

 Lua Programming

 The Ultimate Beginner's Guide to
Learn Lua Step by Step

 Third edition

 2021

 By

 Claudia Alves

 & Alexander Aronowitz

 TABLE OF CONTENTS

 Introduction

 The audience

 About the third edition

 Other resources

 Certain Typographical Conventions

 Running examples

 Acknowledgments

 PART I

 Language

 Chapter 1. Getting Started

 1.1. Blocks

 1.2. Some lexical conventions

 1.3. Global variables

 1.4. Separate interpreter

 Exercises

 Chapter 2. Types and values

 2.1. Nil

 2.2. Boolean

 2.3. Numbers

 2.4. Strings

 Literals

 Long lines

 Type conversions

 2.5. Tables

 2.6. Functions

 2.7. userdata and threads

 Exercises

 Chapter 3. Expressions

 3.1. Arithmetic Operators

 3.2. Comparison operators

 3.3. Logical operators

 3.4. Concatenation

 3.5. Length operator

 3.6. Operator Priorities

 3.7. Table constructors

 Exercises

 Chapter 4. Operators

 4.1. Assignment operators

 4.2. Local variables and blocks

 4.3. Control structures

 if then else

 while

 repeat

 Numeric for statement

 General for statement

 4.4. break, return and goto

 Exercises

 Chapter 5. Functions

 5.1. Multiple Results

 5.2. Functions with a variable number of arguments

 5.3. Named arguments

 Exercises

 Chapter 6. More about functions

 6.1. Closures

 6.2. Non-global functions

 6.3. Optimization of tail calls

 Exercises

 Chapter 7. Iterators and the generic for

 7.1. Iterators and Closures

 7.2. Generic for semantics

 7.3. Stateless iterators

 7.4. Complex State Iterators

 7.5. True iterators

 Exercises

 Chapter 8. Compilation, Execution, and Errors

 8.1. Compilation

 8.2. Precompiled Code

 8.3. C code

 8.4. Errors

 8.5. Error and Exception Handling

 8.6. Error messages and call stack

 Exercises

 Chapter 9. Coroutines

 9.1. Basics of coroutines

 9.2. Channels and Filters

 9.3. Coroutines as iterators

 9.4. Non-displacing multi-threading

 Exercises

 Chapter 10. Completed Examples

 10.1. The problem of eight queens

 10.2. The most common words

 10.3. Markov chain

 Exercises

 PART II

 Tables and Objects

 Chapter 11. Data Structures

 11.1. Arrays

 11.2. Matrices and multidimensional arrays

 11.3. Linked Lists

 11.4. Queues and double queues

 11.5. Sets and Sets

 11.6. Line buffers

 11.7. Counts

 Exercises

 Chapter 12. Data Files and Persistence

 12.1. Data files

 12.2. Serialization

 Saving tables without loops

 Saving tables with loops

 Exercises

 Chapter 13. Metatables and Metamethods

 13.1. Arithmetic metamethods

 13.2. Comparison Methods

 13.3. Library Metamethods

 13.4. Methods for accessing the table

 __Index metamethod

 __Newindex metamethod

 Default tables

 Tracking access to a table

 Read-only tables

 Exercises

 Chapter 14. Environment

 14.1. Global variables with dynamic names

 14.2. Descriptions of global variables

 14.3. Non-global environments

 14.4. Using _ENV

 14.5. _ENV and load

 Exercises

 Chapter 15. Modules and Packages

 15.1. Require function

 Renaming a module

 Search along the path

 File crawlers

 15.2. The Standard Approach for Writing Lua Modules

 15.3. Using environments

 15.4. Submodules and Packages

 Exercises

 Chapter 16. Object Oriented

 programming

 16.1. Classes

 16.2. Inheritance

 16.3. Multiple inheritance

 16.4. Hiding

 16.5. Single Method Approach

 Exercises

 Chapter 17. Weak Tables and Finalizers

 17.1. Weak tables

 17.2. Functions with caching

 17.3. Object Attributes

 17.4. Again tables with default values

 17.5. Ephemeral tables

 17.6. Finalizers

 Exercises

 PART III

 Standard Libraries

 Chapter 18. Math Library

 Exercises

 Chapter 19. Library for Bitwise Operations

 Exercises

 Chapter 20. Library for Working with Tables

 20.1. Insert and remove functions

 20.2. Sorting

 20.3. Concatenation

 Exercises

 Chapter 21. Library for working with strings

 21.1. Basic functions for working with strings

 21.2. Functions for working with templates

 String.find function

 String.match function

 String.gsub function

 String.gmatch function

 21.3. Templates

 21.4. Grips

 21.5. Substitutions

 URL encoding

 Replacing tabs

 21.6. Tricky tricks

 21.7. Unicode

 Exercises

 Chapter 22. Library I / O

 22.1. Simple I / O Model

 22.2. Full I / O model

 A small trick to increase performance

 Binaries

 22.3. Other operations with files

 Exercises

 Chapter 23. Library of operating room functions

 systems

 23.1. Date and time

 23.2. Other system calls

 Exercises

 Chapter 24. Debug Library

 24.1. Accessibility (introspection)

 Accessing Local Variables

 Access to non-local variables

 Access to other coroutines

 24.2. Hooks

 24.3. Profiling

 Exercises

 PART IV

 WITH API

 Chapter 25. Overview of the C API

 25.1. First example

 25.2. Stack

 Putting items on the stack

 Referring to items

 Other stack operations

 25.3. Error handling in the C API

 Handling errors in the application code

 Error handling in the library code

 Exercises

 Chapter 26. Extending Your Application

 26.1. Basics

 26.2. Working with tables

 26.3. Lua function calls

 26.4. Generalized function call

 Exercises

 Chapter 27. Calling C from Lua

 27.1. Functions on C

 27.2. Continuations

 27.3. C modules

 Exercises

 Chapter 28. Techniques for writing functions in C

 28.1. Working with arrays

 28.2. Working with strings

 28.3. Saving state in functions on C

 Register

 Function related values

 Function related values used

 several functions

 Exercises

 Chapter 29. User-Defined Types in C

 29.1. User data (userdata)

 29.2. Metatables

 29.3. Object Oriented Access

 29.4. Access as an ordinary array

 29.5. Light objects of type userdata (light userdata)

 Exercises

 Chapter 30. Resource Management

 30.1. Directory iterator

 30.2. XML Parser

 Exercises

 Chapter 31. Threads and States

 31.1. Numerous threads

 31.2. Lua States

 Exercises

 Chapter 32. Memory Management

 32.1. Memory allocation function

 32.2. Garbage collector

 Garbage collector API

 Exercises

 INTRODUCTION

 When Waldemar, Louis, and I started developing Lua in 1993, we could hardly imagine that Lua would spread like that. On- started as home language for two specific projects, now Lua is widely used in all areas one can get

 benefits from simple, extensible, portable and efficient scripting language such as embedded systems, mobile devices swarms and, of course, games. We designed Lua from the beginning to integrate with software software written in C / C ++ and other common strange languages. There are many benefits to this integration. Lua is a tiny and simple language, partly because it doesn't tries to do what C is already good at, such as speed,

 low-level operations and interaction with third-party programs parties. Lua relies on C for these tasks. Lua offers something for which C is not good enough: sufficient distance from the hardware go support, dynamic structures, no redundancy and ease of testing and debugging. For these purposes, Lua has safe environment, automatic memory management and good possibilities for working with strings and other types

 resizable data. Some of Lua's strength comes from its libraries. And this is no coincidence. In the end Finally, one of the main strengths of Lua is extensibility. Many language features contribute to this. Dynamic typing tion provides a large degree of polymorphism. Automatic memory management simplifies interfaces because there is no need to the ability to decide who is responsible for allocating and freeing memory or how to handle overflows. Higher-order functions and anonymous functions allow a high degree of parameterization, making functions more versatile.

 More than an extensible language, Lua is a “ glue vayushim ”(glue) language . Lua supports a component-based approach to software development when we create an application

 by gluing together existing high-level components. These components are written in a compiled language with a static typing such as C / C ++; Lua is the glue we use use to arrange and connect these components. Usually components (or objects) represent more specific low- tier entities (such as widgets and data structures), which which hardly change during the development of the program and which take up the bulk of the final program execution time. Lua gives the final form to the application, which is most likely changes a lot during the life of a given software product. However, unlike other "glue" technologies, Lua is is a complete programming language. Therefore we can use Lua not only to "glue" components, but also to adaptation and customization of these components, as well as to create a floor new components. Of course, Lua isn't the only scripting language. Exists other languages you can use for roughly the same goals. Nevertheless, Lua provides a whole set of possibilities, which make him the best choice for many tasks and gives him your unique profile:

 • Extensibility . Lua's extensibility is so great that many consider Lua not as a language, but as a set for DSL structures (domain-specific language, a language created for specific area, application). We developed Lua from the beginning so that it is extensible both through code on Lua as well as through C code. How the Lua proof implementsmost of its basic functionality via external library. Interaction with C / C ++ really simple and Lua has been successfully integrated with many others languages such as Fortran, Java, Smalltalk, Ada, C #, and even with scripting languages like Perl and Python.

 • Simplicity . Lua is a simple and small language. It is founded on a small number of concepts. This simplicity makes it easier to study nie. Lua contributes to its very small size. Floor- distribution kit (source code, manual, binaries ly for some platforms) is quietly placed on one floppy disk.

 • Efficiency . Lua has a very efficient implementation tions. Independent tests show that Lua is one of the most most fast languages among scripting languages.

 • Portability . When we talk about portability, we say Rome on running Lua on all platforms you are only talking about heard: all versions of Unix and Windows, PlayStation, Xbox, Mac OS X and iOS, Android, Kindle Fire, NOOK, Haiku, QUALCOMM Brew, big servers from IBM, RISC OS, Symbian OS, process Sora Rabbit, Raspberry Pi, Arduino and more. Original the code for each of these platforms is almost the same. Lua does not use conditional compilation to adapt its code for different machines, instead it keeps standard ANSI (ISO) C. Thus, you usually do not you need to adapt it to the new environment: if you have a com- piler with ANSI C, then you just need to compile Lua.

 The audience

 Lua users generally fall into one of three broad groups: those who use Lua already built into the application, those who use use Lua separately from any application (standalone), and those who use Lua and C together. Many people use Lua built into some application, like Adobe Lightroom, Nmap, or World of Warcraft. These pri- applications use the Lua-C API to register new functions, creating new types and changing the behavior of some operations language by configuring Lua for its area. Often users are whom applications don't even know that Lua is an independent language, adapted for the given area. For example, many developers Lightroom plugins are unaware of other uses of this language; Nmap users generally view Lua as scripting Nmap language; World of Warcraft players can view Lua as a language exclusively for this game.

 Lua is also useful as just an independent language, not only for word processing and one-time small programs, but also for a variety of medium to large sized projects. For the In this way, the main functionality of Lua comes from its libraries. Standard libraries, for example, provide basic new functionality for working with templates and other functions for working with strings. As Lua improves its support libraries, a large number of external packages appeared. Lua Rocks, a system for building and managing modules for Lua, now has over 150 packages. Finally, there are programmers who use Lua as a library flow for C. Such people write more in C than in Lua, although they need requires a good understanding of Lua to create interfaces that are simple, easy to use and well integrated tied with the tongue.

 This book can be useful to all of these people. The first part covers the tongue itself, showing how the whole its potential. We focus on various language constructs and use numerous examples and exercises to show

 know how to use them for practical tasks. Some chap- this part covers basic concepts such as managing structures, while the rest of the chapters cover more advanced tricky topics like iterators and coroutines.

 The second part is completely devoted to tables, the only structure data tour in Lua. The chapters in this part discuss data structures, persistence, packages and object-oriented programming. It is there that we will show the full power of language. The third part introduces the standard libraries. This part especially useful for those who use Lua on their own language, although many applications include part or all standard libraries. In this part, each library is dedicated separate chapter: math library, bitwise library, library for working with tables, library for working with strings mi, I / O library, operating system library and debug library. Finally, the last part of the book covers the API between Lua and C.

 This section is markedly different from the rest of the book. In this part we will be programming in C, not Lua. For some, this part may be uninteresting, but for someone - on the contrary, the most useful part of the book.

 Running examples

 You will need a Lua interpreter to run the examples from this books. Ideally, you should use Lua 5.2, however most in the examples will work on Lua 5.1 without any changes. The Lua site (http://www.lua.org) stores all the source code for interpreter. If you have a C compiler and know how compile the C code on your computer, you better ask try to install Lua from source; it's really easy. The Lua Binaries site (look for luabinaries) already offers compiled native interpreters for all major platforms. If you using Linux or another UNIX-like system, you can check the repository of your distribution; many distributions already offer ready-made packages with Lua. For Windows, a good choice is rum is Lua for Windows (look for luaforwindows), which is a convenient set for working with Lua. It includes interpreting torus, integrated editor and many libraries.

 If you are using Lua embedded in an application like WoW or Nmap, then you may need a manual for this. placement (or the help of a "local guru") in order to understand, how to run your programs. Nevertheless, Lua remains all the same the same language; most of the examples we will look at in this book are applicable regardless of how you use Lua. But I recommend that you start learning Lua with an interpreter to run you examples.

 Part I

 I am the language

 CHAPTER 1

 Begin

 Continuing the tradition, our first Lua program simply printed em “Hello World” :

 print (“Hello World”) If you are using a separate Lua interpreter, then all you need is you need to run your first program - this is to run the interpreter tator - usually called lua or lua5.2 - with the name of the text file containing your program. If you saved the above the above program in hello.lua file , then you should run

 following command:

 % lua hello.lua

 As a more complex example, our next program defines There is a function for calculating the factorial of a given number, asking gives the user a number and prints its factorial:

 - defines a factorial function

 function fact (n)

 if n == 0 then

 return 1

 else

 return n * fact (n-1)

 end

 end

 print (“enter a number:”)

 a = io.read (“* n”) - reads a number

 print (fact (a))

 1.1. Blocks

 Every piece of code that Lua executes, such as a file or from- a smart string in interactive mode is called a chunk. A block is simply a sequence of commands (or statements). Lua does not need a separator between consecutive operators, but you can use semicolon if you like. I personally use I use a semicolon only to separate statements written in one line. Line splitting does not play any role in the syntax system Lua; so, the following four blocks are valid and equivalent:

 a = 1

 b = a * 2

 a = 1;

 b = a * 2;

 a = 1; b = a * 2

 a = 1 b = a * 2 - ugly, but valid

 A block can consist of just one statement, as in the example "Hello World", or consist of a set of operators and definitions functions (which are actually just assignments, as we will see later), as in the factorial example. Block can be as great as you want. Since Lua is also used as language for describing data, blocks of several megabytes are not a rarity. The Lua interpreter does not have any problems with bot with large blocks.

 Instead of writing your programs to a file, you can run the interpreter interactively. If you run- those lua without arguments, then you will see its prompt for input:

 % lua

 Lua 5.2 Copyright (C) 1994-2012 Lua.org, PUC-Rio

 >

 Accordingly, each command that you enter (like, for example measure, print “Hello World”) is executed immediately after how you enter it. To exit the interpreter, just type end-of-file character (ctrl-D in UNI, ctrl-Z in Windows) or call the exit function from the operating system library - you need type os.exit () .

 In interactive mode, Lua usually interprets each the line you enter as a separate block. However, if he is detects that the line is not a complete block, then it waits continue typing until a complete block is obtained. This way you can enter multi-line definitions, so as a factiorial function , directly interactively. One- but it is usually more convenient to place such definitions to a file and then call Lua to execute that file. You can use the –i option to force Lua switch to interactive mode after executing the given block ka:

 % lua -i prog

 A command like this will execute the block in the prog file and then go into interactive mode. This is especially useful for debugging and manual th testing. At the end of this chapter, we will look at other options. command line for the Lua interpreter. Another way to trigger blocks is the dofile function , which paradise executes the file immediately. For example, let's say you have lib1.lua file with the following code:

 function norm (x, y)

 return (x ^ 2 + y ^ 2) ^ 0.5

 end

 function twice (x)

 return 2 * x

 end

 Then interactively you can type

 > dofile (“lib1.lua”) - load your library

 > n = norm (3.4, 1.0)

 > print (twice (n)) -> 7.0880180586677

 The dofile function is also useful when you are testing a piece of code. You can work with two windows: one contains the text editor with your program (for example, in the prog.lua file), and in other gom is a console running the Lua interpreter in the inter- active mode. After you have saved the changes to your program, you do dofile (“prog.lua”) in the console to load ki new code; then you can start using the new code, calling functions and printing the results.

 1.2. Some lexical agreements

 Identifiers (or names) in Lua are strings from Latin their letters, numbers and underscores that do not start with a number;

 eg:

 ij i10 _ij

 aSomewhatLongName _INPUT

 You are better off avoiding identifiers consisting of underscores vana followed by capital Latin letters (for example, _VERSION); they are reserved for special purposes in Lua. I usually use id _ (single underscore)

 for dummy variables. In older versions of Lua, the concept of what a letter is depended on from the locale. However, these letters make your program un- suitable to run on systems that do not support this locale. Therefore, Lua 5.2 considers only letters as letters. from the following ranges: AZ and az . The following words are reserved, you cannot use them as identifiers:

 and break do

 else elseif

 end false goto for function

 if in

 local nil not

 or repeat return then true

 until while

 Lua is case sensitive: and is a reserved word, however, And and AND are two different identifiers. The comment starts with two minus signs (-) and continues with- until the end of the line. Lua also supports block comments, which starts with - [[and goes to the next]] 1 . Standard the way to comment out a piece of code is to put it between

 - [[and -]] as shown below:

 - [[

 print (10) - no action (commented out)

 -]]

 To make this code active again, just add one minus to the first line:

 --- [[

 print (10) -> 10

 -]]

 In the first example - [[in the first line starts a block com- mentary, and the double minus in the last line is also in this comment. In the second example --- [starts the usual single line comment, so the first and last lines

 become regular independent comments. In this case print is outside of comments.

 1.3. Global Variables

 Global variables do not need descriptions; you just use them you whine. It is not an error to refer to uninitialized variable; you just get nil as a result- that:

 print (b) -> nil

 b = 10

 print (b) -> 10

 If you assign nil to a global variable, Lua will itself as if this variable has never been used:

 b = nil

 print (b) -> nil

 After this assignment, Lua may eventually regain its password. the space occupied by this variable.

 1.4. Separate interpreter

 Stand-alone interpreter (also called lua.c in relation to the name of its source file or just lua by name executable file) is a small program that allows direct use of Lua. This section presents her basic options.

 When the interpreter loads a file, it skips the first string if it starts with '#' character . This allows you to use make Lua a scripting interpreter on UNIX systems. If you start your script with something like

 #! / usr / local / bin / lua

 (assuming the interpreter is in / usr / local / bin) or

 #! / usr / bin / env lua ,

 then you can directly run your script without explicitly start the Lua interpreter. The interpreter is called like this:

 lua [options] [script [args]]

 All parameters are optional. As we have seen, when we start If lua has no arguments, it goes into interactive mode.

 The -e option allows you to directly specify the code directly in the command- line like below:

 % lua -e “print (math.sin (12))” -> -0.53657291800043

 (UNIX requires double quotes so that the command interpreter the torus (shell) did not parse parentheses).

 The –l option loads the library. As we have seen previously, -i pe- puts the interpreter into interactive mode after processing the OS arguments. So the next call will load the library lioteku lib , then execute the assignment x = 10 and finally pass into interactive mode.

 % lua -i -llib -e “x = 10”

 Interactively, you can print the value of the expression by simply typing a line that starts with an equal sign for

 followed by the expression:

 > = math.sin (3) -> 0.14112000805987

 > a = 30

 > = a -> 30

 This feature allows Lua to be used as a calculator. Before executing its arguments, the interpreter looks for re- environment variable named LUA_INIT_5_2 or, if such a change no, no, LUA_INIT . If one of these variables is present and its has the form @filename , the interpreter launches this file. If LUA_INIT_5_2 (or LUA_INIT) is defined but not start- is started with the '@' character , then the interpreter assumes that it contains executable Lua code and executes it. LUA_INIT gives huge the ability to configure the interpreter, since when configuration, all the power of Lua is available to us. We can download packages, change the current path, define your own functions change, rename or delete functions, etc. The script can get its arguments in a global variable

 arg . If we have a call like % lua script abc , then the interpreter creates arg table with all command line arguments before by executing the script. The script name is located at index 0, per- the first argument (in the example it is “a”) is located at index 1, and so on. The preceding options are arranged in negative indices,

 as they appear before the script name. For example, ra- look at the following call:

 % lua -e “sin = math.sin” script ab

 The interpreter collects arguments as follows:

 arg [-3] = "lua"

 arg [-2] = “-e”

 arg [-1] = “sin = math.sin”

 arg [0] = "script"

 arg [1] = “a”

 arg [2] = “b”

 Most often the script uses only positive indices (in the example, these are arg [1] and arg [2]).

 Since Lua 5.1 the script can also receive its arguments using the expression ... (three dots). In the main part of the script, this is expression gives all the arguments of the script (we will discuss similar expressions (see section 5.2).

 Exercises

 Exercise 1.1 . Run the factorial example. What will happen

 with your program if you enter a negative number?

 Modify the example to avoid this problem.

 Exercise 1.2 . Run the twice example by loading once

 file using the –l option , and another time using dofile . what

 faster?

 Exercise 1.3 . Can you name another language using-

 (-) for comments?

 Exercise 1.4 . Which of the following lines are valid

 by our identifiers?

 ___ _end End end until? nil NULL

 Exercise 1.5 . Write a simple script that prints

 your name without knowing it in advance.

 CHAPTER 2

 Types and values

 Lua is a dynamically typed language. The language has no definitions of ty-pov, each value carries its own type.

 There are eight basic types in Lua: nil , boolean , number , string , userdata , function , thread and table . The type function returns the type for any passed value:

 print (type (“Hello world”))

 -> string

 print (type (10.4 * 3))

 -> number

 print (type (print))

 -> function

 print (type (type))

 -> function

 print (type (true))

 -> boolean

 print (type (nil))

 -> nil

 print (type (type (X)))

 -> string

 The last line will always return string regardless of the value Niya the X , as the result of a function type is always a string.

 Variables have no predefined types; any variable can contain values of any type:

 print (type (a)) -> nil ('a' not yet defined)

 a = 10

 print (type (a)) -> number

 a = “a string !!”

 print (type (a)) -> string

 a = print

 -- Yes it is possible!

 a (type (a))

 -> function

 Notice the last two lines: functions are first class values in Lua; they can be manipulated like any other values. (More on this in Chapter 6.) Usually when you use the same variable for value different types, you get disgusting code. However, sometimes judicious use of this opportunity is beneficial, for example using nil to distinguish normal return value from any error.

 2.1. Nil

 Nil is a type with only one value, nil , the main which is different from all other values. Lua

 uses nil to indicate a missing value. Like us already seen, globals default to nil before its first assignment, you can also assign nil a global variable to delete it.

 2.2. Boolean (boolean values)

 The boolean type has two values, true and false , which serve to pre- setting traditional logical values. However, these values do not monopolize all conditional values: in Lua, any value can represent a condition. Relevant checks (checking conditions in various control structures) interpret both nil and false as false and all other values as valid muddy. In particular, Lua treats zero and an empty string as true. in logical conditions. Throughout the book, false will mean nil. and false . In the case when it is about boolean values, there will be explicitly set to false .

 2.3. Numbers

 The number type represents floating point values specified with double precision. Lua does not have a built-in integer type.

 Some fear that even simple operations such as increase by one (increment) and comparison, may be incorrect work with floating point numbers. However, in fact it isnot this way. Almost all platforms now support the standard IEEE 754 for floating point representation. According to this standard, the only possible source of errors is There is a case where the number cannot be accurately represented. Opera- walkie-talkie rounds its result only if the result cannot be accurately represented as the corresponding float value point. Any operation whose result can be accurately predicted put, will have the exact meaning. In fact, any integer up to 2 53 (approximately 10 16) has an exact floating point representation with double precision. When you use a float value double-precision dot to represent integers, no rounding errors unless the value is greater than 2 53 in absolute value . In particular, Lua is capable of representing any 32-bit integer values without rounding problems. Of course, fractional numbers will have rounding problems. This the situation is no different than when you have paper and a pen. If we want to write 1/7 in decimal form, then we must somewhere us stop. If we use ten digits to represent number, then 1/7 becomes 0.142857142 . If we calculate 1/7 * 7 s ten digits, we get 0.999999994 , which is different from 1. Moreover, numbers that have a finite representation in the form

 decimal fractions can have an infinite representation in the form binary fractions. So, 12.7-20 + 7.3 is not zero, since both numbers 12.7 and 7.3 do not have an exact binary representation (see

 Figure 2.3). Before we continue, remember that integers have an exact representation and therefore have no rounding errors. Most modern CPUs perform floating operations. dot as fast (or even faster) than with integers. However, it is easy to compile Lua so that for numeric values a different type was used, for example long integers single-precision floating-point values or numbers. It especially useful for platforms without hardware support for numbers with floating point such as embedded systems. For de- For this, refer to the luaconf.h file in the Lua source files. We can write numbers, if necessary, specifying a fraction part and decimal degree. Examples of valid numeric constants are:

 4 0.4 4.57e-3 0.3e12 5E + 20

 Moreover, we can also use hexadecimal constants starting at 0x . Since Lua 5.2 hexadecimal constants can also have a fractional part and a binary power (ne- 'p' or 'P' is used before the degree), as in the following examples:

 0xff (255) 0x1A3 (419) 0x0.2 (0.125) 0x1p-1 (0.5)

 0xa.bp2 (42.75)

 (We've added a decimal representation for each constant.)

 2.4. Strings

 Lua strings have the usual meaning: a sequence of characters fishing. Lua supports all 8-bit characters, and strings can be keep characters with any codes, including zeros. It means that you can store any binary data as strings. you also you can store unicode strings in any representation (UTF-8, UTF-16, etc.). The standard library that comes with Lua is does not contain built-in support for these views. However less, you may well be working with UTF-8 strings, which we will consider Rome in section 21.7. Lua strings are immutable values. You can not change the character inside the string, as you can in C; instead of this you create a new line with the desired changes as shown in following example:

 a = “one string”

 b = string.gsub (a, “one”, “another”) - change part of the string

 print (a) -> one string

 print (b) -> another string

 Lua strings are subject to automatic memory management, just like other Lua objects (tables, functions, etc.). This is a sign cheat that you don't have to worry about allocating and freeing lines; Lua will do it for you. The string can be one character or a whole book. Programs that work with lines of 100K or 10M characters are not uncommon in Lua. You can get the length of a string using as a prefix operator '#' (called length operator):

 a = “hello”

 print (#a) -> 5

 print (# "good \ 0bye") -> 8

 Literals

 We can put strings inside single or double quotes- check:

 a = “a line”

 b = 'another line'

 These types of records are equivalent; the only difference is what is inside a string, limited to one type of quotation marks, you can directly insert quotation marks of a different type. Usually most programmers use quotation marks of one type for the same string type. For example, a library that works with XML, can use single quotes for strings, containing XML fragments, since these fragments often contain

 double quotes. Lua strings can contain the following escape sequence nos:

 \ a

 bell

 \ b

 Back space

 \ f

 page translation (form feed)

 \ n

 newline

 \ r

 carriage return

 \ t

 tab (horizontal tab)

 \ v

 vertical tab

 \\

 backslash

 \ "

 double quote

 \ '

 single quote

 The following example illustrates their use:

 > print (“one line \ nnext line \ n \” in quotes \ ”, 'in quotes'”)

 one line

 next line

 “In quotes”, 'in quotes'

 > print ('a backslash inside quotes: \' \\\ '')

 a backslash inside quotes: '\'

 > print (“a simpler way: '\\'”)

 a simpler way: '\'

 We can specify a character in a string using its numeric value using constructions like \ ddd and \ x \ hh , where ddd is a sequence of no more than three decimal digits, and hh is a sequence of exactly two hexadecimal digits. As complex example two lines “alo \ n123 \” ” and '\ 97lo \ 10 \ 04923”' have the same meaning on a system using ASCII: 97 is the ASCII code for 'a' , 10 is the code for the line feed character, and 49 is the code for the digit '1' (in this example we should write the value 49 using three decimal digits \ 049 , because it is followed by another number; otherwise Lua interpreted it as code 492). We we can also write the same string as ' \ x61 \ x6c \ x6f \ x0a \

 x31 \ x32 \ x33 \ x22 ' , representing each character in its sixteen-

 normal value.

 Long lines

 We can delimit character strings with double square brackets, as we did with the comments. Line in this form can span many lines, and control sequences the numbers on these lines will not be interpreted. Moreover, this the form ignores the first character of the line if it is a jump character next line. This form is especially useful for writing lines, containing large snippets of code as shown below:

 page = [[

 <html>

 <head>

 <title> An HTML Page </title>

 </head>

 <body>

 Lua

 </body>

 </html>

]]

 write (page)

 Sometimes you may want to put something like

 a = b [c [i]] (note the]] in this code) or you can want to put in a line a piece of code where some piece is already commented out. To deal with such cases, you can use place any number of equal signs between two opening in square brackets, for example [=== [. After that the line will terminate only on a pair of closing square brackets with the same the most equal signs (] ===] for our example). The scanner will ignore pairs of brackets with a different number of values. kov equality. By choosing a suitable number of equal signs You can wrap any fragment in a string. The same is true for comments. For example, if you start- those long comment with - [= [, then it will continue all the way before] =] . This feature allows you to comment out any fragment a code snippet containing already commented out fragments.

 Long lines are very handy for including text in your code, but you shouldn't use them for non-text strings. Although the lines in Lua can contain any characters, this is not a good idea - use these symbols in your code: you may run into problems with your text editor; moreover, lines of the form “\ R \ n” can become “\ n” . Therefore, to represent the arbitrary binary data, it is better to use control software sequences starting with a \ , such as \ x13 \ x01 \ xA1 \ xBB ". However, this presents a problem for long lines because of the resulting length. For situations like this, Lua 5.2 offers a control after- the \ z sequence : it skips all characters in the string up to the first non-whitespace character. The following example illustrates its use use:

 data = “\ x00 \ x01 \ x02 \ x03 \ x04 \ x05 \ x06 \ x07 \ z

 \ x08 \ x09 \ x0A \ x0B \ x0C \ x0D \ x0E \ x0F "

 \ Z at the end of the first line skips the following

 end of line and indentation of next line so that byte

 \ x07 immediately followed by a byte \ x08 in the resulting row.

 Type casts

 Lua provides automatic conversion of values between

 strings and numbers at run time. Any numeric operation

 applied to a string, tries to convert the string to a number:

 print (“10” + 1) -> 11

 print (“10 + 1”) -> 10 + 1

 print (“- 5.3e-10” * ”2”) -> -1.06e-09

 print (“hello” + 1) - ERROR (cannot convert “hello”)

 Lua applies similar conversions not only in arithmetic operators, but also in other places where the expected number, for example for the math.sin argument . Similarly, when Lua expects to receive a string, but receives a number, it converts the number to string:

 print (10 .. 20) -> 1020

 (The .. operator is used in Lua to concatenate strings. When you use it write immediately after the number, then you must separate them from each a friend with a space; otherwise Lua will assume that the first point is decimal point of the number.) Today we are not sure if these automatic conversions types were a good idea in Lua design. It is generally best on do not count them. They are handy in some places; but adding- There are complexities in both the language and the programs that use them. After all, strings and numbers are different types despite everything these transformations. A comparison like 10 = "10" gives a false value, because 10 is a number and “10” is a string. If you need to explicitly convert a string to a number, then you can use the tonumber function , which returns nil if string ka does not contain a number:

 line = io.read ()

 - read the line

 n = tonumber (line)

 - try to translate it into a number

 if n == nil then

 error (line .. “is not a valid number”)

 else

 print (n * 2)

 end

 To convert a number to a string, you can use the function tion tostring or concatenate the number with an empty string:

 print (tostring (10) == “10”)

 -> true

 print (10 .. “” == “10”)

 -> true

 These transformations always work.

 2.5. Tables

 The table type corresponds to an associative array. Associative a ny array is an array that can be indexed not only numbers, but also strings or any other value from the language, except for nil .

 Tables are the main (actually the only) place a hanism for structuring data in Lua, and very powerful. We use tables to represent regular arrays, sets, records and other data structures simple, homogeneous and in an efficient way. Lua also uses tables to pre- placing packages and objects. When we write io.read , we think- This is about the “ read function from the io module ”. For Lua, this expression means "Take the value from the io table by the read key . "

 Lua tables are neither values nor variables; they objects . If you are familiar with arrays in Java or Scheme, then you should you know what I mean. You can think of a table as dynamically allocated object; your program only works with a link (pointer) to it. Lua never uses covert copying or creating new tables. Moreover, you even no need to declare a table in Lua; in fact there is not even a way declare a table. You create tables using a special expression, which in the simplest case looks like {} ;

 a = {}

 - create a table and remember the link to it in 'a'

 k = “x”

 a [k] = 10

 - new record with key "x" and value 10

 a [20] = “great” –- new record with key 20 and value “great”

 print (a [“x”]) -> 10

 k = 20

 print (a [k]) -> “great”

 a [“x”] = a [“x”] + 1 –- increase the record “x”

 print (a [“x”]) -> 11

 The table is always anonymous. There is no permanent connection between the variable that contains the table and the table itself:

 a [“x”] = 10

 b = a

 - 'b' refers to the same table as 'a'

 print (b [“x”]) -> 10

 b [“x”] = 20

 print (a [“x”]) -> 20

 a = nil - only 'b' still refers to the table

 b = nil - there are no references to the table

 When there are no more references to the table left in the program, the collector garbage in Lua will eventually destroy the table and reuse it memory.

 Each table can contain values with different types of dex, and the table grows as new records are added:

 a = {}

 - empty table

 - create 1000 new entries

 for i = 1, 1000 do a [i] = i * 2 end

 print (a [9]) -> 18

 a [“x”] = 10

 print (a [“x”]) -> 10

 print (a [“y”]) -> nil

 Pay attention to the last line: as with the global variables, uninitialized table fields return nil . As with global variables, you can assign the table field is nil to destroy it. This is not a coincidence: Lua stores global variables in regular tables. We we'll take a closer look at this in Chapter 14. To represent records, you use the field name as an index. Lua supports this view by offering the following syntax sic sugar ": instead of a [" name "] you can write a.name . So Thus, we can rewrite the last few lines of the previous the following example in a cleaner way:

 ax = 10 - same as a [“x”] = 10

 print (ax) - same as print (a [“x”])

 print (ay) - same as print (a [“y”])

 For Lua, these two forms are completely equivalent and can be

 freely used. For the reader, however, each form can

 communicate a specific intent. Dot notation clearly

 shows that we are using the table as a record (structure), where y

 we have a certain set of given, predefined keys.

 Another entry suggests that the table can be used

 use any string as a key and for some reason in

 this place we work with a specific key.

 A common newbie mistake is that

 they confuse ax and a [x] . The first form actually matches

 a [“x”] , that is, referring to the table with the key “x” . In the second case

 the key is the value of the variable x . Shown below

 difference:

 a = {}

 x = “y”

 a [x] = 10 - write 10 in the “y” field

 print (a [x]) -> 10 - value of the "y" field

 print (ax) -> nil - value of field “x” (undefined)

 print (ay) -> 10 - value of the field "y"

 To represent a traditional array or list, simply use

 use a table with integer keys. There is no way, no

 the need to declare size; you just initialize those elements

 the cops you need:

 - read 10 lines, memorizing them in the table

 a = {}

 for i = 1, 10 do

 a [i] = io.read ()

 end

 Since you can index the table by any value-

 you can start indices in an array with any number that

 you like. However, it is customary in Lua to start arrays with one.

 (not from scratch as in C) and some Lua tools stick to this-

 th agreement.

 Usually, when you are working with a list, you need to know its length.

 It can be constant or it can be written somewhere. Usually

 we write the length of the list in a field with a non-numeric key; by history

 For logical reasons, some programs use for these purposes

 Leave the field “n” .

 Often, however, the length is not explicitly specified. Since anyone who does not

 the value of nil corresponds to the initialized field , then we can use

 use this value to determine the end of the list. For instance,

 if you've read ten lines into a list, it's easy to remember that its

 the length is 10, since its keys are the numbers 1, 2,…, 10.

 This approach only works with lists that have no holes , which

 they contain the value nil . We call such lists of sequences

 sequences .

 For sequences, Lua offers the '#' length operator. is he

 returns the last index or length of a sequence. On-

 example, you can print the lines read in the previous

 example using the following code:

 - print the lines

 for i = 1, #a do

 print (a [i])

 end

 Since we can index the table with values of any

 type, then when indexing a table, the same subtleties arise as

 and when checking for equality. Although we can index the table

 and using the integer 0 , and using the string “0” , these two mean

 The values are different and correspond to different elements of the table. Ana-

 logically, the lines “+1” , “01” and “1” also correspond to different elements

 table cops. When you are unsure about the type of your indexes,

 use explicit casting:

 i = 10; j = “10”; k = "+10"

 a = {}

 a [i] = “one value”

 a [j] = “another value”

 a [k] = “yet another value”

 print (a [i])

 -> one value

 print (a [j])

 -> another value

 print (a [k])

 -> yet another value

 print (a [tonumber (j)]) -> one value

 print (a [tonumber (k)]) -> one value

 If you do not pay attention to these subtleties, then it is easy to add to the program

 hard-to-find errors.

 2.6. Functions

 Functions are first class values in Lua: programs

 can write functions to variables, pass functions as

 arguments to other functions and return functions as a result.

 This capability lends tremendous flexibility to the language; software

 ma can override the function to add new functionality

 nality, or simply remove the function to create a safe

 environment for executing a piece of untrusted code (for example,

 code received over the network). Moreover, Lua provides a good

 support for functional programming, including nested

 functions with the appropriate lexical environment; simple

 then wait until chapter 6. Finally, first class functions play

 an important role in the object-oriented features of Lua as

 we will see in chapter 16.

 Lua can call functions written in Lua and functions that

 written in C. Usually we use functions written in C.

 C, in order to get high performance and access to the

 features not available directly from Lua, such as accessing

 operating system tools. All standard libraries in Lua

 are written in C. They include functions for working with strings

 mi, working with tables, input / output, access to basic

 operating system, math functions and debugging.

 We will discuss Lua functions in Chapter 5 and C functions in Chapter 27.

 2.7. userdata and threads

 The userdata type allows you to store arbitrary C language data in

 Lua variables. This type has no built-in operations, except

 assignment and equality testing. Values of this type

 are used to represent new types created by applications

 ny or a library written in C; for example, the standard library

 the I / O library uses them to represent open

 files. We will discuss this type in more detail later when we move on

 to the C API.

 The thread type will be covered in Chapter 9, where we will look at

 coroutines.

 Exercises

 Exercise 2.1. What is the meaning of an expression

 type (nil) == nil ? (You can use Lua to check

 your answer.) Can you explain the result?

 Exercise 2.2. Which of the following is acceptable

 by numbers? What are their meanings?

 .0e12 .e12 0.0e 0x12 0xABFG 0xA FFFF 0xFFFFFFFF

 0x 0x1P10 0.1e1 0x0.1p1

 Exercise 2.3. 12.7 is equal to 127/10, where all numbers

 are decimal. Can you imagine it as

 the value of a binary fraction? And the number 5.5?

 Exercise 2.4. How would you write the following XML snippet in

 a Lua string?

 <! [CDATA [

 Hello world

]]>

 Use at least two different methods.

 Exercise 2.5. Let's say you need to write a long after-

 a sequence of arbitrary bytes as a string constant in

 Lua. How do you do it? Pay attention to readability,

 maximum line length and performance.

 Exercise 2.6. Consider the following code:

 a = {}; aa = a

 What will be the value of aaaa ? Any a in this sequence

 is somehow different from the rest?

 Now add the following line to the previous code:

 aaaa = 3

 What will be the value of aaaa now ?

 CHAPTER 3

 Expressions

 Expressions represent values. Expressions in Lua include

 numeric constants and string literals, variables, unary and

 binary operations and function calls. Expressions also include-

 contain non-standard function definitions and constructors for

 tables.

 3.1. Arithmetic operators

 Lua supports the standard arithmetic operators: binary-

 nye '+' (addition), '-' (subtraction), '*' (multiplication), '/' (div-

 number), '^' (exponentiation), '%' (remainder of division), and unary

 '-' (change sign). All of them work with floating-point numbers.

 point. For example, x ^ 0.5 calculates the square root of x ,

 and x ^ (- 1/3) computes the inverse of the cube root of x .

 The following rule defines the modulus operator:

 a% b == a - math.floor (a / b) * b

 For integer operands, it has a standard value, and re-

 The result has the same sign as the second operand. For real

 operands, it has some additional features. On-

 for example, x% 1 gives the fractional part of x, and xx% 1 gives the integer part. Ana-

 logical xx% 0.01 gives x with exactly two decimal places after

 comma:

 x = math.pi

 print (x - x% 0.01) -> 3.14

 As another example of using the remainder operator

 division, consider the following example: let's say you want to know

 will the vehicle after turning at a given angle

 move in the opposite direction. If the angle is given in degrees, then

 you can use the following formula:

 local tolerance = 10

 function isturnback (angle)

 angle = angle% 360

 return (math.abs (angle - 180) <tolerance)

 end

 This definition works even for negative angles:

 print (isturnback (-180)) -> true

 If you want to work in radians instead of degrees, we just

 let's change the constants in the functions:

 local tolerance = 0.17

 function isturnback (angle)

 angle = angle% (2 * math.pi)

 return (math.abs (angle - math.pi) <tolerance)

 end

 All we need is an angle% (2 * math.pi) operation to convert

 any angle to the interval [0, 2π).

 3.2. Comparison Operators

 Lua provides the following comparison operators:

 <> <=> = == ~ =

 All of these operators are always boolean.

 The == operator tests for equality; operator ~ = is negation

 equality. We can use both of these operators to any two

 values. If the values are of different types, then Lua assumes that

 they are not equal. Otherwise Lua compares them accordingly

 their type. The nil value is equal only to itself.

 Lua compares tables and objects of type userdata by reference, i.e.

 two such values are considered equal only if they are

 the same object. For example, after doing the following

 code:

 a = {}; ax = 1; ay = 0

 b = {}; bx = 1; by = 0

 c = a

 we get a == c , but a ~ = b .

 We can only apply order operators to a pair of numbers, or

 a couple of lines. Lua compares strings alphabetically, following the convention

 The locale set for Lua. For example, for the Portuguese locale

 Latin-1 we get “acai” <”açaí” <”acorde” . Values of types from-

 personal from strings and numbers, can only be compared for equality

 (and inequality).

 When comparing values of different types, you need to be careful

 nym: remember that “0” is different from 0 . Moreover, 2 <15 is obvious

 true, but “2” <“15” is false. In case you are trying to compare

 a string and a number, for example 2 <“15” , an error occurs.

 3.3. Logical operators

 The logical operators are and , or and not . As well as managing

 constructs, logical operators treat false and nil as false

 and all others as true values. And return operator

 gives its first operand if it is false, otherwise it returns its

 second operand. The or operator returns its first operand if

 it is not false; otherwise it returns its second operand:

 print (4 and 5)

 -> 5

 print (nil and 13)

 -> nil

 print (false and 13)

 -> false

 print (4 or 5)

 -> 4

 print (false or 5)

 -> 5

 Both operators (and and or) use shorthand evaluation, then

 there they calculate their second operand only when it is necessary

 dimo. This ensures that expressions like (type (v) == ”table” and

 v.tag == "h1") will not cause errors in their computation: Lua will not

 try to compute v.tag when v is not a table.

 A useful construct in Lua is x = x or v , which is equivalent to

 to the following code:

 if not x then x = v end

 That is, the x value is set equal to the default

 v if x is undefined (assuming x is not false).

 Another useful construct is (a and b) or c, or simply

 the a and b or c , as the operator and a higher pri-

 preference than or . It is equivalent to the expression a? B: c in C, when

 provided that b is not false. For example, we can choose the maximum from

 two numbers x and y using the following operator:

 max = (x> y) and x or y

 When x> y , then the first expression in the and operator is true,

 to this it returns its second value (x), which is always

 tiny (since it's a number), and then the or operator returns its

 first operand, x . If the expression x> y is false, then the result of the opera-

 the torus and is also false, and so the or operator returns its second

 operand, y .

 The not operator always returns a boolean value:

 print (not nil)

 -> true

 print (not false)

 -> true

 print (not 0)

 -> false

 print (not not 1)

 -> true

 print (not not nil)

 -> false

 3.4. Concatenation

 Lua refers to the concatenation operator as .. (dots). If opera-

 rand is a number, Lua will convert it to a string. (Some languages-

 ki use the '+' operator for concatenation , but Lua 3 + 5 differs

 from 3..5 .)

 print (“Hello“ .. “World”)

 -> Hello World

 print (0 .. 1)

 -> 01

 print (000 .. 01)

 -> 01

 Remember that strings in Lua are immutable values.

 The concatenation operator always creates a new string without changing its

 their operands:

 a = “Hello”

 print (a .. “World”)

 -> Hello World

 print (a)

 -> Hello

 3.5. Length operator

 The length operator works with strings and tables. With lines he

 gives the number of bytes per line. With tables, it returns the length of the pos-

 research presented in the table.

 There are several common idioms associated with the length operator

 to work with sequences.

 print (a [#a]) - prints the last element of the sequence 'a'

 a [#a] = nil - removes the last element

 a [#a + 1] = v - adds 'v' to the end of the list

 As we saw in the previous chapter, the length operator is not

 let's say for lists with holes (nil). It only works for software

 sequences, which we defined as lists without holes.

 More precisely, a sequence is a table where the keys are

 give a sequence 1,…, n for some n . (Remember, that

 any nil key is not actually in the table.)

 In particular, a table without numeric keys is a sequential

 length zero.

 Over the years, there have been many proposals to expand the meaning of opera-

 lengths to lists with holes, but this is easier said than done.

 The problem is that since a list is a table, the concept

 "Length" is somewhat vague. For example, consider a list

 produced by the following code snippet:

 a = {}

 a [1] = 1

 a [2] = nil - does nothing, since a [2] is already nil

 a [3] = 1

 a [4] = 1

 It is easy to say that the length of this list is four and it has a hole in

 index 2. However, what about the following example?

 a = {}

 a [1] = 1

 a [10000] = 1

 Should we treat this a as a list with 10,000 elements

 tami where 9998 elements are nil ? Now let the program do

 following:

 a [10000] = nil

 What happened to the length of the list? Should it be 9999,

 since the program removed the last item? Or maybe

 10,000, because the program just changed the value of the last element

 cop to nil ? Or should the length be 1?

 Another common suggestion is to do so

 so that the # operator returns the number of elements in the table. This semantic

 the teak is clear and well defined, but of no benefit.

 Let's consider all the previous examples and imagine how much

 A similar operator would be useful for algorithms that work

 with lists or arrays.

 Even more problematic are the nil values at the end of the list. Ka-

 What should be the length of the following list?

 a = {10, 20, 30, nil, nil}

 Recall that for Lua, a nil field is no different from

 accompanying field. Thus, the previous table is indistinguishable

 ma from {10,20,30} ; its length is 3, not 5.

 You might think that nil at the end of the list is a special case.

 However, many lists are built by adding elements, one

 after another. Any list with holes built like this

 thus, simply obtained by adding nil to its end.

 Many of the lists we use in our programs are

 are sequences (for example, a line in a file cannot

 be nil), and so most of the time the length operator is not

 passive for use. If you really have to work

 with lists with holes, then you'd better clearly remember the length somewhere

 list.

 3.6. Operator Priorities

 The operator precedence in Lua is given in the table below, from the oldest

 to the lowest:

 ^

 not # - (unary)

 * /%

 + -

 ..

 <> <=> = ~ = ==

 and

 or

 All binary operators are left associative, except

 '^' (exponentiation) and '..' (concatenation), which are associated

 tive to the right. Therefore the following expressions on the left are equivalent

 expressions on the right:

 a + i <b / 2 + 1

 <-->

 (a + i) <((b / 2) +1)

 5 + x ^ 2 * 8

 <-->

 5 + ((x ^ 2) * 8)

 a <y and y <= z <-->

 (a <y) and (y <= z)

 -x ^ 2

 <-->

 - (x ^ 2)

 x ^ y ^ z

 <-->

 x ^ (y ^ z)

 When in doubt, always use parentheses. It's easier than

 look in the manual, and most likely later when you read

 this code, you will have doubts again.

 3.7. Table constructors

 Constructors are expressions that create and initialize

 tables. They are the hallmark of Lua and one of its

 most useful and versatile mechanisms.

 The simplest constructor is an empty constructor, {} , which

 creates an empty table; we've seen this before. Constructors

 also initialize lists. For example, the operator

 days = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”,

 “Thursday”, “Friday”, “Saturday”}

 will initialize days [1] to “Sunday” (the first element

 constructor has index 1, not 0), days [2] is “Monday”

 etc.:

 print (days [4]) -> Wednesday

 Lua also offers special syntax for initialization

 tables by fields, as in the following example:

 a = {x = 10, y = 20}

 This line is equivalent to the following commands:

 a = {}; ax = 10; ay = 20

 The original expression is simpler and faster because Lua immediately creates

 It has a table with the correct size.

 Regardless of which constructor we used

 to create a table, we can always add and remove fields

 from her:

 w = {x = 0, y = 0, label = ”console”}

 x = {math.sin (0), math.sin (1), math.sin (2)}

 w [1] = “another field” - add key 1 to table 'w'

 xf = w

 - add key "f" to table 'x'

 print (w [“x”])

 -> 0

 print (w [1])

 -> another field

 print (xf [1])

 -> another field

 wx = nil

 - remove field “x”

 However, creating the table right away with the correct boo-

 more efficiently and clearly.

 We can mix these two initialization styles (list and by

 fields) in the same constructor:

 polyline = {color = ”blue”,

 thickness = 2,

 npoints = 4,

 {x = 0, y = 0},

 - polyline [1]

 {x = -10, y = 0},

 - polyline [2]

 {x = -10, y = 1},

 - polyline [3]

 {x = 0, y = 1}

 - polyline [4]

 }

 The example above also shows how contributions can be-

 nest constructors one into another to represent more complex

 data structures. Each of the polyline [i] elements is a table,

 representing a record:

 print (polyline [2] .x)

 -> -10

 print (polyline [4] .y)

 -> 1

 These two forms of constructor have their limitations. For instance,

 you cannot initialize fields with negative indices

 or with indices that are not identifiers. For such

 goals have a different, more general format. In this format, we clearly write

 we use the index as an expression between square brackets:

 opnames = {[“+”] = “add”, [“-”] = “sub”,

 [“*”] = “Mul”, [“/”] = “div”}

 i = 20; s = “-”

 a = {[i + 0] = s, [i + 1] = s..s, [i + 2] = s..s..s}

 print (opnames [s])

 -> sub

 print (a [22])

 -> ---

 This syntax is more awkward, but also more general: considered

 previously constructor forms are special cases of this

 more general syntax. The constructor {x = 0, y = 0} is equivalent to

 {[“X”] = 0, [“y”] = 0} , and the constructor {“r”, ”g”, ”b”} is equivalent to {

 [1] = ”r”, [2] = ”g”, [3] = ”b”} .

 You can always put a comma after the last entry in

 constructor. These commas are optional:

 a = {[1] = ”red”, [2] = ”green”, [3] = ”blue”,}

 This frees programs that generate Lua constructors from

 the need to process the last element in a special way.

 Finally, you can always use dot c in the constructor

 comma instead of comma. I usually use semicolons to de-

 division of various sections in the constructor, for example, the division of the hour

 from the part formatted as a list:

 {x = 10, y = 45; “One”, “two”, “three”}

 Exercises

 Exercise 3.1. What will the following program print?

 for i = -10, 10 do

 print (i, i% 3)

 end

 Exercise 3.2. What is the result of the expression 2 ^ 3 ^ 4 ?

 What about 2 ^ -3 ^ 4 ?

 Exercise 3.3. We can represent the polynomial

 a n x n + a n- 1 x n- 1 +… + a 1 x 1 + a 0

 in Lua as a list of its coefficients { a 0 , a 1 ,…, a n }.

 Write a function that receives a polynomial (represent

 table) and x returns a polynomial value

 ma in x .

 Exercise 3.4. Can you write a function from the previous

 present exercises so as to use n additions and n multiplied

 scaling (and not using exponentiation)?

 Exercise 3.5. How can you check if the value is

 boolean without resorting to the type function ?

 Exercise 3.6. Consider the following expression:

 (x and y and (not z)) or ((not y) and x)

 Are parentheses needed in this expression? How would you go

 advised to use them in this expression?

 Exercise 3.7. What will the following code snippet print?

 Explain.

 sunday = “monday”; monday = "sunday"

 t = {sunday = “monday”, [sunday] = monday}

 print (t.sunday, t [sunday], t [t.sunday])

 Exercise 3.8. Suppose you want to create a table that-

 paradise with each escape sequence (escape se-

 quence) for strings binds its value. How would you write

 a constructor for such a table?

 CHAPTER 4

 Operators

 Lua supports an almost traditional set of operators like

 to a set used in C or Pascal. Traditional operators

 include assignment, control constructs and calls

 procedures. Lua also supports the less common opera-

 tori such as multiple assignment and locale definition

 variables.

 4.1. Assignment operators

 Assignment is the basic means of changing the values of variables

 noah and table fields:

 a = “hello” .. “world”

 tn = tn + 1

 Lua allows multiple assignments , which

 swarm assigns a list of values to a list of variables in one step.

 For example, in the operator

 a, b = 10, 2 * x

 variable a gets the value 10 , and variable b gets the value 2 * x .

 In multiple assignment, Lua first evaluates all values.

 and only then performs the assignments. Therefore, we can use

 use multiple assignments to change

 in places two values, as in the following examples:

 x, y = y, x

 - swap 'x' and 'y'

 a [i], a [j] = a [j], a [i] - swap 'a [i]' and 'a [j]'

 Lua always converts the number of values to the number of variables:

 when the number of values is less than the number of variables, then

 Lua pads the list of values with the appropriate number of nils ,

 and when the number of values is greater, then the extra values are simply

 thrown:

 a, b, c = 0, 1

 print (a, b, c)

 -> 0 1 nil

 a, b = a + 1, b + 1, b + 2 - the value b + 2 is discarded

 print (a, b)

 -> 1 2

 a, b, c = 0

 print (a, b, c)

 -> 0 nil nil

 The last assignment in the example above shows the distribution

 an error. In order to initialize the list, re-

 variables, you must provide a value for each variable:

 a, b, c = 0, 0, 0

 print (a, b, c)

 -> 0 0 0

 In fact, most of the previous examples are somewhat

 then artificial. I rarely use multiple assignments

 just to connect several unrelated

 bout of assignments in one line. In particular, the multiple assignment

 an assignment is no faster than a set of corresponding single assignments.

 vanii. However, often we really need a plural

 assignment. We have already seen an example that changes two variables

 values. More frequent use is to obtain

 several values returned by the function at once. How do we discuss

 dim in section 5.1, a function can return several values at once.

 In such cases, multiple assignment is usually used -

 to get all these values. For example, in the assignment

 a, b = f () call f gives two values: the first one is written to a ,

 and the second is at b .

 4.2. Local variables and blocks

 In addition to global variables, Lua also supports local

 variable variables. We create local variables with

 operator local :

 j = 10

 - global variable

 local i = 1 - local variable

 Unlike global variables, the scope of local

 the variable is limited to the block where it was declared. Block is

 control structure body, function body and code block (file

 or the line where the variable was declared):

 x = 10

 local i = 1 - local in the block

 while i <= x do

 local x = i * 2 - local inside the while block

 print (x) -> 2, 4, 6, 8, ...

 i = i + 1

 end

 if i> 20 then

 local x

 - local inside “then”

 x = 20

 print (x + 2) - (will print 22 if the condition is met)

 else

 print (x) -> 10 (global)

 end

 print (x)

 -> 10 (global)

 Please note that this example will not work like

 expected if you enter it interactively. In the inter-

 active mode, each line is an independent block (for

 except for the case when the string is not a complete const

 manual). Once you enter the second line of the example (local

 i = 1), Lua will execute it and start a new block of code (next line

 ka). By that time, the scope of local variable i is already

 will end. To solve this problem, we can explicitly conclude

 this whole block between the do - end keywords . When you enter

 do , the block will end only when you enter the corresponding

 end , so Lua won't try to execute each line as

 separate block.

 These do -blocks prove useful when we need BO

 More precise control over the scope of local variables:

 do

 local a2 = 2 * a

 local d = (b ^ 2 - 4 * a * c) ^ (1/2)

 x1 = (-b + d) / a2

 x2 = (-b - d) / a2

 end –- scope 'a2' and 'd' ends here

 print (x1, x2)

 It is good style to use local variables

 wherever possible. Local variables help

 you avoid clogging the global environment with unnecessary names

 mi. Moreover, accessing a local variable is faster than accessing

 to the global. Finally, the local variable ceases to exist.

 as soon as its scope ends, allowing the collection

 the garbage bin to free the memory occupied by its value.

 Lua treats local variable declarations simply as

 operators. Therefore, you can insert a description of the local re-

 wherever you can insert a statement. Scope

 of the described variables begins immediately after the description and ends

 end of the block. Each description may include an assignment

 initial value, which acts the same as the operator for

 piles: extra values are discarded, extra variables

 get nil . If there is no assignment in the variable description

 nil , the corresponding variable is set to nil :

 local a, b = 1, 10

 if a <b then

 print (a) -> 1

 local a - implies '= nil'

 print (a) -> nil

 end

 - ends the block started by 'then'

 print (a, b) -> 1 10

 A common idiom in Lua is the following:

 local foo = foo

 This code creates a local variable foo and initializes it

 the value of the global variable foo . (Local variable foo

 becomes visible only after this announcement.) This idiom

 useful when a block needs to store a value

 the original variable, if it changes somewhere later in the code;

 it also speeds up access to this variable.

 Since many languages are forced to declare all local

 variables at the beginning of a block (or procedure), some people think that

 it is bad practice to declare variables in the middle of a block.

 In fact, the opposite is true: declaring a variable only when

 you really need it, you rarely need to declare it without

 initial value (and therefore you are unlikely to forget its initial

 lyse). Moreover, you reduce the scope of change -

 noah, which makes the code easier to read.

 4.3. Control constructs

 Lua provides a small and fairly traditional set of control

 constructs using if for conditional execution and

 while , repeat and for to iterate. All control structures

 have an explicit ending: end terminates if , for and while , while

 how until ends repeat .

 The conditional execution of the control structure can give any

 value. Remember that Lua considers all values other than

 nye from false and nil , as true. (In particular, Lua considers zero

 and an empty string as true values.)

 if then else

 The if statement checks the condition and execute its then-part or its

 else-part respectively. The else part is optional.

 if a <0 then a = 0 end

 if a <b then return a else return b end

 if line> MAXLINES then

 showpage ()

 line = 0

 end

 For writing nested if statements, you can use

 elseif . This is similar to else followed by an if , but it does not

 no need for many end :

 if op == “+” then

 r = a + b

 elseif op == “-” then

 r = a - b

 elseif op == “*” then

 r = a * b

 elseif op == “/” then

 r = a / b

 else

 error (“invalid operation”)

 end

 Since there is no switch statement in Lua , such constructions can be

 are freely common.

 while

 As the name suggests, this operator repeats its body while

 the condition is true. As usual, Lua checks the condition first; if a

 it is false, then the cycle ends; otherwise Lua does

 the body of the loop and repeats the given process.

 local i = 1

 while a [i] do

 print (a [i])

 i = i + 1

 end

 repeat

 As the name suggests, the repeat - until statement repeats its body

 until the condition becomes true. Checking the condition

 is added after the loop body is executed, so the loop body will be

 executed at least once.

 - print the first non-empty line

 repeat

 line = io.read ()

 until line ~ = “”

 print (line)

 Unlike many languages, in Lua the scope of local

 variables include the loop condition:

 local sqr = x / 2

 repeat

 sqr = (sqr + x / sqr) / 2

 local error = math.abs (sqr ^ 2 - x)

 until error <x / 10000 - local variable 'error' is visible here

 Numeric for statement

 The for statement comes in two flavors - numeric for and generic

 for .

 The numeric for statement looks like this:

 for var = exp1, exp2, exp3 do

 <something>

 end

 This loop will execute something for every var value from

 exp1 to exp2 , using exp3 as a step to increase var . This is a

 your expression (exp3) is optional; when absent, Lua

 uses 1 as a step. As typical examples of such

 cycles can be considered

 for i = 1, f (x) do print (i) end

 for i = 10, 1, -1 do print (i) end

 If you want to get a loop without an upper limit, then you can

 use constant math.huge :

 for i = 1, math.huge do

 if (0.3 * i ^ 3 - 20 * i ^ 2 - 500> = 0) then

 print (i)

 break

 end

 end

 The for loop has some subtleties that you know best,

 to use it well. First, all three expressions are

 are counted only once, before the start of the cycle. For example, in our

 In the first example, Lua will execute f (x) just once. Secondly,

 the control variable is a local variable, automatic

 cally declared operator for , and it is only within the visible

 cycle. It is a common mistake to think that this variable is all

 still exists after the end of the loop:

 for i = 1, 10 do print (i) end

 max = i - possibly wrong! Here 'i' is global

 If you need the value of the control variable after the loop

 (usually when you exit the loop ahead of time), then you should

 store its value in another variable:

 - find a value in the list

 local found = nil

 for i = 1, #a do

 if a [i] <0 then

 found = i - save value of 'i'

 break

 end

 end

 print (found)

 Third, you should never change the value of the control

 variable: the effect of such changes is unpredictable. If you

 want to end the for loop to terminate it normally, use

 Call break (as we did in the previous example).

 General for statement

 The generic for statement iterates over all the values returned by ite-

 ruling function:

 - print all values in table 't'

 for k, v in pairs (t) do print (k, v) end

 This example uses pairs , a convenient iteration function

 to traverse the entire table provided by the underlying library

 Lua. At each step of this cycle, k gets an index, and v gets a value,

 associated with this index.

 Despite its seeming simplicity, the general for operator -

 it is a very powerful language construct. With suitable iterators

 you can bypass just about anything you want in an easy-to-read form-

 me. The standard libraries provide multiple iterators,

 allowing us to iterate over the lines of the file (io.lines), pairs from the tab-

 faces (pairs), elements of sequence (ipars), words inside

 strings (string.gmatch), etc.

 Of course, we can write our own iterators as well. Although

 using the for statement in its general form is easy, the task of writing

 an iterator function has its own subtleties; we will cover this topic

 later in chapter 7.

 The general loop operator has two features in common with

 numeric loop operator: loop variables are local to

 loop bodies, and you should never write any

 values.

 Let's consider a more specific example of using the operator

 for general view. Let's say you have a table with the names of non-

 Delhi:

 days = {“Sunday”, “Monday”, “Tuesday”, “Wednesday”,

 “Thursday”, “Friday”, “Saturday”}

 Now you want to translate the name of the day to its position in the week.

 You can traverse the entire table looking for a given name. But,

 as you'll soon find out, you rarely need to search in Lua. More efficient

 an effective approach would be to build a reverse table, for example

 revDays , where day names are indices and values are

 mi are day numbers. This table will look like this

 way:

 revDays = {[“Sunday”] = 1, [“Monday”] = 2,

 [“Tuesday”] = 3, [“Wednesday”] = 4,

 [“Thursday”] = 5, [“Friday”] = 6,

 [“Saturday”] = 7}

 Then all you need to find the day number is

 refer to this reverse table:

 x = “Tuesday”

 print (revDays [x]) -> 3

 Of course, you don't have to explicitly set this reverse table. We can

 build it automatically from the original:

 revDays = {}

 for k, v in pairs (days) do

 break, return and goto

 revDays [v] = k

 end

 This loop will perform an assignment for each element of days ,

 where the variable k gets the key (1, 2, ...) and v gets the value

 (“Sunday”, “Monday”, ...).

 4.4. break, return and goto

 The break and return statements allow us to jump right out of the block.

 ka. The goto statement allows us to jump to almost any

 place of function.

 We use the break statement to end the loop. This opera-

 the generator interrupts the inner loop (for , repeat or while) containing

 shying him. Also it can be used to return from a function,

 so you don't have to use the return statement unless you

 return no value.

 For syntactic reasons, the return statement can only be

 to the last statement of the block: in other words, or the last

 operator, or right before end , else, or until . In the following case-

 as the return statement - the last statement block the then .

 local i = 1

 while a [i] do

 if a [i] == v then return i end

 i = i + 1

 end

 This is usually the place where we use return , because

 any other operators following it would never

 filled up. Sometimes it's actually useful to write return in

 middle of the block; for example you can debug a function and want

 avoid doing it. In cases like this, you can use

 put an explicit do block around the return statement :

 function foo ()

 return

 - << SYNTAX ERROR

 - 'return' is the last statement in the next block

 do return end

 - OK

 <other statements>

 end

 The goto statement translates program execution to the appropriate

 label. There were long discussions about goto , some people

 even now they believe that they are harmful to programming and should

 us to be excluded from programming languages. However, many

 languages offer a similar operator, and they have a reason for it.

 These operators are a powerful mechanism that will

 used carefully, can improve the quality of your

 th code.

 In Lua, the syntax for the goto statement is quite traditional: it is

 a goto reserved word followed by a label name which

 can be any valid identifier. Syntax for

 the label, however, is more complex: it consists of two colons, followed by

 followed by the label name followed by two more colons,

 for example :: name :: . This complexity is intentional, its purpose is to force

 programmer think twice before using goto .

 Lua puts some restrictions on where you can

 jump with goto . First, the labels follow the usual

 rules of visibility, so you cannot jump directly inside

 the block (since the label inside the block is invisible outside of it). In-

 second, you cannot jump out of the function. (Note,

 that the first rule excludes the possibility of jumping inside the function

 tion.) Third, you cannot jump inside the area of effect of the lo-

 local variable.

 A typical and well-used use of the goto statement

 is an emulation of some construction you learned from

 in another language, but which is absent in Lua, such as continue , many

 go-level break , redo , etc. The continue statement is just a transition

 to the label at the end of the loop, the redo statement jumps to the beginning of the block:

 while some_condition do

 :: redo ::

 if some_other_condition then goto continue

 else if yet_another_condition then goto redo

 end

 <some code>

 :: continue ::

 end

 A useful nuance in the Lua specs is that the scope

 while some_condition do

 if some_other_condition then goto continue end

 local var = something

 of a local variable ends with the last nepu-

 stom operator of the block where the variable is defined; tags are counted

 empty operators. In order to see the usefulness of this,

 look at the following code snippet:

 break, return and goto

 <some code>

 :: continue ::

 end

 You might think this goto statement jumps straight

 to the scope of var . However, the continue label finds-

 after the last non-empty block operator, and therefore not in the region

 These are the actions of var .

 The goto statement is also useful when writing state machines.

 As an example, Listing 4.1 is an example program that

 which believes whether its input contains an even number of zeros. Exists

 better ways of writing this program, but this approach

 very useful if you want to automatically translate the ending auto-

 tomato to Lua code (think about automatic code generation).

 As another example, consider a simple maze game.

 The maze contains several rooms, each with up to four doors:

 north, south, east and west. At each step, the user enters

 movement board. If there is a door in this direction, then the user

 the provider enters the appropriate room; otherwise the print program

 there is a warning. The goal is to get from the starting room to

 the ultimate room.

 This game is a typical machine where the current room is

 is a state. We can implement this game using one

 a block for each room and a goto statement to jump from one

 rooms to another. Listing 4.2 shows how you can write a simple

 the smallest labyrinth of four rooms.

 For this simple game, you might decide that the program that controls

 data when you describe rooms and movements when

 using tables is a better solution. However, if in

 each room has its own characteristics, then this approach provides

 is quite successful.

 Listing 4.1. State machine example using goto

 :: s1 :: do

 local c = io.read (1)

 if c == '0' then goto s2

 elseif c == nil then print'ok '; return

 else goto s1

 end

 end

 :: s2 :: do

 local c = io.read (1)

 if c == '0' then goto s1

 elseif c == nil then print'not ok '; return

 else goto s2

 end

 end

 goto s1

 Listing 4.2. Maze game

 goto room1 - starting room

 :: room1 :: do

 local move = io.read ()

 if move == “south” then goto room3

 elseif move == “east” then goto room2

 else

 print (“illegal move”)

 goto room1 - stay in the same room

 end

 end

 :: room2 :: do

 local move = io.read ()

 if move == “south” then goto room4

 elseif move == “west” then goto room1

 else

 print (“illegal move”)

 goto room2

 end

 end

 :: room3 :: do

 local move = io.read ()

 if move == “north” then goto room1

 elseif move == “east” then goto room4

 else

 print (“illegal move”)

 goto room3

 end

 end

 :: room4 :: do

 print (“Congratulations, you won!”)

 end

 Exercises

 Exercise 4.1. Most languages with C-like syntax

 catfish doesn't offer an elseif construct . Why is this construct

 Is it more needed in Lua than in other languages?

 Exercise 4.2. Write four different ways to implement

 to create an unconditional loop in Lua. Which one do you prefer

 curls?

 Exercise 4.3. Many people think that repeat - until is used

 rarely and therefore should not be present in minimalist

 languages like Lua. What do you think about it?

 Exercise 4.4. Rewrite the state machine in Listing 4.2.

 without using goto .

 Exercise 4.5. Can you explain why Lua has

 Is there a restriction that you can't jump out of the function?

 (Hint: How would you implement this feature?)

 Exercise 4.6. Assuming goto can jump out of

 functions, explain that the program in Listing 4.3 should

 make. (Try to reason about the label using

 the same rules that are used to describe the

 the scope of local variables.)

 Listing 4.3. Strange (and incorrect) goto usage

 function getlabel ()

 return function () goto L1 end

 :: L1 ::

 return 0

 end

 function f (n)

 if n == 0 then return getlabel ()

 else

 local res = f (n - 1)

 print (n)

 return res

 end

 end

 x = f (10)

 x ()

 CHAPTER 5

 Functions

 Functions are the main mechanism for abstraction of operators and

 expressions in Lua. Functions can perform a specific task

 (in other languages this is often called a procedure or subroutine) or

 calculate and return values. In the first case, we use you

 function call as operator; in the second case we use it as

 expression:

 print (8 * 9, 9/8)

 a = math.sin (3) + math.cos (10)

 print (os.date ())

 In both cases, the argument list is enclosed in parentheses,

 indicating a call; if the function has no arguments, then we are all equal

 but must write () to indicate a function call. Existence

 There is a special exception to this rule: if a function has all

 one argument and this argument, either a literal (character string) or

 table constructor, the parentheses are optional:

 print "Hello World"

 <--> print (“Hello World”)

 dofile 'a.lua'

 <--> dofile ('a.lua')

 print [[a multi-line

 <--> print ([[a multi-line

 message]] message]])

 f {x = 10, y = 20}

 <--> f ({x = 10, y = 20})

 type {}

 <--> type ({})

 Lua also offers special syntax for object-

 directed calls, colon operator. An expression like

 o: foo (x) is just a way to write o.foo (o, x) , that is, to call

 o.foo by adding o as an optional argument. In Chapter 16, we discuss

 we make similar calls (and object-oriented programming

 in more detail.

 A Lua program can use functions written as

 in Lua and C (or any other language used by the application

 niy). For example, all functions from the Lua standard library are written

 sana in C. However, when calling a function, there is no difference between

 functions written in Lua and functions written in C.

 As we saw in other examples, the function definition follows

 traditional syntax like below:

 - add the elements of the sequence 'a'

 function add (a)

 local sum = 0

 for i = 1, #a do

 sum = sum + a [i]

 end

 return sum

 end

 In this syntax, the function definition contains a name (in the example

 add), a list of parameters, and a body that is a list of operators

 moat.

 Parameters work as local variables, initials

 values of arguments passed when calling the function

 tion. You can call a function with a number of arguments, different

 from its parameter list. Lua will cast the number of arguments

 to the number of parameters in the same way as it is done in the plural

 piling: unnecessary arguments are discarded instead of missing ones

 nil is added . For example, consider the following function:

 function f (a, b) print (a, b) end

 She has this behavior:

 f (3) -> 3 nil

 f (3, 4) -> 3 4

 f (3, 4, 5) -> 3 4 (5 is discarded)

 Although this behavior can lead to errors (easy

 at runtime), it is also useful, especially

 for default arguments. For example, consider the following

 a function that increments the global counter:

 function incCount (n)

 n = n or 1

 count = count + n

 end

 This function has one default parameter; if we call

 we put it incCount () without arguments, then it will increment count by one.

 When you call incCount () , Lua first initializes n values

 by nil ; the or operator returns its second argument, and as a result

 Lua sets the variable n to 1.

 5.1. Multiple results

 A little common, but nevertheless very convenient feature

 The thing about Lua is that a function can return multiple values.

 Some of the predefined functions in Lua return multiple

 values. As an example, take the string.find function ,

 which looks for a pattern in a string. This function returns two indices

 sa when it finds a pattern: the index of the start of the pattern in the string and the index

 end of the pattern. Multiple assignment allows the program

 get both results:

 s, e = string.find (“hello Lua users”, “Lua”)

 print (s, e)

 -> 7 9

 (Note that the index of the first character of the string is 1.)

 Functions we write ourselves can also return immediately

 multiple values by simply listing them after the word return . On-

 example, a function that searches for the maximum element in a sequence

 value, can return both the maximum element itself and its

 index:

 function maximum (a)

 local mi = 1

 - index of the maximum element

 local m = a [mi]

 - maximum value

 for i = 1, #a do

 if a [i]> m then

 mi = i; m = a [i]

 end

 end

 return m, mi

 end

 print (maximum ({8,10,23,12,5})) -> 23 3

 Lua always lists the number of values returned by a function.

 her, to the circumstances of her call. When we call the function like

 operator, then Lua discards all return values. When we

 we use a function call in an expression, then Lua only stores

 first value. We get all the values only when the function call

 is the last (or only) expression in the list

 expressions. In Lua, these lists appear in four constructs:

 multiple assignment, function call arguments, const

 table handler and return statement . To illustrate all these

 cases, we consider the following function definitions:

 65

 Multiple results

 function foo0 () end

 - returns nothing

 function foo1 () return “a” end - returns 1 value

 function foo2 () return “a”, “b” end - returns 2 values

 In multiple assignment, function call as last

 (or a single) expression uses as many results as

 how much is needed to match the list of variables:

 x, y = foo2 ()

 - x = ”a”, y = ”b”

 x = foo2 ()

 - x = ”a”, “b” is discarded

 x, y, z = 10, foo2 ()

 - x = 10, y = ”a”, z = ”b”

 If the function returns no value or returns, but not so

 as much as required, then use

 is nil :

 x, y = foo0 ()

 - x = nil, y = nil

 x, y = foo1 ()

 - x = ”a”, y = nil

 x, y, z = foo2 ()

 - x = ”a”, y = ”b”, z = nil

 A function call that is not the last item in

 list, gives exactly one value:

 x, y = foo2 (), 20

 - x = ”a”, y = 20

 x, y = foo0 (), 20, 30

 - x = nil, y = 20, 30 is discarded

 When the function call is the last (or only) one

 argument of another call, then all results of the first call go

 as arguments to the input of the second call. We have already seen examples of this

 constructs with the print function . Since the print function can

 receive a variable number of arguments, the operator print (g ()) prints

 melts all the values returned by g .

 print (foo0 ())

 ->

 print (foo1 ())

 -> a

 print (foo2 ())

 -> ab

 print (foo2 (), 1)

 -> a 1

 print (foo2 () .. “x”)

 -> ax (see below)

 When a call to foo2 is inside an expression, Lua

 converts the number of returned values to one; therefore in the last

 on this string, concatenation only uses “a” .

 If we write f (g (x)) and f has a fixed number of arguments,

 then Lua converts the number of values returned to the number of arguments f ,

 as we saw earlier.

 The table constructor also uses all values returned by

 by function, without any changes:

 t = {foo0 ()}

 - t = {} (empty table)

 t = {foo1 ()}

 - t = {“a”}

 t = {foo2 ()}

 - t = {“a”, “b”}

 As always, this behavior occurs only if the call is

 the last expression in the list; calls anywhere else

 give exactly one value:

 t = {foo0 (), foo2 (), 4} - t [1] = nil, t [2] = “a”, t [3] = 4

 Finally, the return f () statement returns all values that

 returned f :

 function foo (i)

 if i == 0 then return foo0 ()

 elseif i == 1 then return foo1 ()

 elseif i == 2 then return foo2 ()

 end

 end

 print (foo (1))

 -> a

 print (foo (2))

 -> ab

 print (foo (0))

 - (no values)

 print (foo (3))

 - (no values)

 You can "force" the call to return only one value by

 enclosing it in an extra pair of parentheses:

 print ((foo0 ()))

 -> nil

 print ((foo1 ()))

 -> a

 print ((foo2 ()))

 -> a

 Be careful: the return statement does not require parentheses around

 return value. So an expression like return (f (x))

 always returns exactly one value, regardless of whether

 how many values the function f returns . Sometimes that's exactly what

 you need; sometimes not.

 A special function that returns multiple values is

 I wish to set up table.unpack . It takes an array as input and returns everything

 elements of this array, starting at 1:

 print (table.unpack {10,20,30}) -> 10 20 30

 a, b = table.unpack {10,20,30} - a = 10, b = 20, 30 is discarded

 An important use of unpack is a generic mechanism

 function call. The generalized mechanism allows you to call any

 buoy function with any arguments dynamically. In ANSI C, for example

 measures, there is no way to build a generalized call. You can

 declare a function that takes a variable number of arguments

 (with stdarg.h) and you can call various functions,

 using function pointers. However, you cannot call a function

 with a variable number of arguments: every time you write

 those in C, you have a fixed number of arguments, and each argument

 is of a fixed type. In Lua, if you want to call a function

 f with a variable number of arguments from array a , you can simply

 write the following:

 f (table.unpack (a))

 The unpack function call returns all values from a that become

 are given by the arguments to f . For example consider the following

 call:

 print (string.find (“hello”, “ll”))

 You can dynamically build an equivalent call when

 the power of the following code:

 f = string.find

 a = {“hello”, “ll”}

 print (f (table.unpack (a)))

 Usually unpack uses the length operator to find out if

 how many items should be returned, so it only works with

 sequences. If necessary, then it can be explicitly limited:

 print (table.unpack ({“Sun”, “Mon”, “Tue”, “Wed”}, 2, 3))

 -> Mon Tue

 Although the unpack function is written in C, we can write it in Lua,

 using recursion:

 function unpack (t, i, n)

 i = i or 1

 n = n or #t

 if i <= n then

 return t [i], unpack (t, i + 1, n)

 end

 end

 The first time we call it with a single argument

 volume, i writes 1, and n writes the length sequentially

 sti. The function then returns t [1] along with all the results

 unpack (t, 2, n) , which in turn returns t [2] and all the results

 call unpack (t, 3, n) and so on, stopping after n items

 Comrade

 5.2. Variable functions

 number of arguments

 A Lua function can have an arbitrary number of arguments

 (variadic). For example, we've already called the print function with one, two

 name and a large number of arguments. Although print is defined in C, we and

 in Lua, we can write functions with a variable number of arguments.

 As the next example, the function below returns the sum

 all its arguments:

 function add (...)

 local s = 0

 for i, v in ipairs {...} do

 s = s + v

 end

 return s

 end

 print (add (3, 4, 10, 25, 12)) -> 54

 Three dots (...) in the parameter list indicate that this function

 has a variable number of arguments. When we call such a function

 tion, Lua collects all of its arguments into a list; we call these assembled

 arguments can additional arguments function. Function

 can access their additional ones again with

 three dots, now as an expression. In our example-

 re expression {...} gives an array with all the arguments collected.

 The function iterates over the elements of this array in order to find

 their amount.

 We call expression ... variable expression

 arguments (vararg expression). It behaves like a function that returns

 giving many values, returning all additional arguments

 current function. For example, the print (...) command will print everything before

 additional arguments to the current function. Similarly, the following

 the command will create two local variables with the values of the first two

 additional arguments (or nil if there are no such arguments).

 local a, b = ...

 In fact, we can mimic the standard mechanism for

 passing parameters to Lua, translating the following construction

 function foo (a, b, c)

 in

 function foo (...)

 local a, b, c = ...

 For those who like Perl's parameter passing mechanism, this is a

 like.

 The function shown below simply returns all passed ar-

 guments:

 function id (...) return ... end

 The following function behaves the same as foo , except

 the fact that before calling her, she prints a message with all transmitted

 arguments:

 function foo1 (...)

 print (“calling foo:”, ...)

 return foo (...)

 end

 This is a pretty useful trick for keeping track of all calls to

 this function.

 Let's take a look at another useful example. Lua provides

 There are separate functions for formatting text (string.format)

 and for writing text (io.write). It's quite easy to combine the two

 functions into one function with a variable number of arguments:

 function fwrite (fmt, ...)

 return io.write (string.format (fmt, ...))

 end

 Note the presence of the fmt parameter in front of the periods.

 Functions with a variable number of arguments can have any number of

 number of fixed parameters before the part with variable number

 scrap parameters. Lua assigns the first values to these variables;

 the rest (if any) go as additional parameters. Below we

 we will show several examples of calls and corresponding parameters

 moat:

 Call

 Options

 fwrite ()

 fmt = nil, no additional parameters

 fwrite (“a”)

 fmt = “a”, no additional parameters

 fwrite (“% d% d”, 4, 5) fmt = “% d% d”, optional 4 and 5

 (Note that calling fwrite () will result in an error,

 since string.format requires a string as its first argument.)

 The function can be used to bypass all additional parameters.

 use the expression {...} to collect them all in a table

 tsu, as we did in the add function definition .

 In rare cases where the passed arguments may take

 value of nil , table created using {...} will not nastoya-

 sequence. For example, there is no way for

 in order to find out from this table whether there were any arguments at the end of the list.

 tov nil 's. For these cases, Lua offers the table.pack function 1 . This

 the function takes an arbitrary number of arguments and returns a new

 a table containing all its arguments, like {...} , but this

 the table will have an additional field n containing the total number of its

 arguments. The following function uses table.pack to

 so that its arguments include nil values .

 function nonils (...)

 local arg = table.pack (...)

 for i = 1, arg.n do

 if arg [i] == nil then return false end

 end

 return true

 end

 print (nonils (2,3, nil))

 -> false

 print (nonils (2,3))

 -> true

 print (nonils ())

 -> true

 print (nonils (nil))

 -> false

 Remember, however, that {...} is faster and cleaner than table.pack .

 5.3. Named arguments

 The mechanism for passing parameters in Lua is positional : when

 we call the function, then the correspondence between arguments and form-

 the minimum parameters is carried out according to their position. First

 the argument gives the value to the first parameter, and so on. Sometimes, however,

 it is useful to specify the parameter by name. To illustrate

 To complete this, let's look at the os.rename function (from the library

 os), which renames the file. Quite often we forget

 which name comes first, new or old; so we might want

 override this function so that it receives two named

 parameters:

 - wrong

 rename (old = ”temp.lua”, new = ”temp1.lua”)

 Lua has no direct support for this syntax, but

 we can achieve the desired effect with a small syntax

 sic change. The idea is to collect everything

 arguments to a table and use this table as the only one

 function argument. The special syntax that Lua provides

 is used to call a function, with the table constructor as the only one

 argument will help us achieve this:

 rename {old = ”temp.lua”, new = ”temp1.lua”}

 Accordingly, we override the rename function with only

 one parameter and we get the real arguments from this para-

 meters:

 function rename (arg)

 return os.rename (arg.old, arg.new)

 end

 This method of passing parameters is especially useful when functions

 There are many arguments and most of them are optional. For example

 measures, the function that creates a new window in the GUI library can

 have dozens of arguments, most of which are optional,

 and it is best to pass them using names:

 Listing 5.1. Function with named optional parameters

 function Window (options)

 - check mandatory options

 if type (options.title) ~ = “string” then

 error (“no title”)

 elseif type (options.width) ~ = “number” then

 error (“no width”)

 elseif type (options.height) ~ = “number” then

 error (“no height”)

 end

 - everything else is optional

 _Window (options.title,

 options.x or 0, - default value

 options.y or 0, - default value

 options.width, options.height,

 options.background or “white”, - default value

 options.border - default value false (nil)

)

 end

 w = Window {x = 0, y = 0, width = 300, height = 200,

 title = “Lua”, background = ”blue”,

 border = true

 }

 Exercises

 Exercise 5.1. Write a function that gets produced

 any number of strings and returns them concatenated together.

 Exercise 5.2. Write a function that receives an array

 and prints all the elements of this array. Consider the benefits

 advantages and disadvantages of using table.unpack in this

 function.

 Exercise 5.3. Write a function that gets produced

 any number of values and returns all but the first.

 Exercise 5.4. Write a function that receives an array and

 prints all combinations of elements in this array.

 (Hint : you can use a recursive formula

 for the number of combinations: C (n , m) = C (n - 1; m - 1) + C (n - 1, m).

 To get all C (n , m) combinations of n elements in

 group of size m, you first add the first element to the re-

 result and then generate all C (n– 1, m– 1) combinations from

 the remaining elements in the remaining places. When n is less,

 than m , there are no more combinations. When m is zero, there is

 there is only one combination, and it does not use any

 items.)

 CHAPTER 6

 More about functions

 Functions in Lua are first class values with appropriate

 lexical scope.

 What does it mean that functions are "first class values"?

 This means that in Lua, a function is a value that has the same

 rights as standard values for numbers and strings. We can

 save functions in variables (local and global) and in tab-

 persons, we can pass functions as arguments and return

 them from other functions.

 What does "lexical scope" mean for functions? This is a sign

 cheat that functions can access variables containing them

 functions 1 . As we will see in this chapter, this is a kind of harmless property.

 v gives tremendous power to the language because it allows Lua to use

 many powerful tricks from the world of functional software

 ming. Even if you are not at all interested in functional

 programming, it is still worth learning a little about how to use

 take advantage of these opportunities as they can make your

 Rammu is smaller and simpler.

 A somewhat confusing concept in Lua is that functions,

 like other values, are anonymous; they have no names. When

 we are talking about a function name like print , we mean re-

 a belt that contains this function. As with any other

 variable containing any other value, we can manipulate

 manipulate these variables in many different ways. Following

 the example, although somewhat contrived, shows possible examples:

 a = {p = print}

 ap (“Hello World”) -> Hello World

 print = math.sin - 'print' now refers to sine

 ap (print (1)) -> 0.841470

 sin = ap

 - 'sin' now refers to the print function

 sin (10, 20)

 -> 10 20

 (We'll see useful uses of this feature later.)

 If functions are values, then do there exist expressions

 which create functions? Yes. In particular, the standard way

 create a function in Lua like for example

 function foo (x) return 2 * x end ,

 this is just an example of what we call syntactic sugar ;

 it's just a nicer way to write the following code:

 foo = function (x) return 2 * x end

 Therefore, the definition of a function is actually the operator

 (assignment), which creates a value of type “function” and

 assigns it to a variable. We can consider the expression

 function (x) body end as a function constructor, just like

 {} is a table constructor. We call the result

 the definition of such constructors with an anonymous function . Although we are

 then we assign functions to global variables, giving them something

 like a name, there are times when functions remain anonymous.

 Let's take a look at some examples.

 The table library provides the table.sort function , which

 paradise gets a table and sorts its elements. Similar function

 should provide infinite sort order variations:

 ascending and descending, numeric or alphabetically, as

 my key, etc. Instead of trying to provide all possible options

 sort provides an additional parameter which is

 an ordering function : a function that takes two arguments and

 determines if the first element should be sorted before the second

 tied list. For example, let's say we have the following

 record table:

 network = {

 {name = “grauna”, IP = “210.26.30.34”},

 {name = “arraial”, IP = “210.26.30.23”},

 {name = “lua”, IP = “210.26.23.12”},

 {name = “derain”, IP = “210.26.23.20”},

 }

 If you want to sort the table by name field in reverse

 alphabetically, then you can simply write:

 table.sort (network, function (a, b) return (a.name> b.name) end)

 See how convenient it was to use anonymous function

 in this statement.

 A function that takes another function as an argument is

 is what we call a higher-order function . High functions

 of the following order are a convenient software mechanism, and

 using anonymous functions to create their functional

 arguments is a great source of flexibility. However, remember-

 the thread that higher-order functions are not something special,

 they are simply a consequence of Lua's ability to handle functions like

 values of the first class.

 In order to illustrate the use of the functions of high

 orders, we will write a simplified definition of

 higher order function, derivative. Following informal

 definition, the derivative of the function f at the point x is the value

 (f (x + d) - f (x)) / d when d becomes infinitesimal. According to

 and with this definition, we can write an approximate value

 derivative as follows:

 function derivative (f, delta)

 delta = delta or 1e-4

 return function (x)

 return (f (x + delta) - f (x)) / delta

 end

 end

 Having received the function f , the call to derivative (f) will return an approximate

 the value of its derivative, which is another function:

 c = derivative (math.sin)

 > print (math.cos (5.2), c (5.2))

 -> 0.46851667130038

 0.46856084325086

 print (math.cos (10), c (10))

 -> -0.83907152907645

 -0.83904432662041

 Since functions are first class values in Lua,

 we can remember them not only in global variables, but also in

 local variables and table fields. As we will see later, the

 using functions in table fields is a key component

 some of the advanced features of Lua, such as modules and objects

 ect-oriented programming.

 6.1. Closures

 When we write a function that is enclosed within another function,

 then it has full access to the local variables of the environment

 its functions; we call this lexical scope (lexical

 scoping). While this rule of visibility may seem obvious,

 in fact it is not. Lexical scope together with

 functions that are first class objects is

 a very powerful concept in a programming language, but many

 languages don't support this.

 Let's start with a simple example. Suppose you have a list of names

 students and a table comparing their grades to them; you want to suck

 list students according to their grades, students with higher

 grades should come before. You can achieve this by following-

 in a way:

 names = {“Peter”, “Paul”, “Mary”}

 grades = {Mary = 10, Paul = 7, Peter = 8}

 table.sort (names, function (n1, n2)

 return grades [n1]> grades [n2]

 -– compare grades

 end)

 Now let's say that you want to create a function to solve the given

 noah tasks:

 function sortbygrade (names, grades)

 table.sort (names, function (n1, n2)

 return grades [n1]> grades [n2]

 -– compare grades

 end)

 end

 An interesting feature in this example is that anonymous

 the function passed to the sort function accesses the parameter

 grades , which is local to the enclosing function

 sortbygrade . Within this anonymous function, grades is not

 neither a global variable nor a local variable, but the fact that we

 called a nonlocal variable . (For historical reasons, for

 notation for non-local variables in Lua is also used term

 min upvalue .)

 Why is this so interesting? Because functions are important

 first class, and so they can leave primary education

 the power of the action of its variables. Consider the following example:

 function newCounter ()

 local i = 0

 return function ()

 -– anonymous function

 i = i + 1

 return i

 end

 end

 c1 = newCounter ()

 print (c1 ()) -> 1

 print (c1 ()) -> 2

 In this code, the anonymous function refers to the non-local re-

 variable i to account for the value. However, by the time we call

 anonymous function, variable i will already leave its scope by

 validity, since the function that created this variable (new-

 Counter) has already finished. However, Lua correctly handles

 this situation using the concept of a closure . Simply put,

 a closure is a function plus whatever it needs to access non-

 local variables. If we call newCounter again , then it

 will create a new local variable i , so we get a new one

 a closure working on this new variable:

 c2 = newCounter ()

 print (c2 ()) -> 1

 print (c1 ()) -> 3

 print (c2 ()) -> 2

 Thus, c1 and c2 are different closures of the same

 functions, and each uses its own independently instantiated

 local variable i .

 In fact, in Lua, the meaning is a closure, not a function.

 tion. A function is just a prototype for a closure. However, we

 we will use the term "function" to denote the closure

 whenever it will not lead to confusion.

 Closures prove to be a very handy tool in many

 cases. As we have already seen, they turn out to be convenient as

 arguments to higher-order functions such as sort . Closures

 also useful for functions that build other functions like

 the newCounter function in our example, or a function for finding

 denia derivative; this mechanism allows Lua programs to use

 use advanced techniques from the world of functional software

 ming. Closures are also handy for various callable

 functions (callback). A typical example occurs when you create

 various buttons in its library to create a GUI. Each

 the button has its own function, which should be called when

 the user clicks on this button; usually needed for different

 buttons led to different actions. For example, a calculator

 you need ten buttons, one for each number. You can co-

 build with a similar function:

 function digitButton (digit)

 return Button {label = tostring (digit),

 action = function ()

 add_to_display (digit)

 end

 }

 end

 In this example, we will assume that Button is a function from

 a library that creates new buttons; label is the label of the button

 ki; action is the closure to be called when the button is

 children pressed. The closure can be noticeable after a long time

 after digitButton is executed, and after locale

 naya variable digit went out of their field of sight, but it is not

 less, the closure can still access it.

 Closures are also useful in a very different case.

 tea. Since functions are stored in regular variables, we can

 it is easy to override functions in Lua, including even standard ones. This

 possibility is one of the reasons why Lua is so flexible. Hour-

 then when you override the function you still need the old one

 function. For example, you want to override the sin function to

 she worked in degrees instead of radians. This new function converts

 expands its argument and then calls the original sin function to produce

 completing work. Your code might look like this

 below:

 oldSin = math.sin

 math.sin = function (x)

 return oldSin (x * math.pi / 180)

 end

 The following is a slightly neater way to accomplish this

 override:

 do

 local oldSin = math.sin

 local k = math.pi / 180

 math.sin = function (x)

 return oldSin (x * k)

 end

 end

 We now store the old version in a local variable;

 the only way to access it is through a new function.

 You can use this same approach to create secure

 environments, also called sandboxes . Safe

 environments are extremely important when executing code from untrusted sources.

 sources such as the Internet. For example, to restrict files,

 which the program can access, we can override

 the io.open function using closures:

 do

 local oldOpen = io.open

 local access_OK = function (filename, mode)

 <check access>

 end

 io.open = function (filename, mode)

 if access_OK (filename, mode) then

 return oldOpen (filename, mode)

 else

 return nil, “access denied”

 end

 end

 end

 What makes this example especially enjoyable is that after that

 overrides there is absolutely no way for the program to call

 the original open , except through a new version with control. Nebezo-

 the passable version is stored in a local variable inside the closure,

 not attainable from the outside in any way. With this approach, you can build

 sandboxes for Lua on Lua itself, while receiving as advantages

 simplicity and flexibility. Instead of some kind of one-stop solution for

 all problems Lua provides a meta mechanism, so you can

 adjust your environment to your goals.

 6.2. Non-global functions

 The obvious consequence of the fact that functions are values

 first class, is that we can save functions not

 only in global variables, but also in local variables-

 data and fields of the table.

 We have already seen various examples of functions stored in fields.

 tables: most Lua libraries use this mechanism (by

 example, io.read , math.sin). To create similar functions in Lua

 we just need to combine the standard syntax for functions with

 syntax for tables:

 Lib = {}

 Lib.foo = function (x, y) return x + y end

 Lib.goo = function (x, y) return x - y end

 print (Lib.foo (2, 3), Lib.goo (2, 3)) -> 5 -1

 Of course, we can also use constructors:

 Lib = {

 foo = function (x, y) return x + y end,

 goo = function (x, y) return x - y end

 }

 Moreover, Lua also provides another syntax for

 similar functions:

 Lib = {}

 function Lib.foo (x, y) return x + y end

 function Lib.goo (x, y) return x - y end

 When we store a function in a local variable, we get

 we tea a local function , that is, a function with a limited scope

 visibility. Definitions like this are especially handy for packages:

 since Lua treats each block as a function, a block can

 Can define local functions that are only visible from the block.

 Lexical scoping ensures that other functions from

 package can use these local functions:

 local f = function (<params>)

 <body>

 end

 local g = function (<params>)

 <some code>

 f () - 'f' is visible here

 <some code>

 end

 Lua also supports the following syntactic sugar for lo-

 cal functions:

 local function f (<params>)

 <body>

 end

 When defining recursive local functions, one gets

 subtlety. The naive approach doesn't work here. Consider the following

 definition:

 local fact = function (n)

 if n == 0 then return 1

 else return n * fact (n-1) - error

 end

 end

 When Lua compiles the fact (n-1) call in the body of a function, then the lo-

 The actual function fact has not yet been defined. Therefore, this definition

 it will try to call the global function fact , not the local one.

 We can solve this problem by first defining a local re-

 variable and then already defining the function itself:

 local fact

 fact = function (n)

 if n == 0 then return 1

 else return n * fact (n-1)

 end

 end

 Now fact inside the function refers to a local variable.

 Its value at the moment the function is defined does not mean anything;

 by the time the function is executed, it will already receive

 correct value.

 When Lua "reveals" its syntactic sugar for the local

 function, it does not use the "naive" way. Instead, define

 division as shown below:

 local function foo (<params>) <body> end ,

 goes into

 local foo; foo = function (<params>) <body> end

 Therefore, we can safely use this syntax to re-

 italic functions.

 Of course, this trick won't work unless you have direct recursion -

 the two functions call each other. In such cases, you need to explicitly write

 put the appropriate descriptions of local variables:

 local f, g - described local variables

 function g ()

 <some code> f () <some code>

 end

 function f ()

 <some code> g () <some code>

 end

 In this example, the function f can not write a local function f ,

 because in such a case Lua will create a new local variable-

 the new f , leaving the old (referenced by g) uninitialized-

 Noah.

 6.3. Tail optimization

 calls

 Another interesting feature of functions in Lua is that

 Lua performs tail call optimizations. (It means that

 Lua supports tail recursion optimization ,

 although it is not directly related to recursion here, see exercise-

 (see section 6.3.)

 The tail call is actually a goto that looks like

 function call. A tail call happens when a function is called

 has another function as its last action. For example, in the following

 In the following code, the call to the function g is tail:

 function f (x) return g (x) end

 After f calls g , it has nothing else to do. In similar

 situations, the program does not need to return to the calling

 function when the nested call has completed. Therefore after

 tail call the program does not need to store any

 information about the calling function on the stack. When the call to g ends

 it seems that control goes directly to the point where it was

 named f . Some language implementations, such as the Lua interpreter,

 use this fact and do not allocate additional stack space

 for tail call. We say that these implementations are supported

 by eliminating tail calls (tail-call elimination).

 Since tail calls do not use stack space,

 number of nested tail calls that the program can

 execute, it is simply not limited by anything. For example, we can you-

 call the next function, passing any number as an argument

 cop:

 function foo (n)

 if n> 0 then return foo (n - 1) end

 end

 This call will never result in a stack overflow.

 The subtle point in eliminating tail calls is

 the question of what is a tail call. For some

 quite obvious candidates require that a defiant

 the function does nothing else after the call, it is not executed. On-

 example, in the following code, the function call g is not tail.

 function f (x) g (x) end

 The problem in this example is that after calling g, the function f

 should discard the results of g before returning. Similarly, all the following

 the next calls also do not satisfy the condition:

 return g (x) + 1 - addition is required

 return x or g (x) - must be converted to 1 value

 return (g (x))

 - must be converted to 1 value

 In Lua, only a call like return func (args) is tail.

 However, both func and its arguments can be complex expressions,

 as Lua will execute them before calling. For example the following

 the call is tailored:

 return x [i] .foo (x [j] + a * b, i + j)

 Exercises

 Exercise 6.1. Write a function integral that gets

 function f and returns an approximate value of its integral

 rala.

 Exercise 6.2. In Exercise 3.3, you had to write a function

 the function that receives the polynomial (represented by the table)

 and the value of the variable and returns the value of the polynomial for

 this variable. Write a function that receives a lot of

 goclen and returns a function that, when called for

 any x value , will return the polynomial value for this

 x . For instance:

 f = newpoly ({3, 0, 1})

 print (f (0))

 -> 1

 print (f (5))

 -> 76

 print (f (10))

 -> 301

 Exercise 6.3. Sometimes the language supporting optimization

 tail calls is called supporting tail

 recursion (properly tail recursive), if the optimization of tailings

 out calls is only supported for recursive calls.

 wwii (Without recursive calls, the maximum call depth is

 wow is statically defined.)

 Show that this is not true in a language like Lua: write

 a program that implements unlimited call depth

 wow without using recursion. (Hint : see section 8.1.)

 Exercise 6.4. As we have seen, the tail call is a

 a clipped goto . Using this idea, rewrite the code for

 the maze games from section 4.4 using tail calls.

 Each block should become a new function and each goto

 becomes a tail call.

 CHAPTER 7

 Iterators

 and the generalized for

 In this chapter, we will show you how to write iterators for generalized

 for (general for operator). Starting with simple iterators, we

 learn how to use the full power of generic for to write

 simpler and more efficient iterators.

 7.1. Iterators and Closures

 An iterator is any construct that allows you to iterate over

 host elements of the set. In Lua, we usually represent iterators by

 help functions: every time we call a function, it will

 rotates the "next" item from the set.

 Any iterator has to save its state somewhere between

 challenges to know where he is and how to proceed.

 Closures are an excellent mechanism for this task.

 Recall that a closure is a function that refers to one

 noah or several local variables from your environment.

 These variables retain their values between successive

 calls to the closure, thereby helping the closure understand where

 it is on its way. Of course, to create a new closure

 we also have to create non-local variables for it. Therefore,

 the structure of a closure usually includes two functions at once: itself

 closure and factory , a function that creates a closure along with

 surrounding variables.

 As an example, let's write a simple iterator for a list.

 Unlike ipairs , this iterator will not return the index of every

 the same element, but only its value:

 function values (t)

 local i = 0

 return function () i = i + 1; return t [i] end

 end

 In this example, values is a factory. Every time we call

 We use this factory, it creates a new closure (iterator). This is

 The kaney stores its state in its external variables t and i . Each

 Every time we call this iterator, it returns the following

 value from list t . After the last element, the iterator will return nil ,

 which marks the end of iterations.

 We can use this iterator in a while loop :

 t = {10, 20, 30}

 iter = values (t)

 - create an iterator

 while true do

 local element = iter ()

 - call the iterator

 if element == nil then break end

 print (element)

 end

 However, it is much easier to use the generic for statement .

 After all, it was created for exactly this kind of iteration-

 niya:

 t = {10, 20, 30}

 for element in values (t) do

 print (element)

 end

 The generic for does all the behind-the-scenes work for the iteration

 rationing: it stores the iterating function inside, so we don't

 needs a variable iter , it calls the iterator for each new iteration

 walkie-talkie, and it completes the iteration when the iterator returns nil .

 (We'll see in the next section that the generic for does even

 more than that.)

 As a more advanced example, see Listing 7.1 for re-

 fetch all words from the current input file. For such a search, we

 two values are needed: the content of the current line (variable line)

 and where we are inside this line (variable pos). With these

 data, we can always generate the next word. Basic

 The most important part of the iterating function is the call to string.find . This call

 searches for a word in the current line, starting at the current position. He described

 matches a 'word' using the pattern '% w +' , which one

 or more alphanumeric characters. If this call finds

 word, then the function updates the current position by the first character

 after a word and returns that word 1 . Otherwise, the iterator reads the following-

 string and repeats the search. If there are no more rows, it returns

 nil to signal the end of the traversal.

 Despite its complexity, using allwords is extremely easy

 then:

 for word in allwords () do

 print (word)

 end

 This is a typical situation with iterators: they may not be so easy

 to write, but they are easy to use. This is not a problem,

 much more often, end users who program in Lua do not

 write their own iterators, but use the iterators provided by

 application.

 Listing 7.1. Iterator to iterate over all words from the input file

 function allwords ()

 local line = io.read ()

 - current line

 local pos = 1

 - current position in the line

 return function ()

 - iterator function

 while line do

 -– repeat as long as there are lines

 local s, e = string.find (line, “% w +”, pos)

 if s then

 -– have you found the word?

 pos = e + 1

 -– next position after word

 return string.sub (line, s, e) -– return word

 else

 line = io.read () - word not found; trying the trail. string

 pos = 1

 - start at the beginning of the line

 end

 end

 return nil - no more lines, end of traversal

 end

 end

 7.2. Generic for semantics

 One of the drawbacks of the iterators discussed above is that

 that we need to create a new closure for initialization

 each new cycle. For most cases, this is not

 problem. For example, in the case of the allwords iterator, the creation price is

 a single closure is incomparable to the cost of reading an entire file. but

 in some situations this can be significant. Such

 cases we can use the generic for itself to store

 states. In this section, we will see what possibilities for storing

 state is offered by the generic for .

 We have seen that a generic for loop stores iterables during a loop.

 function within itself. It actually stores three values:

 iterated function, unchangeable state (invariant state) and

 control variable . Now let's get down to the details.

 The syntax for a generic for is shown below:

 for <var-list> in <exp-list> do

 <body>

 end

 Here var-list is a list of one or more re-

 variables separated by commas, and exp-list is a list of one or

 multiple expressions, also separated by commas. Often a list

 expression consists of a single element, a call to the iterate factory

 rators. In the following code, for example, the list of variables is k , v ,

 and the list of expressions consists of a single element, pairs (t) :

 for k, v in pairs (t) do print (k, v) end

 Often, a variable list also consists of just one variable -

 noah, as in the following loop:

 for line in io.lines () do

 io.write (line, “\ n”)

 end

 We name the first variable in the control variable list-

 noah . During the whole cycle, its value is not equal to nil , because when

 it becomes nil , the loop ends.

 The first thing a for loop does is compute the values expressed

 ny following in . These expressions must give three meanings,

 used by the for statement : iterating function, immutable

 the state and initial value of the manipulated variable. As in

 multiple assignment, only the last (or the only

 nth) list item can give more than one value; and the number of these

 values are reduced to three, excess values are discarded, together

 then the missing nil 's are added . (When we use simple

 iterators, the factory only returns the iterating function,

 this invariant state and control variable get

 the value is nil .)

 After this initialization, for calls the iterating function with

 two arguments: an invariant state and a control transfer

 change. (From the point of view of the for statement , this is an invariant state

 doesn't make any sense at all. The for statement only passes the value

 reading the state from the initialization step to calling the iterating function

 for) then assigns the values returned by the iterating

 function, variables declared in the variable list. If a

 the first value (assigned to the manipulated variable) is

 nil , then the loop ends. Otherwise, for executes its body and calls again

 an iterating function, repeating the process.

 More precisely the construction of the view

 for var_1, ..., var_n in <explist> do <block> end

 equivalent to the following code:

 do

 local _f, _s, _var = <explist>

 while true do

 local var_1, ..., var_n = _f (_s, _var)

 _var = var_1

 if _var == nil then break end

 <block>

 end

 end

 So if our iterating function is f , the immutable

 the state s and the initial state for the control variable is

 a 0 , then the control variable will run through the following values

 a 1 = f (s , a 0), a 2 = f (s , a 1), etc., until a i equals nil .

 If for has other variables, then they just get an extra

 solid values returned by f .

 7.3. Stateless iterators

 As its name implies, such an iterator does not store any

 any state. Therefore, we can use the same

 a stateless iterator in many loops, thus avoiding creating-

 new closures.

 As we have seen, the for statement calls the iterating function

 with two arguments: immutable state and control transfer

 changeable. A stateless iterator builds the next element of the loop,

 using only these two values. A typical example of this iteration is

 the torus is ipairs , which iterates over all the elements of the array:

 a = {“one”, “two”, “three”}

 for i, v in ipairs (a) do

 print (i, v)

 end

 The state of this iterator is the table we are iterating over

 (an immutable state that retains its value throughout

 loop), and the current index (control variable). And ipairs

 (factory) and the iterator itself is very simple, we could write them to

 Lua as follows:

 local function iter (a, i)

 i = i + 1

 local v = a [i]

 if v then

 return i, v

 end

 end

 function ipairs (a)

 return iter, a, 0

 end

 When Lua is ipairs (a) for a cycle for , she gets three

 values: an iterating function iter , a as an invariant state

 value and zero as the initial value for the control

 change. Lua then calls iter (a, 0) , which gives 1, a [1] (unless

 a [1] is no longer nil). The next iteration calls iter (a, 1) , which

 returns 2, a [2] , and so on up to the first nil element .

 The pairs function , which iterates over all the elements in a table, looks like

 ms, except that the iterating function is a function

 next , which is a standard Lua function:

 function pairs (t)

 return next, t, nil

 end

 Calling next (t, k) , where k is the key of table t , returns the following -

 key in the table in no particular order, and also associated with

 with this key the value as the second return value. Call

 next (t, nil) returns the first pair. When there are no more pairs, then next

 returns nil .

 Some people prefer to use next explicitly , avoiding calling

 pairs :

 for k, v in next, t do

 <loop body>

 end

 Recall that for casts its list of expressions to three values.

 niyam, which are next , t and nil ; this is exactly what

 what happens when calling pairs .

 An iterator for traversing a linked list is another interesting one

 an example of a stateless iterator. (As we have already mentioned, the connected

 lists are not common in Lua, but sometimes we need them.)

 local function getnext (list, node)

 if not node then

 return list

 else

 return node.next

 end

 end

 function traverse (list)

 return getnext, list, nil

 end

 Here we use the beginning of the list as an invariant state

 (second value returned by traverse) and the current node as

 ve control variable. When the iterated function getnext

 will be called the first time, node will be nil , and therefore the function

 will return list as the first node. In subsequent calls, node will already be

 is not nil and therefore the iterator will return node.next as expected.

 As usual, using this iterator is extremely simple:

 list = nil

 for line in io.lines () do

 list = {val = line, next = list}

 end

 for node in traverse (list) do

 print (node.val)

 end

 7.4. Iterators with complex condition

 Often an iterator needs to store more state than

 is placed in the variables of the invariant state and the control

 variable. The simplest solution is to use a

 kaniy. An alternative solution would be to pack everything you need

 an iterator into a table and use that table as invariant

 state for the loop. Using a table, an iterator can store

 as much data as he needs. Moreover, he can change these

 data the way he wants. Although the state is the same all the time

 table (therefore it is invariant), the contents of the table can be

 run throughout the cycle. Since such iterators store everything

 their data is in a state, they usually ignore the second argument,

 provided by the generic for loop (loop variable).

 As an example of this approach, we will rewrite the iterator

 allwords , which bypasses all words in the input file. This time

 we will store its state in a table with two fields: line and

 pos .

 The function that starts the loop is pretty simple. She must ver-

 Introduce an iterating function and an initial state:

 local iterator

 - to be determined later

 function allwords ()

 local state = {line = io.read (), pos = 1}

 return iterator, state

 end

 The iterator function does most of the work :

 function iterator (state)

 while state.line do

 - repeat while there are lines

 - looking for the next word

 local s, e = string.find (state.line, “% w +”, state.pos)

 if s then

 - found the word?

 - update position

 state.pos = e + 1

 return string.sub (state.line, s, e)

 else - word not found

 state.line = io.read () - trying the next line ...

 state.pos = 1

 -- ... first

 end

 end

 return nil

 - there are no more lines, we end the loop

 end

 Whenever possible, you should try to write an iteration-

 stateless tori, those that keep their entire state in the

 for loop variables . With them, you do not create new objects when

 start the cycle. If this model does not fit, then you should ask

 to create closures. Also, it's prettier, closure is usually

 is more efficient as an iterator than a table:

 First, it is cheaper to create a closure than a table; secondly, access

 accessing non-local variables is faster than accessing table fields.

 We will see another way to write iterators later, using

 by using coroutines. This is the most powerful solution, but it

 somewhat more expensive.

 7.5. Genuine iterators (true iterarators)

 The term "iterator" is somewhat inaccurate, since it actually iterates

 It iterates not an iterator, but a for loop . Iterators only provide

 consecutive values to iterate over. Maybe more

 a good term would be "generator", but the term "iterator" is already

 became widespread in languages like Java.

 However, there is another way to construct iterators, where

 iterators actually do iteration. When we use

 we use such iterators, we don't write a loop; instead we just

 then we call an iterator with an argument describing that the iterator should

 to do at each iteration. More precisely, the iterator receives as

 ve argument is a function that it calls inside its loop.

 As an example, let's rewrite the allwords iterator again

 using this approach:

 function allwords (f)

 for line in io.lines () do

 for word in string.gmatch (line, “% w +”) do

 f (word)

 - call function

 end

 end

 end

 To use this iterator, we just have to provide

 inject the body of the loop as a function. If we just want to print each

 after a word, then we use print :

 allwords (print)

 Often an anonymous function is used as the loop body. On-

 example, the following code snippet counts how many times the word "hello"

 occurs in the file:

 local count = 0

 allwords (function (w)

 if w == “hello” then count = count + 1 end

 end)

 print (count)

 The same task written using iterators previously

 the style looked at is not much different:

 local count = 0

 for w in allwords () do

 if w == “hello” then count = count + 1 end

 end

 print (count)

 Similar iterators were very popular in older versions

 Lua, when the language did not yet have a for statement . How do they compare

 with iterators of the previously discussed style? Both styles have a

 roughly the same overhead: one function call per iteration

 walkie-talkie. On the other hand, it is easier to write an iterator using

 genuine iterators (although we can get the same ease

 using coroutines). On the other hand, previously considered

 the new style is more flexible. First, it allows two or more pa-

 parallel iteration. (For example, consider the case of bypassing

 two files at once, comparing them word by word.) Second, it

 allows the use of break and return inside a loop. With authentic

 return iterators return from anonymous function, but not

 from the loop. Therefore, I usually use traditional (i.e.

 seen earlier) iterators.

 Exercises

 Exercise 7.1. Write an iterator fromto such that you follow-

 the two loops are equivalent:

 for i in fromto (n, m)

 <body>

 end

 for i = n, m

 <body>

 end

 Can you implement this with an iterator without co-

 standing?

 Exercise 7.2. Add a step parameter to the previous exercise.

 neniyu. Can you still implement this with

 soup of a stateless iterator?

 Exercise 7.3. Write a uniquewords iterator that can

 rotates all words from the given file without repetitions.

 (Hint : start with the allwords code in Listing 7.1; use

 use a spreadsheet to store all the words you have already

 zeros.)

 Exercise 7.4. Write an iterator that returns everything

 non-empty substrings of the given string. (You will need a function

 ration string.sub .)

 CHAPTER 8

 Compilation,

 execution and errors

 Although we call Lua an interpreted language, Lua is always pre-

 compiles the source code into an intermediate form before ex-

 filling. (In fact, many interpreted languages do

 ditto.) Having a compile file may sound strange

 in relation to an interpreted language like Lua. However, the main

 the feature of interpreted languages is not that they are not compiled.

 are copied, but what is possible (and easy) to execute the generated

 code on the fly. We can say that having a function like dofile is

 this is what allows Lua to be called an interpreted language.

 8.1. Compilation

 Earlier, we introduced dofile as a kind of primitive operation for

 executing blocks of Lua code, but dofile is actually an aid

 gatelnaya function: all the hard work is done LoadFile . Like

 dofile , loadfile loads a block of Lua code from a file, but it doesn't

 completes this block. Instead, it only compiles this block

 and returns the compiled block as a function. Moreover, in

 unlike dofile , loadfile does not throw an error, it just returns

 error code so that we can handle these errors ourselves. We can

 Let's define dofile like this:

 function dofile (filename)

 local f = assert (loadfile (filename))

 return f ()

 end

 Note the use of the assert function in order to

 to cause errors (raise error), if loadfile fulfills a

 a mistake.

 For simple tasks, dofile is convenient because it does all the work.

 bot in one call. However, loadfile is more flexible. In case of error

 loadfile returns nil and an error message, which allows us to

 handle the error in a convenient way. Moreover, if we need

 but execute the file several times, then we can call once

 loadfile and call the function it returns several times. This

 the approach is much cheaper than calling dofile multiple times , since

 the file is compiled only once.

 The load function is similar to loadfile , except that it

 takes a block of code not from a file, but from line 1 . For example, consider the following

 next line:

 f = load (“i = i + 1”)

 After executing this code, f will be a function that executes-

 em i = i + 1 when called:

 i = 0

 f (); print (i) -> 1

 f (); print (i) -> 2

 The load function is quite powerful and we have to use it with

 caution. It is also an expensive feature (compared to some

 alternatives) and can lead to code that is very heavy

 lo understand. Before you use it, make sure there is no more

 simple way to solve the problem.

 If you want a quick and dirty dostring (i.e. load and

 execute block), you can directly use the result

 tat load :

 load (s) ()

 However, if there is at least one syntax error, then load

 will return nil and the final error will be something like “attempt to

 call a nil value ” . For clearer error handling use

 assert :

 assert (load (s)) ()

 There is usually no point in calling the load function on a literal

 (that is, an explicitly quoted string). For example, the following two

 the lines are roughly equivalent:

 f = load (“i = i + 1”)

 f = function () i = i + 1 end

 However, the second line is much faster since Lua compiled

 functions together with the surrounding block. On the first line, you-

 the load call includes a separate compilation.

 Since load does not compile lexically aware

 actions, then the two lines considered may not be entirely equivalent

 valence. To see the difference, let's change it slightly

 example:

 i = 32

 local i = 0

 f = load (“i = i + 1; print (i)”)

 g = function () i = i + 1; print (i) end

 f () -> 33

 g () -> 1

 The g function works on the local variable i as expected,

 however the function f works with the global i , since load is always

 compiles its blocks in the global environment.

 The most typical use of load is to execute

 external code, that is, snippets of code coming from outside your

 programs. For example, you may want to plot the function

 the option specified by the user; the user enters the function code, and

 you then use load to execute it. Pay

 note that load expects to receive a block, that is, statements. If a

 you want to evaluate the expression, then you can append to the beginning

 return expressions , which will give you a statement that returns a value

 given expression. Let's look at an example:

 print "enter your expression:"

 local l = io.read ()

 local func = assert (load (“return“ .. l))

 print (“the value of your expression is“ .. func ())

 Since the function returned by load is a normal function,

 you can call her many times:

 print "enter function to be plotted (with variable 'x'):"

 local l = io.read ()

 local f = assert (load (“return“ .. l))

 for i = 1, 20 do

 x = i - global 'x' (to be visible from outside the block)

 print (string.rep (“*”, f ()))

 end

 (The string.rep function repeats a string a specified number of times.)

 We can also call the load function by passing it as ar-

 gument reading function (reader function). Reading function

 can return a block of code in parts; load calls this function before

 it's time until it returns nil , indicating the end of the block. For example

 measures, the following call is equivalent to loadfile :

 f = load (io.lines (filename, “* L”))

 As we will see in chapter 22, the challenge io.lines (filename, "* L") WHO-

 rotates a function that, when called, returns the following

 line from file 2 . So load will read the block from

 file line by line. The next option is similar, but more efficient

 effective:

 f = load (io.lines (filename, 1024))

 Here the iterator returned by io.lines reads in blocks at

 1024 bytes.

 Lua treats each independent block as the body of an ano

 a variable function with a variable number of arguments. For instance,

 load (“a = 1”) returns an analog of the following function:

 function (...) a = 1 end

 Like any other function, blocks can define their own locale.

 variable variables:

 f = load (“local a = 10; print (a + 20)”)

 f () -> 30

 Using these capabilities, we can rewrite our example with

 plotting the graph so as not to use the global re-

 variable x :

 print "enter function to be plotted (with variable 'x'):"

 local l = io.read ()

 local f = assert (load (“local x = ...; return“ .. l))

 for i = 1, 20 do

 print (string.rep (“*”, f (i)))

 end

 We put the description “local x = ...” at the beginning of the block to define

 divide x as a local variable. When we call f with an argument

 ment i , this argument becomes the value of expression

 The load function never raises an error, in case of an error it

 just returns nil and an error message:

 print (load (“ii”))

 -> nil [string “ii”]: 1: '=' expected near 'i'

 Moreover, these functions have no side effect. They

 only compile the block to an internal representation and return-

 give the result as an anonymous function. A common mistake

 is that it is assumed that block loading determines the function

 tions (defined in this block). In Lua, function definitions are

 assignment; and as such they happen at runtime,

 not at compile time. For example, let's say we have a file

 foo.lua with the following content:

 - file 'foo.lua'

 function foo (x)

 print (x)

 end

 Then we run the command

 f = loadfile (“foo.lua”)

 After this command, foo has been compiled but not yet defined.

 To define it, we must execute a block:

 print (foo) -> nil

 f () - defines 'foo'

 foo (“ok”) -> ok

 In serious programs that need to execute external code,

 you have to handle all errors that occur when loading

 block. Moreover, you may want to start a new unit in the protection

 environment to avoid unpleasant side effects

 Comrade We'll discuss environments in detail in Chapter 14.

 8.2. Precompiled code

 As I mentioned at the beginning of this chapter, Lua precompiles the

 running code before executing it. Lua also allows distribution

 take the code in precompiled form.

 The simplest way to get a precompiled file is

 also called a binary block in Lua - is the use of

 the luac program included in the standard delivery. For instance,

 next call creates prog.lc file with precompiled

 version of the prog.lua file :

 $ luac -o prog.lc prog.lua

 The interpreter can then execute this file as a normal

 Lua code, working in the same way as with the original file:

 $ lua prog.lc

 Lua allows for precompiled code pretty much wherever

 it allows source code. In particular, loadfile and load take

 the input is also precompiled code.

 We can write a simple luac replacement directly to

 Lua:

 p = loadfile (arg [1])

 f = io.open (arg [2], “wb”)

 f: write (string.dump (p))

 f: close ()

 The main function here is string.dump : it gets the function

 lua and returns its precompiled code as a string,

 properly formatted to load it into Lua.

 The luac program also introduces some interesting options.

 In particular, the -l option prints a list of all opcodes that

 the compiler generates for the given block. As an example, foxes

 Thing 8.1 contains the output of the luac program launched with the -l option ,

 for the following one line file:

 a = x + y - z

 (We will not discuss Lua internals in this book; if you

 interested in information about these opcodes, then search the Internet

 the words "lua opcode" will give you reasonably accurate information.)

 Precompiled code is not always smaller than the original

 code, but it loads faster. Another plus is that

 this gives you protection against accidental changes to the source. However, in

 deviation from source code, maliciously modified binary code

 can crash the Lua interpreter or even execute

 user-supplied machine code. At startup, the usual

 There is nothing to worry about with this code. However, you should avoid using

 running untrusted code in precompiled form. The function

 load has a special option for just this task.

 Listing 8.1. Sample luac –l output

 main <stdin: 0,0> (7 instructions, 28 bytes at 0x988cb30)

 0+ params, 2 slots, 0 upvalues, 0 locals, 4 constants, 0 functions

 1 [1] GETGLOBAL 0 -2; x

 2 [1] GETGLOBAL 1 -3; y

 3 [1] ADD 0 0 1

 4 [1] GETGLOBAL 1 -4; z

 5 [1] SUB 0 0 1

 6 [1] SETGLOBAL 0 -1; a

 7 [1] RETURN 0 1

 In addition to the required first argument, load has three more optional

 natal arguments. The second argument is the name of the block that

 The swarm is only used in error messages. The fourth argument

 cop is the environment, we will look at it in detail in chapter 14. Third

 the argument is exactly what we are interested in now; he controls

 what types of blocks can be loaded. If this argument is

 is present, then it must be a string: the string “t” allows loading

 only text blocks, line “b” allows loading only binary

 (precompiled) blocks, and the string "bt" (the value of the

 the default) allows you to load blocks of both types.

 8.3. C code

 Unlike Lua code, C code must be

 forged with the app before using it. In a number of popular

 operating systems, the easiest way to do this is

 using the dynamic linking feature. However, given

 This feature is not part of the ANSI C specification; so no re-

 a wearable way to do this.

 Lua usually does not include features that cannot be

 implemented in ANSI C. However, with dynamic linking,

 tion is different. We can consider it as the basis of all others

 opportunities: as soon as we have it, we can immediately load

 reap any feature that is not currently in Lua. Therefore, in this

 Otherwise, Lua abandons portability rules and implements

 dynamic linking for a number of platforms. Standard implementation

 zation offers this feature for Windows, Mac OS X, Linux,

 FreeBSD, Solaris and most other UNIX implementations. Transfer

 this capability to other platforms doesn't have to be difficult;

 refer to your distribution. (To check this, run

 print (package.loadlib (“a”, “b”)) from the Lua command line and then

 look at the result. If it reports a file that does not exist, then

 you have dynamic linking support. Otherwise

 an error message will tell you that this feature is not supported

 or not installed.)

 Lua provides all the dynamic linking capabilities

 through one function, package.lodlib . This function receives two

 string arguments: full library path and function name from

 this library. Therefore, her typical call looks like

 but below:

 local path = “/usr/local/lib/lua/5.1/socket.so”

 local f = package.loadlib (path, “luaopen_socket”)

 The loadlib function loads the specified library and connects

 her to Lua. However, it does not call the specified function. Instead he

 returns a C function as a Lua function. In case of an error when

 loading a library or finding an initializing function

 loadlib returns nil and an error message.

 The loadlib function is very low level. We must re-

 Pass the full path to the library and the correct function name (including

 teas, beginning underscores added by the compiler). Often we

 load libraries to C using require . This function looks for

 library and uses loadlib to load the initialization

 functions for the library. When called, this initializing function

 ration builds and returns a table with functions from this library, like

 does the usual Lua library. We will discuss require in section 15.1 and

 See section 27.3 for more information on C libraries.

 8.4. Errors

 Errare humanum est 3 . Therefore, we must handle errors like this

 good as we can. Since Lua is an extension language,

 often embedded in an application, we cannot just fall or

 exit if an error occurs. Instead, when

 yes an error occurs, Lua interrupts the execution of the current block and

 returns control to the application.

 Any unexpected situation Lua encounters will cause

 leads to call errors (raises an error). Errors occur when

 you (more precisely, your program) cannot add values that

 are not numbers, do not index a table, etc. (You can

 want to change this behavior using metatables as we will see

 later.) You can also explicitly cause errors by calling

 error function with an error message as an argument. Usually

 this function is the correct way to report a bug in

 your code:

 print "enter a number:"

 n = io.read (“* n”)

 if not n then error (“invalid input”) end

 3

 Humans tend to make mistakes. (lat .)

 This way of calling error is so common that for this

 Lua has a built-in assert function :

 print "enter a number:"

 n = assert (io.read (“* n”), “invalid input”)

 The assert function checks if its first argument is valid

 is not false, and simply returns this argument; if the argument is false, then

 assert raises an error. Its second argument, the error message,

 not required. However, keep in mind that assert is a normal function.

 tion. As with all functions, Lua always computes before calling it.

 passes her arguments. So if you write something like

 n = io.read ()

 assert (tonumber (n), “invalid input:“ .. n .. “is not a number”)

 then Lua will always do the concatenation, even if n is a number. Therefore-

 In such cases, it may be better to use an explicit test.

 When a function detects an unexpected situation (excluding

 reading), it can go in two ways: return an error code (usually

 nil) or raise an error using error . There are no tough

 rules for choosing between these two options, but we can

 offer general advice: an exception that's easy to get around,

 should throw an error; otherwise, an error code should be returned.

 For example, let's consider the sin function . How should she behave

 lead if its argument is a table? Suppose it is possible

 rotates the error code. If we need to check for errors, then we

 we can write something like

 local res = math.sin (x)

 if not res then

 - error?

 <error-handling code>

 However, we can easily change this exception before calling

 functions:

 if not tonumber (x) then

 - x is not a number?

 <error-handling code>

 Often we do not check for either the argument or the result of calling sin ,

 if the argument is not a number, it means that something is wrong in our

 program. In a similar situation, stop computing and call

 error is the simplest and most practical way to handle

 this exception.

 On the other hand, let's look at the io.open function , which

 Paradise opens the file. How to behave if asked to open

 non-existent file? In this case, there is no simple way

 Soba to check for a call for an exception before calling this function

 tion. On many systems, the only way to check that

 file exists, is to try to open it. So if

 io.open cannot open the file for some external reason (for-

 example, "file does not exist" or "no rights!"), then it just might

 rotates nil along with the error message. In this case, you have

 a chance to handle the situation in an appropriate way, such as asking

 with a different filename:

 local file, msg

 repeat

 print "enter a file name:"

 local name = io.read ()

 if not name then return end –– nothing was entered

 file, msg = io.open (name, “r”)

 if not file then print (msg) end

 until file

 If you do not want to handle a similar situation, but do not

 want to be safe anyway, you can simply use

 use assert :

 file = assert (io.open (name, “r”))

 This is a typical idiom for Lua: if io.open completed with The error

 coy, then assert will raise an error.

 file = assert (io.open (“no-file”, “r”))

 -> stdin: 1: no-file: No such file or directory

 Note how the error message that is

 the second result of io.open turns out to be the second argument when

 call to assert .

 8.5. Error processing and exceptions

 For many applications, you do not need to do any processing.

 a lot of errors in Lua; all processing is done by the application itself. All work

 Lua begins by being called by an application, usually consisting of

 block execution. If an error occurs, then this call returns

 error code and the application can respond appropriately

 bed. In the case of a separate interpreter, its main loop is simply

 prints an error message and continues.

 However, if you need to handle errors in Lua, then you should

 use pcall function (protected call) to encapsulate your

 th code.

 Let's say you want to execute a piece of Lua code and catch

 any error that occurs while executing it. Your first

 the step is to wrap this piece of code in a function; quite an hour

 then anonymous functions are used for this. Then you call

 this function using pcall :

 local ok, msg = pcall (function ()

 <some code>

 if unexpected_condition then error () end

 <some code>

 print (a [i]) –– possible error: 'a' may not be a table

 <some code>

 end)

 if ok then –– no error occurred while executing the protected code

 <regular code>

 else

 –– the protected code caused an error; process her

 <error-handling code>

 end

 The pcall call invokes its first argument in protected mode

 me , so that all errors during the execution of the function are caught.

 cts. If there are no errors, then the pcall call returns true and

 all values returned by the function. Otherwise, it returns false and

 error message.

 Despite its name, the error message need not be

 by line: calling pcall will return whatever Lua value you pass-

 whether error .

 local status, err = pcall (function () error ({code = 121}) end)

 print (err.code) -> 121

 These mechanisms provide everything you need to process the data.

 key in Lua. We throw an exception with error and

 intercept it using pcall . The error message is

 specifies the type of error.

 8.6. Error messages

 and call stack

 Although we can use the sign as an error message

 any type, usually error messages are strings that describe

 wondering what went wrong. In the event of an internal

 errors (e.g. trying to index a non-table) message

 Lua generates an error; otherwise the error message becomes

 the value passed to the error function . When the error message

 is a string, then Lua tries to add some information

 about the place where the error occurred:

 local status, err = pcall (function () a = “a” +1 end)

 print (err)

 -> stdin: 1: attempt to perform arithmetic on a string value

 local status, err = pcall (function () error (“my error”) end)

 print (err)

 -> stdin: 1: my error

 The error message contains the file name (in the example it is stdin)

 and the line number in it (in the example it is 1).

 The error function has a second optional parameter which

 tells the level where to report the error; you are using this pas-

 a yardstick to blame someone else for a mistake. For instance,

 you wrote a function that immediately checks that it was

 duly called:

 function foo (str)

 if type (str) ~ = “string” then

 error (“string expected”)

 end

 <regular code>

 end

 Then someone calls your function with the wrong argument-

 Tom:

 foo ({x = 1})

 In this case, Lua points to your function - after all,

 it was she who caused the error - not the real culprit, the one who

 called her with the wrong argument. In order to fix this,

 we can pass error that the error you are reporting is

 Nick at level 2 in the call stack (level 1 is your function):

 function foo (str)

 if type (str) ~ = “string” then

 error (“string expected”, 2)

 end

 <regular code>

 end

 Often when an error occurs, we want to get more

 more accurate information than just where it originated. How mi-

 At least we want the call stack that resulted in the error. When pcall

 returns an error, it destroys part of the stack (part

 from it until the error occurs). Accordingly, if we

 want to get a call stack, then we must build it before

 gates from pcall . Lua provides the xpcall function for this . Cro-

 the function to be called receives a second argument,

 error handling function . In case of a Lua error

 calls this error handling function before flushing the stack,

 therefore, she can use the debug library to obtain

 any additional information about the error. The two most

 common error handlers are debug.debug ,

 giving you a command line in Lua so you can do it yourself

 see what was happening when the error occurred; and

 debug.traceback which builds an extended error message

 ke, including the call stack 4 .

 It is the latter function that the independent inter-

 pretator for printing error messages.

 Exercises

 Exercise 8.1. It is often necessary to add code to the beginning of the download.

 pressed block. (We have already seen an example in this chapter when we

 added code to return .) Write a function loadwithprefix ,

 which works like load , except that it pre-

 prepends its additional argument to the beginning of the load

 th block.

 Like the original load function , loadwithprefix should

 accept blocks represented both as strings and read-

 functions. Even when the original unit

 is a string, loadwithprefix should not be explicitly concatenated

 string the passed argument with a block. Instead, she

 should call load with the appropriate read function-

 it, which first returns the passed argument, and then -

 block.

 Exercise 8.2. Write a multiload function that generalizes

 schaet loadwithprefix , receiving the input list reading function

 tions, as in the following example:

 4

 In Chapter 24, we will learn more about these functions and the debug library.

 f = multiload (“local x = 10;”,

 io.lines (“temp”, “* L”),

 “Print (x)”)

 For the above example, multiload should load

 block equivalent to concatenating the string “local ...” with co-

 by holding the temp file and the "print (x)" line . Like function

 loadwithprefix , this function itself is nothing concatenated

 should not.

 Exercise 8.3. The string.rep function in Listing 8.2 is used

 zuet algorithm binary multiplication (binary multiplication

 algorithm) to concatenate n copies of the given string s . For

 any fixed n, we can create a specialized

 bathroom version of string.rep , expanding the loop into a sequential

 the number of commands r = r..s and s = s..s . As an example for n = 5

 we get the following function:

 function stringrep_5 (s)

 local r = “”

 r = r .. s

 s = s .. s

 s = s .. s

 r = r .. s

 return r

 end

 Write a function that, for a given n, returns

 stringrep_n function . Instead of using a closure

 your function should build the function text in Lua with

 appropriate commands r = r..s and s = s..s and then use

 use load to get the final function. Compare-

 those are the performance of the string.rep function and the one you got

 functions.

 Exercise 8.4. Can you find a value for p such that

 pcall expression (pcall, f) will return false as the first value

 nie?

 Chapter 9

 Coroutines

 A coroutine is like a thread (in the multi-threaded sense): it is a thread

 execution with its stack, its local variables and

 its instruction pointer (instruction pointer); but he shares the glo-

 point variables and pretty much everything else with other coroutines-

 mi. The main difference between threads and coroutines is that

 a multi-threaded program executes all of these threads in parallel

 but. Coroutines work together: at any given time,

 gram executes only one of its coroutines, and this one executes

 May, a coroutine suspends its execution only when

 will explicitly ask for it.

 Coroutines are a very powerful concept. And so many of

 their applications are quite complex. Don't worry if you don't understand

 some of the examples in this chapter on first reading. You can

 read to the end of the book and come back later. But please,

 come back it will be a well spent time.

 9.1. Fundamentals of coroutines

 Lua keeps all the functions for working with coroutines in a table

 coroutine . The create function creates new coroutines. She has everything-

 Its one argument is the function that the coroutine will execute.

 It returns a value of type thread , which is

 the created coroutine. Often the create argument is anonymous

 function as below:

 co = coroutine.create (function () print (“hi”) end)

 print (co) -> thread: 0x8071d98

 A coroutine can be in one of four states: prio-

 suspended, running, dead, and

 normal. We can find out the state of the coroutine at

 using the status function :

 print (coroutine.status (co)) -> suspended

 When we create a coroutine, it starts in a suspended state.

 nom condition; coroutine doesn't start automatically executing

 our body when we create it. The coroutine.resume function continues

 starts (starts) execution of the coroutine, changing its state from

 suspended in running:

 coroutine.resume (co) -> hi

 In this first example, the coroutine body simply prints “hi”

 and terminates execution, leaving the coroutine in destroyed

 condition:

 print (coroutine.status (co)) -> dead

 Until now, coroutines have looked like just a complicated way

 function calls. The real power of coroutines comes from function

 yield , which allows a running coroutine to pause

 its execution so that it can be continued later. let's

 consider a simple example:

 co = coroutine.create (function ()

 for i = 1, 10 do

 print (“co”, i)

 coroutine.yield ()

 end

 end)

 Now, when we continue with this function, it will

 repairs its execution and executes before the first yield :

 coroutine.resume (co) -> co 1

 If we now check its status, we will see that this co-

 the program is paused and, therefore, we can

 continue its execution:

 print (coroutine.status (co)) -> suspended

 From the point of view of the coroutine, all the activity that occurs

 dit while the coroutine is suspended happens inside the call

 yield . When we continue to execute the coroutine, it returns

 comes from the yield call and continues its execution until the next

 th call yield or the end of the coroutine:

 coroutine.resume (co) -> co 2

 coroutine.resume (co) -> co 3

 ...

 coroutine.resume (co) -> co 10

 coroutine.resume (co) - prints nothing

 During the last call to resume, the loop ends and ends

 Execute the function without printing anything. If we try

 resume its execution again, then resume will return false and the message

 about the error:

 print (coroutine.resume (co))

 -> false cannot resume dead coroutine

 Note that resume executes the coroutine body in

 protected mode. Therefore, in the event of any

 errors while executing a coroutine Lua will not show a message

 error message, but will simply return control to the call to resume .

 When a coroutine continues executing another coroutine,

 then it is not suspended; in the end we cannot continue

 live her fulfillment. However, it is not executable, because

 how many coroutines being executed is another coroutine.

 Therefore, her status is called normal .

 A nice feature in Lua is that the resume pair -

 yield can exchange data. The first call to resume (which

 there is no yield call waiting for it) passes its additional

 arguments of the main coroutine function:

 co = coroutine.create (function (a, b, c)

 print (“co”, a, b, c + 2)

 end)

 coroutine.resume (co, 1, 2, 3) -> co 1 2 5

 Calling resume returns after true , indicating that there is no error-

 side, all arguments passed to the yield call :

 co = coroutine.create (function (a, b)

 coroutine.yield (a + b, a - b)

 end)

 print (coroutine.resume (co, 20, 10)) -> true 30 10

 Similarly, yield returns all arguments passed according to

 The corresponding call to resume :

 co = coroutine.create (function (x)

 print (“co1”, x)

 print (“co2”, coroutine.yield ())

 end)

 coroutine.resume (co, “hi”) -> co1 hi

 coroutine.resume (co, 4, 5) -> co2 4 5

 Finally, when the coroutine finishes its execution, everything is

 values returned by its main function are passed as a result

 resume :

 co = coroutine.create (function ()

 return 6, 7

 end)

 print (coroutine.resume (co)) -> true 6 7

 We usually rarely use all of these features in one and the same

 the same coroutine, but they all have their own uses.

 For those who already know something about coroutines it is important to clarify

 some concepts before we move on. Lua offers

 what is called asymmetric coroutines . It means that

 it has a function to pause the execution of a coroutine and

 another function to continue execution of the suspended

 coroutines. Some languages have symmetric coroutines ,

 when there is only one function to transfer control from one

 coroutines are different.

 Asymmetric coroutines are called semi-coroutines by some.

 mami (not being symmetrical, they are not co-). However, others

 use the same term semi-routines to denote a limited

 implementation of coroutines, where a coroutine can be suspended

 do it only when it does not call any other

 function, that is, when it has no pending calls. Other words

 you, only the main body of such a coroutine can yield yield .

 Generators in Python are examples of such semi- routines.

 Unlike the difference between symmetrical and unbalanced-

 mi coroutines, the difference between coroutines and generators

 (as implemented in Python) is much deeper; generators just don't

 powerful enough to implement some interesting con-

 instructions that we can do with normal coroutines.

 Lua offers complete non-symmetric coroutines. Those who

 prefer symmetric coroutines, can implement them in

 based on the asymmetric capabilities of Lua. This is not difficult. (Fact-

 every control transfer performs a yield , followed by

 blows resume .)

 9.2. Channels and filters

 One of the most important use cases for coroutines

 is the task of the producer-consumer.

 Let's pretend we have a function that is constantly running

 reads values (for example, reads them from a file), and another function,

 which constantly consumes these values (for example, writes to another

 goy file). Typically these two functions look like this:

 function producer ()

 while true do

 local x = io.read () - produce new value

 send (x)

 - send it to the consumer

 end

 end

 function consumer ()

 while true do

 local x = receive () - get value from producer

 io.write (x, “\ n”)

 - consume it

 end

 end

 (In this implementation, both producer and consumer are

 forever. However, they can be easily changed to stop when more

 no data.) The challenge here is to connect you-

 calls send and receive . This is a typical example of the problem “who has the main

 cycle". Both the producer and the consumer are active, each has its own

 main loops, and each assumes that the other is a call

 my service. For this particular example, one can easily change

 structure of one of the functions, expanding its cycle and making it passive

 noah side. However, in real cases, such a change can

 to be far from easy.

 Coroutines provide an ideal mechanism for connecting

 producer and consumer, since the resume – yield pair

 reverses the usual relationship between caller and caller

 removable. When a coroutine calls yield , it does not call a new one

 function; instead, it returns control from the current call.

 wa (resume). Likewise, calling resume does not start a new function,

 and terminates the call to yield . This is exactly what we need to connect

 neniya send and receive , so that each acts as

 as if he is the main one, and the second is subordinate.

 Therefore, receive continues to execute the producer, so it

 can produce a new value; and send returns this value

 back to the consumer:

 function receive ()

 local status, value = coroutine.resume (producer)

 return value

 end

 function send (x)

 coroutine.yield (x)

 end

 Of course, the producer must also be a coroutine:

 producer = coroutine.create (

 function ()

 while true do

 local x = io.read () –– produce a new value

 send (x)

 end

 end)

 With this design, the program starts by calling the consumer. Kog-

 yes, the consumer needs value, he resumes production

 body, which is executed until it has a ready

 value that it conveys to the consumer and does not stop until

 until the consumer continues executing again. So

 thus we get what is called sweat-driven design

 fighter an (consumer-driven). Another option would be to write

 program using a manufacturer-driven design where sweat-

 a child is a coroutine.

 We can extend this design with filters that

 are tasks between the manufacturer and the

 rebel and performing data conversion. The filter is

 producer and consumer at the same time, therefore he

 owes producer execution to get new value

 and uses yield to pass this value to the consumer. In ka-

 as a simple example, we can add to our previous

 code a filter that inserts a line number at the beginning of each line.

 The code is shown in Listing 9.1. In the end, we just need to create a compo

 nents, connect them and start executing the final consumer:

 p = producer ()

 f = filter (p)

 consumer (f)

 Or even simpler:

 consumer (filter (producer ()))

 Listing 9.1. Consumer and manufacturer with filters

 function receive (prod)

 local status, value = coroutine.resume (prod)

 return value

 end

 function send (x)

 coroutine.yield (x)

 end

 function producer ()

 return coroutine.create (function ()

 while true do

 local x = io.read () - produce new value

 send (x)

 end

 end)

 end

 function filter (prod)

 return coroutine.create (function ()

 for line = 1, math.huge do

 local x = receive (prod) - get new value

 x = string.format (“% 5d% s”, line, x)

 send (x)

 - send it to the consumer

 end

 end)

 end

 function consumer (prod)

 while true do

 local x = receive (prod) - get new value

 io.write (x, “\ n”)

 - consume new value

 end

 end

 Listing 9.2. Function to get all permutations of n elements a

 function permgen (a, n)

 n = n or #a - default 'n' is the size of 'a'

 if n <= 1 then - nothing to do?

 printResult (a)

 else

 for i = 1, n do

 - put the i-th element at the end

 a [n], a [i] = a [i], a [n]

 - create all permutations of other elements

 permgen (a, n - 1)

 - restore the i-th element

 a [n], a [i] = a [i], a [n]

 end

 end

 end

 If you've thought about pipes in UNIX, then you're not alone.

 After all, coroutines are a variant of non-preemptive multi-

 tasks (non-preemptive multitasking). With channels every task

 runs as a separate process; with coroutines each task

 runs as a separate coroutine. Channels provide bu-

 fer between the writer (producer) and the reader (consumer),

 therefore, some freedom in their relative speeds is possible.

 This is important for the channel, since the cost of switching between processes

 themselves are high. With coroutines, the cost of switching between tasks

 much smaller (like a function call), so writing

 and the reader can go toe-to-toe.

 9.3. Coroutines like iterators

 We can consider loop iterators as a separate example

 producer-consumer: the iterator produces values that

 consumed by the body of the cycle. Therefore, it is quite natural

 use coroutines to write iterators. Really-

 but, coroutines are a powerful tool for this purpose.

 Again, the key feature is their ability to flip

 the relationship between caller and callee. With this feature

 we can write iterators without worrying about keeping state between

 by successive calls to the iterator.

 To illustrate this use case,

 let's write an iterator to iterate over all permutations of a given

 array. Writing an iterator like this isn't easy, but pretty

 just write a recursive function that builds all these overrides

 new. The idea is simple: put each element at the end in turn

 array and recursively generate any remaining permutations.

 The code is shown in Listing 9.2. In order for it to work, we must

 we write the corresponding function printResult and call

 permgen with proper arguments:

 function printResult (a)

 for i = 1, #a do

 io.write (a [i], ““)

 end

 io.write (“\ n”)

 end

 permgen ({1,2,3,4})

 -> 2 3 4 1

 -> 3 2 4 1

 -> 3 4 2 1

 ...

 -> 2 1 3 4

 -> 1 2 3 4

 Once the generator is ready, it is very easy to convert it to

 iterator. First, we'll replace printResult with yield :

 function permgen (a, n)

 n = n or #a

 if n <= 1 then

 coroutine.yield (a)

 else

 <as before>

 Then we define a factory that will run the generator

 inside a coroutine, and create an iterating function. For semi-

 the next permutation, the iterator simply continues

 nenie coroutine:

 function permutations (a)

 local co = coroutine.create (function () permgen (a) end)

 return function () - iterator

 local code, res = coroutine.resume (co)

 return res

 end

 end

 After that we can easily iterate over all permutations of the array.

 using the for statement :

 for p in permutations {“a”, “b”, “c”} do

 printResult (p)

 end

 -> bca

 -> cba

 -> cab

 -> acb

 -> bac

 -> abc

 The permutations function uses a typical Lua pattern,

 which hides the resume of the coroutine inside the function. This

 the pattern is so common that Lua provides special

 function for it: coroutine.wrap . Like create , wrap creates

 new coroutine. Unlike create , wrap does not return itself.

 coroutine; instead, it returns a function that when

 the call continues execution of this coroutine. Unlike

 resume , it does not return the error code as the first value; together

 then it causes an error. Using wrap , we can write

 permutations as follows:

 function permutations (a)

 return coroutine.wrap (function () permgen (a) end)

 end

 It is generally easier to use coroutine.wrap than coroutine.

 create . It gives us exactly what we need from a coroutine:

 function to continue its execution. However, it is less flexible

 kaya. There is no way to check the status of a coroutine created-

 noah with wrap . Moreover, we cannot check for errors.

 at run time.

 9.4. Non-displacing multi-threading

 As we saw earlier, coroutines provide an option for

 noisy multi-threading. Every coroutine is equivalent to a thread. Couple

 yield-resume switches control from one thread to another thread.

 However, unlike ordinary multi-threading, a coroutine is not

 are preemptive. While the coroutine is running,

 it cannot be stopped from the outside. She interrupts her execution

 only when it explicitly requests it (via a call to yield). For

 In some applications, this is not a problem, rather the opposite. Pro-

 gramming is much easier in the absence of displacement. You do not

 you need to worry about sync errors because all sync

 chronization is obvious. You just need to make sure that the coroutine

 ma calls yield outside the critical area of the code.

 However, with non-displacing multi-threading, as soon as some

 the thread calls a blocking operation, the whole program is blocked

 until this operation completes. For most,

 this is unacceptable, which leads to the fact that many programmers

 you don't see coroutines as an alternative to traditional

 multi-threading. As we will see here, there is an interest in this problem.

 a new (and obvious, moreover) solution.

 Let's look at a typical multi-threaded task: we want

 download multiple files over HTTP. To download several

 of these files, we first need to figure out how to download one file.

 In this example, we will look at the bib-designed by Diego Nehab

 the LuaSocket library . In order to download a file, you must first install

 connect to the site containing this file, get the file

 (in blocks) and close the connection. In Lua, we can write this next

 in a blowing manner. First, we load the LuaSocket library:

 local socket = require “socket”

 Then we define the site and the file we want to download. In that

 for example, we will download the HTML 3.2 reference manual from the site

 World Wide Web Consortium:

 host = “www.w3.org”

 file = “/TR/REC-html32.html”

 Then we open a TCP connection to port 80 (standard

 port for HTTP connections) of this site:

 c = assert (socket.connect (host, 80))

 This operation returns the connection object that we are using

 we use to send a request to receive a file:

 c: send (“GET“ .. file .. “HTTP / 1.0 \ r \ n \ r \ n”)

 We then read the file in 1 KB blocks, writing each block to

 standard output:

 while true do

 local s, status, partial = c: receive (2 ^ 10)

 io.write (s or partial)

 if status == “closed” then break end

 end

 The receive function returns either the string it read, or

 nil on error; in the latter case, it also returns the code

 errors (status) and what she read before the error (partial). When the site

 closes the connection, we print the remaining data and exit

 from the loop.

 After downloading the file, we close the connection:

 c: close ()

 Now that we know how to download one file, let's go back to

 the problem of downloading multiple files. The simplest approach is to

 Children download one file at a time. However, this consistent sub-

 the move when we start reading the file only after we finish

 with the previous file is too slow. When reading a file by

 the network, the program spends most of its time waiting for data.

 More precisely, she spends most of her time blocked

 in the receive call . Therefore, the program can be executed significantly

 It is much faster if it downloads all files at once. Then when

 the connection has no ready data, the program can read the data

 from another connection. It is clear that coroutines provide convenience

 a good way to organize these simultaneous downloads. we

 create a new thread for each downloaded file. When the thread

 there is no ready data, it transfers control to the dispatcher, who

 calls another thread.

 In order to rewrite the program using co-

 programs, we first need to rewrite the downloading code as

 function. The result is shown in Listing 9.3. Since we are not interested

 resche the contents of the file, the function reads and prints the file size

 instead of writing the file to standard output (when we have several

 they read several files at once, the output would be complete

 mishmash).

 Listing 9.3. Code for downloading a page from the network

 function download (host, file)

 local c = assert (socket.connect (host, 80))

 local count = 0

 - counts number of bytes read

 c: send (“GET“ .. file .. “HTTP / 1.0 \ r \ n \ r \ n”)

 while true do

 local s, status = receive (c)

 count = count + #s

 if status == “closed” then break end

 end

 c: close ()

 print (file, count)

 end

 In the resulting code, we use the helper function

 (receive) to receive data from the connection. With successive

 However, the code would look like this:

 function receive (connection)

 local s, status, partial = connection: receive (2 ^ 10)

 return s or partial, status

 end

 For parallel implementation, this function must receive data

 without blocking. Instead, if the required data is not available,

 then it calls yield . The new code looks like this:

 function receive (connection)

 connection: settimeout (0)

 –– do not block

 local s, status, partial = connection: receive (2 ^ 10)

 if status == “timeout” then

 coroutine.yield (connection)

 end

 return s or partial, status

 end

 The settimeout (0) call does any operation on the connection.

 blocking. When the status of the operation is “timeout” , it means that

 the operation completed without completing the request. In this case, the thread is

 Give control to another thread. The non- false argument passed to

 ny yield statement , informs the dispatcher that this thread still performs

 your task. Please note that even in the case of the “timeout” status

 the partial variable still contains the read data.

 Listing 9.4. contains dispatcher code and additional code.

 The threads table contains a list of all active threads for the disk.

 petcher. The get function ensures that each downloaded file

 downloaded in a separate thread. The dispatcher itself is actually

 just a loop that iterates over all the threads, starting them to execute-

 one by one. It also removes from the list those threads that

 have already completed the download. The cycle stops when no more

 remains of threads.

 Listing 9.4. Dispatcher

 threads = {}

 –– list of all running threads

 function get (host, file)

 - create a coroutine

 local co = coroutine.create (function ()

 download (host, file)

 end)

 - insert it into the list

 table.insert (threads, co)

 end

 function dispatch ()

 local i = 1

 while true do

 if threads [i] == nil then

 –– no more threads?

 if threads [1] == nil then break end –– is the list empty?

 i = 1 - restart the loop

 end

 local status, res = coroutine.resume (threads [i])

 if not res then

 –– has the thread finished downloading?

 table.remove (threads, i)

 else

 i = i + 1

 –– go to the next thread

 end

 end

 end

 Finally, the main routine creates the required threads and calls

 there is a dispatcher. For example, to download four documents from the site

 W3C, the main program might look like below:

 Non-displacing multi-threading

 host = “www.w3.org”

 get (host, “/TR/html401/html40.txt”)

 get (host, “/TR/2002/REC-xhtml1-20020801/xhtml1.pdf”)

 get (host, “/TR/REC-html32.html”)

 get (host, “/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.txt”)

 dispatch () - main loop

 On my computer, downloading these four files using

 Coroutine processing takes 6 seconds. With sequential download

 it takes more than twice (15 seconds).

 Despite this optimization, this latest implementation is still

 far from optimal. Everything works well as long as though

 one thread would have something to read. However, when no thread has

 ready to read data, the dispatcher constantly switches from

 threads to thread just to make sure there are no ready-made

 data. As a result, this implementation takes almost 30 times more

 CPU time than the serial version.

 In order to avoid this situation, we can use

 call the select function from the LuaSocket library: it allows you to

 block a program that is pending while changing

 status in the connection group. Implementation changes are minor

 us: we only need to change the dispatcher as shown in the listing

 9.5. In a loop, the new dispatcher collects connections in the timedout table .

 for which there is no ready-made data. (Remember that receive pe-

 gives similar joins to the yield function , so again

 running them). If none of the connections have ready data, then

 the dispatcher calls select to wait for at least one

 One of these connections will change the status. This final re-

 Alization works as fast as the previous one. However, she

 uses only slightly more CPU time than the serial

 naya implementation.

 Listing 9.5. Dispatcher using select

 function dispatch ()

 local i = 1

 local timedout = {}

 while true do

 if threads [i] == nil then –– no more threads?

 if threads [1] == nil then break end

 i = 1

 –– start the cycle over again

 timedout = {}

 end

 local status, res = coroutine.resume (threads [i])

 if not res then

 –– has the thread finished its work?

 table.remove (threads, i)

 else

 –– waiting time out

 i = i + 1

 timedout [#timedout + 1] = res

 if #timedout == #threads then –– are all threads blocked?

 socket.select (timedout)

 end

 end

 end

 end

 Exercises

 Exercise 9.1. Use coroutines to pre-

 form Exercise 5.4 into a generator for combinations that

 ry can be used as follows:

 for c in combinations ({“a”, “b”, “c”}, 2) do

 printResult (c)

 end

 Exercise 9.2. Implement and run the code from the previous

 section (non-displacing multi-threading).

 Exercise 9.3. Implement the transfer function in Lua. If a

 think about calling resume-yeild the same as calling

 function and return from it, then this function will be like a goto : it

 interrupts the current coroutine and resumes any other

 th coroutine passed as an argument.

 (Hint : use an analog of the dispatch procedure to control

 handling your coroutines. Then transfer will transfer

 control to the dispatcher, informing about which next com-

 the program needs to be started, and the dispatcher will call re-

 sume).

 Chapter 10

 Completed examples

 To conclude this introduction to the language, we show three simple, but complete

 programs. The first program solves the problem of eight kings

 wah. The second program prints the most common words in

 text. The last example is the implementation of the Markov chain described by

 Naya Kernighan and Pike in their book " The Practice of Programming "

 (Addison-Wesley, 1999).

 10.1. The Eight Queens Problem

 Our first example is a very simple program that solves

 the problem of eight queens : you need to arrange the eight queens on

 chessboard so that none of the queens are under attack.

 The first step in solving this problem should be noted that each

 Each solution must have exactly one queen in each line.

 Thus, we can represent the solution as an array of eight

 numbers, one for each line; each number tells us in

 which column is the queen in the corresponding row. On-

 example, the array {3,7,2,1,8,6,5,4} means one queen

 is in row 1 in column 3, another is in row 2 in column 7 and

 etc. (Note that this is not a valid solution

 eat; for example, the queen in row 3 in column 2 attacks the queen in

 line 4 in column 1). Also note that any solution

 should be a permutation of numbers from 1 to 8, as the solution should

 contain one queen in each column.

 The complete program is shown in Listing 10.1. The first function is -

 it is isplaceok , which checks that the given position on the board is not

 falls under the battle of previously placed queens. Remembering that he cannot

 to be two queens on the same line, this function checks that there are no

 two queens on one column or one diagonal with a given

 position.

 Listing 10.1. Program for eight queens

 local N = 8 - board size

 - checks that position (n, c) is not under attack

 local function isplaceok (a, n, c)

 for i = 1, n - 1 do –- for each previously placed queen

 if (a [i] == c) or –- the same column?

 (a [i] - i == c - n) or –- the same diagonal?

 (a [i] + i == c + n) then -– the same diagonal?

 return false -– position under attack

 end

 end

 return true -– not under attack

 end

 - print the board

 local function printsolution (a)

 for i = 1, N do

 for j = 1, N do

 io.write (a [i] == j and “X” or “-”, ““)

 end

 io.write (“\ n”)

 end

 io.write (“\ n”)

 end

 - add to the board 'a' all queens from 'n' to 'N'

 local function addqueen (a, n)

 if n> N then -– have all the queens been placed?

 printsolution (a)

 else - try to place the nth queen

 for c = 1, N do

 if isplaceok (a, n, c) then

 a [n] = c –- put the n-th queen in column 'c'

 addqueen (a, n + 1)

 end

 end

 end

 end

 -- run the program

 addqueen ({}, 1)

 Next we have the printsolution function , which prints the check

 mat board. She just goes around the board, typing 'X' in places with

 queen and '-' elsewhere. Each result looks

 dit like below:

 127

 The most common words

 X - - - - - - -

 - - - - X - - -

 - - - - - - - X

 - - - - - X - -

 - - X - - - - -

 - - - - - - X -

 - X - - - - - -

 - - - X - - - -

 The last function addqueen is the heart of the program. Sleep-

 then it checks if the solution is complete, and if so, then

 prints this solution. Otherwise, it iterates over all the pillars.

 tsy; for each unallocated column, the program puts there a short

 left and recursively tries to accommodate the remaining queens.

 10.2. Most often occurring words

 Our next example is a simple program that reads

 text and prints the most frequent words from that text.

 The main data structure of this program is just a table

 tsa, which matches each word with its frequency. Using

 With this data structure, the program has three main tasks:

 • Read the text by counting the number of occurrences of each word.

 • Sort the list of words in descending order of frequency of meeting-

 the bridges of every word.

 • Print the first n items from the sorted list.

 ka.

 To read the text, we can use the allwords iterator , which

 which we discussed in Section 7.1. For every word that we

 read, we increment the corresponding counter:

 local counter = {}

 for w in allwords do

 counter [w] = (counter [w] or 0) + 1

 end

 The next task is to sort the word list. However, how

 an attentive reader might have noticed we don't have a word list! but

 it is easy to create using words that are keys in the table

 face counter:

 local words = {}

 for w in pairs (counter) do

 words [#words + 1] = w

 end

 Listing 10.2. Program for printing the most common words

 local function allwords ()

 local auxwords = function ()

 for line in io.lines () do

 for word in string.gmatch (line, “% w +”) do

 coroutine.yield (word)

 end

 end

 end

 return coroutine.wrap (auxwords)

 end

 local counter = {}

 for w in allwords () do

 counter [w] = (counter [w] or 0) + 1

 end

 local words = {}

 for w in pairs (counter) do

 words [#words + 1] = w

 end

 table.sort (words, function (w1, w2)

 return counter [w1]> counter [w2] or

 counter [w1] == counter [w2] and w1 <w2

 end)

 for i = 1, (tonumber (arg [1]) or 10) do

 print (words [i], counter [words [i]])

 end

 Now that we have a list, we can sort it with

 using the table.sort function we discussed in Chapter 6:

 table.sort (words, function (w1, w2)

 return counter [w1]> counter [w2] or

 counter [w1] == counter [w2] and w1 <w2

 end)

 The complete program is shown in Listing 10.2. Pay attention-

 the use of coroutines in the auxwords iterator . In the last

 in the loop that prints the result, the program considers that its first

 the argument is the number of words to print and uses

 value 10 if no arguments were passed.

 10.3. Markov chain

 Our final example is a Markov chain implementation . Program

 generates pseudo-random text based on which words

 can follow a sequence of n previous words in the text

 st. For this implementation, we will assume that n is 2.

 The first part reads the body text and builds a table that

 for every two words gives a list of all the words that may be behind them

 follow in the main text. After building the table, the program

 uses it to construct a random text, where each word

 follows the previous two with the same probability as in the base

 in your text. As a result, we get text that is random, but not

 absolutely. For example, applying it to the English text of this book,

 we get texts like “Constructors can also traverse a table con-

 structor, then the parentheses in the following line does the whole file in

 a field n to store the contents of each function, but to show its only argu-

 ment. If you want to find the maximum element in an array can return

 both the maximum value and continues showing the prompt and running

 the code. The following words are reserved and cannot be used to convert

 between degrees and radians ".

 We will encode each prefix by connecting two words when

 using a space:

 function prefix (w1, w2)

 return w1 .. ““ .. w2

 end

 We will use the string NOWORD (“\ n”) to initialize

 prefix words and end-of-text symbols. For example, for text

 "The more we try the more we do" the table of the following words will be

 look like below:

 {[“\ N \ n”] = {“the”},

 [“\ N the”] = {“more”},

 [“The more”] = {“we”, “we”},

 [“More we”] = {“try”, “do”},

 [“We try”] = {“the”},

 [“Try the”] = {“more”},

 [“We do”] = {“\ n”},

 }

 The program stores its table in the statetab variable . For

 to insert a new word into the table, we will use

 the following function:

 function insert (index, value)

 local list = statetab [index]

 if list == nil then

 statetab [index] = {value}

 else

 list [#list + 1] = value

 end

 end

 It first checks that the given prefix already has a list;

 if not, it creates a new list with the passed word. Otherwise she

 inserts the passed word at the end of the existing list.

 To build the statetab we will use two

 variables w1 and w2 containing the last two words read.

 For each new word read, we add it to the list,

 associated with w1-w2 , and then update the values for w1 and w2 .

 After building the table, the program begins to build the text, with

 consisting of MAXGEN words. To begin with, she sets the values of the changes

 nym w1 and w2 . Then, for each prefix, she randomly chooses

 next word from the list of valid words, prints that word and

 updates the values of w1 and w2 . Listings 10.3 and 10.4 contain the complete

 program. Unlike our previous example with the most

 common words, here we use the implementation

 allwords based on closures.

 Listing 10.3. Additional program definitions

 with Markov chain

 function allwords ()

 local line = io.read () -– current line

 local pos = 1

 -– current position in the line

 return function () -– iterating function

 while line do

 - repeat until there are lines left

 local s, e = string.find (line, “% w +”, pos)

 if s then

 - found the word?

 pos = e + 1 - update position

 return string.sub (line, s, e) - return word

 else

 line = io.read () - the word was not found; let's try the trail. string

 pos = 1

 - start at the beginning of the line

 end

 end

 return nil

 –- no more lines, end of traversal

 end

 end

 function prefix (w1, w2)

 return w1 .. ““ .. w2

 end

 local statetab = {}

 function insert (index, value)

 local list = statetab [index]

 if list == nil then

 statetab [index] = {value}

 else

 list [#list + 1] = value

 end

 end

 Listing 10.4. Markov chain program

 local N = 2

 local MAXGEN = 10000

 local NOWORD = “\ n”

 - build a table

 local w1, w2 = NOWORD, NOWORD

 for w in allwords () do

 insert (prefix (w1, w2), w)

 w1 = w2; w2 = w;

 end

 insert (prefix (w1, w2), NOWORD)

 - generate text

 w1 = NOWORD; w2 = NOWORD - initialize

 for i = 1, MAXGEN do

 local list = statetab [prefix (w1, w2)]

 - choose a random word from the list

 local r = math.random (#list)

 local nextword = list [r]

 if nextword == NOWORD then return end

 io.write (nextword, ““)

 w1 = w2; w2 = nextword

 end

 Exercises

 Exercise 10.1. Change the program with eight queens,

 so that it stops after printing the first decision.

 Exercise 10.2. An alternative implementation of the problem of eight

 queens can be the construction of all permutations of numbers from

 1 through 8 and check which ones are valid. Change the program

 mu for using this approach. How fast is

 the effect of the new program in comparison with the old one?

 (Hint : Compare the total number of permutations with the number of times

 when the original program calls the isplaceok function .)

 Exercise 10.3. When we use the program to determine

 the most common words, then usually the most common

 the most common words are short, uninteresting words

 like articles and prepositions. Modify the program so that

 she skipped words of less than four letters.

 Exercise 10.4. Generalize the Markov chain algorithm so that-

 could use any size as length

 prefix.

 Part II

 T TABLES

 AND OBJECTS

 CHAPTER 11

 Data structures

 Lua tables are not just a data structure, they are basic and

 single data structure. All structures that offer

 other languages - arrays, records, lists, queues, sets - can

 be represented in Lua using tables. Moreover, the tables in

 Lua effectively implements all of these structures.

 In traditional languages such as C and Pascal, we implement more

 most data structures using arrays and lists (where the list

 ki = records + pointers). Although we can implement arrays and

 lists with tables in Lua (and sometimes we do), tables are

 much more powerful than arrays and lists; many algorithms with

 using tables become almost trivial. For instance,

 we rarely use Lua lookups as tables provide

 direct access to values of various types.

 It takes time to understand how to effectively use tab-

 faces in Lua. In this chapter, I will show you how to implement typical structures.

 rounds of data using tables, and I will give examples of their use

 niya. We won't start with arrays and lists because we need them.

 us for other structures, but since most programmers

 already familiar with them. We have already seen the basis of this material in the pre-

 in previous chapters, but I will also repeat it here.

 11.1. Arrays

 We are implementing arrays in Lua by simply indexing tables with integers

 numbers. So arrays are not fixed size

 and grow as needed. Usually, when initializing an array, we

 implicitly set its size. For example, after doing the following

 code, any attempt to access a field outside the range of 1-1000 will return

 nil instead of 0:

 a = {} - new array

 for i = 1, 1000 do

 a [i] = 0

 end

 The length operator ('#') uses this to define the length of the mass-

 Siwa:

 print (#a) -> 1000

 You can start an array from zero or any other value:

 - create an array with indices from -5 to 5

 a = {}

 for i = -5, 5 do

 a [i] = 0

 end

 However, it is common in Lua to start arrays at index 1. Bib-

 the Lua libraries follow this convention; as well as the operator length

 us. If your arrays don't start at 1, then you won't be able to use

 call these capabilities of the language.

 We can use the constructor to create and initialize-

 array of one expression:

 squares = {1, 4, 9, 16, 25, 36, 49, 64, 81}

 Such constructors can be so large that

 how much is needed (at least up to several million

 cops).

 11.2. Matrices and multidimensional arrays

 There are two main ways of representing matrices in Lua. First -

 is to use an array of arrays, i.e. a table, each element

 which is another table. For example, you can create a matrix

 zu of zeros of size M by N using the following code:

 mt = {}

 –- create matrix

 for i = 1, N do

 mt [i] = {} -– create string

 for j = 1, M do

 mt [i] [j] = 0

 end

 end

 Since tables are objects in Lua, to create mat-

 You must explicitly create each row of the script. On the one hand, it is

 is more cumbersome than simply declaring a matrix, as is done in

 languages C and Pascal. On the other hand, it gives more flexibility. For instance,

 you can create a triangular matrix by changing the for loop j = 1, M

 do ... end in the previous code snippet for j = 1, i do ... end .

 With this code, the triangular matrix will only use the posi-

 memory fault over the original example.

 The second way to represent matrices in Lua is to combine

 converting two indices into one. If both indices are integers

 lami, then you can simply multiply the first by the corresponding

 constant and add a second index. With this approach the following

 the code will create our matrix of zeros of size M by N :

 mt = {} -– create matrix

 for i = 1, N do

 for j = 1, M do

 mt [(i - 1) * M + j] = 0

 end

 end

 If the indices are strings, then you can create one in-

 dex by simply concatenating those lines with some character in between.

 For example, you can create a matrix m with string indices-

 mi s and t using the following code m [s .. ”:” .. t] , provided that

 that both s and t do not contain colons; otherwise pairs like

 (“A:”, “b”) and (“a”, “: b”) will both give the same index “a :: b” .

 When in doubt, you can use the control sim

 ox like ' \ 0' for separating indices.

 Quite often, applications use a sparse matrix ,

 that is, a matrix where most of the elements are either 0 or nil . On-

 example, you can represent a graph using its connectivity matrix-

 value in which the value at position m, n is equal to x , if between nodes

 m and n is a join at a cost x. When these nodes are not connected, then the value

 nil at position m, n is nil . In order to represent a graph with ten

 with thousands of nodes, where each node has about five neighbors, you

 a matrix with one hundred million possible elements is needed, but only

 fifty thousand of them will be non- nil (five non-zero columns

 for each row corresponding to five neighbors). Many books

 on data structures discuss in detail how you can implement

 similar sparse matrices, without wasting 400 MB of memory on them, but

 you rarely need such tricks when programming

 in Lua. With our first view (table of tables) you will

 ten thousand tables are needed, each of which contains about

 five elements, that is, a total of about fifty thousand values. When

 the second view we have one table with fifty thousand-

 elements. Whichever presentation you use, you

 only memory is needed for non- nil elements .

 When working with sparse matrices, we cannot use

 length operator due to holes (nil values) between elements. One-

 but this is not a big loss; even if we could use it, then

 it wouldn't be worth it. For most operations, it was extremely

 it is inefficient to iterate over all these empty elements. Instead, we

 we can use pairs to traverse only elements other than

 from nil . For example, in order to multiply a string by a constant, we

 we can use the following code:

 function mult (a, rowindex, k)

 local row = a [rowindex]

 for i, v in pairs (row) do

 row [i] = v * k

 end

 end

 Note, however, that the keys do not have any specific

 divided order in the table, so iterating with

 pairs does not guarantee that we will visit all columns in ascending order.

 For some tasks (for example, our previous example) this is

 no problem. For other purposes, you can use the excellent

 views, such as linked lists.

 11.3. Linked Lists

 Since tables are dynamic entities, re-

 It's pretty easy to lick linked lists in Lua. Each node

 represented by a table, and the links are just fields of the table,

 which contain links to other tables. For example, let's re-

 we lick the simplest list, where each node contains two fields, next

 and value . The root of the list is an ordinary variable:

 list = nil

 To insert an element with the value v at the beginning of the list,

 we do:

 list = {next = list, value = v}

 To traverse the list, we can write:

 local l = list

 while l do

 <visit l.value>

 l = l.next

 end

 Other list options, such as bidirectional or circular

 lists are also easy to implement. However, such structures

 you will rarely need Lua as there is usually an easier one

 a way of presenting your data without using related

 lists. For example, we can represent the stack as (unlimited

 ny) array.

 11.4. Queues and doubles queues

 The simplest way to implement queues in Lua is to use

 The insert and remove functions from the table library . These functions

 insert and remove elements from an arbitrary position in the array,

 moving the rest of the array elements. However, such changes

 Scales can be expensive for large structures. More efficient

 nth implementation uses two indices, one for the first element and

 one for the latter:

 function ListNew ()

 return {first = 0, last = -1}

 end

 In order not to pollute the global namespace, we

 define all operations for working with a list within a table, which

 We'll call it List (this way we'll create a module). Then we

 we can rewrite our last example as follows:

 List = {}

 function List.new ()

 return {first = 0, last = -1}

 end

 Now we can insert and remove elements from either end beyond

 constant time:

 function List.pushfirst (list, value)

 local first = list.first - 1

 list.first = first

 list [first] = value

 end

 function List.pushlast (list, value)

 local last = list.last + 1

 list.last = last

 list [last] = value

 end

 function List.popfirst (list)

 local first = list.first

 if first> list.last then error (“list is empty”) end

 local value = list [first]

 list [first] = nil - let the garbage collector remove it

 list.first = first + 1

 return value

 end

 function List.poplast (list)

 local last = list.last

 if list.first> last then error (“list is empty”) end

 local value = list [last]

 list [last] = nil - let the garbage collector remove it

 list.last = last - 1

 return value

 end

 If you use this structure in the classic way

 bong, calling only pushlast and popfirst , then both first and last will be

 grow constantly. However, since we represent arrays in Lua with

 help tables, you can easily index them from 1 to 20 or from

 16,777,216 to 16,777,236. Since Lua uses double

 precision to represent numbers, your program can run

 for two hundred years, making a million insertions per second,

 before an overflow problem occurs.

 11.5. Sets and sets

 Suppose you want to iterate over all ids used by

 in the program; somehow you need to filter

 reserved words. Some C programmers can

 try to use to represent the set of reserved

 given words an array of strings and then to check if

 the given word is reserved, search in this

 sive. You can even use the binary to speed up searches.

 tree to represent the set.

 In Lua, an efficient and easy way to represent sets

 will use the elements as indexes on the table. Then instead of

 to find if the table contains a given word, you can simply ask

 try to index the table with this word and see if

 whether the resulting result is nil . For example, we can use

 the following code:

 reserved = {

 [“While”] = true, [“end”] = true,

 [“Function”] = true, [“local”] = true,

 }

 for w in allwords () do

 if not reserved [w] then

 <do something with 'w'>

 - 'w' is an unreserved word

 end

 end

 (Since these words are reserved in Lua, we cannot use

 use them as identifiers; for example, we cannot

 write while = true . Instead, we write [“while”] = true .)

 You can also use clearer initialization when

 using an additional function that builds the set:

 function Set (list)

 local set = {}

 for _, l in ipairs (list) do set [l] = true end

 return set

 end

 reserved = Set {“while”, “end”, “function”, “local”,}

 Sets, also called multisets , differ from

 ordinary sets in that each element may not occur

 how many times. The simple representation of sets in Lua is similar to the pre-

 previous view for sets, but with each key associated

 corresponding counter. In order to insert an element, we

 Liching his counter:

 function insert (bag, element)

 bag [element] = (bag [element] or 0) + 1

 end

 To remove an element, we decrement its counter:

 function remove (bag, element)

 local count = bag [element]

 bag [element] = (count and count> 1) and count - 1 or nil

 end

 We store the counter only if it already exists and is not equal

 zero.

 11.6. Line buffers

 Suppose you are working with text and reading the file line by line. Then

 your code might look like this:

 local buff = “”

 for line in io.lines () do

 buff = buff .. line .. "\ n"

 end

 Despite its harmless appearance, this code can hit hard

 for performance for large files: for example, reading a file in

 1 MB takes 1.5 minutes on my old computer 1 .

 Why is this so? To understand what is happening, imagine that

 we are inside a loop; each line is 20 bytes, and

 we have already read 2500 lines, so buff is a 50 KB line. Kog-

 yes Lua connects buff..line .. "\ n" ; it allocates a new line in

 50,020 bytes and copies 50,000 bytes from buff to this newline. Ta-

 Thus, for each new line, Lua moves in memory when

 approximately 50 Kb, and this size is only growing. More precisely this algorithm

 has quadratic complexity. After reading 100 new lines

 (2 KB total) Lua has already moved over 2 MB of memory. When Lua is

 reads 350 KB, more than 50 GB will already be moved in memory

 (this problem is not unique to Lua: other languages where strings

 immutable, also face a similar problem, the most

 Java is a well-known example of such a language).

 Before we continue, it should be noted that, despite

 all that said, this is not a typical problem. For small lines

 the above loop works fine. To read the entire file

 Lua provides io.read (“* a”) , this call reads the entire

 file. However, sometimes we run into this problem. To fight

 With a similar problem Java uses the StringBuffer structure .

 In Lua, we can use a table as a string buffer.

 The key to this approach is the table.concat function , which

 returns the result of concatenating all strings from the given list.

 With concat we can rewrite our previous code to the following

 in the following way:

 local t = {}

 for line in io.lines () do

 t [#t + 1] = line .. "\ n"

 1

 "My Old Computer" is a 3 GHz single-core 32-bit Pentium. Everything is fast

 The performance for this book was measured on this computer.

 end

 local s = table.concat (t)

 This algorithm takes less than 0.5 seconds to read the same self-

 th file, which took almost a minute with the previously used

 code. (Regardless, to read the entire file, it is best to use

 io.read with the “* a” option .)

 We can do even better. The concat function takes as input

 second optional argument, which is a delimiter,

 which will be inserted between the lines. Using this separa-

 torus, we can get rid of the need to insert every time

 character '\ n' :

 local t = {}

 for line in io.lines () do

 t [#t + 1] = line

 end

 s = table.concat (t, “\ n”) .. “\ n”

 The concat function inserts a separator between lines, but we

 you still need to add one last '\ n' character . This last

 The new concatenation operation copies the resulting string, which can

 require a significant amount of time. There is no way to force

 concat insert an extra delimiter, but we can easily

 achieve this by simply adding an empty line to t :

 t [#t + 1] = “”

 s = table.concat (t, “\ n”)

 An extra '\ n' character that concat will add before the post

 the ice line is what we need.

 11.7. Graphs

 Like any sane language, Lua offers various implementations

 for graphs, each of which is better suited for its own type of al-

 burning. Here we will look at a simple object-oriented

 a new implementation in which we will represent the nodes as objects

 (more precisely, tables, of course) and arcs as links between nodes.

 We will represent each node as a table with two fields:

 name , which is the name of the node, and adj , which is the set of nodes.

 fishing connected to the data. Since we will be reading the graph from the text

 st file, we need a way to find the node by its name. For

 for this we will use an additional table. Function na-

 me2node , having received the name of the node, will return this node:

 local function name2node (graph, name)

 local node = graph [name]

 if not node then

 - there is no node yet, create a new one

 node = {name = name, adj = {}}

 graph [name] = node

 end

 return node

 end

 Listing 11.1 contains a function that will build a graph. It

 reads a file where each line contains the names of two nodes, denoting

 that there is an arc leading from the first node to the second. For each line

 it uses the string.match function to split the string

 ku on two names, then finds the corresponding nodes (creating them

 if necessary) and connects them.

 Listing 11.1. Reading a graph from a file

 function readgraph ()

 local graph = {}

 for line in io.lines () do

 - split the line into two names

 local namefrom, nameto = string.match (line, “(% S +)% s + (% S +)”)

 - find matching nodes

 local from = name2node (graph, namefrom)

 local to = name2node (graph, nameto)

 - add 'to' to the link list of node 'from'

 from.adj [to] = true

 end

 return graph

 end

 Listing 11.2 illustrates an algorithm using similar

 graphs. The findpath function searches for a path between two nodes using

 depth-first traversal. Its first parameter is the current node; second for-

 gives the desired node; the third parameter stores the path from the beginning to the current

 mu node; the last parameter is the set of all already visited

 nodes (to avoid loops). Notice how the algorithm

 works directly with nodes, avoiding the use of their names. On-

 example, visited is a set of nodes, not node names. Similarly

 path is a list of nodes.

 Listing 11.2. Finding a path between two nodes

 function findpath (curr, to, path, visited)

 path = path or {}

 visited = visited or {}

 if visited [curr] then -– has the node already been visited?

 return nil

 - there is no way

 end

 visited [curr] = true

 -– mark the node as visited

 path [#path + 1] = curr -– add to the path

 if curr == to then

 -- target?

 return path

 end

 - try all neighboring nodes

 for node in pairs (curr.adj) do

 local p = findpath (node, to, path, visited)

 if p then return p end

 end

 path [#path] = nil

 –- remove a node from the path

 end

 To test this code, we'll add a function that prints

 path, and additional code to make it work:

 function printpath (path)

 for i = 1, #path do

 print (path [i] .name)

 end

 end

 g = readgraph ()

 a = name2node (g, “a”)

 b = name2node (g, “b”)

 p = findpath (a, b)

 if p then printpath (p) end

 Exercises

 Exercise 11.1. Modify the implementation of the queue so that both

 the index would be zero if the queue is empty.

 Exercise 11.2. Repeat exercise 10.3, only instead of

 in order to use length as a criterion for discarding

 word, now the program should read from the special

 th file list of words to skip.

 Exercise 11.3. Modify the graph structure so that it matches

 kept a label for each arc. Each arc must also

 be represented using an object with two fields: met-

 coy and knots to which she points. Instead of many

 neighboring nodes each node must contain a list of arcs

 going from this node.45

 Modify the readgraph function so that it is from each line

 ki file read two node names and a label (assuming that the label

 this number).

 Exercise 11.4. Use the graph representation from the previous

 the next exercise, where the label of each arc is

 the distance between the nodes it connects. Write a function

 tion that finds the shortest path between two nodes.

 (Hint : Use Dijkstra's algorithm.)

 CHAPTER 12

 Data files and persistence

 When working with data files it is usually much easier to write

 files than to read them. When we write to a file, we are completely

 we roll everything that happens. On the other hand, when we read

 from the file, we don't know what to expect. Besides all data types,

 which the correct data file can contain, the program

 ma should also handle bad files intelligently. therefore

 writing correctly working procedures for reading data

 always difficult.

 In this chapter, we will see how you can use Lua to do something

 would eliminate all the code for reading data from our programs, just

 writing data in a suitable format.

 12.1. Data files

 Table constructors provide an interesting alternative to the form

 data mats. With a little extra work when

 writing data reading becomes trivial. The approach is

 is to write our data file as a Lua program that

 Paradise, when executed, creates the necessary data.

 As usual, for the sake of clarity, let's look at the

 measures. If our data file is in a specific format,

 for example CSV or XML, our choice is extremely small. However, if we

 want to create a file for our own use, then we in

 we can use Lua constructors as our format. IN

 In this format, we represent each entry as a Lua constructor.

 Instead of writing to our file something like

 Donald E. Knuth, Literate Programming, CSLI, 1992

 Jon Bentley, More Programming Pearls, Addison-Wesley, 1990

 we're writing:

 147

 Data files

 Entry {“Donald E. Knuth”,

 "Literate Programming",

 “CSLI”,

 1992}

 Entry {“Jon Bentley”,

 “More Programming Pearls”,

 "Addison-Wesley",

 1990}

 Let's remember? that Entry { code } is the same as Entry ({ code }) ,

 that is, a call to the Entry function with the table as the only one

 argument. Therefore, the above piece of data is by itself

 actually a Lua program. In order to read such a file, we

 you just need to execute it with a properly defined

 the Entry function . For example, the following program counts the number

 entries in the file:

 local count = 0

 function Entry () count = count + 1 end

 dofile (“data”)

 print (“number of records:“ .. count)

 The following program builds a set of all author names, find

 data in the file, and prints them (not necessarily in the same order, in

 which they met in the file):

 local authors = {} -– many authors

 function Entry (b) authors [b [1]] = true end

 dofile (“data”)

 for name in pairs (authors) do print (name) end

 Please note the approach used in these snippets

 code: Entry function acts as a callback function

 (callback), which is called at runtime dofile for each

 doy record in the file.

 When we don't care about file size, we can use our

 views use name-value pairs 1 :

 Entry {

 author = “Donald E. Knuth”,

 title = “Literate Programming”,

 publisher = “CSLI”,

 year = 1992

 }

 Entry {

 author = “Jon Bentley”,

 1

 If this format reminds you of BibTeX, then it's no coincidence. BibTeX format

 was one of the sources that defined the kind of constructors in Lua.

 title = “More Programming Pearls”,

 year = 1990,

 publisher = “Addison-Wesley”,

 }

 This format is what we call a self - describing format

 data, since each piece of data contains a short description

 vanishing of its meaning. Self-describing data is more readable (like

 at least people) than CSV or other compact format; their easy

 to edit if necessary; and they allow us to contribute

 small changes to the base format without the need to change

 data files. For example, if we add a new field, then we

 you only need to change the reading program by providing a value

 by default when no field is specified.

 Using the name-value format, our program for composing

 The author list becomes as shown below:

 local authors = {} -– set for author names

 function Entry (b) authors [b.author] = true end

 dofile (“data”)

 for name in pairs (authors) do print (name) end

 Now the order of the fields is not important. Even if some records

 there is no author, then we only need to change the Entry function :

 function Entry (b)

 if b.author then authors [b.author] = true end

 end

 Lua is not only fast to execute, but also fast to compile.

 For example, the above program for making a list

 authors processes 1 MB of data in one tenth of a second 2 . And this

 not by chance. Data description was one of the main applications

 Lua since its inception, and we pay a lot of attention to making it

 the compiler was fast for large programs.

 12.2. Serialization

 Often we need to serialize some data, that is, translate

 data into a stream of bytes or characters that we can write

 to a file or send over the network. We can represent serialized-

 data as Lua code in such a way that when doing this

 code it restores the saved values for the executing

 his programs.

 Usually, if we want to restore the value of the global re-

 variable, then our block of code will be something like varname = exp , where exp is

 this is the Lua code to get the value. With varname everything is simple, so

 Let's see how to write code that creates a value.

 For a numeric value, the task is simple:

 function serialize (o)

 if type (o) == “number” then

 io.write (o)

 else <other cases>

 end

 end

 When writing a number in decimal form, there is a risk of losing precision.

 In Lua 5.2, you can use hexadecimal format, in order to

 to avoid a similar problem:

 if type (o) == “number” then

 io.write (string.format (“% a”, o))

 When using this format (“% a”) the read value

 will consist of exactly the same bits as the original one.

 For a string, a naive approach would be something like the following:

 if type (o) == “string” then

 io.write (“'”, o, “'”)

 However, if the string contains special characters (such as

 tricks or '\ n'), then the resulting code will no longer be a program for

 Lua.

 You might think that this problem can be solved by changing

 quote type:

 if type (o) == “string” then

 io.write (“[[“, o, “]]”)

 However, be careful. If you try to keep something

 like “]] .. os.execute ('rm *') .. [[” (for example, by passing this

 string as an address), then the resulting block of code will be:

 varname = [[]] .. os.execute ('rm *') .. [[]]

 As a result, you will receive an unpleasant surprise when trying to purchase

 honor is such "data".

 The simplest way to write a string is safe to use

 the option "% q" from the string.format function . She surrounds the string

 double quotes and safely represents double

 quotes and some other characters inside the string:

 a = 'a “problematic” \\ string'

 print (string.format (“% q”, a)) -> “a \” problematic \ ”\\ string”

 Using this capability, our serialize function can

 look like this:

 function serialize (o)

 if type (o) == “number” then

 io.write (o)

 elseif type (o) == “string” then

 io.write (string.format (“% q”, o))

 else <other cases>

 end

 end

 Since version 5.1 Lua offers a different way of writing strings

 in a safe way, using the notation [= [...] =] for long

 lines. However, this recording method is mainly intended for

 user-written code when we in no way want

 change the character string. It is easier in auto-generated code

 use “% q” from string.format .

 If you nevertheless want to use a similar notation for

 automatically generated code, then you need to pay attention

 for some details. The first is that you need to pick up

 the correct number of equal signs. A good option is

 The number is greater than that found in the original string. Insofar as

 strings containing a large number of equal signs are not

 are rare (for example, comments separating blocks of code),

 then we can restrict ourselves to considering sequences of

 equality kovs between square brackets; others

 sequences cannot result in an erroneous end marker

 strings. The second detail is that Lua always ignores sym-

 ox '\ n' at the beginning of a long line; the simplest way to deal with

 this is the addition of the '\ n' character , which will be discarded.

 Listing 12.1. Outputting an arbitrary string of characters

 function quote (s)

 - find the maximum length of a sequence of equal signs

 local n = -1

 for w in string.gmatch (s, “] = *]”) do

 n = math.max (n, #w - 2) - -2 to remove ']'

 end

 - create a string with 'n' + 1 equal sign

 local eq = string.rep (“=”, n + 1)

 - build a summary line

 return string.format (“[% s [\ n% s]% s]“, eq, s, eq)

 end

 The quote function in Listing 12.1 is the result of our

 for previous remarks. It receives an arbitrary string as input and

 returns the formatted string as a long string. Call

 string.gmatch creates an iterator to iterate over all sequential

 of the form '] = *]' (that is, the closing square bracket, after which

 followed by zero or more equal signs, followed by

 there is another closing square bracket) on line 3 . For each

 occurrences are updated with the value n equal to the maximum number

 already met equal signs. After the loop, we use the function

 ktsiyu string.rep , to repeat the sign of equality n + 1 times,

 i.e. one more than the maximum number encountered

 in line. Finally, the function string.format concludes s between PA-

 square brackets with the appropriate number of equal signs and

 adds extra spaces around the line and the '\ n' character in

 the beginning of the line.

 Saving tables without loops

 Our next (and more challenging) challenge is to preserve

 tables. There are several ways to save them in accordance with

 with what restrictions we impose on the structure of the table

 tsy. There is no one algorithm that fits all cases.

 Simple tables not only require simpler algorithms, but also

 the resulting files can be visually pleasing.

 Listing 12.2. Serializing tables without loops

 function serialize (o)

 if type (o) == “number” then

 io.write (o)

 elseif type (o) == “string” then

 io.write (string.format (“% q”, o))

 elseif type (o) == “table” then

 io.write (“{\ n”)

 for k, v in pairs (o) do

 io.write (““, k, “=“)

 serialize (v)

 io.write (“, \ n”)

 end

 io.write (“} \ n”)

 else

 error (“cannot serialize a“ .. type (o))

 end

 end

 Our next attempt is shown in Listing 12.2. Despite

 for its simplicity, this function does a pretty decent job.

 It even handles nested tables (i.e. tables inside

 other tables) as long as the table structure is a tree

 (that is, there are no shared sub-tables and loops). A little visual

 an improvement would be to add spaces to indent nested

 tables (see Exercise 12.1).

 The previous function assumes that all keys in the table are

 are valid identifiers. If the table contains numeric

 keys or strings that are not identifiers in Lua, then

 we have a problem. A simple way to resolve it is to use

 Writing the following code to write each key:

 io.write (“[“); serialize (k); io.write (“] =“)

 With this improvement, we have increased the reliability of our function.

 due to the visual clarity of the resulting file. Consider

 next call:

 serialize {a = 12, b = 'Lua', key = 'another “one”'}

 The result of this call when using the first version of the function

 tion serialize will the following code:

 {

 a = 12,

 b = “Lua”,

 key = “another \” one \ ””,

 }

 Compare with the result of using the second version:

 {

 [“A”] = 12,

 [“B”] = “Lua”,

 [“Key”] = “another \” one \ ””,

 }

 We can get both reliability and a beautiful view by checking in

 in each case, whether square brackets are needed; again we will leave it

 improved as exercise.

 Saving tables with loops

 For processing tables in the general case (that is, with loops and general

 subtables), we need a different approach. Constructors

 cannot represent such tables, therefore we will not

 use. We need names to represent loops, so

 our next function will take the value as arguments

 to save and name. Moreover, we must keep track of the names

 already saved tables in order to reuse them when

 we discover a cycle. To do this, we will use an additional

 See the table. This table will use tables as

 indexes and their names as stored values.

 Listing 12.3. Saving tables with loops

 function basicSerialize (o)

 if type (o) == “number” then

 return tostring (o)

 else -– suppose it's a string

 return string.format (“% q”, o)

 end

 end

 function save (name, value, saved)

 saved = saved or {} –- initial value

 io.write (name, “=“)

 if type (value) == “number” or type (value) == “string” then

 io.write (basicSerialize (value), “\ n”)

 elseif type (value) == “table” then

 if saved [value] then -– is the value already saved?

 io.write (saved [value], “\ n”) -– use its name

 else

 saved [value] = name -– save the name for next time

 io.write (“{} \ n”) -– create a new table

 for k, v in pairs (value) do –– save its fields

 k = basicSerialize (k)

 local fname = string.format (“% s [% s]”, name, k)

 save (fname, v, saved)

 end

 end

 else

 error (“cannot save a“ .. type (value))

 end

 end

 The resulting code is shown in Listing 12.3. We stick with

 constraints that the tables we want to keep contain

 just numbers and strings as keys. BasicSerialize function

 serializes these base types. The next function, save , does

 em all the hard work. The parameter saved is a table that is

 monitors tables already saved. For example, if we build

 table as follows:

 a = {x = 1, y = 2; {3,4,5}}

 a [2] = a

 - cycle

 az = a [1]

 - general subtable

 then calling save (“a”, a) will save it like this:

 a = {}

 a [1] = {}

 a [1] [1] = 3

 a [1] [2] = 4

 a [1] [3] = 5

 a [2] = a

 a [“y”] = 2

 a [“x”] = 1

 a [“z”] = a [1]

 The order of these assignments can change, as it depends

 from traversing the table. Nevertheless, the algorithm guarantees that any

 the element required for building the table has already been defined .

 If we want to store multiple values with common parts,

 then we can call the save function on the same table saved .

 For example, consider the following two tables:

 a = {{“one”, “two”}, 3}

 b = {k = a [1]}

 If we keep them independently, then the result will have no common

 parts:

 save (“a”, a)

 save (“b”, b)

 -> a = {}

 -> a [1] = {}

 -> a [1] [1] = “one”

 -> a [1] [2] = “two”

 -> a [2] = 3

 -> b = {}

 -> b [“k”] = {}

 -> b [“k”] [1] = “one”

 -> b [“k”] [2] = “two”

 However, if we use the same saved table for both

 calls to save , then the resulting result will contain the common parts:

 local t = {}

 save (“a”, a, t)

 save (“b”, b, t)

 -> a = {}

 -> a [1] = {}

 -> a [1] [1] = “one”

 -> a [1] [2] = “two”

 -> a [2] = 3

 -> b = {}

 -> b [“k”] = a [1]

 As usual, there are several other options in Lua. Among

 them, we can store the value without giving it a global name

 nor (for example, a block builds a local value and returns it), we

 we can process functions (by constructing additional

 the table associating each function with its name), etc. Lua gives

 you have strength; you build mechanisms.

 Exercises

 Exercise 12.1. Modify the code in Listing 12.2 to make it

 equated nested tables.

 (Hint : add an extra function parameter

 serialize containing the alignment string.)

 Exercise 12.2. Modify the code in Listing 12.2 so that it

 used the syntax [“key”] = value as suggested in

 section 12.1.

 Exercise 12.3. Modify the code of the previous exercise so that

 to make it use the syntax [“key”] = value only when

 it's necessary.

 Exercise 12.4. Modify the code of the previous exercise so that

 so that it uses constructors whenever possible-

 but. For example, he should present the table {14,15,19}

 as {14,15,19} , not as {[1] = 14, [2] = 15, [3] = 19} .

 (Hint : start by storing the values for keys 1, 2, ...,

 until they are nil . Please note what is not needed

 save them again when traversing the rest of the table.)

 Exercise 12.5. The no-use approach

 calling constructors when saving tables with loops,

 too radical. You can save the table for more

 nice way, using constructors in general and

 then using assignments only to handle common

 tables and loops.

 Reimplement the save function using this

 approach. Add to it everything that you have already implemented in the previous

 exercises.

 CHAPTER 13

 Metatables and metamethods

 Usually, for every value in Lua, there is a completely predictable

 boron of operations. We can add numbers, connect strings, insert

 insert key-value pairs into tables, etc. However, we cannot add

 create tables, we cannot compare functions and we cannot call

 string. Unless we're using metatables.

 Metatables allow you to change the behavior of a value in case

 when we are faced with an unexpected operation. For example, when

 the power of metatables we can determine how Lua should compute

 expression a + b , where a and b are tables. When Lua tries to fold

 two tables, then it checks if at least one of them has metatab-

 person and whether this metatable contains an __add field . If Lua finds

 this field, then it calls the corresponding value - the so-called

 my metamethod , which must be a function - to calculate

 the amount.

 Every value in Lua can have a metatable associated with it.

 Tables and values of type userdata store individual values

 for each instance; values of other types use

 one general table for each type. Lua always creates new tables.

 without metatables:

 t = {}

 print (getmetatable (t))

 -> nil

 We can use the setmetatable function to

 set or change the metatable for any table:

 t1 = {}

 setmetatable (t, t1)

 print (getmetatable (t) == t1)

 -> true

 Directly from Lua, we can set metatables

 only for tables; to work with metatables of values of other types

 so we have to use the C 1 code . We will see later in chapter 21,

 that the string library sets up metatables

 for strings. All other types do not have metatables by default:

 print (getmetatable (“hi”)) -> table: 0x80772e0

 print (getmetatable (“xuxu”)) -> table: 0x80772e0

 print (getmetatable (10))

 -> nil

 print (getmetatable (print)) -> nil

 Any table can be a metatable of any value; Group related tables can share a common metatable, which defines their general behavior; the table can be metatable- to herself so that she describes her own behavior nie.

 13.1. Arithmetic metamethods

 In this section, we will look at a simple example for defining

 clarify how to use metatables. Let us use the table

 ts for representing sets with functions for calculating the

 connections, intersections, and so on, as shown in Listing 13.1. For

 in order not to litter the global namespace, we will store

 these functions are in the Set table .

 Listing 13.1. Simple set implementation

 Set = {}

 - create a new set by taking values from a given list

 function Set.new (l)

 local set = {}

 for _, v in ipairs (l) do set [v] = true end

 return set

 end

 function Set.union (a, b)

 local res = Set.new {}

 for k in pairs (a) do res [k] = true end

 for k in pairs (b) do res [k] = true end

 return res

 end

 function Set.intersection (a, b)

 local res = Set.new {}

 for k in pairs (a) do

 1

 The main reason for this limitation is the desire to limit too much

 frequent use of metatables. Experience with previous versions of Lua has shown that

 such global changes often lead to unused code.

 res [k] = b [k]

 end

 return res

 end

 - represent the set as a string

 function Set.tostring (set)

 local l = {} -– a list where all elements will be placed

 for e in pairs (set) do

 l [#l + 1] = e

 end

 return “{“ .. table.concat (l, “,“) .. “}”

 end

 - print set

 function Set.print (s)

 print (Set.tostring (s))

 end

 We will now use the addition operator ('+') to calculate

 numbering the union of two sets. To do this, we will make it so that

 all tables representing sets will have one common

 metatable. This metatable will define how the tables should react

 add to the addition operator. Our first step will be to create

 a regular table that we will use as a metatable

 for sets:

 local mt = {} -– metatable for sets

 The next step is to change the function that creates a lot of

 the set Set.new . The new version of this function will have one additional

 a string that sets mt for the generated tables

 as a metatable:

 function Set.new (l) -– 2nd version

 local set = {}

 setmetatable (set, mt)

 for _, v in ipairs (l) do set [v] = true end

 return set

 end

 After that, each set that we create with

 Set.new will have the same metatable:

 s1 = Set.new {10, 20, 30, 50}

 s2 = Set.new {30, 1}

 print (getmetatable (s1)) -> table: 00672B60

 print (getmetatable (s2)) -> table: 00672B60

 Finally, we'll add a metamethod to the metatable, the __add field , which

 The swarm determines how the addition should be performed:59

 mt .__ add = Set.union

 After that, whenever Lua tries to add two

 union, it will call the Set.union function , passing both

 rand as arguments.

 With the metamethod, we can use the addition operator for

 performing set union:

 s3 = s1 + s2

 Set.print (s3)

 -> {1, 10, 20, 30, 50}

 Similarly, we can define the multiplication operator for

 completing the intersection of sets:

 mt .__ mul = Set.intersection

 Set.print ((s1 + s2) * s1) -> {10, 20, 30, 50}

 For each arithmetic operator there is a corresponding

 the name of the field in the metatable. Besides __add and __mul , there is also

 __sub (for subtraction), __div (for division), __unm (for negation),

 __mod (for taking the remainder from division) and __pow (for raising the

 stump). We can also define a __concat field to specify the opera-

 concatenation generator.

 When we add two sets, the question is what meta-

 to take the table, does not arise. However, we can write the expression,

 which involves two values with different metatables, for example

 measures as shown below:

 s = Set.new {1,2,3}

 s = s + 8

 When looking for a metamethod, Lua takes the following steps: if y

 the first value is a metatable with a __add field , then Lua uses

 calls the corresponding value as a metamethod regardless

 from the second value; otherwise, if the second value has metatables

 tsu with the __add field , then Lua uses this value as a

 there is a method; otherwise, an error occurs. In this way,

 the last example will call Set.union , just like for

 expressions 10 + s and "hello" + s .

 Lua doesn't care about mixing types, but it is important

 but for our application. For example, if we execute s = s + 8 , then

 we get an error inside Set.union :

 bad argument # 1 to 'pairs' (table expected, got number)

 If we want to receive more accurate error messages, then

 we must explicitly check the types of the operands before executing the opera-

 walkie-talkies:

 function Set.union (a, b)

 if getmetatable (a) ~ = mt or getmetatable (b) ~ = mt then

 error (“attempt to 'add' a set with a non-set value”, 2)

 end

 <as before>

 Remember that the second argument to the error function (2 in our case)

 directs the error message to where the given operation was performed

 called.

 13.2. Comparison Methods

 Metatables also allow you to make sense of operators compared

 neniya using metamethods __eq (equal), __lt (less than)

 and __le (less than or equal to). No special metamethods for three

 remaining comparison operations: Lua translates a ~ = b to not (a == b) ,

 a> b in b <a and a> = b in b <= a .

 Prior to version 4.0, Lua translated all ordering operations into one,

 translating a <= b to not (b <a) . However, such a translation is incorrect when

 yes we are dealing with partial ordering , that is, when not all

 the elements of our type are properly ordered. For instance,

 floating point numbers are not fully ordered

 on most computers because of the NaN (Not a Number) value .

 In accordance with the IEEE 754 standard, NaN represents an undefined

 specific values such as 0/0. According to the standard, any comparable

 Nation including NaN must be false. It means that

 NaN <= x is always false, but x <NaN is also false. It follows that

 translating a <= b to not (b <a) is wrong in this case.

 In our example with sets, we are dealing with a similar trial

 lem. An obvious (and useful) value for <= for sets

 is an occurrence of the set: a <= b means that a is a subset

 property b . With this value, it is again possible that a <= b and b <a are false;

 thus we need separate implementations for __le (less

 or equal) and __lt (less than):

 mt .__ le = function (a, b) -– occurrence of sets

 for k in pairs (a) do

 if not b [k] then return false end

 end

 return true61

 end

 mt .__ lt = function (a, b)

 return a <= b and not (b <= a)

 end

 Finally, we can define equality of sets in terms of embedding

 sets:

 mt .__ eq = function (a, b)

 return a <= b and b <= a

 end

 After these definitions, we are ready to compare sets:

 s1 = Set.new {2, 4}

 s2 = Set.new {4, 10, 2}

 print (s1 <= s2)

 -> true

 print (s1 <s2)

 -> true

 print (s1> = s1)

 -> true

 print (s1> s1)

 -> false

 print (s1 == s2 * s1) -> true

 For types that have a complete ordering, we may not define

 redistribute metamethod __le . If not, Lua uses __lt .

 Comparison for equality also has some restrictions -

 mi. If two objects have different base types or metamethods, then

 comparison operation for equality will return false without even calling meta-

 methods. Thus, the set will always be different from the number,

 no matter what the metamethod returns.

 13.3. Library metamethods

 So far, we've seen metamethods defined in Lua itself.

 The virtual machine itself checks if the values contain

 Operation-defined metatables with corresponding metamethods.

 However, since metatables are regular tables, then

 anyone can use them. Therefore, libraries often define

 have their own fields in metatables.

 The tostring function is a typical example. As we have seen

 earlier, tostring represents tables in a fairly simple way:

 print ({})

 -> table: 0x8062ac0

 The print function always calls tostring to format

 output. However, when formatting an arbitrary value

 Nia tostring first checks whether the values metamethod

 __tostring . If such a metamethod exists, then tostring calls it,

 passing it an object as an argument. What will return this meta-

 method, and will be the result of tostring .

 In our set example, we have already defined a function for

 representations of the set as strings. Therefore, we only need you-

 put the __tostring field in the metatable:

 mt .__ tostring = Set.tostring

 After that, whenever we call print with a set as

 with the same argument, print will call tostring , which in turn will

 calls Set.tostring :

 s1 = Set.new {10, 4, 5}

 print (s1) -> {4, 5, 10}

 The setmetatable and getmetatable functions also use meta-

 field, in this case to protect the metatable. Suppose you

 want to protect your sets so that users cannot

 see nor modify their metatables. If you set the __metatable field

 in a metatable, then getmetatable will return the value of that field, and calling

 setmetatable will throw an error:

 mt .__ metatable = “not your business”

 s1 = Set.new {}

 print (getmetatable (s1)) -> not your business

 setmetatable (s1, {})

 stdin: 1: cannot change protected metatable

 In Lua 5.2, pairs and ipairs also have metatables, so

 the table can change its workaround (or add a workaround

 for non-table objects).

 13.4. Metamets for access to the table

 Metamets for arithmetic and comparison operations

 define behavior for situations that would otherwise lead

 to errors. They do not change normal behavior

 language. But Lua also provides a way to change

 the behavior of tables in two usual cases, reading and changing is

 existing field in the table.

 __Index metamethod

 I said earlier that when we refer to a missing field

 in the table, the result is nil . This is true, but this is not the whole truth.

 In fact, such an appeal leads to the fact that the interpretation

 The tator looks for the __index metamethod : if there is no such method, which usually

 happens, then nil is returned ; otherwise the result is provided by the given

 metamethod.

 The standard example here is inheritance. Let us

 we want to create several tables describing windows. Each table

 tsa must set various parameters of the window, such as position,

 size, color scheme, etc. For all these parameters there is a value

 default and therefore we want to build windows by setting only

 those values that differ from the default values. Per-

 your choice is a constructor that fills in the missing

 fields. The second option is to arrange the windows in such a way

 so that they inherit any missing field from the base proto-

 type. First, we will declare a prototype and a constructor that will

 creates new windows with a common metatable:

 - create prototype with default values

 prototype = {x = 0, y = 0, width = 100, height = 100}

 mt = {} - create metatable

 - declare a constructor function

 function new (o)

 setmetatable (o, mt)

 return o

 end

 We will now define the __index metamethod :

 mt .__ index = function (_, key)

 return prototype [key]

 end

 After that, we will create a new window and access the missing

 th field:

 w = new {x = 10, y = 20}

 print (w.width) -> 100

 Lua specifies that w does not have the required field, but does have metatables.

 with the __index field . Therefore, Lua calls this metamethod with an argument

 ments of w (table) and "width" (missing field). Metamethode

 accesses this field to the prototype and returns the resulting value

 reading.

 Using the __index metamethod for inheritance in Lua

 so common that Lua provides a simplified version.

 Despite the name of the method , the __index metamethod does not have to be

 function: for example, it can be a table. When he is

 function, then Lua calls it passing the table and missing-

 key as arguments, as we have already seen. When this is a table, then

 Lua simply accesses this table. Therefore, in our

 in the previous example, we could simply define __index as follows-

 in a way:

 mt .__ index = prototype

 Now when Lua searches for the __index metamethod , it will find

 prototype value , which is a table. Accordingly, Lua

 performs access to this table, that is, it performs an analog

 prototype [“width”] . This appeal gives the required result.

 Using a table as the __index metamethod makes it easy to

 one and a quick way to implement the usual (not multiple) na-

 followings. The function is a more expensive option, but

 and provides more flexibility: we can implement

 multiple inheritance, caching, and more. We are

 we judge these forms of inheritance in chapter 16.

 When we want to access a table without calling the metamethod

 __index , then we use the rawget function . Calling rawget (t, i)

 performs a direct access to the table t , that is,

 scheduling without using metatables. Executing directly-

 this call will not speed up your code (the cost of the function call will destroy

 all that can be won), but sometimes it turns out to be necessary,

 as we will see later.

 __Newindex metamethod

 The __newindex metamethod is analogous to the __index metamethod , but

 only it works for writing values to a table. When you assign-

 if you give the value to the missing field in the table, then the interpreter

 looks for the __newindex metamethod : if it exists, then the interpreter calls

 instead of doing the assignment. Like __index if

 metamethod is a table, then the interpreter performs the assignment

 for this table instead of the original one. Moreover, there is a function

 an operation that performs direct access, bypassing metamethods:

 rawset (t, k, v) writes the value v by key k to table t , not

 calling no metamethods.

 Using the __index and __newindex Metamethods Together

 allows you to implement in Lua various rather powerful constructs

 tions such as read-only tables, tables with

 defaults and inheritance for object-oriented

 bathroom programming. In this chapter, we will see some of the

 their applications. Object-oriented programming

 a separate chapter is allocated.

 Tables with default values

 The default value for any field in a regular table is nil .

 It's easy to change this behavior with metatables:

 function setDefault (t, d)

 local mt = {__index = function () return d end}

 setmetatable (t, mt)

 end

 tab = {x = 10, y = 20}

 print (tab.x, tab.z) -> 10 nil

 setDefault (tab, 0)

 print (tab.x, tab.z) -> 10 0

 After calling setDefault, any call to the missing field in

 tab will call its __index metamethod , which will return zero (value

 d for this metamethod).

 The setDeafult function creates a new closure and a new metatable.

 zu for each table that needs a default value. it

 can be costly if we have many tables that

 needs default values. The metatable has a default value

 NIJ d «sewn up" in her metamethod, so we can not use

 the same metatable for all tables. So that you can

 was to use the same metatable for tables with different

 default values, we can remember the default value

 in the table itself, using a special field for this. If a

 not think about possible name conflicts, then we can use

 call a key like “___” for our field:

 local mt = {__index = function (t) return t .___ end}

 function setDefault (t, d)

 t .___ = d

 setmetatable (t, mt)

 end

 Note that now we are creating the mt table only one

 times, outside of the setDefault function .

 If we want to guarantee the uniqueness of the key, then this is

 but easy to provide. All we need is to create a new table

 and use it as a key:

 local key = {} - unique key

 local mt = {__index = function (t) return t [key] end}

 function setDefault (t, d)

 t [key] = d

 setmetatable (t, mt)

 end

 Another way to associate a default value with each

 table is the use of a separate table, where the keys

 are the tables themselves, and the values are the default values.

 However, for the correct implementation of this approach, we need special

 a special type of tables called weak tables ,

 therefore, we will not use this approach here; we will return-

 See this in chapter 17.

 Another option is to remember metatables, whereby

 we can reuse metatables corresponding to one

 the same default value. However, this also requires

 using weak tables, so we'll have to wait until

 Chapter 17.

 Tracking table access

 Both __index and __newindex work only when in the table

 no corresponding value. Therefore, the only way to

 to keep track of all access to a table is to keep it empty. Thus,

 zom, if we want to track all access to the table, then we need

 create a special proxy table for the source table. She will-

 det empty with appropriate __index and __newindex metamets

 to track access to the table that will redirect

 access to the original table. Let t be the original table, access

 to which we want to track. Then we can use the following

 blowing code:

 t = {} - the source table was created somewhere

 - create private access to it

 local _t = t

 - create a proxy

 t = {}

 - create a metatable

 local mt = {167

 __index = function (t, k)

 print (“* access to element“ .. tostring (k))

 return _t [k] - access to the source table

 end,

 __newindex = function (t, k, v)

 print (“* update of element“ .. tostring (k) ..

 “To“ .. tostring (v))

 _t [k] = v - change the original table

 end

 }

 setmetatable (t, mt)

 This code keeps track of every access to t :

 > t [2] = “hello”

 * update of element 2 to hello

 > print (t [2])

 * access to element 2

 hello

 If we want to be able to traverse such a table, then we

 you need to create a __pairs metamethod in the proxy table :

 mt .__ pairs = function ()

 return function (_, k)

 return next (_t, k)

 end

 end

 It is also possible to create something similar for __ipairs .

 If we want to track access to multiple tables, then we

 there is no need to create a separate metatable for each of them. Inmes-

 then we can somehow link the proxy table with the original and

 use one common metatable for all proxy tables. it

 is similar to the task of linking a table with a default value,

 which we looked at earlier. For example, you can store the outcome

 a new table in a special field of the proxy table, using for this

 special key. As a result, we end up with the following code:

 local index = {} -– create a unique key

 local mt = {- create metatable

 __index = function (t, k)

 print (“* access to element“ .. tostring (k))

 return t [index] [k] - access to the source table

 end,

 __newindex = function (t, k, v)

 print (“* update of element“ .. tostring (k) ..

 “To“ .. tostring (v))

 t [index] [k] = v - change the source table

 end,

 __pairs = function (t)

 return function (t, k)

 return next (t [index], k)

 end, t

 end

 }

 function track (t)

 local proxy = {}

 proxy [index] = t

 setmetatable (proxy, mt)

 return proxy

 end

 Now, when we want to keep track of the table t , all we need is

 but, is to execute t = track (t) .

 Read-only tables

 It is easy to use the concept of proxy tables to create tables with pre-

 read-only mortar. All we need is to trigger an error

 every time we catch an attempt to change the table. For metame-

 Toda __index we can use the very original table instead

 functions, since we don't need to keep track of all reads from it; faster

 and more efficiently redirect such requests directly to the original table-

 face. This will require, however, a new metatable for each proxy-

 tables with an __index field pointing to the original table:

 function readOnly (t)

 local proxy = {}

 local mt = {- create metatable

 __index = t,

 __newindex = function (t, k, v)

 error (“attempt to update a read-only table”, 2)

 end

 }

 setmetatable (proxy, mt)

 return proxy

 end

 As an example of a read-only table, we can

 Let's create a table of names of days of the week:

 days = readOnly {“Sunday”, “Monday”, “Tuesday”, “Wednesday”,

 “Thursday”, “Friday”, “Saturday”}

 print (days [1]) -> Sunday

 days [2] = “Noday”

 stdin: 1: attempt to update a read-only table

 Exercises

 Exercise 13.1. Define a __sub metamethod that returns

 the difference between the two sets. (The set ab is the set

 in all elements from a that are not contained in b .)

 Exercise 13.2. Determine metamethod __len so that #s WHO-

 rotates the number of elements in s .

 Exercise 13.3. Complete the implementation of proxy tables in section

 le 13.4 with the __ipairs metamethod .

 Exercise 13.4. Another way to implement tables, access

 read-only, is to use the function as

 as the __index metamethod . This approach makes access to tab-

 more expensive person, but the creation of such tables is cheaper,

 as all read-only tables can have

 one common metatable. Rewrite the readOnly function with

 using this approach.

 Exercises

 Chapter 14

 Environment

 Lua stores all of its global variables in a regular table,

 called the global environment . (More precisely, Lua

 keeps its "global" variables in several environments, but

 we will ignore this at first for simplicity.)

 the advantage of this approach is that it simplifies the internal

 Lua implementation as there is no need for special structure

 data tour for storing global variables. Another advantage

 the fact is that we can work with this table in the same way

 as with any other table. To make things easier, Lua

 stores the environment itself in the global variable _G . (Yes, _G._G is equal

 but _G .) For example, the following code prints the names of all global

 variables defined in the global environment:

 for n in pairs (_G) do print (n) end

 In this chapter, we will see some useful methods for working

 with the environment.

 14.1. Global Variables with dynamic names

 Usually an assignment is enough to access and set a value.

 a global variable. However, we often need the option

 metaprogramming when we want to work with global re-

 variable whose name is contained in another variable or computed

 is done in the course of work. To get the value of such a variable, many

 some programmers try to use something like the following

 snippet of code:

 value = loadstring (“return“ .. varname) ()

 If varname is x , then as a result of concatenation we get

 "Return x" , which when executed will give us the desired result. Od-

 171

 Global variables with dynamic names

 but this code involves creating and compiling a new block

 code, which is costly. You can achieve the same

 go using the following code, which is more than an order of magnitude more

 more efficient than the previously discussed code:

 value = _G [varname]

 Since the environment is a regular table, you can simply

 access it by key (variable name). Similarly

 you can also assign a value to a variable whose name computes-

 dynamically, using the code _G [varname] = value . However, be

 careful: some programmers are so happy about this opportunity

 ness that end up writing code like _G [“a”] = _ G [“var1”] ,

 which is just a tricky option for a = var1 .

 The generalization of the previous task is to use names

 fields in dynamic names such as “io.read” or “abcd” .

 However, if we write _G [“io.read”] , then we will definitely not get

 read field from table io . But we can write a getfield function ,

 such that getfield (“io.read”) will return the expected value. This

 a function is a loop that starts with _G and then

 she sequentially iterates over the fields:

 function getfield (f)

 local v = _G -– start with global variable table

 for w in string.gmatch (f, “[% w _] +”) do

 v = v [w]

 end

 return v

 end

 We use the gmatch function from the string library to

 to bypass all words in f (a word is a sequence of letters,

 numbers and underscore).

 The corresponding function for setting field values is

 is more complicated. An assignment like abcd = v is equivalent to

 to the following code:

 local temp = abc

 temp.d = v

 That is, we have to extract the name without the last component and then

 process the last component separately. Function setfield You are a

 completes this and also creates helper tables in the path if

 they don't exist:

 function setfield (f, v)

 local t = _G -– we start with the table of global variables

 for w, d in string.gmatch (f, “([% w _] +) (%.?)”) do

 if d == "." then - not the last name?

 t [w] = t [w] or {} -– creates a table if it does not exist

 t = t [w]

 - we get the table

 else

 –- last name

 t [w] = v

 - perform the assignment

 end

 end

 end

 The variable w stores the name of the field, and possibly the following

 after it the point is stored in the variable d 1 . If the name is not followed -

 there is a point, then this is the last name.

 Using the previously discussed functions, the following code creates

 global table t , table tx and then assigns 10 txy :

 setfield (“txy”, 10)

 print (txy) -> 10

 print (getfield (“txy”)) -> 10

 14.2. Descriptions of global variables

 In Lua, global variables do not need declarations. Although it is convenient

 but for small programs, in large programs there is only one opera-

 Chat can lead to hard-to-find bugs. but

 we can change this behavior if desired. Since Lua

 stores global variables in a regular table, then we can use

 use metatables to change behavior when referring to

 global variables.

 The first approach simply tracks any calls to the missing

 the following keys in the global table:

 setmetatable (_G, {

 __newindex = function (_, n)

 error (“attempt to write to undeclared variable“ .. n, 2)

 end,

 __index = function (_, n)

 error (“attempt to read undeclared variable“ .. n, 2)

 end,

 })

 After executing this code, any attempt to address the wrong

 existing global variable will cause

 errors:

 173

 > print (a)

 stdin: 1: attempt to read undeclared variable a

 However, how are we going to declare global variables? One

 an option is to use rawset which doesn't use

 metamethods:

 function declare (name, initval)

 rawset (_G, name, initval or false)

 end

 (The or false construct is needed so that the global variable

 got a value other than nil .)

 A simpler option is to restrict the assignments to but-

 global variables only inside functions, allowing

 piling on the outer level of the block.

 To check that the assignment occurs in the main block

 ke, we need to use a debug library. Call debug.

 getinfo (2, "S") returns a table whose what field says

 whether the function that called the metamethod is the main block,

 normal function or C-function. (We will discuss debug.getinfo

 in more detail in Chapter 24.) Using this function, we can

 rewrite the __newindex metamethod as follows:

 __newindex = function (t, n, v)

 local w = debug.getinfo (2, “S”). what

 if w ~ = “main” and w ~ = “C” then

 error (“attempt to write to undeclared variable“ .. n, 2)

 end

 rawset (t, n, v)

 end

 This new version also allows assignments in C code, since

 usually in this code the authors know what they are doing.

 To check that such a variable exists, we cannot

 just compare it to nil , because if it is nil , then the

 children to error. Instead, we use the rawget function , which

 doesn't use metamethod:

 if rawget (_G, var) == nil then

 - 'var' is undeclared

 ...

 end

 Now our approach does not allow global variables with a value

 Niemi nil , because they will automatically be considered neobyavlen-

 nym. But this is easy to fix. All we need is an additional

 naya table containing the names of the described variables. When calling

 In the metamethod, it checks against this table whether this variable is described.

 Similar code is shown in Listing 14.1. Now even assignments

 x = nil is enough to declare a global variable.

 The cost of both solutions is extremely low. At the first decision,

 in normal operation, the metamethod is not called at all. At the second

 In the solution, metamethods can be called when the program is

 grows to a variable whose value is nil .

 The standard Lua package contains the strict.lua module , which

 implements checking of calls to global variables, similar

 similar to the code we have considered. A good habit is

 use it when writing Lua code.

 Listing 14.1. Checking global variable declarations

 local declaredNames = {}

 setmetatable (_G, {

 __newindex = function (t, n, v)

 if not declaredNames [n] then

 local w = debug.getinfo (2, “S”). what

 if w ~ = “main” and w ~ = “C” then

 error (“attempt to write to undeclared variable“ ..n, 2)

 end

 declaredNames [n] = true

 end

 rawset (t, n, v) - do the actual set

 end,

 __index = function (_, n)

 if not declaredNames [n] then

 error (“attempt to read undeclared variable“ ..n, 2)

 else

 return nil

 end

 end,

 })

 14.3. Non-global environments

 One of the problems with the environment is that it is global.

 Any change to it affects all parts of your program. On-

 example when you set metatable to control

 global access, your entire program must follow the appropriate

 appropriate policy. If you want to use a library,

 which uses global variables without declaring them, then

 you were unlucky.

 In Lua, global variables don't have to be truly glob

 ballroom. We can even say that Lua has no global re-

 men. This may sound strange, since from the very beginning of the book

 we used global variables. Obviously, Lua is very

 tries to create the illusion of having global variables. Come on-

 Let's see how Lua creates this illusion 2 .

 Let's start with the concept of free names. A free name is not a name

 tied to an explicit description, that is, it is not found inside the area

 These are the actions of a local variable (or a for loop variable , or

 parameter) with this name. For example, both names var1 and var2 are

 free names in the next block:

 var1 = var2 + 3

 Unlike what was said earlier, the free name does not relate

 refers to a global variable (at least not directly

 but). Instead, Lua translates any free var name into _ENV.

 var . Therefore, the previous block is equivalent to the following:

 _ENV.var1 = _ENV.var2 + 3

 But what is this new _ENV variable ? It cannot be glo-

 point variable, otherwise we again return to the original sample-

 leme. The compiler cheats again. I have already said that Lua will consider

 Treats each block as an anonymous function. Actually Lua

 compiles our source block into the following code:

 local _ENV = <some value>

 return function (...)

 _ENV.var1 = _ENV.var2 + 3

 end

 That is, Lua compiles any block of code in the presence of

 limited value named _ENV .

 Usually, when we load a block of code, the load function is initialized

 lyses this predefined value with a reference to the global oc-

 rifle. Therefore, our original block becomes equivalent to

 next block:

 local _ENV = <the global environment>

 return function (...)

 _ENV.var1 = _ENV.var2 + 3

 end

 2

 Note that this mechanism was one of those parts of Lua that included

 Were from version 5.1 to version 5.2. The following discussion is specific to Lua

 5.2 and very little applies to previous versions.

 The result of all these assignments is that the var1 field from

 the global environment gets var2 plus 3.

 At first glance, this may seem a little confusing.

 a way to work with the global environment. I will not argue

 that this is the simplest way, but it achieves the flexibility that is difficult

 but get a simpler implementation.

 Before we continue, let's articulate how Lua 5.2 works.

 works with global variables:

 • Lua compiles any block using a value

 _ENV .

 • The compiler translates any free var name into _ENV.var .

 • The load (or loadfile) function initializes the _ENV value

 a reference to the global environment.

 In the end, it’s not all that difficult.

 Some are confused because they are trying to find some

 the magic behind these rules. There is no magic here. In part

 However, the first two rules are completely done by the compiler. Behind

 except that _ENV is known to the compiler, it

 is an ordinary variable. Except for compilation, _ENV

 doesn't make any special sense in Lua 3 . Similarly translation

 from var to _ENV.var is just syntactic replacement without hidden

 meaning. In particular, after this translation, _ENV will refer to

 the _ENV variable , which is visible in this code snippet, is

 from the rules of visibility.

 14.4. Using _ENV

 In this section we will look at some of the ways to use the

 the flexibility that the _ENV variable brings . Please be aware that

 each of these examples should be run as a separate

 a powerful block of code. If you enter line by line

 in the interpreter, then each line becomes a separate block and

 gets its _ENV variable . To execute a piece of code

 as a separate block, you either need to run it as a file or in

 interactively put inside a do-end pair .

 Since _ENV is an ordinary variable, we can assign

 read it and read it just like any other variable. Assigned

 vanie _ENV = nil prohibit any access to global variables on

 throughout the remainder of the block. This can be useful for

 control which variables your code uses:

 local print, sin = print, math.sin

 _ENV = nil

 print (13)

 -> 13

 print (sin (13)) -> 0.42016703682664

 print (math.cos (13)) - error!

 Any assignment to a free name will result in a similar

 error.

 We can explicitly call _ENV to bypass the locale.

 variable variables:

 a = 13

 - global

 local a = 12

 print (a) -> 12 (local)

 print (_ENV.a) -> 13 (global)

 Of course, the main use of _ENV is to change ok-

 tool used by the code snippet. Once you have changed

 your environment, all calls to global variables will be used

 use a new table:

 - change the current environment to an empty table

 _ENV = {}

 a = 1 - create a field in _ENV

 print (a)

 -> stdin: 4: attempt to call global 'print' (a nil value)

 If the new environment is empty, then you lose access to all glo-

 ball variables including print . Therefore, you first need to

 fill it with some useful values, like the old

 environment:

 a = 15

 - create a global variable

 _ENV = {g = _G} - change the current environment

 a = 1

 - create a field in _ENV

 g.print (a)

 -> 1

 g.print (ga) -> 15

 Now when you access the "global" g , you get sta

 Swarm environment in which there is a print function .

 We can rewrite the previous example using the name _G

 instead of g :

 a = 15

 - create a global variable

 _ENV = {_G = _G} - change the current environment

 Using _ENV

 a = 1

 - create a field in _ENV

 _G.print (a)

 -> 1

 _G.print (_G.a) -> 15

 For Lua, the name _G is the same name as everyone else. His from-

 the only characteristic is that when Lua creates a global

 score table, then it assigns it to a variable named _G . For

 Lua doesn't care about the current value of this variable. But it is usually accepted

 use the same name when we refer to the global

 variable, as we did in the rewritten example.

 Another way to populate your new environment is by inheritance

 nie:

 a = 1

 local newgt = {} - create a new environment

 setmetatable (newgt, {__index = _G})

 _ENV = newgt

 - install it

 print (a) -> 1

 In this code, the new environment inherits print and a from the old environment.

 zheniya. However, any assignment goes to the new table. Thereby

 there is no danger of mistakenly changing the global environment, although it

 can still be changed via _G :

 - continue the previous code

 a = 10

 print (a) -> 10

 print (_G.a) -> 1

 _G.a = 20

 print (_G.a) -> 20

 Since _ENV is a regular variable, it obeys

 the usual rules of visibility. In particular, the functions defined

 inside a block, refer to _ENV just like any other external

 her variable:

 _ENV = {_G = _G}

 local function foo ()

 _G.print (a)

 - compiles to '_ENV._G.print (_ENV.a)'

 end

 a = 10

 - _ENV.a

 foo ()

 -> 10

 _ENV = {_G = _G, a = 20}

 foo ()

 -> 20

 If we define a new local variable named _ENV ,

 then access to free names will go through it:

 a = 2

 do

 local _ENV = {print = print, a = 14}

 print (a) -> 14

 end

 print (a) -> 2 (back to original _ENV)

 Therefore, it is not difficult to build a function with its own (private)

 environment:

 function factory (_ENV)

 return function ()

 return a

 - “global” a

 end

 end

 f1 = factory {a = 6}

 f2 = factory {a = 7}

 print (f1 ())

 -> 6

 print (f2 ())

 -> 7

 The factory function creates simple closures that return-

 the value of local variables a. When the closure is created, then

 the visible variable _ENV is the parameter _ENV from the containing function

 tion factory ; so the closure uses this variable to add

 a stupa for free names.

 Using normal visibility rules, we can work with

 environments in various ways. For example, we may have

 several functions with a common environment for them or a function that

 Toraya changes the environment in common with other functions.

 14.5. _ENV and load

 As I mentioned, load usually initializes the _ENV value

 the loaded block is a pointer to the global environment. However,

 load has an optional fourth parameter that specifies the value

 reading for _ENV . (The loadfile function also has a similar para-

 meter.)

 As an example, let's say we have a typical configuration

 a file that defines the various constants and functions used

 washed by the program; it could be something like:

 - file 'config.lua'

 width = 200

 height = 300

 ...

 _ENV and load

 We can load it with the following code:

 env = {}

 f = loadfile (“config.lua”, “t”, env)

 f ()

 All code from the config file will be executed with empty

 env environment . More importantly, all of its definitions will be named

 but into this environment. The config file cannot affect

 anything else, even by mistake. Even malicious code cannot cause

 thread a lot of harm. It can perform a DoS attack by wasting CPU time

 and memory, but nothing else.

 Sometimes you may need to execute a block multiple times,

 each time with a different environment table. In this case, additional

 the load argument doesn't help us. Instead, we have two

 option.

 The first option is to use the debug.setupvalue function

 from the debug library. As the name implies, setupvalue poz-

 tells us to change any incoming value (upvalue) of the given

 functions. The following code illustrates its use:

 f = loadfile (filename)

 ...

 env = {}

 debug.setupvalue (f, 1, env)

 The first argument when calling setupvalue is a function, the second is

 this is the index of the value, and the third is the new value. For our use

 use of the second argument is always one: when the function

 is the result of load or loadfile , Lua guarantees that there will be

 only one value and that value is _ENV .

 A small disadvantage of this solution is the dependence

 from the debug library. This library breaks some

 standard assumptions about programs. For example debug.

 setupvalue violates Lua's visibility rules, which guarantee

 that the variable cannot be seen outside of its scope

 visibility.

 Another way to run a block with different environments is

 There is a slight change in the block when it is loaded. Imagine,

 that we add the following line to the beginning of the loaded block:

 _ENV = ...;

 Recall from Section 8.1 that Lua treats any block as

 function with variable number of arguments. Therefore, this line attaches

 assigns the first block argument to _ENV , setting it

 as an environment. After loading the block, we call the resulting

 function, passing the desired environment as the first argument. Next

 The following code snippet illustrates this idea using the function

 loadwithprefix from Exercise 8.1:

 f = loadwithprefix (“local _ENV = ...;”, io.lines (filename, “* L”))

 ...

 env = {}

 f (env)

 Exercises

 Exercise 14.1. The getfield function that we have defined

 at the beginning of this chapter provides too little

 role, since it allows fields such as math? sin or

 string !!! gsub .Rewrite it to handle

 only one dot as a separator. (For this exercise

 (you may need the information in Chapter 21.)

 Exercise 14.2. Explain in detail what happens next

 program and what its output will be.

 local foo

 do

 local _ENV = _ENV

 function foo () print (X) end

 end

 X = 13

 _ENV = nil

 foo ()

 X = 0

 Exercise 14.3. Explain in detail what happens next

 program and what its output will be.

 local print = print

 function foo (_ENV, a)

 print (a + b)

 end

 foo ({b = 14}, 12)

 foo ({b = 10}, 1)

 Exercises

 Chapter 15

 Modules and packages

 Lua does not usually establish any conventions. Instead of this

 Lua provides mechanisms that are powerful enough for groups

 developers to implement the conventions that suit them.

 However, this approach does not work well for modules. One of the main

 the purpose of the module system is to allow different people to share

 locally use the code. The lack of a common policy prevents this

 sharing.

 Since version 5.1, Lua has defined a set of conventions for mod-

 leys and packages (a package is a collection of modules). These agreements are not required

 any additional features from the language; programmer

 you can implement them using what we have already seen in the language:

 tables, functions, metatables and environments. Programmers can

 use other agreements. However, other agreements may

 lead to the fact that it will not be possible to use other people's modules and your

 modules cannot be used in other people's programs.

 From the user's point of view, a module is some code (in Lua

 or in C), which can be loaded with require and co-

 which creates and returns a table. Anything the module exports

 whether it be functions or tables, it defines inside this table,

 which acts as a namespace.

 For example, all standard libraries are modules. You can

 use math library like this:

 local m = require “math”

 print (m.sin (3.14))

 However, a separate interpreter (available as a command

 strings) preloads all standard libraries with

 code equivalent to the following:

 math = require “math”

 string = require “string”

 ...

 This download allows us to use the normal math.sin notation .

 The obvious advantage of using tables to implement

 dul is that we can work with modules in the same way as

 with tables, and use the power of Lua to do so. In most

 In two languages, modules are not first class values (i.e.

 they cannot be stored in variables, passed as arguments

 functions, etc.), so these languages need special mechanisms

 terms for every opportunity they want to offer for

 modules. In Lua, you get these features for free.

 For example, there are several ways to call a function from

 module. The usual way is as follows:

 local mod = require “mod”

 mod.foo ()

 User can set any local name for the module:

 local m = require “mod”

 m.foo ()

 Alternative names can also be provided for individual

 functions:

 local m = require “mod”

 local f = mod.foo

 f ()

 The nice thing about these features is that they don't

 require special support from the language. They only use

 what the language already provides.

 A common complaint about require is that this function

 This does not allow passing an argument to the loaded module. For example

 measures, the mathematical module could receive an argument that allows

 to choose between using degrees or radians:

 - bad code

 local math = require (“math”, “degree”)

 The problem is that one of the main objectives require yav-

 Avoid loading an already loaded module. As soon as possible

 the muzzle is loaded, it will be reused by any part of the program,

 who needs it. Therefore, when using the parameters

 there would be a problem if the same module was needed, but

 with other parameters:

 - bad code

 local math = require (“math”, “degree”)

 - somewhere else in the same program

 local math = require (“math”, “radians”)

 In case you really want your module to be

 held parameters, it is better to create an explicit function to set them

 niya:

 local mod = require ”mod”

 mod.init (0, 0)

 If the initializing function returns the module itself, then we

 we can write code like the following:

 local mod = require ”mod” .init (0, 0)

 Another option is to make the module return a function

 for initialization and already this function would return a table

 muzzle:

 local mod = require ”mod” (0, 0)

 In any case, remember that the module is loaded only once;

 the module itself must resolve initializations with conflicts.

 15.1. Require function

 The require function tries to minimize the assumptions about

 what is a module. For require, a module is just some-

 then the code that defines some values (such as functions

 or tables containing functions). Usually this code returns

 a table containing the functions of this module. However, since

 this is done by the code of the module itself, not require , some modules

 may choose to return different values or even have sideways

 effects.

 To load a module, we simply call require ” modname ” .

 The first step of require is to check against the package.

 loaded to see if this module is already loaded. If so, then require

 returns the corresponding value. Therefore, as soon as the module

 loaded, other calls requiring this module to be loaded are simply

 will return the same value without executing any code.

 If the module has not yet been loaded, then require looks for a Lua file with the name

 it module. If it finds such a Lua file, then it loads it when

 help loadfile . The result of this is the function that we

 called the bootloader . (The bootloader is a function that, when called

 ve returns a module.)

 If require cannot find a Lua file with a module name, then it

 looks for a C library with a module name. If she finds the right

 the current C library, it loads it using package.

 loadlib (which we discussed in section 8.3) and looks for a function named

 It luaopen_ modname 1 . In this case, the bootloader is the result

 volume loadlib , that is, a luaopen_ modname function that looks like

 function in Lua.

 Whether the module is a Lua file or a lib

 library in C, require now has a loader for it. For windows-

 When the module is loaded, require calls the loader with two

 arguments: the name of the module and the name of the file with the loader. (Pain-

 Most modules simply ignore these arguments.)

 chick returns some value, then require returns this value

 read and store it in the package.loaded table in order to

 always return exactly this value for this module. If for-

 the loader does not return anything, then require behaves the same as if

 the module would return true . Without this clarification, subsequent calls

 require would execute this module again.

 To force require to load the specified module,

 times, we simply erase the entry for this module from the package.

 loaded :

 package.loaded. < modname > = nil

 The next time you need this module, the require prode-

 barks all the necessary work again.

 Renaming a module

 We usually use their original name as the module name.

 names, but sometimes we have to rename a module to avoid

 name conflict. A typical situation is loading different

 versions of the same module, for example for testing. Modu-

 do not have hardcoded names inside them, so usually

 just rename the corresponding .lua file. but

 we cannot edit the binary library to change

 the name of its function luaopen_ * . In order to maintain similar

 new renames, there is a little trick inside require : if

 the module name contains a minus, then require strips off the part of the name up to

 before the minus sign when creating the function name luaopen_ * . For example

 measure, if the module name is ab , then require expects the corresponding

 the next function will be named luaopen_b , not luaopen_a-b

 (which wouldn't be a valid name in C anyway). therefore

 if we need to use two modules named mod , then we can

 Let's rename one of them to v1-mod , for example. When we call

 wem m1 = require ”v1-mod” , require will find the renamed file

 v1-mod and inside this file will find a function named luaopen_mod .

 Search along the path

 When searching for a file in Lua, require uses a search path that

 ry slightly differs from the usual search paths. Typical

 path is a list of directories where to search for the given file. One-

 co in ANSI C (the abstract platform that Lua runs on)

 there is no concept of a directory. Therefore the path used by require is

 a list of templates , each of which specifies its own way of converting

 setting the module name (the require argument) to the file name. More accurately,

 each pattern in the path is a filename containing optional

 question marks. For each pattern, require replaces every '?' on

 module name and checks if there is a file with the corresponding name;

 if not, it moves to the next template. Patterns out of the way

 separated by semicolons (a character rarely used in

 filenames on modern operating systems). For instance,

 if the path is

 ?;?. lua; c: \ windows \?; / usr / local / lua /? / ?. lua ,

 then the call to require (“sql”) will try to open the following files:

 sql

 sql.lua

 c: \ windows \ sql

 /usr/local/lua/sql/sql.lua

 The require function uses as special characters

 only semicolon (as component separator) and question mark-

 ny sign; everything else, including path delimiters and extensions

 files is defined by the path itself.

 The path that require uses to find files in Lua is

 always the current value of the package.path variable . When starting Lua

 it initializes this variable with the value of the next variable-

 environment LUA_PATH_5_2 . If this environment variable is not

 is installed, then Lua tries to use the environment variable

 named LUA_PATH . If both are undefined, then Lua uses

 the default path, set at compile time 2 . When using

 using environment variables, Lua substitutes the default path

 instead of any substring ";;" ... For example, if LUA_PATH_5_2

 is equal to “mydir / ?. lua ;;” then the final path will be pattern

 “Mydir / ?. lua” followed by the default path.

 The C library search path works the same way, but

 cpath is taken from the variable package.cpath (instead of package.

 path). Similarly, this variable gets its initial value

 from the environment variable LUA_CPATH_5_2 or LUA_CPATH . Typical

 the value for UNIX systems is

 ./?.so;/usr/local/lib/lua/5.2/?.so

 Note that the path defines the file extension. Pre-

 The previous example uses .so for all templates; in Windows t-

 The pictorial template will look like the following:

 . \ ?. dll; C: \ Program Files \ Lua502 \ dll \ ?. dll

 The package.searchpath function implements all of these conventions for

 search for libraries. It gets the module name and path and looks for the file,

 following the rules described above. It returns either the name of the first

 found file, or nil and an error message describing all

 the files she tried to open, as in the following example:

 > path = “. \\ ?. dll; C: \\ Program Files \\ Lua502 \\ dll \\ ?. dll”

 > print (package.searchpath (“X”, path))

 nil

 no file '. \ X.dll'

 no file 'C: \ Program Files \ Lua502 \ dll \ X.dll'

 File crawlers

 In reality, require is somewhat more complex than we have described.

 Finding a file in Lua and finding a C library are just two private

 the more general concept of a file searcher. Seeker

 file is just a function that takes the name of the module and returns

 sets a bootloader for this block, or nil if it cannot find any

 one.

 The package.searchers array contains a list of file searchers,

 which require . When looking for a module, require calls

 each crawler in turn, passing it the module name, until

 2

 In Lua 5.2, the -E command line parameter prevents the use of variables

 environment and causes the compile-time path to be used.

 until it finds a loader for the module. If the search ends in

 that is, require raises an error.

 Using a list to control the search for a module gives

 more flexibility of the require function . For example, if you want to store

 thread the modules compressed into zip files, then all you need to do this is -

 this is to provide the appropriate finder function and add it

 to the list. However, more often than not, programs do not need to change

 package.searchers value . The default configuration is

 the Lua function finder and the C library crawler we described

 above, occupy the second and third positions. Before them there is a claim

 preload searcher.

 This finder allows you to enter an arbitrary function for

 module load. It uses the package.preload table to match

 setting the names of the modules of the boot functions. When searching for this

 the crawler simply looks for the given name in the table. If he finds a function

 tion, then it returns it as a module loader. Otherwise it returns

 nil . This finder provides a way to handle some non-

 typical cases. For example, a C library statically prilinked

 bathroom to Lua, can register its luaopen_ function like this,

 that it will be called only when (and if) the user needs

 this module is beating. Thus, the program does not waste time on

 opening a module if not in use.

 By default package.searchers includes the fourth

 function that is needed for submodules. We will consider them at a time

 case 15.4.

 15.2. Standard Approach for writing modules in Lua

 The simplest way to create a module in Lua is really simple: we

 create a table, put all the functions we want to export

 tite, inside it and return this table. Listing 15.1 demonstration

 redefines this approach. Note how we define the function

 tion inv as a closed, simply declaring it inside the unit.

 Some people don't like the terminating return statement . One of

 ways to eliminate it is to write the module table directly

 in package.loaded :

 local M = {}

 package.loaded [...] = M

 <as before>

 Be aware that require calls the loader passing the name of the mo-

 blowing as the first argument. Therefore, the variable number expression

 arguments ... results in exactly that name. After that, when

 piles, we no longer need to return M at the end of the module: if

 the module does not return a value, then require will return the current value

 package.loaded [modname] (if not nil). However, I prefer

 return a table as it looks neater.

 Another way to write a module is to define all the functions

 localization and building the table at the end, as in Listing 15.2.

 What are the advantages of this approach? You don't have to start every

 name with M. or something similar; there is an explicit export list

 functions; you define and use exported and

 internal functions are exactly the same inside a module. In what

 are the disadvantages of this approach? Exported List

 functions is at the end of the module, not at the beginning where it would be

 more convenient as a quick reference; and a list to export from-

 is accurate, since you need to write down each name twice. (This last

 this disadvantage can be an advantage, since it allows

 functions have different names outside the module and inside it, but I

 I think that programmers rarely use this.) I personally like-

 This style is being developed.

 However, remember that no matter how you define the

 dul, users should be able to use it

 in a standard way:

 local cpx = require “complex”

 print (cpx.tostring (cpx.add (cpx.new (3,4), cpx.i)))

 -> (3.5)

 Listing 15.1. Simple module for complex numbers

 local M = {}

 function M.new (r, i) return {r = r, i = i} end

 - define the constant 'i'

 Mi = M.new (0, 1)

 function M.add (c1, c2)

 return M.new (c1.r + c2.r, c1.i + c2.i)

 end

 function M.sub (c1, c2)

 return M.new (c1.r - c2.r, c1.i - c2.i)

 end

 function M.mul (c1, c2)

 return M.new (c1.r * c2.r - c1.i * c2.i, c1.r * c2.i + c1.i * c2.r)

 end

 local function inv (c)

 local n = cr ^ 2 + ci ^ 2

 return M.new (cr / n, -ci / n)

 end

 function M.div (c1, c2)

 return M.mul (c1, inv (c2))

 end

 function M.tostring (c)

 return “(“ .. cr .. “,” .. ci .. “)”

 end

 return M

 Listing 15.2. Module with an explicit list of exported functions

 local function new (r, i) return {r = r, i = i} end

 - define the constant 'i'

 local i = complex.new (0, 1)

 <other functions follow the same pattern>

 return {

 new = new,

 i = i,

 add = add,

 sub = sub,

 mul = mul,

 div = div,

 tostring = tostring,

 }

 15.3. Using environments

 One of the disadvantages of the considered methods for creating modules

 is that it is very easy to clog up the global namespace,

 for example just forgetting local in the local resource description.

 Environments provide an interesting approach to creating

 muzzle that solves this problem. If the module has its own environment

 living, then not only all functions will fall into this table, but also

 all global variables. Therefore, we can determine everything from-

 covered functions as global, and they will automatically fall into co-

 the corresponding table. All a module needs to do is

 assign this table to _ENV . After that, when we determine

 we divide the add function , it automatically becomes M.add :

 local M = {}

 _ENV = M

 function add (c1, c2)

 return new (c1.r + c2.r, c1.i + c2.i)

 end

 Moreover, we can call other functions from this module.

 without any prefix. In the previous code, add refers to new

 from his environment, that is, he actually refers to M.new .

 This method is a good way to create modules that require

 buoy of very little work from a programmer. Prefixes in general

 Not needed. There is no difference between calling the exported and

 closed functions. If the programmer forgets to insert local , then

 it doesn't litter the global namespace; instead closed

 the function just becomes exportable.

 However, I usually prefer one of the two previously considered

 new methods. Although they may require a little more work, the

 at least the code is clearer. In order not to create

 a global value by mistake, I just assign _ENV a value

 nil . After that, any attempt to create a global value simply

 raises an error.

 What is missing is access to other modules. After

 after we changed the value of _ENV , we lost access to all

 the previous global variables. There are several ways to

 there is this access, each with its own pros and cons.

 One option is to use inheritance:

 local M = {}

 setmetatable (M, {__index = _G})

 _ENV = M

 (You need to call setmetatable before assigning _ENV , so

 is it clear why?) When using this approach, the module receives

 direct access to any global variable, with a very small

 the price of such access. An interesting consequence of this decision is

 It means that your module now contains all the global variables.

 For example, someone using your module can now call

 a standard function for computing sine with complex.

 math.sin (x) . (A similar feature is also present in the Perl language.)

 Another quick way to access other modules is to enter

 dividing a local variable containing the global environment:

 local M = {}

 local _G = _G

 _ENV = M - or _ENV = nil

 You should now start each global name with _G. but before-

 stupas happen a little faster as there is no use of me-

 there methods.

 A more rigorous approach is to define as local

 variables of only those functions or modules that you need:

 - module setting

 local M = {}

 - import section:

 - take outside everything this module needs

 local sqrt = math.sqrt

 local io = io

 - from this place access to the outside is impossible

 _ENV = nil - or _ENV = M

 This approach requires more work, but it clearly documents

 the dependencies of your module. It also leads to code that you-

 is filled a little faster than in the previously considered cases, due to

 for using local variables.

 15.4. Submodules and packages

 Lua allows for hierarchical module names using

 touch the point to separate the levels. For example, a module named mod.

 sub is a submodule of mod . A package is a complete tree of mo-

 muzzle; it is the Lua distribution unit.

 When you need a module named mod.sub , require first

 looks in the package.loaded table and then in the package.preload table ,

 using the fully qualified name “mod.sub” as the key; in this case, exactly

 ka is the same symbol as any other.

 However, when looking for a file defining this submodule, require re-

 converts point to another character, usually the system separator in the path

 (i.e. '/' for UNIX and '\' for Windows). After this transformation

 require looks for the resulting name just like any other name. For instance,

 path '/' is a path separator and we have the following path:

 ./?.lua;/usr/local/lua/?.lua;/usr/local/lua/?/init.lua

 The require (“ab”) call will try to open the following files:

 ./a/b.lua

 /usr/local/lua/a/b.lua

 /usr/local/lua/a/b/init.lua

 This behavior allows all modules in the package to be in

 useful catalog. For example, if a package contains p modules ,

 pa and pb , the corresponding files can be p / init.lua ,

 p / a.lua and p / b.lua , where the p directory is contained in the corresponding location

 those.

 The path separator used by Lua is set at compile time.

 tion and can be any string (remember that Lua knows nothing

 about directories). For example, systems without hierarchical catalogs can

 gotta use '_' as such a delimiter, so require

 (“Ab”) will look for a_b.lua file .

 Names in C cannot contain periods, so the C library

 for a submodule ab cannot export the luaopen_a.b function .

 In this case, require translates point into another character - underscore-

 vanie. Thus, a C library named ab should call

 its initializing function luaopen_a_b . We can also

 use here a technique with a minus, but with a more complex result-

 Tom. For example, suppose we have a C library named a and we

 want to make it a submodule mod , then we can rename

 the corresponding file in mod / va . When calling require “mod.va”

 the require call will correctly find the new mod / va file , just like

 function luaopen_a inside it.

 Also require has one extra crawler to load

 submodules in C. When it cannot find either the Lua file or the C file for

 submodule, this seeker again searches along the path for C, but this time seeks

 package name. For example, if the program wants to load a submodule

 abc , then this searcher will simply search for a . If he finds a library

 I'm fluent in C for this name, then require will look in that library

 the corresponding function, in our case luaopen_a_b_c . This charge

 the ability to place several submodules together in one

 a C library, each with its own initializing function.

 From a Lua perspective, submodules in the same package do not have an explicit

 communication. Loading module a does not load any of its sub-

 modules; also loading ab doesn't load automatically a . End-

 but, when implementing the package, the developer has the right to set these links when

 desire. For example, module a may explicitly require loading as

 someone specific (or all) of their submodule.

 Exercises

 Exercise 15.1. Rewrite the code in Listing 13.1 as separate

 module.

 Exercise 15.2. What happens when looking for a library if the path

 contains a fixed component (that is, a component not

 containing a question mark)? Could this behavior be

 useful?

 Exercise 15.3. Write a finder that simultaneously

 looks for files in Lua and libraries in C. For example, the path for

 this searcher could be something like:

 ./?.lua;./?.so;/usr/lib/lua5.2/?.so;/usr/share/lua5.2/?.lua

 (Hint : use package.searchpath to search

 the corresponding file, then try to download it,

 first with loadfile , then with package.

 loadlib .)

 Exercise 15.4. What happens if you set a metatable

 for package.preload using the __index metamethod ? Mo-

 can this be useful?

 Chapter 16

 Object oriented programming

 A table in Lua is an object in more than one sense. Like

 objects, the table has a state. Like objects, a table has

 there is an identity (self) that does not depend on its values; in part

 ness, two tables with the same values are different

 objects, an object can have different meanings at different times

 time. Like objects, tables have a life cycle that

 does not depend on who created them or where they were created.

 Objects have their own methods. Tables can also have their own

 todes as below:

 Account = {balance = 0}

 function Account.withdraw (v)

 Account.balance = Account.balance - v

 end

 This definition creates a new function and stores it in the field

 withdraw of the Account object . Then we can call her as shown

 below:

 Account.withdraw (100.00)

 A function of this type is almost what we call a method .

 However, using the global Account name inside a function

 is bad practice. First, this feature will work

 only for this particular object. Secondly, even for this

 object exactly as long as this object is recorded in this particular

 a global variable. If we change the name of the object, then withdraw

 will no longer work:

 a, Account = Account, nil

 a.withdraw (100.00) - ERROR!

 This behavior violates the principle that every object

 must have its own, independent cycle of life.

 A more flexible option is to use the recipient of the opera-

 walkie-talkies. To do this, our method will need an additional argument

 cop with the value of the recipient. This parameter is usually named self

 or this :

 function Account.withdraw (self, v)

 self.balance = self.balance - v

 end

 Now, when we call the method, we must indicate with which

 object it should work:

 a1 = Account; Account = nil

 ...

 a1.withdraw (a1, 100.00) - OK

 When using the self parameter, we can use one and

 the same method for many objects:

 a2 = {balance = 0, withdraw = Account.withdraw}

 ...

 a2.withdraw (a2, 260.00)

 This use of the self parameter is key in any design.

 an object-oriented language. Most object-oriented

 in languages, this mechanism is partially hidden from the programmer,

 therefore, this parameter does not need to be explicitly declared (although inside the method

 you can still use - self or this). Lua can also

 hide this parameter with the colon e operator . We can

 rewrite the previous method definition as follows:

 function Account: withdraw (v)

 self.balance = self.balance - v

 end

 Then the method call will look like this:

 a: withdraw (100.00)

 The colon adds an extra hidden parameter in the definition

 method and adds an extra argument to the method call.

 The colon is just syntactic sugar, albeit pre-

 quite comfortable; there is nothing fundamentally new here. We can

 define a method when using dot syntax and call

 it using colon syntax, and vice versa, as long as

 we handle the extra parameter correctly:

 Account = {balance = 0,

 withdraw = function (self, v)

 self.balance = self.balance - v

 end

 }

 function Account: deposit (v)

 self.balance = self.balance + v

 end

 Account.deposit (Account, 200.00)

 Account: withdraw (100.00)

 At this point, our objects have an identity, consisting

 and operations on this state. They lack a class system

 inheritance and the ability to hide your variables (state).

 Let's deal with the first task first: how can we create

 different objects with the same behavior? Like how we

 can we create multiple accounts?

 16.1. Classes

 The class acts as a template for creating objects. Most

 object oriented languages offer the concept of a class.

 In such languages, each object is an instance of some

 specific class. Lua has no concept of a class; each object is defined

 shares his behavior and his data. However, it is not difficult at all -

 emulate classes in Lua, following the path of prototype languages like

 Self or NewtonScript. Objects have no classes in these languages. Inmes-

 then each object can have a prototype that is

 the object in which the first object is looking for operations that it is not

 knows. To represent classes in such languages, we simply create

 an object that will only be used as a prototype for

 other objects (its instances). Both classes and prototypes will

 fall as a place to accommodate behavior common to

 various objects.

 In Lua, we can implement prototypes using the idea of inheritance

 from section 13.4. More precisely, if we have two objects a and b , then everything

 what we need to do to make b act as a prototype for a is

 following:

 setmetatable (a, {__index = b})

 After that, a will search in b for all operations that it does not know.

 Setting b as a class for a is actually practically

 same.

 Let's go back to our bank account example. For co-

 building other accounts with behavior similar to Account , we will make

 so that these new objects will inherit their operations from Account when

 using the __index metamethod . As a small optimization, we

 we can not create separate metatables for each of the objects;

 instead, we'll use the Account table itself :

 function Account: new (o)

 o = o or {} –– create a table if the user has not submitted it

 setmetatable (o, self)

 self .__ index = self

 return o

 end

 (When we call Account: new , self is equal to Account ;

 so we could explicitly use Account instead of self . Od-

 But using self is very useful for us in the following

 section when we introduce inheritance.) What happens when we

 create a new account and call its method as shown below?

 a = Account: new {balance = 0}

 a: deposit (100.00)

 When we create a new account, a will have an Account (pa-

 the self parameter when invoking Account: new) as a metatable. Then,

 when we call a: deposit (100.00) we are actually calling

 a.deposit (a, 100.00) ; the colon is just syntactic sugar.

 However, Lua cannot find the deposit record in table a ; so Lua

 looks for an __index entry in the metatable. The situation looks like

 in the following way:

 getmetatable (a) .__ index.deposit (a, 100.00)

 Metatable a is Account and Account .__ index is so-

 the same Account (since the new method did self .__ index = self).

 Therefore, the previous expression is reduced to

 Account.deposit (a, 100.00)

 That is, Lua calls the original deposit function , but passing

 a as a parameter to self . Thus, the new account a inherited

 shaft deposit function from Account . In the same way, he inherits everything

 fields from Account .

 Inheritance works not only for methods, but also for other

 some fields that are not in the new account. Therefore, the class can

 set not only methods, but also default values for fields

 instance. Recall that in our first definition of Account

 we provided the balance field with a value of 0. So if we match

 create an account without the initial balance value, then it will inherit this

 default value:

 b = Account: new ()

 print (b.balance) -> 0

 When we call b's deposit method , this call will be equivalent to

 taped to the following code (since self is b):

 b.balance = b.balance + v

 Expression b.balance gives 0, and the method assigns an initial

 b.balance contribution . Subsequent calls to b.balance no longer apply.

 lead to a call to the corresponding metamethod, since b now has

 your balance field .

 16.2. Inheritance

 Since classes are objects, they can also receive

 methods from other classes. This behavior makes it easy to implement

 inherit (in the usual object-oriented sense

 le).

 Let's say we have a base class Account :

 Account = {balance = 0}

 function Account: new (o)

 o = o or {}

 setmetatable (o, self)

 self .__ index = self

 return o

 end

 function Account: deposit (v)

 self.balance = self.balance + v

 end

 function Account: withdraw (v)

 if v> self.balance then error ”insufficient funds” end

 self.balance = self.balance - v

 end

 From this class we can inherit the SpecialAccount class ,

 allowing the buyer to withdraw more than is on his balance sheet. we

 starting with an empty class that inherits all operations from its

 base class:

 SpecialAccount = Account: new ()

 Up to this point, SpecialAccount is just an instance

 Account . However, interesting things happen next:

 s = SpecialAccount: new {limit = 1000.00}

 SpecialAccount inherits new from Account , like all other methods.

 Toda. However, this time when new is executed, its self parameter is already

 will refer to SpecialAccount . Therefore, the metatable s will be

 SpecialAccount , whose __index is equal to SpecialAccount .

 Therefore, s inherits from SpecialAccount , which in turn

 inherits from Account . Now if we do

 s: deposit (100.00) ,

 then Lua cannot find the deposit field in s , so it will look for it

 in SpecialAccount , there he will not find it either and will continue to search in

 Account , where it will find the original implementation of this method.

 What makes SpecialAccount special is that we can re-

 define any method inherited from its parent class

 sa. All we need is to simply write a new method:

 function SpecialAccount: withdraw (v)

 if v - self.balance> = self: getLimit () then

 error ”insufficient funds”

 end

 self.balance = self.balance - v

 end

 function SpecialAccount: getLimit ()

 return self.limit or 0

 end

 Now, when we call s: withdraw (200.00) , Lua will not return-

 in Account , since it will find a new withdraw method before

 in the SpecialAccount class . Since s.limit is 1000.00 (we set

 this field when creating s), then the program will remove it, leaving

 resulting in s with negative balance.

 The interesting thing about objects in Lua is that you don't

 you need to create a new class to define the new behavior. If from-

 it is only necessary to change the behavior for one object, then we can re-

 lize this change directly in this object. For instance,

 if account s represents a special customer whose limit is always 10%

 from the current balance, then we can change only one account:

 function s: getLimit ()

 return self.balance * 0.10

 end

 After that, calling s: withdraw (200.0) will execute the withdraw method

 from the SpecialAccount class , but when withdraw calls s: getLimit ,

 then the previously entered definition of this function will be called.

 16.3. Plural inheritance

 Since objects are not basic primitives, Lua has

 several ways to use object-oriented software

 gramming. The approach we just saw uses-

 the __index metamethod is probably the best combination

 simplicity, speed and flexibility. However, there are other implementations too,

 which may be more suitable for some specific

 lent cases. We will now see an alternative implementation, which

 Toraya allows multiple inheritance in Lua.

 The key in this implementation is to use the function in

 as the __index metafield . Recall that when the metatable has data

 table has an __index field , then Lua will call this function any

 time when it cannot find the key in the source table. In this case

 __index can search for a missing key in any number of po-

 parents.

 Multiple inheritance means that a class can have

 more than one superclass (parent class). Therefore, we already

 cannot use a function like before to create a sub-

 black classes. Instead, we will define a createClass function ,

 which takes parent classes as arguments

 (see Listing 16.1). This function creates a table for the presentation

 new class and sets its metatable with metamethod

 __index , which implements multiple inheritance. Not-

 looking at multiple inheritance, each created object

 belongs to one class, which is used to find the place

 todes. Therefore, the relationship between class and superclasses is

 differs from the relationship between classes and its instance-

 mi (created objects). In particular, a class cannot simultaneously

 it should be the metatable for its instances and child classes.

 In Listing 6.1, we use the class as the metatable for the generated

 instances and create a separate table as a metatable

 class.

 Listing 16.1. Implementing multiple inheritance

 - look for 'k' in the list of tables 'plist'

 local function search (k, plist)

 for i = 1, #plist do

 local v = plist [i] [k] - try the i-th superclass

 if v then return v end

 end

 end

 function createClass (...)

 local c = {} -– new class

 local parents = {...}

 - the class will search for each method in the list of its parents

 setmetatable (c, {__index = function (t, k)

 return search (k, parents)

 end})

 - prepare 'c' as a metatable of its instances

 c .__ index = c

 - define a new constructor for this new class

 function c: new (o)

 o = o or {}

 setmetatable (o, c)

 return o

 end

 return c - return a new class

 end

 Let's illustrate the use of createClass by

 cabbage soup small example. Let's say we have our old Account class

 and Class Named to methods setname and getname .

 Named = {}

 function Named: getname ()

 return self.name

 end

 function Named: setname (n)

 self.name = n

 end

 To create a new class NamedAccount , which is a child

 with both Account and Named classes , we just call createClass :

 NamedAccount = createClass (Account, Named)

 We create and use instances of this class as before:

 account = NamedAccount: new {name = “Paul”}

 print (account: getname ()) -> Paul

 Now let's see how the last statement works. Lua

 cannot find getname method in account ; so he's looking for a field

 __index in the account metatable , that is, in the NamedAccount . But in

 NamedAccount also doesn't have a “ getname ” field , so Lua looks for a field

 __index in the NamedAccount metatable. Since this field contains

 function, Lua calls it. This function first looks for “getname” in

 Account and, not finding it there, looks for Named , where she finds an excellent

 from nil the value that becomes the final result.

 Of course, due to the complexity of such a search, the performance for many

 physical inheritance differs from performance for simple

 that inheritance. An easy way to improve this performance

 is to copy inherited methods into child classes.

 Using this approach, the __index metamethod would look like

 in the following way:

 setmetatable (c, {__index = function (t, k)

 local v = search (k, parents)

 t [k] = v - save for next call

 return v

 end})

 Using this technique, access to inherited methods

 becomes as fast as accessing local methods

 (except for the first call). The disadvantage is

 that it is difficult to change method definitions when the system is working

 no, since these changes do not carry over along the chain of inheritance

 giving.

 16.4. Hiding

 Many consider the possibility of hiding to be an integral part of the object-

 but-oriented language; the state of each object is

 his personal matter. In some object oriented languages,

 such as C ++ and Java, you can control whether the field is an object

 one or his method is visible from the outside. In Smalltalk, all variables

 are hidden, and all methods are accessible from the outside. Simula, the first object-

 oriented language, does not provide such protection for

 lei and methods.

 The Lua object design we looked at earlier did not pre-

 delivers hiding mechanisms. This is partly a consequence of

 our use of tables to represent objects. Besides

 Moreover, Lua avoids redundancy and artificial limitations. If a

 you don't want to access the fields inside the object, just don't

 this .

 However, another goal of Lua is flexibility, it provides

 provides meta-mechanisms that allow you to emulate many of the

 nosti. Although basic object design for Lua does not provide

 hiding mechanisms, we can implement objects in a different way

 so that you gain access control. Although this possibility

 programmers use infrequently, it will be useful to learn about

 her, as it reveals some interesting aspects

 Lua and can be a good solution for other tasks as well.

 The main idea behind alternative design is to represent each

 each object using two tables: one for its state and the other

 gaya - for his operations (his interface). The object is being accessed

 through the second table, that is, through the operations that form its in-

 terface. In order to avoid unauthorized access,

 the table providing its state is not stored in another field

 goy table, it is only accessible through closures within methods.

 For example, to represent a bank account using this

 design, we will create new objects using the following

 factory functions:

 function newAccount (initialBalance)

 local self = {balance = initialBalance}

 local withdraw = function (v)

 self.balance = self.balance - v

 end

 local deposit = function (v)

 self.balance = self.balance + v

 end

 local getBalance = function () return self.balance end

 return {

 withdraw = withdraw,

 deposit = deposit,

 getBalance = getBalance

 }

 end

 The function first creates a table to store the internal

 state of the object and stores it in the local variable self .

 The function then creates methods for the object. Finally, the function is

 gives and returns an external object that matches the names of the

 methods to their implementations. The key here is that these methods

 don't get self as an optional parameter; instead they

 access self . Since the additional

 there is no argument, then we do not use the colon syntax for

 work with the object. We call their methods just as usual.

 functions:

 acc1 = newAccount (100.00)

 acc1.withdraw (40.00)

 print (acc1.getBalance ()) -> 60

 This design provides complete stealth for everything that is stored

 is stored in the self . After returning from the newAccount function

 there is no way to directly access this tab-

 face. Although our example only stores one variable in a private

 table, we can store all the private parts of the object in this table

 face. We can also define private methods: they are like

 public, but we don't put them in the interface. For example, our accounts

 can provide an additional 10% loan with the balance

 above a certain value, but we do not want the user to

 whether they had access to the details of the calculations. We can implement this

 functionality as follows:

 function newAccount (initialBalance)

 local self = {

 balance = initialBalance,

 LIM = 10000.00,

 }

 local extra = function ()

 if self.balance> self.LIM then

 return self.balance * 0.10

 else

 return 0

 end

 end

 local getBalance = function ()

 return self.balance + extra ()

 end

 <as before>

 Again there is no way to call the function directly

 extra .

 16.5. Single approach

 method

 A special case of the previous approach for object-oriented The case when the object has only one method. In this case, we do not need to create an interface tab- face; we can just return this method as a view object. If this looks a little strange, let's remember the time cases 7.1, where we created iterative functions that store their co- standing as closures. An iterator storing its state is nothing is no different from an object with a single function. Another interesting case of objects with a single method is the case when this method actually performs a different tasks depending on a specific argument. Possible the implementation of such an object is shown below:

 function newObject (value)

 return function (action, v)

 if action == “get” then return value

 elseif action == “set” then value = v

 else error (“invalid action”)

 end

 end

 end

 Its usage is pretty simple:

 d = newObject (0)

 print (d (“get”)) -> 0

 d (“set”, 10)

 print (d (“get”)) -> 10

 This object implementation is pretty efficient. Syntax

 d (“set”, 10), although it looks strange, is only two characters long

 it than the traditional d: set (10) . Each object uses one

 closure, which is cheaper than one table. There is no inheritance here, but

 but we have complete secrecy: the only way to contact

 to the state of an object is to use its only

 th method.

 Tcl / Tk uses a similar approach for its widgets. Name kind-

 a get in Tk denotes a function (widget command) that can

 perform various types of operations on the widget.

 Exercises

 Exercise 16.1. Implement the Stack class with push , pop ,

 top and isempty .

 Exercise 16.2. Implement class StackQueue as a subclass

 Stack . In addition to the inherited methods, add to this class

 su method insertbottom , which inserts an element at the end

 stack. (This method allows you to use objects of the given

 class as a queue.)

 Exercise 16.3. Another way to ensure that the public is closed

 projects is to implement them using a proxy

 (see section 13.4). Each object is represented by an empty table

 tsey (proxy). The internal table sets the corresponding

 vie between these empty tables and tables carrying

 the state of the object. This internal table is not available sleep

 guns, but the methods use it to translate their parameter

 self to the real table they are working with. Implement-

 the example with the Account class using this approach and

 see its pros and cons.

 (There is one small problem with this approach. Try-

 you can find it yourself or refer to section 17.3 for suggestions

 her solution is proposed.)

 Chapter 17

 Weak tables and finalizers

 Lua handles memory management. Programs create objects

 (tables, threads, etc.), but there is no function to destroy objects.

 Lua automatically destroys objects that become garbage

 rum, using garbage collection . This frees you from the main

 work with memory and, more importantly, frees most

 errors related to this activity, such as dangling links

 and memory leaks.

 Using a garbage collector means Lua has no problem with

 cycles. You don't need any special action when using

 naming circular data structures; they automatically release

 are given like any other data. However, sometimes even the clever

 the garbage collector needs your help. No garbage collector

 will allow you to forget about all the problems of resource management,

 such as external resources.

 Weak tables and finalizers are mechanisms that you

 can be used in Lua to help the garbage collector.

 Weak tables allow collection of Lua objects that are still pending

 are accessible to the program, while finalizers allow assembly

 external objects not under direct control

 Lem the garbage collector. In this chapter, we will discuss both of these mechanisms.

 17.1. Weak tables

 The garbage collector can only collect what is guaranteed to be

 rubbish; he cannot guess for himself what is rubbish

 your opinion. A typical example is a stack implemented

 as an array, with a reference to the top of the stack. You know that the data is

 reap only from the beginning of the array to this index (top of the stack),

 but Lua doesn't know that. If you pop an item off the top of the stack,

 simply decreasing the vertex index, then the object remaining in the array

 is not garbage for Lua. Similarly, any object for which

 the referenced global variable is also not garbage for

 Lua even if you never use it. In both cases

 you (more precisely, your program) should write nil in the appropriate

 variables (or array elements) in order to avoid

 the appearance of indestructible objects.

 However, simply removing links is not always enough. In some

 cases need additional interaction between your product

 gram and garbage collector. A typical example is the set

 all active objects of a certain type (for example, files) in your

 our program. The task seems simple: all you need is

 add every new object to this set. However, as soon as

 the object becomes part of the collection, it will never be destroyed!

 Even if no one refers to it, the set will still refer

 on him. Lua cannot know that this link should not prevent

 destroying that object, unless you tell Lua to do so.

 Weak tables are the mechanism you use in

 Lua to say that a link should not interfere

 destruction of the object. A weak reference is such a reference to an object,

 which is not counted by the garbage collector. If all links, indicate-

 on an object are weak, then this object is free

 and all these weak links are destroyed. Lua implements weak

 links using weak tables: a weak table is such a

 a person whose links are all weak. This means that if

 the object is stored only inside a weak table, then the garbage collector

 sooner or later will destroy this object.

 Tables store keys and values, both of which can be object

 tami of any type. Under normal conditions, the garbage collector is not destroyed.

 It also contains objects that are keys and references in an accessible

 table. Both keys and values are strong references, i.e.

 they prevent the destruction of those objects to which they point

 call. In a weak table, both keys and values can be weak.

 This means that there are three types of weak tables: tables with weak

 strong keys, tables with weak values and completely weak

 tables where both keys and values are weak. Regardless

 type of table, when deleting a key or value, the entire record is deleted

 is taken from the table.

 The weakness of a table is specified by the __mode field of its metatable. Mean-

 the nest of this field, when present, must be a string: if

 this row is “k” , then the keys in this table are weak;

 if this string is “v” , then the values in this table are weak

 face; if this string is equal to "kv" , then both the keys and values in this table

 face are weak. The next example, albeit artificial,

 shows the behavior of weak tables:

 a = {}

 b = {__mode = “k”}

 setmetatable (a, b) - now 'a' has weak keys

 key = {}

 - create the first key

 a [key] = 1

 key = {}

 - create the second key

 a [key] = 2

 collectgarbage () - force the garbage collector to remove garbage

 for k, v in pairs (a) do print (v) end

 -> 2

 In this example, the second assignment key = {} destroys the reference to

 first key. Calling collectgarbage causes the garbage collector to delete

 pouring all the trash. Since there are no more references to the first key, this

 the key and the corresponding entry in the table are deleted. The second key is

 is still stored in the variable key , so it is not deleted.

 Please note that only objects can be removed from

 weak table. Values such as numbers and booleans,

 are not deleted. For example, if we insert a numeric key into table a

 (from our previous example), then the garbage collector never has it

 will delete. Of course, if the value corresponding to the numeric key is

 is stored in a table with weak values, then all corresponding

 the entire record is removed from the table.

 There is a certain subtlety with lines: although lines are deleted-

 by the garbage collector, in terms of implementation they differ from

 other objects. Other objects such as tables and threads are co-

 are given explicitly. For example, when Lua evaluates the expression {} , then it

 creates a new table. However, does Lua create a new line when you

 filling in "a" .. "b" ? What if the system already has the string “ab” ? Con-

 will Lua give a newline? Can the compiler generate this line

 before executing the program? It makes no difference: it

 all implementation details. From a programmer's point of view, strings are

 are values, not objects. Therefore, just like a number or a lo-

 logical meaning, the row cannot be deleted from the weak table

 (unless the associated value is removed).

 17.2. Functions with caching

 A common programming technique is to obtain

 gain in time due to memory loss. You can speed up the function by caching its results so that when later you

 call the same function with the same arguments, the function can

 use the value stored in the cache. Imagine a server receiving requests as strings with

 holding Lua code. Each time a request is received, the server executes load on the received line and then calls the received function. However, load is an expensive feature and some commands to the server can be repeated many times. Instead of constantly- call load every time the server receives a command like

 Closeconnection () , the server can remember the result of the load in auxiliary table. The server checks before calling load , no whether there is already a value corresponding to the given string. If he can't

 find the corresponding value, then (and only then) the server calls load and stores the result in this table. We can re- lize this behavior with the following function:

 local results = {}

 function mem_loadstring (s)

 local res = results [s]

 if res == nil then

 - no result?

 res = assert (load (s)) - calculate new result

 results [s] = res

 - save the result

 end

 return res

 end

 The gains from this scheme can be very significant. but

 it can also cause large memory losses. Although some

 mandas are repeated over and over, many other teams meet

 just one time. Over time, the results table collects all the commands

 which the server has ever received, and the corresponding code; since time

 This can lead to memory exhaustion on the server. Weak tabs

 faces provide a simple solution to this problem. If the table

 results stores weak values, then each garbage collection cycle will remove

 all currently unused values (virtually all):

 local results = {}

 setmetatable (results, {__mode = “v”}) - values will be weak

 function mem_loadstring (s)

 <as before>

 In fact, since indices are always strings, we

 we can make this table completely weak if we want to:

 setmetatable (results, {__mode = “kv”})

 The caching technique is also useful to ensure that

 the caliber of objects of a certain type. For example, let us pre-

 set colors as tables with red , green and blue fields . The simplest

 the color factory will create a new table every time we

 we turn to her:

 function createRGB (r, g, b)

 return {red = r, green = g, blue = b}

 end

 Using caching we can reuse tables

 for the same colors. To create a unique key for

 for each color, we simply connect the color components using

 some separator:

 local results = {}

 setmetatable (results, {__mode = “v”}) -– values will be weak

 function createRGB (r, g, b)

 local key = r .. “-” .. g .. “-” .. b

 local color = results [key]

 if color == nil then

 color = {red = r, green = g, blue = b}

 results [key] = color

 end

 return color

 end

 An interesting consequence of this implementation is that the

 the vendor can compare colors for equality using the standard

 comparison operator, since two simultaneously existing

 the same table will always correspond to the same colors.

 Please note that the same color may be displayed differently.

 tables at different points in time, since from time to time

 The garbage collector will empty the results table . However, while

 this color is used, it cannot be removed from results . therefore

 if a color exists long enough to be compared with another

 color, its representation will also exist for just as long.

 17.3. Object attributes

 Another interesting use of weak tables is linking

 ding attributes with objects. There are an infinite number of situations

 ation when we may need to bind some attribute

 to object: names to functions, defaults to tables,

 sizes to arrays, etc.

 213

 When the object is a table, then we can remember the attribute

 in the table itself by choosing a suitable unique key. As we already

 seen, a simple and reliable way to create a unique key is to create

 give a new object (usually a table) and use it as

 key. However, if the object is not a table, then this approach is already

 not good. Even for tables, we may need to not store at-

 ribut in the table itself. For example, we might want to do a similar

 the attribute is private or we don't want to influence how the table

 gets over. In all these cases, we need a different way of connecting

 the use of attributes with objects.

 Of course, a separate table provides an ideal way

 binding attributes to objects (it is no coincidence that tables are different

 yes they are called associative arrays). We can use

 objects as keys, and their attributes as values. Such a table can

 can store attributes of objects of any type, since Lua allows

 use objects of any type as table keys. More

 Moreover, attributes stored in a separate table do not affect other

 objects and can be private, just like the table itself.

 However, this solution has a huge disadvantage: as soon as

 we used the object as a key in the table, it can no longer

 be removed by the garbage collector. Lua cannot delete an object that

 ry is used as a key. If we use the usual

 table, in order to bind their names to functions, then none

 of these functions will never be removed. How can you guess

 live, we can avoid this deficiency with weak tab-

 persons. However, this time we need weak keys. Use-

 the creation of weak keys does not prevent the garbage collector from deleting these keys,

 when there are no more links left. On the other hand, the table

 there cannot be weak values; otherwise the attributes of existing objects

 The objects could be deleted.

 17.4. Again tables with default values

 In section 13.4 we looked at how you can work with values by

 default non- nil . We showed one approach and noticed

 that the other two approaches require the use of weak tables, therefore

 we have postponed the story about them for later. Now it's time to get back to

 this topic. As you will see, these two approaches to implementing values by

 defaults are in fact special cases already considered

 well-known approaches, namely object attributes and caching.

 In the first approach, we use weak tables to

 bind the table to its default values:

 local defaults = {}

 setmetatable (defaults, {__mode = “k”})

 local mt = {__index = function (t) return defaults [t] end}

 function setDefault (t, d)

 defaults [t] = d

 setmetatable (t, mt)

 end

 If defaults did not use weak keys, then all tables with

 default values would always exist.

 In the second solution, we use different metatables to define

 default values, but at the same time we reuse one and

 the same metatable when we use the same value again

 default. This is a typical case for caching:

 local metas = {}

 setmetatable (metas, {__mode = “v”})

 function setDefault (t, d)

 local mt = metas [d]

 if mt == nil then

 mt = {__index = function () return d end}

 metas [d] = mt - remember

 end

 setmetatable (t, mt)

 end

 In this case, we use weak values in order to avoid

 the metatables used could be assembled by a mu-

 litter.

 Which of the two is the best solution? As usual this

 depends on the use. Both solutions have approximately the same

 complexity and the same speed. First solution

 requires several words of memory for each table with a value

 by default (for writing to defaults). The second solution requires no

 how many tens of words of memory for each unique meaning

 default (new table, new closure plus metas entry).

 Therefore, if your application has thousands of tables with only a few

 different default values, then the second solution is explicitly

 will be better. On the other hand, if several tables have a common

 with the default values, you'd better prefer the first

 implementation.

 17.5. Ephemeral tables

 An interesting case occurs when in a table with weak keys

 the value refers to its own key.

 This case is much more common than it might seem.

 A typical example is a factory that returns functions.

 A factory like this takes an object and returns a function that

 will return this object when called:

 function factory (o)

 return function () return o end

 end

 This factory is a good candidate for caching, for

 in order not to create new closures when there is already a suitable

 the next already created closure:

 do

 local mem = {}

 setmetatable (mem, {__mode = “k”})

 function factory (o)

 local res = mem [o]

 if not res then

 res = function () return o end

 mem [o] = res

 end

 return res

 end

 end

 However, there is one catch. Note that the value is

 (corresponding function) associated with the object located in

 mem , - refers to its own key (the object itself). Although the keys

 are weak in this table, but values are not weak

 Xia. With the standard interpretation of weak tables, nothing will

 removed from the caching table. Since the values are not

 weak, then there is always a strong reference to each function. Each

 the function refers to its object, that is, there is always a strong reference

 for each object. Therefore, these objects cannot be deleted, not

 looking at the use of weak keys.

 However, this interpretation is not always very helpful. Pain-

 Most people expect the value in the table to be available only

 through the appropriate key. Therefore, we can consider

 a similar scenario as a loop case where the closure refers to

 an object that (via the caching table) itself references this

 closure.

 Lua 5.2 solves this problem with ephemeral tables.

 In Lua 5.2, a table with weak keys and strong values is

 is an ephemeron table. In an ephemeral table

 key availability controls the availability of the corresponding key

 cheniya. Let's take a closer look at the entry (k, v) in an ephemeral table.

 A reference to v is strong only if there is a strong reference to k .

 Otherwise, the record is eventually deleted from the table, even

 if v refers (directly or indirectly) to k .

 17.6. Finalizers

 Although the purpose of the garbage collector is to remove Lua objects, it

 can also help the program free external resources. For

 for these purposes, various programming languages offer mechanisms

 finalizers. The finalizer is a function related to

 ectom, which is called before the object is removed collection-

 rubbish box.

 Lua implements finalizers with the __gc metamethod . By-

 look at the following example:

 o = {x = “hi”}

 setmetatable (o, {__gc = function (o) print (ox) end})

 o = nil

 collectgarbage () -> hi

 In this example, we first create a table and set for

 her a metatable that has a __gc metamethod . Then we destroy-

 we get the only link to this table (global variable o)

 and invoke garbage collection by calling collectgarbage . In

 garbage collection time Lua detects that the given table is not

 is available and calls its finalizer (__gc metamethod).

 The subtle thing in Lua is marking an object for final

 zation. We mark an object for finalization when we set it to

 a metatable with a non-zero __gc field . If we do not mark the object, then

 it will not be finalized. Most of the code we write is

 will work, but sometimes weird cases like the following

 blowing:

 o = {x = “hi”}

 mt = {}

 setmetatable (o, mt)

 mt .__ gc = function (o) print (ox) end

 o = nil

 collectgarbage () -> (prints nothing)

 In this example, the metatable we are setting for o is not

 contains the __gc metamethod , so the object is not marked for phi-

 nalization. Even if we later add the __gc field to the metatable,

 Lua does not consider this assignment as special, so

 object and will not be marked. As we said, this is rarely a trial.

 lemo; usually the metatable does not change after it has been

 assigned by metatable.

 If you really want to set the metamethod later, then you can

 those to use any value for the __gc field as temporary:

 o = {x = “hi”}

 mt = {__gc = true}

 setmetatable (o, mt)

 mt .__ gc = function (o) print (ox) end

 o = nil

 collectgarbage () -> hi

 Now, as metatable field contains the __gc , object o po-

 tossed about for finalization. There is no problem in getting

 give a metamethod later; Lua only calls the finalizer if it

 is a function.

 When the garbage collector destroys multiple objects in one

 and in the same loop, it calls their finalizers in the reverse order

 the one in which the objects were marked for finalization. Consider

 Rome the following example that creates a linked list of objects

 with finalizers:

 mt = {__gc = function (o) print (o [1]) end}

 list = nil

 for i = 1, 3 do

 list = setmetatable ({i, link = list}, mt)

 end

 list = nil

 collectgarbage ()

 -> 3

 -> 2

 -> 1

 The first object to be finalized will be object 3, which was

 the last marked object.

 A common misconception is that linking

 ki between the destroyed objects can affect the order in

 where they will be finalized. For example, you might think that

 object 2 in the previous example must be finalized before

 object 1, since there is a link from 2 to 1. However, the links

 can form cycles. Therefore, they do not impose any

 order for finalization.

 Another subtle point related to finalizers is

 recovery . When the finalizer is called, it receives a fi

 an object to be parsed as a parameter. So the object

 becomes alive again, at least during finalization.

 I call this temporary recovery . At run time

 the finalizer does not prevent it from remembering the object, for example in

 a global variable so that the object remains accessible

 after the finalizer finishes. I call it permanent

 restoration .

 Recovery must be transitive. Consider the following-

 snippet of code:

 A = {x = “this is A”}

 B = {f = A}

 setmetatable (B, {__gc = function (o) print (ofx) end})

 A, B = nil

 collectgarbage () -> this is A

 The finalizer for B refers to A , so A cannot be removed.

 flax before finalizing Bed and . Lua must reconstruct both A and B before

 by calling the finalizer.

 Due to restoration, objects with finalizers have restored

 are carried out in two passes. The garbage collector first finds out that

 an object with a finalizer is unreachable (no one refers to it),

 then it restores that object and adds it to the queue for

 finalization. After executing the finalizer, Lua marks the object

 as finalized. The next time the garbage collector is

 finds out that the object is unreachable, he will destroy it. If you want to

 ensure that all the garbage in your program is truly its own

 run, then you must call collectgarbage twice; second call

 will destroy objects that were finalized during the first

 first call.

 The finalizer for each object is executed exactly once,

 because Lua marks objects that have already been finalized. If the volume

 the object has not been deleted before the end of the program, then Lua will call it in

 the very end. This feature allows you to implement in Lua an analog

 atexit functions, that is, functions that are called directly

 immediately before exiting the program. Anything for this

 what you need is to create a table with a finalizer and remember the link

 to it somewhere, for example in a global variable:

 _G.AA = {__gc = function ()

 - your 'atexit' code comes here

 print (“finishing Lua program”)

 end}

 setmetatable (_G.AA, _G.AA)

 Another interesting possibility is the ability to call

 call a specific function every time Lua exits the loop

 garbage collection. Since the finalizer is called exactly once,

 then you need to create a new object in the finalizer to call the next

 blowing finalizer:

 do

 local mt = {__gc = function (o)

 - whatever you want to do

 print (“new cycle”)

 - create a new object for the next cycle

 setmetatable ({}, getmetatable (o))

 end}

 - create the first object

 setmetatable ({}, mt)

 end

 collectgarbage () -> new loop

 collectgarbage () -> new loop

 collectgarbage () -> new loop

 Interaction of objects with finalizers and weak tables with

 keeps a subtle moment. The garbage collector cleans up values in a weak

 table before restoring while keys are being flushed

 after recovery. The following code snippet illustrates this

 behavior:

 - table with weak keys

 wk = setmetatable ({}, {__mode = “k”})

 - table with weak values

 wv = setmetatable ({}, {__mode = “v”})

 o = {} - object

 wv [1] = o; wk [o] = 10 - add to both tables

 setmetatable (o, {__gc = function (o)

 print (wk [o], wv [1])

 end})

 o = nil; collectgarbage () -> 10 nil

 During the execution of the finalizer, it finds the object in the table

 wk, but not in the wv table. The rationale for this behavior is

 that we often store object properties in tables with weak keys

 (as we discussed in Section 17.3) and finalizers can be

 need to refer to these attributes. However, we use tab-

 faces with weak values to reuse existing ones

 objects; in this case, the finalizable objects are no longer needed.

 Exercises

 Exercise 17.1. Write a code to check if

 does Lua really use ephemeral tables. (Not for-

 call collectgarbage for garbage collection.)

 check your code in both Lua 5.1 and Lua 5.2.

 Exercise 17.2. Consider the first example from section 17.6,

 creates a table with a finalizer that prints the message

 on call. What happens if the program ends

 without calling garbage collection? What happens if the program is

 calling os.exit ? What happens if the program terminates

 execution with error?

 Exercise 17.3. Suppose you need to implement caching

 a table for a function that takes a string and returns

 string. Using a weak table will prevent deletions

 records as weak tables do not consider rows

 as objects to be deleted. How can you implement caching

 in this case?

 Exercise 17.4. Explain the output of the following program:

 local count = 0

 local mt = {__gc = function () count = count - 1 end}

 local a = {}

 for i = 1, 10000 do

 count = count + 1

 a [i] = setmetatable ({}, mt)

 end

 collectgarbage ()

 print (collectgarbage "count" * 1024, count)

 a = nil

 collectgarbage ()

 print (collectgarbage "count" * 1024, count)

 collectgarbage ()

 print (collectgarbage "count" * 1024, count)

 Part III

 WITH TANDARD

 LIBRARIES

 Chapter 18

 Mathematical

 library

 In this and the following chapters on the standard library,

 my goal is not to give a complete specification of each function

 tion, but to show what functionality each

 library. I can omit some specific options, or

 behavior for clarity. The main goal is to ignite

 your curiosity, which can then be satisfied by reading-

 See the Lua documentation.

 The math library contains a standard set of mathematical

 functions such as trigonometric (sin , cos , tan , asin , acos

 etc.), exponentiation and logarithm (exp , log , log10),

 rounding (floor , ceil), min , max , functions for generating pseudo-

 tea numbers (random , randomseed) and the variables pi and huge (last

 it is the largest representable number, on some platforms

 forms can take the special value inf).

 All trigonometric functions work with radians. You can

 you can use deg and rad functions to convert between degrees

 and radians. If you want to work with degrees, you can re-

 define trigonometric functions:

 do

 local sin, asin, ... = math.sin, math.asin, ...

 local deg, rad = math.deg, math.rad

 math.sin = function (x) return sin (rad (x)) end

 math.asin = function (x) return deg (asin (x)) end

 ...

 end

 The math.random function generates pseudo-random numbers. we

 we can call it in three different ways. When we call her

 with no arguments, it returns a real pseudo-random number

 in the range [0, 1). When we call it with a single argument,

 integer n , then it returns a pseudo-random integer x lying

 between 1 and n . Finally, we can call it with two integer-

 with arguments l and u , then it will return a pseudo-random integer,

 lying between l and u .

 You can set the seed for the pseudo-random generator

 numbers using the randomseed function ; her only clean

 the primary argument is "seed". Usually when starting work

 programs the pseudo-random number generator is initialized

 some fixed value. This means that every time

 when you run your program it generates the same

 a sequence of pseudo-random numbers. For debugging, it turns out

 is very useful, but in the game you will always get one and

 also. The standard trick to combat this is to use

 setting the current time as a "seed" using a call

 math.randomseed (os.time ()) . The os.time function returns a number,

 representing the current time, usually as a number of seconds,

 marching from a certain date.

 The math.random function uses the rand function from the standard

 libraries of the C language. In some implementations, returns numbers with not

 very good statistical properties. You can reverse-

 to independent distributions in search of a better generator

 pseudo-random numbers. (Lua standard distribution does not include

 into itself a similar generator due to copyright issues. It

 contains only code written by the Lua authors.)

 Exercises

 Exercise 18.1. Write a function to check if

 is the given number a power of two.

 Exercise 18.2. Write a function to calculate the volume of the cone

 sa by its height and angle between its generatrix and axis.

 Exercise 18.3. Implement another pseudo-random generator

 numbers for Lua. Search the internet for a good algorithm. (You

 a library for bitwise operations may be needed.)

 Exercise 18.4. Using the math.random function , write

 function to get pseudo-random numbers from Gaussian

 distribution.

 Exercise 18.5. Write a function for mixing

 of this list. Make sure all options are equally likely.

 Chapter 19

 Library for bitwise operations

 A constant source of complaints about Lua is the lack of

 bitwise operations. This absence is by no means accidental. Not so easy

 reconcile bitwise operations with floating point numbers.

 We can express some of the bitwise operations as arithmetic

 tic operations. For example, shifts to the left correspond to multiplication

 by a power of two, shifts to the right correspond to division. One-

 bitwise AND and OR have no such arithmetic counterparts. They

 defined for binary representations of integers. Practically

 it is not possible to extend them to floating point operations. Even

 some simple operations are meaningless. What should be additional

 by 0.0? Should it be -1? Or 0xFFFFFFFF (what's in

 Lua is 4,294,967,295, which is clearly not -1)? Or maybe 2 64 –1

 (a number that cannot be accurately represented using a value like

 double)?

 To avoid such problems, Lua 5.2 introduces

 operations using a library, not as built into the language

 operations. This makes it clear that these operations are not "genus"

 ny "for numbers in Lua, but they use a certain interpretation.

 for working with these numbers. Moreover, other libraries

 may suggest other interpretations of bitwise operations (e.g.

 measures using more than 32 bits).

 For most of the examples in this chapter, I will use six

 decimal notation. I will use the word MAX to indicate

 values 0xFFFFFFFF (that is, 2 32 –1). In the examples I will use

 the following additional function:

 function printx (x)

 print (string.format (“0x% X”, x))

 end

 The bitwise library in Lua 5.2 is called bit32 . As follows from

 name, it works with 32-bit numbers. Since and , or and not

 are reserved words in Lua, then the corresponding

 the functions are named band , bor and bnot . For the sequence in the name

 The function for bitwise exclusive OR is named bxor :

 printx (bit32.band (0xDF, 0xFD)) -> 0xDD

 printx (bit32.bor (0xD0, 0x0D)) -> 0xDD

 printx (bit32.bxor (0xD0, 0xFF)) -> 0x2F

 printx (bit32.bnot (0))

 -> 0xFFFFFFFF

 The band , bor and bxor functions accept any number of arguments.

 Tov:

 printx (bit32.bor (0xA, 0xA0, 0xA00)) -> 0xAAA

 printx (bit32.band (0xFFA, 0xFAF, 0xAFF)) -> 0xAAA

 printx (bit32.bxor (0, 0xAAA, 0))

 -> 0xAAA

 printx (bit32.bor ())

 -> 0x0

 printx (bit32.band ())

 -> 0xFFFFFFFF

 printx (bit32.bxor ())

 -> 0x0

 (They are all commutative and associative.)

 The bitwise library works with unsigned integers.

 During operation, any number passed as an argument is converted to

 an integer in the range 0-MAX . First, the unspecified numbers are ok-

 swear in an unspecified way. Second, numbers out of range

 0-MAX are converted to it using the modulus operation:

 integer n becomes n % (2 32). This operation is equivalent to getting

 the binary representation of the number and then taking its least significant 32 bits.

 As expected, -1 becomes MAX . You can use the following-

 operations to normalize a number (that is, to display it in

 range 0-MAX):

 printx (bit32.bor (2 ^ 32))

 -> 0x0

 printx (bit32.band (-1))

 -> 0xFFFFFFFF

 Of course, in standard Lua it's easier to just do n% (2 ^ 32) .

 Unless explicitly specified, all functions in the library return re-

 the result, which also lies in 0-MAX . However, you should be

 tricky when using the results of bitwise operations in

 as ordinary numbers. Sometimes Lua is compiled using other

 second type for numbers. In particular, some systems with limited

 capabilities use 32-bit numbers as numbers in Lua.

 In these systems, MAX = -1 . Moreover, some bitwise libraries

 thecas use different conventions for their results. By-

 this whenever you need to use the result of the bitwise

 operations as a number, be careful. Avoid comparisons:

 instead of x <0 write bit32.btest (x, 0x80000000) . (We will soon see

 dim the btest function .) Use the bitwise library itself to

 normalizing constants:

 if bit32.or (a, b) == bit32.or (-1) then

 <some code>

 The bitwise library also defines operations for shifting and

 bit rotation: lshift to shift left; rshift and arshift to shift-

 ha to the right; lrotate for left rotation and rrotate for rotation

 right. Except for arithmetic shift (arshift), all

 shifts fill new bits with zeros. Arithmetic shift for

 fills the bits on the left with copies of its last bit.

 printx (bit32.rshift (0xDF, 4))

 -> 0xD

 printx (bit32.lshift (0xDF, 4))

 -> 0xDF0

 printx (bit32.rshift (-1, 28))

 -> 0xF

 printx (bit32.arshift (-1, 28))

 -> 0xFFFFFFFF

 printx (bit32.lrotate (0xABCDEF01, 4)) -> 0xBCDEF01A

 printx (bit32.rrotate (0xABCDEF01, 4)) -> 0x1ABCDEF0

 Shift or rotation by a negative number of bits shifts (rotate

 em) in the opposite direction. For example, shift -1 bit to the right

 is equivalent to shifting 1 bit to the left. The result of a shift by more than

 31 bits is 0 or MAX because all original bits are gone:

 printx (bit32.lrotate (0xABCDEF01, -4)) -> 0x1ABCDEF0

 printx (bit32.lrotate (0xABCDEF01, -36)) -> 0x1ABCDEF0

 printx (bit32.lshift (0xABCDEF01, -36)) -> 0x0

 printx (bit32.rshift (-1, 34))

 -> 0x0

 printx (bit32.arshift (-1, 34))

 -> 0xFFFFFFFF

 In addition to these more or less standard operations, bitwise

 the library also provides three additional functions.

 The btest function performs the same operation as band , but returns

 Returns the result of comparing a bitwise operation with zero:

 print (bit32.btest (12, 1))

 -> false

 print (bit32.btest (13, 1))

 -> true

 Another common operation is to retrieve specified

 bits from the number. Usually this operation involves shifting and

 bitwise AND; a bitwise library packs it all into one

 function. The call bit32.extract (x, f, w) returns w bits from x , on-

 starting from bit f :

 printx (bit32.extract (0xABCDEF01, 4, 8)) -> 0xF0

 printx (bit32.extract (0xABCDEF01, 20, 12)) -> 0xABC

 printx (bit32.extract (0xABCDEF01, 0, 12)) -> 0xF01

 This operation counts bits from 0 to 31. If the third argument is

 ment (w) is not specified, then it is considered equal to one:

 printx (bit32.extract (0x0000000F, 0)) -> 0x1

 printx (bit32.extract (0xF0000000, 31)) -> 0x1

 The reverse of the extract operation is the replace operation , which

 paradise replaces the given bits. The first parameter is the outcome

 number. The second parameter specifies the value to be inserted.

 The last two parameters, f and w , have the same meaning as in bit32.

 extract :

 printx (bit32.replace (0xABCDEF01, 0x55, 4, 8)) -> 0xABCDE551

 printx (bit32.replace (0xABCDEF01, 0x0, 4, 8)) -> 0xABCDE001

 Note that for any valid values of x , f and w

 the following equality holds:

 assert (bit32.replace (x, bit32.extract (x, f, w), f, w) == x)

 Exercises

 Exercise 19.1. Write a function to check what is

 this number is a power of two.

 Exercise 19.2. Write a function to calculate a number

 single bits in binary representation of a number.

 Exercise 19.3. Write a function to check if

 Whether the binary representation of a number is a palindrome.

 Exercise 19.4. Define shift operations and bitwise

 AND using Lua arithmetic operations.

 Exercise 19.5. Write a function that receives a string,

 encoded in UTF-8, and returns its first character as

 number. The function should return nil if the line does not start

 with a valid UTF-8 sequence.

 Chapter 20

 Library

 for working with tables

 The table library contains additional functions that allow

 for working with tables as arrays. It provides

 functions for inserting and removing items from the list, for sorting

 ki array elements and to concatenate all strings in the array.

 20.1. Insert and remove functions

 The table.insert function inserts an element at a given location in the array,

 shifting the rest of the elements in order to make space. On-

 example, if t is an array {10, 20, 30} , then after calling table.

 insert (t, 1,15) t will be {15, 10, 20, 30} . Special (and

 quite common), the case is to call insert without specifying a

 insertion, then the element is inserted at the very end of the array and shift

 no elements happen. As an example, the following code reads

 input line by line, remembering all lines in the array:

 t = {}

 for line in io.lines () do

 table.insert (t, line)

 end

 print (#t) -> (number of lines read)

 In Lua 5.0, this technique is fairly common. In later

 versions, I prefer to use t [# t + 1] = line in order to

 add a string to the array.

 The table.remove function removes (and returns) an element from the given

 place of the array, shifting the next elements of the array.

 If, when calling, the position inside the array was not specified, then delete

 The last element of the array is taken.

 With these two functions it is quite easy to implement

 stacks, queues and double queues. We can initialize

 similar structures like t = {} . The operation of adding an item

 is equivalent to table.insert (t, x) ; the operation of removing an element of equivalent

 valence table.remove (t). The call to table.insert (t, 1, x) adds

 element to the other end of the corresponding structure, and a call to table.

 remove (t, 1) accordingly removes an element from that end. Two

 the latter operations are not particularly effective as they should

 move all elements of the array in memory. However, since the Bible

 In the table library, these functions are implemented in C, they are not

 are too expensive and work well for small arrays (up to

 several hundred elements).

 20.2. Sorting

 Another useful function for working with arrays is table.

 sort ; we've seen it before. It takes as arguments

 an array and optionally a function for comparison. This function is

 takes two arguments as input and must return true if the first

 the element must come before the second. If this function is not specified, then

 the sort function uses the standard '<' operator.

 Typical confusion occurs when a programmer tries to

 sort the indexes in the table. In the table, the indices form many

 property in which there is no ordering. If you want them

 sort, then you need to copy them into an array and sort

 this array. Let's take an example. May you read the input

 file and built a table, which for each function name co-

 holds the line where this function was defined: something like

 next:

 lines = {

 luaH_set = 10,

 luaH_get = 24,

 luaH_present = 48,

 }

 And now you need to print these functions in alphabetical order

 row. If you traverse this table with the pairs function ,

 then the names will appear in no particular order. You can't explicitly

 sort as these names are table keys.

 However, if you put them in an array, then already this array

 can be sorted. So you first need to create an array

 with these names, then sort it and only then print

 result:

 a = {}

 for n in pairs (lines) do a [#a + 1] = n end

 table.sort (a)

 for _, n in ipairs (a) do print (n) end

 Some are confused. After all, Lua arrays don't contain any

 what ordering (arrays are actually tables). Poet-

 to that we impose ordering when working with indexes that

 can be ordered. This is why you are better off traversing the array when

 help ipairs , not pairs . The first of these functions sets

 the order of the keys is 1, 2, 3, ..., while the second just uses

 arbitrary order from the table.

 As a more advanced solution, we can write an iteration

 A generator for traversing a table using a given key order.

 The optional f parameter specifies this order. This sleep iterator is

 chala sorts the keys into a separate array, and then bypasses this

 array. At each step, it returns a key and the corresponding value

 reading from the original array:

 function pairsByKeys (t, f)

 local a = {}

 for n in pairs (t) do a [#a + 1] = n end

 table.sort (a, f)

 local i = 0

 return function () - iterating function

 i = i + 1

 return a [i], t [a [i]]

 end

 end

 With this iterator it is easy to print function names in

 alphabetical order:

 for name, line in pairsByKeys (lines) do

 print (name, line)

 end

 20.3. Concatenation

 We have already seen the table.concat function in section 11.6 . She takes on

 input is a list of strings and returns the result of the concatenation of all these

 lines. The optional second argument specifies the delimiter string.

 There are also two more optional arguments that specify the

 dexes of the first and last strings to be concatenated.

 The following function is an interesting generalization of table.

 concat . It can accept nested lists of strings as input:

 function rconcat (l)

 if type (l) ~ = “table” then return l end

 local res = {}

 for i = 1, #l do

 res [i] = rconcat (l [i])

 end

 return table.concat (res)

 end

 For each item in the list, rconcat recursively calls itself

 for processing nested lists. Then it calls table.

 concat to combine intermediate results.

 print (rconcat {{“a”, {“nice”}}, “and”, {{“long”}, {“list”}}})

 -> a nice and long list

 Exercises

 Exercise 20.1. Rewrite the rconcat function so that for

 it could be given a separator string:

 print (rconcat ({{{“a”, “b”}, {“c”}}, “d”, {}, {“e”}}, “;”)

 -> a; b; c; d; e

 Exercise 20.2. The problem with table.sort is that this

 sort is not stable (stable sort), that is, ele-

 the cops that the sorting function considers to be equal can

 They can change their order during the sorting process. How can you

 implement robust sorting in Lua?

 Exercise 20.3. Write a function to check if

 Whether the specified table is a valid sequence.

 Exercises

 CHAPTER 21

 Library for working with strings

 Immediate possibilities of working with strings interpreted

 Lua's are pretty limited. The program can create strings, co-

 combine them and get the length of the string. But she cannot extract sub-

 strings or examine their contents. True power to work

 with strings comes from her library for working with strings.

 A library for working with strings is available as the string module .

 Since Lua 5.1, functions are also exported as string methods

 (using metatables). So, a line break in capital letters

 can be written as string.upper (s) or s: upper () . Choose

 yourself.

 21.1. Main functions for working with strings

 Some functions for working with strings in the library are extremely

 are simple: calling string.len (s) returns the length of string s . She ek-

 is equivalent to #s . Calling string.rep (s, n) (or s: rep (n)) returns

 string s repeated n times. You can create a 1MB string (on-

 example, for tests) with string.rep (“a”, 2 ^ 20) . Call

 string.lower (s) returns a copy of the uppercase string-

 mi replaced by lowercase; all other characters remain unchanged.

 (The string.upper function converts lowercase letters to uppercase.)

 As an example, if you want to sort strings outside of the

 from uppercase / lowercase letters, you can use the following

 next piece of code:

 table.sort (a, function (a, b)

 return a: lower () <b: lower ()

 end)

 The call to string.sub (s, i, j) returns the substring of s starting at

 i -th character and ending with j -th (inclusive). In Lua, the first character is

 row has index 1. You can also use negative

 indices that are counted from the end of the line: index -1 referen-

 goes to the last character of the string, –2 to the penultimate character, and so on.

 So calling string.sub (s, 1, j) (or s: sub (1, j)) will return

 specifies the beginning of a string of length j ; string.sub (s, j, -1) (or just

 s: sub (j) because the default for the last argument is

 minta is –1) returns the end of the string starting from the j -th character;

 and string.sub (s, 2, -2) returns a copy of the string s , in which the

 we are the first and last characters:

 s = "[in brackets]"

 print (s: sub (2, -2)) -> in brackets

 Remember that strings in Lua are immutable. String.sub function ,

 like any other function in Lua, it doesn't change the value of the string, but

 returns a new string. A common mistake is to use

 something like s: sub (2, -2) and expect this to change the value of st-

 ki s . If you want to change the value of a variable, then you must

 assign a new value to it:

 s = s: sub (2, -2)

 The string.char and string.byte functions translate between characters

 and their internal numeric representations. String function

 char takes integers as input, converts each of them to sym-

 ox and returns a string built from all these characters. Call

 string.byte (s, i) returns internal numeric representation

 i -th character of string s ; the second argument is optional, the call to string.

 byte (s) returns the internal numeric representation of the first

 string character s . In the following examples, we assume that the characters

 represented by ASCII encoding:

 print (string.char (97))

 -> a

 i = 99; print (string.char (i, i + 1, i + 2)) -> cde

 print (string.byte (“abc”))

 -> 97

 print (string.byte (“abc”, 2))

 -> 98

 print (string.byte (“abc”, -1))

 -> 99

 On the last line, we used a negative index for

 access to the last character of the line.

 Since Lua 5.1, the string.byte function supports the third one,

 optional argument. Calling string.byte (s, i, j) returns

 numerical representations of all characters at once between

 indices i and j (inclusive):

 print (string.byte (“abc”, 1, 2)) -> 97 98

 The default for j is i , so the call without

 the third of its argument returns the i- th character. Calling {s: byte (1, -1)}

 creates a table with codes of all characters in string s . According to this table

 we can get the original string by calling string.

 char (table.unpack (t)) . This trick does not work for very long

 lines (more than 1 MB), since Lua has a limit on the number of

 values rotated by the function.

 The string.format function is a powerful tool for

 formatting strings, usually for output. She returns the

 a matted version of its arguments (supported by

 free number of arguments) using the description given by its first

 argument, the so-called format string . For this line

 there are rules similar to those for the printf function from

 the standard C library: it consists of plain text and

 pointers that control where and how to place each argument

 cop in the resulting string. The pointer consists of a '%' character ,

 followed by a character specifying how to format the argument

 ment: 'd' for decimal numbers, 'x' for hexadecimal numbers,

 'o' for octal, 'f' for floating point numbers, 's' for

 lines, there are also some other options. Between '%' and sym-

 there may be other options that specify formatting,

 such as the number of decimal digits for a floating point number:

 print (string.format (“pi =% .4f”, math.pi)) -> pi = 3.1416

 d = 5; m = 11; y = 1990

 print (string.format (“% 02d /% 02d /% 04d”, d, m, y)) -> 05/11/1990

 tag, title = “h1”, “a title”

 print (string.format (“<% s>% s </% s>”, tag, title, tag))

 -> <h1> a title </h1>

 In the first example, % .4f is a floating point number with

 three digits after the decimal point. In the second example, % 02d

 denotes a decimal number of at least two digits, if necessary

 walkability padded with zeros; % 2d without zero will pad the number

 spaces. For a complete description of these options, refer to the

 See the Lua manual, or refer to the C manual.

 since Lua uses the C library to do all

 hard work here.

 21.2. Functions for work

 with templates

 The most powerful functions in the library for working with strings are

 mi are find , match and gsub (global substitution) functions

 and gmatch (global search). They are all template based .

 Unlike a number of other scripting languages, Lua does not use

 neither POSIX syntax nor language syntax for working with templates

 Perl. The main reason for this decision is size: typical

 ny implementation of POSIX regular expressions takes over 4000

 lines of code. This is larger than all the standard Lua libraries, taking

 together. For comparison, the implementation of working with templates in Lua is

 takes less than 600 lines. Of course, the implementation of working with templates in

 Lua is inferior to a full-fledged POSIX implementation. Still working with

 templates in Lua is a powerful tool and includes

 some features that are difficult to relate to standard

 POSIX implementations.

 String.find function

 The string.find function searches for a given pattern within a string. Pros-

 The strongest case of a pattern is a word that matches

 your copy. For example, the pattern 'hello' will search for the substring

 “Hello” within the entire given string. When finding template find

 returns two values: the index from which the co-

 drop, and the index where the match ends. If the match is not

 found, then nil is returned :

 s = “hello world”

 i, j = string.find (s, “hello”)

 print (i, j)

 -> 1 5

 print (string.sub (s, i, j))

 -> hello

 print (string.find (s, “world”)) -> 7 11

 i, j = string.find (s, “l”)

 print (i, j)

 -> 3 3

 print (string.find (s, “lll”))

 -> nil

 When the search for the template is completed successfully, we can call

 string.sub with returned values in order to get

 part of the original string that matches the pattern. For simple

 templates, such a string will be the template itself.

 The string.find function has an optional third parameter: in-

 dex specifying where within the string the search should start.

 This parameter is useful when we want to get all

 pattern occurrences: in this case we call the search function

 repeatedly, each time starting the search after the position at which

 a previous match was found. As an example, the following

 the following code builds a table with the positions of all '\ n' characters inside

 lines:

 local t = {}

 - table for storing indexes

 local i = 0

 while true do

 i = string.find (s, “\ n”, i + 1) - looking for the next occurrence

 if i == nil then break end

 t [#t + 1] = i

 end

 Later we will see an easier way to write such loops,

 using the iterator string.gmatch .

 String.match function

 The string.match function is similar to string.find in the sense that it

 also searches for occurrences of a pattern in a string. However, instead of

 return the position where the pattern was found, it returns the part

 lines matching the pattern:

 print (string.match (“hello world”, “hello”)) -> hello

 For simple templates like 'hello' this function is meaningless.

 la. It shows its power when used with difficult

 templates as in the following example:

 date = “Today is 17/7/1990”

 d = string.match (date, “% d + /% d + /% d +”)

 print (d) -> 7/17/1990

 We will discuss shortly both the meaning of the pattern '% d + /% d + /% d +' and

 more complex use of string.match .

 String.gsub function

 The string.gsub function has three required parameters:

 ku, pattern and replacement string. She is used to replace all

 occurrences of the pattern in the original string by the given string:

 s = string.gsub (“Lua is cute”, “cute”, “great”)

 print (s)

 -> Lua is great

 s = string.gsub (“all lii”, “l”, “x”)

 print (s)

 -> axx xii

 s = string.gsub (“Lua is great”, “Sol”, “Sun”)

 print (s)

 -> Lua is great

 The optional fourth parameter limits the number of

 replaceable replacements:

 s = string.gsub (“all lii”, “l”, “x”, 1)

 print (s)

 -> axl lii

 s = string.gsub (“all lii”, “l”, “x”, 2)

 print (s)

 -> axx lii

 The string.gsub function also returns as the second value

 the number of replacements performed. For example, in a simple way,

 th the number of spaces in a line is

 count = select (2, string.gsub (str, ““, ““))

 String.gmatch function

 The string.gmatch function returns a function that iterates over

 all occurrences of the pattern in a string. For example, the following example co-

 takes all words in a given string s :

 words = {}

 for w in string.gmatch (s, “% a +”) do

 words [#words + 1] = w

 end

 As we will discuss shortly, the pattern '% a +' matches the occurrence

 one or more letters (i.e. words). Therefore, the cycle is

 denotes all the words within the string, storing them in the words table .

 The following example implements a function similar to package.

 searchpath using gmatch and gsub :

 function search (modname, path)

 modname = string.gsub (modname, “%.”, “/”)

 for c in string.gmatch (path, “[^;] +”) do

 local fname = string.gsub (c, “?”, modname)

 local f = io.open (fname)

 if f then

 f: close ()

 return fname

 end

 end

 return nil - not found

 end

 The first step is to replace all dots with a delimiter in the path,

 which is considered equal to '\' . (As we will see below, the point has

 special meaning in templates. To match the point we

 should write '%.'). Then the function iterates over all the components

 paths where all questions are replaced for each component

 adjectives to the module name and it is checked if such

 what file. If so, the function closes this file and returns it

 name.

 21.3. Templates

 You can make templates more useful with classes

 characters . A character class is an element in a template that can

 match any character from the given set. For example

 measures, class % d matches any digit. Therefore, one can

 search for date in dd / mm / yyyy format using template % d% d /% d% d /

 % d% d% d% d :

 s = “Deadline is 30/05/1999, firm”

 date = "% d% d /% d% d /% d% d% d% d"

 print (string.sub (s, string.find (s, date))) -> 30/05/1999

 The following table contains a list of all character classes:

 ...

 All symbols

 % a

 Letters

 % c

 Control characters

 % d

 Numbers

 % g

 Printed characters other than space

 % l

 Lower case

 % p

 Punctuation symbols

 % s

 Whitespace characters

 % u

 Lower case

 % w

 Letters and numbers

 % x

 Hexadecimal digits

 If you use the appropriate class as the class name

 capital letter, then it corresponds to the complement of the class (that is, all

 characters outside the class). For example, '% A' matches all

 non-letters:

 print (string.gsub (“hello, up-down!”, “% A”, “.”))

 -> hello..up.down. 4

 (4 are not part of the resulting string. This is the second value.

 The value returned by gsub is the total number of replacements performed. I will

 further omit this number in the following examples that print the results

 tat calling gsub .)

 Some symbols, called magic symbols , have

 a special value within a template. Magic symbols are

 go

 (). % + - *? [] ^ $

 The '%' character is used to insert these characters into the pattern.

 So, '%.' corresponds to the point; '%%' matches the character itself

 '%' . You can use '%' like this not only with ma-

 symbols, but also with any non-alphanumeric symbols

 oxen. When in doubt, use '%' instead .

 For a Lua parser, templates are just plain strings. They

 obey the same rules as the rest of the lines. Only

 functions for working with templates treat them as templates,

 and only these functions use the special character meaning

 '%' . To put quotes inside a template, use the same

 the very tricks used to put quotes inside

 other lines.

 You can also create your own classes by grouping different

 personal classes and symbols within square brackets. For instance,

 class '[% w_]' matches alphanumeric characters and sym-

 ox underlining; class '[01]' matches binary digits;

 class '[% [%]]' matches square brackets. In order to

 count the number of vowels in the text, you can use the following-

 the following code:

 nvow = select (2, string.gsub (text, “[AEIOUaeiou]”, “”))

 You can also include ranges of sym-

 oxen, writing down the first and last characters, separated by signs

 lump minus. I rarely use this, as most of the

 the ranges used are already defined; for example, '[0-9]' is

 is the same as '% d' and '[0-9a-fA-F]' is the same as

 '% x' . However, if you need octal digits, then you can

 you can use '[0-7]' instead of '[01234567]' , you can also

 get the complement of any class by prefixing the '^' character :

 so the pattern '[^ 0-7]' matches any character that is not

 an octal digit, and '[^ \ n]' matches any character from-

 personal from '\ n' . However, remember that built-in classes can be

 before it is easier to use the capitalized variant: '% S' is easier than

 '[^% s]' .

 Templates can be made more useful by using the mod-

 fixers for specifying the number of repetitions and optional parts.

 Lua templates offer four such modifiers:

 +

 1 or more reps

 *

 0 or more reps

 -

 0 or shorter reps

 ?

 Optional (0 or 1 time)

 The modifier '+' matches one or more sim-

 oxen of a given class. It will always return the longest occurrence

 template. For example, the pattern '% a +' denotes one or more letters,

 that is the word:

 print (string.gsub (“one, and two; and three”, “% a +”, “word”))

 -> word, word word; word word

 The pattern '% d +' matches one or more digits (meaning

 an unsigned number):

 print (string.match (“the number 1298 is even”, “% d +”)) -> 1298

 The modifier '*' is similar to '+' , but it also allows null

 the number of occurrences of characters from this class. Used frequently

 to indicate optional spaces between template parts.

 For example, for a pattern matching a pair of parentheses (perhaps

 with spaces in between), you can use the following pattern:

 '% (% s *%)' : pattern '% s *' matches zero or more

 spaces between brackets. (The parentheses also have a special meaning

 patterns, so we specify them using the '%' character .)

 As another example, the pattern '[_% a] [_% w] *' matches

 identifiers inside a Lua program: starts with a space

 or underscore followed by zero or more

 underscores and alphanumeric characters.

 Like '*' , the modifier '-' also matches zero or

 more characters of the given class. However, instead of

 matches the longest sequence it matches

 the shortest sequence. Sometimes there is nothing in between

 what a difference, but usually they give different results. For instance,

 if you try to find an id using a template

 '[_% a] [_% a] -' , then you will receive only the first character of the identification

 torus because '[_% a] -' matches an empty sequence.

 On the other hand, let's say you want to find comments in a program

 me in C. Most will try to use the pattern '/%*.*%*/'

 (that is, “/ *” followed by any sequence of characters

 fishing followed by “* /”). However, since '. *' Will try

 match as many characters as possible, then the first "/ *"

 will close only with the most recent “* /” in the program:

 test = “int x; / * x * / int y; / * y * / "

 print (string.match (test, “/%*.*%*/”))

 -> / * x * / int y; / * y * /

 The pattern '.-' captures the least number of characters required

 given for the first “* /”, and thus gives the desired result:

 test = “int x; / * x * / int y; / * y * / "

 print (string.gsub (test, “/%*.-%*/”, “”))

 -> int x; int y;

 Last modifier '?' matches optional with-

 accompanying symbol. For example, let's say we want to find the number

 in text, which can contain an optional character. Template

 '[+ -]?% d +' successfully copes with the job, finding such

 numbers like “-12” , “23” and “+1009” . The class '[+ -]' matches

 either the '+' character or the '-' character ; the next character '?' de-

 barks this character optional.

 Unlike other systems, in Lua the modifier can be

 changed to character class only; you cannot group templates under

 one modifier sign. For example, there is no template matching

 an optional word (unless it consists of one

 symbol). Usually this limitation can be bypassed by

 advanced techniques that we will see at the end of this chapter.

 If the pattern starts with a '^' character then it will match-

 only with the beginning of the line. Likewise if the pattern ends

 with the '$' character , it will match only the end of the string. You

 you can use both of these symbols to create templates. On-

 example, the following test checks if a string starts with a digit:

 if string.find (s, “^% d”) then ...

 The following test verifies that the string is a number, with no other

 their characters at the beginning or end:

 if string.find (s, “^ [+ -]?% d + $”) then ...

 The characters '^' and '$' have this meaning only when they come across

 are located at the beginning or at the end of the line, respectively. Otherwise, they will

 fall like ordinary symbols.

 Another element in the template is '% b' . We write it down

 like '% b xy ' where x and y are two different characters; character x will speak

 falls as the opening character and y as the closing character . For instance,

 the pattern '% b ()' matches the part of the string that starts with '('

 and ends with ')' :

 s = “a (enclosed (in) parentheses) line”

 print (string.gsub (s, “% b ()”, “”)) -> a line

 We usually use this pattern as '% b ()' , '% b []' , '% b {}'

 or '% b <>' , but you can use any

 bye symbols.

 Finally, the '% f [char-set]' element is a border pattern . is he

 defines the place where the next character is contained in the class

 char-set and the previous one is not:

 s = “the anthem is the theme”

 print (s: gsub (“% f [% w] the% f [% W]”, “one”))

 -> one anthem is one theme

 The pattern '% f [% w]' matches the border between non-alphabetic

 numeric and alphanumeric characters, and the pattern '% f [% W]'

 matches the boundary between an alphanumeric character and a non-

 alphanumeric character. Therefore, the given template corresponds

 matches the string "the" as a whole word. note that

 we must write many symbols inside square

 side even when it's just one class.

 Positions before the first and after the last are interpreted as

 holding the character with code 0. In the previous example, the first "the"

 starts with a border between a null character (not in class ' [% w]')

 and 't' (in class '[% w]').

 The border pattern was implemented in Lua 5.1, but is not documented.

 It only became official in Lua 5.2.

 21.4. Grips

 The capture mechanism allows the template to remember parts of the string, satisfying

 elements of the template for later use. You

 you can specify the capture by capturing the parts of the template you want to capture

 enough, inside parentheses.

 When there are captures in the template, the string.match function will return

 Spreads each captured value as a separate result; others

 in words, it splits the string into its captured pieces.

 243

 pair = “name = Anna”

 key, value = string.match (pair, “(% a +)% s * =% s * (% a +)”)

 print (key, value) -> name Anna

 The pattern '% a +' specifies a non-empty sequence of letters; template

 '% s *' specifies a possibly empty sequence of spaces. By-

 for this in the example above, the entire pattern defines a sequence of letters,

 followed by a sequence of spaces, followed by

 there is an equal sign '=' , followed again by the sequence

 spaces followed by another sequence of letters. Both

 their sequences of letters, their corresponding patterns are

 are in parentheses, so they will be captured on match.

 A similar example follows:

 date = “Today is 17/7/1990”

 d, m, y = string.match (date, “(% d +) / (% d +) / (% d +)”)

 print (d, m, y) -> 17 7 1990

 Inside the template, element '% d ' , where d is a digit, matches a copy

 d -th captured line. As an example, consider the case when

 yes, you want to find a substring enclosed in ordinary ones inside a string

 or double quotes. You can try the pattern '[“'] .- [“ ']' ,

 that is, a quotation mark followed by anything followed by

 another quote; but you will have problems with lines like

 “It's all right” . To solve this problem, we can capture

 the first quote and use that to specify the second quote:

 s = [[then he said: “it's all right”!]]

 q, quotedPart = string.match (s, “([\” ']) (.-)% 1 ”)

 print (quotedPart)

 -> it's all right

 print (q)

 -> “

 The first captured value is the quote character itself, and the second

 the captured value is a substring between quotes (substring,

 satisfying '.-').

 For another similar example, we can take a template with

 corresponding to long lines in Lua:

 % [(= *)% [(.-)%]% 1%]

 It matches an opening square bracket followed by

 followed by zero or more equal signs, followed by

 blows another open square bracket followed by that

 anything (line itself) followed by a closing square

 a parenthesis followed by the same number of equal signs,

 followed by another closing square bracket:

 p = “% [(= *)% [(.-)%]% 1%]”

 s = “a = [= [[[something]]] ==]] =]; print (a) "

 print (string.match (s, p)) -> = [[something]]] ==]

 The first capture is a sequence of equal signs (in the example

 re only one character); the second captured value is the string itself.

 Also the captured values can be used in the override

 line in gsub . Like the template, the replacement string can contain

 the elements '% d ' , which are replaced with the corresponding captured

 values when performing substitution. In particular, the element

 '% 0' matches the entire portion of the string that matches the pattern.

 (Note that the '%' character in the replacement string must be written

 sounded like '%%' .) Another example:

 print (string.gsub (“hello Lua!”, “% a”, “% 0-% 0”))

 -> h-he-el-ll-lo-o L-Lu-ua-a!

 The following example rearranges adjacent characters:

 print (string.gsub (“hello Lua”, “(.) (.)”, “% 2% 1”)) -> ehll ouLa

 As a more useful example, let's write a simple pre-

 format builder that receives a string with commands as input

 in LaTeX style and translates them into XML format:

 \ command {some text} -> <command> some text </command>

 If we prohibit nested commands, then the next call

 string.gsub does the job:

 s = [[the \ quote {task} is to \ em {change} that.]]

 s = string.gsub (s, “\\ (% a +) {(.-)}”, “<% 1>% 2 </% 1>”)

 print (s)

 -> the <quote> task </quote> is to change that.

 (We'll see how to handle nested commands later.)

 Another useful example is removing spaces from the beginning.

 la and end of line:

 function trim (s)

 return (string.gsub (s, “^% s * (.-)% s * $”, “% 1”))

 end

 Pay attention to the careful use of formats. Two

 anchors ('^' and '$') ensure that we get the entire string. Since-

 ku '.-' tries to pick the shortest string, then two patterns

 '% s *' captures all white space around the edges. Also note

 that since gsub returns two values, we use a circle-

 left brackets to discard excess (number of substitutions).

 21.5. Substitutions

 Instead of a string as the third argument to string.gsub, we can

 use a function or table. When using the function

 string.gsub calls the function every time it finds

 a substring matching the pattern; arguments of each call are

 the captured values are captured, and the function's return value

 used as a replacement string. When the third argument is

 is a table, the string.gsub function turns into a table

 face using the first captured value as a key and the resulting

 the value from the table as a replacement string. If received from

 function or table value is nil , then for a given match

 no replacement is made.

 As a first example, consider the execution of a simple

 settings - each occurrence of $ varName is replaced with the value of the glo-

 point variable varName :

 function expand (s)

 return (string.gsub (s, “$ (% w +)”, _G))

 end

 name = “Lua”; status = "great"

 print (expand (“$ name is $ status, isn't it?”))

 -> Lua is great, isn't it?

 For each match with the pattern '$ (% w +)' (dollar sign, for

 followed by a variable name) the gsub function looks for a matching

 variable in _G , the found value replaces the occurrence of the pattern

 bosom into a string. When there is no corresponding variable in the table, then

 replacement is not made:

 print (expand (“$ othername is $ status, isn't it?”))

 -> $ othername is great, isn't it?

 If you are not sure if the corresponding variables have

 string values, then you can try tostring

 to these values. In this case, as a substitute value, you

 you can use the function:

 function expand (s)

 return (string.gsub (s, “$ (% w +)”, function (n)

 return tostring (_G [n])

 end))

 end

 print (expand (“print = $ print; a = $ a”))

 -> print = function: 0x8050ce0; a = nil

 6

 Now, for each match against the pattern '$ (% w +)' gsub is called

 Gets the specified function, passing the name as an argument; function of

 rotates the replacement value.

 In the last example, we go back to the format conversion

 teams. We again want to transform commands from LaTeX style

 (\ example {text}) to XML style (<example> text </example>), but on

 this time we will process nested commands. Next

 the function uses recursion to solve our problem:

 function toxml (s)

 s = string.gsub (s, “\\ (% a +) (% b {})”, function (tag, body)

 body = string.sub (body, 2, -2) - remove brackets

 body = toxml (body) - processing nested commands

 return string.format (“<% s>% s </% s>”, tag, body, tag)

 end)

 return s

 end

 print (toxml (“\\ title {The \\ bold {big} example}”))

 -> <title> The <bold> big </bold> example </title>

 URL encoding

 For our next example, we will use the coding

 The URL that HTTP uses to pass parameters in the URL.

 This encoding replaces special characters (such as '=' , '&'

 and '+') to '% xx ' , where xx is the character hex code. After

 it then replaces spaces with '+' . For example, the string "a + b = c" Bu

 det is coded as “a% 2Bb +% 3D + c” . Also the name of each parameter

 and its value with an equal sign between them is added to the total

 On the next line, the variables are separated from each other by '&' .

 For example, the values

 name = “al”; query = “a + b = c”; q = "yes or no"

 will be encoded as “name = al & query = a% 2Bb +% 3D + c & q = yes + or + no” .

 Now suppose we want to decode such a URL and write each

 get the value into the table by its name. The next function is to

 completes similar decoding:

 function unescape (s)

 s = string.gsub (s, “+”, ““)

 s = string.gsub (s, “%% (% x% x)”, function (h)

 return string.char (tonumber (h, 16))

 end)

 return s

 end

 247

 The first operator replaces every '+' with a space. The second finds

 hexadecimal encoded characters and for

 each such character calls an anonymous function. This function

 ration converts the hexadecimal representation to a number (tonumber

 base 16) and returns the corresponding character (string.

 char). For instance:

 print (unescape (“a% 2Bb +% 3D + c”)) -> a + b = c

 To decode name = value pairs, we use the function

 gmatch . Since both name and value cannot contain characters

 '&' and '=' , then we can use the pattern '[^ & =] +' :

 cgi = {}

 function decode (s)

 for name, value in string.gmatch (s, “([^ & =] +) = ([^ & =] +)”) do

 name = unescape (name)

 value = unescape (value)

 cgi [name] = value

 end

 end

 The gmatch function call finds pairs of the form name = value . For every

 Doing such a pair, the iterator returns the captured values (output

 bracketed in the template) as the values of the name and value fields . Body

 the loop just calls unsecape on both of those lines and writes

 matching pair into cgi table .

 It is also easy to write down the corresponding coding. To start

 we will write the escape function ; this function encodes all special

 digits like '%' followed by a hexadecimal code

 character (for the format function , the "% 02X" option is used ,

 fetching a two-digit string), and then replaces spaces

 to the '+' symbol :

 function escape (s)

 s = string.gsub (s, “[& = + %%% c]”, function (c)

 return string.format (“%%% 02X”, string.byte (c))

 end)

 s = string.gsub (s, ““, “+”)

 return s

 end

 The encode function traverses the entire table that needs to be encoded.

 and builds the resulting string:

 function encode (t)

 local b = {}

 for k, v in pairs (t) do

 b [#b + 1] = (escape (k) .. “=” .. escape (v))

 end

 return table.concat (b, “&”)

 end

 t = {name = “al”, query = “a + b = c”, q = “yes or no”}

 print (encode (t)) -> q = yes + or + no & query = a% 2Bb +% 3D + c & name = al

 Replacing tabs

 The empty capture '()' in Lua has a special meaning. Instead of

 in order not to capture anything (which is completely unnecessary), this template

 lone captures the current position within the string as a number:

 print (string.match (“hello”, “() ll ()”)) -> 3 5

 (Note that the result of this example is different from

 calling string.find , since the position of the second captured value

 reading comes after the found pattern.)

 A nice example of using this feature is

 replacing tab characters with the appropriate number of spaces:

 function expandTabs (s, tab)

 tab = tab or 8 - tab size (default 8)

 local corr = 0

 s = string.gsub (s, “() \ t”, function (p)

 local sp = tab - (p - 1 + corr)% tab

 corr = corr - 1 + sp

 return string.rep (““, sp)

 end)

 return s

 end

 The gsub call finds all tabs within a string,

 grabbing their position. For each tab character, the internal

 The new function uses this position to compute

 the number of spaces it takes to get the position,

 multiple of the value of tab : it first subtracts one for

 position transfer starting at zero and then adding corr to account

 previously encountered tabs (replacing each tab character affects

 to the positions of the following characters). Then the correction is calculated

 for the next tab character: minus one for the tab to be deleted

 plus sp to account for the added spaces. Finally, she returns

 a string with the appropriate number of spaces.

 For completeness, let's look at how you can reverse this operation.

 walkie-talkie, replacing spaces with tabs. At first sight

 you can also use empty grips to work from position-49

 mi inside the line, but there is a simpler solution: on each

 the eighth character, we will insert the mark inside the line. Then,

 when there are spaces before this mark, we will replace the corresponding

 The corresponding sequence is a tab character:

 function unexpandTabs (s, tab)

 tab = tab or 8

 s = expandTabs (s)

 local pat = string.rep (“.”, tab)

 s = string.gsub (s, pat, “% 0 \ 1”)

 s = string.gsub (s, “+ \ 1”, “\ t”)

 s = string.gsub (s, “\ 1”, “”)

 return s

 end

 This function starts by replacing all existing

 tab characters with spaces. She then builds an auxiliary

 template and uses it to add a markup (manager

 character \ 1) after every tab characters. Further, all successive

 number of spaces followed by a mark are replaced with

 tabs. Finally, all overlays are removed.

 21.6. Tricky tricks

 Templates are a very powerful tool for working with strings.

 You can perform many complex operations with just a few

 calls to string.gsub . However, like any other force, it must be

 use carefully.

 Using templates does not replace the parser. For quick solutions

 ny (quick-and-dirty) you can use templates to work

 with the source code, but the resulting solutions most likely won't

 be of high quality. As an example, let's consider

 Rome template that we used for search comment in

 C program: '/%*.-%*/' . If you have a line in your program, so-

 holding “/ *”, then you may get the wrong result:

 test = [[char s [] = “a / * here”; / * a tricky string * /]]

 print (string.gsub (test, “/%*.-%*/”, “<COMMENT>”))

 -> char s [] = “a <COMMENT>

 Lines with such content are quite rare, and for

 your personal goals, a pattern like this will likely work.

 But you cannot redistribute the program with this error.

 Typically, templates work quite efficiently in Lua: my

 an old Pentium computer only needs 0.3 seconds to

 would find all the words in a 4.4 MB text (850K words). But always

 it is better to take some precautions. It's always better to de-

 make the template as accurate as possible; imprecise patterns are slower

 accurate. A simple example is using '(.-)% $' for

 getting the entire substring up to the first occurrence of the dollar sign. If a

 there is a dollar sign in the line, then everything is fine; but let's assume that

 there is no dollar sign in the string at all. Then the algorithm first

 la will try to get a substring that matches the pattern to

 starting from the first position within the string. Then he will move

 all along the line looking for a dollar sign. When the line ends,

 then we will get pattern mismatches only for the first position

 inside the string. Then the algorithm will do the same, starting already

 from the second position inside the string, etc. Thus, we get

 the quadratic time complexity, taking more than 4 minutes to

 my Pentium for a 100K character string. You can easily fix

 fix this situation by tying the pattern to the beginning of the line with

 '^ (.-)% $' . When using such a binding, the execution takes

 it takes only one hundredth of a second.

 Also, be very careful with empty templates , i.e. template

 bosoms that are satisfied by the empty string. For example, if you

 if you try to search for names using the '% a *' pattern , then you are everywhere

 you will find names:

 i, j = string.find (“; $% ** # $ hello13”, “% a *”)

 print (i, j) -> 1 0

 In this example, calling string.find correctly finds an empty string.

 a sequence of letters at the beginning of a line.

 You should never write a pattern that begins or begins

 ends with '-' , since it will be satisfied with an empty string

 ka. This modifier usually needs something around it, for

 in order to limit it. Likewise templates that include

 '. *' are also quite tricky, as this construct can

 much more than you planned.

 Sometimes it's easier to use Lua itself to build templates.

 We have already used this technique in the function that transforms the

 are white in tabs. As another example, let's distribute

 see how we can find strings of more than 70 characters. Such

 a string is a sequence of 70 or more characters

 fishing other than '\ n' . Single character other than '\ n'

 belongs to class '[^ \ n]' . Accordingly, we can get1

 pattern for a long string by repeating pattern for character 70 times and

 by adding a pattern for zero or more of the following sym-

 oxen. Instead of explicitly writing out this pattern, we can co-

 create it with string.rep :

 pattern = string.rep (“[^ \ n]”, 70) .. “[^ \ n] *”

 As another example, let's say you want to do a search, an odd

 case-sensitive. To do this, you can replace each letter

 woo x in the template for the class '[xX]' , that is, a class that includes and

 lowercase and uppercase versions of the letter. We can automate

 this transformation using the following function:

 function nocase (s)

 s = string.gsub (s, “% a”, function (c)

 return “[“ .. string.lower (c) .. string.upper (c) .. “]”

 end)

 return s

 end

 print (nocase (“Hi there!”)) -> [hH] [iI] [tT] [hH] [eE] [rR] [eE]!

 Sometimes you just need to replace every occurrence of s1 with s2 ,

 without considering any magic symbols. If both lines are explicitly given

 in the text, then you can easily add all the necessary transformations yourself.

 development for magic symbols, but if these are variables, then you

 you will need additional gsubs to do this job:

 s1 = string.gsub (s1, “(% W)”, “%%% 1”)

 s2 = string.gsub (s2, “%%”, “%%%%”)

 In the line we are looking for, we replace all non-alphanumeric-

 characters, in the replacement string we replace only the '%' character .

 Another useful technique for working with templates is to

 completing special processing of the line before the main

 work. Suppose we want to convert to uppercase all letters containing

 inside double quotes, but inside the string itself

 can be '\ ”' :

 follows a typical string: “This is \” great \ ”!”.

 One approach for such cases is coding

 input string. For example, let's replace “\” ” with “ \ 1 ” . but

 if the source text already contained the "\ 1" character , then we have a

 lema. An easy way to do the coding and avoid this

 the problem is replacing all sequences "\ x " with "\ ddd " ,

 where ddd is the decimal representation of the character x :

 function code (s)

 return (string.gsub (s, “\\ (.)”, function (x)

 return string.format (“\\% 03d”, string.byte (x))

 end))

 end

 Now any sequence "\ ddd " could only come from

 our encoding, since any “\ ddd ” in the original line is so

 would be encoded. Therefore decoding is simple

 task:

 function decode (s)

 return (string.gsub (s, “\\ (% d% d% d)”, function (d)

 return “\\” .. string.char (tonumber (d))

 end))

 end

 We can now complete our task. Since the encoded

 the string no longer contains "\" " , then we can safely use

 pattern '".-"' :

 s = [[follows a typical string: “This is \” great \ ”!”.]]

 s = code (s)

 s = string.gsub (s, '”.-”', string.upper)

 s = decode (s)

 print (s) -> follows a typical string: “THIS IS \” GREAT \ ”!”.

 Or, writing it shorter:

 print (decode (string.gsub (code (s), '”.-”', string.upper)))

 21.7. Unicode

 At the moment, the library for working with strings does not contain

 explicit support for unicode. However, it is not difficult to implement some

 some simple tasks for working with Unicode strings encoded in

 UTF-8 without using additional libraries.

 The primary encoding for Unicode on the Web is UTF-8. Because of her

 compatibility with ASCII this encoding is also very well suited

 for Lua. This compatibility ensures that a number of operating techniques

 those with strings without any modification will work with UTF-8.

 UTF-8 represents each unicode character with a different number

 byte. For example, the character 'A' represents one byte, 65; Sim-

 ox Aleph, which has Unicode code 1488, is represented by a two-byte

 sequence 215-144. UTF-8 represents all characters from

 ASCII as ASCII, that is, one byte with a value less than 128.

 All other characters are represented by byte sequences,

 where the first byte lies in the range [194, 244] and the following bytes are

 you are in the range [128, 191]. More precisely, the range of the first byte for

 two-byte sequences are [194, 223], for three-byte

 sequences [224, 239] and for four-byte sequences

 telities [240, 244]. This arrangement ensures that the

 a character for any character will never be found inside the after-

 sequence for another symbol. For example, a byte less than

 128 will never occur in a multibyte sequence; it

 always represented by its ASCII character.

 In Lua, you can read, write and store strings in UTF-8

 like regular strings. String constants (literals) can also

 contain UTF-8 inside. (Of course, you most likely want

 edit your file as a UTF-8 file.) Concatenation operation

 is executed correctly for all strings in UTF-8. Comparison operations

 strings (less than, less than or equal, etc.) compare strings in

 UTF-8, following unicode character order.

 Operating system function library and library for

 I / O are really just interfaces to opera-

 system, so their UTF-8 support depends on

 UTF-8 on the system itself. On Linux, for example, we can use

 UTF-8 for filenames, but Windows uses UTF-16. therefore

 to work with file names in Unicode on Windows, you will need to

 additional libraries or modification of standard libraries

 tech Lua.

 Let's see how functions from the library to work with

 strings work with strings in UTF-8.

 Functions string.reverse , string.byte , string.char , string.

 upper and string.lower do not work with UTF-8 strings because

 each of these functions considers one character to be one byte.

 The string.format and string.rep functions work without any problems.

 melt with strings in UTF-8, except for the '% c' option , which is

 assumes that one character is one byte. String.len functions

 and string.sub work correctly with strings in UTF-8, but at the same time

 indexes no longer refer to characters, but to bytes. Often

 this is exactly what you need. But we can easily count the number

 characters, as we'll see shortly.

 For functions for working with templates, their applicability depends on

 template. Simple templates work without any problems, since

 representation of one character can never occur inside

 When representing another character. Character classes and sets

 characters only work for ASCII characters. For example, the template

 “% S” works for UTF-8 strings, but it will only match

 ASCII spaces and will not match unicode spaces, so

 kim as unbreakable space (U + 00A0), paragraph separator

 (U + 2029) or Mongolian G + 180E.

 Some templates can make good use of features

 UTF-8. For example, if you want to count the number of characters in a line

 ke, then you can use the following expression:

 # (string.gsub (s, “[\ 128- \ 191]”, “”))

 In this example, gsub strips out the second, third and fourth bytes,

 leaving one byte for each character as a result.

 Similarly, the following example shows how to iterate over

 all characters in a string are in UTF-8:

 for c in string.gmatch (s, “. [\ 128- \ 191] *”) do

 print (c)

 end

 Listing 21.1 shows some tricks for working with UTF-8

 strings in Lua. Of course, to run these examples you need

 platform where print supports UTF-8.

 Unfortunately, Lua has nothing more to offer. Adequate

 Native Unicode support requires huge tables, which is bad

 correspond to the small size of Lua. Unicode has many features.

 tei. It is almost impossible to abstract any concept

 from specific languages. Even the concept of what a symbol is is very

 fuzzy, since there is no one-to-one correspondence between

 Unicode-encoded characters and graphemes (that is,

 lamas with diacritics and "completely ignored"

 symbols). Other seemingly basic concepts such as what is

 symbol are also different for different languages.

 What, in my opinion, is missing in Lua is the functions for translation

 between UTF-8 and unicode and validating strings in UTF-8.

 Perhaps they will be included in the next version of Lua. For the rest of the

 the best option would be to use an external library

 like Slnunicode.

 Listing 21.1. Examples of working with UTF-8 in Lua

 local a = {}

 a [#a + 1] = “Nähdään”

 a [#a + 1] = “ação”55

 a [#a + 1] = “ÃØÆËl”

 local l = table.concat (a, “;”)

 print (l, # (string.gsub (l, “[\ 128- \ 191]”, “”)))

 -> Nähdään; ação; ÃØÆËÐ 18

 for w in string.gmatch (l, “[^;] +”) do

 print (w)

 end

 -> Nähdään

 -> ação

 -> ÃØÆËÐ

 for c in string.gmatch (a [3], “. [\ 128- \ 191] *”) do

 print (c)

 end

 -> Ã

 -> Ø

 -> Æ

 -> Ë

 -> Ð

 Exercises

 Exercise 21.1. Write a split function that gets

 string and delimiter pattern and returns a sequential

 number of blocks separated by separator:

 t = split (“a whole new world”, ““)

 - t = {“a”, “whole”, “new”, “world”}

 How does your function handle empty lines? (In particular,

 is the empty string an empty sequence, or

 sequence with one blank line?)

 Exercise 21.2. The patterns '% D' and '[^% d]' are equivalent. What

 what about the patterns '[^% d% u]' and '[% D% U]' ?

 Exercise 21.3. Write a function for transliteration. This

 the function gets a string and replaces every character in this

 string with another character in accordance with the table given

 second argument. If the table maps 'a' to 'b' then

 the function should replace every occurrence of 'a' with 'b' . If a

 the table maps 'a' to false , then the function should delete

 all occurrences of the 'a' character from the string.

 Exercise 21.4. Write a function that reverses

 a string in UTF-8.

 Exercise 21.5. Write a transliteration function for UTF-8.

 Chapter 22

 Library input / output

 The I / O library provides two different models for

 working with files. The simple model uses the current input and

 the current output files, and all its operations are performed on these

 files. The full model uses explicit file pointers; it

 relies on an object-oriented approach that defines

 Lets all operations as methods on file pointers.

 A simple model is convenient for simple things; we used

 her throughout the book. But it is not enough for more flexible

 work with files, for example, for simultaneous reading or one-

 temporary recording in several files at once. For this we need

 complete model.

 22.1. Simple model input / output

 A simple model performs all its operations on the two current files

 lami. The library uses standard input when initializing

 (stdin) as default input file and standard output (stdout)

 as the default output file. Thus, when we do

 something like io.read () that we read from standard input.

 We can change these current files using the functions

 io.input and io.output . Calling io.input (filename) opens the specified

 file to read and sets it as input file

 default. From now on, all input will come from this-

 th file until the next call to io.input ; io.output works similarly

 Generally, but for output. On error, both functions call

 mistake. If you want to explicitly handle errors, then you need

 complete model.

 The write function is simpler than read , so we'll first look at

 her. The io.write function receives an arbitrary number of string ar-

 guments and writes them to the default output file. She pre-

 converts numbers to strings using standard conversion rules

 vania; for complete control over this conversion use

 string.format function :

 > io.write (“sin (3) =“, math.sin (3), “\ n”)

 -> sin (3) = 0.14112000805987

 > io.write (string.format (“sin (3) =% .4f \ n”, math.sin (3)))

 -> sin (3) = 0.1411

 Avoid code like io.write (a..b..c) ; call io.write (a, b, c)

 does the same thing with fewer resources, since

 it avoids the concatenation operation.

 Use print for small programs or for debugging and

 write when you need full control over the output:

 > print (“hello”, “Lua”); print (“Hi”)

 -> hello Lua

 -> Hi

 > io.write (“hello”, “Lua”); io.write (“Hi”, “\ n”)

 -> helloLuaHi

 Unlike print , the write function does not add any

 characters like tabs or move to next

 string. In addition, the write function allows you to redirect your

 output, whereas print always uses standard output. At the same time

 net, print automatically applies tostring to its arguments;

 this is useful for debugging, but it can hide errors if you are not aware

 are thoughtful to the conclusion.

 The io.read function reads lines from the current input file. Her

 arguments control what to read:

 "* A"

 Reads the entire file

 "* L"

 Reads the next line (no line feed)

 "* L"

 Reads the next line (with a line feed)

 "* N"

 Reads a number

 num

 Reads a string of no more than num characters

 The io.read (“* a”) call reads the entire current input file, starting

 from the current position. If we are at the end of the file or the file is empty,

 then the call returns an empty string.

 Since Lua works efficiently with long strings,

 an easy way to write filters in Lua is to read

 the whole file into a line, perform line processing (usually using

 shchi gsub) and then write the line to the output:

 t = io.read (“* a”)

 - read the entire file

 t = string.gsub (t, ...)

 - do the job

 io.write (t)

 - write file

 As an example, the following piece of code is a law-

 chennaya program for encoding file content in MIME

 quoted-printable . Each non-ASCII byte is encoded as = xx , where xx is

 it is the hexadecimal byte value. For the integrity of the coding

 The equality symbol itself must also be encoded:

 t = io.read (“* a”)

 t = string.gsub (t, “([\ 128- \ 255 =])”, function (c)

 return string.format (“=% 02X”, string.byte (c))

 end)

 io.write (t)

 The pattern used in gsub finds all bytes from 128 to 255,

 including the equal sign.

 The io.read (“* l”) call reads the next line from the current input-

 leg file without line feed character ('\ n'); io.read call (“* L”)

 is similar, but only it returns a newline character (if

 he was present). When we reach the end of the file, the function

 rotates nil (since there are no more lines). Pattern “* l” for function

 read is the default. I usually use this

 pattern only when it naturally processes the file line by line

 coy; otherwise I prefer to read the entire file at once when

 help "* a" or read it in blocks, as we'll see later.

 As a simple example of using this pattern, follow-

 This program copies the current input to the current output by numbering

 with each line:

 for count = 1, math.huge do

 local line = io.read ()

 if line == nil then break end

 io.write (string.format (“% 6d“, count), line, “\ n”)

 end

 However, in order to iterate over the entire file, line by line,

 it is better to use the io.lines iterator . For example, we can write

 Put the complete program for sorting the lines of the file as follows -

 in a way:

 259

 local lines = {}

 - read lines into table 'lines'

 for line in io.lines () do lines [#lines + 1] = line end

 - we sort

 table.sort (lines)

 - write all lines

 for _, l in ipairs (lines) do io.write (l, “\ n”) end

 The io.read (“* n”) call reads a number from the current input file.

 This is the only case where the read function returns a number,

 not a string. When a program needs to read a lot of numbers from a file,

 then the absence of intermediate lines improves performance. Op-

 ration * n skips all spaces before the number and supports such

 number formats like -3 , +5.2 , 1000 and -3.4e-23 . If the function is not

 can find a number at the current position (due to incorrect format or

 end of file), it returns nil .

 You can call read by passing multiple options at once; for every

 For the second argument, the function will return the corresponding value. Let u

 you have a file containing three numbers per line:

 6.0 -3.23 15e12

 4.3 234 1000001

 ...

 Now you need to print the maximum for each line. You can

 You can read all three numbers in one read call :

 while true do

 local n1, n2, n3 = io.read (“* n”, “* n”, “* n”)

 if not n1 then break end

 print (math.max (n1, n2, n3))

 end

 Besides the standard templates, you can call read by passing in

 number n as argument : in this case read tries to read n

 characters from the input file. If she can't read one

 character (end of file), it returns nil ; otherwise

 a string with at most n characters is returned . As an example

 The following program demonstrates an efficient way (for Lua,

 of course) copy the file from stdin to stdout :

 while true do

 local block = io.read (2 ^ 13) –- 8K buffer size

 if not block then break end

 io.write (block)

 end

 As a separate case, read (0) works as an end-of-file check:

 it returns an empty string if there are characters in the file, and nil if

 end of file reached.

 22.2. Full model input / output

 For more control over I / O you can use

 complete model. The key concept in this model is indicating

 Tel file (file handle), which is similar to the FILE * to C: he presented

 Lets an open file at the current location.

 To open a file, use the io.open function ,

 which is analogous to the fopen function in C. As arguments, it

 takes a filename and a string specifying the mode. This line can

 contain 'r' for reading, 'w' for writing (writing erases the previous

 the contents of the file) or 'a' to append to the file, also it

 may contain 'b' to work with binaries. Function

 open returns a new file pointer. On error open

 returns nil as well as the error message and error code:

 print (io.open (“non-existent-file”, “r”))

 -> nil non-existent-file: No such file or directory 2

 print (io.open (“/ etc / passwd”, “w”))

 -> nil / etc / passwd: Permission denied 13

 The interpretation of error codes is system dependent.

 A typical error checking method is as follows:

 local f = assert (io.open (filename, mode))

 If an error occurs, the error message appears as a second

 The last argument to assert , which prints this message.

 After you open the file, you can read and write from it

 into it using the read / write methods . They are similar to functions

 read / write , but you call them as file pointer methods, using

 using the colon. For example, in order to open a file and

 honor all of it, you can use the following code:

 local f = assert (io.open (filename, “r”))

 local t = f: read (“* a”)

 f: close ()

 The I / O library provides three predefined

 pointers to standard files in C: io.stdin , io.stdout, and

 261

 io.stderr . Therefore, you can send the error message directly

 to the appropriate standard file:

 io.stderr: write (message)

 You can use the complete model along with the simple model.

 To get a pointer to the current input file,

 blows call io.input () with no arguments. In order to ask the

 file locator as the current input file, call

 io.input (hanle) (similar calls work for io.output as well).

 For example, if you want to temporarily change the current input

 file, then you can write something like the following:

 local temp = io.input ()

 - save the current file

 io.input (“newinput”)

 - open new current file

 <process input>

 io.input (): close ()

 - close the current file

 io.input (temp)

 - restore the previous file

 Instead of io.read to read from a file, we can also use

 Vat io.lines . As we saw in the previous examples, io.lines

 returns an iterator that reads sequentially from a file.

 The first argument to io.lines can be a file name or a specified

 tel per file. If a filename was passed, then io.lines will open

 the file is in read-only mode and will close the file after reaching the end

 file. If a file pointer was passed, then io.lines will be used.

 use this file for reading; in this case io.lines won't

 close the file when it reaches the end. In the case of a call at all

 with no arguments, io.lines will read data from the current input

 file.

 Since Lua 5.2, the io.lines function also accepts the same

 same options as io.read (after the first argument). As an adjunct

 measure the following code copies the file using io.lines :

 for block in io.lines (filename, 2 ^ 13) do

 io.write (block)

 end

 A small trick to increase

 speed

 It is usually faster in Lua to read an entire file than to read a line of it.

 by line. However, sometimes we come across a large file (at-

 example, tens or even hundreds of megabytes), read which in its entirety

 it would be inappropriate. If you want to get the maximum

 performance when working with such large files, it is faster

 will read it in large enough blocks (for example, by

 8K). To avoid a possible line break, you can

 just ask to read one more line:

 local lines, rest = f: read (BUFSIZE, “* l”)

 The rest variable will get the remainder of any line broken when

 reading a block. Then we combine the block and the resulting remainder. Ta-

 This way the block will always end at line boundaries.

 The example in Listing 22.1 uses this technique to implement wc ,

 a program that counts the number of characters, words, and lines in a file.

 Note the use of io.lines to implement

 iterations and the "* L" option to read a line, this is available starting at

 Lua 5.2.

 Listing 22.1. Wc program

 local BUFSIZE = 2 ^ 13 - 8K

 local f = io.input (arg [1])

 - open input file

 local cc, lc, wc = 0, 0, 0

 - counters

 for lines, rest in io.lines (arg [1], BUFSIZE, “* L”) do

 if rest then lines = lines .. rest end

 cc = cc + #lines

 - count the words in the block

 local _, t = string.gsub (lines, “% S +”, “”)

 wc = wc + t

 - count '\ n'

 _, t = string.gsub (lines, “\ n”, “\ n”)

 lc = lc + t

 end

 print (lc, wc, cc)

 24.2. Hooks

 The trap mechanism allows us to register a function that

 paradise will be called upon the occurrence of certain events during

 program execution. There are four types of events that

 can trigger traps:

 • a call event occurs when Lua calls a function;

 • the return event occurs when the function returns;

 • a line event occurs when Lua starts execution

 next line;

 • the counter event occurs after a specified number of

 mand.

 Lua calls hooks with a single argument, a string,

 the event that led to the call: “call” (or “tail

 call ”), “ return ” , “ line ” or “ count ” . For line event also

 the second argument is passed, the new line number. To get up to-

 additional information inside the trap should be used

 debug.getinfo .

 To register a trap, we call the function

 debug.sethook with two or three arguments: the first argument is

 this is the corresponding function; the second argument is a mask string,

 describing exactly what events we want to track, and not

 the required third argument is a number that specifies how often

 that we want to receive counter events. In order to track

 to add call, return and string events, we add the letters 'c' , 'r'

 and 'l' to the mask string. To track counter events, we simply

 we pass the counter as the third argument. To remove all traps

 just call sethook with no parameters.

 As an example, the following code sets up a primitive

 a trap, which for each next run of the print run-

 her number:

 279

 debug.sethook (print, “l”)

 This call sets print as a hook function and sets it

 call only for row events. More complex hook function

 can use getinfo to add a name to the output

 current file:

 function trace (event, line)

 local s = debug.getinfo (2) .short_src

 print (s .. “:” .. line)

 end

 debug.sethook (trace, “l”)

 A useful function to use in traps is

 debug.debug . This simple function prints a prompt, reads from

 input and then executes the given commands. It is roughly equivalent to

 tape on the following code:

 function debug1 ()

 while true do

 io.write (“debug>“)

 local line = io.read ()

 if line == “cont” then break end

 assert (load (line)) ()

 end

 end

 When the user enters “cont” at the prompt , this

 the function ends. The standard implementation is very simple and you

 executes commands in the global environment outside of the code being debugged.

 Exercise 24.5 discusses a better implementation.

 24.3. Profiling

 Despite its name, the debug library is also useful for

 not only debugging tasks. A typical such task is

 profiling (obtaining information about the time spent

 on the execution of this or that piece of code). For profiling

 time, it is better to use the C-interface: the cost of the call

 each Lua hook is quite high and can greatly distort

 results. However, for simple profiling that counts

 Many times, the Lua code is fine. In this section, we write

 we have the simplest profiler, which for each called

 the function will tell you how many times it was called during the execution

 the program.

 The main data structure in our program will be two tables

 ts: one maps functions to their counters, and the second maps

 functions their names. The indexes for both of these tables will be

 The functions themselves can act.

 local Counters = {}

 local Names = {}

 We can extract the function names after profiling, but we

 we get better results if we get the names of the functions,

 while they are active, since in this case Lua can look at

 looking up the name of the function, the calling code.

 Now let's define a hook function. Its task is

 get the called function and increment the corresponding count-

 chick, it also collects function names:

 local function hook ()

 local f = debug.getinfo (2, “f”). func

 local count = Counters [f]

 if count == nil then -– is the function 'f' called the first time?

 Counters [f] = 1

 Names [f] = debug.getinfo (2, “Sn”)

 else

 - only increase the counter value

 Counters [f] = count + 1

 end

 end

 The next step is to run the program with this hook.

 We will assume that the main block of the program is in the file

 and the name of this file is passed as an argument to the profiling program-

 to the box:

 % lua profiler main-prog

 Then the profiler can take the filename from arg [1] , installed

 hook a trap and execute the file:

 local f = assert (loadfile (arg [1]))

 debug.sethook (hook, “c”) -– set a hook

 f ()

 - execute the profiled program

 debug.sethook ()

 - disable the trap

 The final step is to actually display the results. Funk-

 tion getname Listing 24.2 outputs for each function sootvetst-

 name. To avoid confusion, to each name

 add the place of the corresponding function in the form file: string .

 If the function has no name, then we only print the location. If the function

 281

 is a function in C, then we use only its name (so

 as she has no place). With this in mind, below is the code that I print-

 containing information about calls:

 for func, count in pairs (Counters) do

 print (getname (func), count)

 end

 Listing 24.2. Getting the function name

 function getname (func)

 local n = Names [func]

 if n.what == “C” then

 return n.name

 end

 local lc = string.format (“[% s]:% d”, n.short_src, n.linedefined)

 if n.what ~ = “main” and n.namewhat ~ = “” then

 return string.format (“% s (% s)”, lc, n.name)

 else

 return lc

 end

 end

 If we apply our profiler to the example with the chain Mar-

 cova from section 10.3, then we get something like:

 [markov.lua]: 4 884723

 write 10000

 [markov.lua]: 0 1

 read 31103

 sub 884722

 [markov.lua]: 1 (allwords) 1

 [markov.lua]: 20 (prefix) 894723

 find 915824

 [markov.lua]: 26 (insert) 884723

 random 10000

 sethook 1

 insert 884723

 This shows that the anonymous function on line 4 (which is

 is our iterator defined inside allwords) was

 called 884,723 times, the write (io.write) function was called 10,000

 times, etc.

 This profiler can be improved, for example, add a dirty

 output customization, improved function name printing, etc.

 less even this profiler is already useful and can be used

 Called as a basis for writing more advanced tools.

 Exercises

 Exercise 24.1. Why recursion in getvarvalue function

 (Listing 24.1) will it stop?

 Exercise 24.2. Modify the getvarvalue function (lis-

 Thing 24.1) to work with various coroutines (like

 other functions from the debug library).

 Exercise 24.3. Write a setvarvalue function .

 Exercise 24.4. Based on the getvarvalue function write

 getallvars function that returns a table with all

 variables that are visible at a given location (return-

 May the table should not include environment variables

 it should instead inherit them from the original

 arms).

 Exercise 24.5. Write an improved version of debug.debug ,

 which executes the given commands as if they were

 executed in the scope of the calling function.

 (Hint : run commands in empty environment

 and use the __index function as a metamethod

 getvarvalue .)

 Exercise 24.6. Modify the previous example to

 you could change variables.

 Exercise 24.7. Implement some of the suggested improvements

 for the profiler from Section 24.3.

 Exercise 24.8. Write a library to work with points

 breakpoint. She should offer at least

 two functions:

 setbreakpoint (function, line) -> returns handle

 removebreakpoint (handle)

 The breakpoint is set by a function and a line within the function.

 When execution reaches a breakpoint, you should exit

 name debug.debug .

 (Hint : for the simplest implementation, use the trap

 strings and a hook function that checks if we hit

 to a breakpoint; to improve performance, we can

 turn on this trap only when we are inside

 the function we are teasing.)

 Part IV

 With API

 CHAPTER 25

 C API overview

 Lua is an embedded language . This means Lua is not separate.

 package, and a library that we can link to other

 instructions to add Lua features to them.

 You may be wondering if Lua is not a standalone program, but

 so far in the book, we have used Lua as a standalone program.

 Rammu. The solution to this question is the Lua interpreter (executing

 nimy file the lua). This interpreter is a small application

 ny (less than five hundred lines of code) that uses

 the Lua library in order to implement a separate interpretation

 Lua torus. This program deals with user interaction

 lem, taking files and lines and passing them to the Lua library, which

 does basic work (such as running Lua code).

 This ability to use the library in order to expand

 rit application possibilities - this is exactly what makes Lua distribution

 widening tongue . At the same time, the program that is used

 calls Lua, can register new functions in the Lua environment,

 thus adding features that could not be written

 us on Lua itself. This is what makes Lua an extensible language .

 These two views of Lua (as an extension language and as a

 extensible language) correspond to two types of interaction between

 C and Lua. In the first case, C controls, and Lua is just a library.

 We call the C code corresponding to this type of interaction

 it application code (application code). In the second case, the control

 in Lua, and C is a library. In this case, the C code is called bib-

 library code . Both of these types of code use the same API

 for interacting with Lua, the so-called C API.

 The C API is simply a collection of functions that enable C code

 interact with Lua 1 . It includes functions for reading

 285

 and writing global Lua variables to call functions in Lua,

 to execute snippets of Lua code, to register functions

 in C, so that they can then be called from Lua code, etc. Practice

 Technically anything that Lua code can do can be done in C.

 using the C API.

 The C API follows the C style, which differs markedly from the C API.

 for the Lua language. When we program in C, we follow the types

 data, error handling, memory allocation errors and

 other difficult places. Most API functions do not validate

 the validity of their arguments; it is your job to make sure that

 arguments are correct before function call 2 . If you admit

 error, you will most likely get an error like "segmentation fault"

 or something like that instead of a nice error message. More

 Moreover, the C API emphasizes flexibility and simplicity, often at the expense of easy

 use bones. Typical tasks may require several

 these API calls. It can be tedious, but it gives you

 complete control over what is happening.

 As the title suggests, the purpose of this chapter is to

 necessary when using Lua from C. Don't try to understand now

 all the details of what is happening. We will dwell on this later. but

 do not forget that you can always find additional information

 See the Lua Reference Manual. Moreover, you can find

 some examples of using the API in the Lua distribution itself. Department

 the lua Lua interpreter (lua.c) gives examples of application code,

 while the standard libraries (lmathlib.c , lstrlib.c

 etc.) provide examples of library code.

 From now on, we act as C programmers.

 When I talk about "you", I mean exactly you, I program

 on S.

 An important component in the communication between Lua and C is

 a permanently present virtual stack . Almost all functions

 APIs work with values on this stack. All data exchange between

 do Lua and C go through this stack. What's more, you can also

 use this stack to store intermediate results.

 This stack allows you to solve problems with a fundamental difference -

 mi between Lua and C: the first difference is that Lua has

 garbage collection, while C is explicit memory management; second

 the difference is the difference between dynamic typing in

 Lua and static typing in C. We will discuss the stack in more detail.

 in section 25.2.

 25.1. First example

 We'll start this overview with an example of a simple application: a stand-alone

 Lua interpreter. We can write a primitive interpreter

 The Lua tool, as shown in Listing 25.1. Lua.h header file

 defines the basic functions provided by Lua. It includes in

 functions to create a new Lua environment, to call a function

 tions in Lua (such as lua_pcall) to read and write global

 variables in the Lua environment, to register new functions, which

 which can be called from Lua, etc. Anything defined in the file

 lua.h is prefixed with _lua .

 Listing 25.1. Simple standalone Lua interpreter

 #include <stdio.h>

 #include <string.h>

 #include “lua.h”

 #include "lauxlib.h"

 #include "lualib.h"

 int main (void) {

 char buff [256];

 int error;

 lua_State * L = luaL_newstate (); / * opens Lua * /

 luaL_openlibs (L); / * opens standard libraries * /

 while (fgets (buff, sizeof (buff), stdin)! = NULL) {

 error = luaL_loadstring (L, buff) || lua_pcall (L, 0, 0, 0);

 if (error) {

 fprintf (stderr, “% s \ n”, lua_tostring (L, -1));

 lua_pop (L, 1); / * pop the error message off the stack * /

 }

 }

 lua_close (L);

 return 0;

 }

 The lauxlib.h header file defines the functions provided by

 nye additional libraries (auxiliary library). All definitions

 from that file start with luaL_ (for example, luaL_loadstring).

 The additional library uses the basic API provided by

 ny lua.h to provide a higher level of abstraction,87

 in particular the abstractions used by the standard libraries.

 The core API strives for economy and orthogonality, while

 while the additional library strives for practicality for

 common tasks. Of course this is easy for your program too

 can create the necessary abstractions. Keep in mind that before-

 the additional library does not have access to Lua internals. Everything, that

 it does, it does through the standard API. What does she do, maybe

 do your program too.

 The Lua library does not define any global re-

 men. It stores all its state in a dynamic structure.

 lua_State ; all functions inside Lua receive a pointer to this structure

 round as an argument. This implementation makes Lua reentrant

 noisy and ready for use in multi-strand applications.

 As its name suggests , the luaL_newstate function creates a new

 Lua state. When luaL_newstate creates a new state, it does not

 contains no built-in functions, not even print . In order to

 keep Lua small, all standard libraries are represented

 as separate packages, so you are not required to use them if

 you don't need them. The lualib.h header file defines the function

 tions for opening libraries. LuaL_openlibs function opens

 all standard libraries.

 After creating a state and populating it with standard libraries

 By the way, it's time to start doing user input. For each

 the line that the user enters, the program first calls

 luaL_loadstring to compile the injected code. If mistakes

 no, then this call returns zero and places the resulting function

 per stack. (Remember that we will discuss the stack in detail in the following -

 See the next section.) The program then calls lua_pcall , which

 pops a function off the stack and executes it in protected mode.

 Like luaL_loadstring , lua_pcall returns zero if

 no mistakes. In case of an error, both functions post a message about

 an error on the stack; we will receive this message using the function

 lua_tostring , and after we print it, we remove it from

 stack using the lua_pop function .

 Please note that in case of an error, the program simply prints

 melts the error message to standard stream for errors. Infusion

 how error handling in C can be quite complex, and how

 should be followed, often depends on the type of your application. Nucleus

 Lua itself does not print anything to any stream (file); it in case

 error simply returns an error message. Each application

 ny can process these messages in the most appropriate way for

 him way. For simplicity, we will use the following ob-

 an error worker who, in case of an error, prints a message about

 error, closes the Lua state and exits the application:

 #include <stdarg.h>

 #include <stdio.h>

 #include <stdlib.h>

 void error (lua_State * L, const char * fmt, ...) {

 va_list argp;

 va_start (argp, fmt);

 vfprintf (stderr, fmt, argp);

 va_end (argp);

 lua_close (L);

 exit (EXIT_FAILURE);

 }

 We'll come back to handling errors in the application code later.

 Since you can compile Lua both as C code and as code

 in C ++, lua.h does not include the following standard amendment,

 common in C code:

 #ifdef __cplusplus

 extern “C” {

 #endif

 ...

 #ifdef __cplusplus

 }

 #endif

 If you are compiling Lua as C code (the most common

 case) and use it in C ++, you can include lua.hpp

 instead lua.h . It is defined as follows:

 extern “C” {

 #include “lua.h”

 }

 25.2. Stack

 When passing values between Lua and C, we are faced with two complexities

 ness: mismatch between static and dynamic systems

 mami typing and mismatch between automatic and manual

 memory management.

 In Lua, when we write a [k] = v , variables can have very different

 types, even a may have a different type (due to the use of

 metatables). However, if we want to provide this operation in C,

 then any settable function must be of a fixed type. Us

 dozens of functions will be needed for this simple operation (one by one

 functions for each combination of the types of three arguments).

 We can solve this problem by introducing a new type - union os-

 new types, let's call it lua_Value , which can represent

 all values in Lua. Then we can declare settable as follows

 way:

 void lua_settable (lua_Value a, lua_Value k, lua_Value v);

 However, this solution has two disadvantages. First, maybe

 it can be very difficult to map a complex data type to others

 languages; we designed Lua to interoperate easily

 not only with C / C ++, but also with Java, Fortran, C #, etc. Secondly,

 Lua does garbage collection: if we store a Lua table in

 variable C, then Lua itself cannot know about this in any way and can (error

 sideways) decide that this table is no longer needed and delete it.

 Therefore, the Lua API does not define anything like the lua_Value type .

 Instead, it uses an abstract stack to exchange values-

 mi between Lua and C. Each slot in this stack can contain any

 Lua value. When we want to get a value from Lua (for example,

 the value of a global variable), you call Lua and it puts

 pushes a value onto the stack. When you want to pass a Lua value, then you

 first push the value onto the stack and then call Lua (which

 pops that value off the stack). We still need different

 functions to push each type of C onto the stack and each

 type on C to remove from the stack, but we no longer have a combinatorial

 increasing the number of functions as before. Moreover, since this

 the stack lives inside Lua, then the garbage collector knows what values

 uses C.

 Almost all functions in the API use a stack. As we already see-

 In our first example, the luaL_loadstring function leaves

 its result on the stack (either as a compiled block, or

 as an error message); lua_pcall takes the called function

 off the stack and leaves any error message on the stack.

 Lua works with the stack strictly in accordance with the LIFO principle

 (Last In, First Out). When you call Lua, it only changes

 the top of the stack. C code has more freedom; in particular, he can

 view any item on the stack, as well as insert and remove

 elements from anywhere in the stack.

 Pushing items onto the stack

 The API contains one function to push on the stack each

 th type C, which can be represented in Lua: lua_pushnil for

 constants nil , lua_pushboolean for boolean values (integers

 sat in C), lua_pushnumber (for double), lua_pushinteger for integers

 numbers, lua_pushunsigned for unsigned integers, lua_pushl-

 string for arbitrary strings (pointer to char and length) and lua_

 pushstring for regular ASCIIZ strings:

 void lua_pushnil (lua_State * L);

 void lua_pushboolean (lua_State * L, int bool);

 void lua_pushnumber (lua_State * L, lua_Number n);

 void lua_pushinteger (lua_State * L, lua_Integer n);

 void lua_pushunsigned (lua_State * L, lua_Unsigned n);

 void lua_pushlstring (lua_State * L, const char * s, size_t len);

 void lua_pushstring (lua_State * L, const char * s);

 There are also functions for pushing functions on the stack to

 C and objects of type userdata , but we'll look at them later.

 The lua_Number type is a numeric type in Lua. By default this is the type

 double , but it can be changed to float or even long int for different

 personal architectures. The lua_Integer type is an integer type with

 sign large enough to hold the size of large

 lines. It is usually defined as ptrdiff_t . The lua_Unsigned type is

 32-bit unsigned C integer type; used by the library

 for bitwise operations and various functions.

 Lua strings are not null terminated, they can contain

 Reap arbitrary binary data. Accordingly, they should

 on an explicit length. The main function for the building is

 ki on the stack is lua_pushlstring , requiring an explicit assignment

 the length of the string. For null terminated strings you can

 use the lua_pushstring function , which to calculate

 string length uses strlen . Lua never stores pointers

 to external lines (or to any other external object, except

 functions in C). For any line that needs to be stored

 thread, Lua either makes a copy or reuses an existing one.

 Accordingly, you can free or modify your buffer like

 only control will return from these functions.

 When you push an item onto the stack, it is your responsibility -

 make sure that there is enough space on the stack for it. Pom-

 that you are now a C programmer. When Lua starts

 to be executed and whenever Lua calls C, there is a 1

 at least 20 free slots. (The lua.h header file is op-

 modifies this constant as LUA_MINSTACK .) Usually more than

 enough, so you usually don't have to think about it. but

 some tasks require more stack space, in particular

 if you push items onto the stack in a loop. In these cases, you can

 you can call the lua_checkstack function , which checks if

 required free space on the stack:

 int lua_checkstack (lua_State * L, int sz);

 Referring to elements

 The API uses indexes to refer to items on the stack . Per-

 the first element pushed onto the stack has index 1, the next one is in

 dex 2, etc. We can also refer to the elements of the stack using

 assuming the top of the stack as a starting point, in this case we use

 negative indices. In this case, -1 corresponds to an element on

 the top of the stack (that is, the last element pushed onto the stack),

 –2 matches the previous item, and so on. For example, calling lua_

 tostring (L, -1) returns the value at the top of the stack as a string.

 As we will see below, there are cases when it is natural to refer to

 stack, starting from the bottom of the stack (that is, using positive

 dex), and there are cases when it is natural to use negative

 indices.

 To check if an element is the value of a given

 type, the API offers a set of lua_is * functions , where * can be any

 a common type in Lua. Accordingly, there are functions lua_isnumber , lua_

 isstring , lua_istable , etc. All of these functions have the same

 common prototype:

 int lua_is * (lua_State * L, int index);

 In fact lua_isnumber does not check whether the knowledge

 reading a number, but checks if the value can be converted to

 number; lua_isstring behaves similarly: in particular, any clean

 lo satisfies lua_isstring .

 There is also a lua_type function that returns the type of an element.

 cop on the stack. Each type is represented by a constant defined in

 the lua.h header file : LUA_TNIL , LUA_TBOOLEAN , LUA_TNUMBER,

 LUA_TSTRING , LUA_TTABLE , LUA_TTHREAD , LUA_TUSERDATA and LUA_

 TFUNCTION . We usually use this function in conjunction with the opera-

 Rathore switch statement . It is also useful when we need

 check if a value is a number or a non-cast string

 types.

 To get values from the stack, there are lua_to * functions :

 int lua_toboolean

 (lua_State * L, int index);

 const char * lua_tolstring (lua_State * L, int index,

 size_t * len);

 lua_Number lua_tonumber (lua_State * L, int index);

 lua_Integer lua_tointeger (lua_State * L, int index);

 lua_Unsigned lua_tounsigned (lua_State * L, int idx);

 Lua_toboolean function converts any value to boolean

 some value in C (0 or 1), while using the Lua rules for

 boolean constructs: nil and false give 0, all others - the value 1.

 Any of the lua_to * functions can be called , even when the value

 is of the wrong type. Lua_toboolean function works for values

 any type; lua_tolstring returns NULL for non-string values

 cheniy. Numeric functions have no way of reporting errors

 ke, so they simply return zero on error. Usually

 lua_isnumber should be called to check the type, but in Lua 5.2 we introduced

 the following functions:

 lua_Number lua_tonumberx (lua_State * L, int idx, int * isnum);

 lua_Integer lua_tointegerx (lua_State * L, int idx, int * isnum);

 lua_Unsigned lua_tounsignedx (lua_State * L, int idx, int * isnum);

 The isnum parameter returns a boolean value indicating

 about whether the corresponding Lua value was a number. (If you need this

 no value is needed, then you can as the last parameter

 pass NULL . The old lua_to * functions are now implemented as

 macros based on these functions.)

 Lua_tolstring function returns pointer to internal

 a copy of the string and remembers the length of the string via len parameter . You do not

 you can change this internal copy (the const specifier reminds

 tells you about it). Lua ensures that this pointer is valid until

 as long as the corresponding line is on the stack. When the function

 in C, a call from Lua returns, then Lua clears the stack;

 so never cast pointers to Lua strings outside of a function,

 received them.

 Any string that lua_tolstring returns always has

 a null byte at the end, but it can also contain null bytes

 inside yourself. The actual size of the line is returned through the third

 argument len . In particular, assuming that the value at the top of the stack is

 this is a string, the following asserts are always true:

 293

 size_t l;

 const char * s = lua_tolstring (L, -1, & l); / * any Lua string * /

 assert (s [l] == '\ 0');

 assert (strlen (s) <= l);

 You can call lua_tolstring with a third parameter equal to

 NULL if you don't need the length of the string. Or you can use

 use the macro lua_tostring , which is actually lua_

 tolstring with third parameter equal to NULL .

 In order to illustrate the use of these functions

 ttion Listing 25.2 shows a useful helper function,

 which prints the contents of the stack. This function traverses the entire stack

 bottom to top, printing each item according to its type.

 Strings are printed in quotes, numbers are formatted as '% g' ,

 for other values (functions, tables, etc.), only

 a type. (The lua_typename function translates a numeric value that is

 specifying the type, into a string.)

 Listing 25.2. Printing the contents of a stack

 static void stackDump (lua_State * L) {

 int i;

 int top = lua_gettop (L); / * stack depth * /

 for (i = 1; i <= top; i ++) {/ * repeat for each level * /

 int t = lua_type (L, i);

 switch (t) {

 case LUA_TSTRING: {/ * strings * /

 printf (“'% s'”, lua_tostring (L, i));

 break;

 }

 case LUA_TBOOLEAN: {/ * booleans * /

 printf (lua_toboolean (L, i)? “true”: “false”);

 break;

 }

 case LUA_TNUMBER: {/ * numbers * /

 printf (“% g”, lua_tonumber (L, i));

 break;

 }

 default: {/ * other values * /

 printf (“% s”, lua_typename (L, t));

 break;

 }

 }

 printf (““); / * put a separator * /

 }

 printf (“\ n”); / * end the listing * /

 }

 Other stack operations

 In addition to the previous functions used to exchange data between

 C and Lua, the API also provides the following functions to work

 with stack:

 int lua_gettop (lua_State * L);

 void lua_settop (lua_State * L, int index);

 void lua_pushvalue (lua_State * L, int index);

 void lua_remove (lua_State * L, int index);

 void lua_insert (lua_State * L, int index);

 void lua_replace (lua_State * L, int index);

 void lua_copy (lua_State * L, int fromidx, int toidx);

 Lua_gettop function returns the number of items on the stack, so

 is equal to the index of the element at the top of the stack. Lua_settop function

 sets the number of items on the stack. If the previous value is

 the top of the stack was larger, then the extra values are thrown away

 Xia. Otherwise, use as missing values

 is nil . In particular, lua_settop (L, 0) clears the entire stack. In function

 lua_settop you can also use negative indices.

 In particular, the API provides the following macro, which removes

 there are n elements from the stack :

 #define lua_pop (L, n) lua_settop (L, - (n) - 1)

 The lua_pushvalue function pushes a copy of the item with the given

 ny index; the lua_remove function removes an element with a given

 dex, while shifting all other elements; lua_insert pereme-

 pops an element from the top of the stack to the given position, while shifting

 elements to free up space; lua_replace removes the value from

 top of the stack and sets it to the value of the element with the given

 index; finally, lua_copy copies the value at one index to

 the value at a different index without changing the original value. Reverse

 Note that the following operations do not affect a non-empty stack:

 lua_settop (L, -1); / * set vertex to current value * /

 lua_insert (L, -1); / * move element from top to top * /

 lua_copy (L, x, x); / * copy the element to its position * /

 The program in Listing 25.3 uses the stackDump function (defined

 shown in Listing 25.2) to illustrate these stack operations.

 Listing 25.3. An example of working with a stack

 #include <stdio.h>

 #include “lua.h”295

 #include "lauxlib.h"

 static void stackDump (lua_State * L) {

 <same as in Listing 25.2>

 }

 int main (void) {

 lua_State * L = luaL_newstate ();

 lua_pushboolean (L, 1);

 lua_pushnumber (L, 10);

 lua_pushnil (L);

 lua_pushstring (L, “hello”);

 stackDump (L);

 / * true 10 nil 'hello' * /

 lua_pushvalue (L, -4); stackDump (L);

 / * true 10 nil 'hello' true * /

 lua_replace (L, 3); stackDump (L);

 / * true 10 true 'hello' * /

 lua_settop (L, 6); stackDump (L);

 / * true 10 true 'hello' nil nil * /

 lua_remove (L, -3); stackDump (L);

 / * true 10 true nil nil * /

 lua_settop (L, -5); stackDump (L);

 / * true * /

 lua_close (L);

 return 0;

 }

 25.3. C API error handling

 All structures in Lua are dynamic: they grow as

 necessary and reduced in size when possible. This means

 thinks that in Lua we are constantly faced with a possible error when

 memory allocation. Almost any operation over time can

 lead to this. Moreover, many operations can cause other

 many mistakes; for example, accessing a global variable can

 lead to a call to the __index metamethod , and this metamethod can call

 mistake. Finally, operations that allocate memory over time

 call the garbage collector, which calls finalizers that

 They can also lead to errors. In short, overwhelming

 most functions in Lua can lead to errors.

 Instead of using error codes in its API, Lua uses

 exceptions for reporting errors. Unlike C ++ or Java,

 the C language does not contain a mechanism for working with exceptions. For

 to get around this problem, Lua uses the setjmp function from C,

 which provides a mechanism similar to exception handling. therefore

 most API functions can throw an error (that is, you

 call longjmp) instead of returning a value.

 When we write library code (that is, functions that will

 can be called from Lua), using the longjmp function is almost like this

 as convenient as using real exceptions because

 Lua will catch any error that occurs. When we write code for-

 definitions (that is, the C code that calls Lua), then we must

 provide a way to catch such errors.

 Error handling in application code

 When your application calls functions from the Lua API, then it sub-

 liable to mistakes. As we discussed, Lua usually reports

 these errors using the longjmp function . However, if there is no corresponding

 the corresponding call to setjmp , the interpreter cannot execute

 and longjmp . In this case, any error in the API results in

 Lua calls a special function (panic function), and if the control

 is returned from this function, then the execution of the application will

 rummages. You can define your similar function with

 lua_atpanic , but there isn't much that function can do.

 In order to properly handle errors in your code

 application, you have to call your code through Lua, so it will

 Sets the appropriate context for catching errors (i.e.

 it will execute your code in the context of setjmp). Just like we can-

 Let's run Lua code in protected mode using pcall ,

 we can execute C code using lua_pcall . More accurately,

 we put the C code in a function and call this function through

 Lua using lua_pcall . (We will discuss in detail how to call

 Lua C functions in Chapter 27.) Then our C code will run in

 protected mode. Even in case of memory allocation error

 lua_pcall returns the corresponding error code, leaving the

 the interpreter is in working order.

 Error handling in library code

 Lua is a safe language. This means that it doesn't matter what you write

 in Lua, no matter how wrong it is, you can always understand

 running the program in terms of Lua itself. Moreover, errors are also

 are discovered and explained in Lua terms. You can compare

 this is with C, where the behavior of many mis-written programs can

 297

 can only be explained in terms of the equipment used

 (for example, error locations are specified as command addresses).

 When you add a C function to Lua, you break this

 safety. For example, a function like poke that writes

 an arbitrary byte at an arbitrary memory address, can add

 This leads to a large number of errors when working with memory. You need to

 make sure your additions are safe for Lua and

 provided good error handling.

 As we discussed earlier, C programs must specify

 your error handling with lua_pcall . However, when you drink

 you write arbitrary functions in Lua, usually you don't need to handle

 make mistakes. Errors thrown by the library function will be

 caught either by pcall in Lua or by lua_pcall

 in the application code. Therefore, when a function in a C library is

 catches an error, it might just call lua_error (or whatever

 even better is luaL_error , which formats the error message

 and then calls lua_error). The lua_error function clears everything that

 needs to be cleared in Lua, and jumps back to the protected output

 I call, passing the error message.

 Exercises

 Exercise 25.1. Compile and run a simple separate

 Lua interpreter (Listing 25.1).

 Exercise 25.2. Let's assume the stack is empty. What will be on-

 walk on the stack after the next call sequence

 wwow?

 lua_pushnumber (L, 3.5);

 lua_pushstring (L, “hello”);

 lua_pushnil (L);

 lua_pushvalue (L, -2);

 lua_remove (L, 1);

 lua_insert (L, -2);

 Exercise 25.3. Use the Lua interpreter from listing

 ha 25.1 and the stackDump function (Listing 25.2) in order to

 check your answer to the previous exercise.

 Chapter 26

 Extending your

 applications

 An important use of Lua is to use it as a con-

 figurative language. In this chapter we will show how we can use

 use Lua to configure a program, starting with a simple

 example, and we will develop it to perform more and more complex

 tasks.

 26.1. The basics

 As the first task, let's look at a simple configuration

 rational script: your C program has a window and you want

 be able to set the initial window size. It is clear that for

 such a simple problem, there are simpler solutions than

 Lua uses such as environment variables or files with

 name-value pairs. But, even using a simple text file,

 you somehow need to disassemble it; so you decide to use

 a Lua configuration file (i.e. a text file that

 is a Lua program). In its simplest form, this text

 the file may contain the following lines:

 - define window size

 width = 200

 height = 300

 You must now use the Lua API to enable Lua to parse

 took this file, and then get the values of global variables

 width and height . The load function in Listing 26.1 does this.

 bot. This function assumes that you have already created the Lua state,

 similar to what we saw in the previous chapter. She calls the function

 clause luaL_loadfile to load the block from the file fname and then

 binds lua_pcall to run compiled block. When

 errors (for example, syntax errors in your config

 on file), these functions push the error message onto the stack and

 return a nonzero error code; our program then uses

 is lua_tostring with index -1 in order to get the message

 from the top of the stack. (We discussed the error function in Section 25.1.)

 Listing 26.1. Getting user information

 from the config file

 void load (lua_State * L, const char * fname, int * w, int * h) {

 if (luaL_loadfile (L, fname) || lua_pcall (L, 0, 0, 0))

 error (L, “cannot run config. file:% s”, lua_tostring (L, -1));

 lua_getglobal (L, “width”);

 lua_getglobal (L, “height”);

 if (! lua_isnumber (L, -2))

 error (L, “'width' should be a number \ n”);

 if (! lua_isnumber (L, -1))

 error (L, “'height' should be a number \ n”);

 * w = lua_tointeger (L, -2);

 * h = lua_tointeger (L, -1);

 }

 After executing a block of code, the program needs to get the value

 global variables. To do this, she calls the function twice.

 ktsiyu lua_getglobal , whose parameter (except approach to others

 the accompanying lua_State) is the variable name. Everyone is like that

 the call pushes the corresponding value onto the stack, so the width

 the window will be at position with index –2 and height at position

 with index –1 (at the top). (Since the stack was initially empty,

 which we can also index starting from the bottom of the stack, then

 there is to use 1 for the first value and 2 for the second. But,

 indexing from the top, we do not need to make any assumptions

 the stack is empty .) Next, our example uses the lua_

 isnumber for checking if each value is

 number. Then lua_tointeger is called , and the corresponding values

 values are assigned.

 Was Lua worth using for a similar task? As I said

 earlier, for such a simple task, a simple text file with two

 lami will be much easier than Lua. Even so, using Lua gives

 us some advantages. First, Lua is fully concerned with

 syntax for you; your config file may even contain

 reap comments! Second, the user can already execute

 complex configuration with what we have. For example, the script

 can ask the user for some information or take

 value from the environment variable to select the appropriate size

 ra:

 - configuration file

 if getenv (“DISPLAY”) == “: 0.0” then

 width = 300; height = 300

 else

 width = 200; height = 200

 end

 Even in such simple scenarios, configuration is difficult to advance

 anticipate what users might want; but until

 the script defines these two variables, your C program will

 work unchanged.

 The final reason for using Lua is that

 it is now easy to add new configuration options

 to your program; this ease creates an approach that leads to

 much more flexible programs.

 26.2. Working with tables

 Let's take this approach: now we want to set the background color for

 window. We will assume that the given color consists of three numbers,

 each of the numbers is an RGB component. Usually in C these are

 la are integer in some range for example [0, 255]. In Lua,

 since all numbers are floating point, we will have more

 it is natural to use the range [0, 1].

 A naive approach would be to ask the user to ask

 each component in a separate global variable:

 - configuration file

 width = 200

 height = 300

 background_red = 0.30

 background_green = 0.10

 background_blue = 0

 This approach has two drawbacks: first, it is too redundant.

 and cumbersome (real programs may need dozens of

 colors for the background in the window, for the color in the window, for the background of the menu, etc.); and

 there is no way to pre-define common colors so that

 the user could then simply write background = WHITE . To

 avoid these disadvantages, we can represent colors by

 cabbage tables:

 301

 background = {r = 0.30, g = 0.10, b = 0}

 Using tables gives structure to your script; Now

 easy for the user (or application) to define colors for

 further use in the config file:

 BLUE = {r = 0, g = 0, b = 1.0}

 <other color definitions>

 background = BLUE

 To obtain these values on C, we can do the following -

 in a way:

 lua_getglobal (L, “background”);

 if (! lua_istable (L, -1))

 error (L, “'background' is not a table”);

 red = getcolorfield (L, “r”);

 green = getcolorfield (L, “g”);

 blue = getcolorfield (L, “b”);

 Listing 26.2. An example implementation of the getcolorfield function

 #define MAX_COLOR 255

 / * assume that the table is on the top of the stack * /

 int getcolorfield (lua_State * L, const char * key) {

 int result;

 lua_pushstring (L, key); / * push the key onto the stack * /

 lua_gettable (L, -2); / * get background [key] * /

 if (! lua_isnumber (L, -1))

 error (L, “invalid component in background color”);

 result = (int) (lua_tonumber (L, -1) * MAX_COLOR);

 lua_pop (L, 1); / * remove number * /

 return result;

 }

 We first get the value of the global variable back-

 ground and make sure it is a table and then use get-

 colorfield to get each component.

 Of course the getcolorfield function is not part of the API, we have to

 define it. Again we are faced with the problem of polymorphism:

 there can be many versions of getcolorfield function that differ

 key type, value type, error handling, etc. Lua API

 offers just one lua_gettable function that works for

 of all types. She takes the position of the table on the stack, removes the key from

 stack and pushes the corresponding value onto the stack. Our function

 getcolorfield , defined in Listing 26.2, assumes that the table is

 is at the top of the stack, so after putting the key on the stack

 using the lua_pushstring function , the table will be located at

 index –2. Before returning, getcolorfield pops a semi-

 value, leaving the stack in the same state it was in

 before this call.

 Since indexing a table with a string key

 cha is very common, Lua 5.1 introduced a specialized version

 lua_gettable is just for this case: lua_getfield . Using this

 function, we can rewrite the following two lines:

 lua_pushstring (L, key);

 lua_gettable (L, -2); / * get background [key] * /

 as

 lua_getfield (L, -1, key);

 (Since we are not pushing a row onto the stack, the table has an index

 is still -1 when lua_getfield is called .)

 We will expand our example a little and introduce names in color for

 user. The user can still use the tab-

 faces for the component color setting, but you can also use

 Call predefined color names. To implement this

 we need a color table in our C program:

 struct ColorTable {

 char * name;

 unsigned char red, green, blue;

 } colortable [] = {

 {“WHITE”, MAX_COLOR, MAX_COLOR, MAX_COLOR},

 {“RED”, MAX_COLOR,

 0,

 0},

 {“GREEN”,

 0, MAX_COLOR,

 0},

 {“BLUE”,

 0,

 0, MAX_COLOR},

 <other colors>

 {NULL, 0, 0, 0} / * terminator * /

 };

 Our implementation will create global variables with color-coded names

 comrade and initializes these variables using color tables

 Comrade The result will be the same if the user added

 the following lines into your script:

 WHITE = {r = 1.0, g = 1.0, b = 1.0}

 RED = {r = 1.0, g = 0, b = 0}

 <other colors>

 To set the fields of the table, we will introduce a helper function

 setcolorfield ; it pushes the index and value of the field onto the stack and then

 calls lua_settable :

 303

 / * consider the table to be at the top of the stack * /

 void setcolorfield (lua_State * L, const char * index, int value) {

 lua_pushstring (L, index); / * key * /

 lua_pushnumber (L, (double) value / MAX_COLOR); / * value * /

 lua_settable (L, -3);

 }

 Similar to other API functions, lua_settable works for many

 different types, so it pops all of its operands off the stack. It

 takes the index of the table as an argument and strips off the key and value

 from the stack. The setcolorfield function assumes that before calling the tab-

 face is at the top of the stack (index –1); after placing in-

 dex and values on the stack, the table will be at index –3.

 Lua 5.1 also introduced a specialized version of lua_settable for

 string keys, it's called lua_setfield . Using this no-

 function, we can rewrite setcolorfield as follows

 at once:

 void setcolorfield (lua_State * L, const char * index, int value) {

 lua_pushnumber (L, (double) value / MAX_COLOR);

 lua_setfield (L, -2, index);

 }

 The next function, setcolor , defines one color. She created

 creates a table, sets the values of the corresponding fields and

 maps this table to the corresponding global variable:

 void setcolor (lua_State * L, struct ColorTable * ct) {

 lua_newtable (L); / * creates a table * /

 setcolorfield (L, “r”, ct-> red); / * table.r = ct-> r * /

 setcolorfield (L, “g”, ct-> green); / * table.g = ct-> g * /

 setcolorfield (L, “b”, ct-> blue); / * table.b = ct-> b * /

 lua_setglobal (L, ct-> name); / * 'name' = table * /

 }

 Lua_newtable function creates an empty table and places it

 on the stack; setcolorfield calls set the fields of this table; finally,

 lua_setglobal pops the table off the stack and uses it as a value

 global variable with the given name.

 Using these functions, the next cycle will register all colors.

 the one for the config script:

 int i = 0;

 while (colortable [i] .name! = NULL)

 setcolor (L, & colortable [i ++]);

 Remember that the application must execute this loop before you

 filling in the script.

 Listing 26.3. Colors as rows or tables

 lua_getglobal (L, “background”);

 if (lua_isstring (L, -1)) {/ * is the value a string? * /

 const char * name = lua_tostring (L, -1); / * get string * /

 int i; / * look in the table * /

 for (i = 0; colortable [i] .name! = NULL; i ++) {

 if (strcmp (colorname, colortable [i] .name) == 0)

 break;

 }

 if (colortable [i] .name == NULL) / * string not found? * /

 error (L, “invalid color name (% s)”, colorname);

 else {/ * use colortable [i] * /

 red = colortable [i] .red;

 green = colortable [i] .green;

 blue = colortable [i] .blue;

 }

 } else if (lua_istable (L, -1)) {

 red = getcolorfield (L, “r”);

 green = getcolorfield (L, “g”);

 blue = getcolorfield (L, “b”);

 } else

 error (L, “invalid value for 'background'”);

 Listing 26.3 shows another option for implementing name

 bathroom flowers. Instead of global variables, the user can

 can denote colors using strings, writing the settings as

 background = ”BLUE” . So background can be either

 table, or row. With this approach, the application does not need

 do something before running the script. Instead, to get

 colors have a little more work to do. When the program is

 receives the value of the background variable , then you need to check if

 is this value a string, in which case look for a color in

 color table.

 What's the best option? In C programs, using

 lines to indicate options is not good practice

 since the compiler cannot detect typos. However, in Lua

 the message about a typo in the name of the color will go to the person for whom it is written

 this configuration. Difference between programmer and user

 somewhat blurry; difference between compilation error and error

 runtime is not that great.

 With strings, the value of the background variable can be string

 Coy with a typo; in this case the application can add this information

 formation to the error message. The application can also compare

 thread strings regardless of the case of letters, so that the user 5

 can write “white” , “WHITE” or even “White” . Moreover,

 if the script is small and many errors are found, then this may be

 not very successful - add hundreds of colors (and create hundreds of tabs)

 persons and global variables) only for the user to

 chose several colors. With strings, you avoid this.

 26.3. Lua function calls

 The strength of Lua is that the configuration file can

 can define functions that can then be called by the application

 genius. For example, you can write an application to

 plot the function, and use Lua to plot

 give a function whose graph will be plotted.

 The API provided way to call functions is pretty simple:

 first, you push the function to be called onto the stack;

 second, you put the arguments to be called on the stack as well; after that-

 go use lua_pcall to call the function and finally remove

 results from the stack.

 Let, as an example, our config file contains

 there is a function like the one below:

 function f (x, y)

 return (x ^ 2 * math.sin (y)) / (1 - x)

 end

 You want to compute z = f (x, y) in C for given x and y . Considering

 that you have already opened the Lua library and performed the configuration-

 file, the function f in Listing 26.4 implements this call.

 Listing 26.4. Calling a Lua function from C

 / * call function 'f' defined in Lua * /

 double f (lua_State * L, double x, double y) {

 int isnum;

 double z;

 / * push function and arguments onto the stack * /

 lua_getglobal (L, “f”); / * called function * /

 lua_pushnumber (L, x); / * push 1st argument onto the stack * /

 lua_pushnumber (L, y); / * push 2nd argument onto the stack * /

 / * call the function (2 arguments, 1 result) * /

 if (lua_pcall (L, 2, 1, 0)! = LUA_OK)

 error (L, “error running function 'f':% s”,

 lua_tostring (L, -1));

 / * get the result * /

 z = lua_tonumberx (L, -1, & isnum);

 if (! isnum)

 error (L, “function 'f' must return a number”);

 lua_pop (L, 1); / * pop the result off the stack * /

 return z;

 }

 The second and third arguments to lua_pcall are, respectively,

 the number of arguments you pass and the number of results that

 you want to receive. The fourth argument is a function

 tions for error handling; we will discuss this soon. As with

 assignments in Lua, calling lua_pcall casts a valid

 the number of resulting values to the number you specify; if necessary

 placing on the stack walk nil 's or removing the extra values. Front

 pushing the results onto the stack lua_pcall removes the function from the stack.

 tion and its arguments. When a function returns multiple values,

 then the first value is pushed onto the stack first; for example, if possible

 three values rotate, then the first of them will have index –3,

 and the last –1.

 If an error occurs while executing lua_pcall

 the lua_pcall function returns an error code; besides, she put

 pops the error message onto the stack (but still pops

 function and its arguments). However, before posting a message to

 the lua_pcall stack calls the message handling function if it

 has been asked. To set the message processing function, use

 those are the last argument to the lua_pcall function . Zero means no

 no processing function and the final message is the outcome

 new error message. Otherwise, this argument must

 be the index on the stack where the message handling function is located

 niya. In such a case, the processing function should be placed

 on the stack to the called function and its arguments.

 For normal errors, the lua_pcall function returns the code

 LUA_ERRRUN errors . Two special types of errors deserve

 separate codes, because they never call a function

 processing unit. The first type is memory allocation errors. For

 For similar errors, lua_pcall always returns LUA_ERRMEM . Second

 the type of errors is errors when executing the handler itself

 communication. In this case, there is no point in calling the request again.

 the message bot, so lua_pcall returns immediately

 Correction with the LUA_ERRERR code . Lua 5.2 highlights a third type of error:

 when the finalizer throws an error, lua_pcall returns

 LUA_ERRGCMM code . This code indicates that the error is not related to

 with the challenge itself.

 307

 Listing 26.5. Generalized function call

 #include <stdarg.h>

 void call_va (lua_State * L, const char * func,

 const char * sig, ...) {

 va_list vl;

 int narg, nres; / * number of arguments and results * /

 va_start (vl, sig);

 lua_getglobal (L, func); / * push the function onto the stack * /

 <put arguments on the stack (Listing 26.6)>

 nres = strlen (sig); / * number of expected results * /

 if (lua_pcall (L, narg, nres, 0)! = 0) / * make a call * /

 error (L, “error calling '% s':% s”, func,

 lua_tostring (L, -1));

 <get the results (Listing 26.7)>

 va_end (vl);

 }

 26.4. Generalized call

 function

 As a more complex example, we will construct a universal

 a function to call functions in Lua using vararg in C. Our

 function, let's call it call_va , takes the name of the function that

 need to be called, a string describing the types of arguments and results

 tat, then a list of arguments, and finally a list of pointers to

 the variables in which we want to get the results of the call. When

 using this function, we can easily overwrite our previous

 example as follows:

 call_va (L, “f”, “dd> d”, x, y, & z);

 The line “dd> d” means “two arguments of type double and one re-

 The result is of type double . This specifier uses 'd' for double , 'i'

 for integers and 's' for strings; the '>' character separates arguments from

 results. If the function returns nothing, then the '>' symbol is not-

 required.

 Listing 26.5 shows the implementation of the call_va function . Despite

 As for the general view of this function, it follows the same path as our

 first example: pushes a function onto the stack, pushes arguments to

 the stack (Listing 26.6), makes the call, and receives the results (Listing

 26.7). Most of the code is pretty straightforward, but there are some subtle

 ty. First, it doesn't check that func is a function; if a

 it is not, then lua_pcall will raise an error. Secondly, since it

 pushes an arbitrary number of arguments onto the stack, it must check

 Check if there is free space on the stack. Thirdly, since the functional

 tion can return rows, then call_va cannot remove results from

 stack. This should be done by the caller after use.

 result strings (or copy them elsewhere).

 Listing 26.6. Generally pushing arguments

 for (narg = 0; * sig; narg ++) {/ * execute for each argument * /

 / * check stack space * /

 luaL_checkstack (L, 1, “too many arguments”);

 switch (* sig ++) {

 case 'd': / * double argument * /

 lua_pushnumber (L, va_arg (vl, double));

 break;

 case 'i': / * int argument * /

 lua_pushinteger (L, va_arg (vl, int));

 break;

 case 's': / * string argument * /

 lua_pushstring (L, va_arg (vl, char *));

 break;

 case '>': / * end of arguments * /

 goto endargs;

 default:

 error (L, “invalid option (% c)”, * (sig - 1));

 }

 }

 endargs:

 Listing 26.7. Getting call results

 nres = -nres; / * index of the first result on the stack * /

 while (* sig) {/ * repeat for each result * /

 switch (* sig ++) {

 case 'd': {/ * double result * /

 int isnum;

 double n = lua_tonumberx (L, nres, & isnum);

 if (! isnum)

 error (L, “wrong result type”);

 * va_arg (vl, double *) = n;

 break;

 }

 case 'i': {/ * int result * /

 int isnum;

 int n = lua_tointegerx (L, nres, & isnum);

 if (! isnum)

 error (L, “wrong result type”);

 * va_arg (vl, int *) = n;

 break;9

 }

 case 's': {/ * string result * /

 const char * s = lua_tostring (L, nres);

 if (s == NULL)

 error (L, “wrong result type”);

 * va_arg (vl, const char **) = s;

 break;

 }

 default:

 error (L, “invalid option (% c)”, * (sig - 1));

 }

 nres ++;

 }

 Exercises

 Exercise 26.1. Write a C program that reads

 a Lua file that defines a function f that takes as input

 number and returns the function value from this number. Your

 the program should plot this function. (You do not-

 be sure to use graphics, the usual one is fine

 text view using '*' for graph.)

 Exercise 26.2. Modify the call_va function (Listing 26.5)

 to handle boolean values.

 Exercise 26.3. Let there be a program that needs

 keep track of several weather stations. Inside, for

 representation of each station, it uses a 4-byte

 line, and there is a config file that matches

 Each such line contains the URL of the corresponding station. Con-

 the Lua figure file must do this mapping.

 in several different ways:

 • a set of global variables, one for each stan-

 tion;

 • one table mapping strings to URL;

 • one function that returns a URL for each line.

 Discuss the pros and cons of each option, taking

 attention total number of stations, types of users, availability

 structures in the URL, etc.

 Exercises

 Chapter 27

 Calling C from Lua

 When we say that Lua can call C, it doesn't mean that Lua

 may call any function in C 1 . As we saw in the previous

 chapter, when C calls a function in Lua, you must follow the

 a specific protocol for passing arguments and receiving results

 that. Similarly, in order for Lua to call a function in C, this function

 must follow a specific protocol to get their

 arguments and return results. Moreover, so that Lua can

 call a function in C, we must register this function,

 that is, they must pass Lua its address in a certain way.

 When Lua calls a function in C, it uses the same

 the stack that C uses to call Lua code. Function in C semi-

 pops its arguments off the stack and pushes its results onto the stack.

 The important concept here is that the stack is some

 structure; each function has its own local stack.

 When Lua calls a C function, the first argument will always be

 have index 1 on this local stack. Even when the C code calls

 Lua code that calls the same (or a different) function, each

 of these calls will only see his personal stack with the first ar-

 by index 1.

 27.1. Functions in C

 As a first example, let's see how to implement

 a simplified version of a function that returns the sine of a given

 numbers:

 static int l_sin (lua_State * L) {

 double d = lua_tonumber (L, 1); / * get argument * /

 lua_pushnumber (L, sin (d)); / * push the result onto the stack * /

 1

 There are packages that allow Lua to call any function in C, but they don't.

 portable and not secure.

 return 1; / * number of results * /

 }

 Any function registered in Lua must have one and

 the same prototype defined in lua.h file as lua_CFunction :

 typedef int (* lua_CFunction) (lua_State * L);

 From the point of view of C, the function on C receives as its unique

 argument is the Lua state and returns an integer equal to

 the number of values returned through the stack. Therefore, the functions do not need

 but clear the stack before pushing your results onto it. Pos-

 lua itself saves the results and cleans up

 stack.

 Before we can use this feature, we must

 us first to register it. We do this with lua_

 pushcfunction : it receives a pointer to a C function and creates

 a value of type “function” that represents this function internally

 ri Lua. After registration, the C function behaves like any other

 function inside Lua.

 A quick and dirty way to check the l_sin function is

 put its code directly into our base interpreter

 (Listing 25.1) and add the following lines right after the call

 luaL_openlibs :

 lua_pushcfunction (L, l_sin);

 lua_setglobal (L, “mysin”);

 The first line pushes the function type value onto the stack, and the second

 assigns its value to the global variable mysin . After these

 changes, you can use this new function directly in your

 their Lua scripts. (In the next section we will look at more correct

 good ways to connect C functions to Lua.)

 For a more serious sine function, we must

 check the type of its argument. Here we are helped by an auxiliary

 library. LuaL_checknumber function checks if

 whether the given argument is a number: if an error occurs, it is thrown

 It has a meaningful error message, otherwise it returns the number itself.

 The changes to our function are minimal:

 static int l_sin (lua_State * L) {

 double d = luaL_checknumber (L, 1);

 lua_pushnumber (L, sin (d));

 return 1; / * number of results * /

 }

 With this function definition, if we call mysin ('a') , then

 we will receive the following message:

 bad argument # 1 to 'mysin' (number expected, got string)

 Notice how luaL_checknumber is automatically filled in

 reads the message by argument number (# 1), function name (“mysin”),

 expected parameter type (number) and real parameter type

 (string).

 As a more complex example, let's write a function,

 which will return the contents of the given directory. Lua is not provided

 has such a function in its standard libraries, because

 ANSI C does not have a suitable function for this. Here we will consider

 that our function supports POSIX. Our function - let's call

 its dir in Lua and l_dir in C - takes as an argument a string with

 path to a directory and returns an array with the contents of this directory.

 For example, calling dir (“/ home / lua”) might return the following table

 person {“.”, ”..”, ”src”, ”bin”, ”lib”} . In case of error, the function

 returns nil and an error string. The complete code of this

 the function is shown in Listing 27.1. Pay attention to the use

 calling the luaL_checkstring function , which behaves similarly

 luaL_checknumber , but only for strings.

 (In extreme cases, using this function may result in

 to a small memory leak. Three of the Lua functions it calls are

 may fail due to insufficient memory

 ty: lua_newtable , lua_pushstring and lua_settable . If any of

 these functions will fail, then an error will be raised and

 complements l_dir be interrupted, respectively, closedir will not

 caused. As we discussed earlier, for most programs this is not

 is a big problem: if memory runs out, then the best

 what can be done is to terminate the execution of the program. However

 less in chapter 30 we will see another implementation of the getter function

 contents of the directory, which no longer contains this error.)

 Listing 27.1. Function for reading directory contents

 #include <dirent.h>

 #include <errno.h>

 #include <string.h>

 #include “lua.h”

 #include "lauxlib.h"

 static int l_dir (lua_State * L) {

 DIR * dir;

 struct dirent * entry;13

 int i;

 const char * path = luaL_checkstring (L, 1);

 / * open directory * /

 dir = opendir (path);

 if (dir == NULL) {/ * error opening directory? * /

 lua_pushnil (L); / * return nil ... * /

 lua_pushstring (L, strerror (errno)); / * and message * /

 return 2; / * number of results * /

 }

 / * create a table with the result * /

 lua_newtable (L);

 i = 1;

 while ((entry = readdir (dir))! = NULL) {

 lua_pushnumber (L, i ++); / * push key * /

 lua_pushstring (L, entry-> d_name); / * push value * /

 lua_settable (L, -3);

 }

 closedir (dir);

 return 1; / * table is already at the top of the stack * /

 }

 27.2. Continuations

 With lua_pcall and lua_call , a C function called from Lua

 can, in turn, call Lua. Some functions from the standard

 Noah libraries do this: table.sort can call a function

 comparisons; string.gsub can call the replace function; pcall and

 xpcall can call functions in protected mode. If we help-

 him that the main Lua code was itself, in turn, called from C

 (main program), then we get a sequence like

 next: C (application) calls Lua (script), which calls

 gives a C function (library) that calls Lua.

 Lua normally handles these call sequences without

 problems; after all, its main task is to integrate with

 C. However, there is a situation in which such a chain of calls can

 cause problems: coroutines.

 Every coroutine in Lua has its own stack, which

 contains information about pending coroutine calls. More precisely,

 the stack remembers the return address, parameters and local variables

 every call. For function calls in Lua, the interpreter is used

 calls a suitable data structure to implement the stack, which is

 It is called a flexible stack (soft stack). However, for function calls in C,

 The interpreter must also use the C stack. After all, the address

 return and local variables of a function in C live on the C stack.

 An interpreter can easily have many flexible stacks, but the code for

 C only has one stack. Therefore, coroutines in Lua cannot

 stop execution inside the function in C: if in the call chain

 from resume to the corresponding yield there is a function in C, then Lua

 cannot save the state of this function in order to restore

 renew it the next time you resume . Let's consider the next

 example in Lua 5.1:

 co = coroutine.wrap (function (a)

 return pcall (function (x)

 coroutine.yield (x [1])

 return x [3]

 end, a)

 end)

 print (co ({10, 3, -8, 15}))

 -> false attempt to yield across metamethod / C-call boundary

 The pcall call is a C function; therefore Lua cannot “freeze

 zit "it, because there is no ANSI C way to pause execution

 function in C and then continue its execution.

 Lua 5.2 has dealt with this complexity with continuations

 (continuation). Lua 5.2 implements yield with longjmp , i.e.

 the same way it implements errors. Such a call (longjmp) is simply from-

 discards all information about functions on the C-stack, so there is no

 you can continue the function in C. However, the function in C foo can

 specify a function - continuation of foo-c that is different

 a C function to be called when the time is right

 "Continue" function foo . That is, the interpreter detects

 that it should continue executing foo , but since all the information

 mation about the foo was destroyed with the stack, instead of that, he is

 foo-c .

 To make it clearer, let's look at an example:

 implementation of the pcall function . In Lua 5.1. this function had the following-

 the following code:

 static int luaB_pcall (lua_State * L) {

 int status;

 luaL_checkany (L, 1); / * at least one parameter * /

 status = lua_pcall (L, lua_gettop (L) - 1, LUA_MULTRET, 0);

 lua_pushboolean (L, (status == 0)); / * status * /

 lua_insert (L, 1); / * status is the first result * /

 return lua_gettop (L); / * return status + all results * /

 }

 If the function called via lua_pcall is suspended

 if it was executed (via yield), it will be impossible to continue

 live later execution of luaB_pcall . Therefore, the interpreter will issue

 error every time we try to call yield inside the

 a protected call. Lua 5.2 implements pcall like

 shown in Listing 27.2 2 . There are three differences from the Lua 5.1 version:

 firstly, the new version replaced the lua_pcall call with lua_pcallk ;

 secondly, she has grouped everything that is done after this call in

 the new finishpcall helper function ; the third difference is

 the pcallcont function , the last argument is lua_pcallk , which is

 is a continuation function.

 If there are no yield calls , then lua_pcallk works exactly like

 lua_pcall . If there is a call to yield, then everything is completely different. If a

 a function called by lua_pcall tries to call yield , then Lua 5.2

 raises an error, just like Lua 5.1. However, when the function called

 lua_pcallk , calls yield , then there is no error: Lua calls

 longjmp and discards the entry for luaB_pcall from the C stack, but keeps

 This adds a reference to the pcallcont continuation function in the flexible stack .

 Later, when the interpreter finds that it should return

 to luaB_pcall (which is not possible), it calls the function instead-

 continued pcallcont .

 Unlike luaB_pcall , pcallcont 's continuation function cannot

 can get the value returned by the lua_pcallk call . therefore

 Lua provides a special function to return status

 call: lua_getctx . When called from a normal Lua function (which

 in our case does not happen), lua_getctx returns LUA_OK . Kog-

 yes it is called from a continuation function, it returns LUA_YIELD .

 The continuation function can also be called in the case of some

 errors; in this case lua_getctx returns an error code, that is

 the very value that lua_callk would return in this case .

 Listing 27.2. A pcall implementation with continuations

 static int finishpcall (lua_State * L, int status) {

 lua_pushboolean (L, status); / * first result (status) * /

 lua_insert (L, 1); / * put the first result in the first slot * /

 return lua_gettop (L);

 }

 static int pcallcont (lua_State * L) {

 int status = lua_getctx (L, NULL);

 return finishpcall (L, (status == LUA_YIELD));

 }

 2

 The actual code is more complex than shown here, since it has some general

 other parts with xpcall and checking for stack overflow before placing on it

 boolean value.

 static int luaB_pcall (lua_State * L) {

 int status;

 luaL_checkany (L, 1);

 status = lua_pcallk (L, lua_gettop (L) - 2, LUA_MULTRET, 0,

 0, pcallcont);

 return finishpcall (L, (status == LUA_OK));

 }

 In addition to the call status, the lua_getctx function can also return

 context information. The fifth parameter in lua_pcallk is a

 a free integer that can be obtained through the second parameter

 lua_getctx , which is a pointer to an integer value. This is the price

 the left value allows the original function to pass an arbitrary

 information directly to its continuation. She can also convey

 more information via the Lua stack. (Our example is not used

 takes this opportunity.)

 The continuation mechanism in Lua 5.2 is awesome

 to support yield , but this is not a panacea. Some C function

 may need to convey too much context to your pro

 posts. You can use table as such an example .

 sort , which uses the C stack for recursion, and string.gsub , which

 paradise should keep track of found substrings and a buffer for partial

 results. Although they can be rewritten in a way that supports

 yuschim yield statement , the gain is not worth the complexity introduced.

 27.3. C modules

 A module in Lua is a block of code that defines various functions.

 tions in Lua and remembers them in suitable places, usually tab-

 faces. A C module for Lua behaves the same way. Besides defining

 its functions in C, it must also define a special function

 tion, which acts as the main block in the Lua library. This

 the function must register all C functions from the module and

 remember them in appropriate places, usually in table fields.

 Like the main block in Lua, this function also needs to

 to initialize everything that needs initialization.

 Lua obtains functions in C through the registration mechanism. After

 Once a C function is represented and stored in Lua, Lua calls

 her through a direct link to her address (which we transmit

 Lua when we register this function). In other words, Lua is not

 depends on the function name, package location, or visibility rules

 ty to call this function when it is registered.

 Usually a C module has only one extern function,

 which is the function that opens the library. Everything else-

 functions can be closed, for example, by declaring them as

 static .

 When you extend Lua with C functions, a good

 the idea is to organize your code as a C module, even if

 you only want to register one function: sooner or later

 (usually early) you will need other features. As usual, help

 The powerful library offers a helper function for

 this. The luaL_newlib macro takes a list of C functions along with their

 appropriate names and registers them all inside the new tab-

 faces. As an example, let's say we want to create a library with a function

 tion l_dir , which we defined earlier. First, we must

 define library functions:

 static int l_dir (lua_State * L) {

 <as before>

 }

 Next, we define an array with all the functions along with their

 names. This array contains elements of type luaL_Reg , which

 is a structure of two fields: the function name (string) and the

 a function factor.

 static const struct luaL_Reg mylib [] = {

 {“Dir”, l_dir},

 {NULL, NULL} / * terminator * /

 };

 In our example, there is only one function (l_dir), which we

 want to register. The last pair in the array is always

 {NULL, NULL} denoting the end of the array. Finally, we define

 We write the main function using luaL_newlib :

 int luaopen_mylib (lua_State * L) {

 luaL_newlib (L, mylib);

 return 1;

 }

 The luaL_newlib call creates a new table and fills it in pairs

 name is a function from the mylib array . Upon returning luaL_newlib OS-

 Pushes a new table onto the stack. Function luaopen_mylib vozvrascha-

 is 1 in order to return this table to Lua.

 After completing the library, we must link it to

 interpreter. The easiest way to do this is

 using dynamic libraries if the interpreter is Lua

 supports them. In this case, you must create a dynamic

 the library with your code (mylib.dll on Windows and mylib.so on Linux)

 and place it along the C-path. After these steps, you can download

 this library directly from Lua using require :

 local mylib = require “mylib”

 This call loads a dynamic library in Lua, find

 dumps the luaopen_mylib function , registers it as a C function, and

 calls it, thereby opening the module. (This explains why

 luaopen_mylib must have the same prototype as any

 another function in C.)

 When loading a dynamic library, we need to know the name

 function luaopen_mylib in order to find it. Will always be used

 a function named luaopen_ , to which the name is attached

 module. Therefore, if your module is called mylib , then the function

 should be named luaopen_mylib .

 If your interpreter does not support dynamic linking-

 ku, then you need to rebuild Lua along with your new library.

 Besides this rebuilding, you also need some way of saying

 to the interpreter that it should open this library when creating

 new state. This is usually done by adding luopen_mylib to

 list of standard libraries that luaL_openlib opens in

 file linit.c .

 Exercises

 Exercise 27.1. Write a summation function in C that

 calculates the sum of a variable number of its numeric arguments:

 print (summation ())

 -> 0

 print (summation (2.3, 5.4))

 -> 7.7

 print (summation (2.3, 5.4, -34)) -> -26.3

 print (summation (2.3, 5.4, {}))

 -> stdin: 1: bad argument # 3 to 'summation'

 (number expected, got table)

 Exercise 27.2. Implement a function equivalent to table.

 pack from the standard library.

 Exercise 27.3. Write a function that gets produced

 free number of parameters and returns them in reverse order:

 print (reverse (1, “hello”, 20)) -> 20 hello 1

 Exercise 27.4. Write a foreach function that gets-

 takes a table and a function as input and calls this function to

 each key-value pair in the table:

 foreach ({x = 10, y = 20}, print)

 -> x 10

 -> y 20

 Exercise 27.5. Rewrite the foreach function from the previous

 th exercise so that the called function can call

 yield .

 Exercise 27.6. Create a C module with all the functions from

 previous exercises.

 Exercises

 Chapter 28

 Writing techniques functions in C

 Both the official API and the auxiliary library provide

 provide several mechanisms to help write functions in C.

 In this chapter, we will look at mechanisms for working with arrays,

 strings and storing Lua values in C.

 28.1. Working with arrays

 In Lua, "array" is just a name for the table used by the spec.

 in a special way. We can work with arrays using those

 the same functions that we used to work with the table-

 mi, that is, lua_settable and lua_gettable . However, the API is provided by

 There are several special functions for working with arrays. One

 one of the advantages of using these functions is performance:

 often we have access to an array inside the loop of the algorithm

 ma (for example, sorting), so that any increase in speed

 the viya in these operations can have a big impact

 on the final performance of the algorithm. Another plus is

 convenience, integer keys are common enough that-

 would deserve special treatment.

 The API provides two functions for working with arrays:

 void lua_rawgeti (lua_State * L, int index, int key);

 void lua_rawseti (lua_State * L, int index, int key);

 The description of the lua_rawgeti and lua_rawseti functions is somewhat confusing.

 is safe, since it includes two indices at once: index describes where

 the table is on the stack; key specifies an element in the table itself.

 The lua_rawgeti (L, t, key) call is equivalent to the following sequence

 when t is greater than zero (otherwise it is necessary

 compensate for the appearance of a new element on the stack):

 lua_pushnumber (L, key);

 lua_rawget (L, t);

 Calling lua_rawseti (L, t, key) (again for positive t) eq-

 is equivalent to the following sequence:

 lua_pushnumber (L, key);

 lua_insert (L, -2); / * put 'key' below the previous value * /

 lua_rawset (L, t);

 Note that both functions use direct

 to the table. They are faster and moreover the tables used

 as arrays, metamethods are rarely used.

 Listing 28.1. C map function

 int l_map (lua_State * L) {

 int i, n;

 / * 1st argument must be table (t) * /

 luaL_checktype (L, 1, LUA_TTABLE);

 / * 2nd argument must be function (f) * /

 luaL_checktype (L, 2, LUA_TFUNCTION);

 n = luaL_len (L, 1); / * get table size * /

 for (i = 1; i <= n; i ++) {

 lua_pushvalue (L, 2); / * push f * /

 lua_rawgeti (L, 1, i); / * push t [i] onto the stack * /

 lua_call (L, 1, 1); / * call f (t [i]) * /

 lua_rawseti (L, 1, i); / * t [i] = result * /

 }

 return 0; /* No results */

 }

 As an example of using these functions, Listing 28.1 re-

 lizuet function map : it applies a given function to all element

 the array, replacing each element with the result of the call. This

 the example also introduces three new functions: luaL_checktype , luaL_len

 and lua_pcall .

 The luaL_checktype function (from the lauxlib.h file) checks that

 the given argument is of the given type, otherwise it is

 throws an error.

 The lua_len primitive (not used in the example above) is equivalent to

 is valent to the '#' operator . Due to metamethods, this operator can

 return an object of any type, not just numbers; so lua_len

 returns its result on the stack. LuaL_len function (using

 bathroom in the example) raises an error if the length is not pure

 scrap, otherwise it returns the length as normal

 integer type.

 The lua_call function makes an unsecured call. He is analogous

 lua_pcall is hygienic , but it passes the errors above rather than returning the code

 errors. When you write the main application code, you better not

 use lua_call as you want to catch any errors.

 However, when you write functions, it is better to use exactly

 lua_call ; if an error occurs, then we will leave it for someone,

 to whom it is important.

 28.2. Working with strings

 When a C function receives a string argument from Lua, there is

 there are only two rules that need to be followed: do not remove

 string off the stack when working with it and never modify the string.

 The situation gets more complicated when C functions need to be created

 string to return it to Lua. C code should worry

 about buffer allocation / deallocation, buffer overflow, etc.

 at least the Lua API provides several functions for this.

 The Standard API provides assistance in two of the most common

 common operations: substring extraction and concatenation

 lines. When you select a substring remember that lua_pushlstring po-

 takes the length of the string as an optional argument. So if you

 want to pass Lua substring of string s with characters at positions from i

 up to j (inclusive), then all you have to do is:

 lua_pushlstring (L, s + i, j - i + 1);

 As an example, let's say you want a function that breaks down

 emits a string at a given delimiter (one character) and returns

 Creates a table with substrings. For example, calling split (“hi: ho:

 there ”,”: ”) should return the table {“ hi ”,” ho ”,” there ”} . Fox

 Thing 28.2 shows a simple implementation of this function. She doesn't need

 we have additional buffers and it does not impose any restrictions

 on the size of the lines that it can handle. About all

 the buffers are taken care of by Lua itself.

 Listing 28.2. Splitting a string

 static int l_split (lua_State * L) {

 const char * s = luaL_checkstring (L, 1); /* line */

 const char * sep = luaL_checkstring (L, 2); /* delimiter */

 const char * e;

 int i = 1;

 lua_newtable (L); / * table with result * /

 / * repeat for each separator * /

 while ((e = strchr (s, * sep))! = NULL) {

 lua_pushlstring (L, s, es); / * substring per stack * /

 lua_rawseti (L, -2, i ++); / * insert into table * /

 s = e + 1; / * go beyond separator * /

 }

 / * insert last substring * /

 lua_pushstring (L, s);

 lua_rawseti (L, -2, i);

 return 1; / * return table * /

 }

 For string concatenation, Lua provides a special function

 in its API called lua_concat . It is equivalent to opera-

 torus of concatenation .. in Lua; it converts numbers to strings and when

 calls metamethods if necessary. Moreover, she can immediately

 concatenate more than two lines. Calling lua_concat (L, n) concatenate

 pops (popping from the stack) n values and puts the result on top

 stack.

 Another useful function is lua_pushfstring :

 const char * lua_pushfstring (lua_State * L, const char * fmt, ...);

 It is somewhat similar to the sprintf function in that it creates a string

 ku by format string and additional arguments. However, in excellent

 from sprintf , you don't need to provide a buffer. Lua dynamically

 creates a string for you as large as needed. This function

 pushes the resulting string onto the stack and returns a pointer to

 her. You don't need to worry about buffer overflows.

 Currently, this function only supports the following 1 formats :

 % s

 Insert null terminated string

 % d

 Insert integer

 % f

 Insert Lua number i.e. double

 % p

 Insert Pointer

 % c

 Insert integer as character

 %%

 Insert character '%'

 No modifiers supported such as width

 or accuracy.

 Both lua_concat and lua_pushfstring are useful when we want to

 concatenate only a few lines. However, if we need to connect

 many lines (or characters) together, then do it one at a time

 can be quite inefficient, as we saw in section 11.6.

 In this case, we can use the buffers provided by

 auxiliary library.

 In the simplest case, buffers work like two functions: one

 gives you a buffer of any size where you can write your string;

 the other converts the buffer to a string in Lua 2 . Listing 28.3 showing

 Can't use these functions by implementing the function

 string.upper directly from the original lstrlib.c file . The first step

 using the buffer from the auxiliary library is

 the phenomenon of a variable of type luaL_Buffer . The next step is

 call luaL_buffinitsize to get a pointer to a buffer with a given

 new size; then you can use this buffer to create-

 his line. The last step is to call luaL_pushresultsize

 to convert the contents of the buffer to a new Lua string on ver-

 the stack bus. The size in this call is the final size of the string.

 (Often, as in our example, this size is equal to the size of the buffer, but it

 maybe less. If you do not know the exact size of the resulting

 string, but you have its maximum size, then you can order

 larger buffer.)

 Listing 28.3. String.upper function

 static int str_upper (lua_State * L) {

 size_t l;

 size_t i;

 luaL_Buffer b;

 const char * s = luaL_checklstring (L, 1, & l);

 char * p = luaL_buffinitsize (L, & b, l);

 for (i = 0; i <l; i ++)

 p [i] = toupper (uchar (s [i]));

 luaL_pushresultsize (& b, l);

 return 1;

 }

 Note that the luaL_pushresultsize function is not

 takes the Lua state as its first argument. After

 the initialization buffer stores a reference to the state, so we don't

 you need to pass it when calling other functions to work with

 buffers.

 We can also use these buffers without knowing the maximum

 the length of the resulting string. Listing 28.4 shows a simplified re-

 lisation of the table.concat function . In this function, we first call

 Vai luaL_buffinit to initialize the buffer. Then we add

 325

 to the buffer elements one by one, in this case using the function

 luaL_addvalue . Finally, luaL_pushresult releases the buffer and

 Places the summary line at the top of the stack.

 Listing 28.4. Simplified implementation of table.concat

 static int tconcat (lua_State * L) {

 luaL_Buffer b;

 int i, n;

 luaL_checktype (L, 1, LUA_TTABLE);

 n = luaL_len (L, 1);

 luaL_buffinit (L, & b);

 for (i = 1; i <= n; i ++) {

 lua_rawgeti (L, 1, i); / * get row from table * /

 luaL_addvalue (b); / * add it to the buffer * /

 }

 luaL_pushresult (& b);

 return 1;

 }

 The helper library provides several functions

 to add values to the buffer: function luaL_addvalue to-

 Adds the Lua string that is at the top of the stack; function

 luaL_addlstring adds strings with the specified length; function

 luaL_addstring adds a null terminated string and

 the luaL_addchar function adds single characters. These functions

 tions have the following prototypes:

 void luaL_buffinit (lua_State * L, luaL_Buffer * B);

 void luaL_addvalue (luaL_Buffer * B);

 void luaL_addlstring (luaL_Buffer * B, const char * s, size_t l);

 void luaL_addstring (luaL_Buffer * B, const char * s);

 void luaL_addchar (luaL_Buffer * B, char c);

 void luaL_pushresult (luaL_Buffer * B);

 When you use a buffer, pay attention to the following.

 After initializing the buffer, it stores some auxiliary

 results on the Lua stack. Therefore, you cannot assume

 that the top of the stack will remain where it was before you put

 use a buffer. You can use the stack for others

 tasks while working with a buffer, the main thing is that calls to push and pop

 were balanced every time you use the buffer. Ex-

 the key to this rule is the luaL_addvalue function , which

 paradise assumes that the line to be added to the buffer was

 pushed to the top of the stack.

 28.3. Saving statein C functions

 Often C functions need to store some kind of non-local data,

 that is, data that will survive the current function call. In C we

 usually we use global (extern) or static variables-

 for this purpose. However, when you write library functions

 for Lua, then using global or static variables

 not a good solution. First, you cannot save

 an arbitrary Lua value in a C variable. Secondly, the library,

 which uses such variables will not work correctly with

 multiple Lua states.

 A Lua function has two basic places where you can store non-lightweight

 local data: global variables and non-local variables.

 The C API also provides two basic storage locations for non-local

 data: registry and values associated with the function (upvalue).

 The registry is a global table that can be accessed

 only with a C 3 code . Typically the registry is used to

 storage of data that will be used by several

 modules. If you need to save data only for your mo-

 dul or functions, then you must use the values associated

 with function.

 Registry

 The registry is usually located at a pseudo-index , the value of which is defined

 divided as LUA_REGISTRYINDEX . The pseudo-index looks like an index

 on the stack, except that the associated values are not

 walk on the stack. Most of the functions in the Lua API that accept

 take indices as arguments, they also accept pseudoin-

 dexes - except for those functions that change the stack, such

 like lua_remove and lua_insert . For example, in order to get

 the value associated with the "Key" in the registry, we can use

 make the following call:

 lua_getfield (L, LUA_REGISTRYINDEX, “Key”);

 The registry is just a regular Lua table. Accordingly, you can for

 to call it, use any Lua value other than nil . One-

 3

 In fact, the registry can also be accessed from Lua using a function from the debugger.

 in the debug.getregistry sub-library.

 but since all C modules share the same registry, you

 must be very careful in choosing the values that you will use

 use as keys in order to avoid possible conflicts

 Comrade String keys are especially handy when you want to allow

 other modules access your data, since everything they

 need is the name. There is no completely reliable method for

 bunch of keys, but there are some proven approaches,

 such as not using common names and starting your

 names with the library name or something like it. (Prefixes like

 lua and lualib are not good options.)

 You should never use numbers as keys

 registry, since such keys are reserved for the system

 links (reference system). This system consists of a pair of functions in

 helper libraries that allow you to save

 readings in the table without worrying about the uniqueness of the keys. Function

 luaL_ref creates new links:

 int r = luaL_ref (L, LUA_REGISTRYINDEX);

 This call will pop the value from the top of the stack, store it in a table

 face at the new integer index and will return that index. By-

 Daubney indexes are called links (reference).

 As the name suggests, we will use links mainly for

 when we need to store a Lua value inside a struct

 ry C. As we have already seen, we should never memorize a pointer

 whether to Lua strings outside of the C function that received them. More

 Moreover, Lua doesn't even offer pointers to other objects such as

 tables or functions. Therefore, we cannot refer to objects

 Lua with pointers. Instead, when we need that-

 these are pointers, we will create links and store them in C.

 To put the value associated with the reference r to

 stack, we just use the following piece of code:

 lua_rawgeti (L, LUA_REGISTRYINDEX, r);

 Finally, in order to release both meaning and reference, we

 call luaL_unref :

 luaL_unref (L, LUA_REGISTRYINDEX, r);

 After that, a new call to luaL_ref can return the same

 link.

 The referencing system treats nil as a special case. When we call

 Vai luaL_ref for the value of nil , a new link is created, and instead

 this returns the constant LUA_REFNIL . The next call to sa-

 Actually does nothing:

 luaL_unref (L, LUA_REGISTRYINDEX, LUA_REFNIL);

 The next call pushes nil onto the stack , as expected:

 lua_rawgeti (L, LUA_REGISTRYINDEX, LUA_REFNIL);

 The reference system also defines the constant LUA_NOREF, which

 is an integer other than any link. She is useful

 in order to mark links as destroyed / uninitialized-

 dyed.

 Another reliable method for generating registry keys is

 using a static variable as a key address in your

 In the same code: the linker guarantees that this address is unique.

 In order to use this option, you need the function

 lua_pushlightuserdata , which pushes a value onto the Lua stack,

 which is a pointer to C. The following code shows

 how to save and retrieve a string from the registry using this method

 Yes:

 / * variable with unique address * /

 static char Key = 'k';

 / * remember the line * /

 lua_pushlightuserdata (L, (void *) & Key); / * push address * /

 lua_pushstring (L, myStr); / * push value * /

 lua_settable (L, LUA_REGISTRYINDEX); / * registry [& Key] = myStr * /

 / * get string * /

 lua_pushlightuserdata (L, (void *) & Key); / * push address * /

 lua_gettable (L, LUA_REGISTRYINDEX); / * get value * /

 myStr = lua_tostring (L, -1); / * convert it to string * /

 We will discuss in more detail the use of the userdata type in

 case 29.5.

 In order to simplify the use of variable addresses in the

 as unique keys, Lua 5.2 introduces two new functions: lua_

 rawgetp and lua_rawsetp . They are like lua_rawgeti / lua_rawseti ,

 but instead of integers, they use pointers (translated to

 userdata) as keys. Using them, we can rewrite

 the previous code is as follows:

 static char Key = 'k';

 / * remember the line * /

 lua_pushstring (L, myStr);

 lua_rawsetp (L, LUA_REGISTRYINDEX, (void *) & Key);

 / * get string * /9

 lua_rawgetp (L, LUA_REGISTRYINDEX, (void *) & Key);

 myStr = lua_tostring (L, -1);

 Function related values

 While the registry offers global variables, the mechanism

 values associated with functions offers an analogue of static-variables-

 in C, which are visible only inside a separate function. Each

 time when you create a new C function in Lua you can bind

 with it any number of similar values; every such value

 is a Lua value. Then, when the function is called, it

 accesses any of these values freely using

 pseudo-indices.

 We call this relationship functions in C with their values za-

 closures (closure). The C closure is analogous to the Lua closure

 for the C language. In particular, you can create various closures-

 using the same function code, but different associated values

 cheniya.

 As a simple example, let's write a function

 newCounter in C 4 . This function is a factory: it returns

 Creates a new counting function each time it is called. Although everyone is like that

 functions have the same C code, each of them stores its own

 own counter. This factory function looks like this

 way:

 static int counter (lua_State * L); / * forward declaration * /

 int newCounter (lua_State * L) {

 lua_pushinteger (L, 0);

 lua_pushcclosure (L, & counter, 1);

 return 1;

 }

 The main function here is lua_pushcclosure , which co-

 creates a new closure. Its second argument is the base function.

 ration (in the example this is counter), and the third argument is a number

 associated values (in the example, this is 1). Before creating a new job

 we have to put the initial values for the related

 values on the stack. In our example, we put 0 as the initial

 value for the only associated value. As expected,

 lua_pushcclosure leaves a new closure on the stack, so

 the closure is already ready to return as the result of newCounter .

 Let's now take a look at the definition of the counter function :

 static int counter (lua_State * L) {

 int val = lua_tointeger (L, lua_upvalueindex (1));

 lua_pushinteger (L, ++ val); / * new value * /

 lua_pushvalue (L, -1); / * duplicate it * /

 lua_replace (L, lua_upvalueindex (1)); / * update value * /

 return 1; / * return new value * /

 }

 The key element here is the lua_upvalueindex macro ,

 which returns the pseudo-index of the associated value. In part

 Nost expression lua_upvalueindex (1) returns the pseudo

 the first associated value of the current function. This pseudo-index

 looks like any index on the stack, only it's not on the stack.

 Therefore, the call to lua_tointeger returns the current value first

 th (and only) associated value as a number. Then the function

 pushes the new value ++ val onto the stack, makes a copy of it, and

 uses one of the copies to replace the associated value

 nie. Finally, it returns another copy as its value.

 As a more complex example, we will implement tuples

 using associated values. A tuple is something like a constant

 Yanny records with anonymous fields; you can get specific

 new field by index or you can get all fields at once. In our

 implementations, we will represent tuples as functions that

 remember their values in related values. When the function

 called with a numeric argument, then it returns the specific field.

 When called with no arguments, it returns all fields. Next

 The following code demonstrates the use of tuples:

 x = tuple.new (10, “hi”, {}, 3)

 print (x (1)) -> 10

 print (x (2)) -> hi

 print (x ()) -> 10 hi table: 0x8087878 3

 In C, we represent all tuples using the same

 the t_tuple function , shown in Listing 28.5. Since we can

 let's call a tuple with a numeric argument or without

 arguments, the t_tuple function uses luaL_optint to

 reading an optional argument. LuaL_optint function is like

 luaL_checkint , but if the argument is absent, then it simply

 returns the specified default value (in the example it is 0).

 Listing 28.5. Implementing tuples

 int t_tuple (lua_State * L) {

 int op = luaL_optint (L, 1, 0);1

 if (op == 0) {/ * no arguments? * /

 int i;

 / * push each associated value onto the stack * /

 for (i = 1;! lua_isnone (L, lua_upvalueindex (i)); i ++)

 lua_pushvalue (L, lua_upvalueindex (i));

 return i - 1; / * number of values on the stack * /

 }

 else {/ * get the 'op' field * /

 luaL_argcheck (L, 0 <op, 1, “index out of range”);

 if (lua_isnone (L, lua_upvalueindex (op)))

 return 0; / * no field * /

 lua_pushvalue (L, lua_upvalueindex (op));

 return 1;

 }

 }

 int t_new (lua_State * L) {

 lua_pushcclosure (L, t_tuple, lua_gettop (L));

 return 1;

 }

 static const struct luaL_Reg tuplelib [] = {

 {“New”, t_new},

 {NULL, NULL}

 };

 int luaopen_tuple (lua_State * L) {

 luaL_newlib (L, tuplelib);

 return 1;

 }

 When we refer to a non-existent associated value,

 the result is a pseudo-value of type LUA_TNONE . (When we

 accessing the value above the top of the stack, then we also get

 pseudo-value of type LUA_TNONE .) Therefore, our function t_tuple

 uses lua_isnone to check if there is a corresponding value

 reading. However, we should never call lua_upvalueindex

 with a negative index, so we must check this when

 yes the index is provided by the user. LuaL_argcheck function

 checks for any given value, throwing an error if needed

 availability.

 Function for creating t_new tuples (also in Listing 28.5)

 trivial: since all of her arguments are already on the stack, she just

 binds lua_pushcclosure to create a circuit using their

 arguments as bound values. Finally, the tubplelib array and

 the luaopen_tuple function (also in Listing 28.5) are standard

 code to create a tuple library with a single function

 new .

 The values associated with the function are

 used by multiple functions

 Quite often we need to give access to multiple values or

 variables to all functions of this module. Although we can use

 call the registry for this purpose, we can also use values

 related to functions.

 Unlike Lua closures, C closures cannot be shared.

 associated values. Each closure has its own independent

 related values. However, we can make it so that

 values of several functions will point to the same

 table, so this table becomes the environment where everything

 these functions can store general data.

 Lua 5.2 has a feature that makes the task of separating connections easier.

 value between all library functions. We are open

 Get C libraries with luaL_newlib . Lua implements this

 function with the following macro:

 #define luaL_newlib (L, l) \

 (luaL_newlibtable (L, l), luaL_setfuncs (L, l, 0))

 The luaL_newlibtable macro simply creates a table for the library.

 theca. (We could have used lua_newtable as well , but this macro

 uses lua_createtable to create a table with pre-emitted

 small size, optimal for the number of functions in this library

 lioteke.) Function luaL_setfuncs adds features from the list l to

 a new table at the top of the stack.

 We are interested in the third parameter of the luaL_setfuncs function here .

 It tells how many related values the functions will have.

 libraries. Initial values for these related values

 must be on the stack, as with lua_pushc-

 closure . Thus, to create a library where functions will be

 are supposed to have a common table as the only associated value, we

 we can use the following code:

 / * create a table for the library ('lib' is a list of its functions) * /

 luaL_newlibtable (L, lib);

 / * create shared value * /

 lua_newtable (L);

 / * add functions from the 'lib' list to the new library, so * /

 / * they will all have this table as their associated value * /

 luaL_setfuncs (L, lib, 1)

 333

 The last call also pops the table off the stack, leaving

 just a new library.

 Exercises

 Exercise 28.1. Write a C function filter . She gets-

 takes a list and a function as input and returns all elements from

 a given list for which the function returns true

 value:

 t = filter ({1, 3, 20, -4, 5}, function (x) return x <5 end)

 - t = {1, 3, -4}

 Exercise 28.2. Modify the l_split function (from Listing 28.2)

 so that it can work with lines containing well-

 left byte. (Apart from other changes, it must also

 use memchr instead of strchr .)

 Exercise 28.3. Implement the transliterate function (exercise

 21.3) on C.

 Exercise 28.4. Implement a library with modified functionality

 it transliterate so that replacement of the table is not transmitted as

 argument, but is stored by the library itself. Your library

 should provide the following features:

 lib.settrans (table) - set the replacement table

 lib.gettrans () - return replacement table

 lib.tranliterate (s) - translate 's' using the current table

 Use a registry to store the replacement table.

 Exercise 28.5. Repeat the previous exercise using

 specifying the associated value to store the table.

 Exercise 28.6. Do you think it is a good design to store

 the replacement table as part of the library state, rather than passing

 to use it as a parameter?

 Exercises

 Chapter 29

 Asked user-defined types in C

 In the previous chapter, we saw how to extend Lua with new

 functions written in C. Now we will see how to extend

 Lua with the new types defined in C. We'll start with a little

 th example; throughout this chapter, we will expand it with

 help of metamethods and other possibilities.

 Our example will be pretty simple: an array of logical (boolean

 out) values. Such a simple structure was chosen because with it

 does not involve any complex algorithms and we can completely

 concentrate on API. Nevertheless, this example is still

 useful. Of course in Lua we can use tables

 to implement arrays of boolean values. But in implementation on

 With we will use one bit for each element, that is

 we only need about 3% of the memory that would be needed-

 for the corresponding table.

 For our implementation, we need the following definitions:

 #include <limits.h>

 #define BITS_PER_WORD (CHAR_BIT * sizeof (unsigned int))

 #define I_WORD (i) ((unsigned int) (i) / BITS_PER_WORD)

 #define I_BIT (i) (1 << ((unsigned int) (i)% BITS_PER_WORD))

 The BITS_PER_WORD constant is the number of bits in an unsigned string.

 scrap number. Macro I_WORD evaluates a word that contains a bit

 at the given index, and the macro I_BIT calculates the bit mask for

 corresponding bit.

 We will represent our arrays with the following

 structures:

 typedef struct NumArray {

 int size;

 unsigned int values [1]; / * mutable part * /

 } NumArray;

 335

 We are declaring a values array of size 1, since C89 is not

 allows you to declare arrays with size 0; in fact we will

 allocate the required number of elements when allocating memory for

 our array. The following expression calculates the total size for

 our bitmap with n elements:

 sizeof (NumArray) + I_WORD (n - 1) * sizeof (unsigned int)

 (We subtract one from n , since in our structure we already

 allocated space for one element.)

 29.1. User data (userdata)

 Our first task is to represent the structure

 NumArray in Lua. Lua provides a special base type for

 this: userdata . This type simply corresponds to an area, memory in

 so we can store anything without any specific

 operations.

 The lua_newuserdata function allocates a block of memory for a given time

 measure, pushes the corresponding Lua value onto the stack and returns

 dedicated block address:

 void * lua_newuserdata (lua_State * L, size_t size);

 If for some reason you need to allocate a block of memory

 otherwise, you can easily create the corresponding object

 Lua with pointer size and remember there pointer to allocated

 block. We will discuss this technique in Chapter 30.

 Using the lua_newuserdata function, the function to create new

 out arrays of boolean values looks like this:

 static int newarray (lua_State * L) {

 int i;

 size_t nbytes;

 NumArray * a;

 int n = luaL_checkint (L, 1);

 luaL_argcheck (L, n> = 1, 1, “invalid size”);

 nbytes = sizeof (NumArray) + I_WORD (n - 1) * sizeof (unsigned int);

 a = (NumArray *) lua_newuserdata (L, nbytes);

 a-> size = n;

 for (i = 0; i <= I_WORD (n - 1); i ++)

 a-> values [i] = 0; / * initialize the array * /

 return 1; / * the new object is already on the stack * /

 }

 Once the newarray function is registered in Lua, we can

 create new arrays using expressions like: a = array.

 new (1000) .

 In order to write a value to our array, we will use

 Call expressions of the form: array.set (a, index, value) . Later we

 see how you can use metatables to support more

 the traditional syntax is a [index] = value . In both cases

 the function that writes the element to the array is the same. we

 we assume that, as is customary in Lua, indices start at 1:

 static int setarray (lua_State * L) {

 NumArray * a = (NumArray *) lua_touserdata (L, 1);

 int index = luaL_checkint (L, 2) - 1;

 luaL_argcheck (L, a! = NULL, 1, “'array' expected”);

 luaL_argcheck (L, 0 <= index && index <a-> size, 2,

 “Index out of range”);

 luaL_checkany (L, 3);

 if (lua_toboolean (L, 3))

 a-> values [I_WORD (index)] | = I_BIT (index); / * set a bit * /

 else

 a-> values [I_WORD (index)] & = ~ I_BIT (index); / * remove a bit * /

 return 0;

 }

 Since Lua can be used as a boolean

 to call any value, then we use luaL_checkany to

 to make sure there is some value for this parameter.

 If we call setarray with incorrect arguments, then we will

 we get the corresponding error messages:

 array.set (0, 11, 0)

 -> stdin: 1: bad argument # 1 to 'set' ('array' expected)

 array.set (a, 1)

 -> stdin: 1: bad argument # 3 to 'set' (value expected)

 The following function returns the value at the given index:

 static int getarray (lua_State * L) {

 NumArray * a = (NumArray *) lua_touserdata (L, 1);

 int index = luaL_checkint (L, 2) - 1;

 luaL_argcheck (L, a! = NULL, 1, “'array' expected”);

 luaL_argcheck (L, 0 <= index && index <a-> size, 2,

 “Index out of range”);

 lua_pushboolean (L, a-> values [I_WORD (index)] & I_BIT (index));

 return 1;

 }

 337

 We will define a separate function to return

 array size:

 static int getsize (lua_State * L) {

 NumArray * a = (NumArray *) lua_touserdata (L, 1);

 luaL_argcheck (L, a! = NULL, 1, “'array' expected”);

 lua_pushinteger (L, a-> size);

 return 1;

 }

 Finally, we need additional code to initialize

 our library:

 static const struct luaL_Reg arraylib [] = {

 {“New”, newarray},

 {“Set”, setarray},

 {“Get”, getarray},

 {“Size”, getsize},

 {NULL, NULL}

 };

 int luaopen_array (lua_State * L) {

 luaL_newlib (L, arraylib);

 return 1;

 }

 Again we use the luaL_newlib function from the helper

 libraries. She creates a table and populates it with name-function pairs.

 set by the array arraylib .

 After opening the library, we are ready to use our new

 type in Lua:

 a = array.new (1000)

 print (a)

 -> userdata: 0x8064d48

 print (array.size (a))

 -> 1000

 for i = 1, 1000 do

 array.set (a, i, i% 5 == 0)

 end

 print (array.get (a, 10))

 -> true

 29.2. Metatables

 Our current implementation has a big security problem.

 thu. Let's say the user writes something like a rray.set (io.

 stdin, 1, false) . The io.stdin value is an object of type userdata with

 a pointer to FILE . Due to the fact that this is also a userdata value ,

 then array.set will take it as a valid argument; as a result

 we will most likely get a write to an arbitrary memory location (if

 we are very lucky, we will only receive a message about the recording by

 invalid index). This behavior is unacceptable for any

 fight the Lua library. No matter how you use the library

 edema, we shouldn't write something to an arbitrary memory address

 (or cause the entire application to crash).

 The usual way to distinguish one type of userdata object from another is

 Go is to define a unique metatable for this type. Each

 time when we create an object of type userdata , we expose it to

 the corresponding metatable; every time we get an object

 of type userdata , we check that it has the correct metatable.

 Since Lua code cannot change the metatable for objects

 type userdata , we are guaranteed to be fine.

 We also need a place to store this metatable.

 so that we can refer to it when creating new objects and

 checks whether an object of type userdata has the type we need. Like us

 said earlier, there are two options for storing the metatable: in the registry

 or as a bound value for functions in a library. In Lua, when-

 It is easy to register each new C type in the registry using

 the type name as the index and the metatable as its corresponding

 values. As with any other indexes in the registry, we

 should choose the type name carefully to avoid possible

 conflicts. In our example, we will use the name

 “LuaBook.array” .

 As usual, the helper library provides us with the functionality

 tion. These new helper functions are as follows -

 other functions:

 int luaL_newmetatable (lua_State * L, const char * tname);

 void luaL_getmetatable (lua_State * L, const char * tname);

 void * luaL_checkudata (lua_State * L, int index,

 const char * tname);

 LuaL_newmettable function creates a new table (which will

 det our metatable), puts it on the top of the stack and links

 a table with a given name in the registry. LuaL_getmetatable function

 returns the metatable associated with tname in the registry. At the same time

 nets, the luaL_checkudata function checks that the object at the given

 place on the stack is an object of type userdata with a metatable, with

 corresponding to the given name. It raises an error if the object

 that other metatable (or it doesn't exist) or is it not an object of type userdata ;

 otherwise, it returns the address of the object.

 Now we can start our implementation. The first step would be

 changing the function that opens our library. New ver-

 This should create a metatable for our arrays:

 int luaopen_array (lua_State * L) {

 luaL_newmetatable (L, “LuaBook.array”);

 luaL_newlib (L, arraylib);

 return 1;

 }

 The next step is to change the newarray function to be

 all at once so that it sets the metatable for the created mas-

 Sivov:

 static int newarray (lua_State * L) {

 <as before>

 luaL_getmetatable (L, “LuaBook.array”);

 lua_setmetatable (L, -2);

 return 1; / * the new object is already on the stack * /

 }

 The lua_setmetatable function pops a table off the stack and sets

 casts it as a metatable for an object on the stack by request

 given index. In our case, this object is the created

 an object of type userdata .

 Finally, the setarray , getarray and getsize functions need to know

 did they actually get a valid array as their

 th first argument. To simplify this task, we will define

 next macro:

 #define checkarray (L) \

 (NumArray *) luaL_checkudata (L, 1, “LuaBook.array”)

 Using this macro, the new getsize implementation becomes

 very simple:

 static int getsize (lua_State * L) {

 NumArray * a = checkarray (L);

 lua_pushinteger (L, a-> size);

 return 1;

 }

 Since setarray and getarray share common code to check

 index as our second argument, we will place the common parts in the next

 blowing function:

 static unsigned int * getindex (lua_State * L,

 unsigned int * mask) {

 NumArray * a = checkarray (L);

 int index = luaL_checkint (L, 2) - 1;

 luaL_argcheck (L, 0 <= index && index <a-> size, 2,

 “Index out of range”);

 / * return the address of the element * /

 * mask = I_BIT (index);

 return & a-> values [I_WORD (index)];

 }

 Following are the resulting implementations of setarray and getarray :

 static int setarray (lua_State * L) {

 unsigned int mask;

 unsigned int * entry = getindex (L, & mask);

 luaL_checkany (L, 3);

 if (lua_toboolean (L, 3))

 * entry | = mask;

 else

 * entry & = ~ mask;

 return 0;

 }

 static int getarray (lua_State * L) {

 unsigned int mask;

 unsigned int * entry = getindex (L, & mask);

 lua_pushboolean (L, * entry & mask);

 return 1;

 }

 Now if you try to do something like array.

 get (io.stdin, 10) , then you will receive a corresponding message about

 error:

 error: bad argument # 1 to 'get' ('array' expected)

 29.3. Object- oriented access

 Our next step will be to convert our new type to an object

 ect so that we can work with it using object-oriented

 tied syntax as shown below:

 a = array.new (1000)

 print (a: size ())

 -> 1000

 a: set (10, true)

 print (a: get (10))

 -> true

 Recall that a: size () is the same as a.size (a) . So-

 we must make it so that a.size returns our function

 getsize . The key mechanism here is the __index metamethod .41

 For tables, Lua calls this metamethod when it cannot find

 values for the given key. For objects of type Lua userdata, you-

 calls it every time it is accessed, since such objects have

 there are no keys yet.

 Let's assume we ran the following code:

 local metaarray = getmetatable (array.new (1))

 metaarray .__ index = metaarray

 metaarray.set = array.set

 metaarray.get = array.get

 metaarray.size = array.size

 In the first line, we create an array just to get

 read its metatable, which we write to metarray . (We are not

 we can set the metatable of an object of type userdata from Lua, but we

 can get it.) Then we set the metaarray .__ index

 equal to metaarray . Then when we execute a.size , Lua cannot

 can find the key size in object a , since it is an object of type user-

 data . So Lua tries to get this value from the __index field

 metatable a , which is the same as the metaarray itself . But metaar-

 ray.size is array.size , so a.size (a) returns array.

 size (a) , which is what we wanted.

 Of course we can do the same in C. We can do

 even better: now that arrays are objects with their

 our own operations, we no longer need to have these operations

 tions in the array table . The only function from our library,

 which we have to pass out is the new function to create

 new arrays. All other operations will be available only

 as methods. The C code can register them itself.

 The getsize , getarray and setarray operations will not change compared to

 with our previous approach. All that will change is how

 we will register them. To do this, we need to change the code that

 opens the library. First, we need two separate lists

 functions: one for regular functions and one for methods.

 static const struct luaL_Reg arraylib_f [] = {

 {“New”, newarray},

 {NULL, NULL}

 };

 static const struct luaL_Reg arraylib_m [] = {

 {“Set”, setarray},

 {“Get”, getarray},

 {“Size”, getsize},

 {NULL, NULL}

 };

 The new version of the opening function luaopen_array should match

 create a metatable, assign it to its own __index field ,

 register all methods and create and populate the array table :

 int luaopen_array (lua_State * L) {

 luaL_newmetatable (L, “LuaBook.array”);

 / * metatable .__ index = metatable * /

 lua_pushvalue (L, -1); / * create a copy of the metatable * /

 lua_setfield (L, -2, “__index”);

 luaL_setfuncs (L, arraylib_m, 0);

 luaL_newlib (L, arraylib_f);

 return 1;

 }

 Here we again use luaL_setfuncs to write

 put the functions from arraylib_m into the metatable located on

 top of the stack. We then use luaL_newlib to

 create a new table and register functions from arraylib_f

 (actually just the new function).

 As a finishing touch, we'll add the __tostring method to

 our type so that print (a) prints "array" and the size of the array

 in parentheses, something like “array (1000)” . The corresponding

 the function is shown below:

 int array2string (lua_State * L) {

 NumArray * a = checkarray (L);

 lua_pushfstring (L, “array (% d)”, a-> size);

 return 1;

 }

 The lua_pushfstring call builds the string and leaves it at the top

 stack. We also have to add array2string to the list of array-

 lib_m , in order to include it in the corresponding metatable-

 tsu:

 static const struct luaL_Reg arraylib_m [] = {

 {“__Tostring”, array2string},

 <other methods>

 };

 29.4. Access as usual

 array

 An alternative to the object-oriented way of writing is

 The usual way of working with arrays. Instead of writing a: get (i), we3

 we can just write a [i] . In our example, this is pretty easy.

 do as our setarray and getarray functions are already semi-

 give their arguments in the order in which they should be passed

 to use the appropriate metamethods. A quick fix would be

 define these metamethods right in your Lua code:

 local metaarray = getmetatable (array.new (1))

 metaarray .__ index = array.get

 metaarray .__ newindex = array.set

 metaarray .__ len = array.size

 (We have to execute this code for our original implementation

 arrays, without modifications for the object-oriented syntax

 sisa.) That's all we need to use the standard syn-

 taxis:

 a = array.new (1000)

 a [10] = true - 'setarray'

 print (a [10]) - 'getarray' -> true

 print (#a) - 'getsize' -> 1000

 If we want this, then we can register these metame-

 todes right in the C code. To do this, we must again change our

 initializing function:

 static const struct luaL_Reg arraylib_f [] = {

 {“New”, newarray},

 {NULL, NULL}

 };

 static const struct luaL_Reg arraylib_m [] = {

 {“__Newindex”, setarray},

 {“__Index”, getarray},

 {“__Len”, getsize},

 {“__Tostring”, array2string},

 {NULL, NULL}

 };

 int luaopen_array (lua_State * L) {

 luaL_newmetatable (L, “LuaBook.array”);

 luaL_setfuncs (L, arraylib_m, 0);

 luaL_newlib (L, arraylib_f);

 return 1;

 }

 In this version, we again have only one new function visible to everyone .

 All other functions are available only as metamethods for corresponding

 corresponding operations.

 29.5. Light objects like

 userdata (light userdata)

 The type of objects we have used so far is called full

 userdata . Lua offers another type of userdata object called

 light, - light userdata .

 Such objects are just a pointer in C (i.e.

 value of type void *). It is a value, not an object; we do not create them

 (just like we don't create numbers). In order to place such

 object on the stack, we call lua_pushlightuserdata :

 void lua_pushlightuserdata (lua_State * L, void * p);

 Despite the common name, full and lightweight objects like

 userdata is actually quite different. Light objects are not

 buffers, just pointers. They don't have metatables. Like numbers, they

 not managed by the garbage collector.

 Sometimes we use the lightweight option as a cheap alternative.

 full-fledged objects of type userdata . However, this is not their typical

 using. First, light objects do not have metatables, so

 we cannot find out their type. Secondly, despite its name

 full-fledged userdata objects are pretty cheap. They add

 They have very little overhead compared to calling malloc .

 The real use of light objects comes from equality.

 A fully-fledged userdata object is equal only to itself. Lay down

 cue object is just a pointer. And as such he

 is equal to any other object of type userdata representing that

 the same pointer. This way we can use the lungs

 objects of type userdata so that C objects are inside Lua.

 We have already seen the typical use of lightweight objects as a key

 whose in the registry (see section 28.3). There the equality of light objects was

 extremely important. Every time we push a light object onto the stack

 with lua_pushlightuserdata , we get the same value

 Lua and, accordingly, the same entry in the registry.

 Another typical scenario is the need to obtain

 a full-fledged userdata object at its address in C. Let's say we

 we organize the connection between Lua and the window system. Then we can use

 use full-fledged userdata objects for presentation

 windows. Each such object contains or the entire structure, representing

 a window, or just a pointer to a structure created by the system.

 When an event occurs inside the window (for example, clicking a button

 mouse), the system calls the appropriate handler that identifies

 quoting the window at its address. In order to pass a Lua handler,

 we have to find an object of type userdata representing the given

 window. In order to find it, we can use the table,

 where indices are light objects containing window addresses,

 and the values are full-fledged objects of the userdata type ,

 setting the appropriate windows. If we have a window address, we

 push it onto the stack as a light object of type userdata and use

 its as an index on the table. (Most likely this table should have

 weak values. Otherwise, they will never be collected by the collector.

 garbage.)

 Exercises

 Exercise 29.1. Modify the setarray implementation so that it

 took only boolean values as input.

 Exercise 29.2. We can consider a boolean array

 as a set of integers (indices that correspond to

 are true values in the array). Add bu-

 left array functions that compute union and

 intersection of two arrays. These functions should receive

 to input two arrays and return a new array without changing

 input arrays.

 Exercise 29.3. Change the implementation of the __tostring metamethod

 so that it shows the full contents of the array by some

 either way. Use buffers (see Section 28.2) to co-

 building the summary line.

 Exercise 29.4. Based on the example with boolean arrays, re-

 Alize the C library for working with arrays of integers

 sat down.

 Chapter 30

 Resource management

 In our implementation of boolean arrays from the previous chapter, we do not

 worried about resource management. These arrays use

 only memory. Each userdata object that represents a mass

 siv, has its own block of memory, which is managed by Lua. When the array

 becomes garbage (that is, no one stores references to it), Lua with

 will collect it in time and free the occupied memory.

 However, life is not always so easy. Sometimes the object needs others

 resources other than memory such as file descriptors, pointers to

 windows, etc. (often these resources are also memory, but it is controlled

 other part of the system). In such cases, when the object becomes

 curled with garbage, it is necessary to somehow release these resources.

 As we saw in section 17.6, Lua provides a finalizer

 __gc metametode . To show the use

 of this metamethod in C, we implement two libraries in C, providing

 access to external resources. The first example is another re-

 Alization of the function for crawling the contents of the directory. The second (and more

 complex) example is using the Expat library to parse

 XML files.

 30.1. Directory iterator

 In section 27.1, we implemented a dir function that returned

 a table with all files from a given directory. Our new reality

 zation will return an iterator that returns a new file each time

 call. Using this implementation, we can iterate over the content

 directory using a loop as shown below:

 for fname in dir.open (“.”) do

 print (fname)

 end

 In order to iterate over the contents of the directory in C, we need

 structure DIR . These structures are created by calling opendir

 and are destroyed by calling closedir . Our previous

 the implementation of the dir function kept this structure as local to

 belt and released when getting the name of the last file.

 Our new implementation cannot store DIRs in local variables-

 noah, since this structure will be needed for a whole series of

 calls. Moreover, we cannot destroy it upon receiving the name

 nor the last file, as the program may prematurely

 get out of the loop, in which case we'll never get to the last

 file. Therefore, in order to ensure that this structure will

 det is always freed, we need to store its address in an object like

 userdata and use the __gc metamethod to free this

 structures.

 Despite its central role in our implementation, this

 an object representing a directory does not have to be

 den from Lua. The dir function returns an iterating function; this is

 whatever Lua sees. The directory can be the associated value of this

 iterating function. In this case, the iterating function will be

 have direct access to this structure, but Lua code to it

 does not have access (and he does not need it).

 In total, we need three functions in C. First, we need dir.

 open is a function that Lua calls to create iterators; it

 should create a DIR structure and an iteration function closure with

 by this structure (as a bound value). Second, we need

 iterating function. Third, we need the __gc metamethod , which

 ry releases the created DIR structure . As usual, we also

 you will need a function for initial setup, such as creating

 and initializing the metatable for the directory.

 Let's start our code with the dir.open function shown in fox

 tinge 30.1. The important point is that this function should

 create a userdata object before opening the directory. Otherwise, if he

 will open the directory first and then calling lua_newuserdata will result in

 error when working with memory, then a memory leak occurs, since

 nobody will release the created structure. With the right order

 the DIR structure , as soon as it is created, is immediately linked to the

 ektu the userdata ; whatever happens after, the __gc metamethod over time

 it will release this structure.

 The next function is dir.iter (Listing 30.2), the iterator itself.

 Its code is pretty simple. It gets the address of the DIR structure from the associated

 value with it and calls readdir to get the next

 values.

 The dir_gc function (also in Listing 30.2) is the __gc metamethod . is he

 frees the generated DIR structure, but you need to be careful:

 since the userdata object is created before opening the directory, but

 even if opendir returns an error, then the userdata object is all

 will be created equal. Therefore, we need to check what is, what

 close.

 The last function in Listing 30.2 is luaopen_dir , a function that

 which opens our library.

 There is one subtlety in the complete example. At first it may seem

 that the function dir_gc needs to know if its argument is valid

 is a directory. Otherwise, the user can call

 its with a different type of userdata object (like file), which will result

 to a serious error. However, a Lua program has no way to

 Refer to this function: it is stored as a metatable of catalogs,

 which, in turn, are stored as associated with the iterating

 value function. Lua programs can't access

 to objects of this type.

 Listing 30.1. Dir.open function

 #include <dirent.h>

 #include <errno.h>

 #include <string.h>

 #include “lua.h”

 #include "lauxlib.h"

 / * declare an iteration function * /

 static int dir_iter (lua_State * L);

 static int l_dir (lua_State * L) {

 const char * path = luaL_checkstring (L, 1);

 / * create a userdata object to store the address of the DIR * /

 DIR ** d = (DIR **) lua_newuserdata (L, sizeof (DIR *));

 / * set metatable * /

 luaL_getmetatable (L, “LuaBook.dir”);

 lua_setmetatable (L, -2);

 / * trying to open the directory * /

 * d = opendir (path);

 if (* d == NULL) / * error opening directory? * /

 luaL_error (L, “cannot open% s:% s”, path, strerror (errno));

 / * create and return an iteration function;

 its associated value is the userdata object,

 already on the stack * /

 lua_pushcclosure (L, dir_iter, 1);

 return 1;

 }

 Listing 30.2. Other functions in the dir library

 static int dir_iter (lua_State * L) {

 DIR * d = * (DIR **) lua_touserdata (L, lua_upvalueindex (1));

 struct dirent * entry;

 if ((entry = readdir (d))! = NULL) {

 lua_pushstring (L, entry-> d_name);

 return 1;

 }

 else return 0; / * no more values * /

 }

 static int dir_gc (lua_State * L) {

 DIR * d = * (DIR **) lua_touserdata (L, 1);

 if (d) closedir (d);

 return 0;

 }

 static const struct luaL_Reg dirlib [] = {

 {“Open”, l_dir},

 {NULL, NULL}

 };

 int luaopen_dir (lua_State * L) {

 luaL_newmetatable (L, “LuaBook.dir”);

 / * set field __gc * /

 lua_pushcfunction (L, dir_gc);

 lua_setfield (L, -2, “__gc”);

 / * create library * /

 luaL_newlib (L, dirlib);

 return 1;

 }

 30.2. XML parser

 We now turn to a simplified library implementation for

 links between Lua and the Expat library, which we will call lxp . Ex-

 pat is an open source XML 1.0 parser written in C. It implements

 SAX, that is, a simple API for XML (simple API for XML). SAX is

 event-driven API. This means that the SAX parser is clean

 the XML document melts and tells the application as it reads that it

 finds using user - defined functions-process-

 chikov (callback). For example, if we want Expat to parse

 line like “<tag cap =” 5 ”> hi </tag>” , then it will create three events:

 start event when it reads the line “<tag cap =” 5 ”>” ; event

 text when it reads "hi" , and the end of element event when it reads

 “</tag>” melts . Each of these events triggers a corresponding

 handler in the application.

 We won't cover the entire Expat library here. We focus

 we focus only on those parts that show newer methods of interaction

 Modeling with Lua. While Expat handles over a dozen different

 events, we will consider only those three events that we saw in

 previous example (start of element, end of element and text) 1 .

 The part of the Expat API that we need is pretty small. In-

 First, we need functions to create and destroy the parser:

 XML_Parser XML_ParserCreate (const char * encoding);

 void XML_ParserFree (XML_Parser p);

 The encoding argument is optional, we will pass it instead

 to be NULL.

 Once we have a parser, we must register

 our handler functions:

 void XML_SetElementHandler (XML_Parser p,

 XML_StartElementHandler start,

 XML_EndElementHandler end);

 void XML_SetCharacterDataHandler (XML_Parser p,

 XML_CharacterDataHandler hndl);

 The first function sets handlers for start and end events

 element. The second function sets the handler for the text.

 All handlers receive a non-

 which is a pointer. The element start handler is also named

 tag and its attributes:

 typedef void (* XML_StartElementHandler) (void * uData,

 const char * name,

 const char ** atts);

 Attributes are passed as a NULL terminated array of strings , where

 each pair of consecutive lines contains an attribute and its value

 nie. The end-of-element handler only receives one extra

 nth element - tag name:

 typedef void (* XML_EndElementHandler) (void * uData,

 const char * name);

 Finally, the text processor receives as an additional

 parameter is the text itself. The line of text is not null terminated, and

 the length is explicitly passed for it:

 typedef void (* XML_CharacterDataHandler) (void * uData,

 const char * s,

 int len);

 In order to pass text to Expat for parsing, we use

 the following function:

 int XML_Parse (XML_Parser p, const char * s, int len, int isLast);

 Expat receives the document to be parsed hourly

 cham through successive calls to XML_Parse . The last argument

 such a call to isLast tells Expat whether the passed chunk was

 last in the document. Note that each snippet

 the text does not have to be terminated with a null byte, we explicitly

 we pass its length. XML_Parse function returns zero in case

 errors. (Expat also provides functions for getting information

 error messages, but for simplicity, we will not consider them here.

 vat.)

 The last function we need from Expat is the function

 ttion that allows you to specify the pointer that will be passed

 handlers:

 void XML_SetUserData (XML_Parser p, void * uData);

 Now let's see how we can use this bib-

 library in Lua. The first approach is the simplest: let's just yes-

 Let's access all these functions from Lua. More successful will be

 adapt this functionality for Lua. For example, since

 Lua is an atypical language (more precisely, a language without strong typing), then we

 no need for different functions for each type of handler. More

 Moreover, we can avoid registering handlers altogether. Inmes-

 then we will create a parser, pass it a table of handlers,

 each with a matching key. For example, if we want to print

 structure of the document, then we can use the following table

 zu handlers:

 local count = 0

 callbacks = {

 StartElement = function (parser, tagname)

 io.write (“+“, string.rep (““, count), tagname, “\ n”)

 count = count + 1

 end,

 EndElement = function (parser, tagname)

 count = count - 1

 io.write (“-“, string.rep (““, count), tagname, “\ n”)

 end,

 }

 If we give the input the string “<to> <yes /> </to>” , then these

 bots will generate the following output:

 + to

 + yes

 - yes

 - to

 With such an API, we do not need functions to work with the handler-

 mi. We work with them directly in the handler table.

 Thus, the entire API will consist of only three functions: one

 for creating parsers, one for processing a piece of text and one

 to destroy the parser. In fact, we are implementing two last

 function as parser methods. As a result, we come to the following -

 typical usage of our API:

 local lxp = require ”lxp”

 p = lxp.new (callbacks)

 - create a new parser

 for l in io.lines () do

 - process input lines

 assert (p: parse (l))

 - parse the string

 assert (p: parse (“\ n”))

 - add '\ n'

 end

 assert (p: parse ())

 - complete the document

 p: close ()

 Let's now turn to the implementation. Our first decision

 This will be how we will represent our parser in Lua. Quite

 it is natural to use an object of type userdata for this , but what

 do we need to put inside it? At least we need

 the parser itself and the handler table. We cannot remember the table

 zu inside an object of type userdata (or inside a C structure), but Lua

 allows each object of type userdata to have a custom

 a user value, which can be any Lua 2 table . we

 should also remember the Lua state into the parser object as

 all that the Expat handler receives is the parser itself, and in order to

 call Lua, we need this state. Therefore, we will use

 define the following parser:

 #include <stdlib.h>

 #include “expat.h”

 #include “lua.h”

 #include "lauxlib.h"

 typedef struct lxp_userdata {

 XML_Parser parser; / * corresponding Expat parser * /

 lua_State * L;

 } lxp_userdata;

 2

 In Lua 5.1, the environment of the userdata object acts as a user value.

 niya.

 Our next step is to create a function that creates

 no parsers, lxp_make_parser . Its code is shown in Listing 30.3. This

 the function consists of four important steps:

 • Its first step follows a standard pattern: first create

 a userdata object ; then it is initialized appropriately

 values, and finally, a metatabe is assigned to it.

 faces. The reason for this initialization is as follows: if in

 any error occurs during initialization, you must

 dimo that the finalizer (metamethod __gc) finds our data

 holistic.

 • At step 2, the function creates an Expat parser, stores it in

 userdata object and checks for errors.

 • Step 3 checks that the first argument of the function is valid

 a table (table of handlers) is stored, and

 assigns it as a custom value for the userdata object.

 • The last step initializes the Expat parser. Our userdata is

 the object is given as a pointer to be passed

 to be included in handlers, handler functions are also set.

 Note that these handlers are the same for everyone

 parsers; after all, in C one cannot dynamically construct

 function. Instead, fixed functions using

 a table of handlers, decide which Lua functions to follow

 call.

 Listing 30.3. Function for creating XML parsers

 / * descriptions of handler functions * /

 static void f_StartElement (void * ud,

 const char * name,

 const char ** atts);

 static void f_CharData (void * ud, const char * s,

 int len);

 static void f_EndElement (void * ud, const char * name);

 static int lxp_make_parser (lua_State * L) {

 XML_Parser p;

 / * (1) create parser object * /

 lxp_userdata * xpu = (lxp_userdata *)

 lua_newuserdata (L,

 sizeof (lxp_userdata));

 / * initialize it in case of error * /

 xpu-> parser = NULL;

 / * set a metatable for it * /

 luaL_getmetatable (L, “Expat”);

 lua_setmetatable (L, -2);

 / * (2) create Expat parser * /

 p = xpu-> parser = XML_ParserCreate (NULL);

 if (! p)

 luaL_error (L, “XML_ParserCreate failed”);

 / * (3) check and save the handler table * /

 luaL_checktype (L, 1, LUA_TTABLE);

 lua_pushvalue (L, 1); / * push the table onto the stack * /

 lua_setuservalue (L, -2);

 / * (4) configure the Expat parser * /

 XML_SetUserData (p, xpu);

 XML_SetElementHandler (p, f_StartElement,

 f_EndElement);

 XML_SetCharacterDataHandler (p, f_CharData);

 return 1;

 }

 Listing 30.4. Function for parsing a piece of text

 static int lxp_parse (lua_State * L) {

 int status;

 size_t len;

 const char * s;

 lxp_userdata * xpu;

 / * get and check the first argument * /

 xpu = (lxp_userdata *) luaL_checkudata (L, 1, “Expat”);

 / * check that it is not closed * /

 luaL_argcheck (L, xpu-> parser! = NULL, 1, “parser is closed”);

 / * get second argument (string) * /

 s = luaL_optlstring (L, 2, NULL, & len);

 / * put the handler table at index 3 on the stack * /

 lua_settop (L, 2);

 lua_getuservalue (L, 1);

 xpu-> L = L; / * set Lua state * /

 / * call Expat to parse the string * /

 status = XML_Parse (xpu-> parser, s, (int) len, s == NULL);

 / * return error code * /

 lua_pushboolean (L, status);

 return 1;

 }

 The next step is the method for parsing the text lxp_parse

 (Listing 30.4), which parses a chunk of XML data. He semi-

 takes two arguments: a parser (self in the method) and an optional fragment

 XML. When called with no data, it tells Expat that more

 there are no parts.

 When lxp_parse calls XML_Parse it will call handlers

 for those elements that it finds in the transferred text fragment

 that. These handlers will need access to the handler table,

 so lxp_parse pushes this table onto the stack at index 3 (immediately

 after parameters). There is one caveat to the XML_Parse call : remember,

 that the last argument to this function tells Expat whether

 the last piece of text transferred. When we call parse

 with no arguments, s will be NULL , and this last argument will be

 met the true value.

 Now let's turn our attention to the handler functions

 f_StartElement , f_EndElement and f_CharData . All these functions are

 have the same structure: each of them checks if there is

 handler table for this event, and if such

 a handler is present, then prepares the arguments and then you-

 calls this handler.

 Let's take a look at the f_CharData handler in listing

 ge 30.5. Its code is pretty simple. The handler receives the structure

 lxp_userdata as its first argument, since we called

 XML_SetUserData when we created our parser. After receiving co-

 Lua state handler can refer to handler table

 on the stack at index 3, given by lxp_parse , and the parser itself by

 index 1. Then it calls the corresponding Lua handler

 (when present) with two arguments: parser and character data

 nym (string).

 Listing 30.5. Character data processor

 static void f_CharData (void * ud, const char * s, int len) {

 lxp_userdata * xpu = (lxp_userdata *) ud;

 lua_State * L = xpu-> L;

 / * get handler * /

 lua_getfield (L, 3, “CharacterData”);

 if (lua_isnil (L, -1)) {/ * no handler? * /

 lua_pop (L, 1);

 return;

 }

 lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * /

 lua_pushlstring (L, s, len); / * push a line onto the stack * /

 lua_call (L, 2, 0); / * call handler * /

 }

 The f_EndElement handler is quite similar to f_CharData ; education

 See Listing 30.6. It also calls the appropriate

 Lua bot with two arguments - a parser and a tag name (again

 a string, this time terminated with a null byte).

 Listing 30.6. End of element handler

 static void f_EndElement (void * ud, const char * name) {

 lxp_userdata * xpu = (lxp_userdata *) ud;

 lua_State * L = xpu-> L;

 lua_getfield (L, 3, “EndElement”);

 if (lua_isnil (L, -1)) {/ * no handler? * /

 lua_pop (L, 1);

 return;

 }

 lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * /

 lua_pushstring (L, name); / * push the tag onto the stack * /

 lua_call (L, 2, 0); / * call handler * /

 }

 Listing 30.7 shows the final handler, f_StartElement .

 It calls Lua with three arguments: parser, tag name, and

 list of attributes. This handler is slightly more complex than the others, because

 how long it is necessary to translate the list of attributes into Lua. He used

 suggests a completely natural translation, building a table that compares

 Specifies attribute names and their values. For example, for a short tag,

 shown below

 <to method = ”post” priority = ”high”>

 the following attribute table is generated:

 {method = “post”, priority = “high”}

 Listing 30.7. Element start handler

 static void f_StartElement (void * ud,

 const char * name,

 const char ** atts) {

 lxp_userdata * xpu = (lxp_userdata *) ud;

 lua_State * L = xpu-> L;

 lua_getfield (L, 3, “StartElement”);

 if (lua_isnil (L, -1)) {/ * no handler? * /

 lua_pop (L, 1);

 return;

 }

 lua_pushvalue (L, 1); / * push the parser ('self') onto the stack * /

 lua_pushstring (L, name); / * push the tag name onto the stack * /

 / * create and populate the attribute table * /

 lua_newtable (L);

 for (; * atts; atts + = 2) {

 lua_pushstring (L, * (atts + 1));

 lua_setfield (L, -2, * atts); / * table [* atts] = * (atts + 1) * /

 }

 lua_call (L, 3, 0); / * call handler * /

 }

 The final method for parsers is close , shown in listing

 ge 30.8. When we close the parser, we must release all of it

 resources, namely the Expat structure. Remember that due to errors in

 the parser may not have this structure. Pay attention-

 how we keep the parser consistent across

 as we close it, so there will be no problem,

 if we try to close it again or when the garbage collector

 finalizes it. This ensures that each parser over time

 will free its resources even if the programmer hasn't closed it.

 Listing 30.8. Method for closing an XML parser

 static int lxp_close (lua_State * L) {

 lxp_userdata * xpu =

 (lxp_userdata *) luaL_checkudata (L, 1, “Expat”);

 / * free the Expat parser (if any) * /

 if (xpu-> parser)

 XML_ParserFree (xpu-> parser);

 xpu-> parser = NULL; / * if we close it again * /

 return 0;

 }

 The final step is shown in Listing 30.9: it shows the functionality

 tion luaopen_lxp , which opens up the library, combining together

 all previously discussed functions. We use the same scheme here

 mu used for object-oriented boolean

 array in section 29.3: we create a metatable, set it

 the __index field on it and put all methods inside it. For this-

 Then we need a list with all the parser methods (lxp_meths).

 We also need a list of functions of this library (lxp_funcs). how

 and is accepted in object-oriented libraries, this list is co-

 holds just one function that creates new parsers.

 Listing 30.9. Initializing code for lxp library

 static const struct luaL_Reg lxp_meths [] = {

 {“Parse”, lxp_parse},

 {“Close”, lxp_close},

 {“__Gc”, lxp_close},

 {NULL, NULL}

 };

 static const struct luaL_Reg lxp_funcs [] = {

 {“New”, lxp_make_parser},

 {NULL, NULL}

 };

 int luaopen_lxp (lua_State * L) {

 / * create metatable * /

 luaL_newmetatable (L, “Expat”);

 / * metatable .__ index = metatable * /

 lua_pushvalue (L, -1);

 lua_setfield (L, -2, “__index”);

 / * register methods * /

 luaL_setfuncs (L, lxp_meths, 0);

 / * register functions (lxp.new only) * /

 luaL_newlib (L, lxp_funcs);

 return 1;

 }

 Exercises

 Exercise 30.1. Modify the dir_iter function so that-

 would it close the DIR structure when it reaches the end

 directory. With this change, the program does not need to wait

 garbage collection to release a larger resource

 not needed.

 (When you close the directory, you must set the address,

 written in the userdata object to NULL to inform the ph-

 the analyzer that the directory is already closed. Also the dir_iter function

 before using the directory should check that it is not

 closed.)

 Exercise 30.2. In the example with the lxp library , the handler starts

 la element gets a table with the attributes of the element. In this

 the table is the order in which the elements were given internally

 item is already lost. How can you convey this information

 to the handler?

 Exercise 30.3. In the example with the lxp library , we used

 whether a custom value for linking the table

 handlers with the corresponding userdata object , pre-

 installing the parser. This choice created a small problem,

 since what the C handlers get is the structure

 lxp_userdata , and this structure does not provide direct access to

 stupa to this table. We solved this problem by co-

 storing the handler table at a given place on the stack in

 parsing time of each fragment.

 Another solution could be to link the handler table

 with a userdata object using links (section 28.3): we

 create a link to the handler table and remember this

 link (integer) in the lxp_userdata structure . Implement

 this option. Don't forget to release the link on close

 parser.

 CHAPTER 31

 Threads and states

 Lua does not support true multi-threading, that is, it displaces

 threads sharing shared memory. There are two reasons for this.

 The first reason is that such support was not provided.

 is ANSI C and therefore there is no portable way to implement this

 support in Lua. The second and more serious reason is

 that we don't think multi-threading is a good idea for Lua.

 Multi-threading was developed for low-level production

 gramming. Synchronization mechanisms like semaphores and

 nitors have been proposed for operating systems (and experienced

 programmers), not for applications. It is extremely difficult to find and

 fix bugs related to multi-threading and some of

 they can lead to security holes. Also multi-threading

 can lead to serious performance problems due to the need

 synchronization at a number of critical points in the program, such

 like memory allocation.

 Multi-threading problems arise from the combination of displacement

 threads and shared memory, so we can avoid

 them, either without using displacing threads, or without using

 storage space. Lua offers support for both.

 Lua threads (also known as coroutines) are not preemptive

 and therefore avoid the problems associated with unpredictable

 by switching the threads. Lua states have no shared memory, so

 form a good basis for parallel computing. In this chapter

 we will consider both of these options.

 31.1. Numerous threads

 A thread is the essence of a coroutine in Lua. We are considering a coroutine

 as a thread and a user-friendly interface, or we can consider a thread

 as a coroutine with a low-level API.

 From a C perspective, it can be helpful to think of a thread as a

 ke - what the thread really is from the point of view of implementation.

 Each stack stores information about the current calls to the thread, as well as

 the same parameters and local variables of each call. Others

 in words, the stack contains all the information a thread needs to

 continuation of its implementation. Therefore, many threads mean many

 independent stacks.

 When we call most of the functions from the Lua-C API, then

 these functions work with a specific stack. For example lua_

 pushnumber must push a number onto a specific stack; also

 lua_pcall needs a stack to call. How does Lua know which stack to follow

 use? The secret is that the lua_State type , the first

 the argument of all these functions, is not only a state

 Lua, but also a thread inside that state. (Many believe that this type

 should be called lua_Thread .)

 When you create a new state, Lua automatically creates

 thread inside this state and returns lua_State representing

 that thread. This main thread is destroyed along with the state,

 when you call lua_close .

 You can create other threads within the state with

 lua_newthread :

 lua_State * lua_newthread (lua_State * L);

 This function returns a pointer to lua_State representing

 the new thread, and also pushes the new thread onto the stack as a value

 of type thread . For example, after executing the operator

 L1 = lua_newthread (L);

 we will have two strands, L1 and L, both referring internally to the same

 the same state of Lua. Each thread has its own stack. New

 thread L1 starts from an empty stack; old thread L has new thread on

 top of stack:

 printf (“% d \ n”, lua_gettop (L1)); -> 0

 printf (“% s \ n”, luaL_typename (L, -1)); -> thread

 With the exception of the main yarn, the yarns can be collected by the picker.

 a lump of garbage like any other Lua object. When you create a new

 thread, then it is pushed onto the stack, which ensures that this thread is not

 rubbish. You should never use a thread that

 not tied to state. (The main thread is tied from the beginning,

 so you don't have to worry about it.) Any Lua API call can

 destroy an unattached thread, even a call using this self-

 wash the thread. For example, let's look at the following snippet:

 lua_State * L1 = lua_newthread (L);

 lua_pop (L, 1); / * L1 is now garbage for Lua * /

 lua_pushstring (L1, “hello”);

 Calling lua_pushstring can invoke the garbage collector and collect

 L1 (resulting in an application error) even though L1 is still in use

 enjoys. To avoid this, always keep links to

 the threads you are using, for example on the anchored thread stack

 or in the registry.

 As soon as we have a new thread, we can immediately start

 use it like the main thread. We can put values

 onto its stack and pop values from its stack, we can use it to

 function calls, etc. For example, the following code calls

 f (5) on the new thread and then puts the result on the old thread:

 lua_getglobal (L1, “f”); / * consider that there is a global 'f' * /

 lua_pushinteger (L1, 5);

 lua_call (L1, 1, 1);

 lua_xmove (L1, L, 1);

 The lua_xmove function moves a Lua value between two stacks-

 the same state. Calling type lua_xmove (F, T, n) from below

 meth n elements from the stack F and places them on a stack T .

 However, we do not need a new thread for these purposes; we can light

 to use the main thread. The main purpose of using non-

 how many threads is the implementation of coroutines so that we can

 suspend their execution and resume it again. For this

 we need the lua_resume function :

 int lua_resume (lua_State * L, lua_State * from, int narg);

 To start the execution of the coroutine, we use lua_resume

 just like we use lua_pcall : we put the function on

 stack, push its arguments onto the stack and call lua_resume , re-

 giving nargs the number of arguments. (The from parameter is the thread that

 makes the call.) This is very similar to lua_pcall , however there are three

 differences. First, lua_resume does not contain a parameter for the number

 desired results; it always returns all the results you-

 called function. Secondly, it has no parameter for the handler

 errors; the error does not unwind the stack, so you can later

 explore. Third, if a function suspends its execution,

 (with yield), then lua_resume returns a special

 code LUA_YIELD and leaves the thread in such a state that we can

 resume later.

 When lua_resume returns LUA_YIELD , the visible portion of the

 ka thread contains only the values passed to yield . Lua_ call

 gettop will return a number of these values. In order to transfer these

 values to another thread, we can use lua_xmove .

 To continue execution of a suspended thread,

 we call lua_resume again . In this case, Lua assumes that everything knows

 the values on the stack are the values returned by

 yield . For example, if you don't touch the stack thread in between returns

 eat from the previous lua_resume and the next lua_resume , then yield

 will return exactly the values with which it was called.

 We usually run a coroutine with a Lua function as

 body. This Lua function can call other functions, and any

 from these functions can call yield , ending the call to lua_resume .

 For example, consider the following definitions:

 function foo (x) coroutine.yield (10, x) end

 function foo1 (x) foo (x + 1); return 3 end

 We will now execute the following C code:

 lua_State * L1 = lua_newthread (L);

 lua_getglobal (L1, “foo1”);

 lua_pushinteger (L1, 20);

 lua_resume (L1, L, 1);

 Call lua_resume return LUA_YIELD , to inform,

 that the thread is suspended. At this point, the L1 stack contains the values

 passed to yield :

 printf (“% d \ n”, lua_gettop (L1)); -> 2

 printf (“% d \ n”, lua_tointeger (L1, 1)); -> 10

 printf (“% d \ n”, lua_tointeger (L1, 2)); -> 21

 When we call lua_resume again , the thread will continue executing

 from where it left off (call to yield). From there foo will return the control

 Lenie foo1 , and she, in turn, returns management lua_resume :

 lua_resume (L1, L, 0);

 printf (“% d \ n”, lua_gettop (L1)); -> 1

 printf (“% d \ n”, lua_tointeger (L1, 1)); -> 3

 This second call to lua_resume will return LUA_OK which means ok

 minimal return.

 Coroutines can also call C functions that can

 call other Lua functions. We have already discussed how to use

 continue to allow these functions in Lua

 call yield (section 27.2). A C function itself can also call

 yield . In this case, you must provide a continuation function,

 which will be called when execution continues. On the C following-

 This function plays the role of yield :

 int lua_yieldk (lua_State * L, int nresults, int ctx,

 lua_CFunction k);

 We must always use this function in a return statement

 the one as shown below:

 static inf myCfunction (lua_State * L) {

 ...

 return lua_yieldk (L, nresults, ctx, k);

 }

 This call immediately suspends the currently running

 program. The nresults parameter is the number of values on the stack,

 which should be returned to the corresponding lua_resume ; ctx is

 the context to be passed on to the continuation and k is a function-

 continuation. When the coroutine continues execution, the control

 the extension goes to the continuation function k . After calling lua_yieldk

 the myCfunction cannot do anything else; she must

 delegate all further work to your continuation.

 Let's look at a hypothetical example. Let us want

 write a function that reads some data by calling

 yield when the data is not ready. We can write this function in

 With the following:

 int prim_read (lua_State * L) {

 if (nothing_to_read ())

 return lua_yieldk (L, 0, 0, & prim_read);

 lua_pushstring (L, read_some_data ());

 return 1;

 }

 If the function has any data, then it reads and returns

 them. Otherwise, it calls lua_yieldk . When the thread is

 continues to execute, it will call the continuation function. In that

 in the example, the continuation function is prim_read itself , so the thread

 will call it over and over again to read data. (This template,

 when the calling lua_yieldk function is itself

 position is not uncommon.)

 If a C function has nothing to do after calling lua_yieldk , then it

 can call lua_yieldk without a continuation function or using

 lua_yield macro :

 365

 return lua_yield (L, nres);

 After this call, when the thread continues its execution,

 raids the function that called myCfunction .

 31.2. Lua states

 Each call to luaL_newstate (or lua_newstate , as we will see

 in chapter 32) creates a new Lua state. Different states of Lua

 do not depend on each other in any way. And they don't have any common data.

 This means that no matter what happens in one state

 in Lua, it cannot "harm" another state in any way. So-

 this means that different states of Lua cannot be

 communicate; for this we have to use a special code on

 C. For example, if we have two states L1 and L2 , then the following

 command - push to the top of the L2 stack the value from the top of the stack

 in L1:

 lua_pushstring (L2, lua_tostring (L1, -1));

 Since the data must pass through C, different co-

 states in Lua can exchange only those types

 data that is representable in C, such as strings and numbers. Other types,

 for example, tables to be transferred must be serialized.

 In systems that offer multi-threading, an interesting archi-

 the architectural solution would be to create on a separate state Lua

 for each thread. As a result, we get threads that behave

 like processes in UNIX, that is, we have parallelism without

 shared (shared) memory. In this section, we will build a prototype

 applications using this approach. For this implementation I

 I will use POSIX threads (pthreads). Since I am using

 only the most basic features, it will be easy to transfer

 this code to other multi-threaded systems.

 The system we want to build is very simple. Its purpose is

 to show the use of multiple Lua states in a context

 ste multi-threading. After it is ready, you yourself can

 add additional features to it. We will call our

 lproc library . It offers just four functions:

 • lproc.start (chunk) starts a new process to execute

 the given block of code (chunk). The library implements the

 cess in Lua as a C thread and associated Lua state.

 • lproc.send (channel, val1, val2, ...) sends the given values

 reads (which must be strings) to a given channel,

 identified by its name (string).

 • lproc.receive (channel) receives values from the given channel

 nala.

 • lproc.exit () ends the process. This function is only needed

 the main process. If this process ends without calling

 lproc.exit , then the entire program terminates

 without waiting for other processes to finish.

 The library identifies channels using strings and using

 calls them to match the sender of the recipient. Opera-

 the radio can send any number of string values

 nii that are returned by the corresponding receive operation

 data. All interaction is synchronous: the process sending the message

 feed into pipe, waits until there is a process reading from this

 pipe while the process reading from the pipe is also waiting

 until there is a process sending to it.

 The lproc library , like its interface, is pretty simple. She is using

 uses two doubly linked ring lists, one for processes,

 waiting to send a message, and another waiting to send

 processes waiting to receive a message. Also used one

 a mutex to control access to both of these lists. Everyone has it

 process has its own condition variable . When

 the process wants to send a message to the channel, it looks in the waiting list

 the process that is waiting for this particular channel. If he

 finds such a process, then it removes it from the waiting list,

 transfers values from itself to the found process and signals the

 mental processes. Otherwise it inserts itself into the list

 sending and waiting for its conditional variable. Getting co-

 communication behaves similarly.

 The main element of the implementation is a structure that represents

 the following process:

 #include <pthread.h>

 #include “lua.h”

 typedef struct Proc {

 lua_State * L;

 pthread_t thread;

 pthread_cond_t cond;

 const char * channel;

 struct Proc * previous, * next;

 } Proc;

 The first two fields represent the Lua state used by

 process, and the corresponding C thread performing this process

 cess. Other fields are used only when the process has to wait

 corresponding send / receive . The third field cond is a conditional

 the variable that the thread uses to wait; four-

 The th field is the channel the process is waiting for; and the last two fields,

 previous and next are used to connect a process in a double-link

 list.

 The following code declares two lists of waiting processes and

 their associated mutex:

 static Proc * waitsend = NULL;

 static Proc * waitreceive = NULL;

 static pthread_mutex_t kernel_access = PTHREAD_MUTEX_INITIALIZER;

 Each process needs a corresponding Proc structure , and it

 needs access to it whenever his body calls send or re-

 ceive. The only parameter these functions receive is

 is the corresponding Lua state, so each process

 has to remember its Proc structure inside its Lua state.

 In our implementation, each Lua state stores a corresponding

 the Proc structure as an object of type userdata associated with the key

 "_SELF" . The getself helper function returns state

 Proc corresponding to the given state:

 static Proc * getself (lua_State * L) {

 Proc * p;

 lua_getfield (L, LUA_REGISTRYINDEX, “_SELF”);

 p = (Proc *) lua_touserdata (L, -1);

 lua_pop (L, 1);

 return p;

 }

 The next function, movevalues , transfers values from send-

 process to receiving:

 static void movevalues (lua_State * send, lua_State * rec) {

 int n = lua_gettop (send);

 int i;

 for (i = 2; i <= n; i ++) / * transfer values to the receiver * /

 lua_pushstring (rec, lua_tostring (send, i));

 }

 It transfers to the receiver all values from the sender's stack,

 except for the first value, which is a channel.

 Listing 31.1 defines a searchmatch function that bypasses

 pending list looking for a process waiting on the given channel

 Lua states

 la. If the function finds such a channel, then it removes it from the list and

 returns it, otherwise it returns NULL .

 Listing 31.1. Function to find a process waiting for a given

 channel

 static Proc * searchmatch (const char * channel, Proc ** list) {

 Proc * node = * list;

 if (node == NULL) return NULL; /* the list is empty? * /

 do {

 if (strcmp (channel, node-> channel) == 0) {/ * found? * /

 / * remove a node from the list * /

 if (* list == node) / * is this the first item in the list? * /

 * list = (node-> next == node)? NULL: node-> next;

 node-> previous-> next = node-> next;

 node-> next-> previous = node-> previous;

 return node;

 }

 node = node-> next;

 } while (node! = * list);

 return NULL; / * not found * /

 }

 The last helper function defined in listing

 ge 31.2, called when the process cannot find the friend it needs

 gogo process. In this case, the process connects itself to the end of the

 the corresponding list and waits until another process finds

 and will not wake him up. (The loop around pthread_cond_wait protects against

 random wakes that are possible on POSIX threads.) When

 process wakes up another process, then it sets the channel field to

 the awakened process to NULL . So if p-> channel is not equal

 NULL , it means that no other process woke up this

 process, so you have to wait further.

 Listing 31.2. Function for adding a process to the waiting list

 static void waitonlist (lua_State * L, const char * channel,

 Proc ** list) {

 Proc * p = getself (L);

 / * connect yourself to the end of the list * /

 if (* list == NULL) {/ * is the list empty? * /

 * list = p;

 p-> previous = p-> next = p;

 }

 else {

 p-> previous = (* list) -> previous;

 p-> next = * list;

 p-> previous-> next = p-> next-> previous = p;

 }

 p-> channel = channel;

 do {/ * expects a conditional variable * /

 pthread_cond_wait (& p-> cond, & kernel_access);

 } while (p-> channel);

 }

 Now with these helper functions we can

 write send and receieve (Listing 31.3). Send function starts

 with checking the channel. Then it closes the mutex and looks for the matching

 the recipient. If she finds him, then she carries her

 values to this recipient, marks the recipient as ready to receive

 fullness and wakes him up. Otherwise, she waits herself. Upon completion

 Upon doing this, it opens a mutex and returns to Lua.

 The receieve function is similar, but it must return everything received.

 values.

 Listing 31.3. Functions for sending and receiving messages

 static int ll_send (lua_State * L) {

 Proc * p;

 const char * channel = luaL_checkstring (L, 1);

 pthread_mutex_lock (& kernel_access);

 p = searchmatch (channel, & waitreceive);

 if (p) {/ * found a matching recipient? * /

 movevalues (L, p-> L); / * transfer values to recipient * /

 p-> channel = NULL; / * mark recipient * /

 pthread_cond_signal (& p-> cond); / * wake him up * /

 }

 else

 waitonlist (L, channel, & waitsend);

 pthread_mutex_unlock (& kernel_access);

 return 0;

 }

 static int ll_receive (lua_State * L) {

 Proc * p;

 const char * channel = luaL_checkstring (L, 1);

 lua_settop (L, 1);

 pthread_mutex_lock (& kernel_access);

 p = searchmatch (channel, & waitsend);

 if (p) {/ * found a matching recipient? * /

 movevalues (p-> L, L); / * transfer values to recipient * /

 p-> channel = NULL; / * mark recipient * /

 pthread_cond_signal (& p-> cond); / * wake him up * /

 }

 else

 waitonlist (L, channel, & waitreceive);

 pthread_mutex_unlock (& kernel_access);

 / * return all values from the stack except the pipe * /

 Lua states

 return lua_gettop (L) - 1;

 }

 Now let's see how to create new processes. New

 The process needs a new POSIX thread, and the new thread needs a body to

 execution. We will define this body later; here is the

 totype:

 static void * ll_thread (void * arg);

 Listing 31.4. Function for creating a new process

 static int ll_start (lua_State * L) {

 pthread_t thread;

 const char * chunk = luaL_checkstring (L, 1);

 lua_State * L1 = luaL_newstate ();

 if (L1 == NULL)

 luaL_error (L, “unable to create new state”);

 if (luaL_loadstring (L1, chunk)! = 0)

 luaL_error (L, “error starting thread:% s”,

 lua_tostring (L1, -1));

 if (pthread_create (& thread, NULL, ll_thread, L1)! = 0)

 luaL_error (L, “unable to create new thread”);

 pthread_detach (thread);

 return 0;

 }

 To create and launch a new process, the system needs to create a new

 lua state, start new thread, compile passed

 block, call it and finally release its resources. Original thread

 performs the first three tasks and the new thread does the rest. (For

 to simplify error handling, the system starts a new thread after

 how she successfully compiled the given block.)

 The ll_start function creates a new process (Listing 31.4). This

 the function creates a new Lua L1 state and compiles the given

 block in this new state. In case of an error, she informs

 initial states of L . Then she creates a new thread (with

 pthread_create) with the body ll_thread , passing the new state to L1

 as a body argument. The pthread_detach call tells the system that we

 not expecting a definitive answer from this thread.

 Listing 31.5. A body for new threads

 int luaopen_lproc (lua_State * L);

 static void * ll_thread (void * arg) {

 lua_State * L = (lua_State *) arg;

 luaL_openlibs (L); / * open standard libraries * /

 luaL_requiref (L, “lproc”, luaopen_lproc, 1);

 lua_pop (L, 1);

 if (lua_pcall (L, 0, 0, 0)! = 0) / * call main chunk * /

 fprintf (stderr, “thread error:% s”, lua_tostring (L, -1));

 pthread_cond_destroy (& getself (L) -> cond);

 lua_close (L);

 return NULL;

 }

 The body of each new thread is the ll_thread function (the

 Thing 31.5). It gets its Lua state (created by ll_start) with

 an already compiled block on the stack. A new thread opens the stan-

 free Lua libraries, opens the lproc library and then calls

 has its own block. At the end, it releases its conditional variable (which

 Thoraya was created luaopen_lproc) and closes his fortune Lua.

 Note the use of luaL_require for that-

 would open lproc 1 . This function is somewhat equivalent to require , but

 instead of searching for the bootloader, it uses the specified function (in our

 this is luaopen_lproc) to open the library. Pos-

 before calling the opening function luaL_requiref registers a re-

 the result is in the package.loaded table . If its last parameter is

 true, then it also registers the library in the corresponding glo-

 a point variable (in our case lproc).

 The last function in our module, exit , is very simple:

 static int ll_exit (lua_State * L) {

 pthread_exit (NULL);

 return 0;

 }

 Only the main process needs to call this function when it

 will complete execution in order not to interrupt immediately

 completing the entire program.

 Our final step is to determine the opening

 functions for the lproc module . This function is luaopen_lproc (fox-

 Thing 31.6) must register module functions, but it also

 should create and initialize the Proc structure of the current

 process.

 As I said earlier, this process definition in Lua is very simple.

 There are an infinite number of improvements you can make

 lick. Here I want to briefly discuss some of them.

 The first obvious improvement would be to replace linear search

 a process waiting on the specified channel. A beautiful alternative

 would be using a hash table to find the channel and using

 creation of independent waiting lists for each channel.

 Another improvement relates to the efficiency of process creation.

 sa. Creating a new state in Lua is a very fast operation.

 However, opening all standard libraries is no longer so fast, and

 most processes will likely not need all the standard

 new libraries. We can avoid the price associated with opening

 libraries, by pre-registering libraries, as we discussed

 or in section 15.1. When using this approach, instead of calling

 luaL_requiref for each standard library, we simply

 We place the function that opens the library into the package.

 preload . If the process calls require ”lib” , then and only then

 yes require will call the appropriate function in order to

 cover the library. Function registerlib (listing 31.7) performs

 this registration.

 Listing 31.6. Opening function for lproc module

 static const struct luaL_reg ll_funcs [] = {

 {“Start”, ll_start},

 {“Send”, ll_send},

 {“Receive”, ll_receive},

 {“Exit”, ll_exit},

 {NULL, NULL}

 };

 int luaopen_lproc (lua_State * L) {

 / * create your own control block * /

 Proc * self = (Proc *) lua_newuserdata (L, sizeof (Proc));

 lua_setfield (L, LUA_REGISTRYINDEX, “_SELF”);

 self-> L = L;

 self-> thread = pthread_self ();

 self-> channel = NULL;

 pthread_cond_init (& self-> cond, NULL);

 luaL_register (L, “lproc”, ll_funcs); / * open library * /

 return 1;

 }

 Listing 31.7. Registration of libraries on request

 static void registerlib (lua_State * L, const char * name,

 lua_CFunction f) {

 lua_getglobal (L, “package”);

 lua_getfield (L, -1, “preload”); / * get 'package.preload' * /

 lua_pushcfunction (L, f);

 lua_setfield (L, -2, name); / * package.preload [name] = f * /

 lua_pop (L, 2); / * pop 'package' and 'preload' off the stack * /

 static void openlibs (lua_State * L) {

 luaL_requiref (L, “_G”, luaopen_base, 1);

 luaL_requiref (L, “package”, luaopen_package, 1);

 lua_pop (L, 2); / * remove the results of previous calls * /

 registerlib (L, “io”, luaopen_io);

 registerlib (L, “os”, luaopen_os);

 registerlib (L, “table”, luaopen_table);

 registerlib (L, “string”, luaopen_string);

 registerlib (L, “math”, luaopen_math);

 registerlib (L, “debug”, luaopen_debug);

 }

 It is always a good idea to open up the main library. You

 you also need a package library, otherwise you won't

 be able to use require to load other libraries. (You

 don't even get the package.preload table .) All other libraries are

 ki can be optional. So instead of calling luaL_open-

 libs we will substitute our own openlibs function (also

 shown in Listing 31.7) when creating new states. When

 the process will need any of these libraries, it will explicitly require it,

 and require will call the corresponding luaopen_ * function .

 Other improvements include primitives for communication

 tion. For example, it would be helpful to set limits on how long

 lproc.send and lproc.receive may wait. In particular, the limit of expected

 a denier of zero will make these functions non-blocking. In threads

 POSIX we can implement this functionality with

 pthread_cond_timedwait .

 Exercises

 Exercise 31.1. As we have seen, if a function calls

 lua_yield (version without continuation function), control

 passed to the function that called it when the thread is again

 will continue its execution. What are the meanings of the caller

 will the function get how the results of this call?

 Exercise 31.2. Modify the lproc library so that it

 could send other basic types such as booleans

 values and numbers. (Hint : you only need to change

 function movevalues .)

 Exercise 31.3. In the lproc library, implement a non-blocking

 the send function .

 Exercises

 Chapter 32

 Memory management

 Lua dynamically allocates all of its data structures. All these structures

 tours grow dynamically as needed and over time decrease

 change their size or disappear.

 Lua is strict about its memory usage. When we for-

 we hide the state of Lua, then Lua explicitly frees all its memory. Bo-

 Moreover, all objects inside Lua are subject to garbage collection: not only

 to tables and rows, but also functions, threads and modules (since

 they are actually tables).

 The way Lua manages memory is comfortable for most

 applications. However, for some applications you may need -

 adaptation, for example, to work in a limited space

 memory space or to reduce garbage collector delays

 to a minimum. Lua allows such adaptations to be done right away

 on two levels. At the bottom level, we can define a function to use

 used to allocate memory. At a higher level, we can

 let's set some parameters to control the garbage collector

 or we can even take direct control of the garbage collector.

 In this chapter, we'll cover both of these options.

 32.1. Function to highlight

 memory

 The Lua core does not assume anything about memory allocation. To highlight

 it does not call malloc or realloc . Instead of this

 it performs all its allocation and deallocation of memory through

 single out a function (allocation function), which

 user must provide when creating Lua state.

 The luaL_newstate function we used to create

 Lua states is a helper function that

 creates a Lua state with a default highlighting function. This

 function defaults to standard malloc-realloc-free

 from the C standard library, which should be enough for

 common applications. However, it is very easy to gain control.

 over memory allocation, creating your state using the function

 lua_newstate :

 lua_State * lua_newstate (lua_Alloc f, void * ud);

 This function takes two arguments: the highlighting function and

 the user data (user data). The state created by this

 way, performs all allocation and deallocation of memory when

 using function calls f . (Even the structure lua_State vyde-

 is done with f .)

 The type of the lua_Alloc allocating function is defined as follows.

 at once:

 typedef void * (* lua_Alloc) (void * ud,

 void * ptr,

 size_t osize,

 size_t nsize);

 The first parameter is the user data that we will provide

 delivered lua_newstate ; the second parameter is the address of the block that

 we want to free or resize it; the third parameter is

 the original size of this block, and the fourth parameter is the request

 desired block size.

 Lua guarantees that if ptr is not NULL then it was previously issued

 linen with osize size .

 Lua uses NULL for zero-sized blocks. When nsize

 is zero, then the function must free the block at the address ptr and ver-

 a NULL string that corresponds to the requested block size.

 When ptr is NULL , the function should allocate and return the block

 a given size; if she cannot allocate a block of a given time

 measure, then it must return NULL . If ptr is both NULL and nsize

 is zero, then the function does nothing and returns NULL .

 Finally, when ptr is both non- NULL and nsize is non-zero, the function

 the tion should re-allocate this block (like realloc) and return a new one

 address (which may be the same as the original address, or may differ

 from him). Again, in case of an error, the function should return

 NULL . Lua assumes that an allocating function is always successful.

 works when the new size is less than or equal to the old size.

 (Lua shrinks some structures during garbage collection and not in

 able to handle errors correctly at this time.)

 Function for allocating memory

 The standard highlighting function used by luaL_newstate is

 looks like this (taken from lauxlib.c file):

 void * l_alloc (void * ud, void * ptr, size_t osize, size_t nsize) {

 if (nsize == 0) {

 free (ptr);

 return NULL;

 }

 else

 return realloc (ptr, nsize);

 }

 She believes that free (NULL) does nothing and that the call

 realloc (NULL, size) is equivalent to malloc (size) . This guarantees-

 xia ANSI C.

 You can get an emitting function for a given state-

 lua with lua_getallocf :

 lua_Alloc lua_getallocf (lua_State * L, void ** ud);

 If ud is not NULL , then the function will set * ud to user values.

 data used for this emitting function

 tion. You can change the allocating function for Lua state

 by calling lua_setallocf :

 void lua_setallocf (lua_State * L, lua_Alloc f, void * ud);

 Keep in mind that the new highlighting function must be in

 able to free blocks allocated by the old function. More often

 the whole new highlighting function is just a wrapper over the old

 function, for example, to track secretions or synchronize

 heap access control.

 Internally, Lua does not cache free blocks for reuse.

 education. It assumes that the highlighting function does it,

 many good memory allocation functions do this. Lua is not

 tries to minimize memory fragmentation. Research on

 show fragmentation is more the result of bad design

 memory allocation than program behavior; good features for

 memory allocations do not create strong fragmentation.

 It is quite difficult to make a good highlighting function, but

 sometimes you can try it. For example Lua gives you

 the old size of any block when it is freed or changed

 its size. Accordingly, a specialized emitting function

 it is not necessary to store information about the block size somewhere, thus

 reducing the amount of memory required for each block.377

 Another case where you can improve memory allocation is

 case of multi-strand systems. Such systems usually require syn-

 timing to allocate memory, since they use global

 ny resource (memory). However, accessing Lua state must also

 be synchronized - or better yet, limited to just one

 thread, as in our lproc implementation in Chapter 31. So if each

 before Lua state will allocate memory from its own memory pool-

 ty, you can remove the explicit synchronization requirement.

 32.2. Garbage collector

 Prior to version 5.0, Lua used a simple mark- type garbage collector

 and-sweep . This garbage collector is sometimes called collector-stop-

 vi-world . This means that from time to time Lua will stop interpreting

 run the main program to complete a complete build cycle

 garbage. Each such cycle consists of three phases: mark ,

 clean and sweep .

 Lua starts the mark phase by marking it as live.

 the root set that includes all objects to which Lua

 has direct access: registry and main thread. Any object that

 is stored in a living object, is reachable by the program and therefore also

 tosses about as if alive. The tagging phase ends when all the

 Objects are marked as live.

 Before starting the sweeping phase, Lua performs a cleanup phase,

 which is related to finalizers and weak tables. First of all,

 it traverses all objects marked for finalization, looking for

 unmarked objects. These objects are marked as alive (re-

 bans) and placed on a separate list for use on

 finalization stage. Second, Lua bypasses its weak tables and

 removes from them all elements where either the key or the value itself is not

 marked.

 The sweeping phase bypasses all Lua objects. (In order for this

 it was possible that Lua kept all created objects with a coherent list

 ke.) If the object is not marked as alive, then it is deleted. Otherwise

 Lua unchecks it to prepare for the next loop.

 During this phase, Lua also invokes object finalizers, which

 some were collected during the cleaning phase.

 Since version 5.1, Lua uses an incremental collector

 garbage. This collector follows the same steps as the old one, but

 for this he does not need to "stop the world." Instead, he worked

 Garbage collector

 works with the interpreter. Every time the interpreter

 allocates some memory, the garbage collector executes

 small step. This means that while the garbage collector is running

 works, the interpreter can change the visibility of the object. For

 to ensure that the garbage collector works correctly, some

 ry operations in the interpreter have special barriers, which

 rye detect dangerous changes and correct the markings accordingly

 corresponding objects.

 cover.jpeg
Lua

Programming

The Ultimate Beginner's Guide to

Learn Lua Step by Step

e
IS)

