

Machine Learning with

Python Cookbook

SECOND EDITION

Practical Solutions from Preprocessing to
Deep Learning

Kyle Gallatin and Chris Albon

Machine Learning with Python Cookbook

by Kyle Gallatin and Chris Albon
Copyright © 2023 Kyle Gallatin. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available
for most titles (http://oreilly.com). For more information,
contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editor: Jeff Bleiel

Production Editor: Clare Laylock

Copyeditor: Penelope Perkins

Proofreader: Piper Editorial Consulting, LLC

Indexer: Potomac Indexing, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

April 2018: First Edition

July 2023: Second Edition

http://oreilly.com/

Revision History for the Second Edition

2023-07-27: First Release

See http://oreilly.com/catalog/errata.csp?
isbn=9781098135720 for release details.
The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Machine Learning with Python Cookbook, the
cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.
The views expressed in this work are those of the authors
and do not represent the publisher’s views. While the
publisher and the authors have used good faith efforts to
ensure that the information and instructions contained in
this work are accurate, the publisher and the authors
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains
or describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with
such licenses and/or rights.
978-1-098-13572-0
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098135720

Preface

When the first edition of this book was published in 2018, it
filled a critical gap in the growing wealth of machine
learning (ML) content. By providing well-tested, hands-on
Python recipes, it enabled practitioners to copy and paste
code before easily adapting it to their use cases. In a short
five years, the ML space has continued to explode with
advances in deep learning (DL) and the associated DL
Python frameworks.
Now, in 2023, there is a need for the same sort of hands-on
content that serves the needs of both ML and DL
practitioners with the latest Python libraries. This book
intends to build on the existing (and fantastic) work done
by the author of the first edition by:

Updating existing examples to use the latest Python
versions and frameworks

Incorporating modern practices in data sources, data
analysis, ML, and DL

Expanding the DL content to include tensors, neural
networks, and DL for text and vision in PyTorch

Taking our models one step further by serving them in
an API

Like the first edition, this book takes a task-based approach
to machine learning, boasting over 200 self-contained
solutions (copy, paste, and run) for the most common tasks
a data scientist or machine learning engineer building a
model will run into.

Conventions Used in This Book

The following typographical conventions are used in this
book:
Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

Using Code Examples

This book is accompanied by a GitHub repository that has
instructions for running a Jupyter Notebook in a Docker
container with all dependencies used in this book. By
replicating the commands from this book in the notebook,
you can ensure the examples in this book will be completely
reproducible.
If you have a technical question or a problem using the
code examples, please send an email to

https://oreil.ly/MLwPython

support@oreilly.com.
This book is here to help you get your job done. In general,
if example code is offered with this book, you may use it in
your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a
significant portion of the code. For example, writing a
program that uses several chunks of code from this book
does not require permission. Selling or distributing
examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into
your product’s documentation does require permission.
We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Machine Learning with Python

Cookbook, 2nd ed., by Kyle Gallatin and Chris Albon
(O’Reilly). Copyright 2023 Kyle Gallatin, 978-1-098-13572-
0.”
If you feel your use of code examples falls outside fair use
or the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com/

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and
a vast collection of text and video from O’Reilly and 200+
other publishers. For more information, visit
https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.xhtml

We have a web page for this book, where we list errata,
examples, and any additional information. You can access
this page at https://oreil.ly/ml_python_2e.

https://oreilly.com/
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.xhtml
https://oreil.ly/ml_python_2e

For news and information about our books and courses,
visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-

media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

The second edition of this book is clearly only possible
because of the fantastic content, structure, and quality laid
out in the first edition by the original author, Chris Albon.
As the first author of the second edition, I cannot
understate the degree to which this made my job way, way
easier.
Of course, the machine learning space also evolves rapidly,
and the updates included in this second edition could not
have been written without the thoughtful feedback of my
peers. I’d specifically like to thank my fellow Etsy
coworkers Andrea Heyman, Maria Gomez, Alek Maelstrum,
and Brian Schmidt for acquiescing to requests for input on
various chapters and being unwillingly coaxed into sudden
brainstorming sessions that shaped the new content added
to this edition. I’d also like to thank the technical reviewers
—Jigyasa Grover, Matteus Tanha, and Ganesh Harke—
along with the O’Reilly editors: Jeff Bleiel, Nicole
Butterfield, and Clare Laylock. That being said, the number
of people who’ve helped me and this book get to the place
it’s at (in one way or another) is massive. I’d love to thank
everyone who’s been a part of my ML journey in one way or
another and helped make this book what it is. Love y’all.

https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Chapter 1. Working with

Vectors, Matrices, and

Arrays in NumPy

1.0 Introduction

NumPy is a foundational tool of the Python machine
learning stack. NumPy allows for efficient operations on
the data structures often used in machine learning: vectors,
matrices, and tensors. While NumPy isn’t the focus of this
book, it will show up frequently in the following chapters.
This chapter covers the most common NumPy operations
we’re likely to run into while working on machine learning
workflows.

1.1 Creating a Vector

Problem

You need to create a vector.

Solution

Use NumPy to create a one-dimensional array:

Load library

import numpy as np

Create a vector as a row

vector_row = np.array([1, 2, 3])

Create a vector as a column

vector_column = np.array([[1],

 [2],

 [3]])

Discussion

NumPy’s main data structure is the multidimensional array.
A vector is just an array with a single dimension. To create
a vector, we simply create a one-dimensional array. Just
like vectors, these arrays can be represented horizontally
(i.e., rows) or vertically (i.e., columns).

See Also

Vectors, Math Is Fun

Euclidean vector, Wikipedia

1.2 Creating a Matrix

Problem

You need to create a matrix.

Solution

Use NumPy to create a two-dimensional array:

Load library

import numpy as np

Create a matrix

matrix = np.array([[1, 2],

 [1, 2],

 [1, 2]])

Discussion

https://oreil.ly/43I-b
https://oreil.ly/er78t

To create a matrix we can use a NumPy two-dimensional
array. In our solution, the matrix contains three rows and
two columns (a column of 1s and a column of 2s).
NumPy actually has a dedicated matrix data structure:

matrix_object = np.mat([[1, 2],

 [1, 2],

 [1, 2]])

matrix([[1, 2],

 [1, 2],

 [1, 2]])

However, the matrix data structure is not recommended for
two reasons. First, arrays are the de facto standard data
structure of NumPy. Second, the vast majority of NumPy
operations return arrays, not matrix objects.

See Also

Matrix, Wikipedia

Matrix, Wolfram MathWorld

1.3 Creating a Sparse Matrix

Problem

Given data with very few nonzero values, you want to
efficiently represent it.

Solution

Create a sparse matrix:

Load libraries

import numpy as np

https://oreil.ly/tnRJw
https://oreil.ly/76jUS

from scipy import sparse

Create a matrix

matrix = np.array([[0, 0],

 [0, 1],

 [3, 0]])

Create compressed sparse row (CSR) matrix

matrix_sparse = sparse.csr_matrix(matrix)

Discussion

A frequent situation in machine learning is having a huge
amount of data; however, most of the elements in the data
are zeros. For example, imagine a matrix where the
columns are every movie on Netflix, the rows are every
Netflix user, and the values are how many times a user has
watched that particular movie. This matrix would have tens
of thousands of columns and millions of rows! However,
since most users do not watch most movies, the vast
majority of elements would be zero.
A sparse matrix is a matrix in which most elements are 0.
Sparse matrices store only nonzero elements and assume
all other values will be zero, leading to significant
computational savings. In our solution, we created a
NumPy array with two nonzero values, then converted it
into a sparse matrix. If we view the sparse matrix we can
see that only the nonzero values are stored:

View sparse matrix

print(matrix_sparse)

 (1, 1) 1

 (2, 0) 3

There are a number of types of sparse matrices. However,
in compressed sparse row (CSR) matrices, (1, 1) and (2,
0) represent the (zero-indexed) indices of the nonzero

values 1 and 3, respectively. For example, the element 1 is
in the second row and second column. We can see the
advantage of sparse matrices if we create a much larger
matrix with many more zero elements and then compare
this larger matrix with our original sparse matrix:

Create larger matrix

matrix_large = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

 [3, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Create compressed sparse row (CSR) matrix

matrix_large_sparse = sparse.csr_matrix(matrix_large)

View original sparse matrix

print(matrix_sparse)

 (1, 1) 1

 (2, 0) 3

View larger sparse matrix

print(matrix_large_sparse)

 (1, 1) 1

 (2, 0) 3

As we can see, despite the fact that we added many more
zero elements in the larger matrix, its sparse
representation is exactly the same as our original sparse
matrix. That is, the addition of zero elements did not
change the size of the sparse matrix.
As mentioned, there are many different types of sparse
matrices, such as compressed sparse column, list of lists,
and dictionary of keys. While an explanation of the different
types and their implications is outside the scope of this
book, it is worth noting that while there is no “best” sparse
matrix type, there are meaningful differences among them,
and we should be conscious about why we are choosing one
type over another.

See Also

SciPy documentation: Sparse Matrices

101 Ways to Store a Sparse Matrix

1.4 Preallocating NumPy Arrays

Problem

You need to preallocate arrays of a given size with some
value.

Solution

NumPy has functions for generating vectors and matrices
of any size using 0s, 1s, or values of your choice:

Load library

import numpy as np

Generate a vector of shape (1,5) containing all zeros

vector = np.zeros(shape=5)

View the matrix

print(vector)

array([0., 0., 0., 0., 0.])

Generate a matrix of shape (3,3) containing all ones

matrix = np.full(shape=(3,3), fill_value=1)

View the vector

print(matrix)

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

Discussion

Generating arrays prefilled with data is useful for a number
of purposes, such as making code more performant or
using synthetic data to test algorithms. In many

https://oreil.ly/zBBRB
https://oreil.ly/sBQhN

programming languages, preallocating an array of default
values (such as 0s) is considered common practice.

1.5 Selecting Elements

Problem

You need to select one or more elements in a vector or
matrix.

Solution

NumPy arrays make it easy to select elements in vectors or
matrices:

Load library

import numpy as np

Create row vector

vector = np.array([1, 2, 3, 4, 5, 6])

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Select third element of vector

vector[2]

3

Select second row, second column

matrix[1,1]

5

Discussion

Like most things in Python, NumPy arrays are zero-
indexed, meaning that the index of the first element is 0,
not 1. With that caveat, NumPy offers a wide variety of

methods for selecting (i.e., indexing and slicing) elements
or groups of elements in arrays:

Select all elements of a vector

vector[:]

array([1, 2, 3, 4, 5, 6])

Select everything up to and including the third element

vector[:3]

array([1, 2, 3])

Select everything after the third element

vector[3:]

array([4, 5, 6])

Select the last element

vector[-1]

6

Reverse the vector

vector[::-1]

array([6, 5, 4, 3, 2, 1])

Select the first two rows and all columns of a matrix

matrix[:2,:]

array([[1, 2, 3],

 [4, 5, 6]])

Select all rows and the second column

matrix[:,1:2]

array([[2],

 [5],

 [8]])

1.6 Describing a Matrix

Problem

You want to describe the shape, size, and dimensions of a
matrix.

Solution

Use the shape, size, and ndim attributes of a NumPy
object:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]])

View number of rows and columns

matrix.shape

(3, 4)

View number of elements (rows * columns)

matrix.size

12

View number of dimensions

matrix.ndim

2

Discussion

This might seem basic (and it is); however, time and again
it will be valuable to check the shape and size of an array
both for further calculations and simply as a gut check
after an operation.

1.7 Applying Functions over Each

Element

Problem

You want to apply some function to all elements in an
array.

Solution

Use the NumPy vectorize method:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Create function that adds 100 to something

add_100 = lambda i: i + 100

Create vectorized function

vectorized_add_100 = np.vectorize(add_100)

Apply function to all elements in matrix

vectorized_add_100(matrix)

array([[101, 102, 103],

 [104, 105, 106],

 [107, 108, 109]])

Discussion

The NumPy vectorize method converts a function into a
function that can apply to all elements in an array or slice
of an array. It’s worth noting that vectorize is essentially a
for loop over the elements and does not increase
performance. Furthermore, NumPy arrays allow us to
perform operations between arrays even if their dimensions
are not the same (a process called broadcasting). For
example, we can create a much simpler version of our
solution using broadcasting:

Add 100 to all elements

matrix + 100

array([[101, 102, 103],

 [104, 105, 106],

 [107, 108, 109]])

Broadcasting does not work for all shapes and situations,
but it is a common way of applying simple operations over
all elements of a NumPy array.

1.8 Finding the Maximum and

Minimum Values

Problem

You need to find the maximum or minimum value in an
array.

Solution

Use NumPy’s max and min methods:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Return maximum element

np.max(matrix)

9

Return minimum element

np.min(matrix)

1

Discussion

Often we want to know the maximum and minimum value
in an array or subset of an array. This can be accomplished
with the max and min methods. Using the axis parameter,
we can also apply the operation along a certain axis:

Find maximum element in each column

np.max(matrix, axis=0)

array([7, 8, 9])

Find maximum element in each row

np.max(matrix, axis=1)

array([3, 6, 9])

1.9 Calculating the Average,

Variance, and Standard Deviation

Problem

You want to calculate some descriptive statistics about an
array.

Solution

Use NumPy’s mean, var, and std:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Return mean

np.mean(matrix)

5.0

Return variance

np.var(matrix)

6.666666666666667

Return standard deviation

np.std(matrix)

2.5819888974716112

Discussion

Just like with max and min, we can easily get descriptive
statistics about the whole matrix or do calculations along a
single axis:

Find the mean value in each column

np.mean(matrix, axis=0)

array([4., 5., 6.])

1.10 Reshaping Arrays

Problem

You want to change the shape (number of rows and
columns) of an array without changing the element values.

Solution

Use NumPy’s reshape:

Load library

import numpy as np

Create 4x3 matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]])

Reshape matrix into 2x6 matrix

matrix.reshape(2, 6)

array([[1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12]])

Discussion

reshape allows us to restructure an array so that we
maintain the same data but organize it as a different
number of rows and columns. The only requirement is that
the shape of the original and new matrix contain the same
number of elements (i.e., are the same size). We can see
the size of a matrix using size:

matrix.size

12

One useful argument in reshape is -1, which effectively
means “as many as needed,” so reshape(1, -1) means one

row and as many columns as needed:

matrix.reshape(1, -1)

array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]])

Finally, if we provide one integer, reshape will return a
one-dimensional array of that length:

matrix.reshape(12)

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

1.11 Transposing a Vector or Matrix

Problem

You need to transpose a vector or matrix.

Solution

Use the T method:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Transpose matrix

matrix.T

array([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

Discussion

Transposing is a common operation in linear algebra where
the column and row indices of each element are swapped.

A nuanced point typically overlooked outside of a linear
algebra class is that, technically, a vector can’t be
transposed because it’s just a collection of values:

Transpose vector

np.array([1, 2, 3, 4, 5, 6]).T

array([1, 2, 3, 4, 5, 6])

However, it is common to refer to transposing a vector as
converting a row vector to a column vector (notice the
second pair of brackets) or vice versa:

Transpose row vector

np.array([[1, 2, 3, 4, 5, 6]]).T

array([[1],

 [2],

 [3],

 [4],

 [5],

 [6]])

1.12 Flattening a Matrix

Problem

You need to transform a matrix into a one-dimensional
array.

Solution

Use the flatten method:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Flatten matrix

matrix.flatten()

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

Discussion

flatten is a simple method to transform a matrix into a
one-dimensional array. Alternatively, we can use reshape
to create a row vector:

matrix.reshape(1, -1)

array([[1, 2, 3, 4, 5, 6, 7, 8, 9]])

Another common way to flatten arrays is the ravel method.
Unlike flatten, which returns a copy of the original array,
ravel operates on the original object itself and is therefore
slightly faster. It also lets us flatten lists of arrays, which
we can’t do with the flatten method. This operation is
useful for flattening very large arrays and speeding up
code:

Create one matrix

matrix_a = np.array([[1, 2],

 [3, 4]])

Create a second matrix

matrix_b = np.array([[5, 6],

 [7, 8]])

Create a list of matrices

matrix_list = [matrix_a, matrix_b]

Flatten the entire list of matrices

np.ravel(matrix_list)

array([1, 2, 3, 4, 5, 6, 7, 8])

1.13 Finding the Rank of a Matrix

Problem

You need to know the rank of a matrix.

Solution

Use NumPy’s linear algebra method matrix_rank:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 1, 1],

 [1, 1, 10],

 [1, 1, 15]])

Return matrix rank

np.linalg.matrix_rank(matrix)

2

Discussion

The rank of a matrix is the dimensions of the vector space
spanned by its columns or rows. Finding the rank of a
matrix is easy in NumPy thanks to matrix_rank.

See Also

The Rank of a Matrix, CliffsNotes

1.14 Getting the Diagonal of a Matrix

Problem

You need to get the diagonal elements of a matrix.

Solution

https://oreil.ly/Wg9ZG

Use NumPy’s diagonal:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [2, 4, 6],

 [3, 8, 9]])

Return diagonal elements

matrix.diagonal()

array([1, 4, 9])

Discussion

NumPy makes getting the diagonal elements of a matrix
easy with diagonal. It is also possible to get a diagonal off
the main diagonal by using the offset parameter:

Return diagonal one above the main diagonal

matrix.diagonal(offset=1)

array([2, 6])

Return diagonal one below the main diagonal

matrix.diagonal(offset=-1)

array([2, 8])

1.15 Calculating the Trace of a Matrix

Problem

You need to calculate the trace of a matrix.

Solution

Use trace:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 2, 3],

 [2, 4, 6],

 [3, 8, 9]])

Return trace

matrix.trace()

14

Discussion

The trace of a matrix is the sum of the diagonal elements
and is often used under the hood in machine learning
methods. Given a NumPy multidimensional array, we can
calculate the trace using trace. Alternatively, we can
return the diagonal of a matrix and calculate its sum:

Return diagonal and sum elements

sum(matrix.diagonal())

14

See Also

The Trace of a Square Matrix

1.16 Calculating Dot Products

Problem

You need to calculate the dot product of two vectors.

Solution

Use NumPy’s dot function:

Load library

import numpy as np

https://oreil.ly/AhX1b

Create two vectors

vector_a = np.array([1,2,3])

vector_b = np.array([4,5,6])

Calculate dot product

np.dot(vector_a, vector_b)

32

Discussion

The dot product of two vectors, a and b, is defined as:

n

∑
i=1

aibi

where ai is the ith element of vector a, and bi is the ith
element of vector b. We can use NumPy’s dot function to
calculate the dot product. Alternatively, in Python 3.5+ we
can use the new @ operator:

Calculate dot product

vector_a @ vector_b

32

See Also

Vector Dot Product and Vector Length, Khan Academy

Dot Product, Paul’s Online Math Notes

1.17 Adding and Subtracting Matrices

Problem

You want to add or subtract two matrices.

https://oreil.ly/MpBt7
https://oreil.ly/EprM1

Solution

Use NumPy’s add and subtract:

Load library

import numpy as np

Create matrix

matrix_a = np.array([[1, 1, 1],

 [1, 1, 1],

 [1, 1, 2]])

Create matrix

matrix_b = np.array([[1, 3, 1],

 [1, 3, 1],

 [1, 3, 8]])

Add two matrices

np.add(matrix_a, matrix_b)

array([[2, 4, 2],

 [2, 4, 2],

 [2, 4, 10]])

Subtract two matrices

np.subtract(matrix_a, matrix_b)

array([[0, -2, 0],

 [0, -2, 0],

 [0, -2, -6]])

Discussion

Alternatively, we can simply use the + and – operators:

Add two matrices

matrix_a + matrix_b

array([[2, 4, 2],

 [2, 4, 2],

 [2, 4, 10]])

1.18 Multiplying Matrices

Problem

You want to multiply two matrices.

Solution

Use NumPy’s dot:

Load library

import numpy as np

Create matrix

matrix_a = np.array([[1, 1],

 [1, 2]])

Create matrix

matrix_b = np.array([[1, 3],

 [1, 2]])

Multiply two matrices

np.dot(matrix_a, matrix_b)

array([[2, 5],

 [3, 7]])

Discussion

Alternatively, in Python 3.5+ we can use the @ operator:

Multiply two matrices

matrix_a @ matrix_b

array([[2, 5],

 [3, 7]])

If we want to do element-wise multiplication, we can use
the * operator:

Multiply two matrices element-wise

matrix_a * matrix_b

array([[1, 3],

 [1, 4]])

See Also

Array vs. Matrix Operations, MathWorks

1.19 Inverting a Matrix

Problem

You want to calculate the inverse of a square matrix.

Solution

Use NumPy’s linear algebra inv method:

Load library

import numpy as np

Create matrix

matrix = np.array([[1, 4],

 [2, 5]])

Calculate inverse of matrix

np.linalg.inv(matrix)

array([[-1.66666667, 1.33333333],

 [0.66666667, -0.33333333]])

Discussion

The inverse of a square matrix, A, is a second matrix, A–1,
such that:

AA
−1

= I

where I is the identity matrix. In NumPy we can use
linalg.inv to calculate A–1 if it exists. To see this in
action, we can multiply a matrix by its inverse, and the
result is the identity matrix:

Multiply matrix and its inverse

matrix @ np.linalg.inv(matrix)

https://oreil.ly/_sFx5

array([[1., 0.],

 [0., 1.]])

See Also

Inverse of a Matrix

1.20 Generating Random Values

Problem

You want to generate pseudorandom values.

Solution

Use NumPy’s random:

Load library

import numpy as np

Set seed

np.random.seed(0)

Generate three random floats between 0.0 and 1.0

np.random.random(3)

array([0.5488135 , 0.71518937, 0.60276338])

Discussion

NumPy offers a wide variety of means to generate random
numbers—many more than can be covered here. In our
solution we generated floats; however, it is also common to
generate integers:

Generate three random integers between 0 and 10

np.random.randint(0, 11, 3)

array([3, 7, 9])

https://oreil.ly/SwRXC

Alternatively, we can generate numbers by drawing them
from a distribution (note this is not technically random):

Draw three numbers from a normal distribution with mean 0.0

and standard deviation of 1.0

np.random.normal(0.0, 1.0, 3)

array([-1.42232584, 1.52006949, -0.29139398])

Draw three numbers from a logistic distribution with mean 0.0

and scale of 1.0

np.random.logistic(0.0, 1.0, 3)

array([-0.98118713, -0.08939902, 1.46416405])

Draw three numbers greater than or equal to 1.0 and less than

2.0

np.random.uniform(1.0, 2.0, 3)

array([1.47997717, 1.3927848 , 1.83607876])

Finally, sometimes it can be useful to return the same
random numbers multiple times to get predictable,
repeatable results. We can do this by setting the “seed” (an
integer) of the pseudorandom generator. Random
processes with the same seed will always produce the same
output. We will use seeds throughout this book so that the
code you see in the book and the code you run on your
computer produces the same results.

Chapter 2. Loading Data

2.0 Introduction

The first step in any machine learning endeavor is to get
the raw data into our system. The raw data might be a
logfile, dataset file, database, or cloud blob store such as
Amazon S3. Furthermore, often we will want to retrieve
data from multiple sources.
The recipes in this chapter look at methods of loading data
from a variety of sources, including CSV files and SQL
databases. We also cover methods of generating simulated
data with desirable properties for experimentation. Finally,
while there are many ways to load data in the Python
ecosystem, we will focus on using the pandas library’s
extensive set of methods for loading external data, and
using scikit-learn— an open source machine learning library
in Python— for generating simulated data.

2.1 Loading a Sample Dataset

Problem

You want to load a preexisting sample dataset from the
scikit-learn library.

Solution

scikit-learn comes with a number of popular datasets for
you to use:

Load scikit-learn's datasets

from sklearn import datasets

Load digits dataset

digits = datasets.load_digits()

Create features matrix

features = digits.data

Create target vector

target = digits.target

View first observation

features[0]

array([0., 0., 5., 13., 9., 1., 0., 0., 0.,

0., 13.,

 15., 10., 15., 5., 0., 0., 3., 15., 2.,

0., 11.,

 8., 0., 0., 4., 12., 0., 0., 8., 8.,

0., 0.,

 5., 8., 0., 0., 9., 8., 0., 0., 4.,

11., 0.,

 1., 12., 7., 0., 0., 2., 14., 5., 10.,

12., 0.,

 0., 0., 0., 6., 13., 10., 0., 0., 0.])

Discussion

Often we do not want to go through the work of loading,
transforming, and cleaning a real-world dataset before we
can explore some machine learning algorithm or method.
Luckily, scikit-learn comes with some common datasets we
can quickly load. These datasets are often called “toy”
datasets because they are far smaller and cleaner than a
dataset we would see in the real world. Some popular
sample datasets in scikit-learn are:
load_iris

Contains 150 observations on the measurements of iris
flowers. It is a good dataset for exploring classification
algorithms.

load_digits

Contains 1,797 observations from images of handwritten
digits. It is a good dataset for teaching image classification.

To see more details on any of these datasets, you can print
the DESCR attribute:

Load scikit-learn's datasets

from sklearn import datasets

Load digits dataset

digits = datasets.load_digits()

Print the attribute

print(digits.DESCR)

.. _digits_dataset:

Optical recognition of handwritten digits dataset

--

Data Set Characteristics:

 :Number of Instances: 1797

 :Number of Attributes: 64

 :Attribute Information: 8x8 image of integer pixels in the

range 0..16.

 :Missing Attribute Values: None

 :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)

 :Date: July; 1998

...

See Also

scikit-learn toy datasets

The Digit Dataset

2.2 Creating a Simulated Dataset

https://oreil.ly/WS1gc
https://oreil.ly/0hukv

Problem

You need to generate a dataset of simulated data.

Solution

scikit-learn offers many methods for creating simulated
data. Of those, three methods are particularly useful:
make_regression, make_classification, and make_blobs.
When we want a dataset designed to be used with linear
regression, make_regression is a good choice:

Load library

from sklearn.datasets import make_regression

Generate features matrix, target vector, and the true

coefficients

features, target, coefficients = make_regression(n_samples = 100,

 n_features = 3,

 n_informative =

3,

 n_targets = 1,

 noise = 0.0,

 coef = True,

 random_state =

1)

View feature matrix and target vector

print('Feature Matrix\n', features[:3])

print('Target Vector\n', target[:3])

Feature Matrix

 [[1.29322588 -0.61736206 -0.11044703]

 [-2.793085 0.36633201 1.93752881]

 [0.80186103 -0.18656977 0.0465673]]

Target Vector

 [-10.37865986 25.5124503 19.67705609]

If we are interested in creating a simulated dataset for
classification, we can use make_classification:

Load library

from sklearn.datasets import make_classification

Generate features matrix and target vector

features, target = make_classification(n_samples = 100,

 n_features = 3,

 n_informative = 3,

 n_redundant = 0,

 n_classes = 2,

 weights = [.25, .75],

 random_state = 1)

View feature matrix and target vector

print('Feature Matrix\n', features[:3])

print('Target Vector\n', target[:3])

Feature Matrix

 [[1.06354768 -1.42632219 1.02163151]

 [0.23156977 1.49535261 0.33251578]

 [0.15972951 0.83533515 -0.40869554]]

Target Vector

 [1 0 0]

Finally, if we want a dataset designed to work well with
clustering techniques, scikit-learn offers make_blobs:

Load library

from sklearn.datasets import make_blobs

Generate features matrix and target vector

features, target = make_blobs(n_samples = 100,

 n_features = 2,

 centers = 3,

 cluster_std = 0.5,

 shuffle = True,

 random_state = 1)

View feature matrix and target vector

print('Feature Matrix\n', features[:3])

print('Target Vector\n', target[:3])

Feature Matrix

 [[-1.22685609 3.25572052]

 [-9.57463218 -4.38310652]

 [-10.71976941 -4.20558148]]

Target Vector

 [0 1 1]

Discussion

As might be apparent from the solutions, make_regression
returns a feature matrix of float values and a target vector
of float values, while make_classification and
make_blobs return a feature matrix of float values and a
target vector of integers representing membership in a
class.
scikit-learn’s simulated datasets offer extensive options to
control the type of data generated. scikit-learn’s
documentation contains a full description of all the
parameters, but a few are worth noting.
In make_regression and make_classification,
n_informative determines the number of features that are
used to generate the target vector. If n_informative is less
than the total number of features (n_features), the
resulting dataset will have redundant features that can be
identified through feature selection techniques.
In addition, make_classification contains a weights
parameter that allows us to simulate datasets with
imbalanced classes. For example, weights = [.25, .75]
would return a dataset with 25% of observations belonging
to one class and 75% of observations belonging to a second
class.
For make_blobs, the centers parameter determines the
number of clusters generated. Using the matplotlib
visualization library, we can visualize the clusters
generated by make_blobs:

Load library

import matplotlib.pyplot as plt

View scatterplot

plt.scatter(features[:,0], features[:,1], c=target)

plt.show()

See Also

make_regression documentation

make_classification documentation

make_blobs documentation

2.3 Loading a CSV File

Problem

You need to import a comma-separated value (CSV) file.

Solution

Use the pandas library’s read_csv to load a local or hosted
CSV file into a pandas DataFrame:

Load library

import pandas as pd

Create URL

url =

https://oreil.ly/VrtN3
https://oreil.ly/rehc-
https://oreil.ly/1LZAI

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/dat

a.csv'

Load dataset

dataframe = pd.read_csv(url)

View first two rows

dataframe.head(2)

integer datetime category

0 5 2015-01-01
00:00:00

0

1 5 2015-01-01
00:00:01

0

Discussion

There are two things to note about loading CSV files. First,
it is often useful to take a quick look at the contents of the
file before loading. It can be very helpful to see how a
dataset is structured beforehand and what parameters we
need to set to load in the file. Second, read_csv has over
30 parameters and therefore the documentation can be
daunting. Fortunately, those parameters are mostly there
to allow it to handle a wide variety of CSV formats.
CSV files get their names from the fact that the values are
literally separated by commas (e.g., one row might be
2,"2015-01-01 00:00:00",0); however, it is common for
CSV files to use other separators, such as tabs (which are
referred to as TSV files). The pandas sep parameter allows
us to define the delimiter used in the file. Although it is not
always the case, a common formatting issue with CSV files
is that the first line of the file is used to define column
headers (e.g., integer, datetime, category in our

solution). The header parameter allows us to specify if or
where a header row exists. If a header row does not exist,
we set header=None.
The read_csv function returns a pandas DataFrame: a
common and useful object for working with tabular data
that we’ll cover in more depth throughout this book.

2.4 Loading an Excel File

Problem

You need to import an Excel spreadsheet.

Solution

Use the pandas library’s read_excel to load an Excel
spreadsheet:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/dat

a.xlsx'

Load data

dataframe = pd.read_excel(url, sheet_name=0, header=0)

View the first two rows

dataframe.head(2)

integer datetime category

5 2015-01-01
00:00:00

0

0 5 2015-01-01
00:00:01

0

1 9 2015-01-01
00:00:02

0

Discussion

This solution is similar to our solution for reading CSV files.
The main difference is the additional parameter,
sheet_name, that specifies which sheet in the Excel file we
wish to load. sheet_name can accept both strings,
containing the name of the sheet, and integers, pointing to
sheet positions (zero-indexed). If we need to load multiple
sheets, we include them as a list. For example,
sheet_name=[0,1,2, "Monthly Sales"] will return a
dictionary of pandas DataFrames containing the first,
second, and third sheets, and the sheet named Monthly
Sales.

2.5 Loading a JSON File

Problem

You need to load a JSON file for data preprocessing.

Solution

The pandas library provides read_json to convert a JSON
file into a pandas object:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/dat

a.json'

Load data

dataframe = pd.read_json(url, orient='columns')

View the first two rows

dataframe.head(2)

category datetime integer

0 0 2015-01-01
00:00:00

5

1 0 2015-01-01
00:00:01

5

Discussion

Importing JSON files into pandas is similar to the last few
recipes we have seen. The key difference is the orient
parameter, which indicates to pandas how the JSON file is
structured. However, it might take some experimenting to
figure out which argument (split, records, index,
columns, or values) is the right one. Another helpful tool
pandas offers is json_normalize, which can help convert
semistructured JSON data into a pandas DataFrame.

See Also

json_normalize documentation

2.6 Loading a Parquet File

Problem

You need to load a Parquet file.

Solution

The pandas read_parquet function allows us to read in
Parquet files:

Load library

import pandas as pd

Create URL

url = 'https://machine-learning-python-

cookbook.s3.amazonaws.com/data.parquet'

Load data

dataframe = pd.read_parquet(url)

View the first two rows

dataframe.head(2)

category datetime integer

0 0 2015-01-01
00:00:00

5

1 0 2015-01-01
00:00:01

5

Discussion

https://oreil.ly/nuvIB

Parquet is a popular data storage format in the large data
space. It is often used with big data tools such as Hadoop
and Spark. While PySpark is outside the focus of this book,
it’s highly likely companies operating on a large scale will
use an efficient data storage format such as Parquet, and
it’s valuable to know how to read it into a dataframe and
manipulate it.

See Also

Apache Parquet documentation

2.7 Loading an Avro File

Problem

You need to load an Avro file into a pandas DataFrame.

Solution

The use the pandavro library’s read_avro method:

Load library

import requests

import pandavro as pdx

Create URL

url = 'https://machine-learning-python-

cookbook.s3.amazonaws.com/data.avro'

Download file

r = requests.get(url)

open('data.avro', 'wb').write(r.content)

Load data

dataframe = pdx.read_avro('data.avro')

View the first two rows

dataframe.head(2)

https://oreil.ly/M5bRq

category datetime integer

0 0 2015-01-01
00:00:00

5

1 0 2015-01-01
00:00:01

5

Discussion

Apache Avro is an open source, binary data format that
relies on schemas for the data structure. At the time of
writing, it is not as common as Parquet. However, large
binary data formats such as Avro, thrift, and Protocol
Buffers are growing in popularity due to their efficient
nature. If you work with large data systems, you’re likely to
run into one of these formats in the near future.

See Also

Apache Avro documentation

2.8 Querying a SQLite Database

Problem

You need to load data from a database using structured
query language (SQL).

Solution

pandas’ read_sql_query allows us to make an SQL query
to a database and load it:

https://oreil.ly/Y1TJA

Load libraries

import pandas as pd

from sqlalchemy import create_engine

Create a connection to the database

database_connection = create_engine('sqlite:///sample.db')

Load data

dataframe = pd.read_sql_query('SELECT * FROM data',

database_connection)

View first two rows

dataframe.head(2)

first_name last_name age preT

0 Jason Miller 42 4

1 Molly Jacobson 52 24

Discussion

SQL is the lingua franca for pulling data from databases. In
this recipe we first use create_engine to define a
connection to an SQL database engine called SQLite. Next
we use pandas’ read_sql_query to query that database
using SQL and put the results in a DataFrame.
SQL is a language in its own right and, while beyond the
scope of this book, it is certainly worth knowing for anyone
wanting to learn about machine learning. Our SQL query,
SELECT * FROM data, asks the database to give us all
columns (*) from the table called data.
Note that this is one of a few recipes in this book that will
not run without extra code. Specifically,
create_engine('sqlite:///sample.db') assumes that an
SQLite database already exists.

See Also

SQLite

W3Schools SQL Tutorial

2.9 Querying a Remote SQL Database

Problem

You need to connect to, and read from, a remote SQL
database.

Solution

Create a connection with pymysql and read it into a
dataframe with pandas:

Import libraries

import pymysql

import pandas as pd

Create a DB connection

Use the following example to start a DB instance

https://github.com/kylegallatin/mysql-db-example

conn = pymysql.connect(

 host='localhost',

 user='root',

 password = "",

 db='db',

)

Read the SQL query into a dataframe

dataframe = pd.read_sql("select * from data", conn)

View the first two rows

dataframe.head(2)

https://oreil.ly/8Y91T
https://oreil.ly/A7H1m

integer datetime category

0 5 2015-01-01
00:00:00

0

1 5 2015-01-01
00:00:01

0

Discussion

Of all of the recipes presented in this chapter, this is
probably the one we will use most in the real world. While
connecting and reading from an example sqlite database
is useful, it’s likely not representative of tables you’ll need
to connect to in an enterprise environment. Most SQL
instances that you’ll connect to will require you to connect
to the host and port of a remote machine, specifying a
username and password for authentication. This example
requires you to start a running SQL instance locally that
mimics a remote server on localhost so that you can get a
sense of the workflow.

See Also

PyMySQL documentation

pandas Read SQL documentation

2.10 Loading Data from a Google

Sheet

Problem

You need to read in data directly from a Google Sheet.

https://oreil.ly/Sxjqz
https://oreil.ly/8zSnj
https://oreil.ly/Yb7sH

Solution

Use pandas read_CSV and pass a URL that exports the
Google Sheet as a CSV:

Import libraries

import pandas as pd

Google Sheet URL that downloads the sheet as a CSV

url = "https://docs.google.com/spreadsheets/d/"\

 "1ehC-9otcAuitqnmWksqt1mOrTRCL38dv0K9UjhwzTOA/export?

format=csv"

Read the CSV into a dataframe

dataframe = pd.read_csv(url)

View the first two rows

dataframe.head(2)

integer datetime category

0 5 2015-01-01
00:00:00

0

1 5 2015-01-01
00:00:01

0

Discussion

While Google Sheets can easily be downloaded, it’s
sometimes helpful to be able to read them directly into
Python without any intermediate steps. The /export?
format=csv query parameter at the end of the URL above
creates an endpoint from which we can either download the
file or read it into pandas.

See Also

Google Sheets API

2.11 Loading Data from an S3 Bucket

Problem

You need to read a CSV file from an S3 bucket you have
access to.

Solution

Add storage options to pandas giving it access to the S3
object:

Import libraries

import pandas as pd

S3 path to CSV

s3_uri = "s3://machine-learning-python-cookbook/data.csv"

Set AWS credentials (replace with your own)

ACCESS_KEY_ID = "xxxxxxxxxxxxx"

SECRET_ACCESS_KEY = "xxxxxxxxxxxxxxxx"

Read the CSV into a dataframe

dataframe = pd.read_csv(s3_uri,storage_options={

 "key": ACCESS_KEY_ID,

 "secret": SECRET_ACCESS_KEY,

 }

)

View first two rows

dataframe.head(2)

https://oreil.ly/GRLzg

integer datetime category

0 5 2015-01-01
00:00:00

0

1 5 2015-01-01
00:00:01

0

Discussion

Many enterprises now keep data in cloud provider blob
stores such as Amazon S3 or Google Cloud Storage (GCS).
It’s common for machine learning practitioners to connect
to these sources to retrieve data. Although the S3 URI
(s3://machine-learning-python-cookbook/data.csv) is
public, it still requires you to provide your own AWS access
credentials to access it. It’s worth noting that public objects
also have HTTP URLs from which they can download files,
such as this one for the CSV file.

See Also

Amazon S3

AWS Security Credentials

2.12 Loading Unstructured Data

Problem

You need to load unstructured data like text or images.

Solution

https://oreil.ly/byelc
https://oreil.ly/E-CZX
https://oreil.ly/aHBBb

Use the base Python open function to load the information:

Import libraries

import requests

URL to download the txt file from

txt_url = "https://machine-learning-python-

cookbook.s3.amazonaws.com/text.txt"

Get the txt file

r = requests.get(txt_url)

Write it to text.txt locally

with open('text.txt', 'wb') as f:

 f.write(r.content)

Read in the file

with open('text.txt', 'r') as f:

 text = f.read()

Print the content

print(text)

Hello there!

Discussion

While structured data can easily be read in from CSV,
JSON, or various databases, unstructured data can be more
challenging and may require custom processing down the
line. Sometimes it’s helpful to open and read in files using
Python’s basic open function. This allows us to open files
and then read the content of that file.

See Also

Python’s open function

Context managers in Python

https://oreil.ly/Xuuom
https://oreil.ly/UyZnL

Chapter 3. Data Wrangling

3.0 Introduction

Data wrangling is a broad term used, often informally, to
describe the process of transforming raw data into a clean,
organized format ready for use. For us, data wrangling is
only one step in preprocessing our data, but it is an
important step.
The most common data structure used to “wrangle” data is
the dataframe, which can be both intuitive and incredibly
versatile. Dataframes are tabular, meaning that they are
based on rows and columns like you would see in a
spreadsheet. Here is a dataframe created from data about
passengers on the Titanic:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data as a dataframe

dataframe = pd.read_csv(url)

Show first five rows

dataframe.head(5)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.00 fema

1 Allison,
Miss Helen
Loraine

1st 2.00 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.00 male

3 Allison,
Mrs
Hudson JC
(Bessie
Waldo
Daniels)

1st 25.00 fema

4 Allison,
Master
Hudson
Trevor

1st 0.92 male

There are three important things to notice in this
dataframe.
First, in a dataframe each row corresponds to one
observation (e.g., a passenger) and each column
corresponds to one feature (gender, age, etc.). For
example, by looking at the first observation we can see that

Miss Elisabeth Walton Allen stayed in first class, was 29
years old, was female, and survived the disaster.
Second, each column contains a name (e.g., Name, PClass,
Age) and each row contains an index number (e.g., 0 for the
lucky Miss Elisabeth Walton Allen). We will use these to
select and manipulate observations and features.
Third, two columns, Sex and SexCode, contain the same
information in different formats. In Sex, a woman is
indicated by the string female, while in SexCode, a woman
is indicated by using the integer 1. We will want all our
features to be unique, and therefore we will need to remove
one of these columns.
In this chapter, we will cover a wide variety of techniques
to manipulate dataframes using the pandas library with the
goal of creating a clean, well-structured set of observations
for further preprocessing.

3.1 Creating a Dataframe

Problem

You want to create a new dataframe.

Solution

pandas has many methods for creating a new DataFrame
object. One easy method is to instantiate a DataFrame using
a Python dictionary. In the dictionary, each key is a column
name and the value is a list, where each item corresponds
to a row:

Load library

import pandas as pd

Create a dictionary

dictionary = {

 "Name": ['Jacky Jackson', 'Steven Stevenson'],

 "Age": [38, 25],

 "Driver": [True, False]

}

Create DataFrame

dataframe = pd.DataFrame(dictionary)

Show DataFrame

dataframe

Name Age Driver

0 Jacky Jackson 38 True

1 Steven
Stevenson

25 False

It’s easy to add new columns to any dataframe using a list
of values:

Add a column for eye color

dataframe["Eyes"] = ["Brown", "Blue"]

Show DataFrame

dataframe

Name Age Driver Eye

0 Jacky
Jackson

38 True Brow

1 Steven
Stevenson

25 False Blue

Discussion

pandas offers what can feel like an infinite number of ways
to create a DataFrame. In the real world, creating an empty
DataFrame and then populating it will almost never
happen. Instead, our DataFrames will be created from real
data we have loaded from other sources (e.g., a CSV file or
database).

3.2 Getting Information about the

Data

Problem

You want to view some characteristics of a DataFrame.

Solution

One of the easiest things we can do after loading the data
is view the first few rows using head:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Show two rows

dataframe.head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

We can also take a look at the number of rows and
columns:

Show dimensions

dataframe.shape

(1313, 6)

We can get descriptive statistics for any numeric columns
using describe:

Show statistics

dataframe.describe()

Age Survived SexCode

count 756.000000 1313.000000 1313.000000

mean 30.397989 0.342727 0.351866

std 14.259049 0.474802 0.477734

min 0.170000 0.000000 0.000000

25% 21.000000 0.000000 0.000000

50% 28.000000 0.000000 0.000000

75% 39.000000 1.000000 1.000000

max 71.000000 1.000000 1.000000

Additionally, the info method can show some helpful
information:

Show info

dataframe.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1313 entries, 0 to 1312

Data columns (total 6 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Name 1313 non-null object

 1 PClass 1313 non-null object

 2 Age 756 non-null float64

 3 Sex 1313 non-null object

 4 Survived 1313 non-null int64

 5 SexCode 1313 non-null int64

dtypes: float64(1), int64(2), object(3)

memory usage: 61.7+ KB

Discussion

After we load some data, it’s a good idea to understand how
it’s structured and what kind of information it contains.
Ideally, we would view the full data directly. But with most
real-world cases, the data could have thousands to
hundreds of thousands to millions of rows and columns.
Instead, we have to rely on pulling samples to view small
slices and calculating summary statistics of the data.
In our solution, we are using a toy dataset of the
passengers of the Titanic. Using head, we can look at the
first few rows (five by default) of the data. Alternatively, we
can use tail to view the last few rows. With shape we can
see how many rows and columns our DataFrame contains.
With describe we can see some basic descriptive statistics
for any numerical column. And, finally, info displays a
number of helpful data points about the DataFrame,
including index and column data types, non-null values, and
memory usage.
It is worth noting that summary statistics do not always tell
the full story. For example, pandas treats the columns
Survived and SexCode as numeric columns because they
contain 1s and 0s. However, in this case the numerical
values represent categories. For example, if Survived
equals 1, it indicates that the passenger survived the
disaster. For this reason, some of the summary statistics
provided don’t make sense, such as the standard deviation
of the SexCode column (an indicator of the passenger’s
gender).

3.3 Slicing DataFrames

Problem

You need to select a specific subset data or slices of a
DataFrame.

Solution

Use loc or iloc to select one or more rows or values:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Select first row

dataframe.iloc[0]

Name Allen, Miss Elisabeth Walton

PClass 1st

Age 29

Sex female

Survived 1

SexCode 1

Name: 0, dtype: object

We can use : to define the slice of rows we want, such as
selecting the second, third, and fourth rows:

Select three rows

dataframe.iloc[1:4]

Name PClass Age Sex

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.0 male

3 Allison,
Mrs
Hudson JC
(Bessie
Waldo
Daniels)

1st 25.0 fema

We can even use it to get all rows up to a point, such as all
rows up to and including the fourth row:

Select four rows

dataframe.iloc[:4]

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.0 male

3 Allison,
Mrs
Hudson JC
(Bessie
Waldo
Daniels)

1st 25.0 fema

DataFrames do not need to be numerically indexed. We can
set the index of a DataFrame to any value where the value
is unique to each row. For example, we can set the index to
be passenger names and then select rows using a name:

Set index

dataframe = dataframe.set_index(dataframe['Name'])

Show row

dataframe.loc['Allen, Miss Elisabeth Walton']

Name Allen, Miss Elisabeth Walton

PClass 1st

Age 29

Sex female

Survived 1

SexCode 1

Name: Allen, Miss Elisabeth Walton, dtype: object

Discussion

All rows in a pandas DataFrame have a unique index value.
By default, this index is an integer indicating the row
position in the DataFrame; however, it does not have to be.
DataFrame indexes can be set to be unique alphanumeric
strings or customer numbers. To select individual rows and
slices of rows, pandas provides two methods:

loc is useful when the index of the DataFrame is a label
(e.g., a string).

iloc works by looking for the position in the
DataFrame. For example, iloc[0] will return the first
row regardless of whether the index is an integer or a
label.

It is useful to be comfortable with both loc and iloc since
they will come up a lot during data cleaning.

3.4 Selecting Rows Based on

Conditionals

Problem

You want to select DataFrame rows based on some
condition.

Solution

This can be done easily in pandas. For example, if we
wanted to select all the women on the Titanic:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Show top two rows where column 'sex' is 'female'

dataframe[dataframe['Sex'] == 'female'].head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

Take a moment to look at the format of this solution. Our
conditional statement is dataframe['Sex'] == 'female';
by wrapping that in dataframe[] we are telling pandas to
“select all the rows in the DataFrame where the value of
dataframe['Sex'] is 'female'.” These conditions result in
a pandas series of booleans.
Multiple conditions are easy as well. For example, here we
select all the rows where the passenger is a female 65 or
older:

Filter rows

dataframe[(dataframe['Sex'] == 'female') & (dataframe['Age'] >=

65)]

Name PClass Age Sex

73 Crosby,
Mrs
Edward
Gifford
(Catherine
Elizabet...

1st 69.0 fema

Discussion

Conditionally selecting and filtering data is one of the most
common tasks in data wrangling. You rarely want all the
raw data from the source; instead, you are interested in
only some subset of it. For example, you might only be
interested in stores in certain states or the records of
patients over a certain age.

3.5 Sorting Values

Problem

You need to sort a dataframe by the values in a column.

Solution

Use the pandas sort_values function:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Sort the dataframe by age, show two rows

dataframe.sort_values(by=["Age"]).head(2)

Name PClass Age Sex

763 Dean, Miss
Elizabeth
Gladys
(Millvena)

3rd 0.17 fema

751 Danbom,
Master
Gilbert
Sigvard
Emanuel

3rd 0.33 male

Discussion

During data analysis and exploration, it’s often useful to
sort a DataFrame by a particular column or set of columns.
The by argument to sort_values takes a list of columns by
which to sort the DataFrame and will sort based on the
order of column names in the list.
By default, the ascending argument is set to True, so it will
sort the values lowest to highest. If we wanted the oldest
passengers instead of the youngest, we could set it to
False.

3.6 Replacing Values

Problem

You need to replace values in a DataFrame.

Solution

The pandas replace method is an easy way to find and
replace values. For example, we can replace any instance
of "female" in the Sex column with "Woman":

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Replace values, show two rows

dataframe['Sex'].replace("female", "Woman").head(2)

0 Woman

1 Woman

Name: Sex, dtype: object

We can also replace multiple values at the same time:

Replace "female" and "male" with "Woman" and "Man"

dataframe['Sex'].replace(["female", "male"], ["Woman",

"Man"]).head(5)

0 Woman

1 Woman

2 Man

3 Woman

4 Man

Name: Sex, dtype: object

We can also find and replace across the entire DataFrame
object by specifying the whole dataframe instead of a single
column:

Replace values, show two rows

dataframe.replace(1, "One").head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29 fema

1 Allison,
Miss Helen
Loraine

1st 2 fema

replace also accepts regular expressions:

Replace values, show two rows

dataframe.replace(r"1st", "First", regex=True).head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

First 29.0 fema

1 Allison,
Miss Helen
Loraine

First 2.0 fema

Discussion

replace is a tool we use to replace values. It is simple and
yet has the powerful ability to accept regular expressions.

3.7 Renaming Columns

Problem

You want to rename a column in a pandas DataFrame.

Solution

Rename columns using the rename method:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Rename column, show two rows

dataframe.rename(columns={'PClass': 'Passenger Class'}).head(2)

Name

Passenger

Class Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

Notice that the rename method can accept a dictionary as a
parameter. We can use the dictionary to change multiple
column names at once:

Rename columns, show two rows

dataframe.rename(columns={'PClass': 'Passenger Class', 'Sex':

'Gender'}).head(2)

Name

Passenger

Class Age Gen

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

Discussion

Using rename with a dictionary as an argument to the
columns parameter is my preferred way to rename columns
because it works with any number of columns. If we want
to rename all columns at once, this helpful snippet of code
creates a dictionary with the old column names as keys and
empty strings as values:

Load library

import collections

Create dictionary

column_names = collections.defaultdict(str)

Create keys

for name in dataframe.columns:

 column_names[name]

Show dictionary

column_names

defaultdict(str,

 {'Age': '',

 'Name': '',

 'PClass': '',

 'Sex': '',

 'SexCode': '',

 'Survived': ''})

3.8 Finding the Minimum, Maximum,

Sum, Average, and Count

Problem

You want to find the min, max, sum, average, or count of a
numeric column.

Solution

pandas comes with some built-in methods for commonly
used descriptive statistics such as min, max, mean, sum, and
count:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Calculate statistics

print('Maximum:', dataframe['Age'].max())

print('Minimum:', dataframe['Age'].min())

print('Mean:', dataframe['Age'].mean())

print('Sum:', dataframe['Age'].sum())

print('Count:', dataframe['Age'].count())

Maximum: 71.0

Minimum: 0.17

Mean: 30.397989417989415

Sum: 22980.879999999997

Count: 756

Discussion

In addition to the statistics used in the solution, pandas
offers variance (var), standard deviation (std), kurtosis
(kurt), skewness (skew), standard error of the mean (sem),
mode (mode), median (median), value counts, and a number
of others.
Furthermore, we can also apply these methods to the whole
DataFrame:

Show counts

dataframe.count()

Name 1313

PClass 1313

Age 756

Sex 1313

Survived 1313

SexCode 1313

dtype: int64

3.9 Finding Unique Values

Problem

You want to select all unique values in a column.

Solution

Use unique to view an array of all unique values in a
column:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Select unique values

dataframe['Sex'].unique()

array(['female', 'male'], dtype=object)

Alternatively, value_counts will display all unique values
with the number of times each value appears:

Show counts

dataframe['Sex'].value_counts()

male 851

female 462

Name: Sex, dtype: int64

Discussion

Both unique and value_counts are useful for manipulating
and exploring categorical columns. Very often in
categorical columns there will be classes that need to be
handled in the data wrangling phase. For example, in the
Titanic dataset, PClass is a column indicating the class of a
passenger’s ticket. There were three classes on the Titanic;
however, if we use value_counts we can see a problem:

Show counts

dataframe['PClass'].value_counts()

3rd 711

1st 322

2nd 279

* 1

Name: PClass, dtype: int64

While almost all passengers belong to one of three classes
as expected, a single passenger has the class *. There are a
number of strategies for handling this type of issue, which
we will address in Chapter 5, but for now just realize that
“extra” classes are common in categorical data and should
not be ignored.

Finally, if we simply want to count the number of unique
values, we can use nunique:

Show number of unique values

dataframe['PClass'].nunique()

4

3.10 Handling Missing Values

Problem

You want to select missing values in a DataFrame.

Solution

isnull and notnull return booleans indicating whether a
value is missing:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Select missing values, show two rows

dataframe[dataframe['Age'].isnull()].head(2)

Name PClass Age Sex

12 Aubert,
Mrs
Leontine
Pauline

1st NaN fema

13 Barkworth,
Mr
Algernon H

1st NaN male

Discussion

Missing values are a ubiquitous problem in data wrangling,
yet many underestimate the difficulty of working with
missing data. pandas uses NumPy’s NaN (Not a Number)
value to denote missing values, but it is important to note
that NaN is not fully implemented natively in pandas. For
example, if we wanted to replace all strings containing
male with missing values, we get an error:

Attempt to replace values with NaN

dataframe['Sex'] = dataframe['Sex'].replace('male', NaN)

NameError Traceback (most recent

call last)

<ipython-input-7-5682d714f87d> in <module>()

 1 # Attempt to replace values with NaN

----> 2 dataframe['Sex'] = dataframe['Sex'].replace('male', NaN)

NameError: name 'NaN' is not defined

To have full functionality with NaN we need to import the
NumPy library first:

Load library

import numpy as np

Replace values with NaN

dataframe['Sex'] = dataframe['Sex'].replace('male', np.nan)

Oftentimes a dataset uses a specific value to denote a
missing observation, such as NONE, -999, or ... The pandas
read_csv function includes a parameter allowing us to
specify the values used to indicate missing values:

Load data, set missing values

dataframe = pd.read_csv(url, na_values=[np.nan, 'NONE', -999])

We can also use the pandas fillna function to impute the
missing values of a column. Here, we show the places
where Age is null using the isna function and then fill those
values with the mean age of passengers.

Get a single null row

null_entry = dataframe[dataframe["Age"].isna()].head(1)

print(null_entry)

Name PClass Age Sex

12 Aubert,
Mrs
Leontine
Pauline

1st NaN fema

Fill all null values with the mean age of passengers

null_entry.fillna(dataframe["Age"].mean())

Name PClass Age Sex

12 Aubert,
Mrs
Leontine
Pauline

1st 30.397989 fema

3.11 Deleting a Column

Problem

You want to delete a column from your DataFrame.

Solution

The best way to delete a column is to use drop with the
parameter axis=1 (i.e., the column axis):

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Delete column

dataframe.drop('Age', axis=1).head(2)

Name PClass Sex Surv

0 Allen, Miss
Elisabeth
Walton

1st female 1

1 Allison,
Miss Helen
Loraine

1st female 0

You can also use a list of column names as the main
argument to drop multiple columns at once:

Drop columns

dataframe.drop(['Age', 'Sex'], axis=1).head(2)

Name PClass Survived Sex

0 Allen, Miss
Elisabeth
Walton

1st 1 1

1 Allison,
Miss Helen
Loraine

1st 0 1

If a column does not have a name (which can sometimes
happen), you can drop it by its column index using
dataframe.columns:

Drop column

dataframe.drop(dataframe.columns[1], axis=1).head(2)

Name Age Sex Surv

0 Allen, Miss
Elisabeth
Walton

29.0 female 1

1 Allison,
Miss Helen
Loraine

2.0 female 0

Discussion

drop is the idiomatic method of deleting a column. An
alternative method is del dataframe['Age'], which works
most of the time but is not recommended because of how it
is called within pandas (the details of which are outside the
scope of this book).
I recommend that you avoid using the pandas
inplace=True argument. Many pandas methods include an
inplace parameter that, when set to True, edits the
DataFrame directly. This can lead to problems in more
complex data processing pipelines because we are treating
the DataFrames as mutable objects (which they technically
are). I recommend treating DataFrames as immutable
objects. For example:

Create a new DataFrame

dataframe_name_dropped = dataframe.drop(dataframe.columns[0],

axis=1)

In this example, we are not mutating the DataFrame
dataframe but instead are making a new DataFrame that is
an altered version of dataframe called
dataframe_name_dropped. If you treat your DataFrames as

immutable objects, you will save yourself a lot of headaches
down the road.

3.12 Deleting a Row

Problem

You want to delete one or more rows from a DataFrame.

Solution

Use a boolean condition to create a new DataFrame
excluding the rows you want to delete:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Delete rows, show first three rows of output

dataframe[dataframe['Sex'] != 'male'].head(3)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

3 Allison,
Mrs
Hudson JC
(Bessie
Waldo
Daniels)

1st 25.00 fema

Discussion

While technically you can use the drop method (for
example, dataframe.drop([0, 1], axis=0) to drop the
first two rows), a more practical method is simply to wrap a
boolean condition inside dataframe[]. This enables us to
use the power of conditionals to delete either a single row
or (far more likely) many rows at once.
We can use boolean conditions to easily delete single rows
by matching a unique value:

Delete row, show first two rows of output

dataframe[dataframe['Name'] != 'Allison, Miss Helen

Loraine'].head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.0 male

We can even use it to delete a single row by specifying the
row index:

Delete row, show first two rows of output

dataframe[dataframe.index != 0].head(2)

Name PClass Age Sex

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.0 male

3.13 Dropping Duplicate Rows

Problem

You want to drop duplicate rows from your DataFrame.

Solution

Use drop_duplicates, but be mindful of the parameters:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Drop duplicates, show first two rows of output

dataframe.drop_duplicates().head(2)

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

1 Allison,
Miss Helen
Loraine

1st 2.0 fema

Discussion

A keen reader will notice that the solution didn’t actually
drop any rows:

Show number of rows

print("Number Of Rows In The Original DataFrame:",

len(dataframe))

print("Number Of Rows After Deduping:",

len(dataframe.drop_duplicates()))

Number Of Rows In The Original DataFrame: 1313

Number Of Rows After Deduping: 1313

This is because drop_duplicates defaults to dropping only
rows that match perfectly across all columns. Because
every row in our DataFrame is unique, none will be
dropped. However, often we want to consider only a subset
of columns to check for duplicate rows. We can accomplish
this using the subset parameter:

Drop duplicates

dataframe.drop_duplicates(subset=['Sex'])

Name PClass Age Sex

0 Allen, Miss
Elisabeth
Walton

1st 29.0 fema

2 Allison, Mr
Hudson
Joshua
Creighton

1st 30.0 male

Take a close look at the preceding output: we told
drop_duplicates to only consider any two rows with the
same value for Sex to be duplicates and to drop them. Now

we are left with a DataFrame of only two rows: one woman
and one man. You might be asking why drop_duplicates
decided to keep these two rows instead of two different
rows. The answer is that drop_duplicates defaults to
keeping the first occurrence of a duplicated row and
dropping the rest. We can control this behavior using the
keep parameter:

Drop duplicates

dataframe.drop_duplicates(subset=['Sex'], keep='last')

Name PClass Age Sex

1307 Zabour,
Miss Tamini

3rd NaN fem

1312 Zimmerman,
Leo

3rd 29.0 ma

A related method is duplicated, which returns a boolean
series denoting whether a row is a duplicate or not. This is
a good option if you don’t want to simply drop duplicates:

dataframe.duplicated()

0 False

1 False

2 False

3 False

4 False

 ...

1308 False

1309 False

1310 False

1311 False

1312 False

Length: 1313, dtype: bool

3.14 Grouping Rows by Values

Problem

You want to group individual rows according to some
shared value.

Solution

groupby is one of the most powerful features in pandas:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Group rows by the values of the column 'Sex', calculate mean #

of each group

dataframe.groupby('Sex').mean(numeric_only=True)

Sex Age Survived SexCode

female 29.396424 0.666667 1.0

male 31.014338 0.166863 0.0

Discussion

groupby is where data wrangling really starts to take
shape. It is very common to have a DataFrame where each
row is a person or an event and we want to group them
according to some criterion and then calculate a statistic.

For example, you can imagine a DataFrame where each
row is an individual sale at a national restaurant chain and
we want the total sales per restaurant. We can accomplish
this by grouping rows by individual restaurants and then
calculating the sum of each group.
Users new to groupby often write a line like this and are
confused by what is returned:

Group rows

dataframe.groupby('Sex')

<pandas.core.groupby.DataFrameGroupBy object at 0x10efacf28>

Why didn’t it return something more useful? The reason is
that groupby needs to be paired with some operation that
we want to apply to each group, such as calculating an
aggregate statistic (e.g., mean, median, sum). When talking
about grouping we often use shorthand and say “group by
gender,” but that is incomplete. For grouping to be useful,
we need to group by something and then apply a function
to each of those groups:

Group rows, count rows

dataframe.groupby('Survived')['Name'].count()

Survived

0 863

1 450

Name: Name, dtype: int64

Notice Name added after the groupby? That is because
particular summary statistics are meaningful only to
certain types of data. For example, while calculating the
average age by gender makes sense, calculating the total
age by gender does not. In this case, we group the data into
survived or not, and then count the number of names (i.e.,
passengers) in each group.

We can also group by a first column, then group that
grouping by a second column:

Group rows, calculate mean

dataframe.groupby(['Sex','Survived'])['Age'].mean()

Sex Survived

female 0 24.901408

 1 30.867143

male 0 32.320780

 1 25.951875

Name: Age, dtype: float64

3.15 Grouping Rows by Time

Problem

You need to group individual rows by time periods.

Solution

Use resample to group rows by chunks of time:

Load libraries

import pandas as pd

import numpy as np

Create date range

time_index = pd.date_range('06/06/2017', periods=100000,

freq='30S')

Create DataFrame

dataframe = pd.DataFrame(index=time_index)

Create column of random values

dataframe['Sale_Amount'] = np.random.randint(1, 10, 100000)

Group rows by week, calculate sum per week

dataframe.resample('W').sum()

Sale_Amount

2017-06-11 86423

2017-06-18 101045

2017-06-25 100867

2017-07-02 100894

2017-07-09 100438

2017-07-16 10297

Discussion

Our standard Titanic dataset does not contain a datetime
column, so for this recipe we have generated a simple
DataFrame where each row is an individual sale. For each
sale we know its date and time and its dollar amount (this
data isn’t realistic because the sales take place precisely 30
seconds apart and are exact dollar amounts, but for the
sake of simplicity let’s pretend).
The raw data looks like this:

Show three rows

dataframe.head(3)

Sale_Amount

2017-06-06 00:00:00 7

2017-06-06 00:00:30 2

2017-06-06 00:01:00 7

Notice that the date and time of each sale is the index of
the DataFrame; this is because resample requires the index
to be a datetime-like value.
Using resample we can group the rows by a wide array of
time periods (offsets) and then we can calculate statistics
on each time group:

Group by two weeks, calculate mean

dataframe.resample('2W').mean()

Sale_Amount

2017-06-11 5.001331

2017-06-25 5.007738

2017-07-09 4.993353

2017-07-23 4.950481

Group by month, count rows

dataframe.resample('M').count()

Sale_Amount

2017-06-30 72000

2017-07-31 28000

You might notice that in the two outputs the datetime index
is a date even though we are grouping by weeks and
months, respectively. The reason is that by default
resample returns the label of the right “edge” (the last

label) of the time group. We can control this behavior using
the label parameter:

Group by month, count rows

dataframe.resample('M', label='left').count()

Sale_Amount

2017-05-31 72000

2017-06-30 28000

See Also

List of pandas time offset aliases

3.16 Aggregating Operations and

Statistics

Problem

You need to aggregate an operation over each column (or a
set of columns) in a dataframe.

Solution

Use the pandas agg method. Here, we can easily get the
minimum value of every column:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

https://oreil.ly/BURbR

Load data

dataframe = pd.read_csv(url)

Get the minimum of every column

dataframe.agg("min")

Name Abbing, Mr Anthony

PClass *

Age 0.17

Sex female

Survived 0

SexCode 0

dtype: object

Sometimes, we want to apply specific functions to specific
sets of columns:

Mean Age, min and max SexCode

dataframe.agg({"Age":["mean"], "SexCode":["min", "max"]})

Age SexCode

mean 30.397989 NaN

min NaN 0.0

max NaN 1.0

We can also apply aggregate functions to groups to get
more specific, descriptive statistics:

Number of people who survived and didn't survive in each class

dataframe.groupby(

 ["PClass","Survived"]).agg({"Survived":["count"]}

).reset_index()

PClass Survived Count

0 * 0 1

1 1st 0 129

2 1st 1 193

3 2nd 0 160

4 2nd 1 119

5 3rd 0 573

6 3rd 1 138

Discussion

Aggregate functions are especially useful during
exploratory data analysis to learn information about
different subpopulations of data and the relationship
between variables. By grouping the data and applying
aggregate statistics, you can view patterns in the data that
may prove useful during the machine learning or feature
engineering process. While visual charts are also helpful,
it’s often useful to have such specific, descriptive statistics
as a reference to better understand the data.

See Also

pandas agg documentation

3.17 Looping over a Column

https://oreil.ly/5xing

Problem

You want to iterate over every element in a column and
apply some action.

Solution

You can treat a pandas column like any other sequence in
Python and loop over it using the standard Python syntax:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Print first two names uppercased

for name in dataframe['Name'][0:2]:

 print(name.upper())

ALLEN, MISS ELISABETH WALTON

ALLISON, MISS HELEN LORAINE

Discussion

In addition to loops (often called for loops), we can also
use list comprehensions:

Show first two names uppercased

[name.upper() for name in dataframe['Name'][0:2]]

['ALLEN, MISS ELISABETH WALTON', 'ALLISON, MISS HELEN LORAINE']

Despite the temptation to fall back on for loops, a more
Pythonic solution would use the pandas apply method,
described in Recipe 3.18.

3.18 Applying a Function over All

Elements in a Column

Problem

You want to apply some function over all elements in a
column.

Solution

Use apply to apply a built-in or custom function on every
element in a column:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Create function

def uppercase(x):

 return x.upper()

Apply function, show two rows

dataframe['Name'].apply(uppercase)[0:2]

0 ALLEN, MISS ELISABETH WALTON

1 ALLISON, MISS HELEN LORAINE

Name: Name, dtype: object

Discussion

apply is a great way to do data cleaning and wrangling. It
is common to write a function to perform some useful
operation (separate first and last names, convert strings to

floats, etc.) and then map that function to every element in
a column.

3.19 Applying a Function to Groups

Problem

You have grouped rows using groupby and want to apply a
function to each group.

Solution

Combine groupby and apply:

Load library

import pandas as pd

Create URL

url =

'https://raw.githubusercontent.com/chrisalbon/sim_data/master/tit

anic.csv'

Load data

dataframe = pd.read_csv(url)

Group rows, apply function to groups

dataframe.groupby('Sex').apply(lambda x: x.count())

Sex Name PClass Age Sex

female 462 462 288 462

male 851 851 468 851

Discussion

In Recipe 3.18 I mentioned apply. apply is particularly
useful when you want to apply a function to groups. By
combining groupby and apply we can calculate custom
statistics or apply any function to each group separately.

3.20 Concatenating DataFrames

Problem

You want to concatenate two DataFrames.

Solution

Use concat with axis=0 to concatenate along the row axis:

Load library

import pandas as pd

Create DataFrame

data_a = {'id': ['1', '2', '3'],

 'first': ['Alex', 'Amy', 'Allen'],

 'last': ['Anderson', 'Ackerman', 'Ali']}

dataframe_a = pd.DataFrame(data_a, columns = ['id', 'first',

'last'])

Create DataFrame

data_b = {'id': ['4', '5', '6'],

 'first': ['Billy', 'Brian', 'Bran'],

 'last': ['Bonder', 'Black', 'Balwner']}

dataframe_b = pd.DataFrame(data_b, columns = ['id', 'first',

'last'])

Concatenate DataFrames by rows

pd.concat([dataframe_a, dataframe_b], axis=0)

id first last

0 1 Alex Anderson

1 2 Amy Ackerman

2 3 Allen Ali

0 4 Billy Bonder

1 5 Brian Black

2 6 Bran Balwner

You can use axis=1 to concatenate along the column axis:

Concatenate DataFrames by columns

pd.concat([dataframe_a, dataframe_b], axis=1)

id first last id

0 1 Alex Anderson 4

1 2 Amy Ackerman 5

2 3 Allen Ali 6

Discussion

Concatenating is not a word you hear much outside of
computer science and programming, so if you have not
heard it before, do not worry. The informal definition of
concatenate is to glue two objects together. In the solution
we glued together two small DataFrames using the axis

parameter to indicate whether we wanted to stack the two
DataFrames on top of each other or place them side by
side.

3.21 Merging DataFrames

Problem

You want to merge two DataFrames.

Solution

To inner join, use merge with the on parameter to specify
the column to merge on:

Load library

import pandas as pd

Create DataFrame

employee_data = {'employee_id': ['1', '2', '3', '4'],

 'name': ['Amy Jones', 'Allen Keys', 'Alice

Bees',

 'Tim Horton']}

dataframe_employees = pd.DataFrame(employee_data, columns =

['employee_id',

'name'])

Create DataFrame

sales_data = {'employee_id': ['3', '4', '5', '6'],

 'total_sales': [23456, 2512, 2345, 1455]}

dataframe_sales = pd.DataFrame(sales_data, columns =

['employee_id',

'total_sales'])

Merge DataFrames

pd.merge(dataframe_employees, dataframe_sales, on='employee_id')

employee_id name total_sales

0 3 Alice Bees 23456

1 4 Tim Horton 2512

merge defaults to inner joins. If we want to do an outer join,
we can specify that with the how parameter:

Merge DataFrames

pd.merge(dataframe_employees, dataframe_sales, on='employee_id',

how='outer')

employee_id name total_sales

0 1 Amy Jones NaN

1 2 Allen Keys NaN

2 3 Alice Bees 23456.0

3 4 Tim Horton 2512.0

4 5 NaN 2345.0

5 6 NaN 1455.0

The same parameter can be used to specify left and right
joins:

Merge DataFrames

pd.merge(dataframe_employees, dataframe_sales, on='employee_id',

how='left')

employee_id name total_sales

0 1 Amy Jones NaN

1 2 Allen Keys NaN

2 3 Alice Bees 23456.0

3 4 Tim Horton 2512.0

We can also specify the column name in each DataFrame to
merge on:

Merge DataFrames

pd.merge(dataframe_employees,

 dataframe_sales,

 left_on='employee_id',

 right_on='employee_id')

employee_id name total_sales

0 3 Alice Bees 23456

1 4 Tim Horton 2512

If, instead of merging on two columns, we want to merge
on the indexes of each DataFrame, we can replace the
left_on and right_on parameters with left_index=True
and right_index=True.

Discussion

The data we need to use is often complex; it doesn’t always
come in one piece. Instead, in the real world, we’re usually
faced with disparate datasets from multiple database

queries or files. To get all that data into one place, we can
load each data query or data file into pandas as individual
DataFrames and then merge them into a single DataFrame.
This process might be familiar to anyone who has used
SQL, a popular language for doing merging operations
(called joins). While the exact parameters used by pandas
will be different, they follow the same general patterns
used by other software languages and tools.
There are three aspects to specify with any merge
operation. First, we have to specify the two DataFrames we
want to merge. In the solution, we named them
dataframe_employees and dataframe_sales. Second, we
have to specify the name(s) of the columns to merge on—
that is, the columns whose values are shared between the
two DataFrames. For example, in our solution both
DataFrames have a column named employee_id. To merge
the two DataFrames we will match the values in each
DataFrame’s employee_id column. If these two columns
use the same name, we can use the on parameter.
However, if they have different names, we can use left_on
and right_on.
What is the left and right DataFrame? The left DataFrame
is the first one we specified in merge, and the right
DataFrame is the second one. This language comes up
again in the next sets of parameters we will need.
The last aspect, and most difficult for some people to grasp,
is the type of merge operation we want to conduct. This is
specified by the how parameter. merge supports the four
main types of joins:
Inner

Return only the rows that match in both DataFrames (e.g.,
return any row with an employee_id value appearing in
both dataframe_employees and dataframe_sales).

Outer

Return all rows in both DataFrames. If a row exists in one
DataFrame but not in the other DataFrame, fill NaN values
for the missing values (e.g., return all rows in both
dataframe_employee and dataframe_sales).

Left

Return all rows from the left DataFrame but only rows from
the right DataFrame that match with the left DataFrame. Fill
NaN values for the missing values (e.g., return all rows from
dataframe_employees but only rows from
dataframe_sales that have a value for employee_id that
appears in dataframe_employees).

Right

Return all rows from the right DataFrame but only rows
from the left DataFrame that match with the right
DataFrame. Fill NaN values for the missing values (e.g.,
return all rows from dataframe_sales but only rows from
dataframe_employees that have a value for employee_id
that appears in dataframe_sales).

If you did not understand all of that, I encourage you to
play around with the how parameter in your code and see
how it affects what merge returns.

See Also

A Visual Explanation of SQL Joins

pandas documentation: Merge, join, concatenate and
compare

https://oreil.ly/J1A4u
https://oreil.ly/eNalU

Chapter 4. Handling

Numerical Data

4.0 Introduction

Quantitative data is the measurement of something—
whether class size, monthly sales, or student scores. The
natural way to represent these quantities is numerically
(e.g., 29 students, $529,392 in sales). In this chapter, we
will cover numerous strategies for transforming raw
numerical data into features purpose-built for machine
learning algorithms.

4.1 Rescaling a Feature

Problem

You need to rescale the values of a numerical feature to be
between two values.

Solution

Use scikit-learn’s MinMaxScaler to rescale a feature array:

Load libraries

import numpy as np

from sklearn import preprocessing

Create feature

feature = np.array([[-500.5],

 [-100.1],

 [0],

 [100.1],

 [900.9]])

Create scaler

minmax_scale = preprocessing.MinMaxScaler(feature_range=(0, 1))

Scale feature

scaled_feature = minmax_scale.fit_transform(feature)

Show feature

scaled_feature

array([[0.],

 [0.28571429],

 [0.35714286],

 [0.42857143],

 [1.]])

Discussion

Rescaling is a common preprocessing task in machine
learning. Many of the algorithms described later in this
book will assume all features are on the same scale,
typically 0 to 1 or –1 to 1. There are a number of rescaling
techniques, but one of the simplest is called min-max

scaling. Min-max scaling uses the minimum and maximum
values of a feature to rescale values to within a range.
Specifically, min-max calculates:

x
′
i

=
xi − min (x)

max(x) − min(x)

where x is the feature vector, xi is an individual element of
feature x, and x′

i
 is the rescaled element. In our example,

we can see from the outputted array that the feature has
been successfully rescaled to between 0 and 1:

array([[0.],

 [0.28571429],

 [0.35714286],

 [0.42857143],

 [1.]])

scikit-learn’s MinMaxScaler offers two options to rescale a
feature. One option is to use fit to calculate the minimum
and maximum values of the feature, and then use
transform to rescale the feature. The second option is to
use fit_transform to do both operations at once. There is
no mathematical difference between the two options, but
there is sometimes a practical benefit to keeping the
operations separate because it allows us to apply the same
transformation to different sets of the data.

See Also

Feature scaling, Wikipedia

About Feature Scaling and Normalization, Sebastian
Raschka

4.2 Standardizing a Feature

Problem

You want to transform a feature to have a mean of 0 and a
standard deviation of 1.

Solution

scikit-learn’s StandardScaler performs both
transformations:

Load libraries

import numpy as np

from sklearn import preprocessing

Create feature

x = np.array([[-1000.1],

 [-200.2],

https://oreil.ly/f2WiM
https://oreil.ly/Da0AH

 [500.5],

 [600.6],

 [9000.9]])

Create scaler

scaler = preprocessing.StandardScaler()

Transform the feature

standardized = scaler.fit_transform(x)

Show feature

standardized

array([[-0.76058269],

 [-0.54177196],

 [-0.35009716],

 [-0.32271504],

 [1.97516685]])

Discussion

A common alternative to the min-max scaling discussed in
Recipe 4.1 is rescaling of features to be approximately
standard normally distributed. To achieve this, we use
standardization to transform the data such that it has a
mean, x, of 0 and a standard deviation, σ, of 1. Specifically,
each element in the feature is transformed so that:

x
′
i

=
xi − x

σ

where x′
i
 is our standardized form of xi. The transformed

feature represents the number of standard deviations of the
original value from the feature’s mean value (also called a
z-score in statistics).
Standardization is a common go-to scaling method for
machine learning preprocessing and, in my experience, is
used more often than min-max scaling. However, it
depends on the learning algorithm. For example, principal
component analysis often works better using

standardization, while min-max scaling is often
recommended for neural networks (both algorithms are
discussed later in this book). As a general rule, I’d
recommend defaulting to standardization unless you have a
specific reason to use an alternative.
We can see the effect of standardization by looking at the
mean and standard deviation of our solution’s output:

Print mean and standard deviation

print("Mean:", round(standardized.mean()))

print("Standard deviation:", standardized.std())

Mean: 0.0

Standard deviation: 1.0

If our data has significant outliers, it can negatively impact
our standardization by affecting the feature’s mean and
variance. In this scenario, it is often helpful to instead
rescale the feature using the median and quartile range. In
scikit-learn, we do this using the RobustScaler method:

Create scaler

robust_scaler = preprocessing.RobustScaler()

Transform feature

robust_scaler.fit_transform(x)

array([[-1.87387612],

 [-0.875],

 [0.],

 [0.125],

 [10.61488511]])

4.3 Normalizing Observations

Problem

You want to rescale the feature values of observations to
have unit norm (a total length of 1).

Solution

Use Normalizer with a norm argument:

Load libraries

import numpy as np

from sklearn.preprocessing import Normalizer

Create feature matrix

features = np.array([[0.5, 0.5],

 [1.1, 3.4],

 [1.5, 20.2],

 [1.63, 34.4],

 [10.9, 3.3]])

Create normalizer

normalizer = Normalizer(norm="l2")

Transform feature matrix

normalizer.transform(features)

array([[0.70710678, 0.70710678],

 [0.30782029, 0.95144452],

 [0.07405353, 0.99725427],

 [0.04733062, 0.99887928],

 [0.95709822, 0.28976368]])

Discussion

Many rescaling methods (e.g., min-max scaling and
standardization) operate on features; however, we can also
rescale across individual observations. Normalizer rescales
the values on individual observations to have unit norm
(the sum of their lengths is 1). This type of rescaling is
often used when we have many equivalent features (e.g.,
text classification when every word or n-word group is a
feature).
Normalizer provides three norm options with Euclidean
norm (often called L2) being the default argument:

∥x∥2 = √x1
2 + x2

2 + ⋯ + xn
2

where x is an individual observation and xn is that
observation’s value for the nth feature.

Transform feature matrix

features_l2_norm = Normalizer(norm="l2").transform(features)

Show feature matrix

features_l2_norm

array([[0.70710678, 0.70710678],

 [0.30782029, 0.95144452],

 [0.07405353, 0.99725427],

 [0.04733062, 0.99887928],

 [0.95709822, 0.28976368]])

Alternatively, we can specify Manhattan norm (L1):

∥x∥1 =
n

∑
i=1

|xi|.

Transform feature matrix

features_l1_norm = Normalizer(norm="l1").transform(features)

Show feature matrix

features_l1_norm

array([[0.5 , 0.5],

 [0.24444444, 0.75555556],

 [0.06912442, 0.93087558],

 [0.04524008, 0.95475992],

 [0.76760563, 0.23239437]])

Intuitively, L2 norm can be thought of as the distance
between two points in New York for a bird (i.e., a straight
line), while L1 can be thought of as the distance for a
human walking on the street (walk north one block, east
one block, north one block, east one block, etc.), which is
why it is called “Manhattan norm” or “Taxicab norm.”
Practically, notice that norm="l1" rescales an observation’s
values so they sum to 1, which can sometimes be a
desirable quality:

Print sum

print("Sum of the first observation\'s values:",

 features_l1_norm[0, 0] + features_l1_norm[0, 1])

Sum of the first observation's values: 1.0

4.4 Generating Polynomial and

Interaction Features

Problem

You want to create polynomial and interaction features.

Solution

Even though some choose to create polynomial and
interaction features manually, scikit-learn offers a built-in
method:

Load libraries

import numpy as np

from sklearn.preprocessing import PolynomialFeatures

Create feature matrix

features = np.array([[2, 3],

 [2, 3],

 [2, 3]])

Create PolynomialFeatures object

polynomial_interaction = PolynomialFeatures(degree=2,

include_bias=False)

Create polynomial features

polynomial_interaction.fit_transform(features)

array([[2., 3., 4., 6., 9.],

 [2., 3., 4., 6., 9.],

 [2., 3., 4., 6., 9.]])

The degree parameter determines the maximum degree of
the polynomial. For example, degree=2 will create new

features raised to the second power:

x1, x2, x1
2, x1

2, x2
2

while degree=3 will create new features raised to the
second and third power:

x1, x2, x1
2, x2

2, x1
3, x2

3, x1
2, x1

3, x2
3

Furthermore, by default PolynomialFeatures includes
interaction features:

x1x2

We can restrict the features created to only interaction
features by setting interaction_only to True:

interaction = PolynomialFeatures(degree=2,

 interaction_only=True, include_bias=False)

interaction.fit_transform(features)

array([[2., 3., 6.],

 [2., 3., 6.],

 [2., 3., 6.]])

Discussion

Polynomial features are often created when we want to
include the notion that there exists a nonlinear relationship
between the features and the target. For example, we
might suspect that the effect of age on the probability of
having a major medical condition is not constant over time
but increases as age increases. We can encode that
nonconstant effect in a feature, x, by generating that
feature’s higher-order forms (x2, x3, etc.).

Additionally, often we run into situations where the effect
of one feature is dependent on another feature. A simple
example would be if we were trying to predict whether or
not our coffee was sweet, and we had two features: (1)
whether or not the coffee was stirred, and (2) whether or
not we added sugar. Individually, each feature does not
predict coffee sweetness, but the combination of their
effects does. That is, a coffee would only be sweet if the
coffee had sugar and was stirred. The effects of each
feature on the target (sweetness) are dependent on each
other. We can encode that relationship by including an
interaction feature that is the product of the individual
features.

4.5 Transforming Features

Problem

You want to make a custom transformation to one or more
features.

Solution

In scikit-learn, use FunctionTransformer to apply a
function to a set of features:

Load libraries

import numpy as np

from sklearn.preprocessing import FunctionTransformer

Create feature matrix

features = np.array([[2, 3],

 [2, 3],

 [2, 3]])

Define a simple function

def add_ten(x: int) -> int:

 return x + 10

Create transformer

ten_transformer = FunctionTransformer(add_ten)

Transform feature matrix

ten_transformer.transform(features)

array([[12, 13],

 [12, 13],

 [12, 13]])

We can create the same transformation in pandas using
apply:

Load library

import pandas as pd

Create DataFrame

df = pd.DataFrame(features, columns=["feature_1", "feature_2"])

Apply function

df.apply(add_ten)

feature_1 feature_2

0 12 13

1 12 13

2 12 13

Discussion

It is common to want to make some custom transformations
to one or more features. For example, we might want to
create a feature that is the natural log of the values of a
different feature. We can do this by creating a function and
then mapping it to features using either scikit-learn’s
FunctionTransformer or pandas’ apply. In the solution we

created a very simple function, add_ten, which added 10 to
each input, but there is no reason we could not define a
much more complex function.

4.6 Detecting Outliers

Problem

You want to identify extreme observations.

Solution

Detecting outliers is unfortunately more of an art than a
science. However, a common method is to assume the data
is normally distributed and, based on that assumption,
“draw” an ellipse around the data, classifying any
observation inside the ellipse as an inlier (labeled as 1) and
any observation outside the ellipse as an outlier (labeled as
-1):

Load libraries

import numpy as np

from sklearn.covariance import EllipticEnvelope

from sklearn.datasets import make_blobs

Create simulated data

features, _ = make_blobs(n_samples = 10,

 n_features = 2,

 centers = 1,

 random_state = 1)

Replace the first observation's values with extreme values

features[0,0] = 10000

features[0,1] = 10000

Create detector

outlier_detector = EllipticEnvelope(contamination=.1)

Fit detector

outlier_detector.fit(features)

Predict outliers

outlier_detector.predict(features)

array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

In these arrays, values of -1 refer to outliers whereas
values of 1 refer to inliers. A major limitation of this
approach is the need to specify a contamination
parameter, which is the proportion of observations that are
outliers— a value that we don’t know. Think of
contamination as our estimate of the cleanliness of our
data. If we expect our data to have few outliers, we can set
contamination to something small. However, if we believe
that the data is likely to have outliers, we can set it to a
higher value.
Instead of looking at observations as a whole, we can
instead look at individual features and identify extreme
values in those features using interquartile range (IQR):

Create one feature

feature = features[:,0]

Create a function to return index of outliers

def indicies_of_outliers(x: int) -> np.array(int):

 q1, q3 = np.percentile(x, [25, 75])

 iqr = q3 - q1

 lower_bound = q1 - (iqr * 1.5)

 upper_bound = q3 + (iqr * 1.5)

 return np.where((x > upper_bound) | (x < lower_bound))

Run function

indicies_of_outliers(feature)

(array([0]),)

IQR is the difference between the first and third quartile of
a set of data. You can think of IQR as the spread of the bulk
of the data, with outliers being observations far from the
main concentration of data. Outliers are commonly defined

as any value 1.5 IQRs less than the first quartile, or 1.5
IQRs greater than the third quartile.

Discussion

There is no single best technique for detecting outliers.
Instead, we have a collection of techniques all with their
own advantages and disadvantages. Our best strategy is
often trying multiple techniques (e.g., both
EllipticEnvelope and IQR-based detection) and looking at
the results as a whole.
If at all possible, we should look at observations we detect
as outliers and try to understand them. For example, if we
have a dataset of houses and one feature is number of
rooms, is an outlier with 100 rooms really a house or is it
actually a hotel that has been misclassified?

See Also

Three Ways to Detect Outliers (and the source of the
IQR function used in this recipe)

4.7 Handling Outliers

Problem

You have outliers in your data that you want to identify and
then reduce their impact on the data distribution.

Solution

Typically we can use three strategies to handle outliers.
First, we can drop them:

https://oreil.ly/wlwmH

Load library

import pandas as pd

Create DataFrame

houses = pd.DataFrame()

houses['Price'] = [534433, 392333, 293222, 4322032]

houses['Bathrooms'] = [2, 3.5, 2, 116]

houses['Square_Feet'] = [1500, 2500, 1500, 48000]

Filter observations

houses[houses['Bathrooms'] < 20]

Price Bathrooms Square_Feet

0 534433 2.0 1500

1 392333 3.5 2500

2 293222 2.0 1500

Second, we can mark them as outliers and include “Outlier”
as a feature:

Load library

import numpy as np

Create feature based on boolean condition

houses["Outlier"] = np.where(houses["Bathrooms"] < 20, 0, 1)

Show data

houses

Price Bathrooms Square_Feet O

0 534433 2.0 1500 0

1 392333 3.5 2500 0

2 293222 2.0 1500 0

3 4322032 116.0 48000 1

Finally, we can transform the feature to dampen the effect
of the outlier:

Log feature

houses["Log_Of_Square_Feet"] = [np.log(x) for x in

houses["Square_Feet"]]

Show data

houses

Price Bathrooms Square_Feet O

0 534433 2.0 1500 0

1 392333 3.5 2500 0

2 293222 2.0 1500 0

3 4322032 116.0 48000 1

Discussion

Similar to detecting outliers, there is no hard-and-fast rule
for handling them. How we handle them should be based
on two aspects. First, we should consider what makes them

outliers. If we believe they are errors in the data, such as
from a broken sensor or a miscoded value, then we might
drop the observation or replace outlier values with NaN
since we can’t trust those values. However, if we believe
the outliers are genuine extreme values (e.g., a house
[mansion] with 200 bathrooms), then marking them as
outliers or transforming their values is more appropriate.
Second, how we handle outliers should be based on our
goal for machine learning. For example, if we want to
predict house prices based on features of the house, we
might reasonably assume the price for mansions with over
100 bathrooms is driven by a different dynamic than
regular family homes. Furthermore, if we are training a
model to use as part of an online home loan web
application, we might assume that our potential users will
not include billionaires looking to buy a mansion.
So what should we do if we have outliers? Think about why
they are outliers, have an end goal in mind for the data,
and, most importantly, remember that not making a
decision to address outliers is itself a decision with
implications.
One additional point: if you do have outliers,
standardization might not be appropriate because the mean
and variance might be highly influenced by the outliers. In
this case, use a rescaling method more robust against
outliers, like RobustScaler.

See Also

RobustScaler documentation

4.8 Discretizating Features

https://oreil.ly/zgm-1

Problem

You have a numerical feature and want to break it up into
discrete bins.

Solution

Depending on how we want to break up the data, there are
two techniques we can use. First, we can binarize the
feature according to some threshold:

Load libraries

import numpy as np

from sklearn.preprocessing import Binarizer

Create feature

age = np.array([[6],

 [12],

 [20],

 [36],

 [65]])

Create binarizer

binarizer = Binarizer(threshold=18)

Transform feature

binarizer.fit_transform(age)

array([[0],

 [0],

 [1],

 [1],

 [1]])

Second, we can break up numerical features according to
multiple thresholds:

Bin feature

np.digitize(age, bins=[20,30,64])

array([[0],

 [0],

 [1],

 [2],

 [3]])

Note that the arguments for the bins parameter denote the
left edge of each bin. For example, the 20 argument does
not include the element with the value of 20, only the two
values smaller than 20. We can switch this behavior by
setting the parameter right to True:

Bin feature

np.digitize(age, bins=[20,30,64], right=True)

array([[0],

 [0],

 [0],

 [2],

 [3]])

Discussion

Discretization can be a fruitful strategy when we have
reason to believe that a numerical feature should behave
more like a categorical feature. For example, we might
believe there is very little difference in the spending habits
of 19- and 20-year-olds, but a significant difference
between 20- and 21-year-olds (the age in the United States
when young adults can consume alcohol). In that example,
it could be useful to break up individuals in our data into
those who can drink alcohol and those who cannot.
Similarly, in other cases it might be useful to discretize our
data into three or more bins.
In the solution, we saw two methods of discretization—
scikit-learn’s Binarizer for two bins and NumPy’s
digitize for three or more bins— however, we can also use
digitize to binarize features like Binarizer by specifying
only a single threshold:

Bin feature

np.digitize(age, bins=[18])

array([[0],

 [0],

 [1],

 [1],

 [1]])

See Also

digitize documentation

4.9 Grouping Observations Using

Clustering

Problem

You want to cluster observations so that similar
observations are grouped together.

Solution

If you know that you have k groups, you can use k-means
clustering to group similar observations and output a new
feature containing each observation’s group membership:

Load libraries

import pandas as pd

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

Make simulated feature matrix

features, _ = make_blobs(n_samples = 50,

 n_features = 2,

 centers = 3,

 random_state = 1)

Create DataFrame

dataframe = pd.DataFrame(features, columns=["feature_1",

"feature_2"])

Make k-means clusterer

clusterer = KMeans(3, random_state=0)

https://oreil.ly/KipXX

Fit clusterer

clusterer.fit(features)

Predict values

dataframe["group"] = clusterer.predict(features)

View first few observations

dataframe.head(5)

feature_1 feature_2 group

0 –9.877554 –3.336145 0

1 –7.287210 –8.353986 2

2 –6.943061 –7.023744 2

3 –7.440167 –8.791959 2

4 –6.641388 –8.075888 2

Discussion

We are jumping ahead of ourselves a bit and will go into
much more depth about clustering algorithms later in the
book. However, I wanted to point out that we can use
clustering as a preprocessing step. Specifically, we use
unsupervised learning algorithms like k-means to cluster
observations into groups. The result is a categorical feature
with similar observations being members of the same
group.
Don’t worry if you did not understand all of that: just file
away the idea that clustering can be used in preprocessing.
And if you really can’t wait, feel free to flip to Chapter 19
now.

4.10 Deleting Observations with

Missing Values

Problem

You need to delete observations containing missing values.

Solution

Deleting observations with missing values is easy with a
clever line of NumPy:

Load library

import numpy as np

Create feature matrix

features = np.array([[1.1, 11.1],

 [2.2, 22.2],

 [3.3, 33.3],

 [4.4, 44.4],

 [np.nan, 55]])

Keep only observations that are not (denoted by ~) missing

features[~np.isnan(features).any(axis=1)]

array([[1.1, 11.1],

 [2.2, 22.2],

 [3.3, 33.3],

 [4.4, 44.4]])

Alternatively, we can drop missing observations using
pandas:

Load library

import pandas as pd

Load data

dataframe = pd.DataFrame(features, columns=["feature_1",

"feature_2"])

Remove observations with missing values

dataframe.dropna()

feature_1 feature_2

0 1.1 11.1

1 2.2 22.2

2 3.3 33.3

3 4.4 44.4

Discussion

Most machine learning algorithms cannot handle any
missing values in the target and feature arrays. For this
reason, we cannot ignore missing values in our data and
must address the issue during preprocessing.
The simplest solution is to delete every observation that
contains one or more missing values, a task quickly and
easily accomplished using NumPy or pandas.
That said, we should be very reluctant to delete
observations with missing values. Deleting them is the
nuclear option, since our algorithm loses access to the
information contained in the observation’s nonmissing
values.
Just as important, depending on the cause of the missing
values, deleting observations can introduce bias into our
data. There are three types of missing data:
Missing completely at random (MCAR)

The probability that a value is missing is independent of
everything. For example, a survey respondent rolls a die
before answering a question: if she rolls a six, she skips that
question.

Missing at random (MAR)

The probability that a value is missing is not completely
random but depends on the information captured in other
features. For example, a survey asks about gender identity
and annual salary, and women are more likely to skip the
salary question; however, their nonresponse depends only
on information we have captured in our gender identity
feature.

Missing not at random (MNAR)

The probability that a value is missing is not random and
depends on information not captured in our features. For
example, a survey asks about annual salary, and women are
more likely to skip the salary question, and we do not have a
gender identity feature in our data.

It is sometimes acceptable to delete observations if they
are MCAR or MAR. However, if the value is MNAR, the fact
that a value is missing is itself information. Deleting MNAR
observations can inject bias into our data because we are
removing observations produced by some unobserved
systematic effect.

See Also

Identifying the 3 Types of Missing Data

Missing-Data Imputation

4.11 Imputing Missing Values

Problem

https://oreil.ly/sz9Fx
https://oreil.ly/swU2j

You have missing values in your data and want to impute
them via a generic method or prediction.

Solution

You can impute missing values using k-nearest neighbors
(KNN) or the scikit-learn SimpleImputer class. If you have
a small amount of data, predict and impute the missing
values using k-nearest neighbors:

Load libraries

import numpy as np

from sklearn.impute import KNNImputer

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_blobs

Make a simulated feature matrix

features, _ = make_blobs(n_samples = 1000,

 n_features = 2,

 random_state = 1)

Standardize the features

scaler = StandardScaler()

standardized_features = scaler.fit_transform(features)

Replace the first feature's first value with a missing value

true_value = standardized_features[0,0]

standardized_features[0,0] = np.nan

Predict the missing values in the feature matrix

knn_imputer = KNNImputer(n_neighbors=5)

features_knn_imputed =

knn_imputer.fit_transform(standardized_features)

Compare true and imputed values

print("True Value:", true_value)

print("Imputed Value:", features_knn_imputed[0,0])

True Value: 0.8730186114

Imputed Value: 1.09553327131

Alternatively, we can use scikit-learn’s SimpleImputer
class from the imputer module to fill in missing values with

the feature’s mean, median, or most frequent value.
However, we will typically get worse results than with
KNN:

Load libraries

import numpy as np

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_blobs

Make a simulated feature matrix

features, _ = make_blobs(n_samples = 1000,

 n_features = 2,

 random_state = 1)

Standardize the features

scaler = StandardScaler()

standardized_features = scaler.fit_transform(features)

Replace the first feature's first value with a missing value

true_value = standardized_features[0,0]

standardized_features[0,0] = np.nan

Create imputer using the "mean" strategy

mean_imputer = SimpleImputer(strategy="mean")

Impute values

features_mean_imputed = mean_imputer.fit_transform(features)

Compare true and imputed values

print("True Value:", true_value)

print("Imputed Value:", features_mean_imputed[0,0])

True Value: 0.8730186114

Imputed Value: -3.05837272461

Discussion

There are two main strategies for replacing missing data
with substitute values, each of which has strengths and
weaknesses. First, we can use machine learning to predict
the values of the missing data. To do this we treat the
feature with missing values as a target vector and use the
remaining subset of features to predict missing values.

While we can use a wide range of machine learning
algorithms to impute values, a popular choice is KNN. KNN
is addressed in depth in Chapter 15, but the short
explanation is that the algorithm uses the k nearest
observations (according to some distance metric) to predict
the missing value. In our solution we predicted the missing
value using the five closest observations.
The downside to KNN is that in order to know which
observations are the closest to the missing value, it needs
to calculate the distance between the missing value and
every single observation. This is reasonable in smaller
datasets but quickly becomes problematic if a dataset has
millions of observations. In such cases, approximate
nearest neighbors (ANN) is a more feasible approach. We
will discuss ANN in Recipe 15.5.
An alternative and more scalable strategy than KNN is to
fill in the missing values of numerical data with the mean,
median, or mode. For example, in our solution we used
scikit-learn to fill in missing values with a feature’s mean
value. The imputed value is often not as close to the true
value as when we used KNN, but we can scale mean-filling
to data containing millions of observations more easily.
If we use imputation, it is a good idea to create a binary
feature indicating whether the observation contains an
imputed value.

See Also

scikit-learn documentation: Imputation of Missing
Values

A Study of K-Nearest Neighbour as an Imputation
Method

https://oreil.ly/1M4bn
https://oreil.ly/012--

Chapter 5. Handling

Categorical Data

5.0 Introduction

It is often useful to measure objects not in terms of their
quantity but in terms of some quality. We frequently
represent qualitative information in categories such as
gender, colors, or brand of car. However, not all
categorical data is the same. Sets of categories with no
intrinsic ordering are called nominal. Examples of nominal
categories include:

Blue, Red, Green

Man, Woman

Banana, Strawberry, Apple

In contrast, when a set of categories has some natural
ordering we refer to it as ordinal. For example:

Low, Medium, High

Young, Old

Agree, Neutral, Disagree

Furthermore, categorical information is often represented
in data as a vector or column of strings (e.g., "Maine",
"Texas", "Delaware"). The problem is that most machine
learning algorithms require inputs to be numerical values.
The k-nearest neighbors algorithm is an example of an
algorithm that requires numerical data. One step in the

algorithm is calculating the distances between observations
— often using Euclidean distance:

√∑
n

i=1
(xi − yi)

2

where x and y are two observations and subscript i denotes
the value for the observations’ ith feature. However, the
distance calculation obviously is impossible if the value of
xi is a string (e.g., "Texas"). Instead, we need to convert
the string into some numerical format so that it can be
input into the Euclidean distance equation. Our goal is to
transform the data in a way that properly captures the
information in the categories (ordinality, relative intervals
between categories, etc.). In this chapter we will cover
techniques for making this transformation as well as
overcoming other challenges often encountered when
handling categorical data.

5.1 Encoding Nominal Categorical

Features

Problem

You have a feature with nominal classes that has no
intrinsic ordering (e.g., apple, pear, banana), and you want
to encode the feature into numerical values.

Solution

One-hot encode the feature using scikit-learn’s
LabelBinarizer:

Import libraries

import numpy as np

from sklearn.preprocessing import LabelBinarizer,

MultiLabelBinarizer

Create feature

feature = np.array([["Texas"],

 ["California"],

 ["Texas"],

 ["Delaware"],

 ["Texas"]])

Create one-hot encoder

one_hot = LabelBinarizer()

One-hot encode feature

one_hot.fit_transform(feature)

array([[0, 0, 1],

 [1, 0, 0],

 [0, 0, 1],

 [0, 1, 0],

 [0, 0, 1]])

We can use the classes_ attribute to output the classes:

View feature classes

one_hot.classes_

array(['California', 'Delaware', 'Texas'],

 dtype='<U10')

If we want to reverse the one-hot encoding, we can use
inverse_transform:

Reverse one-hot encoding

one_hot.inverse_transform(one_hot.transform(feature))

array(['Texas', 'California', 'Texas', 'Delaware', 'Texas'],

 dtype='<U10')

We can even use pandas to one-hot encode the feature:

Import library

import pandas as pd

Create dummy variables from feature

pd.get_dummies(feature[:,0])

California Delaware Texas

0 0 0 1

1 1 0 0

2 0 0 1

3 0 1 0

4 0 0 1

One helpful feature of scikit-learn is the ability to handle a
situation where each observation lists multiple classes:

Create multiclass feature

multiclass_feature = [("Texas", "Florida"),

 ("California", "Alabama"),

 ("Texas", "Florida"),

 ("Delaware", "Florida"),

 ("Texas", "Alabama")]

Create multiclass one-hot encoder

one_hot_multiclass = MultiLabelBinarizer()

One-hot encode multiclass feature

one_hot_multiclass.fit_transform(multiclass_feature)

array([[0, 0, 0, 1, 1],

 [1, 1, 0, 0, 0],

 [0, 0, 0, 1, 1],

 [0, 0, 1, 1, 0],

 [1, 0, 0, 0, 1]])

Once again, we can see the classes with the classes_
method:

View classes

one_hot_multiclass.classes_

array(['Alabama', 'California', 'Delaware', 'Florida', 'Texas'],

dtype=object)

Discussion

We might think the proper strategy is to assign each class a
numerical value (e.g., Texas = 1, California = 2). However,
when our classes have no intrinsic ordering (e.g., Texas
isn’t “less” than California), our numerical values
erroneously create an ordering that is not present.
The proper strategy is to create a binary feature for each
class in the original feature. This is often called one-hot

encoding (in machine learning literature) or dummying (in
statistical and research literature). Our solution’s feature
was a vector containing three classes (i.e., Texas,
California, and Delaware). In one-hot encoding, each class
becomes its own feature with 1s when the class appears
and 0s otherwise. Because our feature had three classes,
one-hot encoding returned three binary features (one for
each class). By using one-hot encoding we can capture the
membership of an observation in a class while preserving
the notion that the class lacks any sort of hierarchy.
Finally, it is often recommended that after one-hot
encoding a feature, we drop one of the one-hot encoded
features in the resulting matrix to avoid linear dependence.

See Also

Dummy Variable Trap in Regression Models, Algosome

Dropping one of the columns when using one-hot
encoding, Cross Validated

https://oreil.ly/xjBhG
https://oreil.ly/CTdpG

5.2 Encoding Ordinal Categorical

Features

Problem

You have an ordinal categorical feature (e.g., high,
medium, low), and you want to transform it into numerical
values.

Solution

Use the pandas DataFrame replace method to transform
string labels to numerical equivalents:

Load library

import pandas as pd

Create features

dataframe = pd.DataFrame({"Score": ["Low", "Low", "Medium",

"Medium", "High"]})

Create mapper

scale_mapper = {"Low":1,

 "Medium":2,

 "High":3}

Replace feature values with scale

dataframe["Score"].replace(scale_mapper)

0 1

1 1

2 2

3 2

4 3

Name: Score, dtype: int64

Discussion

Often we have a feature with classes that have some kind of
natural ordering. A famous example is the Likert scale:

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

When encoding the feature for use in machine learning, we
need to transform the ordinal classes into numerical values
that maintain the notion of ordering. The most common
approach is to create a dictionary that maps the string label
of the class to a number and then apply that map to the
feature.
It is important that our choice of numeric values is based
on our prior information on the ordinal classes. In our
solution, high is literally three times larger than low. This
is fine in many instances but can break down if the
assumed intervals between the classes are not equal:

dataframe = pd.DataFrame({"Score": ["Low",

 "Low",

 "Medium",

 "Medium",

 "High",

 "Barely More Than Medium"]})

scale_mapper = {"Low":1,

 "Medium":2,

 "Barely More Than Medium":3,

 "High":4}

dataframe["Score"].replace(scale_mapper)

0 1

1 1

2 2

3 2

4 4

5 3

Name: Score, dtype: int64

In this example, the distance between Low and Medium is
the same as the distance between Medium and Barely More
Than Medium, which is almost certainly not accurate. The
best approach is to be conscious about the numerical
values mapped to classes:

scale_mapper = {"Low":1,

 "Medium":2,

 "Barely More Than Medium":2.1,

 "High":3}

dataframe["Score"].replace(scale_mapper)

0 1.0

1 1.0

2 2.0

3 2.0

4 3.0

5 2.1

Name: Score, dtype: float64

5.3 Encoding Dictionaries of Features

Problem

You have a dictionary and want to convert it into a feature
matrix.

Solution

Use DictVectorizer:

Import library

from sklearn.feature_extraction import DictVectorizer

Create dictionary

data_dict = [{"Red": 2, "Blue": 4},

 {"Red": 4, "Blue": 3},

 {"Red": 1, "Yellow": 2},

 {"Red": 2, "Yellow": 2}]

Create dictionary vectorizer

dictvectorizer = DictVectorizer(sparse=False)

Convert dictionary to feature matrix

features = dictvectorizer.fit_transform(data_dict)

View feature matrix

features

array([[4., 2., 0.],

 [3., 4., 0.],

 [0., 1., 2.],

 [0., 2., 2.]])

By default DictVectorizer outputs a sparse matrix that
only stores elements with a value other than 0. This can be
very helpful when we have massive matrices (often
encountered in natural language processing) and want to
minimize the memory requirements. We can force
DictVectorizer to output a dense matrix using
sparse=False.
We can get the names of each generated feature using the
get_feature_names method:

Get feature names

feature_names = dictvectorizer.get_feature_names()

View feature names

feature_names

['Blue', 'Red', 'Yellow']

While not necessary, for the sake of illustration we can
create a pandas DataFrame to view the output better:

Import library

import pandas as pd

Create dataframe from features

pd.DataFrame(features, columns=feature_names)

Blue Red Yellow

0 4.0 2.0 0.0

1 3.0 4.0 0.0

2 0.0 1.0 2.0

3 0.0 2.0 2.0

Discussion

A dictionary is a popular data structure used by many
programming languages; however, machine learning
algorithms expect the data to be in the form of a matrix. We
can accomplish this using scikit-learn’s DictVectorizer.
This is a common situation when working with natural
language processing. For example, we might have a
collection of documents and for each document we have a
dictionary containing the number of times every word
appears in the document. Using DictVectorizer, we can
easily create a feature matrix where every feature is the
number of times a word appears in each document:

Create word count dictionaries for four documents

doc_1_word_count = {"Red": 2, "Blue": 4}

doc_2_word_count = {"Red": 4, "Blue": 3}

doc_3_word_count = {"Red": 1, "Yellow": 2}

doc_4_word_count = {"Red": 2, "Yellow": 2}

Create list

doc_word_counts = [doc_1_word_count,

 doc_2_word_count,

 doc_3_word_count,

 doc_4_word_count]

Convert list of word count dictionaries into feature matrix

dictvectorizer.fit_transform(doc_word_counts)

array([[4., 2., 0.],

 [3., 4., 0.],

 [0., 1., 2.],

 [0., 2., 2.]])

In our toy example there are only three unique words (Red,
Yellow, Blue) so there are only three features in our
matrix; however, you can imagine that if each document
was actually a book in a university library our feature
matrix would be very large (and then we would want to set
sparse to True).

See Also

How to Create Dictionaries in Python

SciPy Sparse Matrices

5.4 Imputing Missing Class Values

Problem

You have a categorical feature containing missing values
that you want to replace with predicted values.

Solution

The ideal solution is to train a machine learning classifier
algorithm to predict the missing values, commonly a k-
nearest neighbors (KNN) classifier:

Load libraries

import numpy as np

from sklearn.neighbors import KNeighborsClassifier

Create feature matrix with categorical feature

X = np.array([[0, 2.10, 1.45],

https://oreil.ly/zu5hU
https://oreil.ly/5nAsU

 [1, 1.18, 1.33],

 [0, 1.22, 1.27],

 [1, -0.21, -1.19]])

Create feature matrix with missing values in the categorical

feature

X_with_nan = np.array([[np.nan, 0.87, 1.31],

 [np.nan, -0.67, -0.22]])

Train KNN learner

clf = KNeighborsClassifier(3, weights='distance')

trained_model = clf.fit(X[:,1:], X[:,0])

Predict class of missing values

imputed_values = trained_model.predict(X_with_nan[:,1:])

Join column of predicted class with their other features

X_with_imputed = np.hstack((imputed_values.reshape(-1,1),

X_with_nan[:,1:]))

Join two feature matrices

np.vstack((X_with_imputed, X))

array([[0. , 0.87, 1.31],

 [1. , -0.67, -0.22],

 [0. , 2.1 , 1.45],

 [1. , 1.18, 1.33],

 [0. , 1.22, 1.27],

 [1. , -0.21, -1.19]])

An alternative solution is to fill in missing values with the
feature’s most frequent value:

from sklearn.impute import SimpleImputer

Join the two feature matrices

X_complete = np.vstack((X_with_nan, X))

imputer = SimpleImputer(strategy='most_frequent')

imputer.fit_transform(X_complete)

array([[0. , 0.87, 1.31],

 [0. , -0.67, -0.22],

 [0. , 2.1 , 1.45],

 [1. , 1.18, 1.33],

 [0. , 1.22, 1.27],

 [1. , -0.21, -1.19]])

Discussion

When we have missing values in a categorical feature, our
best solution is to open our toolbox of machine learning
algorithms to predict the values of the missing
observations. We can accomplish this by treating the
feature with the missing values as the target vector and the
other features as the feature matrix. A commonly used
algorithm is KNN (discussed in depth in Chapter 15), which
assigns to the missing value the most frequent class of the
k nearest observations.
Alternatively, we can fill in missing values with the most
frequent class of the feature or even discard the
observations with missing values. While less sophisticated
than KNN, these options are much more scalable to larger
data. In any case, it is advisable to include a binary feature
indicating which observations contain imputed values.

See Also

scikit-learn documentation: Imputation of Missing
Values

Overcoming Missing Values in a Random Forest
Classifier

A Study of K-Nearest Neighbour as an Imputation
Method

5.5 Handling Imbalanced Classes

Problem

You have a target vector with highly imbalanced classes,
and you want to make adjustments so that you can handle

https://oreil.ly/joZ6J
https://oreil.ly/TcvOf
https://oreil.ly/kDFEC

the class imbalance.

Solution

Collect more data. If that isn’t possible, change the metrics
used to evaluate your model. If that doesn’t work, consider
using a model’s built-in class weight parameters (if
available), downsampling, or upsampling. We cover
evaluation metrics in a later chapter, so for now let’s focus
on class weight parameters, downsampling, and
upsampling.
To demonstrate our solutions, we need to create some data
with imbalanced classes. Fisher’s Iris dataset contains
three balanced classes of 50 observations, each indicating
the species of flower (Iris setosa, Iris virginica, and Iris

versicolor). To unbalance the dataset, we remove 40 of the
50 Iris setosa observations and then merge the Iris

virginica and Iris versicolor classes. The end result is a
binary target vector indicating if an observation is an Iris

setosa flower or not. The result is 10 observations of Iris

setosa (class 0) and 100 observations of not Iris setosa

(class 1):

Load libraries

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn.datasets import load_iris

Load iris data

iris = load_iris()

Create feature matrix

features = iris.data

Create target vector

target = iris.target

Remove first 40 observations

features = features[40:,:]

target = target[40:]

Create binary target vector indicating if class 0

target = np.where((target == 0), 0, 1)

Look at the imbalanced target vector

target

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

Many algorithms in scikit-learn offer a parameter to weight
classes during training to counteract the effect of their
imbalance. While we have not covered it yet,
RandomForestClassifier is a popular classification
algorithm and includes a class_weight parameter; learn
more about the RandomForestClassifier in Recipe 14.4.
You can pass an argument explicitly specifying the desired
class weights:

Create weights

weights = {0: 0.9, 1: 0.1}

Create random forest classifier with weights

RandomForestClassifier(class_weight=weights)

RandomForestClassifier(class_weight={0: 0.9, 1: 0.1})

Or you can pass balanced, which automatically creates
weights inversely proportional to class frequencies:

Train a random forest with balanced class weights

RandomForestClassifier(class_weight="balanced")

RandomForestClassifier(class_weight='balanced')

Alternatively, we can downsample the majority class or
upsample the minority class. In downsampling, we
randomly sample without replacement from the majority
class (i.e., the class with more observations) to create a
new subset of observations equal in size to the minority
class. For example, if the minority class has 10
observations, we will randomly select 10 observations from
the majority class and use those 20 observations as our
data. Here we do exactly that using our unbalanced iris
data:

Indicies of each class's observations

i_class0 = np.where(target == 0)[0]

i_class1 = np.where(target == 1)[0]

Number of observations in each class

n_class0 = len(i_class0)

n_class1 = len(i_class1)

For every observation of class 0, randomly sample

from class 1 without replacement

i_class1_downsampled = np.random.choice(i_class1, size=n_class0,

replace=False)

Join together class 0's target vector with the

downsampled class 1's target vector

np.hstack((target[i_class0], target[i_class1_downsampled]))

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1])

Join together class 0's feature matrix with the

downsampled class 1's feature matrix

np.vstack((features[i_class0,:],

features[i_class1_downsampled,:]))[0:5]

array([[5. , 3.5, 1.3, 0.3],

 [4.5, 2.3, 1.3, 0.3],

 [4.4, 3.2, 1.3, 0.2],

 [5. , 3.5, 1.6, 0.6],

 [5.1, 3.8, 1.9, 0.4]])

Our other option is to upsample the minority class. In
upsampling, for every observation in the majority class, we
randomly select an observation from the minority class with

replacement. The result is the same number of
observations from the minority and majority classes.
Upsampling is implemented very similarly to
downsampling, just in reverse:

For every observation in class 1, randomly sample from class 0

with

replacement

i_class0_upsampled = np.random.choice(i_class0, size=n_class1,

replace=True)

Join together class 0's upsampled target vector with class 1's

target vector

np.concatenate((target[i_class0_upsampled], target[i_class1]))

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

Join together class 0's upsampled feature matrix with class 1's

feature matrix

np.vstack((features[i_class0_upsampled,:], features[i_class1,:]))

[0:5]

array([[5. , 3.5, 1.6, 0.6],

 [5. , 3.5, 1.6, 0.6],

 [5. , 3.3, 1.4, 0.2],

 [4.5, 2.3, 1.3, 0.3],

 [4.8, 3. , 1.4, 0.3]])

Discussion

In the real world, imbalanced classes are everywhere—
most visitors don’t click the buy button, and many types of
cancer are thankfully rare. For this reason, handling
imbalanced classes is a common activity in machine
learning.
Our best strategy is simply to collect more observations—
especially observations from the minority class. However,
often this is just not possible, so we have to resort to other
options.
A second strategy is to use a model evaluation metric
better suited to imbalanced classes. Accuracy is often used
as a metric for evaluating the performance of a model, but
when imbalanced classes are present, accuracy can be ill
suited. For example, if only 0.5% of observations have some
rare cancer, then even a naive model that predicts nobody
has cancer will be 99.5% accurate. Clearly this is not ideal.
Some better metrics we discuss in later chapters are
confusion matrices, precision, recall, F1 scores, and ROC
curves.
A third strategy is to use the class weighing parameters
included in implementations of some models. This allows
the algorithm to adjust for imbalanced classes. Fortunately,
many scikit-learn classifiers have a class_weight
parameter, making it a good option.
The fourth and fifth strategies are related: downsampling
and upsampling. In downsampling we create a random
subset of the majority class of equal size to the minority
class. In upsampling we repeatedly sample with
replacement from the minority class to make it of equal size
as the majority class. The decision between using
downsampling and upsampling is context-specific, and in

general we should try both to see which produces better
results.

Chapter 6. Handling Text

6.0 Introduction

Unstructured text data, like the contents of a book or a
tweet, is both one of the most interesting sources of
features and one of the most complex to handle. In this
chapter, we will cover strategies for transforming text into
information-rich features and use some out-of-the-box
features (termed embeddings) that have become
increasingly ubiquitous in tasks that involve natural
language processing (NLP).
This is not to say that the recipes covered here are
comprehensive. Entire academic disciplines focus on
handling unstructured data such as text. In this chapter, we
will cover some commonly used techniques; knowledge of
these will add valuable tools to our preprocessing toolbox.
In addition to many generic text processing recipes, we’ll
also demonstrate how you can import and leverage some
pretrained machine learning models to generate richer text
features.

6.1 Cleaning Text

Problem

You have some unstructured text data and want to
complete some basic cleaning.

Solution

In the following example, we look at the text for three
books and clean it by using Python’s core string operations,
in particular strip, replace, and split:

Create text

text_data = [" Interrobang. By Aishwarya Henriette ",

 "Parking And Going. By Karl Gautier",

 " Today Is The night. By Jarek Prakash "]

Strip whitespaces

strip_whitespace = [string.strip() for string in text_data]

Show text

strip_whitespace

['Interrobang. By Aishwarya Henriette',

 'Parking And Going. By Karl Gautier',

 'Today Is The night. By Jarek Prakash']

Remove periods

remove_periods = [string.replace(".", "") for string in

strip_whitespace]

Show text

remove_periods

['Interrobang By Aishwarya Henriette',

 'Parking And Going By Karl Gautier',

 'Today Is The night By Jarek Prakash']

We also create and apply a custom transformation function:

Create function

def capitalizer(string: str) -> str:

 return string.upper()

Apply function

[capitalizer(string) for string in remove_periods]

['INTERROBANG BY AISHWARYA HENRIETTE',

 'PARKING AND GOING BY KARL GAUTIER',

 'TODAY IS THE NIGHT BY JAREK PRAKASH']

Finally, we can use regular expressions to make powerful
string operations:

Import library

import re

Create function

def replace_letters_with_X(string: str) -> str:

 return re.sub(r"[a-zA-Z]", "X", string)

Apply function

[replace_letters_with_X(string) for string in remove_periods]

['XXXXXXXXXXX XX XXXXXXXXX XXXXXXXXX',

 'XXXXXXX XXX XXXXX XX XXXX XXXXXXX',

 'XXXXX XX XXX XXXXX XX XXXXX XXXXXXX']

Discussion

Some text data will need to be cleaned before we can use it
to build features, or be preprocessed in some way prior to
being fed into an algorithm. Most basic text cleaning can
be completed using Python’s standard string operations. In
the real world, we will most likely define a custom cleaning
function (e.g., capitalizer) combining some cleaning
tasks and apply that to the text data. Although cleaning
strings can remove some information, it makes the data
much easier to work with. Strings have many inherent
methods that are useful for cleaning and processing; some
additional examples can be found here:

Define a string

s = "machine learning in python cookbook"

Find the first index of the letter "n"

find_n = s.find("n")

Whether or not the string starts with "m"

starts_with_m = s.startswith("m")

Whether or not the string ends with "python"

ends_with_python = s.endswith("python")

Is the string alphanumeric

is_alnum = s.isalnum()

Is it composed of only alphabetical characters (not including

spaces)

is_alpha = s.isalpha()

Encode as utf-8

encode_as_utf8 = s.encode("utf-8")

Decode the same utf-8

decode = encode_as_utf8.decode("utf-8")

print(

 find_n,

 starts_with_m,

 ends_with_python,

 is_alnum,

 is_alpha,

 encode_as_utf8,

 decode,

 sep = "|"

)

5|True|False|False|False|b'machine learning in python

cookbook'|machine learning

 in python cookbook

See Also

Beginners Tutorial for Regular Expressions in Python

6.2 Parsing and Cleaning HTML

Problem

You have text data with HTML elements and want to
extract just the text.

Solution

Use Beautiful Soup’s extensive set of options to parse and
extract from HTML:

https://oreil.ly/hSqsa

Load library

from bs4 import BeautifulSoup

Create some HTML code

html = "<div class='full_name'>"\

 "Masego"\

 " Azra</div>"

Parse html

soup = BeautifulSoup(html, "lxml")

Find the div with the class "full_name", show text

soup.find("div", { "class" : "full_name" }).text

'Masego Azra'

Discussion

Despite the strange name, Beautiful Soup is a powerful
Python library designed for scraping HTML. Typically
Beautiful Soup is used to process HTML during live web
scraping, but we can just as easily use it to extract text
data embedded in static HTML. The full range of Beautiful
Soup operations is beyond the scope of this book, but even
the method we use in our solution shows how easy it can be
to parse HTML and extract information from specific tags
using find().

See Also

Beautiful Soup

6.3 Removing Punctuation

Problem

You have a feature of text data and want to remove
punctuation.

https://oreil.ly/vh8h3

Solution

Define a function that uses translate with a dictionary of
punctuation characters:

Load libraries

import unicodedata

import sys

Create text

text_data = ['Hi!!!! I. Love. This. Song....',

 '10000% Agree!!!! #LoveIT',

 'Right?!?!']

Create a dictionary of punctuation characters

punctuation = dict.fromkeys(

 (i for i in range(sys.maxunicode)

 if unicodedata.category(chr(i)).startswith('P')

),

 None

)

For each string, remove any punctuation characters

[string.translate(punctuation) for string in text_data]

['Hi I Love This Song', '10000 Agree LoveIT', 'Right']

Discussion

The Python translate method is popular due to its speed.
In our solution, first we created a dictionary, punctuation,
with all punctuation characters according to Unicode as its
keys and None as its values. Next we translated all
characters in the string that are in punctuation into None,
effectively removing them. There are more readable ways
to remove punctuation, but this somewhat hacky solution
has the advantage of being far faster than alternatives.
It is important to be conscious of the fact that punctuation
contains information (e.g., “Right?” versus “Right!”).
Removing punctuation can be a necessary evil when we
need to manually create features; however, if the

punctuation is important we should make sure to take that
into account. Depending on the downstream task we’re
trying to accomplish, punctuation might contain important
information we want to keep (e.g., using a “?” to classify if
some text contains a question).

6.4 Tokenizing Text

Problem

You have text and want to break it up into individual words.

Solution

Natural Language Toolkit for Python (NLTK) has a
powerful set of text manipulation operations, including
word tokenizing:

Load library

from nltk.tokenize import word_tokenize

Create text

string = "The science of today is the technology of tomorrow"

Tokenize words

word_tokenize(string)

['The', 'science', 'of', 'today', 'is', 'the', 'technology',

'of', 'tomorrow']

We can also tokenize into sentences:

Load library

from nltk.tokenize import sent_tokenize

Create text

string = "The science of today is the technology of tomorrow.

Tomorrow is today."

Tokenize sentences

sent_tokenize(string)

['The science of today is the technology of tomorrow.', 'Tomorrow

is today.']

Discussion

Tokenization, especially word tokenization, is a common
task after cleaning text data because it is the first step in
the process of turning the text into data we will use to
construct useful features. Some pretrained NLP models
(such as Google’s BERT) utilize model-specific tokenization
techniques; however, word-level tokenization is still a fairly
common tokenization approach before getting features
from individual words.

6.5 Removing Stop Words

Problem

Given tokenized text data, you want to remove extremely
common words (e.g., a, is, of, on) that contain little
informational value.

Solution

Use NLTK’s stopwords:

Load library

from nltk.corpus import stopwords

You will have to download the set of stop words the first time

import nltk

nltk.download('stopwords')

Create word tokens

tokenized_words = ['i',

 'am',

 'going',

 'to',

 'go',

 'to',

 'the',

 'store',

 'and',

 'park']

Load stop words

stop_words = stopwords.words('english')

Remove stop words

[word for word in tokenized_words if word not in stop_words]

['going', 'go', 'store', 'park']

Discussion

While “stop words” can refer to any set of words we want
to remove before processing, frequently the term refers to
extremely common words that themselves contain little
information value. Whether or not you choose to remove
stop words will depend on your individual use case. NLTK
has a list of common stop words that we can use to find and
remove stop words in our tokenized words:

Show stop words

stop_words[:5]

['i', 'me', 'my', 'myself', 'we']

Note that NLTK’s stopwords assumes the tokenized words
are all lowercased.

6.6 Stemming Words

Problem

You have tokenized words and want to convert them into
their root forms.

Solution

Use NLTK’s PorterStemmer:

Load library

from nltk.stem.porter import PorterStemmer

Create word tokens

tokenized_words = ['i', 'am', 'humbled', 'by', 'this',

'traditional', 'meeting']

Create stemmer

porter = PorterStemmer()

Apply stemmer

[porter.stem(word) for word in tokenized_words]

['i', 'am', 'humbl', 'by', 'thi', 'tradit', 'meet']

Discussion

Stemming reduces a word to its stem by identifying and
removing affixes (e.g., gerunds) while keeping the root
meaning of the word. For example, both “tradition” and
“traditional” have “tradit” as their stem, indicating that
while they are different words, they represent the same
general concept. By stemming our text data, we transform
it to something less readable but closer to its base meaning
and thus more suitable for comparison across observations.
NLTK’s PorterStemmer implements the widely used Porter
stemming algorithm to remove or replace common suffixes
to produce the word stem.

See Also

The Porter Stemming Algorithm

6.7 Tagging Parts of Speech

https://oreil.ly/Z4NTp

Problem

You have text data and want to tag each word or character
with its part of speech.

Solution

Use NLTK’s pretrained parts-of-speech tagger:

Load libraries

from nltk import pos_tag

from nltk import word_tokenize

Create text

text_data = "Chris loved outdoor running"

Use pretrained part of speech tagger

text_tagged = pos_tag(word_tokenize(text_data))

Show parts of speech

text_tagged

[('Chris', 'NNP'), ('loved', 'VBD'), ('outdoor', 'RP'),

('running', 'VBG')]

The output is a list of tuples with the word and the tag of
the part of speech. NLTK uses the Penn Treebank parts for
speech tags. Some examples of the Penn Treebank tags
are:

Tag Part of speech

NNP Proper noun, singular

NN Noun, singular or mass

RB Adverb

VBD Verb, past tense

VBG Verb, gerund or present participle

JJ Adjective

PRP Personal pronoun

Once the text has been tagged, we can use the tags to find
certain parts of speech. For example, here are all nouns:

Filter words

[word for word, tag in text_tagged if tag in

['NN','NNS','NNP','NNPS']]

['Chris']

A more realistic situation would be to have data where
every observation contains a tweet, and we want to convert
those sentences into features for individual parts of speech
(e.g., a feature with 1 if a proper noun is present, and 0
otherwise):

Import libraries

from sklearn.preprocessing import MultiLabelBinarizer

Create text

tweets = ["I am eating a burrito for breakfast",

 "Political science is an amazing field",

 "San Francisco is an awesome city"]

Create list

tagged_tweets = []

Tag each word and each tweet

for tweet in tweets:

 tweet_tag = nltk.pos_tag(word_tokenize(tweet))

 tagged_tweets.append([tag for word, tag in tweet_tag])

Use one-hot encoding to convert the tags into features

one_hot_multi = MultiLabelBinarizer()

one_hot_multi.fit_transform(tagged_tweets)

array([[1, 1, 0, 1, 0, 1, 1, 1, 0],

 [1, 0, 1, 1, 0, 0, 0, 0, 1],

 [1, 0, 1, 1, 1, 0, 0, 0, 1]])

Using classes_ we can see that each feature is a part-of-
speech tag:

Show feature names

one_hot_multi.classes_

array(['DT', 'IN', 'JJ', 'NN', 'NNP', 'PRP', 'VBG', 'VBP',

'VBZ'], dtype=object)

Discussion

If our text is English and not on a specialized topic (e.g.,
medicine) the simplest solution is to use NLTK’s pretrained
parts-of-speech tagger. However, if pos_tag is not very
accurate, NLTK also gives us the ability to train our own
tagger. The major downside of training a tagger is that we
need a large corpus of text where the tag of each word is
known. Constructing this tagged corpus is obviously labor
intensive and is probably going to be a last resort.

See Also

Alphabetical list of part-of-speech tags used in the Penn
Treebank Project

https://oreil.ly/31xKf

6.8 Performing Named-Entity

Recognition

Problem

You want to perform named-entity recognition in freeform
text (such as “Person,” “State,” etc.).

Solution

Use spaCy’s default named-entity recognition pipeline and
models to extract entites from text:

Import libraries

import spacy

Load the spaCy package and use it to parse the text

make sure you have run "python -m spacy download en"

nlp = spacy.load("en_core_web_sm")

doc = nlp("Elon Musk offered to buy Twitter using $21B of his own

money.")

Print each entity

print(doc.ents)

For each entity print the text and the entity label

for entity in doc.ents:

 print(entity.text, entity.label_, sep=",")

(Elon Musk, Twitter, 21B)

Elon Musk, PERSON

Twitter, ORG

21B, MONEY

Discussion

Named-entity recognition is the process of recognizing
specific entities from text. Tools like spaCy offer
preconfigured pipelines, and even pretrained or fine-tuned
machine learning models that can easily identify these
entities. In this case, we use spaCy to identify a person

(“Elon Musk”), organization (“Twitter”), and money value
(“21B”) from the raw text. Using this information, we can
extract structured information from the unstructured
textual data. This information can then be used in
downstream machine learning models or data analysis.
Training a custom named-entity recognition model is
outside the scope of this example; however, it is often done
using deep learning and other NLP techniques.

See Also

spaCy Named Entity Recognition documentation

Named-entity recognition, Wikipedia

6.9 Encoding Text as a Bag of Words

Problem

You have text data and want to create a set of features
indicating the number of times an observation’s text
contains a particular word.

Solution

Use scikit-learn’s CountVectorizer:

Load library

import numpy as np

from sklearn.feature_extraction.text import CountVectorizer

Create text

text_data = np.array(['I love Brazil. Brazil!',

 'Sweden is best',

 'Germany beats both'])

Create the bag of words feature matrix

https://oreil.ly/cN8KM
https://oreil.ly/G8WDF

count = CountVectorizer()

bag_of_words = count.fit_transform(text_data)

Show feature matrix

bag_of_words

<3x8 sparse matrix of type '<class 'numpy.int64'>'

 with 8 stored elements in Compressed Sparse Row format>

This output is a sparse array, which is often necessary
when we have a large amount of text. However, in our toy
example we can use toarray to view a matrix of word
counts for each observation:

bag_of_words.toarray()

array([[0, 0, 0, 2, 0, 0, 1, 0],

 [0, 1, 0, 0, 0, 1, 0, 1],

 [1, 0, 1, 0, 1, 0, 0, 0]], dtype=int64)

We can use the get_feature_names method to view the
word associated with each feature:

Show feature names

count.get_feature_names_out()

array(['beats', 'best', 'both', 'brazil', 'germany', 'is',

'love',

 'sweden'], dtype=object)

Note that the I from I love Brazil is not considered a
token because the default token_pattern only considers
tokens of two or more alphanumeric characters.
Still, this might be confusing so, for the sake of clarity, here
is what the feature matrix looks like with the words as
column names (each row is one observation):

beats best both brazil germ

0 0 0 2 0

0 1 0 0 0

1 0 1 0 1

Discussion

One of the most common methods of transforming text into
features is using a bag-of-words model. Bag-of-words
models output a feature for every unique word in text data,
with each feature containing a count of occurrences in
observations. For example, in our solution, the sentence “I
love Brazil. Brazil!” has a value of 2 in the “brazil” feature
because the word brazil appears two times.
The text data in our solution was purposely small. In the
real world, a single observation of text data could be the
contents of an entire book! Since our bag-of-words model
creates a feature for every unique word in the data, the
resulting matrix can contain thousands of features. This
means the size of the matrix can sometimes become very
large in memory. Luckily, we can exploit a common
characteristic of bag-of-words feature matrices to reduce
the amount of data we need to store.
Most words likely do not occur in most observations, and
therefore bag-of-words feature matrices will contain mostly
0s as values. We call these types of matrices sparse.
Instead of storing all values of the matrix, we can store only
nonzero values and then assume all other values are 0. This
will save memory when we have large feature matrices.

One of the nice features of CountVectorizer is that the
output is a sparse matrix by default.
CountVectorizer comes with a number of useful
parameters to make it easy to create bag-of-words feature
matrices. First, while by default every feature is a word,
that does not have to be the case. Instead we can set every
feature to be the combination of two words (called a 2-
gram) or even three words (3-gram). ngram_range sets the
minimum and maximum size of our n-grams. For example,
(2,3) will return all 2-grams and 3-grams. Second, we can
easily remove low-information filler words by using
stop_words, either with a built-in list or a custom list.
Finally, we can restrict the words or phrases we want to
consider to a certain list of words using vocabulary. For
example, we could create a bag-of-words feature matrix
only for occurrences of country names:

Create feature matrix with arguments

count_2gram = CountVectorizer(ngram_range=(1,2),

 stop_words="english",

 vocabulary=['brazil'])

bag = count_2gram.fit_transform(text_data)

View feature matrix

bag.toarray()

array([[2],

 [0],

 [0]])

View the 1-grams and 2-grams

count_2gram.vocabulary_

{'brazil': 0}

See Also

n-gram, Wikipedia

Bag of Words Meets Bags of Popcorn

https://oreil.ly/XWIrM
https://oreil.ly/IiyRV

6.10 Weighting Word Importance

Problem

You want a bag of words with words weighted by their
importance to an observation.

Solution

Compare the frequency of the word in a document (a tweet,
movie review, speech transcript, etc.) with the frequency of
the word in all other documents using term frequency-
inverse document frequency (tf-idf). scikit-learn makes
this easy with TfidfVectorizer:

Load libraries

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

Create text

text_data = np.array(['I love Brazil. Brazil!',

 'Sweden is best',

 'Germany beats both'])

Create the tf-idf feature matrix

tfidf = TfidfVectorizer()

feature_matrix = tfidf.fit_transform(text_data)

Show tf-idf feature matrix

feature_matrix

<3x8 sparse matrix of type '<class 'numpy.float64'>'

 with 8 stored elements in Compressed Sparse Row format>

Just as in Recipe 6.9, the output is a sparse matrix.
However, if we want to view the output as a dense matrix,
we can use toarray:

Show tf-idf feature matrix as dense matrix

feature_matrix.toarray()

array([[0. , 0. , 0. , 0.89442719, 0.

,

 0. , 0.4472136 , 0.],

 [0. , 0.57735027, 0. , 0. , 0.

,

 0.57735027, 0. , 0.57735027],

 [0.57735027, 0. , 0.57735027, 0. ,

0.57735027,

 0. , 0. , 0.]])

vocabulary_ shows us the word of each feature:

Show feature names

tfidf.vocabulary_

{'love': 6,

 'brazil': 3,

 'sweden': 7,

 'is': 5,

 'best': 1,

 'germany': 4,

 'beats': 0,

 'both': 2}

Discussion

The more a word appears in a document, the more likely it
is that the word is important to that document. For
example, if the word economy appears frequently, it is
evidence that the document might be about economics. We
call this term frequency (tf).
In contrast, if a word appears in many documents, it is
likely less important to any individual document. For
example, if every document in some text data contains the
word after then it is probably an unimportant word. We call
this document frequency (df).
By combining these two statistics, we can assign a score to
every word representing how important that word is in a
document. Specifically, we multiply tf to the inverse of
document frequency (idf):

tf-idf(t, d) = tf(t, d) × idf(t)

where t is a word (term) and d is a document. There are a
number of variations in how tf and idf are calculated. In
scikit-learn, tf is simply the number of times a word
appears in the document, and idf is calculated as:

idf (t) = log
1 + nd

1 + df(d, t)
+ 1

where nd is the number of documents, and df(d, t) is term t
’s document frequency (i.e., the number of documents
where the term appears).
By default, scikit-learn then normalizes the tf-idf vectors
using the Euclidean norm (L2 norm). The higher the
resulting value, the more important the word is to a
document.

See Also

scikit-learn documentation: tf–idf term weighting

6.11 Using Text Vectors to Calculate

Text Similarity in a Search Query

Problem

You want to use tf-idf vectors to implement a text search
function in Python.

Solution

https://oreil.ly/40WeT

Calculate the cosine similarity between tf-idf vectors
using scikit-learn:

Load libraries

import numpy as np

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import linear_kernel

Create searchable text data

text_data = np.array(['I love Brazil. Brazil!',

 'Sweden is best',

 'Germany beats both'])

Create the tf-idf feature matrix

tfidf = TfidfVectorizer()

feature_matrix = tfidf.fit_transform(text_data)

Create a search query and transform it into a tf-idf vector

text = "Brazil is the best"

vector = tfidf.transform([text])

Calculate the cosine similarities between the input vector and

all other

 vectors

cosine_similarities = linear_kernel(vector,

feature_matrix).flatten()

Get the index of the most relevent items in order

related_doc_indicies = cosine_similarities.argsort()[:-10:-1]

Print the most similar texts to the search query along with the

cosine

 similarity

print([(text_data[i], cosine_similarities[i]) for i in

related_doc_indicies])

[

 (

 'Sweden is best', 0.6666666666666666),

 ('I love Brazil. Brazil!', 0.5163977794943222),

 ('Germany beats both', 0.0

)

]

Discussion

Text vectors are incredibly useful for NLP use cases such
as search engines. After calculating the tf-idf vectors of a
set of sentences or documents, we can use the same tfidf
object to vectorize future sets of text. Then, we can
compute cosine similarity between our input vector and the
matrix of other vectors and sort by the most relevant
documents.
Cosine similarities take on the range of [0, 1.0], with 0
being least similar and 1 being most similar. Since we’re
using tf-idf vectors to compute the similarity between
vectors, the frequency of a word’s occurrence is also taken
into account. However, with a small corpus (set of
documents) even “frequent” words may not appear
frequently. In this example, “Sweden is best” is the most
relevant text to our search query “Brazil is the best”. Since
the query mentions Brazil, we might expect “I love Brazil.
Brazil!” to be the most relevant; however, “Sweden is best”
is the most similar due to the words “is” and “best”. As the
number of documents we add to our corpus increases, less
important words will be weighted less and have less effect
on our cosine similarity calculation.

See Also

Cosine Similarity, Geeks for Geeks

Nvidia Gave Me a $15K Data Science Workstation—
Here’s What I Did with It (building a Pubmed search
engine in Python)

6.12 Using a Sentiment Analysis

Classifier

https://oreil.ly/-5Odv
https://oreil.ly/pAxbR

Problem

You want to classify the sentiment of some text to use as a
feature or in downstream data analysis.

Solution

Use the transformers library’s sentiment classifier.

Import libraries

from transformers import pipeline

Create an NLP pipeline that runs sentiment analysis

classifier = pipeline("sentiment-analysis")

Classify some text

(this may download some data and models the first time you run

it)

sentiment_1 = classifier("I hate machine learning! It's the

absolute worst.")

sentiment_2 = classifier(

 "Machine learning is the absolute"

 "bees knees I love it so much!"

)

Print sentiment output

print(sentiment_1, sentiment_2)

[

 {

 'label': 'NEGATIVE',

 'score': 0.9998020529747009

 }

]

[

 {

 'label': 'POSITIVE',

 'score': 0.9990628957748413

 }

]

Discussion

The transformers library is an extremely popular library
for NLP tasks and contains a number of easy-to-use APIs

for training models or using pretrained ones. We’ll talk
more about NLP and this library in Chapter 22, but this
example serves as a high-level introduction to the power of
using pretrained classifiers in your machine learning
pipelines to generate features, classify text, or analyze
unstructured data.

See Also

Hugging Face Transformers Quick Tour

https://oreil.ly/7hT6W

Chapter 7. Handling Dates

and Times

7.0 Introduction

Dates and times (datetimes), such as the time of a
particular sale or the date of a public health statistic, are
frequently encountered during preprocessing for machine
learning. Longitudinal data (or time series data) is data
that’s collected repeatedly for the same variables over
points in time. In this chapter, we will build a toolbox of
strategies for handling time series data, including tackling
time zones and creating lagged time features. Specifically,
we will focus on the time series tools in the pandas library,
which centralizes the functionality of many other general
libraries such as datetime.

7.1 Converting Strings to Dates

Problem

Given a vector of strings representing dates and times, you
want to transform them into time series data.

Solution

Use pandas’ to_datetime with the format of the date
and/or time specified in the format parameter:

Load libraries

import numpy as np

import pandas as pd

Create strings

date_strings = np.array(['03-04-2005 11:35 PM',

 '23-05-2010 12:01 AM',

 '04-09-2009 09:09 PM'])

Convert to datetimes

[pd.to_datetime(date, format='%d-%m-%Y %I:%M %p') for date in

date_strings]

[Timestamp('2005-04-03 23:35:00'),

 Timestamp('2010-05-23 00:01:00'),

 Timestamp('2009-09-04 21:09:00')]

We might also want to add an argument to the errors
parameter to handle problems:

Convert to datetimes

[pd.to_datetime(date, format="%d-%m-%Y %I:%M %p",

errors="coerce")

for date in date_strings]

[Timestamp('2005-04-03 23:35:00'),

 Timestamp('2010-05-23 00:01:00'),

 Timestamp('2009-09-04 21:09:00')]

If errors="coerce", then any problem that occurs will not
raise an error (the default behavior) but instead will set the
value causing the error to NaT (a missing value). This
allows you to deal with outliers by filling them with null
values, as opposed to troubleshooting errors for individual
records in the data.

Discussion

When dates and times come as strings, we need to convert
them into a data type Python can understand. While there
are a number of Python tools for converting strings to
datetimes, following our use of pandas in other recipes we
can use to_datetime to conduct the transformation. One
obstacle to using strings to represent dates and times is

that the format of the strings can vary significantly
between data sources. For example, one vector of dates
might represent March 23, 2015 as “03-23-15” while
another might use “3|23|2015”. We can use the format
parameter to specify the exact format of the string. Here
are some common date and time formatting codes:

Code Description Example

%Y Full year 2001

%m Month w/ zero padding 04

%d Day of the month w/ zero
padding

09

%I Hour (12hr clock) w/ zero
padding

02

%p AM or PM AM

%M Minute w/ zero padding 05

%S Second w/ zero padding 09

See Also

Python strftime Cheatsheet (complete list of Python
string time codes)

7.2 Handling Time Zones

Problem

https://oreil.ly/4-tN6

You have time series data and want to add or change time
zone information.

Solution

Unless specified, pandas objects have no time zone. We can
add a time zone using tz during creation:

Load library

import pandas as pd

Create datetime

pd.Timestamp('2017-05-01 06:00:00', tz='Europe/London')

Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')

We can add a time zone to a previously created datetime
using tz_localize:

Create datetime

date = pd.Timestamp('2017-05-01 06:00:00')

Set time zone

date_in_london = date.tz_localize('Europe/London')

Show datetime

date_in_london

Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')

We also can convert to a different time zone:

Change time zone

date_in_london.tz_convert('Africa/Abidjan')

Timestamp('2017-05-01 05:00:00+0000', tz='Africa/Abidjan')

Finally, the pandas Series objects can apply tz_localize
and tz_convert to every element:

Create three dates

dates = pd.Series(pd.date_range('2/2/2002', periods=3, freq='M'))

Set time zone

dates.dt.tz_localize('Africa/Abidjan')

0 2002-02-28 00:00:00+00:00

1 2002-03-31 00:00:00+00:00

2 2002-04-30 00:00:00+00:00

dtype: datetime64[ns, Africa/Abidjan]

Discussion

pandas supports two sets of strings representing
timezones; however, I suggest using the pytz library
strings. We can see all the strings used to represent time
zones by importing all_timezones:

Load library

from pytz import all_timezones

Show two time zones

all_timezones[0:2]

['Africa/Abidjan', 'Africa/Accra']

7.3 Selecting Dates and Times

Problem

You have a vector of dates and you want to select one or
more.

Solution

Use two boolean conditions as the start and end dates:

Load library

import pandas as pd

Create data frame

dataframe = pd.DataFrame()

Create datetimes

dataframe['date'] = pd.date_range('1/1/2001', periods=100000,

freq='H')

Select observations between two datetimes

dataframe[(dataframe['date'] > '2002-1-1 01:00:00') &

 (dataframe['date'] <= '2002-1-1 04:00:00')]

date

8762 2002-01-01 02:00:00

8763 2002-01-01 03:00:00

8764 2002-01-01 04:00:00

Alternatively, we can set the date column as the
DataFrame’s index and then slice using loc:

Set index

dataframe = dataframe.set_index(dataframe['date'])

Select observations between two datetimes

dataframe.loc['2002-1-1 01:00:00':'2002-1-1 04:00:00']

date date

2002-01-01 01:00:00 2002-01-01 01:00:00

2002-01-01 02:00:00 2002-01-01 02:00:00

2002-01-01 03:00:00 2002-01-01 03:00:00

2002-01-01 04:00:00 2002-01-01 04:00:00

Discussion

Whether we use boolean conditions or index slicing is
situation dependent. If we wanted to do some complex time

series manipulation, it might be worth the overhead of
setting the date column as the index of the DataFrame, but
if we wanted to do some simple data wrangling, the
boolean conditions might be easier.

7.4 Breaking Up Date Data into

Multiple Features

Problem

You have a column of dates and times and you want to
create features for year, month, day, hour, and minute.

Solution

Use the time properties in pandas Series.dt:

Load library

import pandas as pd

Create data frame

dataframe = pd.DataFrame()

Create five dates

dataframe['date'] = pd.date_range('1/1/2001', periods=150,

freq='W')

Create features for year, month, day, hour, and minute

dataframe['year'] = dataframe['date'].dt.year

dataframe['month'] = dataframe['date'].dt.month

dataframe['day'] = dataframe['date'].dt.day

dataframe['hour'] = dataframe['date'].dt.hour

dataframe['minute'] = dataframe['date'].dt.minute

Show three rows

dataframe.head(3)

date year month day

0 2001-01-07 2001 1 7

1 2001-01-14 2001 1 14

2 2001-01-21 2001 1 21

Discussion

Sometimes it can be useful to break up a column of dates
into components. For example, we might want a feature
that includes just the year of the observation or we might
want to consider only the month of some observations so
we can compare them regardless of year.

7.5 Calculating the Difference

Between Dates

Problem

You have two datetime features and want to calculate the
time between them for each observation.

Solution

Subtract the two date features using pandas:

Load library

import pandas as pd

Create data frame

dataframe = pd.DataFrame()

Create two datetime features

dataframe['Arrived'] = [pd.Timestamp('01-01-2017'),

pd.Timestamp('01-04-2017')]

dataframe['Left'] = [pd.Timestamp('01-01-2017'),

pd.Timestamp('01-06-2017')]

Calculate duration between features

dataframe['Left'] - dataframe['Arrived']

0 0 days

1 2 days

dtype: timedelta64[ns]

Often we will want to remove the days output and keep
only the numerical value:

Calculate duration between features

pd.Series(delta.days for delta in (dataframe['Left'] -

dataframe['Arrived']))

0 0

1 2

dtype: int64

Discussion

There are times when the feature we want is the change
(delta) between two points in time. For example, we might
have the dates a customer checks in and checks out of a
hotel, but the feature we want is the duration of the
customer’s stay. pandas makes this calculation easy using
the TimeDelta data type.

See Also

pandas documentation: Time Deltas

7.6 Encoding Days of the Week

Problem

https://oreil.ly/fbgp-

You have a vector of dates and want to know the day of the
week for each date.

Solution

Use the pandas Series.dt method day_name():

Load library

import pandas as pd

Create dates

dates = pd.Series(pd.date_range("2/2/2002", periods=3, freq="M"))

Show days of the week

dates.dt.day_name()

0 Thursday

1 Sunday

2 Tuesday

dtype: object

If we want the output to be a numerical value and therefore
more usable as a machine learning feature, we can use
weekday where the days of the week are represented as
integers (Monday is 0):

Show days of the week

dates.dt.weekday

0 3

1 6

2 1

dtype: int64

Discussion

Knowing the weekday can be helpful if, for instance, we
wanted to compare total sales on Sundays for the past
three years. pandas makes creating a feature vector
containing weekday information easy.

See Also

pandas Series datetimelike properties

7.7 Creating a Lagged Feature

Problem

You want to create a feature that is lagged n time periods.

Solution

Use the pandas shift method:

Load library

import pandas as pd

Create data frame

dataframe = pd.DataFrame()

Create data

dataframe["dates"] = pd.date_range("1/1/2001", periods=5,

freq="D")

dataframe["stock_price"] = [1.1,2.2,3.3,4.4,5.5]

Lagged values by one row

dataframe["previous_days_stock_price"] =

dataframe["stock_price"].shift(1)

Show data frame

dataframe

https://oreil.ly/3Au86

dates stock_price previous_days_s

0 2001-01-01 1.1 NaN

1 2001-01-02 2.2 1.1

2 2001-01-03 3.3 2.2

3 2001-01-04 4.4 3.3

4 2001-01-05 5.5 4.4

Discussion

Very often data is based on regularly spaced time periods
(e.g., every day, every hour, every three hours) and we are
interested in using values in the past to make predictions
(often called lagging a feature). For example, we might
want to predict a stock’s price using the price it was the
day before. With pandas we can use shift to lag values by
one row, creating a new feature containing past values.
In our solution, the first row for
previous_days_stock_price is a missing value because
there is no previous stock_price value.

7.8 Using Rolling Time Windows

Problem

Given time series data, you want to calculate a statistic for
a rolling time.

Solution

Use the pandas DataFrame rolling method:

Load library

import pandas as pd

Create datetimes

time_index = pd.date_range("01/01/2010", periods=5, freq="M")

Create data frame, set index

dataframe = pd.DataFrame(index=time_index)

Create feature

dataframe["Stock_Price"] = [1,2,3,4,5]

Calculate rolling mean

dataframe.rolling(window=2).mean()

Stock_Price

2010-01-31 NaN

2010-02-28 1.5

2010-03-31 2.5

2010-04-30 3.5

2010-05-31 4.5

Discussion

Rolling (also called moving) time windows are conceptually
simple but can be difficult to understand at first. Imagine
we have monthly observations for a stock’s price. It is often
useful to have a time window of a certain number of
months and then move over the observations calculating a
statistic for all observations in the time window.

For example, if we have a time window of three months and
we want a rolling mean, we would calculate:

1. mean(January, February, March)

2. mean(February, March, April)

3. mean(March, April, May)

4. etc.

Another way to put it: our three-month time window
“walks” over the observations, calculating the window’s
mean at each step.
The pandas rolling method allows us to specify the size of
the window by using window and then quickly calculate
some common statistics, including the max value (max()),
mean value (mean()), count of values (count()), and rolling
correlation (corr()).
Rolling means are often used to smooth time series data
because using the mean of the entire time window
dampens the effect of short-term fluctuations.

See Also

pandas documentation: Rolling Windows

What Are Moving Average or Smoothing Techniques?

7.9 Handling Missing Data in Time

Series

Problem

You have missing values in time series data.

https://oreil.ly/a5gZQ
https://oreil.ly/aoOSe

Solution

In addition to the missing data strategies previously
discussed, when we have time series data we can use
interpolation to fill gaps caused by missing values:

Load libraries

import pandas as pd

import numpy as np

Create date

time_index = pd.date_range("01/01/2010", periods=5, freq="M")

Create data frame, set index

dataframe = pd.DataFrame(index=time_index)

Create feature with a gap of missing values

dataframe["Sales"] = [1.0,2.0,np.nan,np.nan,5.0]

Interpolate missing values

dataframe.interpolate()

Sales

2010-01-31 1.0

2010-02-28 2.0

2010-03-31 3.0

2010-04-30 4.0

2010-05-31 5.0

Alternatively, we can replace missing values with the last
known value (i.e., forward filling):

Forward fill

dataframe.ffill()

Sales

2010-01-31 1.0

2010-02-28 2.0

2010-03-31 2.0

2010-04-30 2.0

2010-05-31 5.0

We can also replace missing values with the latest known
value (i.e., backfilling):

Backfill

dataframe.bfill()

Sales

2010-01-31 1.0

2010-02-28 2.0

2010-03-31 5.0

2010-04-30 5.0

2010-05-31 5.0

Discussion

Interpolation is a technique for filling gaps caused by
missing values by, in effect, drawing a line or curve
between the known values bordering the gap and using

that line or curve to predict reasonable values.
Interpolation can be particularly useful when the time
intervals are constant, the data is not prone to noisy
fluctuations, and the gaps caused by missing values are
small. For example, in our solution, a gap of two missing
values was bordered by 2.0 and 5.0. By fitting a line
starting at 2.0 and ending at 5.0, we can make reasonable
guesses for the two missing values between 3.0 and 4.0.
If we believe the line between the two known points is
nonlinear, we can use interpolate’s method parameter to
specify the interpolation method:

Interpolate missing values

dataframe.interpolate(method="quadratic")

Sales

2010-01-31 1.000000

2010-02-28 2.000000

2010-03-31 3.059808

2010-04-30 4.038069

2010-05-31 5.000000

Finally, we may have large gaps of missing values but do
not want to interpolate values across the entire gap. In
these cases we can use limit to restrict the number of
interpolated values and limit_direction to set whether to
interpolate values forward from the last known value
before the gap or vice versa:

Interpolate missing values

dataframe.interpolate(limit=1, limit_direction="forward")

Sales

2010-01-31 1.0

2010-02-28 2.0

2010-03-31 3.0

2010-04-30 NaN

2010-05-31 5.0

Backfilling and forward filling are forms of naive
interpolation, where we draw a flat line from a known value
and use it to fill in missing values. One (minor) advantage
back filling and forward filling have over interpolation is
that they don’t require known values on both sides of
missing values.

Chapter 8. Handling

Images

8.0 Introduction

Image classification is one of the most exciting areas of
machine learning. The ability of computers to recognize
patterns and objects from images is an incredibly powerful
tool in our toolkit. However, before we can apply machine
learning to images, we often first need to transform the raw
images to features usable by our learning algorithms. As
with textual data, there are also many pretrained classifiers
available for images that we can use to extract features or
objects of interest to use as inputs to our own models.
To work with images, we will primarily use the Open
Source Computer Vision Library (OpenCV). While there are
a number of good libraries out there, OpenCV is the most
popular and well-documented library for handling images.
It can occasionally be challenging to install, but if you run
into issues, there are many guides online. This book in
particular was written with opencv-python-
headless==4.7.0.68. You can also run these chapters with
the ML in Python Cookbook Runner to ensure all
commands are reproducible.
Throughout this chapter, we will use as examples a set of
images, which is available to download from GitHub.

8.1 Loading Images

https://oreil.ly/MLwPython
https://oreil.ly/gV5Zc

Problem

You want to load an image for preprocessing.

Solution

Use OpenCV’s imread:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image = cv2.imread("images/plane.jpg", cv2.IMREAD_GRAYSCALE)

If we want to view the image, we can use the Python
plotting library Matplotlib:

Show image

plt.imshow(image, cmap="gray"), plt.axis("off")

plt.show()

Discussion

Fundamentally, images are data, and when we use imread,
we convert that data into a data type we are very familiar
with— a NumPy array:

Show data type

type(image)

numpy.ndarray

We have transformed the image into a matrix whose
elements correspond to individual pixels. We can even take
a look at the actual values of the matrix:

Show image data

image

array([[140, 136, 146, ..., 132, 139, 134],

 [144, 136, 149, ..., 142, 124, 126],

 [152, 139, 144, ..., 121, 127, 134],

 ...,

 [156, 146, 144, ..., 157, 154, 151],

 [146, 150, 147, ..., 156, 158, 157],

 [143, 138, 147, ..., 156, 157, 157]], dtype=uint8)

The resolution of our image is 3600 × 2270, the exact
dimensions of our matrix:

Show dimensions

image.shape

(2270, 3600)

What does each element in the matrix actually represent?
In grayscale images, the value of an individual element is
the pixel intensity. Intensity values range from black (0) to
white (255). For example, the intensity of the top leftmost
pixel in our image has a value of 140:

Show first pixel

image[0,0]

140

In a matrix representing a color image, each element
actually contains three values corresponding to blue,
green, and red values, respectively (BGR):

Load image in color

image_bgr = cv2.imread("images/plane.jpg", cv2.IMREAD_COLOR)

Show pixel

image_bgr[0,0]

array([195, 144, 111], dtype=uint8)

One small caveat: by default OpenCV uses BGR, but many
image applications— including Matplotlib— use red, green,
blue (RGB), meaning the red and the blue values are
swapped. To properly display OpenCV color images in
Matplotlib, we first need to convert the color to RGB
(apologies to hardcopy readers for whom there are no color
images):

Convert to RGB

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Show image

plt.imshow(image_rgb), plt.axis("off")

plt.show()

See Also

Difference Between RGB and BGR

RGB color model, Wikipedia

https://oreil.ly/N1Ub6
https://oreil.ly/OEesQ

8.2 Saving Images

Problem

You want to save an image for preprocessing.

Solution

Use OpenCV’s imwrite:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image = cv2.imread("images/plane.jpg", cv2.IMREAD_GRAYSCALE)

Save image

cv2.imwrite("images/plane_new.jpg", image)

True

Discussion

OpenCV’s imwrite saves images to the filepath specified.
The format of the image is defined by the filename’s
extension (.jpg, .png, etc.). One behavior to be careful
about: imwrite will overwrite existing files without
outputting an error or asking for confirmation.

8.3 Resizing Images

Problem

You want to resize an image for further preprocessing.

Solution

Use resize to change the size of an image:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Resize image to 50 pixels by 50 pixels

image_50x50 = cv2.resize(image, (50, 50))

View image

plt.imshow(image_50x50, cmap="gray"), plt.axis("off")

plt.show()

Discussion

Resizing images is a common task in image preprocessing
for two reasons. First, images come in all shapes and sizes,
and to be usable as features, images must have the same
dimensions. Standardizing (resizing) images does come at
the cost of losing some information present in the larger
image, as can be seen in the picture of the airplane. Images
are matrices of information, and when we reduce the size
of the image, we are reducing the size of that matrix and

the information it contains. Second, machine learning can
require thousands or hundreds of thousands of images.
When those images are very large they can take up a lot of
memory, and by resizing them we can dramatically reduce
memory usage. Some common image sizes for machine
learning are 32 × 32, 64 × 64, 96 × 96, and 256 × 256. In
essence, the method we choose for image resizing will
often be a tradeoff between the statistical performance of
our model and computational cost to train it. The Pillow
library offers many options for resizing images for this
reason.

8.4 Cropping Images

Problem

You want to remove the outer portion of the image to
change its dimensions.

Solution

The image is encoded as a two-dimensional NumPy array,
so we can crop the image easily by slicing the array:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image in grayscale

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Select first half of the columns and all rows

image_cropped = image[:,:128]

Show image

https://oreil.ly/NiJn_

plt.imshow(image_cropped, cmap="gray"), plt.axis("off")

plt.show()

Discussion

Since OpenCV represents images as a matrix of elements,
by selecting the rows and columns we want to keep we can
easily crop the image. Cropping can be particularly useful if
we know that we want to keep only a certain part of every
image. For example, if our images come from a stationary
security camera we can crop all the images so they contain
only the area of interest.

See Also

Slicing NumPy Arrays

8.5 Blurring Images

Problem

You want to smooth out an image.

Solution

https://oreil.ly/8JN5p

To blur an image, each pixel is transformed to be the
average value of its neighbors. This neighbor and the
operation performed are mathematically represented as a
kernel (don’t worry if you don’t know what a kernel is). The
size of this kernel determines the amount of blurring, with
larger kernels producing smoother images. Here we blur
an image by averaging the values of a 5 × 5 kernel around
each pixel:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Blur image

image_blurry = cv2.blur(image, (5,5))

Show image

plt.imshow(image_blurry, cmap="gray"), plt.axis("off")

plt.show()

To highlight the effect of kernel size, here is the same
blurring with a 100 × 100 kernel:

Blur image

image_very_blurry = cv2.blur(image, (100,100))

Show image

plt.imshow(image_very_blurry, cmap="gray"), plt.xticks([]),

plt.yticks([])

plt.show()

Discussion

Kernels are widely used in image processing to do
everything from sharpening to edge detection and will
come up repeatedly in this chapter. The blurring kernel we
used looks like this:

Create kernel

kernel = np.ones((5,5)) / 25.0

Show kernel

kernel

array([[0.04, 0.04, 0.04, 0.04, 0.04],

 [0.04, 0.04, 0.04, 0.04, 0.04],

 [0.04, 0.04, 0.04, 0.04, 0.04],

 [0.04, 0.04, 0.04, 0.04, 0.04],

 [0.04, 0.04, 0.04, 0.04, 0.04]])

The center element in the kernel is the pixel being
examined, while the remaining elements are its neighbors.
Since all elements have the same value (normalized to add

up to 1), each has an equal say in the resulting value of the
pixel of interest. We can manually apply a kernel to an
image using filter2D to produce a similar blurring effect:

Apply kernel

image_kernel = cv2.filter2D(image, -1, kernel)

Show image

plt.imshow(image_kernel, cmap="gray"), plt.xticks([]),

plt.yticks([])

plt.show()

See Also

Image Kernels Explained Visually

Kernel (image processing), Wikipedia

8.6 Sharpening Images

Problem

You want to sharpen an image.

Solution

https://oreil.ly/9yvdg
https://oreil.ly/ByREC

Create a kernel that highlights the target pixel. Then apply
it to the image using filter2D:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Create kernel

kernel = np.array([[0, -1, 0],

 [-1, 5,-1],

 [0, -1, 0]])

Sharpen image

image_sharp = cv2.filter2D(image, -1, kernel)

Show image

plt.imshow(image_sharp, cmap="gray"), plt.axis("off")

plt.show()

Discussion

Sharpening works similarly to blurring, except instead of
using a kernel to average the neighboring values, we
constructed a kernel to highlight the pixel itself. The
resulting effect makes contrasts in edges stand out more.

8.7 Enhancing Contrast

Problem

We want to increase the contrast between pixels in an
image.

Solution

Histogram equalization is a tool for image processing that
can make objects and shapes stand out. When we have a
grayscale image, we can apply OpenCV’s equalizeHist
directly on the image:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Enhance image

image_enhanced = cv2.equalizeHist(image)

Show image

plt.imshow(image_enhanced, cmap="gray"), plt.axis("off")

plt.show()

However, when we have a color image, we first need to
convert the image to the YUV color format. The Y is the
luma, or brightness, and U and V denote the color. After
the conversion, we can apply equalizeHist to the image
and then convert it back to BGR or RGB (apologies to
hardcopy readers for whom there are no color images):

Load image

image_bgr = cv2.imread("images/plane.jpg")

Convert to YUV

image_yuv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2YUV)

Apply histogram equalization

image_yuv[:, :, 0] = cv2.equalizeHist(image_yuv[:, :, 0])

Convert to RGB

image_rgb = cv2.cvtColor(image_yuv, cv2.COLOR_YUV2RGB)

Show image

plt.imshow(image_rgb), plt.axis("off")

plt.show()

Discussion

While a detailed explanation of how histogram equalization
works is beyond the scope of this book, the short
explanation is that it transforms the image so that it uses a
wider range of pixel intensities.
While the resulting image often does not look “realistic,”
we need to remember that the image is just a visual
representation of the underlying data. If histogram
equalization is able to make objects of interest more
distinguishable from other objects or backgrounds (which
is not always the case), then it can be a valuable addition to
our image preprocessing pipeline.

8.8 Isolating Colors

Problem

You want to isolate a color in an image.

Solution

Define a range of colors and then apply a mask to the
image (apologies to hardcopy readers for whom there are

no color images):

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image

image_bgr = cv2.imread('images/plane_256x256.jpg')

Convert BGR to HSV

image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)

Define range of blue values in HSV

lower_blue = np.array([50,100,50])

upper_blue = np.array([130,255,255])

Create mask

mask = cv2.inRange(image_hsv, lower_blue, upper_blue)

Mask image

image_bgr_masked = cv2.bitwise_and(image_bgr, image_bgr,

mask=mask)

Convert BGR to RGB

image_rgb = cv2.cvtColor(image_bgr_masked, cv2.COLOR_BGR2RGB)

Show image

plt.imshow(image_rgb), plt.axis("off")

plt.show()

Discussion

Isolating colors in OpenCV is straightforward. First we
convert an image into HSV (hue, saturation, and value).
Second, we define a range of values we want to isolate,
which is probably the most difficult and time-consuming
part. Third, we create a mask for the image. Image masking
is a common technique meant to extract regions of interest.
In this case, our mask keeps only the white areas:

Show image

plt.imshow(mask, cmap='gray'), plt.axis("off")

plt.show()

Finally, we apply the mask to the image using bitwise_and
and convert to our desired output format.

8.9 Binarizing Images

Problem

Given an image, you want to output a simplified version.

Solution

Thresholding is the process of setting pixels with intensity
greater than some value to be white and less than the value

to be black. A more advanced technique is adaptive

thresholding, where the threshold value for a pixel is
determined by the pixel intensities of its neighbors. This
can be helpful when lighting conditions change over
different regions in an image:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image_grey = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Apply adaptive thresholding

max_output_value = 255

neighborhood_size = 99

subtract_from_mean = 10

image_binarized = cv2.adaptiveThreshold(image_grey,

 max_output_value,

cv2.ADAPTIVE_THRESH_GAUSSIAN_C,

 cv2.THRESH_BINARY,

 neighborhood_size,

 subtract_from_mean)

Show image

plt.imshow(image_binarized, cmap="gray"), plt.axis("off")

plt.show()

Discussion

The process of binarizing an image involves converting a
greyscale image to its black and white form. Our solution
has four important arguments in adaptiveThreshold.
max_output_value simply determines the maximum
intensity of the output pixel intensities.
cv2.ADAPTIVE_THRESH_GAUSSIAN_C sets a pixel’s threshold
to be a weighted sum of the neighboring pixel intensities.
The weights are determined by a Gaussian window.
Alternatively, we could set the threshold to simply the
mean of the neighboring pixels with
cv2.ADAPTIVE_THRESH_MEAN_C:

Apply cv2.ADAPTIVE_THRESH_MEAN_C

image_mean_threshold = cv2.adaptiveThreshold(image_grey,

 max_output_value,

cv2.ADAPTIVE_THRESH_MEAN_C,

 cv2.THRESH_BINARY,

 neighborhood_size,

 subtract_from_mean)

Show image

plt.imshow(image_mean_threshold, cmap="gray"), plt.axis("off")

plt.show()

The last two parameters are the block size (the size of the
neighborhood used to determine a pixel’s threshold) and a
constant subtracted from the calculated threshold (used to
manually fine-tune the threshold).

A major benefit of thresholding is denoising an image—
keeping only the most important elements. For example,
thresholding is often applied to photos of printed text to
isolate the letters from the page.

8.10 Removing Backgrounds

Problem

You want to isolate the foreground of an image.

Solution

Mark a rectangle around the desired foreground, then run
the GrabCut algorithm:

Load library

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image and convert to RGB

image_bgr = cv2.imread('images/plane_256x256.jpg')

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Rectangle values: start x, start y, width, height

rectangle = (0, 56, 256, 150)

Create initial mask

mask = np.zeros(image_rgb.shape[:2], np.uint8)

Create temporary arrays used by grabCut

bgdModel = np.zeros((1, 65), np.float64)

fgdModel = np.zeros((1, 65), np.float64)

Run grabCut

cv2.grabCut(image_rgb, # Our image

 mask, # The Mask

 rectangle, # Our rectangle

 bgdModel, # Temporary array for background

 fgdModel, # Temporary array for background

 5, # Number of iterations

 cv2.GC_INIT_WITH_RECT) # Initiative using our

rectangle

Create mask where sure and likely backgrounds set to 0,

otherwise 1

mask_2 = np.where((mask==2) | (mask==0), 0, 1).astype('uint8')

Multiply image with new mask to subtract background

image_rgb_nobg = image_rgb * mask_2[:, :, np.newaxis]

Show image

plt.imshow(image_rgb_nobg), plt.axis("off")

plt.show()

Discussion

The first thing we notice is that even though GrabCut did a
pretty good job, there are still areas of background left in
the image. We could go back and manually mark those
areas as background, but in the real world we have
thousands of images and manually fixing them individually
is not feasible. Therefore, we would do well by simply
accepting that the image data will still contain some
background noise.
In our solution, we start by marking a rectangle around the
area that contains the foreground. GrabCut assumes
everything outside this rectangle to be background and

uses that information to figure out what is likely
background inside the square. (To learn how the algorithm
does this, see this explanation from Itay Blumenthal.) Then
a mask is created that denotes the different definitely/likely
background/foreground regions:

Show mask

plt.imshow(mask, cmap='gray'), plt.axis("off")

plt.show()

The black region is the area outside our rectangle that is
assumed to be definitely background. The gray area is what
GrabCut considered likely background, while the white
area is likely foreground.
This mask is then used to create a second mask that
merges the black and gray regions:

Show mask

plt.imshow(mask_2, cmap='gray'), plt.axis("off")

plt.show()

https://oreil.ly/DTGwb

The second mask is then applied to the image so that only
the foreground remains.

8.11 Detecting Edges

Problem

You want to find the edges in an image.

Solution

Use an edge detection technique like the Canny edge
detector:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

image_gray = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Calculate median intensity

median_intensity = np.median(image_gray)

Set thresholds to be one standard deviation above and below

median intensity

lower_threshold = int(max(0, (1.0 - 0.33) * median_intensity))

upper_threshold = int(min(255, (1.0 + 0.33) * median_intensity))

Apply Canny edge detector

image_canny = cv2.Canny(image_gray, lower_threshold,

upper_threshold)

Show image

plt.imshow(image_canny, cmap="gray"), plt.axis("off")

plt.show()

Discussion

Edge detection is a major topic of interest in computer
vision. Edges are important because they are areas of high
information. For example, in our image one patch of sky
looks very much like another and is unlikely to contain
unique or interesting information. However, patches where
the background sky meets the airplane contain a lot of
information (e.g., an object’s shape). Edge detection allows
us to remove low-information areas and isolate the areas of
images containing the most information.
There are many edge detection techniques (Sobel filters,
Laplacian edge detector, etc.). However, our solution uses
the commonly used Canny edge detector. How the Canny
detector works is too detailed for this book, but there is one
point that we need to address. The Canny detector requires

two parameters denoting low and high gradient threshold
values. Potential edge pixels between the low and high
thresholds are considered weak edge pixels, while those
above the high threshold are considered strong edge pixels.
OpenCV’s Canny method includes the low and high
thresholds as required parameters. In our solution, we set
the lower and upper thresholds to be one standard
deviation below and above the image’s median pixel
intensity. However, we often get better results if we
determine a good pair of low and high threshold values
through manual trial and error on a few images before
running Canny on our entire collection of images.

See Also

Canny Edge Detector, Wikipedia

Canny Edge Detection Auto Thresholding

8.12 Detecting Corners

Problem

You want to detect the corners in an image.

Solution

Use OpenCV’s implementation of the Harris corner
detector, cornerHarris:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image

https://oreil.ly/gG9xo
https://oreil.ly/YvjM5

image_bgr = cv2.imread("images/plane_256x256.jpg")

image_gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)

image_gray = np.float32(image_gray)

Set corner detector parameters

block_size = 2

aperture = 29

free_parameter = 0.04

Detect corners

detector_responses = cv2.cornerHarris(image_gray,

 block_size,

 aperture,

 free_parameter)

Large corner markers

detector_responses = cv2.dilate(detector_responses, None)

Only keep detector responses greater than threshold, mark as

white

threshold = 0.02

image_bgr[detector_responses >

 threshold *

 detector_responses.max()] = [255,255,255]

Convert to grayscale

image_gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)

Show image

plt.imshow(image_gray, cmap="gray"), plt.axis("off")

plt.show()

Discussion

The Harris corner detector is a commonly used method of
detecting the intersection of two edges. Our interest in
detecting corners is motivated by the same reason as for
detecting edges: corners are points of high information. A
complete explanation of the Harris corner detector is
available in the external resources at the end of this recipe,
but a simplified explanation is that it looks for windows
(also called neighborhoods or patches) where small
movements of the window (imagine shaking the window)
create big changes in the contents of the pixels inside the
window. cornerHarris contains three important
parameters that we can use to control the edges detected.
First, block_size is the size of the neighbor around each
pixel used for corner detection. Second, aperture is the
size of the Sobel kernel used (don’t worry if you don’t know
what that is), and finally there is a free parameter where
larger values correspond to identifying softer corners.
The output is a grayscale image depicting potential
corners:

Show potential corners

plt.imshow(detector_responses, cmap='gray'), plt.axis("off")

plt.show()

We then apply thresholding to keep only the most likely
corners. Alternatively, we can use a similar detector, the
Shi-Tomasi corner detector, which works in a similar way
to the Harris detector (goodFeaturesToTrack) to identify a
fixed number of strong corners. goodFeaturesToTrack
takes three major parameters— the number of corners to
detect, the minimum quality of the corner (0 to 1), and the
minimum Euclidean distance between corners:

Load images

image_bgr = cv2.imread('images/plane_256x256.jpg')

image_gray = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)

Number of corners to detect

corners_to_detect = 10

minimum_quality_score = 0.05

minimum_distance = 25

Detect corners

corners = cv2.goodFeaturesToTrack(image_gray,

 corners_to_detect,

 minimum_quality_score,

 minimum_distance)

corners = np.int16(corners)

Draw white circle at each corner

for corner in corners:

 x, y = corner[0]

 cv2.circle(image_bgr, (x,y), 10, (255,255,255), -1)

Convert to grayscale

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2GRAY)

Show image

plt.imshow(image_rgb, cmap='gray'), plt.axis("off")

plt.show()

See Also

OpenCV’s cornerHarris

OpenCV’s goodFeaturesToTrack

8.13 Creating Features for Machine

Learning

Problem

You want to convert an image into an observation for
machine learning.

Solution

Use NumPy’s flatten to convert the multidimensional
array containing image data into a vector containing the
observation’s values:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

Load image as grayscale

https://oreil.ly/vLMBj
https://oreil.ly/Ra-x6

image = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Resize image to 10 pixels by 10 pixels

image_10x10 = cv2.resize(image, (10, 10))

Convert image data to one-dimensional vector

image_10x10.flatten()

array([133, 130, 130, 129, 130, 129, 129, 128, 128, 127, 135,

131, 131,

 131, 130, 130, 129, 128, 128, 128, 134, 132, 131, 131,

130, 129,

 129, 128, 130, 133, 132, 158, 130, 133, 130, 46, 97,

26, 132,

 143, 141, 36, 54, 91, 9, 9, 49, 144, 179, 41,

142, 95,

 32, 36, 29, 43, 113, 141, 179, 187, 141, 124, 26,

25, 132,

 135, 151, 175, 174, 184, 143, 151, 38, 133, 134, 139,

174, 177,

 169, 174, 155, 141, 135, 137, 137, 152, 169, 168, 168,

179, 152,

 139, 136, 135, 137, 143, 159, 166, 171, 175], dtype=uint8)

Discussion

Images are presented as a grid of pixels. If an image is in
grayscale, each pixel is presented by one value (i.e., pixel
intensity is 1 if white, 0 if black). For example, imagine we
have a 10 × 10–pixel image:

plt.imshow(image_10x10, cmap="gray"), plt.axis("off")

plt.show()

In this case, the dimensions of the image’s data will be 10 ×
10:

image_10x10.shape

(10, 10)

And if we flatten the array, we get a vector of length 100
(10 multiplied by 10):

image_10x10.flatten().shape

(100,)

This is the feature data for our image that can be joined
with the vectors from other images to create the data we
will feed to our machine learning algorithms.
If the image is in color, instead of each pixel being
represented by one value, it is represented by multiple
values (most often three) representing the channels (red,
green, blue, etc.) that blend to make the final color of that
pixel. For this reason, if our 10 × 10 image is in color, we
will have 300 feature values for each observation:

Load image in color

image_color = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_COLOR)

Resize image to 10 pixels by 10 pixels

image_color_10x10 = cv2.resize(image_color, (10, 10))

Convert image data to one-dimensional vector, show dimensions

image_color_10x10.flatten().shape

(300,)

One of the major challenges of image processing and
computer vision is that since every pixel location in a
collection of images is a feature, as the images get larger,
the number of features explodes:

Load image in grayscale

image_256x256_gray = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_GRAYSCALE)

Convert image data to one-dimensional vector, show dimensions

image_256x256_gray.flatten().shape

(65536,)

And the number of features grows even larger when the
image is in color:

Load image in color

image_256x256_color = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_COLOR)

Convert image data to one-dimensional vector, show dimensions

image_256x256_color.flatten().shape

(196608,)

As the output shows, even a small color image has almost
200,000 features, which can cause problems when we are
training our models because the number of features might
far exceed the number of observations.
This problem will motivate dimensionality strategies
discussed in a later chapter, which attempt to reduce the
number of features while not losing an excessive amount of
information contained in the data.

8.14 Encoding Color Histograms as

Features

Problem

You want to create a set of features representing the colors
appearing in an image.

Solution

Compute the histograms for each color channel:

Load libraries

import cv2

import numpy as np

from matplotlib import pyplot as plt

np.random.seed(0)

Load image

image_bgr = cv2.imread("images/plane_256x256.jpg",

cv2.IMREAD_COLOR)

Convert to RGB

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Create a list for feature values

features = []

Calculate the histogram for each color channel

colors = ("r","g","b")

For each channel: calculate histogram and add to feature value

list

for i, channel in enumerate(colors):

 histogram = cv2.calcHist([image_rgb], # Image

 [i], # Index of channel

 None, # No mask

 [256], # Histogram size

 [0,256]) # Range

 features.extend(histogram)

Create a vector for an observation's feature values

observation = np.array(features).flatten()

Show the observation's value for the first five features

observation[0:5]

array([1008., 217., 184., 165., 116.], dtype=float32)

Discussion

In the RGB color model, each color is the combination of
three color channels (i.e., red, green, blue). In turn, each
channel can take on one of 256 values (represented by an
integer between 0 and 255). For example, the top leftmost
pixel in our image has the following channel values:

Show RGB channel values

image_rgb[0,0]

array([107, 163, 212], dtype=uint8)

A histogram is a representation of the distribution of values
in data. Here’s a simple example:

Import pandas

import pandas as pd

Create some data

data = pd.Series([1, 1, 2, 2, 3, 3, 3, 4, 5])

Show the histogram

data.hist(grid=False)

plt.show()

In this example, we have some data with two 1s, two 2s,
three 3s, one 4, and one 5. In the histogram, each bar
represents the number of times each value (1, 2, etc.)
appears in our data.
We can apply this same technique to each of the color
channels, but instead of five possible values, we have 256
(the number of possible values for a channel value). The x-
axis represents the 256 possible channel values, and the y-
axis represents the number of times a particular channel
value appears across all pixels in an image (apologies to
hardcopy readers for whom there are no color images):

Calculate the histogram for each color channel

colors = ("r","g","b")

For each channel: calculate histogram, make plot

for i, channel in enumerate(colors):

 histogram = cv2.calcHist([image_rgb], # Image

 [i], # Index of channel

 None, # No mask

 [256], # Histogram size

 [0,256]) # Range

 plt.plot(histogram, color = channel)

 plt.xlim([0,256])

Show plot

plt.show()

As we can see in the histogram, barely any pixels contain
the blue channel values between 0 and ~180, while many
pixels contain blue channel values between ~190 and
~210. This distribution of channel values is shown for all
three channels. The histogram, however, is not simply a
visualization; it has 256 features for each color channel,
making for 768 total features representing the distribution
of colors in an image.

See Also

Histogram, Wikipedia

pandas documentation: Histogram

OpenCV tutorial: Histogram

8.15 Using Pretrained Embeddings as

Features

Problem

You want to load pretrained embeddings from an existing
model in PyTorch and use them as input to one of your own
models.

Solution

Use torchvision.models to select a model and then
retrieve an embedding from it for a given image:

Load libraries

import cv2

import numpy as np

import torch

from torchvision import transforms

import torchvision.models as models

Load image

image_bgr = cv2.imread("images/plane.jpg", cv2.IMREAD_COLOR)

Convert to pytorch data type

convert_tensor = transforms.ToTensor()

pytorch_image = convert_tensor(np.array(image_rgb))

Load the pretrained model

model = models.resnet18(pretrained=True)

Select the specific layer of the model we want output from

layer = model._modules.get('avgpool')

https://oreil.ly/nPbJT
https://oreil.ly/h60M5
https://oreil.ly/BuX1C

Set model to evaluation mode

model.eval()

Infer the embedding with the no_grad option

with torch.no_grad():

 embedding = model(pytorch_image.unsqueeze(0))

print(embedding.shape)

torch.Size([1, 1000])

Discussion

In the ML space, transfer learning is often defined as
taking information learned from one task and using it as
input to another task. Instead of starting from zero, we can
use representations already learned from large pretrained
image models (such as ResNet) to get a head start on our
own machine learning models. More intuitively, you can
understand how we could use the weights of a model
trained to recognize cats as a good start for a model we
want to train to recognize dogs. By sharing information
form one model to another, we can leverage the
information learned from other datasets and model
architectures without the overhead of training a model
from scratch.
The entire application of transfer learning in computer
vision is outside the scope of this book; however, there are
many different ways we can extract embeddings-based
representations of images outside of PyTorch. In
TensorFlow, another common library for deep learning, we
can use tensorflow_hub:

Load libraries

import cv2

import tensorflow as tf

import tensorflow_hub as hub

Load image

image_bgr = cv2.imread("images/plane.jpg", cv2.IMREAD_COLOR)

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Convert to tensorflow data type

tf_image = tf.image.convert_image_dtype([image_rgb], tf.float32)

Create the model and get embeddings using the inception V1

model

embedding_model = hub.KerasLayer(

"https://tfhub.dev/google/imagenet/inception_v1/feature_vector/5"

)

embeddings = embedding_model(tf_image)

Print the shape of the embedding

print(embeddings.shape)

(1, 1024)

See Also

PyTorch tutorial: Transfer Learning for Computer
Vision

TensorFlow Hub

8.16 Detecting Objects with OpenCV

Problem

You want to detect objects in images using pretrained
cascade classifiers with OpenCV.

Solution

Download and run one of OpenCV’s Haar cascade
classifiers. In this case, we use a pretrained face detection
model to detect and draw a rectangle around a face in an
image:

https://oreil.ly/R8RTk
https://oreil.ly/iwHI6
https://oreil.ly/XlXbm

Import libraries

import cv2

from matplotlib import pyplot as plt

first run:

mkdir models && cd models

wget https://tinyurl.com/mrc6jwhp

face_cascade = cv2.CascadeClassifier()

face_cascade.load(

 cv2.samples.findFile(

 "models/haarcascade_frontalface_default.xml"

)

)

Load image

image_bgr = cv2.imread("images/kyle_pic.jpg", cv2.IMREAD_COLOR)

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Detect faces and draw a rectangle

faces = face_cascade.detectMultiScale(image_rgb)

for (x,y,w,h) in faces:

 cv2.rectangle(image_rgb, (x, y),

 (x + h, y + w),

 (0, 255, 0), 5)

Show the image

plt.subplot(1, 1, 1)

plt.imshow(image_rgb)

plt.show()

Discussion

Haar cascade classifiers are machine learning models used
to learn a set of image features (specifically Haar features)
that can be used to detect objects in images. The features
themselves are simple rectangular features that are
determined by calculating the difference in sums between
rectangular regions. Subsequently, a gradient boosting
algorithm is applied to learn the most important features
and, finally, create a relatively strong model using
cascading classifiers.
While the details of this process are outside the scope of
this book, it’s noteworthy that these pretrained models can
be easily downloaded from places such as the OpenCV
GitHub as XML files and applied to images without training
a model yourself. This is useful in cases where you want to

https://oreil.ly/273DA

add simple binary image features such as contains_face
(or any other object) to your data.

See Also

OpenCV tutorial: Cascade Classifier

8.17 Classifying Images with Pytorch

Problem

You want to classify images using pretrained deep learning
models in Pytorch.

Solution

Use torchvision.models to select a pretrained image
classification model and feed the image through it:

Load libraries

import cv2

import json

import numpy as np

import torch

from torchvision import transforms

from torchvision.models import resnet18

import urllib.request

Get imagenet classes

with urllib.request.urlopen(

 "https://raw.githubusercontent.com/raghakot/keras-

vis/master/resources/"

):

 imagenet_class_index = json.load(url)

Instantiate pretrained model

model = resnet18(pretrained=True)

Load image

image_bgr = cv2.imread("images/plane.jpg", cv2.IMREAD_COLOR)

https://oreil.ly/dFhu6

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

Convert to pytorch data type

convert_tensor = transforms.ToTensor()

pytorch_image = convert_tensor(np.array(image_rgb))

Set model to evaluation mode

model.eval()

Make a prediction

prediction = model(pytorch_image.unsqueeze(0))

Get the index of the highest predicted probability

_, index = torch.max(prediction, 1)

Convert that to a percentage value

percentage = torch.nn.functional.softmax(prediction, dim=1)[0] *

100

Print the name of the item at the index along with the percent

confidence

print(imagenet_class_index[str(index.tolist()[0])][1],

 percentage[index.tolist()[0]].item())

airship 6.0569939613342285

Discussion

Many pretrained deep learning models for image
classification are easily available via both PyTorch and
TensorFlow. In this example, we used ResNet18, a deep
neural network architecture that was trained on the
ImageNet dataset that is 18 layers deep. Deeper ResNet
models, such as ResNet101 and ResNet152, are also
available in Pytorch—and beyond that there are many other
image models to choose from. Models trained on the
ImageNet dataset are able to output predicted probabilities
for all classes defined in the imagenet_class_index
variable in the previous code snippet, which we
downloaded from GitHub.
Like the facial recognition example in OpenCV (see Recipe
8.16), we can use the predicted image classes as

downstream features for future ML models or handy
metadata tags that add more information to our images.

See Also

PyTorch documentation: Models and Pre-trained
Weights

https://oreil.ly/MhlxR

Chapter 9. Dimensionality

Reduction Using Feature

Extraction

9.0 Introduction

It is common to have access to thousands and even
hundreds of thousands of features. For example, in
Chapter 8 we transformed a 256 × 256–pixel color image
into 196,608 features. Furthermore, because each of these
pixels can take one of 256 possible values, our observation
can take 256196608 different configurations. Many machine
learning algorithms have trouble learning from such data,
because it will never be practical to collect enough
observations for the algorithms to operate correctly. Even
in more tabular, structured datasets we can easily end up
with thousands of features after the feature engineering
process.
Fortunately, not all features are created equal, and the goal
of feature extraction for dimensionality reduction is to
transform our set of features, poriginal, such that we end up
with a new set, pnew, where poriginal > pnew, while still
keeping much of the underlying information. Put another
way, we reduce the number of features with only a small
loss in our data’s ability to generate high-quality
predictions. In this chapter, we will cover a number of
feature extraction techniques to do just this.
One downside of the feature extraction techniques we
discuss is that the new features we generate will not be

interpretable by humans. They will contain as much or
nearly as much ability to train our models but will appear
to the human eye as a collection of random numbers. If we
wanted to maintain our ability to interpret our models,
dimensionality reduction through feature selection is a
better option (and will be discussed in Chapter 10). During
feature selection we remove features we deem unimportant
but keep other features as they currently are. Although this
may not let us keep information from all features as feature
extraction does, it leaves the features we don’t drop intact
—and therefore fully interpretable by humans during
analysis.

9.1 Reducing Features Using Principal

Components

Problem

Given a set of features, you want to reduce the number of
features while retaining the variance (important
information) in the data.

Solution

Use principal component analysis with scikit’s PCA:

Load libraries

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

from sklearn import datasets

Load the data

digits = datasets.load_digits()

Standardize the feature matrix

features = StandardScaler().fit_transform(digits.data)

Create a PCA that will retain 99% of variance

pca = PCA(n_components=0.99, whiten=True)

Conduct PCA

features_pca = pca.fit_transform(features)

Show results

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_pca.shape[1])

Original number of features: 64

Reduced number of features: 54

Discussion

Principal component analysis (PCA) is a popular linear
dimensionality reduction technique. PCA projects
observations onto the (hopefully fewer) principal
components of the feature matrix that retain the most
variance in the data, which, practically, means we retain
information. PCA is an unsupervised technique, meaning
that it does not use the information from the target vector
and instead only considers the feature matrix.
For a mathematical description of how PCA works, see the
external resources listed at the end of this recipe. However,
we can understand the intuition behind PCA using a simple
example. In Figure 9-1, our data contains two features, x1

and x2. Looking at the visualization, it should be clear that
observations are spread out like a cigar, with a lot of length
and very little height. More specifically, we can say that the
variance of the “length” is significantly greater than the
“height.” Instead of length and height, we refer to the
“direction” with the most variance as the first principal
component and the “direction” with the second-most
variance as the second principal component (and so on).
If we wanted to reduce our features, one strategy would be
to project all observations in our two-dimensional space

onto the one-dimensional principal component. We would
lose the information captured in the second principal
component, but in some situations that would be an
acceptable trade-off. This is PCA.

Figure 9-1. The first and second principal components of PCA

PCA is implemented in scikit-learn using the PCA class.
n_components has two operations, depending on the
argument provided. If the argument is greater than 1, pca
will return that many features. This leads to the question of

how to select the optimal number of features. Fortunately,
if the argument to n_components is between 0 and 1, pca
returns the minimum number of features that retain that
much variance. It’s common to use values of 0.95 and 0.99,
meaning 95% and 99% of the variance of the original
features has been retained, respectively. whiten=True
transforms the values of each principal component so that
they have zero mean and unit variance. Another parameter
and argument is svd_solver="randomized", which
implements a stochastic algorithm to find the first principal
components in often significantly less time.
The output of our solution shows that PCA enables us to
reduce our dimensionality by 10 features while still
retaining 99% of the information (variance) in the feature
matrix.

See Also

scikit-learn documentation: PCA

Principal Component Analysis with Linear Algebra, Jeff
Jauregui

9.2 Reducing Features When Data Is

Linearly Inseparable

Problem

You suspect you have linearly inseparable data and want to
reduce the dimensions.

Solution

https://oreil.ly/OT_gN
https://oreil.ly/Uns61

Use an extension of principal component analysis that uses
kernels to allow for nonlinear dimensionality reduction:

Load libraries

from sklearn.decomposition import PCA, KernelPCA

from sklearn.datasets import make_circles

Create linearly inseparable data

features, _ = make_circles(n_samples=1000, random_state=1,

noise=0.1, factor=0.1)

Apply kernel PCA with radius basis function (RBF) kernel

kpca = KernelPCA(kernel="rbf", gamma=15, n_components=1)

features_kpca = kpca.fit_transform(features)

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_kpca.shape[1])

Original number of features: 2

Reduced number of features: 1

Discussion

PCA is able to reduce the dimensionality of our feature
matrix (i.e., the number of features). Standard PCA uses
linear projection to reduce the features. If the data is
linearly separable (i.e., you can draw a straight line or
hyperplane between different classes) then PCA works
well. However, if your data is not linearly separable (i.e.,
you can only separate classes using a curved decision
boundary), the linear transformation will not work as well.
In our solution we used scikit-learn’s make_circles to
generate a simulated dataset with a target vector of two
classes and two features. make_circles makes linearly
inseparable data; specifically, one class is surrounded on
all sides by the other class, as shown in Figure 9-2.

Figure 9-2. The first principal component projected on linearly inseparable data

If we used linear PCA to reduce the dimensions of our data,
the two classes would be linearly projected onto the first
principal component such that they would become
intertwined, as shown in Figure 9-3.

Figure 9-3. The first principal component of linearly inseparable data without

kernel PCA

Ideally, we would want a transformation that would reduce
the dimensions and make the data linearly separable.
Kernel PCA can do both, as shown in Figure 9-4.

Figure 9-4. The first principal component of linearly inseparable data with

kernel PCA

Kernels allow us to project the linearly inseparable data
into a higher dimension where it is linearly separable; this
is called the “kernel trick.” Don’t worry if you don’t
understand the details of the kernel trick; just think of
kernels as different ways of projecting the data. There are a
number of kernels we can use in scikit-learn’s kernelPCA
class, specified using the kernel parameter. A common
kernel to use is the Gaussian radial basis function kernel
rbf, but other options are the polynomial kernel (poly) and
sigmoid kernel (sigmoid). We can even specify a linear
projection (linear), which will produce the same results as
standard PCA.
One downside of kernel PCA is that we need to specify a
number of parameters. For example, in Recipe 9.1 we set
n_components to 0.99 to make PCA select the number of
components to retain 99% of the variance. We don’t have
this option in kernel PCA. Instead we have to define the

number of components (e.g., n_components=1).
Furthermore, kernels come with their own
hyperparameters that we will have to set; for example, the
radial basis function requires a gamma value.
So how do we know which values to use? Through trial and
error. Specifically, we can train our machine learning
model multiple times, each time with a different kernel or
different value of the parameter. Once we find the
combination of values that produces the highest quality
predicted values, we are done. This is a common theme in
machine learning, and we will learn about this strategy in
depth in Chapter 12.

See Also

scikit-learn documentation on Kernel PCA

Kernel Tricks and Nonlinear Dimensionality Reduction
via RBF Kernel PCA

9.3 Reducing Features by Maximizing

Class Separability

Problem

You want to reduce the number of features to be used by a
classifier by maximizing the separation between the
classes.

Solution

Try linear discriminant analysis (LDA) to project the
features onto component axes that maximize the separation

https://oreil.ly/SCAX-
https://oreil.ly/ktm5Z

of classes:

Load libraries

from sklearn import datasets

from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis

Load Iris flower dataset:

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create and run an LDA, then use it to transform the features

lda = LinearDiscriminantAnalysis(n_components=1)

features_lda = lda.fit(features, target).transform(features)

Print the number of features

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_lda.shape[1])

Original number of features: 4

Reduced number of features: 1

We can use explained_variance_ratio_ to view the
amount of variance explained by each component. In our
solution the single component explained over 99% of the
variance:

lda.explained_variance_ratio_

array([0.9912126])

Discussion

LDA is a classification that is also a popular technique for
dimensionality reduction. LDA works similarly to PCA in
that it projects our feature space onto a lower-dimensional
space. However, in PCA we were interested only in the
component axes that maximize the variance in the data,
while in LDA we have the additional goal of maximizing the
differences between classes. In Figure 9-5, we have data
comprising two target classes and two features. If we

project the data onto the y-axis, the two classes are not
easily separable (i.e., they overlap), while if we project the
data onto the x-axis, we are left with a feature vector (i.e.,
we reduced our dimensionality by one) that still preserves
class separability. In the real world, of course, the
relationship between the classes will be more complex and
the dimensionality will be higher, but the concept remains
the same.

Figure 9-5. LDA attempts to maximize the difference between our classes

In scikit-learn, LDA is implemented using
LinearDiscriminantAnalysis, which includes a
parameter, n_components, indicating the number of
features we want returned. To figure out what argument
value to use with n_components (e.g., how many
parameters to keep), we can take advantage of the fact that
explained_variance_ratio_ tells us the variance
explained by each outputted feature and is a sorted array.
For example:

lda.explained_variance_ratio_

array([0.9912126])

Specifically, we can run LinearDiscriminantAnalysis
with n_components set to None to return the ratio of
variance explained by every component feature, then
calculate how many components are required to get above
some threshold of variance explained (often 0.95 or 0.99):

Create and run LDA

lda = LinearDiscriminantAnalysis(n_components=None)

features_lda = lda.fit(features, target)

Create array of explained variance ratios

lda_var_ratios = lda.explained_variance_ratio_

Create function

def select_n_components(var_ratio, goal_var: float) -> int:

 # Set initial variance explained so far

 total_variance = 0.0

 # Set initial number of features

 n_components = 0

 # For the explained variance of each feature:

 for explained_variance in var_ratio:

 # Add the explained variance to the total

 total_variance += explained_variance

 # Add one to the number of components

 n_components += 1

 # If we reach our goal level of explained variance

 if total_variance >= goal_var:

 # End the loop

 break

 # Return the number of components

 return n_components

Run function

select_n_components(lda_var_ratios, 0.95)

1

See Also

Comparison of LDA and PCA 2D Projection of Iris
Dataset

Linear Discriminant Analysis

9.4 Reducing Features Using Matrix

Factorization

Problem

You have a feature matrix of nonnegative values and want
to reduce the dimensionality.

Solution

Use nonnegative matrix factorization (NMF) to reduce the
dimensionality of the feature matrix:

Load libraries

from sklearn.decomposition import NMF

from sklearn import datasets

Load the data

digits = datasets.load_digits()

Load feature matrix

features = digits.data

Create, fit, and apply NMF

nmf = NMF(n_components=10, random_state=4)

features_nmf = nmf.fit_transform(features)

Show results

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_nmf.shape[1])

Original number of features: 64

Reduced number of features: 10

Discussion

https://oreil.ly/evGsx
https://oreil.ly/uOB81

NMF is an unsupervised technique for linear dimensionality
reduction that factorizes (i.e., breaks up into multiple
matrices whose product approximates the original matrix)
the feature matrix into matrices representing the latent
relationship between observations and their features.
Intuitively, NMF can reduce dimensionality because in
matrix multiplication, the two factors (matrices being
multiplied) can have significantly fewer dimensions than
the product matrix. Formally, given a desired number of
returned features, r, NMF factorizes our feature matrix
such that:

V ≈ WH

where V is our n × d feature matrix (i.e., d features, n
observations), W is an n × r matrix, and H is an r × d
matrix. By adjusting the value of r we can set the amount of
dimensionality reduction desired.
One major requirement of NMF is that, as the name
implies, the feature matrix cannot contain negative values.
Additionally, unlike PCA and other techniques we have
examined, NMF does not provide the explained variance of
the outputted features. Thus, the best way for us to find the
optimum value of n_components is by trying a range of
values to find the one that produces the best result in our
end model (see Chapter 12).

See Also

Non-negative matrix factorization, Wikipedia

9.5 Reducing Features on Sparse

Data

https://oreil.ly/HJ_Qe

Problem

You have a sparse feature matrix and want to reduce the
dimensionality.

Solution

Use Truncated Singular Value Decomposition (TSVD):

Load libraries

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import TruncatedSVD

from scipy.sparse import csr_matrix

from sklearn import datasets

import numpy as np

Load the data

digits = datasets.load_digits()

Standardize feature matrix

features = StandardScaler().fit_transform(digits.data)

Make sparse matrix

features_sparse = csr_matrix(features)

Create a TSVD

tsvd = TruncatedSVD(n_components=10)

Conduct TSVD on sparse matrix

features_sparse_tsvd =

tsvd.fit(features_sparse).transform(features_sparse)

Show results

print("Original number of features:", features_sparse.shape[1])

print("Reduced number of features:",

features_sparse_tsvd.shape[1])

Original number of features: 64

Reduced number of features: 10

Discussion

TSVD is similar to PCA and, in fact, PCA often uses
nontruncated Singular Value Decomposition (SVD) in one

of its steps. Given d features, SVD will create factor
matrices that are d × d, whereas TSVD will return factors
that are n × n, where n is previously specified by a
parameter. The practical advantage of TSVD is that, unlike
PCA, it works on sparse feature matrices.
One issue with TSVD: because of how it uses a random
number generator, the signs of the output can flip between
fittings. An easy workaround is to use fit only once per
preprocessing pipeline, then use transform multiple times.
As with linear discriminant analysis, we have to specify the
number of features (components) we want to output. This is
done with the n_components parameter. A natural question
is: what is the optimum number of components? One
strategy is to include n_components as a hyperparameter to
optimize during model selection (i.e., choose the value for
n_components that produces the best-trained model).
Alternatively, because TSVD provides the ratio of the
original feature matrix’s variance explained by each
component, we can select the number of components that
explain a desired amount of variance (95% and 99% are
common values). For example, in our solution, the first
three outputted components explain approximately 30% of
the original data’s variance:

Sum of first three components' explained variance ratios

tsvd.explained_variance_ratio_[0:3].sum()

0.3003938537287226

We can automate the process by creating a function that
runs TSVD with n_components set to one less than the
number of original features and then calculate the number
of components that explain a desired amount of the original
data’s variance:

Create and run a TSVD with one less than number of features

tsvd = TruncatedSVD(n_components=features_sparse.shape[1]-1)

features_tsvd = tsvd.fit(features)

List of explained variances

tsvd_var_ratios = tsvd.explained_variance_ratio_

Create a function

def select_n_components(var_ratio, goal_var):

 # Set initial variance explained so far

 total_variance = 0.0

 # Set initial number of features

 n_components = 0

 # For the explained variance of each feature:

 for explained_variance in var_ratio:

 # Add the explained variance to the total

 total_variance += explained_variance

 # Add one to the number of components

 n_components += 1

 # If we reach our goal level of explained variance

 if total_variance >= goal_var:

 # End the loop

 break

 # Return the number of components

 return n_components

Run function

select_n_components(tsvd_var_ratios, 0.95)

40

See Also

scikit-learn documentation: TruncatedSVD

https://oreil.ly/nD1pF

Chapter 10.

Dimensionality Reduction

Using Feature Selection

10.0 Introduction

In Chapter 9, we discussed how to reduce the
dimensionality of our feature matrix by creating new
features with (ideally) similar abilities to train quality
models but with significantly fewer dimensions. This is
called feature extraction. In this chapter we will cover an
alternative approach: selecting high-quality, informative
features and dropping less useful features. This is called
feature selection.
There are three types of feature selection methods: filter,
wrapper, and embedded. Filter methods select the best
features by examining their statistical properties. Methods
where we explicitly set a threshold for a statistic or
manually select the number of features we want to keep
are examples of feature selection by filtering. Wrapper
methods use trial and error to find the subset of features
that produces models with the highest quality predictions.
Wrapper methods are often the most effective, as they find
the best result through actual experimentation as opposed
to naive assumptions. Finally, embedded methods select
the best feature subset as part of, as an extension of, a
learning algorithm’s training process.
Ideally, we’d describe all three methods in this chapter.
However, since embedded methods are closely intertwined

with specific learning algorithms, they are difficult to
explain prior to a deeper dive into the algorithms
themselves. Therefore, in this chapter we cover only filter
and wrapper feature selection methods, leaving the
discussion of particular embedded methods until the
chapters where those learning algorithms are discussed in
depth.

10.1 Thresholding Numerical Feature

Variance

Problem

You have a set of numerical features and want to filter out
those with low variance (i.e., likely containing little
information).

Solution

Select a subset of features with variances above a given
threshold:

Load libraries

from sklearn import datasets

from sklearn.feature_selection import VarianceThreshold

Import some data to play with

iris = datasets.load_iris()

Create features and target

features = iris.data

target = iris.target

Create thresholder

thresholder = VarianceThreshold(threshold=.5)

Create high variance feature matrix

features_high_variance = thresholder.fit_transform(features)

View high variance feature matrix

features_high_variance[0:3]

array([[5.1, 1.4, 0.2],

 [4.9, 1.4, 0.2],

 [4.7, 1.3, 0.2]])

Discussion

Variance thresholding (VT) is an example of feature
selection by filtering, and one of the most basic approaches
to feature selection. It is motivated by the idea that
features with low variance are likely less interesting (and
less useful) than features with high variance. VT first
calculates the variance of each feature:

V ar (x) =
1

n

n

∑
i=1

(xi − μ)2

where x is the feature vector, xi is an individual feature
value, and μ is that feature’s mean value. Next, it drops all
features whose variance does not meet that threshold.
Keep two things in mind when employing VT. First, the
variance is not centered; that is, it is in the squared unit of
the feature itself. Therefore, VT will not work when feature
sets contain different units (e.g., one feature is in years
while another is in dollars). Second, the variance threshold
is selected manually, so we have to use our own judgment
for a good value to select (or use a model selection
technique described in Chapter 12). We can see the
variance for each feature using variances_:

View variances

thresholder.fit(features).variances_

array([0.68112222, 0.18871289, 3.09550267, 0.57713289])

Finally, if the features have been standardized (to mean
zero and unit variance), then for obvious reasons VT will
not work correctly:

Load library

from sklearn.preprocessing import StandardScaler

Standardize feature matrix

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Caculate variance of each feature

selector = VarianceThreshold()

selector.fit(features_std).variances_

array([1., 1., 1., 1.])

10.2 Thresholding Binary Feature

Variance

Problem

You have a set of binary categorical features and want to
filter out those with low variance (i.e., likely containing
little information).

Solution

Select a subset of features with a Bernoulli random variable
variance above a given threshold:

Load library

from sklearn.feature_selection import VarianceThreshold

Create feature matrix with:

Feature 0: 80% class 0

Feature 1: 80% class 1

Feature 2: 60% class 0, 40% class 1

features = [[0, 1, 0],

 [0, 1, 1],

 [0, 1, 0],

 [0, 1, 1],

 [1, 0, 0]]

Run threshold by variance

thresholder = VarianceThreshold(threshold=(.75 * (1 - .75)))

thresholder.fit_transform(features)

array([[0],

 [1],

 [0],

 [1],

 [0]])

Discussion

As with numerical features, one strategy for selecting
highly informative categorical features and filtering out
less informative ones is to examine their variances. In
binary features (i.e., Bernoulli random variables), variance
is calculated as:

Var (x) = p(1 − p)

where p is the proportion of observations of class 1.
Therefore, by setting p, we can remove features where the
vast majority of observations are one class.

10.3 Handling Highly Correlated

Features

Problem

You have a feature matrix and suspect some features are
highly correlated.

Solution

Use a correlation matrix to check for highly correlated
features. If highly correlated features exist, consider
dropping one of the correlated features:

Load libraries

import pandas as pd

import numpy as np

Create feature matrix with two highly correlated features

features = np.array([[1, 1, 1],

 [2, 2, 0],

 [3, 3, 1],

 [4, 4, 0],

 [5, 5, 1],

 [6, 6, 0],

 [7, 7, 1],

 [8, 7, 0],

 [9, 7, 1]])

Convert feature matrix into DataFrame

dataframe = pd.DataFrame(features)

Create correlation matrix

corr_matrix = dataframe.corr().abs()

Select upper triangle of correlation matrix

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape),

 k=1).astype(bool))

Find index of feature columns with correlation greater than

0.95

to_drop = [column for column in upper.columns if

any(upper[column] > 0.95)]

Drop features

dataframe.drop(dataframe.columns[to_drop], axis=1).head(3)

0 2

0 1 1

1 2 0

2 3 1

Discussion

One problem we often run into in machine learning is
highly correlated features. If two features are highly
correlated, then the information they contain is very
similar, and it is likely redundant to include both features.
In the case of simple models like linear regression, failing
to remove such features violates the assumptions of linear
regression and can result in an artificially inflated R-
squared value. The solution to highly correlated features is
simple: remove one of them from the feature set. Removing
highly correlated features by setting a correlation threshold
is another example of filtering.
In our solution, first we create a correlation matrix of all
features:

Correlation matrix

dataframe.corr()

0 1 2

0 1.000000 0.976103 0.000000

1 0.976103 1.000000 -0.034503

2 0.000000 -0.034503 1.000000

Second, we look at the upper triangle of the correlation
matrix to identify pairs of highly correlated features:

Upper triangle of correlation matrix

upper

0 1 2

0 NaN 0.976103 0.000000

1 NaN NaN 0.034503

2 NaN NaN NaN

Third, we remove one feature from each of those pairs.

10.4 Removing Irrelevant Features

for Classification

Problem

You have a categorical target vector and want to remove
uninformative features.

Solution

If the features are categorical, calculate a chi-square (χ2)
statistic between each feature and the target vector:

Load libraries

from sklearn.datasets import load_iris

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2, f_classif

Load data

iris = load_iris()

features = iris.data

target = iris.target

Convert to categorical data by converting data to integers

features = features.astype(int)

Select two features with highest chi-squared statistics

chi2_selector = SelectKBest(chi2, k=2)

features_kbest = chi2_selector.fit_transform(features, target)

Show results

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_kbest.shape[1])

Original number of features: 4

Reduced number of features: 2

If the features are quantitative, compute the ANOVA F-
value between each feature and the target vector:

Select two features with highest F-values

fvalue_selector = SelectKBest(f_classif, k=2)

features_kbest = fvalue_selector.fit_transform(features, target)

Show results

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_kbest.shape[1])

Original number of features: 4

Reduced number of features: 2

Instead of selecting a specific number of features, we can
use SelectPercentile to select the top n percent of
features:

Load library

from sklearn.feature_selection import SelectPercentile

Select top 75% of features with highest F-values

fvalue_selector = SelectPercentile(f_classif, percentile=75)

features_kbest = fvalue_selector.fit_transform(features, target)

Show results

print("Original number of features:", features.shape[1])

print("Reduced number of features:", features_kbest.shape[1])

Original number of features: 4

Reduced number of features: 3

Discussion

Chi-square statistics examine the independence of two
categorical vectors. That is, the statistic is the difference
between the observed number of observations in each class
of a categorical feature and what we would expect if that
feature were independent (i.e., no relationship) of the
target vector:

χ2 =
n

∑
i=1

(Oi − Ei)
2

Ei

where Oi is the number of observed observations in class i,
and Ei is the number of expected observations in class i.
A chi-squared statistic is a single number that tells you how
much difference exists between your observed counts and
the counts you would expect if there were no relationship
at all in the population. By calculating the chi-squared
statistic between a feature and the target vector, we obtain
a measurement of the independence between the two. If
the target is independent of the feature variable, then it is
irrelevant for our purposes because it contains no
information we can use for classification. On the other
hand, if the two features are highly dependent, they likely
are very informative for training our model.
To use chi-squared in feature selection, we calculate the
chi-squared statistic between each feature and the target
vector, then select the features with the best chi-square
statistics. In scikit-learn, we can use SelectKBest to select
them. The parameter k determines the number of features

we want to keep and filters out the least informative
features.
It is important to note that chi-square statistics can be
calculated only between two categorical vectors. For this
reason, chi-squared for feature selection requires that both
the target vector and the features are categorical.
However, if we have a numerical feature we can use the
chi-squared technique by first transforming the
quantitative feature into a categorical feature. Finally, to
use our chi-squared approach, all values need to be
nonnegative.
Alternatively, if we have a numerical feature, we can use
f_classif to calculate the ANOVA F-value statistic with
each feature and the target vector. F-value scores examine
if, when we group the numerical feature by the target
vector, the means for each group are significantly different.
For example, if we had a binary target vector, gender, and
a quantitative feature, test scores, the F-value score would
tell us if the mean test score for men is different than the
mean test score for women. If it is not, then test score
doesn’t help us predict gender and therefore the feature is
irrelevant.

10.5 Recursively Eliminating Features

Problem

You want to automatically select the best features to keep.

Solution

Use scikit-learn’s RFECV to conduct recursive feature

elimination (RFE) using cross-validation (CV). That is, use

the wrapper feature selection method and repeatedly train
a model, each time removing a feature until model
performance (e.g., accuracy) becomes worse. The
remaining features are the best:

Load libraries

import warnings

from sklearn.datasets import make_regression

from sklearn.feature_selection import RFECV

from sklearn import datasets, linear_model

Suppress an annoying but harmless warning

warnings.filterwarnings(action="ignore", module="scipy",

 message="^internal gelsd")

Generate features matrix, target vector, and the true

coefficients

features, target = make_regression(n_samples = 10000,

 n_features = 100,

 n_informative = 2,

 random_state = 1)

Create a linear regression

ols = linear_model.LinearRegression()

Recursively eliminate features

rfecv = RFECV(estimator=ols, step=1,

scoring="neg_mean_squared_error")

rfecv.fit(features, target)

rfecv.transform(features)

array([[0.00850799, 0.7031277 , 1.52821875],

 [-1.07500204, 2.56148527, -0.44567768],

 [1.37940721, -1.77039484, -0.74675125],

 ...,

 [-0.80331656, -1.60648007, 0.52231601],

 [0.39508844, -1.34564911, 0.4228057],

 [-0.55383035, 0.82880112, 1.73232647]])

Once we have conducted RFE, we can see the number of
features we should keep:

Number of best features

rfecv.n_features_

3

We can also see which of those features we should keep:

Which categories are best

rfecv.support_

array([False, False, False, False, False, True, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, True, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, True,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False, False, False, False, False, False, False, False,

False,

 False])

We can even view the rankings of the features:

Rank features best (1) to worst

rfecv.ranking_

array([11, 92, 96, 87, 46, 1, 48, 23, 16, 2, 66, 83, 33, 27,

70, 75, 29,

 84, 54, 88, 37, 42, 85, 62, 74, 50, 80, 10, 38, 59, 79,

57, 44, 8,

 82, 45, 89, 69, 94, 1, 35, 47, 39, 1, 34, 72, 19, 4,

17, 91, 90,

 24, 32, 13, 49, 26, 12, 71, 68, 40, 1, 43, 63, 28, 73,

58, 21, 67,

 1, 95, 77, 93, 22, 52, 30, 60, 81, 14, 86, 18, 15, 41,

7, 53, 65,

 51, 64, 6, 9, 20, 5, 55, 56, 25, 36, 61, 78, 31, 3,

76])

Discussion

This is likely the most advanced recipe in this book up to
this point, combining a number of topics we have yet to
address in detail. However, the intuition is straightforward
enough that we can address it here rather than holding off
until a later chapter. The idea behind RFE is to train a
model repeatedly, updating the weights or coefficients of
that model each time. The first time we train the model, we
include all the features. Then, we find the feature with the
smallest parameter (notice that this assumes the features
are either rescaled or standardized), meaning it is less
important, and remove that feature from the feature set.
The obvious question then is: how many features should we
keep? We can (hypothetically) repeat this loop until we only
have one feature left. A better approach requires that we
include a new concept called cross-validation. We will
discuss CV in detail in the next chapter, but here is the
general idea.
Given data containing (1) a target we want to predict, and
(2) a feature matrix, first we split the data into two groups:
a training set and a test set. Second, we train our model
using the training set. Third, we pretend that we do not
know the target of the test set and apply our model to its
features to predict the values of the test set. Finally, we
compare our predicted target values with the true target
values to evaluate our model.
We can use CV to find the optimum number of features to
keep during RFE. Specifically, in RFE with CV, after every
iteration we use cross-validation to evaluate our model. If
CV shows that our model improved after we eliminated a
feature, then we continue on to the next loop. However, if
CV shows that our model got worse after we eliminated a

feature, we put that feature back into the feature set and
select those features as the best.
In scikit-learn, RFE with CV is implemented using RFECV,
which contains a number of important parameters. The
estimator parameter determines the type of model we
want to train (e.g., linear regression), the step parameter
sets the number or proportion of features to drop during
each loop, and the scoring parameter sets the metric of
quality we use to evaluate our model during cross-
validation.

See Also

scikit-learn documentation: Recursive feature
elimination with cross-validation

https://oreil.ly/aV-Fz

Chapter 11. Model

Evaluation

11.0 Introduction

In this chapter we will examine strategies for evaluating
the quality of models created through our learning
algorithms. It might appear strange to discuss model
evaluation before discussing how to create them, but there
is a method to our madness. Models are only as useful as
the quality of their predictions, and thus, fundamentally,
our goal is not to create models (which is easy) but to
create high-quality models (which is hard). Therefore,
before we explore the myriad learning algorithms, let’s first
learn how we can evaluate the models they produce.

11.1 Cross-Validating Models

Problem

You want to evaluate how well your classification model
generalizes to unforeseen data.

Solution

Create a pipeline that preprocesses the data, trains the
model, and then evaluates it using cross-validation:

Load libraries

from sklearn import datasets

from sklearn import metrics

from sklearn.model_selection import KFold, cross_val_score

from sklearn.pipeline import make_pipeline

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

Load digits dataset

digits = datasets.load_digits()

Create features matrix

features = digits.data

Create target vector

target = digits.target

Create standardizer

standardizer = StandardScaler()

Create logistic regression object

logit = LogisticRegression()

Create a pipeline that standardizes, then runs logistic

regression

pipeline = make_pipeline(standardizer, logit)

Create k-fold cross-validation

kf = KFold(n_splits=5, shuffle=True, random_state=0)

Conduct k-fold cross-validation

cv_results = cross_val_score(pipeline, # Pipeline

 features, # Feature matrix

 target, # Target vector

 cv=kf, # Performance metric

 scoring="accuracy", # Loss function

 n_jobs=-1) # Use all CPU cores

Calculate mean

cv_results.mean()

0.969958217270195

Discussion

At first consideration, evaluating supervised-learning
models might appear straightforward: train a model and
then calculate how well it did using some performance
metric (accuracy, squared errors, etc.). However, this
approach is fundamentally flawed. If we train a model using

our data, and then evaluate how well it did on that data, we
are not achieving our desired goal. Our goal is not to
evaluate how well the model does on our training data, but
how well it does on data it has never seen before (e.g., a
new customer, a new crime, a new image). For this reason,
our method of evaluation should help us understand how
well models are able to make predictions from data they
have never seen before.
One strategy might be to hold off a slice of data for testing.
This is called validation (or hold-out). In validation, our
observations (features and targets) are split into two sets,
traditionally called the training set and the test set. We
take the test set and put it off to the side, pretending that
we have never seen it before. Next we train our model
using our training set, using the features and target vector
to teach the model how to make the best prediction.
Finally, we simulate having never-before-seen external data
by evaluating how our model performs on our test set.
However, the validation approach has two major
weaknesses. First, the performance of the model can be
highly dependent on which few observations were selected
for the test set. Second, the model is not being trained
using all the available data, and it’s not being evaluated on
all the available data.
A better strategy, which overcomes these weaknesses, is
called k-fold cross-validation (KFCV). In KFCV, we split the
data into k parts called folds. The model is then trained
using k – 1 folds— combined into one training set— and then
the last fold is used as a test set. We repeat this k times,
each time using a different fold as the test set. The
performance on the model for each of the k iterations is
then averaged to produce an overall measurement.

In our solution, we conducted k-fold cross-validation using
five folds and outputted the evaluation scores to
cv_results:

View score for all 5 folds

cv_results

array([0.96111111, 0.96388889, 0.98050139, 0.97214485,

0.97214485])

There are three important points to consider when we are
using KFCV. First, KFCV assumes that each observation
was created independently from the other (i.e., the data is
independent and identically distributed [IID]). If the data is
IID, it is a good idea to shuffle observations when assigning
to folds. In scikit-learn we can set shuffle=True to perform
shuffling.
Second, when we are using KFCV to evaluate a classifier, it
is often beneficial to have folds containing roughly the
same percentage of observations from each of the different
target classes (called stratified k-fold). For example, if our
target vector contained gender and 80% of the
observations were male, then each fold would contain 80%
male and 20% female observations. In scikit-learn, we can
conduct stratified k-fold cross-validation by replacing the
KFold class with StratifiedKFold.
Finally, when we are using validation sets or cross-
validation, it is important to preprocess data based on the
training set and then apply those transformations to both
the training and test set. For example, when we fit our
standardization object, standardizer, we calculate the
mean and variance of only the training set. Then we apply
that transformation (using transform) to both the training
and test sets:

Import library

from sklearn.model_selection import train_test_split

Create training and test sets

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Fit standardizer to training set

standardizer.fit(features_train)

Apply to both training and test sets which can then be used to

train models

features_train_std = standardizer.transform(features_train)

features_test_std = standardizer.transform(features_test)

The reason for this is because we are pretending that the
test set is unknown data. If we fit both our preprocessors
using observations from both training and test sets, some
of the information from the test set leaks into our training
set. This rule applies for any preprocessing step such as
feature selection.
scikit-learn’s pipeline package makes this easy to do while
using cross-validation techniques. We first create a pipeline
that preprocesses the data (e.g., standardizer) and then
trains a model (logistic regression, logit):

Create a pipeline

pipeline = make_pipeline(standardizer, logit)

Then we run KFCV using that pipeline and scikit does all
the work for us:

Do k-fold cross-validation

cv_results = cross_val_score(pipeline, # Pipeline

 features, # Feature matrix

 target, # Target vector

 cv=kf, # Performance metric

 scoring="accuracy", # Loss function

 n_jobs=-1) # Use all CPU cores

cross_val_score comes with three parameters we have
not discussed, but that are worth noting:
cv

cv determines our cross-validation technique. K-fold is the
most common by far, but there are others, such as leave-one-
out cross-validation where the number of folds k equals the
number of data points in the set.

scoring

scoring defines the metric for success, a number of which
are discussed in other recipes in this chapter.

n_jobs=-1

n_jobs=-1 tells scikit-learn to use every core available. For
example, if your computer has four cores (a common
number for laptops), then scikit-learn will use all four cores
at once to speed up the operation.

One small note: when running some of these examples, you
may see a warning that says “ConvergenceWarning: lbfgs
failed to converge.” The configuration used in these
examples is designed to prevent this, but should it still
occur, you can ignore it for now. We will troubleshoot
issues like this later in the book as we dive into specific
types of models.

See Also

Why Every Statistician Should Know About Cross-
Validation

Cross-Validation Gone Wrong

https://oreil.ly/vrGXy
https://oreil.ly/NE-B8

11.2 Creating a Baseline Regression

Model

Problem

You want a simple baseline regression model to use as a
comparison against other models that you train.

Solution

Use scikit-learn’s DummyRegressor to create a simple model
to use as a baseline:

Load libraries

from sklearn.datasets import load_wine

from sklearn.dummy import DummyRegressor

from sklearn.model_selection import train_test_split

Load data

wine = load_wine()

Create features

features, target = wine.data, wine.target

Make test and training split

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, random_state=0)

Create a dummy regressor

dummy = DummyRegressor(strategy='mean')

"Train" dummy regressor

dummy.fit(features_train, target_train)

Get R-squared score

dummy.score(features_test, target_test)

-0.0480213580840978

To compare, we train our model and evaluate the
performance score:

Load library

from sklearn.linear_model import LinearRegression

Train simple linear regression model

ols = LinearRegression()

ols.fit(features_train, target_train)

Get R-squared score

ols.score(features_test, target_test)

0.804353263176954

Discussion

DummyRegressor allows us to create a very simple model
that we can use as a baseline to compare against any other
models that we train. This can often be useful to simulate a
“naive” existing prediction process in a product or system.
For example, a product might have been originally
hardcoded to assume that all new users will spend $100 in
the first month, regardless of their features. If we encode
that assumption into a baseline model, we are able to
concretely state the benefits of using a machine learning
approach by comparing the dummy model’s score with that
of a trained model.
DummyRegressor uses the strategy parameter to set the
method of making predictions, including the mean or
median value in the training set. Furthermore, if we set
strategy to constant and use the constant parameter, we
can set the dummy regressor to predict some constant
value for every observation:

Create dummy regressor that predicts 1s for everything

clf = DummyRegressor(strategy='constant', constant=1)

clf.fit(features_train, target_train)

Evaluate score

clf.score(features_test, target_test)

-0.06299212598425186

One small note regarding score. By default, score returns
the coefficient of determination (R-squared, R2) score:

R2 = 1 −
∑i (yi − ŷi)

2

∑i (yi − y)2

where yi is the true value of the target observation, ŷi is
the predicted value, and y is the mean value for the target
vector.

The closer R2 is to 1, the more of the variance in the target
vector that is explained by the features.

11.3 Creating a Baseline

Classification Model

Problem

You want a simple baseline classifier to compare against
your model.

Solution

Use scikit-learn’s DummyClassifier:

Load libraries

from sklearn.datasets import load_iris

from sklearn.dummy import DummyClassifier

from sklearn.model_selection import train_test_split

Load data

iris = load_iris()

Create target vector and feature matrix

features, target = iris.data, iris.target

Split into training and test set

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, random_state=0)

Create dummy classifier

dummy = DummyClassifier(strategy='uniform', random_state=1)

"Train" model

dummy.fit(features_train, target_train)

Get accuracy score

dummy.score(features_test, target_test)

0.42105263157894735

By comparing the baseline classifier to our trained
classifier, we can see the improvement:

Load library

from sklearn.ensemble import RandomForestClassifier

Create classifier

classifier = RandomForestClassifier()

Train model

classifier.fit(features_train, target_train)

Get accuracy score

classifier.score(features_test, target_test)

0.9736842105263158

Discussion

A common measure of a classifier’s performance is how
much better it is than random guessing. scikit-learn’s
DummyClassifier makes this comparison easy. The
strategy parameter gives us a number of options for
generating values. There are two particularly useful
strategies. First, stratified makes predictions
proportional to the class proportions of the training set’s
target vector (e.g., if 20% of the observations in the
training data are women, then DummyClassifier will

predict women 20% of the time). Second, uniform will
generate predictions uniformly at random between the
different classes. For example, if 20% of observations are
women and 80% are men, uniform will produce predictions
that are 50% women and 50% men.

See Also

scikit-learn documentation: DummyClassifier

11.4 Evaluating Binary Classifier

Predictions

Problem

Given a trained classification model, you want to evaluate
its quality.

Solution

Use scikit-learn’s cross_val_score to conduct cross-
validation while using the scoring parameter to define one
of a number of performance metrics, including accuracy,
precision, recall, and F1. Accuracy is a common
performance metric. It is simply the proportion of
observations predicted correctly:

Accuracy =
TP + TN

TP + TN + FP + FN

where:
TP

https://oreil.ly/bwqQU

The number of true positives. These are observations that
are part of the positive class (has the disease, purchased the
product, etc.) and that we predicted correctly.

TN

The number of true negatives. These are observations that
are part of the negative class (does not have the disease, did
not purchase the product, etc.) and that we predicted
correctly.

FP

The number of false positives, also called a Type I error.
These are observations that are predicted to be part of the
positive class but are actually part of the negative class.

FN

The number of false negatives, also called a Type II error.
These are observations that are predicted to be part of the
negative class but are actually part of the positive class.

We can measure accuracy in three-fold (the default number
of folds) cross-validation by setting scoring="accuracy":

Load libraries

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.datasets import make_classification

Generate features matrix and target vector

X, y = make_classification(n_samples = 10000,

 n_features = 3,

 n_informative = 3,

 n_redundant = 0,

 n_classes = 2,

 random_state = 1)

Create logistic regression

logit = LogisticRegression()

Cross-validate model using accuracy

cross_val_score(logit, X, y, scoring="accuracy")

array([0.9555, 0.95 , 0.9585, 0.9555, 0.956])

The appeal of accuracy is that it has an intuitive and plain
English explanation: the proportion of observations
predicted correctly. However, in the real world, often our
data has imbalanced classes (e.g., the 99.9% of
observations are of class 1 and only 0.1% are class 2).
When in the presence of imbalanced classes, accuracy
suffers from a paradox where a model is highly accurate
but lacks predictive power. For example, imagine we are
trying to predict the presence of a very rare cancer that
occurs in 0.1% of the population. After training our model,
we find the accuracy is at 95%. However, 99.9% of people
do not have the cancer: if we simply created a model that
“predicted” that nobody had that form of cancer, our naive
model would be 4.9% more accurate, but it clearly is not
able to predict anything. For this reason, we are often
motivated to use other metrics such as precision, recall,
and the F1 score.

Precision is the proportion of every observation predicted
to be positive that is actually positive. We can think about it
as a measurement noise in our predictions—that is, how
likely we are to be right when we predict something is
positive. Models with high precision are pessimistic in that
they predict an observation is of the positive class only
when they are very certain about it. Formally, precision is:

Precision =
TP

TP + FP

Cross-validate model using precision

cross_val_score(logit, X, y, scoring="precision")

array([0.95963673, 0.94820717, 0.9635996 , 0.96149949,

0.96060606])

Recall is the proportion of every positive observation that is
truly positive. Recall measures the model’s ability to
identify an observation of the positive class. Models with
high recall are optimistic in that they have a low bar for
predicting that an observation is in the positive class:

Recall =
TP

TP + FN

Cross-validate model using recall

cross_val_score(logit, X, y, scoring="recall")

array([0.951, 0.952, 0.953, 0.949, 0.951])

If this is the first time you have encountered precision and
recall, it is understandable if it takes a little while to fully
understand them. This is one of the downsides to accuracy;
precision and recall are less intuitive. Almost always we
want some kind of balance between precision and recall,
and this role is filled by the F1 score. The F1 score is the
harmonic mean (a kind of average used for ratios):

F1 = 2 ×
Precision × Recall

Precision + Recall

This score is a measure of correctness achieved in positive
prediction—that is, of observations labeled as positive, how
many are actually positive:

Cross-validate model using F1

cross_val_score(logit, X, y, scoring="f1")

array([0.95529884, 0.9500998 , 0.95827049, 0.95520886,

0.95577889])

Discussion

As an evaluation metric, accuracy has some valuable
properties, especially its intuitiveness. However, better
metrics often involve using some balance of precision and
recall—that is, a trade-off between the optimism and
pessimism of our model. F1 represents a balance between
the recall and precision, where the relative contributions of
both are equal.
As an alternative to using cross_val_score, if we already
have the true y values and the predicted y values, we can
calculate the metrics accuracy and recall directly:

Load libraries

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Create training and test split

X_train, X_test, y_train, y_test = train_test_split(X,

 y,

test_size=0.1,

random_state=1)

Predict values for training target vector

y_hat = logit.fit(X_train, y_train).predict(X_test)

Calculate accuracy

accuracy_score(y_test, y_hat)

0.947

See Also

Accuracy paradox, Wikipedia

11.5 Evaluating Binary Classifier

Thresholds

https://oreil.ly/vjgZ-

Problem

You want to evaluate a binary classifier and various
probability thresholds.

Solution

Use the receiver operating characteristic (ROC) curve to
evaluate the quality of the binary classifier. In scikit-learn,
we can use roc_curve to calculate the true and false
positives at each threshold, and then plot them:

Load libraries

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.model_selection import train_test_split

Create feature matrix and target vector

features, target = make_classification(n_samples=10000,

 n_features=10,

 n_classes=2,

 n_informative=3,

 random_state=3)

Split into training and test sets

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Create classifier

logit = LogisticRegression()

Train model

logit.fit(features_train, target_train)

Get predicted probabilities

target_probabilities = logit.predict_proba(features_test)[:,1]

Create true and false positive rates

false_positive_rate, true_positive_rate, threshold = roc_curve(

 target_test,

 target_probabilities

)

Plot ROC curve

plt.title("Receiver Operating Characteristic")

plt.plot(false_positive_rate, true_positive_rate)

plt.plot([0, 1], ls="--")

plt.plot([0, 0], [1, 0] , c=".7"), plt.plot([1, 1] , c=".7")

plt.ylabel("True Positive Rate")

plt.xlabel("False Positive Rate")

plt.show()

Discussion

The receiver operating characteristic curve is a common
method for evaluating the quality of a binary classifier.
ROC compares the presence of true positives and false
positives at every probability threshold (i.e., the probability
at which an observation is predicted to be a class). By
plotting the ROC curve, we can see how the model

performs. A classifier that predicts every observation
correctly would look like the solid light gray line in the ROC
output in the previous figure, going straight up to the top
immediately. A classifier that predicts at random will
appear as the diagonal line. The better the model, the
closer it is to the solid line.
Until now we have only examined models based on the
values they predict. However, in many learning algorithms,
those predicted values are based on probability estimates.
That is, each observation is given an explicit probability of
belonging in each class. In our solution, we can use
predict_proba to see the predicted probabilities for the
first observation:

Get predicted probabilities

logit.predict_proba(features_test)[0:1]

array([[0.86891533, 0.13108467]])

We can see the classes using classes_:

logit.classes_

array([0, 1])

In this example, the first observation has an ~87% chance
of being in the negative class (0) and a 13% chance of
being in the positive class (1). By default, scikit-learn
predicts an observation is part of the positive class if the
probability is greater than 0.5 (called the threshold).
However, instead of a middle ground, we will often want to
explicitly bias our model to use a different threshold for
substantive reasons. For example, if a false positive is very
costly to our company, we might prefer a model that has a
high probability threshold. We fail to predict some
positives, but when an observation is predicted to be
positive, we can be very confident that the prediction is

correct. This trade-off is represented in the true positive

rate (TPR) and the false positive rate (FPR). The TPR is the
number of observations correctly predicted true divided by
all true positive observations:

TPR =
TP

TP + FN

The FPR is the number of incorrectly predicted positives
divided by all true negative observations:

FPR =
FP

FP + TN

The ROC curve represents the respective TPR and FPR for
every probability threshold. For example, in our solution a
threshold of roughly 0.50 has a TPR of ~0.83 and an FPR of
~0.16:

print("Threshold:", threshold[124])

print("True Positive Rate:", true_positive_rate[124])

print("False Positive Rate:", false_positive_rate[124])

Threshold: 0.5008252732632008

True Positive Rate: 0.8346938775510204

False Positive Rate: 0.1607843137254902

However, if we increase the threshold to ~80% (i.e.,
increase how certain the model has to be before it predicts
an observation as positive) the TPR drops significantly but
so does the FPR:

print("Threshold:", threshold[49])

print("True Positive Rate:", true_positive_rate[49])

print("False Positive Rate:", false_positive_rate[49])

Threshold: 0.8058575028551827

True Positive Rate: 0.5653061224489796

False Positive Rate: 0.052941176470588235

This is because our higher requirement for being predicted
to be in the positive class has caused the model to not
identify a number of positive observations (the lower TPR)
but has also reduced the noise from negative observations
being predicted as positive (the lower FPR).
In addition to being able to visualize the trade-off between
TPR and FPR, the ROC curve can also be used as a general
metric for a model. The better a model is, the higher the
curve and thus the greater the area under the curve. For
this reason, it is common to calculate the area under the
ROC curve (AUC ROC) to judge the overall quality of a
model at all possible thresholds. The closer the AUC ROC is
to 1, the better the model. In scikit-learn we can calculate
the AUC ROC using roc_auc_score:

Calculate area under curve

roc_auc_score(target_test, target_probabilities)

0.9073389355742297

See Also

ROC Curves in Python and R

The Area Under an ROC Curve

11.6 Evaluating Multiclass Classifier

Predictions

Problem

You have a model that predicts three or more classes and
want to evaluate the model’s performance.

Solution

https://oreil.ly/0qcpZ
https://oreil.ly/re7sT

Use cross-validation with an evaluation metric capable of
handling more than two classes:

Load libraries

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

from sklearn.datasets import make_classification

Generate features matrix and target vector

features, target = make_classification(n_samples = 10000,

 n_features = 3,

 n_informative = 3,

 n_redundant = 0,

 n_classes = 3,

 random_state = 1)

Create logistic regression

logit = LogisticRegression()

Cross-validate model using accuracy

cross_val_score(logit, features, target, scoring='accuracy')

array([0.841 , 0.829 , 0.8265, 0.8155, 0.82])

Discussion

When we have balanced classes (i.e., a roughly equal
number of observations in each class of the target vector),
accuracy is— just like in the binary class setting— a simple
and interpretable choice for an evaluation metric. Accuracy
is the number of correct predictions divided by the number
of observations and works just as well in the multiclass as
in the binary setting. However, when we have imbalanced
classes (a common scenario), we should be inclined to use
other evaluation metrics.
Many of scikit-learn’s built-in metrics are for evaluating
binary classifiers. However, many of these metrics can be
extended for use when we have more than two classes.
Precision, recall, and F1 scores are useful metrics that we
have already covered in detail in previous recipes. While all

of them were originally designed for binary classifiers, we
can apply them to multiclass settings by treating our data
as a set of binary classes. Doing so enables us to apply the
metrics to each class as if it were the only class in the data,
and then aggregate the evaluation scores for all the classes
by averaging them:

Cross-validate model using macro averaged F1 score

cross_val_score(logit, features, target, scoring='f1_macro')

array([0.84061272, 0.82895312, 0.82625661, 0.81515121,

0.81992692])

In this code, macro refers to the method used to average
the evaluation scores from the classes. The options are
macro, weighted, and micro:
macro

Calculate the mean of metric scores for each class, weighting
each class equally.

weighted

Calculate the mean of metric scores for each class, weighting
each class proportional to its size in the data.

micro

Calculate the mean of metric scores for each observation-
class combination.

11.7 Visualizing a Classifier’s

Performance

Problem

Given predicted classes and true classes of the test data,
you want to visually compare the model’s quality.

Solution

Use a confusion matrix, which compares predicted classes
and true classes:

Load libraries

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

import pandas as pd

Load data

iris = datasets.load_iris()

Create features matrix

features = iris.data

Create target vector

target = iris.target

Create list of target class names

class_names = iris.target_names

Create training and test set

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, random_state=2)

Create logistic regression

classifier = LogisticRegression()

Train model and make predictions

target_predicted = classifier.fit(features_train,

 target_train).predict(features_test)

Create confusion matrix

matrix = confusion_matrix(target_test, target_predicted)

Create pandas dataframe

dataframe = pd.DataFrame(matrix, index=class_names,

columns=class_names)

Create heatmap

sns.heatmap(dataframe, annot=True, cbar=None, cmap="Blues")

plt.title("Confusion Matrix"), plt.tight_layout()

plt.ylabel("True Class"), plt.xlabel("Predicted Class")

plt.show()

Discussion

Confusion matrices are an easy, effective visualization of a
classifier’s performance. One of the major benefits of
confusion matrices is their interpretability. Each column of
the matrix (often visualized as a heatmap) represents
predicted classes, while every row shows true classes. The
result is that every cell is one possible combination of

predicted and true classes. This is probably best explained
using an example. In the solution, the top-left cell is the
number of observations predicted to be Iris setosa

(indicated by the column) that are actually Iris setosa

(indicated by the row). This means the model accurately
predicted all Iris setosa flowers. However, the model does
not do as well at predicting Iris virginica. The bottom-right
cell indicates that the model successfully predicted eleven
observations were Iris virginica, but (looking one cell up)
predicted one flower to be virginica that was actually Iris

versicolor.
There are three things worth noting about confusion
matrices. First, a perfect model will have values along the
diagonal and zeros everywhere else. A bad model will have
the observation counts spread evenly around cells. Second,
a confusion matrix lets us see not only where the model
was wrong but also how it was wrong. That is, we can look
at patterns of misclassification. For example, our model
had an easy time differentiating Iris virginica and Iris

setosa, but a slightly more difficult time classifying Iris

virginica and Iris versicolor. Finally, confusion matrices
work with any number of classes (although if we had one
million classes in our target vector, the confusion matrix
visualization might be difficult to read).

See Also

Confusion matrix, Wikipedia

scikit-learn documentation: Confusion Matrix

11.8 Evaluating Regression Models

https://oreil.ly/tDWPB
https://oreil.ly/fdsTg

Problem

You want to evaluate the performance of a regression
model.

Solution

Use mean squared error (MSE):

Load libraries

from sklearn.datasets import make_regression

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 n_informative = 3,

 n_targets = 1,

 noise = 50,

 coef = False,

 random_state = 1)

Create a linear regression object

ols = LinearRegression()

Cross-validate the linear regression using (negative) MSE

cross_val_score(ols, features, target,

scoring='neg_mean_squared_error')

array([-1974.65337976, -2004.54137625, -3935.19355723,

-1060.04361386,

 -1598.74104702])

Another common regression metric is the coefficient of
determination, R2:

Cross-validate the linear regression using R-squared

cross_val_score(ols, features, target, scoring='r2')

array([0.8622399 , 0.85838075, 0.74723548, 0.91354743,

0.84469331])

Discussion

MSE is one of the most common evaluation metrics for
regression models. Formally, MSE is:

MSE=
1

n

n

∑
i=1

(ŷi − yi)
2

where n is the number of observations, yi is the true value
of the target we are trying to predict for observation i, and
ŷi is the model’s predicted value for yi. MSE is a
measurement of the squared sum of all distances between
predicted and true values. The higher the value of MSE, the
greater the total squared error and thus the worse the
model. There are a number of mathematical benefits to
squaring the error term, including that it forces all error
values to be positive, but one often unrealized implication
is that squaring penalizes a few large errors more than
many small errors, even if the absolute value of the errors
is the same. For example, imagine two models, A and B,
each with two observations:

Model A has errors of 0 and 10, and thus its MSE is 02

+ 102 = 100.

Model B has two errors of 5 each, and thus its MSE is
52 + 52 = 50.

Both models have the same total errors, 10; however, MSE
would consider model A (MSE = 100) worse than model B
(MSE = 50). In practice this implication is rarely an issue
(and indeed can be theoretically beneficial), and MSE
works perfectly fine as an evaluation metric.
One important note: by default, in scikit-learn, arguments
of the scoring parameter assume that higher values are
better than lower values. However, this is not the case for

MSE, where higher values mean a worse model. For this
reason, scikit-learn looks at the negative MSE using the
neg_mean_squared_error argument.
A common alternative regression evaluation metric is the
default metric we used in Recipe 11.2, R2, which measures
the amount of variance in the target vector that is
explained by the model.

R2 = 1 −
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − y)2

where yi is the true target value of the ith observation, ŷi is
the predicted value for the ith observation, and y is the
mean value of the target vector. The closer that R2 is to
1.0, the better the model.

See Also

Mean squared error, Wikipedia

Coefficient of determination, Wikipedia

11.9 Evaluating Clustering Models

Problem

You have used an unsupervised learning algorithm to
cluster your data. Now you want to know how well it did.

Solution

Use silhouette coefficients to measure the quality of the
clusters (note that this does not measure predictive

https://oreil.ly/MWDlR
https://oreil.ly/lKKWk

performance):

Load libraries

import numpy as np

from sklearn.metrics import silhouette_score

from sklearn import datasets

from sklearn.cluster import KMeans

from sklearn.datasets import make_blobs

Generate features matrix

features, _ = make_blobs(n_samples = 1000,

 n_features = 10,

 centers = 2,

 cluster_std = 0.5,

 shuffle = True,

 random_state = 1)

Cluster data using k-means to predict classes

model = KMeans(n_clusters=2, random_state=1).fit(features)

Get predicted classes

target_predicted = model.labels_

Evaluate model

silhouette_score(features, target_predicted)

0.8916265564072141

Discussion

Supervised model evaluation compares predictions (e.g.,
classes or quantitative values) with the corresponding true
values in the target vector. However, the most common
motivation for using clustering methods is that your data
doesn’t have a target vector. A number of clustering
evaluation metrics require a target vector, but again, using
unsupervised learning approaches like clustering when you
have a target vector available to you is probably
handicapping yourself unnecessarily.
While we cannot evaluate predictions versus true values if
we don’t have a target vector, we can evaluate the nature
of the clusters themselves. Intuitively, we can imagine

“good” clusters having very small distances between
observations in the same cluster (i.e., dense clusters) and
large distances between the different clusters (i.e., well-
separated clusters). Silhouette coefficients provide a single
value measuring both traits. Formally, the ith observation’s
silhouette coefficient is:

si =
bi − ai

max(ai, bi)

where si is the silhouette coefficient for observation i, ai is
the mean distance between i and all observations of the
same class, and bi is the mean distance between i and all
observations from the closest cluster of a different class.
The value returned by silhouette_score is the mean
silhouette coefficient for all observations. Silhouette
coefficients range between –1 and 1, with 1 indicating
dense, well-separated clusters.

See Also

scikit-learn documentation: silhouette_score

11.10 Creating a Custom Evaluation

Metric

Problem

You want to evaluate a model using a metric you created.

Solution

https://oreil.ly/gGjQj

Create the metric as a function and convert it into a scorer
function using scikit-learn’s make_scorer:

Load libraries

from sklearn.metrics import make_scorer, r2_score

from sklearn.model_selection import train_test_split

from sklearn.linear_model import Ridge

from sklearn.datasets import make_regression

Generate features matrix and target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 random_state = 1)

Create training set and test set

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.10, random_state=1)

Create custom metric

def custom_metric(target_test, target_predicted):

 # Calculate R-squared score

 r2 = r2_score(target_test, target_predicted)

 # Return R-squared score

 return r2

Make scorer and define that higher scores are better

score = make_scorer(custom_metric, greater_is_better=True)

Create ridge regression object

classifier = Ridge()

Train ridge regression model

model = classifier.fit(features_train, target_train)

Apply custom scorer

score(model, features_test, target_test)

0.9997906102882058

Discussion

While scikit-learn has a number of built-in metrics for
evaluating model performance, it is often useful to define
our own metrics. scikit-learn makes this easy using

make_scorer. First, we define a function that takes in two
arguments— the ground truth target vector and our
predicted values— and outputs some score. Second, we use
make_scorer to create a scorer object, making sure to
specify whether higher or lower scores are desirable (using
the greater_is_better parameter).
The custom metric in the solution (custom_metric) is a toy
example since it simply wraps a built-in metric for
calculating the R2 score. In a real-world situation, we would
replace the custom_metric function with whatever custom
metric we wanted. However, we can see that the custom
metric that calculates R2 does work by comparing the
results to scikit-learn’s r2_score built-in method:

Predict values

target_predicted = model.predict(features_test)

Calculate R-squared score

r2_score(target_test, target_predicted)

0.9997906102882058

See Also

scikit-learn documentation: make_scorer

11.11 Visualizing the Effect of

Training Set Size

Problem

You want to evaluate the effect of the number of
observations in your training set on some metric (accuracy,
F1, etc.).

https://oreil.ly/-RqFY

Solution

Plot the accuracy against the training set size:

Load libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.datasets import load_digits

from sklearn.model_selection import learning_curve

Load data

digits = load_digits()

Create feature matrix and target vector

features, target = digits.data, digits.target

Create CV training and test scores for various training set

sizes

train_sizes, train_scores, test_scores = learning_curve(#

Classifier

RandomForestClassifier(),

 # Feature

matrix

 features,

 # Target

vector

 target,

 # Number

of folds

 cv=10,

 #

Performance metric

scoring='accuracy',

 # Use all

computer cores

n_jobs=-1,

 # Sizes

of 50

 #

Training set

train_sizes=np.linspace(

 0.01,

 1.0,

 50))

Create means and standard deviations of training set scores

train_mean = np.mean(train_scores, axis=1)

train_std = np.std(train_scores, axis=1)

Create means and standard deviations of test set scores

test_mean = np.mean(test_scores, axis=1)

test_std = np.std(test_scores, axis=1)

Draw lines

plt.plot(train_sizes, train_mean, '--', color="#111111",

label="Training score")

plt.plot(train_sizes, test_mean, color="#111111", label="Cross-

validation score")

Draw bands

plt.fill_between(train_sizes, train_mean - train_std,

 train_mean + train_std, color="#DDDDDD")

plt.fill_between(train_sizes, test_mean - test_std,

 test_mean + test_std, color="#DDDDDD")

Create plot

plt.title("Learning Curve")

plt.xlabel("Training Set Size"), plt.ylabel("Accuracy Score"),

plt.legend(loc="best")

plt.tight_layout()

plt.show()

Discussion

Learning curves visualize the performance (e.g., accuracy,
recall) of a model on the training set and during cross-
validation as the number of observations in the training set
increases. They are commonly used to determine if our
learning algorithms would benefit from gathering
additional training data.
In our solution, we plot the accuracy of a random forest
classifier at 50 different training set sizes, ranging from 1%
of observations to 100%. The increasing accuracy score of
the cross-validated models tell us that we would likely
benefit from additional observations (although in practice
this might not be feasible).

See Also

scikit-learn documentation: Learning Curve

11.12 Creating a Text Report of

Evaluation Metrics

Problem

You want a quick description of a classifier’s performance.

Solution

Use scikit-learn’s classification_report:

Load libraries

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

Load data

iris = datasets.load_iris()

Create features matrix

features = iris.data

Create target vector

target = iris.target

Create list of target class names

class_names = iris.target_names

Create training and test set

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, random_state=0)

Create logistic regression

classifier = LogisticRegression()

https://oreil.ly/jAKwy

Train model and make predictions

model = classifier.fit(features_train, target_train)

target_predicted = model.predict(features_test)

Create a classification report

print(classification_report(target_test,

 target_predicted,

 target_names=class_names))

 precision recall f1-score support

 setosa 1.00 1.00 1.00 16

 versicolor 1.00 0.91 0.95 11

 virginica 0.92 1.00 0.96 11

 accuracy 0.97 38

 macro avg 0.97 0.97 0.97 38

weighted avg 0.98 0.97 0.97 38

Discussion

classification_report provides a quick means for us to
see some common evaluation metrics, including precision,
recall, and F1 score (described in Recipe 11.4). Support
refers to the number of observations in each class.

See Also

Precision and recall, Wikipedia

11.13 Visualizing the Effect of

Hyperparameter Values

Problem

You want to understand how the performance of a model
changes as the value of some hyperparameter changes.

Solution

https://oreil.ly/9mBSF

Plot the hyperparameter against the model accuracy
(validation curve):

Load libraries

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import load_digits

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import validation_curve

Load data

digits = load_digits()

Create feature matrix and target vector

features, target = digits.data, digits.target

Create range of values for parameter

param_range = np.arange(1, 250, 2)

Calculate accuracy on training and test set using range of

parameter values

train_scores, test_scores = validation_curve(

 # Classifier

 RandomForestClassifier(),

 # Feature matrix

 features,

 # Target vector

 target,

 # Hyperparameter to examine

 param_name="n_estimators",

 # Range of hyperparameter's values

 param_range=param_range,

 # Number of folds

 cv=3,

 # Performance metric

 scoring="accuracy",

 # Use all computer cores

 n_jobs=-1)

Calculate mean and standard deviation for training set scores

train_mean = np.mean(train_scores, axis=1)

train_std = np.std(train_scores, axis=1)

Calculate mean and standard deviation for test set scores

test_mean = np.mean(test_scores, axis=1)

test_std = np.std(test_scores, axis=1)

Plot mean accuracy scores for training and test sets

plt.plot(param_range, train_mean, label="Training score",

color="black")

plt.plot(param_range, test_mean, label="Cross-validation score",

 color="dimgrey")

Plot accuracy bands for training and test sets

plt.fill_between(param_range, train_mean - train_std,

 train_mean + train_std, color="gray")

plt.fill_between(param_range, test_mean - test_std,

 test_mean + test_std, color="gainsboro")

Create plot

plt.title("Validation Curve With Random Forest")

plt.xlabel("Number Of Trees")

plt.ylabel("Accuracy Score")

plt.tight_layout()

plt.legend(loc="best")

plt.show()

Discussion

Most training algorithms (including many covered in this
book) contain hyperparameters that must be chosen before
the training process begins. For example, a random forest

classifier creates a “forest” of decision trees, each of which
votes on the predicted class of an observation. One
hyperparameter in random forest classifiers is the number
of trees in the forest. Most often hyperparameter values
are selected during model selection (see Chapter 12).
However, it is occasionally useful to visualize how model
performance changes as the hyperparameter value
changes. In our solution, we plot the changes in accuracy
for a random forest classifier for the training set and during
cross-validation as the number of trees increases. When we
have a small number of trees, both the training and cross-
validation score are low, suggesting the model is
underfitted. As the number of trees increases to 250, the
accuracy of both levels off, suggesting there is probably not
much value in the computational cost of training a massive
forest.
In scikit-learn, we can calculate the validation curve using
validation_curve, which contains three important
parameters:
param_name

Name of the hyperparameter to vary

param_range

Value of the hyperparameter to use

scoring

Evaluation metric used to judge to model

See Also

scikit-learn documentation: Validation Curve

https://oreil.ly/FH_kH

Chapter 12. Model

Selection

12.0 Introduction

In machine learning, we use training algorithms to learn
the parameters of a model by minimizing some loss
function. However, many learning algorithms (e.g., support
vector classifier and random forests) have additional
hyperparameters that are defined by the user and affect
how the model will learn its parameters. As we mentioned
earlier in the book, parameters (also sometimes called
model weights) are what models learn during the training
process, whereas hyperparameters are provided manually
by us (the users).
For example, random forests are collections of decision
trees (hence the word forest); however, the number of
decision trees in the forest is not learned by the algorithm
and must be set prior to fitting. This is often referred to as
hyperparameter tuning, hyperparameter optimization, or
model selection. Additionally, we might want to try multiple
learning algorithms (for example, trying both support
vector classifier and random forests to see which learning
method produces the best model).
While there is widespread terminology variation in this
area, in this book we refer to selecting both the best
learning algorithm and its best hyperparameters as model
selection. The reason is straightforward: imagine we have
data and want to train a support vector classifier with 10
candidate hyperparameter values and a random forest

classifier with 10 candidate hyperparameter values. The
result is that we are trying to select the best model from a
set of 20 candidate models. In this chapter, we will cover
techniques to efficiently select the best model from the set
of candidates.
Throughout this chapter we will refer to specific
hyperparameters, such as C (the inverse of regularization
strength). Don’t worry if you don’t know what the
hyperparameters are. We will cover them in later chapters.
Instead, just treat hyperparameters like the settings for the
learning algorithm that we must choose before starting
training. In general, finding the model and associated
hyperparameters that yield the best performance is the
result of experimentation—trying a bunch of things out and
seeing what works best.

12.1 Selecting the Best Models Using

Exhaustive Search

Problem

You want to select the best model by searching over a
range of hyperparameters.

Solution

Use scikit-learn’s GridSearchCV:

Load libraries

import numpy as np

from sklearn import linear_model, datasets

from sklearn.model_selection import GridSearchCV

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create logistic regression

logistic = linear_model.LogisticRegression(max_iter=500,

solver='liblinear')

Create range of candidate penalty hyperparameter values

penalty = ['l1','l2']

Create range of candidate regularization hyperparameter values

C = np.logspace(0, 4, 10)

Create dictionary of hyperparameter candidates

hyperparameters = dict(C=C, penalty=penalty)

Create grid search

gridsearch = GridSearchCV(logistic, hyperparameters, cv=5,

verbose=0)

Fit grid search

best_model = gridsearch.fit(features, target)

Show the best model

print(best_model.best_estimator_)

LogisticRegression(C=7.742636826811269, max_iter=500,

penalty='l1',

 solver='liblinear')

Discussion

GridSearchCV is a brute-force approach to model selection
using cross-validation. Specifically, a user defines sets of
possible values for one or multiple hyperparameters, and
then GridSearchCV trains a model using every value and/or
combination of values. The model with the best
performance score is selected as the best model.
For example, in our solution we used logistic regression as
our learning algorithm and tuned two hyperparameters: C
and the regularization penalty. We also specified two other
parameters, the solver and max iterations. Don’t worry if
you don’t know what these terms mean; we cover them in

the next few chapters. Just realize that C and the
regularization penalty can take a range of values, which
have to be specified prior to training. For C, we define 10
possible values:

np.logspace(0, 4, 10)

array([1.00000000e+00, 2.78255940e+00, 7.74263683e+00,

2.15443469e+01,

 5.99484250e+01, 1.66810054e+02, 4.64158883e+02,

1.29154967e+03,

 3.59381366e+03, 1.00000000e+04])

Similarly, we define two possible values for the
regularization penalty: ['l1', 'l2']. For each
combination of C and regularization penalty values, we
train the model and evaluate it using k-fold cross-
validation. In our solution, we have 10 possible values of C,
2 possible values of regularization penalty, and 5 folds.
They create 10 × 2 × 5 = 100 candidate models, from which
the best is selected.
Once GridSearchCV is complete, we can see the
hyperparameters of the best model:

View best hyperparameters

print('Best Penalty:', best_model.best_estimator_.get_params()

['penalty'])

print('Best C:', best_model.best_estimator_.get_params()['C'])

Best Penalty: l1

Best C: 7.742636826811269

By default, after identifying the best hyperparameters,
GridSearchCV will retrain a model using the best
hyperparameters on the entire dataset (rather than leaving
a fold out for cross-validation). We can use this model to
predict values like any other scikit-learn model:

Predict target vector

best_model.predict(features)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

One GridSearchCV parameter is worth noting: verbose.
While mostly unnecessary, it can be reassuring during long
searching processes to receive an indication that the
search is progressing. The verbose parameter determines
the number of messages outputted during the search, with
0 showing no output, and 1 to 3 outputting additional
messages.

See Also

scikit-learn documentation: GridSearchCV

12.2 Selecting the Best Models Using

Randomized Search

Problem

You want a computationally cheaper method than
exhaustive search to select the best model.

Solution

https://oreil.ly/XlMPG

Use scikit-learn’s RandomizedSearchCV:

Load libraries

from scipy.stats import uniform

from sklearn import linear_model, datasets

from sklearn.model_selection import RandomizedSearchCV

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create logistic regression

logistic = linear_model.LogisticRegression(max_iter=500,

solver='liblinear')

Create range of candidate regularization penalty hyperparameter

values

penalty = ['l1', 'l2']

Create distribution of candidate regularization hyperparameter

values

C = uniform(loc=0, scale=4)

Create hyperparameter options

hyperparameters = dict(C=C, penalty=penalty)

Create randomized search

randomizedsearch = RandomizedSearchCV(

 logistic, hyperparameters, random_state=1, n_iter=100, cv=5,

verbose=0,

 n_jobs=-1)

Fit randomized search

best_model = randomizedsearch.fit(features, target)

Print best model

print(best_model.best_estimator_)

LogisticRegression(C=1.668088018810296, max_iter=500,

penalty='l1',

 solver='liblinear')

Discussion

In Recipe 12.1, we used GridSearchCV on a user-defined
set of hyperparameter values to search for the best model
according to a score function. A more efficient method than
GridSearchCV’s brute-force search is to search over a
specific number of random combinations of
hyperparameter values from user-supplied distributions
(e.g., normal, uniform). scikit-learn implements this
randomized search technique with RandomizedSearchCV.
With RandomizedSearchCV, if we specify a distribution,
scikit-learn will randomly sample without replacement
hyperparameter values from that distribution. As an
example of the general concept, here we randomly sample
10 values from a uniform distribution ranging from 0 to 4:

Define a uniform distribution between 0 and 4, sample 10 values

uniform(loc=0, scale=4).rvs(10)

array([3.95211699, 0.30693116, 2.88237794, 3.00392864,

0.43964702,

 1.46670526, 0.27841863, 2.56541664, 2.66475584,

0.79611958])

Alternatively, if we specify a list of values, such as two
regularization penalty hyperparameter values ['l1',
'l2'], RandomizedSearchCV will randomly sample with
replacement from the list.
Just like with GridSearchCV, we can see the
hyperparameter values of the best model:

View best hyperparameters

print('Best Penalty:', best_model.best_estimator_.get_params()

['penalty'])

print('Best C:', best_model.best_estimator_.get_params()['C'])

Best Penalty: l1

Best C: 1.668088018810296

And just like with GridSearchCV, after the search is
complete RandomizedSearchCV fits a new model using the
best hyperparameters on the entire dataset. We can use
this model like any other in scikit-learn; for example, to
make predictions:

Predict target vector

best_model.predict(features)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

1, 2, 2,

 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

The number of sampled combinations of hyperparameters
(i.e., the number of candidate models trained) is specified
with the n_iter (number of iterations) setting. It’s worth
noting that RandomizedSearchCV isn’t inherently faster
than GridSearchCV, but it often achieves comparable
performance to GridSearchCV in less time just by testing
fewer combinations.

See Also

scikit-learn documentation: RandomizedSearchCV

Random Search for Hyper-Parameter Optimization

https://oreil.ly/rpiSs
https://oreil.ly/iBcbo

12.3 Selecting the Best Models from

Multiple Learning Algorithms

Problem

You want to select the best model by searching over a
range of learning algorithms and their respective
hyperparameters.

Solution

Create a dictionary of candidate learning algorithms and
their hyperparameters to use as the search space for
GridSearchCV:

Load libraries

import numpy as np

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import Pipeline

Set random seed

np.random.seed(0)

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create a pipeline

pipe = Pipeline([("classifier", RandomForestClassifier())])

Create dictionary with candidate learning algorithms and their

hyperparameters

search_space = [{"classifier": [LogisticRegression(max_iter=500,

 solver='liblinear')],

 "classifier__penalty": ['l1', 'l2'],

 "classifier__C": np.logspace(0, 4, 10)},

 {"classifier": [RandomForestClassifier()],

 "classifier__n_estimators": [10, 100, 1000],

 "classifier__max_features": [1, 2, 3]}]

Create grid search

gridsearch = GridSearchCV(pipe, search_space, cv=5, verbose=0)

Fit grid search

best_model = gridsearch.fit(features, target)

Print best model

print(best_model.best_estimator_)

Pipeline(steps=[('classifier',

 LogisticRegression(C=7.742636826811269,

max_iter=500,

 penalty='l1',

solver='liblinear'))])

Discussion

In the previous two recipes, we found the best model by
searching over possible hyperparameter values of a
learning algorithm. However, what if we are not certain
which learning algorithm to use? scikit-learn allows us to
include learning algorithms as part of the search space. In
our solution we define a search space that includes two
learning algorithms: logistic regression and random forest
classifier. Each learning algorithm has its own
hyperparameters, and we define their candidate values
using the format classifier__[hyperparameter name].
For example, for our logistic regression, to define the set of
possible values for regularization hyperparameter space, C,
and potential types of regularization penalties, penalty, we
create a dictionary:

{'classifier': [LogisticRegression(max_iter=500,

solver='liblinear')],

 'classifier__penalty': ['l1', 'l2'],

 'classifier__C': np.logspace(0, 4, 10)}

We can also create a similar dictionary for the random
forest hyperparameters:

{'classifier': [RandomForestClassifier()],

 'classifier__n_estimators': [10, 100, 1000],

 'classifier__max_features': [1, 2, 3]}

After the search is complete, we can use best_estimator_
to view the best model’s learning algorithm and
hyperparameters:

View best model

print(best_model.best_estimator_.get_params()["classifier"])

LogisticRegression(C=7.742636826811269, max_iter=500,

penalty='l1',

 solver='liblinear')

Just like with the last two recipes, once we have fit the
model selection search, we can use this best model just like
any other scikit-learn model:

Predict target vector

best_model.predict(features)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

12.4 Selecting the Best Models When

Preprocessing

Problem

You want to include a preprocessing step during model
selection.

Solution

Create a pipeline that includes the preprocessing step and
any of its parameters:

Load libraries

import numpy as np

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import Pipeline, FeatureUnion

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

Set random seed

np.random.seed(0)

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create a preprocessing object that includes StandardScaler

features and PCA

preprocess = FeatureUnion([("std", StandardScaler()), ("pca",

PCA())])

Create a pipeline

pipe = Pipeline([("preprocess", preprocess),

 ("classifier", LogisticRegression(max_iter=1000,

 solver='liblinear'))])

Create space of candidate values

search_space = [{"preprocess__pca__n_components": [1, 2, 3],

 "classifier__penalty": ["l1", "l2"],

 "classifier__C": np.logspace(0, 4, 10)}]

Create grid search

clf = GridSearchCV(pipe, search_space, cv=5, verbose=0,

n_jobs=-1)

Fit grid search

best_model = clf.fit(features, target)

Print best model

print(best_model.best_estimator_)

Pipeline(steps=[('preprocess',

 FeatureUnion(transformer_list=[('std',

StandardScaler()),

 ('pca',

PCA(n_components=1))])),

 ('classifier',

 LogisticRegression(C=7.742636826811269,

max_iter=1000,

 penalty='l1',

solver='liblinear'))])

Discussion

Very often we will need to preprocess our data before using
it to train a model. We have to be careful to properly handle
preprocessing when conducting model selection. First,
GridSearchCV uses cross-validation to determine which
model has the highest performance. However, in cross-
validation, we are in effect pretending that the fold held out
as the test set is not seen, and thus not part of fitting any
preprocessing steps (e.g., scaling or standardization). For
this reason, we cannot preprocess the data and then run
GridSearchCV. Rather, the preprocessing steps must be a
part of the set of actions taken by GridSearchCV.
This might appear complex, but scikit-learn makes it
simple. FeatureUnion allows us to combine multiple
preprocessing actions properly. In our solution, we use
FeatureUnion to combine two preprocessing steps:
standardize the feature values (StandardScaler) and
principal component analysis (PCA). This object is called
preprocess and contains both of our preprocessing steps.
We then include preprocess in a pipeline with our learning
algorithm. The result is that this allows us to outsource the
proper (and confusing) handling of fitting, transforming,

and training the models with combinations of
hyperparameters to scikit-learn.
Second, some preprocessing methods have their own
parameters, which often have to be supplied by the user.
For example, dimensionality reduction using PCA requires
the user to define the number of principal components to
use to produce the transformed feature set. Ideally, we
would choose the number of components that produces a
model with the greatest performance for some evaluation
test metric.
Luckily, scikit-learn makes this easy. When we include
candidate component values in the search space, they are
treated like any other hyperparameter to be searched over.
In our solution, we defined
features__pca__n_components': [1, 2, 3] in the search
space to indicate that we want to discover if one, two, or
three principal components produce the best model.
After model selection is complete, we can view the
preprocessing values that produced the best model. For
example, we can see the best number of principal
components:

View best n_components

best_model.best_estimator_.get_params()

['preprocess__pca__n_components']

1

12.5 Speeding Up Model Selection

with Parallelization

Problem

You need to speed up model selection.

Solution

Use all the cores in your machine by setting n_jobs=-1,
which enables you to train multiple models simultaneously:

Load libraries

import numpy as np

from sklearn import linear_model, datasets

from sklearn.model_selection import GridSearchCV

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create logistic regression

logistic = linear_model.LogisticRegression(max_iter=500,

solver='liblinear')

Create range of candidate regularization penalty hyperparameter

values

penalty = ["l1", "l2"]

Create range of candidate values for C

C = np.logspace(0, 4, 1000)

Create hyperparameter options

hyperparameters = dict(C=C, penalty=penalty)

Create grid search

gridsearch = GridSearchCV(logistic, hyperparameters, cv=5,

n_jobs=-1, verbose=1)

Fit grid search

best_model = gridsearch.fit(features, target)

Print best model

print(best_model.best_estimator_)

Fitting 5 folds for each of 2000 candidates, totalling 10000 fits

LogisticRegression(C=5.926151812475554, max_iter=500,

penalty='l1',

 solver='liblinear')

Discussion

In the recipes in this chapter, we have kept the number of
candidate models small to make the code complete quickly.
However, in the real world we may have many thousands or
tens of thousands of models to train. As a result, it can take
many hours to find the best model.
To speed up the process, scikit-learn lets us train multiple
models simultaneously. Without going into too much
technical detail, scikit-learn can simultaneously train
models up to the number of cores on the machine. Most
modern laptops have at least four cores, so (assuming
you’re currently on a laptop) we can potentially train four
models at the same time. This will dramatically increase
the speed of our model selection process. The parameter
n_jobs defines the number of models to train in parallel.
In our solution, we set n_jobs to -1, which tells scikit-learn
to use all cores. However, by default n_jobs is set to 1,
meaning it uses only one core. To demonstrate this, if we
run the same GridSearchCV as in the solution, but with
n_jobs=1, we can see it takes significantly longer to find
the best model (note that exact time will depend on your
computer):

Create grid search using one core

clf = GridSearchCV(logistic, hyperparameters, cv=5, n_jobs=1,

verbose=1)

Fit grid search

best_model = clf.fit(features, target)

Print best model

print(best_model.best_estimator_)

Fitting 5 folds for each of 2000 candidates, totalling 10000 fits

LogisticRegression(C=5.926151812475554, max_iter=500,

penalty='l1',

 solver='liblinear')

12.6 Speeding Up Model Selection

Using Algorithm-Specific Methods

Problem

You need to speed up model selection without using
additional compute power.

Solution

If you are using a select number of learning algorithms, use
scikit-learn’s model-specific cross-validation
hyperparameter tuning, LogisticRegressionCV:

Load libraries

from sklearn import linear_model, datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create cross-validated logistic regression

logit = linear_model.LogisticRegressionCV(Cs=100, max_iter=500,

 solver='liblinear')

Train model

logit.fit(features, target)

Print model

print(logit)

LogisticRegressionCV(Cs=100, max_iter=500, solver='liblinear')

Discussion

Sometimes the characteristics of a learning algorithm allow
us to search for the best hyperparameters significantly
faster than either brute-force or randomized model search
methods. In scikit-learn, many learning algorithms (e.g.,

ridge, lasso, and elastic net regression) have an algorithm-
specific cross-validation method to take advantage of this.
For example, LogisticRegression is used to conduct a
standard logistic regression classifier, while
LogisticRegressionCV implements an efficient cross-
validated logistic regression classifier that can identify the
optimum value of the hyperparameter C.
scikit-learn’s LogisticRegressionCV method includes a
parameter Cs. If supplied a list, Cs contains the candidate
hyperparameter values to select from. If supplied an
integer, the parameter Cs generates a list of that number of
candidate values. The candidate values are drawn
logarithmically from a range between 0.0001 and 10,0000
(a range of reasonable values for C).
However, a major downside to LogisticRegressionCV is
that it can only search a range of values for C. In Recipe
12.1 our possible hyperparameter space included both C
and another hyperparameter (the regularization penalty
norm). This limitation is common to many of scikit-learn’s
model-specific cross-validated approaches.

See Also

scikit-learn documentation: LogisticRegressionCV

scikit-learn documentation: Model specific cross-
validation

12.7 Evaluating Performance After

Model Selection

Problem

https://oreil.ly/uguJi
https://oreil.ly/6xfn6

You want to evaluate the performance of a model found
through model selection.

Solution

Use nested cross-validation to avoid biased evaluation:

Load libraries

import numpy as np

from sklearn import linear_model, datasets

from sklearn.model_selection import GridSearchCV, cross_val_score

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create logistic regression

logistic = linear_model.LogisticRegression(max_iter=500,

solver='liblinear')

Create range of 20 candidate values for C

C = np.logspace(0, 4, 20)

Create hyperparameter options

hyperparameters = dict(C=C)

Create grid search

gridsearch = GridSearchCV(logistic, hyperparameters, cv=5,

n_jobs=-1, verbose=0)

Conduct nested cross-validation and output the average score

cross_val_score(gridsearch, features, target).mean()

0.9733333333333334

Discussion

Nested cross-validation during model selection is a difficult
concept for many people to grasp the first time. Remember
that in k-fold cross-validation, we train our model on k–1

folds of the data, use this model to make predictions on the
remaining fold, and then evaluate our model on how well

its predictions compare to the true values. We then repeat
this process k times.
In the model selection searches described in this chapter
(i.e., GridSearchCV and RandomizedSearchCV), we used
cross-validation to evaluate which hyperparameter values
produced the best models. However, a nuanced and
generally underappreciated problem arises: since we used
the data to select the best hyperparameter values, we
cannot use that same data to evaluate the model’s
performance. The solution? Wrap the cross-validation used
for model search in another cross-validation! In nested
cross-validation, the “inner” cross-validation selects the
best model, while the “outer” cross-validation provides an
unbiased evaluation of the model’s performance. In our
solution, the inner cross-validation is our GridSearchCV
object, which we then wrap in an outer cross-validation
using cross_val_score.
If you are confused, try a simple experiment. First, set
verbose=1 so we can see what is happening:

gridsearch = GridSearchCV(logistic, hyperparameters, cv=5,

verbose=1)

Next, run gridsearch.fit(features, target), which is
our inner cross-validation used to find the best model:

best_model = gridsearch.fit(features, target)

Fitting 5 folds for each of 20 candidates, totalling 100 fits

From the output you can see the inner cross-validation
trained 20 candidate models five times, totaling 100
models. Next, nest clf inside a new cross-validation, which
defaults to five folds:

scores = cross_val_score(gridsearch, features, target)

Fitting 5 folds for each of 20 candidates, totalling 100 fits

Fitting 5 folds for each of 20 candidates, totalling 100 fits

Fitting 5 folds for each of 20 candidates, totalling 100 fits

Fitting 5 folds for each of 20 candidates, totalling 100 fits

Fitting 5 folds for each of 20 candidates, totalling 100 fits

The output shows that the inner cross-validation trained 20
models five times to find the best model, and this model
was evaluated using an outer five-fold cross-validation,
creating a total of 500 models trained.

Chapter 13. Linear

Regression

13.0 Introduction

Linear regression is one of the simplest supervised learning
algorithms in our toolkit. If you have ever taken an
introductory statistics course in college, likely the final
topic you covered was linear regression. Linear regression
and its extensions continue to be a common and useful
method of making predictions when the target vector is a
quantitative value (e.g., home price, age). In this chapter
we will cover a variety of linear regression methods (and
some extensions) for creating well-performing prediction
models.

13.1 Fitting a Line

Problem

You want to train a model that represents a linear
relationship between the feature and target vector.

Solution

Use a linear regression (in scikit-learn,
LinearRegression):

Load libraries

from sklearn.linear_model import LinearRegression

from sklearn.datasets import make_regression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 n_informative = 2,

 n_targets = 1,

 noise = 0.2,

 coef = False,

 random_state = 1)

Create linear regression

regression = LinearRegression()

Fit the linear regression

model = regression.fit(features, target)

Discussion

Linear regression assumes that the relationship between
the features and the target vector is approximately linear.
That is, the effect (also called coefficient, weight, or
parameter) of the features on the target vector is constant.
In our solution, for the sake of explanation, we have trained
our model using only three features. This means our linear
model will be:

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + ϵ

where ŷ is our target, xi is the data for a single feature, β̂1,
β̂2, and β̂3 are the coefficients identified by fitting the
model, and ϵ is the error. After we have fit our model, we
can view the value of each parameter. For example, β̂0, also
called the bias or intercept, can be viewed using
intercept_:

View the intercept

model.intercept_

-0.009650118178816669

And β̂1 and β̂2 are shown using coef_:

View the feature coefficients

model.coef_

array([1.95531234e-02, 4.42087450e+01, 5.81494563e+01])

In our dataset, the target value is a randomly generated
continuous variable:

First value in the target vector

target[0]

-20.870747595269407

Using the predict method, we can predict the output
based on the input features:

Predict the target value of the first observation

model.predict(features)[0]

-20.861927709296808

Not bad! Our model was off only by about 0.01!
The major advantage of linear regression is its
interpretability, in large part because the coefficients of the
model are the effect of a one-unit change on the target
vector. Our model’s coefficient of the first feature was ~–
0.02, meaning that we have the change in target for each
additional unit change in the first feature.
Using the score function, we can also see how well our
model performed on the data:

Print the score of the model on the training data

print(model.score(features, target))

0.9999901732607787

The default score for linear regression in scikit learn is R2,
which ranges from 0.0 (worst) to 1.0 (best). As we can see

in this example, we are very close to the perfect value of
1.0. However it’s worth noting that we are evaluating this
model on data it has already seen (the training data),
where typically we’d evaluate on a held-out test set of data
instead. Nonetheless, such a high score would bode well for
our model in a real setting.

13.2 Handling Interactive Effects

Problem

You have a feature whose effect on the target variable
depends on another feature.

Solution

Create an interaction term to capture that dependence
using scikit-learn’s PolynomialFeatures:

Load libraries

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.datasets import make_regression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 2,

 n_informative = 2,

 n_targets = 1,

 noise = 0.2,

 coef = False,

 random_state = 1)

Create interaction term

interaction = PolynomialFeatures(

 degree=3, include_bias=False, interaction_only=True)

features_interaction = interaction.fit_transform(features)

Create linear regression

regression = LinearRegression()

Fit the linear regression

model = regression.fit(features_interaction, target)

Discussion

Sometimes a feature’s effect on our target variable is at
least partially dependent on another feature. For example,
imagine a simple coffee-based example where we have two
binary features— the presence of sugar (sugar) and
whether or not we have stirred (stirred)—and we want to
predict if the coffee tastes sweet. Just putting sugar in the
coffee (sugar=1, stirred=0) won’t make the coffee taste
sweet (all the sugar is at the bottom!) and just stirring the
coffee without adding sugar (sugar=0, stirred=1) won’t
make it sweet either. Instead it is the interaction of putting
sugar in the coffee and stirring the coffee (sugar=1,
stirred=1) that will make a coffee taste sweet. The effects
of sugar and stirred on sweetness are dependent on each
other. In this case we say there is an interaction effect

between the features sugar and stirred.
We can account for interaction effects by including a new
feature comprising the product of corresponding values
from the interacting features:

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x1x2 + ϵ

where x1 and x2 are the values of the sugar and stirred,
respectively, and x1x2 represents the interaction between
the two.
In our solution, we used a dataset containing only two
features. Here is the first observation’s values for each of
those features:

View the feature values for first observation

features[0]

array([0.0465673 , 0.80186103])

To create an interaction term, we simply multiply those two
values together for every observation:

Import library

import numpy as np

For each observation, multiply the values of the first and

second feature

interaction_term = np.multiply(features[:, 0], features[:, 1])

We can then view the interaction term for the first
observation:

View interaction term for first observation

interaction_term[0]

0.037340501965846186

However, while often we will have a substantive reason for
believing there is an interaction between two features,
sometimes we will not. In those cases it can be useful to
use scikit-learn’s PolynomialFeatures to create interaction
terms for all combinations of features. We can then use
model selection strategies to identify the combination of
features and interaction terms that produces the best
model.
To create interaction terms using PolynomialFeatures,
there are three important parameters we must set. Most
important, interaction_only=True tells
PolynomialFeatures to return only interaction terms (and
not polynomial features, which we will discuss in Recipe
13.3). By default, PolynomialFeatures will add a feature
containing 1s called a bias. We can prevent that with
include_bias=False. Finally, the degree parameter

determines the maximum number of features to create
interaction terms from (in case we wanted to create an
interaction term that is the combination of three features).
We can see the output of PolynomialFeatures from our
solution by checking to see if the first observation’s feature
values and interaction term value match our manually
calculated version:

View the values of the first observation

features_interaction[0]

array([0.0465673 , 0.80186103, 0.0373405])

13.3 Fitting a Nonlinear Relationship

Problem

You want to model a nonlinear relationship.

Solution

Create a polynomial regression by including polynomial
features in a linear regression model:

Load library

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.datasets import make_regression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 n_informative = 2,

 n_targets = 1,

 noise = 0.2,

 coef = False,

 random_state = 1)

Create polynomial features x^2 and x^3

polynomial = PolynomialFeatures(degree=3, include_bias=False)

features_polynomial = polynomial.fit_transform(features)

Create linear regression

regression = LinearRegression()

Fit the linear regression

model = regression.fit(features_polynomial, target)

Discussion

So far we have discussed modeling only linear
relationships. An example of a linear relationship would be
the number of stories a building has and the building’s
height. In linear regression, we assume the effect of
number of stories and building height is approximately
constant, meaning a 20-story building will be roughly twice
as high as a 10-story building, which will be roughly twice
as high as a 5-story building. Many relationships of
interest, however, are not strictly linear.
Often we want to model a nonlinear relationship—for
example, the relationship between the number of hours a
student studies and the score she gets on a test. Intuitively,
we can imagine there is a big difference in test scores
between students who study for one hour compared to
students who did not study at all. However, there is a much
smaller difference in test scores between a student who
studied for 99 hours and a student who studied for 100
hours. The effect that one hour of studying has on a
student’s test score decreases as the number of hours
increases.
Polynomial regression is an extension of linear regression
that allows us to model nonlinear relationships. To create a
polynomial regression, convert the linear function we used
in Recipe 13.1:

ŷ = β̂0 + β̂1x1 + ϵ

into a polynomial function by adding polynomial features:

ŷ = β̂0 + β̂1x1 + β̂2x1
2
+. . . +β̂dx1

d
+ ϵ

where d is the degree of the polynomial. How are we able
to use a linear regression for a nonlinear function? The
answer is that we do not change how the linear regression
fits the model but rather only add polynomial features. That
is, the linear regression does not “know” that the x2 is a
quadratic transformation of x. It just considers it one more
variable.
A more practical description might be in order. To model
nonlinear relationships, we can create new features that
raise an existing feature, x, up to some power: x2, x3, and
so on. The more of these new features we add, the more
flexible the “line” created by our model. To make this more
explicit, imagine we want to create a polynomial to the
third degree. For the sake of simplicity, we will focus on
only one observation (the first observation in the dataset),
x[0]:

View first observation

features[0]

array([-0.61175641])

To create a polynomial feature, we would raise the first
observation’s value to the second degree, x1

2:

View first observation raised to the second power, x^2

features[0]**2

array([0.37424591])

This would be our new feature. We would then also raise
the first observation’s value to the third degree, x1

3:

View first observation raised to the third power, x^3

features[0]**3

array([-0.22894734])

By including all three features (x, x2, and x3) in our feature
matrix and then running a linear regression, we have
conducted a polynomial regression:

View the first observation's values for x, x^2, and x^3

features_polynomial[0]

array([-0.61175641, 0.37424591, -0.22894734])

PolynomialFeatures has two important parameters. First,
degree determines the maximum number of degrees for the
polynomial features. For example, degree=3 will generate
x2 and x3. Second, by default PolynomialFeatures
includes a feature containing only 1s (called a bias). We
can remove that by setting include_bias=False.

13.4 Reducing Variance with

Regularization

Problem

You want to reduce the variance of your linear regression
model.

Solution

Use a learning algorithm that includes a shrinkage penalty

(also called regularization) like ridge regression and lasso
regression:

Load libraries

from sklearn.linear_model import Ridge

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_regression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 n_informative = 2,

 n_targets = 1,

 noise = 0.2,

 coef = False,

 random_state = 1)

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create ridge regression with an alpha value

regression = Ridge(alpha=0.5)

Fit the linear regression

model = regression.fit(features_standardized, target)

Discussion

In standard linear regression the model trains to minimize
the sum of squared error between the true (yi) and
prediction (ŷi) target values, or residual sum of squares
(RSS):

RSS =

n

∑
i=1

(yi − ŷi)
2

Regularized regression learners are similar, except they
attempt to minimize RSS and some penalty for the total size
of the coefficient values, called a shrinkage penalty

because it attempts to “shrink” the model. There are two
common types of regularized learners for linear regression:
ridge regression and the lasso. The only formal difference

is the type of shrinkage penalty used. In ridge regression,
the shrinkage penalty is a tuning hyperparameter
multiplied by the squared sum of all coefficients:

RSS + α

p

∑
j=1

β̂j

2

where β̂j is the coefficient of the jth of p features and α is a
hyperparameter (discussed next). The lasso is similar,
except the shrinkage penalty is a tuning hyperparameter
multiplied by the sum of the absolute value of all
coefficients:

1

2n
RSS + α

p

∑
j=1

β̂j

where n is the number of observations. So which one
should we use? As a very general rule of thumb, ridge
regression often produces slightly better predictions than
lasso, but lasso (for reasons we will discuss in Recipe 13.5)
produces more interpretable models. If we want a balance
between ridge and lasso’s penalty functions we can use
elastic net, which is simply a regression model with both
penalties included. Regardless of which one we use, both
ridge and lasso regressions can penalize large or complex
models by including coefficient values in the loss function
we are trying to minimize.
The hyperparameter, α, lets us control how much we
penalize the coefficients, with higher values of α creating
simpler models. The ideal value of α should be tuned like
any other hyperparameter. In scikit-learn, α is set using the
alpha parameter. ∣ ∣

scikit-learn includes a RidgeCV method that allows us to
select the ideal value for α:

Load library

from sklearn.linear_model import RidgeCV

Create ridge regression with three alpha values

regr_cv = RidgeCV(alphas=[0.1, 1.0, 10.0])

Fit the linear regression

model_cv = regr_cv.fit(features_standardized, target)

View coefficients

model_cv.coef_

array([1.29223201e-02, 4.40972291e+01, 5.38979372e+01])

We can then easily view the best model’s α value:

View alpha

model_cv.alpha_

0.1

One final note: because in linear regression the value of the
coefficients is partially determined by the scale of the
feature, and in regularized models all coefficients are
summed together, we must make sure to standardize the
feature prior to training.

13.5 Reducing Features with Lasso

Regression

Problem

You want to simplify your linear regression model by
reducing the number of features.

Solution

Use a lasso regression:

Load library

from sklearn.linear_model import Lasso

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_regression

Generate features matrix, target vector

features, target = make_regression(n_samples = 100,

 n_features = 3,

 n_informative = 2,

 n_targets = 1,

 noise = 0.2,

 coef = False,

 random_state = 1)

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create lasso regression with alpha value

regression = Lasso(alpha=0.5)

Fit the linear regression

model = regression.fit(features_standardized, target)

Discussion

One interesting characteristic of lasso regression’s penalty
is that it can shrink the coefficients of a model to zero,
effectively reducing the number of features in the model.
For example, in our solution we set alpha to 0.5, and we
can see that many of the coefficients are 0, meaning their
corresponding features are not used in the model:

View coefficients

model.coef_

array([-0. , 43.58618393, 53.39523724])

However, if we increase α to a much higher value, we see
that literally none of the features are being used:

Create lasso regression with a high alpha

regression_a10 = Lasso(alpha=10)

model_a10 = regression_a10.fit(features_standardized, target)

model_a10.coef_

array([-0. , 32.92181899, 42.73086731])

The practical benefit of this effect is that it means we could
include 100 features in our feature matrix and then,
through adjusting lasso’s α hyperparameter, produce a
model that uses only 10 (for instance) of the most
important features. This lets us reduce variance while
improving the interpretability of our model (since fewer
features are easier to explain).

Chapter 14. Trees and

Forests

14.0 Introduction

Tree-based learning algorithms are a broad and popular
family of related non-parametric, supervised methods for
both classification and regression. The basis of tree-based
learners is the decision tree, wherein a series of decision
rules (e.g., “If a person’s credit score is greater than 720…
”) are chained. The result looks vaguely like an upside-
down tree, with the first decision rule at the top and
subsequent decision rules spreading out below. In a
decision tree, every decision rule occurs at a decision node,
with the rule creating branches leading to new nodes. A
branch without a decision rule at the end is called a leaf.
One reason for the popularity of tree-based models is their
interpretability. In fact, decision trees can literally be
drawn out in their complete form (see Recipe 14.3) to
create a highly intuitive model. From this basic tree system
comes a wide variety of extensions from random forests to
stacking. In this chapter we will cover how to train, handle,
adjust, visualize, and evaluate a number of tree-based
models.

14.1 Training a Decision Tree

Classifier

Problem

You need to train a classifier using a decision tree.

Solution

Use scikit-learn’s DecisionTreeClassifier:

Load libraries

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create decision tree classifier object

decisiontree = DecisionTreeClassifier(random_state=0)

Train model

model = decisiontree.fit(features, target)

Discussion

Decision tree learners attempt to find a decision rule that
produces the greatest decrease in impurity at a node. While
there are a number of measurements of impurity, by
default DecisionTreeClassifier uses Gini impurity:

G (t) = 1 −
c

∑
i=1

pi
2

where G (t) is the Gini impurity at node t, and pi is the
proportion of observations of class c at node t. This process
of finding the decision rules that create splits to decrease
impurity is repeated recursively until all leaf nodes are
pure (i.e., contain only one class) or some arbitrary cutoff is
reached.

In scikit-learn, DecisionTreeClassifier operates like
other learning methods; after the model is trained using
fit, we can use the model to predict the class of an
observation:

Make new observation

observation = [[5, 4, 3, 2]]

Predict observation's class

model.predict(observation)

array([1])

We can also see the predicted class probabilities of the
observation:

View predicted class probabilities for the three classes

model.predict_proba(observation)

array([[0., 1., 0.]])

Finally, if we want to use a different impurity measurement
we can use the criterion parameter:

Create decision tree classifier object using entropy

decisiontree_entropy = DecisionTreeClassifier(

 criterion='entropy', random_state=0)

Train model

model_entropy = decisiontree_entropy.fit(features, target)

See Also

Decision Tree Learning, Princeton

14.2 Training a Decision Tree

Regressor

Problem

https://oreil.ly/lCPBG

You need to train a regression model using a decision tree.

Solution

Use scikit-learn’s DecisionTreeRegressor:

Load libraries

from sklearn.tree import DecisionTreeRegressor

from sklearn import datasets

Load data with only two features

diabetes = datasets.load_diabetes()

features = diabetes.data

target = diabetes.target

Create decision tree regressor object

decisiontree = DecisionTreeRegressor(random_state=0)

Train model

model = decisiontree.fit(features, target)

Discussion

Decision tree regression works similarly to decision tree
classification; however, instead of reducing Gini impurity or
entropy, potential splits are by default measured on how
much they reduce mean squared error (MSE):

MSE =
1

n

n

∑
i=1

(yi − yi)
2

where yi is the true value of the target and yi is the mean
value. In scikit-learn, decision tree regression can be
conducted using DecisionTreeRegressor. Once we have
trained a decision tree, we can use it to predict the target
value for an observation:

Make new observation

observation = [features[0]]

Predict observation's value

model.predict(observation)

array([151.])

Just like with DecisionTreeClassifier we can use the
criterion parameter to select the desired measurement of
split quality. For example, we can construct a tree whose
splits reduce mean absolute error (MAE):

Create decision tree classifier object using MAE

decisiontree_mae =

DecisionTreeRegressor(criterion="absolute_error",

 random_state=0)

Train model

model_mae = decisiontree_mae.fit(features, target)

See Also

scikit-learn documentation: Decision Tree Regression

14.3 Visualizing a Decision Tree

Model

Problem

You need to visualize a model created by a decision tree
learning algorithm.

Solution

Export the decision tree model into DOT format, then
visualize:

Load libraries

import pydotplus

https://oreil.ly/EGkU_

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

from IPython.display import Image

from sklearn import tree

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create decision tree classifier object

decisiontree = DecisionTreeClassifier(random_state=0)

Train model

model = decisiontree.fit(features, target)

Create DOT data

dot_data = tree.export_graphviz(decisiontree,

 out_file=None,

 feature_names=iris.feature_names,

 class_names=iris.target_names)

Draw graph

graph = pydotplus.graph_from_dot_data(dot_data)

Show graph

Image(graph.create_png())

Discussion

One of the advantages of decision tree classifiers is that we
can visualize the entire trained model, making decision
trees one of the most interpretable models in machine
learning. In our solution, we exported our trained model in
DOT format (a graph description language) and then used
that to draw the graph.
If we look at the root node, we can see the decision rule is
that if petal widths are less than or equal to 0.8 cm, then go
to the left branch; if not, go to the right branch. We can
also see the Gini impurity index (0.667), the number of
observations (150), the number of observations in each
class ([50,50,50]), and the class the observations would be
predicted to be if we stopped at that node (setosa). We can
also see that at that node the learner found that a single
decision rule (petal width (cm) <= 0.8) was able to

perfectly identify all of the setosa class observations.
Furthermore, with one more decision rule with the same
feature (petal width (cm) <= 1.75) the decision tree is
able to correctly classify 144 of 150 observations. This
makes petal width a very important feature!
If we want to use the decision tree in other applications or
reports, we can easily export the visualization into PDF or a
PNG image:

Create PDF

graph.write_pdf("iris.pdf")

True

Create PNG

graph.write_png("iris.png")

True

While this solution visualized a decision tree classifier, it
can just as easily be used to visualize a decision tree
regressor.
Note: macOS users might have to install Graphviz’s
executable to run the preceding code. This can be done
with the Homebrew command brew install graphviz.
For Homebrew installation instructions, visit Homebrew’s
website.

See Also

Homebrew

14.4 Training a Random Forest

Classifier

Problem

https://oreil.ly/GgeNI

You want to train a classification model using a “forest” of
randomized decision trees.

Solution

Use scikit-learn’s RandomForestClassifier to train a
random forest classification model.

Load libraries

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create random forest classifier object

randomforest = RandomForestClassifier(random_state=0, n_jobs=-1)

Train model

model = randomforest.fit(features, target)

Discussion

A common problem with decision trees is that they tend to
fit the training data too closely (i.e., overfitting). This has
motivated the widespread use of an ensemble learning
method called random forest. In a random forest, many
decision trees are trained, but each tree receives only a
bootstrapped sample of observations (i.e., a random sample
of observations with replacement that matches the original
number of observations), and each node considers only a
subset of features when determining the best split. This
forest of randomized decision trees (hence the name) votes
to determine the predicted class.
As we can see by comparing this solution to Recipe 14.1,
scikit-learn’s RandomForestClassifier works similarly to

DecisionTreeClassifier:

Make new observation

observation = [[5, 4, 3, 2]]

Predict observation's class

model.predict(observation)

array([1])

RandomForestClassifier also uses many of the same
parameters as DecisionTreeClassifier. For example, we
can change the measure of split quality used:

Create random forest classifier object using entropy

randomforest_entropy = RandomForestClassifier(

 criterion="entropy", random_state=0)

Train model

model_entropy = randomforest_entropy.fit(features, target)

However, being a forest rather than an individual decision
tree, RandomForestClassifier has certain parameters that
are either unique to random forests or particularly
important. First, the max_features parameter determines
the maximum number of features to be considered at each
node and takes a number of arguments including integers
(number of features), floats (percentage of features), and
sqrt (square root of the number of features). By default,
max_features is set to auto, which acts the same as sqrt.
Second, the bootstrap parameter allows us to set whether
the subset of observations considered for a tree is created
using sampling with replacement (the default setting) or
without replacement. Third, n_estimators sets the number
of decision trees to include in the forest. Finally, while not
specific to random forest classifiers, because we are
effectively training many decision tree models, it is often
useful to use all available cores by setting n_jobs=-1.

See Also

Random Forests, Berkeley Statistics

14.5 Training a Random Forest

Regressor

Problem

You want to train a regression model using a “forest” of
randomized decision trees.

Solution

Train a random forest regression model using scikit-learn’s
RandomForestRegressor:

Load libraries

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

Load data with only two features

diabetes = datasets.load_diabetes()

features = diabetes.data

target = diabetes.target

Create random forest regressor object

randomforest = RandomForestRegressor(random_state=0, n_jobs=-1)

Train model

model = randomforest.fit(features, target)

Discussion

Just as we can make a forest of decision tree classifiers, we
can make a forest of decision tree regressors, where each
tree uses a bootstrapped subset of observations and at each
node the decision rule considers only a subset of features.

https://oreil.ly/h-LQL

As with RandomForestClassifier we have certain
important parameters:
max_features

Sets the maximum number of features to consider at each
node. Defaults to p features, where p is the total number of
features.

bootstrap

Sets whether or not to sample with replacement. Defaults to
True.

n_estimators

Sets the number of decision trees to construct. Defaults to
10.

See Also

scikit-learn documentation: RandomForestRegressor

14.6 Evaluating Random Forests with

Out-of-Bag Errors

Problem

You need to evaluate a random forest model without using
cross-validation.

Solution

Calculate the model’s out-of-bag score:

Load libraries

from sklearn.ensemble import RandomForestClassifier

https://oreil.ly/ksa9Z

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create random forest classifier object

randomforest = RandomForestClassifier(

 random_state=0, n_estimators=1000, oob_score=True, n_jobs=-1)

Train model

model = randomforest.fit(features, target)

View out-of-bag-error

randomforest.oob_score_

0.9533333333333334

Discussion

In random forests, each decision tree is trained using a
bootstrapped subset of observations. This means that for
every tree there is a separate subset of observations not
being used to train that tree. These are called out-of-bag
(OOB) observations. We can use OOB observations as a test
set to evaluate the performance of our random forest.
For every observation, the learning algorithm compares the
observation’s true value with the prediction from a subset
of trees not trained using that observation. The overall
score is calculated and provides a single measure of a
random forest’s performance. OOB score estimation is an
alternative to cross-validation.
In scikit-learn, we can compute OOB scores of a random
forest by setting oob_score=True in the random forest
object (i.e., RandomForestClassifier). The score can be
retrieved using oob_score_.

14.7 Identifying Important Features

in Random Forests

Problem

You need to know which features are most important in a
random forest model.

Solution

Calculate and visualize the importance of each feature by
inspecting the model’s feature_importances_ attribute:

Load libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create random forest classifier object

randomforest = RandomForestClassifier(random_state=0, n_jobs=-1)

Train model

model = randomforest.fit(features, target)

Calculate feature importances

importances = model.feature_importances_

Sort feature importances in descending order

indices = np.argsort(importances)[::-1]

Rearrange feature names so they match the sorted feature

importances

names = [iris.feature_names[i] for i in indices]

Create plot

plt.figure()

Create plot title

plt.title("Feature Importance")

Add bars

plt.bar(range(features.shape[1]), importances[indices])

Add feature names as x-axis labels

plt.xticks(range(features.shape[1]), names, rotation=90)

Show plot

plt.show()

Discussion

One of the major benefits of decision trees is
interpretability. Specifically, we can visualize the entire
model (see Recipe 14.3). However, a random forest model
is composed of tens, hundreds, or even thousands of
decision trees. This makes a simple, intuitive visualization
of a random forest model impractical. That said, there is
another option: we can compare (and visualize) the relative
importance of each feature.
In Recipe 14.3, we visualized a decision tree classifier
model and saw that decision rules based only on petal
width were able to classify many observations correctly.
Intuitively, we can say this means that petal width is an
important feature in our classifier. More formally, features
with splits that have the greater mean decrease in impurity
(e.g., Gini impurity or entropy in classifiers and variance in
regressors) are considered more important.
However, there are two things to keep in mind regarding
feature importance. First, scikit-learn requires that we
break up nominal categorical features into multiple binary
features. This has the effect of spreading the importance of
that feature across all of the binary features and can make
each feature appear to be unimportant even when the
original nominal categorical feature is highly important.
Second, if two features are highly correlated, one feature
will claim much of the importance, making the other
feature appear to be far less important, which has
implications for interpretation if not considered.
In scikit-learn, classification and regression decision trees
and random forests can report the relative importance of
each feature using the feature_importances_ method:

View feature importances

model.feature_importances_

array([0.09090795, 0.02453104, 0.46044474, 0.42411627])

The higher the number, the more important the feature (all
importance scores sum to 1). By plotting these values, we
can add interpretability to our random forest models.

14.8 Selecting Important Features in

Random Forests

Problem

You need to conduct feature selection on a random forest.

Solution

Identify the importance features and retrain the model
using only the most important features:

Load libraries

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

from sklearn.feature_selection import SelectFromModel

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create random forest classifier

randomforest = RandomForestClassifier(random_state=0, n_jobs=-1)

Create object that selects features with importance greater

than or equal to a threshold

selector = SelectFromModel(randomforest, threshold=0.3)

Create new feature matrix using selector

features_important = selector.fit_transform(features, target)

Train random forest using most important features

model = randomforest.fit(features_important, target)

Discussion

There are situations where we might want to reduce the
number of features in our model. For example, we might
want to reduce the model’s variance, or we might want to
improve interpretability by including only the most
important features.
In scikit-learn we can use a simple two-stage workflow to
create a model with reduced features. First, we train a
random forest model using all features. Then, we use this
model to identify the most important features. Next, we
create a new feature matrix that includes only these
features. In our solution, we used the SelectFromModel
method to create a feature matrix containing only features
with an importance greater than or equal to some
threshold value. Finally, we created a new model using
only those features.
We must note two caveats to this approach. First, nominal
categorical features that have been one-hot encoded will
see the feature importance diluted across the binary
features. Second, the feature importance of highly
correlated features will be effectively assigned to one
feature and not evenly distributed across both features.

See Also

Variable Selection Using Random Forests, Robin
Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot

14.9 Handling Imbalanced Classes

Problem

https://oreil.ly/y9k2U

You have a target vector with highly imbalanced classes
and want to train a random forest model.

Solution

Train a decision tree or random forest model with
class_weight="balanced":

Load libraries

import numpy as np

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Make class highly imbalanced by removing first 40 observations

features = features[40:,:]

target = target[40:]

Create target vector indicating if class 0, otherwise 1

target = np.where((target == 0), 0, 1)

Create random forest classifier object

randomforest = RandomForestClassifier(

 random_state=0, n_jobs=-1, class_weight="balanced")

Train model

model = randomforest.fit(features, target)

Discussion

Imbalanced classes are a common problem when we are
doing machine learning in the real world. Left
unaddressed, the presence of imbalanced classes can
reduce the performance of our model. We will discuss
handling imbalanced classes during preprocessing in
Recipe 17.5. However, many learning algorithms in scikit-
learn come with built-in methods for correcting for

imbalanced classes. We can set RandomForestClassifier
to correct for imbalanced classes using the class_weight
parameter. If supplied with a dictionary in the form of class
names and their desired weights (e.g., {"male": 0.2,
"female": 0.8}), RandomForestClassifier will weight
the classes accordingly. However, often a more useful
argument is balanced, wherein classes are automatically
weighted inversely proportional to how frequently they
appear in the data:

wj =
n

knj

where wj is the weight of class j, n is the number of
observations, nj is the number of observations in class j,
and k is the total number of classes. For example, in our
solution we have 2 classes (k), 110 observations (n), and 10
and 100 observations in each class, respectively (nj). If we
weight the classes using class_weight="balanced", then
the smaller class is weighted more:

Calculate weight for small class

110/(2*10)

5.5

while the larger class is weighted less:

Calculate weight for large class

110/(2*100)

0.55

14.10 Controlling Tree Size

Problem

You want to manually determine the structure and size of a
decision tree.

Solution

Use the tree structure parameters in scikit-learn tree-based
learning algorithms:

Load libraries

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create decision tree classifier object

decisiontree = DecisionTreeClassifier(random_state=0,

 max_depth=None,

 min_samples_split=2,

 min_samples_leaf=1,

 min_weight_fraction_leaf=0,

 max_leaf_nodes=None,

 min_impurity_decrease=0)

Train model

model = decisiontree.fit(features, target)

Discussion

scikit-learn’s tree-based learning algorithms have a variety
of techniques for controlling the size of decision trees.
These are accessed through parameters:
max_depth

Maximum depth of the tree. If None, the tree is grown until
all leaves are pure. If an integer, the tree is effectively
“pruned” to that depth.

min_samples_split

Minimum number of observations at a node before that
node is split. If an integer is supplied as an argument, it
determines the raw minimum, while if a float is supplied,
the minimum is the percent of total observations.

min_samples_leaf

Minimum number of observations required to be at a leaf.
Uses the same arguments as min_samples_split.

max_leaf_nodes

Maximum number of leaves.

min_impurity_split

Minimum impurity decrease required before a split is
performed.

While it is useful to know these parameters exist, most
likely we will only be using max_depth and
min_impurity_split because shallower trees (sometimes
called stumps) are simpler models and thus have lower
variance.

14.11 Improving Performance

Through Boosting

Problem

You need a model with better performance than decision
trees or random forests.

Solution

Train a boosted model using AdaBoostClassifier or
AdaBoostRegressor:

Load libraries

from sklearn.ensemble import AdaBoostClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create adaboost tree classifier object

adaboost = AdaBoostClassifier(random_state=0)

Train model

model = adaboost.fit(features, target)

Discussion

In a random forest, an ensemble (group) of randomized
decision trees predicts the target vector. An alternative,
and often more powerful, approach is called boosting. In
one form of boosting called AdaBoost, we iteratively train a
series of weak models (most often a shallow decision tree,
sometimes called a stump), each iteration giving higher
priority to observations the previous model predicted
incorrectly. More specifically, in AdaBoost:

1. Assign every observation, xi, an initial weight value,
wi = 1

n , where n is the total number of observations in
the data.

2. Train a “weak” model on the data.

3. For each observation:

a. If weak model predicts xi correctly, wi is
decreased.

b. If weak model predicts xi incorrectly, wi is
increased.

4. Train a new weak model where observations with
greater wi are given greater priority.

5. Repeat steps 4 and 5 until the data is perfectly
predicted or a preset number of weak models has been
trained.

The result is an aggregated model where individual weak
models focus on more difficult (from a prediction
perspective) observations. In scikit-learn, we can
implement AdaBoost using AdaBoostClassifier or
AdaBoostRegressor. The most important parameters are
base_estimator, n_estimators, learning_rate, and loss:
base_estimator

base_estimator is the learning algorithm to use to train
the weak models. The most common learner to use with
AdaBoost is a decision tree, the parameter’s default
argument.

n_estimators

n_estimators is the number of models to iteratively train.

learning_rate

learning_rate is the contribution of each model to the
weights, and it defaults to 1. Reducing the learning rate will
mean the weights will be increased or decreased to a small
degree, forcing the model to train slower (but sometimes
resulting in better performance scores).

loss

loss is exclusive to AdaBoostRegressor and sets the loss
function to use when updating weights. This defaults to a
linear loss function but can be changed to square or
exponential.

See Also

Explaining AdaBoost, Robert E. Schapire

14.12 Training an XGBoost Model

Problem

You need to train a tree-based model with high predictive
power.

Solution

Use the xgboost Python library:

Load libraries

import xgboost as xgb

from sklearn import datasets, preprocessing

from sklearn.metrics import classification_report

from numpy import argmax

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create dataset

xgb_train = xgb.DMatrix(features, label=target)

Define parameters

param = {

 'objective': 'multi:softprob',

 'num_class': 3

}

https://oreil.ly/5E1v4

Train model

gbm = xgb.train(param, xgb_train)

Get predictions

predictions = argmax(gbm.predict(xgb_train), axis=1)

Get a classification report

print(classification_report(target, predictions))

 precision recall f1-score support

 0 1.00 1.00 1.00 50

 1 1.00 0.96 0.98 50

 2 0.96 1.00 0.98 50

 accuracy 0.99 150

 macro avg 0.99 0.99 0.99 150

weighted avg 0.99 0.99 0.99 150

Discussion

XGBoost (which stands for Extreme Gradient Boosting) is a
very popular gradient boosting algorithm in the machine
learning space. Though it is not always a tree-based model,
it is frequently applied to ensembles of decision trees. It
gained much of its popularity due to widespread success on
the machine learning competition website Kaggle and has
since been a reliable algorithm for improving performance
beyond that of typical random forests or gradient boosted
machines.
Although XGBoost is known for being computationally
intensive, computational performance optimizations (such
as GPU support) over the last few years have made
iterating quickly with XGBoost significantly easier, and it
remains a common choice of algorithm when statistical
performance is a requirement.

See Also

XGBoost documentation

14.13 Improving Real-Time

Performance with LightGBM

Problem

You need to train a gradient boosted tree-based model that
is computationally optimized.

Solution

Use the gradient boosted machine library lightgbm:

Load libraries

import lightgbm as lgb

from sklearn import datasets, preprocessing

from sklearn.metrics import classification_report

from numpy import argmax

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create dataset

lgb_train = lgb.Dataset(features, target)

Define parameters

params = {

 'objective': 'multiclass',

 'num_class': 3,

 'verbose': -1,

}

Train model

gbm = lgb.train(params, lgb_train)

Get predictions

predictions = argmax(gbm.predict(features), axis=1)

https://oreil.ly/cAuGX

Get a classification report

print(classification_report(target, predictions))

 precision recall f1-score support

 0 1.00 1.00 1.00 50

 1 1.00 1.00 1.00 50

 2 1.00 1.00 1.00 50

 accuracy 1.00 150

 macro avg 1.00 1.00 1.00 150

weighted avg 1.00 1.00 1.00 150

Discussion

The lightgbm library is used for gradient boosted machines
and is highly optimized for training time, inference, and
GPU support. As a result of its computational efficiency, it’s
often used in production and in large scale settings.
Although scikit-learn models are typically easier to use,
some libraries, such as lightgbm, can be handy when
you’re limited by large data or strict model training/serving
times.

See Also

LightGBM documentation

CatBoost documentation (another optimized library for
GBMs)

https://oreil.ly/XDcpG
https://oreil.ly/4Bb8g

Chapter 15. K-Nearest

Neighbors

15.0 Introduction

The k-nearest neighbors (KNN) classifier is one of the
simplest yet most commonly used classifiers in supervised
machine learning. KNN is often considered a lazy learner;
it doesn’t technically train a model to make predictions.
Instead an observation is predicted to be the same class as
that of the largest proportion of the k nearest observations.
For example, if an observation with an unknown class is
surrounded by an observation of class 1, then the
observation is classified as class 1. In this chapter we will
explore how to use scikit-learn to create and use a KNN
classifier.

15.1 Finding an Observation’s

Nearest Neighbors

Problem

You need to find an observation’s k nearest observations
(neighbors).

Solution

Use scikit-learn’s NearestNeighbors:

Load libraries

from sklearn import datasets

from sklearn.neighbors import NearestNeighbors

from sklearn.preprocessing import StandardScaler

Load data

iris = datasets.load_iris()

features = iris.data

Create standardizer

standardizer = StandardScaler()

Standardize features

features_standardized = standardizer.fit_transform(features)

Two nearest neighbors

nearest_neighbors =

NearestNeighbors(n_neighbors=2).fit(features_standardized)

Create an observation

new_observation = [1, 1, 1, 1]

Find distances and indices of the observation's nearest

neighbors

distances, indices =

nearest_neighbors.kneighbors([new_observation])

View the nearest neighbors

features_standardized[indices]

array([[[1.03800476, 0.55861082, 1.10378283, 1.18556721],

 [0.79566902, 0.32841405, 0.76275827, 1.05393502]]])

Discussion

In our solution we used the dataset of iris flowers. We
created an observation, new_observation, with some
values and then found the two observations that are closest
to our observation. indices contains the locations of the
observations in our dataset that are closest, so X[indices]
displays the values of those observations. Intuitively,
distance can be thought of as a measure of similarity, so
the two closest observations are the two flowers most
similar to the flower we created.

How do we measure distance? scikit-learn offers a wide
variety of distance metrics, d, including Euclidean:

deuclidean =√∑
n

i=1
(xi − yi)

2

and Manhattan distance:

dmanhattan =
n

∑
i=1

|xi − yi|

By default, NearestNeighbors uses Minkowski distance:

dminkowski = (
n

∑
i=1

|xi − yi|
p)

1/p

where xi and yi are the two observations we are
calculating the distance between. Minkowski includes a
hyperparameter, p, where p = 1 is Manhattan distance and
p = 2 is Euclidean distance, and so on. By default in scikit-
learn p = 2.
We can set the distance metric using the metric
parameter:

Find two nearest neighbors based on Euclidean distance

nearestneighbors_euclidean = NearestNeighbors(

 n_neighbors=2, metric='euclidean').fit(features_standardized)

The distance variable we created contains the actual
distance measurement to each of the two nearest
neighbors:

View distances

distances

array([[0.49140089, 0.74294782]])

In addition, we can use kneighbors_graph to create a
matrix indicating each observation’s nearest neighbors:

Find each observation's three nearest neighbors

based on Euclidean distance (including itself)

nearestneighbors_euclidean = NearestNeighbors(

 n_neighbors=3, metric="euclidean").fit(features_standardized)

List of lists indicating each observation's three nearest

neighbors

(including itself)

nearest_neighbors_with_self =

nearestneighbors_euclidean.kneighbors_graph(

 features_standardized).toarray()

Remove 1s marking an observation is a nearest neighbor to

itself

for i, x in enumerate(nearest_neighbors_with_self):

 x[i] = 0

View first observation's two nearest neighbors

nearest_neighbors_with_self[0]

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0.,

 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

When we are finding nearest neighbors or using any
learning algorithm based on distance, it is important to

transform features so that they are on the same scale. This
is because the distance metrics treat all features as if they
were on the same scale, but if one feature is in millions of
dollars and a second feature is in percentages, the distance
calculated will be biased toward the former. In our solution
we addressed this potential issue by standardizing the
features using StandardScaler.

15.2 Creating a K-Nearest Neighbors

Classifier

Problem

Given an observation of unknown class, you need to predict
its class based on the class of its neighbors.

Solution

If the dataset is not very large, use KNeighborsClassifier:

Load libraries

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import StandardScaler

from sklearn import datasets

Load data

iris = datasets.load_iris()

X = iris.data

y = iris.target

Create standardizer

standardizer = StandardScaler()

Standardize features

X_std = standardizer.fit_transform(X)

Train a KNN classifier with 5 neighbors

knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1).fit(X_std,

y)

Create two observations

new_observations = [[0.75, 0.75, 0.75, 0.75],

 [1, 1, 1, 1]]

Predict the class of two observations

knn.predict(new_observations)

array([1, 2])

Discussion

In KNN, given an observation, xu, with an unknown target
class, the algorithm first identifies the k closest
observations (sometimes called xu’s neighborhood) based
on some distance metric (e.g., Euclidean distance), then
these k observations “vote” based on their class, and the
class that wins the vote is xu’s predicted class. More
formally, the probability xu of some class j is:

1

k
∑
i∈ν

I (yi = j)

where ν is the k observation in xu’s neighborhood, yi is the
class of the ith observation, and I is an indicator function
(i.e., 1 is true, 0 otherwise). In scikit-learn we can see these
probabilities using predict_proba:

View probability that each observation is one of three classes

knn.predict_proba(new_observations)

array([[0. , 0.6, 0.4],

 [0. , 0. , 1.]])

The class with the highest probability becomes the
predicted class. For example, in the preceding output, the
first observation should be class 1 (Pr = 0.6) while the
second observation should be class 2 (Pr = 1), and this is
just what we see:

knn.predict(new_observations)

array([1, 2])

KNeighborsClassifier contains a number of important
parameters to consider. First, metric sets the distance
metric used. Second, n_jobs determines how many of the
computer’s cores to use. Because making a prediction
requires calculating the distance from a point to every
single point in the data, using multiple cores is highly
recommended. Third, algorithm sets the method used to
calculate the nearest neighbors. While there are real
differences in the algorithms, by default
KNeighborsClassifier attempts to auto-select the best
algorithm so you often don’t need to worry about this
parameter. Fourth, by default KNeighborsClassifier
works how we described previously, with each observation
in the neighborhood getting one vote; however, if we set
the weights parameter to distance, the closer
observations’ votes are weighted more than observations
farther away. Intuitively this make sense, since more
similar neighbors might tell us more about an observation’s
class than others.
Finally, because distance calculations treat all features as if
they are on the same scale, it is important to standardize
the features prior to using a KNN classifier.

15.3 Identifying the Best

Neighborhood Size

Problem

You want to select the best value for k in a k-nearest
neighbors classifier.

Solution

Use model selection techniques like GridSearchCV:

Load libraries

from sklearn.neighbors import KNeighborsClassifier

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline, FeatureUnion

from sklearn.model_selection import GridSearchCV

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create standardizer

standardizer = StandardScaler()

Create a KNN classifier

knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1)

Create a pipeline

pipe = Pipeline([("standardizer", standardizer), ("knn", knn)])

Create space of candidate values

search_space = [{"knn__n_neighbors": [1, 2, 3, 4, 5, 6, 7, 8, 9,

10]}]

Create grid search

classifier = GridSearchCV(

 pipe, search_space, cv=5,

verbose=0).fit(features_standardized, target)

Discussion

The size of k has real implications in KNN classifiers. In
machine learning we are trying to find a balance between
bias and variance, and in few places is that as explicit as
the value of k. If k = n, where n is the number of
observations, then we have high bias but low variance. If k
= 1, we will have low bias but high variance. The best
model will come from finding the value of k that balances

this bias-variance trade-off. In our solution, we used
GridSearchCV to conduct five-fold cross-validation on KNN
classifiers with different values of k. When that is
completed, we can see the k that produces the best model:

Best neighborhood size (k)

classifier.best_estimator_.get_params()["knn__n_neighbors"]

6

15.4 Creating a Radius-Based Nearest

Neighbors Classifier

Problem

Given an observation of unknown class, you need to predict
its class based on the class of all observations within a
certain distance.

Solution

Use RadiusNeighborsClassifier:

Load libraries

from sklearn.neighbors import RadiusNeighborsClassifier

from sklearn.preprocessing import StandardScaler

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create standardizer

standardizer = StandardScaler()

Standardize features

features_standardized = standardizer.fit_transform(features)

Train a radius neighbors classifier

rnn = RadiusNeighborsClassifier(

 radius=.5, n_jobs=-1).fit(features_standardized, target)

Create two observations

new_observations = [[1, 1, 1, 1]]

Predict the class of two observations

rnn.predict(new_observations)

array([2])

Discussion

In KNN classification, an observation’s class is predicted
from the classes of its k neighbors. A less common
technique is classification in a radius-based nearest

neighbor (RNN) classifier, where an observation’s class is
predicted from the classes of all observations within a
given radius r.
In scikit-learn, RadiusNeighborsClassifier is very similar
to KNeighbors Classi fier, with the exception of two
parameters. First, in RadiusNeighbors Clas sifier we need
to specify the radius of the fixed area used to determine if
an observation is a neighbor using radius. Unless there is
some substantive reason for setting radius to some value,
it’s best to treat it like any other hyperparameter and tune
it during model selection. The second useful parameter is
outlier_label, which indicates what label to give an
observation that has no observations within the radius—
which itself can be a useful tool for identifying outliers.

15.5 Finding Approximate Nearest

Neighbors

Problem

You want to fetch nearest neighbors for big data at low
latency:

Solution

Use an approximate nearest neighbors (ANN) based search
with Facebook’s faiss library:

Load libraries

import faiss

import numpy as np

from sklearn import datasets

from sklearn.neighbors import NearestNeighbors

from sklearn.preprocessing import StandardScaler

Load data

iris = datasets.load_iris()

features = iris.data

Create standardizer

standardizer = StandardScaler()

Standardize features

features_standardized = standardizer.fit_transform(features)

Set faiss parameters

n_features = features_standardized.shape[1]

nlist = 3

k = 2

Create an IVF index

quantizer = faiss.IndexFlatIP(n_features)

index = faiss.IndexIVFFlat(quantizer, n_features, nlist)

Train the index and add feature vectors

index.train(features_standardized)

index.add(features_standardized)

Create an observation

new_observation = np.array([[1, 1, 1, 1]])

Search the index for the 2 nearest neighbors

distances, indices = index.search(new_observation, k)

Show the feature vectors for the two nearest neighbors

np.array([list(features_standardized[i]) for i in indices[0]])

array([[1.03800476, 0.55861082, 1.10378283, 1.18556721],

 [0.79566902, 0.32841405, 0.76275827, 1.05393502]])

Discussion

KNN is a great approach to finding the most similar
observations in a set of small data. However, as the size of
our data increases, so does the time it takes to compute the
distance between any one observation and all other points
in our dataset. Large scale ML systems such as search or
recommendation engines often use some form of vector
similarity measure to retrieve similar observations. But at
scale in real time, where we need results in less than 100
ms, KNN becomes infeasible to run.
ANN helps us overcome this problem by sacrificing some of
the quality of the exact nearest neighbors search in favor of
speed. This is to say that although the order and items in
the first 10 nearest neighbors of an ANN search may not
match the first 10 results from an exact KNN search, we
get those first 10 nearest neighbors much faster.
In this example, we use an ANN approach called inverted
file index (IVF). This approach works by using clustering to
limit the scope of the search space for our nearest
neighbors search. IVF uses Voronoi tessellations to
partition our search space into a number of distinct areas
(or clusters). And when we go to find nearest neighbors, we
visit a limited number of clusters to find similar
observations, as opposed to conducting a comparison
across every point in our dataset.
How Voronoi tessellations are created from data is best
visualized using simple data. Take a scatter plot of random
data visualized in two dimensions, as shown in Figure 15-1.

Figure 15-1. A scatter plot of randomly generated two-dimensional data

Using Voronoi tessellations, we can create a number of
subspaces, each of which contains only a small subset of
the total observations we want to search, as shown in
Figure 15-2.

Figure 15-2. Randomly generated two-dimensional data separated into a

number of different subspaces

The nlist parameter in the Faiss library lets us define the
number of clusters we want to create. An additional
parameter, nprobe, can be used at query time to define the
number of clusters we want to search to retrieve nearest
neighbors for a given observation. Increasing both nlist
and nprobe can result in higher quality neighbors at the
cost of larger computational effort and thus a longer
runtime for IVF indices. Decreasing each of these
parameters will have the inverse effect, and your code will
run faster but at the risk of returning lower quality results.
Notice this example returns the exact same output as the
first recipe in this chapter. This is because we are working
with very small data and using only three clusters, which
makes it unlikely our ANN results will differ significantly
from our KNN results.

See Also

Nearest Neighbor Indexes for Similarity Search
(different ANN index types)

15.6 Evaluating Approximate Nearest

Neighbors

Problem

You want to see how your ANN compares to exact nearest
neighbors (KNN):

Solution

Compute the recall @k nearest neighbors of the ANN as
compared to the KNN:

Load libraries

import faiss

import numpy as np

from sklearn import datasets

from sklearn.neighbors import NearestNeighbors

from sklearn.preprocessing import StandardScaler

Number of nearest neighbors

k = 10

Load data

iris = datasets.load_iris()

features = iris.data

Create standardizer

standardizer = StandardScaler()

Standardize features

features_standardized = standardizer.fit_transform(features)

Create KNN with 10 NN

nearest_neighbors =

https://oreil.ly/DVqgn

NearestNeighbors(n_neighbors=k).fit(features_standardized)

Set faiss parameters

n_features = features_standardized.shape[1]

nlist = 3

Create an IVF index

quantizer = faiss.IndexFlatIP(n_features)

index = faiss.IndexIVFFlat(quantizer, n_features, nlist)

Train the index and add feature vectors

index.train(features_standardized)

index.add(features_standardized)

index.nprobe = 1

Create an observation

new_observation = np.array([[1, 1, 1, 1]])

Find distances and indices of the observation's exact nearest

neighbors

knn_distances, knn_indices =

nearest_neighbors.kneighbors(new_observation)

Search the index for the two nearest neighbors

ivf_distances, ivf_indices = index.search(new_observation, k)

Get the set overlap

recalled_items = set(list(knn_indices[0])) &

set(list(ivf_indices[0]))

Print the recall

print(f"Recall @k={k}: {len(recalled_items)/k * 100}%")

Recall @k=10: 100.0%

Discussion

Recall @k is most simply defined as the number of items
returned by the ANN at some k nearest neighbors that also
appear in the exact nearest neighbors at the same k,
divided by k. In this example, at 10 nearest neighbors we
have 100% recall, which means that our ANN is returning
the same indices as our KNN at k=10 (though not
necessarily in the same order).

Recall is a common metric to use when evaluating ANNs
against exact nearest neighbors.

See Also

Google’s note on ANN for its Vertex Matching Engine
Service

https://oreil.ly/-COc9

Chapter 16. Logistic

Regression

16.0 Introduction

Despite being called a regression, logistic regression is
actually a widely used supervised classification technique.
Logistic regression (and its extensions, like multinomial
logistic regression) is a straightforward, well-understood
approach to predicting the probability that an observation
is of a certain class. In this chapter, we will cover training a
variety of classifiers using logistic regression in scikit-
learn.

16.1 Training a Binary Classifier

Problem

You need to train a simple classifier model.

Solution

Train a logistic regression in scikit-learn using
LogisticRegression:

Load libraries

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

Load data with only two classes

iris = datasets.load_iris()

features = iris.data[:100,:]

target = iris.target[:100]

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create logistic regression object

logistic_regression = LogisticRegression(random_state=0)

Train model

model = logistic_regression.fit(features_standardized, target)

Discussion

Despite having “regression” in its name, a logistic
regression is actually a widely used binary classifier (i.e.,
the target vector can take only two values). In a logistic
regression, a linear model (e.g., β0 + β1x) is included in a
logistic (also called sigmoid) function, 1

1+e−z , such that:

P (yi = 1 ∣ X) =
1

1 + e−(β0+β1x)

where P (yi = 1 ∣ X) is the probability of the ith
observation’s target value, yi, being class 1; X is the
training data; β0 and β1 are the parameters to be learned;
and e is Euler’s number. The effect of the logistic function
is to constrain the value of the function’s output to between
0 and 1, so that it can be interpreted as a probability. If
P (yi = 1 ∣ X) is greater than 0.5, class 1 is predicted;
otherwise, class 0 is predicted.
In scikit-learn, we can train a logistic regression model
using LogisticRegression. Once it is trained, we can use
the model to predict the class of new observations:

Create new observation

new_observation = [[.5, .5, .5, .5]]

Predict class

model.predict(new_observation)

array([1])

In this example, our observation was predicted to be class
1. Additionally, we can see the probability that an
observation is a member of each class:

View predicted probabilities

model.predict_proba(new_observation)

array([[0.17738424, 0.82261576]])

Our observation had a 17.7% chance of being class 0 and
an 82.2% chance of being class 1.

16.2 Training a Multiclass Classifier

Problem

Given more than two classes, you need to train a classifier
model.

Solution

Train a logistic regression in scikit-learn with
LogisticRegression using one-vs-rest or multinomial
methods:

Load libraries

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create one-vs-rest logistic regression object

logistic_regression = LogisticRegression(random_state=0,

multi_class="ovr")

Train model

model = logistic_regression.fit(features_standardized, target)

Discussion

On their own, logistic regressions are only binary
classifiers, meaning they cannot handle target vectors with
more than two classes. However, two clever extensions to
logistic regression do just that. First, in one-vs-rest logistic
regression (OvR) a separate model is trained for each class
predicted, whether an observation is that class or not (thus
making it a binary classification problem). It assumes that
each classification problem (e.g., class 0 or not) is
independent.
Alternatively, in multinomial logistic regression (MLR), the
logistic function we saw in Recipe 16.1 is replaced with a
softmax function:

P (yi = k ∣ X) =
eβkxi

∑K
j=1 eβjxi

where P (yi = k ∣ X) is the probability of the ith
observation’s target value, yi, being in class k, and K is the
total number of classes. One practical advantage of MLR is
that its predicted probabilities using the predict_proba
method are more reliable (i.e., better calibrated).

When using LogisticRegression we can select which of
the two techniques we want, with OvR (ovr) being the
default argument. We can switch to MLR by setting the
argument to multinomial.

16.3 Reducing Variance Through

Regularization

Problem

You need to reduce the variance of your logistic regression
model.

Solution

Tune the regularization strength hyperparameter, C:

Load libraries

from sklearn.linear_model import LogisticRegressionCV

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create decision tree regression object

logistic_regression = LogisticRegressionCV(

 penalty='l2', Cs=10, random_state=0, n_jobs=-1)

Train model

model = logistic_regression.fit(features_standardized, target)

Discussion

Regularization is a method of penalizing complex models to
reduce their variance. Specifically, a penalty term is added
to the loss function we are trying to minimize, typically the
L1 and L2 penalties. In the L1 penalty:

α

p

∑
j=1

β̂j

where β̂j is the parameters of the jth of p features being
learned, and α is a hyperparameter denoting the
regularization strength. With the L2 penalty:

α

p

∑
j=1

β̂j

2

Higher values of α increase the penalty for larger
parameter values (i.e., more complex models). scikit-learn
follows the common method of using C instead of α where
C is the inverse of the regularization strength: C = 1

α
. To

reduce variance while using logistic regression, we can
treat C as a hyperparameter to be tuned to find the value
of C that creates the best model. In scikit-learn we can use
the LogisticRegressionCV class to efficiently tune C.
LogisticRegressionCV’s parameter Cs can either accept a
range of values for C to search over (if a list of floats is
supplied as an argument) or, if supplied an integer, will
generate a list of that many candidate values drawn from a
logarithmic scale between –10,000 and 10,000.
Unfortunately, LogisticRegressionCV does not allow us to
search over different penalty terms. To do this we have to
use the less efficient model selection techniques discussed
in Chapter 12. ∣ ∣

16.4 Training a Classifier on Very

Large Data

Problem

You need to train a simple classifier model on a very large
set of data.

Solution

Train a logistic regression in scikit-learn with
LogisticRegression using the stochastic average gradient

(SAG) solver:

Load libraries

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create logistic regression object

logistic_regression = LogisticRegression(random_state=0,

solver="sag")

Train model

model = logistic_regression.fit(features_standardized, target)

Discussion

scikit-learn’s LogisticRegression offers a number of
techniques for training a logistic regression, called solvers.
Most of the time scikit-learn will select the best solver

automatically for us or warn us that we cannot do
something with that solver. However, there is one
particular case we should be aware of.
While an exact explanation is beyond the bounds of this
book (for more information see Mark Schmidt’s slides in
the “See Also” section of this recipe), stochastic average
gradient descent allows us to train a model much faster
than other solvers when our data is very large. However, it
is also very sensitive to feature scaling, so standardizing
our features is particularly important. We can set our
learning algorithm to use this solver by setting
solver="sag".

See Also

Minimizing Finite Sums with the Stochastic Average
Gradient Algorithm, Mark Schmidt

16.5 Handling Imbalanced Classes

Problem

You need to train a simple classifier model.

Solution

Train a logistic regression in scikit-learn using
LogisticRegression:

Load libraries

import numpy as np

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

https://oreil.ly/K5rEG

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Make class highly imbalanced by removing first 40 observations

features = features[40:,:]

target = target[40:]

Create target vector indicating if class 0, otherwise 1

target = np.where((target == 0), 0, 1)

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create decision tree regression object

logistic_regression = LogisticRegression(random_state=0,

class_weight="balanced")

Train model

model = logistic_regression.fit(features_standardized, target)

Discussion

Like many other learning algorithms in scikit-learn,
LogisticRegression comes with a built-in method of
handling imbalanced classes. If we have highly imbalanced
classes and have not addressed it during preprocessing, we
have the option of using the class_weight parameter to
weight the classes to make certain we have a balanced mix
of each class. Specifically, the balanced argument will
automatically weigh classes inversely proportional to their
frequency:

wj =
n

knj

where wj is the weight to class j, n is the number of
observations, nj is the number of observations in class j,

and k is the total number of classes.

Chapter 17. Support

Vector Machines

17.0 Introduction

To understand support vector machines, we must
understand hyperplanes. Formally, a hyperplane is an n – 1

subspace in an n-dimensional space. While that sounds
complex, it actually is pretty simple. For example, if we
wanted to divide a two-dimensional space, we’d use a one-
dimensional hyperplane (i.e., a line). If we wanted to divide
a three-dimensional space, we’d use a two-dimensional
hyperplane (i.e., a flat piece of paper or a bed sheet). A
hyperplane is simply a generalization of that concept into n
dimensions.
Support vector machines classify data by finding the
hyperplane that maximizes the margin between the classes
in the training data. In a two-dimensional example with two
classes, we can think of a hyperplane as the widest straight
“band” (i.e., line with margins) that separates the two
classes.
In this chapter, we cover training support vector machines
in a variety of situations and dive under the hood to look at
how we can extend the approach to tackle common
problems.

17.1 Training a Linear Classifier

Problem

You need to train a model to classify observations.

Solution

Use a support vector classifier (SVC) to find the hyperplane
that maximizes the margins between the classes:

Load libraries

from sklearn.svm import LinearSVC

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

import numpy as np

Load data with only two classes and two features

iris = datasets.load_iris()

features = iris.data[:100,:2]

target = iris.target[:100]

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create support vector classifier

svc = LinearSVC(C=1.0)

Train model

model = svc.fit(features_standardized, target)

Discussion

scikit-learn’s LinearSVC implements a simple SVC. To get
an intuition behind what an SVC is doing, let’s plot out the
data and hyperplane. While SVCs work well in high
dimensions, in our solution we loaded only two features and
took a subset of observations so that the data contains only
two classes. This will let us visualize the model. Recall that
SVC attempts to find the hyperplane— a line when we have
only two dimensions— with the maximum margin between
the classes. In the following code we plot the two classes
on a two-dimensional space, then draw the hyperplane:

Load library

from matplotlib import pyplot as plt

Plot data points and color using their class

color = ["black" if c == 0 else "lightgrey" for c in target]

plt.scatter(features_standardized[:,0],

features_standardized[:,1], c=color)

Create the hyperplane

w = svc.coef_[0]

a = -w[0] / w[1]

xx = np.linspace(-2.5, 2.5)

yy = a * xx - (svc.intercept_[0]) / w[1]

Plot the hyperplane

plt.plot(xx, yy)

plt.axis("off"), plt.show();

In this visualization, all observations of class 0 are black
and observations of class 1 are light gray. The hyperplane
is the decision boundary deciding how new observations
are classified. Specifically, any observation above the line
will by classified as class 0, while any observation below
the line will be classified as class 1. We can prove this by

creating a new observation in the top-left corner of our
visualization, meaning it should be predicted to be class 0:

Create new observation

new_observation = [[-2, 3]]

Predict class of new observation

svc.predict(new_observation)

array([0])

There are a few things to note about SVCs. First, for the
sake of visualization, we limited our example to a binary
example (i.e., only two classes); however, SVCs can work
well with multiple classes. Second, as our visualization
shows, the hyperplane is by definition linear (i.e., not
curved). This was okay in this example because the data
was linearly separable, meaning there was a hyperplane
that could perfectly separate the two classes.
Unfortunately, in the real world this is rarely the case.
More typically, we will not be able to perfectly separate
classes. In these situations there is a balance between SVC
maximizing the margin of the hyperplane and minimizing
the misclassification. In SVC, the latter is controlled with
the hyperparameter C. C is a parameter of the SVC learner
and is the penalty for misclassifying a data point. When C is
small, the classifier is okay with misclassified data points
(high bias but low variance). When C is large, the classifier
is heavily penalized for misclassified data and therefore
bends over backward to avoid any misclassified data points
(low bias but high variance).
In scikit-learn, C is determined by the parameter C and
defaults to C=1.0. We should treat C has a hyperparameter
of our learning algorithm, which we tune using model
selection techniques in Chapter 12.

17.2 Handling Linearly Inseparable

Classes Using Kernels

Problem

You need to train a support vector classifier, but your
classes are linearly inseparable.

Solution

Train an extension of a support vector machine using
kernel functions to create nonlinear decision boundaries:

Load libraries

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

import numpy as np

Set randomization seed

np.random.seed(0)

Generate two features

features = np.random.randn(200, 2)

Use an XOR gate (you don't need to know what this is) to

generate

linearly inseparable classes

target_xor = np.logical_xor(features[:, 0] > 0, features[:, 1] >

0)

target = np.where(target_xor, 0, 1)

Create a support vector machine with a radial basis function

kernel

svc = SVC(kernel="rbf", random_state=0, gamma=1, C=1)

Train the classifier

model = svc.fit(features, target)

Discussion

A full explanation of support vector machines is outside the
scope of this book. However, a short explanation is likely
beneficial for understanding support vector machines and
kernels. For reasons best learned elsewhere, a support
vector classifier can be represented as:

f (x) = β0 +∑
iϵS

αiK (xi,xi′)

where β0 is the bias, S is the set of all support vector
observations, α is the model parameters to be learned, and
(xi,xi′) are pairs of two support vector observations, xi and
xi′. Most importantly, K is a kernel function that compares
the similarity between xi and xi′. Don’t worry if you don’t
understand kernel functions. For our purposes, just realize
that (1) K determines the type of hyperplane used to
separate our classes, and (2) we create different
hyperplanes by using different kernels. For example, if we
want a basic linear hyperplane like the one we created in
Recipe 17.1, we can use the linear kernel:

K (xi,xi′) =
p

∑
j=1

xijxi′j

where p is the number of features. However, if we want a
nonlinear decision boundary, we swap the linear kernel
with a polynomial kernel:

K (xi,xi′) = (r + γ∑
p

j=1
xijxi′j)

d

where d is the degree of the polynomial kernel function.
Alternatively, we can use one of the most common kernels

in support vectors machines, the radial basis function

kernel:

K (xi,xi′) = e
(−γ∑

p

j=1 (xijxi′j)
2)

where γ is a hyperparameter and must be greater than
zero. The main point of the preceding explanation is that if
we have linearly inseparable data, we can swap out a linear
kernel with an alternative kernel to create a nonlinear
hyperplane decision boundary.
We can understand the intuition behind kernels by
visualizing a simple example. This function, based on one
by Sebastian Raschka, plots the observations and decision
boundary hyperplane of a two-dimensional space. You do
not need to understand how this function works; I have
included it here so you can experiment on your own:

Plot observations and decision boundary hyperplane

from matplotlib.colors import ListedColormap

import matplotlib.pyplot as plt

def plot_decision_regions(X, y, classifier):

 cmap = ListedColormap(("red", "blue"))

 xx1, xx2 = np.meshgrid(np.arange(-3, 3, 0.02), np.arange(-3,

3, 0.02))

 Z = classifier.predict(np.array([xx1.ravel(),

xx2.ravel()]).T)

 Z = Z.reshape(xx1.shape)

 plt.contourf(xx1, xx2, Z, alpha=0.1, cmap=cmap)

 for idx, cl in enumerate(np.unique(y)):

 plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],

 alpha=0.8, c=cmap(idx),

 marker="+", label=cl)

In our solution, we have data containing two features (i.e.,
two dimensions) and a target vector with the class of each
observation. Importantly, the classes are assigned such

that they are linearly inseparable. That is, there is no
straight line we can draw that will divide the two classes.
First, let’s create a support vector machine classifier with a
linear kernel:

Create support vector classifier with a linear kernel

svc_linear = SVC(kernel="linear", random_state=0, C=1)

Train model

svc_linear.fit(features, target)

SVC(C=1, kernel='linear', random_state=0)

Next, since we have only two features, we are working in a
two-dimensional space and can visualize the observations,
their classes, and our model’s linear hyperplane:

Plot observations and hyperplane

plot_decision_regions(features, target, classifier=svc_linear)

plt.axis("off"), plt.show();

As we can see, our linear hyperplane did very poorly at
dividing the two classes! Now, let’s swap out the linear
kernel with a radial basis function kernel and use it to train
a new model:

Create a support vector machine with a radial basis function

kernel

svc = SVC(kernel="rbf", random_state=0, gamma=1, C=1)

Train the classifier

model = svc.fit(features, target)

And then visualize the observations and hyperplane:

Plot observations and hyperplane

plot_decision_regions(features, target, classifier=svc)

plt.axis("off"), plt.show();

By using the radial basis function kernel we can create a
decision boundary that is able to do a much better job of
separating the two classes than the linear kernel. This is

the motivation behind using kernels in support vector
machines.
In scikit-learn, we can select the kernel we want to use by
using the kernel parameter. Once we select a kernel, we
need to specify the appropriate kernel options, such as the
value of d (using the degree parameter) in polynomial
kernels, and the value of γ (using the gamma parameter) in
radial basis function kernels. We will also need to set the
penalty parameter, C. When training the model, in most
cases we should treat all of these as hyperparameters and
use model selection techniques to identify the combination
of their values that produces the model with the best
performance.

17.3 Creating Predicted Probabilities

Problem

You need to know the predicted class probabilities for an
observation.

Solution

When using scikit-learn’s SVC, set probability=True, train
the model, then use predict_proba to see the calibrated
probabilities:

Load libraries

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

import numpy as np

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create support vector classifier object

svc = SVC(kernel="linear", probability=True, random_state=0)

Train classifier

model = svc.fit(features_standardized, target)

Create new observation

new_observation = [[.4, .4, .4, .4]]

View predicted probabilities

model.predict_proba(new_observation)

array([[0.00541761, 0.97348825, 0.02109414]])

Discussion

Many of the supervised learning algorithms we have
covered use probability estimates to predict classes. For
example, in k-nearest neighbors, an observation’s k
neighbor’s classes were treated as votes to create a
probability that an observation was of that class. Then the
class with the highest probability was predicted. SVC’s use
of a hyperplane to create decision regions does not
naturally output a probability estimate that an observation
is a member of a certain class. However, we can in fact
output calibrated class probabilities with a few caveats. In
an SVC with two classes, Platt scaling can be used, wherein
first the SVC is trained, and then a separate cross-validated
logistic regression is trained to map the SVC outputs into
probabilities:

P (y = 1 ∣ x) =
1

1 + e(A×f(x)+B)

where A and B are parameter vectors, and f(x) is the ith
observation’s signed distance from the hyperplane. When
we have more than two classes, an extension of Platt
scaling is used.
In more practical terms, creating predicted probabilities
has two major issues. First, because we are training a
second model with cross-validation, generating predicted
probabilities can significantly increase the time it takes to
train our model. Second, because the predicted
probabilities are created using cross-validation, they might
not always match the predicted classes. That is, an
observation might be predicted to be class 1 but have a
predicted probability of being class 1 of less than 0.5.
In scikit-learn, the predicted probabilities must be
generated when the model is being trained. We can do this
by setting SVC’s probability to True. After the model is
trained, we can output the estimated probabilities for each
class using predict_proba.

17.4 Identifying Support Vectors

Problem

You need to identify which observations are the support
vectors of the decision hyperplane.

Solution

Train the model, then use support_vectors_:

Load libraries

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

import numpy as np

Load data with only two classes

iris = datasets.load_iris()

features = iris.data[:100,:]

target = iris.target[:100]

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create support vector classifier object

svc = SVC(kernel="linear", random_state=0)

Train classifier

model = svc.fit(features_standardized, target)

View support vectors

model.support_vectors_

array([[-0.5810659 , 0.42196824, -0.80497402, -0.50860702],

 [-1.52079513, -1.67737625, -1.08231219, -0.86427627],

 [-0.89430898, -1.4674418 , 0.30437864, 0.38056609],

 [-0.5810659 , -1.25750735, 0.09637501, 0.55840072]])

Discussion

Support vector machines get their name from the fact that
the hyperplane is being determined by a relatively small
number of observations, called the support vectors.
Intuitively, think of the hyperplane as being “carried” by
these support vectors. These support vectors are therefore
very important to our model. For example, if we remove an
observation that is not a support vector from the data, the
model does not change; however, if we remove a support
vector, the hyperplane will not have the maximum margin.
After we have trained an SVC, scikit-learn offers a number
of options for identifying the support vector. In our
solution, we used support_vectors_ to output the actual
observations’ features of the four support vectors in our

model. Alternatively, we can view the indices of the support
vectors using support_:

model.support_

array([23, 41, 57, 98], dtype=int32)

Finally, we can use n_support_ to find the number of
support vectors belonging to each class:

model.n_support_

array([2, 2], dtype=int32)

17.5 Handling Imbalanced Classes

Problem

You need to train a support vector machine classifier in the
presence of imbalanced classes.

Solution

Increase the penalty for misclassifying the smaller class
using class_weight:

Load libraries

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

import numpy as np

Load data with only two classes

iris = datasets.load_iris()

features = iris.data[:100,:]

target = iris.target[:100]

Make class highly imbalanced by removing first 40 observations

features = features[40:,:]

target = target[40:]

Create target vector indicating if class 0, otherwise 1

target = np.where((target == 0), 0, 1)

Standardize features

scaler = StandardScaler()

features_standardized = scaler.fit_transform(features)

Create support vector classifier

svc = SVC(kernel="linear", class_weight="balanced", C=1.0,

random_state=0)

Train classifier

model = svc.fit(features_standardized, target)

Discussion

In support vector machines, C is a hyperparameter that
determines the penalty for misclassifying an observation.
One method for handling imbalanced classes in support
vector machines is to weight C by classes, so that:

Ck = C × wj

where C is the penalty for misclassification, wj is a weight
inversely proportional to class j’s frequency, and Ck is the
C value for class k. The general idea is to increase the
penalty for misclassifying minority classes to prevent them
from being “overwhelmed” by the majority class.
In scikit-learn, when using SVC we can set the values for Ck

automatically by setting class_weight="balanced". The
balanced argument automatically weighs classes such that:

wj =
n

knj

where wj is the weight to class j, n is the number of
observations, nj is the number of observations in class j,
and k is the total number of classes.

Chapter 18. Naive Bayes

18.0 Introduction

Bayes’ theorem is the premier method for understanding
the probability of some event, P (A ∣ B), given some new
information, P (B ∣ A), and a prior belief in the probability
of the event, P (A):

P (A ∣ B) =
P(B ∣ A)P(A)

P(B)

The Bayesian method’s popularity has skyrocketed in the
last decade, increasingly rivaling traditional frequentist
applications in academia, government, and business. In
machine learning, one application of Bayes’ theorem to
classification comes in the form of the naive Bayes

classifier. Naive Bayes classifiers combine a number of
desirable qualities in practical machine learning into a
single classifier. These include:

An intuitive approach

The ability to work with small data

Low computation costs for training and prediction

Often solid results in a variety of settings

Specifically, a naive Bayes classifier is based on:

P (y ∣ x1, … ,xj) =
P (x1, … ,xj ∣ y)P (y)

P(x1, … ,xj)

where:

P (y ∣ x1, … ,xj) is called the posterior and is the
probability that an observation is class y given the
observation’s values for the j features, x1, … ,xj.

P (x1, … ,xj ∣ y) is called likelihood and is the
likelihood of an observation’s values for features
x1, … ,xj given their class, y.

P (y) is called the prior and is our belief for the
probability of class y before looking at the data.

P(x1, … ,xj) is called the marginal probability.

In naive Bayes, we compare an observation’s posterior
values for each possible class. Specifically, because the
marginal probability is constant across these comparisons,
we compare the numerators of the posterior for each class.
For each observation, the class with the greatest posterior
numerator becomes the predicted class, ŷ.
There are two important things to note about naive Bayes
classifiers. First, for each feature in the data, we have to
assume the statistical distribution of the likelihood,
P(xj ∣ y). The common distributions are the normal
(Gaussian), multinomial, and Bernoulli distributions. The
distribution chosen is often determined by the nature of
features (continuous, binary, etc.). Second, naive Bayes
gets its name because we assume that each feature, and its
resulting likelihood, is independent. This “naive”
assumption is frequently wrong yet in practice does little to
prevent building high-quality classifiers.
In this chapter we will cover using scikit-learn to train
three types of naive Bayes classifiers using three different
likelihood distributions. Afterwards, we will learn to

calibrate the predictions from naive Bayes models to make
them interpretable.

18.1 Training a Classifier for

Continuous Features

Problem

You have only continuous features and you want to train a
naive Bayes classifier.

Solution

Use a Gaussian naive Bayes classifier in scikit-learn:

Load libraries

from sklearn import datasets

from sklearn.naive_bayes import GaussianNB

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create Gaussian naive Bayes object

classifer = GaussianNB()

Train model

model = classifer.fit(features, target)

Discussion

The most common type of naive Bayes classifier is the
Gaussian naive Bayes. In Gaussian naive Bayes, we assume
that the likelihood of the feature values x, given an
observation is of class y, follows a normal distribution:

p (xj ∣ y) =
1

√2πσy2
e

−
(xj−μy)

2

2σy2

where σy2 and μy are the variance and mean values of
feature xj for class y. Because of the assumption of the
normal distribution, Gaussian naive Bayes is best used in
cases where all our features are continuous.
In scikit-learn, we train a Gaussian naive Bayes like any
other model using fit, and in turn can then make
predictions about the class of an observation:

Create new observation

new_observation = [[4, 4, 4, 0.4]]

Predict class

model.predict(new_observation)

array([1])

One of the interesting aspects of naive Bayes classifiers is
that they allow us to assign a prior belief over the
respected target classes. We can do this using the
GaussianNB priors parameter, which takes in a list of the
probabilities assigned to each class of the target vector:

Create Gaussian naive Bayes object with prior probabilities of

each class

clf = GaussianNB(priors=[0.25, 0.25, 0.5])

Train model

model = classifer.fit(features, target)

If we do not add any argument to the priors parameter,
the prior is adjusted based on the data.
Finally, note that the raw predicted probabilities from
Gaussian naive Bayes (outputted using predict_proba) are

not calibrated. That is, they should not be believed. If we
want to create useful predicted probabilities, we will need
to calibrate them using an isotonic regression or a related
method.

See Also

How the Naive Bayes Classifier Works in Machine
Learning

18.2 Training a Classifier for Discrete

and Count Features

Problem

Given discrete or count data, you need to train a naive
Bayes classifier.

Solution

Use a multinomial naive Bayes classifier:

Load libraries

import numpy as np

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import CountVectorizer

Create text

text_data = np.array(['I love Brazil. Brazil!',

 'Brazil is best',

 'Germany beats both'])

Create bag of words

count = CountVectorizer()

bag_of_words = count.fit_transform(text_data)

Create feature matrix

features = bag_of_words.toarray()

https://oreil.ly/9yqSw

Create target vector

target = np.array([0,0,1])

Create multinomial naive Bayes object with prior probabilities

of each class

classifer = MultinomialNB(class_prior=[0.25, 0.5])

Train model

model = classifer.fit(features, target)

Discussion

Multinomial naive Bayes works similarly to Gaussian naive
Bayes, but the features are assumed to be multinomially
distributed. In practice, this means that this classifier is
commonly used when we have discrete data (e.g., movie
ratings ranging from 1 to 5). One of the most common uses
of multinomial naive Bayes is text classification using bags
of words or tf-idf approaches (see Recipes 6.9 and 6.10).
In our solution, we created a toy text dataset of three
observations and converted the text strings into a bag-of-
words feature matrix and an accompanying target vector.
We then used MultinomialNB to train a model while
defining the prior probabilities for the two classes (pro-
brazil and pro-germany).
MultinomialNB works similarly to GaussianNB; models are
trained using fit, and observations can be predicted using
predict:

Create new observation

new_observation = [[0, 0, 0, 1, 0, 1, 0]]

Predict new observation's class

model.predict(new_observation)

array([0])

If class_prior is not specified, prior probabilities are
learned using the data. However, if we want a uniform
distribution to be used as the prior, we can set
fit_prior=False.
Finally, MultinomialNB contains an additive smoothing
hyperparameter, alpha, that should be tuned. The default
value is 1.0, with 0.0 meaning no smoothing takes place.

18.3 Training a Naive Bayes Classifier

for Binary Features

Problem

You have binary feature data and need to train a naive
Bayes classifier.

Solution

Use a Bernoulli naive Bayes classifier:

Load libraries

import numpy as np

from sklearn.naive_bayes import BernoulliNB

Create three binary features

features = np.random.randint(2, size=(100, 3))

Create a binary target vector

target = np.random.randint(2, size=(100, 1)).ravel()

Create Bernoulli naive Bayes object with prior probabilities of

each class

classifer = BernoulliNB(class_prior=[0.25, 0.5])

Train model

model = classifer.fit(features, target)

Discussion

The Bernoulli naive Bayes classifier assumes that all our
features are binary, such that they take only two values
(e.g., a nominal categorical feature that has been one-hot
encoded). Like its multinomial cousin, Bernoulli naive
Bayes is often used in text classification, when our feature
matrix is simply the presence or absence of a word in a
document. Furthermore, like MultinomialNB, BernoulliNB
has an additive smoothing hyperparameter, alpha, we will
want to tune using model selection techniques. Finally, if
we want to use priors, we can use the class_prior
parameter with a list containing the prior probabilities for
each class. If we want to specify a uniform prior, we can set
fit_prior=False:

model_uniform_prior = BernoulliNB(class_prior=None,

fit_prior=False)

18.4 Calibrating Predicted

Probabilities

Problem

You want to calibrate the predicted probabilities from naive
Bayes classifiers so they are interpretable.

Solution

Use CalibratedClassifierCV:

Load libraries

from sklearn import datasets

from sklearn.naive_bayes import GaussianNB

from sklearn.calibration import CalibratedClassifierCV

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create Gaussian naive Bayes object

classifer = GaussianNB()

Create calibrated cross-validation with sigmoid calibration

classifer_sigmoid = CalibratedClassifierCV(classifer, cv=2,

method='sigmoid')

Calibrate probabilities

classifer_sigmoid.fit(features, target)

Create new observation

new_observation = [[2.6, 2.6, 2.6, 0.4]]

View calibrated probabilities

classifer_sigmoid.predict_proba(new_observation)

array([[0.31859969, 0.63663466, 0.04476565]])

Discussion

Class probabilities are a common and useful part of
machine learning models. In scikit-learn, most learning
algorithms allow us to see the predicted probabilities of
class membership using predict_proba. This can be
extremely useful if, for instance, we want to predict a
certain class only if the model predicts the probability that
the class is over 90%. However, some models, including
naive Bayes classifiers, output probabilities that are not
based on the real world. That is, predict_proba might
predict an observation has a 0.70 chance of being a certain
class, when the reality is that it is 0.10 or 0.99. Specifically
in naive Bayes, while the ranking of predicted probabilities
for the different target classes is valid, the raw predicted
probabilities tend to take on extreme values close to 0 and
1.

To obtain meaningful predicted probabilities we need
conduct what is called calibration. In scikit-learn we can
use the CalibratedClassifierCV class to create well-
calibrated predicted probabilities using k-fold cross-
validation. In CalibratedClassifierCV, the training sets
are used to train the model, and the test set is used to
calibrate the predicted probabilities. The returned
predicted probabilities are the average of the k-folds.
Using our solution we can see the difference between raw
and well-calibrated predicted probabilities. In our solution,
we created a Gaussian naive Bayes classifier. If we train
that classifier and then predict the class probabilities for a
new observation, we can see very extreme probability
estimates:

Train a Gaussian naive Bayes then predict class probabilities

classifer.fit(features, target).predict_proba(new_observation)

array([[2.31548432e-04, 9.99768128e-01, 3.23532277e-07]])

However if, after we calibrate the predicted probabilities
(which we did in our solution), we get very different
results:

View calibrated probabilities

array([[0.31859969, 0.63663466, 0.04476565]])

array([[0.31859969, 0.63663466, 0.04476565]])

CalibratedClassifierCV offers two calibration methods—
Platt’s sigmoid model and isotonic regression— defined by
the method parameter. While we don’t have the space to go
into the specifics, because isotonic regression is
nonparametric it tends to overfit when sample sizes are
very small (e.g., 100 observations). In our solution we used
the Iris dataset with 150 observations and therefore used
the Platt’s sigmoid model.

Chapter 19. Clustering

19.0 Introduction

In much of this book we have looked at supervised machine
learning— where we have access to both the features and
the target. This is, unfortunately, not always the case.
Frequently, we run into situations where we only know the
features. For example, imagine we have records of sales
from a grocery store and we want to break up sales by
whether the shopper is a member of a discount club. This
would be impossible using supervised learning because we
don’t have a target to train and evaluate our models.
However, there is another option: unsupervised learning. If
the behavior of discount club members and nonmembers in
the grocery store is actually disparate, then the average
difference in behavior between two members will be
smaller than the average difference in behavior between a
member and nonmember shopper. Put another way, there
will be two clusters of observations.
The goal of clustering algorithms is to identify those latent
groupings of observations, which, if done well, allows us to
predict the class of observations even without a target
vector. There are many clustering algorithms, and they
have a wide variety of approaches to identifying the
clusters in data. In this chapter, we will cover a selection of
clustering algorithms using scikit-learn and how to use
them in practice.

19.1 Clustering Using K-Means

Problem

You want to group observations into k groups.

Solution

Use k-means clustering:

Load libraries

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans

Load data

iris = datasets.load_iris()

features = iris.data

Standardize features

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Create k-means object

cluster = KMeans(n_clusters=3, random_state=0, n_init="auto")

Train model

model = cluster.fit(features_std)

Discussion

K-means clustering is one of the most common clustering
techniques. In k-means clustering, the algorithm attempts
to group observations into k groups, with each group
having roughly equal variance. The number of groups, k, is
specified by the user as a hyperparameter. Specifically, in
k-means:

1. k cluster “center” points are created at random
locations.

2. For each observation:

a. The distance between each observation and the k
center points is calculated.

b. The observation is assigned to the cluster of the
nearest center point.

3. The center points are moved to the means (i.e.,
centers) of their respective clusters.

4. Steps 2 and 3 are repeated until no observation
changes in cluster membership.

At this point the algorithm is considered converged and
stops.
It is important to note three things about k-means. First, k-
means clustering assumes the clusters are convex shaped
(e.g., a circle, a sphere). Second, all features are equally
scaled. In our solution, we standardized the features to
meet this assumption. Third, the groups are balanced (i.e.,
have roughly the same number of observations). If we
suspect that we cannot meet these assumptions, we might
try other clustering approaches.
In scikit-learn, k-means clustering is implemented in the
KMeans class. The most important parameter is n_clusters,
which sets the number of clusters k. In some situations, the
nature of the data will determine the value for k (e.g., data
on a school’s students will have one cluster per grade), but
often we don’t know the number of clusters. In these cases,
we will want to select k based on using some criteria. For
example, silhouette coefficients (see Recipe 11.9) measure
the similarity within clusters compared with the similarity
between clusters. Furthermore, because k-means
clustering is computationally expensive, we might want to
take advantage of all the cores on our computer. We can do
this by setting n_jobs=-1.

In our solution, we cheated a little and used the iris flower
data, which we know contains three classes. Therefore, we
set k = 3. We can use labels_ to see the predicted classes
of each observation:

View predicted class

model.labels_

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 2,

 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,

2, 2, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1,

2, 1, 2,

 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2,

2, 2, 2,

 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1],

dtype=int32)

If we compare this to the observation’s true class, we can
see that, despite the difference in class labels (i.e., 0, 1, and
2), k-means did reasonably well:

View true class

iris.target

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

However, as you might imagine, the performance of k-
means drops considerably, even critically, if we select the
wrong number of clusters.
Finally, as with other scikit-learn models, we can use the
trained cluster to predict the value of new observations:

Create new observation

new_observation = [[0.8, 0.8, 0.8, 0.8]]

Predict observation's cluster

model.predict(new_observation)

array([2], dtype=int32)

The observation is predicted to belong to the cluster whose
center point is closest. We can even use cluster_centers_
to see those center points:

View cluster centers

model.cluster_centers_

array([[-1.01457897, 0.85326268, -1.30498732, -1.25489349],

 [-0.01139555, -0.87600831, 0.37707573, 0.31115341],

 [1.16743407, 0.14530299, 1.00302557, 1.0300019]])

See Also

Introduction to K-means Clustering

19.2 Speeding Up K-Means Clustering

Problem

You want to group observations into k groups, but k-means
takes too long.

Solution

https://oreil.ly/HDfUz

Use mini-batch k-means:

Load libraries

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import MiniBatchKMeans

Load data

iris = datasets.load_iris()

features = iris.data

Standardize features

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Create k-mean object

cluster = MiniBatchKMeans(n_clusters=3, random_state=0,

batch_size=100,

 n_init="auto")

Train model

model = cluster.fit(features_std)

Discussion

Mini-batch k-means works similarly to the k-means
algorithm discussed in Recipe 19.1. Without going into too
much detail, the difference is that in mini-batch k-means
the most computationally costly step is conducted on only a
random sample of observations as opposed to all
observations. This approach can significantly reduce the
time required for the algorithm to find convergence (i.e., fit
the data) with only a small cost in quality.
MiniBatchKMeans works similarly to KMeans, with one
significant difference: the batch_size parameter.
batch_size controls the number of randomly selected
observations in each batch. The larger the size of the batch,
the more computationally costly the training process.

19.3 Clustering Using Mean Shift

Problem

You want to group observations without assuming the
number of clusters or their shape.

Solution

Use mean shift clustering:

Load libraries

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import MeanShift

Load data

iris = datasets.load_iris()

features = iris.data

Standardize features

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Create mean shift object

cluster = MeanShift(n_jobs=-1)

Train model

model = cluster.fit(features_std)

Discussion

One of the disadvantages of k-means clustering we
discussed previously is that we needed to set the number of
clusters, k, prior to training, and the method made
assumptions about the shape of the clusters. One clustering
algorithm without these limitations is mean shift.
Mean shift is a simple concept, but it’s somewhat difficult
to explain. Therefore, an analogy might be the best

approach. Imagine a very foggy football field (i.e., a two-
dimensional feature space) with 100 people standing on it
(i.e., our observations). Because it is foggy, a person can
see only a short distance. Every minute each person looks
around and takes a step in the direction of the most people
they can see. As time goes on, people start to group
together as they repeatedly take steps toward larger and
larger crowds. The end result is clusters of people around
the field. People are assigned to the clusters in which they
end up.
scikit-learn’s actual implementation of mean shift,
MeanShift, is more complex but follows the same basic
logic. MeanShift has two important parameters we should
be aware of. First, bandwidth sets the radius of the area
(i.e., kernel) an observation uses to determine the direction
to shift. In our analogy, bandwidth is how far a person can
see through the fog. We can set this parameter manually,
but by default a reasonable bandwidth is estimated
automatically (with a significant increase in computational
cost). Second, sometimes in mean shift there are no other
observations within an observation’s kernel. That is, a
person on our football field cannot see a single other
person. By default, MeanShift assigns all these “orphan”
observations to the kernel of the nearest observation.
However, if we want to leave out these orphans, we can set
cluster_all=False, wherein orphan observations are
given the label of -1.

See Also

The mean shift clustering algorithm, EFAVDB

19.4 Clustering Using DBSCAN

https://oreil.ly/Gb3VG

Problem

You want to group observations into clusters of high
density.

Solution

Use DBSCAN clustering:

Load libraries

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import DBSCAN

Load data

iris = datasets.load_iris()

features = iris.data

Standardize features

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Create DBSCAN object

cluster = DBSCAN(n_jobs=-1)

Train model

model = cluster.fit(features_std)

Discussion

DBSCAN is motivated by the idea that clusters will be areas
where many observations are densely packed together and
makes no assumptions of cluster shape. Specifically, in
DBSCAN:

1. A random observation, xi, is chosen.

2. If xi has a minimum number of close neighbors, we
consider it to be part of a cluster.

3. Step 2 is repeated recursively for all of xi’s neighbors,
then neighbor’s neighbor, and so on. These are the
cluster’s core observations.

4. Once step 3 runs out of nearby observations, a new
random point is chosen (i.e., restart at step 1).

Once this is complete, we have a set of core observations
for a number of clusters. Finally, any observation close to a
cluster but not a core sample is considered part of a
cluster, while any observation not close to the cluster is
labeled an outlier.
DBSCAN has three main parameters to set:
eps

The maximum distance from an observation for another
observation to be considered its neighbor.

min_samples

The minimum number of observations less than eps
distance from an observation for it to be considered a core
observation.

metric

The distance metric used by eps—for example, minkowski
or euclidean (note that if Minkowski distance is used, the
parameter p can be used to set the power of the Minkowski
metric).

If we look at the clusters in our training data we can see
two clusters have been identified, 0 and 1, while outlier
observations are labeled -1:

Show cluster membership

model.labels_

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-1, -1, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -1, -1,

 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0,

0, 0, 1,

 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1,

1, 1, 1,

 -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 -1, 1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1,

1, -1, 1,

 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1,

1, -1, -1,

 -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1,

1, 1, -1,

 -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1])

See Also

DBSCAN, Wikipedia

19.5 Clustering Using Hierarchical

Merging

Problem

You want to group observations using a hierarchy of
clusters.

Solution

Use agglomerative clustering:

Load libraries

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import AgglomerativeClustering

https://oreil.ly/QBx3a

Load data

iris = datasets.load_iris()

features = iris.data

Standardize features

scaler = StandardScaler()

features_std = scaler.fit_transform(features)

Create agglomerative clustering object

cluster = AgglomerativeClustering(n_clusters=3)

Train model

model = cluster.fit(features_std)

Discussion

Agglomerative clustering is a powerful, flexible hierarchical
clustering algorithm. In agglomerative clustering, all
observations start as their own clusters. Next, clusters
meeting some criteria are merged. This process is
repeated, growing clusters until some end point is reached.
In scikit-learn, AgglomerativeClustering uses the
linkage parameter to determine the merging strategy to
minimize:

Variance of merged clusters (ward)

Average distance between observations from pairs of
clusters (average)

Maximum distance between observations from pairs of
clusters (complete)

Two other parameters are useful to know. First, the
affinity parameter determines the distance metric used
for linkage (minkowski, euclidean, etc.). Second,
n_clusters sets the number of clusters the clustering
algorithm will attempt to find. That is, clusters are
successively merged until only n_clusters remain.

As with other clustering algorithms we have covered, we
can use labels_ to see the cluster in which every
observation is assigned:

Show cluster membership

model.labels_

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 1, 1,

 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 2, 0, 2,

0, 2, 0,

 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 2,

0, 0, 2,

 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Chapter 20. Tensors with

PyTorch

20.0 Introduction

Just as NumPy is a foundational tool for data manipulation
in the machine learning stack, PyTorch is a foundational
tool for working with tensors in the deep learning stack.
Before moving on to deep learning itself, we should
familiarize ourselves with PyTorch tensors and create many
operations analogous to those performed with NumPy in
Chapter 1.
Although PyTorch is just one of multiple deep learning
libraries, it is significantly popular both within academia
and industry. PyTorch tensors are very similar to NumPy
arrays. However, they also allow us to perform tensor
operations on GPUs (hardware specialized for deep
learning). In this chapter, we’ll familiarize ourselves with
the basics of PyTorch tensors and many common low-level
operations.

20.1 Creating a Tensor

Problem

You need to create a tensor.

Solution

Use Pytorch to create a tensor:

Load library

import torch

Create a vector as a row

tensor_row = torch.tensor([1, 2, 3])

Create a vector as a column

tensor_column = torch.tensor(

 [

 [1],

 [2],

 [3]

]

)

Discussion

The main data structure within PyTorch is a tensor, and in
many ways tensors are exactly like the multidimensional
NumPy arrays used in Chapter 1. Just like vectors and
arrays, these tensors can be represented horizontally (i.e.,
rows) or vertically (i.e., columns).

See Also

PyTorch documentation: Tensors

20.2 Creating a Tensor from NumPy

Problem

You need to create PyTorch tensors from NumPy arrays.

Solution

Use the PyTorch from_numpy function:

Import libraries

import numpy as np

https://oreil.ly/utaTD

import torch

Create a NumPy array

vector_row = np.array([1, 2, 3])

Create a tensor from a NumPy array

tensor_row = torch.from_numpy(vector_row)

Discussion

As we can see, PyTorch is very similar to NumPy
syntactically. In addition, it easily allows us to convert
NumPy arrays to PyTorch tensors that we can use on GPUs
and other accelerated hardware. At the time of writing,
NumPy is mentioned frequently in the PyTorch
documentation, and PyTorch itself even offers a way that
PyTorch tensors and NumPy arrays can share the same
memory to reduce overhead.

See Also

PyTorch documentation: Bridge with NumPy

20.3 Creating a Sparse Tensor

Problem

Given data with very few nonzero values, you want to
efficiently represent it with a tensor.

Solution

Use the PyTorch to_sparse function:

Import libraries

import torch

https://oreil.ly/zEJo6

Create a tensor

tensor = torch.tensor(

[

[0, 0],

[0, 1],

[3, 0]

]

)

Create a sparse tensor from a regular tensor

sparse_tensor = tensor.to_sparse()

Discussion

Sparse tensors are memory-efficient ways to represent data
composed of mostly 0s. In Chapter 1 we used scipy to
create a compressed sparse row (CSR) matrix that was no
longer a NumPy array.
The torch.Tensor class allows us to create both regular
and sparse matrices using the same object. If we inspect
the types of the two tensors we just created, we can see
they’re actually both of the same class:

print(type(tensor))

print(type(sparse_tensor))

<class 'torch.Tensor'>

<class 'torch.Tensor'>

See Also

PyTorch documentation: Sparse Tensor

20.4 Selecting Elements in a Tensor

Problem

We need to select specific elements of a tensor.

https://oreil.ly/8J3IO

Solution

Use NumPy-like indexing and slicing to return elements:

Load library

import torch

Create vector tensor

vector = torch.tensor([1, 2, 3, 4, 5, 6])

Create matrix tensor

matrix = torch.tensor(

 [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

)

Select third element of vector

vector[2]

tensor(3)

Select second row, second column

matrix[1,1]

tensor(5)

Discussion

Like NumPy arrays and most everything in Python, PyTorch
tensors are zero-indexed. Both indexing and slicing are
supported as well. One key difference is that indexing a
PyTorch tensor to return a single element still returns a
tensor as opposed to the value of the object itself (which
would be in the form of an integer or float). Slicing syntax
also has parity with NumPy and will return objects of type
tensor in PyTorch:

Select all elements of a vector

vector[:]

array([1, 2, 3, 4, 5, 6])

Select everything up to and including the third element

vector[:3]

tensor([1, 2, 3])

Select everything after the third element

vector[3:]

tensor([4, 5, 6])

Select the last element

vector[-1]

tensor(6)

Select the first two rows and all columns of a matrix

matrix[:2,:]

tensor([[1, 2, 3],

 [4, 5, 6]])

Select all rows and the second column

matrix[:,1:2]

tensor([[2],

 [5],

 [8]])

One key difference is that PyTorch tensors do not yet
support negative steps when slicing. Therefore, attempting
to reverse a tensor using slicing yields an error:

Reverse the vector

vector[::-1]

ValueError: step must be greater than zero

Instead, if we wish to reverse a tensor we can use the flip
method:

vector.flip(dims=(-1,))

tensor([6, 5, 4, 3, 2, 1])

See Also

PyTorch documentation: Operations on Tensors

20.5 Describing a Tensor

Problem

https://oreil.ly/8-xj7

You want to describe the shape, data type, and format of a
tensor along with the hardware it’s using.

Solution

Inpect the shape, dtype, layout, and device attributes of
the tensor:

Load library

import torch

Create a tensor

tensor = torch.tensor([[1,2,3], [1,2,3]])

Get the shape of the tensor

tensor.shape

torch.Size([2, 3])

Get the data type of items in the tensor

tensor.dtype

torch.int64

Get the layout of the tensor

tensor.layout

torch.strided

Get the device being used by the tensor

tensor.device

device(type='cpu')

Discussion

PyTorch tensors provide a number of helpful attributes for
gathering information about a given tensor, including:
Shape

Returns the dimensions of the tensor

Dtype

Returns the data type of objects within the tensor

Layout

Returns the memory layout (most common is strided used
for dense tensors)

Device

Returns the hardware the tensor is being stored on
(CPU/GPU)

Again, the key differentiator between tensors and arrays is
an attribute like device, because tensors provide us with
hardware-accelerated options like GPUs.

20.6 Applying Operations to Elements

Problem

You want to apply an operation to all elements in a tensor.

Solution

Take advantage of broadcasting with PyTorch:

Load library

import torch

Create a tensor

tensor = torch.tensor([1, 2, 3])

Broadcast an arithmetic operation to all elements in a tensor

tensor * 100

tensor([100, 200, 300])

Discussion

Basic operations in PyTorch will take advantage of
broadcasting to parallelize them using accelerated
hardware such as GPUs. This is true for supported

mathematical operators in Python (+, -, ×, /) and other
functions inherent to PyTorch. Unlike NumPy, PyTorch
doesn’t include a vectorize method for applying a function
over all elements in a tensor. However, PyTorch comes
equipped with all of the mathematical tools necessary to
distribute and accelerate the usual operations required for
deep learning workflows.

See Also

PyTorch documentation: Broadcasting Semantics

Vectorization and Broadcasting with PyTorch

20.7 Finding the Maximum and

Minimum Values

Problem

You need to find the maximum or minimum value in a
tensor.

Solution

Use the PyTorch max and min methods:

Load library

import torch

Create a tensor

torch.tensor([1,2,3])

Find the largest value

tensor.max()

tensor(3)

Find the smallest value

tensor.min()

https://oreil.ly/NsPpa
https://oreil.ly/dfzIJ

tensor(1)

Discussion

The max and min methods of a tensor help us find the
largest or smallest values in that tensor. These methods
work the same across multidimensional tensors as well:

Create a multidimensional tensor

tensor = torch.tensor([[1,2,3],[1,2,5]])

Find the largest value

tensor.max()

tensor(5)

20.8 Reshaping Tensors

Problem

You want to change the shape (number of rows and
columns) of a tensor without changing the element values.

Solution

Use the PyTorch reshape method:

Load library

import torch

Create 4x3 tensor

tensor = torch.tensor([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]])

Reshape tensor into 2x6 tensor

tensor.reshape(2, 6)

tensor([[1, 2, 3, 4, 5, 6],

 [7, 8, 9, 10, 11, 12]])

Discussion

Manipulating the shape of a tensor can be common in the
field of deep learning, as neurons in a neural network often
require tensors of a very specific shape. Since the required
shape of a tensor can change between neurons in a given
neural network, it is good to have a low-level
understanding of our inputs and outputs in deep learning.

20.9 Transposing a Tensor

Problem

You need to transpose a tensor.

Solution

Use the mT method:

Load library

import torch

Create a two-dimensional tensor

tensor = torch.tensor([[[1,2,3]]])

Transpose it

tensor.mT

tensor([[1],

 [2],

 [3]])

Discussion

Transposing with PyTorch is slightly different from NumPy.
The T method used for NumPy arrays is supported in
PyTorch only with tensors of two dimensions and at the
time of writing is deprecated for tensors of other shapes.

The mT method used to transpose batches of tensors is
preferred, as it scales to greater than two dimensions.
An additional way to transpose PyTorch tensors of any
shape is to use the permute method:

tensor.permute(*torch.arange(tensor.ndim - 1, -1, -1))

tensor([[1],

 [2],

 [3]])

This method also works for one-dimensional tensors (for
which the value of the tranposed tensor is the same as the
original tensor).

20.10 Flattening a Tensor

Problem

You need to transform a tensor into one dimension.

Solution

Use the flatten method:

Load library

import torch

Create tensor

tensor = torch.tensor([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Flatten tensor

tensor.flatten()

tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])

Discussion

Flattening a tensor is a useful technique for reducing a
multidimensional tensor into one dimension.

20.11 Calculating Dot Products

Problem

You need to calculate the dot product of two tensors.

Solution

Use the dot method:

Load library

import torch

Create one tensor

tensor_1 = torch.tensor([1, 2, 3])

Create another tensor

tensor_2 = torch.tensor([4, 5, 6])

Calculate the dot product of the two tensors

tensor_1.dot(tensor_2)

tensor(32)

Discussion

Calculating the dot product of two tensors is a common
operation useful in the deep learning space as well as the
information retrieval space. You may remember earlier in
the book where we used the dot product of two vectors to
perform a cosine similarity-based search. Doing this in
PyTorch on GPU (instead of with NumPy or scikit-learn on
CPU) can yield impressive performance benefits on
information retrieval problems.

See Also

Vectorization and Broadcasting with PyTorch

20.12 Multiplying Tensors

Problem

You need to multiply two tensors.

Solution

Use basic Python arithmetic operators:

Load library

import torch

Create one tensor

tensor_1 = torch.tensor([1, 2, 3])

Create another tensor

tensor_2 = torch.tensor([4, 5, 6])

Multiply the two tensors

tensor_1 * tensor_2

tensor([4, 10, 18])

Discussion

PyTorch supports basic arithmetic operators such as ×, +, -
and /. Although multiplying tensors is probably one of the
most common operations used in deep learning, it’s useful
to know tensors can also be added, subtracted, and divided.
Add one tensor to another:

tensor_1+tensor_2

tensor([5, 7, 9])

https://oreil.ly/lIjtB

Subtract one tensor from another:

tensor_1-tensor_2

tensor([-3, -3, -3])

Divide one tensor by another:

tensor_1/tensor_2

tensor([0.2500, 0.4000, 0.5000])

Chapter 21. Neural

Networks

21.0 Introduction

At the heart of basic neural networks is the unit (also called
a node or neuron). A unit takes in one or more inputs,
multiplies each input by a parameter (also called a weight),
sums the weighted input’s values along with some bias
value (typically 0), and then feeds the value into an
activation function. This output is then sent forward to the
other neurons deeper in the neural network (if they exist).
Neural networks can be visualized as a series of connected
layers that form a network connecting an observation’s
feature values at one end and the target value (e.g.,
observation’s class) at the other end. Feedforward neural
networks— also called multilayer perceptron—are the
simplest artificial neural networks used in any real-world
setting. The name “feedforward” comes from the fact that
an observation’s feature values are fed “forward” through
the network, with each layer successively transforming the
feature values with the goal that the output is the same as
(or close to) the target’s value.
Specifically, feedforward neural networks contain three
types of layers. At the start of the neural network is an
input layer, where each unit contains an observation’s
value for a single feature. For example, if an observation
has 100 features, the input layer has 100 units. At the end
of the neural network is the output layer, which transforms
the output of intermediate layers (called hidden layers) into

values useful for the task at hand. For example, if our goal
is binary classification, we can use an output layer with a
single unit that uses a sigmoid function to scale its own
output to between 0 and 1, representing a predicted class
probability.
Between the input and output layers are the so-called
hidden layers. These hidden layers successively transform
the feature values from the input layer to something that,
once processed by the output layer, resembles the target
class. Neural networks with many hidden layers (e.g., 10,
100, 1,000) are considered “deep” networks. Training deep
neural networks is a process known as deep learning.
Neural networks are typically created with all parameters
initialized as small random values from a Gaussian or
normal uniform distribution. Once an observation (or more
often a set number of observations called a batch) is fed
through the network, the outputted value is compared with
the observation’s true value using a loss function. This is
called forward propagation. Next an algorithm goes
“backward” through the network identifying how much
each parameter contributed to the error between the
predicted and true values, a process called back

propagation. At each parameter, the optimization algorithm
determines how much each weight should be adjusted to
improve the output.
Neural networks learn by repeating this process of forward
propagation and back propagation for every observation in
the training data multiple times (each time all observations
have been sent through the network is called an epoch and
training typically consists of multiple epochs), iteratively
updating the values of the parameters utilizing a process
called gradient descent to slowly optimize the values of the
parameters for the given output.

In this chapter, we will use the same Python library used in
the last chapter, PyTorch, to build, train, and evaluate a
variety of neural networks. PyTorch is a popular tool within
the deep learning space due to its well-written APIs and
intuitive representation of the low-level tensor operations
that power neural networks. One key feature of PyTorch is
called autograd, which automatically computes and stores
the gradients used to optimize the parameters of the
network after undergoing forward propagation and back
propagation.
Neural networks created using PyTorch code can be
trained using both CPUs (i.e., on your laptop) and GPUs
(i.e., on a specialized deep learning computer). In the real
world with real data, it is often necessary to train neural
networks using GPUs, as the training process on large data
for complex networks runs orders of magnitude faster on
GPUs than CPUs. However, all the neural networks in this
book are small and simple enough to be trained on a CPU-
only laptop in only a few minutes. Just be aware that when
we have larger networks and more training data, training
using CPUs is significantly slower than training using
GPUs.

21.1 Using Autograd with PyTorch

Problem

You want to use PyTorch’s autograd features to compute
and store the gradients after undergoing forward
propagation and back propagation.

Solution

Create tensors with the requires_grad option set to True:

Import libraries

import torch

Create a torch tensor that requires gradients

t = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)

Perform a tensor operation simulating "forward propagation"

tensor_sum = t.sum()

Perform back propagation

tensor_sum.backward()

View the gradients

t.grad

tensor([1., 1., 1.])

Discussion

Autograd is one of the core features of PyTorch and a big
factor in its popularity as a deep learning library. The
ability to easily compute, store, and visualize gradients
makes PyTorch very intuitive for researchers and
enthusiasts building neural networks from scratch.
PyTorch uses a directed acyclic graph (DAG) to keep a
record of all data and computational operations being
performed on that data. This is incredibly useful, but it also
means we need to be careful with what operations we try to
apply on our PyTorch data that requires gradients. When
working with autograd, we can’t easily convert our tensors
to NumPy arrays and back without “breaking the graph,” a
phrase used to describe operations that don’t support
autograd:

import torch

tensor = torch.tensor([1.0,2.0,3.0], requires_grad=True)

tensor.numpy()

RuntimeError: Can't call numpy() on Tensor that requires grad.

Use

 tensor.detach().numpy() instead.

To convert this tensor into a NumPy array, we need to call
the detach() method on it, which will break the graph and
thus our ability to automatically compute gradients. While
this can definitely be useful, it’s worth knowing that
detaching the tensor will prevent PyTorch from
automatically computing the gradient.

See Also

PyTorch Autograd Tutorial

21.2 Preprocessing Data for Neural

Networks

Problem

You want to preprocess data for use in a neural network.

Solution

Standardize each feature using scikit-learn’s
StandardScaler:

Load libraries

from sklearn import preprocessing

import numpy as np

Create feature

features = np.array([[-100.1, 3240.1],

 [-200.2, -234.1],

 [5000.5, 150.1],

 [6000.6, -125.1],

 [9000.9, -673.1]])

https://oreil.ly/mOWSw

Create scaler

scaler = preprocessing.StandardScaler()

Convert to a tensor

features_standardized_tensor = torch.from_numpy(features)

Show features

features_standardized_tensor

tensor([[-100.1000, 3240.1000],

 [-200.2000, -234.1000],

 [5000.5000, 150.1000],

 [6000.6000, -125.1000],

 [9000.9000, -673.1000]], dtype=torch.float64)

Discussion

While this recipe is very similar to Recipe 4.2, it is worth
repeating because of how important it is for neural
networks. Typically, a neural network’s parameters are
initialized (i.e., created) as small random numbers. Neural
networks often behave poorly when the feature values are
much larger than the parameter values. Furthermore, since
an observation’s feature values are combined as they pass
through individual units, it is important that all features
have the same scale.
For these reasons, it is best practice (although not always
necessary; for example, when we have all binary features)
to standardize each feature such that the feature’s values
have the mean of 0 and the standard deviation of 1. This
can be accomplished easily with scikit-learn’s
StandardScaler.
However, if you need to perform this operation after having
created tensors with requires_grad=True, you’ll need to
do this natively in PyTorch, so as not to break the graph.
While you’ll typically standardize features prior to starting

to train the network, it’s worth knowing how to accomplish
the same thing in PyTorch:

Load library

import torch

Create features

torch_features = torch.tensor([[-100.1, 3240.1],

 [-200.2, -234.1],

 [5000.5, 150.1],

 [6000.6, -125.1],

 [9000.9, -673.1]],

requires_grad=True)

Compute the mean and standard deviation

mean = torch_features.mean(0, keepdim=True)

standard_deviation = torch_features.std(0, unbiased=False,

keepdim=True)

Standardize the features using the mean and standard deviation

torch_features_standardized = torch_features - mean

torch_features_standardized /= standard_deviation

Show standardized features

torch_features_standardized

tensor([[-1.1254, 1.9643],

 [-1.1533, -0.5007],

 [0.2953, -0.2281],

 [0.5739, -0.4234],

 [1.4096, -0.8122]], grad_fn=<DivBackward0>)

21.3 Designing a Neural Network

Problem

You want to design a neural network.

Solution

Use the PyTorch nn.Module class to define a simple neural
network architecture:

Import libraries

import torch

import torch.nn as nn

Define a neural network

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.fc1 = nn.Linear(10, 16)

 self.fc2 = nn.Linear(16, 16)

 self.fc3 = nn.Linear(16, 1)

 def forward(self, x):

 x = nn.functional.relu(self.fc1(x))

 x = nn.functional.relu(self.fc2(x))

 x = nn.functional.sigmoid(self.fc3(x))

 return x

Initialize the neural network

network = SimpleNeuralNet()

Define loss function, optimizer

loss_criterion = nn.BCELoss()

optimizer = torch.optim.RMSprop(network.parameters())

Show the network

network

SimpleNeuralNet(

 (fc1): Linear(in_features=10, out_features=16, bias=True)

 (fc2): Linear(in_features=16, out_features=16, bias=True)

 (fc3): Linear(in_features=16, out_features=1, bias=True)

)

Discussion

Neural networks consist of layers of units. However, there’s
incredible variety in the types of layers and how they are
combined to form the network’s architecture. While there
are commonly used architecture patterns (which we’ll
cover in this chapter), the truth is that selecting the right
architecture is mostly an art and the topic of much
research.

To construct a feedforward neural network in PyTorch, we
need to make a number of choices about both the network
architecture and training process. Remember that each
unit in the hidden layers:

1. Receives a number of inputs.

2. Weights each input by a parameter value.

3. Sums together all weighted inputs along with some bias
(typically 0).

4. Most often then applies some function (called an
activation function).

5. Sends the output on to units in the next layer.

First, for each layer in the hidden and output layers we
must define the number of units to include in the layer and
the activation function. Overall, the more units we have in a
layer, the more complex patterns our network is able to
learn. However, more units might make our network overfit
the training data in a way detrimental to the performance
on the test data.
For hidden layers, a popular activation function is the
rectified linear unit (ReLU):

f(z) =max (0, z)

where z is the sum of the weighted inputs and bias. As we
can see, if z is greater than 0, the activation function
returns z; otherwise, the function returns 0. This simple
activation function has a number of desirable properties (a
discussion of which is beyond the scope of this book), and
this has made it a popular choice in neural networks. We

should be aware, however, that many dozens of activation
functions exist.
Second, we need to define the number of hidden layers to
use in the network. More layers allow the network to learn
more complex relationships, but with a computational cost.
Third, we have to define the structure of the activation
function (if any) of the output layer. The nature of the
output function is often determined by the goal of the
network. Here are some common output layer patterns:
Binary classification

One unit with a sigmoid activation function

Multiclass classification

k units (where k is the number of target classes) and a
softmax activation function

Regression

One unit with no activation function

Fourth, we need to define a loss function (the function that
measures how well a predicted value matches the true
value); again, this is often determined by the problem type:
Binary classification

Binary cross-entropy

Multiclass classification

Categorical cross-entropy

Regression

Mean square error

Fifth, we have to define an optimizer, which intuitively can
be thought of as our strategy “walking around” the loss
function to find the parameter values that produce the
lowest error. Common choices for optimizers are stochastic
gradient descent, stochastic gradient descent with
momentum, root mean square propagation, and adaptive
moment estimation (for more information on these
optimizers, see “See Also”).
Sixth, we can select one or more metrics to use to evaluate
the performance, such as accuracy.
In our example, we use the torch.nn.Module namespace to
compose a simple, sequential neural network that can make
binary classifications. The standard PyTorch approach for
this is to create a child class that inherits from the
torch.nn.Module class, instantiating a network
architecture in the __init__ method, and defining the
mathematical operations we want to perform upon each
forward pass in the forward method of the class. There are
many ways to define networks in PyTorch, and although in
this case we use functional methods for our activation
functions (such as nn.functional.relu) we can also define
these activation functions as layers. If we wanted to
compose everything in the network as a layer, we could use
the Sequential class:

Import libraries

import torch

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Instantiate and view the network

SimpleNeuralNet()

SimpleNeuralNet(

 (sequential): Sequential(

 (0): Linear(in_features=10, out_features=16, bias=True)

 (1): ReLU()

 (2): Linear(in_features=16, out_features=16, bias=True)

 (3): ReLU()

 (4): Linear(in_features=16, out_features=1, bias=True)

 (5): Sigmoid()

)

)

In both cases, the network itself is a two-layer neural
network (when counting layers we don’t include the input
layer because it does not have any parameters to learn)
defined using PyTorch’s sequential model. Each layer is
“dense” (also called “fully connected”), meaning that all the
units in the previous layer are connected to all the units in
the next layer.
In the first hidden layer we set out_features=16, meaning
that layer contains 16 units. These units have ReLU
activation functions as defined in the forward method of
our class: x = nn.functional.relu(self.fc1(x)). The
first layer of our network has the size (10, 16), which tells
the first layer to expect each observation from our input
data to have 10 feature values. This network is designed for
binary classification so the output layer contains only one
unit with a sigmoid activation function, which constrains

the output to between 0 and 1 (representing the probability
an observation is class 1).

See Also

PyTorch tutorial: Build the Neural Network

Loss functions for classification, Wikipedia

On Loss Functions for Deep Neural Networks in
Classification, Katarzyna Janocha and Wojciech Marian
Czarnecki

21.4 Training a Binary Classifier

Problem

You want to train a binary classifier neural network.

Solution

Use PyTorch to construct a feedforward neural network
and train it:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

https://oreil.ly/iT8iv
https://oreil.ly/4bPXv
https://oreil.ly/pplP-

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 3

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Evaluate neural network

with torch.no_grad():

 output = network(x_test)

 test_loss = criterion(output, y_test)

 test_accuracy = (output.round() == y_test).float().mean()

 print("Test Loss:", test_loss.item(), "\tTest Accuracy:",

 test_accuracy.item())

Epoch: 1 Loss: 0.19006995856761932

Epoch: 2 Loss: 0.14092367887496948

Epoch: 3 Loss: 0.03935524448752403

Test Loss: 0.06877756118774414 Test Accuracy: 0.9700000286102295

Discussion

In Recipe 21.3, we discussed how to construct a neural
network using PyTorch’s sequential model. In this recipe
we train that neural network using 10 features and 1,000
observations of fake classification generated from scikit-
learn’s make_classification function.
The neural network we are using is the same as the one in
Recipe 21.3 (see that recipe for a detailed explanation).
The difference there is that we only created the neural
network; we didn’t train it.
At the end, we use with torch.no_grad() to evaluate the
network. This says that we should not compute gradients
for any tensor operations conducted in this section of code.
Since we use gradients only during the model training
process, we don’t want to store new gradients for
operations that occur outside of it (such as prediction or
evaluation).

The epochs variable defines how many epochs to use when
training the data. batch_size sets the number of
observations to propagate through the network before
updating the parameters.
We then iterate over the number of epochs, making
forward passes through the network using the forward
method, and then backward passes to update the gradients.
The result is a trained model.

21.5 Training a Multiclass Classifier

Problem

You want to train a multiclass classifier neural network.

Solution

Use PyTorch to construct a feedforward neural network
with an output layer with softmax activation functions:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

N_CLASSES=3

EPOCHS=3

Create training and test sets

features, target = make_classification(n_classes=N_CLASSES,

n_informative=9,

 n_redundant=0, n_features=10, n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train =

torch.nn.functional.one_hot(torch.from_numpy(target_train).long()

,

 num_classes=N_CLASSES).float()

x_test = torch.from_numpy(features_test).float()

y_test =

torch.nn.functional.one_hot(torch.from_numpy(target_test).long(),

 num_classes=N_CLASSES).float()

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,3),

 torch.nn.Softmax()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.CrossEntropyLoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

for epoch in range(EPOCHS):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Evaluate neural network

with torch.no_grad():

 output = network(x_test)

 test_loss = criterion(output, y_test)

 test_accuracy = (output.round() == y_test).float().mean()

 print("Test Loss:", test_loss.item(), "\tTest Accuracy:",

 test_accuracy.item())

Epoch: 1 Loss: 0.8022041916847229

Epoch: 2 Loss: 0.775616466999054

Epoch: 3 Loss: 0.7751263380050659

Test Loss: 0.8105319142341614 Test Accuracy: 0.8199999928474426

Discussion

In this solution we created a similar neural network to the
binary classifier from the last recipe, but with some notable
changes. In the classification data we generated, we set
N_CLASSES=3. To handle multiclass classification, we also
use nn.CrossEntropyLoss(), which expects the target to
be one-hot encoded. To accomplish this, we use the
torch.nn.functional.one_hot function and end up with a
one-hot encoded array where the position of 1. indicates
the class for a given observation:

View target matrix

y_train

tensor([[1., 0., 0.],

 [0., 1., 0.],

 [1., 0., 0.],

 ...,

 [0., 1., 0.],

 [1., 0., 0.],

 [0., 0., 1.]])

Since this is a multiclass classification problem, we used an
output layer of size 3 (one per class) containing a softmax
activation function. The softmax activation function will
return an array of 3 values summing to 1. These 3 values
represent an observation’s probability of being a member
of each of the 3 classes.
As mentioned in this recipe, we used a loss function suited
to multiclass classification, the categorical cross-entropy
loss function: nn.CrossEntropyLoss().

21.6 Training a Regressor

Problem

You want to train a neural network for regression.

Solution

Use PyTorch to construct a feedforward neural network
with a single output unit that has no activation function:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_regression

from sklearn.model_selection import train_test_split

EPOCHS=5

Create training and test sets

features, target = make_regression(n_features=10, n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1,1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1,1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,1),

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.MSELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

for epoch in range(EPOCHS):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Evaluate neural network

with torch.no_grad():

 output = network(x_test)

 test_loss = float(criterion(output, y_test))

 print("Test MSE:", test_loss)

Epoch: 1 Loss: 10764.02734375

Epoch: 2 Loss: 1356.510009765625

Epoch: 3 Loss: 504.9664306640625

Epoch: 4 Loss: 199.11314392089844

Epoch: 5 Loss: 191.20834350585938

Test MSE: 162.24497985839844

Discussion

It’s completely possible to create a neural network to
predict continuous values instead of class probabilities. In
the case of our binary classifier (Recipe 21.4) we used an
output layer with a single unit and a sigmoid activation
function to produce a probability that an observation was
class 1. Importantly, the sigmoid activation function
constrained the outputted value to between 0 and 1. If we
remove that constraint by having no activation function, we
allow the output to be a continuous value.
Furthermore, because we are training a regression, we
should use an appropriate loss function and evaluation
metric, in our case the mean square error:

MSE=
1

n

n

∑
i=1

(ŷi − yi)
2

where n is the number of observations; yi is the true value
of the target we are trying to predict, y, for observation i;
and ŷi is the model’s predicted value for yi.

Finally, because we are using simulated data using scikit-
learn make_regression, we didn’t have to standardize the
features. It should be noted, however, that in almost all
real-world cases, standardization would be necessary.

21.7 Making Predictions

Problem

You want to use a neural network to make predictions.

Solution

Use PyTorch to construct a feedforward neural network,
then make predictions using forward:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 3

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Evaluate neural network

with torch.no_grad():

 predicted_class = network.forward(x_train).round()

predicted_class[0]

Epoch: 1 Loss: 0.19006995856761932

Epoch: 2 Loss: 0.14092367887496948

Epoch: 3 Loss: 0.03935524448752403

tensor([1.])

Discussion

Making predictions is easy in PyTorch. Once we have
trained our neural network we can use the forward method
(already used as part of the training process), which takes
as input a set of features and does a forward pass through
the network. In our solution the neural network is set up
for binary classification, so the predicted output is the
probability of being class 1. Observations with predicted
values very close to 1 are highly likely to be class 1, while
observations with predicted values very close to 0 are
highly likely to be class 0. Hence, we use the round method
to convert these values to 1s and 0s for our binary
classifier.

21.8 Visualize Training History

Problem

You want to find the “sweet spot” in a neural network’s loss
and/or accuracy score.

Solution

Use Matplotlib to visualize the loss of the test and training
set over each epoch:

Load libraries

import torch

import torch.nn as nn

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

import numpy as np

import matplotlib.pyplot as plt

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 8

train_losses = []

test_losses = []

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 with torch.no_grad():

 train_output = network(x_train)

 train_loss = criterion(output, target)

 train_losses.append(train_loss.item())

 test_output = network(x_test)

 test_loss = criterion(test_output, y_test)

 test_losses.append(test_loss.item())

Visualize loss history

epochs = range(0, epochs)

plt.plot(epochs, train_losses, "r--")

plt.plot(epochs, test_losses, "b-")

plt.legend(["Training Loss", "Test Loss"])

plt.xlabel("Epoch")

plt.ylabel("Loss")

plt.show();

Discussion

When our neural network is new, it will have poor
performance. As the neural network learns on the training
data, the model’s error on both the training and test set
will tend to decrease. However, at a certain point, a neural
network can start “memorizing” the training data and
overfit. When this starts happening, the training error may
decrease while the test error starts increasing. Therefore,
in many cases, there is a “sweet spot” where the test error
(which is the error we mainly care about) is at its lowest
point. This effect can be seen in the solution, where we
visualize the training and test loss at each epoch. Note that
the test error is lowest around epoch 6, after which the
training loss plateaus while the test loss starts increasing.
From this point onward, the model is overfitting.

21.9 Reducing Overfitting with

Weight Regularization

Problem

You want to reduce overfitting by regularizing the weights
of your network.

Solution

Try penalizing the parameters of the network, also called
weight regularization:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = torch.optim.Adam(network.parameters(), lr=1e-4,

weight_decay=1e-5)

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 100

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

Evaluate neural network

with torch.no_grad():

 output = network(x_test)

 test_loss = criterion(output, y_test)

 test_accuracy = (output.round() == y_test).float().mean()

 print("Test Loss:", test_loss.item(), "\tTest Accuracy:",

 test_accuracy.item())

Test Loss: 0.4030887186527252 Test Accuracy: 0.9599999785423279

Discussion

One strategy to combat overfitting neural networks is by
penalizing the parameters (i.e., weights) of the neural
network such that they are driven to be small values,
creating a simpler model less prone to overfit. This method
is called weight regularization or weight decay. More
specifically, in weight regularization a penalty is added to
the loss function, such as the L2 norm.
In PyTorch, we can add weight regularization by including
weight_decay=1e-5 in the optimizer where regularization
happens. In this example, 1e-5 determines how much we
penalize higher parameter values. Values greater than 0
indicate L2 regularization in PyTorch.

21.10 Reducing Overfitting with Early

Stopping

Problem

You want to reduce overfitting by stopping training when
your train and test scores diverge.

Solution

Use PyTorch Lightning to implement a strategy called early

stopping:

Import libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

import lightning as pl

from lightning.pytorch.callbacks.early_stopping import

EarlyStopping

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

class LightningNetwork(pl.LightningModule):

 def __init__(self, network):

 super().__init__()

 self.network = network

 self.criterion = nn.BCELoss()

 self.metric = nn.functional.binary_cross_entropy

 def training_step(self, batch, batch_idx):

 # training_step defines the train loop.

 data, target = batch

 output = self.network(data)

 loss = self.criterion(output, target)

 self.log("val_loss", loss)

 return loss

 def configure_optimizers(self):

 return torch.optim.Adam(self.parameters(), lr=1e-3)

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Initialize neural network

network = LightningNetwork(SimpleNeuralNet())

Train network

trainer = pl.Trainer(callbacks=[EarlyStopping(monitor="val_loss",

mode="min",

 patience=3)], max_epochs=1000)

trainer.fit(model=network, train_dataloaders=train_loader)

GPU available: False, used: False

TPU available: False, using: 0 TPU cores

IPU available: False, using: 0 IPUs

HPU available: False, using: 0 HPUs

 | Name | Type | Params

--

0 | network | SimpleNeuralNet | 465

1 | criterion | BCELoss | 0

--

465 Trainable params

0 Non-trainable params

465 Total params

0.002 Total estimated model params size (MB)

/usr/local/lib/python3.10/site-

packages/lightning/pytorch/trainer/

 connectors/data_connector.py:224: PossibleUserWarning:

 The dataloader, train_dataloader, does not have many workers

which

 may be a bottleneck. Consider increasing the value of the

`num_workers`

 argument (try 7 which is the number of cpus on this machine)

 in the `DataLoader` init to improve performance.

 rank_zero_warn(

/usr/local/lib/python3.10/site-

packages/lightning/pytorch/trainer/

 trainer.py:1609: PossibleUserWarning: The number of training

batches (9)

 is smaller than the logging interval

Trainer(log_every_n_steps=50).

 Set a lower value for log_every_n_steps if you want to see

logs

 for the training epoch.

 rank_zero_warn(

Epoch 23: 100%|███████████████| 9/9 [00:00<00:00, 59.29it/s,

loss=0.147, v_num=5]

Discussion

As we discussed in Recipe 21.8, typically in the first several
training epochs, both the training and test errors will
decrease, but at some point the network will start
“memorizing” the training data, causing the training error
to continue to decrease even while the test error starts
increasing. Because of this phenomenon, one of the most
common and very effective methods to counter overfitting
is to monitor the training process and stop training when
the test error starts to increase. This strategy is called
early stopping.
In PyTorch, we can implement early stopping as a callback
function. Callbacks are functions that can be applied at
certain stages of the training process, such as at the end of
each epoch. However, PyTorch itself does not define an
early stopping class for you, so here we use the popular
library lightning (known as PyTorch Lightning) to use an
out-of-the-box one. PyTorch Lightning is a high-level library
for PyTorch that provides a lot of useful features. In our
solution, we included PyTorch Lightning’s
EarlyStopping(monitor="val_loss", mode="min",

patience=3) to define that we wanted to monitor the test

(validation) loss at each epoch, and if the test loss has not
improved after three epochs (the default), training is
interrupted.
If we did not include the EarlyStopping callback, the
model would train for the full 1,000 max epochs without
stopping on its own:

Train network

trainer = pl.Trainer(max_epochs=1000)

trainer.fit(model=network, train_dataloaders=train_loader)

GPU available: False, used: False

TPU available: False, using: 0 TPU cores

IPU available: False, using: 0 IPUs

HPU available: False, using: 0 HPUs

 | Name | Type | Params

--

0 | network | SimpleNeuralNet | 465

1 | criterion | BCELoss | 0

--

465 Trainable params

0 Non-trainable params

465 Total params

0.002 Total estimated model params size (MB)

Epoch 999: 100%|████████████| 9/9 [00:01<00:00, 7.95it/s,

loss=0.00188, v_num=6]

`Trainer.fit` stopped: `max_epochs=1000` reached.

Epoch 999: 100%|████████████| 9/9 [00:01<00:00, 7.80it/s,

loss=0.00188, v_num=6]

21.11 Reducing Overfitting with

Dropout

Problem

You want to reduce overfitting.

Solution

Introduce noise into your network’s architecture using
dropout:

Load libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Dropout(0.1), # Drop 10% of neurons

 torch.nn.Sigmoid(),

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 3

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Evaluate neural network

with torch.no_grad():

 output = network(x_test)

 test_loss = criterion(output, y_test)

 test_accuracy = (output.round() == y_test).float().mean()

 print("Test Loss:", test_loss.item(), "\tTest Accuracy:",

 test_accuracy.item())

Epoch: 1 Loss: 0.18791493773460388

Epoch: 2 Loss: 0.17331615090370178

Epoch: 3 Loss: 0.1384529024362564

Test Loss: 0.12702330946922302 Test Accuracy: 0.9100000262260437

Discussion

Dropout is a fairly common method for regularizing smaller
neural networks. In dropout, every time a batch of
observations is created for training, a proportion of the

units in one or more layers is multiplied by zero (i.e.,
dropped). In this setting, every batch is trained on the
same network (e.g., the same parameters), but each batch
is confronted by a slightly different version of that
network’s architecture.
Dropout is thought to be effective because by constantly
and randomly dropping units in each batch, it forces units
to learn parameter values able to perform under a wide
variety of network architectures. That is, they learn to be
robust to disruptions (i.e., noise) in the other hidden units,
and this prevents the network from simply memorizing the
training data.
It is possible to add dropout to both the hidden and input
layers. When an input layer is dropped, its feature value is
not introduced into the network for that batch.
In PyTorch, we can implement dropout by adding an
nn.Dropout layer into our network architecture. Each
nn.Dropout layer will drop a user-defined hyperparameter
of units in the previous layer every batch.

21.12 Saving Model Training Progress

Problem

Given a neural network that will take a long time to train,
you want to save your progress in case the training process
is interrupted.

Solution

Use the torch.save function to save the model after every
epoch:

Load libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Dropout(0.1), # Drop 10% of neurons

 torch.nn.Sigmoid(),

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 5

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 # Save the model at the end of every epoch

 torch.save(

 {

 'epoch': epoch,

 'model_state_dict': network.state_dict(),

 'optimizer_state_dict': optimizer.state_dict(),

 'loss': loss,

 },

 "model.pt"

)

 print("Epoch:", epoch+1, "\tLoss:", loss.item())

Epoch: 1 Loss: 0.18791493773460388

Epoch: 2 Loss: 0.17331615090370178

Epoch: 3 Loss: 0.1384529024362564

Epoch: 4 Loss: 0.1435958743095398

Epoch: 5 Loss: 0.17967987060546875

Discussion

In the real world, it is common for neural networks to train
for hours or even days. During that time a lot can go
wrong: computers can lose power, servers can crash, or
inconsiderate graduate students can close your laptop.

We can use torch.save to alleviate this problem by saving
the model after every epoch. Specifically, after every
epoch, we save a model to the location model.pt, the
second argument to the torch.save function. If we include
only a filename (e.g., model.pt) that file will be overridden
with the latest model every epoch.
As you can imagine, we can introduce additional logic to
save the model every few epochs, only save a model if the
loss goes down, etc. We could even combine this approach
with the early stopping approach in PyTorch Lightning to
ensure we save a model no matter at what epoch the
training ends.

21.13 Tuning Neural Networks

Problem

You want to automatically select the best hyperparameters
for your neural network.

Solution

Use the ray tuning library with PyTorch:

Load libraries

from functools import partial

import numpy as np

import os

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torch.optim import RMSprop

from torch.utils.data import random_split, DataLoader,

TensorDataset

from ray import tune

from ray.tune import CLIReporter

from ray.tune.schedulers import ASHAScheduler

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self, layer_size_1=10, layer_size_2=10):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, layer_size_1),

 torch.nn.ReLU(),

 torch.nn.Linear(layer_size_1, layer_size_2),

 torch.nn.ReLU(),

 torch.nn.Linear(layer_size_2, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

config = {

 "layer_size_1": tune.sample_from(lambda _: 2 **

np.random.randint(2, 9)),

 "layer_size_2": tune.sample_from(lambda _: 2 **

np.random.randint(2, 9)),

 "lr": tune.loguniform(1e-4, 1e-1),

}

scheduler = ASHAScheduler(

 metric="loss",

 mode="min",

 max_t=1000,

 grace_period=1,

 reduction_factor=2

)

reporter = CLIReporter(

 parameter_columns=["layer_size_1", "layer_size_2", "lr"],

 metric_columns=["loss"]

)

Train neural network

def train_model(config, epochs=3):

 network = SimpleNeuralNet(config["layer_size_1"],

config["layer_size_2"])

 criterion = nn.BCELoss()

 optimizer = optim.SGD(network.parameters(), lr=config["lr"],

momentum=0.9)

 train_data = TensorDataset(x_train, y_train)

 train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

 # Compile the model using torch 2.0's optimizer

 network = torch.compile(network)

 for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

 tune.report(loss=(loss.item()))

result = tune.run(

 train_model,

 resources_per_trial={"cpu": 2},

 config=config,

 num_samples=1,

 scheduler=scheduler,

 progress_reporter=reporter

)

best_trial = result.get_best_trial("loss", "min", "last")

print("Best trial config: {}".format(best_trial.config))

print("Best trial final validation loss: {}".format(

 best_trial.last_result["loss"]))

best_trained_model =

SimpleNeuralNet(best_trial.config["layer_size_1"],

 best_trial.config["layer_size_2"])

== Status ==

Current time: 2023-03-05 23:31:33 (running for 00:00:00.07)

Memory usage on this node: 1.7/15.6 GiB

Using AsyncHyperBand: num_stopped=0

Bracket: Iter 512.000: None | Iter 256.000: None | Iter 128.000:

None |

 Iter 64.000: None | Iter 32.000: None | Iter 16.000: None |

 Iter 8.000: None | Iter 4.000: None | Iter 2.000: None |

 Iter 1.000: None

Resources requested: 2.0/7 CPUs, 0/0 GPUs, 0.0/8.95 GiB heap,

 0.0/4.48 GiB objects

Result logdir: /root/ray_results/train_model_2023-03-05_23-31-33

Number of trials: 1/1 (1 RUNNING)

...

Discussion

In Recipes 12.1 and 12.2, we covered using scikit-learn’s
model selection techniques to identify the best
hyperparameters of a scikit-learn model. While in general
the scikit-learn approach can also be applied to neural
networks, the ray tuning library provides a sophisticated
API that allows you to schedule experiments on both CPUs
and GPUs.
The hyperparameters of a model are important and should
be selected with care. However, running experiments to
select hyperparameters can be both cost and time
prohibitive. Therefore, automatic hyperparameter tuning of
neural networks is not the silver bullet, but it is a useful
tool to have in certain circumstances.
In our solution we conducted a search of different
parameters for layer sizes and the learning rate of our
optimizer. The best_trial.config shows the parameters

in our ray tuning configuration that led to the lowest loss
and best experiment outcome.

21.14 Visualizing Neural Networks

Problem

You want to quickly visualize a neural network’s
architecture.

Solution

Use the make_dot function from torch_viz:

Load libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from torchviz import make_dot

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using Sequential

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Sigmoid()

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 3

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

make_dot(output.detach(), params=dict(

 list(

 network.named_parameters()

)

)

).render(

 "simple_neural_network",

 format="png"

)

'simple_neural_network.png'

If we open the image that was saved to our machine, we
can see the following:

Discussion

The torchviz library provides easy utility functions to
quickly visualize our neural networks and write them out as
images.

Chapter 22. Neural

Networks for Unstructured

Data

22.0 Introduction

In the previous chapter, we focused on neural network
recipes for structured data, i.e., tabular data. Most of the
largest advances in the past few years have actually
involved using neural networks and deep learning for
unstructured data, such as text or images. Working with
these unstructured datasets is a bit different than working
with structured sources of data.
Deep learning is particularly powerful in the unstructured
data space, where “classic” machine learning techniques
(such as boosted trees) typically fail to capture all the
complexity and nuance present in text data, audio, images,
videos, etc. In this chapter, we will explore using deep
learning specifically for text and image data.
In a supervised learning space for text and images, there
are many subtasks or “types” of learning. The following are
a few examples (though this is not a comprehensive list):

Text or image classification (example: classifying
whether or not an image is a picture of a hotdog)

Transfer learning (example: using a pretrained
contextual model like BERT and fine-tuning it on a task
to predict whether or not an email is spam)

Object detection (example: identifying and classifying
specific objects within an image)

Generative models (example: models that generate text
based on a given input such as the GPT models)

As deep learning has grown in popularity and become
increasingly commoditized, both the open source and
enterprise solutions for dealing with these use cases have
become more easily accessible. In this chapter, we’ll
leverage a few key libraries as our entry point into
performing these deep learning tasks. In particular, we’ll
use PyTorch, Torchvision, and the Transformers Python
libraries to accomplish a set of tasks across both text and
image ML data.

22.1 Training a Neural Network for

Image Classification

Problem

You need to train an image classification neural network.

Solution

Use a convolutional neural network in PyTorch:

Import libraries

import torch

import torch.nn as nn

import torch.optim as optim

from torchvision import datasets, transforms

Define the convolutional neural network architecture

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)

 self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)

 self.dropout1 = nn.Dropout2d(0.25)

 self.dropout2 = nn.Dropout2d(0.5)

 self.fc1 = nn.Linear(64 * 14 * 14, 128)

 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):

 x = nn.functional.relu(self.conv1(x))

 x = nn.functional.relu(self.conv2(x))

 x = nn.functional.max_pool2d(self.dropout1(x), 2)

 x = torch.flatten(x, 1)

 x = nn.functional.relu(self.fc1(self.dropout2(x)))

 x = self.fc2(x)

 return nn.functional.log_softmax(x, dim=1)

Set the device to run on

device = torch.device("cuda" if torch.cuda.is_available() else

"cpu")

Define the data preprocessing steps

transform = transforms.Compose([

 transforms.ToTensor(),

 transforms.Normalize((0.1307,), (0.3081,))

])

Load the MNIST dataset

train_dataset = datasets.MNIST('./data', train=True,

download=True,

 transform=transform)

test_dataset = datasets.MNIST('./data', train=False,

transform=transform)

Create data loaders

batch_size = 64

train_loader = torch.utils.data.DataLoader(train_dataset,

batch_size=batch_size,

 shuffle=True)

test_loader = torch.utils.data.DataLoader(test_dataset,

batch_size=batch_size,

 shuffle=True)

Initialize the model and optimizer

model = Net().to(device)

optimizer = optim.Adam(model.parameters())

Compile the model using torch 2.0's optimizer

model = torch.compile(model)

Define the training loop

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

 data, target = data.to(device), target.to(device)

 optimizer.zero_grad()

 output = model(data)

 loss = nn.functional.nll_loss(output, target)

 loss.backward()

 optimizer.step()

Define the testing loop

model.eval()

test_loss = 0

correct = 0

with torch.no_grad():

 for data, target in test_loader:

 data, target = data.to(device), target.to(device)

 output = model(data)

 # get the index of the max log-probability

 test_loss += nn.functional.nll_loss(

 output, target, reduction='sum'

).item() # sum up batch loss

 pred = output.argmax(dim=1, keepdim=True)

 correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

Discussion

Convolutional neural networks are typically used for tasks
in image recognition and computer vision. They typically
consist of convolutional layers, pooling layers, and a fully
connected layer.
The purpose of the convolutional layers is to learn
important image features that can be used for the task at
hand. Convolutional layers work by applying a filter to a
particular area of an image (the size of the convolution).
The weights of this layer then learn to recognize specific
image features critical in the classification task. For

instance, if we’re training a model that recognizes a
person’s hand, the filter may learn to recognize fingers.
The purpose of the pooling layer is typically to reduce the
dimensionality of the inputs from the previous layer. This
layer also uses a filter applied to a portion of the input, but
it has no activation. Instead, it reduces dimensionality of
the input by performing max pooling (where it selects the
pixel in the filter with the highest value) or average pooling

(where it takes an average of the input pixels to use
instead).
Finally, the fully connected layer can be used with
something like a softmax activation function to create a
binary classification task.

See Also

Convolutional Neural Networks

22.2 Training a Neural Network for

Text Classification

Problem

You need to train a neural network to classify text data.

Solution

Use a PyTorch neural network whose first layer is the size
of your vocabulary:

Import libraries

import torch

import torch.nn as nn

import torch.optim as optim

https://oreil.ly/HoO9g

import numpy as np

from sklearn.datasets import fetch_20newsgroups

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Load the 20 newsgroups dataset

cats = ['alt.atheism', 'sci.space']

newsgroups_data = fetch_20newsgroups(subset='all', shuffle=True,

 random_state=42, categories=cats)

Split the dataset into training and test sets

X_train, X_test, y_train, y_test =

train_test_split(newsgroups_data.data,

 newsgroups_data.target, test_size=0.2, random_state=42)

Vectorize the text data using a bag-of-words approach

vectorizer = CountVectorizer(stop_words='english')

X_train = vectorizer.fit_transform(X_train).toarray()

X_test = vectorizer.transform(X_test).toarray()

Convert the data to PyTorch tensors

X_train = torch.tensor(X_train, dtype=torch.float32)

y_train = torch.tensor(y_train, dtype=torch.long)

X_test = torch.tensor(X_test, dtype=torch.float32)

y_test = torch.tensor(y_test, dtype=torch.long)

Define the model

class TextClassifier(nn.Module):

 def __init__(self, num_classes):

 super(TextClassifier, self).__init__()

 self.fc1 = nn.Linear(X_train.shape[1], 128)

 self.fc2 = nn.Linear(128, num_classes)

 def forward(self, x):

 x = nn.functional.relu(self.fc1(x))

 x = self.fc2(x)

 return nn.functional.log_softmax(x, dim=1)

Instantiate the model and define the loss function and

optimizer

model = TextClassifier(num_classes=len(cats))

loss_function = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.01)

Compile the model using torch 2.0's optimizer

model = torch.compile(model)

Train the model

num_epochs = 1

batch_size = 10

num_batches = len(X_train) // batch_size

for epoch in range(num_epochs):

 total_loss = 0.0

 for i in range(num_batches):

 # Prepare the input and target data for the current batch

 start_idx = i * batch_size

 end_idx = (i + 1) * batch_size

 inputs = X_train[start_idx:end_idx]

 targets = y_train[start_idx:end_idx]

 # Zero the gradients for the optimizer

 optimizer.zero_grad()

 # Forward pass through the model and compute the loss

 outputs = model(inputs)

 loss = loss_function(outputs, targets)

 # Backward pass through the model and update the

parameters

 loss.backward()

 optimizer.step()

 # Update the total loss for the epoch

 total_loss += loss.item()

 # Compute the accuracy on the test set for the epoch

 test_outputs = model(X_test)

 test_predictions = torch.argmax(test_outputs, dim=1)

 test_accuracy = accuracy_score(y_test, test_predictions)

 # Print the epoch number, average loss, and test accuracy

 print(f"Epoch: {epoch+1}, Loss: {total_loss/num_batches},

Test Accuracy:"

 "{test_accuracy}")

Discussion

Unlike images, text data is inherently nonnumeric. Before
training a model, we need to convert the text into a
numeric representation that the model can use to learn
which words and word combinations are important for the
classification task at hand. In this example, we use scikit-

learn’s CountVectorizer to encode the vocabulary as a
vector the size of the entire vocabulary, where each word is
assigned to a specific index in the vector, and the value at
that location is the number of times that word appears in a
given paragraph. In this case, we can see the vocabulary
size by looking at our training set:

X_train.shape[1]

25150

We use this same value in the first layer of our neural
network to determine the size of the input layer: self.fc1
= nn.Linear(X_train.shape[1], 128). This allows our
network to learn what are called word embeddings, vector
representations of individual words learned from a
supervised learning task like the one in this recipe. This
task will allow us to learn word embeddings of size 128,
though these embeddings will primarily be useful for this
specific task and vocabulary.

22.3 Fine-Tuning a Pretrained Model

for Image Classification

Problem

You want to train an image classification model using
learnings from a pretrained model.

Solution

Use the transformers library with torchvision to fine-
tune a pretrained model on your data:

Import libraries

import torch

from torchvision.transforms import(

 RandomResizedCrop, Compose, Normalize, ToTensor

)

from transformers import Trainer, TrainingArguments,

DefaultDataCollator

from transformers import ViTFeatureExtractor,

ViTForImageClassification

from datasets import load_dataset, load_metric, Image

Define a helper function to convert the images into RGB

def transforms(examples):

 examples["pixel_values"] = [_transforms(img.convert("RGB"))

for img in

 examples["image"]]

 del examples["image"]

 return examples

Define a helper function to compute metrics

def compute_metrics(p):

 return metric.compute(predictions=np.argmax(p.predictions,

axis=1),

 references=p.label_ids)

Load the fashion mnist dataset

dataset = load_dataset("fashion_mnist")

Load the processor from the VIT model

image_processor = ViTFeatureExtractor.from_pretrained(

 "google/vit-base-patch16-224-in21k"

)

Set the labels from the dataset

labels = dataset['train'].features['label'].names

Load the pretrained model

model = ViTForImageClassification.from_pretrained(

 "google/vit-base-patch16-224-in21k",

 num_labels=len(labels),

 id2label={str(i): c for i, c in enumerate(labels)},

 label2id={c: str(i) for i, c in enumerate(labels)}

)

Define the collator, normalizer, and transforms

collate_fn = DefaultDataCollator()

normalize = Normalize(mean=image_processor.image_mean,

 std=image_processor.image_std)

size = (

 image_processor.size["shortest_edge"]

 if "shortest_edge" in image_processor.size

 else (image_processor.size["height"],

image_processor.size["width"])

)

_transforms = Compose([RandomResizedCrop(size), ToTensor(),

normalize])

Load the dataset we'll use with transformations

dataset = dataset.with_transform(transforms)

Use accuracy as our metric

metric = load_metric("accuracy")

Set the training args

training_args = TrainingArguments(

 output_dir="fashion_mnist_model",

 remove_unused_columns=False,

 evaluation_strategy="epoch",

 save_strategy="epoch",

 learning_rate=0.01,

 per_device_train_batch_size=16,

 gradient_accumulation_steps=4,

 per_device_eval_batch_size=16,

 num_train_epochs=1,

 warmup_ratio=0.1,

 logging_steps=10,

 load_best_model_at_end=True,

 metric_for_best_model="accuracy",

 push_to_hub=False,

)

Instantiate a trainer

trainer = Trainer(

 model=model,

 args=training_args,

 data_collator=collate_fn,

 compute_metrics=compute_metrics,

 train_dataset=dataset["train"],

 eval_dataset=dataset["test"],

 tokenizer=image_processor,

)

Train the model, log and save metrics

train_results = trainer.train()

trainer.save_model()

trainer.log_metrics("train", train_results.metrics)

trainer.save_metrics("train", train_results.metrics)

trainer.save_state()

Discussion

In the realm of unstructured data like text and images, it is
extremely common to start from pretrained models trained
on large datasets, instead of starting from scratch,
especially in cases where we don’t have access to as much
labeled data. Using embeddings and other information from
the larger model, we can then fine-tune our own model for
a new task without the need for as much labeled
information. In addition, the pretrained model may have
information not captured at all in our training dataset,
resulting in an overall performance improvement. This
process is known as transfer learning.
In this example, we load the weights from Google’s ViT
(Vision Transformer) model. Then, we use the
transformers library to fine-tune it for a classification task
on the fashion MNIST dataset, a simple dataset of clothing
items. This approach can be applied to increase
performance on any computer vision dataset, and the
transformers library provides a high-level interface we
can use to fine-tune our own model from larger, pretrained
ones without writing an egregious amount of code.

See Also

Hugging Face website and documentation

22.4 Fine-Tuning a Pretrained Model

for Text Classification

https://oreil.ly/5F3Rf

Problem

You want to train a text classification model using learnings
from a pretrained model.

Solution

Use the transformers library:

Import libraries

from datasets import load_dataset

from transformers import AutoTokenizer, DataCollatorWithPadding

from transformers import (

 AutoModelForSequenceClassification, TrainingArguments,

Trainer

)

import evaluate

import numpy as np

Load the imdb dataset

imdb = load_dataset("imdb")

Create a tokenizer and collator

tokenizer = AutoTokenizer.from_pretrained("distilbert-base-

uncased")

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

Tokenize the imdb dataset

tokenized_imdb = imdb.map(

 lambda example: tokenizer(

 example["text"], padding="max_length", truncation=True

),

 batched=True,

)

User the accuracy metric

accuracy = evaluate.load("accuracy")

Define a helper function to produce metrics

def compute_metrics(eval_pred):

 predictions, labels = eval_pred

 predictions = np.argmax(predictions, axis=1)

 return accuracy.compute(predictions=predictions,

references=labels)

Create dictionaries to map indices to labels and vice versa

id2label = {0: "NEGATIVE", 1: "POSITIVE"}

label2id = {"NEGATIVE": 0, "POSITIVE": 1}

Load a pretrained model

model = AutoModelForSequenceClassification.from_pretrained(

 "distilbert-base-uncased", num_labels=2, id2label=id2label,

 label2id=label2id

)

Specify the training arguments

training_args = TrainingArguments(

 output_dir="my_awesome_model",

 learning_rate=2e-5,

 per_device_train_batch_size=16,

 per_device_eval_batch_size=16,

 num_train_epochs=2,

 weight_decay=0.01,

 evaluation_strategy="epoch",

 save_strategy="epoch",

 load_best_model_at_end=True,

)

Instantiate a trainer

trainer = Trainer(

 model=model,

 args=training_args,

 train_dataset=tokenized_imdb["train"],

 eval_dataset=tokenized_imdb["test"],

 tokenizer=tokenizer,

 data_collator=data_collator,

 compute_metrics=compute_metrics,

)

Train the model

trainer.train()

Discussion

Just like using pretrained image models, pretrained
language models hold a massive amount of context about
language, as they’re typically trained on a wide variety of
open internet sources. When we start from a pretrained
model base, what we’re typically doing is swapping out the

classification layer of the existing network for one of our
own. This allows us to alter the network weights already
learned to fit our specific task.
In this example, we’re fine-tuning a DistilBERT model to
recognize whether IMDB movie reviews were positive (1)
or negative (0). The pretrained DistilBERT model provides
a large corpus of words and context on each one, in
addition to neural network weights learned from a previous
training task. Transfer learning allows us to take advantage
of all the initial work done training the DistilBERT model
and repurpose it for our use case, which in this instance is
classifying movie reviews.

See Also

Text classification in transformers

https://oreil.ly/uhrjI

Chapter 23. Saving,

Loading, and Serving

Trained Models

23.0 Introduction

In the last 22 chapters and around 200 recipes, we have
covered how to take raw data and use machine learning to
create well-performing predictive models. However, for all
our work to be worthwhile, we eventually need to do
something with our model, such as integrate it with an
existing software application. To accomplish this goal, we
need to be able to save our models after training, load them
when they are needed by an application, and then make
requests to that application to get predictions.
ML models are typically deployed in simple web servers
and designed to take input data and return predictions.
This makes the model available to any client on the same
network, so other services (such as UIs, users, etc.) can use
the ML model to make predictions wherever they are in
real time. An example use case would be using ML for item
search on an ecommerce website, where an ML model
would be served that takes in data about users and listings,
and returns a likelihood of the user purchasing that listing.
The search results need to be available in real time and
available to the ecommerce application that is responsible
for taking user searches and coordinating results for the
user.

23.1 Saving and Loading a scikit-

learn Model

Problem

You have a trained scikit-learn model and want to save it
and load it elsewhere.

Solution

Save the model as a pickle file:

Load libraries

import joblib

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

Load data

iris = datasets.load_iris()

features = iris.data

target = iris.target

Create decision tree classifer object

classifer = RandomForestClassifier()

Train model

model = classifer.fit(features, target)

Save model as pickle file

joblib.dump(model, "model.pkl")

['model.pkl']

Once the model is saved, we can use scikit-learn in our
destination application (e.g., web application) to load the
model:

Load model from file

classifer = joblib.load("model.pkl")

And use it to make predictions:

Create new observation

new_observation = [[5.2, 3.2, 1.1, 0.1]]

Predict observation's class

classifer.predict(new_observation)

array([0])

Discussion

The first step in using a model in production is to save that
model as a file that can be loaded by another application or
workflow. We can accomplish this by saving the model as a
pickle file, a Python-specific data format that enables us to
serialize Python objects and write them out to files.
Specifically, to save the model we use joblib, which is a
library extending pickle for cases when we have large
NumPy arrays— a common occurrence for trained models in
scikit-learn.
When saving scikit-learn models, be aware that saved
models might not be compatible between versions of scikit-
learn; therefore, it can be helpful to include the version of
scikit-learn used in the model in the filename:

Import library

import sklearn

Get scikit-learn version

scikit_version = sklearn.__version__

Save model as pickle file

joblib.dump(model,

"model_{version}.pkl".format(version=scikit_version))

['model_1.2.0.pkl']

23.2 Saving and Loading a

TensorFlow Model

Problem

You have a trained TensorFlow model and want to save it
and load it elsewhere.

Solution

Save the model using the TensorFlow saved_model format:

Load libraries

import numpy as np

from tensorflow import keras

Set random seed

np.random.seed(0)

Create model with one hidden layer

input_layer = keras.Input(shape=(10,))

hidden_layer = keras.layers.Dense(10)(input_layer)

output_layer = keras.layers.Dense(1)(input_layer)

model = keras.Model(input_layer, output_layer)

model.compile(optimizer="adam", loss="mean_squared_error")

Train the model

x_train = np.random.random((1000, 10))

y_train = np.random.random((1000, 1))

model.fit(x_train, y_train)

Save the model to a directory called `save_model`

model.save("saved_model")

32/32 [==============================] - 1s 8ms/step - loss:

0.2056

INFO:tensorflow:Assets written to: saved_model/assets

We can then load the model either in another application or
for additional training:

Load neural network

model = keras.models.load_model("saved_model")

Discussion

Although we didn’t use TensorFlow significantly
throughout the course of this book, it is useful to know how
to save and load TensorFlow models. Unlike scikit-learn,
which uses the Python-native pickle format, TensorFlow
provides its own method of saving and loading models. The
saved_model format creates a directory that stores the
model and all information necessary to load it back in and
make predictions in protocol buffer format (which uses the
.pb file extension):

ls saved_model

assets fingerprint.pb keras_metadata.pb saved_model.pb

variables

While we won’t go into this format in depth, it is the
standard way of saving, loading, and serving models
trained in TensorFlow.

See Also

Serialization and Saving Keras Models

TensorFlow Saved Model Format

23.3 Saving and Loading a PyTorch

Model

Problem

You have a trained PyTorch model and want to save it and
load it elsewhere.

Solution

Use the torch.save and torch.load functions:

https://oreil.ly/CDPvo
https://oreil.ly/StpSL

Load libraries

import torch

import torch.nn as nn

import numpy as np

from torch.utils.data import DataLoader, TensorDataset

from torch.optim import RMSprop

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

Create training and test sets

features, target = make_classification(n_classes=2,

n_features=10,

 n_samples=1000)

features_train, features_test, target_train, target_test =

train_test_split(

 features, target, test_size=0.1, random_state=1)

Set random seed

torch.manual_seed(0)

np.random.seed(0)

Convert data to PyTorch tensors

x_train = torch.from_numpy(features_train).float()

y_train = torch.from_numpy(target_train).float().view(-1, 1)

x_test = torch.from_numpy(features_test).float()

y_test = torch.from_numpy(target_test).float().view(-1, 1)

Define a neural network using `Sequential`

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Dropout(0.1), # Drop 10% of neurons

 torch.nn.Sigmoid(),

)

 def forward(self, x):

 x = self.sequential(x)

 return x

Initialize neural network

network = SimpleNeuralNet()

Define loss function, optimizer

criterion = nn.BCELoss()

optimizer = RMSprop(network.parameters())

Define data loader

train_data = TensorDataset(x_train, y_train)

train_loader = DataLoader(train_data, batch_size=100,

shuffle=True)

Compile the model using torch 2.0's optimizer

network = torch.compile(network)

Train neural network

epochs = 5

for epoch in range(epochs):

 for batch_idx, (data, target) in enumerate(train_loader):

 optimizer.zero_grad()

 output = network(data)

 loss = criterion(output, target)

 loss.backward()

 optimizer.step()

Save the model after it's been trained

torch.save(

 {

 'epoch': epoch,

 'model_state_dict': network.state_dict(),

 'optimizer_state_dict': optimizer.state_dict(),

 'loss': loss,

 },

 "model.pt"

)

Reinitialize neural network

network = SimpleNeuralNet()

state_dict = torch.load(

 "model.pt",

 map_location=torch.device('cpu')

)["model_state_dict"]

network.load_state_dict(state_dict, strict=False)

network.eval()

SimpleNeuralNet(

 (sequential): Sequential(

 (0): Linear(in_features=10, out_features=16, bias=True)

 (1): ReLU()

 (2): Linear(in_features=16, out_features=16, bias=True)

 (3): ReLU()

 (4): Linear(in_features=16, out_features=1, bias=True)

 (5): Dropout(p=0.1, inplace=False)

 (6): Sigmoid()

)

)

Discussion

Though we used a similar formula in Chapter 21 to
checkpoint our training progress, here we see how the
same approach can be used to load a model back into
memory to make predictions. The model.pt that we save
the model in is actually just a dictionary that contains the
model parameters. We saved the model state in the
dictionary key model_state_dict; to load the model back
in, we re-initialize our network and load the state of the
model using network.load_state_dict.

See Also

PyTorch tutorial: Saving and Loading Models

23.4 Serving scikit-learn Models

Problem

You want to serve your trained scikit-learn model using a
web server.

Solution

Build a Python Flask application that loads the model
trained earlier in this chapter:

Import libraries

import joblib

from flask import Flask, request

https://oreil.ly/WO3X1

Instantiate a flask app

app = Flask(__name__)

Load the model from disk

model = joblib.load("model.pkl")

Create a predict route that takes JSON data, makes predictions,

and

returns them

@app.route("/predict", methods = ["POST"])

def predict():

 print(request.json)

 inputs = request.json["inputs"]

 prediction = model.predict(inputs)

 return {

 "prediction" : prediction.tolist()

 }

 # Run the app

if __name__ == "__main__":

 app.run()

Make sure you have Flask installed:

python3 -m pip install flask==2.2.3 joblib==1.2.0 scikit-

learn==1.2.0

And then run the application:

python3 app.py

 * Serving Flask app 'app'

 * Debug mode: off

WARNING: This is a development server. Do not use it in a

production deployment.

 Use a production WSGI server instead.

 * Running on http://127.0.0.1:5000

Press CTRL+C to quit

Now, we can make predictions to the application and get
results by submitting data points to the endpoints using
curl:

curl -X POST http://127.0.0.1:5000/predict -H 'Content-Type:

application/json'

 -d '{"inputs":[[5.1, 3.5, 1.4, 0.2]]}'

{"prediction":[0]}

Discussion

In this example, we used Flask, a popular open source
library for building web frameworks in Python. We define
one route, /predict, that takes JSON data in a POST
request and returns a dictionary containing the predictions.
Though this server is not production-ready (see the Flask
warning about using a development server), we can easily
extend and serve this code with a more production-ready
web framework to move it to production.

23.5 Serving TensorFlow Models

Problem

You want to serve your trained TensorFlow model using a
web server.

Solution

Use the open source TensorFlow Serving framework and
Docker:

docker run -p 8501:8501 -p 8500:8500 \

--mount

type=bind,source=$(pwd)/saved_model,target=/models/saved_model/1

\

-e MODEL_NAME=saved_model -t tensorflow/serving

Discussion

TensorFlow Serving is an open source serving solution
optimized for TensorFlow models. By simply providing the
model path, we get an HTTP and gRPC server out of the
box with additional useful features for developers.
The docker run command runs a container using the
public tensorflow/serving image and mounts the
saved_model path of our current working directory
($(pwd)/saved_model) to /models/saved_model/1 inside
our container. This automatically loads the model we saved
earlier in this chapter into a running Docker container we
can send prediction queries to.
If you go to http://localhost:8501/v1/models/saved_model in
your web browser, you should see the JSON result shown
here:

{

 "model_version_status": [

 {

 "version": "1",

 "state": "AVAILABLE",

 "status": {

 "error_code": "OK",

 "error_message": ""

 }

 }

]

}

The /metadata route at
http://localhost:8501/v1/models/saved_model/metadata will
return more information about the model:

{

"model_spec":{

 "name": "saved_model",

 "signature_name": "",

 "version": "1"

}

http://localhost:8501/v1/models/saved_model
http://localhost:8501/v1/models/saved_model/metadata

,

"metadata": {"signature_def": {

 "signature_def": {

 "serving_default": {

 "inputs": {

 "input_8": {

 "dtype": "DT_FLOAT",

 "tensor_shape": {

 "dim": [

 {

 "size": "-1",

 "name": ""

 },

 {

 "size": "10",

 "name": ""

 }

],

 "unknown_rank": false

 },

 "name": "serving_default_input_8:0"

 }

 },

 "outputs": {

 "dense_11": {

 "dtype": "DT_FLOAT",

 "tensor_shape": {

 "dim": [

 {

 "size": "-1",

 "name": ""

 },

 {

 "size": "1",

 "name": ""

 }

],

 "unknown_rank": false

 },

 "name": "StatefulPartitionedCall:0"

 }

 },

 "method_name": "tensorflow/serving/predict"

 },

 "__saved_model_init_op": {

 "inputs": {},

 "outputs": {

 "__saved_model_init_op": {

 "dtype": "DT_INVALID",

 "tensor_shape": {

 "dim": [],

 "unknown_rank": true

 },

 "name": "NoOp"

 }

 },

 "method_name": ""

 }

 }

}

}

}

We can make predictions to the REST endpoint using curl
and passing the variables (this neural network takes 10
features):

curl -X POST http://localhost:8501/v1/models/saved_model:predict

 -d '{"inputs":[[1,2,3,4,5,6,7,8,9,10]]}'

{

 "outputs": [

 [

 5.59353495

]

]

}

See Also

TensorFlow documentation: Serving Models

23.6 Serving PyTorch Models in

Seldon

Problem

You want to serve a trained PyTorch model for real-time
predictions.

https://oreil.ly/5ZEQo

Solution

Serve the model using the Seldon Core Python wrapper:

Import libraries

import torch

import torch.nn as nn

import logging

Create a PyTorch model class

class SimpleNeuralNet(nn.Module):

 def __init__(self):

 super(SimpleNeuralNet, self).__init__()

 self.sequential = torch.nn.Sequential(

 torch.nn.Linear(10, 16),

 torch.nn.ReLU(),

 torch.nn.Linear(16,16),

 torch.nn.ReLU(),

 torch.nn.Linear(16, 1),

 torch.nn.Dropout(0.1), # Drop 10% of neurons

 torch.nn.Sigmoid(),

)

Create a Seldon model object with the name `MyModel`

class MyModel(object):

 # Loads the model

 def __init__(self):

 self.network = SimpleNeuralNet()

 self.network.load_state_dict(

 torch.load("model.pt")["model_state_dict"],

 strict=False

)

 logging.info(self.network.eval())

 # Makes a prediction

 def predict(self, X, features_names=None):

 return self.network.forward(X)

And run it with Docker:

docker run -it -v $(pwd):/app -p 9000:9000 kylegallatin/seldon-

example

 seldon-core-microservice MyModel --service-type MODEL

2023-03-11 14:40:52,277 - seldon_core.microservice:main:578 -

 INFO: Starting microservice.py:main

2023-03-11 14:40:52,277 - seldon_core.microservice:main:579 -

 INFO: Seldon Core version: 1.15.0

2023-03-11 14:40:52,279 - seldon_core.microservice:main:602 -

 INFO: Parse JAEGER_EXTRA_TAGS []

2023-03-11 14:40:52,287 - seldon_core.microservice:main:605 -

 INFO: Annotations: {}

2023-03-11 14:40:52,287 - seldon_core.microservice:main:609 -

 INFO: Importing MyModel

2023-03-11 14:40:55,901 - root:__init__:25 - INFO:

SimpleNeuralNet(

 (sequential): Sequential(

 (0): Linear(in_features=10, out_features=16, bias=True)

 (1): ReLU()

 (2): Linear(in_features=16, out_features=16, bias=True)

 (3): ReLU()

 (4): Linear(in_features=16, out_features=1, bias=True)

 (5): Dropout(p=0.1, inplace=False)

 (6): Sigmoid()

)

)

2023-03-11 14:40:56,024 - seldon_core.microservice:main:640 -

 INFO: REST gunicorn microservice running on port 9000

2023-03-11 14:40:56,028 - seldon_core.microservice:main:655 -

 INFO: REST metrics microservice running on port 6000

2023-03-11 14:40:56,029 - seldon_core.microservice:main:665 -

 INFO: Starting servers

2023-03-11 14:40:56,029 -

seldon_core.microservice:start_servers:80 -

 INFO: Using standard multiprocessing library

2023-03-11 14:40:56,049 - seldon_core.microservice:server:432 -

 INFO: Gunicorn Config: {'bind': '0.0.0.0:9000',

'accesslog': None,

 'loglevel': 'info', 'timeout': 5000, 'threads': 1, 'workers':

1,

 'max_requests': 0, 'max_requests_jitter': 0,

'post_worker_init':

 <function post_worker_init at 0x7f5aee2c89d0>, 'worker_exit':

 functools.partial(<function worker_exit at 0x7f5aee2ca170>,

 seldon_metrics=<seldon_core.metrics.SeldonMetrics object at

 0x7f5a769f0b20>), 'keepalive': 2}

2023-03-11 14:40:56,055 - seldon_core.microservice:server:504 -

 INFO: GRPC Server Binding to 0.0.0.0:5000 with 1 processes.

2023-03-11 14:40:56,090 -

seldon_core.wrapper:_set_flask_app_configs:225 -

 INFO: App Config: <Config {'ENV': 'production', 'DEBUG':

False,

 'TESTING': False, 'PROPAGATE_EXCEPTIONS': None, 'SECRET_KEY':

None,

 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31),

 'USE_X_SENDFILE': False, 'SERVER_NAME': None,

'APPLICATION_ROOT': '/',

 'SESSION_COOKIE_NAME': 'session', 'SESSION_COOKIE_DOMAIN':

None,

 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_HTTPONLY': True,

 'SESSION_COOKIE_SECURE': False, 'SESSION_COOKIE_SAMESITE':

None,

 'SESSION_REFRESH_EACH_REQUEST': True, 'MAX_CONTENT_LENGTH':

None,

 'SEND_FILE_MAX_AGE_DEFAULT': None, 'TRAP_BAD_REQUEST_ERRORS':

None,

 'TRAP_HTTP_EXCEPTIONS': False, 'EXPLAIN_TEMPLATE_LOADING':

False,

 'PREFERRED_URL_SCHEME': 'http', 'JSON_AS_ASCII': None,

 'JSON_SORT_KEYS': None, 'JSONIFY_PRETTYPRINT_REGULAR': None,

 'JSONIFY_MIMETYPE': None, 'TEMPLATES_AUTO_RELOAD': None,

 'MAX_COOKIE_SIZE': 4093}>

2023-03-11 14:40:56,091 -

seldon_core.wrapper:_set_flask_app_configs:225 -

 INFO: App Config: <Config {'ENV': 'production', 'DEBUG':

False,

 'TESTING': False, 'PROPAGATE_EXCEPTIONS': None, 'SECRET_KEY':

None,

 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31),

 'USE_X_SENDFILE': False, 'SERVER_NAME': None,

'APPLICATION_ROOT': '/',

 'SESSION_COOKIE_NAME': 'session', 'SESSION_COOKIE_DOMAIN':

None,

 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_HTTPONLY': True,

 'SESSION_COOKIE_SECURE': False, 'SESSION_COOKIE_SAMESITE':

None,

 'SESSION_REFRESH_EACH_REQUEST': True, 'MAX_CONTENT_LENGTH':

None,

 'SEND_FILE_MAX_AGE_DEFAULT': None, 'TRAP_BAD_REQUEST_ERRORS':

None,

 'TRAP_HTTP_EXCEPTIONS': False, 'EXPLAIN_TEMPLATE_LOADING':

False,

 'PREFERRED_URL_SCHEME': 'http', 'JSON_AS_ASCII': None,

 'JSON_SORT_KEYS': None, 'JSONIFY_PRETTYPRINT_REGULAR': None,

 'JSONIFY_MIMETYPE': None, 'TEMPLATES_AUTO_RELOAD': None,

 'MAX_COOKIE_SIZE': 4093}>

2023-03-11 14:40:56,096 -

seldon_core.microservice:_run_grpc_server:466 - INFO:

 Starting new GRPC server with 1 threads.

[2023-03-11 14:40:56 +0000] [23] [INFO] Starting gunicorn 20.1.0

[2023-03-11 14:40:56 +0000] [23] [INFO] Listening at:

http://0.0.0.0:6000 (23)

[2023-03-11 14:40:56 +0000] [23] [INFO] Using worker: sync

[2023-03-11 14:40:56 +0000] [30] [INFO] Booting worker with pid:

30

[2023-03-11 14:40:56 +0000] [1] [INFO] Starting gunicorn 20.1.0

[2023-03-11 14:40:56 +0000] [1] [INFO] Listening at:

http://0.0.0.0:9000 (1)

[2023-03-11 14:40:56 +0000] [1] [INFO] Using worker: sync

[2023-03-11 14:40:56 +0000] [34] [INFO] Booting worker with pid:

34

2023-03-11 14:40:56,217 - seldon_core.gunicorn_utils:load:103 -

INFO:

 Tracing not active

Discussion

While there are many different ways we can serve a
PyTorch model, here we choose the Seldon Core Python
wrapper. Seldon Core is a popular framework for serving
models in production and has a number of useful features
that make it easier to use and more scalable than a Flask
application. It allows us to write a simple class (above we
use MyModel), while the Python library takes care of all the
server components and endpoints. We can then run the
service using the seldon-core-microservice command,
which starts a REST server, gRPC server, and even exposes
a metrics endpoint. To make a prediction to the service, we
can call the service with the following endpoint on port
9000:

curl -X POST http://127.0.0.1:9000/predict -H 'Content-Type:

application/json'

 -d '{"data": {"ndarray":[[0, 0, 0, 0, 0, 0, 0, 0, 0]]}}'

You should see the following output:

{"data":{"names":

["t:0","t:1","t:2","t:3","t:4","t:5","t:6","t:7","t:8"],

 "ndarray":[[0,0,0,0,0,0,0,0,0]]},"meta":{}}

See Also

Seldon Core Python Package

TorchServe documentation

https://oreil.ly/FTofY
https://oreil.ly/fjmrE

Index

Symbols

+ (plus) operator, Discussion

- (subtract) operation, Discussion

: (colon), slicing a DataFrame, Solution

@ operator, Discussion

× (multiply) operator, Discussion

χ² (chi-square) statistic, feature selection, Solution,
Discussion

A

accuracy metric, Solution-Solution, Discussion, Solution-
Discussion

activation functions, neural network, Discussion, Solution-
Discussion, Discussion

AdaBoostClassifier, Solution-Discussion

AdaBoostRegressor, Solution-Discussion

adaptive thresholding, Solution-Discussion

add method, Solution

agg method, Solution-Discussion

agglomerative clustering, Solution

algorithm-specific methods, speeding up model selection,
Problem

ANN (approximate nearest neighbors), Solution-Discussion

ANOVA F-value, feature selection, Solution, Discussion

Apache Avro, Problem

Apache Parquet, Problem

apply method, Discussion, Problem, Solution

approximate nearest neighbors (ANN), Solution-Discussion

area under the ROC curve (AUC ROC), Discussion

arithmetic operators, for multiplying tensors, Discussion

arrays (see matrices; NumPy arrays; vectors)

autograd, Problem-Discussion

average pooling, Discussion

Avro file, loading data from, Problem

B

back propagation, Introduction

backfilling missing values, Solution

background removal, images, Problem-Discussion

bag-of-words model, Problem-Discussion

baseline classification model, Problem-Discussion

baseline regression model, Problem-Discussion

batch of observations, neural network, Introduction

Bayes’ theorem, Introduction

Beautiful Soup library, Solution

BernouilliNB, Solution

bias or intercept, linear regression, Discussion, Discussion

Binarizer, Solution, Discussion

binarizing images, Problem-Discussion

binary classifiers
logistic regression, Problem-Discussion

neural networks, Problem-Discussion

prediction evaluation, Problem-Discussion

thresholding, Problem-Discussion

binary feature data
naive Bayes classifier training with, Problem

thresholding variance, Problem

blurring images, Problem-Discussion

boolean conditions
deleting DataFrame row, Solution

selecting dates and times, Discussion

boosting performance, trees and forests, Problem-
Discussion

broadcasting, Discussion, Solution

C

C hyperparameter
GridSearchCV, Discussion

LogisticRegressionCV, Solution, Discussion

support vector classifier, Discussion, Discussion

CalibratedClassifierCV, Problem-Discussion

calibrating predicted probabilities, Problem-Discussion

callback functions, for early stopping, Discussion

Canny edge detector, Solution-Discussion

categorical data, Introduction-Discussion
dictionaries of features, Problem-Discussion

imbalanced classes, Problem-Discussion

missing class values, Problem-Discussion

nominal features, Problem-Discussion

ordinal features, Problem-Discussion

chi-square (χ²) statistic, feature selection, Solution,
Discussion

classes
imputing missing values, Problem-Discussion

maximizing separability, reducing features, Problem-
Discussion

classification and classifiers
baseline classification model, Problem-Discussion

binary classifiers, Problem-Discussion, Problem-
Discussion, Problem-Discussion

description of performance, Problem-Discussion

Haar cascade classifiers, Solution-Discussion

image classification, Problem-Discussion, Problem-
Discussion, Problem-Discussion

KNN classifier, Introduction-Discussion

logistic regression, Problem-Discussion

multiclass predictions, Problem-Discussion, Problem,
Problem-Discussion

naive Bayes classifier, Introduction-Discussion

random forest classifier training, Problem-Discussion

removing irrelevant features, Problem-Discussion

sentiment analysis classifier, Problem

support vector machines, Problem-Discussion

text classification, Problem-Discussion, Problem-
Discussion

training decision tree classifiers, Problem-Discussion

visualizing classifier performance, Problem-Discussion

classification_report, Solution

classifier__[hyperparameter name] format, Discussion

class_weight method, Solution

cleaning text, Problem-Discussion

clustering, Introduction-Discussion
DBSCAN, Solution-Discussion

grouping observations using, Problem-Discussion

hierarchical merging, Problem

k-means, Solution-Discussion, Problem-Discussion

mean shift, Problem-Discussion

model evaluation, Problem-Discussion

cluster_centers_ method, Discussion

coefficient of determination (R²), Discussion, Solution,
Discussion

colon (:), slicing a DataFrame, Solution

color histograms encoded as features, Solution-Discussion

color isolation, images, Problem-Discussion

columns in dataframes
deleting, Problem-Discussion

descriptive statistics values in, Problem

finding unique values in, Problem-Discussion

looping over, Problem

renaming, Problem-Discussion

comma-separated value (CSV) file, loading data from,
Problem-Discussion

compressed sparse row (CSR) matrices, Discussion

concat function, Solution

confusion matrices, Solution

continuous features, training naive Bayes classifier for,
Problem-Discussion

contrast, enhancing image, Problem-Discussion

convolutional neural network, Solution-Discussion

corner detection, images, Problem-Discussion

cornerHarris, Solution-Discussion

correlation matrix, feature selection, Problem-Discussion

count method, numeric column, Solution

CountVectorizer, Solution-Discussion, Discussion

cropping images, Problem

cross-validation (CV) of ML models, Discussion
CalibratedClassifierCV, Problem-Discussion

conducting a CV, Problem-Discussion

GridSearchCV, Problem-Discussion, Solution-
Discussion, Solution

LogisticRegressionCV, Discussion

multiclassifier predictions, Solution-Discussion

OpenCV, Introduction-Discussion, Problem-Discussion

performance evaluation after model selection, Problem-
Discussion

RandomizedSearchCV, Problem-Discussion

RFECV, Solution-Discussion

RidgeCV, Discussion

CrossEntropyLoss() function, Discussion

cross_val_score, Discussion, Solution-Discussion

CSR (compressed sparse row) matrices, Discussion

CSV (comma-separated value) file, loading data from,
Problem-Discussion

custom evaluation metric, creating, Problem-Discussion

D

DAG (directed acyclic graph), Discussion

dataframes (DataFrame object), Introduction-Discussion
aggregating operations and statistics in, Problem-
Discussion

applying function over all elements in a column,
Problem

applying function to groups of rows, Problem

concatenating, Problem-Discussion

creating DataFrame object, Problem-Discussion

deleting a column, Problem-Discussion

deleting a row, Problem

dropping duplicate rows in a, Problem-Discussion

finding unique values in, Problem-Discussion

getting information about data from, Problem

grouping rows by time in, Problem-Discussion

grouping rows by values in, Problem-Discussion

as immutable objects, Discussion

looping over a column in, Problem

merging, Problem-Discussion

min, max, sum, average, count values of numeric
column, Problem

missing values in, Problem-Discussion

renaming columns in, Problem-Discussion

selecting rows based on conditionals in, Problem-
Discussion

slicing, Problem-Solution

sorting values in, Problem

dates and times (datetimes), Introduction-Discussion
breaking up date data into multiple features, Problem

converting strings to dates, Problem-Discussion

days of the week, Problem

differences between dates, Problem

lagged feature, Problem

missing data in time series, Problem-Discussion

rolling time windows, Problem-Discussion

selecting dates and times, Problem-Discussion

time zones, Problem-Discussion

datetime library, Introduction

days of the week, encoding, Problem

day_name method, Solution

DBSCAN clustering, Solution-Discussion

decision trees, Introduction
(see also trees and forests)

DecisionTreeClassifier, Solution

DecisionTreeRegressor, Solution

deep learning, Introduction

deleting columns, dataframes, Problem-Discussion

deleting observations with missing values, Problem-
Discussion

deleting rows, dataframes, Problem

denoising an image, Discussion

dense matrix, weighting word importance, Solution

DESCR attribute, Discussion

describe method, Solution

descriptive statistics, Problem, Discussion, Solution,
Solution

detach() method, Discussion

df (document frequency), Discussion

diagonal of a matrix, finding, Problem

dictionaries of features, encoding, Solution, Problem-
Discussion

DictVectorizer, Problem-Discussion

digitize method, Solution

dimensionality reduction, Introduction
(see also feature extraction; feature selection)

convolutional neural network, Discussion

linear discriminant analysis, Solution-Discussion

principal component analysis, Solution-Discussion

directed acyclic graph (DAG), Discussion

discrete and count features, naive Bayes classifier,
Problem-Discussion

discretizating features, numerical data, Problem

distance metrics, Discussion-Discussion

DistilBERT model, Discussion

Docker, Solution-Discussion

document frequency (df), Discussion

DOT format, visualizing decision tree model, Solution-
Discussion

dot function (NumPy), Solution

dot method (PyTorch), Solution

dot product calculation, Problem, Problem

downsampling, imbalanced class problem, Solution

drop method, Solution, Discussion

Dropout layer, Discussion

dropout, reducing overfitting with, Solution-Discussion

drop_duplicates function, Solution

DummyClassifier, Solution-Discussion

dummying (one-hot encoding), Discussion

DummyRegressor, Solution-Discussion

duplicate rows, dropping in dataframes, Problem-
Discussion

duplicated method, Discussion

E

early stopping, reducing overfitting with, Problem-
Discussion

edge detection, images, Problem-Discussion

effect in linear regression, Discussion

elastic net, Discussion

EllipticEnvelope, Discussion

embedded methods, feature selection, Introduction

embeddings, Introduction, Problem-Discussion

epoch, in neural network, Introduction

equalizeHist method, Solution

error handling
converting strings to dates, Solution

mean squared error, Discussion

outliers, Discussion

Excel file, loading data from, Problem

exhaustive search method, model selection, Problem-
Discussion

Extreme Gradient Boosting (XGBoost), Discussion

F

factorization, Discussion

faiss library, Solution

false positive rate (FPR), Discussion

feature extraction, Introduction-Discussion
with lasso regression, Solution

linearly inseparable data, Problem-Discussion

matrix factorization, Solution-Discussion

maximizing class separability, Problem-Discussion

principal component approach, Problem-Discussion

sparse data, Problem-Discussion

feature selection, Introduction, Introduction-Discussion
highly correlated features in matrix, Problem-
Discussion

on random forest, Problem

recursively eliminating features, Problem-Discussion

removing irrelevant features for classification, Problem-
Discussion

thresholding binary feature variance, Problem

thresholding numerical feature variance, Problem-
Discussion

FeatureUnion, Discussion

feature_importances_ method, Solution-Discussion

feedforward neural networks, Introduction, Solution-
Discussion

fillna function, Discussion

filter methods
binarizing images, Solution-Discussion

binary classifier threshold evaluation, Problem-
Discussion

feature selection, Introduction-Discussion

filter2d method, Solution

fit operation, Discussion

fitting of data to a line
linear regression, Problem-Discussion, Problem-
Discussion

reducing overfitting in neural networks, Problem-
Discussion

fit_transform function, Discussion

Flask application, Discussion

flatten method
NumPy array, Solution, Solution-Discussion

PyTorch, Solution

for loops, Solution

forward filling missing values, Solution

forward method, Solution

forward propagation, Introduction

FPR (false positive rate), Discussion

from_numpy function, Solution

fully connected layer, Discussion

FunctionTransformer, Solution

F₁ score, Discussion, Discussion

G

GaussianNB, Solution-Discussion

Gini impurity, Discussion

GitHub, Using Code Examples

goodFeaturesToTrack, Discussion

Google Sheet, loading data from, Problem

Google ViT (Vision Transformer) model, Discussion

GrabCut algorithm, Solution-Discussion

gradient descent, in neural network, Introduction

GridSearchCV, Solution-Discussion, Solution-Discussion

groupby function, Solution-Discussion, Problem

grouping observations with clustering, Problem-Discussion

grouping rows in dataframes
by time, Problem-Discussion

by values, Problem-Discussion

H

Haar cascade classifiers, Solution-Discussion

harmonic mean, Solution

Harris corner detector, Solution-Discussion

head method, Solution

hidden layers, neural network, Introduction

hierarchical merging, clustering, Problem

highly correlated features in matrix, Problem-Discussion

histogram equalization, Solution

hold-out data, Discussion

HTML, parsing and cleaning, Problem

hyperparameters, Introduction
(see also model selection)

for neural networks, Problem-Discussion

versus parameters, Introduction

regularization penalty, Discussion, Solution

value effects visualization, Problem-Discussion

hyperplanes, Introduction, Discussion-Discussion

I

identity matrix, Discussion

idf (inverse of document frequency), Discussion

IID (independent and identically distributed) data,
Discussion

iloc method, Solution, Discussion

image classification
fine-tuning pretrained model, Problem-Discussion

neural networks for, Problem-Discussion, Problem-
Discussion

images, Introduction-Discussion
background removal, Problem-Discussion

binarizing, Problem-Discussion

blurring, Problem-Discussion

color isolation, Problem-Discussion

contrast enhancement, Problem-Discussion

converting to observation for ML, Problem-Discussion

corner detection, Problem-Discussion

cropping, Problem

edge detection, Problem-Discussion

encoding color histograms as features, Solution-
Discussion

loading, Problem-Discussion

object detection, Problem-Discussion

pretrained embeddings as features, Problem-Discussion

resizing, Problem-Discussion

saving, Problem

sharpening, Problem

imbalanced classes, handling
accuracy paradox with, Solution

categorical data, Problem-Discussion

logistic regression, Problem

multiclass classifier evaluation, Discussion

trees and forests, Problem-Discussion

imputing missing values, Problem-Discussion, Problem-
Discussion

imread method, Solution

imwrite method, Solution

independent and identically distributed (IID) data,
Discussion

index slicing, selecting dates and times, Solution

index value, DataFrame, Solution

indexing, in PyTorch, Solution

info method, Solution

inner join, Solution, Discussion

input layer, neural network, Introduction

interaction effect, linear regression, Discussion

interaction features, generating, Problem-Discussion

interpolation of missing data, Solution

interquartile range (IQR), Solution

inverse of document frequency (idf), Discussion

inverse_transform method, Solution

inverted file index (IVF), Discussion

inverting a matrix (inv), Problem

IQR (interquartile range), Solution

isnull method, Solution

isotonic regression, Discussion

J

joblib library, Discussion

joins (merging operations, Problem-Discussion

JSON file, loading data from, Problem

K

k-fold cross-validation (KFCV), Discussion-Discussion

k-means clustering, Solution-Discussion, Problem-
Discussion

k-nearest neighbors (KNN), Introduction-Discussion
versus ANN, Discussion-Discussion

creating classifier, Problem-Discussion

evaluating ANNs, Problem-Discussion

finding ANNs, Problem-Discussion

finding observation’s nearest neighbors, Problem-
Discussion

identifying best neighborhood size, Problem-Discussion

imputing missing values with, Solution-Discussion

numerical data requirement, Introduction

radius-based nearest neighbors, Problem

kernel functions, Discussion-Discussion, Discussion,
Solution-Discussion

kernel trick, Discussion

kernelPCA, Discussion

KMeans, Solution, Discussion, Discussion

KNeighborsClassifier, Solution, Solution-Discussion

L

LabelBinarizer, Solution

labels_ method, Discussion

lagged feature, Problem

layers, in neural networks, Introduction

LDA (linear discriminant analysis), Solution-Discussion

leaf, decision tree, Introduction

learning curves, Discussion

left join, Solution, Discussion

lightgbm library, Solution-Discussion

likelihood, naive Bayes, Introduction

limit method, Discussion

linear discriminant analysis (LDA), Solution-Discussion

linear regression, Introduction-Discussion
fitting a line, Problem-Discussion

fitting nonlinear relationship, Problem-Discussion

interactive effects, handling, Problem-Discussion

lasso regression to reduce features, Solution

regularization to reduce variance, Problem-Discussion

linearly inseparable data, reducing features, Problem-
Discussion, Discussion

linearly separable data, Discussion

LinearRegression, Solution

LinearSVC, Discussion

list comprehensions, Discussion

loading and saving models, Problem-Discussion, Problem-
Discussion

loading data, Introduction-Discussion
from Avro file, Problem

from CSV file, Problem-Discussion

from Excel file, Problem

generating simulated dataset, Problem-Discussion

from Google Sheet, Problem

images, Problem-Discussion

from JSON file, Problem

from Parquet file, Problem

remote SQL database query, Problem-Discussion

from S3 bucket, Problem

sample dataset from scikit-learn library, Problem-
Discussion

SQLite database query, Problem-Discussion

unstructured data, Problem

load_digits dataset, Discussion

load_iris dataset, Discussion

loc method, Solution, Discussion, Solution

logistic regression, Introduction-Discussion
binary classifier training, Problem-Discussion

and imbalanced classes, Problem

multiclass classifier training, Problem

regularization, to reduce variance, Problem

very large dataset, training classifier on, Problem

LogisticRegression, Solution, Solution, Solution, Solution

LogisticRegressionCV, Solution, Discussion

longitudinal data (see dates and times)

looping over a column, dataframes, Problem

loss function, neural network, Discussion, Discussion

M

make_blobs method, Solution, Discussion

make_circles, Discussion

make_classification method, Solution, Discussion,
Discussion

make_dot function, torch_viz, Solution

make_regression method, Solution, Discussion, Discussion

make_scorer function, Solution-Discussion

MAR (missing at random) data, Discussion

marginal probability, naive Bayes, Introduction

matrices
adding and subtracting, Problem

calculating trace of, Problem

converting data from dictionary to feature matrix,
Problem-Discussion

creating, Problem

describing, Problem

finding diagonal, Problem

finding rank of, Problem

flattening, Problem

inverting, Problem

k-nearest neighbors, Discussion

multiplying, Problem

sparse matrix, Problem-Discussion

transposing, Problem

matrix factorization, Solution-Discussion, Solution-
Discussion

matrix_rank method, Solution

max method
DataFrame, Solution

NumPy array, Discussion

PyTorch, Solution

max pooling, Discussion

maximizing class separability, reducing features, Problem-
Discussion

MCAR (missing completely at random) data, Discussion

mean method
DataFrame, Solution

NumPy array, Solution

mean shift clustering, Solution-Discussion

mean squared error (MSE), Solution-Discussion,
Discussion, Discussion

merging operations (joins), Problem-Discussion

metrics
custom evaluation, Solution-Discussion

neural network, Discussion

text report of evaluation, Problem-Discussion

min method
DataFrame, Solution

NumPy array, Discussion

PyTorch, Solution

mini-batch k-means, Solution

MiniBatchKMeans, Discussion

MinMaxScaler, Solution-Discussion

missing at random (MAR) data, Discussion

missing completely at random (MCAR) data, Discussion

missing data
deleting observations with missing values, Problem-
Discussion

imputing missing values, Problem-Discussion, Problem-
Discussion

time series, Problem-Discussion

types of, Discussion

values in DataFrames, Problem-Discussion

missing not at random (MNAR) data, Discussion

MLR (multinomial logistic regression), Discussion

MNAR (missing not at random) data, Discussion

MNIST dataset, Discussion

model evaluation, Introduction-Discussion
baseline classification model, Problem-Discussion

baseline regression model, Solution-Discussion

binary classifier predictions, Problem-Discussion

binary classifier thresholds, Problem-Discussion

classifier performance visualization, Problem-
Discussion

cluster models, Problem-Discussion

cross-validating models, Problem-Discussion

custom evaluation metric, Problem-Discussion

hyperparameter value effects visualization, Problem-
Discussion

multiclass classifier predictions, Problem-Discussion

regression models, Problem-Discussion

text report of evaluation metrics, Problem-Discussion

training set size effect visualization, Problem-
Discussion

model selection, Introduction-Discussion
algorithm-specific methods to speed up, Problem

exhaustive search method, Problem-Discussion

with multiple learning algorithms, Problem-Discussion

parallelization to speed up, Problem-Discussion

performance evaluation after selection, Problem-
Discussion

in preprocessing, Problem-Discussion

randomized search method, Problem-Discussion

moving time windows, Discussion

MSE (mean squared error), Solution-Discussion,
Discussion, Discussion

mT method, Solution

multiclass classifiers, Problem-Discussion, Problem,
Problem-Discussion

multidimensional array, Solution

multilayer perceptron, Introduction

multinomial logistic regression (MLR), Discussion

MultinomialNB, Solution-Discussion, Discussion

multiple learning algorithms, Problem-Discussion

multiply (×) operator, Discussion

multiplying matrices, Problem

multiplying tensors, Problem

N

naive Bayes classifier, Introduction-Discussion
binary features, Problem

calibrating predicted probabilities, Problem-Discussion

continuous features, Problem-Discussion

discrete and count features, Problem-Discussion

named-entity recognition, Problem

natural language processing (NLP), Solution, Introduction,
Discussion, Discussion

Natural Language Toolkit (NLTK), Solution-Discussion

ndim attribute, Solution

NearestNeighbors, Solution-Discussion

nested cross-validation after model selection, Solution

neural networks, Introduction-Discussion
autograd, Problem-Discussion

binary classifier training, Problem-Discussion

designing, Problem-Discussion

dropout for reducing overfitting, Problem-Discussion

early stopping for reducing overfitting, Problem-
Discussion

multiclass classifier training, Problem-Discussion

predicting, Problem-Discussion

preprocessing data for, Problem-Discussion

regressor training, Problem-Discussion

saving model training progress, Problem-Discussion

training history visualization, Problem-Discussion

tuning hyperparameters for, Problem-Discussion

unstructured data, Introduction-Discussion

visualizing, Problem

weight regularization to reduce overfitting, Problem-
Discussion

neuron, in neural network, Introduction

NLP (natural language processing), Solution, Introduction,
Discussion, Discussion

NLTK (Natural Language Toolkit), Solution-Discussion

NMF (nonnegative matrix factorization), Solution-
Discussion

nn.Module, Solution-Discussion

node, in neural network, Introduction

nominal categories, Introduction

nominal features, encoding, Problem-Discussion

nonlinear dimensionality reduction, Solution

nonnegative matrix factorization (NMF), Solution-
Discussion

normalizing observations (Normalizer), Problem-Discussion

notnull method, Solution

numerical data, Introduction-Discussion
deleting observations with missing values, Problem-
Discussion

detecting outliers, Problem-Discussion

discretizating features, Problem

generating polynomial and interaction features,
Problem-Discussion

grouping observations using clustering, Problem-
Discussion

handling outliers, Problem-Discussion

imputing missing values, Problem-Discussion

normalizing observations, Problem-Discussion

rescaling numerical features, Problem-Discussion

standardizing numerical features, Problem-Discussion

transforming features, Problem-Discussion

NumPy arrays, Introduction-Discussion
applying functions over array elements, Problem

creating PyTorch tensors from, Problem

descriptive statistics calculation, Problem

dot product calculation, Problem

dropping observations, Solution

matrices, Problem-Discussion, Problem, Problem-
Discussion

maximum and minimum values in, Problem

NaN value, Discussion

preallocating, Problem

versus PyTorch tensors, Introduction

random value generation, Problem-Discussion

reshaping, Problem

selecting elements, Problem-Discussion

vectors, Problem-Discussion, Problem

nunique method, Discussion

n_jobs=-1 setting, Solution

O

object detection, Problem-Discussion

observations, Introduction
batch of neural network, Introduction

converting images to, Problem-Discussion

deleting observations with missing values, Problem-
Discussion

finding nearest neighbors, Problem-Discussion

grouping using clustering, Problem-Discussion

normalizing, Problem-Discussion

one-hot encoding, Solution-Discussion, Discussion

one-vs-rest (OvR) logistic regression, Discussion

OOB (out-of-bag) observations, Solution

open function, Solution

OpenCV (Open Source Computer Vision Library),
Introduction-Discussion, Problem-Discussion

operations, applying to elements, Problem

optimizer, neural network, Discussion

ordinal features, Introduction, Problem-Discussion

out-of-bag (OOB) observations, Solution

outer join, Solution, Discussion

outliers, Problem-Discussion

output layer, neural network, Introduction

overfitting of data
dropout to reduce, Problem-Discussion

early stopping to reduce, Problem-Discussion

visualizing, Discussion

weight regularization to reduce, Problem-Discussion

OvR (one-vs-rest) logistic regression, Discussion

P

pandas library (see dataframes; loading data)

pandavro library, Solution

parallelization, to speed up model selection, Problem-
Discussion

parameters
versus hyperparameters, Introduction

imbalanced classes solution, Solution

neural network, Introduction, Introduction

preprocessing, Discussion

tree structure, Solution-Discussion

Parquet file, loading data from, Problem

parsing and cleaning HTML, Problem

PB (protocol buffer) format, TensorFlow, Discussion

PCA (principal component analysis), Solution-Discussion

performance
algorithm-specific methods for model selection,
Problem

boosting to improve trees and forests, Problem-
Discussion

evaluation after selection, Problem-Discussion

k-means clustering, Problem

KNN versus ANN, Discussion-Discussion

parallelization for model selection, Problem-Discussion

permute method, Discussion

pickle file, Solution-Discussion

Pillow library, Discussion

pipeline package, Discussion

Platt scaling, Discussion

Platt’s sigmoid model, Discussion

plus (+) operator, Discussion

polynomial regression, Solution-Discussion

PolynomialFeatures, Solution-Discussion, Solution-
Discussion

pooling layer, Discussion

posterior, naive Bayes, Introduction

preallocating arrays, Problem

precision metric, Solution, Discussion

predictions and predicting
binary classification evaluation of, Problem-Discussion

binary classifier thresholds, Problem-Discussion

cross-validating models, Problem-Discussion

hyperparameter value effects, Problem-Discussion

imputing missing class values, Problem-Discussion

linear regression, Introduction-Discussion

multiclass classifier evaluation of, Problem-Discussion

naive Bayes predicted probabilities, Problem-
Discussion

neural networks, Problem-Discussion

SVC predicted probabilities, Problem-Discussion

XGBoost model, Problem

predict_proba method, Discussion, Discussion, Discussion,
Discussion

preprocessing data
model selection, Problem-Discussion

neural networks, Problem-Discussion

parameters for, Discussion

and rescaling a numerical feature, Problem-Discussion

pretrained models
image classification fine-tuning, Problem-Discussion

image embeddings, Problem

with unstructured data, Discussion, Problem-Discussion

principal component analysis (PCA), Solution-Discussion

prior, naive Bayes, Introduction

probability estimates for prediction, Discussion-Discussion

protocol buffer (PB) format, TensorFlow, Discussion

pseudorandom values, generating, Problem-Discussion

punctuation, removing from text, Problem

pymysql library, Solution

PySpark, Discussion

Python Flask application, Discussion

PyTorch, Introduction-Discussion
applying operations to elements, Problem

attributes for tensors, Problem

autograd feature, Problem-Discussion

convolutional neural network, Solution-Discussion

creating tensors, Problem

dot product calculation, Problem

flattening tensors, Problem

image classification with, Problem-Discussion

maximum and minimum values, Solution

multiplying tensors, Problem

neural networks (see neural networks)

pretrained embeddings, Solution-Discussion

reshaping tensors, Problem

saving and loading a model, Problem-Discussion

selecting elements, Problem-Discussion

sparse tensor, Problem

transposing tensors, Problem

PyTorch Lightning, Solution-Discussion

pytz library, Discussion

Q

quantitative data (see numerical data)

R

radius-based KNN classifier, Problem

radius-based nearest neighbors classifier (RNN), Problem

random forest classifier, Discussion

random forests

classifier training, Solution-Discussion

evaluating out-of-bag errors, Problem

identifying important features, Problem-Discussion

regressor training, Problem

selecting important features, Problem

random method, Solution-Discussion

random value generation, Problem-Discussion

RandomForestClassifier, Solution, Solution-Discussion

RandomForestRegressor, Solution

RandomizedSearchCV, Solution-Discussion

rank of a matrix, finding, Solution

ravel method, Discussion

ray tuning library, Solution-Discussion

read_avro method, Solution

read_csv function, Discussion, Solution, Discussion

read_excel function, Solution

read_json function, Solution

read_parquet function, Solution

read_sql_query function, Solution

recall metric, Solution, Discussion

receiver operating characteristic (ROC) curve, Solution-
Discussion

rectified linear unit (ReLU), Discussion

recursive feature elimination (RFE), Solution-Discussion

regression and regressors, Problem
linear (see linear regression)

logistic (see logistic regression)

model evaluation, Problem-Discussion, Problem-
Discussion

neural network training, Problem-Discussion

polynomial regression, Solution-Discussion

random forest training, Problem

ridge regression, Discussion

regularization
reducing features with, Problem

reducing variance with, Problem-Discussion, Problem,
Solution-Discussion

regularization penalty hyperparameter, Discussion,
Solution

ReLU (rectified linear unit), Discussion

remote SQL database query, Problem-Discussion

rename method, Solution-Discussion

replace method, Solution-Discussion, Solution

replace operation, cleaning text, Solution

resample function, Solution

rescaling numerical features, Problem-Discussion

reshape method
NumPy array, Problem, Discussion

PyTorch, Solution

residual sum of squares (RSS), Discussion

resizing images, Problem-Discussion

RFE (recursive feature elimination), Solution-Discussion

RFECV, Solution-Discussion

ridge regression, Discussion

RidgeCV, Discussion

right join, Solution, Discussion

RNN (radius-based nearest neighbors classifier), Problem

RobustScaler, Discussion, Discussion

ROC (receiver operating characteristic) curve, Solution-
Discussion

roc_curve, Solution

rolling method, Solution-Discussion

rolling time windows, Problem-Discussion

round method, Discussion

rows in dataframes
deleting, Problem

dropping duplicates, Problem-Discussion

grouping by time, Problem-Discussion

grouping by value, Problem-Discussion

selecting based on conditionals, Problem-Discussion

RSS (residual sum of squares), Discussion

R² (coefficient of determination), Discussion, Solution,
Discussion

S

S3 bucket, loading data from, Problem

SAG (stochastic average gradient) solver, Solution

saved_model format, TensorFlow, Solution

saving and loading models, Problem-Discussion, Problem-
Discussion

scikit-learn library
pipeline package, Discussion

sample dataset from, Problem-Discussion

saving and loading a model, Problem-Discussion

serving a model, Problem-Discussion

score function, linear regression, Discussion

Seldon Core Python wrapper, Solution-Discussion

seldon-core-microservice command, Discussion

SelectFromModel, Discussion

selecting elements

NumPy arrays, Problem-Discussion

PyTorch elements, Problem-Discussion

SelectKBest, Discussion

SelectPercentile, Solution

sentiment analysis classifier, Problem

Sequential, Discussion

Series.dt, Solution, Solution

serving models, Problem-Discussion

shape attribute, Solution

sharpening images, Problem

Shi-Tomasi corner detector, Discussion

shift method, Solution

shrinkage penalty, Solution

sigmoid activation function, Discussion

silhouette coefficients, Solution-Discussion

SimpleImputer, Solution

simulated dataset, generating, Problem-Discussion

Singular Value Decomposition (SVD), Discussion

size attribute, Solution

size method, matrix, Discussion

slicing
dataframes, Problem-Solution

NumPy array, Solution

PyTorch, Solution-Discussion

softmax activation functions, Solution-Discussion

solvers, Discussion

sort_values function, Solution

spaCy library, named-entity recognition, Solution

sparse matrix
creating, Problem-Discussion

encoding dictionaries of features, Solution-Discussion

encoding text as bag of words, Discussion

reducing features on, Problem-Discussion

weighting word importance, Solution

sparse tensor, Problem

split operation, cleaning text, Solution

SQL, remote database query, Problem

SQLite database query, Problem-Discussion

StandardScaler, Solution-Discussion, Solution

std method, Solution

stemming of words, Problem

stochastic average gradient (SAG) solver, Solution

stop words, removing from text, Problem-Discussion

stratified k-fold cross validation, Discussion

strings
cleaning text, Problem-Discussion

converting to dates, Problem-Discussion

strip operation, cleaning text, Solution

subtract (-) operation, Discussion

subtract method, Solution

sum method, numeric column, Solution

supervised learning models
generative models, Introduction

importance of test data for evaluating, Discussion

logistic regression, Introduction

object detection, Introduction

text and image classification, Introduction

transfer learning, Introduction

versus unsupervised models, Discussion

support vector classifier (SVC), Solution

support vector machines, Introduction-Discussion
identifying support vectors, Problem

and imbalanced classes, Solution

kernel functions for linearly inseparable classes,
Problem-Discussion

linear classifier training, Problem-Discussion

predicted probabilities, Problem-Discussion

support_vectors_ method, Solution

SVC (support vector classifier), Solution

SVD (Singular Value Decomposition), Discussion

T

T method, Solution

tab-separated value (TSV) files, Discussion

tagging parts of speech, Problem-Discussion

TensorFlow, Discussion, Problem, Problem-Discussion

TensorFlow Serving framework, Solution-Discussion

tensorflow_hub, Discussion

tensors (see PyTorch)

term frequency (tf), Discussion

term frequency-inverse document frequency (tf-idf),
Solution-Discussion

test set, Discussion-Discussion

text, Introduction-Discussion
cleaning, Problem-Discussion

encoding as bag of words, Problem-Discussion

evaluation metrics report, Problem-Discussion

named-entity recognition, Problem

parsing and cleaning HTML, Problem

removing punctuation, Problem

removing stop words, Problem-Discussion

sentiment analysis classifier, Problem

stemming words, Problem

tagging parts of speech, Problem-Discussion

tf-idf vectors to implement, Problem-Discussion

tokenizing, Problem-Discussion

weighting word importance, Problem-Discussion

text classification
fine-tuning pretrained model, Problem-Discussion

neural networks for, Problem-Discussion

tf-idf (see term frequency-inverse document frequency)

tf-idf vectors to implement text, Problem-Discussion

TfidfVectorizer, Solution-Discussion

thresholding
binarizing images, Solution-Discussion

binary classifier thresholds, Problem-Discussion

feature selection, Solution-Discussion

time series data (see dates and times)

time zones, handling, Problem-Discussion

TimeDelta data type, Discussion

tokenizing text, Problem-Discussion

torch.save function, Solution

torch_viz library, Solution

to_datetime method, Solution-Discussion

to_sparse function, Solution

TPR (true positive rate), Discussion

trace method, Discussion

trace of a matrix, calculating, Problem

training set, Discussion-Discussion, Problem-Discussion

transfer learning, Discussion, Discussion

transform operation, Discussion

transformers library, Solution, Solution-Discussion

transforming features, numerical, Problem-Discussion

translate method, Solution

transposing
matrices, Problem

tensors, Problem

trees and forests, Introduction-Discussion
boosting to improve performance, Problem-Discussion

controlling tree size, Problem-Discussion

decision tree training, Problem-Discussion

and imbalanced classes, Problem-Discussion

LightGBM to improve performance, Problem-Discussion

random forests (see random forests)

visualizing decision tree model, Problem-Discussion

true positive rate (TPR), Discussion

Truncated Singular Value Decomposition (TSVD), Solution-
Discussion

TSV (tab-separated value) files, Discussion

tuning hyperparameters (see hyperparameters)

tz_convert, Solution

tz_localize, Solution

U

unique method, Solution

unit, in neural network, Introduction

unstructured data, Introduction-Discussion
image classification training, Problem-Discussion,
Problem-Discussion

loading, Problem

text classification, Problem-Discussion, Problem

unsupervised learning models, Problem-Discussion,
Introduction

(see also clustering)

upsampling, imbalanced class problem, Solution

V

validation data, Discussion

validation_curve, Solution

value_counts method, Solution

var method, Solution

variance in data, managing, Problem
(see also feature extraction; feature selection)

variance thresholding (VT), Discussion

vectorize method, Discussion

vectors, Problem-Discussion, Problem
(see also support vector machines)

very large dataset, training classifier on, Problem

visualization
classifier performance, Problem-Discussion

decision tree model, Problem-Discussion, Problem-
Discussion

hyperparameter value effects, Problem-Discussion

neural networks, Problem-Discussion, Problem

training set size effect, Problem-Discussion

ViT (Vision Transformer) model, Discussion

Voronoi tessellations, Discussion-Discussion

VT (variance thresholding), Discussion

W

weight regularization (weight decay), Solution-Discussion

weighting word importance, Problem-Discussion

weights (see parameters)

word embeddings, Discussion

wrapper methods, feature selection, Introduction

X

XGBoost algorithm, Discussion

xgboost library, Solution

Z

zero-indexed arrays, Discussion

About the Authors

Kyle Gallatin is a software engineer for machine learning
infrastructure with years of experience as a data analyst,
data scientist, and machine learning engineer. He is also a
professional data science mentor and volunteer computer
science teacher and frequently publishes articles at the
intersection of software engineering and machine learning.
Currently, Kyle is a software engineer on the machine
learning platform team at Etsy.
Chris Albon is the Director of Machine Learning at the
Wikimedia Foundation, the nonprofit that hosts Wikipedia.

Colophon

The animal on the cover of Machine Learning with Python

Cookbook is the Narina trogon (Apaloderma narina). It is
named for the mistress of French ornithologist François
Levaillant, who derived the name from a Khoikhoi word for
“flower,” as his mistress’s name was difficult to pronounce.
The Narina trogon is largely found in Africa, inhabiting
both lowlands and highlands, and tropical and temperate
climates, usually nesting in the hollows of trees. Its diverse
range of habitats makes it a species of least conservation
concern.
The Narina trogon eats mostly insects and small
invertebrates as well as small rodents and reptiles. Males,
which are more brightly colored, give off a grating, low,
repeated hoot to defend territory and attract mates. Both
sexes have green upper plumage and metallic blue-green
tail feathers. Female faces and chest plumages are brown,
while males have bright red undersides. Immature birds
have similar coloring to females with distinct white tips on
their inner wings.
The current conservation status (IUCN) of the Narina
trogon is Least Concern. Many of the animals on O’Reilly
covers are endangered; all of them are important to the
world.
The cover illustration is by Karen Montgomery, based on an
image from Wood’s Animate Creation. The cover fonts are
Gilroy Semibold and Guardian Sans. The text fonts are
Adobe Minion Pro and Symbola; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Working with Vectors, Matrices, and Arrays in NumPy
	1.0. Introduction
	1.1. Creating a Vector
	1.2. Creating a Matrix
	1.3. Creating a Sparse Matrix
	1.4. Preallocating NumPy Arrays
	1.5. Selecting Elements
	1.6. Describing a Matrix
	1.7. Applying Functions over Each Element
	1.8. Finding the Maximum and Minimum Values
	1.9. Calculating the Average, Variance, and Standard Deviation
	1.10. Reshaping Arrays
	1.11. Transposing a Vector or Matrix
	1.12. Flattening a Matrix
	1.13. Finding the Rank of a Matrix
	1.14. Getting the Diagonal of a Matrix
	1.15. Calculating the Trace of a Matrix
	1.16. Calculating Dot Products
	1.17. Adding and Subtracting Matrices
	1.18. Multiplying Matrices
	1.19. Inverting a Matrix
	1.20. Generating Random Values

	2. Loading Data
	2.0. Introduction
	2.1. Loading a Sample Dataset
	2.2. Creating a Simulated Dataset
	2.3. Loading a CSV File
	2.4. Loading an Excel File
	2.5. Loading a JSON File
	2.6. Loading a Parquet File
	2.7. Loading an Avro File
	2.8. Querying a SQLite Database
	2.9. Querying a Remote SQL Database
	2.10. Loading Data from a Google Sheet
	2.11. Loading Data from an S3 Bucket
	2.12. Loading Unstructured Data

	3. Data Wrangling
	3.0. Introduction
	3.1. Creating a Dataframe
	3.2. Getting Information about the Data
	3.3. Slicing DataFrames
	3.4. Selecting Rows Based on Conditionals
	3.5. Sorting Values
	3.6. Replacing Values
	3.7. Renaming Columns
	3.8. Finding the Minimum, Maximum, Sum, Average, and Count
	3.9. Finding Unique Values
	3.10. Handling Missing Values
	3.11. Deleting a Column
	3.12. Deleting a Row
	3.13. Dropping Duplicate Rows
	3.14. Grouping Rows by Values
	3.15. Grouping Rows by Time
	3.16. Aggregating Operations and Statistics
	3.17. Looping over a Column
	3.18. Applying a Function over All Elements in a Column
	3.19. Applying a Function to Groups
	3.20. Concatenating DataFrames
	3.21. Merging DataFrames

	4. Handling Numerical Data
	4.0. Introduction
	4.1. Rescaling a Feature
	4.2. Standardizing a Feature
	4.3. Normalizing Observations
	4.4. Generating Polynomial and Interaction Features
	4.5. Transforming Features
	4.6. Detecting Outliers
	4.7. Handling Outliers
	4.8. Discretizating Features
	4.9. Grouping Observations Using Clustering
	4.10. Deleting Observations with Missing Values
	4.11. Imputing Missing Values

	5. Handling Categorical Data
	5.0. Introduction
	5.1. Encoding Nominal Categorical Features
	5.2. Encoding Ordinal Categorical Features
	5.3. Encoding Dictionaries of Features
	5.4. Imputing Missing Class Values
	5.5. Handling Imbalanced Classes

	6. Handling Text
	6.0. Introduction
	6.1. Cleaning Text
	6.2. Parsing and Cleaning HTML
	6.3. Removing Punctuation
	6.4. Tokenizing Text
	6.5. Removing Stop Words
	6.6. Stemming Words
	6.7. Tagging Parts of Speech
	6.8. Performing Named-Entity Recognition
	6.9. Encoding Text as a Bag of Words
	6.10. Weighting Word Importance
	6.11. Using Text Vectors to Calculate Text Similarity in a Search Query
	6.12. Using a Sentiment Analysis Classifier

	7. Handling Dates and Times
	7.0. Introduction
	7.1. Converting Strings to Dates
	7.2. Handling Time Zones
	7.3. Selecting Dates and Times
	7.4. Breaking Up Date Data into Multiple Features
	7.5. Calculating the Difference Between Dates
	7.6. Encoding Days of the Week
	7.7. Creating a Lagged Feature
	7.8. Using Rolling Time Windows
	7.9. Handling Missing Data in Time Series

	8. Handling Images
	8.0. Introduction
	8.1. Loading Images
	8.2. Saving Images
	8.3. Resizing Images
	8.4. Cropping Images
	8.5. Blurring Images
	8.6. Sharpening Images
	8.7. Enhancing Contrast
	8.8. Isolating Colors
	8.9. Binarizing Images
	8.10. Removing Backgrounds
	8.11. Detecting Edges
	8.12. Detecting Corners
	8.13. Creating Features for Machine Learning
	8.14. Encoding Color Histograms as Features
	8.15. Using Pretrained Embeddings as Features
	8.16. Detecting Objects with OpenCV
	8.17. Classifying Images with Pytorch

	9. Dimensionality Reduction Using Feature Extraction
	9.0. Introduction
	9.1. Reducing Features Using Principal Components
	9.2. Reducing Features When Data Is Linearly Inseparable
	9.3. Reducing Features by Maximizing Class Separability
	9.4. Reducing Features Using Matrix Factorization
	9.5. Reducing Features on Sparse Data

	10. Dimensionality Reduction Using Feature Selection
	10.0. Introduction
	10.1. Thresholding Numerical Feature Variance
	10.2. Thresholding Binary Feature Variance
	10.3. Handling Highly Correlated Features
	10.4. Removing Irrelevant Features for Classification
	10.5. Recursively Eliminating Features

	11. Model Evaluation
	11.0. Introduction
	11.1. Cross-Validating Models
	11.2. Creating a Baseline Regression Model
	11.3. Creating a Baseline Classification Model
	11.4. Evaluating Binary Classifier Predictions
	11.5. Evaluating Binary Classifier Thresholds
	11.6. Evaluating Multiclass Classifier Predictions
	11.7. Visualizing a Classifier’s Performance
	11.8. Evaluating Regression Models
	11.9. Evaluating Clustering Models
	11.10. Creating a Custom Evaluation Metric
	11.11. Visualizing the Effect of Training Set Size
	11.12. Creating a Text Report of Evaluation Metrics
	11.13. Visualizing the Effect of Hyperparameter Values

	12. Model Selection
	12.0. Introduction
	12.1. Selecting the Best Models Using Exhaustive Search
	12.2. Selecting the Best Models Using Randomized Search
	12.3. Selecting the Best Models from Multiple Learning Algorithms
	12.4. Selecting the Best Models When Preprocessing
	12.5. Speeding Up Model Selection with Parallelization
	12.6. Speeding Up Model Selection Using Algorithm-Specific Methods
	12.7. Evaluating Performance After Model Selection

	13. Linear Regression
	13.0. Introduction
	13.1. Fitting a Line
	13.2. Handling Interactive Effects
	13.3. Fitting a Nonlinear Relationship
	13.4. Reducing Variance with Regularization
	13.5. Reducing Features with Lasso Regression

	14. Trees and Forests
	14.0. Introduction
	14.1. Training a Decision Tree Classifier
	14.2. Training a Decision Tree Regressor
	14.3. Visualizing a Decision Tree Model
	14.4. Training a Random Forest Classifier
	14.5. Training a Random Forest Regressor
	14.6. Evaluating Random Forests with Out-of-Bag Errors
	14.7. Identifying Important Features in Random Forests
	14.8. Selecting Important Features in Random Forests
	14.9. Handling Imbalanced Classes
	14.10. Controlling Tree Size
	14.11. Improving Performance Through Boosting
	14.12. Training an XGBoost Model
	14.13. Improving Real-Time Performance with LightGBM

	15. K-Nearest Neighbors
	15.0. Introduction
	15.1. Finding an Observation’s Nearest Neighbors
	15.2. Creating a K-Nearest Neighbors Classifier
	15.3. Identifying the Best Neighborhood Size
	15.4. Creating a Radius-Based Nearest Neighbors Classifier
	15.5. Finding Approximate Nearest Neighbors
	15.6. Evaluating Approximate Nearest Neighbors

	16. Logistic Regression
	16.0. Introduction
	16.1. Training a Binary Classifier
	16.2. Training a Multiclass Classifier
	16.3. Reducing Variance Through Regularization
	16.4. Training a Classifier on Very Large Data
	16.5. Handling Imbalanced Classes

	17. Support Vector Machines
	17.0. Introduction
	17.1. Training a Linear Classifier
	17.2. Handling Linearly Inseparable Classes Using Kernels
	17.3. Creating Predicted Probabilities
	17.4. Identifying Support Vectors
	17.5. Handling Imbalanced Classes

	18. Naive Bayes
	18.0. Introduction
	18.1. Training a Classifier for Continuous Features
	18.2. Training a Classifier for Discrete and Count Features
	18.3. Training a Naive Bayes Classifier for Binary Features
	18.4. Calibrating Predicted Probabilities

	19. Clustering
	19.0. Introduction
	19.1. Clustering Using K-Means
	19.2. Speeding Up K-Means Clustering
	19.3. Clustering Using Mean Shift
	19.4. Clustering Using DBSCAN
	19.5. Clustering Using Hierarchical Merging

	20. Tensors with PyTorch
	20.0. Introduction
	20.1. Creating a Tensor
	20.2. Creating a Tensor from NumPy
	20.3. Creating a Sparse Tensor
	20.4. Selecting Elements in a Tensor
	20.5. Describing a Tensor
	20.6. Applying Operations to Elements
	20.7. Finding the Maximum and Minimum Values
	20.8. Reshaping Tensors
	20.9. Transposing a Tensor
	20.10. Flattening a Tensor
	20.11. Calculating Dot Products
	20.12. Multiplying Tensors

	21. Neural Networks
	21.0. Introduction
	21.1. Using Autograd with PyTorch
	21.2. Preprocessing Data for Neural Networks
	21.3. Designing a Neural Network
	21.4. Training a Binary Classifier
	21.5. Training a Multiclass Classifier
	21.6. Training a Regressor
	21.7. Making Predictions
	21.8. Visualize Training History
	21.9. Reducing Overfitting with Weight Regularization
	21.10. Reducing Overfitting with Early Stopping
	21.11. Reducing Overfitting with Dropout
	21.12. Saving Model Training Progress
	21.13. Tuning Neural Networks
	21.14. Visualizing Neural Networks

	22. Neural Networks for Unstructured Data
	22.0. Introduction
	22.1. Training a Neural Network for Image Classification
	22.2. Training a Neural Network for Text Classification
	22.3. Fine-Tuning a Pretrained Model for Image Classification
	22.4. Fine-Tuning a Pretrained Model for Text Classification

	23. Saving, Loading, and Serving Trained Models
	23.0. Introduction
	23.1. Saving and Loading a scikit-learn Model
	23.2. Saving and Loading a TensorFlow Model
	23.3. Saving and Loading a PyTorch Model
	23.4. Serving scikit-learn Models
	23.5. Serving TensorFlow Models
	23.6. Serving PyTorch Models in Seldon

	Index

