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    INTRODUCTION 
 
    When Waldemar, Louis, and I started developing Lua in 1993, we could hardly imagine that Lua would spread like that. On- started as home language for two specific projects, now Lua is widely used in all areas one can get 
 
    benefits from simple, extensible, portable and efficient scripting language such as embedded systems, mobile devices swarms and, of course, games. We designed Lua from the beginning to integrate with software software written in C / C ++ and other common strange languages. There are many benefits to this integration. Lua is a tiny and simple language, partly because it doesn't tries to do what C is already good at, such as speed, 
 
    low-level operations and interaction with third-party programs parties. Lua relies on C for these tasks. Lua offers something for which C is not good enough: sufficient distance from the hardware go support, dynamic structures, no redundancy and ease of testing and debugging. For these purposes, Lua has safe environment, automatic memory management and good possibilities for working with strings and other types 
 
    resizable data. Some of Lua's strength comes from its libraries. And this is no coincidence. In the end Finally, one of the main strengths of Lua is extensibility. Many language features contribute to this. Dynamic typing tion provides a large degree of polymorphism. Automatic memory management simplifies interfaces because there is no need to the ability to decide who is responsible for allocating and freeing memory or how to handle overflows. Higher-order functions and anonymous functions allow a high degree of parameterization, making functions more versatile. 
 
    More than an extensible language, Lua is a “ glue vayushim ”(glue) language . Lua supports a component-based approach to software development when we create an application 
 
    by gluing together existing high-level components. These components are written in a compiled language with a static typing such as C / C ++; Lua is the glue we use use to arrange and connect these components. Usually components (or objects) represent more specific low- tier entities (such as widgets and data structures), which which hardly change during the development of the program and which take up the bulk of the final program execution time. Lua gives the final form to the application, which is most likely changes a lot during the life of a given software product. However, unlike other "glue" technologies, Lua is is a complete programming language. Therefore we can use Lua not only to "glue" components, but also to adaptation and customization of these components, as well as to create a floor new components. Of course, Lua isn't the only scripting language. Exists other languages you can use for roughly the same goals. Nevertheless, Lua provides a whole set of possibilities, which make him the best choice for many tasks and gives him your unique profile: 
 
      
 
    • Extensibility . Lua's extensibility is so great that many consider Lua not as a language, but as a set for DSL structures (domain-specific language, a language created for specific area, application). We developed Lua from the beginning so that it is extensible both through code on Lua as well as through C code. How the Lua proof implementsmost of its basic functionality via external library. Interaction with C / C ++ really simple and Lua has been successfully integrated with many others languages such as Fortran, Java, Smalltalk, Ada, C #, and even with scripting languages like Perl and Python. 
 
      
 
    • Simplicity . Lua is a simple and small language. It is founded on a small number of concepts. This simplicity makes it easier to study nie. Lua contributes to its very small size. Floor- distribution kit (source code, manual, binaries ly for some platforms) is quietly placed on one floppy disk. 
 
      
 
    • Efficiency . Lua has a very efficient implementation tions. Independent tests show that Lua is one of the most most fast languages among scripting languages. 
 
      
 
    • Portability . When we talk about portability, we say Rome on running Lua on all platforms you are only talking about heard: all versions of Unix and Windows, PlayStation, Xbox, Mac OS X and iOS, Android, Kindle Fire, NOOK, Haiku, QUALCOMM Brew, big servers from IBM, RISC OS, Symbian OS, process Sora Rabbit, Raspberry Pi, Arduino and more. Original the code for each of these platforms is almost the same. Lua does not use conditional compilation to adapt its code for different machines, instead it keeps standard ANSI (ISO) C. Thus, you usually do not you need to adapt it to the new environment: if you have a com- piler with ANSI C, then you just need to compile Lua. 
 
      
 
    The audience 
 
    Lua users generally fall into one of three broad groups: those who use Lua already built into the application, those who use use Lua separately from any application (standalone), and those who use Lua and C together. Many people use Lua built into some application, like Adobe Lightroom, Nmap, or World of Warcraft. These pri- applications use the Lua-C API to register new functions, creating new types and changing the behavior of some operations language by configuring Lua for its area. Often users are whom applications don't even know that Lua is an independent language, adapted for the given area. For example, many developers Lightroom plugins are unaware of other uses of this language; Nmap users generally view Lua as scripting Nmap language; World of Warcraft players can view Lua as a language exclusively for this game. 
 
    Lua is also useful as just an independent language, not only for word processing and one-time small programs, but also for a variety of medium to large sized projects. For the In this way, the main functionality of Lua comes from its libraries. Standard libraries, for example, provide basic new functionality for working with templates and other functions for working with strings. As Lua improves its support libraries, a large number of external packages appeared. Lua Rocks, a system for building and managing modules for Lua, now has over 150 packages. Finally, there are programmers who use Lua as a library flow for C. Such people write more in C than in Lua, although they need requires a good understanding of Lua to create interfaces that are simple, easy to use and well integrated tied with the tongue. 
 
    This book can be useful to all of these people. The first part covers the tongue itself, showing how the whole its potential. We focus on various language constructs and use numerous examples and exercises to show 
 
    know how to use them for practical tasks. Some chap- this part covers basic concepts such as managing structures, while the rest of the chapters cover more advanced tricky topics like iterators and coroutines. 
 
    The second part is completely devoted to tables, the only structure data tour in Lua. The chapters in this part discuss data structures, persistence, packages and object-oriented programming. It is there that we will show the full power of language. The third part introduces the standard libraries. This part especially useful for those who use Lua on their own language, although many applications include part or all standard libraries. In this part, each library is dedicated separate chapter: math library, bitwise library, library for working with tables, library for working with strings mi, I / O library, operating system library and debug library. Finally, the last part of the book covers the API between Lua and C. 
 
    This section is markedly different from the rest of the book. In this part we will be programming in C, not Lua. For some, this part may be uninteresting, but for someone - on the contrary, the most useful part of the book. 
 
      
 
    Running examples 
 
    You will need a Lua interpreter to run the examples from this books. Ideally, you should use Lua 5.2, however most in the examples will work on Lua 5.1 without any changes. The Lua site ( http://www.lua.org ) stores all the source code for interpreter. If you have a C compiler and know how compile the C code on your computer, you better ask try to install Lua from source; it's really easy. The Lua Binaries site (look for luabinaries) already offers compiled native interpreters for all major platforms. If you using Linux or another UNIX-like system, you can check the repository of your distribution; many distributions already offer ready-made packages with Lua. For Windows, a good choice is rum is Lua for Windows (look for luaforwindows), which is a convenient set for working with Lua. It includes interpreting torus, integrated editor and many libraries. 
 
    If you are using Lua embedded in an application like WoW or Nmap, then you may need a manual for this. placement (or the help of a "local guru") in order to understand, how to run your programs. Nevertheless, Lua remains all the same the same language; most of the examples we will look at in this book are applicable regardless of how you use Lua. But I recommend that you start learning Lua with an interpreter to run you examples. 
 
      
 
      
 
      
 
      
 
      
 
    Part I 
 
    I am the language 
 
      
 
      
 
    CHAPTER 1 
 
    Begin 
 
      
 
    Continuing the tradition, our first Lua program simply printed em “Hello World” : 
 
    print (“Hello World”) If you are using a separate Lua interpreter, then all you need is you need to run your first program - this is to run the interpreter tator - usually called lua or lua5.2 - with the name of the text file containing your program. If you saved the above the above program in hello.lua file , then you should run 
 
    following command: 
 
      
 
    % lua hello.lua 
 
      
 
    As a more complex example, our next program defines There is a function for calculating the factorial of a given number, asking gives the user a number and prints its factorial: 
 
      
 
    - defines a factorial function 
 
      
 
    function fact (n) 
 
    if n == 0 then 
 
    return 1 
 
    else 
 
    return n * fact (n-1) 
 
    end 
 
    end 
 
    print (“enter a number:”) 
 
    a = io.read (“* n”) - reads a number 
 
    print (fact (a)) 
 
      
 
    1.1. Blocks 
 
    Every piece of code that Lua executes, such as a file or from- a smart string in interactive mode is called a chunk. A block is simply a sequence of commands (or statements). Lua does not need a separator between consecutive operators, but you can use semicolon if you like. I personally use I use a semicolon only to separate statements written in one line. Line splitting does not play any role in the syntax system Lua; so, the following four blocks are valid and equivalent: 
 
      
 
    a = 1 
 
    b = a * 2 
 
    a = 1; 
 
    b = a * 2; 
 
    a = 1; b = a * 2 
 
    a = 1 b = a * 2 - ugly, but valid 
 
      
 
    A block can consist of just one statement, as in the example "Hello World", or consist of a set of operators and definitions functions (which are actually just assignments, as we will see later), as in the factorial example. Block can be as great as you want. Since Lua is also used as language for describing data, blocks of several megabytes are not a rarity. The Lua interpreter does not have any problems with bot with large blocks. 
 
    Instead of writing your programs to a file, you can run the interpreter interactively. If you run- those lua without arguments, then you will see its prompt for input: 
 
      
 
    % lua 
 
    Lua 5.2 Copyright (C) 1994-2012 Lua.org, PUC-Rio 
 
    > 
 
      
 
    Accordingly, each command that you enter (like, for example measure, print “Hello World” ) is executed immediately after how you enter it. To exit the interpreter, just type end-of-file character ( ctrl-D in UNI, ctrl-Z in Windows) or call the exit function from the operating system library - you need type os.exit () . 
 
    In interactive mode, Lua usually interprets each the line you enter as a separate block. However, if he is detects that the line is not a complete block, then it waits continue typing until a complete block is obtained. This way you can enter multi-line definitions, so as a factiorial function , directly interactively. One- but it is usually more convenient to place such definitions to a file and then call Lua to execute that file. You can use the –i option to force Lua switch to interactive mode after executing the given block ka: 
 
      
 
    % lua -i prog 
 
      
 
    A command like this will execute the block in the prog file and then go into interactive mode. This is especially useful for debugging and manual th testing. At the end of this chapter, we will look at other options. command line for the Lua interpreter. Another way to trigger blocks is the dofile function , which paradise executes the file immediately. For example, let's say you have lib1.lua file with the following code: 
 
      
 
    function norm (x, y) 
 
    return (x ^ 2 + y ^ 2) ^ 0.5 
 
    end 
 
    function twice (x) 
 
    return 2 * x 
 
    end 
 
      
 
    Then interactively you can type 
 
      
 
    > dofile (“lib1.lua”) - load your library 
 
    > n = norm (3.4, 1.0) 
 
    > print (twice (n)) -> 7.0880180586677 
 
      
 
    The dofile function is also useful when you are testing a piece of code. You can work with two windows: one contains the text editor with your program (for example, in the prog.lua file ), and in other gom is a console running the Lua interpreter in the inter- active mode. After you have saved the changes to your program, you do dofile (“prog.lua”) in the console to load ki new code; then you can start using the new code, calling functions and printing the results. 
 
      
 
    1.2. Some lexical agreements 
 
    Identifiers (or names) in Lua are strings from Latin their letters, numbers and underscores that do not start with a number;  
 
      
 
    eg: 
 
      
 
    ij i10 _ij 
 
    aSomewhatLongName _INPUT 
 
      
 
    You are better off avoiding identifiers consisting of underscores vana followed by capital Latin letters (for example, _VERSION ); they are reserved for special purposes in Lua. I usually use id _ (single underscore) 
 
    for dummy variables. In older versions of Lua, the concept of what a letter is depended on from the locale. However, these letters make your program un- suitable to run on systems that do not support this locale. Therefore, Lua 5.2 considers only letters as letters. from the following ranges: AZ and az . The following words are reserved, you cannot use them as identifiers: 
 
      
 
    and break do  
 
    else elseif 
 
    end false goto for function 
 
    if in  
 
    local nil not 
 
    or repeat return then true 
 
    until while 
 
      
 
    Lua is case sensitive: and is a reserved word, however, And and AND are two different identifiers. The comment starts with two minus signs ( - ) and continues with- until the end of the line. Lua also supports block comments, which starts with - [[ and goes to the next ]] 1 . Standard the way to comment out a piece of code is to put it between 
 
    - [[ and -]] as shown below: 
 
    - [[ 
 
    print (10) - no action (commented out) 
 
    -]] 
 
      
 
    To make this code active again, just add one minus to the first line: 
 
      
 
    --- [[ 
 
    print (10) -> 10 
 
    -]] 
 
      
 
    In the first example - [[ in the first line starts a block com- mentary, and the double minus in the last line is also in this comment. In the second example --- [ starts the usual single line comment, so the first and last lines 
 
    become regular independent comments. In this case print is outside of comments. 
 
      
 
    1.3. Global Variables 
 
    Global variables do not need descriptions; you just use them you whine. It is not an error to refer to uninitialized variable; you just get nil as a result- that: 
 
      
 
    print (b) -> nil 
 
    b = 10 
 
    print (b) -> 10 
 
      
 
    If you assign nil to a global variable, Lua will itself as if this variable has never been used: 
 
      
 
    b = nil 
 
    print (b) -> nil 
 
      
 
    After this assignment, Lua may eventually regain its password. the space occupied by this variable. 
 
      
 
    1.4. Separate interpreter 
 
    Stand-alone interpreter (also called lua.c in relation to the name of its source file or just lua by name executable file) is a small program that allows direct use of Lua. This section presents her basic options. 
 
    When the interpreter loads a file, it skips the first string if it starts with '#' character . This allows you to use make Lua a scripting interpreter on UNIX systems. If you start your script with something like 
 
      
 
    #! / usr / local / bin / lua 
 
      
 
    (assuming the interpreter is in / usr / local / bin ) or 
 
      
 
    #! / usr / bin / env lua , 
 
      
 
    then you can directly run your script without explicitly start the Lua interpreter. The interpreter is called like this: 
 
      
 
    lua [options] [script [args]] 
 
      
 
    All parameters are optional. As we have seen, when we start If lua has no arguments, it goes into interactive mode. 
 
    The -e option allows you to directly specify the code directly in the command- line like below: 
 
      
 
    % lua -e “print (math.sin (12))” -> -0.53657291800043 
 
      
 
    (UNIX requires double quotes so that the command interpreter the torus (shell) did not parse parentheses). 
 
    The –l option loads the library. As we have seen previously, -i pe- puts the interpreter into interactive mode after processing the OS arguments. So the next call will load the library lioteku lib , then execute the assignment x = 10 and finally pass into interactive mode. 
 
      
 
    % lua -i -llib -e “x = 10” 
 
      
 
    Interactively, you can print the value of the expression by simply typing a line that starts with an equal sign for 
 
    followed by the expression: 
 
    > = math.sin (3) -> 0.14112000805987 
 
    > a = 30 
 
    > = a -> 30 
 
      
 
    This feature allows Lua to be used as a calculator. Before executing its arguments, the interpreter looks for re- environment variable named LUA_INIT_5_2 or, if such a change no, no, LUA_INIT . If one of these variables is present and its has the form @filename , the interpreter launches this file. If LUA_INIT_5_2 (or LUA_INIT ) is defined but not start- is started with the '@' character , then the interpreter assumes that it contains executable Lua code and executes it. LUA_INIT gives huge the ability to configure the interpreter, since when configuration, all the power of Lua is available to us. We can download packages, change the current path, define your own functions change, rename or delete functions, etc. The script can get its arguments in a global variable 
 
    arg . If we have a call like % lua script abc , then the interpreter creates arg table with all command line arguments before by executing the script. The script name is located at index 0, per- the first argument (in the example it is “a” ) is located at index 1, and so on. The preceding options are arranged in negative indices, 
 
    as they appear before the script name. For example, ra- look at the following call: 
 
      
 
    % lua -e “sin = math.sin” script ab 
 
      
 
    The interpreter collects arguments as follows: 
 
      
 
    arg [-3] = "lua" 
 
    arg [-2] = “-e” 
 
    arg [-1] = “sin = math.sin” 
 
    arg [0] = "script" 
 
    arg [1] = “a” 
 
    arg [2] = “b” 
 
      
 
    Most often the script uses only positive indices (in the example, these are arg [1] and arg [2] ). 
 
    Since Lua 5.1 the script can also receive its arguments using the expression ... (three dots). In the main part of the script, this is expression gives all the arguments of the script (we will discuss similar expressions (see section 5.2). 
 
      
 
    Exercises 
 
      
 
    Exercise 1.1 . Run the factorial example. What will happen 
 
    with your program if you enter a negative number? 
 
    Modify the example to avoid this problem. 
 
      
 
    Exercise 1.2 . Run the twice example by loading once 
 
    file using the –l option , and another time using dofile . what 
 
    faster? 
 
      
 
    Exercise 1.3 . Can you name another language using- 
 
    (-) for comments? 
 
      
 
    Exercise 1.4 . Which of the following lines are valid 
 
    by our identifiers? 
 
    ___ _end End end until? nil NULL 
 
      
 
    Exercise 1.5 . Write a simple script that prints 
 
    your name without knowing it in advance. 
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
    CHAPTER 2 
 
    Types and values 
 
    Lua is a dynamically typed language. The language has no definitions of ty-pov, each value carries its own type. 
 
    There are eight basic types in Lua: nil , boolean , number , string , userdata , function , thread and table . The type function returns the type for any passed value: 
 
      
 
    print (type (“Hello world”))  
 
    -> string 
 
    print (type (10.4 * 3))  
 
    -> number 
 
    print (type (print))  
 
    -> function 
 
    print (type (type))  
 
    -> function 
 
    print (type (true))  
 
    -> boolean 
 
    print (type (nil))  
 
    -> nil 
 
    print (type (type (X)))  
 
    -> string 
 
      
 
    The last line will always return string regardless of the value Niya the X , as the result of a function type is always a string. 
 
    Variables have no predefined types; any variable can contain values of any type: 
 
      
 
    print (type (a)) -> nil ('a' not yet defined) 
 
    a = 10 
 
    print (type (a)) -> number 
 
    a = “a string !!” 
 
    print (type (a)) -> string 
 
    a = print  
 
    -- Yes it is possible! 
 
    a (type (a))  
 
    -> function 
 
      
 
    Notice the last two lines: functions are first class values in Lua; they can be manipulated like any other values. (More on this in Chapter 6.) Usually when you use the same variable for value different types, you get disgusting code. However, sometimes judicious use of this opportunity is beneficial, for example using nil to distinguish normal return value from any error. 
 
      
 
    2.1. Nil 
 
    Nil is a type with only one value, nil , the main which is different from all other values. Lua 
 
    uses nil to indicate a missing value. Like us already seen, globals default to nil before its first assignment, you can also assign nil a global variable to delete it. 
 
      
 
    2.2. Boolean (boolean values) 
 
    The boolean type has two values, true and false , which serve to pre- setting traditional logical values. However, these values do not monopolize all conditional values: in Lua, any value can represent a condition. Relevant checks (checking conditions in various control structures) interpret both nil and false as false and all other values as valid muddy. In particular, Lua treats zero and an empty string as true. in logical conditions. Throughout the book, false will mean nil. and false . In the case when it is about boolean values, there will be explicitly set to false . 
 
      
 
    2.3. Numbers 
 
    The number type represents floating point values specified with double precision. Lua does not have a built-in integer type. 
 
    Some fear that even simple operations such as increase by one (increment) and comparison, may be incorrect work with floating point numbers. However, in fact it isnot this way. Almost all platforms now support the standard IEEE 754 for floating point representation. According to this standard, the only possible source of errors is There is a case where the number cannot be accurately represented. Opera- walkie-talkie rounds its result only if the result cannot be accurately represented as the corresponding float value point. Any operation whose result can be accurately predicted put, will have the exact meaning. In fact, any integer up to 2 53 (approximately 10 16 ) has an exact floating point representation with double precision. When you use a float value double-precision dot to represent integers, no rounding errors unless the value is greater than 2 53 in absolute value . In particular, Lua is capable of representing any 32-bit integer values without rounding problems. Of course, fractional numbers will have rounding problems. This the situation is no different than when you have paper and a pen. If we want to write 1/7 in decimal form, then we must somewhere us stop. If we use ten digits to represent number, then 1/7 becomes 0.142857142 . If we calculate 1/7 * 7 s ten digits, we get 0.999999994 , which is different from 1. Moreover, numbers that have a finite representation in the form 
 
    decimal fractions can have an infinite representation in the form binary fractions. So, 12.7-20 + 7.3 is not zero, since both numbers 12.7 and 7.3 do not have an exact binary representation (see 
 
    Figure 2.3). Before we continue, remember that integers have an exact representation and therefore have no rounding errors. Most modern CPUs perform floating operations. dot as fast (or even faster) than with integers. However, it is easy to compile Lua so that for numeric values a different type was used, for example long integers single-precision floating-point values or numbers. It especially useful for platforms without hardware support for numbers with floating point such as embedded systems. For de- For this, refer to the luaconf.h file in the Lua source files. We can write numbers, if necessary, specifying a fraction part and decimal degree. Examples of valid numeric constants are: 
 
      
 
    4 0.4 4.57e-3 0.3e12 5E + 20 
 
      
 
    Moreover, we can also use hexadecimal constants starting at 0x . Since Lua 5.2 hexadecimal constants can also have a fractional part and a binary power (ne- 'p' or 'P' is used before the degree ), as in the following examples: 
 
      
 
    0xff (255) 0x1A3 (419) 0x0.2 (0.125) 0x1p-1 (0.5) 
 
    0xa.bp2 (42.75) 
 
      
 
    (We've added a decimal representation for each constant.) 
 
      
 
    2.4. Strings 
 
    Lua strings have the usual meaning: a sequence of characters fishing. Lua supports all 8-bit characters, and strings can be keep characters with any codes, including zeros. It means that you can store any binary data as strings. you also you can store unicode strings in any representation (UTF-8, UTF-16, etc.). The standard library that comes with Lua is does not contain built-in support for these views. However less, you may well be working with UTF-8 strings, which we will consider Rome in section 21.7. Lua strings are immutable values. You can not change the character inside the string, as you can in C; instead of this you create a new line with the desired changes as shown in following example: 
 
      
 
    a = “one string” 
 
    b = string.gsub (a, “one”, “another”) - change part of the string 
 
    print (a) -> one string 
 
    print (b) -> another string 
 
      
 
    Lua strings are subject to automatic memory management, just like other Lua objects (tables, functions, etc.). This is a sign cheat that you don't have to worry about allocating and freeing lines; Lua will do it for you. The string can be one character or a whole book. Programs that work with lines of 100K or 10M characters are not uncommon in Lua. You can get the length of a string using as a prefix operator '#' (called length operator): 
 
      
 
    a = “hello” 
 
    print (#a) -> 5 
 
    print (# "good \ 0bye") -> 8 
 
      
 
    Literals 
 
      
 
    We can put strings inside single or double quotes- check: 
 
    a = “a line” 
 
    b = 'another line' 
 
      
 
    These types of records are equivalent; the only difference is what is inside a string, limited to one type of quotation marks, you can directly insert quotation marks of a different type. Usually most programmers use quotation marks of one type for the same string type. For example, a library that works with XML, can use single quotes for strings, containing XML fragments, since these fragments often contain 
 
    double quotes. Lua strings can contain the following escape sequence nos: 
 
      
 
    \ a 
 
    bell 
 
    \ b 
 
    Back space 
 
    \ f 
 
    page translation (form feed) 
 
    \ n 
 
    newline 
 
    \ r 
 
    carriage return 
 
    \ t 
 
    tab (horizontal tab) 
 
    \ v 
 
    vertical tab 
 
    \\ 
 
    backslash 
 
    \ " 
 
    double quote 
 
    \ ' 
 
    single quote 
 
      
 
    The following example illustrates their use: 
 
      
 
    > print (“one line \ nnext line \ n \” in quotes \ ”, 'in quotes'”) 
 
    one line 
 
    next line 
 
    “In quotes”, 'in quotes' 
 
    > print ('a backslash inside quotes: \' \\\ '') 
 
    a backslash inside quotes: '\' 
 
    > print (“a simpler way: '\\'”) 
 
    a simpler way: '\' 
 
      
 
    We can specify a character in a string using its numeric value using constructions like \ ddd and \ x \ hh , where ddd is a sequence of no more than three decimal digits, and hh is a sequence of exactly two hexadecimal digits. As complex example two lines “alo \ n123 \” ” and '\ 97lo \ 10 \ 04923”' have the same meaning on a system using ASCII: 97 is the ASCII code for 'a' , 10 is the code for the line feed character, and 49 is the code for the digit '1' (in this example we should write the value 49 using three decimal digits \ 049 , because it is followed by another number; otherwise Lua interpreted it as code 492). We we can also write the same string as ' \ x61 \ x6c \ x6f \ x0a \ 
 
    x31 \ x32 \ x33 \ x22 ' , representing each character in its sixteen- 
 
    normal value. 
 
      
 
    Long lines 
 
    We can delimit character strings with double square brackets, as we did with the comments. Line in this form can span many lines, and control sequences the numbers on these lines will not be interpreted. Moreover, this the form ignores the first character of the line if it is a jump character next line. This form is especially useful for writing lines, containing large snippets of code as shown below: 
 
      
 
    page = [[ 
 
    <html> 
 
    <head> 
 
    <title> An HTML Page </title> 
 
    </head> 
 
    <body> 
 
    <a href=32http://www.lua.org> Lua </a> 
 
    </body> 
 
    </html> 
 
    ]] 
 
    write (page) 
 
      
 
    Sometimes you may want to put something like 
 
    a = b [c [i]] (note the ]] in this code) or you can want to put in a line a piece of code where some piece is already commented out. To deal with such cases, you can use place any number of equal signs between two opening in square brackets, for example [=== [ . After that the line will terminate only on a pair of closing square brackets with the same the most equal signs ( ] ===] for our example). The scanner will ignore pairs of brackets with a different number of values. kov equality. By choosing a suitable number of equal signs You can wrap any fragment in a string. The same is true for comments. For example, if you start- those long comment with - [= [ , then it will continue all the way before ] =] . This feature allows you to comment out any fragment a code snippet containing already commented out fragments. 
 
    Long lines are very handy for including text in your code, but you shouldn't use them for non-text strings. Although the lines in Lua can contain any characters, this is not a good idea - use these symbols in your code: you may run into problems with your text editor; moreover, lines of the form “\ R \ n” can become “\ n” . Therefore, to represent the arbitrary binary data, it is better to use control software sequences starting with a \ , such as \ x13 \ x01 \ xA1 \ xBB ". However, this presents a problem for long lines because of the resulting length. For situations like this, Lua 5.2 offers a control after- the \ z sequence : it skips all characters in the string up to the first non-whitespace character. The following example illustrates its use use: 
 
      
 
    data = “\ x00 \ x01 \ x02 \ x03 \ x04 \ x05 \ x06 \ x07 \ z 
 
    \ x08 \ x09 \ x0A \ x0B \ x0C \ x0D \ x0E \ x0F " 
 
      
 
    \ Z at the end of the first line skips the following 
 
    end of line and indentation of next line so that byte 
 
    \ x07 immediately followed by a byte \ x08 in the resulting row. 
 
      
 
    Type casts 
 
    Lua provides automatic conversion of values between 
 
    strings and numbers at run time. Any numeric operation 
 
    applied to a string, tries to convert the string to a number: 
 
      
 
    print (“10” + 1) -> 11 
 
    print (“10 + 1”) -> 10 + 1 
 
    print (“- 5.3e-10” * ”2”) -> -1.06e-09 
 
    print (“hello” + 1) - ERROR (cannot convert “hello”) 
 
      
 
    Lua applies similar conversions not only in arithmetic operators, but also in other places where the expected number, for example for the math.sin argument . Similarly, when Lua expects to receive a string, but receives a number, it converts the number to string: 
 
      
 
    print (10 .. 20) -> 1020 
 
      
 
    (The .. operator is used in Lua to concatenate strings. When you use it write immediately after the number, then you must separate them from each a friend with a space; otherwise Lua will assume that the first point is decimal point of the number.) Today we are not sure if these automatic conversions types were a good idea in Lua design. It is generally best on do not count them. They are handy in some places; but adding- There are complexities in both the language and the programs that use them. After all, strings and numbers are different types despite everything these transformations. A comparison like 10 = "10" gives a false value, because 10 is a number and “10” is a string. If you need to explicitly convert a string to a number, then you can use the tonumber function , which returns nil if string ka does not contain a number: 
 
      
 
    line = io.read ()  
 
    - read the line 
 
    n = tonumber (line)  
 
    - try to translate it into a number 
 
    if n == nil then 
 
    error (line .. “is not a valid number”) 
 
    else 
 
    print (n * 2) 
 
    end 
 
      
 
    To convert a number to a string, you can use the function tion tostring or concatenate the number with an empty string: 
 
      
 
    print (tostring (10) == “10”) 
 
    -> true 
 
    print (10 .. “” == “10”)  
 
    -> true 
 
    These transformations always work. 
 
      
 
    2.5. Tables 
 
    The table type corresponds to an associative array. Associative a ny array is an array that can be indexed not only numbers, but also strings or any other value from the language, except for nil . 
 
    Tables are the main (actually the only) place a hanism for structuring data in Lua, and very powerful. We use tables to represent regular arrays, sets, records and other data structures simple, homogeneous and in an efficient way. Lua also uses tables to pre- placing packages and objects. When we write io.read , we think- This is about the “ read function from the io module ”. For Lua, this expression means "Take the value from the io table by the read key . " 
 
    Lua tables are neither values nor variables; they objects . If you are familiar with arrays in Java or Scheme, then you should you know what I mean. You can think of a table as dynamically allocated object; your program only works with a link (pointer) to it. Lua never uses covert copying or creating new tables. Moreover, you even no need to declare a table in Lua; in fact there is not even a way declare a table. You create tables using a special expression, which in the simplest case looks like {} ; 
 
      
 
    a = {}  
 
    - create a table and remember the link to it in 'a' 
 
    k = “x” 
 
    a [k] = 10  
 
    - new record with key "x" and value 10 
 
    a [20] = “great” –- new record with key 20 and value “great” 
 
    print (a [“x”]) -> 10 
 
    k = 20 
 
    print (a [k]) -> “great” 
 
    a [“x”] = a [“x”] + 1 –- increase the record “x” 
 
    print (a [“x”]) -> 11 
 
      
 
    The table is always anonymous. There is no permanent connection between the variable that contains the table and the table itself: 
 
      
 
    a [“x”] = 10 
 
    b = a  
 
    - 'b' refers to the same table as 'a' 
 
    print (b [“x”]) -> 10 
 
    b [“x”] = 20 
 
    print (a [“x”]) -> 20 
 
    a = nil - only 'b' still refers to the table 
 
    b = nil - there are no references to the table 
 
      
 
    When there are no more references to the table left in the program, the collector garbage in Lua will eventually destroy the table and reuse it memory. 
 
    Each table can contain values with different types of dex, and the table grows as new records are added: 
 
      
 
    a = {}  
 
    - empty table 
 
    - create 1000 new entries 
 
    for i = 1, 1000 do a [i] = i * 2 end 
 
    print (a [9]) -> 18 
 
    a [“x”] = 10 
 
    print (a [“x”]) -> 10 
 
    print (a [“y”]) -> nil 
 
      
 
    Pay attention to the last line: as with the global variables, uninitialized table fields return nil . As with global variables, you can assign the table field is nil to destroy it. This is not a coincidence: Lua stores global variables in regular tables. We we'll take a closer look at this in Chapter 14. To represent records, you use the field name as an index. Lua supports this view by offering the following syntax sic sugar ": instead of a [" name "] you can write a.name . So Thus, we can rewrite the last few lines of the previous the following example in a cleaner way: 
 
      
 
    ax = 10 - same as a [“x”] = 10 
 
    print (ax) - same as print (a [“x”]) 
 
    print (ay) - same as print (a [“y”]) 
 
      
 
    For Lua, these two forms are completely equivalent and can be 
 
    freely used. For the reader, however, each form can 
 
    communicate a specific intent. Dot notation clearly 
 
    shows that we are using the table as a record (structure), where y 
 
    we have a certain set of given, predefined keys. 
 
    Another entry suggests that the table can be used 
 
    use any string as a key and for some reason in 
 
    this place we work with a specific key. 
 
    A common newbie mistake is that 
 
    they confuse ax and a [x] . The first form actually matches 
 
    a [“x”] , that is, referring to the table with the key “x” . In the second case 
 
    the key is the value of the variable x . Shown below 
 
    difference: 
 
    a = {} 
 
    x = “y” 
 
    a [x] = 10 - write 10 in the “y” field 
 
    print (a [x]) -> 10 - value of the "y" field 
 
    print (ax) -> nil - value of field “x” (undefined) 
 
    print (ay) -> 10 - value of the field "y" 
 
    To represent a traditional array or list, simply use 
 
    use a table with integer keys. There is no way, no 
 
    the need to declare size; you just initialize those elements 
 
    the cops you need: 
 
    - read 10 lines, memorizing them in the table 
 
    a = {} 
 
    for i = 1, 10 do 
 
    a [i] = io.read () 
 
    end 
 
    Since you can index the table by any value- 
 
    you can start indices in an array with any number that 
 
    you like. However, it is customary in Lua to start arrays with one. 
 
    (not from scratch as in C) and some Lua tools stick to this- 
 
    th agreement. 
 
    Usually, when you are working with a list, you need to know its length. 
 
    It can be constant or it can be written somewhere. Usually 
 
    we write the length of the list in a field with a non-numeric key; by history 
 
    For logical reasons, some programs use for these purposes 
 
    Leave the field “n” . 
 
    Often, however, the length is not explicitly specified. Since anyone who does not 
 
    the value of nil corresponds to the initialized field , then we can use 
 
    use this value to determine the end of the list. For instance, 
 
    if you've read ten lines into a list, it's easy to remember that its 
 
    the length is 10, since its keys are the numbers 1, 2,…, 10. 
 
    This approach only works with lists that have no holes , which 
 
    they contain the value nil . We call such lists of sequences 
 
    sequences . 
 
    For sequences, Lua offers the '#' length operator. is he 
 
    returns the last index or length of a sequence. On- 
 
    example, you can print the lines read in the previous 
 
    example using the following code: 
 
    - print the lines 
 
    for i = 1, #a do 
 
    print (a [i]) 
 
    end 
 
    Since we can index the table with values of any 
 
    type, then when indexing a table, the same subtleties arise as 
 
    and when checking for equality. Although we can index the table 
 
    and using the integer 0 , and using the string “0” , these two mean 
 
    The values are different and correspond to different elements of the table. Ana- 
 
    logically, the lines “+1” , “01” and “1” also correspond to different elements 
 
    table cops. When you are unsure about the type of your indexes, 
 
    use explicit casting: 
 
    i = 10; j = “10”; k = "+10" 
 
    a = {} 
 
    a [i] = “one value” 
 
    a [j] = “another value” 
 
    a [k] = “yet another value” 
 
    print (a [i])  
 
    -> one value 
 
    print (a [j])  
 
    -> another value 
 
    print (a [k])  
 
    -> yet another value 
 
    print (a [tonumber (j)]) -> one value 
 
    print (a [tonumber (k)]) -> one value 
 
    If you do not pay attention to these subtleties, then it is easy to add to the program 
 
    hard-to-find errors. 
 
      
 
    2.6. Functions 
 
    Functions are first class values in Lua: programs 
 
    can write functions to variables, pass functions as 
 
    arguments to other functions and return functions as a result. 
 
    This capability lends tremendous flexibility to the language; software 
 
    ma can override the function to add new functionality 
 
    nality, or simply remove the function to create a safe 
 
    environment for executing a piece of untrusted code (for example, 
 
    code received over the network). Moreover, Lua provides a good 
 
    support for functional programming, including nested 
 
    functions with the appropriate lexical environment; simple 
 
    then wait until chapter 6. Finally, first class functions play 
 
    an important role in the object-oriented features of Lua as 
 
    we will see in chapter 16. 
 
    Lua can call functions written in Lua and functions that 
 
    written in C. Usually we use functions written in C. 
 
    C, in order to get high performance and access to the 
 
    features not available directly from Lua, such as accessing 
 
    operating system tools. All standard libraries in Lua 
 
    are written in C. They include functions for working with strings 
 
    mi, working with tables, input / output, access to basic 
 
    operating system, math functions and debugging. 
 
    We will discuss Lua functions in Chapter 5 and C functions in Chapter 27. 
 
      
 
    2.7. userdata and threads 
 
    The userdata type allows you to store arbitrary C language data in 
 
    Lua variables. This type has no built-in operations, except 
 
    assignment and equality testing. Values of this type 
 
    are used to represent new types created by applications 
 
    ny or a library written in C; for example, the standard library 
 
    the I / O library uses them to represent open 
 
    files. We will discuss this type in more detail later when we move on 
 
    to the C API. 
 
    The thread type will be covered in Chapter 9, where we will look at 
 
    coroutines. 
 
    Exercises 
 
    Exercise 2.1. What is the meaning of an expression 
 
    type (nil) == nil ? (You can use Lua to check 
 
    your answer.) Can you explain the result? 
 
    Exercise 2.2. Which of the following is acceptable 
 
    by numbers? What are their meanings? 
 
    .0e12 .e12 0.0e 0x12 0xABFG 0xA FFFF 0xFFFFFFFF 
 
    0x 0x1P10 0.1e1 0x0.1p1 
 
    Exercise 2.3. 12.7 is equal to 127/10, where all numbers 
 
    are decimal. Can you imagine it as 
 
    the value of a binary fraction? And the number 5.5? 
 
    Exercise 2.4. How would you write the following XML snippet in 
 
    a Lua string? 
 
    <! [CDATA [ 
 
    Hello world 
 
    ]]> 
 
    Use at least two different methods. 
 
    Exercise 2.5. Let's say you need to write a long after- 
 
    a sequence of arbitrary bytes as a string constant in 
 
    Lua. How do you do it? Pay attention to readability, 
 
    maximum line length and performance. 
 
    Exercise 2.6. Consider the following code: 
 
    a = {}; aa = a 
 
    What will be the value of aaaa ? Any a in this sequence 
 
    is somehow different from the rest? 
 
    Now add the following line to the previous code: 
 
    aaaa = 3 
 
    What will be the value of aaaa now ? 
 
      
 
      
 
      
 
      
 
    CHAPTER 3 
 
    Expressions 
 
    Expressions represent values. Expressions in Lua include 
 
    numeric constants and string literals, variables, unary and 
 
    binary operations and function calls. Expressions also include- 
 
    contain non-standard function definitions and constructors for 
 
    tables. 
 
      
 
    3.1. Arithmetic operators 
 
    Lua supports the standard arithmetic operators: binary- 
 
    nye '+' (addition), '-' (subtraction), '*' (multiplication), '/' (div- 
 
    number), '^' (exponentiation), '%' (remainder of division), and unary 
 
    '-' (change sign). All of them work with floating-point numbers. 
 
    point. For example, x ^ 0.5 calculates the square root of x , 
 
    and x ^ (- 1/3) computes the inverse of the cube root of x . 
 
    The following rule defines the modulus operator: 
 
    a% b == a - math.floor (a / b) * b 
 
    For integer operands, it has a standard value, and re- 
 
    The result has the same sign as the second operand. For real 
 
    operands, it has some additional features. On- 
 
    for example, x% 1 gives the fractional part of x, and xx% 1 gives the integer part. Ana- 
 
    logical xx% 0.01 gives x with exactly two decimal places after 
 
    comma: 
 
    x = math.pi 
 
    print (x - x% 0.01) -> 3.14 
 
    As another example of using the remainder operator 
 
    division, consider the following example: let's say you want to know 
 
    will the vehicle after turning at a given angle 
 
    move in the opposite direction. If the angle is given in degrees, then 
 
    you can use the following formula: 
 
    local tolerance = 10 
 
    function isturnback (angle) 
 
    angle = angle% 360 
 
    return (math.abs (angle - 180) <tolerance) 
 
    end 
 
    This definition works even for negative angles: 
 
    print (isturnback (-180)) -> true 
 
    If you want to work in radians instead of degrees, we just 
 
    let's change the constants in the functions: 
 
    local tolerance = 0.17 
 
    function isturnback (angle) 
 
    angle = angle% (2 * math.pi) 
 
    return (math.abs (angle - math.pi) <tolerance) 
 
    end 
 
    All we need is an angle% (2 * math.pi) operation to convert 
 
    any angle to the interval [0, 2π). 
 
      
 
    3.2. Comparison Operators 
 
    Lua provides the following comparison operators: 
 
    <> <=> = == ~ = 
 
    All of these operators are always boolean. 
 
    The == operator tests for equality; operator ~ = is negation 
 
    equality. We can use both of these operators to any two 
 
    values. If the values are of different types, then Lua assumes that 
 
    they are not equal. Otherwise Lua compares them accordingly 
 
    their type. The nil value is equal only to itself. 
 
    Lua compares tables and objects of type userdata by reference, i.e. 
 
    two such values are considered equal only if they are 
 
    the same object. For example, after doing the following 
 
    code: 
 
    a = {}; ax = 1; ay = 0 
 
    b = {}; bx = 1; by = 0 
 
    c = a 
 
    we get a == c , but a ~ = b . 
 
    We can only apply order operators to a pair of numbers, or 
 
    a couple of lines. Lua compares strings alphabetically, following the convention 
 
    The locale set for Lua. For example, for the Portuguese locale 
 
    Latin-1 we get “acai” <”açaí” <”acorde” . Values of types from- 
 
    personal from strings and numbers, can only be compared for equality 
 
    (and inequality). 
 
    When comparing values of different types, you need to be careful 
 
    nym: remember that “0” is different from 0 . Moreover, 2 <15 is obvious 
 
    true, but “2” <“15” is false. In case you are trying to compare 
 
    a string and a number, for example 2 <“15” , an error occurs. 
 
      
 
    3.3. Logical operators 
 
    The logical operators are and , or and not . As well as managing 
 
    constructs, logical operators treat false and nil as false 
 
    and all others as true values. And return operator 
 
    gives its first operand if it is false, otherwise it returns its 
 
    second operand. The or operator returns its first operand if 
 
    it is not false; otherwise it returns its second operand: 
 
    print (4 and 5)  
 
    -> 5 
 
    print (nil and 13)  
 
    -> nil 
 
    print (false and 13)  
 
    -> false 
 
    print (4 or 5)  
 
    -> 4 
 
    print (false or 5)  
 
    -> 5 
 
    Both operators ( and and or ) use shorthand evaluation, then 
 
    there they calculate their second operand only when it is necessary 
 
    dimo. This ensures that expressions like (type (v) == ”table” and 
 
    v.tag == "h1") will not cause errors in their computation: Lua will not 
 
    try to compute v.tag when v is not a table. 
 
    A useful construct in Lua is x = x or v , which is equivalent to 
 
    to the following code: 
 
    if not x then x = v end 
 
    That is, the x value is set equal to the default 
 
    v if x is undefined (assuming x is not false ). 
 
    Another useful construct is (a and b) or c, or simply 
 
    the a and b or c , as the operator and a higher pri- 
 
    preference than or . It is equivalent to the expression a? B: c in C, when 
 
    provided that b is not false. For example, we can choose the maximum from 
 
    two numbers x and y using the following operator: 
 
    max = (x> y) and x or y 
 
    When x> y , then the first expression in the and operator is true, 
 
    to this it returns its second value ( x ), which is always 
 
    tiny (since it's a number), and then the or operator returns its 
 
    first operand, x . If the expression x> y is false, then the result of the opera- 
 
    the torus and is also false, and so the or operator returns its second 
 
    operand, y . 
 
    The not operator always returns a boolean value: 
 
    print (not nil)  
 
    -> true 
 
    print (not false)  
 
    -> true 
 
    print (not 0)  
 
    -> false 
 
    print (not not 1)  
 
    -> true 
 
    print (not not nil)  
 
    -> false 
 
      
 
    3.4. Concatenation 
 
    Lua refers to the concatenation operator as .. (dots). If opera- 
 
    rand is a number, Lua will convert it to a string. (Some languages- 
 
    ki use the '+' operator for concatenation , but Lua 3 + 5 differs 
 
    from 3..5 .) 
 
    print (“Hello“ .. “World”)  
 
    -> Hello World 
 
    print (0 .. 1)  
 
    -> 01 
 
    print (000 .. 01)  
 
    -> 01 
 
    Remember that strings in Lua are immutable values. 
 
    The concatenation operator always creates a new string without changing its 
 
    their operands: 
 
    a = “Hello” 
 
    print (a .. “World”) 
 
    -> Hello World 
 
    print (a)  
 
    -> Hello 
 
      
 
    3.5. Length operator 
 
    The length operator works with strings and tables. With lines he 
 
    gives the number of bytes per line. With tables, it returns the length of the pos- 
 
    research presented in the table. 
 
    There are several common idioms associated with the length operator 
 
    to work with sequences. 
 
    print (a [#a]) - prints the last element of the sequence 'a' 
 
    a [#a] = nil - removes the last element 
 
    a [#a + 1] = v - adds 'v' to the end of the list 
 
    As we saw in the previous chapter, the length operator is not 
 
    let's say for lists with holes (nil). It only works for software 
 
    sequences, which we defined as lists without holes. 
 
    More precisely, a sequence is a table where the keys are 
 
    give a sequence 1,…, n for some n . (Remember, that 
 
    any nil key is not actually in the table.) 
 
    In particular, a table without numeric keys is a sequential 
 
    length zero. 
 
    Over the years, there have been many proposals to expand the meaning of opera- 
 
    lengths to lists with holes, but this is easier said than done. 
 
    The problem is that since a list is a table, the concept 
 
    "Length" is somewhat vague. For example, consider a list 
 
    produced by the following code snippet: 
 
    a = {} 
 
    a [1] = 1 
 
    a [2] = nil - does nothing, since a [2] is already nil 
 
    a [3] = 1 
 
    a [4] = 1 
 
    It is easy to say that the length of this list is four and it has a hole in 
 
    index 2. However, what about the following example? 
 
    a = {} 
 
    a [1] = 1 
 
    a [10000] = 1 
 
    Should we treat this a as a list with 10,000 elements 
 
    tami where 9998 elements are nil ? Now let the program do 
 
    following: 
 
    a [10000] = nil 
 
    What happened to the length of the list? Should it be 9999, 
 
    since the program removed the last item? Or maybe 
 
    10,000, because the program just changed the value of the last element 
 
    cop to nil ? Or should the length be 1? 
 
    Another common suggestion is to do so 
 
    so that the # operator returns the number of elements in the table. This semantic 
 
    the teak is clear and well defined, but of no benefit. 
 
    Let's consider all the previous examples and imagine how much 
 
    A similar operator would be useful for algorithms that work 
 
    with lists or arrays. 
 
    Even more problematic are the nil values at the end of the list. Ka- 
 
    What should be the length of the following list? 
 
    a = {10, 20, 30, nil, nil} 
 
    Recall that for Lua, a nil field is no different from 
 
    accompanying field. Thus, the previous table is indistinguishable 
 
    ma from {10,20,30} ; its length is 3, not 5. 
 
    You might think that nil at the end of the list is a special case. 
 
    However, many lists are built by adding elements, one 
 
    after another. Any list with holes built like this 
 
    thus, simply obtained by adding nil to its end. 
 
    Many of the lists we use in our programs are 
 
    are sequences (for example, a line in a file cannot 
 
    be nil ), and so most of the time the length operator is not 
 
    passive for use. If you really have to work 
 
    with lists with holes, then you'd better clearly remember the length somewhere 
 
    list. 
 
      
 
    3.6. Operator Priorities 
 
    The operator precedence in Lua is given in the table below, from the oldest 
 
    to the lowest: 
 
    ^ 
 
    not # - (unary) 
 
    * /% 
 
    + - 
 
    .. 
 
    <> <=> = ~ = == 
 
    and 
 
    or 
 
    All binary operators are left associative, except 
 
    '^' (exponentiation) and '..' (concatenation), which are associated 
 
    tive to the right. Therefore the following expressions on the left are equivalent 
 
    expressions on the right: 
 
    a + i <b / 2 + 1  
 
    <-->  
 
    (a + i) <((b / 2) +1) 
 
    5 + x ^ 2 * 8  
 
    <-->  
 
    5 + ((x ^ 2) * 8) 
 
    a <y and y <= z <-->  
 
    (a <y) and (y <= z) 
 
    -x ^ 2  
 
    <-->  
 
    - (x ^ 2) 
 
    x ^ y ^ z  
 
    <-->  
 
    x ^ (y ^ z) 
 
    When in doubt, always use parentheses. It's easier than 
 
    look in the manual, and most likely later when you read 
 
    this code, you will have doubts again. 
 
    3.7. Table constructors 
 
    Constructors are expressions that create and initialize 
 
    tables. They are the hallmark of Lua and one of its 
 
    most useful and versatile mechanisms. 
 
    The simplest constructor is an empty constructor, {} , which 
 
    creates an empty table; we've seen this before. Constructors 
 
    also initialize lists. For example, the operator 
 
    days = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”, 
 
    “Thursday”, “Friday”, “Saturday”} 
 
    will initialize days [1] to “Sunday” (the first element 
 
    constructor has index 1, not 0), days [2] is “Monday” 
 
    etc.: 
 
    print (days [4]) -> Wednesday 
 
    Lua also offers special syntax for initialization 
 
    tables by fields, as in the following example: 
 
    a = {x = 10, y = 20} 
 
    This line is equivalent to the following commands: 
 
    a = {}; ax = 10; ay = 20 
 
    The original expression is simpler and faster because Lua immediately creates 
 
    It has a table with the correct size. 
 
    Regardless of which constructor we used 
 
    to create a table, we can always add and remove fields 
 
    from her: 
 
    w = {x = 0, y = 0, label = ”console”} 
 
    x = {math.sin (0), math.sin (1), math.sin (2)} 
 
    w [1] = “another field” - add key 1 to table 'w' 
 
    xf = w  
 
    - add key "f" to table 'x' 
 
    print (w [“x”])  
 
    -> 0 
 
    print (w [1])  
 
    -> another field 
 
    print (xf [1])  
 
    -> another field 
 
    wx = nil  
 
    - remove field “x” 
 
    However, creating the table right away with the correct boo- 
 
    more efficiently and clearly. 
 
    We can mix these two initialization styles (list and by 
 
    fields) in the same constructor: 
 
    polyline = {color = ”blue”, 
 
    thickness = 2, 
 
    npoints = 4, 
 
    {x = 0, y = 0},  
 
    - polyline [1] 
 
    {x = -10, y = 0},  
 
    - polyline [2] 
 
    {x = -10, y = 1},  
 
    - polyline [3] 
 
    {x = 0, y = 1}  
 
    - polyline [4] 
 
    } 
 
    The example above also shows how contributions can be- 
 
    nest constructors one into another to represent more complex 
 
    data structures. Each of the polyline [i] elements is a table, 
 
    representing a record: 
 
    print (polyline [2] .x)  
 
    -> -10 
 
    print (polyline [4] .y)  
 
    -> 1 
 
    These two forms of constructor have their limitations. For instance, 
 
    you cannot initialize fields with negative indices 
 
    or with indices that are not identifiers. For such 
 
    goals have a different, more general format. In this format, we clearly write 
 
    we use the index as an expression between square brackets: 
 
    opnames = {[“+”] = “add”, [“-”] = “sub”, 
 
    [“*”] = “Mul”, [“/”] = “div”} 
 
    i = 20; s = “-” 
 
    a = {[i + 0] = s, [i + 1] = s..s, [i + 2] = s..s..s} 
 
    print (opnames [s]) 
 
    -> sub 
 
    print (a [22])  
 
    -> --- 
 
    This syntax is more awkward, but also more general: considered 
 
    previously constructor forms are special cases of this 
 
    more general syntax. The constructor {x = 0, y = 0} is equivalent to 
 
    {[“X”] = 0, [“y”] = 0} , and the constructor {“r”, ”g”, ”b”} is equivalent to { 
 
    [1] = ”r”, [2] = ”g”, [3] = ”b”} . 
 
    You can always put a comma after the last entry in 
 
    constructor. These commas are optional: 
 
    a = {[1] = ”red”, [2] = ”green”, [3] = ”blue”,} 
 
    This frees programs that generate Lua constructors from 
 
    the need to process the last element in a special way. 
 
    Finally, you can always use dot c in the constructor 
 
    comma instead of comma. I usually use semicolons to de- 
 
    division of various sections in the constructor, for example, the division of the hour 
 
    from the part formatted as a list: 
 
    {x = 10, y = 45; “One”, “two”, “three”} 
 
      
 
    Exercises 
 
    Exercise 3.1. What will the following program print? 
 
    for i = -10, 10 do 
 
    print (i, i% 3) 
 
    end 
 
    Exercise 3.2. What is the result of the expression 2 ^ 3 ^ 4 ? 
 
    What about 2 ^ -3 ^ 4 ? 
 
    Exercise 3.3. We can represent the polynomial 
 
    a n x n + a n- 1 x n- 1 +… + a 1 x 1 + a 0 
 
    in Lua as a list of its coefficients { a 0 , a 1 ,…, a n }. 
 
    Write a function that receives a polynomial (represent 
 
    table) and x returns a polynomial value 
 
    ma in x . 
 
    Exercise 3.4. Can you write a function from the previous 
 
    present exercises so as to use n additions and n multiplied 
 
    scaling (and not using exponentiation)? 
 
    Exercise 3.5. How can you check if the value is 
 
    boolean without resorting to the type function ? 
 
    Exercise 3.6. Consider the following expression: 
 
    (x and y and (not z)) or ((not y) and x) 
 
    Are parentheses needed in this expression? How would you go 
 
    advised to use them in this expression? 
 
    Exercise 3.7. What will the following code snippet print? 
 
    Explain. 
 
    sunday = “monday”; monday = "sunday" 
 
    t = {sunday = “monday”, [sunday] = monday} 
 
    print (t.sunday, t [sunday], t [t.sunday]) 
 
    Exercise 3.8. Suppose you want to create a table that- 
 
    paradise with each escape sequence (escape se- 
 
    quence) for strings binds its value. How would you write 
 
    a constructor for such a table? 
 
      
 
    CHAPTER 4 
 
    Operators 
 
    Lua supports an almost traditional set of operators like 
 
    to a set used in C or Pascal. Traditional operators 
 
    include assignment, control constructs and calls 
 
    procedures. Lua also supports the less common opera- 
 
    tori such as multiple assignment and locale definition 
 
    variables. 
 
    4.1. Assignment operators 
 
    Assignment is the basic means of changing the values of variables 
 
    noah and table fields: 
 
    a = “hello” .. “world” 
 
    tn = tn + 1 
 
    Lua allows multiple assignments , which 
 
    swarm assigns a list of values to a list of variables in one step. 
 
    For example, in the operator 
 
    a, b = 10, 2 * x 
 
    variable a gets the value 10 , and variable b gets the value 2 * x . 
 
    In multiple assignment, Lua first evaluates all values. 
 
    and only then performs the assignments. Therefore, we can use 
 
    use multiple assignments to change 
 
    in places two values, as in the following examples: 
 
    x, y = y, x  
 
    - swap 'x' and 'y' 
 
    a [i], a [j] = a [j], a [i] - swap 'a [i]' and 'a [j]' 
 
    Lua always converts the number of values to the number of variables: 
 
    when the number of values is less than the number of variables, then 
 
    Lua pads the list of values with the appropriate number of nils , 
 
    and when the number of values is greater, then the extra values are simply 
 
    thrown: 
 
    a, b, c = 0, 1 
 
    print (a, b, c)  
 
    -> 0 1 nil 
 
    a, b = a + 1, b + 1, b + 2 - the value b + 2 is discarded 
 
    print (a, b)  
 
    -> 1 2 
 
    a, b, c = 0 
 
    print (a, b, c)  
 
    -> 0 nil nil 
 
    The last assignment in the example above shows the distribution 
 
    an error. In order to initialize the list, re- 
 
    variables, you must provide a value for each variable: 
 
    a, b, c = 0, 0, 0 
 
    print (a, b, c)  
 
    -> 0 0 0 
 
    In fact, most of the previous examples are somewhat 
 
    then artificial. I rarely use multiple assignments 
 
    just to connect several unrelated 
 
    bout of assignments in one line. In particular, the multiple assignment 
 
    an assignment is no faster than a set of corresponding single assignments. 
 
    vanii. However, often we really need a plural 
 
    assignment. We have already seen an example that changes two variables 
 
    values. More frequent use is to obtain 
 
    several values returned by the function at once. How do we discuss 
 
    dim in section 5.1, a function can return several values at once. 
 
    In such cases, multiple assignment is usually used - 
 
    to get all these values. For example, in the assignment 
 
    a, b = f () call f gives two values: the first one is written to a , 
 
    and the second is at b . 
 
    4.2. Local variables and blocks 
 
    In addition to global variables, Lua also supports local 
 
    variable variables. We create local variables with 
 
    operator local : 
 
    j = 10  
 
    - global variable 
 
    local i = 1 - local variable 
 
    Unlike global variables, the scope of local 
 
    the variable is limited to the block where it was declared. Block is 
 
    control structure body, function body and code block (file 
 
    or the line where the variable was declared): 
 
    x = 10 
 
    local i = 1 - local in the block 
 
    while i <= x do 
 
    local x = i * 2 - local inside the while block 
 
    print (x) -> 2, 4, 6, 8, ... 
 
    i = i + 1 
 
    end 
 
    if i> 20 then 
 
    local x  
 
    - local inside “then” 
 
    x = 20 
 
    print (x + 2) - (will print 22 if the condition is met) 
 
    else 
 
    print (x) -> 10 (global) 
 
    end 
 
    print (x)  
 
    -> 10 (global) 
 
    Please note that this example will not work like 
 
    expected if you enter it interactively. In the inter- 
 
    active mode, each line is an independent block (for 
 
    except for the case when the string is not a complete const 
 
    manual). Once you enter the second line of the example ( local 
 
    i = 1 ), Lua will execute it and start a new block of code (next line 
 
    ka). By that time, the scope of local variable i is already 
 
    will end. To solve this problem, we can explicitly conclude 
 
    this whole block between the do - end keywords . When you enter 
 
    do , the block will end only when you enter the corresponding 
 
    end , so Lua won't try to execute each line as 
 
    separate block. 
 
    These do -blocks prove useful when we need BO 
 
    More precise control over the scope of local variables: 
 
    do 
 
    local a2 = 2 * a 
 
    local d = (b ^ 2 - 4 * a * c) ^ (1/2) 
 
    x1 = (-b + d) / a2 
 
    x2 = (-b - d) / a2 
 
    end –- scope 'a2' and 'd' ends here 
 
    print (x1, x2) 
 
    It is good style to use local variables 
 
    wherever possible. Local variables help 
 
    you avoid clogging the global environment with unnecessary names 
 
    mi. Moreover, accessing a local variable is faster than accessing 
 
    to the global. Finally, the local variable ceases to exist. 
 
    as soon as its scope ends, allowing the collection 
 
    the garbage bin to free the memory occupied by its value. 
 
    Lua treats local variable declarations simply as 
 
    operators. Therefore, you can insert a description of the local re- 
 
    wherever you can insert a statement. Scope 
 
    of the described variables begins immediately after the description and ends 
 
    end of the block. Each description may include an assignment 
 
    initial value, which acts the same as the operator for 
 
    piles: extra values are discarded, extra variables 
 
    get nil . If there is no assignment in the variable description 
 
    nil , the corresponding variable is set to nil : 
 
    local a, b = 1, 10 
 
    if a <b then 
 
    print (a) -> 1 
 
    local a - implies '= nil' 
 
    print (a) -> nil 
 
    end  
 
    - ends the block started by 'then' 
 
    print (a, b) -> 1 10 
 
    A common idiom in Lua is the following: 
 
    local foo = foo 
 
    This code creates a local variable foo and initializes it 
 
    the value of the global variable foo . (Local variable foo 
 
    becomes visible only after this announcement.) This idiom 
 
    useful when a block needs to store a value 
 
    the original variable, if it changes somewhere later in the code; 
 
    it also speeds up access to this variable. 
 
    Since many languages are forced to declare all local 
 
    variables at the beginning of a block (or procedure), some people think that 
 
    it is bad practice to declare variables in the middle of a block. 
 
    In fact, the opposite is true: declaring a variable only when 
 
    you really need it, you rarely need to declare it without 
 
    initial value (and therefore you are unlikely to forget its initial 
 
    lyse). Moreover, you reduce the scope of change - 
 
    noah, which makes the code easier to read. 
 
      
 
    4.3. Control constructs 
 
    Lua provides a small and fairly traditional set of control 
 
    constructs using if for conditional execution and 
 
    while , repeat and for to iterate. All control structures 
 
    have an explicit ending: end terminates if , for and while , while 
 
    how until ends repeat . 
 
    The conditional execution of the control structure can give any 
 
    value. Remember that Lua considers all values other than 
 
    nye from false and nil , as true. (In particular, Lua considers zero 
 
    and an empty string as true values.) 
 
    if then else 
 
    The if statement checks the condition and execute its then-part or its 
 
    else-part respectively. The else part is optional. 
 
    if a <0 then a = 0 end 
 
    if a <b then return a else return b end 
 
    if line> MAXLINES then 
 
    showpage () 
 
    line = 0 
 
    end 
 
    For writing nested if statements, you can use 
 
    elseif . This is similar to else followed by an if , but it does not 
 
    no need for many end : 
 
    if op == “+” then 
 
    r = a + b 
 
    elseif op == “-” then 
 
    r = a - b 
 
    elseif op == “*” then 
 
    r = a * b 
 
    elseif op == “/” then 
 
    r = a / b 
 
    else 
 
    error (“invalid operation”) 
 
    end 
 
    Since there is no switch statement in Lua , such constructions can be 
 
    are freely common. 
 
      
 
    while 
 
    As the name suggests, this operator repeats its body while 
 
    the condition is true. As usual, Lua checks the condition first; if a 
 
    it is false, then the cycle ends; otherwise Lua does 
 
    the body of the loop and repeats the given process. 
 
    local i = 1 
 
    while a [i] do 
 
    print (a [i]) 
 
    i = i + 1 
 
    end 
 
      
 
    repeat 
 
    As the name suggests, the repeat - until statement repeats its body 
 
    until the condition becomes true. Checking the condition 
 
    is added after the loop body is executed, so the loop body will be 
 
    executed at least once. 
 
    - print the first non-empty line 
 
    repeat 
 
    line = io.read () 
 
    until line ~ = “” 
 
    print (line) 
 
    Unlike many languages, in Lua the scope of local 
 
    variables include the loop condition: 
 
    local sqr = x / 2 
 
    repeat 
 
    sqr = (sqr + x / sqr) / 2 
 
    local error = math.abs (sqr ^ 2 - x) 
 
    until error <x / 10000 - local variable 'error' is visible here 
 
      
 
    Numeric for statement 
 
    The for statement comes in two flavors - numeric for and generic 
 
    for . 
 
    The numeric for statement looks like this: 
 
    for var = exp1, exp2, exp3 do 
 
    <something> 
 
    end 
 
    This loop will execute something for every var value from 
 
    exp1 to exp2 , using exp3 as a step to increase var . This is a 
 
    your expression ( exp3 ) is optional; when absent, Lua 
 
    uses 1 as a step. As typical examples of such 
 
    cycles can be considered 
 
    for i = 1, f (x) do print (i) end 
 
    for i = 10, 1, -1 do print (i) end 
 
    If you want to get a loop without an upper limit, then you can 
 
    use constant math.huge : 
 
    for i = 1, math.huge do 
 
    if (0.3 * i ^ 3 - 20 * i ^ 2 - 500> = 0) then 
 
    print (i) 
 
    break 
 
    end 
 
    end 
 
    The for loop has some subtleties that you know best, 
 
    to use it well. First, all three expressions are 
 
    are counted only once, before the start of the cycle. For example, in our 
 
    In the first example, Lua will execute f (x) just once. Secondly, 
 
    the control variable is a local variable, automatic 
 
    cally declared operator for , and it is only within the visible 
 
    cycle. It is a common mistake to think that this variable is all 
 
    still exists after the end of the loop: 
 
    for i = 1, 10 do print (i) end 
 
    max = i - possibly wrong! Here 'i' is global 
 
    If you need the value of the control variable after the loop 
 
    (usually when you exit the loop ahead of time), then you should 
 
    store its value in another variable: 
 
    - find a value in the list 
 
    local found = nil 
 
    for i = 1, #a do 
 
    if a [i] <0 then 
 
    found = i - save value of 'i' 
 
    break 
 
    end 
 
    end 
 
    print (found) 
 
    Third, you should never change the value of the control 
 
    variable: the effect of such changes is unpredictable. If you 
 
    want to end the for loop to terminate it normally, use 
 
    Call break (as we did in the previous example). 
 
      
 
    General for statement 
 
    The generic for statement iterates over all the values returned by ite- 
 
    ruling function: 
 
    - print all values in table 't' 
 
    for k, v in pairs (t) do print (k, v) end 
 
    This example uses pairs , a convenient iteration function 
 
    to traverse the entire table provided by the underlying library 
 
    Lua. At each step of this cycle, k gets an index, and v gets a value, 
 
    associated with this index. 
 
    Despite its seeming simplicity, the general for operator - 
 
    it is a very powerful language construct. With suitable iterators 
 
    you can bypass just about anything you want in an easy-to-read form- 
 
    me. The standard libraries provide multiple iterators, 
 
    allowing us to iterate over the lines of the file ( io.lines ), pairs from the tab- 
 
    faces ( pairs ), elements of sequence ( ipars ), words inside 
 
    strings ( string.gmatch ), etc. 
 
    Of course, we can write our own iterators as well. Although 
 
    using the for statement in its general form is easy, the task of writing 
 
    an iterator function has its own subtleties; we will cover this topic 
 
    later in chapter 7. 
 
    The general loop operator has two features in common with 
 
    numeric loop operator: loop variables are local to 
 
    loop bodies, and you should never write any 
 
    values. 
 
    Let's consider a more specific example of using the operator 
 
    for general view. Let's say you have a table with the names of non- 
 
    Delhi: 
 
    days = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”, 
 
    “Thursday”, “Friday”, “Saturday”} 
 
    Now you want to translate the name of the day to its position in the week. 
 
    You can traverse the entire table looking for a given name. But, 
 
    as you'll soon find out, you rarely need to search in Lua. More efficient 
 
    an effective approach would be to build a reverse table, for example 
 
    revDays , where day names are indices and values are 
 
    mi are day numbers. This table will look like this 
 
    way: 
 
    revDays = {[“Sunday”] = 1, [“Monday”] = 2, 
 
    [“Tuesday”] = 3, [“Wednesday”] = 4, 
 
    [“Thursday”] = 5, [“Friday”] = 6, 
 
    [“Saturday”] = 7} 
 
    Then all you need to find the day number is 
 
    refer to this reverse table: 
 
    x = “Tuesday” 
 
    print (revDays [x]) -> 3 
 
    Of course, you don't have to explicitly set this reverse table. We can 
 
    build it automatically from the original: 
 
    revDays = {} 
 
    for k, v in pairs (days) do 
 
    break, return and goto 
 
    revDays [v] = k 
 
    end 
 
    This loop will perform an assignment for each element of days , 
 
    where the variable k gets the key (1, 2, ...) and v gets the value 
 
    ( “Sunday”, “Monday”, ... ). 
 
      
 
    4.4. break, return and goto 
 
    The break and return statements allow us to jump right out of the block. 
 
    ka. The goto statement allows us to jump to almost any 
 
    place of function. 
 
    We use the break statement to end the loop. This opera- 
 
    the generator interrupts the inner loop ( for , repeat or while ) containing 
 
    shying him. Also it can be used to return from a function, 
 
    so you don't have to use the return statement unless you 
 
    return no value. 
 
    For syntactic reasons, the return statement can only be 
 
    to the last statement of the block: in other words, or the last 
 
    operator, or right before end , else, or until . In the following case- 
 
    as the return statement - the last statement block the then . 
 
    local i = 1 
 
    while a [i] do 
 
    if a [i] == v then return i end 
 
    i = i + 1 
 
    end 
 
    This is usually the place where we use return , because 
 
    any other operators following it would never 
 
    filled up. Sometimes it's actually useful to write return in 
 
    middle of the block; for example you can debug a function and want 
 
    avoid doing it. In cases like this, you can use 
 
    put an explicit do block around the return statement : 
 
    function foo () 
 
    return  
 
    - << SYNTAX ERROR 
 
    - 'return' is the last statement in the next block 
 
    do return end  
 
    - OK 
 
    <other statements> 
 
    end 
 
    The goto statement translates program execution to the appropriate 
 
    label. There were long discussions about goto , some people 
 
    even now they believe that they are harmful to programming and should 
 
    us to be excluded from programming languages. However, many 
 
    languages offer a similar operator, and they have a reason for it. 
 
    These operators are a powerful mechanism that will 
 
    used carefully, can improve the quality of your 
 
    th code. 
 
    In Lua, the syntax for the goto statement is quite traditional: it is 
 
    a goto reserved word followed by a label name which 
 
    can be any valid identifier. Syntax for 
 
    the label, however, is more complex: it consists of two colons, followed by 
 
    followed by the label name followed by two more colons, 
 
    for example :: name :: . This complexity is intentional, its purpose is to force 
 
    programmer think twice before using goto . 
 
    Lua puts some restrictions on where you can 
 
    jump with goto . First, the labels follow the usual 
 
    rules of visibility, so you cannot jump directly inside 
 
    the block (since the label inside the block is invisible outside of it). In- 
 
    second, you cannot jump out of the function. (Note, 
 
    that the first rule excludes the possibility of jumping inside the function 
 
    tion.) Third, you cannot jump inside the area of effect of the lo- 
 
    local variable. 
 
    A typical and well-used use of the goto statement 
 
    is an emulation of some construction you learned from 
 
    in another language, but which is absent in Lua, such as continue , many 
 
    go-level break , redo , etc. The continue statement is just a transition 
 
    to the label at the end of the loop, the redo statement jumps to the beginning of the block: 
 
    while some_condition do 
 
    :: redo :: 
 
    if some_other_condition then goto continue 
 
    else if yet_another_condition then goto redo 
 
    end 
 
    <some code> 
 
    :: continue :: 
 
    end 
 
    A useful nuance in the Lua specs is that the scope 
 
    while some_condition do 
 
    if some_other_condition then goto continue end 
 
    local var = something 
 
    of a local variable ends with the last nepu- 
 
    stom operator of the block where the variable is defined; tags are counted 
 
    empty operators. In order to see the usefulness of this, 
 
    look at the following code snippet: 
 
    break, return and goto 
 
    <some code> 
 
    :: continue :: 
 
    end 
 
    You might think this goto statement jumps straight 
 
    to the scope of var . However, the continue label finds- 
 
    after the last non-empty block operator, and therefore not in the region 
 
    These are the actions of var . 
 
    The goto statement is also useful when writing state machines. 
 
    As an example, Listing 4.1 is an example program that 
 
    which believes whether its input contains an even number of zeros. Exists 
 
    better ways of writing this program, but this approach 
 
    very useful if you want to automatically translate the ending auto- 
 
    tomato to Lua code (think about automatic code generation). 
 
    As another example, consider a simple maze game. 
 
    The maze contains several rooms, each with up to four doors: 
 
    north, south, east and west. At each step, the user enters 
 
    movement board. If there is a door in this direction, then the user 
 
    the provider enters the appropriate room; otherwise the print program 
 
    there is a warning. The goal is to get from the starting room to 
 
    the ultimate room. 
 
    This game is a typical machine where the current room is 
 
    is a state. We can implement this game using one 
 
    a block for each room and a goto statement to jump from one 
 
    rooms to another. Listing 4.2 shows how you can write a simple 
 
    the smallest labyrinth of four rooms. 
 
    For this simple game, you might decide that the program that controls 
 
    data when you describe rooms and movements when 
 
    using tables is a better solution. However, if in 
 
    each room has its own characteristics, then this approach provides 
 
    is quite successful. 
 
    Listing 4.1. State machine example using goto 
 
    :: s1 :: do 
 
    local c = io.read (1) 
 
    if c == '0' then goto s2 
 
    elseif c == nil then print'ok '; return 
 
    else goto s1 
 
    end 
 
    end 
 
   
  
 

 :: s2 :: do 
 
    local c = io.read (1) 
 
    if c == '0' then goto s1 
 
    elseif c == nil then print'not ok '; return 
 
    else goto s2 
 
    end 
 
    end 
 
    goto s1 
 
    Listing 4.2. Maze game 
 
    goto room1 - starting room 
 
    :: room1 :: do 
 
    local move = io.read () 
 
    if move == “south” then goto room3 
 
    elseif move == “east” then goto room2 
 
    else 
 
    print (“illegal move”) 
 
    goto room1 - stay in the same room 
 
    end 
 
    end 
 
    :: room2 :: do 
 
    local move = io.read () 
 
    if move == “south” then goto room4 
 
    elseif move == “west” then goto room1 
 
    else 
 
    print (“illegal move”) 
 
    goto room2 
 
    end 
 
    end 
 
    :: room3 :: do 
 
    local move = io.read () 
 
    if move == “north” then goto room1 
 
    elseif move == “east” then goto room4 
 
    else 
 
    print (“illegal move”) 
 
    goto room3 
 
    end 
 
    end 
 
    :: room4 :: do 
 
    print (“Congratulations, you won!”) 
 
    end 
 
      
 
    Exercises 
 
    Exercise 4.1. Most languages with C-like syntax 
 
    catfish doesn't offer an elseif construct . Why is this construct 
 
    Is it more needed in Lua than in other languages? 
 
    Exercise 4.2. Write four different ways to implement 
 
    to create an unconditional loop in Lua. Which one do you prefer 
 
    curls? 
 
    Exercise 4.3. Many people think that repeat - until is used 
 
    rarely and therefore should not be present in minimalist 
 
    languages like Lua. What do you think about it? 
 
    Exercise 4.4. Rewrite the state machine in Listing 4.2. 
 
    without using goto . 
 
    Exercise 4.5. Can you explain why Lua has 
 
    Is there a restriction that you can't jump out of the function? 
 
    (Hint: How would you implement this feature?) 
 
    Exercise 4.6. Assuming goto can jump out of 
 
    functions, explain that the program in Listing 4.3 should 
 
    make. (Try to reason about the label using 
 
    the same rules that are used to describe the 
 
    the scope of local variables.) 
 
    Listing 4.3. Strange (and incorrect) goto usage 
 
    function getlabel () 
 
    return function () goto L1 end 
 
    :: L1 :: 
 
    return 0 
 
    end 
 
    function f (n) 
 
    if n == 0 then return getlabel () 
 
    else 
 
    local res = f (n - 1) 
 
    print (n) 
 
    return res 
 
    end 
 
    end 
 
    x = f (10) 
 
    x () 
 
      
 
    CHAPTER 5 
 
    Functions 
 
    Functions are the main mechanism for abstraction of operators and 
 
    expressions in Lua. Functions can perform a specific task 
 
    (in other languages this is often called a procedure or subroutine ) or 
 
    calculate and return values. In the first case, we use you 
 
    function call as operator; in the second case we use it as 
 
    expression: 
 
    print (8 * 9, 9/8) 
 
    a = math.sin (3) + math.cos (10) 
 
    print (os.date ()) 
 
    In both cases, the argument list is enclosed in parentheses, 
 
    indicating a call; if the function has no arguments, then we are all equal 
 
    but must write () to indicate a function call. Existence 
 
    There is a special exception to this rule: if a function has all 
 
    one argument and this argument, either a literal (character string) or 
 
    table constructor, the parentheses are optional: 
 
    print "Hello World" 
 
    <--> print (“Hello World”) 
 
    dofile 'a.lua'  
 
    <--> dofile ('a.lua') 
 
    print [[a multi-line 
 
    <--> print ([[a multi-line 
 
    message]] message]]) 
 
    f {x = 10, y = 20}  
 
    <--> f ({x = 10, y = 20}) 
 
    type {}  
 
    <--> type ({}) 
 
    Lua also offers special syntax for object- 
 
    directed calls, colon operator. An expression like 
 
    o: foo (x) is just a way to write o.foo (o, x) , that is, to call 
 
    o.foo by adding o as an optional argument. In Chapter 16, we discuss 
 
    we make similar calls (and object-oriented programming 
 
    in more detail. 
 
    A Lua program can use functions written as 
 
    in Lua and C (or any other language used by the application 
 
    niy). For example, all functions from the Lua standard library are written 
 
    sana in C. However, when calling a function, there is no difference between 
 
    functions written in Lua and functions written in C. 
 
    As we saw in other examples, the function definition follows 
 
    traditional syntax like below: 
 
    - add the elements of the sequence 'a' 
 
    function add (a) 
 
    local sum = 0 
 
    for i = 1, #a do 
 
    sum = sum + a [i] 
 
    end 
 
    return sum 
 
    end 
 
    In this syntax, the function definition contains a name (in the example 
 
    add), a list of parameters, and a body that is a list of operators 
 
    moat. 
 
    Parameters work as local variables, initials 
 
    values of arguments passed when calling the function 
 
    tion. You can call a function with a number of arguments, different 
 
    from its parameter list. Lua will cast the number of arguments 
 
    to the number of parameters in the same way as it is done in the plural 
 
    piling: unnecessary arguments are discarded instead of missing ones 
 
    nil is added . For example, consider the following function: 
 
    function f (a, b) print (a, b) end 
 
    She has this behavior: 
 
    f (3) -> 3 nil 
 
    f (3, 4) -> 3 4 
 
    f (3, 4, 5) -> 3 4 (5 is discarded) 
 
    Although this behavior can lead to errors (easy 
 
    at runtime), it is also useful, especially 
 
    for default arguments. For example, consider the following 
 
    a function that increments the global counter: 
 
    function incCount (n) 
 
    n = n or 1 
 
    count = count + n 
 
    end 
 
    This function has one default parameter; if we call 
 
    we put it incCount () without arguments, then it will increment count by one. 
 
    When you call incCount () , Lua first initializes n values 
 
    by nil ; the or operator returns its second argument, and as a result 
 
    Lua sets the variable n to 1. 
 
      
 
    5.1. Multiple results 
 
    A little common, but nevertheless very convenient feature 
 
    The thing about Lua is that a function can return multiple values. 
 
    Some of the predefined functions in Lua return multiple 
 
    values. As an example, take the string.find function , 
 
    which looks for a pattern in a string. This function returns two indices 
 
    sa when it finds a pattern: the index of the start of the pattern in the string and the index 
 
    end of the pattern. Multiple assignment allows the program 
 
    get both results: 
 
    s, e = string.find (“hello Lua users”, “Lua”) 
 
    print (s, e)  
 
    -> 7 9 
 
    (Note that the index of the first character of the string is 1.) 
 
    Functions we write ourselves can also return immediately 
 
    multiple values by simply listing them after the word return . On- 
 
    example, a function that searches for the maximum element in a sequence 
 
    value, can return both the maximum element itself and its 
 
    index: 
 
    function maximum (a) 
 
    local mi = 1  
 
    - index of the maximum element 
 
    local m = a [mi]  
 
    - maximum value 
 
    for i = 1, #a do 
 
    if a [i]> m then 
 
    mi = i; m = a [i] 
 
    end 
 
    end 
 
    return m, mi 
 
    end 
 
    print (maximum ({8,10,23,12,5})) -> 23 3 
 
    Lua always lists the number of values returned by a function. 
 
    her, to the circumstances of her call. When we call the function like 
 
    operator, then Lua discards all return values. When we 
 
    we use a function call in an expression, then Lua only stores 
 
    first value. We get all the values only when the function call 
 
    is the last (or only) expression in the list 
 
    expressions. In Lua, these lists appear in four constructs: 
 
    multiple assignment, function call arguments, const 
 
    table handler and return statement . To illustrate all these 
 
    cases, we consider the following function definitions: 
 
    65 
 
    Multiple results 
 
    function foo0 () end  
 
    - returns nothing 
 
    function foo1 () return “a” end - returns 1 value 
 
    function foo2 () return “a”, “b” end - returns 2 values 
 
    In multiple assignment, function call as last 
 
    (or a single) expression uses as many results as 
 
    how much is needed to match the list of variables: 
 
    x, y = foo2 ()  
 
    - x = ”a”, y = ”b” 
 
    x = foo2 ()  
 
    - x = ”a”, “b” is discarded 
 
    x, y, z = 10, foo2 ()  
 
    - x = 10, y = ”a”, z = ”b” 
 
    If the function returns no value or returns, but not so 
 
    as much as required, then use 
 
    is nil : 
 
    x, y = foo0 ()  
 
    - x = nil, y = nil 
 
    x, y = foo1 ()  
 
    - x = ”a”, y = nil 
 
    x, y, z = foo2 ()  
 
    - x = ”a”, y = ”b”, z = nil 
 
    A function call that is not the last item in 
 
    list, gives exactly one value: 
 
    x, y = foo2 (), 20  
 
    - x = ”a”, y = 20 
 
    x, y = foo0 (), 20, 30  
 
    - x = nil, y = 20, 30 is discarded 
 
    When the function call is the last (or only) one 
 
    argument of another call, then all results of the first call go 
 
    as arguments to the input of the second call. We have already seen examples of this 
 
    constructs with the print function . Since the print function can 
 
    receive a variable number of arguments, the operator print (g ()) prints 
 
    melts all the values returned by g . 
 
    print (foo0 ())  
 
    -> 
 
    print (foo1 ())  
 
    -> a 
 
    print (foo2 ())  
 
    -> ab 
 
    print (foo2 (), 1)  
 
    -> a 1 
 
    print (foo2 () .. “x”)  
 
    -> ax (see below) 
 
    When a call to foo2 is inside an expression, Lua 
 
    converts the number of returned values to one; therefore in the last 
 
    on this string, concatenation only uses “a” . 
 
    If we write f (g (x)) and f has a fixed number of arguments, 
 
    then Lua converts the number of values returned to the number of arguments f , 
 
    as we saw earlier. 
 
    The table constructor also uses all values returned by 
 
    by function, without any changes: 
 
    t = {foo0 ()}  
 
    - t = {} (empty table) 
 
    t = {foo1 ()}  
 
    - t = {“a”} 
 
    t = {foo2 ()}  
 
    - t = {“a”, “b”} 
 
    As always, this behavior occurs only if the call is 
 
    the last expression in the list; calls anywhere else 
 
    give exactly one value: 
 
    t = {foo0 (), foo2 (), 4} - t [1] = nil, t [2] = “a”, t [3] = 4 
 
    Finally, the return f () statement returns all values that 
 
    returned f : 
 
    function foo (i) 
 
    if i == 0 then return foo0 () 
 
    elseif i == 1 then return foo1 () 
 
    elseif i == 2 then return foo2 () 
 
    end 
 
    end 
 
    print (foo (1))  
 
    -> a 
 
    print (foo (2))  
 
    -> ab 
 
    print (foo (0))  
 
    - (no values) 
 
    print (foo (3))  
 
    - (no values) 
 
    You can "force" the call to return only one value by 
 
    enclosing it in an extra pair of parentheses: 
 
    print ((foo0 ()))  
 
    -> nil 
 
    print ((foo1 ()))  
 
    -> a 
 
    print ((foo2 ()))  
 
    -> a 
 
    Be careful: the return statement does not require parentheses around 
 
    return value. So an expression like return (f (x)) 
 
    always returns exactly one value, regardless of whether 
 
    how many values the function f returns . Sometimes that's exactly what 
 
    you need; sometimes not. 
 
    A special function that returns multiple values is 
 
    I wish to set up table.unpack . It takes an array as input and returns everything 
 
    elements of this array, starting at 1: 
 
    print (table.unpack {10,20,30}) -> 10 20 30 
 
    a, b = table.unpack {10,20,30} - a = 10, b = 20, 30 is discarded 
 
    An important use of unpack is a generic mechanism 
 
    function call. The generalized mechanism allows you to call any 
 
    buoy function with any arguments dynamically. In ANSI C, for example 
 
    measures, there is no way to build a generalized call. You can 
 
    declare a function that takes a variable number of arguments  
 
    (with stdarg.h ) and you can call various functions, 
 
    using function pointers. However, you cannot call a function 
 
    with a variable number of arguments: every time you write 
 
    those in C, you have a fixed number of arguments, and each argument 
 
    is of a fixed type. In Lua, if you want to call a function 
 
    f with a variable number of arguments from array a , you can simply 
 
    write the following: 
 
    f (table.unpack (a)) 
 
    The unpack function call returns all values from a that become 
 
    are given by the arguments to f . For example consider the following 
 
    call: 
 
    print (string.find (“hello”, “ll”)) 
 
    You can dynamically build an equivalent call when 
 
    the power of the following code: 
 
    f = string.find 
 
    a = {“hello”, “ll”} 
 
    print (f (table.unpack (a))) 
 
    Usually unpack uses the length operator to find out if 
 
    how many items should be returned, so it only works with 
 
    sequences. If necessary, then it can be explicitly limited: 
 
    print (table.unpack ({“Sun”, “Mon”, “Tue”, “Wed”}, 2, 3)) 
 
    -> Mon Tue 
 
    Although the unpack function is written in C, we can write it in Lua, 
 
    using recursion: 
 
    function unpack (t, i, n) 
 
    i = i or 1 
 
    n = n or #t 
 
    if i <= n then 
 
    return t [i], unpack (t, i + 1, n) 
 
    end 
 
    end 
 
    The first time we call it with a single argument 
 
    volume, i writes 1, and n writes the length sequentially 
 
    sti. The function then returns t [1] along with all the results 
 
    unpack (t, 2, n) , which in turn returns t [2] and all the results 
 
    call unpack (t, 3, n) and so on, stopping after n items 
 
    Comrade 
 
      
 
      
 
      
 
    5.2. Variable functions 
 
    number of arguments 
 
    A Lua function can have an arbitrary number of arguments 
 
    ( variadic ). For example, we've already called the print function with one, two 
 
    name and a large number of arguments. Although print is defined in C, we and 
 
    in Lua, we can write functions with a variable number of arguments. 
 
    As the next example, the function below returns the sum 
 
    all its arguments: 
 
    function add (...) 
 
    local s = 0 
 
    for i, v in ipairs {...} do 
 
    s = s + v 
 
    end 
 
    return s 
 
    end 
 
    print (add (3, 4, 10, 25, 12)) -> 54 
 
    Three dots ( ... ) in the parameter list indicate that this function 
 
    has a variable number of arguments. When we call such a function 
 
    tion, Lua collects all of its arguments into a list; we call these assembled 
 
    arguments can additional arguments function. Function 
 
    can access their additional ones again with 
 
    three dots, now as an expression. In our example- 
 
    re expression {...} gives an array with all the arguments collected. 
 
    The function iterates over the elements of this array in order to find 
 
    their amount. 
 
    We call expression ... variable expression 
 
    arguments (vararg expression). It behaves like a function that returns 
 
    giving many values, returning all additional arguments 
 
    current function. For example, the print (...) command will print everything before 
 
    additional arguments to the current function. Similarly, the following 
 
    the command will create two local variables with the values of the first two 
 
    additional arguments (or nil if there are no such arguments). 
 
    local a, b = ... 
 
    In fact, we can mimic the standard mechanism for 
 
    passing parameters to Lua, translating the following construction 
 
    function foo (a, b, c) 
 
    in 
 
      
 
    function foo (...) 
 
    local a, b, c = ... 
 
    For those who like Perl's parameter passing mechanism, this is a 
 
    like. 
 
    The function shown below simply returns all passed ar- 
 
    guments: 
 
    function id (...) return ... end 
 
    The following function behaves the same as foo , except 
 
    the fact that before calling her, she prints a message with all transmitted 
 
    arguments: 
 
    function foo1 (...) 
 
    print (“calling foo:”, ...) 
 
    return foo (...) 
 
    end 
 
    This is a pretty useful trick for keeping track of all calls to 
 
    this function. 
 
    Let's take a look at another useful example. Lua provides 
 
    There are separate functions for formatting text ( string.format ) 
 
    and for writing text ( io.write ). It's quite easy to combine the two 
 
    functions into one function with a variable number of arguments: 
 
    function fwrite (fmt, ...) 
 
    return io.write (string.format (fmt, ...)) 
 
    end 
 
    Note the presence of the fmt parameter in front of the periods. 
 
    Functions with a variable number of arguments can have any number of 
 
    number of fixed parameters before the part with variable number 
 
    scrap parameters. Lua assigns the first values to these variables; 
 
    the rest (if any) go as additional parameters. Below we 
 
    we will show several examples of calls and corresponding parameters 
 
    moat: 
 
    Call  
 
    Options 
 
    fwrite ()  
 
    fmt = nil, no additional parameters 
 
    fwrite (“a”)  
 
    fmt = “a”, no additional parameters 
 
    fwrite (“% d% d”, 4, 5) fmt = “% d% d”, optional 4 and 5 
 
    (Note that calling fwrite () will result in an error, 
 
    since string.format requires a string as its first argument.) 
 
    The function can be used to bypass all additional parameters. 
 
    use the expression {...} to collect them all in a table 
 
    tsu, as we did in the add function definition . 
 
    In rare cases where the passed arguments may take 
 
    value of nil , table created using {...} will not nastoya- 
 
    sequence. For example, there is no way for 
 
    in order to find out from this table whether there were any arguments at the end of the list. 
 
    tov nil 's. For these cases, Lua offers the table.pack function 1 . This 
 
    the function takes an arbitrary number of arguments and returns a new 
 
    a table containing all its arguments, like {...} , but this 
 
    the table will have an additional field n containing the total number of its 
 
    arguments. The following function uses table.pack to 
 
    so that its arguments include nil values . 
 
    function nonils (...) 
 
    local arg = table.pack (...) 
 
    for i = 1, arg.n do 
 
    if arg [i] == nil then return false end 
 
    end 
 
    return true 
 
    end 
 
    print (nonils (2,3, nil)) 
 
    -> false 
 
    print (nonils (2,3)) 
 
    -> true 
 
    print (nonils ())  
 
    -> true 
 
    print (nonils (nil)) 
 
    -> false 
 
    Remember, however, that {...} is faster and cleaner than table.pack . 
 
      
 
    5.3. Named arguments 
 
    The mechanism for passing parameters in Lua is positional : when 
 
    we call the function, then the correspondence between arguments and form- 
 
    the minimum parameters is carried out according to their position. First 
 
    the argument gives the value to the first parameter, and so on. Sometimes, however, 
 
    it is useful to specify the parameter by name. To illustrate 
 
    To complete this, let's look at the os.rename function (from the library 
 
    os ), which renames the file. Quite often we forget 
 
    which name comes first, new or old; so we might want 
 
    override this function so that it receives two named 
 
    parameters: 
 
    - wrong 
 
    rename (old = ”temp.lua”, new = ”temp1.lua”) 
 
    Lua has no direct support for this syntax, but 
 
    we can achieve the desired effect with a small syntax 
 
    sic change. The idea is to collect everything 
 
    arguments to a table and use this table as the only one 
 
    function argument. The special syntax that Lua provides 
 
    is used to call a function, with the table constructor as the only one 
 
    argument will help us achieve this: 
 
    rename {old = ”temp.lua”, new = ”temp1.lua”} 
 
    Accordingly, we override the rename function with only 
 
    one parameter and we get the real arguments from this para- 
 
    meters: 
 
    function rename (arg) 
 
    return os.rename (arg.old, arg.new) 
 
    end 
 
    This method of passing parameters is especially useful when functions 
 
    There are many arguments and most of them are optional. For example 
 
    measures, the function that creates a new window in the GUI library can 
 
    have dozens of arguments, most of which are optional, 
 
    and it is best to pass them using names: 
 
    Listing 5.1. Function with named optional parameters 
 
    function Window (options) 
 
    - check mandatory options 
 
    if type (options.title) ~ = “string” then 
 
    error (“no title”) 
 
    elseif type (options.width) ~ = “number” then 
 
    error (“no width”) 
 
    elseif type (options.height) ~ = “number” then 
 
    error (“no height”) 
 
    end 
 
    - everything else is optional 
 
    _Window (options.title, 
 
    options.x or 0, - default value 
 
    options.y or 0, - default value 
 
    options.width, options.height, 
 
    options.background or “white”, - default value 
 
    options.border - default value false (nil) 
 
    ) 
 
    end 
 
    w = Window {x = 0, y = 0, width = 300, height = 200, 
 
    title = “Lua”, background = ”blue”, 
 
    border = true 
 
    } 
 
      
 
    Exercises 
 
    Exercise 5.1. Write a function that gets produced 
 
    any number of strings and returns them concatenated together. 
 
    Exercise 5.2. Write a function that receives an array 
 
    and prints all the elements of this array. Consider the benefits 
 
    advantages and disadvantages of using table.unpack in this 
 
    function. 
 
    Exercise 5.3. Write a function that gets produced 
 
    any number of values and returns all but the first. 
 
    Exercise 5.4. Write a function that receives an array and 
 
    prints all combinations of elements in this array. 
 
    ( Hint : you can use a recursive formula 
 
    for the number of combinations: C ( n , m ) = C ( n - 1; m - 1) + C ( n - 1, m ). 
 
    To get all C ( n , m ) combinations of n elements in 
 
    group of size m, you first add the first element to the re- 
 
    result and then generate all C ( n– 1, m– 1) combinations from 
 
    the remaining elements in the remaining places. When n is less, 
 
    than m , there are no more combinations. When m is zero, there is 
 
    there is only one combination, and it does not use any 
 
    items.) 
 
      
 
    CHAPTER 6 
 
    More about functions 
 
    Functions in Lua are first class values with appropriate 
 
    lexical scope. 
 
    What does it mean that functions are "first class values"? 
 
    This means that in Lua, a function is a value that has the same 
 
    rights as standard values for numbers and strings. We can 
 
    save functions in variables (local and global) and in tab- 
 
    persons, we can pass functions as arguments and return 
 
    them from other functions. 
 
    What does "lexical scope" mean for functions? This is a sign 
 
    cheat that functions can access variables containing them 
 
    functions 1 . As we will see in this chapter, this is a kind of harmless property. 
 
    v gives tremendous power to the language because it allows Lua to use 
 
    many powerful tricks from the world of functional software 
 
    ming. Even if you are not at all interested in functional 
 
    programming, it is still worth learning a little about how to use 
 
    take advantage of these opportunities as they can make your 
 
    Rammu is smaller and simpler. 
 
    A somewhat confusing concept in Lua is that functions, 
 
    like other values, are anonymous; they have no names. When 
 
    we are talking about a function name like print , we mean re- 
 
    a belt that contains this function. As with any other 
 
    variable containing any other value, we can manipulate 
 
    manipulate these variables in many different ways. Following 
 
    the example, although somewhat contrived, shows possible examples: 
 
    a = {p = print} 
 
    ap (“Hello World”) -> Hello World 
 
    print = math.sin - 'print' now refers to sine 
 
    ap (print (1)) -> 0.841470 
 
    sin = ap  
 
    - 'sin' now refers to the print function 
 
    sin (10, 20)  
 
    -> 10 20 
 
    (We'll see useful uses of this feature later.) 
 
    If functions are values, then do there exist expressions 
 
    which create functions? Yes. In particular, the standard way 
 
    create a function in Lua like for example 
 
    function foo (x) return 2 * x end , 
 
    this is just an example of what we call syntactic sugar ; 
 
    it's just a nicer way to write the following code: 
 
    foo = function (x) return 2 * x end 
 
    Therefore, the definition of a function is actually the operator 
 
    (assignment), which creates a value of type “function” and 
 
    assigns it to a variable. We can consider the expression 
 
    function (x) body end as a function constructor, just like 
 
    {} is a table constructor. We call the result 
 
    the definition of such constructors with an anonymous function . Although we are 
 
    then we assign functions to global variables, giving them something 
 
    like a name, there are times when functions remain anonymous. 
 
    Let's take a look at some examples. 
 
    The table library provides the table.sort function , which 
 
    paradise gets a table and sorts its elements. Similar function 
 
    should provide infinite sort order variations: 
 
    ascending and descending, numeric or alphabetically, as 
 
    my key, etc. Instead of trying to provide all possible options 
 
    sort provides an additional parameter which is 
 
    an ordering function : a function that takes two arguments and 
 
    determines if the first element should be sorted before the second 
 
    tied list. For example, let's say we have the following 
 
    record table: 
 
    network = { 
 
    {name = “grauna”, IP = “210.26.30.34”}, 
 
    {name = “arraial”, IP = “210.26.30.23”}, 
 
    {name = “lua”, IP = “210.26.23.12”}, 
 
    {name = “derain”, IP = “210.26.23.20”}, 
 
    } 
 
    If you want to sort the table by name field in reverse 
 
    alphabetically, then you can simply write: 
 
    table.sort (network, function (a, b) return (a.name> b.name) end) 
 
    See how convenient it was to use anonymous function 
 
    in this statement. 
 
    A function that takes another function as an argument is 
 
    is what we call a higher-order function . High functions 
 
    of the following order are a convenient software mechanism, and 
 
    using anonymous functions to create their functional 
 
    arguments is a great source of flexibility. However, remember- 
 
    the thread that higher-order functions are not something special, 
 
    they are simply a consequence of Lua's ability to handle functions like 
 
    values of the first class. 
 
    In order to illustrate the use of the functions of high 
 
    orders, we will write a simplified definition of 
 
    higher order function, derivative. Following informal 
 
    definition, the derivative of the function f at the point x is the value 
 
    ( f ( x + d ) - f ( x )) / d when d becomes infinitesimal. According to 
 
    and with this definition, we can write an approximate value 
 
    derivative as follows: 
 
    function derivative (f, delta) 
 
    delta = delta or 1e-4 
 
    return function (x) 
 
    return (f (x + delta) - f (x)) / delta 
 
    end 
 
    end 
 
    Having received the function f , the call to derivative (f) will return an approximate 
 
    the value of its derivative, which is another function: 
 
    c = derivative (math.sin) 
 
    > print (math.cos (5.2), c (5.2)) 
 
    -> 0.46851667130038  
 
    0.46856084325086 
 
    print (math.cos (10), c (10)) 
 
    -> -0.83907152907645  
 
    -0.83904432662041 
 
    Since functions are first class values in Lua, 
 
    we can remember them not only in global variables, but also in 
 
    local variables and table fields. As we will see later, the 
 
    using functions in table fields is a key component 
 
    some of the advanced features of Lua, such as modules and objects 
 
    ect-oriented programming. 
 
    6.1. Closures 
 
    When we write a function that is enclosed within another function, 
 
    then it has full access to the local variables of the environment 
 
    its functions; we call this lexical scope (lexical 
 
    scoping). While this rule of visibility may seem obvious, 
 
    in fact it is not. Lexical scope together with 
 
    functions that are first class objects is 
 
    a very powerful concept in a programming language, but many 
 
    languages don't support this. 
 
    Let's start with a simple example. Suppose you have a list of names 
 
    students and a table comparing their grades to them; you want to suck 
 
    list students according to their grades, students with higher 
 
    grades should come before. You can achieve this by following- 
 
    in a way: 
 
    names = {“Peter”, “Paul”, “Mary”} 
 
    grades = {Mary = 10, Paul = 7, Peter = 8} 
 
    table.sort (names, function (n1, n2) 
 
    return grades [n1]> grades [n2]  
 
    -– compare grades 
 
    end) 
 
    Now let's say that you want to create a function to solve the given 
 
    noah tasks: 
 
    function sortbygrade (names, grades) 
 
    table.sort (names, function (n1, n2) 
 
    return grades [n1]> grades [n2]  
 
    -– compare grades 
 
    end) 
 
    end 
 
    An interesting feature in this example is that anonymous 
 
    the function passed to the sort function accesses the parameter 
 
    grades , which is local to the enclosing function 
 
    sortbygrade . Within this anonymous function, grades is not 
 
    neither a global variable nor a local variable, but the fact that we 
 
    called a nonlocal variable . (For historical reasons, for 
 
    notation for non-local variables in Lua is also used term 
 
    min upvalue .) 
 
    Why is this so interesting? Because functions are important 
 
    first class, and so they can leave primary education 
 
    the power of the action of its variables. Consider the following example: 
 
    function newCounter () 
 
    local i = 0 
 
    return function ()  
 
    -– anonymous function 
 
    i = i + 1 
 
    return i 
 
    end 
 
    end 
 
    c1 = newCounter () 
 
    print (c1 ()) -> 1 
 
    print (c1 ()) -> 2 
 
    In this code, the anonymous function refers to the non-local re- 
 
    variable i to account for the value. However, by the time we call 
 
    anonymous function, variable i will already leave its scope by 
 
    validity, since the function that created this variable ( new- 
 
    Counter ) has already finished. However, Lua correctly handles 
 
    this situation using the concept of a closure . Simply put, 
 
    a closure is a function plus whatever it needs to access non- 
 
    local variables. If we call newCounter again , then it 
 
    will create a new local variable i , so we get a new one 
 
    a closure working on this new variable: 
 
    c2 = newCounter () 
 
    print (c2 ()) -> 1 
 
    print (c1 ()) -> 3 
 
    print (c2 ()) -> 2 
 
    Thus, c1 and c2 are different closures of the same 
 
    functions, and each uses its own independently instantiated 
 
    local variable i . 
 
    In fact, in Lua, the meaning is a closure, not a function. 
 
    tion. A function is just a prototype for a closure. However, we 
 
    we will use the term "function" to denote the closure 
 
    whenever it will not lead to confusion. 
 
    Closures prove to be a very handy tool in many 
 
    cases. As we have already seen, they turn out to be convenient as 
 
    arguments to higher-order functions such as sort . Closures 
 
    also useful for functions that build other functions like 
 
    the newCounter function in our example, or a function for finding 
 
    denia derivative; this mechanism allows Lua programs to use 
 
    use advanced techniques from the world of functional software 
 
    ming. Closures are also handy for various callable 
 
    functions (callback). A typical example occurs when you create 
 
    various buttons in its library to create a GUI. Each 
 
    the button has its own function, which should be called when 
 
    the user clicks on this button; usually needed for different 
 
    buttons led to different actions. For example, a calculator 
 
    you need ten buttons, one for each number. You can co- 
 
    build with a similar function: 
 
    function digitButton (digit) 
 
    return Button {label = tostring (digit), 
 
    action = function () 
 
    add_to_display (digit) 
 
    end 
 
    } 
 
    end 
 
    In this example, we will assume that Button is a function from 
 
    a library that creates new buttons; label is the label of the button 
 
    ki; action is the closure to be called when the button is 
 
    children pressed. The closure can be noticeable after a long time 
 
    after digitButton is executed, and after locale 
 
    naya variable digit went out of their field of sight, but it is not 
 
    less, the closure can still access it. 
 
    Closures are also useful in a very different case. 
 
    tea. Since functions are stored in regular variables, we can 
 
    it is easy to override functions in Lua, including even standard ones. This 
 
    possibility is one of the reasons why Lua is so flexible. Hour- 
 
    then when you override the function you still need the old one 
 
    function. For example, you want to override the sin function to 
 
    she worked in degrees instead of radians. This new function converts 
 
    expands its argument and then calls the original sin function to produce 
 
    completing work. Your code might look like this 
 
    below: 
 
    oldSin = math.sin 
 
    math.sin = function (x) 
 
    return oldSin (x * math.pi / 180) 
 
    end 
 
    The following is a slightly neater way to accomplish this 
 
    override: 
 
    do 
 
    local oldSin = math.sin 
 
    local k = math.pi / 180 
 
    math.sin = function (x) 
 
    return oldSin (x * k) 
 
    end 
 
    end 
 
    We now store the old version in a local variable; 
 
    the only way to access it is through a new function. 
 
    You can use this same approach to create secure 
 
    environments, also called sandboxes . Safe 
 
    environments are extremely important when executing code from untrusted sources. 
 
    sources such as the Internet. For example, to restrict files, 
 
    which the program can access, we can override 
 
    the io.open function using closures: 
 
    do 
 
    local oldOpen = io.open 
 
    local access_OK = function (filename, mode) 
 
    <check access> 
 
    end 
 
    io.open = function (filename, mode) 
 
    if access_OK (filename, mode) then 
 
    return oldOpen (filename, mode) 
 
    else 
 
    return nil, “access denied” 
 
    end 
 
    end 
 
    end 
 
    What makes this example especially enjoyable is that after that 
 
    overrides there is absolutely no way for the program to call 
 
    the original open , except through a new version with control. Nebezo- 
 
    the passable version is stored in a local variable inside the closure, 
 
    not attainable from the outside in any way. With this approach, you can build 
 
    sandboxes for Lua on Lua itself, while receiving as advantages 
 
    simplicity and flexibility. Instead of some kind of one-stop solution for 
 
    all problems Lua provides a meta mechanism, so you can 
 
    adjust your environment to your goals. 
 
      
 
    6.2. Non-global functions 
 
    The obvious consequence of the fact that functions are values 
 
    first class, is that we can save functions not 
 
    only in global variables, but also in local variables- 
 
    data and fields of the table. 
 
    We have already seen various examples of functions stored in fields. 
 
    tables: most Lua libraries use this mechanism (by 
 
    example, io.read , math.sin ). To create similar functions in Lua 
 
    we just need to combine the standard syntax for functions with 
 
    syntax for tables: 
 
    Lib = {} 
 
    Lib.foo = function (x, y) return x + y end 
 
    Lib.goo = function (x, y) return x - y end 
 
    print (Lib.foo (2, 3), Lib.goo (2, 3)) -> 5 -1 
 
    Of course, we can also use constructors: 
 
    Lib = { 
 
    foo = function (x, y) return x + y end, 
 
    goo = function (x, y) return x - y end 
 
    } 
 
    Moreover, Lua also provides another syntax for 
 
    similar functions: 
 
    Lib = {} 
 
    function Lib.foo (x, y) return x + y end 
 
    function Lib.goo (x, y) return x - y end 
 
    When we store a function in a local variable, we get 
 
    we tea a local function , that is, a function with a limited scope 
 
    visibility. Definitions like this are especially handy for packages: 
 
    since Lua treats each block as a function, a block can 
 
    Can define local functions that are only visible from the block. 
 
    Lexical scoping ensures that other functions from 
 
    package can use these local functions: 
 
    local f = function ( <params> ) 
 
    <body> 
 
    end 
 
    local g = function ( <params> ) 
 
    <some code> 
 
    f () - 'f' is visible here 
 
    <some code> 
 
    end 
 
    Lua also supports the following syntactic sugar for lo- 
 
    cal functions: 
 
    local function f ( <params> ) 
 
    <body> 
 
    end 
 
    When defining recursive local functions, one gets 
 
    subtlety. The naive approach doesn't work here. Consider the following 
 
    definition: 
 
    local fact = function (n) 
 
    if n == 0 then return 1 
 
    else return n * fact (n-1) - error 
 
    end 
 
    end 
 
      
 
    When Lua compiles the fact (n-1) call in the body of a function, then the lo- 
 
    The actual function fact has not yet been defined. Therefore, this definition 
 
    it will try to call the global function fact , not the local one. 
 
    We can solve this problem by first defining a local re- 
 
    variable and then already defining the function itself: 
 
    local fact 
 
    fact = function (n) 
 
    if n == 0 then return 1 
 
    else return n * fact (n-1) 
 
    end 
 
    end 
 
    Now fact inside the function refers to a local variable. 
 
    Its value at the moment the function is defined does not mean anything; 
 
    by the time the function is executed, it will already receive 
 
    correct value. 
 
    When Lua "reveals" its syntactic sugar for the local 
 
    function, it does not use the "naive" way. Instead, define 
 
    division as shown below: 
 
    local function foo ( <params> ) <body> end , 
 
    goes into 
 
    local foo; foo = function ( <params> ) <body> end 
 
    Therefore, we can safely use this syntax to re- 
 
    italic functions. 
 
    Of course, this trick won't work unless you have direct recursion - 
 
    the two functions call each other. In such cases, you need to explicitly write 
 
    put the appropriate descriptions of local variables: 
 
    local f, g - described local variables 
 
    function g () 
 
    <some code> f () <some code> 
 
    end 
 
    function f () 
 
    <some code> g () <some code> 
 
    end 
 
    In this example, the function f can not write a local function f , 
 
    because in such a case Lua will create a new local variable- 
 
    the new f , leaving the old (referenced by g ) uninitialized- 
 
    Noah. 
 
      
 
    6.3. Tail optimization 
 
    calls 
 
    Another interesting feature of functions in Lua is that 
 
    Lua performs tail call optimizations. (It means that 
 
    Lua supports tail recursion optimization , 
 
    although it is not directly related to recursion here, see exercise- 
 
    (see section 6.3.) 
 
    The tail call is actually a goto that looks like 
 
    function call. A tail call happens when a function is called 
 
    has another function as its last action. For example, in the following 
 
    In the following code, the call to the function g is tail: 
 
    function f (x) return g (x) end 
 
    After f calls g , it has nothing else to do. In similar 
 
    situations, the program does not need to return to the calling 
 
    function when the nested call has completed. Therefore after 
 
    tail call the program does not need to store any 
 
    information about the calling function on the stack. When the call to g ends 
 
    it seems that control goes directly to the point where it was 
 
    named f . Some language implementations, such as the Lua interpreter, 
 
    use this fact and do not allocate additional stack space 
 
    for tail call. We say that these implementations are supported 
 
    by eliminating tail calls (tail-call elimination). 
 
    Since tail calls do not use stack space, 
 
    number of nested tail calls that the program can 
 
    execute, it is simply not limited by anything. For example, we can you- 
 
    call the next function, passing any number as an argument 
 
    cop: 
 
    function foo (n) 
 
    if n> 0 then return foo (n - 1) end 
 
    end 
 
    This call will never result in a stack overflow. 
 
    The subtle point in eliminating tail calls is 
 
    the question of what is a tail call. For some 
 
    quite obvious candidates require that a defiant 
 
    the function does nothing else after the call, it is not executed. On- 
 
    example, in the following code, the function call g is not tail. 
 
    function f (x) g (x) end 
 
    The problem in this example is that after calling g, the function f 
 
    should discard the results of g before returning. Similarly, all the following 
 
    the next calls also do not satisfy the condition: 
 
    return g (x) + 1 - addition is required 
 
    return x or g (x) - must be converted to 1 value 
 
    return (g (x))  
 
    - must be converted to 1 value 
 
    In Lua, only a call like return func ( args ) is tail. 
 
    However, both func and its arguments can be complex expressions, 
 
    as Lua will execute them before calling. For example the following 
 
    the call is tailored: 
 
    return x [i] .foo (x [j] + a * b, i + j) 
 
      
 
    Exercises 
 
    Exercise 6.1. Write a function integral that gets 
 
    function f and returns an approximate value of its integral 
 
    rala. 
 
      
 
    Exercise 6.2. In Exercise 3.3, you had to write a function 
 
    the function that receives the polynomial (represented by the table) 
 
    and the value of the variable and returns the value of the polynomial for 
 
    this variable. Write a function that receives a lot of 
 
    goclen and returns a function that, when called for 
 
    any x value , will return the polynomial value for this 
 
    x . For instance: 
 
    f = newpoly ({3, 0, 1}) 
 
    print (f (0))  
 
    -> 1 
 
    print (f (5))  
 
    -> 76 
 
    print (f (10)) 
 
    -> 301 
 
    Exercise 6.3. Sometimes the language supporting optimization 
 
    tail calls is called supporting tail 
 
    recursion (properly tail recursive), if the optimization of tailings 
 
    out calls is only supported for recursive calls. 
 
    wwii (Without recursive calls, the maximum call depth is 
 
    wow is statically defined.) 
 
    Show that this is not true in a language like Lua: write 
 
    a program that implements unlimited call depth 
 
    wow without using recursion. ( Hint : see section 8.1.) 
 
    Exercise 6.4. As we have seen, the tail call is a 
 
    a clipped goto . Using this idea, rewrite the code for 
 
    the maze games from section 4.4 using tail calls. 
 
    Each block should become a new function and each goto 
 
    becomes a tail call. 
 
      
 
      
 
      
 
      
 
      
 
      
 
    CHAPTER 7 
 
    Iterators 
 
    and the generalized for 
 
    In this chapter, we will show you how to write iterators for generalized 
 
    for ( general for operator ). Starting with simple iterators, we 
 
    learn how to use the full power of generic for to write 
 
    simpler and more efficient iterators. 
 
      
 
    7.1. Iterators and Closures 
 
    An iterator is any construct that allows you to iterate over 
 
    host elements of the set. In Lua, we usually represent iterators by 
 
    help functions: every time we call a function, it will 
 
    rotates the "next" item from the set. 
 
    Any iterator has to save its state somewhere between 
 
    challenges to know where he is and how to proceed. 
 
    Closures are an excellent mechanism for this task. 
 
    Recall that a closure is a function that refers to one 
 
    noah or several local variables from your environment. 
 
    These variables retain their values between successive 
 
    calls to the closure, thereby helping the closure understand where 
 
    it is on its way. Of course, to create a new closure 
 
    we also have to create non-local variables for it. Therefore, 
 
    the structure of a closure usually includes two functions at once: itself 
 
    closure and factory , a function that creates a closure along with 
 
    surrounding variables. 
 
    As an example, let's write a simple iterator for a list. 
 
    Unlike ipairs , this iterator will not return the index of every 
 
    the same element, but only its value: 
 
    function values (t) 
 
    local i = 0 
 
    return function () i = i + 1; return t [i] end 
 
    end 
 
    In this example, values is a factory. Every time we call 
 
    We use this factory, it creates a new closure (iterator). This is 
 
    The kaney stores its state in its external variables t and i . Each 
 
    Every time we call this iterator, it returns the following 
 
    value from list t . After the last element, the iterator will return nil , 
 
    which marks the end of iterations. 
 
    We can use this iterator in a while loop : 
 
    t = {10, 20, 30} 
 
    iter = values (t)  
 
    - create an iterator 
 
    while true do 
 
    local element = iter ()  
 
    - call the iterator 
 
    if element == nil then break end 
 
    print (element) 
 
    end 
 
    However, it is much easier to use the generic for statement . 
 
    After all, it was created for exactly this kind of iteration- 
 
    niya: 
 
    t = {10, 20, 30} 
 
    for element in values (t) do 
 
    print (element) 
 
    end 
 
    The generic for does all the behind-the-scenes work for the iteration 
 
    rationing: it stores the iterating function inside, so we don't 
 
    needs a variable iter , it calls the iterator for each new iteration 
 
    walkie-talkie, and it completes the iteration when the iterator returns nil . 
 
    (We'll see in the next section that the generic for does even 
 
    more than that.) 
 
    As a more advanced example, see Listing 7.1 for re- 
 
    fetch all words from the current input file. For such a search, we 
 
    two values are needed: the content of the current line (variable line ) 
 
    and where we are inside this line (variable pos ). With these 
 
    data, we can always generate the next word. Basic 
 
    The most important part of the iterating function is the call to string.find . This call 
 
    searches for a word in the current line, starting at the current position. He described 
 
    matches a 'word' using the pattern '% w +' , which one 
 
    or more alphanumeric characters. If this call finds 
 
    word, then the function updates the current position by the first character  
 
    after a word and returns that word 1 . Otherwise, the iterator reads the following- 
 
    string and repeats the search. If there are no more rows, it returns 
 
    nil to signal the end of the traversal. 
 
    Despite its complexity, using allwords is extremely easy 
 
    then: 
 
    for word in allwords () do 
 
    print (word) 
 
    end 
 
    This is a typical situation with iterators: they may not be so easy 
 
    to write, but they are easy to use. This is not a problem, 
 
    much more often, end users who program in Lua do not 
 
    write their own iterators, but use the iterators provided by 
 
    application. 
 
    Listing 7.1. Iterator to iterate over all words from the input file 
 
    function allwords () 
 
    local line = io.read ()  
 
    - current line 
 
    local pos = 1  
 
    - current position in the line 
 
    return function ()  
 
    - iterator function 
 
    while line do  
 
    -– repeat as long as there are lines 
 
    local s, e = string.find (line, “% w +”, pos) 
 
    if s then  
 
    -– have you found the word? 
 
    pos = e + 1  
 
    -– next position after word 
 
    return string.sub (line, s, e) -– return word 
 
    else 
 
    line = io.read () - word not found; trying the trail. string 
 
    pos = 1  
 
    - start at the beginning of the line 
 
    end 
 
    end 
 
    return nil - no more lines, end of traversal 
 
    end 
 
    end 
 
      
 
    7.2. Generic for semantics 
 
    One of the drawbacks of the iterators discussed above is that 
 
    that we need to create a new closure for initialization 
 
    each new cycle. For most cases, this is not 
 
    problem. For example, in the case of the allwords iterator, the creation price is 
 
    a single closure is incomparable to the cost of reading an entire file. but 
 
    in some situations this can be significant. Such 
 
    cases we can use the generic for itself to store 
 
    states. In this section, we will see what possibilities for storing 
 
    state is offered by the generic for . 
 
    We have seen that a generic for loop stores iterables during a loop. 
 
    function within itself. It actually stores three values: 
 
    iterated function, unchangeable state (invariant state) and 
 
    control variable . Now let's get down to the details. 
 
    The syntax for a generic for is shown below: 
 
    for <var-list> in <exp-list> do 
 
    <body> 
 
    end 
 
    Here var-list is a list of one or more re- 
 
    variables separated by commas, and exp-list is a list of one or 
 
    multiple expressions, also separated by commas. Often a list 
 
    expression consists of a single element, a call to the iterate factory 
 
    rators. In the following code, for example, the list of variables is k , v , 
 
    and the list of expressions consists of a single element, pairs (t) : 
 
    for k, v in pairs (t) do print (k, v) end 
 
    Often, a variable list also consists of just one variable - 
 
    noah, as in the following loop: 
 
    for line in io.lines () do 
 
    io.write (line, “\ n”) 
 
    end 
 
    We name the first variable in the control variable list- 
 
    noah . During the whole cycle, its value is not equal to nil , because when 
 
    it becomes nil , the loop ends. 
 
    The first thing a for loop does is compute the values expressed 
 
    ny following in . These expressions must give three meanings, 
 
    used by the for statement : iterating function, immutable 
 
    the state and initial value of the manipulated variable. As in 
 
    multiple assignment, only the last (or the only 
 
    nth) list item can give more than one value; and the number of these 
 
    values are reduced to three, excess values are discarded, together 
 
    then the missing nil 's are added . (When we use simple 
 
    iterators, the factory only returns the iterating function, 
 
    this invariant state and control variable get 
 
    the value is nil .) 
 
    After this initialization, for calls the iterating function with 
 
    two arguments: an invariant state and a control transfer 
 
    change. (From the point of view of the for statement , this is an invariant state 
 
    doesn't make any sense at all. The for statement only passes the value 
 
    reading the state from the initialization step to calling the iterating function 
 
    for ) then assigns the values returned by the iterating 
 
    function, variables declared in the variable list. If a 
 
    the first value (assigned to the manipulated variable) is 
 
    nil , then the loop ends. Otherwise, for executes its body and calls again 
 
    an iterating function, repeating the process. 
 
    More precisely the construction of the view 
 
    for var_1, ..., var_n in <explist> do <block> end 
 
    equivalent to the following code: 
 
    do 
 
    local _f, _s, _var = <explist> 
 
    while true do 
 
    local var_1, ..., var_n = _f (_s, _var) 
 
    _var = var_1 
 
    if _var == nil then break end 
 
    <block> 
 
    end 
 
    end 
 
    So if our iterating function is f , the immutable 
 
    the state s and the initial state for the control variable is 
 
    a 0 , then the control variable will run through the following values 
 
    a 1 = f ( s , a 0 ), a 2 = f ( s , a 1 ), etc., until a i equals nil . 
 
    If for has other variables, then they just get an extra 
 
    solid values returned by f . 
 
      
 
    7.3. Stateless iterators 
 
    As its name implies, such an iterator does not store any 
 
    any state. Therefore, we can use the same 
 
    a stateless iterator in many loops, thus avoiding creating- 
 
    new closures. 
 
    As we have seen, the for statement calls the iterating function 
 
    with two arguments: immutable state and control transfer 
 
    changeable. A stateless iterator builds the next element of the loop, 
 
    using only these two values. A typical example of this iteration is 
 
    the torus is ipairs , which iterates over all the elements of the array: 
 
    a = {“one”, “two”, “three”} 
 
    for i, v in ipairs (a) do 
 
    print (i, v) 
 
    end 
 
    The state of this iterator is the table we are iterating over 
 
    (an immutable state that retains its value throughout 
 
    loop), and the current index (control variable). And ipairs 
 
    (factory) and the iterator itself is very simple, we could write them to 
 
    Lua as follows: 
 
    local function iter (a, i) 
 
    i = i + 1 
 
    local v = a [i] 
 
    if v then 
 
    return i, v 
 
    end 
 
    end 
 
    function ipairs (a) 
 
    return iter, a, 0 
 
    end 
 
    When Lua is ipairs (a) for a cycle for , she gets three 
 
    values: an iterating function iter , a as an invariant state 
 
    value and zero as the initial value for the control 
 
    change. Lua then calls iter (a, 0) , which gives 1, a [1] (unless 
 
    a [1] is no longer nil ). The next iteration calls iter (a, 1) , which 
 
    returns 2, a [2] , and so on up to the first nil element . 
 
    The pairs function , which iterates over all the elements in a table, looks like 
 
    ms, except that the iterating function is a function 
 
    next , which is a standard Lua function: 
 
    function pairs (t) 
 
    return next, t, nil 
 
    end 
 
    Calling next (t, k) , where k is the key of table t , returns the following - 
 
    key in the table in no particular order, and also associated with 
 
    with this key the value as the second return value. Call 
 
    next (t, nil) returns the first pair. When there are no more pairs, then next 
 
    returns nil . 
 
    Some people prefer to use next explicitly , avoiding calling 
 
    pairs : 
 
    for k, v in next, t do 
 
    <loop body> 
 
    end 
 
    Recall that for casts its list of expressions to three values. 
 
    niyam, which are next , t and nil ; this is exactly what 
 
    what happens when calling pairs . 
 
    An iterator for traversing a linked list is another interesting one 
 
    an example of a stateless iterator. (As we have already mentioned, the connected 
 
    lists are not common in Lua, but sometimes we need them.) 
 
    local function getnext (list, node) 
 
    if not node then 
 
    return list 
 
    else 
 
    return node.next 
 
    end 
 
    end 
 
    function traverse (list) 
 
    return getnext, list, nil 
 
    end 
 
    Here we use the beginning of the list as an invariant state 
 
    (second value returned by traverse ) and the current node as 
 
    ve control variable. When the iterated function getnext 
 
    will be called the first time, node will be nil , and therefore the function 
 
    will return list as the first node. In subsequent calls, node will already be 
 
    is not nil and therefore the iterator will return node.next as expected. 
 
    As usual, using this iterator is extremely simple: 
 
    list = nil 
 
    for line in io.lines () do 
 
    list = {val = line, next = list} 
 
    end 
 
    for node in traverse (list) do 
 
    print (node.val) 
 
    end 
 
      
 
    7.4. Iterators with complex condition 
 
    Often an iterator needs to store more state than 
 
    is placed in the variables of the invariant state and the control 
 
    variable. The simplest solution is to use a 
 
    kaniy. An alternative solution would be to pack everything you need 
 
    an iterator into a table and use that table as invariant 
 
    state for the loop. Using a table, an iterator can store 
 
    as much data as he needs. Moreover, he can change these 
 
    data the way he wants. Although the state is the same all the time 
 
    table (therefore it is invariant), the contents of the table can be 
 
    run throughout the cycle. Since such iterators store everything 
 
    their data is in a state, they usually ignore the second argument, 
 
    provided by the generic for loop (loop variable). 
 
    As an example of this approach, we will rewrite the iterator 
 
    allwords , which bypasses all words in the input file. This time 
 
    we will store its state in a table with two fields: line and 
 
    pos . 
 
    The function that starts the loop is pretty simple. She must ver- 
 
    Introduce an iterating function and an initial state: 
 
    local iterator  
 
    - to be determined later 
 
    function allwords () 
 
    local state = {line = io.read (), pos = 1} 
 
    return iterator, state 
 
    end 
 
    The iterator function does most of the work : 
 
    function iterator (state) 
 
    while state.line do  
 
    - repeat while there are lines 
 
    - looking for the next word 
 
    local s, e = string.find (state.line, “% w +”, state.pos) 
 
    if s then  
 
    - found the word? 
 
    - update position 
 
    state.pos = e + 1 
 
    return string.sub (state.line, s, e) 
 
    else - word not found 
 
    state.line = io.read () - trying the next line ... 
 
    state.pos = 1  
 
    -- ... first 
 
    end 
 
    end 
 
    return nil  
 
    - there are no more lines, we end the loop 
 
    end 
 
    Whenever possible, you should try to write an iteration- 
 
    stateless tori, those that keep their entire state in the 
 
    for loop variables . With them, you do not create new objects when 
 
    start the cycle. If this model does not fit, then you should ask 
 
    to create closures. Also, it's prettier, closure is usually 
 
    is more efficient as an iterator than a table: 
 
    First, it is cheaper to create a closure than a table; secondly, access 
 
    accessing non-local variables is faster than accessing table fields. 
 
    We will see another way to write iterators later, using 
 
    by using coroutines. This is the most powerful solution, but it 
 
    somewhat more expensive. 
 
    7.5. Genuine iterators (true iterarators) 
 
    The term "iterator" is somewhat inaccurate, since it actually iterates 
 
    It iterates not an iterator, but a for loop . Iterators only provide 
 
    consecutive values to iterate over. Maybe more 
 
    a good term would be "generator", but the term "iterator" is already 
 
    became widespread in languages like Java. 
 
    However, there is another way to construct iterators, where 
 
    iterators actually do iteration. When we use 
 
    we use such iterators, we don't write a loop; instead we just 
 
    then we call an iterator with an argument describing that the iterator should 
 
    to do at each iteration. More precisely, the iterator receives as 
 
    ve argument is a function that it calls inside its loop. 
 
    As an example, let's rewrite the allwords iterator again 
 
    using this approach: 
 
    function allwords (f) 
 
    for line in io.lines () do 
 
    for word in string.gmatch (line, “% w +”) do 
 
    f (word)  
 
    - call function 
 
    end 
 
    end 
 
    end 
 
    To use this iterator, we just have to provide 
 
    inject the body of the loop as a function. If we just want to print each 
 
    after a word, then we use print : 
 
    allwords (print) 
 
    Often an anonymous function is used as the loop body. On- 
 
    example, the following code snippet counts how many times the word "hello" 
 
    occurs in the file: 
 
    local count = 0 
 
    allwords (function (w) 
 
    if w == “hello” then count = count + 1 end 
 
    end) 
 
    print (count) 
 
    The same task written using iterators previously 
 
    the style looked at is not much different: 
 
    local count = 0 
 
    for w in allwords () do 
 
    if w == “hello” then count = count + 1 end 
 
    end 
 
    print (count) 
 
    Similar iterators were very popular in older versions 
 
    Lua, when the language did not yet have a for statement . How do they compare 
 
    with iterators of the previously discussed style? Both styles have a 
 
    roughly the same overhead: one function call per iteration 
 
    walkie-talkie. On the other hand, it is easier to write an iterator using 
 
    genuine iterators (although we can get the same ease 
 
    using coroutines). On the other hand, previously considered 
 
    the new style is more flexible. First, it allows two or more pa- 
 
    parallel iteration. (For example, consider the case of bypassing 
 
    two files at once, comparing them word by word.) Second, it 
 
    allows the use of break and return inside a loop. With authentic 
 
    return iterators return from anonymous function, but not 
 
    from the loop. Therefore, I usually use traditional (i.e. 
 
    seen earlier) iterators. 
 
      
 
    Exercises 
 
    Exercise 7.1. Write an iterator fromto such that you follow- 
 
    the two loops are equivalent: 
 
    for i in fromto (n, m) 
 
    <body> 
 
    end 
 
    for i = n, m 
 
    <body> 
 
    end 
 
    Can you implement this with an iterator without co- 
 
    standing? 
 
    Exercise 7.2. Add a step parameter to the previous exercise. 
 
    neniyu. Can you still implement this with 
 
    soup of a stateless iterator? 
 
    Exercise 7.3. Write a uniquewords iterator that can 
 
    rotates all words from the given file without repetitions. 
 
    ( Hint : start with the allwords code in Listing 7.1; use 
 
    use a spreadsheet to store all the words you have already 
 
    zeros.) 
 
    Exercise 7.4. Write an iterator that returns everything 
 
    non-empty substrings of the given string. (You will need a function 
 
    ration string.sub .) 
 
      
 
    CHAPTER 8 
 
    Compilation, 
 
    execution and errors 
 
    Although we call Lua an interpreted language, Lua is always pre- 
 
    compiles the source code into an intermediate form before ex- 
 
    filling. (In fact, many interpreted languages do 
 
    ditto.) Having a compile file may sound strange 
 
    in relation to an interpreted language like Lua. However, the main 
 
    the feature of interpreted languages is not that they are not compiled. 
 
    are copied, but what is possible (and easy) to execute the generated 
 
    code on the fly. We can say that having a function like dofile is 
 
    this is what allows Lua to be called an interpreted language. 
 
    8.1. Compilation 
 
    Earlier, we introduced dofile as a kind of primitive operation for 
 
    executing blocks of Lua code, but dofile is actually an aid 
 
    gatelnaya function: all the hard work is done LoadFile . Like 
 
    dofile , loadfile loads a block of Lua code from a file, but it doesn't 
 
    completes this block. Instead, it only compiles this block 
 
    and returns the compiled block as a function. Moreover, in 
 
    unlike dofile , loadfile does not throw an error, it just returns 
 
    error code so that we can handle these errors ourselves. We can 
 
    Let's define dofile like this: 
 
    function dofile (filename) 
 
    local f = assert (loadfile (filename)) 
 
    return f () 
 
    end 
 
    Note the use of the assert function in order to 
 
    to cause errors (raise error), if loadfile fulfills a 
 
    a mistake. 
 
    For simple tasks, dofile is convenient because it does all the work. 
 
    bot in one call. However, loadfile is more flexible. In case of error 
 
    loadfile returns nil and an error message, which allows us to 
 
    handle the error in a convenient way. Moreover, if we need 
 
    but execute the file several times, then we can call once 
 
    loadfile and call the function it returns several times. This 
 
    the approach is much cheaper than calling dofile multiple times , since 
 
    the file is compiled only once. 
 
    The load function is similar to loadfile , except that it 
 
    takes a block of code not from a file, but from line 1 . For example, consider the following 
 
    next line: 
 
    f = load (“i = i + 1”) 
 
    After executing this code, f will be a function that executes- 
 
    em i = i + 1 when called: 
 
    i = 0 
 
    f (); print (i) -> 1 
 
    f (); print (i) -> 2 
 
    The load function is quite powerful and we have to use it with 
 
    caution. It is also an expensive feature (compared to some 
 
    alternatives) and can lead to code that is very heavy 
 
    lo understand. Before you use it, make sure there is no more 
 
    simple way to solve the problem. 
 
    If you want a quick and dirty dostring (i.e. load and 
 
    execute block), you can directly use the result 
 
    tat load : 
 
    load (s) () 
 
    However, if there is at least one syntax error, then load 
 
    will return nil and the final error will be something like “attempt to 
 
    call a nil value ” . For clearer error handling use 
 
    assert : 
 
    assert (load (s)) () 
 
    There is usually no point in calling the load function on a literal 
 
    (that is, an explicitly quoted string). For example, the following two 
 
    the lines are roughly equivalent: 
 
    f = load (“i = i + 1”) 
 
    f = function () i = i + 1 end 
 
    However, the second line is much faster since Lua compiled 
 
    functions together with the surrounding block. On the first line, you- 
 
    the load call includes a separate compilation. 
 
    Since load does not compile lexically aware 
 
    actions, then the two lines considered may not be entirely equivalent 
 
    valence. To see the difference, let's change it slightly 
 
    example: 
 
    i = 32 
 
    local i = 0 
 
    f = load (“i = i + 1; print (i)”) 
 
    g = function () i = i + 1; print (i) end 
 
    f () -> 33 
 
    g () -> 1 
 
    The g function works on the local variable i as expected, 
 
    however the function f works with the global i , since load is always 
 
    compiles its blocks in the global environment. 
 
    The most typical use of load is to execute 
 
    external code, that is, snippets of code coming from outside your 
 
    programs. For example, you may want to plot the function 
 
    the option specified by the user; the user enters the function code, and 
 
    you then use load to execute it. Pay 
 
    note that load expects to receive a block, that is, statements. If a 
 
    you want to evaluate the expression, then you can append to the beginning 
 
    return expressions , which will give you a statement that returns a value 
 
    given expression. Let's look at an example: 
 
    print "enter your expression:" 
 
    local l = io.read () 
 
    local func = assert (load (“return“ .. l)) 
 
    print (“the value of your expression is“ .. func ()) 
 
    Since the function returned by load is a normal function, 
 
    you can call her many times: 
 
    print "enter function to be plotted (with variable 'x'):" 
 
    local l = io.read () 
 
    local f = assert (load (“return“ .. l)) 
 
    for i = 1, 20 do 
 
    x = i - global 'x' (to be visible from outside the block) 
 
    print (string.rep (“*”, f ())) 
 
    end 
 
    (The string.rep function repeats a string a specified number of times.) 
 
    We can also call the load function by passing it as ar- 
 
    gument reading function (reader function). Reading function 
 
    can return a block of code in parts; load calls this function before 
 
    it's time until it returns nil , indicating the end of the block. For example 
 
    measures, the following call is equivalent to loadfile : 
 
    f = load (io.lines (filename, “* L”)) 
 
    As we will see in chapter 22, the challenge io.lines (filename, "* L" ) WHO- 
 
    rotates a function that, when called, returns the following 
 
    line from file 2 . So load will read the block from 
 
    file line by line. The next option is similar, but more efficient 
 
    effective: 
 
    f = load (io.lines (filename, 1024)) 
 
    Here the iterator returned by io.lines reads in blocks at 
 
    1024 bytes. 
 
    Lua treats each independent block as the body of an ano 
 
    a variable function with a variable number of arguments. For instance, 
 
    load (“a = 1”) returns an analog of the following function: 
 
    function (...) a = 1 end 
 
    Like any other function, blocks can define their own locale. 
 
    variable variables: 
 
    f = load (“local a = 10; print (a + 20)”) 
 
    f () -> 30 
 
    Using these capabilities, we can rewrite our example with 
 
    plotting the graph so as not to use the global re- 
 
    variable x : 
 
    print "enter function to be plotted (with variable 'x'):" 
 
    local l = io.read () 
 
    local f = assert (load (“local x = ...; return“ .. l)) 
 
    for i = 1, 20 do 
 
    print (string.rep (“*”, f (i))) 
 
    end 
 
    We put the description “local x = ...” at the beginning of the block to define 
 
    divide x as a local variable. When we call f with an argument 
 
    ment i , this argument becomes the value of expression ... . 
 
    The load function never raises an error, in case of an error it 
 
    just returns nil and an error message: 
 
    print (load (“ii”)) 
 
    -> nil [string “ii”]: 1: '=' expected near 'i' 
 
    Moreover, these functions have no side effect. They 
 
    only compile the block to an internal representation and return- 
 
    give the result as an anonymous function. A common mistake 
 
    is that it is assumed that block loading determines the function 
 
    tions (defined in this block). In Lua, function definitions are 
 
    assignment; and as such they happen at runtime, 
 
    not at compile time. For example, let's say we have a file 
 
    foo.lua with the following content: 
 
    - file 'foo.lua' 
 
    function foo (x) 
 
    print (x) 
 
    end 
 
    Then we run the command 
 
    f = loadfile (“foo.lua”) 
 
    After this command, foo has been compiled but not yet defined. 
 
    To define it, we must execute a block: 
 
    print (foo) -> nil 
 
    f () - defines 'foo' 
 
    foo (“ok”) -> ok 
 
    In serious programs that need to execute external code, 
 
    you have to handle all errors that occur when loading 
 
    block. Moreover, you may want to start a new unit in the protection 
 
    environment to avoid unpleasant side effects 
 
    Comrade We'll discuss environments in detail in Chapter 14. 
 
      
 
    8.2. Precompiled code 
 
    As I mentioned at the beginning of this chapter, Lua precompiles the 
 
    running code before executing it. Lua also allows distribution 
 
    take the code in precompiled form. 
 
    The simplest way to get a precompiled file is 
 
    also called a binary block in Lua - is the use of 
 
    the luac program included in the standard delivery. For instance, 
 
    next call creates prog.lc file with precompiled 
 
    version of the prog.lua file : 
 
    $ luac -o prog.lc prog.lua 
 
    The interpreter can then execute this file as a normal 
 
    Lua code, working in the same way as with the original file: 
 
    $ lua prog.lc 
 
    Lua allows for precompiled code pretty much wherever 
 
    it allows source code. In particular, loadfile and load take 
 
    the input is also precompiled code. 
 
    We can write a simple luac replacement directly to 
 
    Lua: 
 
    p = loadfile (arg [1]) 
 
    f = io.open (arg [2], “wb”) 
 
    f: write (string.dump (p)) 
 
    f: close () 
 
    The main function here is string.dump : it gets the function 
 
    lua and returns its precompiled code as a string, 
 
    properly formatted to load it into Lua. 
 
    The luac program also introduces some interesting options. 
 
    In particular, the -l option prints a list of all opcodes that 
 
    the compiler generates for the given block. As an example, foxes 
 
    Thing 8.1 contains the output of the luac program launched with the -l option , 
 
    for the following one line file: 
 
    a = x + y - z 
 
    (We will not discuss Lua internals in this book; if you 
 
    interested in information about these opcodes, then search the Internet 
 
    the words "lua opcode" will give you reasonably accurate information.) 
 
    Precompiled code is not always smaller than the original 
 
    code, but it loads faster. Another plus is that 
 
    this gives you protection against accidental changes to the source. However, in 
 
    deviation from source code, maliciously modified binary code 
 
    can crash the Lua interpreter or even execute 
 
    user-supplied machine code. At startup, the usual 
 
    There is nothing to worry about with this code. However, you should avoid using 
 
    running untrusted code in precompiled form. The function 
 
    load has a special option for just this task. 
 
    Listing 8.1. Sample luac –l output 
 
    main <stdin: 0,0> (7 instructions, 28 bytes at 0x988cb30) 
 
    0+ params, 2 slots, 0 upvalues, 0 locals, 4 constants, 0 functions 
 
    1 [1] GETGLOBAL 0 -2; x 
 
    2 [1] GETGLOBAL 1 -3; y 
 
    3 [1] ADD 0 0 1 
 
    4 [1] GETGLOBAL 1 -4; z 
 
    5 [1] SUB 0 0 1 
 
    6 [1] SETGLOBAL 0 -1; a 
 
    7 [1] RETURN 0 1 
 
    In addition to the required first argument, load has three more optional 
 
    natal arguments. The second argument is the name of the block that 
 
    The swarm is only used in error messages. The fourth argument 
 
    cop is the environment, we will look at it in detail in chapter 14. Third 
 
    the argument is exactly what we are interested in now; he controls 
 
    what types of blocks can be loaded. If this argument is 
 
    is present, then it must be a string: the string “t” allows loading 
 
    only text blocks, line “b” allows loading only binary 
 
    (precompiled) blocks, and the string "bt" (the value of the 
 
    the default) allows you to load blocks of both types. 
 
      
 
    8.3. C code 
 
    Unlike Lua code, C code must be 
 
    forged with the app before using it. In a number of popular 
 
    operating systems, the easiest way to do this is 
 
    using the dynamic linking feature. However, given 
 
    This feature is not part of the ANSI C specification; so no re- 
 
    a wearable way to do this. 
 
    Lua usually does not include features that cannot be 
 
    implemented in ANSI C. However, with dynamic linking, 
 
    tion is different. We can consider it as the basis of all others 
 
    opportunities: as soon as we have it, we can immediately load 
 
    reap any feature that is not currently in Lua. Therefore, in this 
 
    Otherwise, Lua abandons portability rules and implements 
 
    dynamic linking for a number of platforms. Standard implementation 
 
    zation offers this feature for Windows, Mac OS X, Linux, 
 
    FreeBSD, Solaris and most other UNIX implementations. Transfer 
 
    this capability to other platforms doesn't have to be difficult; 
 
    refer to your distribution. (To check this, run 
 
    print (package.loadlib (“a”, “b”)) from the Lua command line and then 
 
    look at the result. If it reports a file that does not exist, then 
 
    you have dynamic linking support. Otherwise 
 
    an error message will tell you that this feature is not supported 
 
    or not installed.) 
 
    Lua provides all the dynamic linking capabilities 
 
    through one function, package.lodlib . This function receives two 
 
    string arguments: full library path and function name from  
 
    this library. Therefore, her typical call looks like 
 
    but below: 
 
    local path = “/usr/local/lib/lua/5.1/socket.so” 
 
    local f = package.loadlib (path, “luaopen_socket”) 
 
    The loadlib function loads the specified library and connects 
 
    her to Lua. However, it does not call the specified function. Instead he 
 
    returns a C function as a Lua function. In case of an error when 
 
    loading a library or finding an initializing function 
 
    loadlib returns nil and an error message. 
 
    The loadlib function is very low level. We must re- 
 
    Pass the full path to the library and the correct function name (including 
 
    teas, beginning underscores added by the compiler). Often we 
 
    load libraries to C using require . This function looks for 
 
    library and uses loadlib to load the initialization 
 
    functions for the library. When called, this initializing function 
 
    ration builds and returns a table with functions from this library, like 
 
    does the usual Lua library. We will discuss require in section 15.1 and 
 
    See section 27.3 for more information on C libraries. 
 
      
 
    8.4. Errors 
 
    Errare humanum est 3 . Therefore, we must handle errors like this 
 
    good as we can. Since Lua is an extension language, 
 
    often embedded in an application, we cannot just fall or 
 
    exit if an error occurs. Instead, when 
 
    yes an error occurs, Lua interrupts the execution of the current block and 
 
    returns control to the application. 
 
    Any unexpected situation Lua encounters will cause 
 
    leads to call errors (raises an error). Errors occur when 
 
    you (more precisely, your program) cannot add values that 
 
    are not numbers, do not index a table, etc. (You can 
 
    want to change this behavior using metatables as we will see 
 
    later.) You can also explicitly cause errors by calling 
 
    error function with an error message as an argument. Usually 
 
    this function is the correct way to report a bug in 
 
    your code: 
 
    print "enter a number:" 
 
    n = io.read (“* n”) 
 
    if not n then error (“invalid input”) end 
 
    3 
 
    Humans tend to make mistakes. ( lat .) 
 
    This way of calling error is so common that for this 
 
    Lua has a built-in assert function : 
 
    print "enter a number:" 
 
    n = assert (io.read (“* n”), “invalid input”) 
 
    The assert function checks if its first argument is valid 
 
    is not false, and simply returns this argument; if the argument is false, then 
 
    assert raises an error. Its second argument, the error message, 
 
    not required. However, keep in mind that assert is a normal function. 
 
    tion. As with all functions, Lua always computes before calling it. 
 
    passes her arguments. So if you write something like 
 
    n = io.read () 
 
    assert (tonumber (n), “invalid input:“ .. n .. “is not a number”) 
 
    then Lua will always do the concatenation, even if n is a number. Therefore- 
 
    In such cases, it may be better to use an explicit test. 
 
    When a function detects an unexpected situation ( excluding 
 
    reading ), it can go in two ways: return an error code (usually 
 
    nil ) or raise an error using error . There are no tough 
 
    rules for choosing between these two options, but we can 
 
    offer general advice: an exception that's easy to get around, 
 
    should throw an error; otherwise, an error code should be returned. 
 
    For example, let's consider the sin function . How should she behave 
 
    lead if its argument is a table? Suppose it is possible 
 
    rotates the error code. If we need to check for errors, then we 
 
    we can write something like 
 
    local res = math.sin (x) 
 
    if not res then  
 
   
  
 

 - error? 
 
    <error-handling code> 
 
    However, we can easily change this exception before calling 
 
    functions: 
 
    if not tonumber (x) then  
 
    - x is not a number? 
 
    <error-handling code> 
 
    Often we do not check for either the argument or the result of calling sin , 
 
    if the argument is not a number, it means that something is wrong in our 
 
    program. In a similar situation, stop computing and call 
 
    error is the simplest and most practical way to handle 
 
    this exception. 
 
    On the other hand, let's look at the io.open function , which 
 
    Paradise opens the file. How to behave if asked to open 
 
    non-existent file? In this case, there is no simple way 
 
    Soba to check for a call for an exception before calling this function 
 
    tion. On many systems, the only way to check that 
 
    file exists, is to try to open it. So if 
 
    io.open cannot open the file for some external reason (for- 
 
    example, "file does not exist" or "no rights!"), then it just might 
 
    rotates nil along with the error message. In this case, you have 
 
    a chance to handle the situation in an appropriate way, such as asking 
 
    with a different filename: 
 
    local file, msg 
 
    repeat 
 
    print "enter a file name:" 
 
    local name = io.read () 
 
    if not name then return end –– nothing was entered 
 
    file, msg = io.open (name, “r”) 
 
    if not file then print (msg) end 
 
    until file 
 
    If you do not want to handle a similar situation, but do not 
 
    want to be safe anyway, you can simply use 
 
    use assert : 
 
    file = assert (io.open (name, “r”)) 
 
    This is a typical idiom for Lua: if io.open completed with The error 
 
    coy, then assert will raise an error. 
 
    file = assert (io.open (“no-file”, “r”)) 
 
    -> stdin: 1: no-file: No such file or directory 
 
    Note how the error message that is 
 
    the second result of io.open turns out to be the second argument when 
 
    call to assert . 
 
    8.5. Error processing and exceptions 
 
    For many applications, you do not need to do any processing. 
 
    a lot of errors in Lua; all processing is done by the application itself. All work 
 
    Lua begins by being called by an application, usually consisting of 
 
    block execution. If an error occurs, then this call returns 
 
    error code and the application can respond appropriately 
 
    bed. In the case of a separate interpreter, its main loop is simply 
 
    prints an error message and continues. 
 
    However, if you need to handle errors in Lua, then you should 
 
    use pcall function (protected call) to encapsulate your 
 
    th code. 
 
    Let's say you want to execute a piece of Lua code and catch 
 
    any error that occurs while executing it. Your first 
 
    the step is to wrap this piece of code in a function; quite an hour 
 
    then anonymous functions are used for this. Then you call 
 
    this function using pcall : 
 
    local ok, msg = pcall (function () 
 
    <some code> 
 
    if unexpected_condition then error () end 
 
    <some code> 
 
    print (a [i]) –– possible error: 'a' may not be a table 
 
    <some code> 
 
    end) 
 
    if ok then –– no error occurred while executing the protected code 
 
    <regular code> 
 
    else  
 
    –– the protected code caused an error; process her 
 
    <error-handling code> 
 
    end 
 
    The pcall call invokes its first argument in protected mode 
 
    me , so that all errors during the execution of the function are caught. 
 
    cts. If there are no errors, then the pcall call returns true and 
 
    all values returned by the function. Otherwise, it returns false and 
 
    error message. 
 
    Despite its name, the error message need not be 
 
    by line: calling pcall will return whatever Lua value you pass- 
 
    whether error . 
 
    local status, err = pcall (function () error ({code = 121}) end) 
 
    print (err.code) -> 121 
 
    These mechanisms provide everything you need to process the data. 
 
    key in Lua. We throw an exception with error and 
 
    intercept it using pcall . The error message is 
 
    specifies the type of error. 
 
    8.6. Error messages 
 
    and call stack 
 
    Although we can use the sign as an error message 
 
    any type, usually error messages are strings that describe 
 
    wondering what went wrong. In the event of an internal 
 
    errors (e.g. trying to index a non-table) message 
 
    Lua generates an error; otherwise the error message becomes 
 
    the value passed to the error function . When the error message 
 
    is a string, then Lua tries to add some information 
 
    about the place where the error occurred: 
 
    local status, err = pcall (function () a = “a” +1 end) 
 
    print (err) 
 
    -> stdin: 1: attempt to perform arithmetic on a string value 
 
    local status, err = pcall (function () error (“my error”) end) 
 
    print (err) 
 
    -> stdin: 1: my error 
 
    The error message contains the file name (in the example it is stdin ) 
 
    and the line number in it (in the example it is 1). 
 
    The error function has a second optional parameter which 
 
    tells the level where to report the error; you are using this pas- 
 
    a yardstick to blame someone else for a mistake. For instance, 
 
    you wrote a function that immediately checks that it was 
 
    duly called: 
 
    function foo (str) 
 
    if type (str) ~ = “string” then 
 
    error (“string expected”) 
 
    end 
 
    <regular code> 
 
    end 
 
    Then someone calls your function with the wrong argument- 
 
    Tom: 
 
    foo ({x = 1}) 
 
    In this case, Lua points to your function - after all, 
 
    it was she who caused the error - not the real culprit, the one who 
 
    called her with the wrong argument. In order to fix this, 
 
    we can pass error that the error you are reporting is 
 
    Nick at level 2 in the call stack (level 1 is your function): 
 
    function foo (str) 
 
    if type (str) ~ = “string” then 
 
    error (“string expected”, 2) 
 
    end 
 
    <regular code> 
 
    end 
 
      
 
    Often when an error occurs, we want to get more 
 
    more accurate information than just where it originated. How mi- 
 
    At least we want the call stack that resulted in the error. When pcall 
 
    returns an error, it destroys part of the stack (part 
 
    from it until the error occurs). Accordingly, if we 
 
    want to get a call stack, then we must build it before 
 
    gates from pcall . Lua provides the xpcall function for this . Cro- 
 
    the function to be called receives a second argument, 
 
    error handling function . In case of a Lua error 
 
    calls this error handling function before flushing the stack, 
 
    therefore, she can use the debug library to obtain 
 
    any additional information about the error. The two most 
 
    common error handlers are debug.debug , 
 
    giving you a command line in Lua so you can do it yourself 
 
    see what was happening when the error occurred; and 
 
    debug.traceback which builds an extended error message 
 
    ke, including the call stack 4 . 
 
    It is the latter function that the independent inter- 
 
    pretator for printing error messages. 
 
      
 
    Exercises 
 
    Exercise 8.1. It is often necessary to add code to the beginning of the download. 
 
    pressed block. (We have already seen an example in this chapter when we 
 
    added code to return .) Write a function loadwithprefix , 
 
    which works like load , except that it pre- 
 
    prepends its additional argument to the beginning of the load 
 
    th block. 
 
    Like the original load function , loadwithprefix should 
 
    accept blocks represented both as strings and read- 
 
    functions. Even when the original unit 
 
    is a string, loadwithprefix should not be explicitly concatenated 
 
    string the passed argument with a block. Instead, she 
 
    should call load with the appropriate read function- 
 
    it, which first returns the passed argument, and then - 
 
    block. 
 
    Exercise 8.2. Write a multiload function that generalizes 
 
    schaet loadwithprefix , receiving the input list reading function 
 
    tions, as in the following example: 
 
    4 
 
    In Chapter 24, we will learn more about these functions and the debug library. 
 
    f = multiload (“local x = 10;”, 
 
    io.lines (“temp”, “* L”), 
 
    “Print (x)”) 
 
    For the above example, multiload should load 
 
    block equivalent to concatenating the string “local ...” with co- 
 
    by holding the temp file and the "print (x)" line . Like function 
 
    loadwithprefix , this function itself is nothing concatenated 
 
    should not. 
 
    Exercise 8.3. The string.rep function in Listing 8.2 is used 
 
    zuet algorithm binary multiplication (binary multiplication 
 
    algorithm) to concatenate n copies of the given string s . For 
 
    any fixed n, we can create a specialized 
 
    bathroom version of string.rep , expanding the loop into a sequential 
 
    the number of commands r = r..s and s = s..s . As an example for n = 5 
 
    we get the following function: 
 
    function stringrep_5 (s) 
 
    local r = “” 
 
    r = r .. s 
 
    s = s .. s 
 
    s = s .. s 
 
    r = r .. s 
 
    return r 
 
    end 
 
    Write a function that, for a given n, returns 
 
    stringrep_n function . Instead of using a closure 
 
    your function should build the function text in Lua with 
 
    appropriate commands r = r..s and s = s..s and then use 
 
    use load to get the final function. Compare- 
 
    those are the performance of the string.rep function and the one you got 
 
    functions. 
 
    Exercise 8.4. Can you find a value for p such that 
 
    pcall expression (pcall, f) will return false as the first value 
 
    nie? 
 
      
 
    Chapter 9 
 
    Coroutines 
 
    A coroutine is like a thread (in the multi-threaded sense): it is a thread 
 
    execution with its stack, its local variables and 
 
    its instruction pointer (instruction pointer); but he shares the glo- 
 
    point variables and pretty much everything else with other coroutines- 
 
    mi. The main difference between threads and coroutines is that 
 
    a multi-threaded program executes all of these threads in parallel 
 
    but. Coroutines work together: at any given time, 
 
    gram executes only one of its coroutines, and this one executes 
 
    May, a coroutine suspends its execution only when 
 
    will explicitly ask for it. 
 
    Coroutines are a very powerful concept. And so many of 
 
    their applications are quite complex. Don't worry if you don't understand 
 
    some of the examples in this chapter on first reading. You can 
 
    read to the end of the book and come back later. But please, 
 
    come back it will be a well spent time. 
 
      
 
    9.1. Fundamentals of coroutines 
 
    Lua keeps all the functions for working with coroutines in a table 
 
    coroutine . The create function creates new coroutines. She has everything- 
 
    Its one argument is the function that the coroutine will execute. 
 
    It returns a value of type thread , which is 
 
    the created coroutine. Often the create argument is anonymous 
 
    function as below: 
 
    co = coroutine.create (function () print (“hi”) end) 
 
    print (co) -> thread: 0x8071d98 
 
    A coroutine can be in one of four states: prio- 
 
    suspended, running, dead, and 
 
    normal. We can find out the state of the coroutine at 
 
    using the status function : 
 
    print (coroutine.status (co)) -> suspended 
 
    When we create a coroutine, it starts in a suspended state. 
 
    nom condition; coroutine doesn't start automatically executing 
 
    our body when we create it. The coroutine.resume function continues 
 
    starts (starts) execution of the coroutine, changing its state from 
 
    suspended in running: 
 
    coroutine.resume (co) -> hi 
 
    In this first example, the coroutine body simply prints “hi” 
 
    and terminates execution, leaving the coroutine in destroyed 
 
    condition: 
 
    print (coroutine.status (co)) -> dead 
 
    Until now, coroutines have looked like just a complicated way 
 
    function calls. The real power of coroutines comes from function 
 
    yield , which allows a running coroutine to pause 
 
    its execution so that it can be continued later. let's 
 
    consider a simple example: 
 
    co = coroutine.create (function () 
 
    for i = 1, 10 do 
 
    print (“co”, i) 
 
    coroutine.yield () 
 
    end 
 
    end) 
 
    Now, when we continue with this function, it will 
 
    repairs its execution and executes before the first yield : 
 
    coroutine.resume (co) -> co 1 
 
    If we now check its status, we will see that this co- 
 
    the program is paused and, therefore, we can 
 
    continue its execution: 
 
    print (coroutine.status (co)) -> suspended 
 
    From the point of view of the coroutine, all the activity that occurs 
 
    dit while the coroutine is suspended happens inside the call 
 
    yield . When we continue to execute the coroutine, it returns 
 
    comes from the yield call and continues its execution until the next 
 
    th call yield or the end of the coroutine: 
 
    coroutine.resume (co) -> co 2 
 
    coroutine.resume (co) -> co 3 
 
    ... 
 
    coroutine.resume (co) -> co 10 
 
    coroutine.resume (co) - prints nothing 
 
    During the last call to resume, the loop ends and ends 
 
    Execute the function without printing anything. If we try 
 
    resume its execution again, then resume will return false and the message 
 
    about the error: 
 
    print (coroutine.resume (co)) 
 
    -> false cannot resume dead coroutine 
 
    Note that resume executes the coroutine body in 
 
    protected mode. Therefore, in the event of any 
 
    errors while executing a coroutine Lua will not show a message 
 
    error message, but will simply return control to the call to resume . 
 
    When a coroutine continues executing another coroutine, 
 
    then it is not suspended; in the end we cannot continue 
 
    live her fulfillment. However, it is not executable, because 
 
    how many coroutines being executed is another coroutine. 
 
    Therefore, her status is called normal . 
 
    A nice feature in Lua is that the resume pair - 
 
    yield can exchange data. The first call to resume (which 
 
    there is no yield call waiting for it ) passes its additional 
 
    arguments of the main coroutine function: 
 
    co = coroutine.create (function (a, b, c) 
 
    print (“co”, a, b, c + 2) 
 
    end) 
 
    coroutine.resume (co, 1, 2, 3) -> co 1 2 5 
 
    Calling resume returns after true , indicating that there is no error- 
 
    side, all arguments passed to the yield call : 
 
    co = coroutine.create (function (a, b) 
 
    coroutine.yield (a + b, a - b) 
 
    end) 
 
    print (coroutine.resume (co, 20, 10)) -> true 30 10 
 
    Similarly, yield returns all arguments passed according to 
 
    The corresponding call to resume : 
 
    co = coroutine.create (function (x) 
 
    print (“co1”, x) 
 
    print (“co2”, coroutine.yield ()) 
 
    end) 
 
    coroutine.resume (co, “hi”) -> co1 hi 
 
    coroutine.resume (co, 4, 5) -> co2 4 5 
 
    Finally, when the coroutine finishes its execution, everything is 
 
    values returned by its main function are passed as a result 
 
    resume : 
 
    co = coroutine.create (function () 
 
    return 6, 7 
 
    end) 
 
    print (coroutine.resume (co)) -> true 6 7 
 
    We usually rarely use all of these features in one and the same 
 
    the same coroutine, but they all have their own uses. 
 
    For those who already know something about coroutines it is important to clarify 
 
    some concepts before we move on. Lua offers 
 
    what is called asymmetric coroutines . It means that 
 
    it has a function to pause the execution of a coroutine and 
 
    another function to continue execution of the suspended 
 
    coroutines. Some languages have symmetric coroutines , 
 
    when there is only one function to transfer control from one 
 
    coroutines are different. 
 
    Asymmetric coroutines are called semi-coroutines by some. 
 
    mami (not being symmetrical, they are not co-). However, others 
 
    use the same term semi-routines to denote a limited 
 
    implementation of coroutines, where a coroutine can be suspended 
 
    do it only when it does not call any other 
 
    function, that is, when it has no pending calls. Other words 
 
    you, only the main body of such a coroutine can yield yield . 
 
    Generators in Python are examples of such semi- routines. 
 
    Unlike the difference between symmetrical and unbalanced- 
 
    mi coroutines, the difference between coroutines and generators 
 
    (as implemented in Python) is much deeper; generators just don't 
 
    powerful enough to implement some interesting con- 
 
    instructions that we can do with normal coroutines. 
 
    Lua offers complete non-symmetric coroutines. Those who 
 
    prefer symmetric coroutines, can implement them in 
 
    based on the asymmetric capabilities of Lua. This is not difficult. (Fact- 
 
    every control transfer performs a yield , followed by 
 
    blows resume .) 
 
      
 
    9.2. Channels and filters 
 
    One of the most important use cases for coroutines 
 
    is the task of the producer-consumer.  
 
    Let's pretend we have a function that is constantly running 
 
    reads values (for example, reads them from a file), and another function, 
 
    which constantly consumes these values (for example, writes to another 
 
    goy file). Typically these two functions look like this: 
 
    function producer () 
 
    while true do 
 
    local x = io.read () - produce new value 
 
    send (x)  
 
    - send it to the consumer 
 
    end 
 
    end 
 
    function consumer () 
 
    while true do 
 
    local x = receive () - get value from producer 
 
    io.write (x, “\ n”)  
 
    - consume it 
 
    end 
 
    end 
 
    (In this implementation, both producer and consumer are 
 
    forever. However, they can be easily changed to stop when more 
 
    no data.) The challenge here is to connect you- 
 
    calls send and receive . This is a typical example of the problem “who has the main 
 
    cycle". Both the producer and the consumer are active, each has its own 
 
    main loops, and each assumes that the other is a call 
 
    my service. For this particular example, one can easily change 
 
    structure of one of the functions, expanding its cycle and making it passive 
 
    noah side. However, in real cases, such a change can 
 
    to be far from easy. 
 
    Coroutines provide an ideal mechanism for connecting 
 
    producer and consumer, since the resume – yield pair 
 
    reverses the usual relationship between caller and caller 
 
    removable. When a coroutine calls yield , it does not call a new one 
 
    function; instead, it returns control from the current call. 
 
    wa ( resume ). Likewise, calling resume does not start a new function, 
 
    and terminates the call to yield . This is exactly what we need to connect 
 
    neniya send and receive , so that each acts as 
 
    as if he is the main one, and the second is subordinate. 
 
    Therefore, receive continues to execute the producer, so it 
 
    can produce a new value; and send returns this value 
 
    back to the consumer: 
 
    function receive () 
 
    local status, value = coroutine.resume (producer) 
 
    return value 
 
    end 
 
    function send (x) 
 
    coroutine.yield (x) 
 
    end 
 
    Of course, the producer must also be a coroutine: 
 
    producer = coroutine.create ( 
 
    function () 
 
    while true do 
 
    local x = io.read () –– produce a new value 
 
    send (x) 
 
    end 
 
    end) 
 
    With this design, the program starts by calling the consumer. Kog- 
 
    yes, the consumer needs value, he resumes production 
 
    body, which is executed until it has a ready 
 
    value that it conveys to the consumer and does not stop until 
 
    until the consumer continues executing again. So 
 
    thus we get what is called sweat-driven design 
 
    fighter an (consumer-driven). Another option would be to write 
 
    program using a manufacturer-driven design where sweat- 
 
    a child is a coroutine. 
 
    We can extend this design with filters that 
 
    are tasks between the manufacturer and the 
 
    rebel and performing data conversion. The filter is 
 
    producer and consumer at the same time, therefore he 
 
    owes producer execution to get new value 
 
    and uses yield to pass this value to the consumer. In ka- 
 
    as a simple example, we can add to our previous 
 
    code a filter that inserts a line number at the beginning of each line. 
 
    The code is shown in Listing 9.1. In the end, we just need to create a compo 
 
    nents, connect them and start executing the final consumer: 
 
    p = producer () 
 
    f = filter (p) 
 
    consumer (f) 
 
    Or even simpler: 
 
    consumer (filter (producer ())) 
 
    Listing 9.1. Consumer and manufacturer with filters 
 
    function receive (prod) 
 
    local status, value = coroutine.resume (prod) 
 
    return value 
 
    end 
 
    function send (x) 
 
    coroutine.yield (x) 
 
    end 
 
    function producer () 
 
    return coroutine.create (function () 
 
    while true do 
 
    local x = io.read () - produce new value 
 
    send (x) 
 
    end 
 
    end) 
 
    end 
 
    function filter (prod) 
 
    return coroutine.create (function () 
 
    for line = 1, math.huge do 
 
    local x = receive (prod) - get new value 
 
    x = string.format (“% 5d% s”, line, x) 
 
    send (x)  
 
    - send it to the consumer 
 
    end 
 
    end) 
 
    end 
 
    function consumer (prod) 
 
    while true do 
 
    local x = receive (prod) - get new value 
 
    io.write (x, “\ n”)  
 
    - consume new value 
 
    end 
 
    end 
 
    Listing 9.2. Function to get all permutations of n elements a 
 
    function permgen (a, n) 
 
    n = n or #a - default 'n' is the size of 'a' 
 
    if n <= 1 then - nothing to do? 
 
    printResult (a) 
 
    else 
 
    for i = 1, n do 
 
    - put the i-th element at the end 
 
    a [n], a [i] = a [i], a [n] 
 
    - create all permutations of other elements 
 
    permgen (a, n - 1) 
 
    - restore the i-th element 
 
    a [n], a [i] = a [i], a [n] 
 
    end 
 
    end 
 
    end 
 
    If you've thought about pipes in UNIX, then you're not alone. 
 
    After all, coroutines are a variant of non-preemptive multi- 
 
    tasks (non-preemptive multitasking). With channels every task 
 
    runs as a separate process; with coroutines each task 
 
    runs as a separate coroutine. Channels provide bu- 
 
    fer between the writer (producer) and the reader (consumer), 
 
    therefore, some freedom in their relative speeds is possible. 
 
    This is important for the channel, since the cost of switching between processes 
 
    themselves are high. With coroutines, the cost of switching between tasks 
 
    much smaller (like a function call), so writing 
 
    and the reader can go toe-to-toe. 
 
    9.3. Coroutines like iterators 
 
    We can consider loop iterators as a separate example 
 
    producer-consumer: the iterator produces values that 
 
    consumed by the body of the cycle. Therefore, it is quite natural 
 
    use coroutines to write iterators. Really- 
 
    but, coroutines are a powerful tool for this purpose. 
 
    Again, the key feature is their ability to flip 
 
    the relationship between caller and callee. With this feature 
 
    we can write iterators without worrying about keeping state between 
 
    by successive calls to the iterator. 
 
    To illustrate this use case, 
 
    let's write an iterator to iterate over all permutations of a given 
 
    array. Writing an iterator like this isn't easy, but pretty 
 
    just write a recursive function that builds all these overrides 
 
    new. The idea is simple: put each element at the end in turn 
 
    array and recursively generate any remaining permutations. 
 
    The code is shown in Listing 9.2. In order for it to work, we must 
 
    we write the corresponding function printResult and call 
 
    permgen with proper arguments: 
 
    function printResult (a) 
 
    for i = 1, #a do 
 
    io.write (a [i], ““) 
 
    end 
 
    io.write (“\ n”) 
 
    end 
 
    permgen ({1,2,3,4}) 
 
    -> 2 3 4 1 
 
    -> 3 2 4 1 
 
    -> 3 4 2 1 
 
    ... 
 
    -> 2 1 3 4 
 
    -> 1 2 3 4 
 
    Once the generator is ready, it is very easy to convert it to 
 
    iterator. First, we'll replace printResult with yield : 
 
    function permgen (a, n) 
 
    n = n or #a 
 
    if n <= 1 then 
 
    coroutine.yield (a) 
 
    else 
 
    <as before> 
 
    Then we define a factory that will run the generator 
 
    inside a coroutine, and create an iterating function. For semi- 
 
    the next permutation, the iterator simply continues 
 
    nenie coroutine: 
 
    function permutations (a) 
 
    local co = coroutine.create (function () permgen (a) end) 
 
    return function () - iterator 
 
    local code, res = coroutine.resume (co) 
 
    return res 
 
    end 
 
    end 
 
    After that we can easily iterate over all permutations of the array. 
 
    using the for statement : 
 
    for p in permutations {“a”, “b”, “c”} do 
 
    printResult (p) 
 
    end 
 
    -> bca 
 
    -> cba 
 
    -> cab 
 
    -> acb 
 
    -> bac 
 
    -> abc 
 
    The permutations function uses a typical Lua pattern, 
 
    which hides the resume of the coroutine inside the function. This 
 
    the pattern is so common that Lua provides special 
 
    function for it: coroutine.wrap . Like create , wrap creates 
 
    new coroutine. Unlike create , wrap does not return itself. 
 
    coroutine; instead, it returns a function that when 
 
    the call continues execution of this coroutine. Unlike 
 
    resume , it does not return the error code as the first value; together 
 
    then it causes an error. Using wrap , we can write 
 
    permutations as follows: 
 
      
 
    function permutations (a) 
 
    return coroutine.wrap (function () permgen (a) end) 
 
    end 
 
    It is generally easier to use coroutine.wrap than coroutine. 
 
    create . It gives us exactly what we need from a coroutine: 
 
    function to continue its execution. However, it is less flexible 
 
    kaya. There is no way to check the status of a coroutine created- 
 
    noah with wrap . Moreover, we cannot check for errors. 
 
    at run time. 
 
    9.4. Non-displacing multi-threading 
 
    As we saw earlier, coroutines provide an option for 
 
    noisy multi-threading. Every coroutine is equivalent to a thread. Couple 
 
    yield-resume switches control from one thread to another thread. 
 
    However, unlike ordinary multi-threading, a coroutine is not 
 
    are preemptive. While the coroutine is running, 
 
    it cannot be stopped from the outside. She interrupts her execution 
 
    only when it explicitly requests it (via a call to yield ). For 
 
    In some applications, this is not a problem, rather the opposite. Pro- 
 
    gramming is much easier in the absence of displacement. You do not 
 
    you need to worry about sync errors because all sync 
 
    chronization is obvious. You just need to make sure that the coroutine 
 
    ma calls yield outside the critical area of the code. 
 
    However, with non-displacing multi-threading, as soon as some 
 
    the thread calls a blocking operation, the whole program is blocked 
 
    until this operation completes. For most, 
 
    this is unacceptable, which leads to the fact that many programmers 
 
    you don't see coroutines as an alternative to traditional 
 
    multi-threading. As we will see here, there is an interest in this problem. 
 
    a new (and obvious, moreover) solution. 
 
    Let's look at a typical multi-threaded task: we want 
 
    download multiple files over HTTP. To download several 
 
    of these files, we first need to figure out how to download one file. 
 
    In this example, we will look at the bib-designed by Diego Nehab 
 
    the LuaSocket library . In order to download a file, you must first install 
 
    connect to the site containing this file, get the file 
 
    (in blocks) and close the connection. In Lua, we can write this next 
 
    in a blowing manner. First, we load the LuaSocket library: 
 
    local socket = require “socket” 
 
    Then we define the site and the file we want to download. In that 
 
    for example, we will download the HTML 3.2 reference manual from the site 
 
    World Wide Web Consortium: 
 
    host = “www.w3.org” 
 
    file = “/TR/REC-html32.html” 
 
    Then we open a TCP connection to port 80 (standard 
 
    port for HTTP connections) of this site: 
 
    c = assert (socket.connect (host, 80)) 
 
    This operation returns the connection object that we are using 
 
    we use to send a request to receive a file: 
 
    c: send (“GET“ .. file .. “HTTP / 1.0 \ r \ n \ r \ n”) 
 
    We then read the file in 1 KB blocks, writing each block to 
 
    standard output: 
 
    while true do 
 
    local s, status, partial = c: receive (2 ^ 10) 
 
    io.write (s or partial) 
 
    if status == “closed” then break end 
 
    end 
 
    The receive function returns either the string it read, or 
 
    nil on error; in the latter case, it also returns the code 
 
    errors ( status ) and what she read before the error ( partial ). When the site 
 
    closes the connection, we print the remaining data and exit 
 
    from the loop. 
 
    After downloading the file, we close the connection: 
 
    c: close () 
 
    Now that we know how to download one file, let's go back to 
 
    the problem of downloading multiple files. The simplest approach is to 
 
    Children download one file at a time. However, this consistent sub- 
 
    the move when we start reading the file only after we finish 
 
    with the previous file is too slow. When reading a file by 
 
    the network, the program spends most of its time waiting for data. 
 
    More precisely, she spends most of her time blocked 
 
    in the receive call . Therefore, the program can be executed significantly 
 
    It is much faster if it downloads all files at once. Then when 
 
    the connection has no ready data, the program can read the data 
 
    from another connection. It is clear that coroutines provide convenience 
 
    a good way to organize these simultaneous downloads. we 
 
    create a new thread for each downloaded file. When the thread 
 
    there is no ready data, it transfers control to the dispatcher, who 
 
    calls another thread. 
 
    In order to rewrite the program using co- 
 
    programs, we first need to rewrite the downloading code as 
 
    function. The result is shown in Listing 9.3. Since we are not interested 
 
    resche the contents of the file, the function reads and prints the file size 
 
    instead of writing the file to standard output (when we have several 
 
    they read several files at once, the output would be complete 
 
    mishmash). 
 
    Listing 9.3. Code for downloading a page from the network 
 
    function download (host, file) 
 
    local c = assert (socket.connect (host, 80)) 
 
    local count = 0  
 
    - counts number of bytes read 
 
    c: send (“GET“ .. file .. “HTTP / 1.0 \ r \ n \ r \ n”) 
 
    while true do 
 
    local s, status = receive (c) 
 
    count = count + #s 
 
    if status == “closed” then break end 
 
    end 
 
    c: close () 
 
    print (file, count) 
 
    end 
 
    In the resulting code, we use the helper function 
 
    ( receive ) to receive data from the connection. With successive 
 
    However, the code would look like this: 
 
    function receive (connection) 
 
    local s, status, partial = connection: receive (2 ^ 10) 
 
    return s or partial, status 
 
    end 
 
    For parallel implementation, this function must receive data 
 
    without blocking. Instead, if the required data is not available, 
 
    then it calls yield . The new code looks like this: 
 
    function receive (connection) 
 
    connection: settimeout (0)  
 
    –– do not block 
 
    local s, status, partial = connection: receive (2 ^ 10) 
 
    if status == “timeout” then 
 
    coroutine.yield (connection) 
 
    end 
 
    return s or partial, status 
 
    end 
 
      
 
    The settimeout (0) call does any operation on the connection. 
 
    blocking. When the status of the operation is “timeout” , it means that 
 
    the operation completed without completing the request. In this case, the thread is 
 
    Give control to another thread. The non- false argument passed to 
 
    ny yield statement , informs the dispatcher that this thread still performs 
 
    your task. Please note that even in the case of the “timeout” status 
 
    the partial variable still contains the read data. 
 
    Listing 9.4. contains dispatcher code and additional code. 
 
    The threads table contains a list of all active threads for the disk. 
 
    petcher. The get function ensures that each downloaded file 
 
    downloaded in a separate thread. The dispatcher itself is actually 
 
    just a loop that iterates over all the threads, starting them to execute- 
 
    one by one. It also removes from the list those threads that 
 
    have already completed the download. The cycle stops when no more 
 
    remains of threads. 
 
    Listing 9.4. Dispatcher 
 
    threads = {}  
 
    –– list of all running threads 
 
    function get (host, file) 
 
    - create a coroutine 
 
    local co = coroutine.create (function () 
 
    download (host, file) 
 
    end) 
 
    - insert it into the list 
 
    table.insert (threads, co) 
 
    end 
 
    function dispatch () 
 
    local i = 1 
 
    while true do 
 
    if threads [i] == nil then  
 
    –– no more threads? 
 
    if threads [1] == nil then break end –– is the list empty? 
 
    i = 1 - restart the loop 
 
    end 
 
    local status, res = coroutine.resume (threads [i]) 
 
    if not res then  
 
    –– has the thread finished downloading? 
 
    table.remove (threads, i) 
 
    else 
 
    i = i + 1  
 
    –– go to the next thread 
 
    end 
 
    end 
 
    end 
 
    Finally, the main routine creates the required threads and calls 
 
    there is a dispatcher. For example, to download four documents from the site 
 
    W3C, the main program might look like below: 
 
      
 
    Non-displacing multi-threading 
 
    host = “www.w3.org” 
 
    get (host, “/TR/html401/html40.txt”) 
 
    get (host, “/TR/2002/REC-xhtml1-20020801/xhtml1.pdf”) 
 
    get (host, “/TR/REC-html32.html”) 
 
    get (host, “/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.txt”) 
 
    dispatch () - main loop 
 
    On my computer, downloading these four files using 
 
    Coroutine processing takes 6 seconds. With sequential download 
 
    it takes more than twice (15 seconds). 
 
    Despite this optimization, this latest implementation is still 
 
    far from optimal. Everything works well as long as though 
 
    one thread would have something to read. However, when no thread has 
 
    ready to read data, the dispatcher constantly switches from 
 
    threads to thread just to make sure there are no ready-made 
 
    data. As a result, this implementation takes almost 30 times more 
 
    CPU time than the serial version. 
 
    In order to avoid this situation, we can use 
 
    call the select function from the LuaSocket library: it allows you to 
 
    block a program that is pending while changing 
 
    status in the connection group. Implementation changes are minor 
 
    us: we only need to change the dispatcher as shown in the listing 
 
    9.5. In a loop, the new dispatcher collects connections in the timedout table . 
 
    for which there is no ready-made data. (Remember that receive pe- 
 
    gives similar joins to the yield function , so again 
 
    running them). If none of the connections have ready data, then 
 
    the dispatcher calls select to wait for at least one 
 
    One of these connections will change the status. This final re- 
 
    Alization works as fast as the previous one. However, she 
 
    uses only slightly more CPU time than the serial 
 
    naya implementation. 
 
    Listing 9.5. Dispatcher using select 
 
    function dispatch () 
 
    local i = 1 
 
    local timedout = {} 
 
    while true do 
 
    if threads [i] == nil then –– no more threads? 
 
    if threads [1] == nil then break end 
 
    i = 1  
 
    –– start the cycle over again 
 
    timedout = {} 
 
    end 
 
    local status, res = coroutine.resume (threads [i]) 
 
    if not res then  
 
    –– has the thread finished its work? 
 
    table.remove (threads, i) 
 
    else  
 
    –– waiting time out 
 
    i = i + 1 
 
    timedout [#timedout + 1] = res 
 
    if #timedout == #threads then –– are all threads blocked? 
 
    socket.select (timedout) 
 
    end 
 
    end 
 
    end 
 
    end 
 
      
 
    Exercises 
 
    Exercise 9.1. Use coroutines to pre- 
 
    form Exercise 5.4 into a generator for combinations that 
 
    ry can be used as follows: 
 
    for c in combinations ({“a”, “b”, “c”}, 2) do 
 
    printResult (c) 
 
    end 
 
    Exercise 9.2. Implement and run the code from the previous 
 
    section (non-displacing multi-threading). 
 
    Exercise 9.3. Implement the transfer function in Lua. If a 
 
    think about calling resume-yeild the same as calling 
 
    function and return from it, then this function will be like a goto : it 
 
    interrupts the current coroutine and resumes any other 
 
    th coroutine passed as an argument. 
 
    ( Hint : use an analog of the dispatch procedure to control 
 
    handling your coroutines. Then transfer will transfer 
 
    control to the dispatcher, informing about which next com- 
 
    the program needs to be started, and the dispatcher will call re- 
 
    sume ). 
 
      
 
    Chapter 10 
 
    Completed examples 
 
    To conclude this introduction to the language, we show three simple, but complete 
 
    programs. The first program solves the problem of eight kings 
 
    wah. The second program prints the most common words in 
 
    text. The last example is the implementation of the Markov chain described by 
 
    Naya Kernighan and Pike in their book " The Practice of Programming " 
 
    (Addison-Wesley, 1999). 
 
      
 
    10.1. The Eight Queens Problem 
 
    Our first example is a very simple program that solves 
 
    the problem of eight queens : you need to arrange the eight queens on 
 
    chessboard so that none of the queens are under attack. 
 
    The first step in solving this problem should be noted that each 
 
    Each solution must have exactly one queen in each line. 
 
    Thus, we can represent the solution as an array of eight 
 
    numbers, one for each line; each number tells us in 
 
    which column is the queen in the corresponding row. On- 
 
    example, the array {3,7,2,1,8,6,5,4} means one queen 
 
    is in row 1 in column 3, another is in row 2 in column 7 and 
 
    etc. (Note that this is not a valid solution 
 
    eat; for example, the queen in row 3 in column 2 attacks the queen in 
 
    line 4 in column 1). Also note that any solution 
 
    should be a permutation of numbers from 1 to 8, as the solution should 
 
    contain one queen in each column. 
 
    The complete program is shown in Listing 10.1. The first function is - 
 
    it is isplaceok , which checks that the given position on the board is not 
 
    falls under the battle of previously placed queens. Remembering that he cannot 
 
    to be two queens on the same line, this function checks that there are no 
 
    two queens on one column or one diagonal with a given 
 
    position. 
 
      
 
    Listing 10.1. Program for eight queens 
 
    local N = 8 - board size 
 
    - checks that position (n, c) is not under attack 
 
    local function isplaceok (a, n, c) 
 
    for i = 1, n - 1 do –- for each previously placed queen 
 
    if (a [i] == c) or –- the same column? 
 
    (a [i] - i == c - n) or –- the same diagonal? 
 
    (a [i] + i == c + n) then -– the same diagonal? 
 
    return false -– position under attack 
 
    end 
 
    end 
 
    return true -– not under attack 
 
    end 
 
    - print the board 
 
    local function printsolution (a) 
 
    for i = 1, N do 
 
    for j = 1, N do 
 
    io.write (a [i] == j and “X” or “-”, ““) 
 
    end 
 
    io.write (“\ n”) 
 
    end 
 
    io.write (“\ n”) 
 
    end 
 
    - add to the board 'a' all queens from 'n' to 'N' 
 
    local function addqueen (a, n) 
 
    if n> N then -– have all the queens been placed? 
 
    printsolution (a) 
 
    else - try to place the nth queen 
 
    for c = 1, N do 
 
    if isplaceok (a, n, c) then 
 
    a [n] = c –- put the n-th queen in column 'c' 
 
    addqueen (a, n + 1) 
 
    end 
 
    end 
 
    end 
 
    end 
 
    -- run the program 
 
    addqueen ({}, 1) 
 
    Next we have the printsolution function , which prints the check 
 
    mat board. She just goes around the board, typing 'X' in places with 
 
    queen and '-' elsewhere. Each result looks 
 
    dit like below: 
 
    127 
 
    The most common words 
 
    X - - - - - - - 
 
    - - - - X - - - 
 
    - - - - - - - X 
 
    - - - - - X - - 
 
    - - X - - - - - 
 
    - - - - - - X - 
 
    - X - - - - - - 
 
    - - - X - - - - 
 
      
 
    The last function addqueen is the heart of the program. Sleep- 
 
    then it checks if the solution is complete, and if so, then 
 
    prints this solution. Otherwise, it iterates over all the pillars. 
 
    tsy; for each unallocated column, the program puts there a short 
 
    left and recursively tries to accommodate the remaining queens. 
 
    10.2. Most often occurring words 
 
    Our next example is a simple program that reads 
 
    text and prints the most frequent words from that text. 
 
    The main data structure of this program is just a table 
 
    tsa, which matches each word with its frequency. Using 
 
    With this data structure, the program has three main tasks: 
 
    • Read the text by counting the number of occurrences of each word. 
 
    • Sort the list of words in descending order of frequency of meeting- 
 
    the bridges of every word. 
 
    • Print the first n items from the sorted list. 
 
    ka. 
 
    To read the text, we can use the allwords iterator , which 
 
    which we discussed in Section 7.1. For every word that we 
 
    read, we increment the corresponding counter: 
 
    local counter = {} 
 
    for w in allwords do 
 
    counter [w] = (counter [w] or 0) + 1 
 
    end 
 
    The next task is to sort the word list. However, how 
 
    an attentive reader might have noticed we don't have a word list! but 
 
    it is easy to create using words that are keys in the table 
 
    face counter: 
 
    local words = {} 
 
    for w in pairs (counter) do 
 
    words [#words + 1] = w 
 
    end 
 
    Listing 10.2. Program for printing the most common words 
 
    local function allwords () 
 
    local auxwords = function () 
 
    for line in io.lines () do 
 
    for word in string.gmatch (line, “% w +”) do 
 
    coroutine.yield (word) 
 
    end 
 
    end 
 
    end 
 
    return coroutine.wrap (auxwords) 
 
    end 
 
    local counter = {} 
 
    for w in allwords () do 
 
    counter [w] = (counter [w] or 0) + 1 
 
    end 
 
    local words = {} 
 
    for w in pairs (counter) do 
 
    words [#words + 1] = w 
 
    end 
 
    table.sort (words, function (w1, w2) 
 
    return counter [w1]> counter [w2] or 
 
    counter [w1] == counter [w2] and w1 <w2 
 
    end) 
 
    for i = 1, (tonumber (arg [1]) or 10) do 
 
    print (words [i], counter [words [i]]) 
 
    end 
 
    Now that we have a list, we can sort it with 
 
    using the table.sort function we discussed in Chapter 6: 
 
    table.sort (words, function (w1, w2) 
 
    return counter [w1]> counter [w2] or 
 
    counter [w1] == counter [w2] and w1 <w2 
 
    end) 
 
    The complete program is shown in Listing 10.2. Pay attention- 
 
    the use of coroutines in the auxwords iterator . In the last 
 
    in the loop that prints the result, the program considers that its first 
 
    the argument is the number of words to print and uses 
 
    value 10 if no arguments were passed. 
 
      
 
      
 
    10.3. Markov chain 
 
    Our final example is a Markov chain implementation . Program 
 
    generates pseudo-random text based on which words 
 
    can follow a sequence of n previous words in the text 
 
    st. For this implementation, we will assume that n is 2. 
 
    The first part reads the body text and builds a table that 
 
    for every two words gives a list of all the words that may be behind them 
 
    follow in the main text. After building the table, the program 
 
    uses it to construct a random text, where each word 
 
    follows the previous two with the same probability as in the base 
 
    in your text. As a result, we get text that is random, but not 
 
    absolutely. For example, applying it to the English text of this book, 
 
    we get texts like “Constructors can also traverse a table con- 
 
    structor, then the parentheses in the following line does the whole file in 
 
    a field n to store the contents of each function, but to show its only argu- 
 
    ment. If you want to find the maximum element in an array can return 
 
    both the maximum value and continues showing the prompt and running 
 
    the code. The following words are reserved and cannot be used to convert 
 
    between degrees and radians ". 
 
    We will encode each prefix by connecting two words when 
 
    using a space: 
 
    function prefix (w1, w2) 
 
    return w1 .. ““ .. w2 
 
    end 
 
    We will use the string NOWORD (“\ n”) to initialize 
 
    prefix words and end-of-text symbols. For example, for text 
 
    "The more we try the more we do" the table of the following words will be 
 
    look like below: 
 
    {[“\ N \ n”] = {“the”}, 
 
    [“\ N the”] = {“more”}, 
 
    [“The more”] = {“we”, “we”}, 
 
    [“More we”] = {“try”, “do”}, 
 
    [“We try”] = {“the”}, 
 
    [“Try the”] = {“more”}, 
 
    [“We do”] = {“\ n”}, 
 
    } 
 
    The program stores its table in the statetab variable . For 
 
    to insert a new word into the table, we will use 
 
    the following function: 
 
    function insert (index, value) 
 
    local list = statetab [index] 
 
    if list == nil then 
 
    statetab [index] = {value} 
 
    else 
 
    list [#list + 1] = value 
 
    end 
 
    end 
 
    It first checks that the given prefix already has a list; 
 
    if not, it creates a new list with the passed word. Otherwise she 
 
    inserts the passed word at the end of the existing list. 
 
    To build the statetab we will use two 
 
    variables w1 and w2 containing the last two words read. 
 
    For each new word read, we add it to the list, 
 
    associated with w1-w2 , and then update the values for w1 and w2 . 
 
    After building the table, the program begins to build the text, with 
 
    consisting of MAXGEN words. To begin with, she sets the values of the changes 
 
    nym w1 and w2 . Then, for each prefix, she randomly chooses 
 
    next word from the list of valid words, prints that word and 
 
    updates the values of w1 and w2 . Listings 10.3 and 10.4 contain the complete 
 
    program. Unlike our previous example with the most 
 
    common words, here we use the implementation 
 
    allwords based on closures. 
 
    Listing 10.3. Additional program definitions 
 
    with Markov chain 
 
    function allwords () 
 
    local line = io.read () -– current line 
 
    local pos = 1  
 
    -– current position in the line 
 
    return function () -– iterating function 
 
    while line do  
 
    - repeat until there are lines left 
 
    local s, e = string.find (line, “% w +”, pos) 
 
    if s then  
 
    - found the word? 
 
    pos = e + 1 - update position 
 
    return string.sub (line, s, e) - return word 
 
    else 
 
    line = io.read () - the word was not found; let's try the trail. string 
 
    pos = 1  
 
    - start at the beginning of the line 
 
    end 
 
    end 
 
    return nil  
 
    –- no more lines, end of traversal 
 
    end 
 
    end 
 
    function prefix (w1, w2) 
 
    return w1 .. ““ .. w2 
 
    end 
 
    local statetab = {} 
 
    function insert (index, value) 
 
    local list = statetab [index] 
 
    if list == nil then 
 
    statetab [index] = {value} 
 
    else 
 
    list [#list + 1] = value 
 
    end 
 
    end 
 
    Listing 10.4. Markov chain program 
 
    local N = 2 
 
    local MAXGEN = 10000 
 
    local NOWORD = “\ n” 
 
    - build a table 
 
    local w1, w2 = NOWORD, NOWORD 
 
    for w in allwords () do 
 
    insert (prefix (w1, w2), w) 
 
    w1 = w2; w2 = w; 
 
    end 
 
    insert (prefix (w1, w2), NOWORD) 
 
    - generate text 
 
    w1 = NOWORD; w2 = NOWORD - initialize 
 
    for i = 1, MAXGEN do 
 
    local list = statetab [prefix (w1, w2)] 
 
    - choose a random word from the list 
 
    local r = math.random (#list) 
 
    local nextword = list [r] 
 
    if nextword == NOWORD then return end 
 
    io.write (nextword, ““) 
 
    w1 = w2; w2 = nextword 
 
    end 
 
      
 
    Exercises 
 
    Exercise 10.1. Change the program with eight queens, 
 
    so that it stops after printing the first decision. 
 
    Exercise 10.2. An alternative implementation of the problem of eight 
 
    queens can be the construction of all permutations of numbers from 
 
    1 through 8 and check which ones are valid. Change the program 
 
    mu for using this approach. How fast is 
 
    the effect of the new program in comparison with the old one? 
 
    ( Hint : Compare the total number of permutations with the number of times 
 
    when the original program calls the isplaceok function .) 
 
    Exercise 10.3. When we use the program to determine 
 
    the most common words, then usually the most common 
 
    the most common words are short, uninteresting words 
 
    like articles and prepositions. Modify the program so that 
 
    she skipped words of less than four letters. 
 
    Exercise 10.4. Generalize the Markov chain algorithm so that- 
 
    could use any size as length 
 
    prefix. 
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    CHAPTER 11 
 
    Data structures 
 
    Lua tables are not just a data structure, they are basic and 
 
    single data structure. All structures that offer 
 
    other languages - arrays, records, lists, queues, sets - can 
 
    be represented in Lua using tables. Moreover, the tables in 
 
    Lua effectively implements all of these structures. 
 
    In traditional languages such as C and Pascal, we implement more 
 
    most data structures using arrays and lists (where the list 
 
    ki = records + pointers). Although we can implement arrays and 
 
    lists with tables in Lua (and sometimes we do), tables are 
 
    much more powerful than arrays and lists; many algorithms with 
 
    using tables become almost trivial. For instance, 
 
    we rarely use Lua lookups as tables provide 
 
    direct access to values of various types. 
 
    It takes time to understand how to effectively use tab- 
 
    faces in Lua. In this chapter, I will show you how to implement typical structures. 
 
    rounds of data using tables, and I will give examples of their use 
 
    niya. We won't start with arrays and lists because we need them. 
 
    us for other structures, but since most programmers 
 
    already familiar with them. We have already seen the basis of this material in the pre- 
 
    in previous chapters, but I will also repeat it here. 
 
      
 
    11.1. Arrays 
 
    We are implementing arrays in Lua by simply indexing tables with integers 
 
    numbers. So arrays are not fixed size 
 
    and grow as needed. Usually, when initializing an array, we 
 
    implicitly set its size. For example, after doing the following 
 
    code, any attempt to access a field outside the range of 1-1000 will return 
 
    nil instead of 0: 
 
    a = {} - new array 
 
    for i = 1, 1000 do 
 
    a [i] = 0 
 
    end 
 
    The length operator ('#') uses this to define the length of the mass- 
 
    Siwa: 
 
    print (#a) -> 1000 
 
    You can start an array from zero or any other value: 
 
    - create an array with indices from -5 to 5 
 
    a = {} 
 
    for i = -5, 5 do 
 
    a [i] = 0 
 
    end 
 
    However, it is common in Lua to start arrays at index 1. Bib- 
 
    the Lua libraries follow this convention; as well as the operator length 
 
    us. If your arrays don't start at 1, then you won't be able to use 
 
    call these capabilities of the language. 
 
    We can use the constructor to create and initialize- 
 
    array of one expression: 
 
    squares = {1, 4, 9, 16, 25, 36, 49, 64, 81} 
 
    Such constructors can be so large that 
 
    how much is needed (at least up to several million 
 
    cops). 
 
    11.2. Matrices and multidimensional arrays 
 
    There are two main ways of representing matrices in Lua. First - 
 
    is to use an array of arrays, i.e. a table, each element 
 
    which is another table. For example, you can create a matrix 
 
    zu of zeros of size M by N using the following code: 
 
    mt = {}  
 
    –- create matrix 
 
    for i = 1, N do 
 
    mt [i] = {} -– create string 
 
    for j = 1, M do 
 
    mt [i] [j] = 0 
 
    end 
 
    end 
 
      
 
    Since tables are objects in Lua, to create mat- 
 
    You must explicitly create each row of the script. On the one hand, it is 
 
    is more cumbersome than simply declaring a matrix, as is done in  
 
    languages C and Pascal. On the other hand, it gives more flexibility. For instance, 
 
    you can create a triangular matrix by changing the for loop j = 1, M 
 
    do ... end in the previous code snippet for j = 1, i do ... end . 
 
    With this code, the triangular matrix will only use the posi- 
 
    memory fault over the original example. 
 
    The second way to represent matrices in Lua is to combine 
 
    converting two indices into one. If both indices are integers 
 
    lami, then you can simply multiply the first by the corresponding 
 
    constant and add a second index. With this approach the following 
 
    the code will create our matrix of zeros of size M by N : 
 
    mt = {} -– create matrix 
 
    for i = 1, N do 
 
    for j = 1, M do 
 
    mt [(i - 1) * M + j] = 0 
 
    end 
 
    end 
 
    If the indices are strings, then you can create one in- 
 
    dex by simply concatenating those lines with some character in between. 
 
    For example, you can create a matrix m with string indices- 
 
    mi s and t using the following code m [s .. ”:” .. t] , provided that 
 
    that both s and t do not contain colons; otherwise pairs like 
 
    (“A:”, “b”) and ( “a”, “: b” ) will both give the same index “a :: b” . 
 
    When in doubt, you can use the control sim 
 
    ox like ' \ 0' for separating indices. 
 
    Quite often, applications use a sparse matrix , 
 
    that is, a matrix where most of the elements are either 0 or nil . On- 
 
    example, you can represent a graph using its connectivity matrix- 
 
    value in which the value at position m, n is equal to x , if between nodes 
 
    m and n is a join at a cost x. When these nodes are not connected, then the value 
 
    nil at position m, n is nil . In order to represent a graph with ten 
 
    with thousands of nodes, where each node has about five neighbors, you 
 
    a matrix with one hundred million possible elements is needed, but only 
 
    fifty thousand of them will be non- nil (five non-zero columns 
 
    for each row corresponding to five neighbors). Many books 
 
    on data structures discuss in detail how you can implement 
 
    similar sparse matrices, without wasting 400 MB of memory on them, but 
 
    you rarely need such tricks when programming 
 
    in Lua. With our first view (table of tables) you will 
 
    ten thousand tables are needed, each of which contains about 
 
    five elements, that is, a total of about fifty thousand values. When 
 
    the second view we have one table with fifty thousand- 
 
    elements. Whichever presentation you use, you 
 
    only memory is needed for non- nil elements . 
 
    When working with sparse matrices, we cannot use 
 
    length operator due to holes ( nil values ) between elements. One- 
 
    but this is not a big loss; even if we could use it, then 
 
    it wouldn't be worth it. For most operations, it was extremely 
 
    it is inefficient to iterate over all these empty elements. Instead, we 
 
    we can use pairs to traverse only elements other than 
 
    from nil . For example, in order to multiply a string by a constant, we 
 
    we can use the following code: 
 
    function mult (a, rowindex, k) 
 
    local row = a [rowindex] 
 
    for i, v in pairs (row) do 
 
    row [i] = v * k 
 
    end 
 
    end 
 
    Note, however, that the keys do not have any specific 
 
    divided order in the table, so iterating with 
 
    pairs does not guarantee that we will visit all columns in ascending order. 
 
    For some tasks (for example, our previous example) this is 
 
    no problem. For other purposes, you can use the excellent 
 
    views, such as linked lists. 
 
      
 
    11.3. Linked Lists 
 
    Since tables are dynamic entities, re- 
 
    It's pretty easy to lick linked lists in Lua. Each node 
 
    represented by a table, and the links are just fields of the table, 
 
    which contain links to other tables. For example, let's re- 
 
    we lick the simplest list, where each node contains two fields, next 
 
    and value . The root of the list is an ordinary variable: 
 
    list = nil 
 
    To insert an element with the value v at the beginning of the list, 
 
    we do: 
 
    list = {next = list, value = v} 
 
    To traverse the list, we can write: 
 
    local l = list 
 
    while l do 
 
    <visit l.value> 
 
    l = l.next 
 
    end 
 
    Other list options, such as bidirectional or circular 
 
    lists are also easy to implement. However, such structures 
 
    you will rarely need Lua as there is usually an easier one 
 
    a way of presenting your data without using related 
 
    lists. For example, we can represent the stack as (unlimited 
 
    ny) array. 
 
      
 
    11.4. Queues and doubles queues 
 
    The simplest way to implement queues in Lua is to use 
 
    The insert and remove functions from the table library . These functions 
 
    insert and remove elements from an arbitrary position in the array, 
 
    moving the rest of the array elements. However, such changes 
 
    Scales can be expensive for large structures. More efficient 
 
    nth implementation uses two indices, one for the first element and 
 
    one for the latter: 
 
    function ListNew () 
 
    return {first = 0, last = -1} 
 
    end 
 
    In order not to pollute the global namespace, we 
 
    define all operations for working with a list within a table, which 
 
    We'll call it List (this way we'll create a module ). Then we 
 
    we can rewrite our last example as follows: 
 
    List = {} 
 
    function List.new () 
 
    return {first = 0, last = -1} 
 
    end 
 
    Now we can insert and remove elements from either end beyond 
 
    constant time: 
 
    function List.pushfirst (list, value) 
 
    local first = list.first - 1 
 
    list.first = first 
 
    list [first] = value 
 
    end 
 
    function List.pushlast (list, value) 
 
    local last = list.last + 1 
 
    list.last = last 
 
    list [last] = value 
 
    end 
 
    function List.popfirst (list) 
 
    local first = list.first 
 
    if first> list.last then error (“list is empty”) end 
 
    local value = list [first] 
 
    list [first] = nil - let the garbage collector remove it 
 
    list.first = first + 1 
 
    return value 
 
    end 
 
    function List.poplast (list) 
 
    local last = list.last 
 
    if list.first> last then error (“list is empty”) end 
 
    local value = list [last] 
 
    list [last] = nil - let the garbage collector remove it 
 
    list.last = last - 1 
 
    return value 
 
    end 
 
      
 
    If you use this structure in the classic way 
 
    bong, calling only pushlast and popfirst , then both first and last will be 
 
    grow constantly. However, since we represent arrays in Lua with 
 
    help tables, you can easily index them from 1 to 20 or from 
 
    16,777,216 to 16,777,236. Since Lua uses double 
 
    precision to represent numbers, your program can run 
 
    for two hundred years, making a million insertions per second, 
 
    before an overflow problem occurs. 
 
      
 
    11.5. Sets and sets 
 
    Suppose you want to iterate over all ids used by 
 
    in the program; somehow you need to filter 
 
    reserved words. Some C programmers can 
 
    try to use to represent the set of reserved 
 
    given words an array of strings and then to check if 
 
    the given word is reserved, search in this 
 
    sive. You can even use the binary to speed up searches. 
 
    tree to represent the set. 
 
    In Lua, an efficient and easy way to represent sets 
 
    will use the elements as indexes on the table. Then instead of 
 
    to find if the table contains a given word, you can simply ask 
 
    try to index the table with this word and see if 
 
    whether the resulting result is nil . For example, we can use 
 
    the following code: 
 
    reserved = { 
 
    [“While”] = true, [“end”] = true, 
 
    [“Function”] = true, [“local”] = true, 
 
    } 
 
    for w in allwords () do 
 
    if not reserved [w] then 
 
    <do something with 'w'> 
 
    - 'w' is an unreserved word 
 
    end 
 
    end 
 
    (Since these words are reserved in Lua, we cannot use 
 
    use them as identifiers; for example, we cannot 
 
    write while = true . Instead, we write [“while”] = true .) 
 
    You can also use clearer initialization when 
 
    using an additional function that builds the set: 
 
    function Set (list) 
 
    local set = {} 
 
    for _, l in ipairs (list) do set [l] = true end 
 
    return set 
 
    end 
 
    reserved = Set {“while”, “end”, “function”, “local”,} 
 
    Sets, also called multisets , differ from 
 
    ordinary sets in that each element may not occur 
 
    how many times. The simple representation of sets in Lua is similar to the pre- 
 
    previous view for sets, but with each key associated 
 
    corresponding counter. In order to insert an element, we 
 
    Liching his counter: 
 
    function insert (bag, element) 
 
    bag [element] = (bag [element] or 0) + 1 
 
    end 
 
    To remove an element, we decrement its counter: 
 
    function remove (bag, element) 
 
    local count = bag [element] 
 
    bag [element] = (count and count> 1) and count - 1 or nil 
 
    end 
 
    We store the counter only if it already exists and is not equal 
 
    zero. 
 
      
 
    11.6. Line buffers 
 
    Suppose you are working with text and reading the file line by line. Then 
 
    your code might look like this: 
 
    local buff = “” 
 
    for line in io.lines () do 
 
    buff = buff .. line .. "\ n" 
 
    end 
 
    Despite its harmless appearance, this code can hit hard 
 
    for performance for large files: for example, reading a file in 
 
    1 MB takes 1.5 minutes on my old computer 1 . 
 
    Why is this so? To understand what is happening, imagine that 
 
    we are inside a loop; each line is 20 bytes, and 
 
    we have already read 2500 lines, so buff is a 50 KB line. Kog- 
 
    yes Lua connects buff..line .. "\ n" ; it allocates a new line in 
 
    50,020 bytes and copies 50,000 bytes from buff to this newline. Ta- 
 
    Thus, for each new line, Lua moves in memory when 
 
    approximately 50 Kb, and this size is only growing. More precisely this algorithm 
 
    has quadratic complexity. After reading 100 new lines 
 
    (2 KB total) Lua has already moved over 2 MB of memory. When Lua is 
 
    reads 350 KB, more than 50 GB will already be moved in memory 
 
    (this problem is not unique to Lua: other languages where strings 
 
    immutable, also face a similar problem, the most 
 
    Java is a well-known example of such a language). 
 
    Before we continue, it should be noted that, despite 
 
    all that said, this is not a typical problem. For small lines 
 
    the above loop works fine. To read the entire file 
 
    Lua provides io.read (“* a”) , this call reads the entire 
 
    file. However, sometimes we run into this problem. To fight 
 
    With a similar problem Java uses the StringBuffer structure . 
 
    In Lua, we can use a table as a string buffer. 
 
    The key to this approach is the table.concat function , which 
 
    returns the result of concatenating all strings from the given list. 
 
    With concat we can rewrite our previous code to the following 
 
    in the following way: 
 
    local t = {} 
 
    for line in io.lines () do 
 
    t [#t + 1] = line .. "\ n" 
 
    1 
 
    "My Old Computer" is a 3 GHz single-core 32-bit Pentium. Everything is fast 
 
    The performance for this book was measured on this computer. 
 
      
 
    end 
 
    local s = table.concat (t) 
 
    This algorithm takes less than 0.5 seconds to read the same self- 
 
    th file, which took almost a minute with the previously used 
 
    code. (Regardless, to read the entire file, it is best to use 
 
    io.read with the “* a” option .) 
 
    We can do even better. The concat function takes as input 
 
    second optional argument, which is a delimiter, 
 
    which will be inserted between the lines. Using this separa- 
 
    torus, we can get rid of the need to insert every time 
 
    character '\ n' : 
 
    local t = {} 
 
    for line in io.lines () do 
 
    t [#t + 1] = line 
 
    end 
 
    s = table.concat (t, “\ n”) .. “\ n” 
 
    The concat function inserts a separator between lines, but we 
 
    you still need to add one last '\ n' character . This last 
 
    The new concatenation operation copies the resulting string, which can 
 
    require a significant amount of time. There is no way to force 
 
    concat insert an extra delimiter, but we can easily 
 
    achieve this by simply adding an empty line to t : 
 
    t [#t + 1] = “” 
 
    s = table.concat (t, “\ n”) 
 
    An extra '\ n' character that concat will add before the post 
 
    the ice line is what we need. 
 
      
 
    11.7. Graphs 
 
    Like any sane language, Lua offers various implementations 
 
    for graphs, each of which is better suited for its own type of al- 
 
    burning. Here we will look at a simple object-oriented 
 
    a new implementation in which we will represent the nodes as objects 
 
    (more precisely, tables, of course) and arcs as links between nodes. 
 
    We will represent each node as a table with two fields: 
 
    name , which is the name of the node, and adj , which is the set of nodes. 
 
    fishing connected to the data. Since we will be reading the graph from the text 
 
    st file, we need a way to find the node by its name. For 
 
    for this we will use an additional table. Function na- 
 
    me2node , having received the name of the node, will return this node: 
 
    local function name2node (graph, name) 
 
    local node = graph [name] 
 
    if not node then 
 
    - there is no node yet, create a new one 
 
    node = {name = name, adj = {}} 
 
    graph [name] = node 
 
    end 
 
    return node 
 
    end 
 
    Listing 11.1 contains a function that will build a graph. It 
 
    reads a file where each line contains the names of two nodes, denoting 
 
    that there is an arc leading from the first node to the second. For each line 
 
    it uses the string.match function to split the string 
 
    ku on two names, then finds the corresponding nodes (creating them 
 
    if necessary) and connects them. 
 
    Listing 11.1. Reading a graph from a file 
 
    function readgraph () 
 
    local graph = {} 
 
    for line in io.lines () do 
 
    - split the line into two names 
 
    local namefrom, nameto = string.match (line, “(% S +)% s + (% S +)”) 
 
    - find matching nodes 
 
    local from = name2node (graph, namefrom) 
 
    local to = name2node (graph, nameto) 
 
    - add 'to' to the link list of node 'from' 
 
    from.adj [to] = true 
 
    end 
 
    return graph 
 
    end 
 
    Listing 11.2 illustrates an algorithm using similar 
 
    graphs. The findpath function searches for a path between two nodes using 
 
    depth-first traversal. Its first parameter is the current node; second for- 
 
    gives the desired node; the third parameter stores the path from the beginning to the current 
 
    mu node; the last parameter is the set of all already visited 
 
    nodes (to avoid loops). Notice how the algorithm 
 
    works directly with nodes, avoiding the use of their names. On- 
 
    example, visited is a set of nodes, not node names. Similarly 
 
    path is a list of nodes. 
 
    Listing 11.2. Finding a path between two nodes 
 
    function findpath (curr, to, path, visited) 
 
    path = path or {} 
 
    visited = visited or {} 
 
    if visited [curr] then -– has the node already been visited? 
 
    return nil  
 
    - there is no way 
 
    end 
 
    visited [curr] = true  
 
    -– mark the node as visited 
 
    path [#path + 1] = curr -– add to the path 
 
    if curr == to then  
 
    -- target? 
 
    return path 
 
    end 
 
    - try all neighboring nodes 
 
    for node in pairs (curr.adj) do 
 
    local p = findpath (node, to, path, visited) 
 
    if p then return p end 
 
    end 
 
    path [#path] = nil  
 
    –- remove a node from the path 
 
    end 
 
    To test this code, we'll add a function that prints 
 
    path, and additional code to make it work: 
 
    function printpath (path) 
 
    for i = 1, #path do 
 
    print (path [i] .name) 
 
    end 
 
    end 
 
    g = readgraph () 
 
    a = name2node (g, “a”) 
 
    b = name2node (g, “b”) 
 
    p = findpath (a, b) 
 
    if p then printpath (p) end 
 
      
 
    Exercises 
 
    Exercise 11.1. Modify the implementation of the queue so that both 
 
    the index would be zero if the queue is empty. 
 
    Exercise 11.2. Repeat exercise 10.3, only instead of 
 
    in order to use length as a criterion for discarding 
 
    word, now the program should read from the special 
 
    th file list of words to skip. 
 
    Exercise 11.3. Modify the graph structure so that it matches 
 
    kept a label for each arc. Each arc must also 
 
    be represented using an object with two fields: met- 
 
    coy and knots to which she points. Instead of many 
 
    neighboring nodes each node must contain a list of arcs 
 
    going from this node.45 
 
    Modify the readgraph function so that it is from each line 
 
    ki file read two node names and a label (assuming that the label 
 
    this number). 
 
    Exercise 11.4. Use the graph representation from the previous 
 
    the next exercise, where the label of each arc is 
 
    the distance between the nodes it connects. Write a function 
 
    tion that finds the shortest path between two nodes. 
 
    ( Hint : Use Dijkstra's algorithm.) 
 
      
 
      
 
    CHAPTER 12 
 
    Data files and persistence 
 
    When working with data files it is usually much easier to write 
 
    files than to read them. When we write to a file, we are completely 
 
    we roll everything that happens. On the other hand, when we read 
 
    from the file, we don't know what to expect. Besides all data types, 
 
    which the correct data file can contain, the program 
 
    ma should also handle bad files intelligently. therefore 
 
    writing correctly working procedures for reading data 
 
    always difficult. 
 
    In this chapter, we will see how you can use Lua to do something 
 
    would eliminate all the code for reading data from our programs, just 
 
    writing data in a suitable format. 
 
      
 
    12.1. Data files 
 
    Table constructors provide an interesting alternative to the form 
 
    data mats. With a little extra work when 
 
    writing data reading becomes trivial. The approach is 
 
    is to write our data file as a Lua program that 
 
    Paradise, when executed, creates the necessary data. 
 
    As usual, for the sake of clarity, let's look at the 
 
    measures. If our data file is in a specific format, 
 
    for example CSV or XML, our choice is extremely small. However, if we 
 
    want to create a file for our own use, then we in 
 
    we can use Lua constructors as our format. IN 
 
    In this format, we represent each entry as a Lua constructor. 
 
    Instead of writing to our file something like 
 
    Donald E. Knuth, Literate Programming, CSLI, 1992 
 
    Jon Bentley, More Programming Pearls, Addison-Wesley, 1990 
 
    we're writing: 
 
    147 
 
    Data files 
 
    Entry {“Donald E. Knuth”, 
 
    "Literate Programming", 
 
    “CSLI”, 
 
    1992} 
 
    Entry {“Jon Bentley”, 
 
    “More Programming Pearls”, 
 
    "Addison-Wesley", 
 
    1990} 
 
    Let's remember? that Entry { code } is the same as Entry ({ code }) , 
 
    that is, a call to the Entry function with the table as the only one 
 
    argument. Therefore, the above piece of data is by itself 
 
    actually a Lua program. In order to read such a file, we 
 
    you just need to execute it with a properly defined 
 
    the Entry function . For example, the following program counts the number 
 
    entries in the file: 
 
    local count = 0 
 
    function Entry () count = count + 1 end 
 
    dofile (“data”) 
 
    print (“number of records:“ .. count) 
 
    The following program builds a set of all author names, find 
 
    data in the file, and prints them (not necessarily in the same order, in 
 
    which they met in the file): 
 
    local authors = {} -– many authors 
 
    function Entry (b) authors [b [1]] = true end 
 
    dofile (“data”) 
 
    for name in pairs (authors) do print (name) end 
 
    Please note the approach used in these snippets 
 
    code: Entry function acts as a callback function 
 
    (callback), which is called at runtime dofile for each 
 
    doy record in the file. 
 
    When we don't care about file size, we can use our 
 
    views use name-value pairs 1 : 
 
    Entry { 
 
    author = “Donald E. Knuth”, 
 
    title = “Literate Programming”, 
 
    publisher = “CSLI”, 
 
    year = 1992 
 
    } 
 
    Entry { 
 
    author = “Jon Bentley”, 
 
    1 
 
    If this format reminds you of BibTeX, then it's no coincidence. BibTeX format 
 
    was one of the sources that defined the kind of constructors in Lua. 
 
      
 
    title = “More Programming Pearls”, 
 
    year = 1990, 
 
    publisher = “Addison-Wesley”, 
 
    } 
 
    This format is what we call a self - describing format 
 
    data, since each piece of data contains a short description 
 
    vanishing of its meaning. Self-describing data is more readable (like 
 
    at least people) than CSV or other compact format; their easy 
 
    to edit if necessary; and they allow us to contribute 
 
    small changes to the base format without the need to change 
 
    data files. For example, if we add a new field, then we 
 
    you only need to change the reading program by providing a value 
 
    by default when no field is specified. 
 
    Using the name-value format, our program for composing 
 
    The author list becomes as shown below: 
 
    local authors = {} -– set for author names 
 
    function Entry (b) authors [b.author] = true end 
 
    dofile (“data”) 
 
    for name in pairs (authors) do print (name) end 
 
    Now the order of the fields is not important. Even if some records 
 
    there is no author, then we only need to change the Entry function : 
 
    function Entry (b) 
 
    if b.author then authors [b.author] = true end 
 
    end 
 
    Lua is not only fast to execute, but also fast to compile. 
 
    For example, the above program for making a list 
 
    authors processes 1 MB of data in one tenth of a second 2 . And this 
 
    not by chance. Data description was one of the main applications 
 
    Lua since its inception, and we pay a lot of attention to making it 
 
    the compiler was fast for large programs. 
 
      
 
    12.2. Serialization 
 
    Often we need to serialize some data, that is, translate 
 
    data into a stream of bytes or characters that we can write 
 
    to a file or send over the network. We can represent serialized- 
 
    data as Lua code in such a way that when doing this 
 
    code it restores the saved values for the executing 
 
    his programs. 
 
    Usually, if we want to restore the value of the global re- 
 
    variable, then our block of code will be something like varname = exp , where exp is 
 
    this is the Lua code to get the value. With varname everything is simple, so 
 
    Let's see how to write code that creates a value. 
 
    For a numeric value, the task is simple: 
 
    function serialize (o) 
 
    if type (o) == “number” then 
 
    io.write (o) 
 
    else <other cases> 
 
    end 
 
    end 
 
    When writing a number in decimal form, there is a risk of losing precision. 
 
    In Lua 5.2, you can use hexadecimal format, in order to 
 
    to avoid a similar problem: 
 
    if type (o) == “number” then 
 
    io.write (string.format (“% a”, o)) 
 
    When using this format ( “% a” ) the read value 
 
    will consist of exactly the same bits as the original one. 
 
    For a string, a naive approach would be something like the following: 
 
    if type (o) == “string” then 
 
    io.write (“'”, o, “'”) 
 
   
  
 

 However, if the string contains special characters (such as 
 
    tricks or '\ n' ), then the resulting code will no longer be a program for 
 
    Lua. 
 
    You might think that this problem can be solved by changing 
 
    quote type: 
 
    if type (o) == “string” then 
 
    io.write (“[[“, o, “]]”) 
 
    However, be careful. If you try to keep something 
 
    like “]] .. os.execute ('rm *') .. [[” (for example, by passing this 
 
    string as an address), then the resulting block of code will be: 
 
    varname = [[]] .. os.execute ('rm *') .. [[]] 
 
    As a result, you will receive an unpleasant surprise when trying to purchase 
 
    honor is such "data". 
 
    The simplest way to write a string is safe to use 
 
    the option "% q" from the string.format function . She surrounds the string 
 
    double quotes and safely represents double 
 
    quotes and some other characters inside the string: 
 
      
 
    a = 'a “problematic” \\ string' 
 
    print (string.format (“% q”, a)) -> “a \” problematic \ ”\\ string” 
 
    Using this capability, our serialize function can 
 
    look like this: 
 
    function serialize (o) 
 
    if type (o) == “number” then 
 
    io.write (o) 
 
    elseif type (o) == “string” then 
 
    io.write (string.format (“% q”, o)) 
 
    else <other cases> 
 
    end 
 
    end 
 
    Since version 5.1 Lua offers a different way of writing strings 
 
    in a safe way, using the notation [= [...] =] for long 
 
    lines. However, this recording method is mainly intended for 
 
    user-written code when we in no way want 
 
    change the character string. It is easier in auto-generated code 
 
    use “% q” from string.format . 
 
    If you nevertheless want to use a similar notation for 
 
    automatically generated code, then you need to pay attention 
 
    for some details. The first is that you need to pick up 
 
    the correct number of equal signs. A good option is 
 
    The number is greater than that found in the original string. Insofar as 
 
    strings containing a large number of equal signs are not 
 
    are rare (for example, comments separating blocks of code), 
 
    then we can restrict ourselves to considering sequences of 
 
    equality kovs between square brackets; others 
 
    sequences cannot result in an erroneous end marker 
 
    strings. The second detail is that Lua always ignores sym- 
 
    ox '\ n' at the beginning of a long line; the simplest way to deal with 
 
    this is the addition of the '\ n' character , which will be discarded. 
 
    Listing 12.1. Outputting an arbitrary string of characters 
 
    function quote (s) 
 
    - find the maximum length of a sequence of equal signs 
 
    local n = -1 
 
    for w in string.gmatch (s, “] = *]”) do 
 
    n = math.max (n, #w - 2) - -2 to remove ']' 
 
    end 
 
    - create a string with 'n' + 1 equal sign 
 
    local eq = string.rep (“=”, n + 1) 
 
    - build a summary line 
 
    return string.format (“[% s [\ n% s]% s]“, eq, s, eq) 
 
    end 
 
      
 
      
 
    The quote function in Listing 12.1 is the result of our 
 
    for previous remarks. It receives an arbitrary string as input and 
 
    returns the formatted string as a long string. Call 
 
    string.gmatch creates an iterator to iterate over all sequential 
 
    of the form '] = *]' (that is, the closing square bracket, after which 
 
    followed by zero or more equal signs, followed by 
 
    there is another closing square bracket) on line 3 . For each 
 
    occurrences are updated with the value n equal to the maximum number 
 
    already met equal signs. After the loop, we use the function 
 
    ktsiyu string.rep , to repeat the sign of equality n + 1 times, 
 
    i.e. one more than the maximum number encountered 
 
    in line. Finally, the function string.format concludes s between PA- 
 
    square brackets with the appropriate number of equal signs and 
 
    adds extra spaces around the line and the '\ n' character in 
 
    the beginning of the line. 
 
      
 
    Saving tables without loops 
 
    Our next (and more challenging) challenge is to preserve 
 
    tables. There are several ways to save them in accordance with 
 
    with what restrictions we impose on the structure of the table 
 
    tsy. There is no one algorithm that fits all cases. 
 
    Simple tables not only require simpler algorithms, but also 
 
    the resulting files can be visually pleasing. 
 
      
 
    Listing 12.2. Serializing tables without loops 
 
    function serialize (o) 
 
    if type (o) == “number” then 
 
    io.write (o) 
 
    elseif type (o) == “string” then 
 
    io.write (string.format (“% q”, o)) 
 
    elseif type (o) == “table” then 
 
    io.write (“{\ n”) 
 
    for k, v in pairs (o) do 
 
    io.write (““, k, “=“) 
 
    serialize (v) 
 
    io.write (“, \ n”) 
 
    end 
 
    io.write (“} \ n”) 
 
    else 
 
    error (“cannot serialize a“ .. type (o)) 
 
    end 
 
    end 
 
      
 
      
 
    Our next attempt is shown in Listing 12.2. Despite 
 
    for its simplicity, this function does a pretty decent job. 
 
    It even handles nested tables (i.e. tables inside 
 
    other tables) as long as the table structure is a tree 
 
    (that is, there are no shared sub-tables and loops). A little visual 
 
    an improvement would be to add spaces to indent nested 
 
    tables (see Exercise 12.1). 
 
    The previous function assumes that all keys in the table are 
 
    are valid identifiers. If the table contains numeric 
 
    keys or strings that are not identifiers in Lua, then 
 
    we have a problem. A simple way to resolve it is to use 
 
    Writing the following code to write each key: 
 
    io.write (“[“); serialize (k); io.write (“] =“) 
 
    With this improvement, we have increased the reliability of our function. 
 
    due to the visual clarity of the resulting file. Consider 
 
    next call: 
 
    serialize {a = 12, b = 'Lua', key = 'another “one”'} 
 
    The result of this call when using the first version of the function 
 
    tion serialize will the following code: 
 
    { 
 
    a = 12, 
 
    b = “Lua”, 
 
    key = “another \” one \ ””, 
 
    } 
 
    Compare with the result of using the second version: 
 
    { 
 
    [“A”] = 12, 
 
    [“B”] = “Lua”, 
 
    [“Key”] = “another \” one \ ””, 
 
    } 
 
    We can get both reliability and a beautiful view by checking in 
 
    in each case, whether square brackets are needed; again we will leave it 
 
    improved as exercise. 
 
      
 
    Saving tables with loops 
 
    For processing tables in the general case (that is, with loops and general 
 
    subtables), we need a different approach. Constructors 
 
    cannot represent such tables, therefore we will not  
 
    use. We need names to represent loops, so 
 
    our next function will take the value as arguments 
 
    to save and name. Moreover, we must keep track of the names 
 
    already saved tables in order to reuse them when 
 
    we discover a cycle. To do this, we will use an additional 
 
    See the table. This table will use tables as 
 
    indexes and their names as stored values. 
 
      
 
    Listing 12.3. Saving tables with loops 
 
    function basicSerialize (o) 
 
    if type (o) == “number” then 
 
    return tostring (o) 
 
    else -– suppose it's a string 
 
    return string.format (“% q”, o) 
 
    end 
 
    end 
 
    function save (name, value, saved) 
 
    saved = saved or {} –- initial value 
 
    io.write (name, “=“) 
 
    if type (value) == “number” or type (value) == “string” then 
 
    io.write (basicSerialize (value), “\ n”) 
 
    elseif type (value) == “table” then 
 
    if saved [value] then -– is the value already saved? 
 
    io.write (saved [value], “\ n”) -– use its name 
 
    else 
 
    saved [value] = name -– save the name for next time 
 
    io.write (“{} \ n”) -– create a new table 
 
    for k, v in pairs (value) do –– save its fields 
 
    k = basicSerialize (k) 
 
    local fname = string.format (“% s [% s]”, name, k) 
 
    save (fname, v, saved) 
 
    end 
 
    end 
 
    else 
 
    error (“cannot save a“ .. type (value)) 
 
    end 
 
    end 
 
    The resulting code is shown in Listing 12.3. We stick with 
 
    constraints that the tables we want to keep contain 
 
    just numbers and strings as keys. BasicSerialize function 
 
    serializes these base types. The next function, save , does 
 
    em all the hard work. The parameter saved is a table that is 
 
    monitors tables already saved. For example, if we build 
 
    table as follows: 
 
      
 
    a = {x = 1, y = 2; {3,4,5}} 
 
    a [2] = a  
 
    - cycle 
 
    az = a [1]  
 
    - general subtable 
 
    then calling save (“a”, a) will save it like this: 
 
    a = {} 
 
    a [1] = {} 
 
    a [1] [1] = 3 
 
    a [1] [2] = 4 
 
    a [1] [3] = 5 
 
    a [2] = a 
 
    a [“y”] = 2 
 
    a [“x”] = 1 
 
    a [“z”] = a [1] 
 
    The order of these assignments can change, as it depends 
 
    from traversing the table. Nevertheless, the algorithm guarantees that any 
 
    the element required for building the table has already been defined . 
 
    If we want to store multiple values with common parts, 
 
    then we can call the save function on the same table saved . 
 
    For example, consider the following two tables: 
 
    a = {{“one”, “two”}, 3} 
 
    b = {k = a [1]} 
 
    If we keep them independently, then the result will have no common 
 
    parts: 
 
    save (“a”, a) 
 
    save (“b”, b) 
 
    -> a = {} 
 
    -> a [1] = {} 
 
    -> a [1] [1] = “one” 
 
    -> a [1] [2] = “two” 
 
    -> a [2] = 3 
 
    -> b = {} 
 
    -> b [“k”] = {} 
 
    -> b [“k”] [1] = “one” 
 
    -> b [“k”] [2] = “two” 
 
    However, if we use the same saved table for both 
 
    calls to save , then the resulting result will contain the common parts: 
 
    local t = {} 
 
    save (“a”, a, t) 
 
    save (“b”, b, t) 
 
    -> a = {} 
 
    -> a [1] = {} 
 
    -> a [1] [1] = “one” 
 
    -> a [1] [2] = “two” 
 
    -> a [2] = 3 
 
    -> b = {} 
 
    -> b [“k”] = a [1] 
 
    As usual, there are several other options in Lua. Among 
 
    them, we can store the value without giving it a global name 
 
    nor (for example, a block builds a local value and returns it), we 
 
    we can process functions (by constructing additional 
 
    the table associating each function with its name), etc. Lua gives 
 
    you have strength; you build mechanisms. 
 
      
 
      
 
    Exercises 
 
    Exercise 12.1. Modify the code in Listing 12.2 to make it 
 
    equated nested tables. 
 
    ( Hint : add an extra function parameter 
 
    serialize containing the alignment string.) 
 
    Exercise 12.2. Modify the code in Listing 12.2 so that it 
 
    used the syntax [“key”] = value as suggested in 
 
    section 12.1. 
 
    Exercise 12.3. Modify the code of the previous exercise so that 
 
    to make it use the syntax [“key”] = value only when 
 
    it's necessary. 
 
    Exercise 12.4. Modify the code of the previous exercise so that 
 
    so that it uses constructors whenever possible- 
 
    but. For example, he should present the table {14,15,19} 
 
    as {14,15,19} , not as {[1] = 14, [2] = 15, [3] = 19} . 
 
    ( Hint : start by storing the values for keys 1, 2, ..., 
 
    until they are nil . Please note what is not needed 
 
    save them again when traversing the rest of the table.) 
 
    Exercise 12.5. The no-use approach 
 
    calling constructors when saving tables with loops, 
 
    too radical. You can save the table for more 
 
    nice way, using constructors in general and 
 
    then using assignments only to handle common 
 
    tables and loops. 
 
    Reimplement the save function using this 
 
    approach. Add to it everything that you have already implemented in the previous 
 
    exercises. 
 
      
 
    CHAPTER 13 
 
    Metatables and metamethods 
 
    Usually, for every value in Lua, there is a completely predictable 
 
    boron of operations. We can add numbers, connect strings, insert 
 
    insert key-value pairs into tables, etc. However, we cannot add 
 
    create tables, we cannot compare functions and we cannot call 
 
    string. Unless we're using metatables. 
 
    Metatables allow you to change the behavior of a value in case 
 
    when we are faced with an unexpected operation. For example, when 
 
    the power of metatables we can determine how Lua should compute 
 
    expression a + b , where a and b are tables. When Lua tries to fold 
 
    two tables, then it checks if at least one of them has metatab- 
 
    person and whether this metatable contains an __add field . If Lua finds 
 
    this field, then it calls the corresponding value - the so-called 
 
    my metamethod , which must be a function - to calculate 
 
    the amount. 
 
    Every value in Lua can have a metatable associated with it. 
 
    Tables and values of type userdata store individual values 
 
    for each instance; values of other types use 
 
    one general table for each type. Lua always creates new tables. 
 
    without metatables: 
 
    t = {} 
 
    print (getmetatable (t))  
 
    -> nil 
 
    We can use the setmetatable function to 
 
    set or change the metatable for any table: 
 
    t1 = {} 
 
    setmetatable (t, t1) 
 
    print (getmetatable (t) == t1)  
 
    -> true 
 
    Directly from Lua, we can set metatables 
 
    only for tables; to work with metatables of values of other types 
 
    so we have to use the C 1 code . We will see later in chapter 21, 
 
    that the string library sets up metatables 
 
    for strings. All other types do not have metatables by default: 
 
    print (getmetatable (“hi”)) -> table: 0x80772e0 
 
    print (getmetatable (“xuxu”)) -> table: 0x80772e0 
 
    print (getmetatable (10))  
 
    -> nil 
 
    print (getmetatable (print)) -> nil  
 
      
 
    Any table can be a metatable of any value; Group related tables can share a common metatable, which defines their general behavior; the table can be metatable- to herself so that she describes her own behavior nie. 
 
      
 
    13.1. Arithmetic metamethods 
 
    In this section, we will look at a simple example for defining 
 
    clarify how to use metatables. Let us use the table 
 
    ts for representing sets with functions for calculating the 
 
    connections, intersections, and so on, as shown in Listing 13.1. For 
 
    in order not to litter the global namespace, we will store 
 
    these functions are in the Set table . 
 
    Listing 13.1. Simple set implementation 
 
    Set = {} 
 
    - create a new set by taking values from a given list 
 
    function Set.new (l) 
 
    local set = {} 
 
    for _, v in ipairs (l) do set [v] = true end 
 
    return set 
 
    end 
 
    function Set.union (a, b) 
 
    local res = Set.new {} 
 
    for k in pairs (a) do res [k] = true end 
 
    for k in pairs (b) do res [k] = true end 
 
    return res 
 
    end 
 
    function Set.intersection (a, b) 
 
    local res = Set.new {} 
 
    for k in pairs (a) do 
 
    1 
 
    The main reason for this limitation is the desire to limit too much 
 
    frequent use of metatables. Experience with previous versions of Lua has shown that 
 
    such global changes often lead to unused code. 
 
    res [k] = b [k] 
 
    end 
 
    return res 
 
    end 
 
    - represent the set as a string 
 
    function Set.tostring (set) 
 
    local l = {} -– a list where all elements will be placed 
 
    for e in pairs (set) do 
 
    l [#l + 1] = e 
 
    end 
 
    return “{“ .. table.concat (l, “,“) .. “}” 
 
    end 
 
    - print set 
 
    function Set.print (s) 
 
    print (Set.tostring (s)) 
 
    end 
 
    We will now use the addition operator ( '+' ) to calculate 
 
    numbering the union of two sets. To do this, we will make it so that 
 
    all tables representing sets will have one common 
 
    metatable. This metatable will define how the tables should react 
 
    add to the addition operator. Our first step will be to create 
 
    a regular table that we will use as a metatable 
 
    for sets: 
 
    local mt = {} -– metatable for sets 
 
    The next step is to change the function that creates a lot of 
 
    the set Set.new . The new version of this function will have one additional 
 
    a string that sets mt for the generated tables 
 
    as a metatable: 
 
    function Set.new (l) -– 2nd version 
 
    local set = {} 
 
    setmetatable (set, mt) 
 
    for _, v in ipairs (l) do set [v] = true end 
 
    return set 
 
    end 
 
    After that, each set that we create with 
 
    Set.new will have the same metatable: 
 
    s1 = Set.new {10, 20, 30, 50} 
 
    s2 = Set.new {30, 1} 
 
    print (getmetatable (s1)) -> table: 00672B60 
 
    print (getmetatable (s2)) -> table: 00672B60 
 
    Finally, we'll add a metamethod to the metatable, the __add field , which 
 
    The swarm determines how the addition should be performed:59 
 
    mt .__ add = Set.union 
 
    After that, whenever Lua tries to add two 
 
    union, it will call the Set.union function , passing both 
 
    rand as arguments. 
 
    With the metamethod, we can use the addition operator for 
 
    performing set union: 
 
    s3 = s1 + s2 
 
    Set.print (s3)  
 
    -> {1, 10, 20, 30, 50} 
 
    Similarly, we can define the multiplication operator for 
 
    completing the intersection of sets: 
 
    mt .__ mul = Set.intersection 
 
    Set.print ((s1 + s2) * s1) -> {10, 20, 30, 50} 
 
    For each arithmetic operator there is a corresponding 
 
    the name of the field in the metatable. Besides __add and __mul , there is also 
 
    __sub (for subtraction), __div (for division), __unm (for negation), 
 
    __mod (for taking the remainder from division) and __pow (for raising the 
 
    stump). We can also define a __concat field to specify the opera- 
 
    concatenation generator. 
 
    When we add two sets, the question is what meta- 
 
    to take the table, does not arise. However, we can write the expression, 
 
    which involves two values with different metatables, for example 
 
    measures as shown below: 
 
    s = Set.new {1,2,3} 
 
    s = s + 8 
 
    When looking for a metamethod, Lua takes the following steps: if y 
 
    the first value is a metatable with a __add field , then Lua uses 
 
    calls the corresponding value as a metamethod regardless 
 
    from the second value; otherwise, if the second value has metatables 
 
    tsu with the __add field , then Lua uses this value as a 
 
    there is a method; otherwise, an error occurs. In this way, 
 
    the last example will call Set.union , just like for 
 
    expressions 10 + s and "hello" + s . 
 
    Lua doesn't care about mixing types, but it is important 
 
    but for our application. For example, if we execute s = s + 8 , then 
 
    we get an error inside Set.union : 
 
    bad argument # 1 to 'pairs' (table expected, got number) 
 
    If we want to receive more accurate error messages, then 
 
    we must explicitly check the types of the operands before executing the opera- 
 
    walkie-talkies: 
 
    function Set.union (a, b) 
 
    if getmetatable (a) ~ = mt or getmetatable (b) ~ = mt then 
 
    error (“attempt to 'add' a set with a non-set value”, 2) 
 
    end 
 
    <as before> 
 
    Remember that the second argument to the error function (2 in our case) 
 
    directs the error message to where the given operation was performed 
 
    called. 
 
      
 
    13.2. Comparison Methods 
 
    Metatables also allow you to make sense of operators compared 
 
    neniya using metamethods __eq ( equal ), __lt ( less than ) 
 
    and __le ( less than or equal to ). No special metamethods for three 
 
    remaining comparison operations: Lua translates a ~ = b to not (a == b) , 
 
    a> b in b <a and a> = b in b <= a . 
 
    Prior to version 4.0, Lua translated all ordering operations into one, 
 
    translating a <= b to not (b <a) . However, such a translation is incorrect when 
 
    yes we are dealing with partial ordering , that is, when not all 
 
    the elements of our type are properly ordered. For instance, 
 
    floating point numbers are not fully ordered 
 
    on most computers because of the NaN ( Not a Number ) value . 
 
    In accordance with the IEEE 754 standard, NaN represents an undefined 
 
    specific values such as 0/0. According to the standard, any comparable 
 
    Nation including NaN must be false. It means that 
 
    NaN <= x is always false, but x <NaN is also false. It follows that 
 
    translating a <= b to not (b <a) is wrong in this case. 
 
    In our example with sets, we are dealing with a similar trial 
 
    lem. An obvious (and useful) value for <= for sets 
 
    is an occurrence of the set: a <= b means that a is a subset 
 
    property b . With this value, it is again possible that a <= b and b <a are false; 
 
    thus we need separate implementations for __le (less 
 
    or equal) and __lt (less than): 
 
    mt .__ le = function (a, b) -– occurrence of sets 
 
    for k in pairs (a) do 
 
    if not b [k] then return false end 
 
    end 
 
    return true61 
 
    end 
 
    mt .__ lt = function (a, b) 
 
    return a <= b and not (b <= a) 
 
    end 
 
    Finally, we can define equality of sets in terms of embedding 
 
    sets: 
 
    mt .__ eq = function (a, b) 
 
    return a <= b and b <= a 
 
    end 
 
    After these definitions, we are ready to compare sets: 
 
    s1 = Set.new {2, 4} 
 
    s2 = Set.new {4, 10, 2} 
 
    print (s1 <= s2)  
 
    -> true 
 
    print (s1 <s2)  
 
    -> true 
 
    print (s1> = s1)  
 
    -> true 
 
    print (s1> s1)  
 
    -> false 
 
    print (s1 == s2 * s1) -> true 
 
    For types that have a complete ordering, we may not define 
 
    redistribute metamethod __le . If not, Lua uses __lt . 
 
    Comparison for equality also has some restrictions - 
 
    mi. If two objects have different base types or metamethods, then 
 
    comparison operation for equality will return false without even calling meta- 
 
    methods. Thus, the set will always be different from the number, 
 
    no matter what the metamethod returns. 
 
      
 
    13.3. Library metamethods 
 
    So far, we've seen metamethods defined in Lua itself. 
 
    The virtual machine itself checks if the values contain 
 
    Operation-defined metatables with corresponding metamethods. 
 
    However, since metatables are regular tables, then 
 
    anyone can use them. Therefore, libraries often define 
 
    have their own fields in metatables. 
 
    The tostring function is a typical example. As we have seen 
 
    earlier, tostring represents tables in a fairly simple way: 
 
    print ({})  
 
    -> table: 0x8062ac0 
 
    The print function always calls tostring to format 
 
    output. However, when formatting an arbitrary value 
 
    Nia tostring first checks whether the values metamethod 
 
    __tostring . If such a metamethod exists, then tostring calls it, 
 
    passing it an object as an argument. What will return this meta- 
 
    method, and will be the result of tostring . 
 
    In our set example, we have already defined a function for 
 
    representations of the set as strings. Therefore, we only need you- 
 
    put the __tostring field in the metatable: 
 
    mt .__ tostring = Set.tostring 
 
    After that, whenever we call print with a set as 
 
    with the same argument, print will call tostring , which in turn will 
 
    calls Set.tostring : 
 
    s1 = Set.new {10, 4, 5} 
 
    print (s1) -> {4, 5, 10} 
 
    The setmetatable and getmetatable functions also use meta- 
 
    field, in this case to protect the metatable. Suppose you 
 
    want to protect your sets so that users cannot 
 
    see nor modify their metatables. If you set the __metatable field 
 
    in a metatable, then getmetatable will return the value of that field, and calling 
 
    setmetatable will throw an error: 
 
    mt .__ metatable = “not your business” 
 
    s1 = Set.new {} 
 
    print (getmetatable (s1)) -> not your business 
 
    setmetatable (s1, {}) 
 
    stdin: 1: cannot change protected metatable 
 
    In Lua 5.2, pairs and ipairs also have metatables, so 
 
    the table can change its workaround (or add a workaround 
 
    for non-table objects). 
 
      
 
    13.4. Metamets for access to the table 
 
      
 
    Metamets for arithmetic and comparison operations 
 
    define behavior for situations that would otherwise lead 
 
    to errors. They do not change normal behavior 
 
    language. But Lua also provides a way to change 
 
    the behavior of tables in two usual cases, reading and changing is 
 
    existing field in the table. 
 
      
 
    __Index metamethod 
 
    I said earlier that when we refer to a missing field 
 
    in the table, the result is nil . This is true, but this is not the whole truth. 
 
    In fact, such an appeal leads to the fact that the interpretation 
 
    The tator looks for the __index metamethod : if there is no such method, which usually 
 
    happens, then nil is returned ; otherwise the result is provided by the given 
 
    metamethod. 
 
    The standard example here is inheritance. Let us 
 
    we want to create several tables describing windows. Each table 
 
    tsa must set various parameters of the window, such as position, 
 
    size, color scheme, etc. For all these parameters there is a value 
 
    default and therefore we want to build windows by setting only 
 
    those values that differ from the default values. Per- 
 
    your choice is a constructor that fills in the missing 
 
    fields. The second option is to arrange the windows in such a way 
 
    so that they inherit any missing field from the base proto- 
 
    type. First, we will declare a prototype and a constructor that will 
 
    creates new windows with a common metatable: 
 
    - create prototype with default values 
 
    prototype = {x = 0, y = 0, width = 100, height = 100} 
 
    mt = {} - create metatable 
 
    - declare a constructor function 
 
    function new (o) 
 
    setmetatable (o, mt) 
 
    return o 
 
    end 
 
    We will now define the __index metamethod : 
 
    mt .__ index = function (_, key) 
 
    return prototype [key] 
 
    end 
 
    After that, we will create a new window and access the missing 
 
    th field: 
 
    w = new {x = 10, y = 20} 
 
    print (w.width) -> 100 
 
    Lua specifies that w does not have the required field, but does have metatables. 
 
    with the __index field . Therefore, Lua calls this metamethod with an argument 
 
    ments of w (table) and "width" (missing field). Metamethode 
 
    accesses this field to the prototype and returns the resulting value 
 
    reading. 
 
    Using the __index metamethod for inheritance in Lua 
 
    so common that Lua provides a simplified version. 
 
    Despite the name of the method , the __index metamethod does not have to be 
 
    function: for example, it can be a table. When he is 
 
    function, then Lua calls it passing the table and missing- 
 
    key as arguments, as we have already seen. When this is a table, then 
 
    Lua simply accesses this table. Therefore, in our 
 
    in the previous example, we could simply define __index as follows- 
 
    in a way: 
 
    mt .__ index = prototype 
 
    Now when Lua searches for the __index metamethod , it will find 
 
    prototype value , which is a table. Accordingly, Lua 
 
    performs access to this table, that is, it performs an analog 
 
    prototype [“width”] . This appeal gives the required result. 
 
    Using a table as the __index metamethod makes it easy to 
 
    one and a quick way to implement the usual (not multiple) na- 
 
    followings. The function is a more expensive option, but 
 
    and provides more flexibility: we can implement 
 
    multiple inheritance, caching, and more. We are 
 
    we judge these forms of inheritance in chapter 16. 
 
    When we want to access a table without calling the metamethod 
 
    __index , then we use the rawget function . Calling rawget (t, i) 
 
    performs a direct access to the table t , that is, 
 
    scheduling without using metatables. Executing directly- 
 
    this call will not speed up your code (the cost of the function call will destroy 
 
    all that can be won), but sometimes it turns out to be necessary, 
 
    as we will see later. 
 
      
 
    __Newindex metamethod 
 
    The __newindex metamethod is analogous to the __index metamethod , but 
 
    only it works for writing values to a table. When you assign- 
 
    if you give the value to the missing field in the table, then the interpreter 
 
    looks for the __newindex metamethod : if it exists, then the interpreter calls 
 
    instead of doing the assignment. Like __index if 
 
    metamethod is a table, then the interpreter performs the assignment 
 
    for this table instead of the original one. Moreover, there is a function 
 
    an operation that performs direct access, bypassing metamethods: 
 
    rawset (t, k, v) writes the value v by key k to table t , not 
 
    calling no metamethods. 
 
    Using the __index and __newindex Metamethods Together 
 
    allows you to implement in Lua various rather powerful constructs 
 
    tions such as read-only tables, tables with 
 
    defaults and inheritance for object-oriented 
 
    bathroom programming. In this chapter, we will see some of the 
 
    their applications. Object-oriented programming 
 
    a separate chapter is allocated. 
 
      
 
    Tables with default values 
 
    The default value for any field in a regular table is nil . 
 
    It's easy to change this behavior with metatables: 
 
    function setDefault (t, d) 
 
    local mt = {__index = function () return d end} 
 
    setmetatable (t, mt) 
 
    end 
 
    tab = {x = 10, y = 20} 
 
    print (tab.x, tab.z) -> 10 nil 
 
    setDefault (tab, 0) 
 
    print (tab.x, tab.z) -> 10 0 
 
    After calling setDefault, any call to the missing field in 
 
    tab will call its __index metamethod , which will return zero (value 
 
    d for this metamethod). 
 
    The setDeafult function creates a new closure and a new metatable. 
 
    zu for each table that needs a default value. it 
 
    can be costly if we have many tables that 
 
    needs default values. The metatable has a default value 
 
    NIJ d «sewn up" in her metamethod, so we can not use 
 
    the same metatable for all tables. So that you can 
 
    was to use the same metatable for tables with different 
 
    default values, we can remember the default value 
 
    in the table itself, using a special field for this. If a 
 
    not think about possible name conflicts, then we can use 
 
    call a key like “___” for our field: 
 
    local mt = {__index = function (t) return t .___ end} 
 
    function setDefault (t, d) 
 
    t .___ = d 
 
    setmetatable (t, mt) 
 
    end 
 
    Note that now we are creating the mt table only one 
 
    times, outside of the setDefault function . 
 
    If we want to guarantee the uniqueness of the key, then this is 
 
    but easy to provide. All we need is to create a new table 
 
    and use it as a key: 
 
    local key = {} - unique key 
 
    local mt = {__index = function (t) return t [key] end} 
 
    function setDefault (t, d) 
 
    t [key] = d 
 
    setmetatable (t, mt) 
 
    end 
 
    Another way to associate a default value with each 
 
    table is the use of a separate table, where the keys 
 
    are the tables themselves, and the values are the default values. 
 
    However, for the correct implementation of this approach, we need special 
 
    a special type of tables called weak tables , 
 
    therefore, we will not use this approach here; we will return- 
 
    See this in chapter 17. 
 
    Another option is to remember metatables, whereby 
 
    we can reuse metatables corresponding to one 
 
    the same default value. However, this also requires 
 
    using weak tables, so we'll have to wait until 
 
    Chapter 17. 
 
      
 
    Tracking table access 
 
    Both __index and __newindex work only when in the table 
 
    no corresponding value. Therefore, the only way to 
 
    to keep track of all access to a table is to keep it empty. Thus, 
 
    zom, if we want to track all access to the table, then we need 
 
    create a special proxy table for the source table. She will- 
 
    det empty with appropriate __index and __newindex metamets 
 
    to track access to the table that will redirect 
 
    access to the original table. Let t be the original table, access 
 
    to which we want to track. Then we can use the following 
 
    blowing code: 
 
    t = {} - the source table was created somewhere 
 
    - create private access to it 
 
    local _t = t 
 
    - create a proxy 
 
    t = {} 
 
    - create a metatable 
 
    local mt = {167 
 
    __index = function (t, k) 
 
    print (“* access to element“ .. tostring (k)) 
 
    return _t [k] - access to the source table 
 
    end, 
 
    __newindex = function (t, k, v) 
 
    print (“* update of element“ .. tostring (k) .. 
 
    “To“ .. tostring (v)) 
 
    _t [k] = v - change the original table 
 
    end 
 
    } 
 
    setmetatable (t, mt) 
 
    This code keeps track of every access to t : 
 
    > t [2] = “hello” 
 
    * update of element 2 to hello 
 
    > print (t [2]) 
 
    * access to element 2 
 
    hello 
 
    If we want to be able to traverse such a table, then we 
 
    you need to create a __pairs metamethod in the proxy table : 
 
    mt .__ pairs = function () 
 
    return function (_, k) 
 
    return next (_t, k) 
 
    end 
 
    end 
 
    It is also possible to create something similar for __ipairs . 
 
    If we want to track access to multiple tables, then we 
 
    there is no need to create a separate metatable for each of them. Inmes- 
 
    then we can somehow link the proxy table with the original and 
 
    use one common metatable for all proxy tables. it 
 
    is similar to the task of linking a table with a default value, 
 
    which we looked at earlier. For example, you can store the outcome 
 
    a new table in a special field of the proxy table, using for this 
 
    special key. As a result, we end up with the following code: 
 
    local index = {} -– create a unique key 
 
    local mt = {- create metatable 
 
    __index = function (t, k) 
 
    print (“* access to element“ .. tostring (k)) 
 
    return t [index] [k] - access to the source table 
 
    end, 
 
    __newindex = function (t, k, v) 
 
    print (“* update of element“ .. tostring (k) .. 
 
    “To“ .. tostring (v)) 
 
    t [index] [k] = v - change the source table 
 
    end, 
 
    __pairs = function (t) 
 
    return function (t, k) 
 
    return next (t [index], k) 
 
    end, t 
 
    end 
 
    } 
 
    function track (t) 
 
    local proxy = {} 
 
    proxy [index] = t 
 
    setmetatable (proxy, mt) 
 
    return proxy 
 
    end 
 
    Now, when we want to keep track of the table t , all we need is 
 
    but, is to execute t = track (t) . 
 
      
 
    Read-only tables 
 
    It is easy to use the concept of proxy tables to create tables with pre- 
 
    read-only mortar. All we need is to trigger an error 
 
    every time we catch an attempt to change the table. For metame- 
 
    Toda __index we can use the very original table instead 
 
    functions, since we don't need to keep track of all reads from it; faster 
 
    and more efficiently redirect such requests directly to the original table- 
 
    face. This will require, however, a new metatable for each proxy- 
 
    tables with an __index field pointing to the original table: 
 
    function readOnly (t) 
 
    local proxy = {} 
 
    local mt = {- create metatable 
 
    __index = t, 
 
    __newindex = function (t, k, v) 
 
    error (“attempt to update a read-only table”, 2) 
 
    end 
 
    } 
 
    setmetatable (proxy, mt) 
 
    return proxy 
 
    end 
 
    As an example of a read-only table, we can 
 
    Let's create a table of names of days of the week: 
 
    days = readOnly {“Sunday”, “Monday”, “Tuesday”, “Wednesday”, 
 
    “Thursday”, “Friday”, “Saturday”} 
 
    print (days [1]) -> Sunday 
 
    days [2] = “Noday” 
 
    stdin: 1: attempt to update a read-only table 
 
      
 
    Exercises 
 
    Exercise 13.1. Define a __sub metamethod that returns 
 
    the difference between the two sets. (The set ab is the set 
 
    in all elements from a that are not contained in b .) 
 
    Exercise 13.2. Determine metamethod __len so that #s WHO- 
 
    rotates the number of elements in s . 
 
    Exercise 13.3. Complete the implementation of proxy tables in section 
 
    le 13.4 with the __ipairs metamethod . 
 
    Exercise 13.4. Another way to implement tables, access 
 
    read-only, is to use the function as 
 
    as the __index metamethod . This approach makes access to tab- 
 
    more expensive person, but the creation of such tables is cheaper, 
 
    as all read-only tables can have 
 
    one common metatable. Rewrite the readOnly function with 
 
    using this approach. 
 
    Exercises 
 
      
 
    Chapter 14 
 
    Environment 
 
    Lua stores all of its global variables in a regular table, 
 
    called the global environment . (More precisely, Lua 
 
    keeps its "global" variables in several environments, but 
 
    we will ignore this at first for simplicity.) 
 
    the advantage of this approach is that it simplifies the internal 
 
    Lua implementation as there is no need for special structure 
 
    data tour for storing global variables. Another advantage 
 
    the fact is that we can work with this table in the same way 
 
    as with any other table. To make things easier, Lua 
 
    stores the environment itself in the global variable _G . (Yes, _G._G is equal 
 
    but _G .) For example, the following code prints the names of all global 
 
    variables defined in the global environment: 
 
    for n in pairs (_G) do print (n) end 
 
    In this chapter, we will see some useful methods for working 
 
    with the environment. 
 
      
 
    14.1. Global Variables with dynamic names 
 
    Usually an assignment is enough to access and set a value. 
 
    a global variable. However, we often need the option 
 
    metaprogramming when we want to work with global re- 
 
    variable whose name is contained in another variable or computed 
 
    is done in the course of work. To get the value of such a variable, many 
 
    some programmers try to use something like the following 
 
    snippet of code: 
 
    value = loadstring (“return“ .. varname) () 
 
    If varname is x , then as a result of concatenation we get 
 
    "Return x" , which when executed will give us the desired result. Od- 
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    Global variables with dynamic names 
 
    but this code involves creating and compiling a new block 
 
    code, which is costly. You can achieve the same 
 
    go using the following code, which is more than an order of magnitude more 
 
    more efficient than the previously discussed code: 
 
    value = _G [varname] 
 
    Since the environment is a regular table, you can simply 
 
    access it by key (variable name). Similarly 
 
    you can also assign a value to a variable whose name computes- 
 
    dynamically, using the code _G [varname] = value . However, be 
 
    careful: some programmers are so happy about this opportunity 
 
    ness that end up writing code like _G [“a”] = _ G [“var1”] , 
 
    which is just a tricky option for a = var1 . 
 
    The generalization of the previous task is to use names 
 
    fields in dynamic names such as “io.read” or “abcd” . 
 
    However, if we write _G [“io.read”] , then we will definitely not get 
 
    read field from table io . But we can write a getfield function , 
 
    such that getfield (“io.read”) will return the expected value. This 
 
    a function is a loop that starts with _G and then 
 
    she sequentially iterates over the fields: 
 
    function getfield (f) 
 
    local v = _G -– start with global variable table 
 
    for w in string.gmatch (f, “[% w _] +”) do 
 
    v = v [w] 
 
    end 
 
    return v 
 
    end 
 
    We use the gmatch function from the string library to 
 
    to bypass all words in f (a word is a sequence of letters, 
 
    numbers and underscore). 
 
    The corresponding function for setting field values is 
 
    is more complicated. An assignment like abcd = v is equivalent to 
 
    to the following code: 
 
    local temp = abc 
 
    temp.d = v 
 
    That is, we have to extract the name without the last component and then 
 
    process the last component separately. Function setfield You are a 
 
    completes this and also creates helper tables in the path if 
 
    they don't exist: 
 
    function setfield (f, v) 
 
    local t = _G -– we start with the table of global variables 
 
    for w, d in string.gmatch (f, “([% w _] +) (%.?)”) do 
 
    if d == "." then - not the last name? 
 
    t [w] = t [w] or {} -– creates a table if it does not exist 
 
    t = t [w]  
 
    - we get the table 
 
    else  
 
    –- last name 
 
    t [w] = v  
 
    - perform the assignment 
 
    end 
 
    end 
 
    end 
 
    The variable w stores the name of the field, and possibly the following 
 
    after it the point is stored in the variable d 1 . If the name is not followed - 
 
    there is a point, then this is the last name. 
 
    Using the previously discussed functions, the following code creates 
 
    global table t , table tx and then assigns 10 txy : 
 
    setfield (“txy”, 10) 
 
    print (txy) -> 10 
 
    print (getfield (“txy”)) -> 10 
 
      
 
    14.2. Descriptions of global variables 
 
    In Lua, global variables do not need declarations. Although it is convenient 
 
    but for small programs, in large programs there is only one opera- 
 
    Chat can lead to hard-to-find bugs. but 
 
    we can change this behavior if desired. Since Lua 
 
    stores global variables in a regular table, then we can use 
 
    use metatables to change behavior when referring to 
 
    global variables. 
 
    The first approach simply tracks any calls to the missing 
 
    the following keys in the global table: 
 
    setmetatable (_G, { 
 
    __newindex = function (_, n) 
 
    error (“attempt to write to undeclared variable“ .. n, 2) 
 
    end, 
 
    __index = function (_, n) 
 
    error (“attempt to read undeclared variable“ .. n, 2) 
 
    end, 
 
    }) 
 
    After executing this code, any attempt to address the wrong 
 
    existing global variable will cause 
 
    errors: 
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    > print (a) 
 
    stdin: 1: attempt to read undeclared variable a 
 
    However, how are we going to declare global variables? One 
 
    an option is to use rawset which doesn't use 
 
    metamethods: 
 
    function declare (name, initval) 
 
    rawset (_G, name, initval or false) 
 
    end 
 
    (The or false construct is needed so that the global variable 
 
    got a value other than nil .) 
 
    A simpler option is to restrict the assignments to but- 
 
    global variables only inside functions, allowing 
 
    piling on the outer level of the block. 
 
    To check that the assignment occurs in the main block 
 
    ke, we need to use a debug library. Call debug. 
 
    getinfo (2, "S") returns a table whose what field says 
 
    whether the function that called the metamethod is the main block, 
 
    normal function or C-function. (We will discuss debug.getinfo 
 
    in more detail in Chapter 24.) Using this function, we can 
 
    rewrite the __newindex metamethod as follows: 
 
    __newindex = function (t, n, v) 
 
    local w = debug.getinfo (2, “S”). what 
 
    if w ~ = “main” and w ~ = “C” then 
 
    error (“attempt to write to undeclared variable“ .. n, 2) 
 
    end 
 
    rawset (t, n, v) 
 
    end 
 
    This new version also allows assignments in C code, since 
 
    usually in this code the authors know what they are doing. 
 
    To check that such a variable exists, we cannot 
 
    just compare it to nil , because if it is nil , then the 
 
    children to error. Instead, we use the rawget function , which 
 
    doesn't use metamethod: 
 
    if rawget (_G, var) == nil then 
 
    - 'var' is undeclared 
 
    ... 
 
    end 
 
    Now our approach does not allow global variables with a value 
 
    Niemi nil , because they will automatically be considered neobyavlen- 
 
    nym. But this is easy to fix. All we need is an additional 
 
    naya table containing the names of the described variables. When calling 
 
    In the metamethod, it checks against this table whether this variable is described. 
 
    Similar code is shown in Listing 14.1. Now even assignments 
 
    x = nil is enough to declare a global variable. 
 
    The cost of both solutions is extremely low. At the first decision, 
 
    in normal operation, the metamethod is not called at all. At the second 
 
    In the solution, metamethods can be called when the program is 
 
    grows to a variable whose value is nil . 
 
    The standard Lua package contains the strict.lua module , which 
 
    implements checking of calls to global variables, similar 
 
    similar to the code we have considered. A good habit is 
 
    use it when writing Lua code. 
 
    Listing 14.1. Checking global variable declarations 
 
    local declaredNames = {} 
 
    setmetatable (_G, { 
 
    __newindex = function (t, n, v) 
 
    if not declaredNames [n] then 
 
    local w = debug.getinfo (2, “S”). what 
 
    if w ~ = “main” and w ~ = “C” then 
 
    error (“attempt to write to undeclared variable“ ..n, 2) 
 
    end 
 
    declaredNames [n] = true 
 
    end 
 
    rawset (t, n, v) - do the actual set 
 
    end, 
 
    __index = function (_, n) 
 
    if not declaredNames [n] then 
 
    error (“attempt to read undeclared variable“ ..n, 2) 
 
    else 
 
    return nil 
 
    end 
 
    end, 
 
    }) 
 
      
 
    14.3. Non-global environments 
 
    One of the problems with the environment is that it is global. 
 
    Any change to it affects all parts of your program. On- 
 
    example when you set metatable to control 
 
    global access, your entire program must follow the appropriate 
 
    appropriate policy. If you want to use a library, 
 
    which uses global variables without declaring them, then 
 
    you were unlucky. 
 
    In Lua, global variables don't have to be truly glob 
 
    ballroom. We can even say that Lua has no global re- 
 
    men. This may sound strange, since from the very beginning of the book 
 
    we used global variables. Obviously, Lua is very 
 
    tries to create the illusion of having global variables. Come on- 
 
    Let's see how Lua creates this illusion 2 . 
 
    Let's start with the concept of free names. A free name is not a name 
 
    tied to an explicit description, that is, it is not found inside the area 
 
    These are the actions of a local variable (or a for loop variable , or 
 
    parameter) with this name. For example, both names var1 and var2 are 
 
    free names in the next block: 
 
    var1 = var2 + 3 
 
    Unlike what was said earlier, the free name does not relate 
 
    refers to a global variable (at least not directly 
 
    but). Instead, Lua translates any free var name into _ENV. 
 
    var . Therefore, the previous block is equivalent to the following: 
 
    _ENV.var1 = _ENV.var2 + 3 
 
    But what is this new _ENV variable ? It cannot be glo- 
 
    point variable, otherwise we again return to the original sample- 
 
    leme. The compiler cheats again. I have already said that Lua will consider 
 
    Treats each block as an anonymous function. Actually Lua 
 
    compiles our source block into the following code: 
 
    local _ENV = <some value> 
 
    return function (...) 
 
    _ENV.var1 = _ENV.var2 + 3 
 
    end 
 
    That is, Lua compiles any block of code in the presence of 
 
    limited value named _ENV . 
 
    Usually, when we load a block of code, the load function is initialized 
 
    lyses this predefined value with a reference to the global oc- 
 
    rifle. Therefore, our original block becomes equivalent to 
 
    next block: 
 
    local _ENV = <the global environment> 
 
    return function (...) 
 
    _ENV.var1 = _ENV.var2 + 3 
 
    end 
 
    2 
 
    Note that this mechanism was one of those parts of Lua that included 
 
    Were from version 5.1 to version 5.2. The following discussion is specific to Lua 
 
    5.2 and very little applies to previous versions. 
 
    The result of all these assignments is that the var1 field from 
 
    the global environment gets var2 plus 3. 
 
    At first glance, this may seem a little confusing. 
 
    a way to work with the global environment. I will not argue 
 
    that this is the simplest way, but it achieves the flexibility that is difficult 
 
    but get a simpler implementation. 
 
    Before we continue, let's articulate how Lua 5.2 works. 
 
    works with global variables: 
 
    • Lua compiles any block using a value 
 
    _ENV . 
 
    • The compiler translates any free var name into _ENV.var . 
 
    • The load (or loadfile ) function initializes the _ENV value 
 
    a reference to the global environment. 
 
    In the end, it’s not all that difficult. 
 
    Some are confused because they are trying to find some 
 
    the magic behind these rules. There is no magic here. In part 
 
    However, the first two rules are completely done by the compiler. Behind 
 
    except that _ENV is known to the compiler, it 
 
    is an ordinary variable. Except for compilation, _ENV 
 
    doesn't make any special sense in Lua 3 . Similarly translation 
 
    from var to _ENV.var is just syntactic replacement without hidden 
 
    meaning. In particular, after this translation, _ENV will refer to 
 
    the _ENV variable , which is visible in this code snippet, is 
 
    from the rules of visibility. 
 
      
 
    14.4. Using _ENV 
 
    In this section we will look at some of the ways to use the 
 
    the flexibility that the _ENV variable brings . Please be aware that 
 
    each of these examples should be run as a separate 
 
    a powerful block of code. If you enter line by line 
 
    in the interpreter, then each line becomes a separate block and 
 
    gets its _ENV variable . To execute a piece of code 
 
    as a separate block, you either need to run it as a file or in 
 
    interactively put inside a do-end pair . 
 
    Since _ENV is an ordinary variable, we can assign 
 
    read it and read it just like any other variable. Assigned 
 
    vanie _ENV = nil prohibit any access to global variables on 
 
    throughout the remainder of the block. This can be useful for 
 
    control which variables your code uses: 
 
    local print, sin = print, math.sin 
 
    _ENV = nil 
 
    print (13)  
 
    -> 13 
 
    print (sin (13)) -> 0.42016703682664 
 
    print (math.cos (13)) - error! 
 
    Any assignment to a free name will result in a similar 
 
    error. 
 
    We can explicitly call _ENV to bypass the locale. 
 
    variable variables: 
 
    a = 13  
 
    - global 
 
    local a = 12 
 
    print (a) -> 12 (local) 
 
    print (_ENV.a) -> 13 (global) 
 
    Of course, the main use of _ENV is to change ok- 
 
    tool used by the code snippet. Once you have changed 
 
    your environment, all calls to global variables will be used 
 
    use a new table: 
 
    - change the current environment to an empty table 
 
    _ENV = {} 
 
    a = 1 - create a field in _ENV 
 
    print (a) 
 
    -> stdin: 4: attempt to call global 'print' (a nil value) 
 
    If the new environment is empty, then you lose access to all glo- 
 
    ball variables including print . Therefore, you first need to 
 
    fill it with some useful values, like the old 
 
    environment: 
 
    a = 15  
 
    - create a global variable 
 
    _ENV = {g = _G} - change the current environment 
 
    a = 1  
 
    - create a field in _ENV 
 
    g.print (a)  
 
    -> 1 
 
    g.print (ga) -> 15 
 
    Now when you access the "global" g , you get sta 
 
    Swarm environment in which there is a print function . 
 
    We can rewrite the previous example using the name _G 
 
    instead of g : 
 
    a = 15  
 
    - create a global variable 
 
    _ENV = {_G = _G} - change the current environment 
 
    Using _ENV 
 
    a = 1  
 
    - create a field in _ENV 
 
    _G.print (a)  
 
    -> 1 
 
    _G.print (_G.a) -> 15 
 
    For Lua, the name _G is the same name as everyone else. His from- 
 
    the only characteristic is that when Lua creates a global 
 
    score table, then it assigns it to a variable named _G . For 
 
    Lua doesn't care about the current value of this variable. But it is usually accepted 
 
    use the same name when we refer to the global 
 
    variable, as we did in the rewritten example. 
 
    Another way to populate your new environment is by inheritance 
 
    nie: 
 
    a = 1 
 
    local newgt = {} - create a new environment 
 
    setmetatable (newgt, {__index = _G}) 
 
    _ENV = newgt  
 
    - install it 
 
    print (a) -> 1 
 
    In this code, the new environment inherits print and a from the old environment. 
 
    zheniya. However, any assignment goes to the new table. Thereby 
 
    there is no danger of mistakenly changing the global environment, although it 
 
    can still be changed via _G : 
 
    - continue the previous code 
 
    a = 10 
 
    print (a) -> 10 
 
    print (_G.a) -> 1 
 
    _G.a = 20 
 
    print (_G.a) -> 20 
 
    Since _ENV is a regular variable, it obeys 
 
    the usual rules of visibility. In particular, the functions defined 
 
    inside a block, refer to _ENV just like any other external 
 
    her variable: 
 
    _ENV = {_G = _G} 
 
    local function foo () 
 
    _G.print (a)  
 
    - compiles to '_ENV._G.print (_ENV.a)' 
 
    end 
 
    a = 10  
 
    - _ENV.a 
 
    foo ()  
 
    -> 10 
 
    _ENV = {_G = _G, a = 20} 
 
    foo ()  
 
    -> 20 
 
      
 
    If we define a new local variable named _ENV , 
 
    then access to free names will go through it: 
 
      
 
    a = 2 
 
    do 
 
    local _ENV = {print = print, a = 14} 
 
    print (a) -> 14 
 
    end 
 
    print (a) -> 2 (back to original _ENV) 
 
    Therefore, it is not difficult to build a function with its own (private) 
 
    environment: 
 
    function factory (_ENV) 
 
    return function () 
 
    return a  
 
    - “global” a 
 
    end 
 
    end 
 
    f1 = factory {a = 6} 
 
    f2 = factory {a = 7} 
 
    print (f1 ())  
 
    -> 6 
 
    print (f2 ())  
 
    -> 7 
 
      
 
    The factory function creates simple closures that return- 
 
    the value of local variables a. When the closure is created, then 
 
    the visible variable _ENV is the parameter _ENV from the containing function 
 
    tion factory ; so the closure uses this variable to add 
 
    a stupa for free names. 
 
    Using normal visibility rules, we can work with 
 
    environments in various ways. For example, we may have 
 
    several functions with a common environment for them or a function that 
 
    Toraya changes the environment in common with other functions. 
 
      
 
    14.5. _ENV and load 
 
    As I mentioned, load usually initializes the _ENV value 
 
    the loaded block is a pointer to the global environment. However, 
 
    load has an optional fourth parameter that specifies the value 
 
    reading for _ENV . (The loadfile function also has a similar para- 
 
    meter.) 
 
    As an example, let's say we have a typical configuration 
 
    a file that defines the various constants and functions used 
 
    washed by the program; it could be something like: 
 
    - file 'config.lua' 
 
    width = 200 
 
    height = 300 
 
    ... 
 
    _ENV and load 
 
      
 
    We can load it with the following code: 
 
    env = {} 
 
    f = loadfile (“config.lua”, “t”, env) 
 
    f () 
 
    All code from the config file will be executed with empty 
 
    env environment . More importantly, all of its definitions will be named 
 
    but into this environment. The config file cannot affect 
 
    anything else, even by mistake. Even malicious code cannot cause 
 
    thread a lot of harm. It can perform a DoS attack by wasting CPU time 
 
    and memory, but nothing else. 
 
    Sometimes you may need to execute a block multiple times, 
 
    each time with a different environment table. In this case, additional 
 
    the load argument doesn't help us. Instead, we have two 
 
    option. 
 
    The first option is to use the debug.setupvalue function 
 
    from the debug library. As the name implies, setupvalue poz- 
 
    tells us to change any incoming value ( upvalue ) of the given 
 
    functions. The following code illustrates its use: 
 
    f = loadfile (filename) 
 
    ... 
 
    env = {} 
 
    debug.setupvalue (f, 1, env) 
 
    The first argument when calling setupvalue is a function, the second is 
 
    this is the index of the value, and the third is the new value. For our use 
 
    use of the second argument is always one: when the function 
 
    is the result of load or loadfile , Lua guarantees that there will be 
 
    only one value and that value is _ENV . 
 
    A small disadvantage of this solution is the dependence 
 
    from the debug library. This library breaks some 
 
    standard assumptions about programs. For example debug. 
 
    setupvalue violates Lua's visibility rules, which guarantee 
 
    that the variable cannot be seen outside of its scope 
 
    visibility. 
 
    Another way to run a block with different environments is 
 
    There is a slight change in the block when it is loaded. Imagine, 
 
    that we add the following line to the beginning of the loaded block: 
 
    _ENV = ...; 
 
    Recall from Section 8.1 that Lua treats any block as 
 
    function with variable number of arguments. Therefore, this line attaches 
 
    assigns the first block argument to _ENV , setting it 
 
    as an environment. After loading the block, we call the resulting 
 
    function, passing the desired environment as the first argument. Next 
 
    The following code snippet illustrates this idea using the function 
 
    loadwithprefix from Exercise 8.1: 
 
    f = loadwithprefix (“local _ENV = ...;”, io.lines (filename, “* L”)) 
 
    ... 
 
    env = {} 
 
    f (env) 
 
      
 
    Exercises 
 
    Exercise 14.1. The getfield function that we have defined 
 
    at the beginning of this chapter provides too little 
 
    role, since it allows fields such as math? sin or 
 
    string !!! gsub .Rewrite it to handle 
 
    only one dot as a separator. (For this exercise 
 
    (you may need the information in Chapter 21.) 
 
    Exercise 14.2. Explain in detail what happens next 
 
    program and what its output will be. 
 
    local foo 
 
    do 
 
    local _ENV = _ENV 
 
    function foo () print (X) end 
 
    end 
 
    X = 13 
 
    _ENV = nil 
 
    foo () 
 
    X = 0 
 
    Exercise 14.3. Explain in detail what happens next 
 
    program and what its output will be. 
 
    local print = print 
 
    function foo (_ENV, a) 
 
    print (a + b) 
 
    end 
 
    foo ({b = 14}, 12) 
 
    foo ({b = 10}, 1) 
 
    Exercises 
 
      
 
      
 
    Chapter 15 
 
    Modules and packages 
 
    Lua does not usually establish any conventions. Instead of this 
 
    Lua provides mechanisms that are powerful enough for groups 
 
    developers to implement the conventions that suit them. 
 
    However, this approach does not work well for modules. One of the main 
 
    the purpose of the module system is to allow different people to share 
 
    locally use the code. The lack of a common policy prevents this 
 
    sharing. 
 
    Since version 5.1, Lua has defined a set of conventions for mod- 
 
    leys and packages (a package is a collection of modules). These agreements are not required 
 
    any additional features from the language; programmer 
 
    you can implement them using what we have already seen in the language: 
 
    tables, functions, metatables and environments. Programmers can 
 
    use other agreements. However, other agreements may 
 
    lead to the fact that it will not be possible to use other people's modules and your 
 
    modules cannot be used in other people's programs. 
 
    From the user's point of view, a module is some code (in Lua 
 
    or in C), which can be loaded with require and co- 
 
    which creates and returns a table. Anything the module exports 
 
    whether it be functions or tables, it defines inside this table, 
 
    which acts as a namespace. 
 
    For example, all standard libraries are modules. You can 
 
    use math library like this: 
 
    local m = require “math” 
 
    print (m.sin (3.14)) 
 
    However, a separate interpreter (available as a command 
 
    strings) preloads all standard libraries with 
 
    code equivalent to the following: 
 
    math = require “math” 
 
    string = require “string” 
 
    ... 
 
    This download allows us to use the normal math.sin notation . 
 
    The obvious advantage of using tables to implement 
 
    dul is that we can work with modules in the same way as 
 
    with tables, and use the power of Lua to do so. In most 
 
    In two languages, modules are not first class values (i.e. 
 
    they cannot be stored in variables, passed as arguments 
 
    functions, etc.), so these languages need special mechanisms 
 
    terms for every opportunity they want to offer for 
 
    modules. In Lua, you get these features for free. 
 
    For example, there are several ways to call a function from 
 
    module. The usual way is as follows: 
 
    local mod = require “mod” 
 
    mod.foo () 
 
    User can set any local name for the module: 
 
    local m = require “mod” 
 
    m.foo () 
 
    Alternative names can also be provided for individual 
 
    functions: 
 
    local m = require “mod” 
 
    local f = mod.foo 
 
    f () 
 
    The nice thing about these features is that they don't 
 
    require special support from the language. They only use 
 
    what the language already provides. 
 
    A common complaint about require is that this function 
 
    This does not allow passing an argument to the loaded module. For example 
 
    measures, the mathematical module could receive an argument that allows 
 
    to choose between using degrees or radians: 
 
    - bad code 
 
    local math = require (“math”, “degree”) 
 
    The problem is that one of the main objectives require yav- 
 
    Avoid loading an already loaded module. As soon as possible 
 
    the muzzle is loaded, it will be reused by any part of the program, 
 
    who needs it. Therefore, when using the parameters 
 
    there would be a problem if the same module was needed, but 
 
    with other parameters: 
 
    - bad code 
 
    local math = require (“math”, “degree”) 
 
    - somewhere else in the same program 
 
    local math = require (“math”, “radians”) 
 
    In case you really want your module to be 
 
    held parameters, it is better to create an explicit function to set them 
 
    niya: 
 
    local mod = require ”mod” 
 
    mod.init (0, 0) 
 
    If the initializing function returns the module itself, then we 
 
    we can write code like the following: 
 
    local mod = require ”mod” .init (0, 0) 
 
    Another option is to make the module return a function 
 
    for initialization and already this function would return a table 
 
    muzzle: 
 
    local mod = require ”mod” (0, 0) 
 
    In any case, remember that the module is loaded only once; 
 
    the module itself must resolve initializations with conflicts. 
 
      
 
    15.1. Require function 
 
    The require function tries to minimize the assumptions about 
 
    what is a module. For require, a module is just some- 
 
    then the code that defines some values (such as functions 
 
    or tables containing functions). Usually this code returns 
 
    a table containing the functions of this module. However, since 
 
    this is done by the code of the module itself, not require , some modules 
 
    may choose to return different values or even have sideways 
 
    effects. 
 
    To load a module, we simply call require ” modname ” . 
 
    The first step of require is to check against the package. 
 
    loaded to see if this module is already loaded. If so, then require 
 
    returns the corresponding value. Therefore, as soon as the module 
 
    loaded, other calls requiring this module to be loaded are simply 
 
    will return the same value without executing any code. 
 
    If the module has not yet been loaded, then require looks for a Lua file with the name 
 
    it module. If it finds such a Lua file, then it loads it when 
 
    help loadfile . The result of this is the function that we 
 
    called the bootloader . (The bootloader is a function that, when called 
 
    ve returns a module.) 
 
      
 
    If require cannot find a Lua file with a module name, then it 
 
    looks for a C library with a module name. If she finds the right 
 
    the current C library, it loads it using package. 
 
    loadlib (which we discussed in section 8.3) and looks for a function named 
 
    It luaopen_ modname 1 . In this case, the bootloader is the result 
 
    volume loadlib , that is, a luaopen_ modname function that looks like 
 
    function in Lua. 
 
    Whether the module is a Lua file or a lib 
 
    library in C, require now has a loader for it. For windows- 
 
    When the module is loaded, require calls the loader with two 
 
    arguments: the name of the module and the name of the file with the loader. (Pain- 
 
    Most modules simply ignore these arguments.) 
 
    chick returns some value, then require returns this value 
 
    read and store it in the package.loaded table in order to 
 
    always return exactly this value for this module. If for- 
 
    the loader does not return anything, then require behaves the same as if 
 
    the module would return true . Without this clarification, subsequent calls 
 
    require would execute this module again. 
 
    To force require to load the specified module, 
 
    times, we simply erase the entry for this module from the package. 
 
    loaded : 
 
    package.loaded. < modname > = nil 
 
    The next time you need this module, the require prode- 
 
    barks all the necessary work again. 
 
      
 
    Renaming a module 
 
    We usually use their original name as the module name. 
 
    names, but sometimes we have to rename a module to avoid 
 
    name conflict. A typical situation is loading different 
 
    versions of the same module, for example for testing. Modu- 
 
    do not have hardcoded names inside them, so usually 
 
    just rename the corresponding .lua file. but 
 
    we cannot edit the binary library to change 
 
    the name of its function luaopen_ * . In order to maintain similar 
 
    new renames, there is a little trick inside require : if 
 
    the module name contains a minus, then require strips off the part of the name up to 
 
    before the minus sign when creating the function name luaopen_ * . For example 
 
    measure, if the module name is ab , then require expects the corresponding 
 
    the next function will be named luaopen_b , not luaopen_a-b 
 
    (which wouldn't be a valid name in C anyway). therefore 
 
    if we need to use two modules named mod , then we can 
 
    Let's rename one of them to v1-mod , for example. When we call 
 
    wem m1 = require ”v1-mod” , require will find the renamed file 
 
    v1-mod and inside this file will find a function named luaopen_mod . 
 
      
 
    Search along the path 
 
    When searching for a file in Lua, require uses a search path that 
 
    ry slightly differs from the usual search paths. Typical 
 
    path is a list of directories where to search for the given file. One- 
 
    co in ANSI C (the abstract platform that Lua runs on) 
 
    there is no concept of a directory. Therefore the path used by require is 
 
    a list of templates , each of which specifies its own way of converting 
 
    setting the module name (the require argument ) to the file name. More accurately, 
 
    each pattern in the path is a filename containing optional 
 
    question marks. For each pattern, require replaces every '?' on 
 
    module name and checks if there is a file with the corresponding name; 
 
    if not, it moves to the next template. Patterns out of the way 
 
    separated by semicolons (a character rarely used in 
 
    filenames on modern operating systems). For instance, 
 
    if the path is 
 
    ?;?. lua; c: \ windows \?; / usr / local / lua /? / ?. lua , 
 
    then the call to require (“sql”) will try to open the following files: 
 
    sql 
 
    sql.lua 
 
    c: \ windows \ sql 
 
    /usr/local/lua/sql/sql.lua 
 
    The require function uses as special characters 
 
    only semicolon (as component separator) and question mark- 
 
    ny sign; everything else, including path delimiters and extensions 
 
    files is defined by the path itself. 
 
    The path that require uses to find files in Lua is 
 
    always the current value of the package.path variable . When starting Lua 
 
    it initializes this variable with the value of the next variable- 
 
    environment LUA_PATH_5_2 . If this environment variable is not 
 
    is installed, then Lua tries to use the environment variable 
 
    named LUA_PATH . If both are undefined, then Lua uses 
 
    the default path, set at compile time 2 . When using 
 
    using environment variables, Lua substitutes the default path 
 
    instead of any substring ";;" ... For example, if LUA_PATH_5_2 
 
    is equal to “mydir / ?. lua ;;” then the final path will be pattern 
 
    “Mydir / ?. lua” followed by the default path. 
 
    The C library search path works the same way, but 
 
    cpath is taken from the variable package.cpath (instead of package. 
 
    path ). Similarly, this variable gets its initial value 
 
    from the environment variable LUA_CPATH_5_2 or LUA_CPATH . Typical 
 
    the value for UNIX systems is 
 
    ./?.so;/usr/local/lib/lua/5.2/?.so 
 
    Note that the path defines the file extension. Pre- 
 
    The previous example uses .so for all templates; in Windows t- 
 
    The pictorial template will look like the following: 
 
    . \ ?. dll; C: \ Program Files \ Lua502 \ dll \ ?. dll 
 
    The package.searchpath function implements all of these conventions for 
 
    search for libraries. It gets the module name and path and looks for the file, 
 
    following the rules described above. It returns either the name of the first 
 
    found file, or nil and an error message describing all 
 
    the files she tried to open, as in the following example: 
 
    > path = “. \\ ?. dll; C: \\ Program Files \\ Lua502 \\ dll \\ ?. dll” 
 
    > print (package.searchpath (“X”, path)) 
 
    nil 
 
    no file '. \ X.dll' 
 
    no file 'C: \ Program Files \ Lua502 \ dll \ X.dll' 
 
      
 
    File crawlers 
 
    In reality, require is somewhat more complex than we have described. 
 
    Finding a file in Lua and finding a C library are just two private 
 
    the more general concept of a file searcher. Seeker 
 
    file is just a function that takes the name of the module and returns 
 
    sets a bootloader for this block, or nil if it cannot find any 
 
    one. 
 
    The package.searchers array contains a list of file searchers, 
 
    which require . When looking for a module, require calls 
 
    each crawler in turn, passing it the module name, until 
 
    2 
 
    In Lua 5.2, the -E command line parameter prevents the use of variables 
 
    environment and causes the compile-time path to be used. 
 
      
 
    until it finds a loader for the module. If the search ends in 
 
    that is, require raises an error. 
 
    Using a list to control the search for a module gives 
 
    more flexibility of the require function . For example, if you want to store 
 
    thread the modules compressed into zip files, then all you need to do this is - 
 
    this is to provide the appropriate finder function and add it 
 
    to the list. However, more often than not, programs do not need to change 
 
    package.searchers value . The default configuration is 
 
    the Lua function finder and the C library crawler we described 
 
    above, occupy the second and third positions. Before them there is a claim 
 
    preload searcher. 
 
    This finder allows you to enter an arbitrary function for 
 
    module load. It uses the package.preload table to match 
 
    setting the names of the modules of the boot functions. When searching for this 
 
    the crawler simply looks for the given name in the table. If he finds a function 
 
    tion, then it returns it as a module loader. Otherwise it returns 
 
    nil . This finder provides a way to handle some non- 
 
    typical cases. For example, a C library statically prilinked 
 
    bathroom to Lua, can register its luaopen_ function like this, 
 
    that it will be called only when (and if) the user needs 
 
    this module is beating. Thus, the program does not waste time on 
 
    opening a module if not in use. 
 
    By default package.searchers includes the fourth 
 
    function that is needed for submodules. We will consider them at a time 
 
    case 15.4. 
 
      
 
    15.2. Standard Approach for writing modules in Lua 
 
    The simplest way to create a module in Lua is really simple: we 
 
    create a table, put all the functions we want to export 
 
    tite, inside it and return this table. Listing 15.1 demonstration 
 
    redefines this approach. Note how we define the function 
 
    tion inv as a closed, simply declaring it inside the unit. 
 
    Some people don't like the terminating return statement . One of 
 
    ways to eliminate it is to write the module table directly 
 
    in package.loaded : 
 
    local M = {} 
 
    package.loaded [...] = M 
 
    <as before> 
 
    Be aware that require calls the loader passing the name of the mo- 
 
    blowing as the first argument. Therefore, the variable number expression 
 
    arguments ... results in exactly that name. After that, when 
 
    piles, we no longer need to return M at the end of the module: if 
 
    the module does not return a value, then require will return the current value 
 
    package.loaded [modname] (if not nil ). However, I prefer 
 
    return a table as it looks neater. 
 
    Another way to write a module is to define all the functions 
 
    localization and building the table at the end, as in Listing 15.2. 
 
    What are the advantages of this approach? You don't have to start every 
 
    name with M. or something similar; there is an explicit export list 
 
    functions; you define and use exported and 
 
    internal functions are exactly the same inside a module. In what 
 
    are the disadvantages of this approach? Exported List 
 
    functions is at the end of the module, not at the beginning where it would be 
 
    more convenient as a quick reference; and a list to export from- 
 
    is accurate, since you need to write down each name twice. (This last 
 
    this disadvantage can be an advantage, since it allows 
 
    functions have different names outside the module and inside it, but I 
 
    I think that programmers rarely use this.) I personally like- 
 
    This style is being developed. 
 
    However, remember that no matter how you define the 
 
    dul, users should be able to use it 
 
    in a standard way: 
 
    local cpx = require “complex” 
 
    print (cpx.tostring (cpx.add (cpx.new (3,4), cpx.i))) 
 
    -> (3.5) 
 
    Listing 15.1. Simple module for complex numbers 
 
    local M = {} 
 
    function M.new (r, i) return {r = r, i = i} end 
 
    - define the constant 'i' 
 
    Mi = M.new (0, 1) 
 
    function M.add (c1, c2) 
 
    return M.new (c1.r + c2.r, c1.i + c2.i) 
 
    end 
 
    function M.sub (c1, c2) 
 
    return M.new (c1.r - c2.r, c1.i - c2.i) 
 
    end 
 
    function M.mul (c1, c2) 
 
    return M.new (c1.r * c2.r - c1.i * c2.i, c1.r * c2.i + c1.i * c2.r) 
 
    end 
 
    local function inv (c) 
 
    local n = cr ^ 2 + ci ^ 2 
 
    return M.new (cr / n, -ci / n) 
 
    end 
 
    function M.div (c1, c2) 
 
    return M.mul (c1, inv (c2)) 
 
    end 
 
    function M.tostring (c) 
 
    return “(“ .. cr .. “,” .. ci .. “)” 
 
    end 
 
    return M 
 
    Listing 15.2. Module with an explicit list of exported functions 
 
    local function new (r, i) return {r = r, i = i} end 
 
    - define the constant 'i' 
 
    local i = complex.new (0, 1) 
 
    <other functions follow the same pattern> 
 
    return { 
 
    new = new, 
 
    i = i, 
 
    add = add, 
 
    sub = sub, 
 
    mul = mul, 
 
    div = div, 
 
    tostring = tostring, 
 
    } 
 
      
 
    15.3. Using environments 
 
    One of the disadvantages of the considered methods for creating modules 
 
    is that it is very easy to clog up the global namespace, 
 
    for example just forgetting local in the local resource description. 
 
    Environments provide an interesting approach to creating 
 
    muzzle that solves this problem. If the module has its own environment 
 
    living, then not only all functions will fall into this table, but also 
 
    all global variables. Therefore, we can determine everything from- 
 
    covered functions as global, and they will automatically fall into co- 
 
    the corresponding table. All a module needs to do is 
 
    assign this table to _ENV . After that, when we determine 
 
    we divide the add function , it automatically becomes M.add : 
 
    local M = {} 
 
    _ENV = M 
 
    function add (c1, c2) 
 
    return new (c1.r + c2.r, c1.i + c2.i) 
 
    end 
 
      
 
    Moreover, we can call other functions from this module. 
 
    without any prefix. In the previous code, add refers to new 
 
    from his environment, that is, he actually refers to M.new . 
 
    This method is a good way to create modules that require 
 
    buoy of very little work from a programmer. Prefixes in general 
 
    Not needed. There is no difference between calling the exported and 
 
    closed functions. If the programmer forgets to insert local , then 
 
    it doesn't litter the global namespace; instead closed 
 
    the function just becomes exportable. 
 
    However, I usually prefer one of the two previously considered 
 
    new methods. Although they may require a little more work, the 
 
    at least the code is clearer. In order not to create 
 
    a global value by mistake, I just assign _ENV a value 
 
    nil . After that, any attempt to create a global value simply 
 
    raises an error. 
 
    What is missing is access to other modules. After 
 
    after we changed the value of _ENV , we lost access to all 
 
    the previous global variables. There are several ways to 
 
    there is this access, each with its own pros and cons. 
 
    One option is to use inheritance: 
 
    local M = {} 
 
    setmetatable (M, {__index = _G}) 
 
    _ENV = M 
 
    (You need to call setmetatable before assigning _ENV , so 
 
    is it clear why?) When using this approach, the module receives 
 
    direct access to any global variable, with a very small 
 
    the price of such access. An interesting consequence of this decision is 
 
    It means that your module now contains all the global variables. 
 
    For example, someone using your module can now call 
 
    a standard function for computing sine with complex. 
 
    math.sin (x) . (A similar feature is also present in the Perl language.) 
 
    Another quick way to access other modules is to enter 
 
    dividing a local variable containing the global environment: 
 
    local M = {} 
 
    local _G = _G 
 
    _ENV = M - or _ENV = nil 
 
    You should now start each global name with _G. but before- 
 
    stupas happen a little faster as there is no use of me- 
 
    there methods. 
 
      
 
    A more rigorous approach is to define as local 
 
    variables of only those functions or modules that you need: 
 
    - module setting 
 
    local M = {} 
 
    - import section: 
 
   
  
 

 - take outside everything this module needs 
 
    local sqrt = math.sqrt 
 
    local io = io 
 
    - from this place access to the outside is impossible 
 
    _ENV = nil - or _ENV = M 
 
    This approach requires more work, but it clearly documents 
 
    the dependencies of your module. It also leads to code that you- 
 
    is filled a little faster than in the previously considered cases, due to 
 
    for using local variables. 
 
      
 
    15.4. Submodules and packages 
 
    Lua allows for hierarchical module names using 
 
    touch the point to separate the levels. For example, a module named mod. 
 
    sub is a submodule of mod . A package is a complete tree of mo- 
 
    muzzle; it is the Lua distribution unit. 
 
    When you need a module named mod.sub , require first 
 
    looks in the package.loaded table and then in the package.preload table , 
 
    using the fully qualified name “mod.sub” as the key; in this case, exactly 
 
    ka is the same symbol as any other. 
 
    However, when looking for a file defining this submodule, require re- 
 
    converts point to another character, usually the system separator in the path 
 
    (i.e. '/' for UNIX and '\' for Windows). After this transformation 
 
    require looks for the resulting name just like any other name. For instance, 
 
    path '/' is a path separator and we have the following path: 
 
    ./?.lua;/usr/local/lua/?.lua;/usr/local/lua/?/init.lua 
 
    The require (“ab”) call will try to open the following files: 
 
    ./a/b.lua 
 
    /usr/local/lua/a/b.lua 
 
    /usr/local/lua/a/b/init.lua 
 
    This behavior allows all modules in the package to be in 
 
    useful catalog. For example, if a package contains p modules , 
 
    pa and pb , the corresponding files can be p / init.lua , 
 
    p / a.lua and p / b.lua , where the p directory is contained in the corresponding location 
 
    those. 
 
      
 
    The path separator used by Lua is set at compile time. 
 
    tion and can be any string (remember that Lua knows nothing 
 
    about directories). For example, systems without hierarchical catalogs can 
 
    gotta use '_' as such a delimiter, so require 
 
    (“Ab”) will look for a_b.lua file . 
 
    Names in C cannot contain periods, so the C library 
 
    for a submodule ab cannot export the luaopen_a.b function . 
 
    In this case, require translates point into another character - underscore- 
 
    vanie. Thus, a C library named ab should call 
 
    its initializing function luaopen_a_b . We can also 
 
    use here a technique with a minus, but with a more complex result- 
 
    Tom. For example, suppose we have a C library named a and we 
 
    want to make it a submodule mod , then we can rename 
 
    the corresponding file in mod / va . When calling require “mod.va” 
 
    the require call will correctly find the new mod / va file , just like 
 
    function luaopen_a inside it. 
 
    Also require has one extra crawler to load 
 
    submodules in C. When it cannot find either the Lua file or the C file for 
 
    submodule, this seeker again searches along the path for C, but this time seeks 
 
    package name. For example, if the program wants to load a submodule 
 
    abc , then this searcher will simply search for a . If he finds a library 
 
    I'm fluent in C for this name, then require will look in that library 
 
    the corresponding function, in our case luaopen_a_b_c . This charge 
 
    the ability to place several submodules together in one 
 
    a C library, each with its own initializing function. 
 
    From a Lua perspective, submodules in the same package do not have an explicit 
 
    communication. Loading module a does not load any of its sub- 
 
    modules; also loading ab doesn't load automatically a . End- 
 
    but, when implementing the package, the developer has the right to set these links when 
 
    desire. For example, module a may explicitly require loading as 
 
    someone specific (or all) of their submodule. 
 
      
 
    Exercises 
 
    Exercise 15.1. Rewrite the code in Listing 13.1 as separate 
 
    module. 
 
    Exercise 15.2. What happens when looking for a library if the path 
 
    contains a fixed component (that is, a component not 
 
    containing a question mark)? Could this behavior be 
 
    useful? 
 
      
 
    Exercise 15.3. Write a finder that simultaneously 
 
    looks for files in Lua and libraries in C. For example, the path for 
 
    this searcher could be something like: 
 
    ./?.lua;./?.so;/usr/lib/lua5.2/?.so;/usr/share/lua5.2/?.lua 
 
    ( Hint : use package.searchpath to search 
 
    the corresponding file, then try to download it, 
 
    first with loadfile , then with package. 
 
    loadlib .) 
 
      
 
    Exercise 15.4. What happens if you set a metatable 
 
    for package.preload using the __index metamethod ? Mo- 
 
    can this be useful? 
 
      
 
    Chapter 16 
 
    Object oriented programming 
 
    A table in Lua is an object in more than one sense. Like 
 
    objects, the table has a state. Like objects, a table has 
 
    there is an identity (self) that does not depend on its values; in part 
 
    ness, two tables with the same values are different 
 
    objects, an object can have different meanings at different times 
 
    time. Like objects, tables have a life cycle that 
 
    does not depend on who created them or where they were created. 
 
    Objects have their own methods. Tables can also have their own 
 
    todes as below: 
 
    Account = {balance = 0} 
 
    function Account.withdraw (v) 
 
    Account.balance = Account.balance - v 
 
    end 
 
    This definition creates a new function and stores it in the field 
 
    withdraw of the Account object . Then we can call her as shown 
 
    below: 
 
    Account.withdraw (100.00) 
 
    A function of this type is almost what we call a method . 
 
    However, using the global Account name inside a function 
 
    is bad practice. First, this feature will work 
 
    only for this particular object. Secondly, even for this 
 
    object exactly as long as this object is recorded in this particular 
 
    a global variable. If we change the name of the object, then withdraw 
 
    will no longer work: 
 
    a, Account = Account, nil 
 
    a.withdraw (100.00) - ERROR! 
 
      
 
    This behavior violates the principle that every object 
 
    must have its own, independent cycle of life. 
 
    A more flexible option is to use the recipient of the opera- 
 
    walkie-talkies. To do this, our method will need an additional argument 
 
    cop with the value of the recipient. This parameter is usually named self 
 
    or this : 
 
    function Account.withdraw (self, v) 
 
    self.balance = self.balance - v 
 
    end 
 
    Now, when we call the method, we must indicate with which 
 
    object it should work: 
 
    a1 = Account; Account = nil 
 
    ... 
 
    a1.withdraw (a1, 100.00) - OK 
 
    When using the self parameter, we can use one and 
 
    the same method for many objects: 
 
    a2 = {balance = 0, withdraw = Account.withdraw} 
 
    ... 
 
    a2.withdraw (a2, 260.00) 
 
    This use of the self parameter is key in any design. 
 
    an object-oriented language. Most object-oriented 
 
    in languages, this mechanism is partially hidden from the programmer, 
 
    therefore, this parameter does not need to be explicitly declared (although inside the method 
 
    you can still use - self or this ). Lua can also 
 
    hide this parameter with the colon e operator . We can 
 
    rewrite the previous method definition as follows: 
 
    function Account: withdraw (v) 
 
    self.balance = self.balance - v 
 
    end 
 
    Then the method call will look like this: 
 
    a: withdraw (100.00) 
 
    The colon adds an extra hidden parameter in the definition 
 
    method and adds an extra argument to the method call. 
 
    The colon is just syntactic sugar, albeit pre- 
 
    quite comfortable; there is nothing fundamentally new here. We can 
 
    define a method when using dot syntax and call 
 
    it using colon syntax, and vice versa, as long as 
 
    we handle the extra parameter correctly: 
 
      
 
    Account = {balance = 0, 
 
    withdraw = function (self, v) 
 
    self.balance = self.balance - v 
 
    end 
 
    } 
 
    function Account: deposit (v) 
 
    self.balance = self.balance + v 
 
    end 
 
    Account.deposit (Account, 200.00) 
 
    Account: withdraw (100.00) 
 
      
 
    At this point, our objects have an identity, consisting 
 
    and operations on this state. They lack a class system 
 
    inheritance and the ability to hide your variables (state). 
 
    Let's deal with the first task first: how can we create 
 
    different objects with the same behavior? Like how we 
 
    can we create multiple accounts? 
 
      
 
    16.1. Classes 
 
    The class acts as a template for creating objects. Most 
 
    object oriented languages offer the concept of a class. 
 
    In such languages, each object is an instance of some 
 
    specific class. Lua has no concept of a class; each object is defined 
 
    shares his behavior and his data. However, it is not difficult at all - 
 
    emulate classes in Lua, following the path of prototype languages like 
 
    Self or NewtonScript. Objects have no classes in these languages. Inmes- 
 
    then each object can have a prototype that is 
 
    the object in which the first object is looking for operations that it is not 
 
    knows. To represent classes in such languages, we simply create 
 
    an object that will only be used as a prototype for 
 
    other objects (its instances). Both classes and prototypes will 
 
    fall as a place to accommodate behavior common to 
 
    various objects. 
 
    In Lua, we can implement prototypes using the idea of inheritance 
 
    from section 13.4. More precisely, if we have two objects a and b , then everything 
 
    what we need to do to make b act as a prototype for a is 
 
    following: 
 
    setmetatable (a, {__index = b}) 
 
    After that, a will search in b for all operations that it does not know. 
 
    Setting b as a class for a is actually practically 
 
    same. 
 
    Let's go back to our bank account example. For co- 
 
    building other accounts with behavior similar to Account , we will make 
 
    so that these new objects will inherit their operations from Account when 
 
    using the __index metamethod . As a small optimization, we 
 
    we can not create separate metatables for each of the objects; 
 
    instead, we'll use the Account table itself : 
 
    function Account: new (o) 
 
    o = o or {} –– create a table if the user has not submitted it 
 
    setmetatable (o, self) 
 
    self .__ index = self 
 
    return o 
 
    end 
 
    (When we call Account: new , self is equal to Account ; 
 
    so we could explicitly use Account instead of self . Od- 
 
    But using self is very useful for us in the following 
 
    section when we introduce inheritance.) What happens when we 
 
    create a new account and call its method as shown below? 
 
    a = Account: new {balance = 0} 
 
    a: deposit (100.00) 
 
    When we create a new account, a will have an Account (pa- 
 
    the self parameter when invoking Account: new ) as a metatable. Then, 
 
    when we call a: deposit (100.00) we are actually calling 
 
    a.deposit (a, 100.00) ; the colon is just syntactic sugar. 
 
    However, Lua cannot find the deposit record in table a ; so Lua 
 
    looks for an __index entry in the metatable. The situation looks like 
 
    in the following way: 
 
    getmetatable (a) .__ index.deposit (a, 100.00) 
 
    Metatable a is Account and Account .__ index is so- 
 
    the same Account (since the new method did self .__ index = self ). 
 
    Therefore, the previous expression is reduced to 
 
    Account.deposit (a, 100.00) 
 
    That is, Lua calls the original deposit function , but passing 
 
    a as a parameter to self . Thus, the new account a inherited 
 
    shaft deposit function from Account . In the same way, he inherits everything 
 
    fields from Account . 
 
    Inheritance works not only for methods, but also for other 
 
    some fields that are not in the new account. Therefore, the class can 
 
    set not only methods, but also default values for fields  
 
    instance. Recall that in our first definition of Account 
 
    we provided the balance field with a value of 0. So if we match 
 
    create an account without the initial balance value, then it will inherit this 
 
    default value: 
 
    b = Account: new () 
 
    print (b.balance) -> 0 
 
    When we call b's deposit method , this call will be equivalent to 
 
    taped to the following code (since self is b ): 
 
    b.balance = b.balance + v 
 
    Expression b.balance gives 0, and the method assigns an initial 
 
    b.balance contribution . Subsequent calls to b.balance no longer apply. 
 
    lead to a call to the corresponding metamethod, since b now has 
 
    your balance field . 
 
      
 
    16.2. Inheritance 
 
    Since classes are objects, they can also receive 
 
    methods from other classes. This behavior makes it easy to implement 
 
    inherit (in the usual object-oriented sense 
 
    le). 
 
    Let's say we have a base class Account : 
 
    Account = {balance = 0} 
 
    function Account: new (o) 
 
    o = o or {} 
 
    setmetatable (o, self) 
 
    self .__ index = self 
 
    return o 
 
    end 
 
    function Account: deposit (v) 
 
    self.balance = self.balance + v 
 
    end 
 
    function Account: withdraw (v) 
 
    if v> self.balance then error ”insufficient funds” end 
 
    self.balance = self.balance - v 
 
    end 
 
    From this class we can inherit the SpecialAccount class , 
 
    allowing the buyer to withdraw more than is on his balance sheet. we 
 
    starting with an empty class that inherits all operations from its 
 
    base class: 
 
    SpecialAccount = Account: new () 
 
      
 
    Up to this point, SpecialAccount is just an instance 
 
    Account . However, interesting things happen next: 
 
    s = SpecialAccount: new {limit = 1000.00} 
 
    SpecialAccount inherits new from Account , like all other methods. 
 
    Toda. However, this time when new is executed, its self parameter is already 
 
    will refer to SpecialAccount . Therefore, the metatable s will be 
 
    SpecialAccount , whose __index is equal to SpecialAccount . 
 
    Therefore, s inherits from SpecialAccount , which in turn 
 
    inherits from Account . Now if we do 
 
    s: deposit (100.00) , 
 
    then Lua cannot find the deposit field in s , so it will look for it 
 
    in SpecialAccount , there he will not find it either and will continue to search in 
 
    Account , where it will find the original implementation of this method. 
 
    What makes SpecialAccount special is that we can re- 
 
    define any method inherited from its parent class 
 
    sa. All we need is to simply write a new method: 
 
      
 
    function SpecialAccount: withdraw (v) 
 
    if v - self.balance> = self: getLimit () then 
 
    error ”insufficient funds” 
 
    end 
 
    self.balance = self.balance - v 
 
    end 
 
    function SpecialAccount: getLimit () 
 
    return self.limit or 0 
 
    end 
 
      
 
    Now, when we call s: withdraw (200.00) , Lua will not return- 
 
    in Account , since it will find a new withdraw method before 
 
    in the SpecialAccount class . Since s.limit is 1000.00 (we set 
 
    this field when creating s ), then the program will remove it, leaving 
 
    resulting in s with negative balance. 
 
    The interesting thing about objects in Lua is that you don't 
 
    you need to create a new class to define the new behavior. If from- 
 
    it is only necessary to change the behavior for one object, then we can re- 
 
    lize this change directly in this object. For instance, 
 
    if account s represents a special customer whose limit is always 10% 
 
    from the current balance, then we can change only one account: 
 
    function s: getLimit () 
 
    return self.balance * 0.10 
 
    end 
 
      
 
    After that, calling s: withdraw (200.0) will execute the withdraw method 
 
    from the SpecialAccount class , but when withdraw calls s: getLimit , 
 
    then the previously entered definition of this function will be called. 
 
      
 
    16.3. Plural inheritance 
 
    Since objects are not basic primitives, Lua has 
 
    several ways to use object-oriented software 
 
    gramming. The approach we just saw uses- 
 
    the __index metamethod is probably the best combination 
 
    simplicity, speed and flexibility. However, there are other implementations too, 
 
    which may be more suitable for some specific 
 
    lent cases. We will now see an alternative implementation, which 
 
    Toraya allows multiple inheritance in Lua. 
 
    The key in this implementation is to use the function in 
 
    as the __index metafield . Recall that when the metatable has data 
 
    table has an __index field , then Lua will call this function any 
 
    time when it cannot find the key in the source table. In this case 
 
    __index can search for a missing key in any number of po- 
 
    parents. 
 
    Multiple inheritance means that a class can have 
 
    more than one superclass (parent class). Therefore, we already 
 
    cannot use a function like before to create a sub- 
 
    black classes. Instead, we will define a createClass function , 
 
    which takes parent classes as arguments 
 
    (see Listing 16.1). This function creates a table for the presentation 
 
    new class and sets its metatable with metamethod 
 
    __index , which implements multiple inheritance. Not- 
 
    looking at multiple inheritance, each created object 
 
    belongs to one class, which is used to find the place 
 
    todes. Therefore, the relationship between class and superclasses is 
 
    differs from the relationship between classes and its instance- 
 
    mi (created objects). In particular, a class cannot simultaneously 
 
    it should be the metatable for its instances and child classes. 
 
    In Listing 6.1, we use the class as the metatable for the generated 
 
    instances and create a separate table as a metatable 
 
    class. 
 
      
 
    Listing 16.1. Implementing multiple inheritance 
 
    - look for 'k' in the list of tables 'plist' 
 
    local function search (k, plist) 
 
    for i = 1, #plist do 
 
    local v = plist [i] [k] - try the i-th superclass 
 
    if v then return v end 
 
    end 
 
    end 
 
    function createClass (...) 
 
    local c = {} -– new class 
 
    local parents = {...} 
 
    - the class will search for each method in the list of its parents 
 
    setmetatable (c, {__index = function (t, k) 
 
    return search (k, parents) 
 
    end}) 
 
    - prepare 'c' as a metatable of its instances 
 
    c .__ index = c 
 
    - define a new constructor for this new class 
 
    function c: new (o) 
 
    o = o or {} 
 
    setmetatable (o, c) 
 
    return o 
 
    end 
 
    return c - return a new class 
 
    end 
 
    Let's illustrate the use of createClass by 
 
    cabbage soup small example. Let's say we have our old Account class 
 
    and Class Named to methods setname and getname . 
 
    Named = {} 
 
    function Named: getname () 
 
    return self.name 
 
    end 
 
    function Named: setname (n) 
 
    self.name = n 
 
    end 
 
    To create a new class NamedAccount , which is a child 
 
    with both Account and Named classes , we just call createClass : 
 
    NamedAccount = createClass (Account, Named) 
 
    We create and use instances of this class as before: 
 
    account = NamedAccount: new {name = “Paul”} 
 
    print (account: getname ()) -> Paul 
 
    Now let's see how the last statement works. Lua 
 
    cannot find getname method in account ; so he's looking for a field 
 
    __index in the account metatable , that is, in the NamedAccount . But in 
 
    NamedAccount also doesn't have a “ getname ” field , so Lua looks for a field 
 
    __index in the NamedAccount metatable. Since this field contains 
 
    function, Lua calls it. This function first looks for “getname” in 
 
    Account and, not finding it there, looks for Named , where she finds an excellent 
 
    from nil the value that becomes the final result. 
 
    Of course, due to the complexity of such a search, the performance for many 
 
    physical inheritance differs from performance for simple 
 
    that inheritance. An easy way to improve this performance 
 
    is to copy inherited methods into child classes. 
 
    Using this approach, the __index metamethod would look like 
 
    in the following way: 
 
      
 
    setmetatable (c, {__index = function (t, k) 
 
    local v = search (k, parents) 
 
    t [k] = v - save for next call 
 
    return v 
 
    end}) 
 
      
 
    Using this technique, access to inherited methods 
 
    becomes as fast as accessing local methods 
 
    (except for the first call). The disadvantage is 
 
    that it is difficult to change method definitions when the system is working 
 
    no, since these changes do not carry over along the chain of inheritance 
 
    giving. 
 
      
 
    16.4. Hiding 
 
    Many consider the possibility of hiding to be an integral part of the object- 
 
    but-oriented language; the state of each object is 
 
    his personal matter. In some object oriented languages, 
 
    such as C ++ and Java, you can control whether the field is an object 
 
    one or his method is visible from the outside. In Smalltalk, all variables 
 
    are hidden, and all methods are accessible from the outside. Simula, the first object- 
 
    oriented language, does not provide such protection for 
 
    lei and methods. 
 
    The Lua object design we looked at earlier did not pre- 
 
    delivers hiding mechanisms. This is partly a consequence of 
 
    our use of tables to represent objects. Besides 
 
    Moreover, Lua avoids redundancy and artificial limitations. If a 
 
    you don't want to access the fields inside the object, just don't 
 
    this . 
 
      
 
    However, another goal of Lua is flexibility, it provides 
 
    provides meta-mechanisms that allow you to emulate many of the 
 
    nosti. Although basic object design for Lua does not provide 
 
    hiding mechanisms, we can implement objects in a different way 
 
    so that you gain access control. Although this possibility 
 
    programmers use infrequently, it will be useful to learn about 
 
    her, as it reveals some interesting aspects 
 
    Lua and can be a good solution for other tasks as well. 
 
    The main idea behind alternative design is to represent each 
 
    each object using two tables: one for its state and the other 
 
    gaya - for his operations (his interface). The object is being accessed 
 
    through the second table, that is, through the operations that form its in- 
 
    terface. In order to avoid unauthorized access, 
 
    the table providing its state is not stored in another field 
 
    goy table, it is only accessible through closures within methods. 
 
    For example, to represent a bank account using this 
 
    design, we will create new objects using the following 
 
    factory functions: 
 
      
 
    function newAccount (initialBalance) 
 
    local self = {balance = initialBalance} 
 
    local withdraw = function (v) 
 
    self.balance = self.balance - v 
 
    end 
 
    local deposit = function (v) 
 
    self.balance = self.balance + v 
 
    end 
 
    local getBalance = function () return self.balance end 
 
    return { 
 
    withdraw = withdraw, 
 
    deposit = deposit, 
 
    getBalance = getBalance 
 
    } 
 
    end 
 
      
 
    The function first creates a table to store the internal 
 
    state of the object and stores it in the local variable self . 
 
    The function then creates methods for the object. Finally, the function is 
 
    gives and returns an external object that matches the names of the 
 
    methods to their implementations. The key here is that these methods 
 
    don't get self as an optional parameter; instead they 
 
    access self . Since the additional 
 
    there is no argument, then we do not use the colon syntax for 
 
    work with the object. We call their methods just as usual. 
 
    functions: 
 
      
 
    acc1 = newAccount (100.00) 
 
    acc1.withdraw (40.00) 
 
    print (acc1.getBalance ()) -> 60 
 
      
 
    This design provides complete stealth for everything that is stored 
 
    is stored in the self . After returning from the newAccount function 
 
    there is no way to directly access this tab- 
 
    face. Although our example only stores one variable in a private 
 
    table, we can store all the private parts of the object in this table 
 
    face. We can also define private methods: they are like 
 
    public, but we don't put them in the interface. For example, our accounts 
 
    can provide an additional 10% loan with the balance 
 
    above a certain value, but we do not want the user to 
 
    whether they had access to the details of the calculations. We can implement this 
 
    functionality as follows: 
 
      
 
    function newAccount (initialBalance) 
 
    local self = { 
 
    balance = initialBalance, 
 
    LIM = 10000.00, 
 
    } 
 
    local extra = function () 
 
    if self.balance> self.LIM then 
 
    return self.balance * 0.10 
 
    else 
 
    return 0 
 
    end 
 
    end 
 
    local getBalance = function () 
 
    return self.balance + extra () 
 
    end 
 
    <as before> 
 
    Again there is no way to call the function directly 
 
    extra . 
 
      
 
    16.5. Single approach 
 
    method 
 
    A special case of the previous approach for object-oriented The case when the object has only one method. In this case, we do not need to create an interface tab- face; we can just return this method as a view object. If this looks a little strange, let's remember the time cases 7.1, where we created iterative functions that store their co- standing as closures. An iterator storing its state is nothing is no different from an object with a single function. Another interesting case of objects with a single method is the case when this method actually performs a different tasks depending on a specific argument. Possible the implementation of such an object is shown below: 
 
    function newObject (value) 
 
    return function (action, v) 
 
    if action == “get” then return value 
 
    elseif action == “set” then value = v 
 
    else error (“invalid action”) 
 
    end 
 
    end 
 
    end 
 
    Its usage is pretty simple: 
 
    d = newObject (0) 
 
    print (d (“get”)) -> 0 
 
    d (“set”, 10) 
 
    print (d (“get”)) -> 10 
 
    This object implementation is pretty efficient. Syntax 
 
    d (“set”, 10), although it looks strange, is only two characters long 
 
    it than the traditional d: set (10) . Each object uses one 
 
    closure, which is cheaper than one table. There is no inheritance here, but 
 
    but we have complete secrecy: the only way to contact 
 
    to the state of an object is to use its only 
 
    th method. 
 
    Tcl / Tk uses a similar approach for its widgets. Name kind- 
 
    a get in Tk denotes a function ( widget command ) that can 
 
    perform various types of operations on the widget. 
 
      
 
    Exercises 
 
    Exercise 16.1. Implement the Stack class with push , pop , 
 
    top and isempty . 
 
    Exercise 16.2. Implement class StackQueue as a subclass 
 
    Stack . In addition to the inherited methods, add to this class 
 
    su method insertbottom , which inserts an element at the end 
 
    stack. (This method allows you to use objects of the given 
 
    class as a queue.) 
 
      
 
    Exercise 16.3. Another way to ensure that the public is closed 
 
    projects is to implement them using a proxy 
 
    (see section 13.4). Each object is represented by an empty table 
 
    tsey (proxy). The internal table sets the corresponding 
 
    vie between these empty tables and tables carrying 
 
    the state of the object. This internal table is not available sleep 
 
    guns, but the methods use it to translate their parameter 
 
    self to the real table they are working with. Implement- 
 
    the example with the Account class using this approach and 
 
    see its pros and cons. 
 
    (There is one small problem with this approach. Try- 
 
    you can find it yourself or refer to section 17.3 for suggestions 
 
    her solution is proposed.) 
 
      
 
      
 
      
 
      
 
    Chapter 17 
 
    Weak tables and finalizers 
 
    Lua handles memory management. Programs create objects 
 
    (tables, threads, etc.), but there is no function to destroy objects. 
 
    Lua automatically destroys objects that become garbage 
 
    rum, using garbage collection . This frees you from the main 
 
    work with memory and, more importantly, frees most 
 
    errors related to this activity, such as dangling links 
 
    and memory leaks. 
 
    Using a garbage collector means Lua has no problem with 
 
    cycles. You don't need any special action when using 
 
    naming circular data structures; they automatically release 
 
    are given like any other data. However, sometimes even the clever 
 
    the garbage collector needs your help. No garbage collector 
 
    will allow you to forget about all the problems of resource management, 
 
    such as external resources. 
 
    Weak tables and finalizers are mechanisms that you 
 
    can be used in Lua to help the garbage collector. 
 
    Weak tables allow collection of Lua objects that are still pending 
 
    are accessible to the program, while finalizers allow assembly 
 
    external objects not under direct control 
 
    Lem the garbage collector. In this chapter, we will discuss both of these mechanisms. 
 
      
 
    17.1. Weak tables 
 
    The garbage collector can only collect what is guaranteed to be 
 
    rubbish; he cannot guess for himself what is rubbish 
 
    your opinion. A typical example is a stack implemented 
 
    as an array, with a reference to the top of the stack. You know that the data is 
 
    reap only from the beginning of the array to this index (top of the stack), 
 
    but Lua doesn't know that. If you pop an item off the top of the stack, 
 
    simply decreasing the vertex index, then the object remaining in the array 
 
    is not garbage for Lua. Similarly, any object for which 
 
    the referenced global variable is also not garbage for 
 
    Lua even if you never use it. In both cases 
 
    you (more precisely, your program) should write nil in the appropriate 
 
    variables (or array elements) in order to avoid 
 
    the appearance of indestructible objects. 
 
    However, simply removing links is not always enough. In some 
 
    cases need additional interaction between your product 
 
    gram and garbage collector. A typical example is the set 
 
    all active objects of a certain type (for example, files) in your 
 
    our program. The task seems simple: all you need is 
 
    add every new object to this set. However, as soon as 
 
    the object becomes part of the collection, it will never be destroyed! 
 
    Even if no one refers to it, the set will still refer 
 
    on him. Lua cannot know that this link should not prevent 
 
    destroying that object, unless you tell Lua to do so. 
 
    Weak tables are the mechanism you use in 
 
    Lua to say that a link should not interfere 
 
    destruction of the object. A weak reference is such a reference to an object, 
 
    which is not counted by the garbage collector. If all links, indicate- 
 
    on an object are weak, then this object is free 
 
    and all these weak links are destroyed. Lua implements weak 
 
    links using weak tables: a weak table is such a 
 
    a person whose links are all weak. This means that if 
 
    the object is stored only inside a weak table, then the garbage collector 
 
    sooner or later will destroy this object. 
 
    Tables store keys and values, both of which can be object 
 
    tami of any type. Under normal conditions, the garbage collector is not destroyed. 
 
    It also contains objects that are keys and references in an accessible 
 
    table. Both keys and values are strong references, i.e. 
 
    they prevent the destruction of those objects to which they point 
 
    call. In a weak table, both keys and values can be weak. 
 
    This means that there are three types of weak tables: tables with weak 
 
    strong keys, tables with weak values and completely weak 
 
    tables where both keys and values are weak. Regardless 
 
    type of table, when deleting a key or value, the entire record is deleted 
 
    is taken from the table. 
 
    The weakness of a table is specified by the __mode field of its metatable. Mean- 
 
    the nest of this field, when present, must be a string: if 
 
    this row is “k” , then the keys in this table are weak; 
 
    if this string is “v” , then the values in this table are weak 
 
    face; if this string is equal to "kv" , then both the keys and values in this table 
 
    face are weak. The next example, albeit artificial, 
 
    shows the behavior of weak tables: 
 
    a = {} 
 
    b = {__mode = “k”} 
 
    setmetatable (a, b) - now 'a' has weak keys 
 
    key = {}  
 
    - create the first key 
 
    a [key] = 1 
 
    key = {}  
 
    - create the second key 
 
    a [key] = 2 
 
    collectgarbage () - force the garbage collector to remove garbage 
 
    for k, v in pairs (a) do print (v) end 
 
    -> 2 
 
      
 
    In this example, the second assignment key = {} destroys the reference to 
 
    first key. Calling collectgarbage causes the garbage collector to delete 
 
    pouring all the trash. Since there are no more references to the first key, this 
 
    the key and the corresponding entry in the table are deleted. The second key is 
 
    is still stored in the variable key , so it is not deleted. 
 
    Please note that only objects can be removed from 
 
    weak table. Values such as numbers and booleans, 
 
    are not deleted. For example, if we insert a numeric key into table a 
 
    (from our previous example), then the garbage collector never has it 
 
    will delete. Of course, if the value corresponding to the numeric key is 
 
    is stored in a table with weak values, then all corresponding 
 
    the entire record is removed from the table. 
 
    There is a certain subtlety with lines: although lines are deleted- 
 
    by the garbage collector, in terms of implementation they differ from 
 
    other objects. Other objects such as tables and threads are co- 
 
    are given explicitly. For example, when Lua evaluates the expression {} , then it 
 
    creates a new table. However, does Lua create a new line when you 
 
    filling in "a" .. "b" ? What if the system already has the string “ab” ? Con- 
 
    will Lua give a newline? Can the compiler generate this line 
 
    before executing the program? It makes no difference: it 
 
    all implementation details. From a programmer's point of view, strings are 
 
    are values, not objects. Therefore, just like a number or a lo- 
 
    logical meaning, the row cannot be deleted from the weak table 
 
    (unless the associated value is removed). 
 
      
 
    17.2. Functions with caching 
 
    A common programming technique is to obtain 
 
    gain in time due to memory loss. You can speed up the function by caching its results so that when later you 
 
    call the same function with the same arguments, the function can 
 
    use the value stored in the cache. Imagine a server receiving requests as strings with 
 
    holding Lua code. Each time a request is received, the server executes load on the received line and then calls the received function. However, load is an expensive feature and some commands to the server can be repeated many times. Instead of constantly- call load every time the server receives a command like 
 
    Closeconnection () , the server can remember the result of the load in auxiliary table. The server checks before calling load , no whether there is already a value corresponding to the given string. If he can't 
 
    find the corresponding value, then (and only then) the server calls load and stores the result in this table. We can re- lize this behavior with the following function: 
 
      
 
    local results = {} 
 
    function mem_loadstring (s) 
 
    local res = results [s] 
 
    if res == nil then  
 
    - no result? 
 
    res = assert (load (s)) - calculate new result 
 
    results [s] = res  
 
    - save the result 
 
    end 
 
    return res 
 
    end 
 
      
 
    The gains from this scheme can be very significant. but 
 
    it can also cause large memory losses. Although some 
 
    mandas are repeated over and over, many other teams meet 
 
    just one time. Over time, the results table collects all the commands 
 
    which the server has ever received, and the corresponding code; since time 
 
    This can lead to memory exhaustion on the server. Weak tabs 
 
    faces provide a simple solution to this problem. If the table 
 
    results stores weak values, then each garbage collection cycle will remove 
 
    all currently unused values (virtually all): 
 
    local results = {} 
 
    setmetatable (results, {__mode = “v”}) - values will be weak 
 
    function mem_loadstring (s) 
 
    <as before> 
 
    In fact, since indices are always strings, we 
 
    we can make this table completely weak if we want to: 
 
    setmetatable (results, {__mode = “kv”}) 
 
      
 
    The caching technique is also useful to ensure that 
 
    the caliber of objects of a certain type. For example, let us pre- 
 
    set colors as tables with red , green and blue fields . The simplest 
 
    the color factory will create a new table every time we 
 
    we turn to her: 
 
    function createRGB (r, g, b) 
 
    return {red = r, green = g, blue = b} 
 
    end 
 
    Using caching we can reuse tables 
 
    for the same colors. To create a unique key for 
 
    for each color, we simply connect the color components using 
 
    some separator: 
 
    local results = {} 
 
    setmetatable (results, {__mode = “v”}) -– values will be weak 
 
    function createRGB (r, g, b) 
 
    local key = r .. “-” .. g .. “-” .. b 
 
    local color = results [key] 
 
    if color == nil then 
 
    color = {red = r, green = g, blue = b} 
 
    results [key] = color 
 
    end 
 
    return color 
 
    end 
 
      
 
    An interesting consequence of this implementation is that the 
 
    the vendor can compare colors for equality using the standard 
 
    comparison operator, since two simultaneously existing 
 
    the same table will always correspond to the same colors. 
 
    Please note that the same color may be displayed differently. 
 
    tables at different points in time, since from time to time 
 
    The garbage collector will empty the results table . However, while 
 
    this color is used, it cannot be removed from results . therefore 
 
    if a color exists long enough to be compared with another 
 
    color, its representation will also exist for just as long. 
 
      
 
    17.3. Object attributes 
 
    Another interesting use of weak tables is linking 
 
    ding attributes with objects. There are an infinite number of situations 
 
    ation when we may need to bind some attribute 
 
    to object: names to functions, defaults to tables, 
 
    sizes to arrays, etc. 
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    When the object is a table, then we can remember the attribute 
 
    in the table itself by choosing a suitable unique key. As we already 
 
    seen, a simple and reliable way to create a unique key is to create 
 
    give a new object (usually a table) and use it as 
 
    key. However, if the object is not a table, then this approach is already 
 
    not good. Even for tables, we may need to not store at- 
 
    ribut in the table itself. For example, we might want to do a similar 
 
    the attribute is private or we don't want to influence how the table 
 
    gets over. In all these cases, we need a different way of connecting 
 
    the use of attributes with objects. 
 
    Of course, a separate table provides an ideal way 
 
    binding attributes to objects (it is no coincidence that tables are different 
 
    yes they are called associative arrays ). We can use 
 
    objects as keys, and their attributes as values. Such a table can 
 
    can store attributes of objects of any type, since Lua allows 
 
    use objects of any type as table keys. More 
 
    Moreover, attributes stored in a separate table do not affect other 
 
    objects and can be private, just like the table itself. 
 
    However, this solution has a huge disadvantage: as soon as 
 
    we used the object as a key in the table, it can no longer 
 
    be removed by the garbage collector. Lua cannot delete an object that 
 
    ry is used as a key. If we use the usual 
 
    table, in order to bind their names to functions, then none 
 
    of these functions will never be removed. How can you guess 
 
    live, we can avoid this deficiency with weak tab- 
 
    persons. However, this time we need weak keys. Use- 
 
    the creation of weak keys does not prevent the garbage collector from deleting these keys, 
 
    when there are no more links left. On the other hand, the table 
 
    there cannot be weak values; otherwise the attributes of existing objects 
 
    The objects could be deleted. 
 
      
 
    17.4. Again tables with default values 
 
    In section 13.4 we looked at how you can work with values by 
 
    default non- nil . We showed one approach and noticed 
 
    that the other two approaches require the use of weak tables, therefore 
 
    we have postponed the story about them for later. Now it's time to get back to 
 
    this topic. As you will see, these two approaches to implementing values by 
 
    defaults are in fact special cases already considered 
 
    well-known approaches, namely object attributes and caching. 
 
    In the first approach, we use weak tables to 
 
    bind the table to its default values: 
 
    local defaults = {} 
 
    setmetatable (defaults, {__mode = “k”}) 
 
    local mt = {__index = function (t) return defaults [t] end} 
 
    function setDefault (t, d) 
 
    defaults [t] = d 
 
    setmetatable (t, mt) 
 
    end 
 
    If defaults did not use weak keys, then all tables with 
 
    default values would always exist. 
 
    In the second solution, we use different metatables to define 
 
    default values, but at the same time we reuse one and 
 
    the same metatable when we use the same value again 
 
    default. This is a typical case for caching: 
 
    local metas = {} 
 
    setmetatable (metas, {__mode = “v”}) 
 
    function setDefault (t, d) 
 
    local mt = metas [d] 
 
    if mt == nil then 
 
    mt = {__index = function () return d end} 
 
    metas [d] = mt - remember 
 
    end 
 
    setmetatable (t, mt) 
 
    end 
 
    In this case, we use weak values in order to avoid 
 
    the metatables used could be assembled by a mu- 
 
    litter. 
 
    Which of the two is the best solution? As usual this 
 
    depends on the use. Both solutions have approximately the same 
 
    complexity and the same speed. First solution 
 
    requires several words of memory for each table with a value 
 
    by default (for writing to defaults ). The second solution requires no 
 
    how many tens of words of memory for each unique meaning 
 
    default (new table, new closure plus metas entry ). 
 
    Therefore, if your application has thousands of tables with only a few 
 
    different default values, then the second solution is explicitly 
 
    will be better. On the other hand, if several tables have a common 
 
    with the default values, you'd better prefer the first 
 
    implementation. 
 
      
 
    17.5. Ephemeral tables 
 
    An interesting case occurs when in a table with weak keys 
 
    the value refers to its own key. 
 
    This case is much more common than it might seem. 
 
    A typical example is a factory that returns functions. 
 
    A factory like this takes an object and returns a function that 
 
    will return this object when called: 
 
    function factory (o) 
 
    return function () return o end 
 
    end 
 
    This factory is a good candidate for caching, for 
 
    in order not to create new closures when there is already a suitable 
 
    the next already created closure: 
 
    do 
 
    local mem = {} 
 
    setmetatable (mem, {__mode = “k”}) 
 
    function factory (o) 
 
    local res = mem [o] 
 
    if not res then 
 
    res = function () return o end 
 
    mem [o] = res 
 
    end 
 
    return res 
 
    end 
 
    end 
 
    However, there is one catch. Note that the value is 
 
    (corresponding function) associated with the object located in 
 
    mem , - refers to its own key (the object itself). Although the keys 
 
    are weak in this table, but values are not weak 
 
    Xia. With the standard interpretation of weak tables, nothing will 
 
    removed from the caching table. Since the values are not 
 
    weak, then there is always a strong reference to each function. Each 
 
    the function refers to its object, that is, there is always a strong reference 
 
    for each object. Therefore, these objects cannot be deleted, not 
 
    looking at the use of weak keys. 
 
    However, this interpretation is not always very helpful. Pain- 
 
    Most people expect the value in the table to be available only 
 
    through the appropriate key. Therefore, we can consider 
 
    a similar scenario as a loop case where the closure refers to 
 
    an object that (via the caching table) itself references this 
 
    closure. 
 
      
 
    Lua 5.2 solves this problem with ephemeral tables. 
 
    In Lua 5.2, a table with weak keys and strong values is 
 
    is an ephemeron table. In an ephemeral table 
 
    key availability controls the availability of the corresponding key 
 
    cheniya. Let's take a closer look at the entry ( k, v ) in an ephemeral table. 
 
    A reference to v is strong only if there is a strong reference to k . 
 
    Otherwise, the record is eventually deleted from the table, even 
 
    if v refers (directly or indirectly) to k . 
 
      
 
    17.6. Finalizers 
 
    Although the purpose of the garbage collector is to remove Lua objects, it 
 
    can also help the program free external resources. For 
 
    for these purposes, various programming languages offer mechanisms 
 
    finalizers. The finalizer is a function related to 
 
    ectom, which is called before the object is removed collection- 
 
    rubbish box. 
 
    Lua implements finalizers with the __gc metamethod . By- 
 
    look at the following example: 
 
    o = {x = “hi”} 
 
    setmetatable (o, {__gc = function (o) print (ox) end}) 
 
    o = nil 
 
    collectgarbage () -> hi 
 
    In this example, we first create a table and set for 
 
    her a metatable that has a __gc metamethod . Then we destroy- 
 
    we get the only link to this table (global variable o ) 
 
    and invoke garbage collection by calling collectgarbage . In 
 
    garbage collection time Lua detects that the given table is not 
 
    is available and calls its finalizer (__gc metamethod ). 
 
    The subtle thing in Lua is marking an object for final 
 
    zation. We mark an object for finalization when we set it to 
 
    a metatable with a non-zero __gc field . If we do not mark the object, then 
 
    it will not be finalized. Most of the code we write is 
 
    will work, but sometimes weird cases like the following 
 
    blowing: 
 
    o = {x = “hi”} 
 
    mt = {} 
 
    setmetatable (o, mt) 
 
    mt .__ gc = function (o) print (ox) end 
 
    o = nil 
 
    collectgarbage () -> (prints nothing) 
 
    In this example, the metatable we are setting for o is not 
 
    contains the __gc metamethod , so the object is not marked for phi- 
 
    nalization. Even if we later add the __gc field to the metatable, 
 
    Lua does not consider this assignment as special, so 
 
    object and will not be marked. As we said, this is rarely a trial. 
 
    lemo; usually the metatable does not change after it has been 
 
    assigned by metatable. 
 
    If you really want to set the metamethod later, then you can 
 
    those to use any value for the __gc field as temporary: 
 
    o = {x = “hi”} 
 
    mt = {__gc = true} 
 
    setmetatable (o, mt) 
 
    mt .__ gc = function (o) print (ox) end 
 
    o = nil 
 
    collectgarbage () -> hi 
 
    Now, as metatable field contains the __gc , object o po- 
 
    tossed about for finalization. There is no problem in getting 
 
    give a metamethod later; Lua only calls the finalizer if it 
 
    is a function. 
 
    When the garbage collector destroys multiple objects in one 
 
    and in the same loop, it calls their finalizers in the reverse order 
 
    the one in which the objects were marked for finalization. Consider 
 
    Rome the following example that creates a linked list of objects 
 
    with finalizers: 
 
    mt = {__gc = function (o) print (o [1]) end} 
 
    list = nil 
 
    for i = 1, 3 do 
 
    list = setmetatable ({i, link = list}, mt) 
 
    end 
 
    list = nil 
 
    collectgarbage () 
 
    -> 3 
 
    -> 2 
 
    -> 1 
 
    The first object to be finalized will be object 3, which was 
 
    the last marked object. 
 
    A common misconception is that linking 
 
    ki between the destroyed objects can affect the order in 
 
    where they will be finalized. For example, you might think that 
 
    object 2 in the previous example must be finalized before 
 
    object 1, since there is a link from 2 to 1. However, the links 
 
    can form cycles. Therefore, they do not impose any 
 
    order for finalization. 
 
    Another subtle point related to finalizers is 
 
    recovery . When the finalizer is called, it receives a fi 
 
    an object to be parsed as a parameter. So the object 
 
    becomes alive again, at least during finalization. 
 
    I call this temporary recovery . At run time 
 
    the finalizer does not prevent it from remembering the object, for example in 
 
    a global variable so that the object remains accessible 
 
    after the finalizer finishes. I call it permanent 
 
    restoration . 
 
    Recovery must be transitive. Consider the following- 
 
    snippet of code: 
 
    A = {x = “this is A”} 
 
    B = {f = A} 
 
    setmetatable (B, {__gc = function (o) print (ofx) end}) 
 
    A, B = nil 
 
    collectgarbage () -> this is A 
 
    The finalizer for B refers to A , so A cannot be removed. 
 
    flax before finalizing Bed and . Lua must reconstruct both A and B before 
 
    by calling the finalizer. 
 
    Due to restoration, objects with finalizers have restored 
 
    are carried out in two passes. The garbage collector first finds out that 
 
    an object with a finalizer is unreachable (no one refers to it), 
 
    then it restores that object and adds it to the queue for 
 
    finalization. After executing the finalizer, Lua marks the object 
 
    as finalized. The next time the garbage collector is 
 
    finds out that the object is unreachable, he will destroy it. If you want to 
 
    ensure that all the garbage in your program is truly its own 
 
    run, then you must call collectgarbage twice; second call 
 
    will destroy objects that were finalized during the first 
 
    first call. 
 
    The finalizer for each object is executed exactly once, 
 
    because Lua marks objects that have already been finalized. If the volume 
 
    the object has not been deleted before the end of the program, then Lua will call it in 
 
    the very end. This feature allows you to implement in Lua an analog 
 
    atexit functions, that is, functions that are called directly 
 
    immediately before exiting the program. Anything for this 
 
    what you need is to create a table with a finalizer and remember the link 
 
    to it somewhere, for example in a global variable: 
 
    _G.AA = {__gc = function () 
 
    - your 'atexit' code comes here 
 
    print (“finishing Lua program”) 
 
    end} 
 
    setmetatable (_G.AA, _G.AA) 
 
    Another interesting possibility is the ability to call 
 
    call a specific function every time Lua exits the loop 
 
    garbage collection. Since the finalizer is called exactly once, 
 
    then you need to create a new object in the finalizer to call the next 
 
    blowing finalizer: 
 
    do 
 
    local mt = {__gc = function (o) 
 
    - whatever you want to do 
 
    print (“new cycle”) 
 
    - create a new object for the next cycle 
 
    setmetatable ({}, getmetatable (o)) 
 
    end} 
 
    - create the first object 
 
    setmetatable ({}, mt) 
 
    end 
 
    collectgarbage () -> new loop 
 
    collectgarbage () -> new loop 
 
    collectgarbage () -> new loop 
 
    Interaction of objects with finalizers and weak tables with 
 
    keeps a subtle moment. The garbage collector cleans up values in a weak 
 
    table before restoring while keys are being flushed 
 
    after recovery. The following code snippet illustrates this 
 
    behavior: 
 
    - table with weak keys 
 
    wk = setmetatable ({}, {__mode = “k”}) 
 
    - table with weak values 
 
    wv = setmetatable ({}, {__mode = “v”}) 
 
    o = {} - object 
 
    wv [1] = o; wk [o] = 10 - add to both tables 
 
    setmetatable (o, {__gc = function (o) 
 
    print (wk [o], wv [1]) 
 
    end}) 
 
    o = nil; collectgarbage () -> 10 nil 
 
    During the execution of the finalizer, it finds the object in the table 
 
    wk, but not in the wv table. The rationale for this behavior is 
 
    that we often store object properties in tables with weak keys 
 
    (as we discussed in Section 17.3) and finalizers can be 
 
    need to refer to these attributes. However, we use tab- 
 
    faces with weak values to reuse existing ones 
 
    objects; in this case, the finalizable objects are no longer needed. 
 
      
 
    Exercises 
 
    Exercise 17.1. Write a code to check if 
 
    does Lua really use ephemeral tables. (Not for- 
 
    call collectgarbage for garbage collection.) 
 
    check your code in both Lua 5.1 and Lua 5.2. 
 
    Exercise 17.2. Consider the first example from section 17.6, 
 
    creates a table with a finalizer that prints the message 
 
    on call. What happens if the program ends 
 
    without calling garbage collection? What happens if the program is 
 
    calling os.exit ? What happens if the program terminates 
 
    execution with error? 
 
    Exercise 17.3. Suppose you need to implement caching 
 
    a table for a function that takes a string and returns 
 
    string. Using a weak table will prevent deletions 
 
    records as weak tables do not consider rows 
 
    as objects to be deleted. How can you implement caching 
 
    in this case? 
 
    Exercise 17.4. Explain the output of the following program: 
 
    local count = 0 
 
    local mt = {__gc = function () count = count - 1 end} 
 
    local a = {} 
 
    for i = 1, 10000 do 
 
    count = count + 1 
 
    a [i] = setmetatable ({}, mt) 
 
    end 
 
    collectgarbage () 
 
    print (collectgarbage "count" * 1024, count) 
 
    a = nil 
 
    collectgarbage () 
 
    print (collectgarbage "count" * 1024, count) 
 
    collectgarbage () 
 
    print (collectgarbage "count" * 1024, count) 
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
    Part III 
 
    WITH TANDARD 
 
    LIBRARIES 
 
      
 
    Chapter 18 
 
    Mathematical 
 
    library 
 
    In this and the following chapters on the standard library, 
 
    my goal is not to give a complete specification of each function 
 
    tion, but to show what functionality each 
 
    library. I can omit some specific options, or 
 
    behavior for clarity. The main goal is to ignite 
 
    your curiosity, which can then be satisfied by reading- 
 
    See the Lua documentation. 
 
    The math library contains a standard set of mathematical 
 
    functions such as trigonometric ( sin , cos , tan , asin , acos 
 
    etc.), exponentiation and logarithm ( exp , log , log10 ), 
 
    rounding ( floor , ceil ), min , max , functions for generating pseudo- 
 
    tea numbers ( random , randomseed ) and the variables pi and huge (last 
 
    it is the largest representable number, on some platforms 
 
    forms can take the special value inf ). 
 
    All trigonometric functions work with radians. You can 
 
    you can use deg and rad functions to convert between degrees 
 
    and radians. If you want to work with degrees, you can re- 
 
    define trigonometric functions: 
 
    do 
 
    local sin, asin, ... = math.sin, math.asin, ... 
 
    local deg, rad = math.deg, math.rad 
 
    math.sin = function (x) return sin (rad (x)) end 
 
    math.asin = function (x) return deg (asin (x)) end 
 
    ... 
 
    end 
 
    The math.random function generates pseudo-random numbers. we 
 
    we can call it in three different ways. When we call her 
 
    with no arguments, it returns a real pseudo-random number 
 
    in the range [0, 1). When we call it with a single argument, 
 
    integer n , then it returns a pseudo-random integer x lying 
 
    between 1 and n . Finally, we can call it with two integer- 
 
    with arguments l and u , then it will return a pseudo-random integer, 
 
    lying between l and u . 
 
    You can set the seed for the pseudo-random generator 
 
    numbers using the randomseed function ; her only clean 
 
    the primary argument is "seed". Usually when starting work 
 
    programs the pseudo-random number generator is initialized 
 
    some fixed value. This means that every time 
 
    when you run your program it generates the same 
 
    a sequence of pseudo-random numbers. For debugging, it turns out 
 
    is very useful, but in the game you will always get one and 
 
    also. The standard trick to combat this is to use 
 
    setting the current time as a "seed" using a call 
 
    math.randomseed (os.time ()) . The os.time function returns a number, 
 
    representing the current time, usually as a number of seconds, 
 
    marching from a certain date. 
 
    The math.random function uses the rand function from the standard 
 
    libraries of the C language. In some implementations, returns numbers with not 
 
    very good statistical properties. You can reverse- 
 
    to independent distributions in search of a better generator 
 
    pseudo-random numbers. (Lua standard distribution does not include 
 
    into itself a similar generator due to copyright issues. It 
 
    contains only code written by the Lua authors.) 
 
      
 
    Exercises 
 
    Exercise 18.1. Write a function to check if 
 
    is the given number a power of two. 
 
    Exercise 18.2. Write a function to calculate the volume of the cone 
 
    sa by its height and angle between its generatrix and axis. 
 
    Exercise 18.3. Implement another pseudo-random generator 
 
    numbers for Lua. Search the internet for a good algorithm. (You 
 
    a library for bitwise operations may be needed.) 
 
    Exercise 18.4. Using the math.random function , write 
 
    function to get pseudo-random numbers from Gaussian 
 
    distribution. 
 
    Exercise 18.5. Write a function for mixing 
 
    of this list. Make sure all options are equally likely. 
 
      
 
    Chapter 19 
 
    Library for bitwise operations 
 
    A constant source of complaints about Lua is the lack of 
 
    bitwise operations. This absence is by no means accidental. Not so easy 
 
    reconcile bitwise operations with floating point numbers. 
 
    We can express some of the bitwise operations as arithmetic 
 
    tic operations. For example, shifts to the left correspond to multiplication 
 
    by a power of two, shifts to the right correspond to division. One- 
 
    bitwise AND and OR have no such arithmetic counterparts. They 
 
    defined for binary representations of integers. Practically 
 
    it is not possible to extend them to floating point operations. Even 
 
    some simple operations are meaningless. What should be additional 
 
    by 0.0? Should it be -1? Or 0xFFFFFFFF (what's in 
 
    Lua is 4,294,967,295, which is clearly not -1)? Or maybe 2 64 –1 
 
    (a number that cannot be accurately represented using a value like 
 
    double )? 
 
    To avoid such problems, Lua 5.2 introduces 
 
    operations using a library, not as built into the language 
 
    operations. This makes it clear that these operations are not "genus" 
 
    ny "for numbers in Lua, but they use a certain interpretation. 
 
    for working with these numbers. Moreover, other libraries 
 
    may suggest other interpretations of bitwise operations (e.g. 
 
    measures using more than 32 bits). 
 
    For most of the examples in this chapter, I will use six 
 
    decimal notation. I will use the word MAX to indicate 
 
    values 0xFFFFFFFF (that is, 2 32 –1). In the examples I will use 
 
    the following additional function: 
 
    function printx (x) 
 
    print (string.format (“0x% X”, x)) 
 
    end 
 
    The bitwise library in Lua 5.2 is called bit32 . As follows from 
 
    name, it works with 32-bit numbers. Since and , or and not 
 
    are reserved words in Lua, then the corresponding 
 
    the functions are named band , bor and bnot . For the sequence in the name 
 
    The function for bitwise exclusive OR is named bxor : 
 
    printx (bit32.band (0xDF, 0xFD)) -> 0xDD 
 
    printx (bit32.bor (0xD0, 0x0D)) -> 0xDD 
 
    printx (bit32.bxor (0xD0, 0xFF)) -> 0x2F 
 
    printx (bit32.bnot (0))  
 
    -> 0xFFFFFFFF 
 
    The band , bor and bxor functions accept any number of arguments. 
 
    Tov: 
 
    printx (bit32.bor (0xA, 0xA0, 0xA00)) -> 0xAAA 
 
    printx (bit32.band (0xFFA, 0xFAF, 0xAFF)) -> 0xAAA 
 
    printx (bit32.bxor (0, 0xAAA, 0))  
 
    -> 0xAAA 
 
    printx (bit32.bor ())  
 
    -> 0x0 
 
    printx (bit32.band ())  
 
    -> 0xFFFFFFFF 
 
    printx (bit32.bxor ())  
 
    -> 0x0 
 
    (They are all commutative and associative.) 
 
    The bitwise library works with unsigned integers. 
 
    During operation, any number passed as an argument is converted to 
 
    an integer in the range 0-MAX . First, the unspecified numbers are ok- 
 
    swear in an unspecified way. Second, numbers out of range 
 
    0-MAX are converted to it using the modulus operation: 
 
    integer n becomes n % (2 32 ). This operation is equivalent to getting 
 
    the binary representation of the number and then taking its least significant 32 bits. 
 
    As expected, -1 becomes MAX . You can use the following- 
 
    operations to normalize a number (that is, to display it in 
 
    range 0-MAX ): 
 
    printx (bit32.bor (2 ^ 32))  
 
    -> 0x0 
 
    printx (bit32.band (-1))  
 
    -> 0xFFFFFFFF 
 
    Of course, in standard Lua it's easier to just do n% (2 ^ 32) . 
 
    Unless explicitly specified, all functions in the library return re- 
 
    the result, which also lies in 0-MAX . However, you should be 
 
    tricky when using the results of bitwise operations in 
 
    as ordinary numbers. Sometimes Lua is compiled using other 
 
    second type for numbers. In particular, some systems with limited 
 
    capabilities use 32-bit numbers as numbers in Lua. 
 
    In these systems, MAX = -1 . Moreover, some bitwise libraries 
 
    thecas use different conventions for their results. By- 
 
    this whenever you need to use the result of the bitwise 
 
    operations as a number, be careful. Avoid comparisons: 
 
    instead of x <0 write bit32.btest (x, 0x80000000) . (We will soon see 
 
    dim the btest function .) Use the bitwise library itself to 
 
    normalizing constants: 
 
    if bit32.or (a, b) == bit32.or (-1) then 
 
    <some code> 
 
    The bitwise library also defines operations for shifting and 
 
    bit rotation: lshift to shift left; rshift and arshift to shift- 
 
    ha to the right; lrotate for left rotation and rrotate for rotation 
 
    right. Except for arithmetic shift ( arshift ), all 
 
    shifts fill new bits with zeros. Arithmetic shift for 
 
    fills the bits on the left with copies of its last bit. 
 
    printx (bit32.rshift (0xDF, 4))  
 
    -> 0xD 
 
    printx (bit32.lshift (0xDF, 4))  
 
    -> 0xDF0 
 
    printx (bit32.rshift (-1, 28))  
 
    -> 0xF 
 
    printx (bit32.arshift (-1, 28))  
 
    -> 0xFFFFFFFF 
 
    printx (bit32.lrotate (0xABCDEF01, 4)) -> 0xBCDEF01A 
 
    printx (bit32.rrotate (0xABCDEF01, 4)) -> 0x1ABCDEF0 
 
    Shift or rotation by a negative number of bits shifts (rotate 
 
    em) in the opposite direction. For example, shift -1 bit to the right 
 
    is equivalent to shifting 1 bit to the left. The result of a shift by more than 
 
    31 bits is 0 or MAX because all original bits are gone: 
 
    printx (bit32.lrotate (0xABCDEF01, -4)) -> 0x1ABCDEF0 
 
    printx (bit32.lrotate (0xABCDEF01, -36)) -> 0x1ABCDEF0 
 
    printx (bit32.lshift (0xABCDEF01, -36)) -> 0x0 
 
    printx (bit32.rshift (-1, 34))  
 
    -> 0x0 
 
    printx (bit32.arshift (-1, 34))  
 
    -> 0xFFFFFFFF 
 
    In addition to these more or less standard operations, bitwise 
 
    the library also provides three additional functions. 
 
    The btest function performs the same operation as band , but returns 
 
    Returns the result of comparing a bitwise operation with zero: 
 
    print (bit32.btest (12, 1))  
 
    -> false 
 
    print (bit32.btest (13, 1))  
 
    -> true 
 
    Another common operation is to retrieve specified 
 
    bits from the number. Usually this operation involves shifting and 
 
    bitwise AND; a bitwise library packs it all into one 
 
    function. The call bit32.extract (x, f, w) returns w bits from x , on- 
 
    starting from bit f : 
 
      
 
    printx (bit32.extract (0xABCDEF01, 4, 8)) -> 0xF0 
 
    printx (bit32.extract (0xABCDEF01, 20, 12)) -> 0xABC 
 
    printx (bit32.extract (0xABCDEF01, 0, 12)) -> 0xF01 
 
    This operation counts bits from 0 to 31. If the third argument is 
 
    ment ( w ) is not specified, then it is considered equal to one: 
 
    printx (bit32.extract (0x0000000F, 0)) -> 0x1 
 
    printx (bit32.extract (0xF0000000, 31)) -> 0x1 
 
    The reverse of the extract operation is the replace operation , which 
 
    paradise replaces the given bits. The first parameter is the outcome 
 
    number. The second parameter specifies the value to be inserted. 
 
    The last two parameters, f and w , have the same meaning as in bit32. 
 
    extract : 
 
    printx (bit32.replace (0xABCDEF01, 0x55, 4, 8)) -> 0xABCDE551 
 
    printx (bit32.replace (0xABCDEF01, 0x0, 4, 8)) -> 0xABCDE001 
 
    Note that for any valid values of x , f and w 
 
    the following equality holds: 
 
    assert (bit32.replace (x, bit32.extract (x, f, w), f, w) == x) 
 
      
 
    Exercises 
 
    Exercise 19.1. Write a function to check what is 
 
    this number is a power of two. 
 
    Exercise 19.2. Write a function to calculate a number 
 
    single bits in binary representation of a number. 
 
    Exercise 19.3. Write a function to check if 
 
    Whether the binary representation of a number is a palindrome. 
 
    Exercise 19.4. Define shift operations and bitwise 
 
    AND using Lua arithmetic operations. 
 
    Exercise 19.5. Write a function that receives a string, 
 
    encoded in UTF-8, and returns its first character as 
 
    number. The function should return nil if the line does not start 
 
    with a valid UTF-8 sequence. 
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
    Chapter 20 
 
    Library 
 
    for working with tables 
 
    The table library contains additional functions that allow 
 
    for working with tables as arrays. It provides 
 
    functions for inserting and removing items from the list, for sorting 
 
    ki array elements and to concatenate all strings in the array. 
 
    20.1. Insert and remove functions 
 
    The table.insert function inserts an element at a given location in the array, 
 
    shifting the rest of the elements in order to make space. On- 
 
    example, if t is an array {10, 20, 30} , then after calling table. 
 
    insert (t, 1,15) t will be {15, 10, 20, 30} . Special (and 
 
    quite common), the case is to call insert without specifying a 
 
    insertion, then the element is inserted at the very end of the array and shift 
 
    no elements happen. As an example, the following code reads 
 
    input line by line, remembering all lines in the array: 
 
    t = {} 
 
    for line in io.lines () do 
 
    table.insert (t, line) 
 
    end 
 
    print (#t) -> (number of lines read) 
 
    In Lua 5.0, this technique is fairly common. In later 
 
    versions, I prefer to use t [# t + 1] = line in order to 
 
    add a string to the array. 
 
    The table.remove function removes (and returns) an element from the given 
 
    place of the array, shifting the next elements of the array. 
 
    If, when calling, the position inside the array was not specified, then delete 
 
    The last element of the array is taken. 
 
    With these two functions it is quite easy to implement 
 
    stacks, queues and double queues. We can initialize 
 
    similar structures like t = {} . The operation of adding an item 
 
    is equivalent to table.insert (t, x) ; the operation of removing an element of equivalent 
 
    valence table.remove (t). The call to table.insert (t, 1, x) adds 
 
    element to the other end of the corresponding structure, and a call to table. 
 
    remove (t, 1) accordingly removes an element from that end. Two 
 
    the latter operations are not particularly effective as they should 
 
    move all elements of the array in memory. However, since the Bible 
 
    In the table library, these functions are implemented in C, they are not 
 
    are too expensive and work well for small arrays (up to 
 
    several hundred elements). 
 
      
 
    20.2. Sorting 
 
    Another useful function for working with arrays is table. 
 
    sort ; we've seen it before. It takes as arguments 
 
    an array and optionally a function for comparison. This function is 
 
    takes two arguments as input and must return true if the first 
 
    the element must come before the second. If this function is not specified, then 
 
    the sort function uses the standard '<' operator. 
 
    Typical confusion occurs when a programmer tries to 
 
    sort the indexes in the table. In the table, the indices form many 
 
    property in which there is no ordering. If you want them 
 
    sort, then you need to copy them into an array and sort 
 
    this array. Let's take an example. May you read the input 
 
    file and built a table, which for each function name co- 
 
    holds the line where this function was defined: something like 
 
    next: 
 
    lines = { 
 
    luaH_set = 10, 
 
    luaH_get = 24, 
 
    luaH_present = 48, 
 
    } 
 
    And now you need to print these functions in alphabetical order 
 
    row. If you traverse this table with the pairs function , 
 
    then the names will appear in no particular order. You can't explicitly 
 
    sort as these names are table keys. 
 
    However, if you put them in an array, then already this array 
 
    can be sorted. So you first need to create an array 
 
    with these names, then sort it and only then print 
 
    result: 
 
    a = {} 
 
    for n in pairs (lines) do a [#a + 1] = n end 
 
    table.sort (a) 
 
    for _, n in ipairs (a) do print (n) end 
 
    Some are confused. After all, Lua arrays don't contain any 
 
    what ordering (arrays are actually tables). Poet- 
 
    to that we impose ordering when working with indexes that 
 
    can be ordered. This is why you are better off traversing the array when 
 
    help ipairs , not pairs . The first of these functions sets 
 
    the order of the keys is 1, 2, 3, ..., while the second just uses 
 
    arbitrary order from the table. 
 
    As a more advanced solution, we can write an iteration 
 
    A generator for traversing a table using a given key order. 
 
    The optional f parameter specifies this order. This sleep iterator is 
 
    chala sorts the keys into a separate array, and then bypasses this 
 
    array. At each step, it returns a key and the corresponding value 
 
    reading from the original array: 
 
    function pairsByKeys (t, f) 
 
    local a = {} 
 
    for n in pairs (t) do a [#a + 1] = n end 
 
    table.sort (a, f) 
 
    local i = 0 
 
    return function () - iterating function 
 
    i = i + 1 
 
    return a [i], t [a [i]] 
 
    end 
 
    end 
 
    With this iterator it is easy to print function names in 
 
    alphabetical order: 
 
    for name, line in pairsByKeys (lines) do 
 
    print (name, line) 
 
    end 
 
      
 
    20.3. Concatenation 
 
    We have already seen the table.concat function in section 11.6 . She takes on 
 
    input is a list of strings and returns the result of the concatenation of all these 
 
    lines. The optional second argument specifies the delimiter string. 
 
    There are also two more optional arguments that specify the 
 
    dexes of the first and last strings to be concatenated. 
 
    The following function is an interesting generalization of table. 
 
    concat . It can accept nested lists of strings as input: 
 
      
 
    function rconcat (l) 
 
    if type (l) ~ = “table” then return l end 
 
    local res = {} 
 
    for i = 1, #l do 
 
    res [i] = rconcat (l [i]) 
 
    end 
 
    return table.concat (res) 
 
    end 
 
    For each item in the list, rconcat recursively calls itself 
 
    for processing nested lists. Then it calls table. 
 
    concat to combine intermediate results. 
 
    print (rconcat {{“a”, {“nice”}}, “and”, {{“long”}, {“list”}}}) 
 
    -> a nice and long list 
 
    Exercises 
 
    Exercise 20.1. Rewrite the rconcat function so that for 
 
    it could be given a separator string: 
 
    print (rconcat ({{{“a”, “b”}, {“c”}}, “d”, {}, {“e”}}, “;”) 
 
    -> a; b; c; d; e 
 
    Exercise 20.2. The problem with table.sort is that this 
 
    sort is not stable (stable sort), that is, ele- 
 
    the cops that the sorting function considers to be equal can 
 
    They can change their order during the sorting process. How can you 
 
    implement robust sorting in Lua? 
 
    Exercise 20.3. Write a function to check if 
 
    Whether the specified table is a valid sequence. 
 
    Exercises 
 
      
 
      
 
      
 
    CHAPTER 21 
 
    Library for working with strings 
 
    Immediate possibilities of working with strings interpreted 
 
    Lua's are pretty limited. The program can create strings, co- 
 
    combine them and get the length of the string. But she cannot extract sub- 
 
    strings or examine their contents. True power to work 
 
    with strings comes from her library for working with strings. 
 
    A library for working with strings is available as the string module . 
 
    Since Lua 5.1, functions are also exported as string methods 
 
    (using metatables). So, a line break in capital letters 
 
    can be written as string.upper (s) or s: upper () . Choose 
 
    yourself. 
 
    21.1. Main functions for working with strings 
 
    Some functions for working with strings in the library are extremely 
 
    are simple: calling string.len (s) returns the length of string s . She ek- 
 
    is equivalent to #s . Calling string.rep (s, n) (or s: rep (n) ) returns 
 
    string s repeated n times. You can create a 1MB string (on- 
 
    example, for tests) with string.rep (“a”, 2 ^ 20) . Call 
 
    string.lower (s) returns a copy of the uppercase string- 
 
    mi replaced by lowercase; all other characters remain unchanged. 
 
    (The string.upper function converts lowercase letters to uppercase.) 
 
    As an example, if you want to sort strings outside of the 
 
    from uppercase / lowercase letters, you can use the following 
 
    next piece of code: 
 
    table.sort (a, function (a, b) 
 
    return a: lower () <b: lower () 
 
    end) 
 
    The call to string.sub (s, i, j) returns the substring of s starting at 
 
    i -th character and ending with j -th (inclusive). In Lua, the first character is 
 
    row has index 1. You can also use negative 
 
    indices that are counted from the end of the line: index -1 referen- 
 
    goes to the last character of the string, –2 to the penultimate character, and so on. 
 
    So calling string.sub (s, 1, j) (or s: sub (1, j) ) will return 
 
    specifies the beginning of a string of length j ; string.sub (s, j, -1) (or just 
 
    s: sub (j) because the default for the last argument is 
 
    minta is –1) returns the end of the string starting from the j -th character; 
 
    and string.sub (s, 2, -2) returns a copy of the string s , in which the 
 
    we are the first and last characters: 
 
    s = "[in brackets]" 
 
    print (s: sub (2, -2)) -> in brackets 
 
    Remember that strings in Lua are immutable. String.sub function , 
 
    like any other function in Lua, it doesn't change the value of the string, but 
 
    returns a new string. A common mistake is to use 
 
    something like s: sub (2, -2) and expect this to change the value of st- 
 
    ki s . If you want to change the value of a variable, then you must 
 
    assign a new value to it: 
 
    s = s: sub (2, -2) 
 
    The string.char and string.byte functions translate between characters 
 
    and their internal numeric representations. String function 
 
    char takes integers as input, converts each of them to sym- 
 
    ox and returns a string built from all these characters. Call 
 
    string.byte (s, i) returns internal numeric representation 
 
    i -th character of string s ; the second argument is optional, the call to string. 
 
    byte (s) returns the internal numeric representation of the first 
 
    string character s . In the following examples, we assume that the characters 
 
    represented by ASCII encoding: 
 
    print (string.char (97))  
 
    -> a 
 
    i = 99; print (string.char (i, i + 1, i + 2)) -> cde 
 
    print (string.byte (“abc”))  
 
    -> 97 
 
    print (string.byte (“abc”, 2))  
 
    -> 98 
 
    print (string.byte (“abc”, -1))  
 
    -> 99 
 
    On the last line, we used a negative index for 
 
    access to the last character of the line. 
 
    Since Lua 5.1, the string.byte function supports the third one, 
 
    optional argument. Calling string.byte (s, i, j) returns 
 
    numerical representations of all characters at once between 
 
    indices i and j (inclusive): 
 
    print (string.byte (“abc”, 1, 2)) -> 97 98 
 
    The default for j is i , so the call without 
 
    the third of its argument returns the i- th character. Calling {s: byte (1, -1)} 
 
    creates a table with codes of all characters in string s . According to this table 
 
    we can get the original string by calling string. 
 
    char (table.unpack (t)) . This trick does not work for very long 
 
    lines (more than 1 MB), since Lua has a limit on the number of 
 
    values rotated by the function. 
 
    The string.format function is a powerful tool for 
 
    formatting strings, usually for output. She returns the 
 
    a matted version of its arguments (supported by 
 
    free number of arguments) using the description given by its first 
 
    argument, the so-called format string . For this line 
 
    there are rules similar to those for the printf function from 
 
    the standard C library: it consists of plain text and 
 
    pointers that control where and how to place each argument 
 
    cop in the resulting string. The pointer consists of a '%' character , 
 
    followed by a character specifying how to format the argument 
 
    ment: 'd' for decimal numbers, 'x' for hexadecimal numbers, 
 
    'o' for octal, 'f' for floating point numbers, 's' for 
 
    lines, there are also some other options. Between '%' and sym- 
 
    there may be other options that specify formatting, 
 
    such as the number of decimal digits for a floating point number: 
 
    print (string.format (“pi =% .4f”, math.pi)) -> pi = 3.1416 
 
    d = 5; m = 11; y = 1990 
 
    print (string.format (“% 02d /% 02d /% 04d”, d, m, y)) -> 05/11/1990 
 
    tag, title = “h1”, “a title” 
 
    print (string.format (“<% s>% s </% s>”, tag, title, tag)) 
 
    -> <h1> a title </h1> 
 
    In the first example, % .4f is a floating point number with 
 
    three digits after the decimal point. In the second example, % 02d 
 
    denotes a decimal number of at least two digits, if necessary 
 
    walkability padded with zeros; % 2d without zero will pad the number 
 
    spaces. For a complete description of these options, refer to the 
 
    See the Lua manual, or refer to the C manual. 
 
    since Lua uses the C library to do all 
 
    hard work here. 
 
      
 
      
 
    21.2. Functions for work 
 
    with templates 
 
    The most powerful functions in the library for working with strings are 
 
    mi are find , match and gsub (global substitution) functions 
 
    and gmatch (global search). They are all template based . 
 
    Unlike a number of other scripting languages, Lua does not use 
 
    neither POSIX syntax nor language syntax for working with templates 
 
    Perl. The main reason for this decision is size: typical 
 
    ny implementation of POSIX regular expressions takes over 4000 
 
    lines of code. This is larger than all the standard Lua libraries, taking 
 
    together. For comparison, the implementation of working with templates in Lua is 
 
    takes less than 600 lines. Of course, the implementation of working with templates in 
 
    Lua is inferior to a full-fledged POSIX implementation. Still working with 
 
    templates in Lua is a powerful tool and includes 
 
    some features that are difficult to relate to standard 
 
    POSIX implementations. 
 
    String.find function 
 
    The string.find function searches for a given pattern within a string. Pros- 
 
    The strongest case of a pattern is a word that matches 
 
    your copy. For example, the pattern 'hello' will search for the substring 
 
    “Hello” within the entire given string. When finding template find 
 
    returns two values: the index from which the co- 
 
    drop, and the index where the match ends. If the match is not 
 
    found, then nil is returned : 
 
    s = “hello world” 
 
    i, j = string.find (s, “hello”) 
 
    print (i, j)  
 
    -> 1 5 
 
    print (string.sub (s, i, j))  
 
    -> hello 
 
    print (string.find (s, “world”)) -> 7 11 
 
    i, j = string.find (s, “l”) 
 
    print (i, j)  
 
    -> 3 3 
 
    print (string.find (s, “lll”))  
 
    -> nil 
 
    When the search for the template is completed successfully, we can call 
 
    string.sub with returned values in order to get 
 
    part of the original string that matches the pattern. For simple 
 
    templates, such a string will be the template itself. 
 
    The string.find function has an optional third parameter: in- 
 
    dex specifying where within the string the search should start. 
 
    This parameter is useful when we want to get all 
 
    pattern occurrences: in this case we call the search function 
 
    repeatedly, each time starting the search after the position at which 
 
    a previous match was found. As an example, the following 
 
    the following code builds a table with the positions of all '\ n' characters inside 
 
    lines: 
 
    local t = {}  
 
    - table for storing indexes 
 
    local i = 0 
 
    while true do 
 
    i = string.find (s, “\ n”, i + 1) - looking for the next occurrence 
 
    if i == nil then break end 
 
    t [#t + 1] = i 
 
    end 
 
    Later we will see an easier way to write such loops, 
 
    using the iterator string.gmatch . 
 
    String.match function 
 
    The string.match function is similar to string.find in the sense that it 
 
    also searches for occurrences of a pattern in a string. However, instead of 
 
    return the position where the pattern was found, it returns the part 
 
    lines matching the pattern: 
 
    print (string.match (“hello world”, “hello”)) -> hello 
 
    For simple templates like 'hello' this function is meaningless. 
 
    la. It shows its power when used with difficult 
 
    templates as in the following example: 
 
    date = “Today is 17/7/1990” 
 
    d = string.match (date, “% d + /% d + /% d +”) 
 
    print (d) -> 7/17/1990 
 
    We will discuss shortly both the meaning of the pattern '% d + /% d + /% d +' and 
 
    more complex use of string.match . 
 
    String.gsub function 
 
    The string.gsub function has three required parameters: 
 
   
  
 

 ku, pattern and replacement string. She is used to replace all 
 
    occurrences of the pattern in the original string by the given string: 
 
    s = string.gsub (“Lua is cute”, “cute”, “great”) 
 
    print (s)  
 
    -> Lua is great 
 
    s = string.gsub (“all lii”, “l”, “x”) 
 
    print (s)  
 
    -> axx xii 
 
    s = string.gsub (“Lua is great”, “Sol”, “Sun”) 
 
    print (s)  
 
    -> Lua is great 
 
    The optional fourth parameter limits the number of 
 
    replaceable replacements: 
 
    s = string.gsub (“all lii”, “l”, “x”, 1) 
 
    print (s)  
 
    -> axl lii 
 
    s = string.gsub (“all lii”, “l”, “x”, 2) 
 
    print (s)  
 
    -> axx lii 
 
    The string.gsub function also returns as the second value 
 
    the number of replacements performed. For example, in a simple way, 
 
    th the number of spaces in a line is 
 
    count = select (2, string.gsub (str, ““, ““)) 
 
    String.gmatch function 
 
    The string.gmatch function returns a function that iterates over 
 
    all occurrences of the pattern in a string. For example, the following example co- 
 
    takes all words in a given string s : 
 
    words = {} 
 
    for w in string.gmatch (s, “% a +”) do 
 
    words [#words + 1] = w 
 
    end 
 
    As we will discuss shortly, the pattern '% a +' matches the occurrence 
 
    one or more letters (i.e. words). Therefore, the cycle is 
 
    denotes all the words within the string, storing them in the words table . 
 
    The following example implements a function similar to package. 
 
    searchpath using gmatch and gsub : 
 
    function search (modname, path) 
 
    modname = string.gsub (modname, “%.”, “/”) 
 
    for c in string.gmatch (path, “[^;] +”) do 
 
    local fname = string.gsub (c, “?”, modname) 
 
    local f = io.open (fname) 
 
    if f then 
 
    f: close () 
 
    return fname 
 
    end 
 
    end 
 
    return nil - not found 
 
    end 
 
    The first step is to replace all dots with a delimiter in the path, 
 
    which is considered equal to '\' . (As we will see below, the point has 
 
    special meaning in templates. To match the point we 
 
    should write '%.' ). Then the function iterates over all the components 
 
    paths where all questions are replaced for each component 
 
    adjectives to the module name and it is checked if such 
 
    what file. If so, the function closes this file and returns it 
 
    name. 
 
      
 
    21.3. Templates 
 
    You can make templates more useful with classes 
 
    characters . A character class is an element in a template that can 
 
    match any character from the given set. For example 
 
    measures, class % d matches any digit. Therefore, one can 
 
    search for date in dd / mm / yyyy format using template % d% d /% d% d / 
 
    % d% d% d% d : 
 
    s = “Deadline is 30/05/1999, firm” 
 
    date = "% d% d /% d% d /% d% d% d% d" 
 
    print (string.sub (s, string.find (s, date))) -> 30/05/1999 
 
    The following table contains a list of all character classes: 
 
    ... 
 
    All symbols 
 
    % a 
 
    Letters 
 
    % c 
 
    Control characters 
 
    % d 
 
    Numbers 
 
    % g 
 
    Printed characters other than space 
 
    % l 
 
    Lower case 
 
    % p 
 
    Punctuation symbols 
 
    % s 
 
    Whitespace characters 
 
    % u 
 
    Lower case 
 
    % w 
 
    Letters and numbers 
 
    % x 
 
    Hexadecimal digits 
 
    If you use the appropriate class as the class name 
 
    capital letter, then it corresponds to the complement of the class (that is, all 
 
    characters outside the class). For example, '% A' matches all 
 
    non-letters: 
 
    print (string.gsub (“hello, up-down!”, “% A”, “.”)) 
 
    -> hello..up.down. 4 
 
    ( 4 are not part of the resulting string. This is the second value. 
 
    The value returned by gsub is the total number of replacements performed. I will 
 
    further omit this number in the following examples that print the results 
 
    tat calling gsub .) 
 
    Some symbols, called magic symbols , have 
 
    a special value within a template. Magic symbols are 
 
    go 
 
    (). % + - *? [] ^ $ 
 
    The '%' character is used to insert these characters into the pattern. 
 
    So, '%.' corresponds to the point; '%%' matches the character itself 
 
    '%' . You can use '%' like this not only with ma- 
 
    symbols, but also with any non-alphanumeric symbols 
 
    oxen. When in doubt, use '%' instead . 
 
    For a Lua parser, templates are just plain strings. They 
 
    obey the same rules as the rest of the lines. Only 
 
    functions for working with templates treat them as templates, 
 
    and only these functions use the special character meaning 
 
    '%' . To put quotes inside a template, use the same 
 
    the very tricks used to put quotes inside 
 
    other lines. 
 
    You can also create your own classes by grouping different 
 
    personal classes and symbols within square brackets. For instance, 
 
    class '[% w_]' matches alphanumeric characters and sym- 
 
    ox underlining; class '[01]' matches binary digits; 
 
    class '[% [%]]' matches square brackets. In order to 
 
    count the number of vowels in the text, you can use the following- 
 
    the following code: 
 
    nvow = select (2, string.gsub (text, “[AEIOUaeiou]”, “”)) 
 
    You can also include ranges of sym- 
 
    oxen, writing down the first and last characters, separated by signs 
 
    lump minus. I rarely use this, as most of the 
 
    the ranges used are already defined; for example, '[0-9]' is 
 
    is the same as '% d' and '[0-9a-fA-F]' is the same as 
 
    '% x' . However, if you need octal digits, then you can 
 
    you can use '[0-7]' instead of '[01234567]' , you can also 
 
    get the complement of any class by prefixing the '^' character : 
 
    so the pattern '[^ 0-7]' matches any character that is not 
 
    an octal digit, and '[^ \ n]' matches any character from- 
 
    personal from '\ n' . However, remember that built-in classes can be 
 
    before it is easier to use the capitalized variant: '% S' is easier than 
 
    '[^% s]' . 
 
    Templates can be made more useful by using the mod- 
 
    fixers for specifying the number of repetitions and optional parts. 
 
    Lua templates offer four such modifiers: 
 
    + 
 
    1 or more reps 
 
    * 
 
    0 or more reps 
 
    - 
 
    0 or shorter reps 
 
    ? 
 
    Optional (0 or 1 time) 
 
    The modifier '+' matches one or more sim- 
 
    oxen of a given class. It will always return the longest occurrence 
 
    template. For example, the pattern '% a +' denotes one or more letters, 
 
    that is the word: 
 
    print (string.gsub (“one, and two; and three”, “% a +”, “word”)) 
 
    -> word, word word; word word 
 
    The pattern '% d +' matches one or more digits (meaning 
 
    an unsigned number): 
 
    print (string.match (“the number 1298 is even”, “% d +”)) -> 1298 
 
    The modifier '*' is similar to '+' , but it also allows null 
 
    the number of occurrences of characters from this class. Used frequently 
 
    to indicate optional spaces between template parts. 
 
    For example, for a pattern matching a pair of parentheses (perhaps 
 
    with spaces in between), you can use the following pattern: 
 
    '% (% s *%)' : pattern '% s *' matches zero or more 
 
    spaces between brackets. (The parentheses also have a special meaning 
 
    patterns, so we specify them using the '%' character .) 
 
    As another example, the pattern '[_% a] [_% w] *' matches 
 
    identifiers inside a Lua program: starts with a space 
 
    or underscore followed by zero or more 
 
    underscores and alphanumeric characters. 
 
    Like '*' , the modifier '-' also matches zero or 
 
    more characters of the given class. However, instead of 
 
    matches the longest sequence it matches 
 
    the shortest sequence. Sometimes there is nothing in between 
 
    what a difference, but usually they give different results. For instance, 
 
    if you try to find an id using a template 
 
    '[_% a] [_% a] -' , then you will receive only the first character of the identification 
 
    torus because '[_% a] -' matches an empty sequence. 
 
    On the other hand, let's say you want to find comments in a program 
 
    me in C. Most will try to use the pattern '/%*.*%*/' 
 
    (that is, “/ *” followed by any sequence of characters 
 
    fishing followed by “* /” ). However, since '. *' Will try 
 
    match as many characters as possible, then the first "/ *" 
 
    will close only with the most recent “* /” in the program: 
 
    test = “int x; / * x * / int y; / * y * / " 
 
    print (string.match (test, “/%*.*%*/”)) 
 
    -> / * x * / int y; / * y * / 
 
    The pattern '.-' captures the least number of characters required 
 
    given for the first “* /”, and thus gives the desired result: 
 
    test = “int x; / * x * / int y; / * y * / " 
 
    print (string.gsub (test, “/%*.-%*/”, “”)) 
 
    -> int x; int y; 
 
    Last modifier '?' matches optional with- 
 
    accompanying symbol. For example, let's say we want to find the number 
 
    in text, which can contain an optional character. Template 
 
    '[+ -]?% d +' successfully copes with the job, finding such 
 
    numbers like “-12” , “23” and “+1009” . The class '[+ -]' matches 
 
    either the '+' character or the '-' character ; the next character '?' de- 
 
    barks this character optional. 
 
    Unlike other systems, in Lua the modifier can be 
 
    changed to character class only; you cannot group templates under 
 
    one modifier sign. For example, there is no template matching 
 
    an optional word (unless it consists of one 
 
    symbol). Usually this limitation can be bypassed by 
 
    advanced techniques that we will see at the end of this chapter. 
 
    If the pattern starts with a '^' character then it will match- 
 
    only with the beginning of the line. Likewise if the pattern ends 
 
    with the '$' character , it will match only the end of the string. You 
 
    you can use both of these symbols to create templates. On- 
 
    example, the following test checks if a string starts with a digit: 
 
    if string.find (s, “^% d”) then ... 
 
    The following test verifies that the string is a number, with no other 
 
    their characters at the beginning or end: 
 
    if string.find (s, “^ [+ -]?% d + $”) then ... 
 
    The characters '^' and '$' have this meaning only when they come across 
 
    are located at the beginning or at the end of the line, respectively. Otherwise, they will 
 
    fall like ordinary symbols. 
 
    Another element in the template is '% b' . We write it down 
 
    like '% b xy ' where x and y are two different characters; character x will speak 
 
    falls as the opening character and y as the closing character . For instance, 
 
    the pattern '% b ()' matches the part of the string that starts with '(' 
 
    and ends with ')' : 
 
    s = “a (enclosed (in) parentheses) line” 
 
    print (string.gsub (s, “% b ()”, “”)) -> a line 
 
    We usually use this pattern as '% b ()' , '% b []' , '% b {}' 
 
    or '% b <>' , but you can use any 
 
    bye symbols. 
 
    Finally, the '% f [ char-set ]' element is a border pattern . is he 
 
    defines the place where the next character is contained in the class 
 
    char-set and the previous one is not: 
 
    s = “the anthem is the theme” 
 
    print (s: gsub (“% f [% w] the% f [% W]”, “one”)) 
 
    -> one anthem is one theme 
 
    The pattern '% f [% w]' matches the border between non-alphabetic 
 
    numeric and alphanumeric characters, and the pattern '% f [% W]' 
 
    matches the boundary between an alphanumeric character and a non- 
 
    alphanumeric character. Therefore, the given template corresponds 
 
    matches the string "the" as a whole word. note that 
 
    we must write many symbols inside square 
 
    side even when it's just one class. 
 
    Positions before the first and after the last are interpreted as 
 
    holding the character with code 0. In the previous example, the first "the" 
 
    starts with a border between a null character (not in class ' [% w]' ) 
 
    and 't' (in class '[% w]' ). 
 
    The border pattern was implemented in Lua 5.1, but is not documented. 
 
    It only became official in Lua 5.2. 
 
      
 
    21.4. Grips 
 
    The capture mechanism allows the template to remember parts of the string, satisfying 
 
    elements of the template for later use. You 
 
    you can specify the capture by capturing the parts of the template you want to capture 
 
    enough, inside parentheses. 
 
    When there are captures in the template, the string.match function will return 
 
    Spreads each captured value as a separate result; others 
 
    in words, it splits the string into its captured pieces. 
 
    243 
 
    pair = “name = Anna” 
 
    key, value = string.match (pair, “(% a +)% s * =% s * (% a +)”) 
 
    print (key, value) -> name Anna 
 
    The pattern '% a +' specifies a non-empty sequence of letters; template 
 
    '% s *' specifies a possibly empty sequence of spaces. By- 
 
    for this in the example above, the entire pattern defines a sequence of letters, 
 
    followed by a sequence of spaces, followed by 
 
    there is an equal sign '=' , followed again by the sequence 
 
    spaces followed by another sequence of letters. Both 
 
    their sequences of letters, their corresponding patterns are 
 
    are in parentheses, so they will be captured on match. 
 
    A similar example follows: 
 
    date = “Today is 17/7/1990” 
 
    d, m, y = string.match (date, “(% d +) / (% d +) / (% d +)”) 
 
    print (d, m, y) -> 17 7 1990 
 
    Inside the template, element '% d ' , where d is a digit, matches a copy 
 
    d -th captured line. As an example, consider the case when 
 
    yes, you want to find a substring enclosed in ordinary ones inside a string 
 
    or double quotes. You can try the pattern '[“'] .- [“ ']' , 
 
    that is, a quotation mark followed by anything followed by 
 
    another quote; but you will have problems with lines like 
 
    “It's all right” . To solve this problem, we can capture 
 
    the first quote and use that to specify the second quote: 
 
    s = [[then he said: “it's all right”!]] 
 
    q, quotedPart = string.match (s, “([\” ']) (.-)% 1 ”) 
 
    print (quotedPart)  
 
    -> it's all right 
 
    print (q)  
 
    -> “ 
 
    The first captured value is the quote character itself, and the second 
 
    the captured value is a substring between quotes (substring, 
 
    satisfying '.-' ). 
 
    For another similar example, we can take a template with 
 
    corresponding to long lines in Lua: 
 
    % [(= *)% [(.-)%]% 1%] 
 
    It matches an opening square bracket followed by 
 
    followed by zero or more equal signs, followed by 
 
    blows another open square bracket followed by that 
 
    anything (line itself) followed by a closing square 
 
    a parenthesis followed by the same number of equal signs, 
 
    followed by another closing square bracket: 
 
    p = “% [(= *)% [(.-)%]% 1%]” 
 
    s = “a = [= [[[something]]] ==]] =]; print (a) " 
 
    print (string.match (s, p)) -> = [[something]]] ==] 
 
    The first capture is a sequence of equal signs (in the example 
 
    re only one character); the second captured value is the string itself. 
 
    Also the captured values can be used in the override 
 
    line in gsub . Like the template, the replacement string can contain 
 
    the elements '% d ' , which are replaced with the corresponding captured 
 
    values when performing substitution. In particular, the element 
 
    '% 0' matches the entire portion of the string that matches the pattern. 
 
    (Note that the '%' character in the replacement string must be written 
 
    sounded like '%%' .) Another example: 
 
    print (string.gsub (“hello Lua!”, “% a”, “% 0-% 0”)) 
 
    -> h-he-el-ll-lo-o L-Lu-ua-a! 
 
    The following example rearranges adjacent characters: 
 
    print (string.gsub (“hello Lua”, “(.) (.)”, “% 2% 1”)) -> ehll ouLa 
 
    As a more useful example, let's write a simple pre- 
 
    format builder that receives a string with commands as input 
 
    in LaTeX style and translates them into XML format: 
 
    \ command {some text} -> <command> some text </command> 
 
    If we prohibit nested commands, then the next call 
 
    string.gsub does the job: 
 
    s = [[the \ quote {task} is to \ em {change} that.]] 
 
    s = string.gsub (s, “\\ (% a +) {(.-)}”, “<% 1>% 2 </% 1>”) 
 
    print (s) 
 
    -> the <quote> task </quote> is to <em> change </em> that. 
 
    (We'll see how to handle nested commands later.) 
 
    Another useful example is removing spaces from the beginning. 
 
    la and end of line: 
 
    function trim (s) 
 
    return (string.gsub (s, “^% s * (.-)% s * $”, “% 1”)) 
 
    end 
 
    Pay attention to the careful use of formats. Two 
 
    anchors ( '^' and '$' ) ensure that we get the entire string. Since- 
 
    ku '.-' tries to pick the shortest string, then two patterns 
 
    '% s *' captures all white space around the edges. Also note 
 
    that since gsub returns two values, we use a circle- 
 
    left brackets to discard excess (number of substitutions). 
 
      
 
    21.5. Substitutions 
 
    Instead of a string as the third argument to string.gsub, we can 
 
    use a function or table. When using the function 
 
    string.gsub calls the function every time it finds 
 
    a substring matching the pattern; arguments of each call are 
 
    the captured values are captured, and the function's return value 
 
    used as a replacement string. When the third argument is 
 
    is a table, the string.gsub function turns into a table 
 
    face using the first captured value as a key and the resulting 
 
    the value from the table as a replacement string. If received from 
 
    function or table value is nil , then for a given match 
 
    no replacement is made. 
 
    As a first example, consider the execution of a simple 
 
    settings - each occurrence of $ varName is replaced with the value of the glo- 
 
    point variable varName : 
 
    function expand (s) 
 
    return (string.gsub (s, “$ (% w +)”, _G)) 
 
    end 
 
    name = “Lua”; status = "great" 
 
    print (expand (“$ name is $ status, isn't it?”)) 
 
    -> Lua is great, isn't it? 
 
    For each match with the pattern '$ (% w +)' (dollar sign, for 
 
    followed by a variable name) the gsub function looks for a matching 
 
    variable in _G , the found value replaces the occurrence of the pattern 
 
    bosom into a string. When there is no corresponding variable in the table, then 
 
    replacement is not made: 
 
    print (expand (“$ othername is $ status, isn't it?”)) 
 
    -> $ othername is great, isn't it? 
 
    If you are not sure if the corresponding variables have 
 
    string values, then you can try tostring 
 
    to these values. In this case, as a substitute value, you 
 
    you can use the function: 
 
    function expand (s) 
 
    return (string.gsub (s, “$ (% w +)”, function (n) 
 
    return tostring (_G [n]) 
 
    end)) 
 
    end 
 
    print (expand (“print = $ print; a = $ a”)) 
 
    -> print = function: 0x8050ce0; a = nil 
 
    6 
 
    Now, for each match against the pattern '$ (% w +)' gsub is called 
 
    Gets the specified function, passing the name as an argument; function of 
 
    rotates the replacement value. 
 
    In the last example, we go back to the format conversion 
 
    teams. We again want to transform commands from LaTeX style 
 
    ( \ example {text} ) to XML style ( <example> text </example> ), but on 
 
    this time we will process nested commands. Next 
 
    the function uses recursion to solve our problem: 
 
    function toxml (s) 
 
    s = string.gsub (s, “\\ (% a +) (% b {})”, function (tag, body) 
 
    body = string.sub (body, 2, -2) - remove brackets 
 
    body = toxml (body) - processing nested commands 
 
    return string.format (“<% s>% s </% s>”, tag, body, tag) 
 
    end) 
 
    return s 
 
    end 
 
    print (toxml (“\\ title {The \\ bold {big} example}”)) 
 
    -> <title> The <bold> big </bold> example </title> 
 
      
 
    URL encoding 
 
    For our next example, we will use the coding 
 
    The URL that HTTP uses to pass parameters in the URL. 
 
    This encoding replaces special characters (such as '=' , '&' 
 
    and '+' ) to '% xx ' , where xx is the character hex code. After 
 
    it then replaces spaces with '+' . For example, the string "a + b = c" Bu 
 
    det is coded as “a% 2Bb +% 3D + c” . Also the name of each parameter 
 
    and its value with an equal sign between them is added to the total 
 
    On the next line, the variables are separated from each other by '&' . 
 
    For example, the values 
 
    name = “al”; query = “a + b = c”; q = "yes or no" 
 
    will be encoded as “name = al & query = a% 2Bb +% 3D + c & q = yes + or + no” . 
 
    Now suppose we want to decode such a URL and write each 
 
    get the value into the table by its name. The next function is to 
 
    completes similar decoding: 
 
    function unescape (s) 
 
    s = string.gsub (s, “+”, ““) 
 
    s = string.gsub (s, “%% (% x% x)”, function (h) 
 
    return string.char (tonumber (h, 16)) 
 
    end) 
 
    return s 
 
    end 
 
    247 
 
    The first operator replaces every '+' with a space. The second finds 
 
    hexadecimal encoded characters and for 
 
    each such character calls an anonymous function. This function 
 
    ration converts the hexadecimal representation to a number ( tonumber 
 
    base 16) and returns the corresponding character ( string. 
 
    char ). For instance: 
 
    print (unescape (“a% 2Bb +% 3D + c”)) -> a + b = c 
 
    To decode name = value pairs, we use the function 
 
    gmatch . Since both name and value cannot contain characters 
 
    '&' and '=' , then we can use the pattern '[^ & =] +' : 
 
    cgi = {} 
 
    function decode (s) 
 
    for name, value in string.gmatch (s, “([^ & =] +) = ([^ & =] +)”) do 
 
    name = unescape (name) 
 
    value = unescape (value) 
 
    cgi [name] = value 
 
    end 
 
    end 
 
    The gmatch function call finds pairs of the form name = value . For every 
 
    Doing such a pair, the iterator returns the captured values (output 
 
    bracketed in the template) as the values of the name and value fields . Body 
 
    the loop just calls unsecape on both of those lines and writes 
 
    matching pair into cgi table . 
 
    It is also easy to write down the corresponding coding. To start 
 
    we will write the escape function ; this function encodes all special 
 
    digits like '%' followed by a hexadecimal code 
 
    character (for the format function , the "% 02X" option is used , 
 
    fetching a two-digit string), and then replaces spaces 
 
    to the '+' symbol : 
 
    function escape (s) 
 
    s = string.gsub (s, “[& = + %%% c]”, function (c) 
 
    return string.format (“%%% 02X”, string.byte (c)) 
 
    end) 
 
    s = string.gsub (s, ““, “+”) 
 
    return s 
 
    end 
 
    The encode function traverses the entire table that needs to be encoded. 
 
    and builds the resulting string: 
 
    function encode (t) 
 
    local b = {} 
 
    for k, v in pairs (t) do 
 
    b [#b + 1] = (escape (k) .. “=” .. escape (v)) 
 
    end 
 
    return table.concat (b, “&”) 
 
    end 
 
    t = {name = “al”, query = “a + b = c”, q = “yes or no”} 
 
    print (encode (t)) -> q = yes + or + no & query = a% 2Bb +% 3D + c & name = al 
 
      
 
    Replacing tabs 
 
    The empty capture '()' in Lua has a special meaning. Instead of 
 
    in order not to capture anything (which is completely unnecessary), this template 
 
    lone captures the current position within the string as a number: 
 
    print (string.match (“hello”, “() ll ()”)) -> 3 5 
 
    (Note that the result of this example is different from 
 
    calling string.find , since the position of the second captured value 
 
    reading comes after the found pattern.) 
 
    A nice example of using this feature is 
 
    replacing tab characters with the appropriate number of spaces: 
 
    function expandTabs (s, tab) 
 
    tab = tab or 8 - tab size (default 8) 
 
    local corr = 0 
 
    s = string.gsub (s, “() \ t”, function (p) 
 
    local sp = tab - (p - 1 + corr)% tab 
 
    corr = corr - 1 + sp 
 
    return string.rep (““, sp) 
 
    end) 
 
    return s 
 
    end 
 
      
 
    The gsub call finds all tabs within a string, 
 
    grabbing their position. For each tab character, the internal 
 
    The new function uses this position to compute 
 
    the number of spaces it takes to get the position, 
 
    multiple of the value of tab : it first subtracts one for 
 
    position transfer starting at zero and then adding corr to account 
 
    previously encountered tabs (replacing each tab character affects 
 
    to the positions of the following characters). Then the correction is calculated 
 
    for the next tab character: minus one for the tab to be deleted 
 
    plus sp to account for the added spaces. Finally, she returns 
 
    a string with the appropriate number of spaces. 
 
    For completeness, let's look at how you can reverse this operation. 
 
    walkie-talkie, replacing spaces with tabs. At first sight 
 
    you can also use empty grips to work from position-49 
 
    mi inside the line, but there is a simpler solution: on each 
 
    the eighth character, we will insert the mark inside the line. Then, 
 
    when there are spaces before this mark, we will replace the corresponding 
 
    The corresponding sequence is a tab character: 
 
    function unexpandTabs (s, tab) 
 
    tab = tab or 8 
 
    s = expandTabs (s) 
 
    local pat = string.rep (“.”, tab) 
 
    s = string.gsub (s, pat, “% 0 \ 1”) 
 
    s = string.gsub (s, “+ \ 1”, “\ t”) 
 
    s = string.gsub (s, “\ 1”, “”) 
 
    return s 
 
    end 
 
    This function starts by replacing all existing 
 
    tab characters with spaces. She then builds an auxiliary 
 
    template and uses it to add a markup (manager 
 
    character \ 1 ) after every tab characters. Further, all successive 
 
    number of spaces followed by a mark are replaced with 
 
    tabs. Finally, all overlays are removed. 
 
      
 
    21.6. Tricky tricks 
 
    Templates are a very powerful tool for working with strings. 
 
    You can perform many complex operations with just a few 
 
    calls to string.gsub . However, like any other force, it must be 
 
    use carefully. 
 
    Using templates does not replace the parser. For quick solutions 
 
    ny (quick-and-dirty) you can use templates to work 
 
    with the source code, but the resulting solutions most likely won't 
 
    be of high quality. As an example, let's consider 
 
    Rome template that we used for search comment in 
 
    C program: '/%*.-%*/' . If you have a line in your program, so- 
 
    holding “/ *”, then you may get the wrong result: 
 
    test = [[char s [] = “a / * here”; / * a tricky string * /]] 
 
    print (string.gsub (test, “/%*.-%*/”, “<COMMENT>”)) 
 
    -> char s [] = “a <COMMENT> 
 
    Lines with such content are quite rare, and for 
 
    your personal goals, a pattern like this will likely work. 
 
    But you cannot redistribute the program with this error. 
 
    Typically, templates work quite efficiently in Lua: my 
 
    an old Pentium computer only needs 0.3 seconds to 
 
    would find all the words in a 4.4 MB text (850K words). But always 
 
    it is better to take some precautions. It's always better to de- 
 
    make the template as accurate as possible; imprecise patterns are slower 
 
    accurate. A simple example is using '(.-)% $' for 
 
    getting the entire substring up to the first occurrence of the dollar sign. If a 
 
    there is a dollar sign in the line, then everything is fine; but let's assume that 
 
    there is no dollar sign in the string at all. Then the algorithm first 
 
    la will try to get a substring that matches the pattern to 
 
    starting from the first position within the string. Then he will move 
 
    all along the line looking for a dollar sign. When the line ends, 
 
    then we will get pattern mismatches only for the first position 
 
    inside the string. Then the algorithm will do the same, starting already 
 
    from the second position inside the string, etc. Thus, we get 
 
    the quadratic time complexity, taking more than 4 minutes to 
 
    my Pentium for a 100K character string. You can easily fix 
 
    fix this situation by tying the pattern to the beginning of the line with 
 
    '^ (.-)% $' . When using such a binding, the execution takes 
 
    it takes only one hundredth of a second. 
 
    Also, be very careful with empty templates , i.e. template 
 
    bosoms that are satisfied by the empty string. For example, if you 
 
    if you try to search for names using the '% a *' pattern , then you are everywhere 
 
    you will find names: 
 
    i, j = string.find (“; $% ** # $ hello13”, “% a *”) 
 
    print (i, j) -> 1 0 
 
    In this example, calling string.find correctly finds an empty string. 
 
    a sequence of letters at the beginning of a line. 
 
    You should never write a pattern that begins or begins 
 
    ends with '-' , since it will be satisfied with an empty string 
 
    ka. This modifier usually needs something around it, for 
 
    in order to limit it. Likewise templates that include 
 
    '. *' are also quite tricky, as this construct can 
 
    much more than you planned. 
 
    Sometimes it's easier to use Lua itself to build templates. 
 
    We have already used this technique in the function that transforms the 
 
    are white in tabs. As another example, let's distribute 
 
    see how we can find strings of more than 70 characters. Such 
 
    a string is a sequence of 70 or more characters 
 
    fishing other than '\ n' . Single character other than '\ n' 
 
    belongs to class '[^ \ n]' . Accordingly, we can get1 
 
    pattern for a long string by repeating pattern for character 70 times and 
 
    by adding a pattern for zero or more of the following sym- 
 
    oxen. Instead of explicitly writing out this pattern, we can co- 
 
    create it with string.rep : 
 
    pattern = string.rep (“[^ \ n]”, 70) .. “[^ \ n] *” 
 
    As another example, let's say you want to do a search, an odd 
 
    case-sensitive. To do this, you can replace each letter 
 
    woo x in the template for the class '[ xX ]' , that is, a class that includes and 
 
    lowercase and uppercase versions of the letter. We can automate 
 
    this transformation using the following function: 
 
    function nocase (s) 
 
    s = string.gsub (s, “% a”, function (c) 
 
    return “[“ .. string.lower (c) .. string.upper (c) .. “]” 
 
    end) 
 
    return s 
 
    end 
 
    print (nocase (“Hi there!”)) -> [hH] [iI] [tT] [hH] [eE] [rR] [eE]! 
 
    Sometimes you just need to replace every occurrence of s1 with s2 , 
 
    without considering any magic symbols. If both lines are explicitly given 
 
    in the text, then you can easily add all the necessary transformations yourself. 
 
    development for magic symbols, but if these are variables, then you 
 
    you will need additional gsubs to do this job: 
 
    s1 = string.gsub (s1, “(% W)”, “%%% 1”) 
 
    s2 = string.gsub (s2, “%%”, “%%%%”) 
 
    In the line we are looking for, we replace all non-alphanumeric- 
 
    characters, in the replacement string we replace only the '%' character . 
 
    Another useful technique for working with templates is to 
 
    completing special processing of the line before the main 
 
    work. Suppose we want to convert to uppercase all letters containing 
 
    inside double quotes, but inside the string itself 
 
    can be '\ ”' : 
 
    follows a typical string: “This is \” great \ ”!”. 
 
    One approach for such cases is coding 
 
    input string. For example, let's replace “\” ” with “ \ 1 ” . but 
 
    if the source text already contained the "\ 1" character , then we have a 
 
    lema. An easy way to do the coding and avoid this 
 
    the problem is replacing all sequences "\ x " with "\ ddd " , 
 
    where ddd is the decimal representation of the character x : 
 
    function code (s) 
 
    return (string.gsub (s, “\\ (.)”, function (x) 
 
    return string.format (“\\% 03d”, string.byte (x)) 
 
    end)) 
 
    end 
 
    Now any sequence "\ ddd " could only come from 
 
    our encoding, since any “\ ddd ” in the original line is so 
 
    would be encoded. Therefore decoding is simple 
 
    task: 
 
    function decode (s) 
 
    return (string.gsub (s, “\\ (% d% d% d)”, function (d) 
 
    return “\\” .. string.char (tonumber (d)) 
 
    end)) 
 
    end 
 
    We can now complete our task. Since the encoded 
 
    the string no longer contains "\" " , then we can safely use 
 
    pattern '".-"' : 
 
    s = [[follows a typical string: “This is \” great \ ”!”.]] 
 
    s = code (s) 
 
    s = string.gsub (s, '”.-”', string.upper) 
 
    s = decode (s) 
 
    print (s) -> follows a typical string: “THIS IS \” GREAT \ ”!”. 
 
    Or, writing it shorter: 
 
    print (decode (string.gsub (code (s), '”.-”', string.upper))) 
 
      
 
    21.7. Unicode 
 
    At the moment, the library for working with strings does not contain 
 
    explicit support for unicode. However, it is not difficult to implement some 
 
    some simple tasks for working with Unicode strings encoded in 
 
    UTF-8 without using additional libraries. 
 
    The primary encoding for Unicode on the Web is UTF-8. Because of her 
 
    compatibility with ASCII this encoding is also very well suited 
 
    for Lua. This compatibility ensures that a number of operating techniques 
 
    those with strings without any modification will work with UTF-8. 
 
    UTF-8 represents each unicode character with a different number 
 
    byte. For example, the character 'A' represents one byte, 65; Sim- 
 
    ox Aleph, which has Unicode code 1488, is represented by a two-byte 
 
    sequence 215-144. UTF-8 represents all characters from 
 
    ASCII as ASCII, that is, one byte with a value less than 128.  
 
    All other characters are represented by byte sequences, 
 
    where the first byte lies in the range [194, 244] and the following bytes are 
 
    you are in the range [128, 191]. More precisely, the range of the first byte for 
 
    two-byte sequences are [194, 223], for three-byte 
 
    sequences [224, 239] and for four-byte sequences 
 
    telities [240, 244]. This arrangement ensures that the 
 
    a character for any character will never be found inside the after- 
 
    sequence for another symbol. For example, a byte less than 
 
    128 will never occur in a multibyte sequence; it 
 
    always represented by its ASCII character. 
 
    In Lua, you can read, write and store strings in UTF-8 
 
    like regular strings. String constants (literals) can also 
 
    contain UTF-8 inside. (Of course, you most likely want 
 
    edit your file as a UTF-8 file.) Concatenation operation 
 
    is executed correctly for all strings in UTF-8. Comparison operations 
 
    strings (less than, less than or equal, etc.) compare strings in 
 
    UTF-8, following unicode character order. 
 
    Operating system function library and library for 
 
    I / O are really just interfaces to opera- 
 
    system, so their UTF-8 support depends on 
 
    UTF-8 on the system itself. On Linux, for example, we can use 
 
    UTF-8 for filenames, but Windows uses UTF-16. therefore 
 
    to work with file names in Unicode on Windows, you will need to 
 
    additional libraries or modification of standard libraries 
 
    tech Lua. 
 
    Let's see how functions from the library to work with 
 
    strings work with strings in UTF-8. 
 
    Functions string.reverse , string.byte , string.char , string. 
 
    upper and string.lower do not work with UTF-8 strings because 
 
    each of these functions considers one character to be one byte. 
 
    The string.format and string.rep functions work without any problems. 
 
    melt with strings in UTF-8, except for the '% c' option , which is 
 
    assumes that one character is one byte. String.len functions 
 
    and string.sub work correctly with strings in UTF-8, but at the same time 
 
    indexes no longer refer to characters, but to bytes. Often 
 
    this is exactly what you need. But we can easily count the number 
 
    characters, as we'll see shortly. 
 
    For functions for working with templates, their applicability depends on 
 
    template. Simple templates work without any problems, since 
 
    representation of one character can never occur inside 
 
    When representing another character. Character classes and sets 
 
    characters only work for ASCII characters. For example, the template 
 
    “% S” works for UTF-8 strings, but it will only match 
 
    ASCII spaces and will not match unicode spaces, so 
 
    kim as unbreakable space (U + 00A0), paragraph separator 
 
    (U + 2029) or Mongolian G + 180E. 
 
    Some templates can make good use of features 
 
    UTF-8. For example, if you want to count the number of characters in a line 
 
    ke, then you can use the following expression: 
 
    # (string.gsub (s, “[\ 128- \ 191]”, “”)) 
 
    In this example, gsub strips out the second, third and fourth bytes, 
 
    leaving one byte for each character as a result. 
 
    Similarly, the following example shows how to iterate over 
 
    all characters in a string are in UTF-8: 
 
    for c in string.gmatch (s, “. [\ 128- \ 191] *”) do 
 
    print (c) 
 
    end 
 
    Listing 21.1 shows some tricks for working with UTF-8 
 
    strings in Lua. Of course, to run these examples you need 
 
    platform where print supports UTF-8. 
 
    Unfortunately, Lua has nothing more to offer. Adequate 
 
    Native Unicode support requires huge tables, which is bad 
 
    correspond to the small size of Lua. Unicode has many features. 
 
    tei. It is almost impossible to abstract any concept 
 
    from specific languages. Even the concept of what a symbol is is very 
 
    fuzzy, since there is no one-to-one correspondence between 
 
    Unicode-encoded characters and graphemes (that is, 
 
    lamas with diacritics and "completely ignored" 
 
    symbols). Other seemingly basic concepts such as what is 
 
    symbol are also different for different languages. 
 
    What, in my opinion, is missing in Lua is the functions for translation 
 
    between UTF-8 and unicode and validating strings in UTF-8. 
 
    Perhaps they will be included in the next version of Lua. For the rest of the 
 
    the best option would be to use an external library 
 
    like Slnunicode. 
 
    Listing 21.1. Examples of working with UTF-8 in Lua 
 
    local a = {} 
 
    a [#a + 1] = “Nähdään” 
 
    a [#a + 1] = “ação”55 
 
    a [#a + 1] = “ÃØÆËl” 
 
    local l = table.concat (a, “;”) 
 
    print (l, # (string.gsub (l, “[\ 128- \ 191]”, “”))) 
 
    -> Nähdään; ação; ÃØÆËÐ 18 
 
    for w in string.gmatch (l, “[^;] +”) do 
 
    print (w) 
 
    end 
 
    -> Nähdään 
 
    -> ação 
 
    -> ÃØÆËÐ 
 
    for c in string.gmatch (a [3], “. [\ 128- \ 191] *”) do 
 
    print (c) 
 
    end 
 
    -> Ã 
 
    -> Ø 
 
    -> Æ 
 
    -> Ë 
 
    -> Ð 
 
      
 
    Exercises 
 
    Exercise 21.1. Write a split function that gets 
 
    string and delimiter pattern and returns a sequential 
 
    number of blocks separated by separator: 
 
    t = split (“a whole new world”, ““) 
 
    - t = {“a”, “whole”, “new”, “world”} 
 
    How does your function handle empty lines? (In particular, 
 
    is the empty string an empty sequence, or 
 
    sequence with one blank line?) 
 
    Exercise 21.2. The patterns '% D' and '[^% d]' are equivalent. What 
 
    what about the patterns '[^% d% u]' and '[% D% U]' ? 
 
    Exercise 21.3. Write a function for transliteration. This 
 
    the function gets a string and replaces every character in this 
 
    string with another character in accordance with the table given 
 
    second argument. If the table maps 'a' to 'b' then 
 
    the function should replace every occurrence of 'a' with 'b' . If a 
 
    the table maps 'a' to false , then the function should delete 
 
    all occurrences of the 'a' character from the string. 
 
    Exercise 21.4. Write a function that reverses 
 
    a string in UTF-8. 
 
    Exercise 21.5. Write a transliteration function for UTF-8. 
 
      
 
    Chapter 22 
 
    Library input / output 
 
    The I / O library provides two different models for 
 
    working with files. The simple model uses the current input and 
 
    the current output files, and all its operations are performed on these 
 
    files. The full model uses explicit file pointers; it 
 
    relies on an object-oriented approach that defines 
 
    Lets all operations as methods on file pointers. 
 
    A simple model is convenient for simple things; we used 
 
    her throughout the book. But it is not enough for more flexible 
 
    work with files, for example, for simultaneous reading or one- 
 
    temporary recording in several files at once. For this we need 
 
    complete model. 
 
    22.1. Simple model input / output 
 
    A simple model performs all its operations on the two current files 
 
    lami. The library uses standard input when initializing 
 
    ( stdin ) as default input file and standard output ( stdout ) 
 
    as the default output file. Thus, when we do 
 
    something like io.read () that we read from standard input. 
 
    We can change these current files using the functions 
 
    io.input and io.output . Calling io.input (filename) opens the specified 
 
    file to read and sets it as input file 
 
    default. From now on, all input will come from this- 
 
    th file until the next call to io.input ; io.output works similarly 
 
    Generally, but for output. On error, both functions call 
 
    mistake. If you want to explicitly handle errors, then you need 
 
    complete model. 
 
    The write function is simpler than read , so we'll first look at 
 
    her. The io.write function receives an arbitrary number of string ar- 
 
    guments and writes them to the default output file. She pre- 
 
    converts numbers to strings using standard conversion rules 
 
    vania; for complete control over this conversion use 
 
    string.format function : 
 
    > io.write (“sin (3) =“, math.sin (3), “\ n”) 
 
    -> sin (3) = 0.14112000805987 
 
    > io.write (string.format (“sin (3) =% .4f \ n”, math.sin (3))) 
 
    -> sin (3) = 0.1411 
 
    Avoid code like io.write (a..b..c) ; call io.write (a, b, c) 
 
    does the same thing with fewer resources, since 
 
    it avoids the concatenation operation. 
 
    Use print for small programs or for debugging and 
 
    write when you need full control over the output: 
 
    > print (“hello”, “Lua”); print (“Hi”) 
 
    -> hello Lua 
 
    -> Hi 
 
    > io.write (“hello”, “Lua”); io.write (“Hi”, “\ n”) 
 
    -> helloLuaHi 
 
    Unlike print , the write function does not add any 
 
    characters like tabs or move to next 
 
    string. In addition, the write function allows you to redirect your 
 
    output, whereas print always uses standard output. At the same time 
 
    net, print automatically applies tostring to its arguments; 
 
    this is useful for debugging, but it can hide errors if you are not aware 
 
    are thoughtful to the conclusion. 
 
    The io.read function reads lines from the current input file. Her 
 
    arguments control what to read: 
 
    "* A" 
 
    Reads the entire file 
 
    "* L" 
 
    Reads the next line (no line feed) 
 
    "* L" 
 
    Reads the next line (with a line feed) 
 
    "* N" 
 
    Reads a number 
 
    num 
 
    Reads a string of no more than num characters 
 
    The io.read (“* a”) call reads the entire current input file, starting 
 
    from the current position. If we are at the end of the file or the file is empty, 
 
    then the call returns an empty string. 
 
    Since Lua works efficiently with long strings, 
 
    an easy way to write filters in Lua is to read 
 
    the whole file into a line, perform line processing (usually using 
 
    shchi gsub) and then write the line to the output: 
 
    t = io.read (“* a”)  
 
    - read the entire file 
 
    t = string.gsub (t, ...)  
 
    - do the job 
 
    io.write (t)  
 
    - write file 
 
    As an example, the following piece of code is a law- 
 
    chennaya program for encoding file content in MIME 
 
    quoted-printable . Each non-ASCII byte is encoded as = xx , where xx is 
 
    it is the hexadecimal byte value. For the integrity of the coding 
 
    The equality symbol itself must also be encoded: 
 
    t = io.read (“* a”) 
 
    t = string.gsub (t, “([\ 128- \ 255 =])”, function (c) 
 
    return string.format (“=% 02X”, string.byte (c)) 
 
    end) 
 
    io.write (t) 
 
    The pattern used in gsub finds all bytes from 128 to 255, 
 
    including the equal sign. 
 
    The io.read (“* l”) call reads the next line from the current input- 
 
    leg file without line feed character ( '\ n' ); io.read call (“* L”) 
 
    is similar, but only it returns a newline character (if 
 
    he was present). When we reach the end of the file, the function 
 
    rotates nil (since there are no more lines). Pattern “* l” for function 
 
    read is the default. I usually use this 
 
    pattern only when it naturally processes the file line by line 
 
    coy; otherwise I prefer to read the entire file at once when 
 
    help "* a" or read it in blocks, as we'll see later. 
 
    As a simple example of using this pattern, follow- 
 
    This program copies the current input to the current output by numbering 
 
    with each line: 
 
    for count = 1, math.huge do 
 
    local line = io.read () 
 
    if line == nil then break end 
 
    io.write (string.format (“% 6d“, count), line, “\ n”) 
 
    end 
 
    However, in order to iterate over the entire file, line by line, 
 
    it is better to use the io.lines iterator . For example, we can write 
 
    Put the complete program for sorting the lines of the file as follows - 
 
    in a way: 
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    local lines = {} 
 
    - read lines into table 'lines' 
 
    for line in io.lines () do lines [#lines + 1] = line end 
 
    - we sort 
 
    table.sort (lines) 
 
    - write all lines 
 
    for _, l in ipairs (lines) do io.write (l, “\ n”) end 
 
    The io.read (“* n”) call reads a number from the current input file. 
 
    This is the only case where the read function returns a number, 
 
    not a string. When a program needs to read a lot of numbers from a file, 
 
    then the absence of intermediate lines improves performance. Op- 
 
    ration * n skips all spaces before the number and supports such 
 
    number formats like -3 , +5.2 , 1000 and -3.4e-23 . If the function is not 
 
    can find a number at the current position (due to incorrect format or 
 
    end of file), it returns nil . 
 
    You can call read by passing multiple options at once; for every 
 
    For the second argument, the function will return the corresponding value. Let u 
 
    you have a file containing three numbers per line: 
 
    6.0 -3.23 15e12 
 
    4.3 234 1000001 
 
    ... 
 
    Now you need to print the maximum for each line. You can 
 
    You can read all three numbers in one read call : 
 
    while true do 
 
    local n1, n2, n3 = io.read (“* n”, “* n”, “* n”) 
 
    if not n1 then break end 
 
    print (math.max (n1, n2, n3)) 
 
    end 
 
    Besides the standard templates, you can call read by passing in 
 
    number n as argument : in this case read tries to read n 
 
    characters from the input file. If she can't read one 
 
    character (end of file), it returns nil ; otherwise 
 
    a string with at most n characters is returned . As an example 
 
    The following program demonstrates an efficient way (for Lua, 
 
    of course) copy the file from stdin to stdout : 
 
    while true do 
 
    local block = io.read (2 ^ 13) –- 8K buffer size 
 
    if not block then break end 
 
    io.write (block) 
 
    end 
 
      
 
    As a separate case, read (0) works as an end-of-file check: 
 
    it returns an empty string if there are characters in the file, and nil if 
 
    end of file reached. 
 
      
 
    22.2. Full model input / output 
 
    For more control over I / O you can use 
 
    complete model. The key concept in this model is indicating 
 
    Tel file (file handle), which is similar to the FILE * to C: he presented 
 
    Lets an open file at the current location. 
 
    To open a file, use the io.open function , 
 
    which is analogous to the fopen function in C. As arguments, it 
 
    takes a filename and a string specifying the mode. This line can 
 
    contain 'r' for reading, 'w' for writing (writing erases the previous 
 
    the contents of the file) or 'a' to append to the file, also it 
 
    may contain 'b' to work with binaries. Function 
 
    open returns a new file pointer. On error open 
 
    returns nil as well as the error message and error code: 
 
    print (io.open (“non-existent-file”, “r”)) 
 
    -> nil non-existent-file: No such file or directory 2 
 
    print (io.open (“/ etc / passwd”, “w”)) 
 
    -> nil / etc / passwd: Permission denied 13 
 
    The interpretation of error codes is system dependent. 
 
    A typical error checking method is as follows: 
 
    local f = assert (io.open (filename, mode)) 
 
    If an error occurs, the error message appears as a second 
 
    The last argument to assert , which prints this message. 
 
    After you open the file, you can read and write from it 
 
    into it using the read / write methods . They are similar to functions 
 
    read / write , but you call them as file pointer methods, using 
 
    using the colon. For example, in order to open a file and 
 
    honor all of it, you can use the following code: 
 
    local f = assert (io.open (filename, “r”)) 
 
    local t = f: read (“* a”) 
 
    f: close () 
 
    The I / O library provides three predefined 
 
    pointers to standard files in C: io.stdin , io.stdout, and 
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    io.stderr . Therefore, you can send the error message directly 
 
    to the appropriate standard file: 
 
    io.stderr: write (message) 
 
    You can use the complete model along with the simple model. 
 
    To get a pointer to the current input file, 
 
    blows call io.input () with no arguments. In order to ask the 
 
    file locator as the current input file, call 
 
    io.input (hanle) (similar calls work for io.output as well ). 
 
    For example, if you want to temporarily change the current input 
 
    file, then you can write something like the following: 
 
    local temp = io.input ()  
 
    - save the current file 
 
    io.input (“newinput”)  
 
    - open new current file 
 
    <process input> 
 
    io.input (): close ()  
 
    - close the current file 
 
    io.input (temp)  
 
    - restore the previous file 
 
    Instead of io.read to read from a file, we can also use 
 
    Vat io.lines . As we saw in the previous examples, io.lines 
 
    returns an iterator that reads sequentially from a file. 
 
    The first argument to io.lines can be a file name or a specified 
 
    tel per file. If a filename was passed, then io.lines will open 
 
    the file is in read-only mode and will close the file after reaching the end 
 
    file. If a file pointer was passed, then io.lines will be used. 
 
    use this file for reading; in this case io.lines won't 
 
    close the file when it reaches the end. In the case of a call at all 
 
    with no arguments, io.lines will read data from the current input 
 
    file. 
 
    Since Lua 5.2, the io.lines function also accepts the same 
 
    same options as io.read (after the first argument). As an adjunct 
 
    measure the following code copies the file using io.lines : 
 
    for block in io.lines (filename, 2 ^ 13) do 
 
    io.write (block) 
 
    end 
 
      
 
    A small trick to increase 
 
    speed 
 
    It is usually faster in Lua to read an entire file than to read a line of it. 
 
    by line. However, sometimes we come across a large file (at- 
 
    example, tens or even hundreds of megabytes), read which in its entirety 
 
    it would be inappropriate. If you want to get the maximum 
 
    performance when working with such large files, it is faster 
 
    will read it in large enough blocks (for example, by 
 
    8K). To avoid a possible line break, you can 
 
    just ask to read one more line: 
 
    local lines, rest = f: read (BUFSIZE, “* l”) 
 
    The rest variable will get the remainder of any line broken when 
 
    reading a block. Then we combine the block and the resulting remainder. Ta- 
 
    This way the block will always end at line boundaries. 
 
    The example in Listing 22.1 uses this technique to implement wc , 
 
    a program that counts the number of characters, words, and lines in a file. 
 
    Note the use of io.lines to implement 
 
    iterations and the "* L" option to read a line, this is available starting at 
 
    Lua 5.2. 
 
    Listing 22.1. Wc program 
 
    local BUFSIZE = 2 ^ 13 - 8K 
 
    local f = io.input (arg [1])  
 
    - open input file 
 
    local cc, lc, wc = 0, 0, 0  
 
    - counters 
 
    for lines, rest in io.lines (arg [1], BUFSIZE, “* L”) do 
 
    if rest then lines = lines .. rest end 
 
    cc = cc + #lines 
 
    - count the words in the block 
 
    local _, t = string.gsub (lines, “% S +”, “”) 
 
    wc = wc + t 
 
    - count '\ n' 
 
    _, t = string.gsub (lines, “\ n”, “\ n”) 
 
    lc = lc + t 
 
    end 
 
    print (lc, wc, cc) 
 
      
 
    24.2. Hooks 
 
    The trap mechanism allows us to register a function that 
 
    paradise will be called upon the occurrence of certain events during 
 
    program execution. There are four types of events that 
 
    can trigger traps: 
 
    • a call event occurs when Lua calls a function; 
 
    • the return event occurs when the function returns; 
 
    • a line event occurs when Lua starts execution 
 
    next line; 
 
    • the counter event occurs after a specified number of 
 
    mand. 
 
    Lua calls hooks with a single argument, a string, 
 
    the event that led to the call: “call” (or “tail 
 
    call ” ), “ return ” , “ line ” or “ count ” . For line event also 
 
    the second argument is passed, the new line number. To get up to- 
 
    additional information inside the trap should be used 
 
    debug.getinfo . 
 
    To register a trap, we call the function 
 
    debug.sethook with two or three arguments: the first argument is 
 
    this is the corresponding function; the second argument is a mask string, 
 
    describing exactly what events we want to track, and not 
 
    the required third argument is a number that specifies how often 
 
    that we want to receive counter events. In order to track 
 
    to add call, return and string events, we add the letters 'c' , 'r' 
 
    and 'l' to the mask string. To track counter events, we simply 
 
    we pass the counter as the third argument. To remove all traps 
 
    just call sethook with no parameters. 
 
    As an example, the following code sets up a primitive 
 
    a trap, which for each next run of the print run- 
 
    her number: 
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    debug.sethook (print, “l”) 
 
    This call sets print as a hook function and sets it 
 
    call only for row events. More complex hook function 
 
    can use getinfo to add a name to the output 
 
    current file: 
 
    function trace (event, line) 
 
    local s = debug.getinfo (2) .short_src 
 
    print (s .. “:” .. line) 
 
    end 
 
    debug.sethook (trace, “l”) 
 
    A useful function to use in traps is 
 
    debug.debug . This simple function prints a prompt, reads from 
 
    input and then executes the given commands. It is roughly equivalent to 
 
    tape on the following code: 
 
    function debug1 () 
 
    while true do 
 
    io.write (“debug>“) 
 
    local line = io.read () 
 
    if line == “cont” then break end 
 
    assert (load (line)) () 
 
    end 
 
    end 
 
    When the user enters “cont” at the prompt , this 
 
    the function ends. The standard implementation is very simple and you 
 
    executes commands in the global environment outside of the code being debugged. 
 
    Exercise 24.5 discusses a better implementation. 
 
      
 
    24.3. Profiling 
 
    Despite its name, the debug library is also useful for 
 
    not only debugging tasks. A typical such task is 
 
    profiling (obtaining information about the time spent 
 
    on the execution of this or that piece of code). For profiling 
 
    time, it is better to use the C-interface: the cost of the call 
 
    each Lua hook is quite high and can greatly distort 
 
    results. However, for simple profiling that counts 
 
    Many times, the Lua code is fine. In this section, we write 
 
    we have the simplest profiler, which for each called 
 
    the function will tell you how many times it was called during the execution 
 
    the program. 
 
    The main data structure in our program will be two tables 
 
    ts: one maps functions to their counters, and the second maps 
 
    functions their names. The indexes for both of these tables will be 
 
    The functions themselves can act. 
 
    local Counters = {} 
 
    local Names = {} 
 
    We can extract the function names after profiling, but we 
 
    we get better results if we get the names of the functions, 
 
    while they are active, since in this case Lua can look at 
 
    looking up the name of the function, the calling code. 
 
    Now let's define a hook function. Its task is 
 
    get the called function and increment the corresponding count- 
 
    chick, it also collects function names: 
 
    local function hook () 
 
    local f = debug.getinfo (2, “f”). func 
 
    local count = Counters [f] 
 
    if count == nil then -– is the function 'f' called the first time? 
 
    Counters [f] = 1 
 
    Names [f] = debug.getinfo (2, “Sn”) 
 
    else  
 
    - only increase the counter value 
 
    Counters [f] = count + 1 
 
    end 
 
    end 
 
    The next step is to run the program with this hook. 
 
    We will assume that the main block of the program is in the file 
 
    and the name of this file is passed as an argument to the profiling program- 
 
    to the box: 
 
    % lua profiler main-prog 
 
    Then the profiler can take the filename from arg [1] , installed 
 
    hook a trap and execute the file: 
 
    local f = assert (loadfile (arg [1])) 
 
    debug.sethook (hook, “c”) -– set a hook 
 
    f ()  
 
    - execute the profiled program 
 
    debug.sethook ()  
 
    - disable the trap 
 
    The final step is to actually display the results. Funk- 
 
    tion getname Listing 24.2 outputs for each function sootvetst- 
 
    name. To avoid confusion, to each name 
 
    add the place of the corresponding function in the form file: string . 
 
    If the function has no name, then we only print the location. If the function 
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    is a function in C, then we use only its name (so 
 
    as she has no place). With this in mind, below is the code that I print- 
 
    containing information about calls: 
 
    for func, count in pairs (Counters) do 
 
    print (getname (func), count) 
 
    end 
 
    Listing 24.2. Getting the function name 
 
    function getname (func) 
 
    local n = Names [func] 
 
    if n.what == “C” then 
 
    return n.name 
 
    end 
 
    local lc = string.format (“[% s]:% d”, n.short_src, n.linedefined) 
 
    if n.what ~ = “main” and n.namewhat ~ = “” then 
 
    return string.format (“% s (% s)”, lc, n.name) 
 
    else 
 
    return lc 
 
    end 
 
    end 
 
    If we apply our profiler to the example with the chain Mar- 
 
    cova from section 10.3, then we get something like: 
 
    [markov.lua]: 4 884723 
 
    write 10000 
 
    [markov.lua]: 0 1 
 
    read 31103 
 
    sub 884722 
 
    [markov.lua]: 1 (allwords) 1 
 
    [markov.lua]: 20 (prefix) 894723 
 
    find 915824 
 
    [markov.lua]: 26 (insert) 884723 
 
    random 10000 
 
    sethook 1 
 
    insert 884723 
 
    This shows that the anonymous function on line 4 (which is 
 
    is our iterator defined inside allwords ) was 
 
    called 884,723 times, the write ( io.write ) function was called 10,000 
 
    times, etc. 
 
    This profiler can be improved, for example, add a dirty 
 
    output customization, improved function name printing, etc. 
 
    less even this profiler is already useful and can be used 
 
    Called as a basis for writing more advanced tools. 
 
      
 
    Exercises 
 
    Exercise 24.1. Why recursion in getvarvalue function 
 
    (Listing 24.1) will it stop? 
 
    Exercise 24.2. Modify the getvarvalue function ( lis- 
 
    Thing 24.1) to work with various coroutines (like 
 
    other functions from the debug library). 
 
    Exercise 24.3. Write a setvarvalue function . 
 
    Exercise 24.4. Based on the getvarvalue function write 
 
    getallvars function that returns a table with all 
 
    variables that are visible at a given location (return- 
 
    May the table should not include environment variables 
 
    it should instead inherit them from the original 
 
    arms). 
 
    Exercise 24.5. Write an improved version of debug.debug , 
 
    which executes the given commands as if they were 
 
    executed in the scope of the calling function. 
 
    ( Hint : run commands in empty environment 
 
    and use the __index function as a metamethod 
 
    getvarvalue .) 
 
    Exercise 24.6. Modify the previous example to 
 
    you could change variables. 
 
    Exercise 24.7. Implement some of the suggested improvements 
 
    for the profiler from Section 24.3. 
 
    Exercise 24.8. Write a library to work with points 
 
    breakpoint. She should offer at least 
 
    two functions: 
 
    setbreakpoint (function, line) -> returns handle 
 
    removebreakpoint (handle) 
 
    The breakpoint is set by a function and a line within the function. 
 
    When execution reaches a breakpoint, you should exit 
 
    name debug.debug . 
 
    ( Hint : for the simplest implementation, use the trap 
 
    strings and a hook function that checks if we hit 
 
    to a breakpoint; to improve performance, we can 
 
    turn on this trap only when we are inside 
 
    the function we are teasing.) 
 
      
 
    Part IV 
 
    With API 
 
      
 
      
 
    CHAPTER 25 
 
    C API overview 
 
    Lua is an embedded language . This means Lua is not separate. 
 
    package, and a library that we can link to other 
 
    instructions to add Lua features to them. 
 
    You may be wondering if Lua is not a standalone program, but 
 
    so far in the book, we have used Lua as a standalone program. 
 
    Rammu. The solution to this question is the Lua interpreter (executing 
 
    nimy file the lua ). This interpreter is a small application 
 
    ny (less than five hundred lines of code) that uses 
 
    the Lua library in order to implement a separate interpretation 
 
    Lua torus. This program deals with user interaction 
 
    lem, taking files and lines and passing them to the Lua library, which 
 
    does basic work (such as running Lua code). 
 
    This ability to use the library in order to expand 
 
    rit application possibilities - this is exactly what makes Lua distribution 
 
    widening tongue . At the same time, the program that is used 
 
    calls Lua, can register new functions in the Lua environment, 
 
    thus adding features that could not be written 
 
    us on Lua itself. This is what makes Lua an extensible language . 
 
    These two views of Lua (as an extension language and as a 
 
    extensible language) correspond to two types of interaction between 
 
    C and Lua. In the first case, C controls, and Lua is just a library. 
 
    We call the C code corresponding to this type of interaction 
 
    it application code (application code). In the second case, the control 
 
    in Lua, and C is a library. In this case, the C code is called bib- 
 
    library code . Both of these types of code use the same API 
 
    for interacting with Lua, the so-called C API. 
 
    The C API is simply a collection of functions that enable C code 
 
    interact with Lua 1 . It includes functions for reading 
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    and writing global Lua variables to call functions in Lua, 
 
    to execute snippets of Lua code, to register functions 
 
    in C, so that they can then be called from Lua code, etc. Practice 
 
    Technically anything that Lua code can do can be done in C. 
 
    using the C API. 
 
    The C API follows the C style, which differs markedly from the C API. 
 
    for the Lua language. When we program in C, we follow the types 
 
    data, error handling, memory allocation errors and 
 
    other difficult places. Most API functions do not validate 
 
    the validity of their arguments; it is your job to make sure that 
 
    arguments are correct before function call 2 . If you admit 
 
    error, you will most likely get an error like "segmentation fault" 
 
    or something like that instead of a nice error message. More 
 
    Moreover, the C API emphasizes flexibility and simplicity, often at the expense of easy 
 
    use bones. Typical tasks may require several 
 
    these API calls. It can be tedious, but it gives you 
 
    complete control over what is happening. 
 
    As the title suggests, the purpose of this chapter is to 
 
    necessary when using Lua from C. Don't try to understand now 
 
    all the details of what is happening. We will dwell on this later. but 
 
    do not forget that you can always find additional information 
 
    See the Lua Reference Manual. Moreover, you can find 
 
    some examples of using the API in the Lua distribution itself. Department 
 
    the lua Lua interpreter ( lua.c ) gives examples of application code, 
 
    while the standard libraries ( lmathlib.c , lstrlib.c 
 
    etc.) provide examples of library code. 
 
    From now on, we act as C programmers. 
 
    When I talk about "you", I mean exactly you, I program 
 
    on S. 
 
    An important component in the communication between Lua and C is 
 
    a permanently present virtual stack . Almost all functions 
 
    APIs work with values on this stack. All data exchange between 
 
    do Lua and C go through this stack. What's more, you can also 
 
    use this stack to store intermediate results. 
 
    This stack allows you to solve problems with a fundamental difference - 
 
    mi between Lua and C: the first difference is that Lua has 
 
    garbage collection, while C is explicit memory management; second 
 
    the difference is the difference between dynamic typing in 
 
    Lua and static typing in C. We will discuss the stack in more detail. 
 
    in section 25.2. 
 
      
 
    25.1. First example 
 
    We'll start this overview with an example of a simple application: a stand-alone 
 
    Lua interpreter. We can write a primitive interpreter 
 
    The Lua tool, as shown in Listing 25.1. Lua.h header file 
 
    defines the basic functions provided by Lua. It includes in 
 
    functions to create a new Lua environment, to call a function 
 
    tions in Lua (such as lua_pcall ) to read and write global 
 
    variables in the Lua environment, to register new functions, which 
 
    which can be called from Lua, etc. Anything defined in the file 
 
    lua.h is prefixed with _lua . 
 
    Listing 25.1. Simple standalone Lua interpreter 
 
    #include <stdio.h> 
 
    #include <string.h> 
 
    #include “lua.h” 
 
    #include "lauxlib.h" 
 
    #include "lualib.h" 
 
    int main (void) { 
 
    char buff [256]; 
 
    int error; 
 
    lua_State * L = luaL_newstate (); / * opens Lua * / 
 
    luaL_openlibs (L); / * opens standard libraries * / 
 
    while (fgets (buff, sizeof (buff), stdin)! = NULL) { 
 
    error = luaL_loadstring (L, buff) || lua_pcall (L, 0, 0, 0); 
 
    if (error) { 
 
    fprintf (stderr, “% s \ n”, lua_tostring (L, -1)); 
 
    lua_pop (L, 1); / * pop the error message off the stack * / 
 
    } 
 
    } 
 
    lua_close (L); 
 
    return 0; 
 
    } 
 
    The lauxlib.h header file defines the functions provided by 
 
    nye additional libraries (auxiliary library). All definitions 
 
    from that file start with luaL_ (for example, luaL_loadstring ). 
 
    The additional library uses the basic API provided by 
 
    ny lua.h to provide a higher level of abstraction,87 
 
    in particular the abstractions used by the standard libraries. 
 
    The core API strives for economy and orthogonality, while 
 
    while the additional library strives for practicality for 
 
    common tasks. Of course this is easy for your program too 
 
    can create the necessary abstractions. Keep in mind that before- 
 
    the additional library does not have access to Lua internals. Everything, that 
 
    it does, it does through the standard API. What does she do, maybe 
 
    do your program too. 
 
    The Lua library does not define any global re- 
 
    men. It stores all its state in a dynamic structure. 
 
    lua_State ; all functions inside Lua receive a pointer to this structure 
 
    round as an argument. This implementation makes Lua reentrant 
 
    noisy and ready for use in multi-strand applications. 
 
    As its name suggests , the luaL_newstate function creates a new 
 
    Lua state. When luaL_newstate creates a new state, it does not 
 
    contains no built-in functions, not even print . In order to 
 
    keep Lua small, all standard libraries are represented 
 
    as separate packages, so you are not required to use them if 
 
    you don't need them. The lualib.h header file defines the function 
 
    tions for opening libraries. LuaL_openlibs function opens 
 
    all standard libraries. 
 
    After creating a state and populating it with standard libraries 
 
    By the way, it's time to start doing user input. For each 
 
    the line that the user enters, the program first calls 
 
    luaL_loadstring to compile the injected code. If mistakes 
 
    no, then this call returns zero and places the resulting function 
 
    per stack. (Remember that we will discuss the stack in detail in the following - 
 
    See the next section.) The program then calls lua_pcall , which 
 
    pops a function off the stack and executes it in protected mode. 
 
    Like luaL_loadstring , lua_pcall returns zero if 
 
    no mistakes. In case of an error, both functions post a message about 
 
    an error on the stack; we will receive this message using the function 
 
    lua_tostring , and after we print it, we remove it from 
 
    stack using the lua_pop function . 
 
    Please note that in case of an error, the program simply prints 
 
    melts the error message to standard stream for errors. Infusion 
 
    how error handling in C can be quite complex, and how 
 
    should be followed, often depends on the type of your application. Nucleus 
 
    Lua itself does not print anything to any stream (file); it in case 
 
    error simply returns an error message. Each application 
 
    ny can process these messages in the most appropriate way for 
 
    him way. For simplicity, we will use the following ob- 
 
    an error worker who, in case of an error, prints a message about 
 
    error, closes the Lua state and exits the application: 
 
    #include <stdarg.h> 
 
    #include <stdio.h> 
 
    #include <stdlib.h> 
 
    void error (lua_State * L, const char * fmt, ...) { 
 
    va_list argp; 
 
    va_start (argp, fmt); 
 
    vfprintf (stderr, fmt, argp); 
 
    va_end (argp); 
 
    lua_close (L); 
 
    exit (EXIT_FAILURE); 
 
    } 
 
    We'll come back to handling errors in the application code later. 
 
    Since you can compile Lua both as C code and as code 
 
    in C ++, lua.h does not include the following standard amendment, 
 
    common in C code: 
 
    #ifdef __cplusplus 
 
    extern “C” { 
 
    #endif 
 
    ... 
 
    #ifdef __cplusplus 
 
    } 
 
    #endif 
 
    If you are compiling Lua as C code (the most common 
 
    case) and use it in C ++, you can include lua.hpp 
 
    instead lua.h . It is defined as follows: 
 
    extern “C” { 
 
    #include “lua.h” 
 
    } 
 
      
 
    25.2. Stack 
 
    When passing values between Lua and C, we are faced with two complexities 
 
    ness: mismatch between static and dynamic systems 
 
    mami typing and mismatch between automatic and manual 
 
    memory management. 
 
    In Lua, when we write a [k] = v , variables can have very different 
 
    types, even a may have a different type (due to the use of 
 
    metatables). However, if we want to provide this operation in C, 
 
    then any settable function must be of a fixed type. Us 
 
    dozens of functions will be needed for this simple operation (one by one 
 
    functions for each combination of the types of three arguments). 
 
    We can solve this problem by introducing a new type - union os- 
 
    new types, let's call it lua_Value , which can represent 
 
    all values in Lua. Then we can declare settable as follows 
 
    way: 
 
    void lua_settable (lua_Value a, lua_Value k, lua_Value v); 
 
    However, this solution has two disadvantages. First, maybe 
 
    it can be very difficult to map a complex data type to others 
 
    languages; we designed Lua to interoperate easily 
 
    not only with C / C ++, but also with Java, Fortran, C #, etc. Secondly, 
 
    Lua does garbage collection: if we store a Lua table in 
 
    variable C, then Lua itself cannot know about this in any way and can (error 
 
    sideways) decide that this table is no longer needed and delete it. 
 
    Therefore, the Lua API does not define anything like the lua_Value type . 
 
    Instead, it uses an abstract stack to exchange values- 
 
    mi between Lua and C. Each slot in this stack can contain any 
 
    Lua value. When we want to get a value from Lua (for example, 
 
    the value of a global variable), you call Lua and it puts 
 
    pushes a value onto the stack. When you want to pass a Lua value, then you 
 
    first push the value onto the stack and then call Lua (which 
 
    pops that value off the stack). We still need different 
 
    functions to push each type of C onto the stack and each 
 
    type on C to remove from the stack, but we no longer have a combinatorial 
 
    increasing the number of functions as before. Moreover, since this 
 
    the stack lives inside Lua, then the garbage collector knows what values 
 
    uses C. 
 
    Almost all functions in the API use a stack. As we already see- 
 
    In our first example, the luaL_loadstring function leaves 
 
    its result on the stack (either as a compiled block, or 
 
    as an error message); lua_pcall takes the called function 
 
    off the stack and leaves any error message on the stack. 
 
    Lua works with the stack strictly in accordance with the LIFO principle 
 
    (Last In, First Out). When you call Lua, it only changes 
 
    the top of the stack. C code has more freedom; in particular, he can 
 
    view any item on the stack, as well as insert and remove 
 
    elements from anywhere in the stack. 
 
      
 
    Pushing items onto the stack 
 
    The API contains one function to push on the stack each 
 
    th type C, which can be represented in Lua: lua_pushnil for 
 
    constants nil , lua_pushboolean for boolean values (integers 
 
    sat in C), lua_pushnumber (for double ), lua_pushinteger for integers 
 
    numbers, lua_pushunsigned for unsigned integers, lua_pushl- 
 
    string for arbitrary strings (pointer to char and length) and lua_ 
 
    pushstring for regular ASCIIZ strings: 
 
    void lua_pushnil (lua_State * L); 
 
    void lua_pushboolean (lua_State * L, int bool); 
 
    void lua_pushnumber (lua_State * L, lua_Number n); 
 
    void lua_pushinteger (lua_State * L, lua_Integer n); 
 
    void lua_pushunsigned (lua_State * L, lua_Unsigned n); 
 
    void lua_pushlstring (lua_State * L, const char * s, size_t len); 
 
    void lua_pushstring (lua_State * L, const char * s); 
 
    There are also functions for pushing functions on the stack to 
 
    C and objects of type userdata , but we'll look at them later. 
 
    The lua_Number type is a numeric type in Lua. By default this is the type 
 
    double , but it can be changed to float or even long int for different 
 
    personal architectures. The lua_Integer type is an integer type with 
 
    sign large enough to hold the size of large 
 
    lines. It is usually defined as ptrdiff_t . The lua_Unsigned type is 
 
    32-bit unsigned C integer type; used by the library 
 
    for bitwise operations and various functions. 
 
    Lua strings are not null terminated, they can contain 
 
    Reap arbitrary binary data. Accordingly, they should 
 
    on an explicit length. The main function for the building is 
 
    ki on the stack is lua_pushlstring , requiring an explicit assignment 
 
    the length of the string. For null terminated strings you can 
 
    use the lua_pushstring function , which to calculate 
 
    string length uses strlen . Lua never stores pointers 
 
    to external lines (or to any other external object, except 
 
    functions in C). For any line that needs to be stored 
 
    thread, Lua either makes a copy or reuses an existing one. 
 
    Accordingly, you can free or modify your buffer like 
 
    only control will return from these functions. 
 
    When you push an item onto the stack, it is your responsibility - 
 
    make sure that there is enough space on the stack for it. Pom- 
 
    that you are now a C programmer. When Lua starts 
 
    to be executed and whenever Lua calls C, there is a 1 
 
    at least 20 free slots. (The lua.h header file is op- 
 
    modifies this constant as LUA_MINSTACK .) Usually more than 
 
    enough, so you usually don't have to think about it. but 
 
    some tasks require more stack space, in particular 
 
    if you push items onto the stack in a loop. In these cases, you can 
 
    you can call the lua_checkstack function , which checks if 
 
    required free space on the stack: 
 
    int lua_checkstack (lua_State * L, int sz); 
 
      
 
    Referring to elements 
 
    The API uses indexes to refer to items on the stack . Per- 
 
    the first element pushed onto the stack has index 1, the next one is in 
 
    dex 2, etc. We can also refer to the elements of the stack using 
 
    assuming the top of the stack as a starting point, in this case we use 
 
    negative indices. In this case, -1 corresponds to an element on 
 
    the top of the stack (that is, the last element pushed onto the stack), 
 
    –2 matches the previous item, and so on. For example, calling lua_ 
 
    tostring (L, -1) returns the value at the top of the stack as a string. 
 
    As we will see below, there are cases when it is natural to refer to 
 
    stack, starting from the bottom of the stack (that is, using positive 
 
    dex), and there are cases when it is natural to use negative 
 
    indices. 
 
    To check if an element is the value of a given 
 
    type, the API offers a set of lua_is * functions , where * can be any 
 
    a common type in Lua. Accordingly, there are functions lua_isnumber , lua_ 
 
    isstring , lua_istable , etc. All of these functions have the same 
 
    common prototype: 
 
    int lua_is * (lua_State * L, int index); 
 
    In fact lua_isnumber does not check whether the knowledge 
 
    reading a number, but checks if the value can be converted to 
 
    number; lua_isstring behaves similarly: in particular, any clean 
 
    lo satisfies lua_isstring . 
 
    There is also a lua_type function that returns the type of an element. 
 
    cop on the stack. Each type is represented by a constant defined in 
 
    the lua.h header file : LUA_TNIL , LUA_TBOOLEAN , LUA_TNUMBER, 
 
    LUA_TSTRING , LUA_TTABLE , LUA_TTHREAD , LUA_TUSERDATA and LUA_ 
 
    TFUNCTION . We usually use this function in conjunction with the opera- 
 
    Rathore switch statement . It is also useful when we need 
 
    check if a value is a number or a non-cast string 
 
    types. 
 
    To get values from the stack, there are lua_to * functions : 
 
    int lua_toboolean  
 
    (lua_State * L, int index); 
 
    const char * lua_tolstring (lua_State * L, int index, 
 
    size_t * len); 
 
    lua_Number lua_tonumber (lua_State * L, int index); 
 
    lua_Integer lua_tointeger (lua_State * L, int index); 
 
    lua_Unsigned lua_tounsigned (lua_State * L, int idx); 
 
    Lua_toboolean function converts any value to boolean 
 
    some value in C (0 or 1), while using the Lua rules for 
 
    boolean constructs: nil and false give 0, all others - the value 1. 
 
    Any of the lua_to * functions can be called , even when the value 
 
    is of the wrong type. Lua_toboolean function works for values 
 
    any type; lua_tolstring returns NULL for non-string values 
 
    cheniy. Numeric functions have no way of reporting errors 
 
    ke, so they simply return zero on error. Usually 
 
    lua_isnumber should be called to check the type, but in Lua 5.2 we introduced 
 
    the following functions: 
 
    lua_Number lua_tonumberx (lua_State * L, int idx, int * isnum); 
 
    lua_Integer lua_tointegerx (lua_State * L, int idx, int * isnum); 
 
    lua_Unsigned lua_tounsignedx (lua_State * L, int idx, int * isnum); 
 
    The isnum parameter returns a boolean value indicating 
 
    about whether the corresponding Lua value was a number. (If you need this 
 
    no value is needed, then you can as the last parameter 
 
    pass NULL . The old lua_to * functions are now implemented as 
 
    macros based on these functions.) 
 
    Lua_tolstring function returns pointer to internal 
 
    a copy of the string and remembers the length of the string via len parameter . You do not 
 
    you can change this internal copy (the const specifier reminds 
 
    tells you about it). Lua ensures that this pointer is valid until 
 
    as long as the corresponding line is on the stack. When the function 
 
    in C, a call from Lua returns, then Lua clears the stack; 
 
    so never cast pointers to Lua strings outside of a function, 
 
    received them. 
 
    Any string that lua_tolstring returns always has 
 
    a null byte at the end, but it can also contain null bytes 
 
    inside yourself. The actual size of the line is returned through the third 
 
    argument len . In particular, assuming that the value at the top of the stack is 
 
    this is a string, the following asserts are always true: 
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    size_t l; 
 
    const char * s = lua_tolstring (L, -1, & l); / * any Lua string * / 
 
    assert (s [l] == '\ 0'); 
 
    assert (strlen (s) <= l); 
 
    You can call lua_tolstring with a third parameter equal to 
 
    NULL if you don't need the length of the string. Or you can use 
 
    use the macro lua_tostring , which is actually lua_ 
 
    tolstring with third parameter equal to NULL . 
 
    In order to illustrate the use of these functions 
 
    ttion Listing 25.2 shows a useful helper function, 
 
    which prints the contents of the stack. This function traverses the entire stack 
 
    bottom to top, printing each item according to its type. 
 
    Strings are printed in quotes, numbers are formatted as '% g' , 
 
    for other values (functions, tables, etc.), only 
 
    a type. (The lua_typename function translates a numeric value that is 
 
    specifying the type, into a string.) 
 
    Listing 25.2. Printing the contents of a stack 
 
    static void stackDump (lua_State * L) { 
 
    int i; 
 
    int top = lua_gettop (L); / * stack depth * / 
 
    for (i = 1; i <= top; i ++) {/ * repeat for each level * / 
 
    int t = lua_type (L, i); 
 
    switch (t) { 
 
    case LUA_TSTRING: {/ * strings * / 
 
    printf (“'% s'”, lua_tostring (L, i)); 
 
    break; 
 
    } 
 
    case LUA_TBOOLEAN: {/ * booleans * / 
 
    printf (lua_toboolean (L, i)? “true”: “false”); 
 
    break; 
 
    } 
 
    case LUA_TNUMBER: {/ * numbers * / 
 
    printf (“% g”, lua_tonumber (L, i)); 
 
    break; 
 
    } 
 
    default: {/ * other values * / 
 
    printf (“% s”, lua_typename (L, t)); 
 
    break; 
 
    } 
 
    } 
 
    printf (““); / * put a separator * / 
 
    } 
 
    printf (“\ n”); / * end the listing * / 
 
    } 
 
      
 
      
 
    Other stack operations 
 
    In addition to the previous functions used to exchange data between 
 
    C and Lua, the API also provides the following functions to work 
 
    with stack: 
 
    int lua_gettop (lua_State * L); 
 
    void lua_settop (lua_State * L, int index); 
 
    void lua_pushvalue (lua_State * L, int index); 
 
    void lua_remove (lua_State * L, int index); 
 
    void lua_insert (lua_State * L, int index); 
 
    void lua_replace (lua_State * L, int index); 
 
    void lua_copy (lua_State * L, int fromidx, int toidx); 
 
    Lua_gettop function returns the number of items on the stack, so 
 
    is equal to the index of the element at the top of the stack. Lua_settop function 
 
    sets the number of items on the stack. If the previous value is 
 
    the top of the stack was larger, then the extra values are thrown away 
 
    Xia. Otherwise, use as missing values 
 
    is nil . In particular, lua_settop (L, 0) clears the entire stack. In function 
 
    lua_settop you can also use negative indices. 
 
    In particular, the API provides the following macro, which removes 
 
    there are n elements from the stack : 
 
    #define lua_pop (L, n) lua_settop (L, - (n) - 1) 
 
    The lua_pushvalue function pushes a copy of the item with the given 
 
    ny index; the lua_remove function removes an element with a given 
 
    dex, while shifting all other elements; lua_insert pereme- 
 
    pops an element from the top of the stack to the given position, while shifting 
 
    elements to free up space; lua_replace removes the value from 
 
    top of the stack and sets it to the value of the element with the given 
 
    index; finally, lua_copy copies the value at one index to 
 
    the value at a different index without changing the original value. Reverse 
 
    Note that the following operations do not affect a non-empty stack: 
 
    lua_settop (L, -1); / * set vertex to current value * / 
 
    lua_insert (L, -1); / * move element from top to top * / 
 
    lua_copy (L, x, x); / * copy the element to its position * / 
 
    The program in Listing 25.3 uses the stackDump function (defined 
 
    shown in Listing 25.2) to illustrate these stack operations. 
 
    Listing 25.3. An example of working with a stack 
 
    #include <stdio.h> 
 
    #include “lua.h”295 
 
    #include "lauxlib.h" 
 
    static void stackDump (lua_State * L) { 
 
    <same as in Listing 25.2> 
 
    } 
 
    int main (void) { 
 
    lua_State * L = luaL_newstate (); 
 
    lua_pushboolean (L, 1); 
 
    lua_pushnumber (L, 10); 
 
    lua_pushnil (L); 
 
    lua_pushstring (L, “hello”); 
 
    stackDump (L); 
 
    / * true 10 nil 'hello' * / 
 
    lua_pushvalue (L, -4); stackDump (L); 
 
    / * true 10 nil 'hello' true * / 
 
    lua_replace (L, 3); stackDump (L); 
 
    / * true 10 true 'hello' * / 
 
    lua_settop (L, 6); stackDump (L); 
 
    / * true 10 true 'hello' nil nil * / 
 
    lua_remove (L, -3); stackDump (L); 
 
   
  
 

 / * true 10 true nil nil * / 
 
    lua_settop (L, -5); stackDump (L); 
 
    / * true * / 
 
    lua_close (L); 
 
    return 0; 
 
    } 
 
      
 
    25.3. C API error handling 
 
    All structures in Lua are dynamic: they grow as 
 
    necessary and reduced in size when possible. This means 
 
    thinks that in Lua we are constantly faced with a possible error when 
 
    memory allocation. Almost any operation over time can 
 
    lead to this. Moreover, many operations can cause other 
 
    many mistakes; for example, accessing a global variable can 
 
    lead to a call to the __index metamethod , and this metamethod can call 
 
    mistake. Finally, operations that allocate memory over time 
 
    call the garbage collector, which calls finalizers that 
 
    They can also lead to errors. In short, overwhelming 
 
    most functions in Lua can lead to errors. 
 
    Instead of using error codes in its API, Lua uses 
 
    exceptions for reporting errors. Unlike C ++ or Java, 
 
    the C language does not contain a mechanism for working with exceptions. For 
 
    to get around this problem, Lua uses the setjmp function from C, 
 
    which provides a mechanism similar to exception handling. therefore 
 
    most API functions can throw an error (that is, you 
 
    call longjmp ) instead of returning a value. 
 
    When we write library code (that is, functions that will 
 
    can be called from Lua), using the longjmp function is almost like this 
 
    as convenient as using real exceptions because 
 
    Lua will catch any error that occurs. When we write code for- 
 
    definitions (that is, the C code that calls Lua), then we must 
 
    provide a way to catch such errors. 
 
      
 
    Error handling in application code 
 
    When your application calls functions from the Lua API, then it sub- 
 
    liable to mistakes. As we discussed, Lua usually reports 
 
    these errors using the longjmp function . However, if there is no corresponding 
 
    the corresponding call to setjmp , the interpreter cannot execute 
 
    and longjmp . In this case, any error in the API results in 
 
    Lua calls a special function (panic function), and if the control 
 
    is returned from this function, then the execution of the application will 
 
    rummages. You can define your similar function with 
 
    lua_atpanic , but there isn't much that function can do. 
 
    In order to properly handle errors in your code 
 
    application, you have to call your code through Lua, so it will 
 
    Sets the appropriate context for catching errors (i.e. 
 
    it will execute your code in the context of setjmp ). Just like we can- 
 
    Let's run Lua code in protected mode using pcall , 
 
    we can execute C code using lua_pcall . More accurately, 
 
    we put the C code in a function and call this function through 
 
    Lua using lua_pcall . (We will discuss in detail how to call 
 
    Lua C functions in Chapter 27.) Then our C code will run in 
 
    protected mode. Even in case of memory allocation error 
 
    lua_pcall returns the corresponding error code, leaving the 
 
    the interpreter is in working order. 
 
      
 
    Error handling in library code 
 
    Lua is a safe language. This means that it doesn't matter what you write 
 
    in Lua, no matter how wrong it is, you can always understand 
 
    running the program in terms of Lua itself. Moreover, errors are also 
 
    are discovered and explained in Lua terms. You can compare 
 
    this is with C, where the behavior of many mis-written programs can 
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    can only be explained in terms of the equipment used 
 
    (for example, error locations are specified as command addresses). 
 
    When you add a C function to Lua, you break this 
 
    safety. For example, a function like poke that writes 
 
    an arbitrary byte at an arbitrary memory address, can add 
 
    This leads to a large number of errors when working with memory. You need to 
 
    make sure your additions are safe for Lua and 
 
    provided good error handling. 
 
    As we discussed earlier, C programs must specify 
 
    your error handling with lua_pcall . However, when you drink 
 
    you write arbitrary functions in Lua, usually you don't need to handle 
 
    make mistakes. Errors thrown by the library function will be 
 
    caught either by pcall in Lua or by lua_pcall 
 
    in the application code. Therefore, when a function in a C library is 
 
    catches an error, it might just call lua_error (or whatever 
 
    even better is luaL_error , which formats the error message 
 
    and then calls lua_error ). The lua_error function clears everything that 
 
    needs to be cleared in Lua, and jumps back to the protected output 
 
    I call, passing the error message. 
 
      
 
    Exercises 
 
    Exercise 25.1. Compile and run a simple separate 
 
    Lua interpreter (Listing 25.1). 
 
    Exercise 25.2. Let's assume the stack is empty. What will be on- 
 
    walk on the stack after the next call sequence 
 
    wwow? 
 
    lua_pushnumber (L, 3.5); 
 
    lua_pushstring (L, “hello”); 
 
    lua_pushnil (L); 
 
    lua_pushvalue (L, -2); 
 
    lua_remove (L, 1); 
 
    lua_insert (L, -2); 
 
    Exercise 25.3. Use the Lua interpreter from listing 
 
    ha 25.1 and the stackDump function (Listing 25.2) in order to 
 
    check your answer to the previous exercise. 
 
      
 
    Chapter 26 
 
    Extending your 
 
    applications 
 
    An important use of Lua is to use it as a con- 
 
    figurative language. In this chapter we will show how we can use 
 
    use Lua to configure a program, starting with a simple 
 
    example, and we will develop it to perform more and more complex 
 
    tasks. 
 
      
 
    26.1. The basics 
 
    As the first task, let's look at a simple configuration 
 
    rational script: your C program has a window and you want 
 
    be able to set the initial window size. It is clear that for 
 
    such a simple problem, there are simpler solutions than 
 
    Lua uses such as environment variables or files with 
 
    name-value pairs. But, even using a simple text file, 
 
    you somehow need to disassemble it; so you decide to use 
 
    a Lua configuration file (i.e. a text file that 
 
    is a Lua program). In its simplest form, this text 
 
    the file may contain the following lines: 
 
    - define window size 
 
    width = 200 
 
    height = 300 
 
    You must now use the Lua API to enable Lua to parse 
 
    took this file, and then get the values of global variables 
 
    width and height . The load function in Listing 26.1 does this. 
 
    bot. This function assumes that you have already created the Lua state, 
 
    similar to what we saw in the previous chapter. She calls the function 
 
    clause luaL_loadfile to load the block from the file fname and then 
 
    binds lua_pcall to run compiled block. When 
 
    errors (for example, syntax errors in your config 
 
    on file), these functions push the error message onto the stack and 
 
    return a nonzero error code; our program then uses 
 
    is lua_tostring with index -1 in order to get the message 
 
    from the top of the stack. (We discussed the error function in Section 25.1.) 
 
    Listing 26.1. Getting user information 
 
    from the config file 
 
    void load (lua_State * L, const char * fname, int * w, int * h) { 
 
    if (luaL_loadfile (L, fname) || lua_pcall (L, 0, 0, 0)) 
 
    error (L, “cannot run config. file:% s”, lua_tostring (L, -1)); 
 
    lua_getglobal (L, “width”); 
 
    lua_getglobal (L, “height”); 
 
    if (! lua_isnumber (L, -2)) 
 
    error (L, “'width' should be a number \ n”); 
 
    if (! lua_isnumber (L, -1)) 
 
    error (L, “'height' should be a number \ n”); 
 
    * w = lua_tointeger (L, -2); 
 
    * h = lua_tointeger (L, -1); 
 
    } 
 
    After executing a block of code, the program needs to get the value 
 
    global variables. To do this, she calls the function twice. 
 
    ktsiyu lua_getglobal , whose parameter (except approach to others 
 
    the accompanying lua_State ) is the variable name. Everyone is like that 
 
    the call pushes the corresponding value onto the stack, so the width 
 
    the window will be at position with index –2 and height at position 
 
    with index –1 (at the top). (Since the stack was initially empty, 
 
    which we can also index starting from the bottom of the stack, then 
 
    there is to use 1 for the first value and 2 for the second. But, 
 
    indexing from the top, we do not need to make any assumptions 
 
    the stack is empty .) Next, our example uses the lua_ 
 
    isnumber for checking if each value is 
 
    number. Then lua_tointeger is called , and the corresponding values 
 
    values are assigned. 
 
    Was Lua worth using for a similar task? As I said 
 
    earlier, for such a simple task, a simple text file with two 
 
    lami will be much easier than Lua. Even so, using Lua gives 
 
    us some advantages. First, Lua is fully concerned with 
 
    syntax for you; your config file may even contain 
 
    reap comments! Second, the user can already execute 
 
    complex configuration with what we have. For example, the script 
 
    can ask the user for some information or take 
 
    value from the environment variable to select the appropriate size 
 
    ra: 
 
    - configuration file 
 
    if getenv (“DISPLAY”) == “: 0.0” then 
 
    width = 300; height = 300 
 
    else 
 
    width = 200; height = 200 
 
    end 
 
    Even in such simple scenarios, configuration is difficult to advance 
 
    anticipate what users might want; but until 
 
    the script defines these two variables, your C program will 
 
    work unchanged. 
 
    The final reason for using Lua is that 
 
    it is now easy to add new configuration options 
 
    to your program; this ease creates an approach that leads to 
 
    much more flexible programs. 
 
      
 
    26.2. Working with tables 
 
    Let's take this approach: now we want to set the background color for 
 
    window. We will assume that the given color consists of three numbers, 
 
    each of the numbers is an RGB component. Usually in C these are 
 
    la are integer in some range for example [0, 255]. In Lua, 
 
    since all numbers are floating point, we will have more 
 
    it is natural to use the range [0, 1]. 
 
    A naive approach would be to ask the user to ask 
 
    each component in a separate global variable: 
 
    - configuration file 
 
    width = 200 
 
    height = 300 
 
    background_red = 0.30 
 
    background_green = 0.10 
 
    background_blue = 0 
 
    This approach has two drawbacks: first, it is too redundant. 
 
    and cumbersome (real programs may need dozens of 
 
    colors for the background in the window, for the color in the window, for the background of the menu, etc.); and 
 
    there is no way to pre-define common colors so that 
 
    the user could then simply write background = WHITE . To 
 
    avoid these disadvantages, we can represent colors by 
 
    cabbage tables: 
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    background = {r = 0.30, g = 0.10, b = 0} 
 
    Using tables gives structure to your script; Now 
 
    easy for the user (or application) to define colors for 
 
    further use in the config file: 
 
    BLUE = {r = 0, g = 0, b = 1.0} 
 
    <other color definitions> 
 
    background = BLUE 
 
    To obtain these values on C, we can do the following - 
 
    in a way: 
 
    lua_getglobal (L, “background”); 
 
    if (! lua_istable (L, -1)) 
 
    error (L, “'background' is not a table”); 
 
    red = getcolorfield (L, “r”); 
 
    green = getcolorfield (L, “g”); 
 
    blue = getcolorfield (L, “b”); 
 
    Listing 26.2. An example implementation of the getcolorfield function 
 
    #define MAX_COLOR 255 
 
    / * assume that the table is on the top of the stack * / 
 
    int getcolorfield (lua_State * L, const char * key) { 
 
    int result; 
 
    lua_pushstring (L, key); / * push the key onto the stack * / 
 
    lua_gettable (L, -2); / * get background [key] * / 
 
    if (! lua_isnumber (L, -1)) 
 
    error (L, “invalid component in background color”); 
 
    result = (int) (lua_tonumber (L, -1) * MAX_COLOR); 
 
    lua_pop (L, 1); / * remove number * / 
 
    return result; 
 
    } 
 
    We first get the value of the global variable back- 
 
    ground and make sure it is a table and then use get- 
 
    colorfield to get each component. 
 
    Of course the getcolorfield function is not part of the API, we have to 
 
    define it. Again we are faced with the problem of polymorphism: 
 
    there can be many versions of getcolorfield function that differ 
 
    key type, value type, error handling, etc. Lua API 
 
    offers just one lua_gettable function that works for 
 
    of all types. She takes the position of the table on the stack, removes the key from 
 
    stack and pushes the corresponding value onto the stack. Our function 
 
    getcolorfield , defined in Listing 26.2, assumes that the table is 
 
    is at the top of the stack, so after putting the key on the stack 
 
    using the lua_pushstring function , the table will be located at 
 
    index –2. Before returning, getcolorfield pops a semi- 
 
    value, leaving the stack in the same state it was in 
 
    before this call. 
 
    Since indexing a table with a string key 
 
    cha is very common, Lua 5.1 introduced a specialized version 
 
    lua_gettable is just for this case: lua_getfield . Using this 
 
    function, we can rewrite the following two lines: 
 
    lua_pushstring (L, key); 
 
    lua_gettable (L, -2); / * get background [key] * / 
 
    as 
 
    lua_getfield (L, -1, key); 
 
    (Since we are not pushing a row onto the stack, the table has an index 
 
    is still -1 when lua_getfield is called .) 
 
    We will expand our example a little and introduce names in color for 
 
    user. The user can still use the tab- 
 
    faces for the component color setting, but you can also use 
 
    Call predefined color names. To implement this 
 
    we need a color table in our C program: 
 
    struct ColorTable { 
 
    char * name; 
 
    unsigned char red, green, blue; 
 
    } colortable [] = { 
 
    {“WHITE”, MAX_COLOR, MAX_COLOR, MAX_COLOR}, 
 
    {“RED”, MAX_COLOR,  
 
    0,  
 
    0}, 
 
    {“GREEN”,  
 
    0, MAX_COLOR,  
 
    0}, 
 
    {“BLUE”,  
 
    0,  
 
    0, MAX_COLOR}, 
 
    <other colors> 
 
    {NULL, 0, 0, 0} / * terminator * / 
 
    }; 
 
    Our implementation will create global variables with color-coded names 
 
    comrade and initializes these variables using color tables 
 
    Comrade The result will be the same if the user added 
 
    the following lines into your script: 
 
    WHITE = {r = 1.0, g = 1.0, b = 1.0} 
 
    RED = {r = 1.0, g = 0, b = 0} 
 
    <other colors> 
 
    To set the fields of the table, we will introduce a helper function 
 
    setcolorfield ; it pushes the index and value of the field onto the stack and then 
 
    calls lua_settable : 
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    / * consider the table to be at the top of the stack * / 
 
    void setcolorfield (lua_State * L, const char * index, int value) { 
 
    lua_pushstring (L, index); / * key * / 
 
    lua_pushnumber (L, (double) value / MAX_COLOR); / * value * / 
 
    lua_settable (L, -3); 
 
    } 
 
    Similar to other API functions, lua_settable works for many 
 
    different types, so it pops all of its operands off the stack. It 
 
    takes the index of the table as an argument and strips off the key and value 
 
    from the stack. The setcolorfield function assumes that before calling the tab- 
 
    face is at the top of the stack (index –1); after placing in- 
 
    dex and values on the stack, the table will be at index –3. 
 
    Lua 5.1 also introduced a specialized version of lua_settable for 
 
    string keys, it's called lua_setfield . Using this no- 
 
    function, we can rewrite setcolorfield as follows 
 
    at once: 
 
    void setcolorfield (lua_State * L, const char * index, int value) { 
 
    lua_pushnumber (L, (double) value / MAX_COLOR); 
 
    lua_setfield (L, -2, index); 
 
    } 
 
    The next function, setcolor , defines one color. She created 
 
    creates a table, sets the values of the corresponding fields and 
 
    maps this table to the corresponding global variable: 
 
    void setcolor (lua_State * L, struct ColorTable * ct) { 
 
    lua_newtable (L); / * creates a table * / 
 
    setcolorfield (L, “r”, ct-> red); / * table.r = ct-> r * / 
 
    setcolorfield (L, “g”, ct-> green); / * table.g = ct-> g * / 
 
    setcolorfield (L, “b”, ct-> blue); / * table.b = ct-> b * / 
 
    lua_setglobal (L, ct-> name); / * 'name' = table * / 
 
    } 
 
    Lua_newtable function creates an empty table and places it 
 
    on the stack; setcolorfield calls set the fields of this table; finally, 
 
    lua_setglobal pops the table off the stack and uses it as a value 
 
    global variable with the given name. 
 
    Using these functions, the next cycle will register all colors. 
 
    the one for the config script: 
 
    int i = 0; 
 
    while (colortable [i] .name! = NULL) 
 
    setcolor (L, & colortable [i ++]); 
 
    Remember that the application must execute this loop before you 
 
    filling in the script. 
 
      
 
    Listing 26.3. Colors as rows or tables 
 
    lua_getglobal (L, “background”); 
 
    if (lua_isstring (L, -1)) {/ * is the value a string? * / 
 
    const char * name = lua_tostring (L, -1); / * get string * / 
 
    int i; / * look in the table * / 
 
    for (i = 0; colortable [i] .name! = NULL; i ++) { 
 
    if (strcmp (colorname, colortable [i] .name) == 0) 
 
    break; 
 
    } 
 
    if (colortable [i] .name == NULL) / * string not found? * / 
 
    error (L, “invalid color name (% s)”, colorname); 
 
    else {/ * use colortable [i] * / 
 
    red = colortable [i] .red; 
 
    green = colortable [i] .green; 
 
    blue = colortable [i] .blue; 
 
    } 
 
    } else if (lua_istable (L, -1)) { 
 
    red = getcolorfield (L, “r”); 
 
    green = getcolorfield (L, “g”); 
 
    blue = getcolorfield (L, “b”); 
 
    } else 
 
    error (L, “invalid value for 'background'”); 
 
    Listing 26.3 shows another option for implementing name 
 
    bathroom flowers. Instead of global variables, the user can 
 
    can denote colors using strings, writing the settings as 
 
    background = ”BLUE” . So background can be either 
 
    table, or row. With this approach, the application does not need 
 
    do something before running the script. Instead, to get 
 
    colors have a little more work to do. When the program is 
 
    receives the value of the background variable , then you need to check if 
 
    is this value a string, in which case look for a color in 
 
    color table. 
 
    What's the best option? In C programs, using 
 
    lines to indicate options is not good practice 
 
    since the compiler cannot detect typos. However, in Lua 
 
    the message about a typo in the name of the color will go to the person for whom it is written 
 
    this configuration. Difference between programmer and user 
 
    somewhat blurry; difference between compilation error and error 
 
    runtime is not that great. 
 
    With strings, the value of the background variable can be string 
 
    Coy with a typo; in this case the application can add this information 
 
    formation to the error message. The application can also compare 
 
    thread strings regardless of the case of letters, so that the user 5 
 
    can write “white” , “WHITE” or even “White” . Moreover, 
 
    if the script is small and many errors are found, then this may be 
 
    not very successful - add hundreds of colors (and create hundreds of tabs) 
 
    persons and global variables) only for the user to 
 
    chose several colors. With strings, you avoid this. 
 
      
 
    26.3. Lua function calls 
 
    The strength of Lua is that the configuration file can 
 
    can define functions that can then be called by the application 
 
    genius. For example, you can write an application to 
 
    plot the function, and use Lua to plot 
 
    give a function whose graph will be plotted. 
 
    The API provided way to call functions is pretty simple: 
 
    first, you push the function to be called onto the stack; 
 
    second, you put the arguments to be called on the stack as well; after that- 
 
    go use lua_pcall to call the function and finally remove 
 
    results from the stack. 
 
    Let, as an example, our config file contains 
 
    there is a function like the one below: 
 
    function f (x, y) 
 
    return (x ^ 2 * math.sin (y)) / (1 - x) 
 
    end 
 
    You want to compute z = f (x, y) in C for given x and y . Considering 
 
    that you have already opened the Lua library and performed the configuration- 
 
    file, the function f in Listing 26.4 implements this call. 
 
    Listing 26.4. Calling a Lua function from C 
 
    / * call function 'f' defined in Lua * / 
 
    double f (lua_State * L, double x, double y) { 
 
    int isnum; 
 
    double z; 
 
    / * push function and arguments onto the stack * / 
 
    lua_getglobal (L, “f”); / * called function * / 
 
    lua_pushnumber (L, x); / * push 1st argument onto the stack * / 
 
    lua_pushnumber (L, y); / * push 2nd argument onto the stack * / 
 
    / * call the function (2 arguments, 1 result) * / 
 
    if (lua_pcall (L, 2, 1, 0)! = LUA_OK) 
 
    error (L, “error running function 'f':% s”, 
 
    lua_tostring (L, -1)); 
 
    / * get the result * / 
 
    z = lua_tonumberx (L, -1, & isnum); 
 
    if (! isnum) 
 
    error (L, “function 'f' must return a number”); 
 
    lua_pop (L, 1); / * pop the result off the stack * / 
 
    return z; 
 
    } 
 
    The second and third arguments to lua_pcall are, respectively, 
 
    the number of arguments you pass and the number of results that 
 
    you want to receive. The fourth argument is a function 
 
    tions for error handling; we will discuss this soon. As with 
 
    assignments in Lua, calling lua_pcall casts a valid 
 
    the number of resulting values to the number you specify; if necessary 
 
    placing on the stack walk nil 's or removing the extra values. Front 
 
    pushing the results onto the stack lua_pcall removes the function from the stack. 
 
    tion and its arguments. When a function returns multiple values, 
 
    then the first value is pushed onto the stack first; for example, if possible 
 
    three values rotate, then the first of them will have index –3, 
 
    and the last –1. 
 
    If an error occurs while executing lua_pcall 
 
    the lua_pcall function returns an error code; besides, she put 
 
    pops the error message onto the stack (but still pops 
 
    function and its arguments). However, before posting a message to 
 
    the lua_pcall stack calls the message handling function if it 
 
    has been asked. To set the message processing function, use 
 
    those are the last argument to the lua_pcall function . Zero means no 
 
    no processing function and the final message is the outcome 
 
    new error message. Otherwise, this argument must 
 
    be the index on the stack where the message handling function is located 
 
    niya. In such a case, the processing function should be placed 
 
    on the stack to the called function and its arguments. 
 
    For normal errors, the lua_pcall function returns the code 
 
    LUA_ERRRUN errors . Two special types of errors deserve 
 
    separate codes, because they never call a function 
 
    processing unit. The first type is memory allocation errors. For 
 
    For similar errors, lua_pcall always returns LUA_ERRMEM . Second 
 
    the type of errors is errors when executing the handler itself 
 
    communication. In this case, there is no point in calling the request again. 
 
    the message bot, so lua_pcall returns immediately 
 
    Correction with the LUA_ERRERR code . Lua 5.2 highlights a third type of error: 
 
    when the finalizer throws an error, lua_pcall returns 
 
    LUA_ERRGCMM code . This code indicates that the error is not related to 
 
    with the challenge itself. 
 
    307 
 
    Listing 26.5. Generalized function call 
 
    #include <stdarg.h> 
 
    void call_va (lua_State * L, const char * func, 
 
    const char * sig, ...) { 
 
    va_list vl; 
 
    int narg, nres; / * number of arguments and results * / 
 
    va_start (vl, sig); 
 
    lua_getglobal (L, func); / * push the function onto the stack * / 
 
    <put arguments on the stack (Listing 26.6)> 
 
    nres = strlen (sig); / * number of expected results * / 
 
    if (lua_pcall (L, narg, nres, 0)! = 0) / * make a call * / 
 
    error (L, “error calling '% s':% s”, func, 
 
    lua_tostring (L, -1)); 
 
    <get the results (Listing 26.7)> 
 
    va_end (vl); 
 
    } 
 
      
 
    26.4. Generalized call 
 
    function 
 
    As a more complex example, we will construct a universal 
 
    a function to call functions in Lua using vararg in C. Our 
 
    function, let's call it call_va , takes the name of the function that 
 
    need to be called, a string describing the types of arguments and results 
 
    tat, then a list of arguments, and finally a list of pointers to 
 
    the variables in which we want to get the results of the call. When 
 
    using this function, we can easily overwrite our previous 
 
    example as follows: 
 
    call_va (L, “f”, “dd> d”, x, y, & z); 
 
    The line “dd> d” means “two arguments of type double and one re- 
 
    The result is of type double . This specifier uses 'd' for double , 'i' 
 
    for integers and 's' for strings; the '>' character separates arguments from 
 
    results. If the function returns nothing, then the '>' symbol is not- 
 
    required. 
 
    Listing 26.5 shows the implementation of the call_va function . Despite 
 
    As for the general view of this function, it follows the same path as our 
 
    first example: pushes a function onto the stack, pushes arguments to 
 
    the stack (Listing 26.6), makes the call, and receives the results (Listing 
 
    26.7). Most of the code is pretty straightforward, but there are some subtle 
 
    ty. First, it doesn't check that func is a function; if a 
 
    it is not, then lua_pcall will raise an error. Secondly, since it 
 
    pushes an arbitrary number of arguments onto the stack, it must check 
 
    Check if there is free space on the stack. Thirdly, since the functional 
 
    tion can return rows, then call_va cannot remove results from 
 
    stack. This should be done by the caller after use. 
 
    result strings (or copy them elsewhere). 
 
    Listing 26.6. Generally pushing arguments 
 
    for (narg = 0; * sig; narg ++) {/ * execute for each argument * / 
 
    / * check stack space * / 
 
    luaL_checkstack (L, 1, “too many arguments”); 
 
    switch (* sig ++) { 
 
    case 'd': / * double argument * / 
 
    lua_pushnumber (L, va_arg (vl, double)); 
 
    break; 
 
    case 'i': / * int argument * / 
 
    lua_pushinteger (L, va_arg (vl, int)); 
 
    break; 
 
    case 's': / * string argument * / 
 
    lua_pushstring (L, va_arg (vl, char *)); 
 
    break; 
 
    case '>': / * end of arguments * / 
 
    goto endargs; 
 
    default: 
 
    error (L, “invalid option (% c)”, * (sig - 1)); 
 
    } 
 
    } 
 
    endargs: 
 
    Listing 26.7. Getting call results 
 
    nres = -nres; / * index of the first result on the stack * / 
 
    while (* sig) {/ * repeat for each result * / 
 
    switch (* sig ++) { 
 
    case 'd': {/ * double result * / 
 
    int isnum; 
 
    double n = lua_tonumberx (L, nres, & isnum); 
 
    if (! isnum) 
 
    error (L, “wrong result type”); 
 
    * va_arg (vl, double *) = n; 
 
    break; 
 
    } 
 
    case 'i': {/ * int result * / 
 
    int isnum; 
 
    int n = lua_tointegerx (L, nres, & isnum); 
 
    if (! isnum) 
 
    error (L, “wrong result type”); 
 
    * va_arg (vl, int *) = n; 
 
    break;9 
 
    } 
 
    case 's': {/ * string result * / 
 
    const char * s = lua_tostring (L, nres); 
 
    if (s == NULL) 
 
    error (L, “wrong result type”); 
 
    * va_arg (vl, const char **) = s; 
 
    break; 
 
    } 
 
    default: 
 
    error (L, “invalid option (% c)”, * (sig - 1)); 
 
    } 
 
    nres ++; 
 
    } 
 
      
 
      
 
    Exercises 
 
    Exercise 26.1. Write a C program that reads 
 
    a Lua file that defines a function f that takes as input 
 
    number and returns the function value from this number. Your 
 
    the program should plot this function. (You do not- 
 
    be sure to use graphics, the usual one is fine 
 
    text view using '*' for graph.) 
 
    Exercise 26.2. Modify the call_va function (Listing 26.5) 
 
    to handle boolean values. 
 
    Exercise 26.3. Let there be a program that needs 
 
    keep track of several weather stations. Inside, for 
 
    representation of each station, it uses a 4-byte 
 
    line, and there is a config file that matches 
 
    Each such line contains the URL of the corresponding station. Con- 
 
    the Lua figure file must do this mapping. 
 
    in several different ways: 
 
    • a set of global variables, one for each stan- 
 
    tion; 
 
    • one table mapping strings to URL; 
 
    • one function that returns a URL for each line. 
 
    Discuss the pros and cons of each option, taking 
 
    attention total number of stations, types of users, availability 
 
    structures in the URL, etc. 
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    Chapter 27 
 
    Calling C from Lua 
 
    When we say that Lua can call C, it doesn't mean that Lua 
 
    may call any function in C 1 . As we saw in the previous 
 
    chapter, when C calls a function in Lua, you must follow the 
 
    a specific protocol for passing arguments and receiving results 
 
    that. Similarly, in order for Lua to call a function in C, this function 
 
    must follow a specific protocol to get their 
 
    arguments and return results. Moreover, so that Lua can 
 
    call a function in C, we must register this function, 
 
    that is, they must pass Lua its address in a certain way. 
 
    When Lua calls a function in C, it uses the same 
 
    the stack that C uses to call Lua code. Function in C semi- 
 
    pops its arguments off the stack and pushes its results onto the stack. 
 
    The important concept here is that the stack is some 
 
    structure; each function has its own local stack. 
 
    When Lua calls a C function, the first argument will always be 
 
    have index 1 on this local stack. Even when the C code calls 
 
    Lua code that calls the same (or a different) function, each 
 
    of these calls will only see his personal stack with the first ar- 
 
    by index 1. 
 
      
 
      
 
    27.1. Functions in C 
 
    As a first example, let's see how to implement 
 
    a simplified version of a function that returns the sine of a given 
 
    numbers: 
 
    static int l_sin (lua_State * L) { 
 
    double d = lua_tonumber (L, 1); / * get argument * / 
 
    lua_pushnumber (L, sin (d)); / * push the result onto the stack * / 
 
    1 
 
    There are packages that allow Lua to call any function in C, but they don't. 
 
    portable and not secure. 
 
      
 
    return 1; / * number of results * / 
 
    } 
 
      
 
    Any function registered in Lua must have one and 
 
    the same prototype defined in lua.h file as lua_CFunction : 
 
    typedef int (* lua_CFunction) (lua_State * L); 
 
    From the point of view of C, the function on C receives as its unique 
 
    argument is the Lua state and returns an integer equal to 
 
    the number of values returned through the stack. Therefore, the functions do not need 
 
    but clear the stack before pushing your results onto it. Pos- 
 
    lua itself saves the results and cleans up 
 
    stack. 
 
    Before we can use this feature, we must 
 
    us first to register it. We do this with lua_ 
 
    pushcfunction : it receives a pointer to a C function and creates 
 
    a value of type “function” that represents this function internally 
 
    ri Lua. After registration, the C function behaves like any other 
 
    function inside Lua. 
 
    A quick and dirty way to check the l_sin function is 
 
    put its code directly into our base interpreter 
 
    (Listing 25.1) and add the following lines right after the call 
 
      
 
    luaL_openlibs : 
 
    lua_pushcfunction (L, l_sin); 
 
    lua_setglobal (L, “mysin”); 
 
      
 
    The first line pushes the function type value onto the stack, and the second 
 
    assigns its value to the global variable mysin . After these 
 
    changes, you can use this new function directly in your 
 
    their Lua scripts. (In the next section we will look at more correct 
 
    good ways to connect C functions to Lua.) 
 
    For a more serious sine function, we must 
 
    check the type of its argument. Here we are helped by an auxiliary 
 
    library. LuaL_checknumber function checks if 
 
    whether the given argument is a number: if an error occurs, it is thrown 
 
    It has a meaningful error message, otherwise it returns the number itself. 
 
    The changes to our function are minimal: 
 
      
 
    static int l_sin (lua_State * L) { 
 
    double d = luaL_checknumber (L, 1); 
 
    lua_pushnumber (L, sin (d)); 
 
    return 1; / * number of results * / 
 
    } 
 
      
 
    With this function definition, if we call mysin ('a') , then 
 
    we will receive the following message: 
 
    bad argument # 1 to 'mysin' (number expected, got string) 
 
    Notice how luaL_checknumber is automatically filled in 
 
    reads the message by argument number ( # 1 ), function name ( “mysin” ), 
 
    expected parameter type ( number ) and real parameter type 
 
    ( string ). 
 
    As a more complex example, let's write a function, 
 
    which will return the contents of the given directory. Lua is not provided 
 
    has such a function in its standard libraries, because 
 
    ANSI C does not have a suitable function for this. Here we will consider 
 
    that our function supports POSIX. Our function - let's call 
 
    its dir in Lua and l_dir in C - takes as an argument a string with 
 
    path to a directory and returns an array with the contents of this directory. 
 
    For example, calling dir (“/ home / lua”) might return the following table 
 
    person {“.”, ”..”, ”src”, ”bin”, ”lib”} . In case of error, the function 
 
    returns nil and an error string. The complete code of this 
 
    the function is shown in Listing 27.1. Pay attention to the use 
 
    calling the luaL_checkstring function , which behaves similarly 
 
    luaL_checknumber , but only for strings. 
 
    (In extreme cases, using this function may result in 
 
    to a small memory leak. Three of the Lua functions it calls are 
 
    may fail due to insufficient memory 
 
    ty: lua_newtable , lua_pushstring and lua_settable . If any of 
 
    these functions will fail, then an error will be raised and 
 
    complements l_dir be interrupted, respectively, closedir will not 
 
    caused. As we discussed earlier, for most programs this is not 
 
    is a big problem: if memory runs out, then the best 
 
    what can be done is to terminate the execution of the program. However 
 
    less in chapter 30 we will see another implementation of the getter function 
 
    contents of the directory, which no longer contains this error.) 
 
    Listing 27.1. Function for reading directory contents 
 
    #include <dirent.h> 
 
    #include <errno.h> 
 
    #include <string.h> 
 
    #include “lua.h” 
 
    #include "lauxlib.h" 
 
    static int l_dir (lua_State * L) { 
 
    DIR * dir; 
 
    struct dirent * entry;13 
 
    int i; 
 
    const char * path = luaL_checkstring (L, 1); 
 
    / * open directory * / 
 
    dir = opendir (path); 
 
    if (dir == NULL) {/ * error opening directory? * / 
 
    lua_pushnil (L); / * return nil ... * / 
 
    lua_pushstring (L, strerror (errno)); / * and message * / 
 
    return 2; / * number of results * / 
 
    } 
 
    / * create a table with the result * / 
 
    lua_newtable (L); 
 
    i = 1; 
 
    while ((entry = readdir (dir))! = NULL) { 
 
    lua_pushnumber (L, i ++); / * push key * / 
 
    lua_pushstring (L, entry-> d_name); / * push value * / 
 
    lua_settable (L, -3); 
 
    } 
 
    closedir (dir); 
 
    return 1; / * table is already at the top of the stack * / 
 
    } 
 
      
 
    27.2. Continuations 
 
    With lua_pcall and lua_call , a C function called from Lua 
 
    can, in turn, call Lua. Some functions from the standard 
 
    Noah libraries do this: table.sort can call a function 
 
    comparisons; string.gsub can call the replace function; pcall and 
 
    xpcall can call functions in protected mode. If we help- 
 
    him that the main Lua code was itself, in turn, called from C 
 
    (main program), then we get a sequence like 
 
    next: C (application) calls Lua (script), which calls 
 
    gives a C function (library) that calls Lua. 
 
    Lua normally handles these call sequences without 
 
    problems; after all, its main task is to integrate with 
 
    C. However, there is a situation in which such a chain of calls can 
 
    cause problems: coroutines. 
 
    Every coroutine in Lua has its own stack, which 
 
    contains information about pending coroutine calls. More precisely, 
 
    the stack remembers the return address, parameters and local variables 
 
    every call. For function calls in Lua, the interpreter is used 
 
    calls a suitable data structure to implement the stack, which is 
 
    It is called a flexible stack (soft stack). However, for function calls in C, 
 
    The interpreter must also use the C stack. After all, the address 
 
    return and local variables of a function in C live on the C stack. 
 
    An interpreter can easily have many flexible stacks, but the code for 
 
    C only has one stack. Therefore, coroutines in Lua cannot 
 
    stop execution inside the function in C: if in the call chain 
 
    from resume to the corresponding yield there is a function in C, then Lua 
 
    cannot save the state of this function in order to restore 
 
    renew it the next time you resume . Let's consider the next 
 
    example in Lua 5.1: 
 
    co = coroutine.wrap (function (a) 
 
    return pcall (function (x) 
 
    coroutine.yield (x [1]) 
 
    return x [3] 
 
    end, a) 
 
    end) 
 
    print (co ({10, 3, -8, 15})) 
 
    -> false attempt to yield across metamethod / C-call boundary 
 
    The pcall call is a C function; therefore Lua cannot “freeze 
 
    zit "it, because there is no ANSI C way to pause execution 
 
    function in C and then continue its execution. 
 
    Lua 5.2 has dealt with this complexity with continuations 
 
    (continuation). Lua 5.2 implements yield with longjmp , i.e. 
 
    the same way it implements errors. Such a call ( longjmp ) is simply from- 
 
    discards all information about functions on the C-stack, so there is no 
 
    you can continue the function in C. However, the function in C foo can 
 
    specify a function - continuation of foo-c that is different 
 
    a C function to be called when the time is right 
 
    "Continue" function foo . That is, the interpreter detects 
 
    that it should continue executing foo , but since all the information 
 
    mation about the foo was destroyed with the stack, instead of that, he is 
 
    foo-c . 
 
    To make it clearer, let's look at an example: 
 
    implementation of the pcall function . In Lua 5.1. this function had the following- 
 
    the following code: 
 
    static int luaB_pcall (lua_State * L) { 
 
    int status; 
 
    luaL_checkany (L, 1); / * at least one parameter * / 
 
    status = lua_pcall (L, lua_gettop (L) - 1, LUA_MULTRET, 0); 
 
    lua_pushboolean (L, (status == 0)); / * status * / 
 
    lua_insert (L, 1); / * status is the first result * / 
 
    return lua_gettop (L); / * return status + all results * / 
 
    } 
 
    If the function called via lua_pcall is suspended 
 
    if it was executed (via yield ), it will be impossible to continue 
 
    live later execution of luaB_pcall . Therefore, the interpreter will issue 
 
    error every time we try to call yield inside the 
 
    a protected call. Lua 5.2 implements pcall like 
 
    shown in Listing 27.2 2 . There are three differences from the Lua 5.1 version: 
 
    firstly, the new version replaced the lua_pcall call with lua_pcallk ; 
 
    secondly, she has grouped everything that is done after this call in 
 
    the new finishpcall helper function ; the third difference is 
 
    the pcallcont function , the last argument is lua_pcallk , which is 
 
    is a continuation function. 
 
    If there are no yield calls , then lua_pcallk works exactly like 
 
    lua_pcall . If there is a call to yield, then everything is completely different. If a 
 
    a function called by lua_pcall tries to call yield , then Lua 5.2 
 
    raises an error, just like Lua 5.1. However, when the function called 
 
    lua_pcallk , calls yield , then there is no error: Lua calls 
 
    longjmp and discards the entry for luaB_pcall from the C stack, but keeps 
 
    This adds a reference to the pcallcont continuation function in the flexible stack . 
 
    Later, when the interpreter finds that it should return 
 
    to luaB_pcall (which is not possible), it calls the function instead- 
 
    continued pcallcont . 
 
    Unlike luaB_pcall , pcallcont 's continuation function cannot 
 
    can get the value returned by the lua_pcallk call . therefore 
 
    Lua provides a special function to return status 
 
    call: lua_getctx . When called from a normal Lua function (which 
 
    in our case does not happen), lua_getctx returns LUA_OK . Kog- 
 
    yes it is called from a continuation function, it returns LUA_YIELD . 
 
    The continuation function can also be called in the case of some 
 
    errors; in this case lua_getctx returns an error code, that is 
 
    the very value that lua_callk would return in this case . 
 
    Listing 27.2. A pcall implementation with continuations 
 
    static int finishpcall (lua_State * L, int status) { 
 
    lua_pushboolean (L, status); / * first result (status) * / 
 
    lua_insert (L, 1); / * put the first result in the first slot * / 
 
    return lua_gettop (L); 
 
    } 
 
    static int pcallcont (lua_State * L) { 
 
    int status = lua_getctx (L, NULL); 
 
    return finishpcall (L, (status == LUA_YIELD)); 
 
    } 
 
    2 
 
    The actual code is more complex than shown here, since it has some general 
 
    other parts with xpcall and checking for stack overflow before placing on it 
 
    boolean value. 
 
    static int luaB_pcall (lua_State * L) { 
 
    int status; 
 
    luaL_checkany (L, 1); 
 
    status = lua_pcallk (L, lua_gettop (L) - 2, LUA_MULTRET, 0, 
 
    0, pcallcont); 
 
    return finishpcall (L, (status == LUA_OK)); 
 
    } 
 
    In addition to the call status, the lua_getctx function can also return 
 
    context information. The fifth parameter in lua_pcallk is a 
 
    a free integer that can be obtained through the second parameter 
 
    lua_getctx , which is a pointer to an integer value. This is the price 
 
    the left value allows the original function to pass an arbitrary 
 
    information directly to its continuation. She can also convey 
 
    more information via the Lua stack. (Our example is not used 
 
    takes this opportunity.) 
 
    The continuation mechanism in Lua 5.2 is awesome 
 
    to support yield , but this is not a panacea. Some C function 
 
    may need to convey too much context to your pro 
 
    posts. You can use table as such an example . 
 
    sort , which uses the C stack for recursion, and string.gsub , which 
 
    paradise should keep track of found substrings and a buffer for partial 
 
    results. Although they can be rewritten in a way that supports 
 
    yuschim yield statement , the gain is not worth the complexity introduced. 
 
      
 
    27.3. C modules 
 
    A module in Lua is a block of code that defines various functions. 
 
    tions in Lua and remembers them in suitable places, usually tab- 
 
    faces. A C module for Lua behaves the same way. Besides defining 
 
    its functions in C, it must also define a special function 
 
    tion, which acts as the main block in the Lua library. This 
 
    the function must register all C functions from the module and 
 
    remember them in appropriate places, usually in table fields. 
 
    Like the main block in Lua, this function also needs to 
 
    to initialize everything that needs initialization. 
 
    Lua obtains functions in C through the registration mechanism. After 
 
    Once a C function is represented and stored in Lua, Lua calls 
 
    her through a direct link to her address (which we transmit 
 
    Lua when we register this function). In other words, Lua is not 
 
    depends on the function name, package location, or visibility rules 
 
    ty to call this function when it is registered.  
 
    Usually a C module has only one extern function, 
 
    which is the function that opens the library. Everything else- 
 
    functions can be closed, for example, by declaring them as 
 
    static . 
 
    When you extend Lua with C functions, a good 
 
    the idea is to organize your code as a C module, even if 
 
    you only want to register one function: sooner or later 
 
    (usually early) you will need other features. As usual, help 
 
    The powerful library offers a helper function for 
 
    this. The luaL_newlib macro takes a list of C functions along with their 
 
    appropriate names and registers them all inside the new tab- 
 
    faces. As an example, let's say we want to create a library with a function 
 
    tion l_dir , which we defined earlier. First, we must 
 
    define library functions: 
 
    static int l_dir (lua_State * L) { 
 
    <as before> 
 
    } 
 
    Next, we define an array with all the functions along with their 
 
    names. This array contains elements of type luaL_Reg , which 
 
    is a structure of two fields: the function name (string) and the 
 
    a function factor. 
 
    static const struct luaL_Reg mylib [] = { 
 
    {“Dir”, l_dir}, 
 
    {NULL, NULL} / * terminator * / 
 
    }; 
 
    In our example, there is only one function ( l_dir ), which we 
 
    want to register. The last pair in the array is always 
 
    {NULL, NULL} denoting the end of the array. Finally, we define 
 
    We write the main function using luaL_newlib : 
 
    int luaopen_mylib (lua_State * L) { 
 
    luaL_newlib (L, mylib); 
 
    return 1; 
 
    } 
 
    The luaL_newlib call creates a new table and fills it in pairs 
 
    name is a function from the mylib array . Upon returning luaL_newlib OS- 
 
    Pushes a new table onto the stack. Function luaopen_mylib vozvrascha- 
 
    is 1 in order to return this table to Lua. 
 
    After completing the library, we must link it to 
 
    interpreter. The easiest way to do this is 
 
    using dynamic libraries if the interpreter is Lua 
 
    supports them. In this case, you must create a dynamic 
 
    the library with your code ( mylib.dll on Windows and mylib.so on Linux) 
 
    and place it along the C-path. After these steps, you can download 
 
    this library directly from Lua using require : 
 
    local mylib = require “mylib” 
 
    This call loads a dynamic library in Lua, find 
 
    dumps the luaopen_mylib function , registers it as a C function, and 
 
    calls it, thereby opening the module. (This explains why 
 
    luaopen_mylib must have the same prototype as any 
 
    another function in C.) 
 
    When loading a dynamic library, we need to know the name 
 
    function luaopen_mylib in order to find it. Will always be used 
 
    a function named luaopen_ , to which the name is attached 
 
    module. Therefore, if your module is called mylib , then the function 
 
    should be named luaopen_mylib . 
 
    If your interpreter does not support dynamic linking- 
 
    ku, then you need to rebuild Lua along with your new library. 
 
    Besides this rebuilding, you also need some way of saying 
 
    to the interpreter that it should open this library when creating 
 
    new state. This is usually done by adding luopen_mylib to 
 
    list of standard libraries that luaL_openlib opens in 
 
    file linit.c . 
 
      
 
    Exercises 
 
    Exercise 27.1. Write a summation function in C that 
 
    calculates the sum of a variable number of its numeric arguments: 
 
    print (summation ())  
 
    -> 0 
 
    print (summation (2.3, 5.4))  
 
    -> 7.7 
 
    print (summation (2.3, 5.4, -34)) -> -26.3 
 
    print (summation (2.3, 5.4, {})) 
 
    -> stdin: 1: bad argument # 3 to 'summation' 
 
    (number expected, got table) 
 
    Exercise 27.2. Implement a function equivalent to table. 
 
    pack from the standard library. 
 
    Exercise 27.3. Write a function that gets produced 
 
    free number of parameters and returns them in reverse order: 
 
    print (reverse (1, “hello”, 20)) -> 20 hello 1 
 
    Exercise 27.4. Write a foreach function that gets- 
 
    takes a table and a function as input and calls this function to 
 
    each key-value pair in the table: 
 
    foreach ({x = 10, y = 20}, print) 
 
    -> x 10 
 
    -> y 20 
 
    Exercise 27.5. Rewrite the foreach function from the previous 
 
    th exercise so that the called function can call 
 
    yield . 
 
    Exercise 27.6. Create a C module with all the functions from 
 
    previous exercises. 
 
    Exercises 
 
      
 
    Chapter 28 
 
    Writing techniques functions in C 
 
    Both the official API and the auxiliary library provide 
 
    provide several mechanisms to help write functions in C. 
 
    In this chapter, we will look at mechanisms for working with arrays, 
 
    strings and storing Lua values in C. 
 
      
 
    28.1. Working with arrays 
 
    In Lua, "array" is just a name for the table used by the spec. 
 
    in a special way. We can work with arrays using those 
 
    the same functions that we used to work with the table- 
 
    mi, that is, lua_settable and lua_gettable . However, the API is provided by 
 
    There are several special functions for working with arrays. One 
 
    one of the advantages of using these functions is performance: 
 
    often we have access to an array inside the loop of the algorithm 
 
    ma (for example, sorting), so that any increase in speed 
 
    the viya in these operations can have a big impact 
 
    on the final performance of the algorithm. Another plus is 
 
    convenience, integer keys are common enough that- 
 
    would deserve special treatment. 
 
    The API provides two functions for working with arrays: 
 
    void lua_rawgeti (lua_State * L, int index, int key); 
 
    void lua_rawseti (lua_State * L, int index, int key); 
 
    The description of the lua_rawgeti and lua_rawseti functions is somewhat confusing. 
 
    is safe, since it includes two indices at once: index describes where 
 
    the table is on the stack; key specifies an element in the table itself. 
 
    The lua_rawgeti (L, t, key) call is equivalent to the following sequence 
 
    when t is greater than zero (otherwise it is necessary 
 
    compensate for the appearance of a new element on the stack): 
 
    lua_pushnumber (L, key); 
 
    lua_rawget (L, t); 
 
    Calling lua_rawseti (L, t, key) (again for positive t ) eq- 
 
    is equivalent to the following sequence: 
 
    lua_pushnumber (L, key); 
 
    lua_insert (L, -2); / * put 'key' below the previous value * / 
 
    lua_rawset (L, t); 
 
    Note that both functions use direct 
 
    to the table. They are faster and moreover the tables used 
 
    as arrays, metamethods are rarely used. 
 
    Listing 28.1. C map function 
 
    int l_map (lua_State * L) { 
 
    int i, n; 
 
    / * 1st argument must be table (t) * / 
 
    luaL_checktype (L, 1, LUA_TTABLE); 
 
    / * 2nd argument must be function (f) * / 
 
    luaL_checktype (L, 2, LUA_TFUNCTION); 
 
    n = luaL_len (L, 1); / * get table size * / 
 
    for (i = 1; i <= n; i ++) { 
 
    lua_pushvalue (L, 2); / * push f * / 
 
    lua_rawgeti (L, 1, i); / * push t [i] onto the stack * / 
 
    lua_call (L, 1, 1); / * call f (t [i]) * / 
 
    lua_rawseti (L, 1, i); / * t [i] = result * / 
 
    } 
 
    return 0; /* No results */ 
 
    } 
 
    As an example of using these functions, Listing 28.1 re- 
 
    lizuet function map : it applies a given function to all element 
 
    the array, replacing each element with the result of the call. This 
 
    the example also introduces three new functions: luaL_checktype , luaL_len 
 
    and lua_pcall . 
 
    The luaL_checktype function (from the lauxlib.h file ) checks that 
 
    the given argument is of the given type, otherwise it is 
 
    throws an error. 
 
    The lua_len primitive (not used in the example above) is equivalent to 
 
    is valent to the '#' operator . Due to metamethods, this operator can 
 
    return an object of any type, not just numbers; so lua_len 
 
    returns its result on the stack. LuaL_len function (using 
 
    bathroom in the example) raises an error if the length is not pure 
 
    scrap, otherwise it returns the length as normal 
 
    integer type. 
 
    The lua_call function makes an unsecured call. He is analogous 
 
    lua_pcall is hygienic , but it passes the errors above rather than returning the code 
 
    errors. When you write the main application code, you better not 
 
    use lua_call as you want to catch any errors. 
 
    However, when you write functions, it is better to use exactly 
 
    lua_call ; if an error occurs, then we will leave it for someone, 
 
    to whom it is important. 
 
      
 
    28.2. Working with strings 
 
    When a C function receives a string argument from Lua, there is 
 
    there are only two rules that need to be followed: do not remove 
 
    string off the stack when working with it and never modify the string. 
 
    The situation gets more complicated when C functions need to be created 
 
    string to return it to Lua. C code should worry 
 
    about buffer allocation / deallocation, buffer overflow, etc. 
 
    at least the Lua API provides several functions for this. 
 
    The Standard API provides assistance in two of the most common 
 
    common operations: substring extraction and concatenation 
 
    lines. When you select a substring remember that lua_pushlstring po- 
 
    takes the length of the string as an optional argument. So if you 
 
    want to pass Lua substring of string s with characters at positions from i 
 
    up to j (inclusive), then all you have to do is: 
 
    lua_pushlstring (L, s + i, j - i + 1); 
 
    As an example, let's say you want a function that breaks down 
 
    emits a string at a given delimiter (one character) and returns 
 
    Creates a table with substrings. For example, calling split (“hi: ho: 
 
    there ”,”: ”) should return the table {“ hi ”,” ho ”,” there ”} . Fox 
 
    Thing 28.2 shows a simple implementation of this function. She doesn't need 
 
    we have additional buffers and it does not impose any restrictions 
 
    on the size of the lines that it can handle. About all 
 
    the buffers are taken care of by Lua itself. 
 
    Listing 28.2. Splitting a string 
 
    static int l_split (lua_State * L) { 
 
    const char * s = luaL_checkstring (L, 1); /* line */ 
 
    const char * sep = luaL_checkstring (L, 2); /* delimiter */ 
 
    const char * e; 
 
    int i = 1; 
 
    lua_newtable (L); / * table with result * / 
 
    / * repeat for each separator * / 
 
    while ((e = strchr (s, * sep))! = NULL) { 
 
    lua_pushlstring (L, s, es); / * substring per stack * / 
 
    lua_rawseti (L, -2, i ++); / * insert into table * / 
 
    s = e + 1; / * go beyond separator * / 
 
    } 
 
    / * insert last substring * / 
 
    lua_pushstring (L, s); 
 
    lua_rawseti (L, -2, i); 
 
    return 1; / * return table * / 
 
    } 
 
    For string concatenation, Lua provides a special function 
 
    in its API called lua_concat . It is equivalent to opera- 
 
    torus of concatenation .. in Lua; it converts numbers to strings and when 
 
    calls metamethods if necessary. Moreover, she can immediately 
 
    concatenate more than two lines. Calling lua_concat (L, n) concatenate 
 
    pops (popping from the stack) n values and puts the result on top 
 
    stack. 
 
    Another useful function is lua_pushfstring : 
 
    const char * lua_pushfstring (lua_State * L, const char * fmt, ...); 
 
    It is somewhat similar to the sprintf function in that it creates a string 
 
    ku by format string and additional arguments. However, in excellent 
 
    from sprintf , you don't need to provide a buffer. Lua dynamically 
 
    creates a string for you as large as needed. This function 
 
    pushes the resulting string onto the stack and returns a pointer to 
 
    her. You don't need to worry about buffer overflows. 
 
    Currently, this function only supports the following 1 formats : 
 
    % s 
 
    Insert null terminated string 
 
    % d 
 
    Insert integer 
 
    % f 
 
    Insert Lua number i.e. double 
 
    % p 
 
    Insert Pointer 
 
    % c 
 
    Insert integer as character 
 
    %% 
 
    Insert character '%' 
 
    No modifiers supported such as width 
 
    or accuracy. 
 
    Both lua_concat and lua_pushfstring are useful when we want to 
 
    concatenate only a few lines. However, if we need to connect 
 
    many lines (or characters) together, then do it one at a time 
 
    can be quite inefficient, as we saw in section 11.6. 
 
    In this case, we can use the buffers provided by 
 
    auxiliary library. 
 
    In the simplest case, buffers work like two functions: one 
 
    gives you a buffer of any size where you can write your string; 
 
    the other converts the buffer to a string in Lua 2 . Listing 28.3 showing 
 
    Can't use these functions by implementing the function 
 
    string.upper directly from the original lstrlib.c file . The first step 
 
    using the buffer from the auxiliary library is 
 
    the phenomenon of a variable of type luaL_Buffer . The next step is 
 
    call luaL_buffinitsize to get a pointer to a buffer with a given 
 
    new size; then you can use this buffer to create- 
 
    his line. The last step is to call luaL_pushresultsize 
 
    to convert the contents of the buffer to a new Lua string on ver- 
 
    the stack bus. The size in this call is the final size of the string. 
 
    (Often, as in our example, this size is equal to the size of the buffer, but it 
 
    maybe less. If you do not know the exact size of the resulting 
 
    string, but you have its maximum size, then you can order 
 
    larger buffer.) 
 
      
 
    Listing 28.3. String.upper function 
 
    static int str_upper (lua_State * L) { 
 
    size_t l; 
 
    size_t i; 
 
    luaL_Buffer b; 
 
    const char * s = luaL_checklstring (L, 1, & l); 
 
    char * p = luaL_buffinitsize (L, & b, l); 
 
    for (i = 0; i <l; i ++) 
 
    p [i] = toupper (uchar (s [i])); 
 
    luaL_pushresultsize (& b, l); 
 
    return 1; 
 
    } 
 
      
 
    Note that the luaL_pushresultsize function is not 
 
    takes the Lua state as its first argument. After 
 
    the initialization buffer stores a reference to the state, so we don't 
 
    you need to pass it when calling other functions to work with 
 
    buffers. 
 
    We can also use these buffers without knowing the maximum 
 
    the length of the resulting string. Listing 28.4 shows a simplified re- 
 
    lisation of the table.concat function . In this function, we first call 
 
    Vai luaL_buffinit to initialize the buffer. Then we add 
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    to the buffer elements one by one, in this case using the function 
 
    luaL_addvalue . Finally, luaL_pushresult releases the buffer and 
 
    Places the summary line at the top of the stack. 
 
    Listing 28.4. Simplified implementation of table.concat 
 
    static int tconcat (lua_State * L) { 
 
    luaL_Buffer b; 
 
    int i, n; 
 
    luaL_checktype (L, 1, LUA_TTABLE); 
 
    n = luaL_len (L, 1); 
 
    luaL_buffinit (L, & b); 
 
    for (i = 1; i <= n; i ++) { 
 
    lua_rawgeti (L, 1, i); / * get row from table * / 
 
    luaL_addvalue (b); / * add it to the buffer * / 
 
    } 
 
    luaL_pushresult (& b); 
 
    return 1; 
 
    } 
 
    The helper library provides several functions 
 
    to add values to the buffer: function luaL_addvalue to- 
 
    Adds the Lua string that is at the top of the stack; function 
 
    luaL_addlstring adds strings with the specified length; function 
 
    luaL_addstring adds a null terminated string and 
 
    the luaL_addchar function adds single characters. These functions 
 
    tions have the following prototypes: 
 
    void luaL_buffinit (lua_State * L, luaL_Buffer * B); 
 
    void luaL_addvalue (luaL_Buffer * B); 
 
    void luaL_addlstring (luaL_Buffer * B, const char * s, size_t l); 
 
    void luaL_addstring (luaL_Buffer * B, const char * s); 
 
    void luaL_addchar (luaL_Buffer * B, char c); 
 
    void luaL_pushresult (luaL_Buffer * B); 
 
    When you use a buffer, pay attention to the following. 
 
    After initializing the buffer, it stores some auxiliary 
 
    results on the Lua stack. Therefore, you cannot assume 
 
    that the top of the stack will remain where it was before you put 
 
    use a buffer. You can use the stack for others 
 
    tasks while working with a buffer, the main thing is that calls to push and pop 
 
    were balanced every time you use the buffer. Ex- 
 
    the key to this rule is the luaL_addvalue function , which 
 
    paradise assumes that the line to be added to the buffer was 
 
    pushed to the top of the stack. 
 
      
 
      
 
    28.3. Saving statein C functions 
 
    Often C functions need to store some kind of non-local data, 
 
    that is, data that will survive the current function call. In C we 
 
    usually we use global (extern) or static variables- 
 
    for this purpose. However, when you write library functions 
 
    for Lua, then using global or static variables 
 
    not a good solution. First, you cannot save 
 
    an arbitrary Lua value in a C variable. Secondly, the library, 
 
    which uses such variables will not work correctly with 
 
    multiple Lua states. 
 
    A Lua function has two basic places where you can store non-lightweight 
 
    local data: global variables and non-local variables. 
 
    The C API also provides two basic storage locations for non-local 
 
    data: registry and values associated with the function (upvalue). 
 
    The registry is a global table that can be accessed 
 
    only with a C 3 code . Typically the registry is used to 
 
    storage of data that will be used by several 
 
    modules. If you need to save data only for your mo- 
 
    dul or functions, then you must use the values associated 
 
    with function. 
 
      
 
    Registry 
 
    The registry is usually located at a pseudo-index , the value of which is defined 
 
    divided as LUA_REGISTRYINDEX . The pseudo-index looks like an index 
 
    on the stack, except that the associated values are not 
 
    walk on the stack. Most of the functions in the Lua API that accept 
 
    take indices as arguments, they also accept pseudoin- 
 
    dexes - except for those functions that change the stack, such 
 
    like lua_remove and lua_insert . For example, in order to get 
 
    the value associated with the "Key" in the registry, we can use 
 
    make the following call: 
 
    lua_getfield (L, LUA_REGISTRYINDEX, “Key”); 
 
    The registry is just a regular Lua table. Accordingly, you can for 
 
    to call it, use any Lua value other than nil . One- 
 
    3 
 
    In fact, the registry can also be accessed from Lua using a function from the debugger. 
 
    in the debug.getregistry sub-library. 
 
    but since all C modules share the same registry, you 
 
    must be very careful in choosing the values that you will use 
 
    use as keys in order to avoid possible conflicts 
 
    Comrade String keys are especially handy when you want to allow 
 
    other modules access your data, since everything they 
 
    need is the name. There is no completely reliable method for 
 
    bunch of keys, but there are some proven approaches, 
 
    such as not using common names and starting your 
 
    names with the library name or something like it. (Prefixes like 
 
    lua and lualib are not good options.) 
 
    You should never use numbers as keys 
 
    registry, since such keys are reserved for the system 
 
    links (reference system). This system consists of a pair of functions in 
 
    helper libraries that allow you to save 
 
    readings in the table without worrying about the uniqueness of the keys. Function 
 
    luaL_ref creates new links: 
 
    int r = luaL_ref (L, LUA_REGISTRYINDEX); 
 
    This call will pop the value from the top of the stack, store it in a table 
 
    face at the new integer index and will return that index. By- 
 
    Daubney indexes are called links (reference). 
 
    As the name suggests, we will use links mainly for 
 
    when we need to store a Lua value inside a struct 
 
    ry C. As we have already seen, we should never memorize a pointer 
 
    whether to Lua strings outside of the C function that received them. More 
 
    Moreover, Lua doesn't even offer pointers to other objects such as 
 
    tables or functions. Therefore, we cannot refer to objects 
 
    Lua with pointers. Instead, when we need that- 
 
    these are pointers, we will create links and store them in C. 
 
    To put the value associated with the reference r to 
 
    stack, we just use the following piece of code: 
 
    lua_rawgeti (L, LUA_REGISTRYINDEX, r); 
 
    Finally, in order to release both meaning and reference, we 
 
    call luaL_unref : 
 
    luaL_unref (L, LUA_REGISTRYINDEX, r); 
 
    After that, a new call to luaL_ref can return the same 
 
    link. 
 
    The referencing system treats nil as a special case. When we call 
 
    Vai luaL_ref for the value of nil , a new link is created, and instead 
 
    this returns the constant LUA_REFNIL . The next call to sa- 
 
    Actually does nothing: 
 
    luaL_unref (L, LUA_REGISTRYINDEX, LUA_REFNIL); 
 
    The next call pushes nil onto the stack , as expected: 
 
    lua_rawgeti (L, LUA_REGISTRYINDEX, LUA_REFNIL); 
 
    The reference system also defines the constant LUA_NOREF, which 
 
    is an integer other than any link. She is useful 
 
    in order to mark links as destroyed / uninitialized- 
 
    dyed. 
 
    Another reliable method for generating registry keys is 
 
    using a static variable as a key address in your 
 
    In the same code: the linker guarantees that this address is unique. 
 
    In order to use this option, you need the function 
 
    lua_pushlightuserdata , which pushes a value onto the Lua stack, 
 
    which is a pointer to C. The following code shows 
 
    how to save and retrieve a string from the registry using this method 
 
    Yes: 
 
    / * variable with unique address * / 
 
    static char Key = 'k'; 
 
    / * remember the line * / 
 
    lua_pushlightuserdata (L, (void *) & Key); / * push address * / 
 
    lua_pushstring (L, myStr); / * push value * / 
 
    lua_settable (L, LUA_REGISTRYINDEX); / * registry [& Key] = myStr * / 
 
    / * get string * / 
 
    lua_pushlightuserdata (L, (void *) & Key); / * push address * / 
 
    lua_gettable (L, LUA_REGISTRYINDEX); / * get value * / 
 
    myStr = lua_tostring (L, -1); / * convert it to string * / 
 
    We will discuss in more detail the use of the userdata type in 
 
    case 29.5. 
 
    In order to simplify the use of variable addresses in the 
 
    as unique keys, Lua 5.2 introduces two new functions: lua_ 
 
    rawgetp and lua_rawsetp . They are like lua_rawgeti / lua_rawseti , 
 
    but instead of integers, they use pointers (translated to 
 
    userdata ) as keys. Using them, we can rewrite 
 
    the previous code is as follows: 
 
    static char Key = 'k'; 
 
    / * remember the line * / 
 
    lua_pushstring (L, myStr); 
 
    lua_rawsetp (L, LUA_REGISTRYINDEX, (void *) & Key); 
 
    / * get string * /9 
 
    lua_rawgetp (L, LUA_REGISTRYINDEX, (void *) & Key); 
 
    myStr = lua_tostring (L, -1); 
 
      
 
    Function related values 
 
    While the registry offers global variables, the mechanism 
 
    values associated with functions offers an analogue of static-variables- 
 
    in C, which are visible only inside a separate function. Each 
 
    time when you create a new C function in Lua you can bind 
 
    with it any number of similar values; every such value 
 
    is a Lua value. Then, when the function is called, it 
 
    accesses any of these values freely using 
 
    pseudo-indices. 
 
    We call this relationship functions in C with their values za- 
 
    closures (closure). The C closure is analogous to the Lua closure 
 
    for the C language. In particular, you can create various closures- 
 
    using the same function code, but different associated values 
 
    cheniya. 
 
    As a simple example, let's write a function 
 
    newCounter in C 4 . This function is a factory: it returns 
 
    Creates a new counting function each time it is called. Although everyone is like that 
 
    functions have the same C code, each of them stores its own 
 
    own counter. This factory function looks like this 
 
    way: 
 
      
 
    static int counter (lua_State * L); / * forward declaration * / 
 
    int newCounter (lua_State * L) { 
 
    lua_pushinteger (L, 0); 
 
    lua_pushcclosure (L, & counter, 1); 
 
    return 1; 
 
    } 
 
      
 
    The main function here is lua_pushcclosure , which co- 
 
    creates a new closure. Its second argument is the base function. 
 
    ration (in the example this is counter ), and the third argument is a number 
 
    associated values (in the example, this is 1). Before creating a new job 
 
    we have to put the initial values for the related 
 
    values on the stack. In our example, we put 0 as the initial 
 
    value for the only associated value. As expected, 
 
    lua_pushcclosure leaves a new closure on the stack, so 
 
    the closure is already ready to return as the result of newCounter . 
 
    Let's now take a look at the definition of the counter function : 
 
      
 
    static int counter (lua_State * L) { 
 
    int val = lua_tointeger (L, lua_upvalueindex (1)); 
 
    lua_pushinteger (L, ++ val); / * new value * / 
 
    lua_pushvalue (L, -1); / * duplicate it * / 
 
    lua_replace (L, lua_upvalueindex (1)); / * update value * / 
 
    return 1; / * return new value * / 
 
    } 
 
    The key element here is the lua_upvalueindex macro , 
 
    which returns the pseudo-index of the associated value. In part 
 
    Nost expression lua_upvalueindex (1) returns the pseudo 
 
    the first associated value of the current function. This pseudo-index 
 
    looks like any index on the stack, only it's not on the stack. 
 
    Therefore, the call to lua_tointeger returns the current value first 
 
    th (and only) associated value as a number. Then the function 
 
    pushes the new value ++ val onto the stack, makes a copy of it, and 
 
    uses one of the copies to replace the associated value 
 
    nie. Finally, it returns another copy as its value. 
 
    As a more complex example, we will implement tuples 
 
    using associated values. A tuple is something like a constant 
 
    Yanny records with anonymous fields; you can get specific 
 
    new field by index or you can get all fields at once. In our 
 
    implementations, we will represent tuples as functions that 
 
    remember their values in related values. When the function 
 
    called with a numeric argument, then it returns the specific field. 
 
    When called with no arguments, it returns all fields. Next 
 
    The following code demonstrates the use of tuples: 
 
    x = tuple.new (10, “hi”, {}, 3) 
 
    print (x (1)) -> 10 
 
    print (x (2)) -> hi 
 
    print (x ()) -> 10 hi table: 0x8087878 3 
 
    In C, we represent all tuples using the same 
 
    the t_tuple function , shown in Listing 28.5. Since we can 
 
    let's call a tuple with a numeric argument or without 
 
    arguments, the t_tuple function uses luaL_optint to 
 
    reading an optional argument. LuaL_optint function is like 
 
    luaL_checkint , but if the argument is absent, then it simply 
 
    returns the specified default value (in the example it is 0). 
 
    Listing 28.5. Implementing tuples 
 
    int t_tuple (lua_State * L) { 
 
    int op = luaL_optint (L, 1, 0);1 
 
    if (op == 0) {/ * no arguments? * / 
 
    int i; 
 
    / * push each associated value onto the stack * / 
 
    for (i = 1;! lua_isnone (L, lua_upvalueindex (i)); i ++) 
 
    lua_pushvalue (L, lua_upvalueindex (i)); 
 
    return i - 1; / * number of values on the stack * / 
 
    } 
 
    else {/ * get the 'op' field * / 
 
    luaL_argcheck (L, 0 <op, 1, “index out of range”); 
 
    if (lua_isnone (L, lua_upvalueindex (op))) 
 
    return 0; / * no field * / 
 
    lua_pushvalue (L, lua_upvalueindex (op)); 
 
    return 1; 
 
    } 
 
    } 
 
    int t_new (lua_State * L) { 
 
    lua_pushcclosure (L, t_tuple, lua_gettop (L)); 
 
    return 1; 
 
    } 
 
    static const struct luaL_Reg tuplelib [] = { 
 
    {“New”, t_new}, 
 
    {NULL, NULL} 
 
    }; 
 
    int luaopen_tuple (lua_State * L) { 
 
    luaL_newlib (L, tuplelib); 
 
    return 1; 
 
    } 
 
      
 
    When we refer to a non-existent associated value, 
 
    the result is a pseudo-value of type LUA_TNONE . (When we 
 
    accessing the value above the top of the stack, then we also get 
 
    pseudo-value of type LUA_TNONE .) Therefore, our function t_tuple 
 
    uses lua_isnone to check if there is a corresponding value 
 
    reading. However, we should never call lua_upvalueindex 
 
    with a negative index, so we must check this when 
 
    yes the index is provided by the user. LuaL_argcheck function 
 
    checks for any given value, throwing an error if needed 
 
    availability. 
 
    Function for creating t_new tuples (also in Listing 28.5) 
 
    trivial: since all of her arguments are already on the stack, she just 
 
    binds lua_pushcclosure to create a circuit using their 
 
    arguments as bound values. Finally, the tubplelib array and 
 
    the luaopen_tuple function (also in Listing 28.5) are standard 
 
    code to create a tuple library with a single function 
 
    new . 
 
      
 
    The values associated with the function are 
 
    used by multiple functions 
 
    Quite often we need to give access to multiple values or 
 
    variables to all functions of this module. Although we can use 
 
    call the registry for this purpose, we can also use values 
 
    related to functions. 
 
    Unlike Lua closures, C closures cannot be shared. 
 
    associated values. Each closure has its own independent 
 
    related values. However, we can make it so that 
 
    values of several functions will point to the same 
 
    table, so this table becomes the environment where everything 
 
    these functions can store general data. 
 
    Lua 5.2 has a feature that makes the task of separating connections easier. 
 
    value between all library functions. We are open 
 
    Get C libraries with luaL_newlib . Lua implements this 
 
    function with the following macro: 
 
    #define luaL_newlib (L, l) \ 
 
    (luaL_newlibtable (L, l), luaL_setfuncs (L, l, 0)) 
 
    The luaL_newlibtable macro simply creates a table for the library. 
 
    theca. (We could have used lua_newtable as well , but this macro 
 
    uses lua_createtable to create a table with pre-emitted 
 
    small size, optimal for the number of functions in this library 
 
    lioteke.) Function luaL_setfuncs adds features from the list l to 
 
    a new table at the top of the stack. 
 
    We are interested in the third parameter of the luaL_setfuncs function here . 
 
    It tells how many related values the functions will have. 
 
    libraries. Initial values for these related values 
 
    must be on the stack, as with lua_pushc- 
 
    closure . Thus, to create a library where functions will be 
 
    are supposed to have a common table as the only associated value, we 
 
    we can use the following code: 
 
    / * create a table for the library ('lib' is a list of its functions) * / 
 
    luaL_newlibtable (L, lib); 
 
    / * create shared value * / 
 
    lua_newtable (L); 
 
    / * add functions from the 'lib' list to the new library, so * / 
 
    / * they will all have this table as their associated value * / 
 
    luaL_setfuncs (L, lib, 1) 
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    The last call also pops the table off the stack, leaving 
 
    just a new library. 
 
      
 
    Exercises 
 
    Exercise 28.1. Write a C function filter . She gets- 
 
    takes a list and a function as input and returns all elements from 
 
    a given list for which the function returns true 
 
    value: 
 
    t = filter ({1, 3, 20, -4, 5}, function (x) return x <5 end) 
 
    - t = {1, 3, -4} 
 
    Exercise 28.2. Modify the l_split function (from Listing 28.2) 
 
    so that it can work with lines containing well- 
 
    left byte. (Apart from other changes, it must also 
 
    use memchr instead of strchr .) 
 
    Exercise 28.3. Implement the transliterate function (exercise 
 
    21.3) on C. 
 
    Exercise 28.4. Implement a library with modified functionality 
 
    it transliterate so that replacement of the table is not transmitted as 
 
    argument, but is stored by the library itself. Your library 
 
    should provide the following features: 
 
    lib.settrans (table) - set the replacement table 
 
    lib.gettrans () - return replacement table 
 
    lib.tranliterate (s) - translate 's' using the current table 
 
    Use a registry to store the replacement table. 
 
    Exercise 28.5. Repeat the previous exercise using 
 
    specifying the associated value to store the table. 
 
    Exercise 28.6. Do you think it is a good design to store 
 
    the replacement table as part of the library state, rather than passing 
 
    to use it as a parameter? 
 
    Exercises 
 
      
 
    Chapter 29 
 
    Asked user-defined types in C 
 
    In the previous chapter, we saw how to extend Lua with new 
 
    functions written in C. Now we will see how to extend 
 
    Lua with the new types defined in C. We'll start with a little 
 
    th example; throughout this chapter, we will expand it with 
 
    help of metamethods and other possibilities. 
 
    Our example will be pretty simple: an array of logical (boolean 
 
    out) values. Such a simple structure was chosen because with it 
 
    does not involve any complex algorithms and we can completely 
 
    concentrate on API. Nevertheless, this example is still 
 
    useful. Of course in Lua we can use tables 
 
    to implement arrays of boolean values. But in implementation on 
 
    With we will use one bit for each element, that is 
 
    we only need about 3% of the memory that would be needed- 
 
    for the corresponding table. 
 
    For our implementation, we need the following definitions: 
 
    #include <limits.h> 
 
    #define BITS_PER_WORD (CHAR_BIT * sizeof (unsigned int)) 
 
    #define I_WORD (i) ((unsigned int) (i) / BITS_PER_WORD) 
 
    #define I_BIT (i) (1 << ((unsigned int) (i)% BITS_PER_WORD)) 
 
    The BITS_PER_WORD constant is the number of bits in an unsigned string. 
 
    scrap number. Macro I_WORD evaluates a word that contains a bit 
 
    at the given index, and the macro I_BIT calculates the bit mask for 
 
    corresponding bit. 
 
    We will represent our arrays with the following 
 
    structures: 
 
    typedef struct NumArray { 
 
    int size; 
 
    unsigned int values [1]; / * mutable part * / 
 
    } NumArray; 
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    We are declaring a values array of size 1, since C89 is not 
 
    allows you to declare arrays with size 0; in fact we will 
 
    allocate the required number of elements when allocating memory for 
 
    our array. The following expression calculates the total size for 
 
    our bitmap with n elements: 
 
    sizeof (NumArray) + I_WORD (n - 1) * sizeof (unsigned int) 
 
    (We subtract one from n , since in our structure we already 
 
    allocated space for one element.) 
 
      
 
      
 
    29.1. User data (userdata) 
 
    Our first task is to represent the structure 
 
    NumArray in Lua. Lua provides a special base type for 
 
    this: userdata . This type simply corresponds to an area, memory in 
 
    so we can store anything without any specific 
 
    operations. 
 
    The lua_newuserdata function allocates a block of memory for a given time 
 
    measure, pushes the corresponding Lua value onto the stack and returns 
 
    dedicated block address: 
 
    void * lua_newuserdata (lua_State * L, size_t size); 
 
    If for some reason you need to allocate a block of memory 
 
    otherwise, you can easily create the corresponding object 
 
    Lua with pointer size and remember there pointer to allocated 
 
    block. We will discuss this technique in Chapter 30. 
 
    Using the lua_newuserdata function, the function to create new 
 
    out arrays of boolean values looks like this: 
 
    static int newarray (lua_State * L) { 
 
    int i; 
 
    size_t nbytes; 
 
    NumArray * a; 
 
    int n = luaL_checkint (L, 1); 
 
    luaL_argcheck (L, n> = 1, 1, “invalid size”); 
 
    nbytes = sizeof (NumArray) + I_WORD (n - 1) * sizeof (unsigned int); 
 
    a = (NumArray *) lua_newuserdata (L, nbytes); 
 
    a-> size = n; 
 
    for (i = 0; i <= I_WORD (n - 1); i ++) 
 
    a-> values [i] = 0; / * initialize the array * / 
 
    return 1; / * the new object is already on the stack * / 
 
    } 
 
      
 
    Once the newarray function is registered in Lua, we can 
 
    create new arrays using expressions like: a = array. 
 
    new (1000) . 
 
    In order to write a value to our array, we will use 
 
    Call expressions of the form: array.set (a, index, value) . Later we 
 
    see how you can use metatables to support more 
 
    the traditional syntax is a [index] = value . In both cases 
 
    the function that writes the element to the array is the same. we 
 
    we assume that, as is customary in Lua, indices start at 1: 
 
    static int setarray (lua_State * L) { 
 
    NumArray * a = (NumArray *) lua_touserdata (L, 1); 
 
    int index = luaL_checkint (L, 2) - 1; 
 
    luaL_argcheck (L, a! = NULL, 1, “'array' expected”); 
 
    luaL_argcheck (L, 0 <= index && index <a-> size, 2, 
 
    “Index out of range”); 
 
    luaL_checkany (L, 3); 
 
    if (lua_toboolean (L, 3)) 
 
    a-> values [I_WORD (index)] | = I_BIT (index); / * set a bit * / 
 
    else 
 
    a-> values [I_WORD (index)] & = ~ I_BIT (index); / * remove a bit * / 
 
    return 0; 
 
    } 
 
    Since Lua can be used as a boolean 
 
    to call any value, then we use luaL_checkany to 
 
    to make sure there is some value for this parameter. 
 
    If we call setarray with incorrect arguments, then we will 
 
    we get the corresponding error messages: 
 
    array.set (0, 11, 0) 
 
    -> stdin: 1: bad argument # 1 to 'set' ('array' expected) 
 
    array.set (a, 1) 
 
    -> stdin: 1: bad argument # 3 to 'set' (value expected) 
 
    The following function returns the value at the given index: 
 
    static int getarray (lua_State * L) { 
 
    NumArray * a = (NumArray *) lua_touserdata (L, 1); 
 
    int index = luaL_checkint (L, 2) - 1; 
 
    luaL_argcheck (L, a! = NULL, 1, “'array' expected”); 
 
    luaL_argcheck (L, 0 <= index && index <a-> size, 2, 
 
    “Index out of range”); 
 
    lua_pushboolean (L, a-> values [I_WORD (index)] & I_BIT (index)); 
 
    return 1; 
 
    } 
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    We will define a separate function to return 
 
    array size: 
 
    static int getsize (lua_State * L) { 
 
    NumArray * a = (NumArray *) lua_touserdata (L, 1); 
 
    luaL_argcheck (L, a! = NULL, 1, “'array' expected”); 
 
    lua_pushinteger (L, a-> size); 
 
    return 1; 
 
    } 
 
    Finally, we need additional code to initialize 
 
    our library: 
 
    static const struct luaL_Reg arraylib [] = { 
 
    {“New”, newarray}, 
 
    {“Set”, setarray}, 
 
    {“Get”, getarray}, 
 
    {“Size”, getsize}, 
 
    {NULL, NULL} 
 
   
  
 

 }; 
 
    int luaopen_array (lua_State * L) { 
 
    luaL_newlib (L, arraylib); 
 
    return 1; 
 
    } 
 
    Again we use the luaL_newlib function from the helper 
 
    libraries. She creates a table and populates it with name-function pairs. 
 
    set by the array arraylib . 
 
    After opening the library, we are ready to use our new 
 
    type in Lua: 
 
      
 
    a = array.new (1000) 
 
    print (a)  
 
    -> userdata: 0x8064d48 
 
    print (array.size (a))  
 
    -> 1000 
 
    for i = 1, 1000 do 
 
    array.set (a, i, i% 5 == 0) 
 
    end 
 
    print (array.get (a, 10))  
 
    -> true 
 
      
 
    29.2. Metatables 
 
    Our current implementation has a big security problem. 
 
    thu. Let's say the user writes something like a rray.set (io. 
 
    stdin, 1, false) . The io.stdin value is an object of type userdata with 
 
    a pointer to FILE . Due to the fact that this is also a userdata value , 
 
    then array.set will take it as a valid argument; as a result 
 
    we will most likely get a write to an arbitrary memory location (if 
 
    we are very lucky, we will only receive a message about the recording by 
 
    invalid index). This behavior is unacceptable for any 
 
    fight the Lua library. No matter how you use the library 
 
    edema, we shouldn't write something to an arbitrary memory address 
 
    (or cause the entire application to crash). 
 
    The usual way to distinguish one type of userdata object from another is 
 
    Go is to define a unique metatable for this type. Each 
 
    time when we create an object of type userdata , we expose it to 
 
    the corresponding metatable; every time we get an object 
 
    of type userdata , we check that it has the correct metatable. 
 
    Since Lua code cannot change the metatable for objects 
 
    type userdata , we are guaranteed to be fine. 
 
    We also need a place to store this metatable. 
 
    so that we can refer to it when creating new objects and 
 
    checks whether an object of type userdata has the type we need. Like us 
 
    said earlier, there are two options for storing the metatable: in the registry 
 
    or as a bound value for functions in a library. In Lua, when- 
 
    It is easy to register each new C type in the registry using 
 
    the type name as the index and the metatable as its corresponding 
 
    values. As with any other indexes in the registry, we 
 
    should choose the type name carefully to avoid possible 
 
    conflicts. In our example, we will use the name 
 
    “LuaBook.array” . 
 
    As usual, the helper library provides us with the functionality 
 
    tion. These new helper functions are as follows - 
 
    other functions: 
 
    int luaL_newmetatable (lua_State * L, const char * tname); 
 
    void luaL_getmetatable (lua_State * L, const char * tname); 
 
    void * luaL_checkudata (lua_State * L, int index, 
 
    const char * tname); 
 
    LuaL_newmettable function creates a new table (which will 
 
    det our metatable), puts it on the top of the stack and links 
 
    a table with a given name in the registry. LuaL_getmetatable function 
 
    returns the metatable associated with tname in the registry. At the same time 
 
    nets, the luaL_checkudata function checks that the object at the given 
 
    place on the stack is an object of type userdata with a metatable, with 
 
    corresponding to the given name. It raises an error if the object 
 
    that other metatable (or it doesn't exist) or is it not an object of type userdata ; 
 
    otherwise, it returns the address of the object. 
 
    Now we can start our implementation. The first step would be 
 
    changing the function that opens our library. New ver- 
 
    This should create a metatable for our arrays: 
 
    int luaopen_array (lua_State * L) { 
 
    luaL_newmetatable (L, “LuaBook.array”); 
 
    luaL_newlib (L, arraylib); 
 
    return 1; 
 
    } 
 
    The next step is to change the newarray function to be 
 
    all at once so that it sets the metatable for the created mas- 
 
    Sivov: 
 
    static int newarray (lua_State * L) { 
 
    <as before> 
 
    luaL_getmetatable (L, “LuaBook.array”); 
 
    lua_setmetatable (L, -2); 
 
    return 1; / * the new object is already on the stack * / 
 
    } 
 
    The lua_setmetatable function pops a table off the stack and sets 
 
    casts it as a metatable for an object on the stack by request 
 
    given index. In our case, this object is the created 
 
    an object of type userdata . 
 
    Finally, the setarray , getarray and getsize functions need to know 
 
    did they actually get a valid array as their 
 
    th first argument. To simplify this task, we will define 
 
    next macro: 
 
    #define checkarray (L) \ 
 
    (NumArray *) luaL_checkudata (L, 1, “LuaBook.array”) 
 
    Using this macro, the new getsize implementation becomes 
 
    very simple: 
 
    static int getsize (lua_State * L) { 
 
    NumArray * a = checkarray (L); 
 
    lua_pushinteger (L, a-> size); 
 
    return 1; 
 
    } 
 
    Since setarray and getarray share common code to check 
 
    index as our second argument, we will place the common parts in the next 
 
    blowing function: 
 
    static unsigned int * getindex (lua_State * L, 
 
    unsigned int * mask) { 
 
    NumArray * a = checkarray (L); 
 
    int index = luaL_checkint (L, 2) - 1; 
 
    luaL_argcheck (L, 0 <= index && index <a-> size, 2, 
 
    “Index out of range”); 
 
    / * return the address of the element * / 
 
    * mask = I_BIT (index); 
 
    return & a-> values [I_WORD (index)]; 
 
    } 
 
    Following are the resulting implementations of setarray and getarray : 
 
    static int setarray (lua_State * L) { 
 
    unsigned int mask; 
 
    unsigned int * entry = getindex (L, & mask); 
 
    luaL_checkany (L, 3); 
 
    if (lua_toboolean (L, 3)) 
 
    * entry | = mask; 
 
    else 
 
    * entry & = ~ mask; 
 
    return 0; 
 
    } 
 
    static int getarray (lua_State * L) { 
 
    unsigned int mask; 
 
    unsigned int * entry = getindex (L, & mask); 
 
    lua_pushboolean (L, * entry & mask); 
 
    return 1; 
 
    } 
 
      
 
    Now if you try to do something like array. 
 
    get (io.stdin, 10) , then you will receive a corresponding message about 
 
    error: 
 
      
 
    error: bad argument # 1 to 'get' ('array' expected) 
 
      
 
    29.3. Object- oriented access 
 
    Our next step will be to convert our new type to an object 
 
    ect so that we can work with it using object-oriented 
 
    tied syntax as shown below: 
 
      
 
    a = array.new (1000) 
 
    print (a: size ())  
 
    -> 1000 
 
    a: set (10, true) 
 
    print (a: get (10))  
 
    -> true 
 
      
 
    Recall that a: size () is the same as a.size (a) . So- 
 
    we must make it so that a.size returns our function 
 
    getsize . The key mechanism here is the __index metamethod .41 
 
    For tables, Lua calls this metamethod when it cannot find 
 
    values for the given key. For objects of type Lua userdata, you- 
 
    calls it every time it is accessed, since such objects have 
 
    there are no keys yet. 
 
    Let's assume we ran the following code: 
 
    local metaarray = getmetatable (array.new (1)) 
 
    metaarray .__ index = metaarray 
 
    metaarray.set = array.set 
 
    metaarray.get = array.get 
 
    metaarray.size = array.size 
 
    In the first line, we create an array just to get 
 
    read its metatable, which we write to metarray . (We are not 
 
    we can set the metatable of an object of type userdata from Lua, but we 
 
    can get it.) Then we set the metaarray .__ index 
 
    equal to metaarray . Then when we execute a.size , Lua cannot 
 
    can find the key size in object a , since it is an object of type user- 
 
    data . So Lua tries to get this value from the __index field 
 
    metatable a , which is the same as the metaarray itself . But metaar- 
 
    ray.size is array.size , so a.size (a) returns array. 
 
    size (a) , which is what we wanted. 
 
    Of course we can do the same in C. We can do 
 
    even better: now that arrays are objects with their 
 
    our own operations, we no longer need to have these operations 
 
    tions in the array table . The only function from our library, 
 
    which we have to pass out is the new function to create 
 
    new arrays. All other operations will be available only 
 
    as methods. The C code can register them itself. 
 
    The getsize , getarray and setarray operations will not change compared to 
 
    with our previous approach. All that will change is how 
 
    we will register them. To do this, we need to change the code that 
 
    opens the library. First, we need two separate lists 
 
    functions: one for regular functions and one for methods. 
 
    static const struct luaL_Reg arraylib_f [] = { 
 
    {“New”, newarray}, 
 
    {NULL, NULL} 
 
    }; 
 
    static const struct luaL_Reg arraylib_m [] = { 
 
    {“Set”, setarray}, 
 
    {“Get”, getarray}, 
 
    {“Size”, getsize}, 
 
    {NULL, NULL} 
 
    }; 
 
      
 
    The new version of the opening function luaopen_array should match 
 
    create a metatable, assign it to its own __index field , 
 
    register all methods and create and populate the array table : 
 
    int luaopen_array (lua_State * L) { 
 
    luaL_newmetatable (L, “LuaBook.array”); 
 
    / * metatable .__ index = metatable * / 
 
    lua_pushvalue (L, -1); / * create a copy of the metatable * / 
 
    lua_setfield (L, -2, “__index”); 
 
    luaL_setfuncs (L, arraylib_m, 0); 
 
    luaL_newlib (L, arraylib_f); 
 
    return 1; 
 
    } 
 
    Here we again use luaL_setfuncs to write 
 
    put the functions from arraylib_m into the metatable located on 
 
    top of the stack. We then use luaL_newlib to 
 
    create a new table and register functions from arraylib_f 
 
    (actually just the new function ). 
 
    As a finishing touch, we'll add the __tostring method to 
 
    our type so that print (a) prints "array" and the size of the array 
 
    in parentheses, something like “array (1000)” . The corresponding 
 
    the function is shown below: 
 
    int array2string (lua_State * L) { 
 
    NumArray * a = checkarray (L); 
 
    lua_pushfstring (L, “array (% d)”, a-> size); 
 
    return 1; 
 
    } 
 
    The lua_pushfstring call builds the string and leaves it at the top 
 
    stack. We also have to add array2string to the list of array- 
 
    lib_m , in order to include it in the corresponding metatable- 
 
    tsu: 
 
      
 
    static const struct luaL_Reg arraylib_m [] = { 
 
    {“__Tostring”, array2string}, 
 
    <other methods> 
 
    }; 
 
      
 
      
 
    29.4. Access as usual 
 
    array 
 
    An alternative to the object-oriented way of writing is 
 
    The usual way of working with arrays. Instead of writing a: get (i), we3 
 
    we can just write a [i] . In our example, this is pretty easy. 
 
    do as our setarray and getarray functions are already semi- 
 
    give their arguments in the order in which they should be passed 
 
    to use the appropriate metamethods. A quick fix would be 
 
    define these metamethods right in your Lua code: 
 
    local metaarray = getmetatable (array.new (1)) 
 
    metaarray .__ index = array.get 
 
    metaarray .__ newindex = array.set 
 
    metaarray .__ len = array.size 
 
    (We have to execute this code for our original implementation 
 
    arrays, without modifications for the object-oriented syntax 
 
    sisa.) That's all we need to use the standard syn- 
 
    taxis: 
 
    a = array.new (1000) 
 
    a [10] = true - 'setarray' 
 
    print (a [10]) - 'getarray' -> true 
 
    print (#a) - 'getsize' -> 1000 
 
    If we want this, then we can register these metame- 
 
    todes right in the C code. To do this, we must again change our 
 
    initializing function: 
 
    static const struct luaL_Reg arraylib_f [] = { 
 
    {“New”, newarray}, 
 
    {NULL, NULL} 
 
    }; 
 
    static const struct luaL_Reg arraylib_m [] = { 
 
    {“__Newindex”, setarray}, 
 
    {“__Index”, getarray}, 
 
    {“__Len”, getsize}, 
 
    {“__Tostring”, array2string}, 
 
    {NULL, NULL} 
 
    }; 
 
    int luaopen_array (lua_State * L) { 
 
    luaL_newmetatable (L, “LuaBook.array”); 
 
    luaL_setfuncs (L, arraylib_m, 0); 
 
    luaL_newlib (L, arraylib_f); 
 
    return 1; 
 
    } 
 
      
 
    In this version, we again have only one new function visible to everyone . 
 
    All other functions are available only as metamethods for corresponding 
 
    corresponding operations. 
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
    29.5. Light objects like 
 
    userdata (light userdata) 
 
    The type of objects we have used so far is called full 
 
    userdata . Lua offers another type of userdata object called 
 
    light, - light userdata . 
 
    Such objects are just a pointer in C (i.e. 
 
    value of type void * ). It is a value, not an object; we do not create them 
 
    (just like we don't create numbers). In order to place such 
 
    object on the stack, we call lua_pushlightuserdata : 
 
    void lua_pushlightuserdata (lua_State * L, void * p); 
 
    Despite the common name, full and lightweight objects like 
 
    userdata is actually quite different. Light objects are not 
 
    buffers, just pointers. They don't have metatables. Like numbers, they 
 
    not managed by the garbage collector. 
 
    Sometimes we use the lightweight option as a cheap alternative. 
 
    full-fledged objects of type userdata . However, this is not their typical 
 
    using. First, light objects do not have metatables, so 
 
    we cannot find out their type. Secondly, despite its name 
 
    full-fledged userdata objects are pretty cheap. They add 
 
    They have very little overhead compared to calling malloc . 
 
    The real use of light objects comes from equality. 
 
    A fully-fledged userdata object is equal only to itself. Lay down 
 
    cue object is just a pointer. And as such he 
 
    is equal to any other object of type userdata representing that 
 
    the same pointer. This way we can use the lungs 
 
    objects of type userdata so that C objects are inside Lua. 
 
    We have already seen the typical use of lightweight objects as a key 
 
    whose in the registry (see section 28.3). There the equality of light objects was 
 
    extremely important. Every time we push a light object onto the stack 
 
    with lua_pushlightuserdata , we get the same value 
 
    Lua and, accordingly, the same entry in the registry. 
 
    Another typical scenario is the need to obtain 
 
    a full-fledged userdata object at its address in C. Let's say we 
 
    we organize the connection between Lua and the window system. Then we can use 
 
    use full-fledged userdata objects for presentation 
 
    windows. Each such object contains or the entire structure, representing 
 
    a window, or just a pointer to a structure created by the system. 
 
    When an event occurs inside the window (for example, clicking a button  
 
    mouse), the system calls the appropriate handler that identifies 
 
    quoting the window at its address. In order to pass a Lua handler, 
 
    we have to find an object of type userdata representing the given 
 
    window. In order to find it, we can use the table, 
 
    where indices are light objects containing window addresses, 
 
    and the values are full-fledged objects of the userdata type , 
 
    setting the appropriate windows. If we have a window address, we 
 
    push it onto the stack as a light object of type userdata and use 
 
    its as an index on the table. (Most likely this table should have 
 
    weak values. Otherwise, they will never be collected by the collector. 
 
    garbage.) 
 
      
 
    Exercises 
 
    Exercise 29.1. Modify the setarray implementation so that it 
 
    took only boolean values as input. 
 
    Exercise 29.2. We can consider a boolean array 
 
    as a set of integers (indices that correspond to 
 
    are true values in the array). Add bu- 
 
    left array functions that compute union and 
 
    intersection of two arrays. These functions should receive 
 
    to input two arrays and return a new array without changing 
 
    input arrays. 
 
    Exercise 29.3. Change the implementation of the __tostring metamethod 
 
    so that it shows the full contents of the array by some 
 
    either way. Use buffers (see Section 28.2) to co- 
 
    building the summary line. 
 
    Exercise 29.4. Based on the example with boolean arrays, re- 
 
    Alize the C library for working with arrays of integers 
 
    sat down. 
 
      
 
    Chapter 30 
 
    Resource management 
 
    In our implementation of boolean arrays from the previous chapter, we do not 
 
    worried about resource management. These arrays use 
 
    only memory. Each userdata object that represents a mass 
 
    siv, has its own block of memory, which is managed by Lua. When the array 
 
    becomes garbage (that is, no one stores references to it), Lua with 
 
    will collect it in time and free the occupied memory. 
 
    However, life is not always so easy. Sometimes the object needs others 
 
    resources other than memory such as file descriptors, pointers to 
 
    windows, etc. (often these resources are also memory, but it is controlled 
 
    other part of the system). In such cases, when the object becomes 
 
    curled with garbage, it is necessary to somehow release these resources. 
 
    As we saw in section 17.6, Lua provides a finalizer 
 
    __gc metametode . To show the use 
 
    of this metamethod in C, we implement two libraries in C, providing 
 
    access to external resources. The first example is another re- 
 
    Alization of the function for crawling the contents of the directory. The second (and more 
 
    complex) example is using the Expat library to parse 
 
    XML files. 
 
      
 
      
 
    30.1. Directory iterator 
 
    In section 27.1, we implemented a dir function that returned 
 
    a table with all files from a given directory. Our new reality 
 
    zation will return an iterator that returns a new file each time 
 
    call. Using this implementation, we can iterate over the content 
 
    directory using a loop as shown below: 
 
    for fname in dir.open (“.”) do 
 
    print (fname) 
 
    end 
 
    In order to iterate over the contents of the directory in C, we need 
 
    structure DIR . These structures are created by calling opendir 
 
    and are destroyed by calling closedir . Our previous 
 
    the implementation of the dir function kept this structure as local to 
 
    belt and released when getting the name of the last file. 
 
    Our new implementation cannot store DIRs in local variables- 
 
    noah, since this structure will be needed for a whole series of 
 
    calls. Moreover, we cannot destroy it upon receiving the name 
 
    nor the last file, as the program may prematurely 
 
    get out of the loop, in which case we'll never get to the last 
 
    file. Therefore, in order to ensure that this structure will 
 
    det is always freed, we need to store its address in an object like 
 
    userdata and use the __gc metamethod to free this 
 
    structures. 
 
    Despite its central role in our implementation, this 
 
    an object representing a directory does not have to be 
 
    den from Lua. The dir function returns an iterating function; this is 
 
    whatever Lua sees. The directory can be the associated value of this 
 
    iterating function. In this case, the iterating function will be 
 
    have direct access to this structure, but Lua code to it 
 
    does not have access (and he does not need it). 
 
    In total, we need three functions in C. First, we need dir. 
 
    open is a function that Lua calls to create iterators; it 
 
    should create a DIR structure and an iteration function closure with 
 
    by this structure (as a bound value). Second, we need 
 
    iterating function. Third, we need the __gc metamethod , which 
 
    ry releases the created DIR structure . As usual, we also 
 
    you will need a function for initial setup, such as creating 
 
    and initializing the metatable for the directory. 
 
    Let's start our code with the dir.open function shown in fox 
 
    tinge 30.1. The important point is that this function should 
 
    create a userdata object before opening the directory. Otherwise, if he 
 
    will open the directory first and then calling lua_newuserdata will result in 
 
    error when working with memory, then a memory leak occurs, since 
 
    nobody will release the created structure. With the right order 
 
    the DIR structure , as soon as it is created, is immediately linked to the 
 
    ektu the userdata ; whatever happens after, the __gc metamethod over time 
 
    it will release this structure. 
 
    The next function is dir.iter (Listing 30.2), the iterator itself. 
 
    Its code is pretty simple. It gets the address of the DIR structure from the associated 
 
    value with it and calls readdir to get the next 
 
    values. 
 
    The dir_gc function (also in Listing 30.2) is the __gc metamethod . is he 
 
    frees the generated DIR structure, but you need to be careful: 
 
    since the userdata object is created before opening the directory, but 
 
    even if opendir returns an error, then the userdata object is all 
 
    will be created equal. Therefore, we need to check what is, what 
 
    close. 
 
    The last function in Listing 30.2 is luaopen_dir , a function that 
 
    which opens our library. 
 
    There is one subtlety in the complete example. At first it may seem 
 
    that the function dir_gc needs to know if its argument is valid 
 
    is a directory. Otherwise, the user can call 
 
    its with a different type of userdata object (like file), which will result 
 
    to a serious error. However, a Lua program has no way to 
 
    Refer to this function: it is stored as a metatable of catalogs, 
 
    which, in turn, are stored as associated with the iterating 
 
    value function. Lua programs can't access 
 
    to objects of this type. 
 
      
 
    Listing 30.1. Dir.open function 
 
      
 
    #include <dirent.h> 
 
    #include <errno.h> 
 
    #include <string.h> 
 
    #include “lua.h” 
 
    #include "lauxlib.h" 
 
    / * declare an iteration function * / 
 
    static int dir_iter (lua_State * L); 
 
    static int l_dir (lua_State * L) { 
 
    const char * path = luaL_checkstring (L, 1); 
 
    / * create a userdata object to store the address of the DIR * / 
 
    DIR ** d = (DIR **) lua_newuserdata (L, sizeof (DIR *)); 
 
    / * set metatable * / 
 
    luaL_getmetatable (L, “LuaBook.dir”); 
 
    lua_setmetatable (L, -2); 
 
    / * trying to open the directory * / 
 
    * d = opendir (path); 
 
    if (* d == NULL) / * error opening directory? * / 
 
    luaL_error (L, “cannot open% s:% s”, path, strerror (errno)); 
 
    / * create and return an iteration function; 
 
    its associated value is the userdata object, 
 
    already on the stack * / 
 
    lua_pushcclosure (L, dir_iter, 1); 
 
    return 1; 
 
    } 
 
      
 
      
 
    Listing 30.2. Other functions in the dir library 
 
    static int dir_iter (lua_State * L) { 
 
    DIR * d = * (DIR **) lua_touserdata (L, lua_upvalueindex (1)); 
 
    struct dirent * entry; 
 
    if ((entry = readdir (d))! = NULL) { 
 
    lua_pushstring (L, entry-> d_name); 
 
    return 1; 
 
    } 
 
    else return 0; / * no more values * / 
 
    } 
 
    static int dir_gc (lua_State * L) { 
 
    DIR * d = * (DIR **) lua_touserdata (L, 1); 
 
    if (d) closedir (d); 
 
    return 0; 
 
    } 
 
    static const struct luaL_Reg dirlib [] = { 
 
    {“Open”, l_dir}, 
 
    {NULL, NULL} 
 
    }; 
 
    int luaopen_dir (lua_State * L) { 
 
    luaL_newmetatable (L, “LuaBook.dir”); 
 
    / * set field __gc * / 
 
    lua_pushcfunction (L, dir_gc); 
 
    lua_setfield (L, -2, “__gc”); 
 
    / * create library * / 
 
    luaL_newlib (L, dirlib); 
 
    return 1; 
 
    } 
 
      
 
      
 
    30.2. XML parser 
 
    We now turn to a simplified library implementation for 
 
    links between Lua and the Expat library, which we will call lxp . Ex- 
 
    pat is an open source XML 1.0 parser written in C. It implements 
 
    SAX, that is, a simple API for XML (simple API for XML). SAX is 
 
    event-driven API. This means that the SAX parser is clean 
 
    the XML document melts and tells the application as it reads that it 
 
    finds using user - defined functions-process- 
 
    chikov (callback). For example, if we want Expat to parse 
 
    line like “<tag cap =” 5 ”> hi </tag>” , then it will create three events: 
 
    start event when it reads the line “<tag cap =” 5 ”>” ; event 
 
    text when it reads "hi" , and the end of element event when it reads 
 
    “</tag>” melts . Each of these events triggers a corresponding 
 
    handler in the application. 
 
    We won't cover the entire Expat library here. We focus 
 
    we focus only on those parts that show newer methods of interaction 
 
    Modeling with Lua. While Expat handles over a dozen different 
 
    events, we will consider only those three events that we saw in 
 
    previous example (start of element, end of element and text) 1 . 
 
    The part of the Expat API that we need is pretty small. In- 
 
    First, we need functions to create and destroy the parser: 
 
    XML_Parser XML_ParserCreate (const char * encoding); 
 
    void XML_ParserFree (XML_Parser p); 
 
    The encoding argument is optional, we will pass it instead 
 
    to be NULL. 
 
    Once we have a parser, we must register 
 
    our handler functions: 
 
    void XML_SetElementHandler (XML_Parser p, 
 
    XML_StartElementHandler start, 
 
    XML_EndElementHandler end); 
 
    void XML_SetCharacterDataHandler (XML_Parser p, 
 
    XML_CharacterDataHandler hndl); 
 
    The first function sets handlers for start and end events 
 
    element. The second function sets the handler for the text. 
 
    All handlers receive a non- 
 
    which is a pointer. The element start handler is also named 
 
    tag and its attributes: 
 
    typedef void (* XML_StartElementHandler) (void * uData, 
 
    const char * name, 
 
    const char ** atts); 
 
    Attributes are passed as a NULL terminated array of strings , where 
 
    each pair of consecutive lines contains an attribute and its value 
 
    nie. The end-of-element handler only receives one extra 
 
    nth element - tag name: 
 
    typedef void (* XML_EndElementHandler) (void * uData, 
 
    const char * name); 
 
    Finally, the text processor receives as an additional 
 
    parameter is the text itself. The line of text is not null terminated, and 
 
    the length is explicitly passed for it: 
 
    typedef void (* XML_CharacterDataHandler) (void * uData, 
 
    const char * s, 
 
    int len); 
 
    In order to pass text to Expat for parsing, we use 
 
    the following function: 
 
    int XML_Parse (XML_Parser p, const char * s, int len, int isLast); 
 
    Expat receives the document to be parsed hourly 
 
    cham through successive calls to XML_Parse . The last argument 
 
    such a call to isLast tells Expat whether the passed chunk was 
 
    last in the document. Note that each snippet 
 
    the text does not have to be terminated with a null byte, we explicitly 
 
    we pass its length. XML_Parse function returns zero in case 
 
    errors. (Expat also provides functions for getting information 
 
    error messages, but for simplicity, we will not consider them here. 
 
    vat.) 
 
    The last function we need from Expat is the function 
 
    ttion that allows you to specify the pointer that will be passed 
 
    handlers: 
 
    void XML_SetUserData (XML_Parser p, void * uData); 
 
    Now let's see how we can use this bib- 
 
    library in Lua. The first approach is the simplest: let's just yes- 
 
    Let's access all these functions from Lua. More successful will be 
 
    adapt this functionality for Lua. For example, since 
 
    Lua is an atypical language (more precisely, a language without strong typing), then we 
 
    no need for different functions for each type of handler. More 
 
    Moreover, we can avoid registering handlers altogether. Inmes- 
 
    then we will create a parser, pass it a table of handlers, 
 
    each with a matching key. For example, if we want to print 
 
    structure of the document, then we can use the following table 
 
    zu handlers: 
 
    local count = 0 
 
    callbacks = { 
 
    StartElement = function (parser, tagname) 
 
    io.write (“+“, string.rep (““, count), tagname, “\ n”) 
 
    count = count + 1 
 
    end, 
 
    EndElement = function (parser, tagname) 
 
    count = count - 1 
 
    io.write (“-“, string.rep (““, count), tagname, “\ n”) 
 
    end, 
 
    } 
 
    If we give the input the string “<to> <yes /> </to>” , then these 
 
    bots will generate the following output: 
 
    + to 
 
    + yes 
 
    - yes 
 
    - to 
 
    With such an API, we do not need functions to work with the handler- 
 
    mi. We work with them directly in the handler table. 
 
    Thus, the entire API will consist of only three functions: one 
 
    for creating parsers, one for processing a piece of text and one 
 
    to destroy the parser. In fact, we are implementing two last 
 
    function as parser methods. As a result, we come to the following - 
 
    typical usage of our API: 
 
    local lxp = require ”lxp” 
 
    p = lxp.new (callbacks) 
 
    - create a new parser 
 
    for l in io.lines () do 
 
    - process input lines 
 
    assert (p: parse (l)) 
 
    - parse the string 
 
    assert (p: parse (“\ n”)) 
 
    - add '\ n' 
 
    end 
 
    assert (p: parse ()) 
 
    - complete the document 
 
    p: close () 
 
    Let's now turn to the implementation. Our first decision 
 
    This will be how we will represent our parser in Lua. Quite 
 
    it is natural to use an object of type userdata for this , but what 
 
    do we need to put inside it? At least we need 
 
    the parser itself and the handler table. We cannot remember the table 
 
    zu inside an object of type userdata (or inside a C structure), but Lua 
 
    allows each object of type userdata to have a custom 
 
    a user value, which can be any Lua 2 table . we 
 
    should also remember the Lua state into the parser object as 
 
    all that the Expat handler receives is the parser itself, and in order to 
 
    call Lua, we need this state. Therefore, we will use 
 
    define the following parser: 
 
    #include <stdlib.h> 
 
    #include “expat.h” 
 
    #include “lua.h” 
 
    #include "lauxlib.h" 
 
    typedef struct lxp_userdata { 
 
    XML_Parser parser; / * corresponding Expat parser * / 
 
    lua_State * L; 
 
    } lxp_userdata; 
 
    2 
 
    In Lua 5.1, the environment of the userdata object acts as a user value. 
 
    niya. 
 
    Our next step is to create a function that creates 
 
    no parsers, lxp_make_parser . Its code is shown in Listing 30.3. This 
 
    the function consists of four important steps: 
 
    • Its first step follows a standard pattern: first create 
 
    a userdata object ; then it is initialized appropriately 
 
    values, and finally, a metatabe is assigned to it. 
 
    faces. The reason for this initialization is as follows: if in 
 
    any error occurs during initialization, you must 
 
    dimo that the finalizer (metamethod __gc ) finds our data 
 
    holistic. 
 
    • At step 2, the function creates an Expat parser, stores it in 
 
    userdata object and checks for errors. 
 
    • Step 3 checks that the first argument of the function is valid 
 
    a table (table of handlers) is stored, and 
 
    assigns it as a custom value for the userdata object. 
 
    • The last step initializes the Expat parser. Our userdata is 
 
    the object is given as a pointer to be passed 
 
    to be included in handlers, handler functions are also set. 
 
    Note that these handlers are the same for everyone 
 
    parsers; after all, in C one cannot dynamically construct 
 
    function. Instead, fixed functions using 
 
    a table of handlers, decide which Lua functions to follow 
 
    call. 
 
    Listing 30.3. Function for creating XML parsers 
 
    / * descriptions of handler functions * / 
 
    static void f_StartElement (void * ud, 
 
    const char * name, 
 
    const char ** atts); 
 
    static void f_CharData (void * ud, const char * s, 
 
    int len); 
 
    static void f_EndElement (void * ud, const char * name); 
 
    static int lxp_make_parser (lua_State * L) { 
 
    XML_Parser p; 
 
    / * (1) create parser object * / 
 
    lxp_userdata * xpu = (lxp_userdata *) 
 
    lua_newuserdata (L, 
 
    sizeof (lxp_userdata)); 
 
    / * initialize it in case of error * / 
 
    xpu-> parser = NULL; 
 
    / * set a metatable for it * / 
 
    luaL_getmetatable (L, “Expat”); 
 
    lua_setmetatable (L, -2); 
 
    / * (2) create Expat parser * / 
 
    p = xpu-> parser = XML_ParserCreate (NULL); 
 
    if (! p) 
 
    luaL_error (L, “XML_ParserCreate failed”); 
 
    / * (3) check and save the handler table * / 
 
    luaL_checktype (L, 1, LUA_TTABLE); 
 
    lua_pushvalue (L, 1); / * push the table onto the stack * / 
 
    lua_setuservalue (L, -2); 
 
    / * (4) configure the Expat parser * / 
 
    XML_SetUserData (p, xpu); 
 
    XML_SetElementHandler (p, f_StartElement, 
 
    f_EndElement); 
 
    XML_SetCharacterDataHandler (p, f_CharData); 
 
    return 1; 
 
    } 
 
      
 
      
 
      
 
    Listing 30.4. Function for parsing a piece of text 
 
    static int lxp_parse (lua_State * L) { 
 
    int status; 
 
    size_t len; 
 
    const char * s; 
 
    lxp_userdata * xpu; 
 
    / * get and check the first argument * / 
 
    xpu = (lxp_userdata *) luaL_checkudata (L, 1, “Expat”); 
 
    / * check that it is not closed * / 
 
    luaL_argcheck (L, xpu-> parser! = NULL, 1, “parser is closed”); 
 
    / * get second argument (string) * / 
 
    s = luaL_optlstring (L, 2, NULL, & len); 
 
    / * put the handler table at index 3 on the stack * / 
 
    lua_settop (L, 2); 
 
    lua_getuservalue (L, 1); 
 
    xpu-> L = L; / * set Lua state * / 
 
    / * call Expat to parse the string * / 
 
    status = XML_Parse (xpu-> parser, s, (int) len, s == NULL); 
 
    / * return error code * / 
 
    lua_pushboolean (L, status); 
 
    return 1; 
 
    } 
 
    The next step is the method for parsing the text lxp_parse 
 
    (Listing 30.4), which parses a chunk of XML data. He semi- 
 
    takes two arguments: a parser ( self in the method) and an optional fragment 
 
    XML. When called with no data, it tells Expat that more 
 
    there are no parts. 
 
    When lxp_parse calls XML_Parse it will call handlers 
 
    for those elements that it finds in the transferred text fragment 
 
    that. These handlers will need access to the handler table, 
 
    so lxp_parse pushes this table onto the stack at index 3 (immediately 
 
    after parameters). There is one caveat to the XML_Parse call : remember, 
 
    that the last argument to this function tells Expat whether 
 
    the last piece of text transferred. When we call parse 
 
    with no arguments, s will be NULL , and this last argument will be 
 
    met the true value. 
 
    Now let's turn our attention to the handler functions 
 
    f_StartElement , f_EndElement and f_CharData . All these functions are 
 
    have the same structure: each of them checks if there is 
 
    handler table for this event, and if such 
 
    a handler is present, then prepares the arguments and then you- 
 
    calls this handler. 
 
    Let's take a look at the f_CharData handler in listing 
 
    ge 30.5. Its code is pretty simple. The handler receives the structure 
 
    lxp_userdata as its first argument, since we called 
 
    XML_SetUserData when we created our parser. After receiving co- 
 
    Lua state handler can refer to handler table 
 
    on the stack at index 3, given by lxp_parse , and the parser itself by 
 
    index 1. Then it calls the corresponding Lua handler 
 
    (when present) with two arguments: parser and character data 
 
    nym (string). 
 
    Listing 30.5. Character data processor 
 
    static void f_CharData (void * ud, const char * s, int len) { 
 
    lxp_userdata * xpu = (lxp_userdata *) ud; 
 
    lua_State * L = xpu-> L; 
 
    / * get handler * / 
 
    lua_getfield (L, 3, “CharacterData”); 
 
    if (lua_isnil (L, -1)) {/ * no handler? * / 
 
    lua_pop (L, 1); 
 
    return; 
 
    } 
 
    lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * / 
 
    lua_pushlstring (L, s, len); / * push a line onto the stack * / 
 
    lua_call (L, 2, 0); / * call handler * / 
 
    } 
 
    The f_EndElement handler is quite similar to f_CharData ; education 
 
    See Listing 30.6. It also calls the appropriate 
 
    Lua bot with two arguments - a parser and a tag name (again 
 
    a string, this time terminated with a null byte). 
 
      
 
    Listing 30.6. End of element handler 
 
    static void f_EndElement (void * ud, const char * name) { 
 
    lxp_userdata * xpu = (lxp_userdata *) ud; 
 
    lua_State * L = xpu-> L; 
 
    lua_getfield (L, 3, “EndElement”); 
 
    if (lua_isnil (L, -1)) {/ * no handler? * / 
 
    lua_pop (L, 1); 
 
    return; 
 
    } 
 
    lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * / 
 
    lua_pushstring (L, name); / * push the tag onto the stack * / 
 
    lua_call (L, 2, 0); / * call handler * / 
 
    } 
 
    Listing 30.7 shows the final handler, f_StartElement . 
 
    It calls Lua with three arguments: parser, tag name, and 
 
    list of attributes. This handler is slightly more complex than the others, because 
 
    how long it is necessary to translate the list of attributes into Lua. He used 
 
    suggests a completely natural translation, building a table that compares 
 
    Specifies attribute names and their values. For example, for a short tag, 
 
    shown below 
 
      
 
    <to method = ”post” priority = ”high”> 
 
      
 
    the following attribute table is generated: 
 
      
 
    {method = “post”, priority = “high”} 
 
      
 
      
 
    Listing 30.7. Element start handler 
 
    static void f_StartElement (void * ud, 
 
    const char * name, 
 
    const char ** atts) { 
 
    lxp_userdata * xpu = (lxp_userdata *) ud; 
 
    lua_State * L = xpu-> L; 
 
    lua_getfield (L, 3, “StartElement”); 
 
    if (lua_isnil (L, -1)) {/ * no handler? * / 
 
    lua_pop (L, 1); 
 
    return; 
 
    } 
 
    lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * / 
 
    lua_pushstring (L, name); / * push the tag name onto the stack * / 
 
    / * create and populate the attribute table * / 
 
    lua_newtable (L); 
 
    for (; * atts; atts + = 2) { 
 
    lua_pushstring (L, * (atts + 1)); 
 
    lua_setfield (L, -2, * atts); / * table [* atts] = * (atts + 1) * / 
 
    } 
 
    lua_call (L, 3, 0); / * call handler * / 
 
    } 
 
      
 
    The final method for parsers is close , shown in listing 
 
    ge 30.8. When we close the parser, we must release all of it 
 
    resources, namely the Expat structure. Remember that due to errors in 
 
    the parser may not have this structure. Pay attention- 
 
    how we keep the parser consistent across 
 
    as we close it, so there will be no problem, 
 
    if we try to close it again or when the garbage collector 
 
    finalizes it. This ensures that each parser over time 
 
    will free its resources even if the programmer hasn't closed it. 
 
      
 
    Listing 30.8. Method for closing an XML parser 
 
      
 
    static int lxp_close (lua_State * L) { 
 
    lxp_userdata * xpu = 
 
    (lxp_userdata *) luaL_checkudata (L, 1, “Expat”); 
 
    / * free the Expat parser (if any) * / 
 
    if (xpu-> parser) 
 
    XML_ParserFree (xpu-> parser); 
 
    xpu-> parser = NULL; / * if we close it again * / 
 
    return 0; 
 
    } 
 
      
 
    The final step is shown in Listing 30.9: it shows the functionality 
 
    tion luaopen_lxp , which opens up the library, combining together 
 
    all previously discussed functions. We use the same scheme here 
 
    mu used for object-oriented boolean 
 
    array in section 29.3: we create a metatable, set it 
 
    the __index field on it and put all methods inside it. For this- 
 
    Then we need a list with all the parser methods ( lxp_meths ). 
 
    We also need a list of functions of this library ( lxp_funcs ). how 
 
    and is accepted in object-oriented libraries, this list is co- 
 
    holds just one function that creates new parsers. 
 
      
 
      
 
    Listing 30.9. Initializing code for lxp library 
 
    static const struct luaL_Reg lxp_meths [] = { 
 
    {“Parse”, lxp_parse}, 
 
    {“Close”, lxp_close}, 
 
    {“__Gc”, lxp_close}, 
 
    {NULL, NULL} 
 
    }; 
 
    static const struct luaL_Reg lxp_funcs [] = { 
 
    {“New”, lxp_make_parser}, 
 
    {NULL, NULL} 
 
    }; 
 
    int luaopen_lxp (lua_State * L) { 
 
    / * create metatable * / 
 
    luaL_newmetatable (L, “Expat”); 
 
    / * metatable .__ index = metatable * / 
 
    lua_pushvalue (L, -1); 
 
    lua_setfield (L, -2, “__index”); 
 
    / * register methods * / 
 
    luaL_setfuncs (L, lxp_meths, 0); 
 
    / * register functions (lxp.new only) * / 
 
    luaL_newlib (L, lxp_funcs); 
 
    return 1; 
 
    } 
 
      
 
      
 
    Exercises 
 
    Exercise 30.1. Modify the dir_iter function so that- 
 
    would it close the DIR structure when it reaches the end 
 
    directory. With this change, the program does not need to wait 
 
    garbage collection to release a larger resource 
 
    not needed. 
 
    (When you close the directory, you must set the address, 
 
    written in the userdata object to NULL to inform the ph- 
 
    the analyzer that the directory is already closed. Also the dir_iter function 
 
    before using the directory should check that it is not 
 
    closed.) 
 
    Exercise 30.2. In the example with the lxp library , the handler starts 
 
    la element gets a table with the attributes of the element. In this 
 
    the table is the order in which the elements were given internally 
 
    item is already lost. How can you convey this information 
 
    to the handler? 
 
    Exercise 30.3. In the example with the lxp library , we used 
 
    whether a custom value for linking the table 
 
    handlers with the corresponding userdata object , pre- 
 
    installing the parser. This choice created a small problem, 
 
    since what the C handlers get is the structure 
 
    lxp_userdata , and this structure does not provide direct access to 
 
    stupa to this table. We solved this problem by co- 
 
    storing the handler table at a given place on the stack in 
 
    parsing time of each fragment. 
 
    Another solution could be to link the handler table 
 
    with a userdata object using links (section 28.3): we 
 
    create a link to the handler table and remember this 
 
    link (integer) in the lxp_userdata structure . Implement 
 
    this option. Don't forget to release the link on close 
 
    parser. 
 
      
 
      
 
      
 
      
 
      
 
      
 
      
 
    CHAPTER 31 
 
    Threads and states 
 
    Lua does not support true multi-threading, that is, it displaces 
 
    threads sharing shared memory. There are two reasons for this. 
 
    The first reason is that such support was not provided. 
 
    is ANSI C and therefore there is no portable way to implement this 
 
    support in Lua. The second and more serious reason is 
 
    that we don't think multi-threading is a good idea for Lua. 
 
    Multi-threading was developed for low-level production 
 
    gramming. Synchronization mechanisms like semaphores and 
 
    nitors have been proposed for operating systems (and experienced 
 
    programmers), not for applications. It is extremely difficult to find and 
 
    fix bugs related to multi-threading and some of 
 
    they can lead to security holes. Also multi-threading 
 
    can lead to serious performance problems due to the need 
 
    synchronization at a number of critical points in the program, such 
 
    like memory allocation. 
 
    Multi-threading problems arise from the combination of displacement 
 
    threads and shared memory, so we can avoid 
 
    them, either without using displacing threads, or without using 
 
    storage space. Lua offers support for both. 
 
    Lua threads (also known as coroutines) are not preemptive 
 
    and therefore avoid the problems associated with unpredictable 
 
    by switching the threads. Lua states have no shared memory, so 
 
    form a good basis for parallel computing. In this chapter 
 
    we will consider both of these options. 
 
      
 
    31.1. Numerous threads 
 
    A thread is the essence of a coroutine in Lua. We are considering a coroutine 
 
    as a thread and a user-friendly interface, or we can consider a thread 
 
    as a coroutine with a low-level API.  
 
    From a C perspective, it can be helpful to think of a thread as a 
 
    ke - what the thread really is from the point of view of implementation. 
 
    Each stack stores information about the current calls to the thread, as well as 
 
    the same parameters and local variables of each call. Others 
 
    in words, the stack contains all the information a thread needs to 
 
    continuation of its implementation. Therefore, many threads mean many 
 
    independent stacks. 
 
    When we call most of the functions from the Lua-C API, then 
 
    these functions work with a specific stack. For example lua_ 
 
    pushnumber must push a number onto a specific stack; also 
 
    lua_pcall needs a stack to call. How does Lua know which stack to follow 
 
    use? The secret is that the lua_State type , the first 
 
    the argument of all these functions, is not only a state 
 
    Lua, but also a thread inside that state. (Many believe that this type 
 
    should be called lua_Thread .) 
 
    When you create a new state, Lua automatically creates 
 
    thread inside this state and returns lua_State representing 
 
    that thread. This main thread is destroyed along with the state, 
 
    when you call lua_close . 
 
    You can create other threads within the state with 
 
    lua_newthread : 
 
    lua_State * lua_newthread (lua_State * L); 
 
    This function returns a pointer to lua_State representing 
 
    the new thread, and also pushes the new thread onto the stack as a value 
 
    of type thread . For example, after executing the operator 
 
    L1 = lua_newthread (L); 
 
    we will have two strands, L1 and L, both referring internally to the same 
 
    the same state of Lua. Each thread has its own stack. New 
 
    thread L1 starts from an empty stack; old thread L has new thread on 
 
    top of stack: 
 
    printf (“% d \ n”, lua_gettop (L1)); -> 0 
 
    printf (“% s \ n”, luaL_typename (L, -1)); -> thread 
 
    With the exception of the main yarn, the yarns can be collected by the picker. 
 
    a lump of garbage like any other Lua object. When you create a new 
 
    thread, then it is pushed onto the stack, which ensures that this thread is not 
 
    rubbish. You should never use a thread that 
 
    not tied to state. (The main thread is tied from the beginning, 
 
    so you don't have to worry about it.) Any Lua API call can 
 
    destroy an unattached thread, even a call using this self- 
 
    wash the thread. For example, let's look at the following snippet: 
 
    lua_State * L1 = lua_newthread (L); 
 
    lua_pop (L, 1); / * L1 is now garbage for Lua * / 
 
    lua_pushstring (L1, “hello”); 
 
    Calling lua_pushstring can invoke the garbage collector and collect 
 
    L1 (resulting in an application error) even though L1 is still in use 
 
    enjoys. To avoid this, always keep links to 
 
    the threads you are using, for example on the anchored thread stack 
 
    or in the registry. 
 
    As soon as we have a new thread, we can immediately start 
 
    use it like the main thread. We can put values 
 
    onto its stack and pop values from its stack, we can use it to 
 
    function calls, etc. For example, the following code calls 
 
    f (5) on the new thread and then puts the result on the old thread: 
 
    lua_getglobal (L1, “f”); / * consider that there is a global 'f' * / 
 
    lua_pushinteger (L1, 5); 
 
    lua_call (L1, 1, 1); 
 
    lua_xmove (L1, L, 1); 
 
    The lua_xmove function moves a Lua value between two stacks- 
 
    the same state. Calling type lua_xmove (F, T, n) from below 
 
    meth n elements from the stack F and places them on a stack T . 
 
    However, we do not need a new thread for these purposes; we can light 
 
    to use the main thread. The main purpose of using non- 
 
    how many threads is the implementation of coroutines so that we can 
 
    suspend their execution and resume it again. For this 
 
    we need the lua_resume function : 
 
    int lua_resume (lua_State * L, lua_State * from, int narg); 
 
    To start the execution of the coroutine, we use lua_resume 
 
    just like we use lua_pcall : we put the function on 
 
    stack, push its arguments onto the stack and call lua_resume , re- 
 
    giving nargs the number of arguments. (The from parameter is the thread that 
 
    makes the call.) This is very similar to lua_pcall , however there are three 
 
    differences. First, lua_resume does not contain a parameter for the number 
 
    desired results; it always returns all the results you- 
 
    called function. Secondly, it has no parameter for the handler 
 
    errors; the error does not unwind the stack, so you can later 
 
    explore. Third, if a function suspends its execution, 
 
    (with yield ), then lua_resume returns a special 
 
    code LUA_YIELD and leaves the thread in such a state that we can 
 
    resume later. 
 
    When lua_resume returns LUA_YIELD , the visible portion of the 
 
    ka thread contains only the values passed to yield . Lua_ call 
 
    gettop will return a number of these values. In order to transfer these 
 
    values to another thread, we can use lua_xmove . 
 
    To continue execution of a suspended thread, 
 
    we call lua_resume again . In this case, Lua assumes that everything knows 
 
    the values on the stack are the values returned by 
 
    yield . For example, if you don't touch the stack thread in between returns 
 
    eat from the previous lua_resume and the next lua_resume , then yield 
 
    will return exactly the values with which it was called. 
 
    We usually run a coroutine with a Lua function as 
 
    body. This Lua function can call other functions, and any 
 
    from these functions can call yield , ending the call to lua_resume . 
 
    For example, consider the following definitions: 
 
    function foo (x) coroutine.yield (10, x) end 
 
    function foo1 (x) foo (x + 1); return 3 end 
 
    We will now execute the following C code: 
 
    lua_State * L1 = lua_newthread (L); 
 
    lua_getglobal (L1, “foo1”); 
 
    lua_pushinteger (L1, 20); 
 
    lua_resume (L1, L, 1); 
 
    Call lua_resume return LUA_YIELD , to inform, 
 
    that the thread is suspended. At this point, the L1 stack contains the values 
 
    passed to yield : 
 
    printf (“% d \ n”, lua_gettop (L1)); -> 2 
 
    printf (“% d \ n”, lua_tointeger (L1, 1)); -> 10 
 
    printf (“% d \ n”, lua_tointeger (L1, 2)); -> 21 
 
    When we call lua_resume again , the thread will continue executing 
 
    from where it left off (call to yield ). From there foo will return the control 
 
    Lenie foo1 , and she, in turn, returns management lua_resume : 
 
    lua_resume (L1, L, 0); 
 
    printf (“% d \ n”, lua_gettop (L1)); -> 1 
 
    printf (“% d \ n”, lua_tointeger (L1, 1)); -> 3 
 
    This second call to lua_resume will return LUA_OK which means ok 
 
    minimal return. 
 
    Coroutines can also call C functions that can 
 
    call other Lua functions. We have already discussed how to use 
 
    continue to allow these functions in Lua 
 
      
 
    call yield (section 27.2). A C function itself can also call 
 
    yield . In this case, you must provide a continuation function, 
 
    which will be called when execution continues. On the C following- 
 
    This function plays the role of yield : 
 
      
 
    int lua_yieldk (lua_State * L, int nresults, int ctx, 
 
    lua_CFunction k); 
 
      
 
    We must always use this function in a return statement 
 
    the one as shown below: 
 
      
 
    static inf myCfunction (lua_State * L) { 
 
    ... 
 
    return lua_yieldk (L, nresults, ctx, k); 
 
    } 
 
      
 
    This call immediately suspends the currently running 
 
    program. The nresults parameter is the number of values on the stack, 
 
    which should be returned to the corresponding lua_resume ; ctx is 
 
    the context to be passed on to the continuation and k is a function- 
 
    continuation. When the coroutine continues execution, the control 
 
    the extension goes to the continuation function k . After calling lua_yieldk 
 
    the myCfunction cannot do anything else; she must 
 
    delegate all further work to your continuation. 
 
    Let's look at a hypothetical example. Let us want 
 
    write a function that reads some data by calling 
 
    yield when the data is not ready. We can write this function in 
 
    With the following: 
 
      
 
    int prim_read (lua_State * L) { 
 
    if (nothing_to_read ()) 
 
    return lua_yieldk (L, 0, 0, & prim_read); 
 
    lua_pushstring (L, read_some_data ()); 
 
    return 1; 
 
    } 
 
      
 
    If the function has any data, then it reads and returns 
 
    them. Otherwise, it calls lua_yieldk . When the thread is 
 
    continues to execute, it will call the continuation function. In that 
 
    in the example, the continuation function is prim_read itself , so the thread 
 
    will call it over and over again to read data. (This template, 
 
    when the calling lua_yieldk function is itself 
 
    position is not uncommon.) 
 
    If a C function has nothing to do after calling lua_yieldk , then it 
 
    can call lua_yieldk without a continuation function or using 
 
    lua_yield macro : 
 
    365 
 
    return lua_yield (L, nres); 
 
      
 
      
 
      
 
    After this call, when the thread continues its execution, 
 
    raids the function that called myCfunction . 
 
      
 
    31.2. Lua states 
 
    Each call to luaL_newstate (or lua_newstate , as we will see 
 
    in chapter 32) creates a new Lua state. Different states of Lua 
 
    do not depend on each other in any way. And they don't have any common data. 
 
    This means that no matter what happens in one state 
 
    in Lua, it cannot "harm" another state in any way. So- 
 
    this means that different states of Lua cannot be 
 
    communicate; for this we have to use a special code on 
 
    C. For example, if we have two states L1 and L2 , then the following 
 
    command - push to the top of the L2 stack the value from the top of the stack 
 
    in L1: 
 
    lua_pushstring (L2, lua_tostring (L1, -1)); 
 
    Since the data must pass through C, different co- 
 
    states in Lua can exchange only those types 
 
    data that is representable in C, such as strings and numbers. Other types, 
 
    for example, tables to be transferred must be serialized. 
 
    In systems that offer multi-threading, an interesting archi- 
 
    the architectural solution would be to create on a separate state Lua 
 
    for each thread. As a result, we get threads that behave 
 
    like processes in UNIX, that is, we have parallelism without 
 
    shared (shared) memory. In this section, we will build a prototype 
 
    applications using this approach. For this implementation I 
 
    I will use POSIX threads ( pthreads ). Since I am using 
 
    only the most basic features, it will be easy to transfer 
 
    this code to other multi-threaded systems. 
 
    The system we want to build is very simple. Its purpose is 
 
    to show the use of multiple Lua states in a context 
 
    ste multi-threading. After it is ready, you yourself can 
 
    add additional features to it. We will call our 
 
    lproc library . It offers just four functions: 
 
    • lproc.start (chunk) starts a new process to execute 
 
    the given block of code (chunk). The library implements the 
 
    cess in Lua as a C thread and associated Lua state. 
 
    • lproc.send (channel, val1, val2, ...) sends the given values 
 
    reads (which must be strings) to a given channel, 
 
    identified by its name (string). 
 
    • lproc.receive (channel) receives values from the given channel 
 
    nala. 
 
    • lproc.exit () ends the process. This function is only needed 
 
    the main process. If this process ends without calling 
 
    lproc.exit , then the entire program terminates 
 
    without waiting for other processes to finish. 
 
    The library identifies channels using strings and using 
 
    calls them to match the sender of the recipient. Opera- 
 
    the radio can send any number of string values 
 
    nii that are returned by the corresponding receive operation 
 
    data. All interaction is synchronous: the process sending the message 
 
    feed into pipe, waits until there is a process reading from this 
 
    pipe while the process reading from the pipe is also waiting 
 
    until there is a process sending to it. 
 
    The lproc library , like its interface, is pretty simple. She is using 
 
    uses two doubly linked ring lists, one for processes, 
 
    waiting to send a message, and another waiting to send 
 
    processes waiting to receive a message. Also used one 
 
    a mutex to control access to both of these lists. Everyone has it 
 
    process has its own condition variable . When 
 
    the process wants to send a message to the channel, it looks in the waiting list 
 
    the process that is waiting for this particular channel. If he 
 
    finds such a process, then it removes it from the waiting list, 
 
    transfers values from itself to the found process and signals the 
 
    mental processes. Otherwise it inserts itself into the list 
 
    sending and waiting for its conditional variable. Getting co- 
 
    communication behaves similarly. 
 
    The main element of the implementation is a structure that represents 
 
    the following process: 
 
      
 
    #include <pthread.h> 
 
    #include “lua.h” 
 
    typedef struct Proc { 
 
    lua_State * L; 
 
    pthread_t thread; 
 
    pthread_cond_t cond; 
 
    const char * channel; 
 
    struct Proc * previous, * next; 
 
    } Proc; 
 
      
 
    The first two fields represent the Lua state used by 
 
    process, and the corresponding C thread performing this process 
 
    cess. Other fields are used only when the process has to wait 
 
    corresponding send / receive . The third field cond is a conditional 
 
    the variable that the thread uses to wait; four- 
 
    The th field is the channel the process is waiting for; and the last two fields, 
 
    previous and next are used to connect a process in a double-link 
 
    list. 
 
    The following code declares two lists of waiting processes and 
 
    their associated mutex: 
 
    static Proc * waitsend = NULL; 
 
    static Proc * waitreceive = NULL; 
 
    static pthread_mutex_t kernel_access = PTHREAD_MUTEX_INITIALIZER; 
 
    Each process needs a corresponding Proc structure , and it 
 
    needs access to it whenever his body calls send or re- 
 
    ceive. The only parameter these functions receive is 
 
    is the corresponding Lua state, so each process 
 
    has to remember its Proc structure inside its Lua state. 
 
    In our implementation, each Lua state stores a corresponding 
 
    the Proc structure as an object of type userdata associated with the key 
 
    "_SELF" . The getself helper function returns state 
 
    Proc corresponding to the given state: 
 
    static Proc * getself (lua_State * L) { 
 
    Proc * p; 
 
    lua_getfield (L, LUA_REGISTRYINDEX, “_SELF”); 
 
    p = (Proc *) lua_touserdata (L, -1); 
 
    lua_pop (L, 1); 
 
    return p; 
 
    } 
 
    The next function, movevalues , transfers values from send- 
 
    process to receiving: 
 
    static void movevalues (lua_State * send, lua_State * rec) { 
 
    int n = lua_gettop (send); 
 
    int i; 
 
    for (i = 2; i <= n; i ++) / * transfer values to the receiver * / 
 
    lua_pushstring (rec, lua_tostring (send, i)); 
 
    } 
 
    It transfers to the receiver all values from the sender's stack, 
 
    except for the first value, which is a channel. 
 
    Listing 31.1 defines a searchmatch function that bypasses 
 
    pending list looking for a process waiting on the given channel 
 
    Lua states 
 
    la. If the function finds such a channel, then it removes it from the list and 
 
    returns it, otherwise it returns NULL . 
 
    Listing 31.1. Function to find a process waiting for a given 
 
    channel 
 
    static Proc * searchmatch (const char * channel, Proc ** list) { 
 
    Proc * node = * list; 
 
    if (node == NULL) return NULL; /* the list is empty? * / 
 
    do { 
 
    if (strcmp (channel, node-> channel) == 0) {/ * found? * / 
 
    / * remove a node from the list * / 
 
    if (* list == node) / * is this the first item in the list? * / 
 
    * list = (node-> next == node)? NULL: node-> next; 
 
    node-> previous-> next = node-> next; 
 
    node-> next-> previous = node-> previous; 
 
    return node; 
 
    } 
 
    node = node-> next; 
 
    } while (node! = * list); 
 
    return NULL; / * not found * / 
 
    } 
 
      
 
    The last helper function defined in listing 
 
    ge 31.2, called when the process cannot find the friend it needs 
 
    gogo process. In this case, the process connects itself to the end of the 
 
    the corresponding list and waits until another process finds 
 
    and will not wake him up. (The loop around pthread_cond_wait protects against 
 
    random wakes that are possible on POSIX threads.) When 
 
    process wakes up another process, then it sets the channel field to 
 
    the awakened process to NULL . So if p-> channel is not equal 
 
    NULL , it means that no other process woke up this 
 
    process, so you have to wait further. 
 
    Listing 31.2. Function for adding a process to the waiting list 
 
    static void waitonlist (lua_State * L, const char * channel, 
 
    Proc ** list) { 
 
    Proc * p = getself (L); 
 
    / * connect yourself to the end of the list * / 
 
    if (* list == NULL) {/ * is the list empty? * / 
 
    * list = p; 
 
    p-> previous = p-> next = p; 
 
    } 
 
    else { 
 
    p-> previous = (* list) -> previous; 
 
    p-> next = * list; 
 
    p-> previous-> next = p-> next-> previous = p; 
 
    } 
 
    p-> channel = channel; 
 
    do {/ * expects a conditional variable * / 
 
    pthread_cond_wait (& p-> cond, & kernel_access); 
 
    } while (p-> channel); 
 
    } 
 
      
 
    Now with these helper functions we can 
 
    write send and receieve (Listing 31.3). Send function starts 
 
    with checking the channel. Then it closes the mutex and looks for the matching 
 
    the recipient. If she finds him, then she carries her 
 
    values to this recipient, marks the recipient as ready to receive 
 
    fullness and wakes him up. Otherwise, she waits herself. Upon completion 
 
    Upon doing this, it opens a mutex and returns to Lua. 
 
    The receieve function is similar, but it must return everything received. 
 
    values. 
 
    Listing 31.3. Functions for sending and receiving messages 
 
    static int ll_send (lua_State * L) { 
 
    Proc * p; 
 
    const char * channel = luaL_checkstring (L, 1); 
 
    pthread_mutex_lock (& kernel_access); 
 
    p = searchmatch (channel, & waitreceive); 
 
    if (p) {/ * found a matching recipient? * / 
 
    movevalues (L, p-> L); / * transfer values to recipient * / 
 
    p-> channel = NULL; / * mark recipient * / 
 
    pthread_cond_signal (& p-> cond); / * wake him up * / 
 
    } 
 
    else 
 
    waitonlist (L, channel, & waitsend); 
 
    pthread_mutex_unlock (& kernel_access); 
 
    return 0; 
 
    } 
 
    static int ll_receive (lua_State * L) { 
 
    Proc * p; 
 
    const char * channel = luaL_checkstring (L, 1); 
 
    lua_settop (L, 1); 
 
    pthread_mutex_lock (& kernel_access); 
 
    p = searchmatch (channel, & waitsend); 
 
    if (p) {/ * found a matching recipient? * / 
 
    movevalues (p-> L, L); / * transfer values to recipient * / 
 
    p-> channel = NULL; / * mark recipient * / 
 
    pthread_cond_signal (& p-> cond); / * wake him up * / 
 
    } 
 
    else 
 
    waitonlist (L, channel, & waitreceive); 
 
    pthread_mutex_unlock (& kernel_access); 
 
    / * return all values from the stack except the pipe * / 
 
      
 
    Lua states 
 
      
 
    return lua_gettop (L) - 1; 
 
    } 
 
    Now let's see how to create new processes. New 
 
    The process needs a new POSIX thread, and the new thread needs a body to 
 
    execution. We will define this body later; here is the 
 
    totype: 
 
    static void * ll_thread (void * arg); 
 
      
 
    Listing 31.4. Function for creating a new process 
 
    static int ll_start (lua_State * L) { 
 
    pthread_t thread; 
 
    const char * chunk = luaL_checkstring (L, 1); 
 
    lua_State * L1 = luaL_newstate (); 
 
    if (L1 == NULL) 
 
    luaL_error (L, “unable to create new state”); 
 
    if (luaL_loadstring (L1, chunk)! = 0) 
 
    luaL_error (L, “error starting thread:% s”, 
 
    lua_tostring (L1, -1)); 
 
    if (pthread_create (& thread, NULL, ll_thread, L1)! = 0) 
 
    luaL_error (L, “unable to create new thread”); 
 
    pthread_detach (thread); 
 
    return 0; 
 
    } 
 
      
 
      
 
    To create and launch a new process, the system needs to create a new 
 
    lua state, start new thread, compile passed 
 
    block, call it and finally release its resources. Original thread 
 
    performs the first three tasks and the new thread does the rest. (For 
 
    to simplify error handling, the system starts a new thread after 
 
    how she successfully compiled the given block.) 
 
    The ll_start function creates a new process (Listing 31.4). This 
 
    the function creates a new Lua L1 state and compiles the given 
 
    block in this new state. In case of an error, she informs 
 
    initial states of L . Then she creates a new thread (with 
 
    pthread_create ) with the body ll_thread , passing the new state to L1 
 
    as a body argument. The pthread_detach call tells the system that we 
 
    not expecting a definitive answer from this thread. 
 
      
 
    Listing 31.5. A body for new threads 
 
      
 
    int luaopen_lproc (lua_State * L); 
 
    static void * ll_thread (void * arg) { 
 
    lua_State * L = (lua_State *) arg; 
 
    luaL_openlibs (L); / * open standard libraries * / 
 
    luaL_requiref (L, “lproc”, luaopen_lproc, 1); 
 
    lua_pop (L, 1); 
 
    if (lua_pcall (L, 0, 0, 0)! = 0) / * call main chunk * / 
 
    fprintf (stderr, “thread error:% s”, lua_tostring (L, -1)); 
 
    pthread_cond_destroy (& getself (L) -> cond); 
 
    lua_close (L); 
 
    return NULL; 
 
    } 
 
      
 
    The body of each new thread is the ll_thread function (the 
 
    Thing 31.5). It gets its Lua state (created by ll_start ) with 
 
    an already compiled block on the stack. A new thread opens the stan- 
 
    free Lua libraries, opens the lproc library and then calls 
 
    has its own block. At the end, it releases its conditional variable (which 
 
    Thoraya was created luaopen_lproc ) and closes his fortune Lua. 
 
    Note the use of luaL_require for that- 
 
    would open lproc 1 . This function is somewhat equivalent to require , but 
 
    instead of searching for the bootloader, it uses the specified function (in our 
 
    this is luaopen_lproc ) to open the library. Pos- 
 
    before calling the opening function luaL_requiref registers a re- 
 
    the result is in the package.loaded table . If its last parameter is 
 
    true, then it also registers the library in the corresponding glo- 
 
    a point variable (in our case lproc ). 
 
    The last function in our module, exit , is very simple: 
 
    static int ll_exit (lua_State * L) { 
 
    pthread_exit (NULL); 
 
    return 0; 
 
    } 
 
    Only the main process needs to call this function when it 
 
    will complete execution in order not to interrupt immediately 
 
    completing the entire program. 
 
    Our final step is to determine the opening 
 
    functions for the lproc module . This function is luaopen_lproc (fox- 
 
    Thing 31.6) must register module functions, but it also 
 
    should create and initialize the Proc structure of the current 
 
    process. 
 
    As I said earlier, this process definition in Lua is very simple. 
 
    There are an infinite number of improvements you can make 
 
    lick. Here I want to briefly discuss some of them. 
 
    The first obvious improvement would be to replace linear search 
 
    a process waiting on the specified channel. A beautiful alternative 
 
    would be using a hash table to find the channel and using 
 
    creation of independent waiting lists for each channel. 
 
    Another improvement relates to the efficiency of process creation. 
 
    sa. Creating a new state in Lua is a very fast operation. 
 
    However, opening all standard libraries is no longer so fast, and 
 
    most processes will likely not need all the standard 
 
    new libraries. We can avoid the price associated with opening 
 
    libraries, by pre-registering libraries, as we discussed 
 
    or in section 15.1. When using this approach, instead of calling 
 
    luaL_requiref for each standard library, we simply 
 
    We place the function that opens the library into the package. 
 
    preload . If the process calls require ”lib” , then and only then 
 
    yes require will call the appropriate function in order to 
 
    cover the library. Function registerlib (listing 31.7) performs 
 
    this registration. 
 
    Listing 31.6. Opening function for lproc module 
 
    static const struct luaL_reg ll_funcs [] = { 
 
    {“Start”, ll_start}, 
 
    {“Send”, ll_send}, 
 
    {“Receive”, ll_receive}, 
 
    {“Exit”, ll_exit}, 
 
    {NULL, NULL} 
 
    }; 
 
    int luaopen_lproc (lua_State * L) { 
 
    / * create your own control block * / 
 
    Proc * self = (Proc *) lua_newuserdata (L, sizeof (Proc)); 
 
    lua_setfield (L, LUA_REGISTRYINDEX, “_SELF”); 
 
    self-> L = L; 
 
    self-> thread = pthread_self (); 
 
    self-> channel = NULL; 
 
    pthread_cond_init (& self-> cond, NULL); 
 
    luaL_register (L, “lproc”, ll_funcs); / * open library * / 
 
    return 1; 
 
    } 
 
    Listing 31.7. Registration of libraries on request 
 
    static void registerlib (lua_State * L, const char * name, 
 
    lua_CFunction f) { 
 
    lua_getglobal (L, “package”); 
 
    lua_getfield (L, -1, “preload”); / * get 'package.preload' * / 
 
    lua_pushcfunction (L, f); 
 
    lua_setfield (L, -2, name); / * package.preload [name] = f * / 
 
    lua_pop (L, 2); / * pop 'package' and 'preload' off the stack * / 
 
    static void openlibs (lua_State * L) { 
 
    luaL_requiref (L, “_G”, luaopen_base, 1); 
 
    luaL_requiref (L, “package”, luaopen_package, 1); 
 
    lua_pop (L, 2); / * remove the results of previous calls * / 
 
    registerlib (L, “io”, luaopen_io); 
 
    registerlib (L, “os”, luaopen_os); 
 
    registerlib (L, “table”, luaopen_table); 
 
    registerlib (L, “string”, luaopen_string); 
 
    registerlib (L, “math”, luaopen_math); 
 
    registerlib (L, “debug”, luaopen_debug); 
 
    } 
 
    It is always a good idea to open up the main library. You 
 
    you also need a package library, otherwise you won't 
 
    be able to use require to load other libraries. (You 
 
    don't even get the package.preload table .) All other libraries are 
 
    ki can be optional. So instead of calling luaL_open- 
 
    libs we will substitute our own openlibs function (also 
 
    shown in Listing 31.7) when creating new states. When 
 
    the process will need any of these libraries, it will explicitly require it, 
 
    and require will call the corresponding luaopen_ * function . 
 
    Other improvements include primitives for communication 
 
    tion. For example, it would be helpful to set limits on how long 
 
    lproc.send and lproc.receive may wait. In particular, the limit of expected 
 
    a denier of zero will make these functions non-blocking. In threads 
 
    POSIX we can implement this functionality with 
 
    pthread_cond_timedwait . 
 
      
 
    Exercises 
 
    Exercise 31.1. As we have seen, if a function calls 
 
    lua_yield (version without continuation function), control 
 
    passed to the function that called it when the thread is again 
 
    will continue its execution. What are the meanings of the caller 
 
    will the function get how the results of this call? 
 
    Exercise 31.2. Modify the lproc library so that it 
 
    could send other basic types such as booleans 
 
    values and numbers. ( Hint : you only need to change 
 
    function movevalues .) 
 
    Exercise 31.3. In the lproc library, implement a non-blocking 
 
    the send function . 
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    Chapter 32 
 
    Memory management 
 
    Lua dynamically allocates all of its data structures. All these structures 
 
    tours grow dynamically as needed and over time decrease 
 
    change their size or disappear. 
 
    Lua is strict about its memory usage. When we for- 
 
    we hide the state of Lua, then Lua explicitly frees all its memory. Bo- 
 
    Moreover, all objects inside Lua are subject to garbage collection: not only 
 
    to tables and rows, but also functions, threads and modules (since 
 
    they are actually tables). 
 
    The way Lua manages memory is comfortable for most 
 
    applications. However, for some applications you may need - 
 
    adaptation, for example, to work in a limited space 
 
    memory space or to reduce garbage collector delays 
 
    to a minimum. Lua allows such adaptations to be done right away 
 
    on two levels. At the bottom level, we can define a function to use 
 
    used to allocate memory. At a higher level, we can 
 
    let's set some parameters to control the garbage collector 
 
    or we can even take direct control of the garbage collector. 
 
    In this chapter, we'll cover both of these options. 
 
      
 
      
 
      
 
    32.1. Function to highlight 
 
    memory 
 
    The Lua core does not assume anything about memory allocation. To highlight 
 
    it does not call malloc or realloc . Instead of this 
 
    it performs all its allocation and deallocation of memory through 
 
    single out a function (allocation function), which 
 
    user must provide when creating Lua state. 
 
    The luaL_newstate function we used to create 
 
    Lua states is a helper function that 
 
    creates a Lua state with a default highlighting function. This 
 
    function defaults to standard malloc-realloc-free 
 
    from the C standard library, which should be enough for 
 
    common applications. However, it is very easy to gain control. 
 
    over memory allocation, creating your state using the function 
 
    lua_newstate : 
 
    lua_State * lua_newstate (lua_Alloc f, void * ud); 
 
    This function takes two arguments: the highlighting function and 
 
    the user data (user data). The state created by this 
 
    way, performs all allocation and deallocation of memory when 
 
    using function calls f . (Even the structure lua_State vyde- 
 
    is done with f .) 
 
    The type of the lua_Alloc allocating function is defined as follows. 
 
    at once: 
 
    typedef void * (* lua_Alloc) (void * ud, 
 
    void * ptr, 
 
    size_t osize, 
 
    size_t nsize); 
 
    The first parameter is the user data that we will provide 
 
    delivered lua_newstate ; the second parameter is the address of the block that 
 
    we want to free or resize it; the third parameter is 
 
    the original size of this block, and the fourth parameter is the request 
 
    desired block size. 
 
    Lua guarantees that if ptr is not NULL then it was previously issued 
 
    linen with osize size . 
 
    Lua uses NULL for zero-sized blocks. When nsize 
 
    is zero, then the function must free the block at the address ptr and ver- 
 
    a NULL string that corresponds to the requested block size. 
 
    When ptr is NULL , the function should allocate and return the block 
 
    a given size; if she cannot allocate a block of a given time 
 
    measure, then it must return NULL . If ptr is both NULL and nsize 
 
    is zero, then the function does nothing and returns NULL . 
 
    Finally, when ptr is both non- NULL and nsize is non-zero, the function 
 
    the tion should re-allocate this block (like realloc ) and return a new one 
 
    address (which may be the same as the original address, or may differ 
 
    from him). Again, in case of an error, the function should return 
 
    NULL . Lua assumes that an allocating function is always successful. 
 
    works when the new size is less than or equal to the old size. 
 
    (Lua shrinks some structures during garbage collection and not in 
 
    able to handle errors correctly at this time.) 
 
    Function for allocating memory 
 
    The standard highlighting function used by luaL_newstate is 
 
    looks like this (taken from lauxlib.c file ): 
 
    void * l_alloc (void * ud, void * ptr, size_t osize, size_t nsize) { 
 
    if (nsize == 0) { 
 
    free (ptr); 
 
    return NULL; 
 
    } 
 
    else 
 
    return realloc (ptr, nsize); 
 
    } 
 
    She believes that free (NULL) does nothing and that the call 
 
    realloc (NULL, size) is equivalent to malloc (size) . This guarantees- 
 
    xia ANSI C. 
 
    You can get an emitting function for a given state- 
 
    lua with lua_getallocf : 
 
    lua_Alloc lua_getallocf (lua_State * L, void ** ud); 
 
    If ud is not NULL , then the function will set * ud to user values. 
 
    data used for this emitting function 
 
    tion. You can change the allocating function for Lua state 
 
    by calling lua_setallocf : 
 
    void lua_setallocf (lua_State * L, lua_Alloc f, void * ud); 
 
    Keep in mind that the new highlighting function must be in 
 
    able to free blocks allocated by the old function. More often 
 
    the whole new highlighting function is just a wrapper over the old 
 
    function, for example, to track secretions or synchronize 
 
    heap access control. 
 
    Internally, Lua does not cache free blocks for reuse. 
 
    education. It assumes that the highlighting function does it, 
 
    many good memory allocation functions do this. Lua is not 
 
    tries to minimize memory fragmentation. Research on 
 
    show fragmentation is more the result of bad design 
 
    memory allocation than program behavior; good features for 
 
    memory allocations do not create strong fragmentation. 
 
    It is quite difficult to make a good highlighting function, but 
 
    sometimes you can try it. For example Lua gives you 
 
    the old size of any block when it is freed or changed 
 
    its size. Accordingly, a specialized emitting function 
 
    it is not necessary to store information about the block size somewhere, thus 
 
    reducing the amount of memory required for each block.377 
 
    Another case where you can improve memory allocation is 
 
    case of multi-strand systems. Such systems usually require syn- 
 
    timing to allocate memory, since they use global 
 
    ny resource (memory). However, accessing Lua state must also 
 
    be synchronized - or better yet, limited to just one 
 
    thread, as in our lproc implementation in Chapter 31. So if each 
 
    before Lua state will allocate memory from its own memory pool- 
 
    ty, you can remove the explicit synchronization requirement. 
 
      
 
    32.2. Garbage collector 
 
    Prior to version 5.0, Lua used a simple mark- type garbage collector 
 
    and-sweep . This garbage collector is sometimes called collector-stop- 
 
    vi-world . This means that from time to time Lua will stop interpreting 
 
    run the main program to complete a complete build cycle 
 
    garbage. Each such cycle consists of three phases: mark , 
 
    clean and sweep . 
 
    Lua starts the mark phase by marking it as live. 
 
    the root set that includes all objects to which Lua 
 
    has direct access: registry and main thread. Any object that 
 
    is stored in a living object, is reachable by the program and therefore also 
 
    tosses about as if alive. The tagging phase ends when all the 
 
    Objects are marked as live. 
 
    Before starting the sweeping phase, Lua performs a cleanup phase, 
 
    which is related to finalizers and weak tables. First of all, 
 
    it traverses all objects marked for finalization, looking for 
 
    unmarked objects. These objects are marked as alive (re- 
 
    bans) and placed on a separate list for use on 
 
    finalization stage. Second, Lua bypasses its weak tables and 
 
    removes from them all elements where either the key or the value itself is not 
 
    marked. 
 
    The sweeping phase bypasses all Lua objects. (In order for this 
 
    it was possible that Lua kept all created objects with a coherent list 
 
    ke.) If the object is not marked as alive, then it is deleted. Otherwise 
 
    Lua unchecks it to prepare for the next loop. 
 
    During this phase, Lua also invokes object finalizers, which 
 
    some were collected during the cleaning phase. 
 
    Since version 5.1, Lua uses an incremental collector 
 
    garbage. This collector follows the same steps as the old one, but 
 
    for this he does not need to "stop the world." Instead, he worked 
 
    Garbage collector 
 
    works with the interpreter. Every time the interpreter 
 
    allocates some memory, the garbage collector executes 
 
    small step. This means that while the garbage collector is running 
 
    works, the interpreter can change the visibility of the object. For 
 
    to ensure that the garbage collector works correctly, some 
 
    ry operations in the interpreter have special barriers, which 
 
    rye detect dangerous changes and correct the markings accordingly 
 
    corresponding objects. 
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