dictionary(Of String, Integer)()
studGrades.Add("Seamus", 92)
studGrades.Add("Freya", 95)

Storing data in a dictionary 101

studGrades.Add("Aspen", 89)
For Each pair As KeyValuePair(Of String, Integer) In studGrades
 Console.WriteLine(pair.Key & " Received " & pair.Value)
Next
Console.WriteLine("Students: " & studGrades.Count)

The preceding code snippet is written in VB.NET and represents a program that manages student
grades using a dictionary data structure.

Here’s a breakdown of the code:

• Dim studGrades As New Dictionary(Of String, Integer)(): This line
declares and initializes a new dictionary instance called studGrades. The dictionary is
expected to store key-value pairs, where the keys are of the String type (representing student
names) and the values are of the Integer type (representing the grades).

• studGrades.Add("Seamus", 92): This line adds a key-value pair to the studGrades
dictionary. The key is "Seamus", and the associated value is 92.

• studGrades.Add("Freya", 95): This line adds another key-value pair to the studGrades
dictionary. The key is "Freya", and the associated value is 95.

• studGrades.Add("Aspen", 89): This line adds a key-value pair to the studGrades
dictionary. The key is "Aspen", and the associated value is 89.

• For Each pair As KeyValuePair(Of String, Integer) In studGrades:
This line initiates a loop that iterates through each key-value pair in the studGrades dictionary.
The loop assigns each pair to the variable pair.

• Console.WriteLine(pair.Key & " Received " & pair.Value): This line
prints the key (student name), followed by the " Received " string, and then the value
(grade) associated with that key, to the console.

• Next: This keyword denotes the end of the loop initiated by the For Each statement.

• Console.WriteLine("Students: " & studGrades.Count): This line prints
the "Students: " string, followed by the number of items in the studGrades dictionary
(the count of key-value pairs) to the console.

In VBScript, VBA, and VB6, there is no built-in dictionary data structure like the one available in
VB.NET. You can achieve similar functionality using the Scripting.Dictionary object, which
is provided as part of the Windows Script Host (WSH) object model.

To work with dictionaries in VBScript, you must create an instance of the Scripting.Dictionary
object and then use their methods and properties to manipulate and access the data. Here’s an example:

Dim studGrades
Set studGrades = CreateObject("Scripting.Dictionary")

Collections102

studGrades.Add "Seamus", 92
studGrades.Add "Freya", 95
studGrades.Add "Aspen", 89
WScript.Echo "Seamus received " & studGrades("Seamus")
WScript.Echo "Freya received " & studGrades("Freya")
WScript.Echo "Aspen received " & studGrades("Aspen")
WScript.Echo "Students: " & studGrades.Count

In the previous example, we created a new instance of the Scripting.Dictionary object using
the CreateObject function. Then, we used the Add method to add key-value pairs to the dictionary,
where the keys are student names and the values are their grades.

To access the values in the dictionary, we used the key within parentheses, similar to an array index.
In this case, studGrades("Seamus") retrieves the grade associated with the "Seamus" key.

The Count property gives the number of items (key-value pairs) in the dictionary.

Note that the Scripting.Dictionary object in VBScript is not as powerful or feature-rich as
the dictionary in VB.NET. It has limited methods and does not support strongly-typed keys or values.

Summary
This chapter introduced collections in VB family members. We looked at working with arrays and lists
and a higher-level data structure – a dictionary. These collections allow us to store multiple values in
a single variable. In the next chapter, we will look at building a more extensive example project based
on what we have learned.

11
Project Part II

In our second project, we will use the skills we have learned so far to build a simple student grade
tool that will read student grades from a file and aggregate those grades for each VB family member.
The grading tool should read a comma-separated values (CSV) file with a student name and grade
delimited by a comma. The grading tool should utilize the dictionary and list data structures we learned
about in the previous chapters. This grading tool will then show a summary per student.

In this chapter, we’re going to cover the following main topics:

• Developing a grading tool in the VB.NET console

• Developing a grading tool in VB 6

• Developing a grading tool in VBA

• Developing a grading tool in VBScript

• Developing a grading tool in Classic ASP

• Developing a grading tool in ASP.NET

Technical requirements
All the example code for this chapter is available in the following GitHub repository: https://
github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/
tree/main/ProjectPartII.

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartII
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartII
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartII

Project Part II104

Building the project in the VB.NET console
This simple console application is written in the VB.NET programming language. This code snippet
demonstrates how to read a .csv file containing student names and grades and store them in a
dictionary with a list of grades. Let’s break down the code:

1. The following lines import the necessary namespaces for file operations (System.IO) and
working with collections (System.Collections.Generic):

Imports System.IO
Imports System.Collections.Generic

2. The code is enclosed within a module called MainModule; the entry point is the Main
subroutine. The Main subroutine is where the execution of the program starts:

Module MainModule
 Sub Main()
 ' Main code goes here
 End Sub
End Module

3. The filePath variable stores the path to the CSV file:

Dim filePath As String = "students.csv"

4. The following line initializes a dictionary named studentGrades. The dictionary’s keys
are strings representing student names, and the values are lists of strings representing grades:

Dim studentGrades As New Dictionary(Of String, List(Of
 String))()

5. The next block of code uses StreamReader to read the contents of the CSV file specified by
filePath. The Using statement ensures that the reader is disposed of properly after use.
The While loop continues until the end of the file is reached:

 Using reader As New StreamReader(filePath)
 While Not reader.EndOfStream
 ' Read and process each line
 End While
 End Using

6. The following lines read a single line from the CSV file using ReadLine() and split it into
fields using the Split() method. The fields are expected to be comma-separated:

Dim line As String = reader.ReadLine()
Dim fields As String() = line.Split(","c)

Building the project in the VB.NET console 105

The following condition checks if the line contains precisely two fields. If it does, it proceeds
to process the student’s name and grade:

If fields.Length = 2 Then
 ' Process the student name and grade
End If

These lines extract the student’s name and grade from the fields array. The Trim() method
is used to remove any leading or trailing whitespace:

Dim studentName As String = fields(0).Trim()
Dim grade As String = fields(1).Trim()

7. This code checks whether studentName does not already exist as a key in the studentGrades
dictionary. If it doesn’t, a new entry is added to the dictionary with studentName as the key
and an empty list as the initial value:

If Not studentGrades.ContainsKey(studentName) Then
 studentGrades.Add(studentName, New List(Of
 String)())
End If

8. This line adds grade to the list of grades associated with the studentName key in the
studentGrades dictionary:

studentGrades(studentName).Add(grade)

This For Each loop iterates over each studentName instance in the Keys collection of the
studentGrades dictionary. It allows you to process each student’s name and associated grades:

For Each studentName As String In studentGrades.Keys
 ' Process each student name and grades
Next

Within the loop, this code retrieves the list of grades for the current studentName and joins
them into a comma-separated string using String.Join(). It then prints the student’s name
and their grades to the console using Console.WriteLine():

Dim grades As List(Of String) =
 studentGrades(studentName)
Dim gradeList As String = String.Join(", ", grades)
Console.WriteLine(studentName & ": " & gradeList).

9. This line waits for user input, effectively pausing the console window so that the output can be
viewed before the program exits:

Console.ReadLine()

Project Part II106

The following is the complete code for reading the CSV file, processing the data, and storing it in a
dictionary with a list of grades. It then outputs the student names and their corresponding grades to
the console:

Imports System.IO
Imports System.Collections.Generic

Module MainModule
 Sub Main()
 Dim filePath As String = "students.csv"
 Dim studentGrades As New Dictionary(Of String,
 List(Of String))()

 Using reader As New StreamReader(filePath)
 While Not reader.EndOfStream
 Dim line As String = reader.ReadLine()
 Dim fields As String() = line.Split(","c)

 If fields.Length = 2 Then
 Dim studentName As String =
 fields(0).Trim()
 Dim grade As String = fields(1).Trim()

 If Not studentGrades.ContainsKey
 (studentName) Then
 studentGrades.Add(studentName, New
 List(Of String)())
 End If

 studentGrades(studentName).Add(grade)
 End If
 End While
 End Using

 For Each studentName As String In
 studentGrades.Keys
 Dim grades As List(Of String) =
 studentGrades(studentName)
 Dim gradeList As String = String.Join(", ",
 grades)
 Console.WriteLine(studentName & ": " &
 gradeList)
 Next

Building the project in VB6 107

 Console.ReadLine()
 End Sub
End Module

Coding the VB.NET console grading tool

The following steps show you how to code and execute a VB.NET Windows Forms version of Hello World:

1. Start Microsoft Visual Studio.

2. Choose Create New Project.

3. Choose Console (.NET Framework) and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you wish your code to be in a different folder.

6. Accept the default Framework option.

7. Click Create Project.

8. Enter the code example from the preceding section.

9. To run your program, click the green triangle on the toolbar above your code.

Note
Make sure the students.csv file is in the same folder as the executable code; otherwise, it
will throw a System.IO.FileNotFoundException exception.

Our next section will tackle the calculator example in VB 6.

Building the project in VB6
We will now build VB 6 code for the grading tool program. This code reads a CSV file of students
and grades and stores them in a dictionary. It uses the Scripting.Dictionary object to create
the dictionary and a Collection object to store the grades for each student.

Here’s the complete code, which reads the CSV file, stores the student names and grades in a dictionary,
and then prints them with their corresponding grades:

Option Explicit
Dim studentGrades As Object
Sub ReadCSVFile()
 Dim filePath As String
 Dim fileNum As Integer
 Dim line As String
 Dim fields() As String

Project Part II108

 Dim studentName As String
 Dim grade As String

 filePath = "students.csv"
 Set studentGrades = CreateObject
 ("Scripting.Dictionary")

 fileNum = FreeFile
 Open filePath For Input As fileNum

 Do Until EOF(fileNum)
 Line Input #fileNum, line
 fields = Split(line, ",")

 If UBound(fields) = 1 Then
 studentName = Trim(fields(0))
 grade = Trim(fields(1))

 If Not studentGrades.Exists(studentName) Then
 studentGrades.Add studentName, New
 Collection
 End If

 studentGrades(studentName).Add grade
 End If
 Loop

 Close fileNum

 Dim student As Variant
 Dim gradeList as String
 For Each student In studentGrades.Keys
 studentName = student
 gradeList = GetGradeList(studentName)
 Debug.Print studentName & ": " & gradeList
 Next student
End Sub

Function GetGradeList(ByVal studentName As String) As
 String
 Dim gradeList As String
 Dim grades As Collection
 Set grades = studentGrades.Item(studentName)

Building the project in VB6 109

 Dim grade As Variant
 For Each grade In grades
 gradeList = gradeList & grade & ", "
 Next grade

 If Len(gradeList) > 0 Then
 gradeList = Left(gradeList, Len(gradeList) - 2)
 End If

 GetGradeList = gradeList
End Function
Private Sub Form_Load()
 ReadCSVFile
End Sub

Let’s break down the code:

1. Option Explicit: This statement enforces explicit declaration of variables, ensuring
that all variables are declared before they are used. It helps prevent typographical errors and
promotes code clarity.

2. Dim studentGrades As Object: This declares a variable named studentGrades
as an Object type. It will be used to store the dictionary that maps student names to grades.

3. Sub ReadCSVFile(): This is the main subroutine and reads the CSV file and populates
the dictionary with student grades.

4. Dim filePath As String: This declares a variable named filePath to store the path
to the CSV file. Modify it to the actual file path.

5. Dim fileNum As Integer: This declares a variable named fileNum that stores the file
number for file I/O operations.

6. Dim line As String: This declares a variable named line that stores each line read
from the CSV file.

7. Dim fields() As String: This declares an array variable named fields that stores
the fields that have been extracted from each line of the CSV file.

8. Dim studentName As String: This declares a variable named studentName that
stores the name of each student.

9. Dim grade As String: This declares a variable named grade that stores the grade of
each student.

10. filePath = "students.csv": This assigns the path of the CSV file to the
filePath variable.

Project Part II110

11. Set studentGrades = CreateObject("Scripting.Dictionary"):
This creates an instance of the Scripting.Dictionary object and assigns it to the
studentGrades variable.

12. fileNum = FreeFile: This assigns a file number to the fileNum variable using the
FreeFile function. It provides a unique file number for file I/O operations.

13. Open filePath For Input As fileNum` This opens the CSV file in input mode
using the file number stored in fileNum.

14. Do Until EOF(fileNum): This starts a loop that continues until the end of the file is reached.

15. Line Input #fileNum, line: This reads a line from the file and assigns it to the
line variable.

16. fields = Split(line, ","): This splits line into an array of fields using the
comma delimiter.

17. If UBound(fields) = 1 Then: This checks if the number of fields is equal to 2. If
true, it means there are two fields: studentName and grade.

18. studentName = Trim(fields(0)): This assigns the trimmed value of the first field
(student name) to the studentName variable.

19. grade = Trim(fields(1)): This assigns the trimmed value of the second field (grade)
to the grade variable.

20. If Not studentGrades.Exists(studentName) Then: This checks if the
studentGrades dictionary does not already contain an entry for the current student name.

21. studentGrades.Add studentName, New Collection: This adds a new entry to
the studentGrades dictionary, with the student’s name as the key and a new Collection
object as the value. The Collection object will store the grades for the student.

22. studentGrades(studentName).Add grade: This adds the current grade to the
Collection object associated with the student name in the studentGrades dictionary.

23. Loop: This is the end of the loop. It continues reading lines from the file until the end of the
file is reached.

24. Close fileNum: This closes the CSV file.

25. Dim student As Variant: This declares a variable named student to iterate over the
keys (student names) in the studentGrades dictionary.

26. For Each student In studentGrades.Keys: This starts a loop that iterates over
each student’s name in the studentGrades dictionary.

27. studentName = student: This assigns the current student name to the student
Name variable.

28. `radeList = GetGradeList(studentName): This calls the GetGradeList function
to retrieve the grades associated with the current student’s name.

Building the project in VB6 111

29. Debug.Print studentName & ": " & gradeList: This prints the student’s name
and the corresponding grade list to the debug output.

30. Next student: This is the end of the loop that iterates over the student names in the dictionary.

31. End Sub: This is the end of the ReadCSVFile subroutine.

32. Function GetGradeList(ByVal studentName As String) As String:
This is a function that takes a student name as input and returns the corresponding grade list
as a string.

33. Dim gradeList As String: This declares a variable named gradeList to store the
grade list as a string.

34. Dim grades As Collection: This declares a variable named grades to store the
Collection object associated with the student’s name.

35. Set grades = studentGrades.Item(studentName): This assigns the Collection
object associated with the student’s name in the studentGrades dictionary to the
grades variable.

36. Dim grade As Variant: This declares a variable named grade to iterate over the grades
in the grades Collection object.

37. For Each grade In grades: This starts a loop that iterates over each grade in the
grades Collection object.

38. gradeList = gradeList & grade & ", ": This appends the current grade to the
gradeList string, separated by a comma and a space.

39. If Len(gradeList) > 0 Then: This checks if the gradeList string is not empty.

40. gradeList = Left(gradeList, Len(gradeList) - 2): This removes the trailing
comma and space from the gradeList string using the Left function.

41. GetGradeList = gradeList: This assigns the gradeList string as the function’s
return value.

Coding the VB 6 grading tool

The following steps allow you to code and execute a VB 6 version of the grading tool:

1. Start Microsoft Visual Basic 6.

2. Choose Standard EXE as the project type.

3. When the designer loads, double-click inside the rectangle representing your form.

4. Enter the code example from the preceding section.

5. To run your program, click the green triangle on the toolbar above your code.

In the next section, we will tackle the grading tool example in VBA.

Project Part II112

Building the project in VBA
What follows is a Visual Basic for Applications (VBA) application that defines a subroutine named
ReadCSVFile that reads a CSV file containing student names and grades. Let’s break down the code:

1. Sub ReadCSVFile(): This line starts the definition of the ReadCSVFile subroutine. It
indicates that it doesn’t return any value.

2. These lines declare several variables used in the subroutine:

 Dim fso As Object
 Dim inputFile As Object
 Dim studentGrades As Object
 Dim line As String
 Dim fields() As String
 Dim studentName As String
 Dim grade As String
 Dim grades() As String
 Dim gradeList As String

I. fso, inputFile, and studentGrades are declared as generic Object types and
will be assigned to specific objects later.

II. line, fields(), studentName, grade, grades(), and gradeList are
declared as specific data types (String and String arrays) to store different pieces
of information during the execution of the subroutine.

These lines create objects and set them to specific objects from the Scripting library:
Set fso = CreateObject("Scripting.FileSystemObject")
 Set inputFile = fso.OpenTextFile("students.csv", 1,
 False)
 Set studentGrades =
 CreateObject("Scripting.Dictionary")

III. fso is set to a FileSystemObject object that was created using the CreateObject
function. It provides access to the filesystem operations.

IV. inputFile is set to a text file that’s opened by the OpenTextFile method of fso.
It opens the students.csv file for reading (1); False indicates that it should be a
non-Unicode file.

V. studentGrades is set to a Dictionary object that was created using the
CreateObject function. It will store the students’ names as keys and their grades
as values.

Building the project in VBA 113

3. The Do Until loop iterates until the end of the input file is reached. It reads each line of the
file using the ReadLine method of inputFile and assigns it to the line variable. Then,
it splits line into fields while using a comma (,) as the delimiter, and stores them in the
fields array using the Split function:

 Do Until inputFile.AtEndOfStream
 line = inputFile.ReadLine
 fields = Split(line, ",")
 ...
 Loop

4. The If statement checks whether the fields array has a length of 2. If it does, it assumes
the line contains a student’s name and a grade. It assigns the first field (student name) to the
studentName variable and the second field (grade) to the grade variable after trimming
any leading or trailing spaces using the Trim function:

 If UBound(fields) = 1 Then
 studentName = Trim(fields(0))
 grade = Trim(fields(1))
 ...
 End If

5. The If-Else statement checks whether studentName already exists as a key in the
studentGrades dictionary. If it doesn’t exist, it adds a new entry to the dictionary with
studentName as the key and an array containing only grade as the value. If studentName
already exists, it retrieves the existing array of grades from the dictionary, resizes it to accommodate
the new grade using ReDim Preserve, and then assigns the new grade to the last position
in the grades array. Finally, it updates the dictionary entry with the updated grades array:

If Not studentGrades.Exists(studentName) Then
 studentGrades.Add studentName, Array(grade)
 Else
 grades = studentGrades(studentName)
 ReDim Preserve grades(UBound(grades) + 1)
 grades(UBound(grades)) = grade
 studentGrades(studentName) = grades
End If

6. The next line closes the input file:

 inputFile.Close

Project Part II114

7. The For Each loop iterates over each studentName in the Keys collection of the
studentGrades dictionary. For each student name, it retrieves the corresponding grades
array from the dictionary, joins the grades into a string separated by commas using the Join
function, and then outputs the student name and grade list using Debug.Print:

 For Each studentName In studentGrades.Keys
 grades = studentGrades(studentName)
 gradeList = Join(grades, ", ")
 Debug.Print studentName & ": " & gradeList
 Next studentName

Overall, this code reads the CSV file, stores the student names and grades in a dictionary, and then
prints the student names along with their respective grades using Debug.Print. The loop continues
until the user enters X to quit, at which point the variable sentinel is set to True, and the loop ends:

Option Explicit
Sub ReadCSVFile()
 Dim fso As Object
 Dim inputFile As Object
 Dim studentGrades As Object
 Dim line As String
 Dim fields() As String
 Dim studentName As String
 Dim grade As String
 Dim grades() As String
 Dim gradeList As String

 Set fso = CreateObject("Scripting.FileSystemObject")
 Set inputFile = fso.OpenTextFile("students.csv", 1,
 False)
 Set studentGrades = CreateObject
 ("Scripting.Dictionary")

 Do Until inputFile.AtEndOfStream
 line = inputFile.ReadLine
 fields = Split(line, ",")

 If Ubound(fields) = 1 Then
 studentName = Trim(fields(0))
 grade = Trim(fields(1))

 If Not studentGrades.Exists(studentName) Then
 studentGrades.Add studentName, Array(grade)
 Else

Building the project in VBScript 115

 grades = studentGrades(studentName)
 ReDim Preserve grades(Ubound(grades) + 1)
 grades(Ubound(grades)) = grade
 studentGrades(studentName) = grades
 End If
 End If
 Loop

 inputFile.Close

 For Each studentName In studentGrades.Keys
 grades = studentGrades(studentName)
 gradeList = Join(grades, ", ")
 Debug.Print studentName & ": " & gradeList
 Next studentName
End Sub

Coding the VBA grading tool in Excel

The following steps allow you to code and execute a VBA macro displaying Hello World:

1. Start Microsoft Excel.

2. Display the View menu.

3. Click the Macros button and choose View Macros from the drop-down menu.

4. Type test as the macro’s name.

5. Click the Create button.

6. When the designer loads, double-click inside the rectangle representing your form.

7. Enter the code example from the preceding section.

8. Click the green triangle on the toolbar above your code to run your macro.

In the next section, we will tackle the grading tool example in VBScript.

Building the project in VBScript
The following VBScript program reads a CSV file containing student names and grades. It stores the
data in a dictionary, where each student’s name is associated with a list of their grades. Let’s break
down the code step by step:

1. Set fso = CreateObject("Scripting.FileSystemObject"): This line creates
an instance of the FileSystemObject object, which provides access to the filesystem. It
allows us to interact with files, such as opening and reading them.

Project Part II116

2. Set inputFile = fso.OpenTextFile("students.csv", 1, False): This
line uses the OpenTextFile method of FileSystemObject to open the students.
csv file in read mode (1). The False parameter indicates that the file should be opened as
a Unicode file.

3. Dim studentGrades: This line declares a variable called studentGrades without
assigning it a value. It will be used later to store the student names and grades.

4. Set studentGrades = CreateObject("Scripting.Dictionary"): This line
creates an instance of the Dictionary object using the CreateObject function. The
Dictionary object allows you to store key-value pairs.

5. Do Until inputFile.AtEndOfStream: This begins a loop that continues until the
end of the input file is reached.

6. line = inputFile.ReadLine: This reads the next line from the input file and assigns
it to the line variable.

7. fields = Split(line, ","): This line splits the line variable into an array of
fields by using the comma as the delimiter.

8. If UBound(fields) = 1 Then: This condition checks if the fields array has a length
of 2. If it does, it assumes that the line contains a student’s name and a grade.

9. studentName = Trim(fields(0)) and grade = Trim(fields(1)): These
lines assign the first field (student name) to the studentName variable and the second field
(grade) to the grade variable. The Trim function is used to remove leading and trailing
spaces from the values.

10. If Not studentGrades.Exists(studentName) Then: This condition checks if
studentName already exists as a key in the studentGrades dictionary.

11. studentGrades.Add studentName, Array(grade): If the student name doesn’t
exist in the dictionary, a new entry is added with studentName as the key and an array
containing only grade as the value.

12. Else: If the student name already exists in the dictionary, this code block is executed.

13. grades = studentGrades(studentName): This line retrieves the list of grades
associated with studentName from the dictionary.

14. ReDim Preserve grades(UBound(grades) + 1): This line resizes the grades
array to accommodate the new grade. The Preserve keyword ensures that the existing grades
are not lost during the resizing process.

15. grades(UBound(grades)) = grade: This line assigns the new grade variable to the
last position in the grades array.

16. studentGrades(studentName) = grades: This updates the dictionary entry for
studentName with the updated grades array.

17. Loop: This is the end of the loop. It continues until the end of the input file is reached.

.

Building the project in VBScript 117

18. inputFile.Close: This line closes the input file.

19. For Each studentName In studentGrades: This loop iterates over each student
name in the studentGrades dictionary.

20. grades = studentGrades(studentName): This line retrieves the list of grades
associated with the current studentName.

21. gradeList = Join(grades, ", "): This line joins the grades array elements into
a string, separated by a comma and a space.

22. WScript.Echo studentName & ": " & gradeList: This line outputs the student
name and their corresponding grade list to the console.

Overall, this code reads the CSV file, stores the student names and grades in a dictionary, and then
prints the student names, along with their respective grades:

Set fso = CreateObject("Scripting.FileSystemObject")
Set inputFile = fso.OpenTextFile("students.csv", 1, False)

Dim studentGrades
Set studentGrades = CreateObject("Scripting.Dictionary")

Do Until inputFile.AtEndOfStream
 line = inputFile.ReadLine
 fields = Split(line, ",")

 If UBound(fields) = 1 Then
 studentName = Trim(fields(0))
 grade = Trim(fields(1))

 If Not studentGrades.Exists(studentName) Then
 studentGrades.Add studentName, Array(grade)
 Else
 grades = studentGrades(studentName)
 ReDim Preserve grades(UBound(grades) + 1)
 grades(UBound(grades)) = grade
 studentGrades(studentName) = grades
 End If
 End If
Loop

inputFile.Close

For Each studentName In studentGrades
 grades = studentGrades(studentName)

Project Part II118

 gradeList = Join(grades, ", ")
 WScript.Echo studentName & ": " & gradeList
Next

Coding the VBScript grading tool with Notepad

The following steps show you how to code and execute the previous VBScript, which runs a
calculator program:

1. Start Notepad.

2. Enter the code from the preceding section.

3. Save the file as VBScriptGradesFromFile.vbs in your root folder.

4. Run CMD to go to the Command Prompt.

5. Type cscript VBScriptGradesFromFile.vbs and press the Enter key.

Note
As suggested earlier, make sure you have the students.csv file in the same directory as
you are running from.

In the next section, we will tackle the grading tool example in Classic ASP.

Building the project in Classic ASP
The following is a Classic ASP program that reads a CSV file of students and grades and then stores
the data in a dictionary with a list of grades for each student. Here’s a breakdown of the code:

1. The code starts with <% and ends with %>, which indicates that it is embedded within an ASP
code block.

2. The fso, inputFile, studentGrades, line, fields, studentName, grade,
grades, and gradeList variables are declared using the Dim statement to hold various
data during processing.

3. The Server.CreateObject method creates an instance of the Scripting.
FileSystemObject and Scripting.Dictionary objects (fso and studentGrades).

4. The Server.MapPath method is used to get the physical path of the students.csv file
relative to the server’s filesystem.

5. The OpenTextFile method of the fso object is called to open the students.csv file
for reading.

6. A loop is initiated using the Do Until statement to read each line from the input file until
the end of the file is reached (inputFile.AtEndOfStream).

Building the project in Classic ASP 119

7. Each line that’s read from the file is split into fields using the Split function, with a comma
(,) as a delimiter.

8. The UBound function checks whether the fields array has precisely two elements. If so, the
student name and grade are extracted from the fields array and stored in the respective variables.

9. Inside the conditional block, the code checks whether the student name already exists in the
studentGrades dictionary using the Exists method. If not, a new entry is added to the
dictionary with the student name as the key and an array containing the grade as the value.

10. If the student name already exists in the dictionary, the existing grades array is retrieved
using studentName as the key. The ReDim Preserve statement is used to resize the
grades array to accommodate the new grade, and the new grade is added to the end of the
array. Finally, the updated grades array is stored in the studentGrades dictionary.

11. Once all the lines have been processed, the input file is closed using the Close statement.

12. The code then enters a loop using the For Each statement to iterate through each student
name in the studentGrades dictionary.

13. Inside the loop, the grades corresponding to the current student’s name are retrieved from
the dictionary. The Join function concatenates the grades into a comma-separated string.

14. The student name and grade list are written to the response using the Response.Write
statement. The
 tag is appended to create line breaks between each student’s information.

The complete code reads the CSV file, organizes the student grades data in a dictionary, and outputs
the student names with their corresponding grades in a formatted manner:

<%
Dim fso, inputFile, studentGrades, line, fields, studentName, grade,
grades, gradeList

Set fso = Server.CreateObject("Scripting.FileSystemObject")
Set inputFile = fso.OpenTextFile
 (Server.MapPath("students.csv"), 1, False)

Set studentGrades = Server.CreateObject
 ("Scripting.Dictionary")

Do Until inputFile.AtEndOfStream
 line = inputFile.ReadLine
 fields = Split(line, ",")

 If UBound(fields) = 1 Then
 studentName = Trim(fields(0))
 grade = Trim(fields(1))

Project Part II120

 If Not studentGrades.Exists(studentName) Then
 studentGrades.Add studentName, Array(grade)
 Else
 grades = studentGrades(studentName)
 ReDim Preserve grades(UBound(grades) + 1)
 grades(UBound(grades)) = grade
 studentGrades(studentName) = grades
 End If
 End If
Loop

inputFile.Close

For Each studentName In studentGrades.Keys
 grades = studentGrades(studentName)
 gradeList = Join(grades, ", ")
 Response.Write studentName & ": " & gradeList & "
"
Next
%>

Coding the Classic ASP grading tool with Notepad

The following steps show you how to code and execute a VBScript that displays the calculator that
we developed in this project:

1. Start Notepad.

2. Enter all the example code from the preceding section.

3. Save the file as ClassicASPGradingTool.asp in the root web directory – this is
typically c:\inetpub\wwwroot.

4. Place the students.csv file into the same folder.

5. Open a web browser.

6. Enter http://127.0.0.1/ClassicASPGradingTool.asp.

In the next section, we will tackle the grading tool example in ASP.NET.

Building the project in ASP.NET
What follows is the ASP.NET code for the grading tool. This code is very similar to the code that was
presented for the VB.NET console application. With this example, no ASPX code changes are required
as the output is handled with the response.write method:

Imports System.IO

Building the project in ASP.NET 121

Public Class ASPNETGradingTool
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e
 As System.EventArgs) Handles Me.Load
 Dim filePath As String = "students.csv"
 Dim studentGrades As New Dictionary(Of String,
 List(Of String))()

 Using reader As New StreamReader(filePath)
 While Not reader.EndOfStream
 Dim line As String = reader.ReadLine()
 Dim fields As String() = line.Split(","c)

 If fields.Length = 2 Then
 Dim studentName As String =
 fields(0).Trim()
 Dim grade As String = fields(1).Trim()

 If Not studentGrades.ContainsKey
 (studentName) Then
 studentGrades.Add(studentName, New
 List(Of String)())
 End If

 studentGrades(studentName).Add(grade)
 End If
 End While
 End Using

 For Each studentName As String In
 studentGrades.Keys
 Dim grades As List(Of String) =
 studentGrades(studentName)
 Dim gradeList As String = String.Join(", ",
 grades)
 Response.Write(studentName & ": " & gradeList &
 "</br>")
 Next

 End Sub

End Class

Project Part II122

Coding the ASP.NET calculator with Visual Studio

The following steps will allow you to code and execute an ASP.NET web page that displays Hello
World:

1. Start Microsoft Visual Studio 2019.

2. Choose Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you wish your code to be in a different folder.

6. Accept the default Framework option.

7. Click Create Project.

8. Choose Web Forms.

9. When the designer loads, navigate to Solution Explorer and right-click on the solution.

10. Choose Add Item from the pop-up menu.

11. Choose Web Form Visual Basic.

12. Right-click on the ASPX source and choose View Code from the pop-up menu.

13. Enter the VB.NET code from the code example from the preceding section that falls in the
Page_load procedure.

14. To run your program, click the green triangle on the toolbar above your code.

Summary
In this chapter, we utilized the skills we have gained so far to build a student grading tool for each of
our VB family members. This project took the skills from the project that we saw in Chapter 7 and
added the use of collections and file input. The next chapter will explore organizing our code while
utilizing the object-oriented programming (OOP) paradigm.

Part 3:
Object-Oriented Visual Basic

In the third part of this book, we will learn to build objects that allow for more code reuse. We will
learn the big three of object-oriented programming – encapsulation, inheritance, and polymorphism
– and how they are used in Visual Basic.

This part has the following chapters:

• Chapter 12, Object-Oriented Programming

• Chapter 13, Inheritance

• Chapter 14, Polymorphism

• Chapter 15, Interfaces

• Chapter 16, Project Part III

12
Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that organizes code and data
into reusable structures called objects. In our previous pieces of code, we could organize code into
procedures or functions to allow for code reuse. Objects allow us to reuse code that is both executable
but also stores information. In OOP, objects are instances of classes that serve as blueprints or templates
for creating objects with similar properties and behaviors.

The fundamental concepts of OOP are as follows:

• Classes: A class is a blueprint that defines the properties (attributes) and behaviors (methods)
that objects of that class will possess. It describes the structure and behavior of objects but
doesn’t represent any specific instance itself.

• Objects: An object is an instance of a class. It is created from the class blueprint and has values
for attributes. Objects can interact with each other if we invoke their methods.

• Encapsulation: Encapsulation refers to bundling data (attributes) and methods that operate
on that data into a single unit called an object. Encapsulation hides the internal details of an
object and provides access to its functionality through well-defined interfaces.

• Inheritance: Inheritance allows classes to inherit attributes and behaviors from other classes.
It enables the creation of a hierarchical structure of classes, where subclasses (derived classes)
can inherit and extend the properties and methods of a superclass (base class).

• Polymorphism: Polymorphism means the ability of objects to take on different forms or
behaviors. In the context of OOP, polymorphism allows objects of other classes to be treated
as objects of a common superclass. Polymorphism allows you to write more generic code that
can work with different types of objects.

• Abstraction: Abstraction involves the concept of creating simplified representations of complex
systems. In OOP, abstraction allows you to focus on the essential features of an object while
hiding the implementation details. Abstract classes and interfaces are used to define abstractions
in many programming languages.

Object-Oriented Programming126

OOP provides several benefits, including code reusability, modularity, and easier maintenance. It
allows for better code organization, promotes code readability, and supports the development of
large-scale software systems.

Popular programming languages that support OOP include Visual Basic (VB), Java, C++, Python,
C#, Ruby, and many more. Each language may have its own syntax and features for implementing
OOP concepts, but the fundamental principles remain the same.

In this chapter, we’re going to cover the following main topics:

• Classes and fields

• Instantiating a class

• Methods

• One-to-one has-a relationships

Classes and fields
In VB, classes are used to define objects with specific properties (fields) and behaviors (methods).
Here’s an overview of how classes and fields work in VB.

Class declaration

To define a class in VB, use the Class keyword followed by the class’s name. Here’s an example:

Class MyClass
 ' Class members will be defined here
End Class

Fields

Fields, also known as attributes or variables, are the data members of a class. They represent the properties
or characteristics of an object. Fields hold data values that are associated with objects created from
the class. Fields are declared within the class, typically at the beginning, and can have different access
modifiers (Public, Private, Protected, and so on) to control their visibility and accessibility:

Class MyClass
 Private myField As Integer
 Public anotherField As String
End Class

In the preceding example, myField is a private field and anotherField is a public field.

Next, let’s look at access modifiers, which we can use to control access to the fields in the class.

Methods 127

Access modifiers determine the accessibility of the fields within and outside the class. VB provides
several access modifiers, including the following:

• Private: The field is only accessible within the class

• Public: The field is accessible from any code that can access the object

• Protected: The field is accessible within the class and its derived classes

• Friend: The field is accessible within the same assembly or project

Properties provide a controlled interface to access and modify the values of fields. They allow you to
enforce validation, perform additional actions when getting or setting a value, or provide read-only
or write-only access to the field. Properties are defined using the Property keyword in VB. Here’s
an example:

Class MyClass
 Private myField As Integer

 Public Property MyProperty As Integer
 Get
 Return myField
 End Get
 Set(value As Integer)
 myField = value
 End Set
 End Property
End Class

In the preceding example, MyProperty is a property that provides access to the myField field.

Fields and properties in VB enable you to store and manipulate data within objects of a class. They are
an integral part of defining the state and behavior of objects and play a crucial role in OOP.

All the VB family members support class creation except VBScript. VBScript can use classes defined
in ActiveX objects, as seen with the filesystem and collections.

Next, we will look at working with methods in VB.

Methods
In VB, methods define the behavior or actions that objects can perform. Methods are described within
classes and are responsible for performing specific tasks or calculations.

Object-Oriented Programming128

Method declaration

To define a method in VB, use the Sub or Function keyword, followed by the method’s name and
any parameters it accepts. Here’s an example:

Public Sub MyMethod(parameter1 As Integer, parameter2 As
 String)
 ' Method body
End Sub

In the preceding example, MyMethod is a public method that accepts an integer parameter named
parameter1 and a string parameter named parameter2.

Next, let’s drill into the types of methods we can have in our classes:

• Sub procedures: Sub procedures are methods that do not return a value. They are typically
used for performing actions or tasks without producing a result. Here’s an example:

Public Sub DisplayMessage(message As String)
 Console.WriteLine(message)
End Sub

In the preceding example, DisplayMessage is a public method that accepts a string parameter
named message. It displays the message on the console.

• Function procedures: Function procedures are methods that return a value. They are used
when you need to perform calculations or retrieve data from a method. Here’s an example:

Public Function AddNumbers(a As Integer, b As Integer)
 As Integer
 Return a + b
End Function

In the preceding example, AddNumbers is a public method that accepts two Integer
parameters, a and b, and returns their sum as an integer value.

• Access modifiers: Like fields, methods can have different access modifiers to control their
visibility and accessibility. Common access modifiers in VB include Public, Private,
Protected, and Friend.

• Method overloading: VB supports method overloading, which allows you to define multiple
methods with the same name but different parameters. The compiler determines which method
to call based on the arguments provided during the method invocation. Here’s an example of
method overloading:

Public Sub DoSomething()
 ' Method implementation without parameters
End Sub

Instantiating a class 129

Public Sub DoSomething(parameter As Integer)
 ' Method implementation with an integer parameter
End Sub

Public Sub DoSomething(parameter As String)
 ' Method implementation with a string parameter
End Sub

In the preceding example, DoSomething is overloaded with three different versions based
on the presence and type of parameters.

Methods in VB enable you to encapsulate functionality within classes and provide a way to perform
actions or calculations. They allow for code reuse, modularity, and better logic organization within
your programs.

Next, we will look at instantiating a class in VB.

Instantiating a class
In VB, you can instantiate classes by creating objects from those classes. The process involves using
the New keyword, followed by the class name and any necessary arguments. Here’s an example of
how to instantiate a class in VB:

Dim myObject As New ClassName()

In the preceding example, ClassName represents the name of the class you want to instantiate, and
myObject is the variable that will hold the created object.

If the class has a parameterized constructor, you can pass arguments when instantiating the class:

Dim myObject As New ClassName(arg1, arg2)

In this case, arg1 and arg2 are the arguments required by the constructor of ClassName.

Once you have instantiated a class, you can access its properties, methods, and other members through
the object variable. Here’s an example:

myObject.PropertyName = value ' Set the value of a property
myObject.MethodName() ' Call a method

It’s important to note that the process of instantiating a class creates a new instance of the class, which
means that the object and its associated data are stored in memory separately from other instances
of the same class.

Additionally, you can create multiple instances of a class, each with its own set of data. This allows
you to work with different objects based on the same class blueprint.

Object-Oriented Programming130

Remember to choose meaningful names for your class and object variables to ensure clarity and
maintainability in your code.

Next, we will look at representing one-to-one has-a relationships in VB.

One-to-one has-a relationships
In VB, a one-to-one has-a relationship between classes refers to a situation where one class contains an
instance of another class as a field or property. This relationship represents an association between the
two classes, where the first class directly references an instance of the second class. Here’s an example
of a one-to-one has-a relationship in VB:

Public Class Car
 Public Property Engine As Engine
 ' Other car-related properties and methods
End Class
Public Class Engine
 ' Engine-related properties and methods
End Class

In the preceding example, we have two classes: Car and Engine. The Car class has a property called
Engine of the Engine type and represents the car’s engine. This relationship indicates that a car
has a single engine.

To use this relationship, you would typically create instances of the classes and set the appropriate values:

Dim myCar As New Car()
myCar.Engine = New Engine()

In the preceding code snippet, we create a new Car object named myCar and assign a new Engine
object to its Engine property.

With this one-to-one relationship, the Car class can access the properties and methods of the associated
Engine class through its Engine property:

myCar.Engine.Start()

It’s important to note that a one-to-one has-a relationship in VB can also be implemented using fields
instead of properties, depending on your specific needs and design preferences.

One-to-one relationships can be helpful when different classes need to collaborate and share information
or functionality. They allow for modular and extensible code by separating the concerns into other
classes while maintaining a direct association between them.

Summary 131

Summary
This chapter introduced OOP in VB. We looked at defining classes and fields in VB. This chapter will
be the basis for the following three chapters, where we’ll drill into specific object-oriented software
development techniques. The next chapter will look at building taxonomies while utilizing inheritance
in VB programming.

13
Inheritance

Inheritance is a fundamental concept in object-oriented programming (OOP) that allows a child
class to inherit properties and behaviors from another class (parent or base class). Inheritance enables
code reuse, promotes a hierarchical organization of classes, and facilitates the creation of a more
organized and maintainable code base.

Inheritance follows the is-a relationship, meaning a child class is a specialized version of the parent
class. It can access all the parent class’s public and protected members (variables and methods) but not
private ones. The child class can also override the methods of the parent class to provide its specific
implementation while keeping the rest of the inherited behaviors intact.

In this chapter, we’re going to cover the following main topics:

• Inheritance in VB.NET

• Inheritance differences in family members

• Exception handling

• Is-a relationships

Inheritance in VB.NET
In VB.NET inheritance, a class can inherit properties, methods, and events from another class, referred
to as the base class or parent class. The class that inherits from the base class is called a child class.
Inheritance allows you to create a hierarchy of classes, promoting code reuse and a more organized
code structure.

To demonstrate inheritance in VB.NET, let’s create an example with a base class, Animal, and two
derived classes, Dog and Cat:

Public Class Animal
 Public Property Name As String
Talk

Inheritance134

 Public Overridable Function Talk() As String
 Return "animal noise"
 End Function
End Class

The Dog class will inherit from the Animal class:

Public Class Dog Inherits Animal
 Public Property Breed As String
 Public Overrides Function Talk() As String
 Return "Bark!"
 End Function
End Class

The Cat class will also inherit from the Animal class:

Public Class Cat Inherits Animal
 Public Property Color As String
 Public Overrides Function Talk() As String
 Return "Meow!"
 End Function
End Class

We can use these classes in code:

Module Module1
 Sub Main()
 Dim myDog As New Dog()
 myDog.Name = "Maisie"
 myDog.Breed = "Dalmatian"
 Console.WriteLine(myDog.Name + " – " + myDog.Breed
 + " - " + myDog.Talk())
 Dim myCat As New Cat()
 myCat.Name = "Woody"
 myCat.Color = "Black"
 Console.WriteLine(myCat.Name + " – " + myCat.Color
 + " – " + myCat.Talk())
 End Sub
End Module

In the preceding code block, we created a base class called Animal with a Name property and a
Talk method. The Talk method is marked as Overridable, which means it can be overridden
in the derived classes.

Then, we created two derived classes, Dog and Cat, each inheriting from Animal. In the derived
classes, we added specific properties (Breed for Dog and Color for Cat) and overrode the Talk
method to provide their implementations of the sound they make.

Inheritance differences in family members 135

Using inheritance, we can define typical behavior in the base class and extend it in the derived classes,
promoting code reuse and maintaining a clear hierarchy of classes.

Next, we will explore the difference in inheritance in VB family members.

Inheritance differences in family members
Inheritance in VB.NET and VB6/VBA share the same core concept of allowing classes to inherit
properties and behaviors from other classes. However, there are significant differences in how inheritance
is implemented and supported between the two versions of VB. Let’s look at these differences.

VB6/VBA

• Limited support: VB6 supports basic OOP, including inheritance. However, it lacks some
essential features that are found in modern object-oriented languages.

• Class modules: In VB6, you create classes using class modules. Each class can have properties,
methods, and events.

• Inheritance keyword: VB6 uses the Inherits keyword to establish an inheritance relationship
between derived and base classes. However, VB6 does not support the inheritance of implementation
details as it lacks the concept of access modifiers such as public, protected, or private.

• Interface-based inheritance: VB6 supports interface-based inheritance, allowing a class to
implement one or more interfaces to provide a set of specific functionalities. However, VB6
does not support multiple inheritance of classes, meaning a class can only inherit from a single
base class.

VB.NET

• Full object-oriented support: VB.NET is a fully OOP language, and it is part of the .NET
framework, which provides extensive support for OOP principles, including inheritance.

• Classes and access modifiers: In VB.NET, classes are created using the Class keyword. You can
define properties, methods, events, and access modifiers (public, private, protected,
and so on) to control the visibility of members within the class hierarchy.

• Inheritance keywords: VB.NET uses the Inherits keyword to denote inheritance relationships
between classes, similar to VB6. However, it also uses the Overrides keyword to indicate
that a method in the derived class overrides one in the base class.

• Multiple inheritance through interfaces: VB.NET supports multiple inheritance through
interfaces, allowing a class to implement multiple interfaces to provide various functionalities.
However, multiple inheritance of classes is not directly supported to avoid issues related to the
“diamond problem.”

Inheritance136

• Abstract and sealed classes: VB.NET allows you to define abstract classes (using the
MustInherit keyword) that cannot be instantiated but can serve as base classes for other
classes. Additionally, you can create sealed classes (using the NotInheritable keyword)
to prevent further inheritance from that class.

VB.NET offers more robust support for OOP and inheritance than VB6. It introduces modern OOP
concepts, access modifiers, interface-based inheritance, and more advanced language features.

Next, we will look at handling errors, which requires an understanding of inheritance.

Exception handling
In VB, exception handling is primarily accomplished using structured error-handling constructs,
such as Try...Catch...Finally blocks, rather than inheritance. However, it’s worth noting that exception
handling in VB does involve classes and inheritance but in a different manner.

VB uses the Exception class, which is a base class for all exceptions in the .NET Framework, to
handle errors and exceptions. The Exception class has several derived classes representing specific
types of exceptions, such as SystemException and ApplicationException. When an
exception occurs, VB throws an object of one of these derived exception classes, which you can then
catch and handle using Try...Catch...Finally blocks.

Here’s an example demonstrating exception handling in VB using Try...Catch...Finally:

Sub Main()
 Try
 Dim n1 As Integer = 20
 Dim n2 As Integer = 0
 Dim result As Integer = n1 \ n2
 Console.WriteLine("Result: " & result)

 Catch ex As DivideByZeroException
 Console.WriteLine("Error: " & ex.Message)

 Catch ex As Exception
 Console.WriteLine("Error: " & ex.Message)

 Finally
 Console.WriteLine("Finally block executed.")
 End Try

 ' Rest of the code continues after exception handling.
End Sub

Is-a relationships 137

In this example, we attempted to divide an integer by zero, which resulted in DivideByZeroException.
The Try...Catch...Finally block allows us to handle this exception gracefully, providing
custom error messages or performing cleanup operations in the Finally block.

While inheritance isn’t directly involved in the exception-handling process, the Exception class
and its derived classes represent a hierarchy of exceptions that can be used to catch specific types of
errors and provide appropriate error handling based on the particular exception type. In this sense,
inheritance plays a role in the design of the exception hierarchy.

Next, we will look at is-a relationships and taxonomies.

Is-a relationships
The is-a relationship is a fundamental concept in OOP that describes the inheritance relationship
between classes. It is also known as the “inheritance relationship” or “subclass-superclass relationship.”
The is-a relationship signifies that one class is a specialized version of another, emphasizing a hierarchical
classification of objects.

When we say Class A is-a Class B, this means that Class A is a specific type of Class B. Class A inherits
the properties, methods, and behavior of Class B, and it can also have additional properties and
methods specific to its nature.

In the example with cats and dogs we built earlier in this chapter, we can say the following:

• Dog is-a Animal

• Cat is-a Animal

These is-a statements imply that Dog and Cat are specialized types of Animal, inheriting the common
properties and methods defined in the Animal class.

The is-a relationship enables code reuse and promotes a hierarchical organization of classes, leading
to more organized and maintainable code. It also allows you to model real-world relationships and
hierarchies in your software, making it more intuitive and easier to understand.

In OOP, the is-a relationship is often used as the basis to build class hierarchies, where more specific
classes inherit from more general classes, leading to a more efficient and structured design.

Summary
This chapter introduced inheritance in VB. First, we looked at defining taxonomies in VB that allow
for enhanced code reuse. Then, we drilled into the concept of is-a relationships, where children
classes are instances of the parent class. The next chapter will utilize these taxonomies to implement
polymorphism in VB programming.

14
Polymorphism

Polymorphism is a fundamental concept in programming and is often associated with object-oriented
programming (OOP). It allows objects of different classes to be used as objects of a common
superclass or interface, providing a consistent interface to interact with these objects regardless of
their specific types.

In this chapter, we’re going to cover the following main topics:

• Polymorphism

• Abstract classes

• Sealed classes

Polymorphism
Polymorphism allows a programmer to specialize functionality based on a context; the programming
language will use the proper version. There are two main types of polymorphism:

• Compile-time (static) polymorphism: Also known as method overloading or compile-time
method dispatch, this type of polymorphism occurs when different methods or functions have
the same name but different parameter lists. The decision on which method to call is made at
compile time based on the number and types of arguments provided. This allows you to have
multiple methods with the same name but different behaviors based on the input parameters.

• Runtime (dynamic) polymorphism: Also known as method overriding or runtime method
dispatch, this type of polymorphism occurs when a subclass provides a specific implementation
of a method already defined in its superclass (or an interface). At runtime, the method call is
resolved to the subclass implementation if the object referenced is an instance of the subclass.
This allows you to use a common interface to invoke different behaviors based on the actual
type of the object.

Polymorphism140

In Visual Basic (VB), as in other OOP languages, polymorphism is achieved through inheritance
and method overriding. VB supports runtime polymorphism, where the objects of derived classes
can be treated as objects of their base class, and the appropriate method implementation is invoked
based on the actual type of the object at runtime.

To demonstrate polymorphism in VB, we can create a simple example with a base class and its
derived classes:

' Base class
Public Class Shape
 Public Overridable Sub Draw()
 Console.WriteLine("Drawing a shape")
 End Sub
End Class

' Derived classes
Public Class Circle
 Inherits Shape

 Public Overrides Sub Draw()
 Console.WriteLine("Drawing a circle")
 End Sub
End Class

Public Class Square
 Inherits Shape

 Public Overrides Sub Draw()
 Console.WriteLine("Drawing a square")
 End Sub
End Class

In this example, we have a base class called Shape, with a virtual method called Draw, and two
derived classes called Circle and Square, both of which override the Draw method.

Next, let’s use these classes to demonstrate polymorphism:

Module MainModule
 Sub Main()
 Dim shape1 As Shape = New Shape()
 Dim shape2 As Shape = New Circle()
 Dim shape3 As Shape = New Square()

 shape1.Draw() ' Output: Drawing a shape
 shape2.Draw() ' Output: Drawing a circle

Abstract classes 141

 shape3.Draw() ' Output: Drawing a square
 End Sub
End Module

In this example, we created objects of different types (base class and derived classes) and stored them
in variables of the base class type (Shape). When we call the Draw method on each object, the
appropriate implementation is invoked based on the actual type of the object.

In VB, the Overridable keyword is used to declare a method in the base class, which can be
overridden in derived classes. The Overrides keyword is used in the derived classes to indicate
that they provide a specific implementation of the method from the base class. This way, VB enables
runtime polymorphism, allowing for more flexible and extensible code.

Next, we'll look at building abstract classes, which require a specialization class to allow instantiation.

Abstract classes
In VB, abstract classes cannot be instantiated directly but serve as base classes for other classes. They
are used to define a standard interface and behavior that derived classes must implement. Abstract
classes can contain abstract (must be overridden) and non-abstract (can have default implementations)
methods, properties, and fields.

To create an abstract class in VB, you can use the MustInherit keyword:

Public MustInherit Class Shape
 Public MustOverride Sub Draw()

 Public Sub GetArea()
 Console.WriteLine("Calculating area...")
 End Sub
End Class

In this example, we defined an abstract class called Shape, with an abstract method called Draw, and
a non-abstract method called GetArea. The Draw method is marked with the MustOverride
keyword, indicating that any derived class must provide its implementation for the Draw method.

Next, let’s create a derived class that inherits from the abstract class and implements the Draw method:

Public Class Circle
 Inherits Shape

 Public Overrides Sub Draw()
 Console.WriteLine("Drawing a circle")
 End Sub
End Class

Polymorphism142

In this example, the Circle class inherits from the Shape abstract class and provides an implementation
for the Draw method.

Since abstract classes cannot be directly instantiated, we can use them through their derived classes:

Module MainModule
 Sub Main()
 Dim circle As New Circle()
 circle.Draw() ' Output: Drawing a circle
 circle.GetArea() ' Output: Calculating area...
 End Sub
End Module

In this Main method, we created an instance of the Circle class and called its Draw method,
which is defined in the Shape abstract class. We can also call the non-abstract GetArea method
provided by the abstract class.

Abstract classes are useful when you want to define a common structure and behavior across multiple
related classes while enforcing that certain methods must be implemented in the derived classes. They
provide a level of abstraction and help organize code effectively in OOP.

Next, we'll look at ways to ensure that a class cannot be extended through inheritance.

Sealed classes
In VB, there is no direct equivalent keyword to sealed, which exists in some other programming
languages, such as C#. In C#, the sealed keyword is used to prevent a class from being inherited
(that is, it cannot serve as a base class). The sealed concept is important if the programmer has code
that should never be specialized. An example could be an authorization class that validates a user
and you do not want changes to the authorization method. However, in VB, all classes are inheritable
by default, meaning that any class can be used as a base class unless it is specifically designed as an
abstract class (using the MustInherit keyword, as explained in the previous section). To prevent
a class from being inherited in VB, you can use the NotInheritable keyword when defining the
class. The NotInheritable keyword is the equivalent of the sealed keyword in C#.

Here’s an example of a NotInheritable class in VB:

NotInheritable Public Class Singleton
 Private Shared instance As Singleton

 Private Sub New()
 ' Private constructor to prevent direct
 instantiation.
 End Sub

Summary 143

 Public Shared Function GetInstance() As Singleton
 If instance Is Nothing Then
 instance = New Singleton()
 End If
 Return instance
 End Function

 ' Other methods and properties...
End Class

In this example, the Singleton class is marked as NotInheritable, meaning no other class
can inherit from it. The Singleton class is often used when you want to create a class with only one
instance (the Singleton pattern) and ensure that no one can create additional instances by inheriting
from it.

In VB, you can use the NotInheritable keyword to prevent a class from being inherited, similar
to the sealed keyword in C#.

Summary
This chapter introduced polymorphism in VB. We looked at defining classes that do not have a complete
definition but can be extended down in the inheritance tree. We also looked at ways to implement
functionality to enforce that a class cannot be extended with inheritance. The next chapter will look
at utilizing interfaces in VB programming to allow for multiple inheritance.

15
Interfaces

In object-oriented programming (OOP), interfaces are a fundamental concept that allows you to
define a contract or a set of method signatures that classes must implement. An interface serves as
a blueprint for implementing classes, ensuring that specific methods are available in those classes.
Interfaces enable polymorphism and provide a way to achieve abstraction and separation of concerns
in OOP.

In this chapter, we’re going to cover the following main topics:

• Interfaces

• Developing interfaces

• Standard interfaces

Interfaces
The interface contract has been a tremendous tool for team programming and software extensibility. The
interface contract specifies the method name, number of parameters, and data type of the parameters.
Here are the key characteristics and benefits of using interfaces in OOP:

• Abstraction: Interfaces help in achieving abstraction by defining a clear and standardized set
of method signatures without specifying their implementation details. This allows you to hide
the internal complexity of classes and focus on the behavior they expose.

• Separation of concerns: By using interfaces, you can separate the interface of a class from its
implementation. This enables you to change or extend the behavior of a class without it affecting
the client code that uses the interface.

• Polymorphism: Interfaces play a crucial role in achieving polymorphism. When a class
implements an interface, it can be treated as an instance of that interface, allowing objects of
different classes to be used interchangeably if they implement the same interface.

Interfaces146

• Multiple inheritance (interface inheritance): In languages that support multiple inheritance,
a class can implement multiple interfaces. This allows a class to inherit behavior from multiple
sources, promoting code reuse and flexibility.

• Contractual obligation: When a class implements an interface, it must provide concrete
implementations for all the methods declared in the interface. This contractual obligation
ensures consistency and ensures that all implementing classes adhere to the specified interface.

• Interface segregation principle (ISP): Interfaces support the ISP, which states that a class
should not be forced to implement interfaces that it does not use. By defining specific interfaces
with well-defined responsibilities, you can adhere to the ISP and promote cleaner and more
maintainable code.

Interfaces are powerful tools in OOP, helping build flexible and maintainable software by promoting
a standard way of interacting with classes and enabling polymorphic behavior across different classes.

Next, we’ll look at developing new interfaces.

Developing interfaces
In VB, interfaces work similarly to other OOP languages. An interface in VB defines a contract that
specifies a set of method signatures that classes must implement. By implementing an interface, a class
agrees to provide concrete implementations for all the methods declared in the interface.

Next, we will see how to define and use interfaces in VB.

Interface declaration

To create an interface in VB, you can use the Interface keyword, followed by the interface’s name:

Public Interface IShape
 Sub Draw()
 Function GetArea() As Double
End Interface

In this example, we defined an IShape interface with two methods: Draw and GetArea. These
methods are declared but not implemented in the interface; their implementation will be provided
by the classes that implement this interface.

Implementing an interface

To implement an interface, a class must use the Implements keyword, followed by the interface’s
name. The class then provides concrete implementations for all the methods declared in the interface:

Public Class Circle
 Implements IShape

Developing interfaces 147

 Private radius As Double
 Public Sub New(ByVal radius As Double)
 Me.radius = radius
 End Sub

 Public Sub Draw() Implements IShape.Draw
 Console.WriteLine("Drawing a circle")
 End Sub

 Public Function GetArea() As Double Implements
 IShape.GetArea
 Return Math.PI * radius * radius
 End Function
End Class

In this example, the Circle class implements the IShape interface by providing concrete
implementations for the Draw and GetArea methods declared in the interface.

Using interface polymorphism

Once a class implements an interface, objects of that class can be treated as instances of the interface.
This allows for polymorphism, where different classes that implement the same interface can be
used interchangeably:

Sub Main()
 Dim circle As New Circle(5)
 DrawShape(circle)
End Sub

Sub DrawShape(ByVal shape As IShape)
 shape.Draw()
End Sub

In this example, the DrawShape method takes an IShape interface as a parameter. The circle
object of the Circle class is passed to this method, and the Draw method is called on it, providing
the polymorphic behavior.

In VB, interfaces play a crucial role in achieving abstraction, separation of concerns, and polymorphism
in OOP, just like in other languages. They help create more flexible and maintainable code by defining
contracts that classes must adhere to, without specifying the implementation details.

Next, we will look at some standard interfaces provided by VB.NET.

Interfaces148

Standard interfaces
In VB, standard interfaces are predefined interfaces that are part of the .NET framework or other
external libraries. These interfaces are commonly used in VB and provide standardized behavior for
various functionalities. By adhering to these standard interfaces, your classes can integrate seamlessly
with other parts of the .NET ecosystem and follow best practices.

Here are some of the standard interfaces in VB.NET:

• IEnumerable and IEnumerator: These interfaces are part of the System.Collections
namespace and enable iteration over collections such as arrays, lists, and other data structures.

• IDisposable: The IDisposable interface, which is part of the System namespace, is
used to implement proper resource cleanup for objects that use unmanaged resources, such
as file handles or database connections.

• IComparable and IComparer: These interfaces, which are also part of the System.
Collections namespace, allow for custom sorting of objects and collections.

• INotifyPropertyChanged and INotifyCollectionChanged: These interfaces,
which can be found in the System.ComponentModel namespace, are used to provide
notifications when properties or collections change their values, which is helpful for data
binding and user interface updates.

• ICloneable: The ICloneable interface in the System namespace provides a method
for creating a shallow copy of an object.

• IDictionary and IList: These interfaces, which are part of the System.Collections
namespace, define the basic operations for working with dictionaries (key-value pairs) and
lists (indexed collections).

• IEquatable: The IEquatable interface, which is part of the System namespace, provides
a method to compare objects for equality. It’s used in conjunction with the Equals method.

• IAsyncResult: The IAsyncResult interface, which can be found in the System
namespace, is used for asynchronous programming to represent the status and results of
asynchronous operations.

• IFormattable: The IFormattable interface in the System namespace allows objects
to control how they are formatted when they’re converted into a string representation.

• IConvertible: The IConvertible interface, also part of the System namespace, allows
objects to be converted into other data types.

These are just a few examples of the standard interfaces available in VB/.NET. By implementing these
interfaces in your classes, you can follow established patterns and conventions, making your code
more consistent and easier to integrate with other parts of the .NET ecosystem.

Standard interfaces 149

To demonstrate the use of a standard interface in VB.NET, we will drill into the IComparable
interface. To use the IComparable interface, you need to implement it in your class. Here’s an
example of how you can do this:

Public Class Person
 Implements IComparable

 Public Property Name As String
 Public Property Age As Integer

 Public Sub New(ByVal name As String, ByVal age As
 Integer)
 Me.Name = name
 Me.Age = age
 End Sub

 Public Function CompareTo(ByVal obj As Object) As
 Integer Implements IComparable.CompareTo
 If TypeOf obj Is Person Then
 Dim otherPerson As Person = DirectCast(obj,
 Person)

 ' Compare based on age
 Return Me.Age.CompareTo(otherPerson.Age)
 End If

 Throw New ArgumentException("Object is not a
 Person")
 End Function
End Class

In this example, we have a Person class that implements the IComparable interface. The
CompareTo method compares two Person objects based on their age. If you want to sort a collection
of Person objects, you can use sorting algorithms that rely on the IComparable interface, such
as Array.Sort or List.Sort.

Here’s an example of how you can use the IComparable interface to sort a list of Person objects:

Dim people As New List(Of Person)()
people.Add(New Person("Freya", 16))
people.Add(New Person("Seamus", 15))
people.Add(New Person("Kirsten", 52))

people.Sort()

Interfaces150

For Each p As Person In people
 Console.WriteLine($"{p.Name} - {p.Age}")
Next

This will output the sorted list of people based on their age.

Summary
This chapter introduced interfaces in VB. We looked at defining new interfaces in VB and utilizing
standard interfaces provided in the VB language. The next chapter will look at utilizing the OOP
techniques we have learned about over the last several chapters in a VB programming project.

16
Project Part III

In our third project, we will use the skills we learned in Part 3 of this book to build a simple student-
grade tool to read student grades from a file. Depending on the assessment category, this project version
will support different data in each row. We will utilize inheritance so that each grade is a generalized
object we can aggregate and has a specialized version for each assessment type. The grading tool should
read a comma-separated values (CSV) file with a student name and grade delimited by a comma. The
third column of each row will be the assessment type. We will support three assessment types: Test,
Quiz, and HW. For each Test grade, the fourth field will be the time spent taking the test. We will get
the number of takes for each quiz in the fourth field. For HW, we will store the submitted date. The
grading tool should utilize the dictionary we learned about in recent chapters. The Object-Oriented
Grading Tool will then show a summary per student by grade category. We will limit this project’s
scope to VB.NET and ASP.NET as the older Visual Basic family members do not support inheritance.

In this chapter, we’re going to cover the following main topics:

• Developing an Object-Oriented Grading Tool in the VB.NET console

• Developing an Object-Oriented Grading Tool in ASP.NET

Technical requirements
All the example code for this chapter is available in the following GitHub repository: https://
github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/
tree/main/ProjectPartIII

Building the project in the VB.NET console
This simple console application is written in the VB.NET programming language. We will start by
exploring the different classes we must develop for the project. The following code defines a VB.NET
class named clsGrade that encapsulates a concept related to grading or scoring. It provides a private
field, piScore, to store the numerical score, and a public property, Score, that allows getting and
setting the value of the score.

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIII
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIII
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIII

Project Part III152

Here’s a breakdown of the code that follows:

• Public Class clsGrade: This line declares a public class named clsGrade.

• Private piScore As Integer: This line declares a private field named piScore of
type Integer, which is used to store the numeric score.

• Public Property Score As Integer: This line defines a public property named Score.
Properties allow access to or modify private fields while encapsulating the implementation details.

• Get: This block defines the getter for the Score property. When the property is accessed, this
block is executed and returns the value of the piScore private field.

• Set(value As Integer): This block defines the setter for the Score property. When
the property is assigned a value, this block is executed and assigns the provided value to the
piScore private field.

The use of properties in this code allows you to interact with the piScore field in a controlled manner.
The property provides a level of abstraction, allowing you to get and set the score without directly
accessing the underlying field. This can be useful for maintaining data integrity, applying validation,
or performing additional actions when the value is accessed or modified. Here is the code sample:

Public Class clsGrade
 Private piScore As Integer

 Public Property Score As Integer
 Get
 Return piScore
 End Get
 Set(value As Integer)
 piScore = value
 End Set
 End Property
End Class

The next section of code defines a VB.NET class named clsTestGrade that extends or inherits
from another class named clsGrade. The clsTestGrade class represents a test grade, and it
adds functionality specific to the duration of the test in addition to the score.

Here’s a breakdown of the code, which follows this breakdown and explanation:

• Public Class clsTestGrade: This line declares a class named clsTestGrade,
intended to represent a test grade.

• Inherits clsGrade: This line indicates that the clsTestGrade class inherits from
another class called clsGrade. This means that clsTestGrade inherits the members
(fields, properties, methods, and so on) and behavior of the clsGrade class.

Building the project in the VB.NET console 153

• Private piDuration As Integer: This line declares a private field named piDuration
of type Integer, which stores the test duration.

• Public Sub New(piScore As Integer, piDuration As Integer): This
is a constructor for the clsTestGrade class. It takes two parameters: piScore and
piDuration. When an instance of clsTestGrade is created, this constructor is called
to initialize its properties.

• Me.Score = piScore: This line sets the Score property of the clsTestGrade
instance to the value of the piScore parameter. The Score property is inherited from the
clsGrade class.

• Me.piDuration = piDuration: This line sets the piDuration field of the
clsTestGrade instance to the value of the piDuration parameter.

• Public Property Duration As Integer: This line defines a public property named
Duration. This property allows getting and setting the duration of the test.

• Get: This block defines the getter for the Duration property. When the property is accessed,
this block is executed and returns the value of the piDuration private field.

• Set(value As Integer): This block defines the setter for the Duration property.
When the property is assigned a value, this block is executed and assigns the provided value
to the piDuration private field.

This class is designed to work with test grades and includes an additional attribute for test duration.
The inheritance from the clsGrade class provides common properties or methods related to grades,
and clsTestGrade extends it to include specific behavior related to test grading and duration.
Here is the code:

Public Class clsTestGrade
 Inherits clsGrade
 Private piDuration As Integer

 Public Sub New(piScore As Integer, piDuration As
 Integer)
 Me.Score = piScore
 Me.piDuration = piDuration
 End Sub

 Public Property Duration As Integer
 Get
 Return piDuration
 End Get
 Set(value As Integer)
 piDuration = value

Project Part III154

 End Set
 End Property
End Class

In the next code section, we define a VB.NET class named clsQuizGrade that extends or inherits
from another class named clsGrade. The clsQuizGrade class represents a quiz grade and includes
information about the number of attempts made for the quiz and the score.

Here’s a breakdown of the code, which follows this breakdown and explanation:

• Public Class clsQuizGrade: This line declares a class named clsQuizGrade
intended to represent a quiz grade.

• Inherits clsGrade: This line indicates that the clsQuizGrade class inherits from
another class called clsGrade. The clsGrade class contains common properties or methods
related to grading, and clsQuizGrade extends it to include specific behavior related to
quiz grading.

• Private piAttempts As Integer: This line declares a private field named piAttempts
of type Integer, which stores the number of attempts made for the quiz.

• Public Sub New(piScore As Integer, piAttempts As Integer): This
is a constructor for the clsQuizGrade class. It takes two parameters: piScore and
piAttempts. When an instance of clsQuizGrade is created, this constructor is called
to initialize its properties.

• Me.Score = piScore: This line sets the Score property of the clsQuizGrade
instance to the value of the piScore parameter. The Score property is inherited from the
clsGrade class.

• Me.piAttempts = piAttempts: This line sets the piAttempts field of the
clsQuizGrade instance to the value of the piAttempts parameter.

• Public Property Attempts As Integer: This line defines a public property named
Attempts. This property allows getting and setting the number of attempts made for the quiz.

• Get: This block defines the getter for the Attempts property. When the property is accessed,
this block is executed and returns the value of the piAttempts private field.

• Set(value As Integer): This block defines the setter for the Attempts property.
When the property is assigned a value, this block is executed and assigns the provided value
to the piAttempts private field.

Building the project in the VB.NET console 155

This class is designed to work with quiz grades and includes an additional attribute for the number of
attempts made for the quiz. The inheritance from the clsGrade class provides standard grading-
related functionality, and clsQuizGrade extends it to include quiz-specific behavior:

Public Class clsQuizGrade
 Inherits clsGrade
 Private piAttempts As Integer

 Public Sub New(piScore As Integer, piAttempts As
 Integer)
 Me.Score = piScore
 Me.piAttempts = piAttempts
 End Sub

 Public Property Attempts As Integer
 Get
 Return piAttempts
 End Get
 Set(value As Integer)
 piAttempts = value
 End Set
 End Property
End Class

The following code defines a VB.NET class named clsHWGrade that inherits from another class
named clsGrade. The clsHWGrade class represents a homework grade and includes information
about the submission date and the score.

Here’s a breakdown of the code:

• Public Class clsHWGrade: This line declares a class named clsHWGrade intended
to represent a homework grade.

• Inherits clsGrade: This line indicates that the clsHWGrade class inherits from another
class called clsGrade. This suggests that the clsGrade class likely contains properties or
methods related to grading, and clsHWGrade extends it to include homework-specific behavior.

• Private pdSubmitted As Date: This line declares a private field named pdSubmitted
of type Date, which stores the homework submission date.

• Public Sub New(piScore As Integer, pdSubmitted As Date): This is a
constructor for the clsHWGrade class. It takes two parameters: piScore and pdSubmitted.
When an instance of clsHWGrade is created, this constructor is called to initialize its properties.

Project Part III156

• Me.Score = piScore: This line sets the Score property of the clsHWGrade instance to
the value of the piScore parameter. The Score property is inherited from the clsGrade class.

• Me.pdSubmitted = pdSubmitted: This line sets the pdSubmitted field of the
clsHWGrade instance to the value of the pdSubmitted parameter.

• Public Property Submitted As Date: This line defines a public property named
Submitted. This property allows getting and setting the submission date of the homework.

• Get: This block defines the getter for the Submitted property. When the property is accessed,
this block is executed and returns the value of the pdSubmitted private field.

• Set(value As Date): This block defines the setter for the Submitted property. When
the property is assigned a value, this block is executed and assigns the provided value to the
pdSubmitted private field.

This class is designed to work with homework grades and includes an additional attribute for the
homework submission date. The inheritance from the clsGrade class provides common grading-
related functionality, and clsHWGrade extends it to include homework-specific behavior. Here is
the code:

Public Class clsHWGrade
 Inherits clsGrade
 Private pdSubmitted As Date

 Public Sub New(piScore As Integer, pdSubmitted As Date)
 Me.Score = piScore
 Me.pdSubmitted = pdSubmitted
 End Sub

 Public Property Submitted As Date
 Get
 Return pdSubmitted
 End Get
 Set(value As Date)
 pdSubmitted = value
 End Set
 End Property
End Class

The following code reads data from a CSV file containing student grades and calculates the average
scores for each student’s assignments (tests, quizzes, and homework). It uses dictionaries and lists to
organize and process the data. Here’s a breakdown of the code:

• Imports System.IO imports the System.IO namespace, which provides classes for
working with input and output operations, including file reading

Building the project in the VB.NET console 157

• Module Module1 defines a VB.NET module named Module1

• Sub Main() is the program’s entry point, where the execution starts

• Dim filePath As String = "..\..\students.csv" defines the relative path
to the CSV file containing student grades

• Dim studentGrades As New Dictionary(Of String, List(Of clsGrade))
() initializes a dictionary named studentGrades that associates student names (keys) with
lists of grade objects (values)

• Using reader As New StreamReader(filePath) begins a block for reading the
CSV file using StreamReader

• The While Not reader.EndOfStream loop iterates through each line in the CSV file

• Dim line As String = reader.ReadLine() reads a line from the CSV file

• Dim fields As String() = line.Split(",") splits the line into an array of
strings using commas as delimiters

• If fields.Length = 4 Then checks whether four fields are in the line

• Inside the If block, the code extracts the student name, score, category, and additional
information from the fields array

• Depending on the category, a new instance of clsTestGrade, clsQuizGrade, or
clsHWGrade is created and added to the appropriate student’s list in the student
Grades dictionary

• The loop inside the Using block continues until all lines of the CSV file are processed

• After reading the CSV file, the code calculates and displays average scores for each student
and category

• The outer For Each loop iterates through each student in the studentGrades dictionary

• Inside the loop, it calculates the total scores and counts for each category (Test, Quiz, and
HW) using separate variables

• It then calculates the average scores for each category, handling cases where the count is zero

• Finally, it prints out the student’s name and the calculated average scores for tests, quizzes,
and homework

• Console.ReadLine() waits for the user to press Enter before exiting the program

In summary, this code reads student grade data from a CSV file, organizes it in a dictionary, calculates
average scores for different assignment categories, and displays the results for each student:

Imports System.IO

Project Part III158

Module Module1

 Sub Main()

 Dim filePath As String = "..\..\students.csv"
 Dim studentGrades As New Dictionary(Of String,
 List(Of Grade))()

 Using reader As New StreamReader(filePath)
 While Not reader.EndOfStream
 Dim line As String = reader.ReadLine()
 Dim fields As String() = line.Split(",")

 If fields.Length = 4 Then
 Dim studentName As String =
 fields(0).Trim()
 If Not studentGrades.ContainsKey
 (studentName) Then
 studentGrades.Add(studentName, New
 List(Of Grade)())
 End If
 Dim score As String = fields(1).Trim()
 Dim category As String =
 fields(2).Trim()
 Select Case category
 Case "Test"
 studentGrades(studentName).
 Add(New TestGrade(score,
 fields(3).Trim()))
 Case "Quiz"
 studentGrades(studentName).
 Add(New QuizGrade(score,
 fields(3).Trim()))
 Case "HW"
 studentGrades(studentName).
 Add(New HWGrade(score,
 fields(3).Trim()))
 End Select

 End If
 End While
 End Using

Building the project in the VB.NET console 159

 For Each studentName As String In
 studentGrades.Keys
 Dim testtotal, testcnt, quiztotal, quizcnt,
 hwtotal, hwcnt As Integer
 Dim grades As List(Of Grade) = studentGrades
 (studentName)
 For Each eagrade As Grade In grades
 If TypeOf eagrade Is TestGrade Then
 testtotal += eagrade.Score
 testcnt += 1
 ElseIf TypeOf eagrade Is QuizGrade Then
 quiztotal += eagrade.Score
 quizcnt += 1
 Else
 hwtotal += eagrade.Score
 hwcnt += 1
 End If
 Next
 Dim testavg, quizavg, hwavg As Double
 If testcnt > 0 Then
 testavg = testtotal / testcnt
 End If
 If quizcnt > 0 Then
 quizavg = quiztotal / quizcnt
 End If
 If hwcnt > 0 Then
 hwavg = hwtotal / hwcnt
 End If

 Console.WriteLine(studentName & ": Test Avg:" &
 testavg.ToString("N1") &
 " Quiz Avg:" & quizavg.ToString("N1") &
 " HW Avg:" & hwavg.ToString("N1"))

 Next

 Console.ReadLine()
 End Sub

End Module

Next, let’s plug this code into the IDE to give it a try.

Project Part III160

Coding the Visual Basic.NET console grading tool
The following steps allow you to code and execute a VB.NET Windows Forms version of Hello
World:

1. Start Microsoft Visual Studio.

2. Choose Create New Project.

3. Choose Console (.NET Framework) and click Next.

4. Accept the default project name and solution name.

5. Change the location if you prefer your code in a different folder.

6. Accept the default framework.

7. Click Create Project.

8. Enter the code example from the preceding section in the main module.

9. Create class files for each class described earlier with the filename being the same as the name
of the class with an extension of vb.

10. To run your program, click the green triangle on the toolbar above your code.

The next section will tackle the Object-Oriented Grade Tool in ASP.NET.

Building the project in ASP.NET
What follows is ASP.NET VB.NET code for the Object-Oriented Grading Tool. The code is very similar
to the earlier code presented for the VB.NET console application. With this example, no ASPX code
changes are required as the output is handled with the response.write method:

Imports System.IO

Public Class ASPNETOOGradingTool
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e
 As System.EventArgs) Handles Me.Load
 Dim filePath As String = "students.csv"
 Dim studentGrades As New Dictionary(Of String,
 List(Of clsGrade))()

 Using reader As New StreamReader(filePath)
 While Not reader.EndOfStream
 Dim line As String = reader.ReadLine()
 Dim fields As String() = line.Split(",")

Building the project in ASP.NET 161

 If fields.Length = 4 Then
 Dim studentName As String =
 fields(0).Trim()
 If Not studentGrades.ContainsKey
 (studentName) Then
 studentGrades.Add(studentName, New
 List(Of Grade)())
 End If
 Dim score As String = fields(1).Trim()
 Dim category As String =
 fields(2).Trim()
 Select Case category
 Case "Test"
 studentGrades(studentName).
 Add(New clsTestGrade(score,
 fields(3).Trim()))
 Case "Quiz"
 studentGrades(studentName).
 Add(New clsQuizGrade(score,
 fields(3).Trim()))
 Case "HW"
 studentGrades(studentName).
 Add(New clsHWGrade(score,
 fields(3).Trim()))
 End Select

 End If
 End While
 End Using

 For Each studentName As String In
 studentGrades.Keys
 Dim testtotal, testcnt, quiztotal, quizcnt,
 hwtotal, hwcnt As Integer
 Dim grades As List(Of clsGrade) =
 studentGrades(studentName)
 For Each eagrade As clsGrade In grades
 If TypeOf eagrade Is clsTestGrade Then
 testtotal += eagrade.Score
 testcnt += 1
 ElseIf TypeOf eagrade Is clsQuizGrade Then
 quiztotal += eagrade.Score

Project Part III162

 quizcnt += 1
 Else
 hwtotal += eagrade.Score
 hwcnt += 1
 End If
 Next
 Dim testavg, quizavg, hwavg As Double
 If testcnt > 0 Then
 testavg = testtotal / testcnt
 End If
 If quizcnt > 0 Then
 quizavg = quiztotal / quizcnt
 End If
 If hwcnt > 0 Then
 hwavg = hwtotal / hwcnt
 End If

 Response.Write(studentName & ": Test Avg:" &
 testavg.ToString("N1") &
 " Quiz Avg:" & quizavg.ToString("N1") &
 " HW Avg:" & hwavg.ToString("N1") &
 "</br>")

 Next

 End Sub

End Class

Next, let’s plug this code into Visual Studio.

Coding an ASP.NET calculator with Visual Studio
The following steps will allow you to code and execute an ASP.NET web page that displays Hello
World:

1. Start Microsoft Visual Studio 2019.

2. Choose Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept the default project name and solution name.

5. Change the location if you prefer your code in a different folder.

6. Accept the default framework.

Summary 163

7. Click Create Project.

8. Choose Web Forms.

9. When the designer loads, navigate to the solution explorer and right-click on the solution.

10. Choose Add Item from the pop-up menu.

11. Choose Web Form Visual Basic.

12. Right-click on the ASPX source and choose View Code from the pop-up menu.

13. Enter the VB.NET code from the preceding code example that falls in the Page_load procedure.

14. Create class files for each class described, ensuring the filename is the same as the name of the
class with an extension of vb.

15. To run your program, click the green triangle on the toolbar above your code.

Summary
In this chapter, we utilized the skills we have gained to build an Object-Oriented Grading Tool for
the newer Visual Basic family members that support object inheritance. This project used skills from
Project II in Chapter 11 and added the use of inheritance and polymorphism. The next chapter will
look at the Request and Response model used in modern web application architectures.

Part 4:
Server-Side Development

In the fourth part of this book, we will learn to use Visual Basic in web development. Server-side
development focuses on coding in response to HTTP requests from a web browser. We will learn to
format an answer in an HTTP response. We will conclude the book in this part with a summary of
everything we have learned, along with some projects and learning you can do in the future.

This part has the following chapters:

• Chapter 17, The Request and Response Model

• Chapter 18, Variable Scope and Concurrency

• Chapter 19, Project Part IV

• Chapter 20, Conclusions

17
The Request

and Response Model

In Classic ASP and ASP.NET, the Request and Response model describes how client-server communication
is handled. Both Classic ASP and ASP.NET are web application frameworks that allow you to build
dynamic web applications using server-side technologies. The Request and Response model is at the
core of this communication process.

The following is an explanation of the Request part of the model:

• The request represents the information sent by the client (usually a web browser) to the server.
It includes HTTP headers, form data, query parameters, cookies, and more.

• When a user accesses a web page or sends a form submission, the client generates an HTTP
request and sends it to the server.

• The server-side code in your application processes this request and responds accordingly.

• Classic ASP and ASP.NET provide various objects and properties to access the request data.

The following is an explanation of the Response part of the model:

• The response represents the information sent by the server back to the client in response to
the client’s request

• The server-side code in your Classic ASP and ASP.NET applications generates the appropriate
response, which is then returned to the client

• The response typically includes HTML content, CSS styles, JavaScript, and other resources
necessary for rendering a web page

• Classic ASP and ASP.NET provide objects and methods to manage the response

The Request and Response Model168

Classic ASP and ASP.NET use a combination of Request and Response objects to process client
requests, execute server-side logic, and generate dynamic HTML or other content to be sent back to
the client. This model enables the creation of interactive and dynamic web applications.

In this chapter, we’re going to cover the following main topics:

• Classic ASP Request object

• ASP.NET Request object

• Classic ASP Response object

• ASP.NET Response object

Classic ASP Request object
In Classic ASP, the Request object is a built-in server-side object that’s used to retrieve information
sent by the client (usually a web browser) to the web server. The Request object allows you to access
various data types, including form data, query parameters, cookies, and more, making it essential for
processing client requests and building dynamic web applications.

Here are some common properties and methods of the Request object in Classic ASP:

• Form collection (Request.Form): Provides access to the data sent to the server using the
HTTP POST method (usually from HTML forms).

Example: Request.Form("username") returns the value submitted with the input field
named "username".

• Query string (Request.QueryString): Provides access to the data sent to the server
using the HTTP GET method (usually from URLs).

Example: Request.QueryString("id") returns the value of the "id" parameter from
the URL.

• Cookies collection (Request.Cookies): Provides access to the client’s cookies sent with
the request.

Example: Request.Cookies("username").Value returns the value of the
"username" cookie.

• ServerVariables collection (Request.ServerVariables): Provides access to server-
related information, such as server name, server port, client IP address, and more.

Example: Request.ServerVariables("REMOTE_ADDR") returns the client’s IP address.

• HTTP method (Request.ServerVariables("REQUEST_METHOD")): Returns the
HTTP method used in the request (for example, GET or POST).

• Path (Request.ServerVariables("PATH_INFO")): Returns the virtual path of the
requested ASP file. When used for web development, this information comes from the URL.

ASP.NET Request object 169

• Query string (Request.ServerVariables("QUERY_STRING")): Returns the raw
query string from the URL.

You don’t need to create the Request object in Classic ASP to use it explicitly; it’s automatically
available in ASP pages. You can access its properties and methods directly within your ASP code.

Here’s a simple example that demonstrates the use of the Request object in Classic ASP:

<%
Dim username
username = Request.Form("username")

If Len(username) > 0 Then
 Response.Write "Hello, " & username & "!"
Else
%>
 <form method="post">
 <label for="username">Enter your name:</label>
 <input type="text" name="username" id="username">
 <input type="submit" value="Submit">
 </form>
<%
End If
%>

In this example, when the user submits the form with their name, Request.Form("username")
retrieves the value from the form data, and the personalized greeting is displayed using Response.
Write. If no name is provided, the form is displayed for the user to input their name.

Next, we will examine the ASP.NET Request object.

ASP.NET Request object
In ASP.NET, the Request object is a server-side object that’s used to retrieve information sent by the
client (usually a web browser) to the web server. It provides access to various data types, including form
data, query parameters, cookies, headers, and so on. The Request object is essential to processing
client requests and building dynamic web applications in ASP.NET.

The Request object is accessible in all ASP.NET page types, including ASPX pages, code-behind files,
and custom handlers. It is available by default, and you can use it directly without creating an instance.

Here are some common properties and methods of the Request object in ASP.NET. They are very
close to the Classic ASP properties and methods:

• Form collection (Request.Form): Provides access to the data sent to the server using the
HTTP POST method (usually from HTML forms).

The Request and Response Model170

Example: Request.Form["username"] returns the value submitted with the input field
named "username".

• Query string (Request.QueryString): Provides access to the data sent to the server
using the HTTP GET method (usually from URLs).

Example: Request.QueryString["id"] returns the value of the "id" parameter from
the URL.

• Cookies collection (Request.Cookies): Provides access to the client’s cookies sent with
the request.

Example: Request.Cookies["username"].Value returns the value of the
"username" cookie.

• Headers collection (Request.Headers): Provides access to the HTTP headers sent by
the client.

Example: Request.Headers["User-Agent"] returns the User-Agent header of
the client’s browser.

• HTTP method (Request.HttpMethod): Returns the HTTP method used in the request
(for example, GET, POST).

• Path (Request.Path): Returns the virtual path of the requested ASP.NET page.

• QueryString (Request.QueryString.ToString()): Returns the raw query string
from the URL.

• InputStream (Request.InputStream): Provides access to the raw request body as a
stream, which helps handle non-form data requests.

To use the Request object in ASP.NET, you can directly access its properties and methods within
your ASPX pages or code-behind files.

Here’s a simple example that demonstrates the use of the Request object in an ASP.NET page:

<%@ Page Language="VB" AutoEventWireup="false" CodeBehind="Default.
aspx.vb" Inherits="WebApplication.Default" %>

<!DOCTYPE html>
<html>
<head>
 <title>ASP.NET Request Object Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

ASP.NET Request object 171

 <asp:Label ID="lblMessage"
 runat="server"></asp:Label>
 <asp:TextBox ID="txtUsername"
 runat="server"></asp:TextBox>
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" OnClick="btnSubmit_Click" />
 </div>
 </form>
</body>
</html>

Here’s the VB.NET code-behind (Default.aspx.vb):

Imports System

Namespace WebApplication
 Public Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnSubmit_Click(ByVal sender As
 Object, ByVal e As EventArgs)
 Dim username As String = Request.Form
 ("txtUsername")
 If Not String.IsNullOrEmpty(username) Then
 lblMessage.Text = "Hello, " & username &
 "!"
 End If
 End Sub
 End Class
End Namespace

In the previous example, the ASPX page contains a simple form with a text box and a submit button.
When the user enters their name in the text box and clicks the Submit button, the btnSubmit_Click
event handler in the VB.NET code-behind is executed – Request.Form("txtUsername")
retrieves the value from the form data (note that we are using the txtUsername control ID to
access the value). The personalized greeting is displayed on the web page using lblMessage if a
name is provided.

The Request object is automatically available in the VB.NET code-behind file, and you can access
its properties (for example, Request.Form, Request.Cookies, and so on) to handle client-side
data and build dynamic ASP.NET applications.

Next, we will examine the Classic ASP Response object.

The Request and Response Model172

Classic ASP Response object
In Classic ASP, the Response object is a server-side object that’s used to send output from the server
back to the client (usually a web browser) as a response to the client’s request. The Response object
provides methods and properties to set HTTP headers, send content (such as HTML, text, or binary
data), manage cookies, and perform various other operations related to generating the response.

The Response object is automatically available in Classic ASP and does not require creating an
instance. You can use it directly within your ASP code to customize the response that’s sent to the client.

Here are some standard methods and properties of the Response object in Classic ASP:

• Write and WriteText: The Write method sends output to the client, such as HTML content,
text, or variable values. The WriteText method sends the client binary data (such as images).

• Redirect: The Redirect method redirects the client to a different URL.

• AddHeader: The AddHeader method adds custom HTTP headers to the response.

• ContentType: The ContentType property sets the MIME type of the response content.

• Cookies collection (Response.Cookies): This manages cookies that are sent back
to the client.

• Clear: The Clear method clears any buffered HTML content before sending the response.

• BinaryWrite: The BinaryWrite method sends binary data directly to the client, such
as images or files.

Here’s a simple example that demonstrates the use of the Response object in Classic ASP:

<%
Dim username
username = Request.Form("username")

If Len(username) > 0 Then
 Response.Write "Hello, " & username & "!"
Else
%>
 <form method="post">
 <label for="username">Enter your name:</label>
 <input type="text" name="username" id="username">
 <input type="submit" value="Submit">
 </form>
<%
End If
%>

ASP.NET Response object 173

In the previous example, when the user submits a form with their name, the Response.Write
method sends back a personalized greeting to the client. If no name is provided, an HTML form is
sent back to the user so that they can input their name.

The Response object is an essential tool for controlling the output that’s sent to the client in Classic
ASP. The Response object enables developers to build dynamic and interactive web applications.

Next, we will examine the ASP.NET Response object.

ASP.NET Response object
In ASP.NET, the Response object is a server-side object that’s used to send output from the server
back to the client (usually a web browser) as a response to the client’s request. The Response object
provides methods and properties to set HTTP headers, send content (such as HTML, text, or binary
data), manage cookies, and perform various other operations related to generating the response.

The Response object is automatically available in all ASP.NET page types, including ASPX pages,
code-behind files, and custom handlers. You can use it directly within your ASP.NET code to customize
the response that’s sent to the client.

Here are some standard methods and properties of the Response object in ASP.NET. Again, these
are very similar to the Classic ASP Response methods and properties:

• Write: The Write method, as in the Classic ASP Response object, sends output to the
client, such as HTML content, text, or variable values

• WriteFile: The WriteFile method sends binary data, such as images or files, directly
to the client

• Redirect: The Redirect method redirects the client to a different URL

• AddHeader: The AddHeader method adds custom HTTP headers to the response

• ContentType: The ContentType property is used to set the MIME type of the response content

• Cookies collection (Response.Cookies): This manages cookies that are sent back
to the client

• Clear: The Clear method clears any buffered HTML content before sending the response

• BinaryWrite: The BinaryWrite method sends binary data, such as images or files,
directly to the client

• Output caching: The Response.Cache property allows you to configure caching options
for the response, enabling better performance by serving cached content to subsequent requests

Here’s a simple example that demonstrates the use of the Response object in an ASP.NET page.

The Request and Response Model174

ASPX page (Default.aspx):

<%@ Page Language="VB" AutoEventWireup="true" CodeBehind="Default.
aspx.vb" Inherits="WebApplication.Default" %>

<!DOCTYPE html>
<html>
<head>
 <title>ASP.NET Response Object Example</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="btnGreet" runat="server"
 Text="Greet" OnClick="btnGreet_Click" />
 </div>
 </form>
</body>
</html>

VB.NET code-behind (Default.aspx.vb):

Imports System

Namespace WebApplication
 Public Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnGreet_Click(ByVal sender As
 Object, ByVal e As EventArgs)
 Dim username As String = "John" ' You can get
 the username from user input or any other
 source
 Response.Write("Hello, " & username & "!")
 End Sub
 End Class
End Namespace

In this example, when the user clicks the Greet button, the btnGreet_Click event handler in the
VB.NET code-behind is executed. The Response.Write method sends a personalized greeting
to the client, displaying "Hello, John!" on the web page.

The Response object in ASP.NET is a useful tool for controlling the output that’s sent to the client,
allowing developers to build dynamic and interactive web applications from the code-behind files.

Summary 175

Summary
This chapter introduced the Request and Response model that’s used in programming web applications
in VB. We looked at the methods and properties for both Classic ASP and ASP.NET. Most new
development today follows this Request and Response model, so it will be very important in your
programming future. The next chapter will look at variable scope in web applications developed with VB.

18
Variable Scope and

Concurrency

Like many other server-side web technologies, Active Server Pages (ASP) follows the Hypertext
Transfer Protocol (HTTP) stateless model. HTTP is the foundation of data communication on the
World Wide Web. It is a stateless protocol, which means that each request made by a client to the
server is independent and unrelated to previous requests. The server does not retain any information
about the client’s previous requests, and each request is processed in isolation.

Statelessness in HTTP has some important implications:

• No client context: The server does not keep track of the client’s state between requests. Each
request contains all the necessary information for the server to process it.

• Scalability: Stateless protocols are more scalable because servers do not need to maintain client
state, allowing them to handle many concurrent requests without memory overhead.

• No inherent session management: Since no session management exists, developers must implement
mechanisms such as cookies or tokens to maintain the session state across multiple requests.

To maintain user state and provide a more interactive experience, web applications often use techniques
such as cookies, URL parameters, or hidden form fields to store session data on the client side. When
a client sends a request to the server, this session data is included, allowing the server to identify and
associate the request with the correct session.

Concerning ASP, it can leverage various methods to manage session state in a stateless HTTP
environment, including the following:

• Cookies: ASP can use cookies to store small amounts of data on the client side, which can be
sent back to the server with each request

• Session objects: ASP provides a session object, which allows developers to store and retrieve
data per session, typically utilizing server-side memory or a designated session store

Variable Scope and Concurrency178

• Query strings or hidden form fields: Data can be returned to the server through URLs or
hidden form fields within HTML forms

These mechanisms allow ASP applications to simulate statefulness within the stateless HTTP model,
providing users with a more dynamic and personalized experience.

In this chapter, we’re going to cover the following main topics:

• Session scope

• Application scope

• Request scope and cookies

Session scope
In ASP, session scope refers to the duration data is maintained and accessible for a particular user
session. A web development session is the period between a user’s initial request to a web application
and their final interaction or until the session times out due to inactivity.

ASP provides a session object, allowing developers to store and retrieve data specific to a user
session. This data can be accessed throughout the session, allowing for stateful behavior within the
stateless HTTP protocol. The session data, typically in memory, is stored on the server side and is
associated with a unique session identifier (often stored in a cookie on the client side) that enables
the server to identify the user’s session for subsequent requests.

Here’s a basic overview of how session scope works in ASP:

• Session start: When a user accesses an ASP application for the first time or starts a new session,
the server assigns a unique session ID to the user. This session ID is stored in a cookie on the
client’s browser or passed through URL parameters in subsequent requests.

• Storing data: During the user’s interaction with the application, you can use the Session
object in ASP to store data specific to that session. For example, you can store user preferences,
shopping cart items, authentication details, or any other information relevant to the user’s session:

<%
 ' Storing data in session scope
 Session("username") = "JohnDoe"
 Session("cart_items") = Array("item1", "item2",
 "item3")
%>

Application scope 179

• Accessing data: The stored session data can be accessed and used throughout the user’s
session. This allows you to maintain state and personalize the user experience based on their
previous interactions:

<%
 ' Accessing data from session scope
 Dim username
 username = Session("username")
 Response.Write("Welcome, " & username)
%>

• End of session: When the user ends their session (either by logging out, closing the browser,
or after a certain period of inactivity), the session data is cleared, and the session is terminated.
The server releases the resources associated with that session.

It’s essential to use session scope judiciously and avoid storing large amounts of data in session objects
as it can lead to increased memory usage on the server and potentially impact application performance.
Instead, it is advisable to use session scope for essential user-specific data that needs to persist across
multiple requests during a session.

Application scope
In ASP, application scope refers to a shared data storage area that persists throughout the lifetime of an
ASP application. Unlike session scope, which stores data specific to each user session, application scope
allows data to be shared among all users accessing the application. The data stored in the application
scope is available to all users, regardless of their sessions.

The application scope is used when you must maintain consistent global or shared data across all user
sessions and requests. Everyday use cases for the application scope include storing configuration settings,
shared resources, or any data that should be accessed and updated globally across the entire application.

Here’s a basic overview of how the application scope works in ASP:

• Data initialization: When the ASP application starts, you can use the Application object
to initialize and store data in the application scope. This is typically done in the global.asa
file or in the Application_OnStart event handler:

<!-- Global.asa -->
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub Application_OnStart
 ' Initialize data in the Application scope
 Application("SiteName") = "My ASP Website"
 Application("VisitorsCount") = 0
End Sub
</SCRIPT>

Variable Scope and Concurrency180

• Accessing data: Once data is stored in the application scope, it can be accessed and used by
any user accessing the application. For example, you can display the site’s name and the total
number of visitors across the complete application:

<%
 ' Accessing data from the Application scope
 Dim siteName
 siteName = Application("SiteName")
 Response.Write("Welcome to " & siteName & "
")

 Dim visitorsCount
 visitorsCount = Application("VisitorsCount")
 Response.Write("Total visitors: " & visitorsCount)
%>

• Shared updates: Since the application scope is shared among all users, you must be careful
when updating data. If multiple users try to modify the same application data simultaneously,
it can lead to conflicts and unexpected results. To ensure data integrity, you should implement
synchronization mechanisms such as Application.Lock and Application.Unlock
to prevent concurrent access:

<%
 ' Increment visitors count in a thread-safe manner
 Application.Lock
 Application("VisitorsCount") =
 Application("VisitorsCount") + 1
 Application.Unlock
%>

• Application shutdown: When the ASP application is shut down or restarted, the data in the
application scope is cleared. This can happen when the application pool is recycled or the
server is restarted.

It’s essential to use the application scope judiciously and only store data that needs to be shared globally
across the entire application. Be cautious not to overload the application scope with excessive data as
it can increase memory usage and impact the application’s performance.

Request scope and cookies
In ASP, the request scope and cookies are two essential concepts for web development and handling
user interactions. Let’s explore both in more detail.

Request scope and cookies 181

Request scope in ASP

The request scope refers to the lifetime and accessibility of data during a single HTTP request-response
cycle in ASP. When a client (typically a web browser) sends a request to the server, the server processes
the request and generates a response. During this process, data can be passed from the client to
the server (for example, form data, query strings, and HTTP headers) and vice versa (for example,
server-generated content).

ASP provides an intrinsic Request object that allows developers to access data coming from the
client in the HTTP request. This object provides various properties and methods to access request
data, such as form data, query strings, cookies, and HTTP headers.

The following is an example of accessing form data in ASP using the Request object:

<%
 Dim username
 username = Request.Form("username")
 Response.Write("Hello, " & username)
%>

Next, let’s look at an example of accessing query string data in ASP using the Request object:

URL (dummy): http://127.0.0.1/page.asp?name=Aspen:

<%
 Dim name
 name = Request.QueryString("name")
 Response.Write("Hello, " & name)
%>

The request scope is limited to a single request-response cycle. Once the response is sent to the client,
the data in the request scope is discarded.

Cookies in ASP

Cookies are small pieces of data that are stored on the client side (usually within the client’s web
browser) and are sent back to the server with each HTTP request. They allow the server to remember
stateful information about the client between different requests, even in a stateless HTTP protocol.

ASP provides a way to work with cookies using the Response and Request objects. The Response
object is used to set or modify cookies, while the Request object is used to retrieve and access
cookies sent by the client.

Variable Scope and Concurrency182

The following is an example of setting a cookie in ASP:

<%
 ' Set a cookie that expires in 30 days
 Response.Cookies("username") = "AspenOlmsted"
 Response.Cookies("username").Expires = DateAdd("d", 30,
 Now())
%>

The following example deals with retrieving a cookie in ASP:

<%
 Dim username
 username = Request.Cookies("username")
 If len(username) > 0 Then
 Response.Write("Welcome back, " & username)
 Else
 Response.Write("Welcome, guest!")
 End If
%>

Cookies are commonly used for various purposes, such as maintaining user sessions, storing user
preferences, tracking user behavior, and implementing personalized website experiences.

It’s essential to use cookies judiciously and be mindful of privacy concerns. Some users may disable or
block cookies in their browsers, and it’s essential to handle scenarios where cookies are not available
gracefully. Additionally, sensitive information should not be stored in cookies as they are visible
to the client and can be manipulated by users. For sensitive data, I prefer using server-side session
storage mechanisms.

Summary
This chapter introduced variable scope and concurrency while programming web applications in
VB. We looked at defining the application, session, and request scopes for variable lifetimes in the
web application. We also discussed cookies, which we can use to pass small amounts of data between
the client and the server. The next chapter, Chapter 19, will utilize these new skills in our final
programming project.

19
Project Part IV

In our fourth project, we will use the skills we have learned about the HTTP request-response model,
as well as variable scope and concurrency, to build a server-side grade averaging tool that will receive
grades one at a time from the client. In addition, it will send back the average for all the grades it received.

In this chapter, we’re going to cover the following main topics:

• Developing a server-side grade averaging tool in Classic ASP

• Developing a server-side grade averaging tool in ASP.NET

Technical requirements
Please complete the steps for installing the code with the VB family member from Chapter 1. All the
example code for this chapter is available in the following GitHub repository: https://github.
com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/
main/ProjectPartIV.

Building the project in Classic ASP
The following is a Classic ASP program that accepts grades from the client web browser and responds
with the average of the grades to this point. The program will accept grades in a web browser and send
them to the server, which will calculate a new average and return it:

<FORM>
<INPUT name="grade"/>
<INPUT type="submit" value="Add Grade"/>
</FORM>
<%
if Request("grade").Count > 0 Then
 Session("Total") = Session("Total") +
 CInt(Request("grade"))
 Session("Cnt") = Session("Cnt") + 1

https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIV
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIV
https://github.com/PacktPublishing/Learn-Visual-Basics-Quick-Start-Guide-/tree/main/ProjectPartIV

Project Part IV184

 response.write("Grade Average: ")
 response.write(Session("Total") / Session("Cnt"))
End If
%>

The first part of the code defines an HTML form that allows users to input a grade value. It contains
a text input field named grade and a submit button labeled Add Grade.

The next section of the code uses Classic ASP to process the form submission and calculate the
average grade.

The if statement checks whether any data has been submitted with the name grade using the
Request("grade").Count condition. If data is present, it means the form was submitted.

Inside the if block, we have the following:

• Session("Total") is a session variable that keeps track of the sum of grades. It adds the
value of the submitted grade (Request("grade")) to the current value.

• Session("Cnt") is another session variable that keeps track of the number of grades. It
increments by one to count the number of grades entered.

• response.write is used to output text to the web page. In this case, it displays Grade
Average, followed by the calculated average, which is the total sum divided by the count.

In summary, this code creates a simple web form that allows users to input grades. When the form is
submitted, the Classic ASP code calculates and displays the average grade by maintaining a running
sum of grades and a count of grades entered using session variables.

Coding the Classic ASP grading tool with Notepad

Follow these steps to code and execute VBScript that displays the calculator developed in this project:

1. Start Notepad.

2. Enter all the code from the code example in the previous section.

3. Save the file as ClassicASPSSGrades.asp in the root web directory (this is typically c:\
inetpub\wwwroot).

4. Open a web browser.

5. Enter http://127.0.0.1/ClassicASPSSGrades.asp.

The next section will tackle the server-side grade average tool example in ASP.NET.

Building the project in ASP.NET 185

Building the project in ASP.NET
What follows is ASP.NET and VB.NET code for the server-side grade averaging tool. The first piece
of code is the ASPX code:

<%@ Page Language="vb" AutoEventWireup="false"
CodeBehind="ASPNETSSGrades.aspx.vb " Inherits="WebApplication8.
WebForm1" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:TextBox ID="tbGrade"
 runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server"
 Text="Add Grade" />
 </div>
 <asp:Label ID="lblAverage"
 runat="server"></asp:Label>
 </form>
</body>
</html>

The first line of the preceding code block is a directive at the top of the page that provides instructions
to the ASP.NET runtime. It specifies the page’s language (Visual Basic), turns off the automatic event
wire-up (we’ll discuss this later), and points to the code-behind file (ASPNETSSGrades.aspx.vb).

The next section of code contains the HTML markup for the web page.

The page starts with the usual HTML structure and includes a <form> element with an ID of form1
that runs on the server.

Inside the form, there’s a <div> element containing two ASP.NET controls:

• An <asp:TextBox> control with an ID of tbGrade. This is a text input where the user
can enter a grade.

• An <asp:Button> control with an ID of Button1 and a piece of text stating Add Grade.
This is a button that users can click to perform an action (such as adding a grade).

Project Part IV186

Below the <div> element, there’s an <asp:Label> control with an ID of lblAverage. This is
where the calculated average grade will be displayed.

The runat="server" attribute on these HTML elements indicates that they are ASP.NET server
controls, which means they can be manipulated and interacted with via the server-side code.

The following is the code from the code-behind file, ASPNETSSGrades.aspx.vb:

Public Class WebForm1
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e
 As System.EventArgs) Handles Me.Load

 End Sub

 Protected Sub Button1_Click(sender As Object, e As
 EventArgs) Handles Button1.Click
 Session("Total") += CInt(tbGrade.Text)
 Session("Cnt") += 1
 lblAverage.Text = "Grade Average: " &
 Session("Total") / Session("Cnt")
 End Sub
End Class

The beginning of the previous code declares a class named WebForm1 that inherits from the System.
Web.UI.Page class. This indicates that WebForm1 is an ASP.NET page and can utilize the properties
and methods provided by the base class.

The section of code that starts with Protected Sub Page_Load is an event handler for the
page’s Load event. The Load event is raised when the page is being loaded. This event is often used
for initializing page-related data or controls. In this case, the event handler is empty, so it doesn’t
contain any specific code to execute when the page loads.

The section of code that starts with Protected Sub Button1_Click is an event handler for
the Click event of a control with an ID of Button1 (as specified in the Handles Button1.
Click part). This event is triggered when the user clicks the button. Here’s what the code inside the
event handler does:

• It uses the CInt function to convert the text entered in a control with an ID of tbGrade to
an integer and adds it to the value stored in the Total session variable

• It increments the value stored in the Cnt session variable by 1

• It calculates the average grade by dividing the total sum stored in the Total session variable
by the count stored in the Cnt session variable

• The calculated average is then assigned to the Text property of a control with an ID of
lblAverage, which will display the calculated average on the web page

Summary 187

The code uses session variables to store and maintain the running total and count of grades across
different requests and interactions. The calculated average is dynamically displayed on the web page
when the user clicks the Button1 button.

Coding the ASP.NET server-side grade averager with Visual Studio

Follow these steps to code and execute an ASP.NET web page that displays Hello World:

1. Start Microsoft Visual Studio 2019.

2. Choose Create New Project.

3. Choose ASP.NET Web Application and click Next.

4. Accept Default Project Name and Solution Name.

5. Change the location if you want your code to be in a different folder.

6. Accept the default Framework option.

7. Click Create Project.

8. Choose Web Forms.

9. When the designer loads, navigate to Solution Explorer and right-click on the solution.

10. Choose Add Item from the pop-up menu.

11. Choose Web Form Visual Basic.

12. Choose Source.

13. Paste in the ASPX code within the FORM tag.

14. Right-click on the ASPX source and choose View Code from the pop-up menu.

15. Enter the VB.NET code example from the previous section that falls in the Button1_
click procedure.

16. To run your program, click the green triangle on the toolbar above your code.

Try to internalize the similarities between the Classic ASP and ASP.NET versions of the code. As you
can see, ASP.NET separates the HTML from VB to try to make maintenance easier. This becomes
very important as the project’s size grows.

Summary
In this chapter, we utilized the skills we gained in the previous chapters regarding the HTTP request-
response model, variable scope, and concurrency to build a server-side student grade averaging tool
for both Classic ASP and ASP.NET. In the next chapter, we will conclude this book by summarizing
what we have covered, thinking about other VB topics you can study, and projects you can develop
to demonstrate the skills you’ve learned throughout this book.

20
Conclusions

We have covered many different Visual Basic (VB) topics in this book. I want to close out this book
by summarizing what we have learned while suggesting other areas of interest for you to study around
VB and some suggestions for projects you could do to show a potential employer your new skills.

In this chapter, we’re going to cover the following main topics:

• Summing it all up

• Further reading topics

• Suggested projects

Summing it all up
Throughout this book, we’ve looked at the use of VB in many different environments, including
Windows Desktop development with Classic VB and VB.NET Console. We also looked at using VB
as a server-side programming language in Classic ASP and ASP.NET. Visual Basic for Applications
(VBA) was also used to embed VB in Microsoft Office products, and we explored using VB in scripts
with VBScript.

In this section, we’ll provide a brief review of the major topics we covered in this book.

In VB, variable declaration, type, scope, and assignment are fundamental concepts that are used to
work with data and manage program logic. Here’s an overview of each of these concepts.

Variable declaration

In VB, you declare variables using the Dim (short for Dimension) keyword. Variable declaration
reserves memory space for storing data and associates a name with it. The basic syntax for declaring
a variable is as follows:

Dim variableName As DataType

Conclusions190

Data types

VB supports various data types to represent different kinds of values. Some common data types
include the following:

• Integer: Represents whole numbers

• Double or Single: Represents floating-point numbers

• String: Represents text

• Boolean: Represents true or false values

• Date: Represents dates and times

• Object: Represents an instance of a class

Scope

The scope of a variable refers to where in the code the variable is accessible and can be used. There
are different levels of scope in VB:

• Procedure-level scope: Only variables declared within a procedure (function or subroutine)
are accessible.

• Module-level scope: Variables declared at the module level (outside of any procedure) are
accessible to all procedures within that module.

• Global scope: Variables declared in a module with the Public keyword are accessible from
any module or form in the project.

• Assignment: Assignment involves storing a value in a variable. You can assign values to variables
using the assignment operator (=). Here’s an example:

age = 25
name = "John"

• Iteration: Iteration, also known as looping, is a fundamental programming concept that allows
you to execute a block of code repeatedly. In VB, you can use various constructs to implement
iteration. Here are some standard methods for iteration:

 � The For...Next loop: The For...Next loop is used when you know the number of
iterations in advance. It iterates through a range of values defined by a starting, ending, and
optional step value:

For counter As Integer = startValue To endValue Step
 stepValue
Next

Summing it all up 191

 � The While loop: The While loop repeats a code block, so long as a specified condition
remains true:

While condition
 ' Code to be executed in each iteration
End While

 � The Do...Loop loop: The Do…Loop loop is similar to the While loop, but the condition
is checked at the end. This means the loop’s code block is always executed at least once:

Do
 ' Code to be executed in each iteration
Loop While condition

 � The For Each loop: The For Each loop is used to iterate through elements in a collection,
such as an array or a collection class:

For Each element As ElementType In collection
 ' Code to be executed in each iteration using
 'element'
Next

Decision branching

Decision branching, also known as conditional statements, is a core programming concept that allows
you to control the flow of your program based on certain conditions. In VB, you can implement
decision branching using the following conditional statements:

• The If...Then statement: The If...Then statement allows you to execute a code block
if a specified condition is true. You can also include an optional Else block to handle cases
when the condition is false:

If condition Then
 ' Code to be executed if condition is true
Else
 ' Code to be executed if condition is false
End If

• The If...Then...ElseIf...Else statement: This statement allows you to test multiple
conditions in sequence using ElseIf blocks. The code block associated with the first true
condition is executed:

If condition1 Then
 ' Code to be executed if condition1 is true
ElseIf condition2 Then
 ' Code to be executed if condition2 is true

Conclusions192

Else
 ' Code to be executed if no condition is true
End If

• The Select Case statement: The Select Case statement allows you to compare a
single expression against multiple possible values. It provides a more concise way to handle
numerous conditions:

Select Case expression
 Case value1
 ' Code to be executed if the expression
 matches value1
 Case value2
 ' Code to be executed if the expression
 matches value2
 Case Else
 ' Code to be executed if no match is found
End Select

Procedure modularization

In VB, procedure modularization involves breaking down your code into smaller, manageable
pieces called procedures or functions. This practice helps improve code readability, reusability, and
maintainability. There are two main types of procedures – Sub procedures (subs) and Function
procedures (functions):

• Sub: Sub procedures, often called subs, are used to group a set of statements to perform a
specific task. They don’t return a value:

Sub ProcedureName(parameters)
 ' Code to perform a specific task
End Sub

• Function: Function procedures, or functions, are similar to subs but return a value. You can
use them when you need to calculate or derive a result:

Function FunctionName(parameters) As DataType
 ' Code to calculate and return a value
End Function

Collections

In VB, data structures allow you to store and manage multiple elements of the same or different data
types. Collections provide a convenient way to work with data groups and offer various methods for
adding, removing, and accessing elements. VB provides several built-in collection classes that you

Summing it all up 193

can use to accomplish different tasks. We will not summarize the collection types here as they differ
by VB family member, but you should revisit Chapter 10 for a recap.

File handling

File handling in VB involves reading from and writing to files on your computer’s filesystem. Each
VB family member provides various classes and methods for handling files, allowing you to create,
open, read, and write files. You can revisit Chapter 9 for a recap.

Object encapsulation

Object encapsulation, also known as encapsulation or information hiding, is a fundamental principle
of object-oriented programming (OOP) that emphasizes bundling data (attributes) and the methods
(functions or procedures) that operate on that data into a single unit called an object. Encapsulation
helps control access to an object’s internal state and promotes modularization and abstraction. Please
revisit Chapter 12 to learn how to encapsulate variables in the different VB family members.

Inheritance

Inheritance is a fundamental concept in OOP that allows you to create new classes (called subclasses
or derived classes) based on existing classes (called base classes or parent classes). Inheritance enables
you to reuse and extend the functionality of existing classes, promoting code reusability and hierarchy.
In VB, you can implement inheritance using the Inherits keyword or interface inheritance with
interfaces. Please revisit Chapter 13 to Chapter 15 to see how inheritance is done in the different VB
family members.

Polymorphism

Polymorphism is a core concept in OOP that allows objects of different classes to be treated as objects
of a standard base class. It enables you to write more generic and flexible code that can work uniformly
with various objects. Polymorphism is achieved through method overriding and method overloading.

In VB, polymorphism is primarily achieved through method overriding and interface implementation.
Please revisit Chapter 14 to learn how to use polymorphism in the different VB family members.

Web application HTTP model and concurrency

In web applications, communication between a client’s web browser and a server occurs using the
Hypertext Transfer Protocol (HTTP). This model involves the client sending requests to the server
and the server responding with data. Please revisit Chapter 17 and Chapter 18 to learn how to use VB
in Classic ASP and ASP.NET applications.

Next, let’s look at some potentially interesting VB topics that were outside the scope of this book.

Conclusions194

Further reading topics
In this book, we covered the core VB programming topics that are frequently used, but you may
need to modify code that uses other technologies. I recommend that you familiarize yourself with
the following topics, which we did not cover.

VB6 form development

VB6 was widely used for developing Windows applications, particularly graphical user interface
(GUI) applications using forms. VB6 form development involved creating user interfaces by designing
forms visually and adding code to implement the functionality. Here’s a general overview of the process
for VB6 form development:

• Create a new project: Open the VB6 IDE and create a new project. You can choose from various
project templates, including Standard EXE, to create standalone applications.

• Design forms: VB6 provides a visual form designer where you can create your application’s
user interfaces. You can drag and drop various controls (buttons, textboxes, labels, and so on)
onto the form, arrange them, and set their properties using the Properties window.

• Add controls: To add controls to a form, you can drag them from the toolbox onto the form.
After adding controls, you can adjust their properties, such as size, location, text, font, and
more, using the Properties window.

• Event handling: VB6 forms have various events (for example, Click, Load, and Resize)
associated with them. You can double-click on a control or form to open the code window
and automatically generate an event handler for that control or form. You can also write the
code that will be executed when the event occurs in the code window. For instance, clicking a
button could trigger code to perform a specific action.

• Debugging: The VB6 IDE includes debugging tools that allow you to set breakpoints, step
through code, inspect variables, and identify and fix errors in your code.

• Build and deploy: Once your application is ready, you can make it into an executable file. VB6
provides options for compiling and creating standalone executable files that could be run on
Windows machines. You might also need to package additional files if your application uses
external components or libraries.

• Distribution: Distributing VB6 applications requires packaging runtime libraries and components
along with the executable to ensure the application will run on other machines without
VB6 installed.

Further reading topics 195

VB.NET WinForms development

VB.NET WinForms provides a framework for creating GUI applications using forms and controls.
Here’s an overview of the process:

• Create a new project: Open Visual Studio and create a new Windows Forms Application
project using VB.NET.

• Design forms: VB.NET WinForms still uses a visual form designer. You can drag and drop
controls from the toolbox onto the form, adjust their properties, and arrange them as needed.

• Add controls: Add controls such as buttons, textboxes, labels, and more by dragging them onto
the form. You can then set their properties in the Properties window.

• Event handling: Similar to VB6, VB.NET WinForms allows you to double-click controls to
generate event handler code automatically. You can write code for events such as Click, Load,
Resize, and more to control the behavior of your application.

• Debugging: Visual Studio offers powerful debugging tools for VB.NET WinForms applications.
You can set breakpoints, step through code, inspect variables, and use various debugging
windows to identify and fix issues.

• Data binding: VB.NET WinForms applications often use data binding to connect controls such
as DataGridViews or ListBoxes to data sources. This simplifies tasks such as displaying
and editing data from databases or collections.

• Build and deploy: You can build your VB.NET WinForms application into an executable file
or other deployable format. Visual Studio provides options to generate installer packages that
include runtime components.

• Distribution: When distributing VB.NET WinForms applications, you must ensure that the
appropriate version of the .NET Framework is installed on users’ machines. Modern versions
of Windows typically include this framework by default.

COM object creation

Creating Component Object Model (COM) objects in VB.NET involves creating classes that adhere
to the COM specifications, allowing them to be used by other languages and applications that support
COM, such as VB6 and VBA. COM objects can be used in a wide range of scenarios, from extending
the functionality of existing software to creating reusable components. Here’s an overview of the
process of creating a COM object in VB.NET:

• Create a new Class Library project: Open Visual Studio and create a new Class Library
project using VB.NET.

Conclusions196

• Define the COM class: Define a class you want to expose as a COM object. This class should
be marked with attributes that indicate it’s a COM class. The most essential attributes are
[ClassInterface], [Guid], and [ComVisible]:

Imports System.Runtime.InteropServices

<ClassInterface(ClassInterfaceType.AutoDual)>
<Guid("YOUR-GUID-HERE")>
<ComVisible(True)>
Public Class MyCOMClass
 ' Define properties, methods, and events here.
End Class

Replace "YOUR-GUID-HERE" with an actual GUID for your class. You can generate a GUID
using tools such as Visual Studio’s Create GUID utility.

• Define properties, methods, and events: Inside your COM class, define properties, methods,
and events that you want to expose to COM clients.

• Build the project: Build the project to create the class library assembly.

• Register the assembly: To use the COM object, you need to register the assembly using the
Windows Regasm.exe command-line tool. Open the Command Prompt as an administrator
and run the following command:

Regasm.exe /codebase YourAssembly.dll

Replace YourAssembly.dll with the actual name of your assembly.

• Use the COM object: Once registered, the COM object can be used by other applications that
support COM. You can create instances of your COM class in applications such as VB6 and
C#, or even scripting languages such as VBScript. Here is an example of its usage in VBScript:

Dim obj
Set obj = CreateObject("YourNamespace.YourCOMClass")
obj.YourMethod()
Set obj = Nothing

Next, let’s look at some projects you could tackle in VB to show your new skills to potential employers.

Suggested projects 197

Suggested projects
I recommend that you continue your learning by tackling a larger project you can use to demonstrate
your new skills to potential employers. The most important thing to your success is that you are motivated
by the creative project. Try to pick an idea that is something useful to you. Here are a few ideas:

• Try to develop a command-line tool that processes files. File processing is a very important
automation for both pleasure and business. For example, thousands of volunteers modify games
on older consoles to use newer data. An example of this is a sports game that has new rosters
updated yearly. You could try to develop a program to automate this. Be sure to take it slowly
and not try to do too much. It is best if the process can be done manually by updating the files
and you are just making a utility to do the manual steps in code.

• Try to develop a more complicated web application than the simple samples we developed
in this book. There are many terrific books on HTML that you can pick up to build up your
knowledge. This could be an interactive game such as a board game or a utility that assists you
in managing your life.

• Try to develop a startup program that you can launch when Microsoft Windows starts. If there
is an activity you do on your machine daily, such as backing up or cleaning up files, see if you
can do this in code.

These are just a few ideas to motivate your creativity. The important thing is that you use the new
mind muscles you have gained on projects you care about.

Summary
This chapter concludes our look at VB and the different family members Microsoft has created over
the years. VB has had a huge impact on the way we use and program computers today. I want to
thank you for working hard to learn the material presented in this book. Keep up the great work in
developing your technical skills!

Index

Symbols
7-Zip

URL 8
& operator 75

A
Abs function 53
abstract classes 141, 142
abstraction 125, 145
access modifiers 127, 128
Active Server Pages (ASP) 177

application scope 179
cookies 177, 181, 182
query strings/hidden form fields 178
request scope 181
session object 177
session scope 178

ActiveX objects 127
application scope 179
application scope, working in ASP

application shutdown 180
data, accessing 180
data initialization 179
shared updates 180

arguments 53
arrays 29, 34, 95

example 34
handing, in early VB family members 98
versus lists 98, 99

ASP Compiler 13
ASP.NET 14, 24, 85, 189

alternative installations 15
Hello, World! 14
Hello, World! coding with Visual Studio 16
input and output, programming with 24
installing 15
programming with 14
project, building 68-70, 120,

160-162, 185-187
tags 24

ASP.NET calculator
coding, with Visual Studio 71, 122, 162

ASP.NET, on Linux
installation link 15

ASP.NET Request object 169
cookies collection 170
form collection 169
headers collection 170
HTTP method 170
InputStream 170

Index200

path 170
query string 170
using 170, 171

ASP.NET Response object 173
AddHeader method 173
BinaryWrite method 173
Clear method 173
ContentType property 173
cookies collection 173
example 173, 174
output caching 173
Redirect method 173
Response.Cache property 173
WriteFile method 173
Write method 173

ASP.NET server-side grade averager
coding, with Visual Studio 187

ASP.NET VB.NET 160
assignment 190
associative arrays 95, 100

B
B4X 9

URL 9
bags/multisets 96
base classes 193
BASIC 45
Basic for Android (B4A) 9
Basic for Arduino (B4R) 9
Basic for iOS (B4i) 9
Basic for Java (B4J) 9
best practices, variable naming 33
binary data

reading, from files 92, 93
reading, in VB6 93
reading, in VBA 93
writing, in VB6 92

writing, in VBA 92
writing, to files 91, 92

Boolean data type 29, 30
ByRef parameter 56
ByVal parameter 56

C
C# 142
Case statement 41
character data type 29, 30
characteristics and benefits of

using interfaces, in OOP
abstraction 145
contractual obligation 146
interface segregation principle (ISP) 146
multiple inheritance 146
polymorphism 145
separation of concerns 145

Cint function 53
class 125, 126

declaration 126
instantiating 129, 130

class data type 30
Classic Active Server Pages (ASP) 12, 22, 189

Hello, World! 12
Hello, World! coding with Notepad 13, 14
input and output, programming with 22
installing, on Windows 12
programming with 12
project, building 66, 67, 118, 119, 183, 184

Classic Active Server Pages (ASP),
alternative installations 13

ASP Compiler 13
CodeWall 13
SmartAssembly 13

Classic ASP calculator
coding, with Notepad 68

Index 201

Classic ASP grading tool
coding, with Notepad 120, 184

Classic ASP Request object 168, 169
cookies collection 168
form collection 168
HTTP method 168
path 168
query string 168, 169
ServerVariables collection 168

Classic ASP Response object 172, 173
AddHeader method 172
BinaryWrite method 172
Clear method 172
ContentType property 172
cookies collection 172
methods and properties 172
Redirect method 172
Write method 172
WriteText method 172

code
modularizing, in functions 53, 54
modularizing, in procedures 55

CodeWall 13
collections 95, 192

arrays 95
bags/multisets 96
dictionaries 95
linked lists 95
lists 95
queues 95
sets 95
stacks 95
tuples 96

comma-separated values (CSV) file 103
compile-time (static) polymorphism 139

Component Object Model (COM) objects
assembly, registering 196
Class Library project, creating 195
COM class, defining 196
COM object, using 196
creating 195
events, defining 196
methods, defining 196
project, building 196
properties, defining 196

concurrency 193
conditional statements 191
Console class 17
Continue statement 50, 51
contractual obligation 146
cookies 181, 182
CorelDRAW 10
CScript 21
CSS 24
custom functions 54, 55
custom procedures 55

D
data formatting 75
data types 190

array 29
Boolean 29
character 29
class 30
double 29
enumerated 30
float 29
integer 29
pointer 29
selecting 29, 30

Index202

string 29
struct 30
void 30

data types, VB
Boolean 30
Char 30
Date 30
Decimal 30
Double 30
Integer 30
Long 30
Object 30
Single 30
String 30

date and time data
component extraction 82
date and time math 81
date and time values, formatting 83
modifying 80
numeric values, formatting 82
values, creating 80, 81

date data type 30
Date function 53
decimal data type 30
decision branching 39, 191

Case statements 41
GoTo statement 44, 45
If statements 39, 40
implementing, with conditional

statements 191, 192
ternary operators 42
VB.NET AndAlso operator 43, 44
VB.NET OrElse operator 42

derived classes 193
dictionaries 95, 100

data, storing 100-102
using, in VB.NET 100

Dimension 189

directories
managing, in older VB family members 88
managing, in VB.NET 86, 87
working with 85

Do loop 49, 50
double data type 29, 30

E
ElseIf statements 40
Else statement 40
encapsulation 4, 125, 193
enumerated types 30
Excel

VBA calculator, coding in 64
VBA grading tool, coding in 115
VBA Hello, World! coding from 10

exception handling 136, 137
Exit statement 50
explicit variable declaration

versus implicit variable declaration 30, 31

F
fields 126
file handling 193
files 85

binary data, reading from 92, 93
binary data, writing to 91, 92
managing, in older VB family members 88
managing, in VB.NET 85, 86
text, reading from 90, 91
text, writing to 89, 90
working with 85

file system object (FSO) 88
First-In, First-Out (FIFO) 95
float data type 29
For loop 48

Index 203

Format function 54
FORTRAN 45
function procedures 128, 192
functions 53, 192

code, modularizing in 53, 54
functions, VB

Abs 53
Cint 53
Date 53
Format 54
InStr 54
Int 54
Lcase 54
Left 54
Len 54
Mid 54
MsgBox 54
Now 54
Replace 54
Right 54
Rnd 54
Time 54
Trim 54
Ucase 54

G
global-level scope 32, 190
GoTo statement 44, 45
graphical user interface (GUI) 194

H
hash maps 100
Hello, World!

in ASP.NET 14, 16
in Classic ASP 12, 13
in VBA 10

in VBScript 11
in Visual Basic Classic 7, 9
in Visual Basic.NET Windows Forms 5, 6

HTML 22-24
HTML form 184
HTTP GET method 168, 170
HTTP POST method 168, 169
Hypertext Transfer Protocol

(HTTP) 177, 193
statelessness, implications 177

I
If-Else statement 40
If statement 39, 40
If...Then...ElseIf...Else statement 191
If...Then statement 191
implicit variable declaration

versus explicit variable declaration 30, 31
infinite loops 51
information hiding 193
inheritance 4, 125, 133, 193

differences, in family members 135, 136
in VB.NET 133-135

input and output programming,
with ASP.NET 24

simple interaction 25, 26
simple interaction, coding with

Visual Studio 26, 27
input and output programming,

with Classic ASP 22
simple interaction 23
simple interaction, coding

with Notepad 23, 24
input and output programming,

with VBA 20
simple interaction 20
simple interaction, coding in Excel 21

Index204

input and output programming,
with Visual Basic Classic 19

simple interaction 19
Visual Basic 6 simple interaction, coding 20

input and output programming,
with Visual Basic.NET 17

simple interaction 18
simple interaction, coding 19

input and output programming,
with Visual Basic Script 21

simple interaction 22
simple interaction, coding with Notepad 22

InStr function 54
integer data type 29, 30
integrated development

environment (IDE) 7
interface polymorphism

using 147
interfaces 145

declaration 146
developing 146
implementing 146, 147

interface segregation principle (ISP) 146
Internet Information Server (IIS) 12
Int function 54
is-a relationship 133, 137
iteration 47, 190, 191
iteration control structure

Continue statement 50, 51
Do loop 49, 50
Exit statement 50
For loop 48
While loop 48, 49

J
JavaScript 24
JScript 12

L
Last-In, First-Out (LIFO) 95
Lcase function 54
Left function 54
Len function 54
LibreOffice 10
linked lists 95
lists 95, 99

usage, demonstrating 100
using 99
versus arrays 98, 99

long data type 30
looping 190

M
maps 95
math operations, VB

addition 78
division 78
modular division 79
multiplication 78
subtraction 78

method overloading 128
methods 127

declaration 128, 129
Microsoft Internet Information

Services (IIS) 12
Microsoft SQL Server 12
Mid function 54, 76
Model-View-Controller (MVC) 14
module-level scope 32, 190
Mono 6

download link 6
MsgBox function 54
multidimensional arrays 34

utilizing 97, 98

Index 205

multiple inheritance 146
MySQL 12

N
.NET framework 195
.NET Software Development Kit (SDK) 6

download link 6
Notepad

Classic ASP calculator, coding with 68
Classic ASP grading tool,

coding with 120, 184
used, for coding Classic ASP

Hello, World! 13, 14
used, for coding Hello, World! VBScript 11
VBScript calculator, coding with 66
VBScript grading tool, coding with 118

numerical data
mathematical operations 78
modifying 78
rounding 79
truncation 79, 80
type conversion 80

O
object 125, 193
object data type 30
object encapsulation 193
object-oriented programming

(OOP) 4, 125, 133, 139, 145, 193
abstraction 125
advantages 4
benefits 126
classes 125
encapsulation 125
inheritance 125

objects 125
polymorphism 125
principles 4
supported programming languages 126

one-dimensional arrays
working with 96, 97

one-to-one has-a relationship 130
Optional parameter 56
Option Explicit statement 31
Oracle 12
Overridable keyword 141

P
ParamArray parameter 56
parameters 56

in functions 56
in procedures 56

parameters, VB
ByRef 56
ByVal 56
Optional 56
ParamArray 56

parent classes 193
PerlScript 12
pointer data type 29
polymorphism 4, 125, 139, 145, 193

compile-time (static) polymorphism 139
demonstrating, in Visual

Basic (VB) 140, 141
runtime (dynamic) polymorphism 139

post-condition loop 49
procedure-level scope 32, 190
procedure modularization 192
procedures 53, 192

code, modularizing in 55

Index206

project
building, in ASP.NET 68-70, 120, 185-187
building, in Classic ASP 66,

67, 118, 119, 183, 184
building, in VB6 61, 62, 107-111
building, in VBA 63, 112-114
building, in VB.NET console 59-61, 104, 105
building, in VBScript 64, 115-117

properties 127

Q
queues 95

R
RAD Basic 9

URL 9
Replace function 54
request scope 181
Return statement 57
Right function 54
Rnd function 54
Round function 79
runtime (dynamic) polymorphism 139

S
scope of variable 190

assignment 190
global scope 190
iteration 190, 191
module-level scope 190
procedure-level scope 190

sealed classes 142, 143
Select Case statement 192
sentinel 50
separation of concerns 145

session scope 178
session scope, working in ASP

data, accessing 179
data, storing 178
end of session 179
session start 178

sets 95
silver-level compatibility 9
single data type 30
SmartAssembly 13
SQL Server 14
stacks 95
standard interfaces 148, 149
StdIn property 22
StdOut property 21
String.Concat method 76
string data

case conversion 77
concatenation 75, 76
modifying 75
substring extraction 76
substring replacement 76

string data type 29, 30
struct data type 30
subclasses 193
sub procedures 128, 192
subs 192
Substring method 76

T
ternary operators 42
text

reading, from files 90, 91
reading, in VB6 91
reading, in VBA 91
writing, in VB6 90
writing, in VBA 90

Index 207

writing, to files 89, 90
Time function 54
Trim function 54
truncate function 79, 80
tuples 96
TwinBasic 9

URL 9

U
Ucase function 54
user interface (UI) framework 4

V
variable declaration 29, 189
variable naming

best practices 33
variables 29
variable scope 32

global-level scope 32
module-level scope 32
procedure-level scope 32

VB6, and VB.NET
differences, in data types 36

VB6 forms development 194
applications, building 194
applications, deploying 194
applications, distributing 194
controls, adding 194
debugging 194
event handling 194
forms, designing 194
project, creating 194

VB 6 grading tool
coding 111

VB6Installer
reference link 9

VBA, and VB6
differences, in data types 35, 36

VBA calculator
coding, in Excel 64

VBA grading tool
coding, in Excel 115

VB.NET 85, 100-102
directories, managing 86, 87
files, managing 85, 86

VB.NET AndAlso operator 43, 44
VB.NET console

project, building 59-61, 104, 105, 151-159
VB.NET console grading tool

coding 107
VB.NET inheritance 133, 135
VB.NET OrElse operator 42
VB.NET WinForms 195

application, building 195
application, deploying 195
application, distributing 195
controls, adding 195
data binding 195
debugging 195
event handling 195
forms, designing 195
project, creating 195

VBScript 21, 88, 100, 101, 189
Hello, World! 11
Hello, World! coding with Notepad 11
input and output, programming with 21
installing 11
programming with 11
project, building in 64, 115-117

Index208

VBScript, and VB6
differences, in data types 35

VBScript calculator
coding, with Notepad 66

VBScript grading tool
coding, with Notepad 118

virtual machine (VM) 8
Visual Basic 6 calculator

coding 62, 63
Visual Basic Classic (VB6) 7, 19, 88, 100, 101

binary data, reading in 93
binary data, writing in 92
download link 8
Hello, World! program coding 7, 9
Hello, World! program running 9
input and output, programming with 19
installing 8
programming with 7
project, building in 61, 62, 107-111
text, reading in 91
text, writing in 90

Visual Basic Classic (VB6),
alternative installations

B4X 9
RAD Basic 9
TwinBasic 9
VB6Installer 9
WINE 9

Visual Basic for Applications
(VBA) 20, 88, 100, 101, 189

binary data, reading in 93
binary data, writing in 92
Hello, World! 10
Hello, World! coding from Excel 10
input and output, programming with 20
installing 10
programming with 9, 10
project, building in 63, 112-114

text, reading in 91
text, writing in 90

Visual Basic.NET
input and output, programming with 17
installing, onto Windows machine 5

Visual Basic.NET, alternative installations
Mono 6
.NET Software Development Kit (SDK) 6

Visual Basic.NET console calculator
coding 61

Visual Basic.NET console grading tool
coding 160

Visual Basic.NET Windows Forms 4
features 4
Hello, World! coding 5, 6
Hello, World! example 5
Hello, World! executing 6
programming with 4, 5

Visual Basic (VB) 140
polymorphism, demonstrating 140, 141

Visual Studio
ASP.NET calculator, coding

with 71, 122, 162
ASP.NET server-side grade

averager, coding with 187
installation link 5
used, for coding ASP.NET Hello, World! 16

Visual Studio, older version
download link 15

void data type 30

W
web application HTTP model 193
While loop 48, 49
Windows

Classic Active Server Pages
(ASP), installing on 12

Index 209

Windows Communication
Foundation (WCF) 14

Windows Management
Instrumentation (WMI) 11

Windows Script Host (WSH) 21, 88, 101
Windows Workflow Foundation (WF) 14
WINE 9
WordPerfect 10
WScript 21

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.packtpub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

.NET MAUI Cross-Platform Application Development

Roger Ye

ISBN: 978-1-80056-922-5

• Discover the latest features of .NET 6 that can be used in mobile and desktop app development

• Find out how to build cross-platform apps with .NET MAUI and Blazor

• Implement device-specific features using .NET MAUI Essentials

• Integrate third-party libraries and add your own device-specific features

• Discover .NET class unit test using xUnit.net and Razor components unit test using bUnit

• Deploy apps in different app stores on mobile as well as desktop

https://packt.link/9781800569225

213Other Books You May Enjoy

.NET MAUI for C# Developers

Jesse Liberty, Rodrigo Juarez

ISBN: 978-1-83763-169-8

• Explore the fundamentals of creating .NET MAUI apps with Visual Studio

• Understand XAML as the key tool for building your user interface

• Obtain and display data using layout and controls

• Discover the MVVM pattern to create robust apps

• Acquire the skills for storing and retrieving persistent data

• Use unit testing to ensure your app is solid and reliable

https://packt.link/9781837631698

214

VBA Automation for Excel 2019 Cookbook

Mike Van Niekerk

ISBN: 978-1-78961-003-1

• Understand the VBA programming language’s role in the context of the MS Office suite

• Discover various aspects of VBA programming such as its terminology, syntax, procedures,
functions, and forms

• Investigate the elements, features, and characteristics of the VBA Editor to write and edit
custom scripts

• Automate Excel sheets with the help of ranges

• Explore error handling and debugging techniques to catch bugs in your programs

• Create and use custom dialog boxes to collect data from users

• Customize and extend Office apps such as Excel, PowerPoint, and Word

https://packt.link/9781789610031

215

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Visual Basic Quickstart Guide, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1805125311

216

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805125310

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805125310

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Visual Basic
Programming and Scripting
	Chapter 1: The Visual Basic Family of Programming Languages
	Technical requirements
	Programming with Visual Basic.NET Windows Forms
	Hello, World! in Visual Basic.NET Windows Forms
	Installing Visual Basic.NET
	Alternative installations of Visual Basic.NET
	Coding Visual Basic.NET Windows Forms Hello, World!

	Programming with Visual Basic Classic
	Hello, World! in Visual Basic Classic
	Installing Visual Basic 6
	Alternative installations
	Running the Visual Basic 6 Hello, World! program

	Programming with VBA
	Hello, World! in VBA
	Coding a VBA Hello, World! from Excel

	Programming with VBScript
	Hello, World! in VBScript
	Coding a Hello, World! VBScript with Notepad

	Programming with Classic ASP
	Hello, World! in Classic ASP
	Installing Classic ASP on Windows
	Alternative installations
	Coding Classic ASP Hello, World! with Notepad

	Programming in ASP.NET
	Hello, World! in ASP.NET
	Installing ASP.NET
	Alternative installations
	Coding ASP.NET Hello, World! with Visual Studio

	Summary

	Chapter 2: Console Input and Output
	Technical requirements
	Programming input and output with Visual Basic.NET
	Simple interaction in Visual Basic.NET
	Coding a simple interaction in Visual Basic.NET

	Programming input and output with Visual Basic Classic
	Simple interaction in Visual Basic Classic
	Coding a simple interaction in Visual Basic 6

	Programming input and output with VBA
	Simple interaction in VBA
	Coding a simple interaction with VBA in Excel

	Programming input and output with Visual Basic Script
	Simple interaction in VBScript
	Coding a simple interaction in VBScript with Notepad

	Programming input and output with Classic ASP
	Simple interaction in Classic ASP
	Coding a simple interaction in Classic ASP with Notepad

	Programming input and output with ASP.NET
	Simple interaction in ASP.NET
	Coding a simple interaction in ASP.NET with Visual Studio

	Summary

	Chapter 3: Data Types and Variables
	Choosing data types
	Implicit versus explicit variable declaration
	Exploring the Option Explicit statement

	Understanding variable scope
	Best practices – naming variables
	Storing more than one value
	Differences in data types between family members
	Differences in data types between VBScript and VB6
	Differences in data types between VBA and VB6
	Differences in data types between VB6 and VB.NET

	Summary

	Chapter 4: Decision Branching
	If statements
	Case statements
	Ternary operators
	The VB.NET OrElse operator
	The VB.NET AndAlso operator
	The GoTo statement
	Summary

	Chapter 5: Iteration
	For loops
	While loops
	Do loops
	Exit and Continue statements
	Infinite loops
	Summary

	Chapter 6: Functions and Procedures
	Modularizing code in functions
	Modularizing code in procedures
	Understanding parameters in functions and procedures
	Return statement
	Summary

	Chapter 7: Project Part I
	Technical requirements
	Building the project in the VB.NET console
	Coding a Visual Basic.NET console calculator

	Building the project in VB6
	Coding a Visual Basic 6 calculator

	Building the project in VBA
	Coding a VBA calculator in Excel

	Building the project in VBScript
	Coding a VBScript calculator with Notepad

	Building the project in Classic ASP
	Coding a Classic ASP calculator with Notepad

	Building the project in ASP.NET
	Coding an ASP.NET calculator with Visual Studio

	Summary

	Part 2:
Visual Basic Files
and Data Structures
	Chapter 8: Formatting and Modifying Data
	Modifying string data
	Concatenation
	Substring extraction
	String replacement
	Case conversion

	Modifying numerical data
	Mathematical operations
	Rounding and truncation
	Type conversion

	Modifying date and time data
	Creating date and time values
	Date and time math
	Date and time component extraction
	Formatting numeric values
	Formatting date and time values

	Summary

	Chapter 9: File Input and Output
	Working with directories and files
	Working with files in VB.NET
	Working with directories in VB.NET
	Working with files in older VB family members
	Working with directories in older VB family members

	Writing test into files
	Writing text in VB6 and VBA

	Reading text from files
	Reading text in VB6 and VBA

	Writing binary data to files
	Writing binary data in VB6 and VBA

	Reading binary data from files
	Reading binary data in VB6 and VBA

	Summary

	Chapter 10: Collections
	Working with one-dimensional arrays
	Utilizing multidimensional arrays
	Handling arrays in early VB family members

	When and how to use lists
	Storing data in a dictionary
	Summary

	Chapter 11: Project Part II
	Technical requirements
	Building the project in VB.NET Console
	Coding the VB.NET console grading tool

	Building the project in VB6
	Coding the VB 6 grading tool

	Building the project in VBA
	Coding the VBA grading tool in Excel

	Building the project in VBScript
	Coding the VBScript grading tool with Notepad

	Building the project in Classic ASP
	Coding the Classic ASP grading tool with Notepad

	Building the project in ASP.NET
	Coding the ASP.NET calculator with Visual Studio

	Summary

	Part 3:
Object-Oriented Visual Basic
	Chapter 12: Object-Oriented Programming
	Classes and fields
	Class declaration
	Fields

	Methods
	Method declaration

	Instantiating a class
	One-to-one has-a relationships
	Summary

	Chapter 13: Inheritance
	Inheritance in VB.NET
	Inheritance differences in family members
	VB6/VBA
	VB.NET (VB.NET)

	Exception handling
	IS-a relationships
	Summary

	Chapter 14: Polymorphism
	Polymorphism
	Abstract classes
	Sealed classes
	Summary

	Chapter 15: Interfaces
	Interfaces
	Developing interfaces
	Interface declaration
	Implementing an interface
	Using interface polymorphism

	Standard interfaces
	Summary

	Chapter 16: Project Part III
	Technical requirements
	Building the project in the VB.NET console
	Coding the Visual Basic.NET console grading tool
	Building the project in ASP.NET
	Coding an ASP.NET calculator with Visual Studio
	Summary

	Part 4:
Server-Side Development
	Chapter 17: The Request
and Response Model
	Classic ASP Request object
	ASP.NET Request object
	Classic ASP Response object
	ASP.NET Response object
	Summary

	Chapter 18: Variable Scope and Concurrency
	Session scope
	Application scope
	Request scope and cookies
	Request scope in ASP
	Cookies in ASP

	Summary

	Chapter 19: Project Part IV
	Technical requirements
	Building the project in Classic ASP
	Coding the Classic ASP grading tool with Notepad

	Building the project in ASP.NET
	Coding the ASP.NET server-side grade averager with Visual Studio

	Summary

	Chapter 20: Conclusions
	Summing it all up
	Variable declaration
	Data types
	Scope
	Decision branching
	Procedure modularization
	Collections
	File handling
	Object encapsulation
	Inheritance
	Polymorphism
	Web application HTTP model and concurrency

	Further reading topics
	VB6 forms development
	VB.NET WinForms development
	COM object creation

	Suggested projects
	Summary

	Index
	About Packt
	Other Books You May Enjoy

