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Preface

The volume of geometric objects has been studied by the ancient Greek mathematicians and it is quite
remarkable that even today volume continues to play an important role in applied as well as pure
mathematics. So, it did not come as a surprise to us that also in discrete geometry, which is a relatively
new branch of geometry, volume played a significant role in generating interesting new topics for research.
When writing this book, our goal was to demonstrate the more recent aspects of volume within discrete
geometry. We found it convenient to split the book into two parts, with Part I consisting of survey chapters
of selected topics on volume, and Part II consisting of chapters of selected proofs of theorems stated in
Part I. This means also that the chapters can be read quite independently from each other. Moreover, our
book provides a list of more than 30 open problems encouraging the interested reader to join in the recent
efforts to progress research on the topics discussed. Also, there are more than 60 research exercises to help
the reader with deeper understanding of the topics discussed. The prerequisite for Part I is rather modest,
any advanced undergraduate student should be able to follow the developments in those chapters.
However, Part II is of graduate level reading that intends to lead the interested reader to the frontiers of
research in discrete geometry. In what follows, we give a brief description of the topics discussed in our
book.

In Chapter 1 we investigate the volumetric properties of (m, d)-scribed polytopes, that is, d-dimensional
polytopes whose every m-face touches a Euclidean ball. Starting with a short historical overview of the
isoperimetric problem in Section 1.1, in Section 1.2 we examine a problem proposed by L’huilier in the
18th century, which asks about finding the minimum volume polytopes circumscribed about a ball. By the
famous Lindelöf Condition in Theorem 4, these polytopes are the ones having maximal isoperimetric ratio
and a fixed number of facets. In this section, besides describing the results regarding L’huilier’s problem,
we present a ‘dynamic’ version of Lindelöf’s theorem. This version offers a possible explanation of the
strange, elongated shape of the interstellar asteroid ’Oumuamua passing through the solar system. In
Section 1.3 we investigate the ‘dual’ of L’huilier’s problem, and deal with maximum volume polytopes
inscribed in a ball. A consequence of the Circle Packing Theorem is that every combinatorial class of 3-
dimensional convex polytope can be represented by a polytope, called Koebe polyhedron, whose every
edge is tangent to a unit sphere. In Section 1.4 we collect the properties of Koebe polyhedra and, in
particular, present results about the existence of Koebe polyhedra in every combinatorial class with
additional requirements. Just as in other chapters, the goal of stating open questions and problems in
Chapter 1 is to motivate further research on the topics discussed. The relevant selected proofs are
discussed in Chapter 6.

In Chapter 2 we examine results about the volume of the convex hull of a pair of convex bodies. In
Section 2.1 we introduce results of Rogers and Shephard, who in the 1950s in three subsequent papers
defined various convex bodies associated to a convex body, and found the extremal values of their volumes
on the family of convex bodies based on the convexity of some volume functional and Steiner
symmetrization. After this we present a proof of a conjecture of Rogers and Shephard about the equality
cases in their theorems, find a more general setting of their problems, and collect results about it. Section
2.2 describes a variant of the previous problems for normed spaces. In particular, using the notion of
relative norm of a convex body, we collect results about the extremal values of four types of volume of the
unit ball of a normed space. The problem of finding these values of one of these types leads to the famous
Mahler Conjecture. We extend these notions to the translation bodies of convex bodies, defined in Section
2.1, and determine their extremal values in normed planes. Hopefully, the problems and conjectures of
Chapter 2 will orient the reader towards new research directions. Chapter 7 contains the proofs of the
theorems selected from Chapter 2.

The monotonicity of volume under contractions of arbitrary arrangements of spheres is a well-known
fundamental problem in discrete geometry. The research on this topic started with the conjecture of
Poulsen and Kneser in the late 1950s. In Chapter 3 we survey the status of the long-standing Kneser-
Poulsen conjecture in Euclidean as well as in non-Euclidean spaces with emphases on the latest
developments. With the update given on the Kneser-Poulsen conjecture in Chapter 3, our hope is to
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encourage the renewed interest in settling this old conjecture of discrete geometry in higher dimensions as
well. The proofs of the most recent results of Chapter 3 are contained in Chapter 8.

The well-known kissing number problem asks for the largest number of non-overlapping unit balls

touching a given unit ball in the Euclidean d-space Ed. Generalizing the kissing number, the Hadwiger

number or the translative kissing number H(K) of a convex body K in Ed is the maximum number of non-

overlapping translates of K that all touch K. In Chapter 4 we study and survey the following natural

extension of these problems. A finite translative packing of the convex body K in Ed is a finite family P

of non-overlapping translates of K in Ed. Furthermore, the contact graph G (P) of P is the (simple)

graph whose vertices correspond to the packing elements and whose two vertices are connected by an
edge if and only if the corresponding two packing elements touch each other. The number of edges of
G (P) is called the contact number of P. Finally, the contact number problem asks for the largest contact

number, that is, for the maximum number c(K, n, d) of edges that a contact graph of n non-overlapping

translates of K can have in Ed. In the first half of Chapter 4 we survey the bounds proved for c(K, n, d)
using volumetric methods. Then we turn our attention to an important subfamily of translative packings

called totally separable packings. Here a packing of translates of a convex body K in Ed is called totally

separable if any two packing elements can be separated by a hyperplane of Ed disjoint from the interior of
every packing element. In the second half of Chapter 4 we study the analogues of the Hadwiger and

contact numbers for totally separable translative packings of K labelled by Hsep(K) and csep(K, n, d) and

survey the bounds proved for Hsep(K) as well as csep(K, n, d) using volumetric ideas. Along the way we

call the reader’s attention to a number of open problems. Chapter 9 contains our selection of proofs of
some recent results of Chapter 4.

In Chapter 5 we continue our investigation of totally separable packings from a volumetric point of
view. First, we outline the recent solution of the contact number problem for smooth strictly convex
domains in E2. We discuss this approach in details based on angular measure, Birkhoff orthogonality,
Birkhoff measure, (smooth) Birkhoff domains, and approximation by (smooth strictly convex) Auerbach
domains, which are topics of independent interests as well. In the next part of Chapter 5, we connect the
study of totally separable packings of discrete geometry to Oler’s inequality of geometry of numbers.
More concretely, we discuss an analogue of Oler’s inequality for totally separable translative packings in

E
2 and then use it for finding the highest density of totally separable translative packings (resp., the

smallest area convex hull of totally separable packings by n translates) of an arbitrary convex domain in
E

2. Finally, as a local version of totally separable packings, we introduce the family of ρ-separable

translative packings of o-symmetric convex bodies in Ed. In particular, we investigate the fundamental
problem of minimizing the mean i-dimensional projection of the convex hull of n non-overlapping

translates of an o-symmetric convex body C forming a ρ-separable packing in Ed for given d > 1, n > 1,

and C. We encourage the reader to take a closer look of the open problems of Chapter 5. Last but not least
we encourage the reader to study the selected proofs included in Chapter 10.

Budapest and Calgary, January 12, 2019
Károly Bezdek and Zsolt Lángi
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Symbols

Symbol Description

E
d d-dimensional Euclidean space.

o The origin of Ed.

H
d d-dimensional hyperbolic space.

bd(·) Boundary of a set.
int(·) Interior of a set.
relbd(·) Relative boundary of a set.
card(·), | ·
|

Cardinality of a set.

[p, q] Closed segment with endpoints p, q.

(p, q) Open segment with endpoints p, q.

ǁpǁ Euclidean norm of p.

Bd Closed unit ball in Ed with o as its center.

S
d−1

The boundary of Bd ; i.e., the (d − 1)-dimensional spherical space.
conv(·) Convex hull of a set in Ed.
aff(·) Affine hull of a set in Ed.
lin(·) Linear hull of a set in Ed.
vold(·) Volume of a set in Ed.

area(·) Area of a set in E2.
svold−1 (·)Surface volume of a set in Ed.

perim(·) Perimeter of a set in E2.
Svold−1

(·)

Spherical volume of a set in Sd−1.

κd The volume of Bd.

Ko The polar of the set K.

Sym(S) The symmetry group of the set S.

M
d−1
* (⋅) The (d − 1)-dimensional Minkowski content.

Ld(·) The d-dimensional Lebesgue measure.

V(·, …, ·) Mixed volume.

Wi(K) The ith quermassintegral of K.

IB The rotated copy of Bo by π2 .

I(K) Isoperimetric ratio of K.
I
n

d Maximum isoperimetric ratio of all convex polytopes in Ed with at most n facets.

N(M) The set of outer unit normal vectors at the smooth points of M.

F(M) The form body of M.

V(P) The vertex set of the polytope P.
Pd(n) The family of polytopes with n vertices and inscribed in Sd−1.

vd (n) The maximum of vold(P) on the family Pd(n).

Cd (n) The cyclic polytope defined in Remark 20.

skelk (P) The k-skeleton of the polytope P in Ed.

cmk (P) The center of mass of the k-skeleton of the polytope P.

cc(P) The center of the smallest ball containing P.

IC(P) The set of the centers of the largest balls contained in P.
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ccm(P) The circumcenter of mass of the simplicial polytope P.

ρT (C) The radius of the image of the spherical cap C under the Möbius transformation T.

cT (C) The center of the image of the spherical cap C under the Möbius transformation T.

SH (K) The Steiner symmetrization of K with respect to the hyperplane H.

V* (K, L) Maximum of the volume of the convex hull of two intersecting translates of K and L.

Rp(K) The reflection body of K with respect to p.

R(K) A reflection body of K minimizing vold (Rp (K)) for all p ∈ K.

R* (K) A reflection body of K maximizing vold (Rp (K)) for all p ∈ K.

Tp(K) The translation body of K with vector p.

T(K) A translation body of K minimizing Tp (K) under the condition K ∩ (p + K) ≠ .

C(K) The associated body of K.

c(K, L) Maximum volume of the convex hull of two intersecting congruent copies of K and L.

c(K | S ) Maximum volume of the convex hull of K and an intersecting congruent copy σ(K) with σ ∈ S

.

ci (K)) The value of c(K| S ) if S  is the set of all reflections about i-flats.

ctr (K)) The value of c(K| S ) if S  is the set of all translations.

cco (K)) The value of c(K| S ) if S  is the set of all isometries.

volBus
M

(⋅) Busemann volume in the norm with unit ball M.

volHT

M
(⋅) Holmes-Thompson volume in the norm with unit ball M.

volm
M

(⋅) Gromov’s mass in the norm with unit ball M.

volm*
M

(⋅) Gromov’s mass* in the norm with unit ball M.

c
Bus
tr (K) Maximal Busemann volume of the translation bodies of K in its relative norm.

c
HT
tr (K) Maximal Holmes-Thompson volume of the translation bodies of K in its relative norm.

c
m
tr (K) Maximal Gromov’s mass of the translation bodies of K in its relative norm.

cm*
tr

(K) Maximal Gromov’s mass* of the translation bodies of K in its relative norm.

Bd[pi, ri] Closed Euclidean ball of radius ri and centered at pi.

BMd [x, r]Closed ball of radius ri and centered at pi in the space Md.

Xr The r-dual body of X in the space Md.

k(d) Kissing number of Bd.
c(n, d) Maximum contact number in all packings of n unit balls in Ed.

c(K, n, d) Maximum contact number in all packings of n translates of the convex body K in Ed.
csep(n, d) Maximum contact number in all totally separable packings of n unit balls in Ed.

cfcc (n) Maximum contact number in all packings of n unit diameter balls in Ed whose centers are
points in the face-centered cubic lattice.

degavr (·) Average degree in the contact graph of a packing.

iq(K) Isoperimetric quotient of K.

H(K) Hadwiger number of K.

h(K) One-sided Hadwiger number of K.

δ(K) Maximum density of a packing of translates of K.
δd Maximum density of a packing of unit balls in Ed.

δd (n, λ) Maximum density of a packing of n translates of Bd with respect to their outer parallel domain
of outer radius λ.

δd(λ) Upper limit of δd(n, λ) as n → ∞.

cZ (n, d) Maximum contact number in all digital packings of n unit balls in Ed.

Hsep(K) Separable Hadwiger number of K.

hsep(K) One-sided separable Hadwiger number of K.

csep (K, n,

d)

Maximum contact number in all totally separable packings of n translates of K in Ed.

0
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Hsep(d) Maximum of Hsep over the family of o-symmetric, strictly convex, smooth bodies in Ed.

hsep(d) Maximum of hsep over the family of o-symmetric, strictly convex, smooth bodies in Ed.

x ⊣K y x is Birkhoff orthogonal to y in the norm of K.

cir(A) Circular pieces of the A-convex domain A.
e(·) Euclidean angle measure.
m(·) The angle measure defined by (5.2).

h(K, L) Hausdorff distance of the convex bodies K and L.
ǁ · ǁK The norm of a vector in the normed space with unit ball K.

MK(G) The length of G measured in the relative norm of K.

⃟(K) A minimum area hexagon circumscribed about K.

⃞(K) A minimum area parallelogram circumscribed about K.

δsep (K) Maximum density of all totally separable translative packings of K.

δsep(ρ, K) Maximum density of all ρ-separable translative packings of K.

Mi (C) Mean volume of the i-dimensional projections of C.

R(C) Radius of a smallest Euclidean ball containing C.

r(C) Radius of a largest Euclidean ball contained in C.
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1
Volumetric Properties of (m, d)-scribed Polytopes

Summary. In this chapter we investigate the volumetric properties of (m, d)-scribed polytopes, that is, d-
dimensional polytopes whose every m-face touches a Euclidean ball. Starting with a short historical
overview of the isoperimetric problem in Section 1.1, in Section 1.2 we examine a problem proposed by
L’huilier in the 18th century, which asks about finding the minimum volume polytopes circumscribed
about a ball. By the famous Lindelöf Condition in Theorem 4, these polytopes are the ones having
maximal isoperimetric ratio and a fixed number of facets. In this section, besides describing the results
regarding L’huilier’s problem, we present a ‘dynamic’ version of Lindelöf’s theorem. This version offers a
possible explanation of the strange, elongated shape of the interstellar asteroid ‘Oumuamua passing
through the solar system. In Section 1.3 we investigate the ‘dual’ of L’huilier’s problem, and deal with
maximum volume polytopes inscribed in a ball. A consequence of the Circle Packing Theorem is that
every combinatorial class of 3-dimensional convex polytope can be represented by a polytope, called
Koebe polyhedron, whose every edge is tangent to a unit sphere. In Section 1.4 we collect the properties of
polyhedra and, in particular, present results about the existence of Koebe polyhedra in every combinatorial
class with additional requirements.

1.1    The isoperimetric inequality

One of the fundamental inequalities in the theory of convex bodies is the so-called isoperimetric
inequality.

Theorem 1 (Isoperimetric Inequality) Among all convex bodies in Ed of equal volumes, Euclidean balls
have minimal surface volume.

The planar case of this problem was essentially solved by Zenodorus, who showed that a circle has
larger area than any polygon with the same perimeter. Clearly, in terms of rigorosity, his proof reflects the
standards of mathematics at his time. Zenodorus’s solution was lost; we know his work through Pappos
and Theon of Alexandria [234]. In Aeneid, Virgil describes a variant of this question, which might be one
of the first instances of a mathematical problem appearing in a literary work written for the general public.
In his epic, Dido, the daughter of the king of Tyre, after fleeing from her city, landed on the north coast of
Africa, and bargained for as much land as she could enclose with an oxhide. She cut the hide into thin
strips, and arranged them roughly into a semicircle.

Later, Steiner gave five different proofs for the planar case [224, 225]. Whereas all his proofs implicitly
assume the existence of an optimal solution, his work led to the discovery of Steiner symmetrization,
which presently plays an important role in optimization procedures in convex geometry. The first exact
proof of the planar case was found in the 19th century, due to Edler [94]. Since then, many different proofs
of this statement appeared in the literature (see, e.g., the paper of Carathéodory and Study [74], or that of
Lawlor [167]).

Nowadays the d-dimensional isoperimetric inequality is usually proved via the Brunn-Minkowski

inequality [102, 194]. In [102], a more general version appears, which states that for any set S ⊂ Ed whose

closure has finite Lebesgue measure,

dκ
1
d

d L
d(S)

d−1
d ≤ M d−1

⋆ (bdS),



20

where M d−1
⋆  is the (d − 1)-dimensional Minkowski content, Ld is the d-dimensional Lebesgue measure,

and κd is the volume of the unit ball in Ed. Other proofs of the isoperimetric inequality were given, for

example, by Schmidt [215] and Gromov in the Appendix of [183].
A significant generalization of the isoperimetric inequality follows from a result of Alexandrov and

Fenchel [69].

Theorem 2 (Alexandrov-Fenchel Inequality) For any convex bodies K1, K2, …,Kd ⊂ Ed, we have

V (K1, K2, … , Kd)2 ≥ V (K1, K1, K3 … , Kd)V (K2, K2, K3 … , Kd), (1.1)

where V(K1, K2, K3, …, Kd) denotes the mixed volume of the convex bodies K1, K2,…,Kd.

The necessary and sufficient conditions for equality in (1.1) is known only in some special cases [217].

The inequality (1.1) implies that the sequence { wi+1(K)
wi(K) } is decreasing for i = 0,1,…,n − 1, where the

quantity Wi(K), called ith quermassintegral of the convex body K ⊂ E
d, is defined as

Wi (K) = V

d−i

K, … , K,

i

Bd, … , Bd . A consequence of this fact is that for any 0 ≤ i < j ≤ q, among

convex bodies with a given ith quermassintegral, Euclidean balls have minimum jth quermassintegral.

Here we note that the surface volume of a convex body K is dWd−1(K), W0(K) = vold(K), and Wd(K) =

vold(Bd).

Schmidt [216] proved the isoperimetric inequality for convex bodies in spherical or hyperbolic d-space.
Variants for arbitrary Riemannian geometries can be found, e.g., in [186]. In [71], Busemann proved the
following isoperimetric inequality in normed planes. Let MB(L) denote the perimeter of the simple,

continuous curve L measured in the norm with unit ball B for some origin-symmetric plane convex body

B. Let IB denote the rotated copy of the polar reciprocal B° of B about the origin, with angle 
π
2 . Then, for

any convex body K with a given area in the normed plane with unit ball B, the Minkowski perimeter

MB(bdK) is minimal if and only if K is a positive homothetic copy of IB. A variant of this statement holds

in d-dimensional normed spaces for d > 2, with a suitable definition of surface volume [72].

It is clear that there are convex bodies in Ed with fixed volume but arbitrarily large surface volume.
Nevertheless, Ball [16] proved the following very interesting theorem, which was the starting point of the
flourishing area of affine isoperimetric inequalities.

Theorem 3 Let K be a convex body in Ed. Then K has an affine image K̃ such that the quantity
vold(K̃)

(svold−1(K̃))
d

d−1

 is not smaller than the corresponding quantity for a regular simplex in Ed.

1.2    Discrete isoperimetric inequalities: volume of poly-topes circumscribed
about a sphere

Before proceeding further, following Pisanski et al. [201], we define the isoperimetric ratio of a convex
body in the following way.

Definition 1 Let K ⊂ Ed be a convex body. The isoperimetric ratio of K is the quantity

I (K) = vold(K)

(svold−1(K))
d

d−1

⋅
(svold−1(Bd))

d
d−1

vold(Bd) .

We note that for every convex body K, 0 < I(K) ≤ 1, where I(K) = 1 if and only if K is a Euclidean ball.

⎛⎜⎝������ ������⎞⎟⎠
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It is a natural question to ask about the maximum value of I(K) on subfamilies of the family of d-
dimensional convex bodies. The first result is due to Zenodorus, who proved that among convex n-gons in

E
2 of a given perimeter, the regular one has the largest area. It was probably L’huilier in the 18th century

who suggested to find the convex polyhedra in E3 with maximal volume among those with a given surface
area and a given number of faces. This question is particularly interesting for polyhedra whose number of
faces is equal to that of one of the five platonic solids.

A significant step towards solving this question was made by Lindelöf [171], which was later
generalized by Klee [153] for arbitrary dimensions.

Theorem 4 Let P be a convex polytope in Ed with outer unit facet normal vectors x1, x2, …, xn. Let Q be

the convex polytope circumscribed about the unit ball Bd with the same outer unit face normal vectors.

Then I(P) < I(Q).

A consequence of Theorem 4 is that to maximize I(·) among convex polyhedra with n faces, it is
sufficient to minimize the volume (or surface area) of polyhedra with n faces circumscribed about the unit

ball B3.

Consider a convex polyhedron Q circumscribed about B3. If the center of mass of a face of Q does not
coincide with the point of tangency on the face, then a slight deformation of the face yields a convex

polyhedron Q′, combinatorially equivalent to Q and circumscribed about B3, with vold Q′ < vold(Q). This

simple observation, appeared in [153], combined with Theorem 4, implies that among tetrahedra in E3, the
isoperimetric ratio is maximal for the regular ones. A similar argument can be applied to show the same

statement for simplices in Ed with d > 3.

Theorem 5 For any n ≥ d + 1, there is a convex polytope P in Ed with n facets such that I(P) ≥ I(Q) for

any convex polytope Q in Ed with n facets. Furthermore, any such polytope P is circumscribed about a

Euclidean ball, and the point of tangency on each facet of P coincides with the center of mass of the facet.

Theorem 6 Among simplices in Ed , the regular ones have maximal isoperimetric ratio.

L. Fejes Tóth [109] proved the following theorem (see also [106]).

Theorem 7 Let F and V denote the surface area and the volume of a convex polyhedron in E3 with n

faces, and set ωn = n
n−2

π
6 . Then

F 3

V 2 ≥ 54 (n − 2) tan (ωn) (4 sin2 ωn − 1),

where equality holds only for the regular tetrahedron, hexahedron and dodecahedron.

By Theorem 4, this result is based on considering only polyhedra circumscribed about B3 and applying

the so-called ‘moment lemma’ after centrally projecting each face of the polyhedron to S2.

Theorem 8 (Moment lemma) Let φ(ρ) be a strictly increasing function for 0 ≤ ρ < π
2 . Let p1, p2,…, pn

be n points of S2 not all of them lying on a hemisphere, and let ρp = min{pp1, pp1, …, ppn} denote the

spherical distance of a variable point p of S2 from a closest point of the system {pi}. Then, for the

surface-integral of φ(ρp) extended over S2, we have

∫
S2

φ (ρP)dω ≥ (2n − 4)∫
Δ
φ (ρP)dω,

where Δ is an equilateral spherical triangle with vertices p1, p2, p3 having area 
2π
n−2  and

ρp = min {pp1, pp2, pp3} is the spherical distance of p from a closest vertex of Δ.
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Equality holds only if the system {pi} coincides with the system of vertices of a regular tetrahedron,

octahedron or icosahedron.

It is worth noting that by results of Lindelöf [171] and Goldberg [121], a regular triangle, respectively

pentagon, based cylinder has maximal isoperimetric ratio among convex polyhedra in E3 with 5,
respectively 7, faces, but the problem is still open for n > 7, n ≠ 12 if d = 3, and for n > d + 1 if d > 3. The
interested reader can find a list on possibly optimal convex polyhedra in E3 on the webpage:
http://schoengeometry.com/a_poly.html, in [191] and in [170].

An asymptotic estimate for the isoperimetric ratio for any d ≥ 2 can be found in [129].

Theorem 9 Let I n
d , where n ≥ d + 1, denote the maximum of the isoperimetric ratio of the family of all

convex polytopes in Ed with at most n facets. Then there is a constant δ > 0 depending only on d such that

The isoperimetric ratio plays an important role, among other things, in the theory of geometric partial
differential equations (PDEs), in particular in curvature-driven flows, cf. e.g., [115, 137, 148]. We present
a result which yields a ‘dynamic’ version of Theorem 4 based on the monotonicity of the isoperimetric
ratio under the so-called Eikonal equation. The Eikonal equation is a non-linear PDE describing, among

other things, the evolution of surfaces. Restricting it to the evolution K(t) of a convex body K(0) = K ⊂ Ed

, where d > 1, we may define it as

v (p) = 1, (1.2)

where p ∈ bdK(t), and v(p) is the speed by which p moves in the direction of the inward surface normal of

K(t) at p. We note that by Alexandrov’s theorem, stating that the boundary of a convex body is C2-

differentiable almost everywhere, it can be shown that the condition in (1.2) uniquely determines K(t).
The next two theorems were proven by Domokos and Lángi [89], where we use the observation, explained

more thoroughly in Section 6.2, that the set K(t) evolving under (1.2) is a convex body if and only if, t <

r(K), where r(K) is the radius of a largest sphere contained in K. We note that Theorem 10 offers a
possible explanation of the strange, elongated shape of the interstellar asteroid ’Oumuamua passing
through the solar system [90].

FIGURE 1.1
The form body of a convex body.

Theorem 10 For any convex body K ⊂ Ed, where d > 1, for the family K(t) evolving under (1.2), I(K(t))

is either strictly decreasing on [0, r(K)), or there is some value t⋆ ∈[0,r(K)) such that I(K(t)) is strictly

I n
d ∼ δ

2d
d

d−1

svold−1(Bn)
2d+1
d−1

vold(Bn)
1

n
2

d−1

, asn → ∞.

http://schoengeometry.com/
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decreasing on [0,t⋆] and is a constant on [t⋆, r(K)). Furthermore, in the latter case, for any t > t⋆, K(t) is

homothetic to K(t⋆).

Definition 2 Let M ⊂ Ed be a convex body, where d > 1. Let N(M) ⊂ Sd−1 denote the set of unit vectors

which are external unit normal vectors of M at a smooth point of bdM. Then we call the set

F (M) = {p ∈ E
d : ⟨p, x⟩ ≤ 1 for every x ∈ N (M)}

the form body of M [217] (cf. Figure 1.1).

Like in case of (1.2), by Alexandrov’s theorem it follows that F(M) is a convex body for every convex

body M ⊂ Ed. Furthermore, if M is a convex polytope, then F(M) is the convex polytope, circumscribed

about Bd, whose set of external unit facet normal vectors coincides with that of M.

Theorem 11 Let K ⊂ Ed be a convex body, where d > 1. Then the quantity I(K + t F(K)) is an increasing

function of t ∈ [0, ∞).

The proof of the fact that among spherical or hyperbolic n-gons of a given area, the regular ones have
smallest perimeter can be found in [70]. Chakerian solved the same problem for arbitrary normed planes
in [75]. Nevertheless, almost nothing is known about extremal polytopes in these spaces in dimensions d >
2. We ask the following questions.

Question 12 Can Theorem 4 be modified for convex polytopes in Sd or Hd?

Open Problem 1 Prove or disprove that among simplices in Sd or Hd of a given volume, where d > 2, the
regular ones have smallest surface volume.

We note that like in the Euclidean case, Theorem 8 implies that among tetrahedra in S3 or in H3

circumscribed about a ball, the regular ones have smallest volume.

Open Problem 2 Prove or disprove that among simplices in Sd or Hd circumscribed about a ball, where
d > 3, the regular ones have smallest volume.

1.3    Volume of polytopes inscribed in a sphere

The dual of L’huilier’s problem can be put as follows.

Open Problem 3 Among convex polytopes in Ed , inscribed in Sd−1 and having n vertices, which polytope
has the largest volume?

This problem, with d = 3, was first mentioned by L. Fejes Tóth in [106] in 1964, who proved the
following.

Theorem 13 Let P be a convex polyhedron in E3 with n vertices, insribed in B3, and let ωn = n
n−2

π
6 .

Then

vol3 (P) ≤ 1
6 (n − 2) cotωn (3 − cot2ωn).

Here, equality holds if and only if P is a regular tetrahedron, a regular octahedron, or a regular
icosahedron.

A systematic investigation of this question was started with the paper [20] of Berman and Hanes in
1970, who found a Lindelöf-type necessary condition for optimal polyhedra, and determined those with n
≤ 8 vertices. The optimal configurations are listed below.
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(i)  

(ii)  

Theorem 14 Let P be a maximal volume polyhedron with n vertices and inscribed in S2.

If n ≤ 7, then P is a double pyramid, with a regular (n − 2)-gon centered at the origin as its base,
and its two apexes lying on the line through the origin and perpendicular to its base.

If n = 8, then P is congruent to the polyhedron with the vertices,

where 0 < φ < π
2  and cos φ = √ 15+√145

40

Note that the average valence of a vertex of a convex polyhedron in E3 with n vertices and triangular

faces is 6 − 12
n

.

Definition 3 Let P be a convex polyhedron in E3 with n vertices and triangular faces. We say that P is

medial if the valence of every vertex of P is at least ⌊6 − 12
n ⌋ and at most ⌈6 − 12

n ⌉.

The next conjecture is due to Goldberg [121].

Conjecture 15 Let P be a convex polyhedron with n vertices and inscribed in B3. If there is a medial

polyhedron satisfying these properties, then vol3(P) is maximal under these conditions for a medial

polyhedron.

It is an elementary exercise to check that all polyhedra in Theorem 14 are medial. Thus, Conjecture 15
is satisfied for n ≤ 8.

In 2016, G. Horváth and Lángi [145] extended the necessary condition for optimal polytopes in d-

dimensional Euclidean space in the following form. Here, for a d-dimensional polytope P, we denote the

set of vertices of P by V(P). We denote the family of d-dimensional polytopes, with n vertices and

inscribed in the unit sphere Sd−1, by Pd(n). We set vd(n) = max{vold(P) : P ∈ Pd(n)}, and note that by

compactness, vd(n) exists for any values of d and n.

Definition 4 Let P ∈ Pd(n) be a polytope with vertex set V(P) = {p1, p2,…, pn}. If for each i, there is an

open set Ui ⊂ Sd−1 such that pi ∈ Ui, and for any q ∈ Ui, we have

vold ((conv (V (P)\ {pi})) ∪ {q}) ≤ vold (P),

then we say that P satisfies Property Z.

Let P ∈ Pd(n) and let V(P) = {p1, p2,…, pn}. Let C (P) be a simplicial complex with the property that

its support is | C (P)| = bdP, and that the vertices of C (P) are exactly the points of V(P). We orient C (P) in

such a way that for each (d − 1)-simplex (pi1 , pi2 , … , pid) in C (P), the determinant |pi1 , … , pid | is

positive; and call the d-simplex conv covn {o, pi1 , … , pid} a facial simplex of P. We call the (d − 1)-

dimensional simplices of C (P) the facets of C (P).

p1 = (sin 3φ, 0, cos 3φ), p5 = (0, − sin 3φ, − cos 3φ),

p2 = (sin φ, 0, cos φ), p6 = (0, − sin φ, − cos φ),

p3 = (− sin φ, 0, cos φ), p7 = (0, sin φ, − cos φ),

p4 = (− sin 3φ, 0, cos 3φ), p8 = (0, sin 3φ, − cos 3φ),
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(i)  

(ii)  

FIGURE 1.2
Notations for Theorem 16.

Theorem 16 Consider a d-polytope P inscribed in Sd−1 and satisfying Property Z. For any p ∈ V(P), let

Fp denote the family of the facets of C (P) containing p. For any F ∈ Fp, set A(F, p) = vold_1 (conv

((V(F) ⋃ {o})\{p})), and let m(F, p) be the unit normal vector of the hyperplane, spanned by (V(F) ⋃
{o})\{p}, pointing in the direction of the half space containing p (cf. Figure 1.2). Then

we have

P is simplicial.

Here we note that it has been long conjectured, but never proved, that for every n ≥ 4, every minimal

volume convex polyhedron with n faces and circumscribed about B3 is simple.
By means of Theorem 16, we prove the following. Before stating the result, we remark that Theorem 16

yields possible candidates for an optimal polytope only within a fixed combinatorial class. Since the
combinatorial classes of d-polytopes with at least d + 4 vertices are unknown [239], it seems that to treat
this problem for polytopes with at least d + 4 vertices a new approach is needed.

Theorem 17 Let P ∈ Pd (d + 2) have maximal volume over Pd(d + 2). Then P = conv(P1 ⋃ P2), where

P1 and P2 are regular simplices of dimensions ⌊ d
2 ⌋ and ⌈ d

2 ⌉, respectively, inscribed in Sd−1, and

contained in orthogonal linear subspaces of Ed. Furthermore,

vd (d + 2) = 1
d! ⋅ (⌊d/2⌋+1)

⌊d/2⌋+1
2 ⋅(⌈d/2⌉+1)

⌈d/2⌉+1
2

⌊d/2⌋
⌊d/2⌋

2 ⋅⌈d/2⌉
⌈d/2⌉

2

Recall that a d-polytope with n vertices is cyclic, if it is combinatorially equivalent to the convex hull of

n points on the moment curve γ(t) = (t,t2,…,td),t ∈ ℝ.

Theorem 18 Let P ∈ Pd(d + 3) satisfy Property Z. If d is even, assume that P is not cyclic. Then P =

conv{ P1 ⋃ P2 ⋃ P3}, where P1, P2 and P3 are regular simplices inscribed in Sd−1 and contained in

p = m
‖m‖ , wherem = ∑

F∈Fp

A (F, p)m (F, p), and
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(i)  

(ii)  

three mutually orthogonal linear subspaces of Ed. Furthermore:

If d is odd and P has maximal volume over Pd(d + 3), then the dimensions of P1, P2 and P3 are

⌊d/3⌋ or ⌈d/3⌉. In particular, in this case we have

(vd (d + 3) =)vold (P) = 1
d! ⋅

3

∏
i=1

(ki + 1)
ki+1

2 k
ki
2

i ,

where k1 + k2 + k3 = d and for every i, we have ki ∈ { {⌊d/3⌋, ⌈d/3⌉}}.

The same holds for the dimensions of P1, P2 and P3, if d is even, and P has maximal volume over

the family of not cyclic elements of Pd(d + 3) satisfying Property Z.

In light of Theorem 18, it seems interesting to find the maximum volume cyclic polytopes in Pd(d + 3),

with d even. Using the method of the proof of Theorem 18, the following can be shown.

Remark 19 Let d = 2m be even and let P ∈ Pd(d + 3) be a cyclic polytope satisfying Property Z. Then,

for a suitable labeling p1, p2, …, pd+3 of the vertices of P, the value of ǁpi+1 − piǁ is independent of i.

Unfortunately, this method cannot be used to prove that for a suitable labeling p1, p2,…, pd+3 of the

vertices of P, the value of ǁpi+k − piǁ is independent of i for any value of k different from 1. Nevertheless,

in light of Remark 19, it seems reasonable to consider the possibility that if a cyclic polytope P with d + 3

vertices in an even dimensional space Ed and inscribed in Sd−1 has maximal volume within its

combinatorial class, then P satisfies the above property for all values of k; or in other words, P has a
dihedral symmetry of order d + 3.

A possible candidate for this property is the polytope Cd(d + 3) in Remark 20, obtained by choosing

suitable points on the trigonometric moment curve t ↦ (cost, sint, cos2t, sin2t,…, cos ( dt
2 ), sin ( dt

2 )),

where d is even.

Remark 20 Let d ≥ 2 be even, and n ≥ d + 3. Let

Cd (n) = conv {qi : i = 0, 1, … ,n − 1},

where

qi = √ 2
d

(cos iπ
n

, sin iπ
n

, cos 2iπ
n

, … , cos diπ
2n , sin diπ

2n )

Then Cd(n) is a cyclic d-polytope inscribed in Sd−1, and its group of symmetries Sym(Cd(n)) is

isomorphic to the dihedral group Dn.

It is a straightforward computation to check that C4(7) satisfies Property Z. Furthermore, letting P4 ∈ 

P4(7) be the convex hull of a regular triangle and two diameters of S3, in mutually orthogonal linear

subspaces, and P6 ∈ P6(9) be the convex hull of three regular triangles in S5 in mutually orthogonal

linear subspaces, it is easy to check that

and

vol4 (P4) = √3
4 = 0.43301 … ,

vol4 (C4 (7)) = 49
192 (cos π

7 + cos 2π
7 ) = 0.38905 … ,

vol6 (P6) = 9√3
640 = 0.02435 …
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(i)  

(ii)  

(iii)  

vol6 (C6 (9)) = 7
576 sin π

9 − 7
2880 sin 4π

9 + 7
1152 sin 2π

9 = 0.01697 … ,

implying that

vol4 (P4) > vol4 (C4 (7)) and vol6 (P6) > vold6 (C6 (9)).

These inequalities suggest that the optimal polytopes in Pd(d + 3) are not cyclic for any value of d.

A characterization of d-polytopes, with n vertices and symmetry group Dn can be found in [163]. For

stating it, we introduce some notation. Let d ≥ 2,n > d,m = ⌊d/2⌋, 0 < i1 < i2 < … < is < k
2 , and

for k = 1, 2,…, n, let

qk = 1
√m
(cos 2i1kπ

n
, sin 2i1kπ

n
, … , cos kimπ

n
, sin 2kimπ

n
) ∈ E

d

if d is even, and

qk = 1
√m+1

(cos 2i1kπ
n , sin 2i1kπ

n , … , sin 2kisπ
n , (−1)k) ∈ E

d

if d is odd. Furthermore, set Q(i1, i2, …, in) = conv{q1, q2,…, qn}. Note that as ǁqkǁ = 1 for every value of

k, the vertices of Q(i1, i2, …, im) are q1, q2, …,qn.

Theorem 21 Let d ≥ 2, and P ⊂ Ed be a d-dimensional convex polytope with vertices p1, p2, …, pn,

where n ≥ 5, and n > d. Then the following are equivalent.

For k, i = 1,2, …, n, the value of ǁpk+i − pkǁ is independent of the value of i.

There is some ϕ ∈ Sym(P) such that ϕ(pi) = pi+1 for i = 1, 2, …, n.

There are some 0 < i1 < i2 < … < i⌊d/2⌋ < n2  such that P is similar to Q(i1, i2,…,i⌊d/2 ⌋).

Unlike in the case of circumscribed simplices of minimal volume, it was proved by Böröczky [57] that
among simplices in the spherical space Sd inscribed in a spherical ball, the regular ones have maximal

volume. The same statement for simplices in the hyperbolic space ℍd was proved by Peyerimhoff [200].
We finish this section with a question of G. Fejes Tóth, which appeared in [32].

Open Problem 4 By Steiner symmetrization, it can be easily shown that the maximum volume of the

intersection of a fixed ball in Ed and a variable simplex of given volume V is attained when the simplex is
regular and concentric with the ball. Show that the above statement holds true in spherical and hyperbolic
space as well.

1.4    Polyhedra midscribed to a sphere

In the last two sections we examined, in particular, convex polyhedra in E3 whose every k-face, where k =
0 or k = 2, is tangent to the unit sphere S2. In this section we deal with the missing case k = 1, and
introduce one of the ‘gems’ in the treasury of geometric literature.

The famous Circle Packing Theorem [197] states that every simple, connected plane graph can be
realized as the intersection graph of a circle packing in the Euclidean plane, or equivalently, using a
stereographic projection, on the sphere. Here, by intersection graph we mean a graph whose vertices are
the centers of some mutually non-overlapping circles, and two vertices are connected if the corresponding
circles are tangent.

This theorem was first proved by Koebe [156], and was later rediscovered by Thurston [235], who noted
that this result also follows from the work of Andreev [11, 12]. The theorem has induced a significant
interest in circle packings in many different settings, and has been generalized in many directions. One of
the most known variants is due to Brightwell and Scheinerman [68]. By this result, any polyhedral graph
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(i.e., any simple, 3-connected planar graph [228, 230]), together with its dual graph, can be realized
simultaneously as intersection graphs of two circle packings with the property that each point of tangency
belongs to two pairs of tangent circles which are orthogonal to each other.

FIGURE 1.3
Representation of a polyhedral graph and its dual as intersection graphs of circle packings.

Figure 1.3 shows an example of this representation. Here, on the left, the edge graph of a cube C is
shown; filled circles are the vertices of the cube, edges connecting vertices are represented by continuous

curves. The vertices and the edges of the edge graph of the dual of C, an octahedron, are represented by
empty circles and dashed curves, respectively. The corresponding circle packings are shown on the right.

Here, circles drawn with continuous and dashed lines correspond to the vertices of C and its dual,
respectively. Note that even though here a dashed circle contains all other dashed circles in its interior,

using a suitable stereographic projection to S2, the corresponding spherical cap does not overlap the
images of the other dashed circles.

Such a pair of families of circles on the unit sphere S2 centered at the origin o generate a convex
polyhedron midscribed to the sphere; that is, having all edges tangent to it. In this polyhedron, members of
one family, called face circles, are the incircles of the faces of the polyhedron, and members of the other
family, called vertex circles, are circles passing through all edges starting at a given vertex. This yields the
following theorem [68].

Theorem 22 The combinatorial class of every convex polyhedron has a representative midscribed to the

unit sphere S2.

Such representatives of combinatorial classes are called Koebe polyhedra. By Mostow’s rigidity
theorem [187], these representations are unique up to Möbius transformations of the sphere. Theorem 22
was significantly strengthened by Schramm [218], who proved the same statement for the boundary of any

strictly convex, smooth body K playing the role of S2.
It is an interesting question to ask if Theorem 22 holds for representatives of polyhedral classes

inscribed in or circumscribed about S2, or if not, which classes can be represented in this way. These two

problems are equivalent, as the polar of any convex polyhedron inscribed in S2 is circumscribed about it
and vice versa. These questions were posed by Steiner [226]. The first part of this question was solved
only one hundred years later by Steinitz [229], who, using a variational principle and Lindelöf ’s result in
Theorem 4 gave the first example, an infinite family of convex polyhedra, whose combinatorial classes do
not contain representatives inscribed in S2. His result is a consequence of Theorem 23 from [229].

Theorem 23 Let P be a convex polyhedron in E3 such that its vertices are colored black and white

vertices such that it has more black vertices than white, and no two black vertices are adjacent. Then P
cannot be inscribed in a sphere.
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Observe that the condition about P in Theorem 23 is purely combinatorial, and thus it holds for every

polyhedron in the combinatorial class of P. We give an example of a convex polyhedron satisfying this
condition, described also in [114].

Example 1 Consider an octahedron P0 and color its vertices white. Attach a tetrahedron to each face of

P0, and color the new vertices black. The so-obtained polyhedron P has six white and eight black vertices,

and no two black vertices are consecutive.

Whereas the condition in Theorem 23 is necessary for inscribability, it is not sufficient; it can be shown,
for example, that the triakis tetrahedron, obtained by attaching a tetrahedron to each face of a tetrahedron,
is not inscribable. Sufficient conditions for inscribability were given, e.g., by Dillen-cour and Smith [88],
who proved in particular, that every 4-connected planar graph is the edge-graph of an inscribable convex
polyhedron. The second part of Steiner’s problem was completely solved by Rivin [206] in 1996, who

characterized convex polyhedra inscribed in S2.
Higher dimensional analogues of Theorem 22 were examined by Schulte [219]. He called a convex

polytope P in Ed (m, d)-scribable for some 0 ≤ m ≤ d − 1, if there is a convex d-polytope P′
combinatorially equivalent to P whose every m-face is tangent to some Euclidean (d − 1)-sphere. His

result states that if d ≥ 4, then for every value of m, there is a convex polytope P in Ed which is not (m, d)-
scribable. Thus, the property in Theorem 22 holds only for 3-dimensional polytopes whose edges are
tangent to a unit sphere. On the other hand, Padrol and Ziegler [198] proved the inscribability of certain
families of convex polytopes in Ed with d ≥ 4.

We note that using the projective ball model for ℍ3 and central projection from E3 to S3 for S3,
Theorem 22 can be stated in the same form for the combinatorial classes of convex polyhedra not only in
Euclidean, but also for hyperbolic or spherical spaces.

Remark 24 The question for midscribed polyhedra analoguous to those for circumscribed and inscribed
polyhedra would be the following: For any value e ≥ 6, find the polyhedra of maximal/minimal volume

with e edges and midscribed to S2. Nevertheless, as we will see, the method of the proof of Theorem 28
yields that in every combinatorial class there is a Koebe polyhedron with arbitrarily small, and also one
with arbitrarily large volume.

In light of Remark 24, after proposing some related problems, we investigate Koebe polyhedra in a
different direction. In their famous paper [18], among other things, Bárány and Füredi gave an upper

bound on the radii of Euclidean balls in Ed, centered at a point of a simplex S contained in Bd and

satisfying the property that the k-skeleton of S is disjoint from the interior of the ball. They remarked that

it is very likely that the best upper bound is attained if S is a regular simplex with o as its center, and the

ball is centered at o and touches each k-face of S.

Open Problem 5 Prove or disprove that if S is a simplex contained in Bd, and for some x ∈ S, x + ρBd is

a Euclidean ball whose interior is disjoint from the k-skeleton of S, then ρ ≤ √ d−k
d(k+1) .

Question 25 Does the statement in Problem 5 hold for spherical or hyperbolic simplices?

Question 26 Consider a ball S in S3 or in ℍ3. What is the infimum and the supremum of volumes of the

tetrahedra midscribed to S?

Mani [175] strengthened Theorem 22 in a different direction. He proved that up to Euclidean

isometries, every combinatorial class can be uniquely represented by a polyhedron midscribed to S2 such
that the barycenter of the tangency points is the origin (cf. also [239, p.118] and [131, p.296a]). This result
is an example of the problem of ‘centering’ via Möbius transformations, which was examined, from an
algorithmic point of view in [22]. Springborn [222] gave an elegant different proof of Mani’s statement,
based on the application of the following theorem.
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Theorem 27 For any mutually distinct points v1, v2,…,vn on the d-dimensional unit sphere Sd centered at

the origin o, where n ≥ 3 and d ≥ 2, there is a Möbius transformation T of Sd such that ∑n

i=1
T (vi) = o.

Furthermore, if T̃  is another such Möbius transformation, then T̃ = RT , where R is an isometry of Sd.

A slightly more general approach of this problem can be found in [14], where the authors prove that the

discrete measure in Theorem 27 can be replaced by any reasonable measure defined on S2. Their argument

seems to work also for measures defined on Sd. We note that in all the mentioned results some

configurations on Sd are centered.
Lángi [162] examined a variant of this problem, namely the problem of centering Koebe polyhedra. It is

worth mentioning that this problem cannot be regarded as centering a suitable measure on S2. Indeed,

intuitively, whereas the measure on a certain subset of Sd is invariant under Möbius transformations, the
same cannot be stated about Koebe polyhedra. This difference is represented in Remark 30.

To state the results in [162] we introduce some notations.

Let P be a convex polyhedron in E3. For k = 0,1,2,3, let skelk(P) denote the k-skeleton of P. Then the

center of mass of skelk(P), which we denote by cmk(P), is defined in the usual way as

cmk (P) =
∫

p∈skelk(P)
p dvk

∫
p∈skelk(P)

dvk

,

where vk denotes k-dimensional Lebesgue measure. By cc(P) and IC(P), we denote the center of the

(unique) smallest ball containing P and the set of the centers of the largest balls contained in P.
The next concept was defined for polygons in [1] and for simplicial polytopes in [231] (see also [3]).

Before introducing it, we point out that, unlike in the other parts of the book, by the circumcenter of a
non-degenerate simplex we mean the center of the unique sphere containing all vertices of the simplex,
which may be different from the center of the smallest ball containing the simplex.

Definition 5 Let P be an oriented simplicial polytope, and let o be a given reference point not contained

in any of the facet hyperplanes of P. Triangulate P by simplices whose bases are the facets of P and whose

apex is o. Let pi and mi denote, respectively, the circumcenter and the volume of the ith such simplex.

Then the circumcenter of mass of P is defined as

ccm (P) =
∑

i
mipi

∑
i
mi

.

The authors of [231] show that the circumcenter of mass of a simplicial polytope P is

independent of the choice of the reference point,

remains invariant under triangulations of P if no new vertex is chosen from the boundary of P,

satisfies Archimedes’ lemma: if we decompose P into two simplicial polytopes Q1 and Q2 in a

suitable way, then ccm(P) is the weighted average of ccm(Q1) and ccm(Q2), where the weights are

the volumes of Q1 and Q2,

if P is inscribed in a sphere, then its circumcenter of mass coincides with its circumcenter.

In addition, they use this point to define the Euler line of a simplicial polytope as the affine hull of the

center of mass cm3(P) of P and ccm(P). This definition is a generalization of the same concept defined for

simplices. They show that for polygons, any notion of ‘center’ satisfying some elementary properties (i.e.,
it depends analytically on the vertices of the polygon, commutes with dilatations and satisfies
Archimedes’s lemma) is necessarily a point of the Euler line.

In the following theorem, with a little abuse of notation, if P is a Koebe polyhedron and T is a Möbius

transformation, by T(P) we mean the polyhedron defined by the images of the face circles and the vertex
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circles of P under T.

Theorem 28 Let S = {cc(·),cm0(·),cm1(·),cm2(·)}, and let P be a Koebe polyhedron. Then, for any g(·) ∈ S,

there is some Möbius transformation Tg such that g(Tg(P)) = o. Furthermore, there is a Möbius

transformation Tic with o ∈ IC(Tic(P)), and if P is simplicial, then for every λ ∈ [0, 1), there is a Möbius

transformation Tλ satisfying λcm3(Tλ(P)) + (1 − λ) ccm(Tλ(P)) = o.

In the next theorem, by a spherical cap on Sd we mean a d-dimensional closed spherical ball of

spherical radius 0 < ρ < 
π
2 . Furthermore, if T : Sd → Sd is a Möbius transformation and C is a spherical

cap, then by ρT(C) and cT(C) we denote the center and the spherical radius of the spherical cap T(C),

respectively.

Theorem 29 Let C1, C2, …, Cn ⊂ Sd be spherical caps such that the union of their interiors is

disconnected. For i = 1, 2, …, n, let wi : (0, 
π
2 ) → (0, ∞) be C∞ -class functions satisfying limtt→ 

π
2 −0wi(t)

= ∞ for all values of i. For any point q ∈ Sd, let I(q) denote the set of the indices of the spherical caps

whose boundary contains q, and assume that for any q ∈ Sd, we have

lim
t→ π

2 −0
∑
i∈I(q)

wi (t) cos t < lim
t→0+0

∑
i∉I(q)

wi (t). (1.3)

Then there is a Möbius transformation T : Sd → Sd such that

n

∑
i=1

wi (ρT (Ci))cT (Ci) = 𝛐.
(1.4)

Remark 30 Let g(·) ∈ {cc(·), cm0(·), cm1(·), cm2(·), cm3(·)} and let P be a Koebe polyhedron. Then there

is a Möbius transformation T : S2 → S2 such that g(T(P)) ∉ B3. Furthermore, if P is simplicial, the same

statement holds for g(·) = ccm(·).

The proof of Remark 30 can be found in [162]. We note that a similar argument works for
configurations satisfying the conditions in Theorem 29.

Remark 31 Using the idea of the proof of Theorem 28 for points of the Euler line, it is possible to prove

the following, stronger statement: Let P be a Koebe polyhedron, and let g(·) = λ0 cm0(·) + λ1 cm1(·) + λ2

cm2(·) + λ3 cm3(·), where ∑3

i=0
λi = 1, λi ≥ 0 for all values of i and λi > 0 for some i ≠ 3. Then there is a

Möbius transformation T such that g(T(P)) = o. Furthermore, if P is simplicial, the same statement holds
for the convex combination g(·) = λ0cm0(·) + λ1cm1(·) + λ2cm2(·) + λ3cm3(·)+λ4ccm(·) under the same

conditions.

Open Problem 6 Prove or disprove that every combinatorial class of convex polyhedra contains a Koebe
polyhedron whose center of mass is the origin.

Open Problem 7 Is it possible to prove variants of Theorem 29 if the weight functions wi in (1.4) depend

not only on ρT(Ci), but also on the radii of the other spherical caps as well?

Open Problem 8 As we already remarked in this section, Schramm [218] proved that if K is any smooth,

strictly convex body in E3, then every combinatorial class of convex polyhedra contains a representative

midscribed about K. If K is symmetric to the origin, does this statement remain true with the additional
assumption that the barycenter of the tangency points of this representative is the origin? Can the
barycenter of the tangency points be replaced by other centers of the polyhedron?
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1.5    Research Exercises

Exercise 1.1 (Zenodorus) Prove that if P is a convex n-gon with unit area and minimal perimeter for

some n ≥ 3, then P is equilateral (all its sides are of equal length) and equiangular (all its angles are
equal).

Exercise 1.2 (Dowker [91]) For any n ≥ 3, let An denote the minimum of the areas of convex n-gons

circumscribed about the unit circle S1.

Prove that the sequence {An} is convex; i.e., for every n ≥ 4, we have An − 1 + An+1 ≥ 2An.

Prove that the value An is attained, e.g., for regular n-gons circumscribed about S1.

Use this statement to prove that among convex polygons with at most n vertices, regular n-gons
have maximal isoperimetric ratio.

Exercise 1.3 (Dowker [91] and L. Fejes Tóth [106]) Formulate and prove variants of the statements in
the previous exercise in which area is replaced by perimeter, and/or circumscribed polygons are replaced
by inscribed polygons.

Exercise 1.4 Derive a formula between the volume and the surface volume of a convex polytope in Ed

circumscribed about Sd−1. Use this formula to show that among convex polytopes with a given number of

facets and circumscribed about Sd−1, the ones with minimal volume coincide with the ones with minimal
surface volume.

Exercise 1.5 Let K ⊂ Ed be a convex body. Let r(K) and R(K) denote the radius of a largest ball

contained in K, and the radius of the smallest ball containing K, respectively. Prove that

r (K) ≤ dvold(K)
svold−1(K) ≤ R (K).

Exercise 1.6 Prove that the average valence of a simplicial convex polyhedron in E3 with n vertices is

equal to 6 − 12
n

.

Exercise 1.7 (Gale [116]) Let γ(ti), where i = 1, 2,…, n, t0 = tn, and γ(t) = (t, t2, …, td) be the vertices of a

d-dimensional cyclic polytope P. Prove Gale’s evenness condition, i.e., the vertices γ(ti), ti ∈ I, card(I) = d

are the vertices of a facet of P if and only if for any two indices not in I, there are even number of vertices
in I that separate them.

Exercise 1.8 Using the properties of Steiner symmetrization, prove that the maximum volume of the

intersection of a fixed ball in Ed and a variable simplex of given volume V is attained when the simplex is
regular and concentric with the ball (cf Problem 4).

Exercise 1.9 Prove that any six-neighbor circle packing, that is, a packing of circles each being tangent to
at least six other circles, in the plane contains infinitely many circles.

Exercise 1.10 (L. Fejes Tóth [111]) Let C, C1, C2,…, Cn be mutually non-overlapping circular disks

with radii r, r1, r2, …, rn. Assume that for i = 1, 2, …, n, Ci touches exactly C, Ci−1 and Ci+1. Prove that

in this case

1
n

n

∑
i=1

rdi ≥ ( sin π
n
r

1−sin π
n
)
d

,

with equality if and only if r1 = r2 = … = rn.
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Exercise 1.11 (Österreicher-Linhart [196]) Prove that there is no finite four-neighbor circle packing in
the plane in which all circles are congruent.
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2

Volume of the Convex Hull of a Pair of Convex Bodies

Summary. The aim of this chapter is to present results about the volume of the convex hull of a pair of
convex bodies. In Section 2.1 we introduce results of Rogers and Shephard, who in the 1950s in three
subsequent papers defined various convex bodies associated to a convex body, and found the extremal
values of their volumes on the family of convex bodies based on the convexity of some volume functional
and Steiner symmetrization. After this we present a proof of a conjecture of Rogers and Shephard about
the equality cases in their theorems, find a more general setting of their problems, and collect results about
it. Section 2.2 describes a variant of the previous problems for normed spaces. In particular, using the
notion of relative norm of a convex body, we collect results about the extremal values of four types of
volume of the unit ball of a normed space. The problem of finding these values of one of these types leads
to the famous Mahler Conjecture. We extend these notions to the translation bodies of convex bodies,
defined in Section 2.1, and determine their extremal values in normed planes.

2.1    Volume of the convex hull of a pair of convex bodies in Euclidean space

The volume of the convex hull of two convex bodies in the Euclidean d-space Ed has been the focus of
research since the 1950s. One of the first results in this area is due to Fáry and Rédei [99], who proved that
if one of the bodies is translated on a line at a constant velocity, then the volume of their convex hull is a
convex function of time. This result was later reproved by Ahn et al. [2], and is used in the literature in
various settings (see, e.g., the result of Alexander, Fradelizi and Zvavitch [4] on the maximal volume
product of d-dimensional polytopes with d + 2 vertices). Rogers and Shephard [209] proved a similar

result, stating that for any convex body K in Ed,

vold (K − K) ≤ ( )vold (K),
(2.1)

with equality if and only if K is a d-dimensional simplex. Their proof was based on the observation that

for any convex body K ⊂ Ed, the property that for any p ∈ K − K, K ⋂ (p + K) is a homothetic copy of K

is equivalent to the fact that K is a d-dimensional simplex. Here, it is worth noting that from the Brunn-

Minkowski Inequality, stating that for any two convex bodies K, L in E
d,

(vold (K+L))
1
d ≥ (vold (K))

1
d + (vold (L))

1
d , with equality if and only if K and L are homothetic, it

immediately follows that vold(K) ≥ 2dvold(K), with equality if and only if K is centrally symmetric.

In two subsequent papers [210, 211], Rogers and Shephard generalized the result of Fáry and Rédei to
prove volume inequalities on the convex hull of various convex bodies associated to a given convex body

K ⊂ Ed. To state their two main tools to find lower bounds, we first need to introduce some concepts.

Definition 6 Let P = {pi : i ∈ I, pi ∈ Ed} be a set of points with some arbitrary set of indices I, and let L

= {λi : i ∈ I, λi ∈ ℝ}. Assume that both P and L are bounded, and let e ∈ Ed. For every t ∈ ℝ, the convex

set K(t) = conv{pi + tλi e: i ∈ I} is called a linear parameter system.

Theorem 32 The volume of a linear parameter system K(t) is a convex function of t.

2d

d
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Definition 7 Let K be a convex body and H be a hyperplane in Ed. For any line L perpendicular to H, let

dL denote the length of the intersection K ⋂ L. Let [pL, qL] denote the segment in L whose length is dL

and which intersects H at 1
2 (pL + qL). Then the set

SH (K) = ∪ {[pL, qL] : L is perpendicular toH and intersectsK}

is called the Steiner symmetrization of K with respect to H (cf. Figure 2.1).
This symmetrization procedure, introduced by Steiner in 1838, has the property that for any convex

body K and hyperplane H in Ed, SH (K) is a convex body in Ed of volume equal to vold(K) and symmetric

about the hyperplane H. We note that one way to prove the isoperimetric inequality is to use the facts that
surface volume does not increase under Steiner symmetrizations, and that applying subsequent, suitably

chosen Steiner symmetrizations to any given convex body K, the sequence of bodies obtained in this way
approaches a Euclidean ball of the same volume (cf. e.g. Theorem 10.3.2 [217], or Lemma 164 in Section

7.4). The latter fact and Theorem 32 can be used to prove Theorem 33, where, for any convex body K ⊂ 

E
d, BK denotes a Euclidean ball of volume vold(K).

Definition 8 Let K and L be convex bodies in Ed . By V*(K, L) we denote the supremum of the quantity

vold(conv(K ⋃ (p + L))) under the condition that K ⋂ (p + L) is not empty.

FIGURE 2.1
Steiner symmetrization of a triangle K with respect to the line H.

Theorem 33 Let K and L be convex bodies and let H be a hyperplane in Ed. Then

V*(K, L) ≥ V*(SH(K), SH(L)), and

V*(K, L) ≥ V*(BK, BL).

In [210, 211], Rogers and Shephard used Theorem 33 to examine the volumes of various convex bodies

associated to a given convex body K ⊂ Ed, which we define in Definition 9, and present the corresponding

results in Theorems 34-40.

Definition 9 Let K be a convex body in Ed, and let p ∈ Ed be a point.

The convex body conv(K ⋃ (2p − K)), denoted by Rp(K), is called the reflection body of K. with

respect to p. If a reflection body Rp(K) with respect to p minimizes or maximizes vold(Rp(K)) under

the condition that p ∈ K, then we denote it by R(K) and R*(K), respectively.

The convex body conv(K ⋃ (p + K)), denoted by TP(K), is called the translation body of K with

vector p. If a translation body Tp(K) with vector p maximizes vold(Tp(K)) under the condition that
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K⋂(p + K) ≠ , then we denote it by T* (K).

Imagine Ed as the hyperplane {xd+1 = 0} in Ed+1, and denote by ed+1 the last vector of the standard

orthonormal basis of Ed+1. The (d + 1)-dimensional convex body conv(K ⋃ (ed+1 − K)) is called the

associated (d + 1)-dimensional convex body of K. We denote it by C(K).

We note that some of the convex bodies in Definition 9, namely R(K), R*(K) and T*(K), may not be

well-defined. Nevertheless, we examine only their volumes, which are determined by K.

Theorem 34 For any convex body K⊂ Edand p ∈ K,

1 ≤
vold(Rp(K))

vold(K) ≤ 2d

with equality on the left if and only if K is symmetric about p, and on the right if and only if K is a d-

dimensional simplex with p as one of its vertices.

By this result, the inequalities 1 ≤ vold(R(K))
vold(K) ≤ 2d clearly hold for any convex body K. While here the

left-hand side inequality is sharp if K is centrally symmetric, the exact quantity on the right-hand side is

not known; according to a conjecture of Fáry and Rédei [99], the maximum of R(K) is attained if K is a d-
simplex. An elementary computation shows that in this special case

vold(R(K))
vold(K) = ( )~ 2d

π√d
.

Conjecture 35 Let K be a convex body in Ed. Then there is a point x ∈ K such that

vold(conv(K∪(2x−K)))
vold(K) ≤ ( ).

Recall that κd denotes the volume of the d-dimensional Euclidean unit ball.

Theorem 36 For any convex body K ⊂ Ed,

1 + 2κd−1

κd
≤

vold(R*(K))
vold(K) ≤ 2d (2.2)

with equality on the left if K is an ellipsoid, and on the right if and only if K is a simplex. Furthermore, if

K is centrally symmetric, then

1 + 2κd−1

κd
≤

vold(R*(K))
vold(K) ≤ d + 1, (2.3)

with equality on the left if K is an ellipsoid, and on the right if K is a centrally symmetric double pyramid
on a convex base.

Theorem 37 For any convex body K ⊂ Ed,

1 + 2κd−1

κd
≤

vold(T*(K))
vold(K) ≤ d + 1, (2.4)

with equality on the left if K is an ellipsoid, and on the right if and only if K is a simplex.

0

d

⌊ d
2 ⌋

d

⌊ d
2 ⌋
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We note that by [211], equality occurs for some convex body K ⊂ Ed on the right in 2.3 or in 2.4 if and

only if K is a centrally symmetric pseudo-double pyramid, or a pseudo-double pyramid, respectively, as
defined in [211].

The next conjecture was made by Rogers and Shephard in [211].

Conjecture 38 Equality holds for some convex body K ⊂ Ed on the left in any of 2.2, 2.3 or 2.4 only if K

is an ellipsoid.

Conjecture 38 was proved almost 50 years later by Martini and Mustafaev [177], using measures
associated to normed spaces. In Subsection 7.3.1, we give a simpler proof of this conjecture, published in
[144] by G. Horváth and Lángi. The left-hand side inequality in Theorem 37 can be reformulated in a
different way.

Theorem 39 Let K ⊂ Ed be a convex body. Then there is a cylinder F circumscribed about K such that
vold(F)
vold(K) ≥ 2κd−1

κd
.

Theorem 40 For any convex body K ⊂ Ed, we have

1 ≤
vold+1(C(K))

vold(K) ≤ 2d

d+1 ,

with equality on the left if and only if K is centrally symmetric, and on the right if and only if K is a d-
dimensional simplex.

Apart from the equality cases, we present the proofs of Theorems 34, 36, 37 and 40 in Chapter 7.
In [144], the authors examined a more general variant of this problem. To present it, we extend

Definition 9.

Definition 10 For two convex bodies K and L in Ed, let

c (K, L) = max{vold (conv (K′ ∪ L′)) : K′ ≅K, L′ ≅L andK′ ∩ L′ ≠ }

where ≅ denotes congruence. Furthermore, if S  is a set of isometries of Ed, we set

c (K|S ) =
max{vold(conv(K∪σ(K))):K∩σ(K)≠ ,σ∈S}

vold(K) .

Definition 11 For any i = 0,1…, d − 1 and convex body K ⊂ Ed, we denote by ci(K) the value of c(K| S )

if S  is the set of all reflections about the i-dimensional affine subspaces of Ed. Similarly, if S  is the set of

translations or the set of all isometries, we denote c(K| S ) by ctr(K) or by cco(K), respectively.

The first result, which we prove in Section 7.3, proves the conjecture of Rogers and Shephard for both
translation and reflection bodies.

Theorem 41 Let K ⊂ Ed be a convex body, where d ≥ 2. Then

ctr (K) ≥ 1 + 2κd−1

κd
,

c0 (K) ≥ 1 + 2κd−1

κd
,

cd−1 (K) ≥ 1 + 2κd−1

κd
.

Furthermore, if we have equality in any of the inequalities in (i)-(ii), then K is an ellipsoid, and if we have

equality in (iii), then K is a Euclidean ball.

0

0
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This result readily implies the following.

Corollary 42 For any convex body K ⊂ Ed, cco (K) ≥ 1 + 2κd−1

κd
, with equality if and only if K is a

Euclidean ball.

Corollary 43 For any convex body K ⊂ Ed, there is a direction m ∈ Sd−1 such that the right cylinder

Fk(m), circumscribed about K and with generators parallel to m has volume

vold(FK(m))
vold(K) ≥ 2κd−1

κd
. (2.5)

Furthermore, if K is not a Euclidean ball, then the inequality sign in (2.5) is a strict inequality for some

direction m.

Corollary 44 For any convex body K ⊂ Ed, there is a direction m ∈ Sd−1 such that any cylinder Fk(m),

circumscribed about K and with generators parallel to m has volume

vold(FK(m))
vold(K) ≥ 2κd−1

κd
. (2.6)

Furthermore, if K is not an ellipsoid, then the inequality sign in (2.6) is a strict inequality for some

direction m.

Conjecture 45 Let d ≥ 3 and 1 < i < d − 1. Prove that for any convex body K ⊂ Ed, ci (K) ≥ 1 + 2κd−1

κd
.

Is it true that equality holds only for Euclidean balls?

Since the quantity 
vold(Tp(K))

vold(K)  does not change if we apply an affine transformation to both K and p, it

follows that for any ellipsoid E, the quantity vold(Tp(E)) is a constant under the condition that E and p + E

touch each other. It is an interesting question which other convex bodies satisfy this property.

Definition 12 If, for a convex body K ⊂ Ed, we have that vold(conv((p + K) ⋃ (q+ K))) has the same

value for any touching pair of translates, we say that K satisfies the translative constant volume property.

To state the corresponding result from [144], we note that an o-symmetric planar convex curve is a

Radon curve, if, for the convex hull K of a suitable affine image of the curve, it holds that its polar K° is a

rotated copy of K by 
π
2 | (cf. [179]). Furthermore, a norm is a Radon norm if the boundary of its unit disk

is a Radon curve.

Theorem 46 For any plane convex body K⊂ E2 the following are equivalent.

K satisfies the translative constant volume property.

The boundary of 1
2  (K − K) is a Radon curve.

K is a body of constant width in a Radon norm.

It is known (cf. [7] or [179]) that for d ≥ 3, if every planar section of a d-dimensional normed space is
Radon, then the space is Euclidean; that is, its unit ball is an ellipsoid. This leads to Conjecture 47.

Conjecture 47 Let d ≥ 3. If some o-symmetric convex body K⊂ Ed satisfies the translative constant

volume property, then K is an ellipsoid.

We finish this section with a related problem.
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Open Problem 9 For any d ≥ 3 and 1 ≤ i ≤ d − 1, find the least upper bound of ci(K) on the family of

convex bodies in Ed. Furthermore, find the least upper bound on cco(K) on the same family.

2.2    Volume of the convex hull of a pair of convex bodies in normed spaces

Let us recall the well-known fact that any finite dimensional real normed space can be equipped with a
Haar measure, and that it is unique up to multiplication of the standard Lebesgue measure by a scalar
[132]. As a consequence, any ‘meaningful’ notion of volume is a scalar multiple of standard Euclidean
volume. Nevertheless, depending on the choice of this scalar, one may define more than one version of
normed volume. There are four variants that are regularly used in the literature [9, 10].

The Busemann and Holmes-Thompson volume of a set S in a d-dimensional normed space with unit ball

M, is defined as

volBusM (S) = κd

vold(M) vold (S) and volHT
M (S) = vold(M∘)

κd
vold (S), (2.7)

respectively. Note that the Busemann volume of the unit ball is equal to that of a Euclidean unit ball. For
Gromov ’s mass, the scalar is chosen in such a way that the volume of a maximal volume cross-polytope,

inscribed in the unit ball M is equal to 2d

d! , and for Gromov’s mass* (or Benson’s definition of volume),

the volume of a smallest volume parallelotope, circumscribed about M, is equal to 2d (cf. [9]). We denote

the two latter quantities by volmM(S) and volm∗
M (S), respectively.

In light of the previous paragraphs, it is clear that for any fixed normed space and volume, the Euclidean
result in Theorems 37 and 41 can be immediately applied.

Theorem 48 Let M  be a normed space with volume volM. Then, for any convex body K in M , we have

1 + 2κd−1

κd
≤

max{volM(conv(K∪(p+K))):(p+K)∩K≠ }
volM(K)

(2.8)

We observe that there is equality on the left if and only if K is an ellipsoid (cf. [144]), and on the right if

and only if K is a pseudo-double pyramid (cf. [211]).
In the remaining part, we use a different approach. Before we present it, we collect estimates about the

area and the perimeter of the unit disk of a normed plane.
The first result of this kind is due to Golab [120] in 1932. We note that for any rectifiable curve γ in a

normed plane with unit ball M, the arclength of γ with respect to the norm can be defined in the usual way,
i.e., as the supremum of the normed lengths of all polygonal curves with vertices on γ. We denote this
quantity by MM (γ).

Theorem 49 Let M be any o-symmetric plane convex body. Then 6 ≤ MM(bdM) ≤ 8. There is equality on

the left if and only if M. is an affinely regular hexagon, and on the right if and only if M is a
parallelogram.

This result can be generalized for arbitrary convex bodies using the notion of relative norm [214] and a

result of Fáry and Makai [101]. For any convex body K in Ed, we say that the relative norm of K is the

norm with the central symmetrization 1
2 (K − K) of K as its unit ball (cf. also [164] or [160]). Observe

that, up to multiplication by a scalar, the relative norm of K is the unique norm in which K is a body of

constant width. In the following, if K is not o-symmetric, for any rectifiable curve γ, by MK(γ) we denote

the arclength of γ measured in the relative norm of K.

Theorem 50 Let M be an o-symmetric plane convex body. Then MM(bdK) = MM (bd( 1
2 (K − K))) for

any plane convex body K.

0
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(i)  

(ii)  

Corollary 51 Let K be a plane convex body, and let M = 1
2 (K − K). Then 6 ≤ MM(bdK) ≤ 8.

The next result is due to Schäffer [214].

Theorem 52 For any o-symmetric plane convex body M, we have MM (bdM) = MM° (bdM°).

Note that by definition, if M is the unit ball of a d-dimensional normed space, volBusM (M) = κd. The

following theorem was proven by Blaschke [54] in the plane, and was generalized for higher dimensions
by Santaló [213]. The case of equality was proven, e.g., by Saint-Raymond [212]. Apart from the case of
equality, we prove Theorem 53 in Section 53.

Theorem 53 (Blaschke-Santaló Inequality) If M is the unit ball of a d-dimensional normed space, then

volHT
M (M) ≤ κd, with equality if and only if M is an ellipsoid.

The best lower bound for the planar case was determined by Mahler [174]. Its generalization for
arbitrary dimensions is one of the most important conjectures of convex geometry. In Section 7.5 we

present a proof of the inequality in Theorem 54, but we examine equality only on the family of o-
symmetric convex polygons. This proof can be found in another paper of Mahler [173] (see also [142]),
preceding [174].

Theorem 54 If M is the unit disk of a normed plane, then volHT
M (M) ≥ 8

π , with equality if and only if M

is a parallelogram.

Conjecture 55 (Mahler Conjecture) Prove that among d-dimensional, asymmetric convex bodies, the

minimum of volHT
M (M) (M) is attained, e.g., if M is a d-cube.

The next result can be found in [9], and the estimates for the planar case in [10].

Theorem 56 Let M be a d-dimensional, o-symmetric convex body. Then

2d

d! ≤ volmM (M) ≤ volm*
M (M) ≤ 2d,

where there is equality on the left if M is a cross-polytope, and on the right if M is a parallelotope.

We note that the best upper bound on volmM (M) and the best lower bound on volm∗
M (M) are not known

for d > 2.

Theorem 57 Let M be an o-symmetric plane convex body. Then

2 ≤ volmM (M) ≤ π,

with equality on the left if and only if M is a parallelogram, and on the right if and only if M is an ellipse.
Furthermore,

3 ≤ volm*
M (M) ≤ 4,

with equality on the left if and only if M is an affinely regular hexagon, and on the right if and only if M is
a parallelogram.

If we restrict our examination to Radon norms, we obtain other interesting questions [10].

Theorem 58 Let M be the unit disk of a Radon norm. Then

6≤ MM(bdM) ≤ 2π,

9
π ≤ volHT

M (M) ≤ π,
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(iii)  

(iv)  

(i)  

3 ≤ volmM (M) ≤ π,

3 ≤ volm∗
M (M) ≤ π.

Here, in each case, we have equality on the left if and only if M is an affinely regular hexagon, and on the

right if and only if M is an ellipse.

It seems to be an interesting problem to examine the extremal values of these quantities for the volume

of any convex body K, measured in the relative norm of K. Nevertheless, we do not know of any such
result in the literature.

To continue our investigation on the volume of the convex hull of two convex bodies, we introduce the
following quantities.

Definition 13 Let K be a d-dimensional convex body and M  be the space with its relative norm. For τ ∈
{Bus, HT,m,m*}, let

cτtr (K) = max{volτM (conv (K ∪ (p + K))) : (p + K) ∩ K ≠ , p ∈ M}. (2.9)

Observe that the quantities in Definition 13 do not change under affine transformations. These quantities
were examined in [161]. To present the related results, first we need to define the following plane convex
body.

Consider the square S0 with vertices (± 1
√2

, ± 1
√2

) in a Cartesian coordinate system. Replace the two

horizontal edges of S0 by the corresponding arcs of the ellipse with equation

x2

a2 + y2

b2 = 1,

where a = 1.61803…, b = a

√2a2−1
. An elementary computation shows that the vertices of S0 are points of

this ellipse. Replace the vertical edges of S0 by rotated copies of these elliptic arcs by 
π
2 . We denote the

plane convex body, obtained in this way and bounded by four congruent elliptic arcs, by M0 (cf. Figure

2.2). We remark that the value of a is obtained as a root of a transcendent equation, and has the property

that the value of area(M0) (area(M0) + 4) is maximal for all possible values of a > 1.

Theorem 59 Let K be a plane convex body. Then

We have 2π ≤ cBustr (K) ≤ 3π, with equality on the left if and only if K is a triangle, and on the

right if and only if K is a parallelogram.

FIGURE 2.2
The plane convex body M0.

0
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(ii)  

(iii)  

(iv)  

(i)  

(ii)  

(iii)  

(iv)  

We have 18
π ≤ cHT

tr (K) ≤ 7.81111 …, with equality on the left if and only if K is a triangle, and

on the right if K is an affine image of M0.

We have 6 ≤ cBusm (K) ≤ π+4, with equality on the left if and only if K is a (possibly degenerate)

convex quadrilateral, and on the right if and only if K is an ellipse.

We have 6 ≤ cBusm (K) ≤ 12, with equality on the left if and only if K is a triangle, and on the right

if and only if K is a parallelogram.

It is a natural question to ask for the extremal values of these four quantities over the family of centrally
symmetric plane convex bodies. This question is answered in the next theorem.

Theorem 60 Let M be an o-symmetric plane convex body. Then

We have π+4 ≤ cBustr (M) ≤ 3π, with equality on the left if and only if M is an ellipse, and on the

right if and only if M is a parallelogram.

We have 21
π ≤ cHT

tr (M) ≤ 7.81111 …, with equality on the left if and only if M is an affinely

regular hexagon, and on the right if M is an affine image of M0.

We have 6 ≤ cmtr (M) ≤ π+4, with equality on the left if and only if M is a parallelogram, and on

the right if and only if M is an ellipse.

We have 7 ≤ cmtr (M) ≤ 12, with equality on the left if and only if M is an affinely regular hexagon,

and on the right if and only if M is a parallelogram.

Observe that in Theorems 59 and 60, the plane convex bodies for which cHT
tr (⋅) is maximal are not

determined. This naturally leads to the following problem.

Open Problem 10 Prove or disprove that if cHT
tr (K) is maximal for some plane convex body K, then K is

an affine image of M0.

Remark 61 For any d-dimensional convex body K and direction m ∈ Sd−1, let dm(K) denote the length of

a maximal chord of K in the direction m, and let K|m⊥ be the orthogonal projection of K onto the

hyperplane, through o, that is perpendicular to m. Then the maximal volume of the convex hull of two

intersecting translates of K (that is, the numerator in the definition of ctr(K)), is

vold (K) + max {dm (K)vold−1 (K m⊥) : m ∈ S
d−1} (2.10)

Note that for any m ∈ Sd−1, the central symmetrization of K|m⊥ is ( 1
2 (K − K)) |m⊥. Thus, by the Brunn-

Minkowski Inequality, the expression in (2.10) does not decrease under central symmetrization, with

equality if and only if K is centrally symmetric. This yields that if cτtr (K) is maximal for some convex

body K for any τ ∈ {Bus, HT,m,m*}, then K is centrally symmetric.

Remark 62 By Remark 61, to find the maximal value of cBustr (K), it suffices to find the maximum of

ctr(K) over the family of d-dimensional o-symmetric convex bodies. Thus, from Theorem 37 (see Theorem
3 of [124]) it follows that

cBustr (K) ≤ d + 1,

with equality if and only if K is a centrally symmetric pseudo-double ‘pyramid in the sense of [211].

Similarly, by [211] and [144], over the family of d-dimensional o-symmetric convex bodies, we have∣
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cBustr (K) ≥ 1 + 2κd−1

κd
,

with equality if and only if K is an ellipsoid.

Open Problem 11 For d ≥ 3 and τ ∈ {HT,m,m*}, find the maximal values of cτtr (K) over the family of d-

dimensional convex bodies.

Open Problem 12 For d ≥ 3 and τ ∈ {Bus, HT,m,m*}, find the minimal values of cτtr (K) over the family

of d-dimensional convex bodies.

When finding the minimal value of cBustr (K) over the family of plane convex bodies, one had to

examine the smallest area convex disks of constant width two in a fixed normed plane. Nevertheless, for d
= 3, even for the Euclidean norm, this question has been open for a long while (cf. [150]).

Other problems arise if, instead of two translates of a convex body, we consider other families related to

the body as described in Section 2.1. Since for any convex body K, K − K is twice the unit ball of the

relative norm of K, the variant of our problem applied to difference bodies has already been examined in
Theorems 53-57. These results can be regarded as the normed variants of the inequality
(eq:differencebody) of Rogers and Shephard.

Another possibility is to examine the reflection bodies of K, defined in Definition 9.

2.3    Research Exercises

Exercise 2.1 (Steiner [223]) Prove that the Steiner symmetrization of any convex body is a convex body.

Exercise 2.2 Prove that if K is a convex body in Ed, and H is a hyperplane, then diam(SH(K)) ≤ diam(K),

where diam(S) stands for the diameter of the set S.

Exercise 2.3 Let K be a convex body in Ed, and let L be a linear subspace of dimension k, with

orthogonal complement L⊥. Define SL(K) in the following way: For any x ∈ L1, let Bd − k(x) be the closed

(d − k)-dimensional ball in x + L⊥, centered at x such that vold − k(Bd − k(x)) = vold − k(K⋂ (x +L⊥)), and

let SL(K) = ⋃x∈LBd − k(x). Prove that SL(K) is a convex body satisfying vold(SL(K)) = vold(K), R(SL(K))

≤ R(K) and diam(SL(K)) ≤ diam(K), where R(S) is the radius of the smallest ball containing S.

Exercise 2.4 Prove that for any o-symmetric plane convex body K, the midpoints of the sides of any

minimum area parallelogram containing K belong to K.

Exercise 2.5 Prove that for any o-symmetric plane convex body K, and any boundary point p ∈ bdK,

there is an affinely regular hexagon H inscribed in K such that p is a vertex of H.

Exercise 2.6 Prove that the previous property holds for not necessarily o-symmetric plane convex bodies

as well, for a suitably chosen boundary point p ∈ bdK.

Exercise 2.7 (Golab [120]) Using the results in Exercises 2.4 and 2.5, prove Theorem 49.

Exercise 2.8 Let P be a convex polygon with vertices P1, P2,…,Pn = P1 in counterclockwise order, where

the indices are understood mod n. For simplicity, we regard P as a polygon with n2  pairs of parallel sides,

where a side may have zero length, i.e., some of the vertices may not be distinct (cf. Figure 2.3). Let

qi = 1
2 (pi − pi+n/2). Prove that the vertices of the central symmetrization 1

2 (P − P) of P are q1, q2,

…,qn in counterclockwise order.



44

FIGURE 2.3
The polygon P in Exercise 2.8.

Exercise 2.9 (Fáry-Makai [101]) Using the results of the previous exercise, prove Theorem 50.

Exercise 2.10 (Estermann [97]) Prove the following, slightly stronger form of Conjecture 35 in the

plane: Let P ⊂ E2 be a convex polygon of unit area, whose center of mass is o. Let T be a triangle of unit

area whose center of mass is o. Then

area (conv (P ∪ (−P))) ≤ area (conv (T ∪ (−T))).

(Hint: use induction on the number of vertices, and the properties of linear parameter systems.)

Exercise 2.11 (Martini-Swanepoel [178]) An o-symmetric convex curve Γ is called equiframed if for any

p ∈ Γ there is a minimal area parallelogram P circumscribed about Γ whose boundary contains p. Prove

that every Radon curve is equiframed, but not all equiframed curves are Radon.
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3

The Kneser-Poulsen Conjecture Revisited

Summary. The monotonicity of volume under contractions of arbitrary arrangements of spheres is a well-
known fundamental problem in discrete geometry. The research on this topic started with the conjecture of
Poulsen and Kneser in the late 1950s. We survey the status of the long-standing Kneser-Poulsen
conjecture in Euclidean as well as in non-Euclidean spaces with emphases on the latest developments.

3.1    The Kneser-Poulsen conjecture

Recall that ǁ · ǁ denotes the standard Euclidean norm of the d-dimensional Euclidean space Ed. So, if pi, pj

are two points in Ed, then ǁpi − pjǁ denotes the Euclidean distance between them. It is convenient to denote

the (finite) point configuration consisting of the points p1, p2,…, pN in Ed by p = (p1, p2,…, pN). Now, if

p = (p1, p2,…, pN) and q = (q1, q2,…, qN) are two configurations of N points in Ed such that for all 1 ≤ i ≤

j ≤ N the inequality ǁqi − qjǁ ≤ ǁpi − pjǁ holds, then we say that q is a contraction of p. If q is a contraction

of p, then there may or may not be a continuous motion p(t) = (p1(t), p2(t),…, pN(t)), with pi(t) ∈ Ed for

all 0 ≤ t ≤ 1 and 1 ≤ i ≤ N such that p(0) = p and p(l) = q, and ǁpi(t) − pj(t)ǁ is monotone decreasing for all

1 ≤ i < j ≤ N. When there is such a motion, we say that q is a continuous contraction of p. Finally, let Bd

[pi, ri] denote the (closed) d-dimensional ball centered at pi with radius ri in Ed and let vold(⋅) represent

the d-dimensional volume (Lebesgue measure) in Ed. In 1954 Poulsen [203] and in 1955 Kneser [155]
independently conjectured the following for the case when r1 = … = rN.

Conjecture 63 If q = (q1, q2,…, qN) is a contraction of p = (p1, p2,…, pN) in Ed, then

vold(
N
∪
i=1

Bd [pi, ri]) ≥ vold(
N
∪
i=1

Bd [qi, ri]).

A similar conjecture was proposed for intersections of balls by Klee and Wagon [154] in 1991.

Conjecture 64 If q = (q1, q2,…, qN) is a contraction of p = (p1, p2,…, pN) in Ed, then

vold(
N
∩
i=1

Bd [pi, ri]) ≤ vold(
N
∩
i=1

Bd [qi, ri]).

For the sake of simplicity, we refer to Conjectures 63 and 64 as the Kneser-Poulsen conjecture.

3.2    The Kneser-Poulsen conjecture for continuous contractions of unions and

intersections of balls

For a given point configuration p = (p1, p2,…, pN) in Ed and radii r1, r2,…, rN consider the following sets,
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The set Vi (resp., Vi) is called the nearest (resp., farthest) point Voronoi cell of the point pi. (For a

detailed discussion on nearest as well as farthest point Voronoi cells, we refer the interested reader to [93]
and [221].) We now restrict each of these sets as follows.

We call the set Vi(ri) (resp., Vi(ri)) the nearest (resp., farthest) point truncated Voronoi cell of the point

pi. For each i ≠ j let Wij = Vi ∩ Vj and Wij = Vi ∩ Vj. The sets Wij and Wij are the walls between the

nearest and farthest point Voronoi cells. Finally, it is natural to define the relevant truncated walls as
follows.

The following formula discovered by Csikós [80] proves Conjecture 63 as well as Conjecture 64 for
continuous contractions in a straighforward way in any dimension. (Actually, the planar case of the
Kneser-Poulsen conjecture under continuous contractions has been proved independently in [21, 55, 73,
79].)

Theorem 65 Let d ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of a point configuration in Ed such that
for each t, the points of the configuration are pairwise distinct. Then

where dij(t) = ǁpi(t) − pi(t)ǁ.

On the one hand, Csikós [82] managed to generalize his formula to configurations of balls called
flowers which are sets obtained from balls with the help of operations ∩ and ∪. This work extends to

hyperbolic as well as spherical space. On the other hand, Csikós [83] has succeeded in proving a Schläfli-
type formula for polytopes with curved faces lying in pseudo-Riemannian Einstein manifolds, which can
be used to provide another proof of Conjecture 63 as well as Conjecture 64 for continuous contractions
(for more details see [83]).

3.3    The Kneser-Poulsen conjecture for contractions of unions and

intersections of disks in E2

Vi = {x ∈ E
d for all j, x − pi

2 − r2
i ≤ x − pj

2 − r2
j},

Vi = {x ∈ E
d for all j, x − pi

2 − r2
i ≥ x − pj

2 − r2
j}.∣ ∥ ∣∣ ∥ ∣∣∣ ∥ ∣∣ ∥ ∣∣Vi (ri) = Vi ∩ Bd [pi, ri],

Vi (ri) = Vi ∩ Bd [pi, ri].

Wij (pi, ri) = Wij ∩ Bd [pi, ri]

= Wij (pj, rj) = Wij ∩ Bd [pj, rj],

W ij (pi, ri) = W ij ∩ Bd [pi, ri]

= W ij (pj, rj) = W ij ∩ Bd [pj, rj].

d
dt vold(

N
∪
i=1

Bd [pi (t), ri])

= ∑
1≤i<j≤N

( d

dt
dij (t)) ⋅ vold−1 (Wij (pi (t), ri)),

d
dt vold(

N
∩
i=1

Bd [pi (t), ri])

= ∑
1≤i<j≤N

−( d

dt
dij (t)) ⋅ vold−1 (W ij (pi (t), ri)),
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In [38] Bezdek and Connelly proved Conjecture 63 as well as Conjecture 64 in the Euclidean plane. Thus,
we have the following theorem.

Theorem 66 If q = (q1, q2,…, qN) is a contraction of p = (p1, p2, …, pN) in E2, then

vol2 (
N
∪
i=1

B2 [pi, ri]) ≥ vol2 (
N
∪
i=1

B2 [qi, ri]);

moreover,

vol2 (
N
∩
i=1

B2 [pi, ri]) ≤ vol2 (
N
∩
i=1

B2 [qi, ri]).

In fact, the paper [38] contains a proof of an extension of the above theorem to flowers as well. In what
follows we give an outline of the three-step proof published in [38] by phrasing it through a sequence of
theorems each being higher-dimensional. Voronoi cells play an essential role in the proofs of Theorems 67
and 68.

Theorem 67 Consider N moving closed d-dimensional balls Bd [pi(t), ri] with 1 ≤ i ≤ N, 0 ≤ t ≤ 1 in Ed, d

≥ 2. If Fi(t) is the contribution of the ith ball to the boundary of the union ∪N
i=1Bd [pi (t), ri] (resp., of the

intersection ∩N
i=1Bd [pi (t), ri]),then

∑
1≤i≤N

1

ri
svold−1 (Fi (t))

decreases (resp., increases) in t under any analytic contraction p(t) of the center points, where 0 ≤ t ≤ 1
and svold−1(…) refers to the relevant (d − 1)-dimensional surface volume.

Theorem 68 Let the centers of the closed d-dimensional balls Bd [pi, ri], 1 ≤ i ≤ N lie in the (d − 2)-

dimensional affine subspace L of Ed, d ≥ 3. If Fi stands for the. contribution of the ith ball to the boundary

of the union ∪N
i=1Bd [pi, ri] (resp., of the intersection ∩N

i=1Bd [pi, ri]), then

where Bd−2[pi, ri] = Bd[pi, ri] ∩ L, 1 ≤ i ≤ N.

Theorem 69 If q = (q1, q2,…, qN) is a contraction of p = (p1, p2, …, pN) in Ed, d ≥ 1, then there is an

analytic contraction p(t) = (p1(t),…, pN(t)), 0 ≤ t ≤ 1 in E2d such that p(0) = p and p(l) = q.

Note that Theorems 67, 68, and 69 imply Theorem 66 in a straighforward way.
Also, we note that Theorem 69 (called the Leapfrog Lemma) cannot be improved; namely, it has been

shown in [19] that there exist point configurations q and p in Ed, actually constructed in the way

suggested in [38], such that q is a contraction of p in Ed and there is no continuous contraction from p to

q in E2d−1.
In order to describe a more complete picture of the status of the Kneser-Poulsen conjecture, we mention

two additional corollaries obtained from the proof published in [38] and just outlined above. (For more
details see [38].)

vold−2 (
N
∪
i=1

Bd−2 [pi, ri]) = 1
2π ∑

1≤i≤N

1

ri
svold−1 (Fi)

(resp. , vold−2 (
N
∩
i=1

Bd−2 [pi, ri]) = 1
2π ∑

1≤i≤N

1

ri
svold−1 (Fi)),
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Theorem 70 Let p = (p1, p2, …, pN) and q = (q1, q2,…, qN) be two point configurations in Ed such that

q is a piecewise-analytic contraction of p in Ed+2. Then the conclusions of Conjecture 63 as well as

Conjecture 64 hold in Ed.

The following generalizes a result of Gromov [128], who proved it in the case N ≤ d + 1.

Theorem 71 If q = (q1, q2,…, qN) is an arbitrary contraction of p = (p1, p2, …, pN) in Ed and N ≤ d + 3,

then both Conjecture 63 and Conjecture 64 hold.

Thus, it is natural to conclude this section with the following special and still open case of the Kneser-
Poulsen conjecture.

Open Problem 13 Prove the Kneser-Poulsen conjecture (i.e., Conjectures 63 and 64) for d + 4 balls in

E
d, d ≥ 3.

3.4    The Kneser-Poulsen conjecture for uniform contractions of r-ball

polyhedra in Ed ,Sd and Hd

Let Md, d > 1 denote the d-dimensional Euclidean, hyperbolic, or spherical space, i.e., one of the simply
connected complete Riemannian manifolds of constant sectional curvature. Since simply connected
complete space forms, the sectional curvature of which have the same sign are similar, we may assume

without loss of generality that the sectional curvature κ of Md is 0, −1, or 1. Let R+ denote the set of

positive real numbers for κ ≤ 0 and the half-open interval (0, π
2 ] for κ = 1. Let distMd (x, y) stand for the

geodesic distance between the points x ∈ M
d and y ∈ M

d. Furthermore, let BMd [x, r] denote the closed

d-dimensional ball with center x ∈ M
d and radius r ∈ R+ in M

d, i.e., let

BMd [x, r] := {y ∈ M
d distMd (x, y) ≤ r}. Now, we are ready to introduce the central notion of this

section.

Definition 14 For a set X ⊆ M
d, d > 1 and r ∈ R+ let the r-ball body Xr generated by X be defined by

X r := ∩x∈XBMd [x, r]. If X ⊆ M
d is a finite set, then we call Xr an r-ball polyhedron.

We note that either Xr = , or Xr is a point in Md, or int(Xr) ≠ . Perhaps not surprisingly, r-ball

bodies of Ed have already been investigated in a number of papers however, under various names such as
“überkonvexe Menge” ([176]), “r-convex domain” ([107]), “spindle convex set” ([46], [158]), “ball
convex set” ([164]), “hyperconvex set” ([113]), and “r-dual set” ([36]). r-ball bodies satisfy some basic
identities such as

,

which hold for any X ⊆ M
d and Y ⊆ M

d. Clearly, also monotonicity holds namely, X ⊆ Y ⊆ M
d

implies Yr ⊆ Xr. Thus, there is a good deal of similarity between r-ball bodies and polar sets (resp.,

spherical polar sets) in Ed (resp., Sd). In this section we explore further this similarity by investigating a

volumetric relation between Xr and X in Md. For this reason let V
M
d

(⋅) denote the Lebesgue measure in

Md, to which we are going to refer as volume in Md. Now, recall the recent theorem of Gao, Hug, and

Schneider [117] stating that for any convex body of given volume in Sd the volume of the spherical polar
body becomes maximal if the convex body is a ball. The following extension of their theorem has been
proved by Bezdek [36].

Theorem 72 Let A ⊆ M
d, d > 1 be a compact set of volume VMd (A) > 0 and r ∈ R+. If B ⊆ M

d is a

ball with VMd (A) = VMd (B), then VMd (Ar) ≤ VMd (Br).∣ 0 0

((X r)r))r = X r and (X ∪ Y )r = X r ∩ Y r



49

Note that the Gao-Hug-Schneider theorem is a special case of Theorem 72 namely, when Md = S
d and

r = π
2 , As this theorem of [117] is often called a spherical counterpart of the Blaschke-Santaló inequality,

one may refer to Theorem 72 as a Blaschke–Santaló-type inequality for r-ball bodies in Md.
From our point of view, the importance of Theorem 72 lies in the following application. For stating it in

a proper way, we recall the following definition from [48]. Note that in what follows, labelled point sets
play the role of point configurations whenever the contraction is a uniform one.

Definition 15 We say that the (labeled) point set {q1,…,qN} ⊂ Md is a uniform contraction of the

(labeled) point set {p1,…, pN} ⊂ Md with separating value λ > 0 in Md, d > 1 if

distMd (qi, qj) ≤ λ ≤ distMd (pi, pj)

holds for all 1 ≤ i < j ≤ N.

The following theorem published by Bezdek [36] can be summarized by saying that the volume of an r-
ball polyhedron (generated by sufficiently many balls of radius r) increases under uniform contractions in

M
d. The more exact details are as follows.

Theorem 73

(i)  Let d ∈ Z and δ, λ ∈ R+ be given such that d > 1 and 0 < λ ≤ √2δ. If Q := {q1,…, qN} ⊂ Ed is a

uniform contraction of P := {p1,…, pN} ⊂ Ed with separating value λ in Ed and N ≥ (1 + √2)
d

, then

VEd (P δ) < VEd (Qδ).

(ii)  Let d ∈ Z and δ, λ ∈ R+ be given such that d > 1, 0 < δ < π
2 , and 0 < λ<min{ 2√2

π
δ,π − 2δ}. If Q

:= {q1,…,qN} ⊂ Sd is a uniform contraction of P := {p1,…, pN} ⊂ Sd with separating value λ in Sd and

N ≥ 2edπd−1( 1
2 + π

2√2
)
d

, then VSd (P δ) < VSd (Qδ).

(iii)  Let d, k ∈ Z and δ, λ ∈ R+ be given such d > l, k > 0 and 0 < sinh k

√2k
λ ≤ δ<k. If Q := {q1,…, qN} ⊂

H
d is a uniform contraction of P := {p1,…, pN} ⊂ Hd with separating value λ in Hd and

N ≥ ( sinh 2k
2k )

d−1( √2 sinh k
k + 1)

d

, then VHd (P δ) < VHd (Qδ).

It is somewhat surprising that in spherical space for the specific radius of balls (i.e., spherical caps) one
can find a proof of both Conjecture 63 and Conjecture 64 in all dimensions. The magic radius is π2  and the

following theorem of Bezdek and Connelly ([39]) describes the desired result in details, which one should
compare to part (ii) of Theorem 73.

Theorem 74 If a finite set of closed d-dimensional balls of radius π2  (i.e., of closed hemispheres) in the d-

dimensional spherical space Sd, d ≥ 2 is rearranged so that the (spherical) distance between each pair of
centers does not increase, then the (spherical) d-dimensional volume of the intersection does not decrease
and the (spherical) d-dimensional volume of the union does not increase.

The method of the proof published by Bezdek and Connelly [39] can be described as follows. First, one
can use a leapfrog lemma (similar to Theorem 69) to move one configuration to the other in an analytic
and monotone way, but only in higher dimensions. Then the higher-dimensional balls have their combined
volume (their intersections or unions) change monotonically, a fact that one can prove using Schläfli’s
differential formula. Then one can apply an integral formula to relate the volume of the higher-
dimensional object to the volume of the lower-dimensional object, obtaining the volume inequality for the
more general discrete motions.

Bezdek [30] has proved the following extension of Theorem 72 to intrinsic volumes in Ed.



50

Theorem 75 Let A ⊆ E
d, d > 1 be a compact set of volume Vd(A) > 0 and let r > 0. If B ⊆ Ed is a ball

with volume Vd(A) = Vd(B), then

Vk (Ar) ≤ Vk (Br) (3.1)

holds for all 1 ≤ k ≤ d, where Vk(⋅) denotes the k-th intrinsic volume of the corresponding set in Ed.

Using Theorem 75, one can give a rather short proof ([30]) of the following theorem, part (i) of which
has been published by Bezdek and Naszódi [48]. Furthermore, we note also that the following theorem is a
strengthening of part (i) of Theorem 73.

Theorem 76 Let d > 1, λ > 0, r > 0, and 1 ≤ k ≤ d be given and let Q := {q1,…, qN} ⊂ Ed be a uniform

contraction of P := {p1,…, pN} ⊂ Ed with separating value λ in Ed.

(i)  If 1 < d < 42 and N ≥ (1 + √2)
d

, then

Vk (P r) ≤ Vk (Qr) (3.2)

(ii)  If d ≥ 42 and N ≥ √ π
2d (1 + √2)

d

+ 1, then (3.2) holds.

Theorem 76 leads to the following question (raised also in [48]).

Open Problem 14 Let 1 ≤ k ≤ d, 1 < N, and r > 0. Prove or disprove that if q = (q1, q2,…, qN) is any

contraction of p = (p1, p2,…, pN) in Ed; then Vk(Pr) ≤ Vk(Qr).

In particular, the following conjecture has been put forward by Alexander [5].

Conjecture 77 Under an arbitrary contraction of the center points of finitely many congruent disks in the
plane, the perimeter of the intersection of the disks cannot decrease.

For the sake of completeness, we conclude this section with the following statement, which is a natural
dual of Theorem 76 for uniform contractions of unions of congruent balls in Ed. Also, it improves
Theorem 1.5 of [48].

Theorem 78 Let d > 1, λ > 0, and r > 0 be given and let Q := {q1,…, qN} ⊂ Ed be a uniform contraction

of P := {p1,…, pN} ⊂ Ed with separating value λ in Ed. If N ≥ 2d, then

Vd (∪N
i=1Bd [pi, r]) ≥ Vd (∪N

i=1Bd [qi, r]).

3.5    The Kneser-Poulsen conjecture for contractions of unions and

intersections of disks in S2 and H2

Let Md, d > 1 denote the d-dimensional Euclidean, hyperbolic, or spherical space. Applying results on

central sets of unions of finitely many balls in Md, Gorbovickis ([124]) has proved the following new
special cases of the Kneser-Poulsen conjecture in M2.

Theorem 79 If the union of a finite set of closed disks in S2 (resp., H2) has a simply connected interior,
then the area of the union of these disks cannot increase after any contractive rearrangement.

The following statement published by Gorbovickis [124] is a straightforward corollary of Theorem 79.
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Corollary 80

(i)  If the intersection of a finite set of closed disks in S2 is connected, then the area of the intersection of
these disks cannot decrease after any contractive rearrangement.
(ii)    The area of the intersection of finitely many closed disks having radii at most π

2  in S2 cannot

decrease after any contractive rearrangement.

One can regard part (ii) of Corollary 80 as an extension of Theorem 74 in S2. Finally, we mention the

following recent result of Csikós and Horváth ([81]) that extends part (ii) of Corollary 80 to H2 by
applying the method of Gorbovickis ([124]) to co-central sets, which one can regard as natural duals of
central sets.

Theorem 81 The area of the intersection of finitely many closed disks in H2 cannot decrease after any
contractive rearrangement.

3.6    Research Exercises

Exercise 3.1 Prove that if q = (q1, q2,…, qN) is a contraction of p = (p1, p2,…, pN) in Ed such that qi =

λpi, 1 ≤ i ≤ N with 0 < λ < 1, then the inequalities Vold (∪N
i=1Bd [pi, ri]) ≥ Vold (∪N

i=1Bd [qi, ri]) and

Vold (∩N
i=1Bd [pi, ri]) ≤ Vold (∩N

i=1Bd [qi, ri]) hold.

Exercise 3.2 (Kirszbraun-Alexander [6]) If q = (q1, q2,…, qN) is a contraction of p = (p1, p2,…, pN) in

E
d and ∩N

i=1Bd [pi, ri] ≠ , then ∩N
i=1Bd [qi, ri] ≠ .

Exercise 3.3 (Bollobás [55]) Prove that if q = (q1, q2, …, qN) is a continuous contraction of p = (p1, p2,

…, pN) in E2, then Vol2 (∪2
i=1B2 [pi, r]) ≥ Vol2 (∪N

i=1B2 [qi, r]). (Hint: Prove the analogue inequality

for the perimeter.)

Exercise 3.4 (Capoyleas [73]) Prove that if q = (q1, q2, …,qN) is a continuous contraction of p = (p1, p2,

…., pN) in E2, then Vol2 (∩N
i=1B2 [pi, r]) ≤ Vol2 (∩N

i=1B2 [qi, r]). (Hint: Prove the analogue inequality

for the perimeter.)

Exercise 3.5 (Alexander [5]) If {q1, q2,…, qN} and {p1, p2, …, pN) are given in Ed such that ǁqi − qj ǁ ≤
cǁpi − pjǁ holds for all 1 ≤ i < j ≤ N with c > 0, then

V1 (conv ({qi|1 ≤ i ≤ N})) ≤ cV1 (conv ({pi|1 ≤ i ≤ N})),

where V1(·) denotes the first intrinsic volume of the corresponding set in Ed.

Exercise 3.6 (Gorbovickis [122]) Prove that if q = (q1, q2, …, qN) is a contraction of p = (p1, p2, …, pN)

in Ed and q and p are not congruent, then

V1 (conv ({qi|1 ≤ i ≤ N})) < V1 (conv ({pi|1 ≤ i ≤ N})).

Exercise 3.7 (Csikós-Horváth [81]) Let the point set {q1,…, qN} be a contraction of the point set {p1,…,

pN} in M2 (and in case M2 = S
2 let ∪N

i=1BM2 [pi, ri] be contained in a closed hemisphere of S2). Then

per(conv(
N
∪
i=1

BM2 [qi, ri])) ≤ per(conv(
N
∪
i=1

BM2 [pi, ri])),

where per(⋅) denotes the perimeter of the corresponding set in M2.

0 0
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Exercise 3.8 (Bezdek-Connelly-Csikós [40]) Prove that if q = (q1, q2,…, qN) is a contraction of p = (p1,

p2, …, pN) for 1 < N ≤ 4 in E2, then per (∩N
i=1Bd [pi, r]) ≤ per (∩N

i=1Bd [qi, r]) holds.

Exercise 3.9 (Gorbovickis [123]) Prove that if q = (q1, q2, …, qN) is a contraction of p = (p1, p2, …, pN)

in Ed, then vold (∪N
i=1Bd [pi, ri]) ≥ Vold (∪N

i=1Bd [qi, ri]) follows under the additional assumption that

the intersection of every pair of balls from {Bd[qi, ri] | 1 ≤ i ≤ N} has common interior points with no more

than d +1 other balls from {Bd [qi, ri] | 1 ≤ i ≤ N}.

Exercise 3.10 (Gorbovickis [122]) Prove that if q = (q1, q2,…, qN) is a contraction of p = (p1, p2,…, pN)

in Ed, then there exists r0 (depending on q and p) such that for any r ≥ r0 the inequalities

vold (∪N
i=1Bd [pi, ri]) ≥ Vold (∪N

i=1Bd [qi, ri]) and vold (∩N
i=1Bd [pi, ri]) ≤ vold (∩N

i=1Bd [qi, ri])
hold. Moreover, if q and p are not congruent, then the inequalities are strict.

For the next problem, we fix an orthonormal basis (i.e., a Cartesian coordinate system) in Ed and refer

to the coordinates of the point x ∈ Ed by writing x = (x(1),…, x(d)). Now, if p = (p1,…, pN) and q = (q1,…,

qN) are two configurations of N points in Ed such that for all 1 ≤ k ≤ d and 1 ≤ i < j ≤ N the inequality

q
(k)
i − q

(k)
j ≤ p

(k)
i − p

(k)
j  holds, then we say that q is a strong contraction of p. Clearly, if q is a

strong contraction of p, then q is a contraction of p as well. Furthermore, recall that a convex body K is

called an unconditional (or, 1-unconditional) convex body if for any x = (x(1),…,x(d)) ∈ K also (±x(1), …,

±x(d)) ∈ K holds. Clearly, if K is an unconditional convex body in Ed, then K is symmetric about the

origin o of Ed.

Exercise 3.11 (Bezdek-Naszódi [48]) Let K1,…, KN be (not necessarily distinct) unconditional convex

bodies in Ed, d ≥ 2. If q = (q1,…, qN) is a strong contraction of p = (p1,…, pN) in Ed, then

vold (∪N
i=1 (pi + Ki)) ≥ vold (∪N

i=1 (qi + Ki)) and vold (∩N
i=1 (pi + Ki)) ≤ vold (∩N

i=1 (qi + Ki)).

Exercise 3.12 (Meyer-Reisner-Schmuckenschläger [181]) Prove that if for an o-symmetric convex body

K ⊂ Ed and some τ > 0, vold (K ⋂ (x + τK)) depends on ǁxǁK only (where ǁ⋅ǁK denotes the norm of Ed

generated by K), then K is an ellipsoid.∥ ∥ ∥ ∥
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4

Volumetric Bounds for Contact Numbers

Summary. The well-known “kissing number problem” asks for the largest number of non-overlapping

unit balls touching a given unit ball in the Euclidean d-space Ed. Generalizing the kissing number, the

Hadwiger number or the translative kissing number H(K) of a convex body K in Ed is the maximum

number of non-overlapping translates of K that all touch K. In this chapter we study and survey the

following natural extension of these problems. A finite translative packing of the convex body K in Ed is a

finite family P of non-overlapping translates of K in Ed. Furthermore, the contact graph G( P) of P is
the (simple) graph whose vertices correspond to the packing elements and whose two vertices are
connected by an edge if and only if the corresponding two packing elements touch each other. The number
of edges of G( P) is called the contact number of P. Finally, the “contact number problem” asks for the

largest contact number, that is, for the maximum number c(K, n, d) of edges that a contact graph of n non-

overlapping translates of K can have in Ed. In the first half of this chapter, we survey the bounds proved

for c(K, n, d) using volumetric methods. Then we turn our attention to an important subfamily of

translative packings called totally separable packings. Here a packing of translates of a convex body K in

E
d is called totally separable if any two packing elements can be separated by a hyperplane of Ed disjoint

from the interior of every packing element. In the second half of this chapter, we study the analogues of

the Hadwiger and contact numbers for totally separable translative packings of K labelled by Hsep(K) and

csep(K, n, d) and survey the bounds proved for Hsep(K) as well as csep (K, n, d) using volumetric ideas.

This chapter is a revised and strongly extended version of [41].

4.1    Description of the basic geometric questions

The well-known “kissing number problem” asks for the maximum number k(d) of non-overlapping unit

balls that can touch a unit ball in the d-dimensional Euclidean space Ed. The problem originated in the
17th century from a disagreement between Newton and Gregory about how many 3-dimensional unit
spheres without overlap could touch a given unit sphere. The former maintained that the answer was 12,
while the latter thought it was 13. The question was finally settled many years later [220] when Newton
was proved correct. The known values of k(d) are k(2) = 6 (trivial), k(3) = 12 ([220]), k(4) = 24 ([189]),
k(8) = 240 ([192]), and k(24) = 196560 ([192]). The problem of finding kissing numbers is closely
connected to the more general problems of finding bounds for spherical codes and sphere packings. For
old and new results on kissing numbers, we refer the interested reader to the recent survey article [64]. In
this paper, we focus on a more general relative of kissing number called contact number.

Let Bd be the d-dimensional unit ball centered at the origin o in Ed. As is well known, a finite packing

of unit balls in Ed is a finite family of non-overlapping translates of Bd in Ed. Furthermore, the contact

graph of a finite unit ball packing in Ed is the (simple) graph whose vertices correspond to the packing
elements and whose two vertices are connected by an edge if and only if the corresponding two packing
elements touch each other. The number of edges of a contact graph is called the contact number of the
underlying unit ball packing. The “contact number problem” asks for the largest contact number, that is,

for the maximum number c(n, d) of edges that a contact graph of n non-overlapping translates of Bd can
have in Ed.

The problem of determining c(n, d) is equivalent to Erdős’s repeated shortest distance problem, which

asks for the largest number of repeated shortest distances among n points in Ed. The planar case of this
question was originally raised by Erdős in 1946 [95], with an answer conjectured by Reutter in 1972 and
established by Harborth [139] in 1974, whereas the problem in its more general forms was popularized by
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Erdős and Ulam. Another way to look at the contact number problem is to think of it as the combinatorial
analogue of the densest sphere packing problem, which dates back to the 17th century.

Let K be a convex body, i.e., a compact convex set with non-empty interior in Ed. (If d = 2, then K is

called a convex domain.) If K is symmetric about the origin o in Ed, then one can regard K as the unit ball

of a given norm in ℝd. In the same way as above, one can talk about the largest contact number of

packings by n translates of K in Ed and label it by c(K, n, d). Here we survey the results on c(n, d) as well

as c(K, n, d).

The notion of total separability was introduced in [104] as follows: a packing of unit balls in Ed is

called totally separable if any two unit balls can be separated by a hyperplane of Ed such that it is disjoint
from the interior of each unit ball in the packing. Finding the densest totally separable unit ball packing is
a difficult problem, which is solved only in dimensions two ([27, 104]) and three ([152]). As a close
combinatorial relative, it is natural to investigate the maximum contact number csep(n, d) of totally

separable packings of n unit balls in Ed. In what follows, we survey the results on csep(n, d) and include in

our overview the relevant aspects of totally separable translative packings as well.

4.2    Motivation from materials science

In addition to finding its origins in the works of pioneers like Newton, Erdős, Ulam and Fejes Tóth (see
Section 4.3 for more on the role of the latter two), the contact number problem is also important from an
applications point of view. Packings of hard sticky spheres - impenetrable spheres with short-range
attractive forces - provide excellent models for the formation of several real-life materials such as colloids,
powders, gels and glasses [140]. The particles in these materials can be thought of as hard spheres that
self-assemble into small and large clusters due to their attractive forces. This process, called self-assembly,
is of tremendous interest to materials scientists, chemists, statistical physicists and biologists alike.

Of particular interest are colloids, which consist of particles at micron scale, dispersed in a fluid and
kept suspended by thermal interactions [176]. Colloidal matter occurs abundantly around us - for example
in glue, milk and paint. Moreover, controlled colloid formation is a fundamental tool used in scientific
research to understand the phenomena of self-assembly and phase transition.

From thermodynamical considerations, it is clear that colloidal particles assemble so as to minimize the
potential energy of the cluster. Since the range of attraction between these particles is extremely small
compared to their sizes, two colloidal particles do not exert any force on each other until they are
infinitesimally close, at which point there is strong attraction between them. As a result, they stick
together, are resistant to drift apart, but are strongly resistant to move any closer [13, 140]. Thus two
colloidal particles experiencing an attractive force from one another in a cluster can literally be thought of
as being in contact.

It can be shown that under the force law described above, the potential energy of a colloidal cluster at
reasonably low temperatures is inversely proportional to the number of contacts between its particles [13,
143, 146]. Thus the particles are highly likely to assemble in packings that maximize the contact number.
This has generated significant interest among materials scientists towards the contact number problem [13,
146] and has led to efforts in developing computer-assisted approaches to attack the problem.

4.3    Largest contact numbers for congruent circle packings

4.3.1  The Euclidean plane

Harborth [139] proved the following well-known result on the contact graphs of congruent circular disk
packings in E2.

Theorem 82 c (n, 2) = ⌊3n − √12n − 3⌋, for all n ≥ 2.

This result shows that an optimal way to pack n congruent disks to maximize their contacts is to pack
them in a ‘hexagonal arrangement’. The arrangement starts by packing 6 unit disks around a central disk
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in such a way that the centers of the surrounding disks form a regular hexagon. The pattern is then
continued by packing hexagonal layers of disks around the first hexagon. Thus the hexagonal packing
arrangement, which is known to be the densest congruent disk packing arrangement, also achieves the
maximum contact number c(n, 2), for all n.

Interestingly, this also means that c(n, 2) equals the maximum number of sides that can be shared
between n cells of a regular hexagon tiling of the plane. This connection was explored in [138], where
isoperimetric hexagonal lattice animals of a given area n were explored.

In 1984, Ulam ([96]) proposed to investigate Erdős-type distance problems in normed spaces. Pursuing
this idea, Brass [66] proved the following extension of Theorem 82 to normed planes.

Theorem 83 Let K be a convex domain different from a parallelogram in E2. Then for all n ≥ 2, one has

c (K,n, 2) = ⌊3n − √12n − 3⌋. If K is a parallelogram, then c (K,n, 2) = ⌊4n − √28n − 12⌋ holds

for all n ≥ 2.

4.3.2    Spherical and hyperbolic planes

An analogue of Harborth’s theorem in the hyperbolic plane ℍ2 was found by Bowen [62]. In fact, his

method extends to the 2-dimensional spherical plane S2. We prefer to quote these results as follows.

Theorem 84 Consider disk packings in ℍ2 (resp., S2) by finitely many congruent disks, which maximize
the number of touching pairs for the given number of congruent disks and of given diameter D. Then such

a packing must have all of its centers located on the vertices of a triangulation of ℍ2 (resp., S2) by

congruent equilateral triangles of side length D provided that the equilateral triangle in ℍ2 (resp., S2) of

side length D has each of its angles equal to 
2π
N

 for some positive integer N ≥ 3.

In 1984, L. Fejes Tóth ([31]) raised the following attractive and related problem in S2: Consider an

arbitrary packing Pr of disks of radius r > 0 in S2. Let degavr( Pr) denote the average degree of the

vertices of the contact graph of Pr. Then prove or disprove that lim supr→0 (supPr
degavr(Pr)) < 5.

This problem was settled in [31].

Theorem 85 Let Pr be an arbitrary packing of disks of radius r > 0 in S2. Then

lim sup
r→0

(sup
Pr

degavr (Pr)) < 5.

We conclude this section with the still open hyperbolic analogue of Theorem 85 which was raised in
[31].

Conjecture 86 Let Pr be an arbitrary packing of disks of radius r > 0 in ℍ2. Then

lim sup
r→0

(sup
Pr

degavr (Pr)) < 5.

4.4    Largest contact numbers for unit ball packings in E3

Theorem 82 implies in a straightforward way that

lim
n→+∞

3n−c(n,2)

√n
= √12 = 3.464 … . (4.1)

Although one cannot hope for an explicit formula for c(n, 3) in terms of n, there might be a way to

prove a proper analogue of (4.1) in E3.
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To this end, we know only what is stated in Theorem 87. In order to state these results we need an

additional concept. Let us imagine that we generate packings of n unit balls in E3 in such a special way
that each and every center of the n unit balls chosen is a lattice point of the face-centered cubic lattice with
shortest non-zero lattice vector of length 2. Then let cfcc(n) denote the largest possible contact number of

all packings of n unit balls obtained in this way.
The motivation for considering cfcc(n) is obvious. Since in the planar case, the densest disk packing

arrangement also maximizes contacts between disks and the face-centered cubic lattice is the densest for
sphere packings in E3 [135], it makes sense to consider cfcc(n) as a candidate for c(n, 3). Moreover, it is

easy to see that cfcc(2) = c(2, 3) = 1, cfcc(3) = c(3, 3) = 3 and cfcc(4) = c(4, 3) = 6.

Theorem 87

(i)   c (n, 3) < 6n − 0.926n
2
3 , for all n ≥ 2.

(ii)   cfcc (n) < 6n −
3 3√18π

π n
2
3 = 6n − 3.665 …n

2
3 , for all n ≥ 2.

(iii)   6n − 3√486n
2
3 < 2k (2k2 − 3k + 1) ≤ cfcc (n) ≤ c (n, 3), for all n =

k(2k2+1)
3  with k ≥ 2.

Recall that (i) was proved in [50] (using the method of [34]), while (ii) and (iii) were proved in [34].
Clearly, Theorem 87 implies that

0.926 <
6n−c(n,3)

n
2
3

< 3√486 = 7.862 … , (4.2)

for all n =
k(2k2+1)

3  with k ≥ 2.

4.5    Upper bounding the contact numbers for packings by translates of a

convex body in Ed

One of the main results of this section is an upper bound for the number of touching pairs in an arbitrary
finite packing of translates of a convex body, proved in [33]. In order to state the theorem in question in a

concise way, we need a bit of notation. Let K be an arbitrary convex body in Ed, d ≥ 3. Then let δ(K)

denote the density of a densest packing of translates of the convex body K in Ed, d ≥ 3. Moreover, let

iq (K) :=
(svold−1(bdK))d

(vold(K))d−1

be the isoperimetric quotient of the convex body K, where svold−1(bdK) denotes the (d − 1)-dimensional

surface volume of the boundary bdK of K and vold(K) denotes the d-dimensional volume of K.

Furthermore, let H(K) denote the Hadwiger number of K, which is the largest number of non-overlapping

translates of K that can all touch K (for more details, cf. Section 4.7). Finally, let the one-sided Hadwiger

number h(K) of K be the largest number of non-overlapping translates of K that touch K and that all lie in

a closed supporting half space of K. In [37], using the Brunn-Minkowski inequality, it is proved that h(K)

≤ 2 ⋅ 3d−1 − 1, where equality is attained if and only if K is an affine d-cube. Let Ko := 1
2 (K + (−K))

be the normalized (centrally symmetric) difference body assigned to K.

Theorem 88 Let K be an arbitrary convex body in Ed, d ≥ 3. Then

c (K,n, d) ≤
H(Ko)

2 n − 1

2dδ(Ko)
d−1
d

d√ iq(Bd)
iq(Ko) n

d−1
d − (H (Ko) − h (Ko) − 1)

≤ 3d−1
2 n −

d√κd

2d+1 n
d−1
d ,
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where κd = π
d
2

Γ( d
2 +1)

= vold (Bd).

Since we are interested in contact numbers of sphere packings as well, it is interesting to see the form

Theorem 88 takes when K = Bd. Recall that k(d) denotes the kissing number of a unit ball in Ed. Let δd

stand for the largest possible density for (infinite) packings of unit balls in Ed. The following consequence
of Theorem 88 was reported in [34].

Corollary 89 Let n > 1 and d ≥ 3 be positive integers. Then

c (n, d) < 1
2 k (d)n − 1

2d δ
− d−1

d

d n
d−1
d .

Now, recall the well-known theorem of Kabatjanskiĭ and Levensteĭn [149] that k(d) ≤ 20.401d(1+o(1)) and

δd ≤ 2−0.599d(1+o(1)) as d → +∞. Together with Corollary 89 this gives

c (n, d) < 1
2 20.401d(1+o(1))n − 1

2d 20.599(1+o(1))(d−1)n
d−1
d ,

for n > 1, as d → +∞.

In particular, for d = 3 we have k(3) = 12 [220] and δ3 = π
√18

 [135]. Thus, by combining these with

Corollary 89, we find that for n > 1,

c (n, 3) < 6n − 1
8 (

π
√18

)
− 2

3

n
2
3 = 6n − 0.152 …n

2
3 .

The above upper bound for c(n, 3) was substantially improved, first in [34] and then further in [50]. The
current best upper bound is stated in part (i) of Theorem 87.

In the proof of Theorem 88 published in [33], the following statement plays an important role that
might be of independent interest and so we quote it as follows. For the sake of completeness, we wish to
point out that Theorem 90 and Corollary 91 are actual strengthenings of Theorem 3.1 and Corollary 3.1 of
[26] mainly because, in our case, the containers of the packings in question are highly non-convex.

Theorem 90 Let Ko be a convex body in Ed, d ≥ 2 symmetric about the origin o of Ed and let {c1 + Ko, c2

+ Ko,…, cn + Ko } be an arbitrary packing of n > 1 translates of Ko in Ed. Then

nvold(Ko)

vold(∪n
i=1(ci+2Ko))

≤ δ (Ko).

For a generalization, see Lemma 235. The following is an immediate corollary of Theorem 90.

Corollary 91 Let Pn(Ko) be the family of all possible packings of n > 1 translates of the o-symmetric

convex body Ko in Ed, d ≥ 2. Moreover, let

δ (Ko,n) := max{ nvold(Ko)
vold(∪n

i=1(ci+2Ko))
{c1 + Ko, … , cn + Ko} ∈ Pn (Ko)}.

Then

lim sup
n→∞

δ (Ko,n) = δ (Ko).

Interestingly enough, one can interpret the contact number problem on the exact values of c(n, d) as a
volume minimization question. Here we give only an outline of that idea introduced and discussed in
detail in [43].

Definition 16 Let Pn : = {ci + Bd | 1 ≤ i ≤ n with ǁcj − ckǁ ≥ 2 for all 1 ≤ j < k ≤ n} be an arbitrary packing

of n > 1 unit balls in Ed. The part of space covered by the unit balls of Pn is labelled by∣
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Pn := ∪n
i=1 (ci + Bd). Moreover, let Cn ;= {ci | 1 ≤ i ≤ n} stand for the set of centers of the unit balls in

Pnn. Furthermore, for any λ > 0 let Pn
λ := ∪ {x + λBd x ∈ Pn} = ∪n

i=1 (ci + (1 + λ)Bd) denote the

outer parallel domain of Pn having outer radius λ. Finally, let

δd (n, λ) := max
Pn

nκd

vold(Pn
λ)

= nκd

minPnvold(∪n
i=1(ci+(1+λ)Bd))

and

δd (λ) := lim sup
n→+∞

δd (n, λ).

Now, let P := {ci + Bd | i = 1, 2,… with ǁcj − ckǁ ≥ 2 for all 1 ≤ j < k} be an arbitrary infinite packing of

unit balls in Ed. Recall that the packing density δd of unit balls in Ed can be computed as follows:

δd = sup
P

(lim sup
R→+∞

∑
ci+Bd⊂RBd vold(ci+Bd)

vold(RBd) ).

Hence, it is rather easy to see that δd ≤ δd(λ) holds for all λ > 0,d ≥ 2. On the other hand, it was proved in

[33] (see also Corollary 91) that δd = δd(λ) for all λ ≥ 1 leading to the classical sphere packing problem.

Now, we are ready to put forward the following question from [43].

Open Problem 15 Determine δd(λ) for d ≥ 2, 0 < λ < √ 2d
d+1 − 1.

First, we note that 2
√3

− 1 ≤ √ 2d
d+1 − 1 holds for all d ≥ 2. Second, observe that as 2

√3
 is the

circumradius of a regular triangle of side length 2, therefore if 0 < λ < 2
√3

− 1, then for any unit ball

packing Pn no three of the closed balls in the family {ci + (1 + λ)Bd | 1 ≤ i ≤ n) have a point in common.

In other words, for any λ with 0 < λ < 2
√3

− 1 and for any unit ball packing Pn, in the arrangement {ci

+ (1 + λ)Bd | 1 ≤ i ≤ n} of closed balls of radii 1 + λ only pairs of balls may overlap. Thus, computing δd(n,

λ), i.e., minimizing vold (Pn
λ) means maximizing the total volume of pairwise overlaps in the ball

arrangement {ci + (1 + λ)Bd | 1 ≤ i ≤ n} with the underlying packing Pn. Intuition would suggest to

achieve this by simply maximizing the number of touching pairs in the unit ball packing Pn. Hence,
Problem 15 becomes very close to the contact number problem of finite unit ball packings for

0 < λ < 2
√3

− 1. Indeed, we have the following statement proved in [43].

Theorem 92 Let n > 1 and d > 1 be given. Then there exists λd,n > 0 and a packing P̂n of n unit balls in

E
d possessing the largest contact number for the given n such that for all λ satisfying 0 < λ < λd,n, δd(n, λ)

is generated by P̂n, i.e., vold (Pn
λ) ≥ vold (P̂n

λ) holds for every packing Pn of n unit balls in Ed.

Theorem 92 leads us to the problem of upper bounding δd(n, λ). The following statement proved in [43]

gives a partial answer to that question.

Theorem 93 Let d and λ be chosen satisfying 
d√d − 1 ≤ λ ≤ √2 − 1. Then

δd (λ) ≤ sup
n
δd (n, λ) ≤ 2d+4

(2−(1+λ)2)d+4
(1 + λ)−d ≤ d+2

2 (1 + λ)−d ≤ 1. (4.3)

∣
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We note that Blichfeldt’s upper bound d+2
2 2− d

2  for the packing density of unit balls in Ed can be

obtained from the upper bound formula of Theorem 93 by making the substitution λ = √2 − 1. We close
this section by stating the following improvements on the estimates of Theorem 93 for d = 2,3, which have
been published in [43].

Theorem 94 Let λ be chosen satisfying 0 < λ < 2
√3

− 1 = 0.1547 … and let H be a regular hexagon

circumscribed about the unit disk B2 centered at the origin o in E2. Then

δ2 (λ) = π
area(H∩(1+λ)B2) .

Definition 17 Let Td := conv{t1, t2,…, td+1} be a regular d-simplex of edge length 2 in Ed, d ≥ 2 and let

0 < λ < √ 2d
d+1 − 1. Set

σd (λ) :=
(d+1)vold(Td∩(t1+Bd))

vold(Td∩(∪d+1
i=1 ti+(1+λ)Bd))

< 1.

An elementary computation yields that if 0 < λ < 2
√3

− 1, then

σ3 (λ) = π−6ϕ0

πλ3+(3π−9ϕ0)λ2+(3π−18ϕ0+)λ+π−6ϕ0
,

where ϕ0 := arctan 1
√2

= 0.615479 ….

Theorem 95 Let 0 < λ < 2
√3

− 1 = 0.1547 …. Set ψ0 := − arctan(√ 2
3 tan (5ϕ0)) = 0.052438 ….

Then

(4.4)

Finally, we raise the following problem.

Conjecture 96 Prove that δd(n, λ) ≤ σd(λ) holds for all d ≥ 3, 0 < λ < √ 2d
d+1 − 1 and n > 1.

4.6    Contact numbers for digital and totally separable packings of unit balls in

E
d

In this section, we use the terms ‘cube’, ‘sphere’ and ‘ball’ to refer to two- and three-dimensional objects

of these types. Consider the three-dimensional (resp. two-dimensional) integer lattice ℤ3 (resp. ℤ2), which
can be thought of as an infinite space tiling array of unit cubes called lattice cells. For convenience, we
imagine these cubes to be centered at the integer points, rather than having their vertices at these points.
Two lattice cells are connected if they share a facet.

We refer to a packing of congruent unit diameter spheres centered at the points of ℤ3 (resp. ℤ2) as a
digital sphere packing. These packings provide a natural means for generating totally separable sphere
packings. We denote the maximal contact number of such a digital packing of n spheres by cℤ(n, 3) (resp.

cℤ(n, 2)). Clearly, cℤ(n, 2) ≤ csep(n, 2) and cℤ(n, 3) ≤ csep(n, 3). The question is how large the maximum

digital contact number can be and whether it equals the corresponding maximum contact number of totally
separable sphere packings.

δ3 (λ) ≤ sup
n
δ3 (n, λ)

≤ π−6ψ0

π−6ψ0+(3π−18ψ0)λ−18ψ0λ2−(π+6ψ0)λ3 < σ3 (λ).
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A three-dimensional (resp. two-dimensional) polyomino is a finite collection of connected lattice cells

of ℤ3 (resp. ℤ2). Considering the maximum volume ball contained in a cube, each polyomino corresponds
to a digital sphere (circle) packing and vice versa. Moreover, since the ball (circle) intersects the cube
(square) at 6 points (4 points), one on each facet, it follows that the number of facets shared between the
cells of the polyomino equals the contact number of the corresponding digital packing.

It is easy to see that minimizing the surface area (resp., perimeter) of a three-dimensional (resp., two-
dimensional) polyomino of volume n corresponds to finding the maximum contact number of a digital
packing of n spheres. Harary and Harborth [138] studied the problem of finding isoperimetric
polyominoes of area n in 2-space. Their key insight was that n squares can be arranged in a square-like
arrangement so as to minimize the perimeter of the resulting polyomino. The same construction appears in
[8], but without referencing [138]. The three-dimensional case has a similar solution which first appeared
in [8]. The proposed arrangement consists of forming a quasicube (an orthogonal box with one or two
edges deficient by at most one unit) followed by attaching as many of the remaining cells as possible in
the form of a quasisquare layer. The rest of the cells are then attached to the quasicube in the form of a

row. The main results of [138] and [8] on isoperimetric polyominoes in E2 and E3 can be used to derive
the following about the maximum digital contact numbers (see [51]).

Theorem 97 Given n ≥ 2, we have

(i)   cZ (n, 2) = ⌊2n − 2√n⌋.

(ii)   cZ (n, 3) = 3n − 3n
2
3 − o(n 2

3 ).

We now turn to the more general totally separable sphere packings in E2 and E3. The contact number
problem for such packings was discussed in the very recent paper [51].

Theorem 98 For all n ≥ 2, we have

(i)   csep (n, 2) = ⌊2n − 2√n⌋.

(ii)   3n − 3n
2
3 − o(n 2

3 ) ≤ csep (n, 3) < 3n − 1.346n
2
3 .

Part (i) follows from a natural modification of Harborth’s proof [139] of Theorem 82 (for details see
[51]). The lower bound in (ii) comes from the fact that every digital sphere packing is totally separable.
However, proving the upper bound in (ii) is more involved.

Theorem 98 can be used to generate the following analogues of relations (4.1) and (4.2).

lim
n→+∞

2n−csep(n,2)

√n
= 2. (4.5)

1.346 <
3n−csep(n,3)

n
2
3

≤ 3 + o (1). (4.6)

Since the bounds in (4.6) are tighter than (4.2), it is reasonable to conjecture that the limit of 
3n−csep(n,3)

n2/3

exists as n → +∞. In fact, it can be asked if this limit equals 3. Furthermore, a comparison of Theorem 97
and Theorem 98 shows that csep(n, 2) = cℤ(n, 2) holds for all positive integers n. Therefore, it is natural to

raise the following open problem.

Open Problem 16 Show that

lim
n→+∞

3n−csep(n,3)

n
2
3

= 3.

In particular, is it the case that csep(n, 3) = cℤ(n, 3), for all positive integers n?

Let us imagine that we generate totally separable packings of unit diameter balls in Ed such that every

center of the balls chosen is a lattice point of the integer lattice ℤd in Ed. Then, as in Section 4.6, let cℤ(n,
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d) denote the largest possible contact number of all packings of n unit diameter balls obtained in this way.

Theorem 99 cZ (n, d) ≤ ⌊dn − dn
d−1
d ⌋, for all n > 1 and d ≥ 2.

Here we recall Theorem 97 and refer to [51] to note that the upper bound of Theorem 99 is sharp for d =

2 and all n > 1 and for d ≥ 3 and all n = kd with k > 1. On the other hand, it is not a sharp estimate for
example, for d = 3 and n = 5.

We close this section by stating the recent upper bounds of [51] for the contact numbers of totally

separable unit ball packings in Ed.

Theorem 100 csep (n, d) ≤ dn − 1

2d
d−1

2

n
d−1
d , for all n > 1 and d ≥ 4.

4.7    Bounds for contact numbers of totally separable packings by translates of

a convex body in Ed with d = 1, 2, 3, 4

Generalizing the kissing number, the Hadwiger number or the translative kissing number H(K) of a

convex body K is the maximum number of non-overlapping translates of K that all touch K. Given the
difficulty of the kissing number problem, determining Hadwiger numbers is highly non-trivial with few

exact values known for d ≥ 3. The best general upper and lower bounds on H(K) are due to Hadwiger
[133] and Talata [232], respectively, and can be expressed as

2cd ≤ H (K) ≤ 3d − 1, (4.7)

where c is an absolute constant and equality holds in the right inequality if and only if K is an affine d-
dirnensional cube [127].

A packing of translates of a convex domain, that is, a convex body K in E2 is said to be totally

separable if any two packing elements can be separated by a line of E2 disjoint from the interior of every
packing element. This notion was introduced by G. Fejes Tóth and L. Fejes Tóth [104].

One can define a totally separable packing of translates of a d-dimensional convex body K in a similar
way by requiring any two packing elements to be separated by a hyperplane in Ed disjoint from the
interior of every packing element [51, 152].

Recall that the contact graph of a packing of translates of K is the simple graph whose vertices are the
members of the packing, and whose two vertices are connected by an edge if and only if the two members
touch each other. In the recent paper [49] the authors investigate the maximum vertex degree (called
separable Hadwiger number), as well as the maximum number of edges (called the maximum separable
contact number) of the contact graphs of totally separable packings by a given number of translates of a

smooth or strictly convex body K in Ed. This extends and generalizes the results of [42] and [51]. The
details are the following.

4.7.1    Separable Hadwiger numbers

It is natural to introduce the totally separable analogue of the Hadwiger number as follows [42].

Definition 18 Let K be a convex body in Ed. We call a family of translates of K that all touch K and,

together with K, form a totally separable packing in Ed a separable Hadwiger configuration of K. The

separable Hadwiger number Hsep(K) of K is the maximum size of a separable Hadwiger configuration of

K.

Recall that the Minkowski symmetrization of the convex body K in Ed denoted by Ko is defined by

Ko := 1
2 (K + (−K)) = 1

2 (K − K) = 1
2 {x − y : x, y ∈ K}. Clearly, Ko is an o-symmetric d-

dimensional convex body. Minkowski [184] showed that if P = {x1 + K, x2 + K,…, xn + K} is a packing
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of translates of K, then Po = {x1 + Ko, x2 + Ko,…, xn + Ko} is a packing as well. Moreover, the contact

graphs of P and Po are the same. Using the same method, it is easy to see that Minkowski’s above

statement applies to totally separable packings as well. (See also [42].) Thus, from this point on, we only

consider o-symmetric convex bodies.
It is mentioned in [51] that based on [85] (see also [204] and [157]) it follows in a straightforward way

that Hsep(Bd) = 2d for all d ≥ 2. On the other hand, if K is an o-symmetric convex body in Ed, then each

facet of the minimum volume circumscribed parallelotope of K touches K at the center of the facet and so,

clearly Hsep(K) ≥ 2d. Thus,

2d ≤ Hsep (K) ≤ H (K) ≤ 3d − 1 (4.8)

holds for any o-symmetric convex body K in Ed. Furthermore, the affine d-cube is the only o-symmetric

convex body in Ed with separable Hadwiger number 3d − 1 [127].
We investigate equality in the first inequality of (4.8). First, we note as an easy exercise that Hsep as a

map from the set of convex bodies equipped with any reasonable topology to the reals is upper semi-

continuous. Thus, for any d, if an o-symmetric convex body K in Ed is sufficiently close to the Euclidean

ball Bd (say, Bd ⊆ K ⊆ (1 + εd)Bd, where εd > 0 depends on d only), then Hsep(K) = 2d

Hence, it is natural to ask whether the set of those o-symmetric convex bodies in ℝd with Hsep(K) = 2d

is dense. In [49], the authors investigate whether Hsep(K) = 2d holds for any o-symmetric smooth or

strictly convex K in Ed. The first main result (Theorem 1) of [49] is a partial answer to this question.

Definition 19 An Auerbach basis of an o-symmetric convex body K in Ed is a set of d points on the

boundary of K that form a basis of Ed with the property that the hyperplane through any one of them,

parallel to the other d − 1 supports K.

Theorem 101 Let K be an o-symmetric convex body in Ed, which is smooth or strictly convex. Then

(i)  For d ∈ {1, 2, 3, 4}, we have Hsep(K) = 2d and, in any separable Hadwiger configuration of K with

2d translates of K, the half translation vectors are d pairs of opposite vectors, where picking one from

each pair yields an Auerbach basis of K. (ii) Hsep(K) ≤ 2d+1 − 3 for all d ≥ 5.

We note that part (i) of Theorem 101 was proved for d = 2 and smooth o-symmetric convex domains in
[42]. It is natural to finish this subsection with the following question.

Open Problem 17 Determine the largest value of Hsep(K) for o-symmetric smooth strictly convex bodies

in Ed, d ≥ 5.

4.7.2    One-sided separable Hadwiger numbers

Recall that the one-sided Hadwiger number h(K) of an o-symmetric convex body K in Ed has been

defined in [37] as the maximum number of non-overlapping translates of K that can touch K and lie in a

closed supporting half space of K. It is proved in [37] that h(K) ≤ 2 ⋅ 3d−1 − 1 holds for any o-symmetric

convex body K in Ed with equality for affine d-cubes only.
One could consider the obvious extension of the one-side Hadwiger number to separable Hadwiger

configurations. However, a more restrictive and slightly more technical definition serves our purposes
better, the reason of which will become clear in Theorem 102 and Example 2.

Definition 20 Let K be a smooth o-symmetric convex body in Ed. The onesided separable Hadwiger

number hsep(K) of K is the maximum number n of translates 2x1 + K,…, 2xn + K of K that form a

separable Hadwiger configuration of K, and the following holds. If f1,…, fn denote supporting linear

functionals of K at the points x1,…, xn, respectively, then o ∉ conv{x1,…, xn} and o ∉ conv{f1,…, fn).
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Definition 21 For a positive integer d, let

hsep(d) := max{hsep(K) : K is an o-symmetric, smooth and strictly convex body in Ed),

Hsep(d) := max{Hsep(K) : K is an o-symmetric, smooth and strictly convex body in Ed),

and set Hsep(0) = hsep(0) = 0.

The proof of part (i) of Theorem 101 relies on the following fact: for the smallest dimensional example

K of an o-symmetric, smooth and strictly convex body with Hsep(K) > 2d, we have hsep(K) > 2d. More

precisely, the following statement is proved in [49] (Theorem 2).

Theorem 102 (i) hsep(d) ≤ Hsep(d) ≤ max{2ℓ + hsep(d − ℓ) : ℓ = 0,…, d}. (ii) hsep(d) = d for d ∈ {1,2,3,4}.

(iii) hsep(Bd) = d for the d-dimensional Euclidean ball Bd with d ∈ ℤ+.

According to Note 1, when bounding Hsep(K) for a smooth or strictly convex body K, it is sufficient to

consider smooth and strictly convex bodies.

As a warning sign, it is shown in Example 2 (see Example 3.1 in [49]) that there is an o-symmetric,

smooth and strictly convex body K in E5, which has a set of 6 translates that form a separable Hadwiger
configuration, and the origin is not in the convex hull of the translation vectors.

4.7.3    Maximum separable contact numbers

Let K be an o-symmetric convex body in Ed, and let P := {x1 + K,…, xn + K} be a packing of translates

of K. Recall that the number of edges in the contact graph of P is called the contact number of P.

Moreover, c(K, n, d) denotes the largest contact number of a packing of n translates of K in Ed. It is

proved in [33] (see also Theorem 88) that c (K,n, d) ≤ H(K)
2 n − n

d−1
d g (K) holds for all n > 1, where

g(K) > 0 depends on K only.

Definition 22 If d,n ∈ ℤ+ and K is an o-symmetric convex body in Ed, then let csep (K, n, d) denote the

largest contact number of a totally separable packing of n translates of K.

According to Theorem 101, the maximum degree in the contact graph of a totally separable packing of

a smooth convex body K is 2d, and hence, csep(K, n, d) ≤ dn, for d ∈ {1, 2, 3, 4}. The third main result

(Theorem 3 of [49]) is the following stronger bound.

Theorem 103 Let K be a smooth o-symmetric convex body in Ed with d ∈ {1, 2, 3, 4}. Then

csep (K,n, d) ≤ dn − n(d−1)/df (K)

for all n > 1, where f (K) > 0 depends on K only.

In particular, if K is a smooth o-symmetric convex domain in E2, then

csep (K,n, 2) ≤ 2n −
√π
8 √n

holds for all n > 1.

4.8    Appendix: Hadwiger numbers of topological disks

A well-known theorem of Hadwiger [133] states that the Hadwiger number of a plane convex body K

satisfies 6 ≤ H(K) ≤ 8. Giving an affirmative answer to a question of Hadwiger, Grünbaum [130]
strengthened this result by proving the following theorem.
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Theorem 104 Let K be a plane convex body. If K is a parallelogram, then H(K) = 8. Otherwise, H(K) =
6.

To generalize this problem, we define a topological ball as a subset of Ed homeomorphic to the

Euclidean ball Bd. Furthermore, we call a set S a starlike ball if it is a topological ball which is starlike

relative to a point p ∈ S; that is, if for any point q ∈ S, we have [p, q] ⊂ S. If d = 2, we may call a

topological or starlike ball a topological or starlike disk, respectively. It is worth noting that the notions of
overlapping and touching, and thus, that of Hadwiger number, can be generalized for topological balls in a
natural way, and that Halberg et al. [134] proved that the Hadwiger number of every topological disk is at
least six.

In 1995, Bezdek, Kuperberg and Kuperberg [29] proved the following related result.

Theorem 105 For any topological disk S in E2, the maximum number of mutually touching translates of S
is at most four.

Furthermore, in this paper they proposed a conjecture and a question related to Hadwiger numbers.
These problems can be found also in [67].

Conjecture 106 The Hadwiger number of any starlike disk is at most 8.

Question 107 Is it true that the Hadwiger number of any topological disk is at most eight? If not, is there
a universal constant K such that the Hadwiger number of any topological disk is at most K ?

Question 107 was answered in the negative, in the strong sense, by a clever construction of Cheong and
Lee [77].

Theorem 108 For any positive integer k, there is a topological disk S with H(S) ≥ k.

The first result about the Hadwiger numbers of starlike disks, based on estimating the area of certain
multiple packings, is due to Bezdek in [28].

Theorem 109 The Hadwiger number of any starlike disk is at most 75.

Lángi improved this upper bound both in the general [160], and in a special case [159].

Theorem 110 The Hadwiger number of any centrally symmetric starlike disk is at most 12.

Theorem 111 The Hadwiger number of any starlike disk is at most 35.

Nevertheless, Conjecture 106 is still open.
A variant of Question 107 can be found in [160], where the author puts a restriction on the number of

the connected components of (convS)\S, where S is a topological disk. In particular, he proved Theorem
112.

Theorem 112 Let S be a topological disk such that (convS)\S is connected. Then H(S) ≤ 8.

In this context, the following natural variant of Question 107 can be proposed [160].

Open Problem 18 Is it true that for every positive integer k there is an integer N(k) such that for any

topological disk S, if (convS)\S has at most k connected components, then H(S) ≤ N(k)?

4.9    Research Exercises

Exercise 4.1 Prove that for any convex body K ⊂ Ed and point set C  ⊂ Ed, the family {x + K : x ∈ C } is

a packing if and only if {x + 1
2 (K − K) : x ∈ C} is a packing.
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Exercise 4.2 (Grünbaum [130]) Using Exercises 4.1 and 2.5, prove that the Hadwiger number of every

convex domain is at least 6 in E2. Moreover, show that the Hadwiger number of every convex domain
different from a parallelogram is 6 in E2.

Exercise 4.3 Prove that the separable Hadwiger number of every smooth convex domain is 4 in E2.

Exercise 4.4 (Bezdek-Kuperberg-Kuperberg [29]) Prove that for any positive integer N there is a

starlike ball SN in E3 such that N ≤ H(SN).

Exercise 4.5 (Maehara [172]) Prove that the kissing number (i.e., Hadwiger number) of a ball in E3 is
12, i.e., k(3) = 12.

Exercise 4.6 (Fejes Tóth [103]) Prove that the one-sided kissing number (i.e., one-sided Hadwiger

number) of a ball in E3 is 9.

Exercise 4.7 (Talata [233]) Prove that the Hadwiger number (resp., separable Hadwiger number) of a
tetrahedron in E3 is 18.

Exercise 4.8 (Larman-Zong [165]) Prove that the Hadwiger number (resp., separable Hadwiger

number) of an octahedron in E3 is 18.

Exercise 4.9 (Musin [189]) Prove that the kissing number of a ball in E4 is 24, i.e., k(4) = 24.

Exercise 4.10 (Musin [188]) Prove that the one-sided kissing number of a ball in E4 is 18.

Exercise 4.11 (Odlyzko-Sloane [192]) Prove that k(8) = 240 and k(24) = 196560.

Exercise 4.12 (Talata [232]) Show that there exists an absolute constant c > 0 such that H(K) ≥ 2cd for

every positive integer d and every convex body K in Ed.

Exercise 4.13 (Bezdek-Brass [37]) Prove that h(K) ≤ 2 ⋅ 3d−1 − 1 holds for any o-symmetric convex body

K in Ed with equality for affine d-cubes only.
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5

More on Volumetric Properties of Separable Packings

Summary. In this chapter we continue our investigation of totally separable packings from a volumetric point of view. First, we outline the recent solution of the

contact number problem for smooth strictly convex domains in E
2. We discuss this approach in details based on angular measure, Birkhoff orthogonality,

Birkhoff measure, (smooth) Birkhoff domains, and approximation by (smooth strictly convex) Auerbach domains, which are topics of independent interests as
well. In the next part of this chapter, we connect the study of totally separable packings of discrete geometry to Oler’s inequality of geometry of numbers. More
concretely, we discuss an analogue of Oler’s inequality for totally separable translative packings in E2 and then use it for finding the highest density of totally

separable translative packings (resp., for finding the smallest area convex hull of totally separable packings by n translates) of an arbitrary convex domain in E2.

Finally, as a local version of totally separable packings, we introduce the family of ρ-separable translative packings of o-symmetric convex bodies in Ed. In

particular, we investigate the fundamental problem of minimizing the mean i-dimensional projection of the convex hull of n non-overlapping translates of an o-

symmetric convex body C forming a ρ-separable packing in Ed for given d > 1, n > 1, and C.

5.1    Solution of the contact number problem for smooth strictly convex domains in E2

This section is based on the results published in [42].

Definition 23 Let Ko be an o-symmetric convex body in Ed, d ≥ 2. A nonzero vector x in (ℝd, ǁ ⋅ ǁKo
) is said to be Birkhoff orthogonal to a non-zero vector y if

ǁxǁKo
 ≤ ǁx + tyǁKo

, for all t ∈ ℝ [52], where ǁxǁKo
 = inf{λ > 0 : x ∈ λKo} for every x ∈ ℝd. We denote this by x ⊣Ko

 y.

Note that in general, Birkhoff orthogonality is a non-symmetric relation, that is x ⊣Ko
 y does not imply y ⊣Ko

 x.

Definition 24 Let Ko ⊆ ℝ2 be an o-symmetric convex domain in E2. An angular measure, also called an angle measure, in (ℝ2, ǁ · ǁKo
) is a measure µ defined

on bdKo that can be extended in a translation-invariant way to measure angles anywhere and satisfies the following properties [66]:

μ(bdKo = 2π.

For any Borel set X ⊆ bdKo, µ(X) = µ(−X).

For each x ∈ bdKo, µ({x}) = 0.

For any x, y ∈ bdKo, we write µ([x, y]Ko
) for the measure of the angle subtended by the arc [x, y]Ko

 at o, where [x, y]K denotes the smaller (in the norm ǁ⋅ǁKo
)

of the two closed arcs on bdKo with endpoints x and y. In [15, 92], angle measures are required to satisfy a fourth non-degeneracy condition, namely, for any x ≠

y ∈ bdKo, µ([x, y]Ko
) > 0. Here it suffices to adopt Brass’s definition. We refer the interested reader to [15] for a very recent expository treatment of angle

measures.

Note that the usual Euclidean angle measure in the plane satisfies these conditions. Moreover, for any angle measure in (ℝ2, ǁ⋅ǁKo
), the sum of interior angles

of any simple n-gon in ℝ2 equals (n − 2)π [66].

Definition 25 An angle measure µ in the plane (ℝ2, ǁ ⋅ ǁKo
) is called a Birkhoff measure in short, B-measure [98] if for any x, y ∈ bdKo, x⊣Ko

 y implies that

µ([x, y]Ko
) = π/2.

Definition 26 Let D ⊆ E2 be an o-symmetric convex domain, then D is called a Birkhoff domain in short, B-domain if there is a B-measure defined in(ℝ2, ǁ⋅ǁD).

The following statement has been proved in [42].

Theorem 113 If D is a smooth B-domain in E2 and n ≥ 2, then we have

csep (D,n, 2) = ⌊2n − 2√n⌋. (5.1)

Definition 27 Let A ⊆ E2 be an o-symmetric convex domain, B a circular disk centered at o and c, −c, c′, −c′ non-overlapping arcs on bdB ⋂ bdA such that for

any x ∈ c there exists x′ ∈ c′ with x ⊣B x′ and vice versa. Then we call A an Auerbach domain, or simply an A-domain.

Figure 5.1 illustrates Definition 27. Clearly, for any x ∈ c there exist antipodes x′, −x′ ∈ bdB with x ⊣B x′ and x ⊣B −x′. From Definition 27, we must have x′
∈ c′ and −x′ ∈ −c′. Moreover, an analogous statement holds for any x′ ∈ c′. Therefore, an A-domain A can be thought of as an o-symmetric convex domain in E2

such that bdA contains two pairs of antipodal circular arcs all lying on the same circle and with each pair being Birkhoff orthogonal to the other in E2. Note that

this definition does not exclude the case when more than one set of such arcs occurs on bdA, in which case we choose the set of four arcs arbitrarily, or even

when A is a circular disk. Given an A-domain A, we call the four circular arcs c, −c, c′, −c′ chosen on its boundary, the circular pieces of A and write
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FIGURE 5.1

Definition 27 illustrated. An A-domain A with circular pieces c, c′, −c and −c′ lying on the boundary of the circular disk B. Note that A is not

necessarily contained in B. However, due to convexity, A must lie in the shaded region determined by the tangent lines at the endpoints of the
circular pieces.

cir (A) = c ∪ (−c) ∪ c′ ∪ (−c′).

Clearly, if x, y ∈ cir(A), then x ⊣A y holds if and only if x ⊣B y holds. We observe that any x ∈ cir(A) belongs to an Auerbach basis of A. Furthermore, any

Auerbach basis of A is either contained in cir(A) or bdA\cir(A).

Let A be an A-domain with circular pieces c, −c, c′ and −c′ lying on the boundary of a circular disk B and e denote the Euclidean angle measure. Then e(c) =

e(c′) = e(−c) = e(−c′) holds and we define an angle measure m on bdA as follows. For any arc a ⊆ bdA, define

m (a) = 2π e(a∩cir(A))
e(cir(A)) . (5.2)

Note that m assigns a measure of π/2 to each of the designated circular pieces on bdA and a measure of 0 to the rest of bdA (including any circular arcs not

included among the circular pieces), that is, m(c) = m(c′) = m(−c) = m(−c′) = π/2 and m(bdA\cir(A)) = 0. It is easy to check (for more details see [42]) that m
satisfies properties (i-iii) of Definition 24, as well as the following property.

Lemma 114 Let A be an A-domain and m the angle measure defined on bdA by (5.2). Also, let x, y ∈ bdA be such that x ⊣A y. Then

m ([x, y]A) = π
2 . (5.3)

In other words, m is a B-measure in (ℝ2, ǁ⋅ǁA) and every A-domain is a B-domain.

As csep(⋅, n, 2) is invariant under affine transformations, Theorem 113 and Lemma 114 give:

Corollary 115 If A is (an affine image of) a smooth A-domain in E2 and n ≥ 2, we have csep (A,n, 2) = ⌊2n − 2√n⌋.

Recall the definition of Hausdorff distance between two convex bodies.

Definition 28 Given two (not necessarily o-symmetric) convex bodies K and L in Ed, the Hausdorff distance between them is defined as

h (K, L) = min {ε : K ⊆ L + εBd, L ⊆ K + εBd}.

It is well known that h(⋅, ⋅) is a metric on the set of all d-dimensional convex bodies [217, page 61]. The following results have been proved in [42].

Theorem 116Affine images of smooth strictly convex A-domains are dense (in the Hausdorff sense) in the space of smooth o-symmetric strictly convex domains.

Moreover, given any smooth o-symmetric strictly convex domain Ko, we can construct an affine image A′ of a smooth strictly convex A-domain A such that the

length of bdA′ ⋂ bdKo can be made arbitrarily close to the length of bdKo.

Corollary 117 Let K be an o-symmetric smooth strictly convex domain in E2 and n ≥ 2. Then csep (K,n, 2) = ⌊2n − 2√n⌋.

Open Problem 19 One may wonder whether csep (K,n, 2) = ⌊2n − 2√n⌋ holds for any o-symmetric smooth convex domain K in E2 and n ≥ 2.

5.2    The separable Oler’s inequality and its applications in E2

5.2.1  Oler’s inequality

Our goal is to bridge totally separable packings of discrete geometry and Oler’s inequality of geometry of numbers. Recall that the concept of totally separable
packings was introduced by G. Fejes Tóth and L. Fejes Tóth [104] as follows. We say that a set of domains is totally separable if any two of them can be
separated by a straight line avoiding the interiors of all domains. The main question investigated in [104] is to find the densest totally separable arrangement of
congruent replicas of a given domain. The paper [104] generated a good deal of interest in the density problem of totally separable arrangements and led to
further important publications such as [27] and [152]. Coming from this direction, the goal of Bezdek and Lángi [44] was to find the densest totally separable
packing of translates of a given convex domain and then to extend that approach to the analogue question for finite totally separable packings. It turned out that
an efficient method to achieve all that is based on a new version of Oler’s classical inequality ([193]). So, next we introduce some basic terminology and then
state Oler’s inequality in the form which is most suitable for the presentation of the results of [44].

Let K be a convex domain, i.e., a compact convex set with non-empty interior in the Euclidean plane E2. A family F  of n translates of K in E2 is called a
packing if no two members of F  have an interior point in common.

If K is an o-symmetric convex domain in E2, where o stands for the origin of E2, then let ǁ⋅ǁK denote the norm generated by K, i.e., let ǁxǁK = min{λ : x ∈
λK} for any x ∈ E2. The distance between the points p and q measured in the norm ǁ⋅ǁK is denoted by ǁp − qǁK. For the sake of simplicity, the Euclidean

distance between the points p and q of E2 is denoted by ǁp − qǁ.
If P = ∪n

i=1 [xi−1, xi] is a polygonal curve in E2 with [xi−1, xi] standing for the closed line segment connecting xi−1 and xi, and K is an o-symmetric plane

convex domain, then the Minkowski length of P is defined as MK (P) = ∑n

i=1
∥xi − xi−1∥K. Based on this and using approximation by closed polygons one

can define the Minkowski length MK(G) of any rectifiable curve G ⊆ E2 in the norm ǁ⋅ǁK. If K is a not o-symmetric, by MK(G) we mean the length of G in the

relative norm of K, i.e., in the norm defined by 1
2 (K − K) [193] (cf. also Section 2.2).

Finally, if K is an o-symmetric convex domain in E2, then let ⋄(K) denote a minimal area circumscribed hexagon of K.

Now, we are ready to state Oler’s inequality ([193]) in the following form. Let K be an o-symmetric convex domain in E2. Let

F = {xi + K : i = 1, 2, … ,n}

be a packing of n translates of K in E2, and set X = {x1, x2,…, xn}. Furthermore, let Π be a simple closed polygonal curve with the following properties:

the vertices of Π are points of X

and

X ⊆ Π∗ with Π∗ = Π ⋃ intΠ, where intΠ refers to the interior of Π.

Then
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area(∏*)
area(⋄(K)) + MK(∏)

4 + 1 ≥ n, (5.4)

where area(⋅) denotes the area of the corresponding set. The formula (5.4) was conjectured by H. J. Zassenhaus and has a number of interesting aspects

discussed in [238] (see also [26] and [60]).

5.2.2    An analogue of Oler’s inequality for totally separable translative packings

We recall the following definitions from [44].

Definition 29 A closed polygonal curve P = ∪m
i=1 [xi−1, xi], where x0 = xm, is called permissible if there is a sequence of simple closed polygonal curves

P = ∪m
i=1 [xn

i−1, xn
i ], where xn

0 = xn
m, satisfying xn

i → xi for every value of i. The interior intP is defined as limn→∞ intPn.

Remark 118 By the properties of limits, if P = ∪m
i=1 [xi−1, xi] is permissible and Pn and Qn are sequences of simple closed polygonal curves with limn→∞ Pn =

limn→∞ Qn = P, then limn→∞ intPn = limn→∞ intQn, i.e., the interior of a permissible curve is well defined.

Definition 30 Let K be a convex domain in E2. Then let □(K) denote a minimal area circumscribed parallelogram of K.

The following totally separable analogue of Oler’s inequality has been published in [44].

Theorem 119 Let K be an o-symmetric convex domain in E2. Let

F = {xi + K : i = 1, 2, … ,n}

be a totally separable packing of n translates of K in E2, and set X = {x1, x2,…, xn}. Furthermore, let Π be a permissible closed polygonal curve with the

following properties:

the vertices of Π are points of X
and

X ⊆ Π* with Π* = Π ∪ intΠ.

Then

area(∏*)
area(□(K)) + MK(∏)

4 + 1 ≥ n. (5.5)

Remark 120 We note that unlike in Oler’s original inequality, equality in (5.5) of Theorem 119 is attained in a variety of ways. This is illustrated in Fig. 5.2,

where the polygon Π consists of blocks of zig-zags and simple closed polygons having sides parallel to the two sides of a chosen □(K). Furthermore, we note
that characterizing the case of equality in (5.5) of Theorem 119 remains an open problem.

Remark 121 It is well known that the width of any convex body K in any direction is equal to the width of its central symmetrization 1
2 (K − K) in this direction.

This readily implies that □(K) does not change under central symmetrization.

FIGURE 5.2

A totally separable packing of translates of K (with K being a circular disk for the sake of simplicity), which satisfies the conditions in Theorem 119
and for which there is equality in (5.5) of Theorem 119.

Remark 122 Let F  = {xi + K : i = 1, 2,…, n} be a family of n translates of K in E2, where K is an o-symmetric convex domain of E2, and let K* be a convex

domain satisfying K = 1
2 (K*−K*) with o ∈ intK*, and let F* = {xi + K* : i = 1, 2,…, n}. Then F  is a packing if and only if F* is a packing, and F  is a

totally separable packing if and only if F* is a totally separable packing. (For details see for example, [42].) Thus, Theorem 119 holds for any (not necessarily

o-symmetric) plane convex domain K* (with o ∈ intK*) as well.

5.2.3    On the densest totally separable translative packings

Theorem 119 and Remark 122 imply the following statement published in [44], which was proved for o-symmetric convex domains in [104] with a weaker

estimate than (5.6) for convex domains in general, namely, with □(K) standing for a minimal area circumscribed quadrangle of K.

Theorem 123 If δsep(K) denotes the largest (upper) density of totally separable translative packings of the convex domain K in E2, then

δsep (K) = area(K)
area(□(K)) . (5.6)
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Remark 124 It is worth mentioning here that by (5.6) of Theorem 123, the densest totally separable translative packing of a convex domain is attained by a
lattice arrangement.

Open Problem 20 Let K be a convex body in Ed, d ≥ 3. Prove or disprove that the highest density of totally separable translative packings of K in Ed is

attained by the totally separable lattice packing of K generated by (any of) the smallest volume parallelotope (i.e., affine d-cube) circumscribed K.

Theorem 125 published in [44] is a totally separable analogue of the well-known theorem (which is a combination of the results published in [100], [110],

[108], and [207]), stating that the maximal density of translative packings of a convex domain in E2 is minimal if and only if the domain is a triangle.

Theorem 125 For any convex domain K in E2, we have

1
2 ≤ δsep (K) ≤ 1, (5.7)

with equality on the left if and only if K is a triangle, and on the right if and only if K is a parallelogram.

5.2.4    On the smallest area convex hull of totally separable translative finite packings

The following area inequalities have been published in [44].

Theorem 126 Let F  = {ci + K : i = 1, 2,…, n} be a totally separable packing of n translates of the convex domain K in E2. Let C = conv{c1, c2,…, cn}.

Then we have

If K or C is centrally symmetric, then

area (C + K) ≥ (n − 1)area (□ (K)) + area (K).

Remark 127 We note that equality is attained in (i) of Theorem 126 for the following totally separable translative packings of a triangle (cf. Figure 5.3). Let K

be a triangle, with the origin o at a vertex, and u and v being the position vectors of the other two vertices, and let T = mK, where m > 1 is an integer. Let F  be

the family consisting of the elements of the lattice packing {iu + jv + K : i, j, ∈ ℤ} contained in T. Then F  is a totally separable packing of n =
m(m+1)

2

translates of K with conv (⋃ F) = T = C + K, where C = (m − 1)K. Thus,

area (T) = m2area (K) = [ 2
3 m (m + 1) − 1

3 + 1
3 (m − 1)2]area (K) = 4

3 (n − 1)area (K) + area (K) + 1
3 area (C) = 2

3 (n − 1)area (□ (K)) + area (K)

.

FIGURE 5.3
An example for equality in (i).

Remark 128 In (ii) of Theorem 126 equality can be attained in a variety of ways shown in Figure 5.4 for both cases, namely, when C is centrally symmetric

(and K is not centrally symmetric such as a triangle) and when K is centrally symmetric (such as a circular disk) without any assumption on the symmetry of C.

FIGURE 5.4
Totally separable translative packings of a triangle and a unit disk for which equality is attained in (ii) in Theorem 126.

We conclude this subsection with the following.

Open Problem 21 Let C be an o-symmetric convex body in Ed, d ≥ 3 and n > 1. Prove or disprove that the smallest volume of the convex hull of n translates of

C forming a totally separable packing in Ed is obtained when the n translates of C form a sausage, that is, a linear packing.

5.3    Higher dimensional results: minimizing the mean projections of finite ρ-separable packings in Ed

The starting point is the following elegant theorem of Böröczky Jr. [58]: Consider the convex hull Q of n non-overlapping translates of an arbitrary convex body

C in Ed with n being sufficiently large. If Q has minimal mean i-dimensional projection for given i with 1 ≤ i < d, then Q is approximately a d-dimensional ball.

The main goal of [45] is to prove an extension of this theorem to ρ-separable translative packings of convex bodies in Ed. Next, following [45] we define the
concept of ρ-separable translative packings and then state the main result of [45].

Definition 31 Let C be an o-symmetric convex body of Ed. Furthermore, let ǁ ⋅ ǁC denote the norm generated by C, i.e., let ǁxǁC := inf{λ | x ∈ λC} for any x ∈
E
d. Now, let ρ ≥ 1. We say that the packing

area(conv(
n
∪
i=1

(ci + K))) = area (C + K) ≥ 2
3 (n − 1)area (□ (K))

+area (K) + 1
3 area (C).
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Psep := {ci + C|i ∈ I with||cj − ck||C ≥ 2 for all j ≠ k ∈ I}

of (finitely or infinitely many) non-overlapping translates of C with centers {ci | i ∈ I} is a ρ-separable packing in Ed if for each i ∈ I the finite packing {cj + C |

cj + C ⊆ ci + ρC} is a totally separable packing (in ci+ρC).Finally, let δsep(ρ, C) denote the largest density of all ρ-separable translative packings of C in Ed,

i.e., let

δsep (ρ, C) := sup
Psep

(lim sup
λ→+∞

∑
ci+C⊂Wd

λ
vold(ci+C)

vold(Wd
λ)

),

where Wd
λ  denotes the d-dimensional cube of edge length 2λ centered at o in Ed having edges parallel to the coordinate axes of Ed and vold(·) refers to the d-

dimensional volume of the corresponding set in Ed.

Remark 129 Let δ(C) (resp., δsep(C)) denote the supremum of the upper densities of all translative packings (resp., totally separable translative packings) of

the o-symmetric convex body C in Ed. Clearly, δsep(C) ≤ δsep(ρ, C) ≤ δ(C) for all ρ ≥ 1. Furthermore, if 1 ≤ ρ < 3, then any ρ-separable translative packing of C

in Ed is simply a translative packing of C and therefore, δsep(ρ, C) = δ(C).

Open Problem 22 Let C be an o-symmetric convex body C in Ed, d ≥ 2. Then prove or disprove that there exists ρ(C) > 0 such that for any ρ ≥ ρ(C) one has

δsep(C) = δsep(ρ, C).

Recall that the mean i-dimensional projection Mi(C) (i = 1, 2,…, d − 1) of the convex body C in Ed, can be expressed ([217]) with the help of a mixed volume

via the formula

Mi (C) = κi

κd
V

i

(C, … , C),

d−i

(Bd, … , Bd),

where κd is the volume of Bd in Ed. Note that Mi(B
d) = κi, and the surface volume of C is svold−1 (C) = dκd

κd−1
Md−1 (C) and in particular, svold − 1(Bd) = dκd.

Set Md(C) := vold(C). Finally, let R(C) (resp., r(C)) denote the circumradius (resp., inradius) of the convex body C in Ed, which is the radius of the smallest

(resp., a largest) ball that contains (resp., is contained in) C. The following is the main result of [45].

Theorem 130 Let d ≥ 2, 1 ≤ i ≤ d − 1, ρ ≥ 1, and let Q be the convex hull of a ρ-separable packing of n translates of the o-symmetric convex body C in Ed such

that Mi(Q) is minimal and n ≥ 4dd4d

δsep(ρ,C)d−1 ⋅ (ρ R(C)
r(C) )

d

. Then

r(Q)
R(Q) ≥ 1 − ω

n
2

d(d+3)

, (5.8)

for ω = λ (d)( ρR(C)
r(C) )

2
d+3

, where λ(d) depends only on the dimension d. In addition,

Mi (Q) = (1 + σ

n
1
d

)Mi (Bd)( vold(C)
δsep(ρ,C)κd

)
i
d

⋅ n
i
d ,

where − 2.25R(C)ρdi
r(C)δsep(ρ,C) ≤ σ ≤ 2.1R(C)ρi

r(C)δsep(ρ,C) .

Remark 131 It is worth restating Theorem 130 as follows: Consider the convex hull Q of n non-overlapping translates of an arbitrary o-symmetric convex body

C forming a ρ-separable packing in Ed with n being sufficiently large. If Q has minimal mean i-dimensional projection for given i with 1 ≤ i < d, then Q is
approximately a d-dimensional ball.

Open Problem 23 The nature of the question analogue to Theorem 130 on minimizing Md(Q) = vold(Q) is very different. Namely, recall that Betke and Henk

[24] proved L. Fejes Tóth′s sausage conjecture for d ≥ 42 according to which the smallest volume of the convex hull of n non-overlapping unit balls in Ed is
obtained when the n unit balls form a sausage, that is, a linear packing (see also [25, 26]). As linear packings of unit balls are ρ-separable, therefore the above

theorem of Betke and Henk applies to ρ-separable packings of unit balls in Ed for all ρ ≥ 1 and d ≥ 42. On the other hand, the problem of minimizing the volume

of the convex hull of n unit balls forming a ρ-separable packing in Ed remains an interesting open problem for ρ ≥ 1 and 2 ≤ d < 42. Last but not least, the

problem of minimizing Md(Q) for o-symmetric convex bodies C different from a ball in Ed seems to be wide open for ρ ≥ 1 and d ≥ 2.

5.4    Research Exercises

Given an o-symmetric convex domain Ko in E2, the normed plane (ℝ2, ǁ ⋅ ǁKo) is called a Radon plane if for any x, y ∈ bdKo, x ⊣Ko y implies y ⊣Ko x. In other

words, a Radon plane is one in which the relation of Birkhoff orthogonality is symmetric. We define a Radon domain as the closed unit disk of a Radon plane. If

Ko is an o-symmetric convex domain in E2 that is not necessarily a Radon domain, then an (non-trivial) arc a ⊆ bdKo is said to be a Radon arc if x ⊣Ko
 y for

any x ∈ a and y ∈ bdKo implies y ⊣Ko
 x.

Exercise 5.1 (Fankhänel [98]) Show that if the boundary of an o-symmetric convex domain Ko contains a Radon arc, then (ℝ2, ǁ ⋅ ǁKo) possesses a B-measure.

Moreover, if Ko is a smooth Radon domain, then (ℝ2, ǁ ⋅ ǁKo) possesses a strictly increasing B-measure.

Exercise 5.2 Show that the unit disk of the plane (ℝ2, ǁ ⋅ ǁp,q), where 1 ≤ p,q,≤ ∞, 1
p

+ 1
q

= 1, and

(x, y) p,q = {

is a Radon domain. Moreover, prove that a Radon domain is smooth if and only if it is strictly convex.

Let Ko be a smooth o-symmetric convex domain in E2 and P any parallelogram (not necessarily of minimum area) circumscribing Ko such that Ko touches each

side of P at its midpoint (and not at the corners of P as Ko is smooth). Let x and y be the midpoints of any two adjacent sides of P. Then −x and −y are also

 ∣∣ (|x|p + |y|p)1/p, x, y ≥ 0 orx, y ≤ 0,

(|x|q + |y|q)1/q, otherwise.
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points of intersection of Ko and P. It is easy to see that {x, y} is an Auerbach basis of the normed plane (ℝ2, ǁ ⋅ ǁKo). We call the lattice L P in (ℝ2, ǁ ⋅ ǁKo) with

fundamental cell P, an Auerbach lattice of Ko as we can think of L P as being generated by the Auerbach basis {x, y} of (ℝ2,ǁ·ǁKo).

Exercise 5.3 (Bezdek-Khan-Oliwa [42]) Let R be a smooth Radon domain and let n = ℓ(ℓ + ϵ) + k ≥ 4 be the decomposition of a positive integer n such that k ≠

1. Prove that if P is a totally separable packing of n translates of R with csep (K,n) (R,n, 2) = ⌊2n − 2√n⌋ contacts, then P is a finite lattice packing lying

on an Auerbach lattice of R.

A triplet of non-overlapping convex domains in E2 is said to be separable if there is a straight line not intersecting the interiors of them, but containing both

sides at least one of them. Finally, we say that a packing of convex domains in E2 is locally separable if any triplet of the convex domains is separable.

Exercise 5.4 (Bezdek [27]) Prove that the (upper) density of any locally separable packing of congruent circular disks in E2 is at most 
π
2 .

Exercise 5.5 (Groemer [126]) Prove that if the compact convex set C contains the centers of n non-overlapping unit disks, then

1

2√3
area (C) + 1

4 per (C) + 1 ≥ n

Exercise 5.6 (Wegner [237]) Prove that if Dn is the convex hull of n non-overlapping unit disks in E2, then

area (Dn) ≥ 2√3 (n − 1) + (2 − √3)⌈√12n − 3 − 2⌉ + π

Exercise 5.7 (Fejes Tóth-Fejes Tóth [104]) Prove that if a totally separable packing of n congruent convex domains is contained in a convex quadrangle of

area A and a is the area of a convex quadrangle of least area containing a domain, then n ≤ A
a

.

Exercise 5.8 (Kertész [152]) Show that if a cube of volume V contains a totally separable packing of N balls of radius r in E3, then V ≥ 8Nr3.

Exercise 5.9 (Betke-Henk-Wills [25]) Let Bd denote the d-dimensional unit ball centered at the origin o in Ed, and for a positive integer n, let Cn := {x1,…,

xn} be a packing set of Bd, i.e., ǁxi − xjǁ ≥ 2, 1 ≤ i < j ≤ n. Then show that for every ρ < √2 a dimension d(ρ) exists such that, for d ≥ d(ρ),

vold (conv (Cn) + ρBd) ≥ vold (conv (Sn) + ρBd),

where Sn is a minimal linear packing set of n unit balls, i.e., a line segment of length 2(n − 1), holds.

Exercise 5.10 (Betke-Henk-Wills [25]) Show that for every convex body K in Ed and ρ < 1
32d2 ,

vold (conv (Cn) + ρK) ≥ vold (conv (Sn) + ρK),

where Cn is a packing set with respect to n translates of K and Sn is a minimal linear packing set of n translates of K, holds.
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Part II

Selected Proofs
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6

Proofs on Volumetric Properties of (m, d)-scribed Polytopes

Summary. In this chapter we present selected proofs of some theorems from Chapter 1 about the
isoperimetric problem and the volume of polytopes. In Section 6.1 we prove Ball’s famous reverse
isoperimetric inequality. In Section 6.2 we prove the monotonicity of the isoperimetric ratio under the
Eikonal equation, and a dynamic variant of Lindelöf’s Condition. In Sections 6.3 and 6.4 we determine the

largest volume of polytopes inscribed in the unit sphere of E3 and Ed, respectively, with a small number of
vertices. In Section 6.5 we characterize polytopes with n vertices whose symmetry group is isomorphic to
the dihedral group Dn. Section 6.6 presents the proof of the realization of every combinatorial class of 3-

dimensional convex polyhedra by a midscribed polyhedron, that is, by a Koebe polyhedron. In Section 6.7
we prove that this realization is unique, up to Euclidean isometries, under the additional assumption that
the barycenter of the tangency points of the polyhedron is the center of the midsphere. Finally, in Section
6.8, we prove results about the general problem of centering Koebe polyhedra.

6.1    Proof of Theorem 3

The volume ratio of a convex body K ⊂ Ed is defined as

vr (K) = ( vold(K)
vold(B) )

1
d

,

where B is the largest volume ellipsoid contained in K. We note that this ellipsoid, the so-called John

ellipsoid, uniquely exists, and that vr(⋅) does not change under affine transformations of Ed.

First, we show how Theorem 3 follows from the next theorem. We remark that an elementary

computation yields that the volume and the surface volume of a regular simplex S in Ed, circumscribed

about Bd, are

(6.1)

Theorem 132 The volume ratio of a convex body K is less than or equal to the volume ratio of a regular

simplex circumscribed about Bd.

Proof of Theorem 3 Without loss of generality, we may assume that the largest volume ellipsoid contained

in K is Bd. Then,

Note that if S is a regular simplex circumscribed about Bd, then the largest volume ellipsoid contained in S

is Bd. Thus, from Theorem 132 it follows that vold(K) ≤ vold(S). Combining it with the previous

inequality, we have

vold (S) =
d

d
2 ⋅(d+1)

d+1
2

d! , svold−1 (S) =
d

d
2 ⋅(d+1)

d+1
2

(d−1)! .

svold−1 (K) = lim
ε→0+

vold(K+εBd)−vold(K)
ε

≤ lim
ε→0+

vold(K+εK)−vold(K)
ε = vold (K) lim

ε→0+

(1+ε)d−1
ε = dvold (K).



74

The proof of Theorem 132 is based on two lemmas. The first one determines the properties of John
ellipsoids (cf., e.g., [141]).

Lemma 133 Let K be a convex body in Ed, and assume that the maximal volume ellipsoid contained in K

is Bd. Then there are contact points x1, x2, …, xm in (bdK) ⋂ Bd and positive values λ1, λ2, …, λm such

that

m

∑
i=1

λixi = o,
(6.2)

and

m

∑
i=1

λixi ⊗ xi = Idd.
(6.3)

Here Idd denotes the d × d identity operator, and x ⊗ x is the rank-1 orthogonal projection of Ed onto

the line spanned by x. The equality of the traces on the two sides of (6.3) yields that ∑ m
i=1λi = d. The

other lemma is a convolution inequality of Brascamp and Lieb [65].

Lemma 134 Let x1, x2, …, xm be unit vectors in Ed, and λ1, λ2, …, λm positive numbers such that

m

∑
i=1

λixi ⊗ xi = Idd.

For each value of i, let fi : ℝ → [0, ∞) be an integrable function. Then

∫
Ed

m

∏
i=1

(fi (⟨xi, y⟩))λidy ≤
m

∏
i=1

(∫
R

fi (t)dt)
λi

.
(6.4)

Proof of Theorem 132 Without loss of generality, we may assume that the largest volume ellipsoid

contained in K is Bd. Then we need to show that

vold (K) ≤ vold (S) = d
d
2 ⋅(d+1)

d+1
2

d! .

By Lemma 133, there are unit vectors x1, x2, …, xm ∈ bdK and positive numbers λ1, λ2, …, λm satisfying

the conditions in (6.2) and (6.3). Let us define the convex body C as

C = {y ∈ E
d : ⟨xi, y⟩ ≤ 1, i = 1, 2, … ,m}. (6.5)

Clearly, C ⊆ K. We show that vold(C) ≤ vold(S). We prove this inequality by applying Lemma 134 to a

family of functions defined on Ed+1.

Let us regard Ed+1 as Ed × ℝ. For i = 1, 2, …, m, set

yi = √ d
d+1 (−xi,

1
√d
),

vold(K)

(svold−1(K))
d

d−1

≥ 1

d
d

d−1 (vold(K))
1

d−1

≥ 1

d
d

d−1 (vold(S))
1

d−1

= vold(S)

(svold−1(S))
d

d−1

.
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and

μi = d+1
d λi.

It is easy to see that for each value of i, yi is a unit vector, ∑ m
i=1μi = d + 1, and that the conditions in

(6.2) and (6.3) imply that

m

∑
i=1

μiyi ⊗ yi = Idd+1.

For i = 1, 2, …, m, define the function fi : ℝ → [0, ∞) as

fi (t) = {

For any z ∈ Ed+1, set

F (z) =
m

∏
i=1

(fi (⟨yi, z⟩))μi .

By Lemma 134, we have

∫
Ed+1

F (z)dz ≤
m

∏
i=1

(∫
R

fi (t)dt)
μi

= 1.
(6.6)

Consider some point z = (w,r) ∈ Ed+1. Then, for each value of i, we have

⟨yi, z⟩ = r

√d+1
−√ d

d+1 ⟨xi, w⟩.

Since ∑ m
i=1λixi = 0, there is some index j such that 〈xj, w〉 ≥ 0. Thus, if r < 0, then 〈yj, z〉 < 0 and the

definition of F yields that F(z) = 0. Furthermore, if r ≥ 0, then F(z) is non-zero if and only if for all values
of i,

⟨yi, w⟩ ≤ r

√d
.

In this case

Hence, for any r ≥ 0, the integral of F over the hyperplane {xd+1 = r} is

e−√d+1rvold ( r

√d
C) = e−√d+1r( r

√d
)
d

vold (C).

Then (6.6) yields that

vold (C)∫
∞

0
e−√d+1r( r

√d
)

d

dr = vold(C)d!

d
d
2 ⋅(d+1)

d+1
2

≤ 1,

e−t if t ≥ 0,

0 if t < 0.

F (z) = exp (−
m

∑
i=1

μi ( r

√d + 1
−√ d

d + 1
⟨yi, w⟩))

= exp (−√d + 1r +√ d+1
d ⟨

m

∑
i=1

λixi, w⟩) = exp(−√d + 1r).
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from which the assertion readily follows.

6.2    Proofs of Theorems 10 and 11

Before proving the theorems, we need to find the geometric interpretation of (1.2). In the literature, there
are two different interpretations of this equation.

The Eikonal wavefront model, used for example in optics, starts with a smooth hypersurface at time t =
0. In this model, one obtains the evolving hypersurface at time t by translating every point of its boundary

in the direction of the inward surface normal by a vector of length t (cf. Figure 6.1 (A)). If K(0) is a
smooth, convex body with minimal curvature radius rmin(0) (i.e., the reciprocal of the maximal principal

curvature), then in the Eikonal wavefront model the evolving hypersurface will exhibit its first singularity
at t = rmin(0) and for t > rmin(0) it will develop self-intersecting, non-convex parts.

In the Eikonal abrasion model, used for example in the investigation of the abrasion of particles,

starting with the boundary of a (not necessarily smooth) convex body K(0), one obtains the evolving
hypersurface at time t by translating the supporting half space at every point of its boundary in the
direction of the inward surface normal by a vector of length t (cf. Figure 6.1 (B)). Obviously, in this model

the evolving hypersurface K(t) will remain convex; however, initially smooth shapes will also develop
singularities. The first such singularity appears, similarly to the wavefront model, at t = rmin(0). The

singularities of the evolving hypersurface in the Eikonal abrasion model correspond to the self-
intersections in the Eikonal wavefront model.

FIGURE 6.1
Alternative interpretations of the Eikonal equation (1.2): (A) The Eikonal Wavefront Model
and (B) the Eikonal Abrasion Model.

Since our examination is restricted to not necessarily smooth convex bodies, we use the Eikonal
abrasion model. We start with introducing some notation.

Let K be a convex body in Ed; that is, a compact, convex set with nonempty interior. Recall that the

support function hK : Sd−1 → ℝ of K is defined by hK(m) = sup{ 〈m, p〉 : p ∈ K} for all m ∈ Sd−1 [217].

For any t ≥ 0, we let HK(m,t) be the closed half space defined by {p ∈ Ed : 〈p, m〉 ≤ hK(m) − t}. In the

Eikonal abrasion model, the evolving convex body at time t is given by the formula



77

K (t) = ∩
m∈S d−1

HK (m, t).

We show that K(t) is the set of points in K at the distance at least t from bdK; that is, the so-called inner

parallel body of K at the distance t. Consider some point p ∈ intK, and let q ∈ bdK be a point closest to p

in bdK. Then the Euclidean ball p + ǁq − pǁBd is contained in K. Let H be the hyperplane through q and

perpendicular to q − p. Since H is the only hyperplane that supports the ball p + ǁq − pǁBd at q, and p + ǁq
− pǁBd ⊆ K, it follows that H is the unique supporting hyperplane of K at q. Clearly, the distance of p and

H is ǁq − pǁ. Since every closed supporting half space of K contains K, it follows that the distance of p

from every supporting hyperplane of K is at least ǁq − pǁ. Thus, the distance of p from bdK is equal to the

minimal distance of p from any of the supporting hyperplanes of K, which implies that K(t) is indeed the

inner parallel body of K at the distance t. This property, proved also in [166] together with some other

elements of this proof, yields the following observation: If r(K) is the radius of a largest ball contained in

K, then for any 0 ≤ t ≤ r(K), K(t) is a convex body, for t = r(K), K(t) is a compact, convex set with no

interior point, and for t > r(K), K(t) = .

Now we turn to the proof of Theorem 10. As volume and surface volume are continuous with respect to
Hausdorff distance and are strictly increasing with respect to containment in the family of convex bodies,

both vold(K(t)) and svold−1(K(t)) are positive continuous, strictly decreasing functions of t on the interval

[0, r(K)). This implies that I(K(t)) is also continuous on this interval.

Consider some 0 < t0 < r(K). For brevity, we set K(t0) = K0, N0 = N(K0), F(K(t0)) = F0 and I(K(t)) =

I(t). Let p ∈ bdK0. By our previous observation, for any 0 ≤ t ≤ t0 the minimum of the distances of p from

the supporting hyperplanes of bdK(t) is equal to t0 − t. Since this minimum is attained at some point q ∈
bdK(t), the ball p + (t − t0)Bd touches bdK(t) from inside. Thus, K0 + (t0 − t)Bd ⊆ K(t). On the other

hand, we also have hK(t)(m) = hK0
(m) + (t0 − t) for any m ∈ N0, which yields that K(t) ⊆ K0 + (t0 − t)F0.

Note that if K0 is smooth, then K(t) = K0 + (t0 − t)Bd for every 0 ≤ t ≤ t0, implying that K(t) is also

smooth on this interval. More generally, N(K(t)) decreases and F(K(t)) increases in time with respect to

containment; that is, for any 0 ≤ t1 < t2 < r(K) we have N(K(t2)) ⊆ N(K(t2)) and F(K(t1)) ⊆ F(K(t2)).

Set L(t) = K0 + (t0 − t)Bd, and M(t) = K0 + (t0 − t)F0. By Minkowski’s theorem on mixed volumes

[217], we have

(6.7)

vold (M (t)) =
d

∑
j=0

( )(t − t0)jVj (K0),
(6.8)

where Wj(K0) is the jth quermassintegral of K0, and we denote the mixed volume

V (

d−j

K0, …, K0

j

F0, …, F0) by Vj(K0).

Observe that W0(K0) = V0(K0) = vold(K0), and that dW1(K0) = svold−1(K0). We show that dV1(K0) =

svold−1(K0) as well. Since both mixed volumes and surface volume are continuous with respect to

Hausdorff distance, it suffices to prove this equality for polytopes, and thus, assume for the moment that

K0 is a polytope. In this case F0 is the polytope, circumscribed about Bd, whose outer unit facet normal

vectors coincide with those of K0. Thus, M(t) can be decomposed into K0, cylinders of height t0 − t with

the facets of K0 as bases, and sets in the (ρ(t0 − t))-neighborhood of the (d − 2)-faces of K(t0), where ρ is

the diameter of F0. The volume of this set is

0

vold (L (t)) =
d

∑
j=0

( )(t − t0)jWj (K0), and
d

j

d

j
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vold (M (t)) = vold (K0) + (t0 − t)svold−1 (K0) + O((t0 − t)2),

implying −dV1(K0) = d
dt vold (M (t)) t=t0 = −svold−1((K (t0))..

Let us define the quantity

I– (t) = vold(L(t))

svold−1(M(t))
d

d−1

,

and set τd =
vold(Bd)

(svold−1(Bd))
d

d−1

. We note that I– (t) depends on t0 and it is defined only for 0 ≤ t ≤ t0.

Furthermore, as both volume and surface volume are strictly increasing with respect to inclusion, we have
I– (t) < I(t)τd. Differentiating this quantity, the formulas in (6.7) and (6.8), and their connection with

svold−1(K0) yields that

I–
′
− (t0) = − d2

(svold−1(K0))
2d−1
d−1

(V1(K0)2 − V0 (K0)V2 (K0)),

which is not positive by the Alexandrov-Fenchel inequality (cf. Theorem 2).
Even though there are only partial results to characterize the equality case in Theorem 2, these results

permit us to show that if I–
′
−(t0) = 0, then K0 is homothetic to F0. To do it, we introduce some concepts

from [217].

Let p be a boundary point of a convex body Q in Ed. We denote the set of external unit normal vectors

of the supporting hyperplanes of Q at p by NQ(p). This set is a spherically convex set in Sd−1 for any

boundary point p of any convex body Q. Furthermore, the relative interiors of these sets cover Sd−1, and if

two of them intersect, then they coincide. In other words, for any m ∈ Sd−1 there is a boundary point p of

Q such that m is in the relative interior of NQ(p), and if m is in the relative interiors of both NQ(p1) and

NQ(p2), then NQ(p1) = NQ(p2). If m ∈ Sd−1 is in the relative interior of NQ(p), and the dimension of

NQ(p) is at most r, we say that m is an r-extreme normal vector of Q. Note that the set of 0-extreme

normal vectors of Q is exactly N(Q), defined in Definition 2. A supporting hyperplane H of Q is called r-
extreme if its outer unit normal vector is r-extreme.

A convex body L, containing the convex body K, is called an r-tangential body of K if every (d − r −

1)-extreme support hyperplane of L is a support hyperplane of K. By Theorem 2.2.10 in [217], if K ⊆ L

are convex bodies in Ed, then L is an r-tangential body of K if and only if every supporting hyperplane of

L that is not a supporting hyperplane of K contains only (r − 1)-singular points of bdL, that is, points p in

bdL for which the spherical dimension of NL(p) is at least d − r.

By Theorem 7.6.19 in [217], since both K0 and F0 are d-dimensional, (V1(K0))2 = V0(K0)V2(K0)

implies that K0 is homothetic to a (d − 2)-tangential body of F0. More specifically, K0 has a homothetic

copy K′ such that F0 ⊆ K′, and every supporting hyperplane of K′ that does not support F0 contains only

(d − 3)-singular, or in particular, singular points of K′. Hence, every supporting hyperplane of K′ that

contains a smooth point of bdK′ supports F0 as well. Thus, the definition of F0 and the relation F0⊆K′
yields F0 = K′. This means that if I–

′
−(t0) = 0, then F0 is homothetic to K0. Note that the reversed

statement also holds: if F0 is homothetic to K0, then I–
′
−(t0) = 0, and even more, in this case K(t) is

homothetic to K0 for any t > t0.

Let t⋆ denote the smallest value of t such that I–
′
−(t) = 0. Then K(t) is homothetic to K(t⋆) for any t ∈

[t⋆, r(K)), and I(t) is a constant on this interval. To finish the proof, we need to show that I(t) strictly

decreases on [0, t⋆].
Since I–

′
−(t0) < 0 for any 0 < t0 < t⋆, for any such t0 there is some ε = ε(K, t0) > 0 such that I(t)τd ≥ I(t) >

I(t0)τd for all t ∈ (t0 − ε, t0); that is, the function I(t) is locally strictly decreasing from the left at every

point. This and the continuity of I(t) implies that I(t) strictly decreases on this interval. Indeed, suppose for

∣
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(i)  

(ii)  

contradiction that for some t1 < t2 we have I(t1) ≤ I(t2). By continuity, I(t) attains its global maximum on

[t1,t2] at some t′ ∈ [t1,t2]. Clearly, since I(t) is locally strictly decreasing from the left at t′, it follows that t′
= t1 and I (t1) > I(t2), a contradiction.

Now we prove Theorem 11. Let K be a convex body in Ed, and let t0 > 0 be arbitrary. Note that, in the

Eikonal abrasion model, with K + t0F(K) playing the role of the initial body, at time t the evolving body is

K + (t0 − t)F(K). Since I(K + (t0 − t)F(K) is a decreasing function of t0 − t on the interval [0, t0], it

follows that I(K + tF(K)) is an increasing function of t on the same interval. Since t0 > 0 was arbitrary, we

have that I(K+tF(K)) increases on t ∈ [0, ∞).

6.3    Proof of Theorem 14

6.3.1 Preliminaries

Let P ∈ P3(n), and consider a triangulation C (P) of bdP such that all vertices of C (P) are vertices of P.

We call the convex hull of a triangle in C (P) and o a facial tetrahedron of P. Note that the volume of the

facial tetrahedron conv{o, p, q, r} of P is 1
6 |p, q, r|, where |p, q, r| is the determinant whose columns are

the vectors p, q and r.

For simplicity, for any points p1, p2, …, pn, we introduce the notation C(p1, p2, …, pn) = conv{p1, p2,

…, pn}. In this case for any pi, pj we set mij = 1
6  (pi × pj), Sij = [pi, pj], and sij = ǁpi − pjǁ. Finally, we note

that for any fixed value of n, a polyhedron with n vertices and maximal volume inscribed in S2 satisfies

Property Z in Definition 4.
We start the proof with two lemmas, which are the special cases of Theorem 16 and Lemma 142 for d =

3, proved in Subsection 6.4.1. These lemmas were first proved for d = 3 in [20].

Lemma 135 Let P = C(p1, p2, …, pn) ∈ P3(n) satisfy Property Z. Let C (P) be a triangulation of bdP

such that all vertices of C (P) are vertices of P. Assume that the vertices of C (P) adjacent to p1 are p2, p3,

…, pk in cyclic order in bdP.

Then, p1 = z
‖z‖ , where z = m23 + m34 + … + mk2.

Furthermore, every face of P is a triangle.

Lemma 136 Let P = C(p1, p2, …, pn) ∈ P3(n) satisfy Property Z. Let C (P) be a triangulation of bdP

such that all vertices of C (P) are vertices of P. Assume that the vertices of C (P) adjacent to p1 are p2, p3,

…, p5 in cyclic order in bdP. Then s12 = s14 and s13 = s15.

We also need the next remark and another lemma. Here, by a double n-pyramid we mean a double
pyramid with n vertices.

Remark 137 If, using the notation in Lemma 135, the points p2, p3, …, pr lie in a plane H, then by (i) of

Lemma 135, pi is one of the two tangent points of the supporting planes of S2 parallel to H. Thus, in this

case s12 = s13 = … = s1r.

Lemma 138 Let P = C(p1, p2, …, pn) ∈ P3(n) satisfy Property Z. If P is combinatorially equivalent to a

double n-pyramid, then P is a double n-pyramid, with a regular (n − 2)-gon centered at o as its base, and
the two tangent points of the supporting planes of S2 parallel to the plane of its base as apexes.

Furthermore, in this case vol3 (P) = n−2
3 sin 2π

n−2 .

Proof of Lemma 138. Since P is combinatorially equivalent to a double n-pyramid, it contains n − 2
vertices of valence 4, and two vertices of valence n − 2. Without loss of generality, we may assume that
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the edges of P are S(i(n−1)) and Sin for i = 1, 2, …, n − 2, and S12, S23, …, S(n−2)1. Then, by Lemma 136,

we have si(n−1) = sin for all n = 1, 2, …, n − 2. Thus, for i = 1, 2, …, n − 2, pi is contained in the plane

equidistant from pn−1 and pn, implying that the points p1, p2, …, pn − 2 are the vertices of a planar convex

(n−2)-gon P0, where the plane of P0 contains o. Furthermore, by Lemma 136, it follows that s12 = s23 =

… = s(n−2)1, or in other words, P0 is a regular (n − 2)-gon. Finally, Remark 137 implies that pn−1 and pn

are the two tangent points of the supporting planes of S2 parallel to the plane of P0. This proves the first

part of Lemma 138. The second part can be proved using elementary computations.

6.3.2    Proof of Theorem 14 for n ≤ 6

Consider the case that n = 4. Then P is a tetrahedron. Applying Remark 137 for P, we obtain that all edges

of P starting at any given vertex of P are of equal length. Thus, P is a regular tetrahedron inscribed in S2.

Now, assume that n = 5. Then P is a double 5-pyramid, and Theorem 14 immediately follows from
Lemma 138. If n = 6, then it is combinatorially equivalent to a double 6-pyramid. Thus, Lemma 138

implies that P is a regular octahedron inscribed in S2.

6.3.3    Proof of Theorem 14 for n = 7

It was shown by Bowen and Fisk [63] that up to combinatorial isomorphism, the only polyhedron with n =
7 vertices and triangular faces, and having no 3-valent vertices, is a double 7-pyramid. By Lemma 138,

there is a unique polyhedron satisfying Property Z and combinatorially equivalent to a double 7-pyramid,

and the volume of this polyhedron is vol3(P) = 5
3 sin 2π

5  = 1.58510 …. Thus, it is sufficient to prove that

if P has a 3-valent vertex, then its volume is less than 5
3 sin 2π

5 .

Let P = C(p1, p2, …, p7) ∈ P3(7), and assume that vol3(·) is maximal at P on the family P3(7). For

contradiction, suppose that p1 is a 3-valent vertex of P. Let the vertices of P adjacent to p1 be p2, p3, p4.

Since P satisfies Property Z, the line through o and p1 contains the circumcenter of the triangle T =

conv{p2, p3, p4}. Clearly, since P has maximal volume, it contains o, and thus, T contains its

circumcenter. Thus, by [106, p. 267], the area of T is at most 3√3
4 (1 − 1

3 tan2 2π−τ
6 ), where τ is the area

of the central projection of T onto S2. Let θ = 4π − τ. Then the central projection of the seven facial

tetrahedra of P not incident to p1 has total area θ. By [106, p. 275], the total volume of these seven facial

tetrahedra is at most

7
4 tan

2π− θ
7

6 (1 − 1
3 tan2 2π− θ

7

6 ) = 7
4 tan 10π+τ

42 (1 − 1
3 tan2 10π+τ

42 ).

Thus, vol3(P) ≤ f(τ), where

f (τ) = √3
4 (1 − 1

3 tan2 2π−τ
6 ) + 7

4 tan 10π+τ
42 (1 − 1

3 tan2 10π+τ
42 ).

A direct computation shows that f is concave, and its maximum is less than 5
3 sin 2π

5 . Thus, if P has a 3-

valent vertex, then its volume is not maximal on the family P3 (7).
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FIGURE 6.2
A medial polyhedron with 8 vertices.

6.3.4 Proof of Theorem 14 for n = 8

If n = 8 then the average valence of any polyhedron P in P3(8) is 4.5. Bowen and Fisk [63] showed that
up to combinatorial isomorphism, there are two simplical polyhedra with n = 8 vertices that have no 3-
valent vertices. One of these is a double 8-pyramid, and the other one has four 5-valent, and four 4-valent
vertices, and thus, it is medial. A schematic view of the second polyhedron can be seen on Figure 6.2. By

Lemma 138, if P is combinatorially equivalent to a double 8-pyramid and satisfies Property Z, then it is

uniquely determined up to isometries, and its volume is √3. In the next lemma, we consider the other
case.

Lemma 139 Let P ∈ P3(8) be a medial polyhedron satisfying Property Z. Then P is congruent to the

polyhedron in (ii) of Theorem 14, and its volume is √ 475+29√145
250  = 1.815716….

Proof of Lemma 139. We denote the vertices of P with p1, p2, …, p8 in such a way that it is consistent

with the notation in Figure 6.2. Without loss of generality, we may assume that the vertices are distinct.
Lemma 135 implies that

where c1, c4, c5 > 0. Taking the cross-product of the first expression with p1 yields that

(6.9)

Similarly, by taking the cross-product of the second expression with p4, we obtain that

(6.10)

From Lemma 136, it follows that 〈p1, p2〉 = 〈p2, p3〉 = 〈p3, p4〉, and that 〈p5, p6〉 = 〈p6, p7〉 = 〈p7, p8〉.
Furthermore, we obtain in the same way that 〈p2, p5〉 = 〈p2, p8〉, 〈p3, p5〉 = 〈p3, p8〉, 〈p1, p6〉 = 〈p4, p6〉
and 〈p1, p7〉 = 〈p4, p7〉. Using these equalities for the sum of (6.9) and (6.10), we have

p1 = c1 (m25 + m56, +m67 + m78 + m82),

p4 = c4 (m38 + m87, +m76 + m65 + m53),

p5 = c5 (m61 + m12, +m23 + m34 + m46),

⟨p1, p5 − p8⟩p2 + ⟨p1, p6 − p2⟩p5 + ⟨p1, p7 − p5⟩p6

+ ⟨p1, p8 − p6⟩p7 + ⟨p1, p2 − p7⟩p8 = o.

⟨p4, p8 − p5⟩p3 + ⟨p4, p3 − p6⟩p5 + ⟨p4, p5 − p7⟩p6

+ ⟨p4, p6 − p8⟩p7 + ⟨p4, p7 − p3⟩p8 = o.
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(6.11)

Note that the sum of the coefficients in (6.11) is zero, which implies that if at least one of them is non-

zero, then the vectors p2, p3, p6 and p7 are affinely dependent, and thus, they lie on a plane H.

Assume that there are no zero coefficients in (6.11). Since p1, p4, p5, p8 are 5-valent vertices, at most

one of them is contained in H. Thus, if all of them are contained in one of the two closed half spaces

bounded by H, then S26 or S27 is an edge, a contradiction. If one of them, say p8, is contained in one open

half space bounded by H, and the other three vertices are not, then S68 is an edge, a contradiction. Thus,

exactly two of them are contained in one open half space, and the other two are in the other open half

space. Note that each such pair is connected by an edge, implying that p5 and p8, and similarly p1 and p4,

are contained in different half spaces.

Without loss of generality, assume that p1 and p8 are on the same side of H. If S36 are adjacent vertices

of the quadrilateral conv{p2, p3, p6, p7}, then S13 or S68 is an edge. Hence, S36 is a diagonal of this

quadrilateral. Consider the case that p1, p8 are contained in a component of S2\H not greater than a

hemisphere. Then 〈p1, p2〉 = 〈p2, p3〉implies that s18 ≤ s15; that is, that 〈p1, p8〉 ≤ 〈p1, p5〉. Thus, the

coefficient of p2 in 6.11 is negative. Since S27 is a diagonal of the quadrilateral of conv{p2, p3, p6, p7},

the coefficient of p7 is also negative; that is, 〈p1, p8〉 < 〈p4, p8〉. From the equality〈p6, p7〉 = 〈p7, p8〉 it
similarly follows that 〈p1, p8〉 > 〈p4, p8〉; a contradiction. If p1, p8 are contained in a component of S2\H

greater than a hemisphere, an analogous argument gives a contradiction. Hence, at least one of the
coefficients in (6.11) is zero.

Consider the case that exactly one coefficient in (6.11) is zero. Without loss of generality, let 〈p1, p8〉 =
〈p4, p8〉. Since the sum of the coefficients is zero, we have that p2, p4, p6 are collinear, which contradicts

the assumption that they are distinct unit vectors. Assume that exactly two coefficients are zero, then the

remaining two vectors are antipodal. If, say, the coefficients of p6 and p7 are zero, then p2 and p3 are

antipodal, which, together with the equality s12 = s13 implies that p1 = p3; a contradiction. If, say, the

coefficients of p2 and p7 are zero, then 〈p1, p5〉 = 〈p1, p8〉 = 〈p4, p8〉. Since in this case p3 and p6 are

antipodal, from (6.11) it follows that the coefficient of p6 is also zero. If three coefficients are zero, then so

is the fourth. Hence, we have

⟨p1, p5⟩ = ⟨p1, p8⟩ = ⟨p4, p8⟩ = ⟨p4, p5⟩.

This implies that p1, p2, p3, p4 lie in the plane bisecting S58, and that p5, p6, p7, p8 lie in the plane

bisecting S14. Thus, p1, p2, p3, p4 and p5, p6, p7, p8 lie in orthogonal planes through o. Without loss of

generality, we may assume that for some 0 < φ, τ < π3 , we have

Substituting these into (6.9), we obtain

(cos 2φ+ cos 3φ cos τ) sin 3τ− cos 3φ sin τ (cos 3τ− cos τ) = 0,

or

3 cos 3φ sin 2τ + 2 cos 2φ sin 3τ = 0.

Applying Lemma 135 for p5 yields an expression similar to (6.9), from which we have

⟨p1, p5 − p8⟩p2 + ⟨p4, p8 − p5⟩p3+

+ ⟨p5, p4 − p1⟩p6 + ⟨p8, p1 − p4⟩p7 = o.

p1 = (sin 3φ, 0, cos 3φ), p5 = (0, − sin 3τ, − cos 3τ),

p2 = (sin φ, 0, cos φ), p6 = (0, − sin τ, − cos τ),

p3 = (− sin φ, 0, cos φ), p7 = (0, sin τ, − cos τ),

p4 = (− sin 3φ, 0, cos 3φ), p8 = (0, sin 3τ, − cos 3τ).
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3 cos 3τ sin 2φ + 2 cos 2τ sin 3φ = 0.

Rewriting these expressions we obtain

(6.12)

Subtracting and factoring yields

(2 cos φ cos τ + 1) (cos2 φ− cos2 τ) = 0.

From this, φ = τ, and the solution of this equation is cos φ = √ 15+√145
40 .

Now we prove Theorem 14 for n = 8.

Let P = C(p1, p2, …, p8) be a polyhedron in P3(8) that satisfies Property Z. Then P contains o and is

simplicial. By the argument in the first paragraph of this subsection and by Lemma 139, if P is a

polyhedron of maximal volume in P3(8) not having 3-valent vertices, then P is congruent to the

polyhedron in (ii) of Theorem 14, and its volume is √ 475+29√145
250  = 1.815716…. Thus, assume that at

least one vertex of P is 3-valent. Using the idea of the proof of Theorem 14 for n = 7, we have that

vol3 (P) ≤
√3
4 (1 − 1

3 tan2 2π−τ
6 ) + 9

4 tan 14π+τ
54 (1 − 1

3 tan2 14π+r
54 ).

This function is concave, and its maximum is strictly less than √ 475+29√145
250 .

6.4    Proofs of Theorems 16, 17 and 18

First, in Subsection 6.4.1, we prove Theorem 16 and derive some lemmas from it that will help us prove
Theorems 17 and 18. Then, in Subsection 6.4.2 we prove these two theorems.

6.4.1    Proof of Theorem 16 and some lemmas for Theorems 17 and 18

Proof of Theorem 16. We first recall some notation. Consider some d-polytope P inscribed in Sd−1 and

satisfying Property Z, that is, assume that no perturbation of any of its vertices increases its volume. Let p

∈ V(P) be a vertex of P, and let Fp denote the family of the facets of the triangulation C (P) of bdP,

containing p. For any facet F ∈ Fp, we set A(F, p) = vold−1(conv(V(F) ∪ {o}\{p})), and let m(F, p) be

the unit normal vector of the hyperplane, spanned by V(F) ∪ {o}\{p}, pointing in the direction of the half

space containing p. Recall that a facial simplex of C (P) is the convex hull of o and a face to C (P).

To prove the first part of the theorem, we need to prove that p = m
‖m‖ , where m =

∑
F∈Fp

A (F,p)m (F,p). Using the triangulation C (P), we have that for any p ∈ V(P), the volume of P

can be written as

vold (P) = V + ∑
F∈FP

vold (conv (F ∪ {o})) = V + 1
d
∑

F∈FP

A (F, p) ⟨m (F, p), p⟩,

where V is the sum of the volumes of the facial simplices of C (P), not containing p. From this it follows
that

vold (P) = V + 1
d ⟨p, m⟩.

3 cos φ (4 cos2 φ − 3) cos τ + (2 cos2 φ − 1) (4 cos2 τ − 1) = 0,

3 cos τ (4 cos2 τ − 3) cos φ + (2 cos2 τ − 1) (4 cos2 φ − 1) = 0.
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Now, since p ∈ Sd−1, if 〈p, m〉 ǁmǁ, then for any open set U ⊂ Sd−1 containing p, there is a point q ∈ U

such that 〈p, m〉 < 〈q, m〉, implying that

vold (P) < V + 1
d
⟨q, m⟩ ≤ vold (conv (((V (P) ∪ {q})\ {p}))),

which contradicts our assumption that P satisfies Property Z. Thus, we have 〈p, m〉 = ǁmǁ or in other

words, p = m
‖m‖ .

Now we prove the second part, and assume that P is not simplicial, that is, that some facet F of P is not

a simplex. First, we consider the case that F has d + 1 vertices, and, as a (d − 1)-polytope, it is simplicial.

Then F can be written in the form F = conv(S1 ⋃ S2, where S1 and S2 are two simplices with dim S1 +

dim S2 = dim F = d − 1, and S1 ⋂ S2 is a singleton {x} in the relative interiors of both S1 and S2 (cf.

[131]). Let V(S1) = {pi : i = 1, 2, …, m}, and V(S2) = {qi : i = 1, 2, …, d + 1 − m}. Then, we may

triangulate F in two different ways:

F1 = {conv(V (F\ {pi}) : i = 1, 2, … ,m}

and

F2 = {conv(V (F\ {qi}) : i = 1, 2, … , d + 1 − m}.

Observe that the union of the elements of F1 containing p1 is the closure of F\conv (V(F)\{p1}),

whereas for F2 it is F. Recall that for any simplex in Es, with external unit facet normals m1, m2, …, ms+1

belonging to the facets F1, F2, …, Fs+1, respectively, we have

s+1

∑
i=1

vols−1 (Fi)mi = o.
(6.13)

On the other hand, since the quantity in (i) must be independent from the triangulation, by (6.13) we have

reached a contradiction. We remark that if F is not simplicial, then F is a (d − k − 1)-fold pyramid over a
k-polytope with (k + 2) vertices (cf. [131]), for which a straightforward modification of our argument
yields the statement.

Finally, we consider the case that F has more than d + 1 vertices. Choose a set S of d + 1 vertices of F.

Note that any triangulation of convS for any S ⊂ V(F) can be extended to a triangulation of F; this can be

easily shown by induction. Thus, the assertion follows by applying the argument of the previous paragraph
for convS.

We state three consequences of Theorem 16, the third of which will play a crucial role in the proofs of
Theorems 17 and 18.

Corollary 140 If P is simplex satisfying Property Z, then P is a regular simplex inscribed in Sd−1.

Remark 141 Assume that P is a d-dimensional convex polytope satisfying Property Z, and for some p ∈
V(P), all the vertices of P adjacent to p are contained in a hyperplane H. Then the supporting hyperplane

of Sd−1 at p is parallel to H, or in other words, p is a normal vector to H. Thus, in this case all the edges

of P, starting at p, are of equal length.

Lemma 142 Let P be a convex d-dimensional polytope satisfying Property Z, and let p ∈ V(P). Let q1, q2

∈ V(P) be adjacent to p. Assume that any facet of P containing p contains at least one of q1 and q2, and

for any S⊂V(P) of cardinality d − 2, conv(S ⊂{p, q1}) is a facet of P not containing q2 if and only if

conv(S ⋃ {p, q2}) is a facet of P not containing q1. Then ǁq1 − pǁ = ǁq2 − pǁ.

Proof.
Let
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U = {S ⊂ V (P) : conv (S ∪ {p, q1})is a facet of P, but p, q1, q2 ∉ S},

and let

W = {S ⊂ V (P) : conv (S ∪ {p, q1, q2})is a facet of P, but p, q1, q2 ∉ S}.

Note that by our conditions, U is also the family of subsets of V(P), not containing p, q1, q2, such that

conv(S ⋃{p, q2}) is a facet of P.

Then, using a suitable labelling of the vertices of P, the total volume V of the facial simplices containing

p can be written as

where, for simplicity, we denote by |x1, x2, …, xd| the determinant of the d × d matrix with the vectors xi

∈ Ed as columns.

Observe that for any {xi1
, …, xid−3

} ∈ W, we have |p, q2, q2, xi1
, …, xid−3

| = 0, which, for every element

of W, we may subtract from V without changing its value. Thus, for some suitable finite set X ⊂ ( Ed)d−2

of (d − 2)-tuples of points in Ed, we have

V = 1
d! ∑

{y1,…,yd−2}∈X

|p, q1 − q2, y1, … , yd−2|.

Let f : Ed → ℝ be the linear functional f (x) = 1
d! ∑(y1,…,yd−2)∈X

|x,q1− q2, y1, …, yd−2|. Since P

satisfies Property Z, we have that p is a normal vector of the hyperplane {x ∈ Ed : f(x) = 0}. On the other

hand, f(q2 − q1) = 0, due to the properties of determinants. Thus, q2 − q1 and p are perpendicular, from

which it readily follows that 〈p, q1〉 = 〈p, q2〉, and hence,ǁq1 − pǁ = ǁq2 − pǁ.

6.4.2    Proofs of Theorems 17 and 18

In the proof of our results on d-polytopes with d + 2 or d + 3 vertices, we use extensively the properties of
the so-called Gale transform of a polytope (cf. [131] or [239]).

Consider a d-polytope P with vertex set V(P) = {pi : i = 1, 2, …, n}. Regarding Ed as the hyperplane

{xd+1 = 1} of Ed+1, we can represent V(P) as a (d + 1) × n matrix M, in which each column lists the

coordinates of a corresponding vertex in the standard basis of Ed+1. Clearly, this matrix has rank d + 1,

and thus, it defines a linear mapping L : En → Ed+1, with dim ker L = n − d − 1. Consider a basis {w1, w2,

…, wn−d−1} of ker L, and let L : En−d−1 → En be the linear map mapping the ith vector of the standard

basis of En−d−1 into wi. Then the matrix M  of L is an n ×(n − d − 1) matrix of (maximal) rank n − d − 1,

satisfying the equation MM = O, where O is the matrix with all entries equal to zero. Note that the rows

of M  can be represented as points of En−d−1. For any vertex pi ∈V(P), we call the ith row of L the Gale

transform of pi, and denote it by pi. Furthermore, the n-element multiset { pi : i = 1, 2, …, n} ⊂ En−d−1 is

called the Gale transform of P, and is denoted by P . If convS is a face of P for some S ⊂ V(P), then the

(multi)set of the Gale transform of the points of S is called a face of P . If S  is a face of P , then P \S  is

called a coface of P .

V = 1
d! ∑
{xi1

,…,xid−2
}∈U

(|p, q1, xi1 , … , xid−2 | − |p, q2, xi1 , … , xid−2 |)

+ 1
d! ∑
{xi1

,…,xid−3
}∈W

|p, q1, q2, xi1 , … , xid−3 |,

¯

¯̄

¯

¯̄

¯̄
¯

¯̄̄̄̄
¯
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(i)  

(ii)  

(iii)  

(iv)  

Let V = {qi : i = 1, 2, …, n} ⊂ En−d−1 be a (multi)set. We say that V is a Gale digram of P, if for some

Gale transform P′ the conditions o ∈ relintconv{qj : j ∈ I} and o ∈ relintconv{ pj : j ∈ I} are satisfied for

the same subsets of {1, 2, …, n}. If V ⊂ Sn−d−2, then V is a normalized Gale diagram (cf. [169]). A

standard Gale diagram is a normalized Gale diagram in which the consecutive diameters are equidistant.
A contracted Gale diagram is a standard Gale diagram which has the least possible number of diameters
among all isomorphic diagrams. We note that each d-polytope with at most d + 3 vertices may be
represented by a contracted Gale diagram (cf. [131] or [239]).

In the proofs, we need the following theorem from [131] or also from [239].

Theorem 143 We have the following.

A multiset P  of n points in En−d−1 is a Gale diagram of a d-polytope P with n vertices if and only if

every open half space in En−d−1 bounded by a hyperplane through o contains at least two points of

P  (or, alternatively, all the points of P  coincide with o and then n = d + 1 and P is a d-simplex).

If F is a facet of P, and Z is the corresponding coface, then in any Gale diagram P  of P, Z  is the

set of vertices of a (non-degenerate) set with o in the relative interior of its convex hull.

A polytope P is simplicial if and only if, for every hyperplane H containing o ∈ En−d−1, we have o ∉
relintconv( P  ⋂ H).

A polytope P is a pyramid if and only if at least one point of P  coincides with the origin o ∈ En − d

− 1.

Remark 144 We note that (ii) can be stated in a more general form: F is a face of P if and only if for the

corresponding coface Z of P, we have o ∈ relintconv Z .

Proof of Theorem 17. Without loss of generality, we may assume that d ≥ 3, as otherwise the assertion is

trivial. Let P be a polytope, inscribed in Sd−1, with d + 2 vertices and satisfying vold(P) = vd(d + 2).

In the proof we use a contracted Gale diagram P  of P. Since by Theorem 16 P is simplicial, and since d

+ 2 − d − 1 = 1, (iii) of Theorem 143 yields that P  consists of the points −1 and 1 on the real line. We may
assume that the multiplicity of −1 is k + 1 and that of 1 is d + 1 − k. From (i) of Theorem 143, it follows
that 2 ≤ k ≤ d. Without loss of generality, we may assume that k + 1 ≤ d + 1 − k, or in other words, that k ≤

⌊ d2 ⌋. By (ii) of Theorem 143, the facets of P  are the complements of the pairs of the form {−1, 1}.

Let V+(P) be the set of vertices of P represented by 1 in P , and let V−(P) = V(P)\V+(P). Consider any p

∈ V+(P) and q1, q2 ∈ V−(P). Observe that both q1 and q2 are adjacent to p. Furthermore, for P and these

three vertices the conditions of Lemma 142 are satisfied, which yields that ǁq2 − pǁ = ǁq1 − pǁ. Hence,

there is some δ > 0 such that for any p ∈ V+(P) and q ∈ V−(P), we have ǁq − pǁ = δ. Thus, V+(P) and V−(P)

are contained in orthogonal linear subspaces. Since P is d-dimensional, it follows that these subspaces are
orthogonal complements of each other.

Let P1 = convV+(P) and P2 = convV−(P). Then P1 is a k-dimensional, and P2 is a (d − k)-dimensional

simplex, and we have

vold (P) =
k!(d−k)!

d! volk (P1)vold−k (P2).

To find the simplices of maximal volume inscribed in Sk−1 and Sd−k−1, we may observe that these

simplices satisfy Property Z. Thus, we can apply Corollary 140, which yields that P1 and P2 are regular.

It is well known (and can be easily computed from its standard representation in Ek) that the volume of

a regular k-dimensional simplex inscribed in Sk−1 is 
(k+1)

k+1
2

k
k
2 k!

. Hence, we have

¯

¯

¯̄

¯̄

¯

¯

¯

¯
¯

¯

¯
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vold (P) =
k!(d−k)!

d!
(k+1)

k+1
2

k
k
2 k!

(d−k+1)
d−k+1

2

(d−k)
d−k

2 (d−k)!
,

or equivalently,

vold (P) = 1
d!
√(1 + 1

k )
k
(1 + 1

d−k )
d−k√(k + 1) (d − k + 1).
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(i)  

(ii)  

We need to maximize this quantity for k = 1, 2, …, ⌊ d
2 ⌋. If d is even, the assertion follows from the

inequality for the arithmetic and the geometric means. If d is odd, we may use the strict concavity of the

function x ↦ x log(1 + 1
x

), x > 0.

Remark 145 The use of Gale diagrams in the proof of Theorem 17 can be avoided if we recall the fact
that any simplicial d-polytope is the convex hull of two simplices, having a single point, contained in the
relative interiors of both simplices, as their intersection (cf [239]). The vertex sets of these simplices form
the unique Radon partition of the point set.

Proof of Theorem 18. Assume that P is a d-polytope, inscribed in Sd−1 and satisfying Property Z.

To prove the assertion, we use a contracted Gale diagram P  of P. Since by Theorem 16 P is simplicial,

P  is a multiset consisting of the vertices of a regular (2k + 1)-gon G(P), with k ≥ 1 and the origin o ∈ E2

as its center, such that the multiplicity of each vertex is at least one, and the sum of their multiplicities is d
+ 3.

Applying Remark 144, we have that p, q ∈ V(P) are not adjacent if and only if there is an open half

plane, containing o in its boundary, that contains only the two points p ,  q of P . In this case we have one
of the following:

k = 2, and the points are two consecutive vertices of the pentagon G(P), with multiplicity one.

k = 1, and the points are either consecutive vertices of G(P) with multiplicity one, or belong to the

same vertex of G(P), which has multiplicity exactly two.

Now, consider the case that some point of P  has multiplicity greater than one, and let p1, p2, …, pm ∈
V(P) be represented by this point. We set V1 = {p1, p2, …, pm} and V2 = V(P)\V1. From the observation in

the previous paragraph, it follows that each vertex in V1 is connected to every vertex in V2 by an edge, and

for any two vertices in V1, any facet contains at least one of them. Furthermore, if a facet of P contains

exactly s ≥ 1 elements of V1, then, replacing them with any other s distinct vertices from V1 we obtain

another facet of P. Thus, we may apply Lemma 142, which, by the simplicity of P, yields that the linear
hulls L1 and L2 of V1 and V2, respectively, are orthogonal. Clearly, we may assume that the sum of the

dimensions of these two subspaces is d, as P is d-dimensional. Hence, we have either dim L1 = m − 1 and

dim L2 = d + 1 − m, or dim L1 = m − 2 and dim L2 = d + 2 − m. Note that in the first case convV1 is a

simplex, and in the second one convV2 is a simplex.

Observe that since P satisfies Property Z, then both convV1 and convV2 satisfy it in their linear hulls, as

otherwise a slight modification of either V1 or V2 would yield a polytope P′ ∈ inscribed in Sd−1, having d

+ 3 vertices and satisfying vold(P) < vold(P′), contradicting the definition of Property Z. Thus, by

Corollary 140 and Theorem 17, we have that one of convV1 and convV2 is a regular simplex, and the other

one is the convex hull of two regular simplices, contained in orthogonal linear subspaces. Hence, P is the
convex hull of three regular simplices, contained in pairwise orthogonal linear subspaces, and in this case
the assertion follows from the argument in the proof of Theorem 17.

Observe that since P  consists of an odd number of points if we do not count multiplicity, if d is odd,

then some vertex of P  has multiplicity strictly greater than one, and thus, in this case the assertion readily

follows. Assume that every vertex of P  has multiplicity one. Then d is even, and P  is the vertex set of a
regular d + 3-gon. We need to show only that P is cyclic.

We recall that every cyclic d-polytope is neighborly, that is, the convex hull of any at most d2  vertices is

a face of the polytope. Furthermore, every neighborly d-polytope with n ≥ d + 3 vertices is cyclic if d is
even (cf. [131]), whereas in odd dimensions there are non-cyclic neighborly polytopes. Thus, we show

only that P is neighborly. Indeed, for any d2  vertices of P, it is clear that the convex hull of the points of P

corresponding to the remaining d2  + 3 vertices of P contains o in its interior, since every open half plane,

containing o in its boundary, contains either d2  + 1 or d2 + 2 points of P .

The rest of the assertion follows from the volume estimates in the proof of Theorem 17.

¯
¯

¯̄̄

¯

¯
¯
¯̄

¯

¯
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6.5    Proof of Theorem 21

As in the formulation of Theorem 21, let d ≥ 2, and P ⊂ Ed be a d-dimensional convex polytope with

vertices p1, p2, …, pn, n ≥ 5, and n > d.

First, note that (ii) or (iii) clearly implies (i). We prove that (i) yields (ii).

As a first step, we show that the points p1, …, pd+1 are affinely independent; in particular, we show, by

induction on s, that for any 2 ≤ s ≤ d + 1, aff{p1, p2, …, ps} is an (s − 1)-flat. First, if p1 = p2, then P is a

single point, a contradiction, and thus, the statement holds for s = 2. Now we assume that aff{p1, …, ps} is

an (s − 1)-flat for some 2 ≤ s ≤ d, and show that aff{p1, …, ps+1} is an s-flat. Observe that by (i), for every

integer j, aff{pj+1, …, pj+s} is also an (s − 1)-flat. On the other hand, if aff{p1, …, ps+1} is not an s-flat,

then aff{p1, …, ps+1} = aff{p1, …, ps} = aff{p2, …, ps+1}, which, by (i) yields that P ⊂ aff{p1, …, ps},

a contradiction. Thus, we have that p1, …, pd+1 are affinely independent.

Let ϕ : Ed → Ed be the affine transformation defined by ϕ (ps) = ps+1 for s = 1, 2, …, d + 1. Since

conv{p1, …, pd+1} and conv{p2, …, pd+2} are congruent, ϕ is a congruence. Note that as p1, …, pd+1 are

affinely independent, for any q ∈ Ed, the distances of q from these points determine q. Thus, for any

integer j, we have ϕ (pj) = pj+1, and (ii) holds.

Finally, we prove that (ii) yields (iii). Without loss of generality, let Bd be the unique smallest ball that

contains P. Then Bd is the smallest ball containing ϕ(P) as well. Thus, ϕ is an isometry preserving Bd,

from which it follows that pj ∈ Sd−1 if and only if pj+1 ∈ Sd−1. This implies that P is inscribed in Sd−1.

We present two different arguments that finish the proof from this point.
First proof of (iii).

Let E be the unique smallest volume ellipsoid containing P. Since E is unique, Sym(P) ≤ Sym(E). On
the other hand, the only ellipsoids whose symmetry groups contain an element ϕ of order n ≥ 5 such that

for some p ∈ Ed, the affine hull of the orbit of p is Ed, are balls. Thus, without loss of generality, we may

assume that E = Bd. We use the following, well-known properties of the smallest volume ellipsoid

circumscribed about P (cf., e.g., [141]).

Theorem 146 Let K ⊂ Bd be a compact, convex set. Then Bd is the smallest volume ellipsoid

circumscribed about K if and only if for some d ≤ n ≤ 
d(d+3)

2  and k = 1, …, n, there are vk ∈ Sd−1 ⋂ bdK

and λk > 0 such that

,
(6.14)

where Id is the d-dimensional identity matrix, and for x, y ∈ Ed, x ⊗ y denotes the d × d matrix xyT.

Thus, since P ⋂ Bd is the vertex set of P, there are some non-negative coefficients λ1, λ2, …, λn which,

together with the points p1, p2, …, pn, satisfy the conditions in (6.14). We show that these points, with the

coefficients λ1 = λ2 = … = λn = dn  also satisfy the conditions in (6.14). Indeed, set 0 < λ = 
∑n

j=1
λj

n . By (ii),

we have that ∑n

j=1
λj+kpj = 0 for every integer k, and thus, ∑n

j+1
λpj = 0. Similarly, since Id =

∑n

j=1
λj+kpj ⊗ pj holds for every integer k, it follows that Id = λ ∑n

j=1
pj ⊗ pj. Since ǁpjǁ = 1 for

every value of j, this equality implies that d = tr(Id) = nλ, that is, λ = dn .

In the following we set pk = √ d
n pk for k = 1, 2, …, n, and observe that

(6.15)

0 =
n

∑
k=1

λkvk, Id=
n

∑
k=1

λkvk ⊗ vk

¯
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,

Let G be the Gram matrix of the vectors pk, that is, Gjk = ⟨pj, pk⟩. Then, using an elementary algebraic

transformation, from the second equality in (6.15) we obtain that G2 = G, and thus, that G is the matrix of
an orthogonal projection in En into a d-dimensional subspace, with rank d. This yields that G has two
eigenvalues, 1 and 0, with multiplicities d and n − d, respectively, and, furthermore, we can write G in the

form AAT, where A is an (n × d) matrix, and the columns of A form an orthonormal system in Ed.

Equivalently, G can be written in the form G = BDBT, where D is the diagonal matrix in which the first d
diagonal elements are equal to 1, and the last n − d elements are equal to 0, and B is an orthogonal matrix
in En. Here, A is the matrix composed of the first d columns of B. Observe that pj is the jth row of A, or

equivalently, if we extend A to an orthogonal matrix B, then the coordinates of pj are the first d

coordinates of the jth vector in the orthonormal system formed by the rows of B.
By (ii), G is a circulant matrix. Let (c0, c1, …, cn−1) be the first row of G. Then the eigenvalues of G are

µk = ∑n−1

j=0
cjϵ

jk, where ϵ =cos 2π
n

+ i sin 2π
n

, and the corresponding eigenvectors are

xk = 1
√n

(1, ϵk, …, ϵ(n−1)k). Now all eigenvalues are 0 or 1, and hence, µk = 1 if and only if µn−k = 1.

Thus, the real 2-flat spanned by yk = 1
2 (xk + xn−k) and y′

k = 1
2i (xk − xn−k) is contained in one of the two

eigenspaces. Let F be the eigenspace associated to 1. Then F⊥ is the eigenspace associated to 0. The

definition of G and the fact that ∑n

k=1
pk= 0 yield that ∑n

k=1
ck = 0. Thus, µ0 = 0.

If n is even; that is, if µn/2 exists, then n − d is even if and only if d is even. Hence, µ0 = 0 implies that if

n is even, then µn/2 = 0 if and only if d is even. This yields that if d is even, then F is spanned by pairs of

vectors of the form yk, y′
k, where 0 < k < n

2 , and if d is odd, then F is spanned by the vector (1, −1, …,

(−1)n), and by pairs of vectors of the form yk, y′
k, where 0 < k < n2 . This shows that for some values 0 < k1

< k2 < …< k⌊d/2⌋ < n2 , the Gram matrix of the vertices of √ d
n

Q (k1, k2, …, k⌊d/2⌋) is equal to G. On the

other hand, G determines the pairwise distances between the points p1, p2, …, pn. Thus, P is congruent

to √ d
n

Q (k1, k2, …, k⌊d/2⌋), and the assertion readily follows.

Second proof of (iii).

Using the fact that P is inscribed in Sd−1 it follows that ϕ in (ii) is an orthogonal linear transformation. Let
its matrix be denoted by A. Since ϕ is invertible, the diagonal elements in the Jordan form of A are non-
zero, from which it easily follows that A is diagonalizable over ℂ. As ϕ is a real matrix, its complex

eigenvalues are either real, or pairs of conjugate non-real complex numbers. Note that if z = x + iy ∈ ℂd is

an eigenvector of A associated to the eigenvalue λ ∉ ℝ, then the linear subspace in Ed, spanned by x and y,

is invariant under ϕ. Thus, in a suitable orthonormal basis, the matrix of ϕ is a block diagonal matrix,
where each block is either 1 × 1 (belonging to a real eigenvalue), or 2 × 2 (belonging to a pair of conjugate
complex eigenvalues). Let these blocks be B1, B2, …, Bk.

As ϕ is orthogonal, each 1 × 1 block is either 1 or −1 (corresponding to the identity, and to the reflection
about the origin, respectively), and since 2 × 2 blocks belong to non-real eigenvalues (that is, they are not
diagonalizable as 2 × 2 matrices), they are 2-dimensional rotation matrices. From the fact that the affine

hull of the vectors p1, …, pn is Ed, it follows that there is no block equal to 1, and there is at most one

block equal to −1. Thus, if d is even, then each block is a 2-dimensional rotation, and if d is odd, then one
block is a reflection about the origin, and every other block is a 2-dimensional rotation. In the latter case,
we can assume that the last block belongs to the reflection, that is, B(d+1)/2 = −1.

Clearly, without loss of generality, we may assume that each angle of rotation is strictly less than π.
Thus, and since the order of each rotation is a divisor of n, for i = 1, 2, …, ⌊d/2⌋, we have

Bi = [ ]

0 =
n

∑
k=1

pk, Id=
n

∑
k=1

pk ⊗ p k̄̄̄

¯̄̄

¯
¯

¯

¯̄̄

cos 2kiπ
n

− sin 2kiπ
n

sin 2kiπ
n

cos 2kiπ
n
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(i)  

(ii)  

(iii)  

(iv)  

(v)  

for some 0 < ki < n2 . The fact that the affine hull of the points p1, p2, …, pn is Ed implies that the values ki

are pairwise different. Hence, setting pn = 1

√⌊ d+1
2 ⌋

(1, 0, 1, 0,…), which we can do without loss of

generality, and observing that pi = ϕi(pn), the assertion follows.

6.6    Proof of Theorem 22

Consider a 3-connected planar graph G = (V, E) with face set F. A primal-dual circle representation of G
is a collection of two families of circles {Cx : x ∈ V} and {Dy : y ∈ F} in E2, called vertex circles and face

circles, respectively, satisfying the following conditions.

The vertex circles Cx have pairwise disjoint interiors.

All face circles Dy are contained in the circle Do, corresponding to the outer face o ∈ F, and all

other face-circles have pairwise disjoint interiors.

Furthermore, for every edge xx′ ∈ E, and the corresponding dual edge yy′ in the dual graph of G (that is,

the edge connecting the faces in F separated by xx′)

Circles Cx and Cx′ are tangent at a point p.

Circles Dy and Dy′ are tangent at the same point p.

The two tangent lines of the pairs Cx, Cx′ and Dy, Dy′ at p are perpendicular.

Theorem 22 can be formulated in a different form.

Theorem 147 Every 3-connected plane graph G admits a primal-dual circle representation. Furthermore,
this representation is unique up to Möbius transformations.

First, we show that Theorems 22 and 147 are equivalent. Recall the famous theorem of Steinitz [228]

that a graph is the edge graph of a convex polyhedron in E3 if and only if it is planar and 3-connected.
Thus, these graphs correspond to the combinatorial classes of convex polyhedra. Now, if Theorem 147
holds, then projecting a primal-dual representation of such a graph G to S2 via stereographic projection

yields a similar representation of G on S2. It is easy to see that the planes through the face circles of this

representation are the face planes of a convex polyhedron P whose vertices lie on the rays all starting at o,

and each passing through the center of one of the vertex circles. Then the edge graph of P is G, and P is

midscribed to S2. On the other hand, if P is midscribed to S2, then the tangent points on the edges

generate two circle families on S2, one of them consisting of the inscribed circles of the faces of P, and the
other one consisting of all circles which pass through the tangent points of all edges adjacent to a given
vertex. Projecting these families to E2 via stereographic projection, we obtain a primal-dual circle

representation of the edge graph of P. On the other hand, any Möbius transformation of E2 or S2 can be

written as the composition of finitely many stereographic projections from E2 to S2, and from S2 to E2.
Hence, to prove Theorem 22, it suffices to prove Theorem 147. The proof of Theorem 147 we present

here can be found in [112].
Consider any straight-line drawing of G. Using stereographic projection, this drawing can be projected

onto S2. Note that every planar graph, or its dual, has a triangular face. This, since on S2 the roles of G
and its dual can be switched, we may assume that by projecting back the representation from a suitable
point, we obtain a representation in which the vertices of the outer face, which we call outer vertices, are
the vertices of a regular triangle. In other words, we may restrict the proof to planar graphs whose outer
face is a triangle.

Assume, for the moment, that we already found a primal-dual circle representation of G. This
representation gives rise to a straight-line representation of G as well as its dual graph G*. In the
representation of G* we imagine the dual of the outer face as the point at infinity, and edges adjacent to it
as rays. The superposition of these two straight-line representations tessellate the convex hull of the outer
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vertices into axially symmetric quadrangles with two opposite right angles, called kites. These kites are in
one-to-one correspondence with incident pairs (x, y), where x is a primal vertex, and y is a dual vertex. The
symmetry axis of this kite is the line through the centers of Cx and Dy, and the sides are the radius rx of

Cx, and the radius ry of Dy. Let αxy and αyx denote the angles of this kite at the center of Cx and at the

center of Dy, respectively (cf. Figure 6.3). Then,

(6.16)

and αxy + αyx = π.

We define the angle graph Ga of G as the graph with vertices V ⋃ F, and whose edges are the incident

pairs (x, y) with x ∈ V and y ∈ F. Note that it is a quadrangulation of the plane, and thus, it is bipartite. The

reduced angle graph Ga0 of G is defined as the graph obtained from Ga by deleting the vertex
corresponding to the outer face of G (Figure 6.4 shows an example of such a graph). Let V a

0  and Ea
0

denote the set of the vertices and the edges of Ga
0, respectively.

FIGURE 6.3
The kite corresponding to the vertex-face incidence pair (x, y).

In the proof we need the next lemma.

Lemma 148 For any S ⊆ V a
0 , the subgraph of Ga

0 induced by S has at most 2|S| − 5 edges.

Proof. Since Ga
0 is bipartite, all faces of Ga

0 are adjacent to at least 4 edges. Thus, Euler’s formula yields

that Ea
0 ≤ 2 V a

0 − 4, with equality if and only if Ga
0 is a quadrangulation. But the outer face of Ga

0 is a

hexagon, implying that Ea
0 = 2 V a

0 − 5. Assume now that S ⊆ V a
0 . Since G is 3-connected, there is no

separating 4-cycle in Ga. Thus, the outer face of the subgraph induced by S is not a quadrangle, yet this
graph is bipartite. Thus, the subgraph has at most 2|S| − 5 edges.

Before proving the theorem, observe that in a primal-dual circle representation of G, for any vertex x ∈
V a

0 , we have

∑
xy∈Ea

0

αxy = {

Thus, we define the target angles β for x ∈ V a
0  such that β(x) = π3  if x is an outer vertex of G, and β(x) =

2π otherwise.
First, we assign some radii to the vertices of Ga

0; that is, we consider an arbitrary positive function r :

V a
0  → ℝ. The first step of the proof is to show that starting with these values and applying an algorithm to

αxy = 2 arctan rx
ry

, andαyx = 2 arctan
ry
rx

,∣ ∣ ∣ ∣ π
3 if x is an outer vertex of G,

2π otherwise.



93

modify the radii, for any x ∈ V a
0 , the sum ∑

xy∈Ea
0

αxy converges to the target value β(x). Next, we show

that, up to scaling, there are unique values of r(x) satisfying this condition. Finally, we prove that, up to
congruence, the kites defined by these values can be uniquely arranged in such a way that preserve the
prescribed incidence relations such that their union is the convex hull of the outer vertices of G, and show
that this arrangement satisfies the conditions in the definition of a primal-dual circle representation. Note
that since any primal-dual circle representation can be transformed into a representation where the outer
vertices are vertices of a regular triangle, the second part of Theorem 147 also follows from our argument.

FIGURE 6.4
(a) The edge graph G of a pentagon based prism. (b) The reduced angle graph of G. (c) The
primal-dual completion of the graph.

Constructing proper radii r. For any x ∈ V a
0 , let α (x) = ∑

xy∈Ea
0

αxy. First, we observe that ‘in

average’, every choice of the r(x)s is suitable. Indeed,

∑
x∈V a

0

α (x) = ∑
xy∈Ea

0

(αxy + αyx) = ∑
xy∈Ea

0

π = Ea
0 π,

and on the other hand,

∑
x∈V a

0

β (x) = (|V a
0 | − 3)2π + 3 ⋅

π

3
= (2 |V a

0 | − 5)π = Ea
0 π.

Thus, if α(x) ≠ β(x) for some x ∈ V a
0 , then both sets

are non-empty.
If we increase the radius rx for some x ∈ V+, and keep the radius of the rest of the vertices, then by

(6.16), α(x) decreases, and for any y ≠ x, α(y) may only increase. Thus, we define the following procedure.

repeat forever:

 for all x ∈ V a
0 :

  if x ∈ V+, then increase r(x) to make α(x) = β(x).

We show that under this procedure, the radii converge to an assignment satisfying α(x) = β(x) for all x ∈
V a

0 . Since increasing r(x) does not decrease the value of α(y) for any y ≠ x, during this process, a vertex

does not move from V+ to V−. Thus, if the procedure does not terminate under finitely many steps

producing a suitable assignment, then some vertex x ∈ V− remains in this set indefinitely. Without loss of

generality, omitting the initial finitely many steps in this procedure, we may assume that the set V− does

not change under the process.
It is easy to see that if all radii converge under the process, then the limit radii satisfy the required

conditions. Thus, suppose for contradiction that the subset D of V a
0  containing the vertices whose radii do∣ ∣ ∣ ∣V+ = {x ∈ V a

0 : α (x) > β (x)} and V− = {x ∈ V a
0 : α (x) < β (x)}
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not converge is not empty.

Since radii do not decrease, if x ∈ D, then r(x) → ∞. Furthermore, D ⋂ V− = . Let us denote the set of

outer vertices in D by Do. If x ∈ D and y ∉ D, then αxy → 0 by (6.16). Thus, for any given ε > 0, the

process leads to an assignment satisfying the inequality ∑
y∉D,xy∈Ea

0

αxy ≤
ε

V a
0

 for all x ∈ D. Then the

following holds.

(6.17)

∑
x∈D

α (x) = ∑
x∈D\V−

α (x) ≥ ∑
x∈D

β (x) = 2π |D| −
5π

3
|Do|.

(6.18)

Consider the case that |D| ≥ 5. Comparing these bounds, we obtain that |Do| = 3, and Ga
0 [D] has 2|D| − 5

edges. Thus, Ga
0 [D] is an internal quadran-gulation. Since Ga

0 contains no separating 4-cycle, it follows

that Ga
0 [D] = Ga

0. Thus, D = V a
0 , which contradicts our observation that V− = .

Assume that 3 ≤ |D| ≤ 4 and |Do| = 3. Then, by the argument above we have that Ga
0 [D] has at most 2|D|

− 6 edges. But then, ε + (2|D| − 6)π ≥ (2|D| − 5)π = 2π|D| − 5π
3 |Do| leads to a contradiction. If |Do| ≤ 2, then

ε + (2|D| − 5)π ≥ 2π|D| − 5π
3 |Do| is again a contradiction.

If 1 ≤ |D| ≤ 2 and Ga
0 [D] has no edge, then, Do ⊆ D yields a contradiction with ε > 2π|D| − 5π

3 |Do|. If

there is an edge, then |D| = 2 and |Do| ≤ 1, and ε + π ≥ 4π − 5π
3 |Do| is a contradiction.

Uniqueness of radii up to scaling. For contradiction, suppose that there are some vectors of radii r and r′
satisfying αr(x) = αr′(x) = β(x) for all x ∈ Da

0. Without loss of generality, we may assume that r(z) = r′(z)

for some z ∈ Da
0. Let S = {x ∈ Da

0 : r(x) < r′(x)}. Assume that S ≠ , and observe that z ∉ S. Then

Here, the second equality holds because if x, y ∈ S, then αxy + αyx = π, and thus, the contribution of the

edge xy cancels out. The last inequality holds since r(x) > r′(x) and r(y) ≤ r′(y) imply that αxy(r) < αxy(r′),
and the connectedness of Ga

0 implies that there is an edge xy with x ∈ S and y ∉ S.

Arrangement of the kites. Assume that we manage to arrange the kites defined by the radii in the first step
satisfying the intended side-to-side contacts. We show that in this case the circles centered at the vertices
of the kites and with the prescribed radii satisfy properties (i) to (v) in the definition of a primal-dual circle
representation.

Note that the kites induce a straight-line drawing of G and a straight-line drawing of its dual G* such

that the outer vertex of G* is at ∞, and the edges ending here are represented by rays. Any two edges xx′ ∈
E and yy′ ∈ E* meet perpendicularly, implying (v).

For a vertex x ∈ V a
0 , consider the set of kites containing x. These kites are put together in a cyclic order

around x, forming a convex polygon Px. If x is not an outer vertex of G, then since β(x) = 2π, Px surrounds

x. All edges of the kites containing x have the same length r(x), and the circle Cx having radius r(x) is

inscribed in Px, and touches its sides at the right-angled vertices of the kites. If x is an outer vertex of G,

we have a similar configuration, but the union of the kites is a convex polygon whose angle is π
3  at x.

Since the polygons Px are mutually non-overlapping, this implies (i) and (iii).

The union of all kites is a triangle T with all angles equal to π
3 . Thus, T is regular, and the radii

assigned to the vertices of T are equal. This yields that the three circles assigned to the vertices of T meet

0∣ ∣∑
x∈D

α (x) ≤ ε + ∑
kite withx,y∈D

(αxy + αyx) = ε + ∑
xy edge of Ga

0[D]

π

≤ ε + (2 |D| − 5)π.

0

0

0 = ∑
x∈S

(αr (x) − αr′ (x)) = ∑
x∈

∑
xy∈Ea

0

(αxy (r) − αxy (r′))

= ∑
x∈S,y∉S,xy∈Ea

0

(αxy (r) − αxy (r′)) < 0.
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(i)  

(ii)  

(iii)  

at the midpoints of the sides. Let Do denote the incircle of T. Since any polygon Px, associated to a vertex

of V a
0  distinct from the outer vertices of G, is contained in the convex hull of the three midpoints of T, Do

contains all circles in the dual family. This implies (ii), and (iv) follows by an argument like the one for
(iii).

The unique existence of the layout of the kites follows from the following, more general lemma.

Lemma 149 Let H be a 3-connected planar graph. For every inner face f of H let Pf be a simple polygon

whose corners are labeled with the vertices of f in the same counterclockwise order. The vertex of Pf

labeled with v is denoted by p(f, v), and the angle of Pf at p(f, v) by α(f, v). Assume that the following

conditions are satisfied.

∑k

i=1
α (fi, v) = 2π for every inner vertex v of H, with incident faces f1, f2, …, fk.

∑k

i=1
α (fi, v) ≤ π for every outer vertex v of H, with incident faces f1, f2, …, fk.

ǁp(f1, v) − p(f1, w)ǁ = ǁp(f2, v) − p(f2, w)ǁ for every inner edge vw of H, with incident faces f1 and f2.

Then, up to congruence, there is a unique crossing-free straight-line drawing of H such that the drawing

of every inner face f can be obtained by Pf by a rigid motion.

Proof. Let H* denote the dual graph of H without the vertex associated to the outer face of H, and let S be

a spanning tree of H*. Then, by (iii), we can glue the polygons Pf of all inner faces of H along the edges of

S, in a unique way. This determines the position of every polygon Pf, up to a global motion, which already

implies the uniqueness of the drawing.
We prove that the obtained configuration has no overlaps or holes. Since the pairs of faces

corresponding to the edges of S do not overlap, we need to show it for pairs corresponding to edges of the

complement S  of S. Note that since H is planar, S  contains no cycles, and thus, it is a forest. Consider a

leaf v of this forest which is an inner vertex of H, and let e be the unique edge in S  incident to v. By the
construction, we have that all other edges e′ ≠ e in H, incident to v, are attached in a proper way. But then,

by (i)-(iii), e is also attached in a proper way. Removing v from S  again we obtain a forest, and hence, we

may continue this process until all inner edges of H are checked. After glueing the polygons Pf, the

positions of all vertices are determined, and by (ii), all angles on the boundary are convex. Let Vo be the

set of the outer vertices of H.

Note that if deg(f) = k, then the sum of the angles of Pf is (k − 2)π. Summing up for all polygons Pf and

using Euler’s formula, we have ∑f(deg(f) − 2)π = (2|E| − 2|F|) π − (|Vo| − 2) π = (2|V| − |Vo| − 2) π. On the

other hand, by (i) and (ii), we have ∑f(deg(f) − 2)π = (|V| − |Vo|) 2π + ∑v∈Vo
 ∑i α(v, fi). Thus, it follows that

∑v∈Vo
 ∑i α(v, fi) = (|Vo| − 2)π, which is the sum of the angles of a convex |Vo|-gon. Hence, the boundary of

the union of the glued polygons is a simple polygonal curve, and therefore this representation contains no
holes.

6.7    Proof of Theorem 27

Imagine Sd as the ‘sphere at infinity’ of the hyperbolic space ℍd+1 in the Poincaré ball model. Then the

Möbius transformations of Sd correspond to the hyperbolic isometries of ℍd+1. The main idea of the proof

is to show that in ℍd+1, there is a unique point whose sum of ‘distances’ from the ideal points v1, v2, …,

vn is minimal. Since the hyperbolic distance of a point in ℍd+1 from any ideal point is infinity, we first

‘normalize’ these distances via horospheres in the following way.

Let p ∈ ℍd+1 be arbitrary, and let H be a horosphere in ℍd+1. Note that then H is represented in the

model by a sphere touching Sd from inside at p. We set

¯̄
¯

¯
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δ (p,H) =

where dist(p, H) denotes the hyperbolic distance between p and H.

Lemma 150 Let v1, v2, …, vn ∈ Sd be distinct points with n ≥ 3, and for i = 1, 2, …, n, let Hi be a

horosphere with ideal point vi. Then there is a unique point p ∈ ℍd+1 for which the quantity

∑n

i=1
δ (p,Hi) is minimal. Moreover, this point is independent of the choice of the horospheres.

Proof. Consider a horosphere H with ideal point v ∈ Sd. Then the shortest geodesic segment from p to H

is contained in a geodesic line with ideal point v. Furthermore, if H′ is another horosphere with ideal point

v, then δ(⋅, H) − δ(⋅, H′) is a constant function on ℍd+1. Thus, the point p in Lemma 150 is independent of

the choice of the horospheres.

Let g : ℝ → ℍd+1 be a geodesic line parametrized by arclength. It is a straightforward exercise to prove
that the function δ(g(s), H) is a strictly convex function of s unless the ideal points of the geodesic line and
H coincide, and in the latter case, it is δ(g(s), H) = ±(s − s0) for some s0 ∈ ℝ.

Finally, observe that if Hi, i = 1, 2, …, n are horospheres with pairwise distinct ideal points, and n ≥ 3,

then for any p ∈ ℍd+1 approaching Sd, we have

lim
p→∞

n

∑
i=1

δ (p,Hi) = ∞.

Thus, the function ∑n

i=1
δ (p,Hi) is strictly convex, and its limit is ∞ at the boundary of ℍd+1. This

implies the unique existence of the point p in the lemma.

We note that our proof yields more than stated, as we also have that point p in Lemma 150 is the unique

stationary point of the scalar field ∑n

i=1
δ (p,Hi) defined on ℍd+1; that is, p is the only point where the

gradient of this function is zero. We call the point p defined by Lemma 150 the point with minimal

distance from the ideal points v1, v2, …, vn.

Lemma 151 Let v1, v2, …, vn be distinct ideal points of ℍd+1 in the Poincaré ball model, where n ≥ 3.

Then the point of minimal distance from v1, v2, …, vn is the origin if and only if ∑n

i=1
vi = o.

Proof. It follows from the metric tensor of the Poincaré ball model that the gradient of δ(p, Hi) at o is − 1
2

vi.

Now we are ready to prove Theorem 27. Let p ∈ ℍd+1 be the point of minimal distance from v1, v2, …,

vn. Then there is a hyperbolic isometry T moving p into o. Thus, Lemma 151 implies that

∑n

i=1
T (vi) = o. On the other hand, as the Möbius group acts faithfully on Sd as well as on ℍd+1, we

have that if T̃  is a hyperbolic isometry moving p to o, then T̃  = RT, where R is an isometry.

6.8    Proofs of Theorems 28 and 29

First, in Subsection 6.8.1, we present some preliminary observations and notations, and introduce the main
idea of the proofs. In Subsection 6.8.2 we prove the main lemma of the proof of Theorem 28. In
Subsections 6.8.3 and 6.8.4, we prove Theorems 28 and 29, respectively.

6.8.1    Preliminaries and the main idea of the proofs

⎧⎪⎨⎪⎩−dist (p,H) if p is inside the sphere representingH,

0 if p ∈ H,

dist (p,H) if p is outside the sphere representingH,
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In the following, let P be a Koebe polyhedron. The centers and the spherical radii of the vertex circles of P

are denoted by vi ∈ S2 and αi, respectively, where i = 1, 2, …, n, and the centers and the radii of its face

circles by fj ∈ S2 and βj, respectively, where j = 1, 2, …, m. We note that by Theorem 27 (cf. [222]), we

may assume that the barycenter of the tangency points of P is the origin o, implying that o is contained

both in P and in its polar, or in other words, the radii of all vertex and face circles of P are less than π
2 .

Thus, for any vertex or face circle there is an associated spherical cap, obtained as the union of the circle
and its interior.

In the proof, we regard the sphere S2 (or, in the proof of Theorem 29, Sd) as the set of the ideal points

in the Poincaré ball model of the hyperbolic space ℍ3 (or ℍd+1). Thus, every circle on S2 is associated to a
hyperbolic plane, and every spherical cap is associated to a closed hyperbolic half space. We note that

since the Poincaré ball model is conformal, the dihedral angle between two circles on S2 is equal to the
dihedral angle between the two corresponding hyperbolic planes (cf. [147, Observation 0.1]).

For the vertex circle with center vi we denote the corresponding hyperbolic plane by Vi and the

associated closed half space by Vi. Similarly, the hyperbolic plane corresponding to the face circle with

center fj is denoted by Fj, and the associated closed half space by Fj. We set D = ℍ3\ 

((∪n
i=1Vi) ∪ (∪m

j=1Fj)). Observe that as the radii of all vertex and face circles of P are less than π2 , we

have o ∈ D, and thus, D is a non-empty, open convex set in ℍ3.

Let p ∈ D ⊂ ℍ3 be a point. For any plane Vi, consider the geodesic line through p and perpendicular to

Vi. Let vi(p) ∈ Tpℍ3 denote the unit tangent vector of this line at p, pointing towards Vi, and let dvi (p)

denote the hyperbolic distance of p from Vi. We define fj(p) and d
f
j (p) similarly for the plane Fj.

An important point of the proof is the following simple observation. Recall that the angle of parallelism

of a point p not lying on a hyperbolic hyperplane H is the hyperbolic half angle of the hyperbolic cone

with apex p formed by the half lines starting at p and parallel to H. Thus, Remark 152 is a consequence of
the fact that the Poincaré ball model is conformal, and of a well-known hyperbolic formula [151]. Even

though we state it for the 3-dimensional space ℍ3, it also holds in any dimensions.

Remark 152 Let H be a hyperbolic plane in ℍ3 whose set of ideal points is a circle C on S2 with

spherical radius α. Then α is the angle of parallelism of H from the origin o (cf. Figure 6.5). In particular,

cos α = tanh d, where d is the hyperbolic distance between H and o.

FIGURE 6.5
The angle of parallelism from the origin of the model is the spherical radius of the circle C.

Among other things, it follows by Remark 152 that
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tanh dvi (o) =cos αi and tanh d
f
j (o) =cos βjfor all values of i, j. (6.19)

Furthermore, the metric tensor of the Poincaré ball model yields (cf. [222]) that

vi (o) = 1
2 vi and fj (o) = 1

2 fj for all values of i, j. (6.20)

The idea of the proof of Theorem 28 in most cases is as follows. Let g(⋅) be one of the points in

Theorem 28. First, we compute g(P) in terms of the radii and the centers of its vertex and face circles; that

is, in a form g(P) = ∑n

i=1
wivi +∑m

j=1
Wjfj, where the coefficients wi and Wj are smooth functions

depending on the values 0 < αi, βj < π2 . Applying the formulas in (6.19) to the coefficients wi and Wj, we

obtain a smooth hyperbolic vector field h : D → TD. Since in this model Möbius transformations on S2 are

associated to hyperbolic isometries of ℍ3, this function has the property that if T corresponds to a

hyperbolic isometry that maps p into o, then h(p) = g(T(P)) for all p ∈ D. It is well known that hyperbolic

isometries act transitively on ℍ3. Thus, to prove the existence of a suitable Möbius transformation, it

suffices to prove that h(p) = op for some p ∈ D. In the cases of cc(⋅) and IC(⋅) the function h is not C∞-

class; here we use similar, geometric arguments. In the remaining cases h is smooth; here we examine the
properties of the integral curves of h. To prove Theorem 29, we use an analogous consideration.

In the proof we often use the following geometric observation.

Remark 153 For i = 1, 2, …, n and j = 1, 2, …, m, the ith vertex of P is 
vi

cosαi
, and the incenter of the jth

face of P is cos βjfj.

Most of the computations will be carried out in the Poincaré half space model.

In this model, we regard ℍ3 embedded in E3 as the open half space {z > 0}. Hyperbolic planes having
the ‘point at infinity’ as an ideal point are represented in this model by the intersections of the Euclidean
half space {z > 0} with Euclidean planes parallel to the z-axis, we call these hyperbolic planes vertical.
Hyperbolic planes not having the ‘point at infinity’ as an ideal point are represented by open hemispheres
in the Euclidean half space {z > 0}, with their centers on the Euclidean plane {z = 0}, we call these planes
spherical For any plane H in this model, we denote the set of its ideal points, different from the point at
infinity, by H*. We use the same terminology and notation for this model in any dimension.

The last remark in this section is the result of elementary computations using distance formulas from
the Poincaré half plane model.

Remark 154 Let p = (a, t), a, t > 0 be a point in the Poincaré half plane model, and let m ∈ Tpℍ2 denote

the tangent unit vector of the geodesic line through p and perpendicular to the y-axis, pointing towards

the axis. Furthermore, let C be the hyperbolic line represented by the circle centered at the origin o and

Euclidean radius r, and let v ∈ Tpℍ2 denote the tangent unit vector of the geodesic line through p and

perpendicular to C, pointing towards C. Assume that r < √a2 + t2. Then the hyperbolic distance of p

from the y-axis and from C are arsinh a
t

 and arsinh t
2+a2−r2

2rt , respectively. In addition, the y-coordinates

of m and v are a

√a2+t2
 and − t2+r2−a2

√(r2+a2+t2)2−4r2a2
, respectively.

6.8.2    The main lemma of the proofs

The main goal of this section is to prove Lemma 155. In its formulation and proof we use the notations
introduced in Subsection 6.8.1. We note that two hyperbolic planes Vi and Fj intersect if and only if the ith

vertex of P lies on the jth face of P. In this case, the two planes have a common ideal point, coinciding

with a tangency point of P. This point is the ideal point of one pair of Vis and of one pair of Fjs, and these

two pairs are orthogonal.

If q is a boundary point of D in the Euclidean topology, by a neighborhood of q we mean the

intersection of a neighborhood of q with D, induced by the Euclidean topology of E3. Before stating our
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(i)  

(ii)  

(iii)  

(iv)  

main lemma, we note that if h : D → TD is a smooth vector field, then by the Picard-Lindelöf Theorem for

any p ∈ D with h(p) ≠ o there is a unique integral curve of h passing through p. These integral curves are

either closed, or start and end at boundary points of D or at points q with h(q) = o.

Lemma 155 Let

be a vector field where the coefficients wi and Wj are positive smooth functions of n + m variables,

depending on dvi (p), i = 1, 2, …, n and d
f
j  (p), j = 1, 2, …, m. Assume that for any boundary point q of D,

q has a neighborhood disjoint from any closed integral curve of h.

If q∈ Fj for some value of j, then there is no integral curve of h ending at q.

If q∈Vi for some value of i and q ∉ Fj for all values of j, then q has a neighborhood in which the

integral curve through any point ends at a point of Vi.

If q ∈ S2 is a tangency point of P, then there is a codimension 1 foliation of a neighborhood of q in

D such that q is not an ideal point of any leaf, and for any point p on any leaf h(p) ≠ o, the integral

curve through p crosses the leaf either in the direction of q or from this direction, independently of

the choice of p, the leaf and q.

Then h(p) = op for some p ∈ D.

First, we prove Lemma 156.

Lemma 156 Let X = (intBd + 1)\(1 − ε)Bd + 1, where 0 < ε < 1, and d ≥ 2. Let Z1, …, Zk be pairwise

disjoint closed sets in X, where k ≥ 1. If X\Zi is connected for all values of i, then X\( ∩k
i=1 Zi) is

connected.

Proof of Lemma 156. We prove the assertion by induction for k. If k = 1, then the statement is trivial.

Assume that Lemma 156 holds for any k − 1 closed sets. Let Z′ = ∪k−1
i=1 Zi. Then Zk = X\Zk and Z

′
 = Z\Z’

are open sets whose union is X. Consider the Mayer-Vietoris exact sequence [180] of these subspaces:

H1 (X) → H0 (Zk ∩ Z′) → H0 (Zk ⊕ Z′) → H0 (X) → 0.

Note that by the induction hypothesis, Z′ is connected. On the other hand, since Sd is a deformation retract

of X, their homology groups coincide, implying that rankH1(X) = 0, rankH0(X) = 1. Since X is locally

path-connected, any connected subset of X is path-connected, and thus, rankH0(X) is the number of

connected components of X, implying that rank(H0 (Zk ⊕ Z′)) = 2, and rank(H0 (Zk ∩ Z′)) = t, where t

is the number of the connected components of Zk ∩ Z′. The exactness of the Mayer-Vietoris sequence
yields that 1 − 2 + t = 0, that is, t = 1.

Proof of Lemma 155. We prove the lemma by contradiction. Assume that h(p) ≠ o for any p ∈ D, and let S

denote the set of tangency points of P. Furthermore, let Z denote the set of the points of D belonging to a

closed integral curve. For i = 1, 2, …, n, let Yi denote the set of points whose integral curve terminates at a

point of Vi, and let Ws be the set of the points with their integral curves ending at s ∈ S. By (iii), every set

Yi is open, and it is easy to see that every set Ws is closed.

First, assume that for any s ∈ S, the integral curve through any point p on a leaf of the codimension 1

foliation in a neighborhood of s points away from the direction of s. This implies, in particular, that Ws =

h : D → TD, h (p) =
n

∑
i=1

wivi (p) +
m

∑
j=1

Wjfj (p),

¯̄

¯̄̄̄

¯

¯̄̄̄

¯̄
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 for all s ∈ S. For all q ∈ bdD, let Uq denote a neighborhood of q satisfying the conditions of the

lemma. By the definition of induced topology, Uq = U
*
q for some neighborhood of q in E3. We may

assume that U
*
q is open for all q ∈ bdD. Since the sets U

*
q cover the compact set bdD, we may choose a

finite subfamily that covers bdD. By finiteness, it follows that there is some ε > 0 such that the set Dε of

points at Euclidean distance less than ε from bdD is disjoint from Z. On the other hand, Dε is connected,

yet it is the disjoint union of the finitely many open sets Yi ⋂ Dε, a contradiction.

Assume now that for any s ∈ S, the integral curve through any point p on a leaf of the codimension 1

foliation in a neighborhood Us of s points towards s. By this, if s ∈ S is the tangency point connecting the

ith and jth vertices, then Us ⊆ Ws ⋃ Yi ⋃ Yj. On the other hand, by (iii), all Yis are connected. Thus, for

any walk on the edge graph of P starting at the kth and ending at the lth vertex, there is a continuous curve

in D starting at a point of Yk and ending at a point of Yl, and passing through points of only those Yis and

Wss for which the associated vertices and edges of P are involved in the walk. In addition, the curve may

pass arbitrarily close to bdD, measured in Euclidean metric.

We choose the set Dε as in the previous case. Note that Dε is homeomor-phic to (intB3)\(1 − ε)B3, and

thus, we may apply Lemma 156 with the Wss playing the roles of the Zjs. Then it follows that for some s

∈ S, Dε\Ws is disconnected. Since the union of finitely many closed sets is closed, there are some Yk and

Yl in different components. By Steinitz’s theorem [228, 230], there is a path in the edge graph of P that

connects the kth and lth vertices and avoids the edge associated to s. Hence, there is a continuous curve in

D, starting at a point of Yk and ending at a point of Yl that avoids Ws; a contradiction.

6.8.3    Proof of Theorem 28

Proof of Theorem 28 for cc(⋅) and IC ⋅.
First, we prove the statement for cc(⋅). During the proof, we set Dv = ℍ3\( ∪n

i=1 Vi). Observe that a ball B

is the smallest ball containing P if and only if it contains P, and its center belongs to the convex hull of the

vertices of P lying on the boundary of the ball.

Let I be the set of indices such that 1
cosαi

 = max { 1
cosαj

 : j = 1, 2, …, n}. Thus, by Remark 153, o =

cc(P) if and only if o ∈ conv { 1
cosβi

 vi : i ∈ I }, which is equivalent to o ∈ conv{vi : i ∈ I}. Furthermore, I

is the set of indices with the property that dvi (o) = min{ dvj (o) : j = 1, 2, …, n}. We may extend this

definition for any p ∈ Dv, and let I(p) denote the set of indices with the property that dvi  (p) = min{ dvj (p) :

j = 1, 2, …, n}. Since Möbius transformations act transitively on ℍ3, we need only to show the existence

of a point p ∈ Dv such that op ∈ conv{vi(p) ⊂ Tpℍ3 : i ∈ I(p)}.

For any plane Vi and τ > 0, consider the set Vi(τ) of points in Dv at distance at most τ from Vi. This set

is bounded by Vi and a hypersphere, which, in the model, is represented by the intersection of a sphere

with the interior of S2, and having the same ideal points as Vi. Hence, if τ is sufficiently small, then the

sets Vi(τ) and Vj(τ), where i ≠ j, intersect if and only if the ith and the jth vertices of P are connected by an

edge. On the other hand, if τ is sufficiently large, then all Vi(τ)s intersect. Let τ0 be the smallest value such

that some Vi(τ0) and Vj(τ0) intersect, where i ≠ j and the ith and jth vertices are not neighbors, and let p ∈
Vi(τ0) ⋂ Vj(τ0). Note that vi(p) is an inner surface normal of the boundary of Vi(τ0) at p. Thus, the

definition of τ0 yields that the system of inequalities 〈x, vi(p)〉 > 0, i ∈ I(p) has no solution for x, from

which it follows that there is no plane in Tpℍ3 that strictly separates op from the vi(p)s, implying that op ∈
conv{vi(p) : i ∈ I(p)}. This proves the statement for cc(⋅). To prove it for IC(⋅), we may apply the same

argument for the face circles of P.
Proof of Theorem 28 for cm0(⋅).

We show that this case of Theorem 28 is an immediate consequence of Theorem 29.

0
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By Remark 153, we have cm0(P) = 1
n ∑

n

i=1

1

cos αi

vi. Thus, it is sufficient to show that the

conditions of Theorem 29 are satisfied for the family of vertex circles of P with the weight functions wi(t)

= 1
cos t  for all is.

First, observe that if n = 4 (i.e., if P is a tetrahedron), then cm0(P) = o if P is regular. Thus, we may

assume that n ≥ 5. Note that the weight functions wi(t) = 1
cos t  are positive smooth functions on (0, π2 ) and

satisfy limt→ π
2
wi(t) = ∞. Furthermore, since |I(q)| ≤ 2 for all points q ∈ S2, the inequality in (1.3) holds,

and Theorem 29 implies Theorem 28 for cm0(⋅).
Proof of Theorem 28 for cm1(⋅).

Let E denote the set of edges of the edge graph of P; that is, {i, j} ∈ E if and only if the ith and jth vertices

are connected by an edge. An elementary computation yields that if {i, j} ∈ E, the length of the

corresponding edge of P is tan αi + tan αj, and its center of mass is 1
2 (

vi

cosαi
+

vj

cosαj
). Thus, letting A =

∑{i, j} ∈ E (tan αi + tan αj), we have

cm1 (P) = 1
2A ∑

{i,j}inE

(tan αi+ tan αj)(
vi

cos αi

+
vj

cos αj

).
(6.21)

Set Dv ℍ3\( ∪n
i=1Vi), and define the functions hv

i,j : D
v → TDv and hv : Dv → TDv as

hv
i,j (p) = ( 1

sinh dv
i
(p) + 1

sinh dv
j
(p) ) (coth (dvi (p))vi (p)+ coth (dj (p))vj (p))

and

hv (p) = ∑
{i,j}∈E

hv
i,j (p). (6.22)

Then hv is a smooth function on Dv and the coefficient of each vector vi(p) is positive. By Remark 152, it

follows that if there is a point p ∈ Dv such that hv(p) = o, then, choosing a Möbius transformation T that

maps p into o, we have cm1(T(P)) = o. We denote the restriction of hv to D by h, and show that h satisfies

the conditions in Lemma 155.

Let q be a boundary point of D in some plane Fj associated to a face circle of P. Assume that q is not

contained in Vi for any value of i. Observe that if the ith vertex lies on the jth face, then vi(q) and fj(q) are

orthogonal, and otherwise vi(q) points inward to D. Thus, by the continuity of hv, there is no integral curve

of h that ends at q, and q has a neighborhood disjoint from the set Z of the points of the closed integral

curves of h. If q is contained in Vi for some i, then a slight modification of this argument can be applied.

This proves (ii) in Lemma 155.

Let q be a point of some Vi not contained in any of the Fjs. Then, denoting the coefficient of vj(p) by

µj(p) for any j, we have that 
μi(p)
μj(p) → ∞ for all j ≠ i, as p → ∞, which shows that if p is ‘close’ to q, then

h(p) is ‘almost orthogonal’ to Fj. This shows (iii), and the fact that a neighborhood of q is disjoint from Z.

Finally, let q be a tangency point of P. Without loss of generality, we may assume that q is the ideal
point of V1, V2, F1 and F2. To prove (iv), we imagine the configuration in the Poincaré half space model,

with q as the ‘point at infinity’; geometrically, it means that we apply an inversion to E3 about a sphere

centered at q. Then D is contained in the half-infinite cylinder bounded by the four vertical planes V1, V2,

F1 and F2 (for the definition of vertical and spherical planes, see Subsection 6.8.1). Note that the cross-

section of this cyclinder is a rectangle, and that all other Vis and Fjs are spherical planes centered at ideal

points of D in the Euclidean plane {z = 0}.
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For any t > 0, let Dt denote the intersection of the set {z = t} with D. We remark that {z = t} is a

horosphere whose only ideal point is q, and thus, the sets Dt, where t is sufficiently large, form a

codimension 1 foliation of a neighborhood of q in D. Hence, to show that the conditions of Lemma 155

are satisfied, it is sufficient to show that if t is sufficiently large, then h(p) has a positive z-coordinate for

any p ∈ Dt.

For any {i, j} ∈ E, denote the term in h(p) belonging to {i, j} by hi, j(p), and the z-coordinate of hi, j(p)

by zi, j(p). Let {i, j} and {1, 2} be disjoint. Note that the closure of Dt is compact. Thus, by Remark 154, if

t → ∞, then h(p) uniformly converges to 0. Assume that {i, j} ⋂ {1, 2} is a singleton, say i = 1 and j ≠ 2.

Then, by Remark 154, the z-coordinate of coth dv1(p)v1(p) is 1, and that of coth dvj (p)vj(p) is less than 1.

Thus, z1, j(p) > 0 in this case. Finally, z1, 2(p) > Ct for any p ∈ Dt for some universal constant C > 0. Thus

h(p) has a positive z-coordinate for large values of t, and Lemma 155 implies Theorem 28 for the case of
cm1(⋅).

Proof of Theorem 28 for cm2(⋅).
Let I denote the edge set of the vertex-face incidence graph of P; that is, (i, j) ∈ I if and only if the ith

vertex lies on the jth face. Consider some (i, j) ∈ I. Then there are exactly two edges of P adjacent to both

the vertex and the face. Let the tangency points on these two edges be denoted by e1
i,j and e2

i,j. Then, by

Remark 153, the points vi

cosαi
, e1

i,j, cos βjfj and e2
i,j are coplanar, and they are the vertices of a symmetric

right trapezoid Qi, j (cf. Figure 6.6). Note that bdP can be decomposed into the mutually non-overlapping

trapezoids Qi, j (i, j) ∈ I. An elementary computation yields that the center of mass of Qi, j is

xi,j = 1
3 (

2 tan2αi+sin2βj

tan2αi+sin2βj
cos βjfj +

tan2αi+2sin2βj

tan2αi+sin2βj

1
cosαi

vi).

The area of Qi, j is tan αi sin βj. Thus, letting A = ∑(i, j)∈ I tan αi sin βj, we have

cm2 (P) = 1
3A ∑

(i,j)∈I

tan αi sin βjxi,j. (6.23)

Let us define the smooth vector field h : D → TD as

h (p) = ∑
(i,j)∈I

hi,j (p), (6.24)

where

hi,j (p) = 1
sinh dv

i
cosh df

j

( 2cosh2d
f
j+sinh2dvi

cosh2df
j
+sinh2dv

i

tanh d
f
j fj (p)

+
cosh2d

f
j+2sinh2dvi

cosh2df
j
+sinh2dv

i

coth dvivi (p)).
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FIGURE 6.6
The right trapezoid Qi, j.

Here, for brevity, we set dvi = dvi (p) and d
f
j = d

f
j (p). The function h is a smooth function on D with

positive coefficients. Furthermore, by Remark 152, if h(p) = o for some p ∈ D and T is a Möbius

transformation mapping p into o, then cm2(T(P)) = o. Similarly like in case of cm1(⋅), we show that the

conditions of Lemma 155 are satisfied for h.
To prove (ii) and (iii), we apply the same argument as in case of cm1(⋅). To prove (iv), we follow the

line of the same proof, and imagine the configuration in the half space model. Let q be the ideal point of

V1, V2, F1 and F2. Then D is bounded by the vertical planes V1, V2, F1 and F2 which form a rectangle-

based half-infinite cylinder. We adapt the notations from the previous subsection, and set Dt = D ⋂{z = t}

for all t > 0. We denote the z-coordinate of hi, j(p) by zi, j(p), and show that their sum is positive if t is

sufficiently large.

By Remark 154 and an elementary computation, if i ∉ {1, 2}, then zi, j(p) uniformly tends to zero for all

p ∈ Dt as t → ∞. To examine the remaining cases, for i = 1, 2, let xi(p) denote the Euclidean distance of

the point p from Vi. Then x1(p) + x2(p) = x is the Euclidean distance of V1 and V2. By Remark 154, there

is some constant C1 > 0 independent of p, t, i and j such that for all p ∈ Dt, j ≥ 3 and i ∈ {1, 2}, we have zi,

j(p) ≥ − C1

xi
. Similarly, there is some constant C2 > 0 independent of p, t, i, j such that for all p ∈ Dt, i, j ∈

{1, 2}, we have zi, j(p) ≥ C2t
2

xi
. This implies that if t is sufficiently large (and in particular, if t > √ C1k

C2
,

where k is the maximal degree of a vertex of P), then the z-coordinate of h(p) is positive for all p ∈ Dt.

From this, Theorem 28 readily follows for cm2(⋅).
Proof of Theorem 28 for ccm(·).

During this proof, we assume that P is simplicial.

Like in the proof for cm2(·), we denote by I the set of edges of the vertex-face incidence graph of P, and

by V j = {aj, bj, cj} the set of the indices of the vertices adjacent to the jth face of P.

Let the convex hull of the jh face of P and o be denoted by Sj. To compute ccm(P), we need to compute

the volume and the circumcenter of Sj, which we denote by mj and pj. To do this, in the next lemma for

simplicity we omit the index j, and in addition denote tan αxj by tx for x ∈ {a, b, c}.

Lemma 157 The volume of Sj is

mj = 1
3

√tatbtc (ta + tb + tc − tatbtc). (6.25)
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The circumcenter of Sj is

pj = ∑
s∈{a,b,c}

Nsvs, (6.26)

where

Na =
(tb+tc)((tb+tc)t2

a+(2t2
b
t2
c+t2

b
+t2

c)ta−tbtc(tb+tc)))
4tatbtc(ta+tb+tc−tatbtc)

, (6.27)

and Nb and Nc are defined analogously.

Proof. Note that the three edges of Sj starting at o are of length 1
cosαx

 with x ∈ {a, b, c}. Furthermore, the

edge opposite of the one with length 1
cosαx

 is ty + tz, where {x, y, z} = {a, b, c}. Thus, the volume of Sj

can be computed from its edge lengths using a Cayley-Menger determinant. It is worth noting that since

the projection of the jth face onto S2 is a spherical triangle of edge lengths αa + αb, αa + αc and αb + αc,

and such a triangle is spherically convex, its perimeter is αa + αb + αc < π. From this, an elementary

computation yields that ti + tj + tk − titjtk > 0, and the formula in (6.25) is valid.

We compute pj. Since the vectors va, vb and vc are linearly independent, we may write this point in the

form pj = ∑s ∈ {i, j, k} Ns vs for some coefficients Na, Nb, Nc. We multiply both sides of this equation by vr

with some r ∈ {a, b, c}. Since all vis are unit vectors, we have that 〈vs, vr〉 = cos(αs + αr) if s ≠ r, and 〈vr,

vr〉 = 1. On the other hand, for any value of r, pj is contained in the plane with normal vector vr passing

through the point 
vr

2 cosαr
. Hence, it follows that [Na, Nb, Nc]T is the solution of the system of linear

equations with coefficient matrix

and with constants 1
2 cosαr

, where r = a, b, c. The determinant of the coefficient matrix is 36(mj)
2

(1 + t2
a) (1 + t2

b) (1 + t2
c) > 0. Thus, this system has a unique solution, which can be computed by

Cramer’s rule, yielding the formula in (6.27).

Now we prove Theorem 28 for ccm(⋅). For s = 1, 2, …, n, let us denote the value csch dvs (p) = 1
sh dvs(p)

> by τs(p). Observe that Remark 152 implies that csch dvs(o) = tan αs. For any p ∈ D, let us define the

vector field

h (p) =
m

∑
j=1

∑
s∈Vj

Bs (p)vs (p),
(6.28)

where, using the notation V j = {a, b, c} and for brevity omitting the variable p, we have

(6.29)

and Bb(p) and Bc(p) are defined similarly. If h(p) = op and T is a Möbius transformation that maps p into

o, then ccm(T(P)) = o. Thus, to prove the statement it is sufficient to prove that for some p ∈ D, h(p) = op.

To do this, we check that the conditions of Lemma 155 are satisfied.

⎡⎢⎣ 1 cos (αa + αb) cos (αa + αc)

cos (αa + αb) 1 cos (αb + αc)

cos (αa + αc) cos (αb + αc) 1

⎤⎥⎦Ba (p) =
tanh da(τb+τc)

√τaτbτc

⋅
τ 2
a (τb+τc)+τa(2τ 2

b
τ 2
c +τ 2

b
+τ 2

c )−τbτc(τb+τc)

√(τa+τb+τc−τaτbτc)
,
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Let Z denote the set of points of D whose integral curve is closed. Since for any value of j, Fj is

perpendicular to any Vi with (i, j) ∈ I and does not intersect any other Vi, like in the proof for cm1(⋅), it
follows that if q ∈ Fj for some plane Fj associated to a face circle of P, then q has a neighborhood disjoint

from Z, and no integral curve ends at q.

Let q ∈ Vi for some value of i. It is an elementary computation to check that if α + β + γ = π, and 0 < α,

β, γ < π2  >, then tan α + tan β + tan γ = tan α tan β tan γ. This and Remark 152 imply that if p → q and i ∈
{a, b, c}, then the denominator of Ba(p) tends to zero. Since the numerator tends to a positive number if a

= i, and to zero if i = b or i = c, it follows that if i ∈ V j, then the length of ∑s ∈ V jBs(p)vs(p) tends to ∞, and

its direction tends to that of vi(p). Since i ∉ V j implies that ∑s ∈ vj Bs(p)vs(p) can be continuously extended

to q, it follows that the angle of h(p) and the external normal vector of Vi at q is ‘almost’ zero in a suitable

neighborhood of q. This yields (iii).

We prove (iv) in the Poincaré half space model with q being the ‘point at infinity’. Without loss of

generality, we may assume that q is the ideal point of V1, V2, F1 and F2. Then these two pairs of

hyperbolic planes are represented by two perpendicular pairs of vertical hyperbolic planes. As before, let

Dt denote the set of points in D with z-coordinates equal to t. We show that the z-coordinate of h(p) is

positive for any p ∈ Dt, if t is sufficiently large. For any j and any i ∈ V j, let us denote the z-coordinate of

Bi(p)vi(p) by z
j
i(p).

Let p ∈ Dt, and denote by x1 and x2 the Euclidean distance of p from V1 and V2, respectively. Consider

some value of j. If V j is disjoint from {1, 2}, then Remark 154 and (6.29) show that there is some C1 > 0

independent of p such that z
j
i (p) ≤ C1

t2  > if t is sufficiently large. Assume that V j contains exactly one

of 1, 2, say 1. Then, an elementary computation and Remark 154 yield the existence of some C2, C3 > 0

independent of p, such that z
j
1 (p) ≤ C2

t2 , and for 1 ≠ i ∈ V j, z
j
i (p) ≤ C3

t2

x2
1

.

Finally, let V j = {1, 2, i}. Note that in this case j = 1 or j = 2. Furthermore, since P is simplicial, we

have that the Euclidean radius of the hemisphere representing Vi is x1+x2

2 , and the Euclidean distance of

the center of this hemisphere from the projection of p onto the {z = 0} plane is √( x1−x2

2 )2
+ y2

j , where yj

is the Euclidean distance of p from Fj (cf. Figure 6.7). An elementary computation yields that by this and

Remark 154, the denominator in (6.29) is 
t3(x1+x2)yj

(t2+y2
j
−x1x2)x1x2

. Using this, we have

z
j
1 (p) ≤

2x2
1

x2yj
t, z

j
2 (p) ≤

2x2
2

x1yj
t and z

j
i (p) ≥ x1+x2

2x2
1x

2
2yj

t3 if t is sufficiently large. Using these estimates,

we have z
j
1 (p) + z

j
2 (p) + z

j
i (p) ≥ C4t3

x2
1x

2
2

 for some C4 > 0 independently of t and p. Thus, there is some

C > 0 such that if t is sufficiently large, ∑n

j=1
∑

i∈Vj

z
j
i (p) ≥ Ct3, and, in particular, this expression is

positive. The regions Dt form a codimension 1 foliation of a neighborhood of q, and thus Theorem 28 for

ccm(·) follows from Lemma 155.∣ ∣∣ ∣ ∣ ∣∣ ∣ ∣ ∣



106

FIGURE 6.7
The ideal points of hyperbolic planes associated to a simplicial polyhedron in the Euclidean
plane {z = 0}. Continuous lines represent planes associated to vertex circles. Dotted lines
represent planes associated to face circles.

Proof of Theorem 29 for points of the Euler line.

Again, we assume that P is simplicial. Using the calculations in the proof for cm2(P), we have that the

center of mass of P is

where A = ∑(i, j)∈ I tan αi sin βj cos βj.

By Remark, 152, we define the smooth vector field hcm : D → TD as

hcm (p) = ∑
(i,j)∈I

hi,j (p), (6.30)

where

Furthermore, for any λ ∈ (0, 1), we set hλ(p) = λhcm(p) + (1 − λ)hccm(p), where hccm : D → TD is the

vector field defined in (6.28). We observe that if there is some p ∈ D such that hλ(p) = o, and T is a

Möbius transformation moving p to o, then o = λcm3(T(P)) + (1 − λ)ccm(T(P)).

We show that the conditions of Lemma 155 are satisfied for hλ. Note that since λ ∈ (0, 1), all

coefficients in the definition of hλ are positive. To check (i), (ii) and (iii), we may apply an argument

cm3 (P) = 1
4A ∑

(i,j)∈I

tan αi sin βj cos βj(
2 tan2 αi+ sin2 βj

tan2 αi+ sin2 βj

cos βjfj

+
tan2αi+2sin2βj

tan2αi+sin2βj

1
cosαi

vi),

hi,j (p) =
sinhdfj

sinhdv
i
cosh2df

j

( 2cosh2d
f
j+sinh2dvi

cosh2df
j
+sinh2dv

i

tanh d
f
j fj (p)

+
cosh2d

f
j+2sinh2dvi

cosh2df
j
+sinh2dv

i

coth dvivi (p)).
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similarly as before. To prove (iv), again we represent the configuration in the half space model. Let Dt be

the intersection of D with the horosphere {z = t}, and zcm(p) and zλ(p) denote the z-coordinate of hcm(p)

and hλ(p), respectively. Then an elementary computation yields by Remark 154 that there is some C  > 0

such that |zcm(p)| ≤ C  for all p ∈ Dt, if t is sufficiently large. Thus, by the estimates in the proof for ccm(·)

and since λ < 1 it follows that if t is sufficiently large, then zλ(p) > 0 for all p ∈ Dt. Consequently, Lemma

155 can be applied, and Theorem 28 holds for the considered point of the Euler line.

6.8.4    Proof of Theorem 29

To prove Theorem 29, we follow the line of the proof of Theorem 28. To do this, we need a lemma for
polyhedral regions in Euclidean space.

Lemma 158 Let S1, …, Sk be closed half spaces in Ed, with outer normal vectors m1, …, mk. Then there

are unit normal vectors v1, …, vm such that 〈mi, vj〉 ≤ 0, for all 1 ≤ i ≤ l and 1 ≤ j ≤ m, and for arbitrary

closed half spaces S′
1, …, S′

m with outer unit normal vectors v1, …, vm, respectively, the set Q =

(∩k
i=1Si) ∩ (∩m

j=1S′
j) is bounded.

Proof. First, observe that the property that Q is bounded is equivalent to the property that there is no unit

vector v ∈ Sd − 1 such that 〈v, mi〉 ≤ 0 and 〈v, vj〉 ≤ 0 holds for all 1 ≤ i ≤ k and 1 ≤ j ≤ m. In other words, Q

is bounded if and only if the open hemispheres of Sd − 1, centered at the mis and the vjs, cover Sd − 1. If

∩k
i=1 Si is bounded, there is nothing to prove, and thus, we may consider the set Z of vectors in Sd − 1 not

covered by any open hemisphere centered at some mi. Note that since Z is the intersection of finitely

many closed hemispheres, it is compact. Let F(v) denote the open hemisphere centered at v. Then the

family {F(v) : v ∈ Z} is an open cover of Z, and thus it has a finite subcover {F(vj) : i = 1, …, m}. By its

construction, the vectors v1, …, vm satisfy the required conditions.

Now we prove Theorem 29, and for any i = 1, 2, …, n, we let ρi denote the spherical radius of Ci. We

imagine Sd as the set of ideal points of the Poincaré ball model of ℍd + 1. Then each spherical cap is

associated to a closed hyperbolic half space. We denote the half space associated to Ci by Hi, and the

hyperplane bounding Hi by Hi. Let D = ℍd + 1\( (∪n
i=1Hi), and note that as ρi < π

2  for all indices, D is an

open, convex set in ℍd + 1 containing the origin o.
For any value of i, let us define the function fi(d) = wi (arccos tanh d). Then fi : (0, ∞) → (0, ∞) is a

positive smooth function on its domain satisfying limd → 0 + 0fi(d) = ∞. Let vi(p) ∈ Tpℍd + 1 denote the

unit tangent vector of the geodesic half line starting at p and perpendicular to Hi, and let di(p) denote the

hyperbolic distance of p from Hi. Finally, let the smooth vector field f : D → TDbe defined as

f (p) =
n

∑
i=1

fi (di (p))vi (p).

By (6.19) and (6.20), if T is a Möbius transformation mapping p into o, then f(p) = ∑i=1n wi(ρT(Ci))cT(Ci).

Since hyperbolic isometries act transitively on ℍd+1, it is sufficient to show that f(p) = op for some p ∈ D.

We prove it by contradiction, and assume that f(p) ≠ op for any p ∈ D. Consider the integral curves of

this vector field. Then, by the Picard-Lindelöf Theorem, they are either closed, or start and terminate at

boundary points of D. On the other hand, since fi is smooth for all values of i, fi has an antiderivative

function Fi on its domain. It is easy to check that grad(−∑n

i=1
Fi (di (P))) = f (P), implying that f is

a gradient field, and thus it has no closed integral curves.

¯

¯
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(i)  

(ii)  

Our main tool is the next lemma. To state it, we define a neighborhood of a point q in the boundary of

D as the intersection of D with a neighborhood of q in Ed+1 induced by the Euclidean topology (cf.

Subsection 6.8.2). Recall from Theorem 29 that if q ∈ Sd, then I(q) denotes the set of indices of the

spherical caps Ci that contain q in their boundaries.

Lemma 159 Let q be a boundary point of D, and if q ∉ Sd, then let I(q) denote the set of indices such that

q ∈ Hi.

If q ∉ Sd, then q has a neighborhood V such that any integral curve intersecting V terminates at a

point of Hj for some j ∈ I(q).

If q ∈ Sd, then there is no integral curve terminating at q.

Proof. First, we prove (i) for the case that I(q) = {i} is a singleton. Let v be the external unit normal vector

of bdD at q. For any p ∈ D, if p → q, then fi(di(p)) → ∞, and vi(p) tends to a vector of unit hyperbolic

length, perpendicular to Hi at q and pointing outward. On the other hand, ∑j≠ifj(dj(p))vj(p) is continuous at

q and hence it tends to a vector of fixed hyperbolic length. Thus, for every ε > 0 there is a neighborhood V

of q such that the angle between v and f(p) is at most ε, for any p ∈ V. This implies (i) in this case. If I(q)

= {j1, …, jk} is not a singleton and the inner unit normal vectors of Hj1
, …, Hjk

 are denoted by vj1
, …, vjk

,

respectively, then a similar argument shows that if p is ‘close to q’, then f(p) is ‘close’ to the conic hull of
these vectors.

Now we prove (ii). Our method is to show that q has a basis of closed neighborhoods with the property
that no integral curve enters any of them, which clearly implies (ii). For computational reasons, we

imagine the configuration in the Poincaré half space model, with q as the ‘point at infinity’. The region D
in this model is the intersection of finitely many open hyperbolic half spaces with vertical and spherical

bounding hyperplanes, where Hi is vertical if and only if i ∈ I(q) (cf.Figure 6.8).

Consider a neighborhood U of q. Then U is the complement of a set which is bounded in Ed+1. Thus,

without loss of generality, we may assume that U is disjoint from all spherical His, and it is bounded by a

spherical hyperbolic hyperplane H. For any i ∈ I(q), let yi ∈ S be the outer unit normal vector of Hi in E

d+1, where we set S = Sd ⋂ {xd+1 = 0}.

Note that as q is an ideal point of D, D is not bounded in this model. Let D* denote the set of ideal

points of D on the Euclidean hyperplane {xd+1 = 0}. This set is the intersection of the closed half spaces

Hi, i ∈ I(q) in the Euclidean d-space {xd+1 = 0} (for the definition of Hi, see Subsection 6.8.1). Thus, if

D* is not bounded, Lemma 158 implies that there are some closed vertical half spaces in ℍd+1 whose

intersection contains H, and whose outer unit normal vectors y′
1, y′

2, … , y′
m satisfy ⟨y′

j, yi⟩ < 0 for any

yi and y′
j. Let the intersection of these half spaces with D be D′, and their bounding hyperbolic

hyperplanes be H ′
1,H ′

2, … ,H ′
m, where y′

j is the outer unit normal vector of H ′
j for all values of j.
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FIGURE 6.8
The configuration in the Poincaré half space model.

Let p be a boundary point of D′ in ℍd+1. Then p ∈ H ′
j ∩ D′ for some js. Observe that if i ∈ I(q), then

the geodesic line through p and perpendicular to Hi, which in the model is a circle arc perpendicular to the

hyperplane {xd+1 = 0}, is contained in the vertical plane through p and perpendicular to Hi. Thus, vi(p)

points strictly inward into D′ at every boundary point of D′. A similar argument shows the same statement

for any i ∉ I(q) as well. As a result, we have that the integral curve through any point p ∈ bdD′ enters D′ at

p.

Let Xt denote the set {xd+1 = t} for any t > 0, and note that this is a horosphere in ℍd+1 with q as its

unique ideal point. Set Dt = Xt∩D′. We show that if t is sufficiently large, then f(p) has a negative xd+1-

coordinate. We denote this coordinate by z(p).

Let p ∈ Dt. It follows from Remark 154 and an elementary computation that if i ∈I(q), then the xd+1-

coordinate of vi(p) is tanh di(p), and if i ∉ I(q), then it tends to −1 as di(p) → ∞. On the other hand, for

any ε, K > 0 there is some value t0 such that if t > t0, then di(p) < ε for all i ∈ I(q), and di(p) > K for all i ∉
I(q) and for all p ∈ Dt. This implies that

lim
t→∞

sup
p∈Dt

z (p) = lim
d→0+0

∑
i∈I(q)

fi (d) tanh d − lim
d→∞

∑
i∉I(q)

fi (d).

By the condition (1.3) and the relation (6.19), we have that this quantity is negative, implying that z(p) is

negative for all p ∈ Dt if t is sufficiently large. Let t′ be chosen to satisfy this property. Without loss of

generality, we may also assume that Xt does not intersect the hyperplane H. Let V  denote the set of points

in D′ with xd+1-coordinates less than t′, and let V = ℍd+1\ V . Then V is a neighborhood of q in ℍd+1,

contained in U, and V has the property that the integral curve through any boundary point p of V leaves V

at p. This proves (ii).
Now we finish the proof of Theorem 29. By the conditions in the formulation of the theorem, the set

∪n
i=1 int Ci ⊂ S

d intCi ⊂ Sd is disconnected. Let the components of this set be X1, X2, …, Xr. By Lemma

159, the integral curve of every point p ∈ D terminates at some point of these sets. Let Yj denote the

points of D whose integral curve ends at a point of Xj. By Lemma 159, no Yj is empty, and it also implies

¯

¯
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that Yj is open in D for all js. Thus, D is the disjoint union of the r open sets Y1, Y2, …, Yr, where r > 1.

On the other hand, D is an open convex set, and thus, it is connected; a contradiction.
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7

Proofs on the Volume of the Convex Hull of a Pair of Convex

Bodies

Summary. In this chapter we collect selected proofs of some theorems from Chapter 2. In Section 7.1 we
investigate the properties of the volume of a linear parameter system, and the Steiner symmetrization of a
convex body. We use these theorems to prove sharp estimates about the volume of translation, reflection,
and associated (d + 1)-dimensional body of a d-dimensional convex body in Section 7.2. In Section 7.3 we

find similar estimates for ci(K) for certain values of K, and characterize the plane convex bodies satisfying

the translative constant volume property. In Section 7.4 we prove the Blaschke-Santaló inequality about
the maximum of the Holmes-Thompson volume of the unit ball of a normed space. In Section 7.5 we
examine the dual problem in the plane, and determine the minimum of the Holmes-Thompson volume of
the unit disks of 2-dimensional norms. In Section 7.6 we prove sharp estimates for the Gromov’s mass and
mass* of the unit disk of a normed plane, and also for the normed volumes of unit disks of Radon norms.
Finally, in Section 7.7 we determine the minimum and the maximum values of the normed variants of the

quantity ctr(K) both if K is an arbitrary plane convex body, and if it is assumed to be centrally symmetric.

7.1    Proofs of Theorems 32 and 33

7.1.1 Proof of Theorem 32

Observe that since the sets P and L are bounded, the volume function

V (t) = vold (K (t)) = vold (conv {Pi + tλie:i ∈ I})

is a continuous function of t. Thus, it is sufficient to prove that for arbitrary values t1, t2 ∈ ℝ, we have

V ( t1+t2

2 ) ≤ 1
2 (V (t1) + V (t2)).

Furthermore, as the property in Theorem 32 is invariant under linear transformations of t, it is sufficient to
show that

V (0) ≤ 1
2

(V (−1) + V (1)). (7.1)

Without loss of generality, let e = (1, 0, 0, …, 0) ∈ Ed, and let H denote the hyperplane {x1 = 0}. For

any x ∈ H, we denote by l(x, t) the length of the intersection of the line {x + τe : τ ∈ ℝ} with K(t). Note

that it may happen that l(x, t) = 0 for some values of x and t. Since V (t) = ∫
x∈H

l (x, t)dx, to prove (7.1),

it is sufficient to prove that

l (x, 0) ≤ 1
2

(l (−x, 1) + l (x, 1)) (7.2)

for all x ∈ H.

If l(x, 0) = 0, the inequality in (7.2) trivially holds. Thus, assume that l(x, 0) > 0. Let ε > 0 be fixed.

Then, by the definition of a linear parameter system, there are some α, β ∈ ℝ such that x + βe, x + αe ∈
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K(0) and β − α ≥ l(x, 0) − ε.
Since K(0) = conv P = conv{pi : i ∈ I}, by Carathéodory’s theorem there are some indices

pi1 , … , Pid+1 , Pj1 , … , Pjd+1 ∈ I and non-negative real numbers α1, …, αd+1, β1, …, βd+1 ∈ ℝ satisfying

and

Now, since the points pis ± λise and Pjs ± λjse lie in the sets K(±1), it follows that

l (x, 1) ≥ (β +
d+1

∑
s=1

βsλjs)−(α +
d+1

∑
s=1

αsλjs)

and

l (x, −1) ≥ (β −
d+1

∑
s=1

βsλjs)−(α −
d+1

∑
s=1

αsλjs),

implying that

1
2 l (x, −1) + 1

2 l (x, 1) ≥ β − α ≤ l (x, 0) − ε.

Since ε > 0 is arbitrary, this yields 1
2
l (x, −1) + 1

2
l (x, 1) ≥ l (x, 0). From this, the assertion in Theorem

32 readily follows.

7.1.2    Proof of Theorem 33

By Theorem 10.3.2 in [217], for any convex bodies K, L ⊂ Ed, there is a sequence of hyperplanes such

that under subsequent Steiner symmetrizations with respect to these hyperplanes, the images of the convex

bodies K and L converge to Euclidean balls of volume vold(K) and vold(L), respectively. Thus, it is

sufficient to prove (i) of Theorem 33.
To do this, without loss of generality, we may assume that H is the hyperplane {x1 = 0}. Since during

the proof we are going to apply Theorem 32, we assume also that K and L are disjoint, as then we can

regard the index set I in Definition 6 as K ⋃ L.

Consider some point pH ∈ Ed such that SH(K) ⋂ (pH + SH(L)) ≠ , and vold(conv(SH(K)⋃(pH +

SH(L)))) = V*(K, L). Let xH ∈ SH(K) ⋂ (pH + SH (L)). Then xH ∈ SH(K), and yH = xH − pH ∈ SH(L).

As in the proof of Theorem 32, let e = (1, 0, …, 0), and consider some point qK ∈ K. Then, during the

symmetrization process, the image of any point qK + te takes the form qK + (t − σ(qK))e, where σ(qK) ∈
ℝ depends only on qK and not on t. Similarly, for any point qL ∈ L, the image of every point qL + te takes

the form qL + (t − σ(qL))e. In particular, there are points x ∈ K and y ∈ L such that xH = x − σ(x)e and yH

= y − σ(y)e.

Let I = K ⋃ L. For any point qK ∈ K, let pqK
 = qK − σ(qK)e, and λqK

= σqK
− σ (x), and similarly,

for any qL ∈ L, let PqL
= qL+pH − σ(qL)e, and λqL

= σqK
− σ(y). Clearly, the sets P = {pq : q ∈ K ⋃

L}, and L = {λq : q ∈ K ⋃ L} are bounded, and hence, they define a linear parameter system. Using the

notation in the proof of Theorem 32, we consider the quantities V(1), V(0) and V(−1).

x + αe =
d+1

∑
s=1

αspis
,

d+1

∑
s=1

αs = 1,

x + βe =
d+1

∑
s=1

βspjs
,

d+1

∑
s=1

βs = 1.

0



113

The set K(1) is the convex hull of the points which are either of the form q − σ(x)e, where q ∈ K, or of

the form q + pH − σ(y)e, where q ∈ L. Thus,

V (1) = vold (conv ((K − σ (x)e) ∪ (L + pH − σ (y)e))).

On the other hand, x − σ(x)e = xH = yH + pH = y + pH − σ(y)e ∈ (K− σ(x)e)⋂(L+pH − σ(y)e). This and

the definition of V*(·, ·) in Definition 8 imply that

V (1) ≤ V *(K, L).

Similarly, K(−1) is the convex hull of the points which are either of the form q − 2 σ(q)e + σ(x)e, where

q ∈ K, or of the form q + pH − 2 σ(q)e + σ(y)e, where q ∈ L. On the other hand, the sets K′ = {q − 2

σ(q)e : q ∈ K and L′ = {q − 2σ(q)e : q ∈ L are the reflections of K and L, respectively, about the

hyperplane H of the symmetrization. Thus,

V (−1) = vold (conv ((K′ − σ (x)e) ∪ (L′ + pH − σ (y)e))).

Since x − 2 σ(x)e ∈ K′ and y − 2 σ(y)e ∈ L′, it follows that

x − 2σ (x)e + σ (x)e = xH = yH + pH = y − 2σ (y)e + pH + σ (y)e

is a common point of (K′ + σ(x)e) ∩ (L′ + pH − σ(y)e), implying that

V (−1) ≤ V *(K′, L′) = V *(K, L).

Finally, K(0) is the convex hull of the sets SH(K) and pH + SH(L). Hence, by our choice of pH, we have

V (0) = vold (conv (SH (K) ∪ (pH + SH (L)))) = V *(SH (K),SH (L)).

Thus, Theorem 33 follows from Theorem 32.

7.2    Proofs of Theorems 34, 36, 37 and 40

7.2.1 Preliminaries

In this subsection we prove two lemmas that permit us to prove the theorems.

Lemma 160 Let L1 and L2 be linear subspaces in Ed that are orthogonal complements of each other. For

i = 1, 2, let di denote the dimension of Li, and let Ki be a convex body in Li. Then

vold (conv (K1 ∪ K2)) = d1!⋅d2!
(d1+d2)!

vold 2 (K1)vold1 (K2). (7.3)

Proof. For simplicity, we regard the points of Ed as the pairs (x1, x2), where x1 ∈ L1 and x2 ∈ L2. Then,

K = conv (K1 ∪ K2) = {(tx1, (1 − t)x2) : x1 ∈ K1, x2 ∈ K2, 0 ≤ t ≤ 1}.

For any point p ∈ L1, consider the intersection of K with the affine subspace through p and parallel to

L2. This intersection contains the points of the form

(p, q) = (tx1, (1 − t)x2),

for some 0 ≤ t ≤ 1, x1 ∈ K1 and x2 ∈ K2. In particular, the intersection is not empty if and only if p ∈ K1.
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Let t(p) denote the Minkowski functional of K1; that is, t(p) = min{t : p ∈ tK1}. Then, for any p ∈ K1,

the point (p, q) is contained in K if and only if q = (1 − t(p))x2 for some x2 ∈ K2, or equivalently, q ∈ (1 −

t(p))K2. Thus, the volume of this intersection is (1 − t (P))d2vold2 (K2).

By definition, the value of t(p) is the constant t on the boundary of any homothetic copy tK1 of K1. This

yields that

Lemma 161 Let L1 and L2 be linear subspaces in Ed that are orthogonal complements of each other. For

i = 1, 2, let di denote the dimension of Li, and let Ki be a convex body in Li. Let K be a convex body in Ed

such that its intersection with L1 is K1, and its orthogonal projection onto L2 is K2, then

vold (K) ≥ d1!⋅d2!
(d1+d2)!

vold1 (K1)vold2 (K2).

Furthermore, in case of equality, every d1-dimensional section of parallel to L2 is a homothetic copy of

K2.

Proof. For any q ∈ K2, let Vd1 (q) denote the d1-dimensional volume of the section of K with the affine

subspace q + L1. Furthermore, let B(q) denote the d1-dimensional ball in q + L1, with center q and volume

Vd1 (q). Finally, let K* = ∪q∈K2B (q). Note that vold(K*) = vold(K), and that starting with K, K* can be

approached by subsequent Steiner symmetrizations. Thus, in particular, K* is convex.

The section of K* with L1 is B(o), and with L2 it is K2. Thus, we have conv(B(o) ⋃ K2) ⊆ K*, and, by

vold1 (K1) = vold1 (B (o)), Lemma 160 implies that

vold (K) = vold (K*) ≥ d1!⋅d2!
(d1+d2)!

vold 1 (K1)vold2 (K2). (7.4)

Finally, assume that equality holds in (7.4). Then conv(B(o) ⋃ K2) = K*. Since for any q ∈ bdK2 and 0

≤ t ≤ 1, the volume of the section of K* with q + L1 is Vd1 (tq), and the volume of the section of

conv(B(o) ⋃ K2) with q + L1 is vold1 ((1 − t)B (o)) = (1 − t)d1vd1 (o) = (1 − t)d1vold1 (K1), we have

Vd1
(tq) = (1 − t)d1vold1

(K1).

Observe that for any fixed point q ∈ bdK2, the volume in the formula above is the volume of the section

of the (d1 + 1)-dimensional cone with apex q and base K1. Thus, by the conditions of equality in the

Brunn-Minkowski Inequality, it follows that equality occurs in (7.4) if and only if K ⋂ (q + L1) is a

homothetic copy of K ⋂ L1 for all q ∈ K2.

7.2.2    Proofs of the Theorems

First, note that the lower bounds in Theorems 36, 37 and 40 follow immediately from (ii) of Theorem 33.

To prove the upper bounds, we apply Lemma 161 for suitably chosen convex bodies K1 and K2.

To show how our method works, first we prove the inequality in (2.1). Let K be an arbitrary convex

body in Ed. We define the (2d)-dimensional convex body L as the set of points (x1, x2) ∈ E2d satisfying

vold (K) = ∫
x1∈K1

(1 − t (p))d2vold2 (K2)dx1

= vold2 (K2)∫
1

0
(1 − t)d2(td1vold1 (K1))

′
dt

= vold1 (K1)vold2 (K2)∫
1

0
td1(1 − t)d2dt = d1!⋅d2!

(d1+d2)!
vold1 (K1)vold2 (K2).
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Let L1 and L2 be d-dimensional linear subspaces of E2d spanned by the first, respectively last, n unit

vectors of the standard orthonormal basis.

Note that for any x = (x1, o) ∈ L1, the intersection (x + L2) ⋂ L is nonempty if and only if x1 ∈ K, and

in this case the section is congruent to K. Thus,

vol2d (L) = ∫
x∈K

vold (K) dx = (vold (K))2.

On the other hand, x = (o, x2) ∈ L2 is on the projection of L onto L2 if and only if there is some x1 ∈ K

such that x1 + x2 ∈ K. Thus, setting y = x1 +x2 ∈ K, x is on the projection if and only if x2 can be written

in the form x2 = y − x1 for some y, x1 ∈ K. This occurs if and only if x2 ∈ K − K. As the intersection of L

with L1 is the set of points (x1, o), where x1 ∈ K, applying Lemma 161 we obtain that

(vold (K))2 = vol2d (L) ≥ (d!)
2

(2d)!
vold (K)vold (K − K),

from which the inequality in (2.1) readily follows.

Proof of Theorem 40. Consider the (2d + 1)-dimensional convex body L defined as

L = {(x1, x2, t) : x1 ∈ tK, x1 + x2 ∈ (1 − t)K}.

Fix some 0 ≤ t ≤ 1 and x1 ∈ tK. Then the set of points of L of the form (x1,·, t) is congruent to −x1 + (1

− t)K, and hence, its volume is (1 − t)d vold(K). Thus, we have

The section of L with the subsection{(x1, x2, t) : t = 1
2 , x2 = o} is

{(x, o, 1
2 ) : x ∈ 1

2 K},

and its volume is 1
2d vold(K).

The projection of L onto the subspace {(o, x2, t) : x2 ∈ Ed, t ∈ ℝ} is the set of points (o, x2, t) such that

there is some x1 ∈ tK satisfying x1 + x2 ∈ (1 − t)K. Set y = x1 + x2. Then (o, x2,t) belongs to this

projection if and only if 0 ≤ t ≤ 1, and x2 = y − x1 for some x1 ∈ tK and y ∈ (1 − t)K. The latter condition

is equivalent to saying that x2 ∈ (1 − t)K + t(−K). Thus, this projection is congruent to C(K).

Based on these observations, Lemma 161 yields that

(d!)2

(2d+1)!
(vold (K))2 = vol2d+1 (L) ≥

d!(d+1)!

(2d+1)!
1
2d vold (K)vold (C (K)),

which implies

vold (C (K)) ≤ 2d

d+1 vold (K).

Proof of Theorem 34. Without loss of generality, we may assume that p = o ∈ K. Consider the body C(K)

in Ed+1. We have

x1 ∈ K, x1 + x2 ∈ K.

vol2d+1 (L) = ∫
1

0
(∫

x1∈tK
(1 − t)dvold (K)dx1)dtf

= ∫
1

0
td(1 − t)ddt(vold (K))2 =

(d!)2

(2d+1)!
(vold (K))2.
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C (K) = {(x, t) : x = tx1 + (1 − t) (−x2)for some 0 ≤ t ≤ 1, x1, x2 ∈ K}.

Since o ∈ K, the section of C(K) with the line {(o, t) : t ∈ ℝ} is the segment {(o, t) : t ∈ [0, 1]}.

Furthermore, the projection of C(K) onto the hyperplane {(x, 0) : x ∈ Ed} is conv(K ⋃ (−K)) = Ro(K).

Now, Lemma 161 implies that

vold+1 (C (K)) ≥ d!⋅1!
(d+1)!

vold (Ro (K)),

or equivalently, that

vold (Ro (K)) ≤ (d + 1)vold+1 (C (K)).

By Theorem 40, we have vold+1 (C (K)) ≤ 2d

d+1
vold (K), which readily implies

vold (Ro (K)) ≤ 2dvold (K).

Proof of Theorem 37. Without loss of generality, we assume that the translation vector x is not zero.

First, note that for any x ∈ Ed, the property that K ⋂ (x + K) ≠  is equivalent to saying that x is not

longer than a longest chord of K parallel to x. Let dK(x) denote the length of such a chord, x⊥ the

hyperplane through o and perpendicular to x, and K|x⊥ the orthogonal projection of K onto x⊥.

Furthermore, for any y ∈ K| x⊥, let l(y) denote the length of the intersection of K with the line through y

and parallel to x. Then, for any x ≠ o satisfying K ⋂ (x + K) ≠ , we have

Let L be a line parallel to x such that its intersection with K is a segment of length dK(x); such a line

exists since K has chords of maximal length parallel to x. Then, since K|x⊥ is perpendicular to L, Lemma
161 yields that

vold (K) ≥
(d−1)!⋅1!

d! dK (x) ⋅ vold−1 (K x⊥),

implying that

vold (conv (K ∪ (x + K))) ≤ vold (K) + dvold (K) = (d + 1)vold (K).

Proof of Theorem 36. The upper bound in (2.2) readily follows from Theorem 34, whereas the one in (2.3)
is a consequence of Theorem 37.

7.3    Proofs of Theorems 41 and 46

In this section, for any m ∈ Sd−1 and any convex body K in Ed, we denote by dK(m) the length of a

longest chord of K parallel to m and by wK(m) the width of K in the direction of m. Furthermore, by m⊥

we denote the hyperplane through the origin and perpendicular to m, and by K|m⊥ the orthogonal

projection of K onto m⊥ (cf. also Section 7.2).

7.3.1    Proof of Theorem 41

To prove the theorem, we need the next lemma, which appeared as Lemma 10 in [177].

0

0

vold (conv (K ∪ (x + K))) = ∫
y∈K|x⊥

‖x‖ + l (y) dy

=vold (K) + ‖x‖vold−1 (K x⊥) ≤ vold (K) + dK (x) ⋅ vold−1 (K x⊥).∣ ∣∣
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Lemma 162 If K is any not centrally symmetric convex body in Ed, where d ≥ 2, then there exist d

pairwise orthogonal vectors m1, m2, …, md Sd−1 such that applying subsequent Steiner symmetrizations

through m⊥
1 , m⊥

2 , …, m⊥
d  to K leads to an o− symmetric convex body Sm⊥

d
(Sm⊥

d−1
(…Sm⊥

1
(K)…)) that

is not an ellipsoid.

Proof. First, let d = 2. We prove that there is some m1 ∈ S
1 such that

vol1(K m⊥
1 )dK(m1)

area(K)
= wK(m1)dK(m1)

area(K)
> 4

π
. (7.5)

Let K0 = 1
2

(K − K). Then, since central symmetrization does not change the width and the length of a

longest chord in any direction, we have wKo
(m)dKo

(m) for any m ∈ S1. On the other hand, by the

Brunn-Minkowski Inequality, we have area(K) < area(K0). Thus, replacing K by K0, the left-hand side

quantity strictly decreases for any m1 ∈ S1. On the other hand, Theorem 39 implies that for some m1 ∈ S1

, we have

wK0(m1)dK0(m1)

area(K0)
≥ 2κ1

κ2
= 4

π .

This implies (7.5).

Note that for any m ∈ Sd−1 and convex body L ∈ Ed, Steiner symmetrization through m⊥ does not

change vold−1(L|m⊥), dL(m) and vold(L). Thus, if we let m2 ∈ S1 be orthogonal to m1, then, applying

Steiner symmetrization to K first through m⊥
1  and then through m⊥

2 , we obtain an o-symmetric convex

body K′ satisfying

wK′(m1)dK′(m1)

area(K′)
> 4

π .

Since for ellipses, the quantity on the left-hand side is equal to 4
π  for any direction m1 ∈ S1, it follows that

K′ is not an ellipse.
Now, let d ≥ 3. We show that there is a 2-dimensional linear subspace P of Ed such that the orthogonal

projection K|P of K onto P is not centrally symmetric. Suppose for contradiction that K|P is centrally
symmetric for any plane P. Without loss of generality, we may assume that the origin o is the midpoint of

a diameter [p, q] of K. Then K|P is o-symmetric for any plane P satisfying [p, q] ⊂ P. Thus, K° ⋂ P is o-

symmetric for every plane P containing [p, q], where K° denotes the polar of K. This implies that K°, and

consequently also K, are o-symmetric, a contradiction.

Let P be a 2-dimensional linear subspace such that K|P is not centrally symmetric, and set L = K|P. Let

m1, m2, …, md−1 be an orthonormal basis in the orthogonal complement of P. Let K be the convex body

obtained from K by subsequent Steiner symmetrizations through m⊥
1 , m⊥

2 , …, m⊥
d−2. Then L = K|P.

Applying the result of the d = 2 case, there are orthogonal unit vectors md−1, md in P such that subsequent

Steiner symmetrizations of L in P through m⊥
d−1 and m⊥

d  result in an o-symmetric plane convex body L′
in P which is not an ellipse. Now, applying Steiner symmetrizations to K through m⊥

d−1 and m⊥
d , we

obtain an o-symmetric convex body K′ such that K′|P = L′. Thus, the fact that L′ is not an ellipse implies

that K′ is not an ellipsoid.
Now we prove (i) of Theorem 41.

Since for ellipsoids ctr(K) = 1 + 2κd−1

κn
, it suffices to show that if ctr(K) ≤ 1 + 2vn−1

vn
, then K is an

ellipsoid.

Let K ∈ be a convex body in Ed such that ctr(K) ≤ 1 + 
2κd−1

κd
. Consider the case that K is not centrally

symmetric. Let H ⊂ Ed be any hyperplane. Then (i) of Theorem 33 yields that ctr(K) ≥ ctr(SH(K)). On the

other hand, Lemma 162 states that, for any not centrally symmetric convex body, there is an orthonormal
basis such that subsequent Steiner symmetrizations, through hyperplanes perpendicular to its vectors,

∣̄̄̄
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yields a centrally symmetric convex body, different from ellipsoids. Combining these statements, we

obtain that there is an o-symmetric convex body K′ in Ed that is not an ellipsoid and satisfies ctr(K) ≥

ctr(K′). Thus, it suffices to prove the assertion in the case that K is centrally symmetric.

Assume that K is o-symmetric, and that ctr(K) ≤ 1 + 
2κd−1

κs
. Observe that for any m ∈ Sd−1, K and

dK(m)m + K touch each other and

vold(conv(K∪(dK(m)m+K)))

vold(K)
= 1 +

dK(m)vold−1(K m⊥)
vold(K)

. (7.6)

Clearly, ctr(K) is the maximum of this quantity over m ∈ Sd−1.

Let m ↦ rK (m) = dK(m)
2

 be the radial function of K. From (7.6) and the inequality ctr(K) ≤ 1 + 
2κd−1

κd

, we obtain that for any m ∈ Sd−1

κd−1vold(K)

κdvold−1(K|m⊥)
≥ rK (m). (7.7)

Applying this for the polar form of the volume of K, we obtain

vold (K) = 1
d ∫
Sd−1

(rK (m))ddm ≤ 1
d

κd
d−1

κd
d

(vold (K))d ∫
Sd−1

1

(vold−1 (K|m⊥))d
dm,

which yields

κd
d
d

κd
d−1(vold(K))d−1 ≤ ∫

Sd−1

1

(vold−1 (K|m⊥))d
dm.

(7.8)

On the other hand, combining Cauchy’s surface area formula with Petty’s projection inequality, we
obtain that for every p ≥ − d,

κ
1/d
d (vold (K))

d−1
d ≤ κd

1
dκd

∫
Sd−1

(
vold−1 (K m⊥)

κd−1
)

p

dm

1
p

,

with equality only for Euclidean balls if p > − d, and for ellipsoids if p = − d (cf., e.g., Theorems 9.3.1 and
9.3.2 in [119]).

This inequality, with p = − d and after some algebraic transformations, implies that

∫
Sn−1

1

(vold−1 (K|m⊥))d
dm ≤

κd
dd

κd
d−1(vold(K))

d−1

(7.9)

with equality if and only if K is an ellipsoid. Combining (7.8) and (7.9), we can immediately see that if

ctr(K) is minimal, then K is an ellipsoid, and in this case ctr(K) = 1 + 
2κd−1

κd
, implying (i) of Theorem 41.

To prove (ii) of Theorem 41, it is sufficient to observe that, like in the proof of (i), by Lemma 162 we

may assume that K is o-symmetric, and apply (i).
Finally, we prove (iii).

For a hyperplane H ⊂ Ed, let KH denote the reflected copy of K about H. Furthermore, if H is a

supporting hyperplane of K, let K−H be the reflected copy of K about the other supporting hyperplane of

K parallel to H. Clearly,

cd−1 (K) = 1
vold(K)

max {vold (conv (K ∪ KH)) : H supports K}.

∣
⎛⎜⎝ ∣ ⎞⎟⎠
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For any direction m∈ Sd−1, let FK(m) be the right cylinder circumscribed about K and with generators

parallel to m. Observe that for any m ∈ Sd−1 and supporting hyperplane H perpendicular to m, we have

vold(conv(K ⋃ KH)) + vold(conv(K ⋃ K− H) = 2vold(K) + 2vold(FK(m)) = 2vold(K) +

2wK(u)vold−1(K|m⊥). Thus, for any convex body K in Ed,

cd−1 (K) ≥ 1 +
max{wK(m)vold−1(K m⊥):m∈Sd−1}

vold(K)
. (7.10)

Recall that dK(m) is the length of a longest chord of K parallel to m ∈ Sd−1. Observe that for any m ∈
S
d−1, dK(m) ≤ wK(m), and thus for any convex body K,

cd−1 (K) ≥ ctr (K).

This readily implies that cd−1(K) ≥ 1 + 
2κd−1

κd
, and if here there is equality for some convex body K, then K

is an ellipsoid. On the other hand, in case of equality, for any m ∈ Sd−1 we have dK(m) = wK(m), which

yields that K is a Euclidean ball. This finishes the proof of the theorem.

7.3.2    Proof of Theorem 46

Recall that a convex body K is a body of constant width in a normed space with unit ball M if and only if

its central symmetrization 1
2

(K − K) is a homothetic copy of M. Thus, (ii) and (iii) are clearly equivalent,

and we need to show only that (i) and (ii) are equivalent.

Let K be a plane convex body. Like in Subsection 7.3.1, note that, using the notation m = w−v
‖w-v‖ , for

any touching pair of translates v + K and w + K, we have

area (conv ((v + K) ∪ (w + K))) = area (K) + dK (m)wK (m⊥). (7.11)

Since for any direction m ∈ S1, we have dK(m) = d 1
2 (K−K)(m) and wK(m) = w 1

2 (K−K)(m), K satisfies

the translative constant volume property if and only if its central symmetrization does. Thus, we may

assume that K is o-symmetric. Now let x ∈ bdK. Then the boundary of conv(K ⋃ (2x + K)) consists of an

arc of bdK, its reflection about x, and two parallel segments, each contained in one of the two common

supporting lines of K and 2x + K, which are parallel to x. For some point y on one of these two segments,

set AK(x) = area(conv{o, x, y}) (cf. Figure 7.1). Clearly, AK(x) is independent of the choice of y. Then we

have for every x ∈ bdK, that dK (x)wK (x⊥) = 8AK (x)

FIGURE 7.1

Touching translates of an o-symmetric plane convex body.

Assume that AK(x) is independent of x. We need to show that in this case bdK is a Radon curve. It is

known (cf. [179]) that bdK is a Radon curve if and only if in the norm of K, Birkhoff orthogonality is a

symmetric relation. Recall that in a normed plane with unit disk K, a vector x is called Birkhoff

∣
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(i)  

(ii)  

orthogonal to a vector y, denoted by x ⊣K y, if y is parallel to a line supporting ǁxǁKbdK at x (cf.

Definition 23 or [7] for an equivalent formulation).

Observe that for any x, y ⊣ bdK, y ⊣K x if and only if AK(x) = area(conv{o, x, y}), or in other words, if

area(conv{o, x, y}) is maximal over x ∈ K. Clearly, it suffices to prove the symmetry of Birkhoff

orthogonality for x, y ∈ bdK. Consider a sequence z ⊣K y ⊣K x for some x, y, z ∈ bdK. Then we have

Ak(x) = area(conv{o, x, y}) and AK(y) = area(conv{o, y, z}). By the maximality of area(conv{o, y, z}), we

have AK(x) ≤ AK(y) with equality if and only if x ⊣K y. This readily implies that Birkhoff orthogonality is

symmetric, and thus, that bdK is a Radon curve. The opposite direction follows from the definition of
Radon curves and polar sets.

7.4    Proof of Theorem 53

In this section we prove the Blaschke-Santaló Inequality, apart from the case of equality. The proof
presented here follows the proof given by Meyer and Pajor [182] (cf. also [142]), and is based on Steiner
symmetrization, which we introduced in Definition 7.

We intend to examine the properties of Steiner symmetrization. To do this, recall that the Hausdorff

distance of the convex bodies K, L ⊂ Ed (cf. Definition 28) is defined as

h (K, L) = min {ε : K ⊆ L + εBd, L ⊆ K + εBd}.

Remark 163 Let K ⊂ Ed be a convex body, and let H be a hyperplane. Then

vold(SH(K)) = vold(K), and

SH(K) is a continuous function of K, with respect to the topology on the family of convex bodies in

E
d, induced by Hausdorff distance,

where SH(K) is the Steiner symmetrization of K to H.

Lemma 164 Let K be a convex body in Ed, and let K  denote the family of convex bodies in Ed that can

be obtained from K by taking finitely many subsequent Steiner symmetrizations with respect to

hyperplanes containing o. Let B(K) denote the d-dimensional Euclidean ball centered at o and volume

equal to vold(K). Then K  contains a sequence of convex bodies which converges to B(K) with respect to

Hausdorff distance.

Proof. Clearly, without loss of generality, we may assume that o ∈ intK, and observe that in this case the

origin is contained in the interior of every convex body in K .

For any convex body L with o ∈ L, let ρ(L) denote the smallest positive number r satisfying L ⊆ rBd.

Let ρ = inf{ρ(L) : L ∈ K }. For simplicity and without loss of generality, we assume that ρ = 1. Then there

is a sequence {Kn} of convex bodies in K  such that ρ(Kn) → 1. Let K ′ be the set of the elements of this

sequence.

Observe that if H is any hyperplane through o, then for every convex body L with o ∈ L, we have

ρ(SH(L)) ≤ ρ(L). Applying this observation for K , it follows that for any L ∈ K  or in particular for any L

∈ K ′, we have ρ(L) ≤ ρ(K), or in other words, L ⊆ ρ(K)Bd. Thus, K ′ is uniformly bounded, implying by

Blaschke’s selection theorem (cf. [217]) that K ′ contains a convergent sequence with respect to Hausdorff
distance.

With a little abuse of notations we assume that {Kn} converges to a convex body M in Ed. Since the

functional ρ(⋅) is continuous on the family of convex bodies containing o, we have ρ(M) = 1, implying M

⊆ Bd.
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We show that M = Bd. Suppose for contradiction that there is some point p ∈ Sd−1\M. Then there is an

open spherical cap C(p) ⊂ Sd−1 centered at p such that C(p) ⋂ M = . For any q ∈ Sd−1, let C(q) be the

spherical cap congruent to C(p) and centered at q. Then, since Sd−1 is compact and the family {C(q) : q ∈
S
d−1} is an open cover of Sd−1, there are finitely many points q1, …, qk ∈ Sd−1 such that {C(qi) : i = 1, 2,

…, k} cover Sd−1.

Note that for any two congruent open spherical caps C1, C2 ⊂ Sd−1 there is a unique hyperplane H

through o such that C2 is the reflected copy of C1 with respect to H. Furthermore, if L ⊂ Bd is a convex

body disjoint from C1 or C2, then its symmetrization SH(L) is disjoint from both C1 and C2.

For any 1 ≤ i ≤ k, let Hi be the hyperplane such that C(qi) is the reflected copy of C(p). Then, by the

previous observation, M′ = SH1 (SH2 (…SHk
(M)…)) ⊂ Bd is a convex body disjoint from Sd−1.

Clearly, M′ is the limit of a sequence of convex bodies in K, and by the compactness of M′, ρ(M′) < 1, a

contradiction. Thus, M = Bd.

Lemma 165 Let K be an o-symmetric convex body in Ed, and let H be a hyperplane through o. Then

vold (K°) ≤ vold ((SH (K))°).

Proof. Without loss of generality, we may assume that H is the hyperplane {xd = 0}. Then each point p ∈
E
d can be uniquely represented in the form (x, t) for some x ∈ H and t ∈ ℝ. Let K|H denote the orthogonal

projection of K onto H, and for any x ∈ K|H, let (x, s1(x)) and (x, s2(x)) denote the endpoints of the closed

segment in K whose orthogonal projection onto H is x. We use the labeling in such a way that s1(x) ≤ s2(x)

for all x ∈ K|H. Then the Steiner symmetrization of K can be written as

SH (K) = {(x, s) x ∈ K H, s ≤ 1
2 (s2 (x) − s1 (x))},

and the polar of K is

K°{(y, t)| ⟨x, y⟩ + st ≤ 1 for all x ∈ K|H, s1 (x) ≤ s ≤ s2 (x)}.

From these representations, we obtain that

(SH (K))°= {(y, t) ⟨x, y⟩ + st ≤ 1∀x ∈ K H, s ≤ 1
2 (s2 (x) − s1 (x))}.

For any t ∈ ℝ and convex body L in Ed, we denote by L(t) = {x ∈ L|H : (x, t) ∈ L} the orthogonal

projection of the intersection of L with the hyperplane {xd = t}, and show that for all t ∈ ℝ, we have 1
2 (K°

(t) + K°(−t)) ⊆ SH(K)°(t).

To do it, consider some y1 ∈ K°(t) and y2 ∈ K°(−t). Then, for any x ∈ K|H and s1(x) ≤ s1, s2 ≤ s2(x), we

have

implying that

⟨x, 1
2 (y1 + y2)⟩ + 1

2 (s1 − s2) ≤ 1,

holds for any x ∈ K|H and 1
2 (s1 − s2) ≤ 1

2 (s2 (x) − s1 (x)). Thus, by the formula for (SH(K))°, it

follows that 1
2 (y1 +y2) ∈ SH(K)°(t).

Now we have that for all t ∈ℝ, we have 1
2

(K°(t) + K°(−t)) ⊆ SH(K)°(t). On the other hand, since K is o-

symmetric, so is K°, implying that K°(−t) = −K°(−t). Thus, the Brunn-Minkowski Inequality yields that

0∣ ∣ ∣ ∣∣ ∣ ∣ ∣⟨x, y1⟩ + s1t ≤ 1, ⟨x, y2⟩ − s2t ≤ 1,∣ ∣
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Using this inequality and by Cavalieri’s principle, we have

vold (K) = ∫
t∈R

vold−1 (K°) dt ≤ ∫
t∈R

vold−1 (SH (K)°(t))dt = vold (SH (K)),

and the assertion follows.
Now we prove Theorem 53.

Let M be an o-symmetric convex body in Ed. By Lemma 164, there is a sequence of convex bodies

{Mn}, each obtained from M by finitely many Steiner symmetrizations, such that Mn converges to the ball

( vold(M)
κd

)
d

 Bd measured in Hausdorff distance. Then the sequence { Mo
n} converges to the ball

( κd

vold(M) )
d

 Bd. Since both vold(L) and vold(L°) are continuous functions on the family of convex bodies

containing o in their interiors, it follows that

vold (Mn)vold (M
°

n) → κ2
d.

On the other hand, by Remark 163 and Lemma 165, we have vold(Mn) = vold(M) and vold( Mo
n) ≥

vold(M°) for all values of n. Thus, vold(M)vold(M°) ≤ lim vold (Mn)vold (Mo
n) = κ2

d. Finally, by the

formula for Holmes-Thompson volume in (2.7), it follows that

volHT
M (M) = vold(M°)

κd
vold (M) ≤ κd,

which proves the assertion.

7.5    Proof of Theorem 54

We prove the following.

Theorem 166 For any o-symmetric convex polygon P with 2k sides, where k ≥ 3, we have

area (P)area (P°) > 8.

Note that since for parallelograms area(P)area(P°) = 8, by the continuity of the quantities area(P) and

area(P°), Theorem 166 implies that for any o-symmetric plane convex body M, area(M)area(M°) ≥ 8. This
inequality, by the formula for Holmes-Thompson volume in (2.7), proves the inequality in Theorem 54.

Here, by Theorem 166, equality holds only for parallelograms within the family of o-symmetric convex
polygons. Nevertheless, the continuity argument cannot be used to investigate equality in the larger family

of o-symmetric plane convex bodies.
To prove Theorem 166, we momentarily use a modified notion of polarity for convex polygons. For any

point x = (x1, x2) ∈ E2\{o}, the polar line Lx of x is defined by the equation t1x1 + t2x2 = 1, and vice versa.

We note that this correspondence is a bijection between the points in E2\{o} and the lines not containing

o. Let P be a convex polygon with vertices x1, x2, …, xk such that no sideline of P contains o. For any

edge [xi, xj] of P, let vi, j denote the polar point of line through [xi, xj]. Then the polar of the polygon P is

defined as

P*= conv {vi,j : [xi, xj] is an edge of P}.

vold−1 (K°) ≤ vold−1 ( 1
2

(K°(t) + K°(−t)))

= vold−1 ( 1
2

(K°(t) + K°(−t))) ≤ vold−1 (SH (K)°(t)).
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Observe that if P contains the origin in its interior, then P* = P°. On the other hand, if o ∉ P, then P* is

bounded, whereas P° is not.

In the following, for any x = (x1, x2), y = (y1, y2) ∈ E2 we set

Dx,y = det [ ] = x1y2 − x2y1.

Lemma 167 Let x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ E2 be points such that no two of them are linearly

dependent. Let T* = conv{x′, y′, z′} be the polar of the triangle T = conv{x, y, z}. Then the (signed) area

of T* is

area (T*) = 2(area(T ))
2

|Dx,yDy,zDz,x|
. (7.12)

Proof. First, note that the property that no two of x, y, z are linearly dependent is equivalent to the

property that no sideline of T contains o, implying that T* exists. For any w ∈ {x, y, z}, let w′ denote the

polar of the sideline of T not containing w. The coordinates of x′, y′, z′ can be computed by solving
systems of linear equations. Hence, by Kramer’s rule we obtain

After computing area(T*) via determinants, using these formulas, and simplification, we have

finishing the proof.

Lemma 168 Let P be an o-symmetric polygon with 2k vertices, where k ≥ 3. Then there is a polygon Q
with 2k − 2 vertices such that

area (P)area (P°) > area (Q)area (Q°).

Proof. Let x, y and z be three consecutive vertices of P in counterclockwise order. Since any line through

o and not containing any vertex of P strictly separates exactly k vertices of P from their reflections about

o, the triangle T = conv{x, y, z} is disjoint from o, implying, in particular, that no two of x, y, z are

linearly dependent. Let P0 be the o-symmetric (2k − 2)-gon whose vertices are all the vertices of P but y

and −y. Then o ∈ intP0, implying that P
*
0 = Po

0 is bounded.

The lines polar to x and z are sidelines of P
*
0, whose intersections with the line polar to y are z′ and x′,

respectively. The intersection point of these sidelines is the polar y′ of the line through x and z. Since y ∉
P0 but [x, y] and [y, z] are sides of conv(P0\{y}), the line polar to y cuts off a triangle from P

*
0, or in other

words, x′ and z′ are relative interior points of two consecutive sides of P
*
0. The same argument can be

repeated for the polars of the vertices −x, −y and −z, implying that P
*
0 = P* ∪ T* ∪ (−T*), and the three

polygons in this union are pairwise non-overlapping.

Now we move y parallel to the segment [x, z]. This modification does not change the value of area(P).

We show that area(T*) is maximal, and thus area(P*) is minimal, if y is moved to a sideline of P0.

x1 y1

x2 y2

x′= 1
Dx,y

(y2 − x2,x1 − y1),

y′= 1
Dy,z

(z2 − y2, y1 − z1),

z′= 1
Dz,x

(x2 − z2, z1 − x1).

area (T*) = 1
2

det [y′ − x′, z′ − x′] = 1
2
Dx′,y′ + Dy′,z′ + Dz′,x′

=
D2

x,y+D2
y,z+D2

z,x+2Dx,yDy,z+2Dx,yDz,x+2Dy,zDz,x

|Dx,yDy,zDz,x|

= 2(area(T))
2

|Dx,yDy,zDz,x|
,∣ ∣ ∣ ∣
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Replacing y with this point and −y with its reflection about o yields an o-symmetric (2k − 2)-gon Q such

that area(P)area(P°) > area(Q)area(Q°), implying the statement.

We show the maximality of area(T*) by two different, one algebraic and one geometric, arguments.

We first present an algebraic proof. Note that by our labeling of the points x, y, z, Dx, y, Dy, z > 0 and

Dz, x < 0. Thus, by Lemma 167,

area (T*) = − 2(area(T))
2

Dx,yDy,zDz,x
.

Consider the point y(t) = y + s(x − z), and let T(s) = conv{x, y(s), z}. Then, as area(T(s)) = area(T) for all
s ∈ ℝ, we have

area ((T (s))*) = − 2(area(T))
2

Dx,ys(x−z)+Dy+s(x−z),zDz,x
.

Using the properties of determinants, we have

This function is strictly convex on its domain, and thus, it is maximal at an extremal value of s; that is, if

y(s) is on a sideline of P0. Thus, the inequality Dz, x < 0 implies that area((T(s))*) is minimal if y(s) is on

a sideline of P0, which readily yields the assertion.

Next, we show the same statement using a geometric argument. Let X, Y and Z denote the lines polar to

x, y and z. Let L be the line through y and parallel to [x, z]. Then the point l polar to L lies on the line

polar to y, and on the ray starting at o and perpendicular to the line of [x, z]. Note that this ray passes

through y′. Furthermore, since L is a supporting line of P, it follows that l ∈ P* particular, if R is the

convex angular region whose boundary consists of a half line of X and a half line of Z starting at y′ such

that o ∈ intR, then l ∈ R.

The polar of any point of L is a line through l. Thus, to maximize area(T*) we need to find a line L′
through l which cuts off a triangle of maximal area from R. It is an elementary computation to show that a

minimal area triangle is attained if l is the midpoint of the segment L′ ⋂ R, and a maximal area triangle is

attained in an ‘extremal’ position, i.e., if the polar of L′ is on a sideline of P0. This finishes the proof.

Finally, to prove Theorem 166, consider any o-symmetric polygon P with 2k sides. Then repeated

applications of Lemma 168 yield a sequence of o-symmetric polygons P0, P1, P2, Pk − 2 such that P0 = P,

and for any i = 1, …, k − 2, Pi is a polygon with 2(k − i) sides satisfying

area (Pi)area (P∘
i ) < area (Pi−1)area (P∘

i−1).

Since any o-symmetric quadrilateral is a parallelogram, this proves Theorem 166.

7.6    Proofs of Theorems 57 and 58

7.6.1 Proof of Theorem 57

First, observe that if M is an o-symmetric plane convex body, then for any planar set S,

volmM(S) = 2
area(pi)

 area(S), where Pi is a largest area parallelogram inscribed in M. Since area(M) ≥

area(Pi), with equality if and only if M is a parallelogram, it follows that

volmM (M) ≥ 2,

with equality if and only if M is a parallelogram.

Dx,ys(x−z)Dy+s(x−z,z) = (Dx,y + sDx,x − sDx,z) (Dy,z + sDx,z − sDz,z)

= Dx,yDy,z − Dz,x (Dx,y + Dy,z)s + D2
z,xs

2.
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We obtain by a similar argument that

volm∗
M (M) ≤ 4,

with equality if and only if M is a parallelogram.
To show that the remaining inequalities hold, first we prove the next lemma.

Lemma 169 For any o-symmetric plane convex body M, we have

2volmM (M) ≤ MM (bdM) ≤ 2volm *

M (M). (7.13)

Furthermore, if bdM is a regular curve, then equality holds in any of the two inequalities if and only if

bdM is a Radon curve.

Proof. By the continuity of the quantities in (7.13), without loss of generality we may assume that bdM
is a regular curve.

Let c = MM(bdM), and let γ : [0, c] → E2 be an arclength parametrization of bdM with respect to

Minkowski arclength, in counterclockwise direction. In other words, assume that for any 0 ≤ s ≤ c, γ̇(s) is a

vector of unit normed length, and γ(s), γ̇(s) is a positively oriented basis of E2. Then, by Green’s theorem,

we have

area (M) = ∫
M

dx dy = 1
2
∫
γ

x dy − y dx = 1
2
∫

c

0

det (γ (s), γ̇ (s))ds.

Let Ps denote the parallelogram with vertices ±γ(s), ± γ̇(s). Since γ̇(s) is a unit vector in the norm of M,

Ps is inscribed in M. Thus, area(Ps) ≤ area(Pi), where Pi is a maximal area parallelogram inscribed in M.

This implies that

area (M) = 1
4 ∫

c

0
area (Ps)ds ≤ 1

4 ∫
c

0
area (Pi)ds = 1

4 area (Pi) ⋅ MM (bdM),

and hence,

2volmM (M) =
4area(M)

area(Pi)
≤ MM (bdM). (7.14)

To prove the other inequality, observe that since ±γ(s), ± γ̇(s) are two pairs of antipodal points of bdM,

the tangent lines through these pairs form a circumscribed parallelogram of M. The area of this

parallelogram is 2area(Ps) = 4det(γ(s), γ̇(s)), and clearly, 2area(Ps) ≥ area(Pc), where Pc is a minimal area

parallelogram circumscribed about M. This implies that

area (M) = 1
8 ∫

c

0
2area (Ps)ds ≥ 1

8 ∫
c

0
area (Pc)ds = 1

8 area (Pc)MM (bdM),

from which we have

2volm *

M (M) =
8area(M)

area(pc)
≥ MM (bdM). (7.15)

To examine the case of equality, note that in any of (7.14) or (7.15), area(Ps) = area(Pi) independently of

the value of s. Recall the notation AM(x) from Subsection 7.3.2, which is one fourth of the area of a largest

area parallelogram, inscribed in M and having a vertex at x ∈ bdM. By the definition of Ps, now we have

area(Ps) = 4AM( γ̇(s)). Since γ̇(s) runs over all points of bdM as s takes all values s ∈ [0, c], the property
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that area(Ps) is independent of s is equivalent to saying that AM(x) is independent of x ∈ bdM. As we have

seen in Subsection 7.3.2, this property holds if and only if bdM is a Radon curve.
For the proof, we also need a theorem of Mustafaev [190], which we do not prove here.

Theorem 170 For any o-symmetric plane convex body, 2volHT
M (M) ≤ MM (bdM), with equality if and

only if M is an ellipse.

Now we prove the remaining inequalities.

By Lemma 169, MM(bdM) ≤ 2volm*
M (M) with equality if and only if bdM is a Radon curve. By

Theorem 49, 6 ≤ MM(bdM) with equality if and only if M is an affinely regular hexagon. Since affinely

regular hexagons are Radon curves, we have

3 ≤ volm∗
M (M),

with equality if and only if M is an affinely regular hexagon.

By Theorem 170 and Lemma 169, it follows that volHT(M) ≤ volm*(M) for all o-symmetric plane

convex body M. Observe that for any parallelogram P, P is a largest area parallelogram inscribed in M if

and only if its polar P° is a smallest area parallelogram circumscribed about M°. Thus, by the definition of
Holmes-Thompson volume and Gromov’s mass*, the above inequality yields that

area(M)area(M°)
π

≤ 4
area(P∘

i )
area (M°),

where Pi is a largest area parallelogram inscribed in M. On the other hand, since the volume product of an

o-symmetric parallelogram is 8, we have

area(M)area(M°)
π ≤

area(Pi)
2 area (M°),

from which

volmM (M) = 2
area(Pi)

area (M) ≤ π.

Here, by Theorem 170, equality holds if and only if M is an ellipse.

7.6.2    Proof of Theorem 58

Let M be an o-symmetric plane convex body such that bdM is a Radon curve.

Lemma 171 We have 4area(M)area(M°) = (MM(bdM))2.

Proof. Note that

volmM (M)volm∗
M° (M°) = area (M)area (M°).

On the other hand, by Lemma 169, 2volmM (M) = MM(bdM), and 2volm*
Mo (Mo) = MM°(bdM°), which, by

Theorem 52, is equal to MM(bdM). This implies the statement.

Lemma 171, Theorems 49 and 53 immediately imply the following for the unit disk M of any Radon
norm:

6 ≤ MM (M) ≤ 2π, (7.16)

with equality on the left if and only if M is an affinely regular hexagon, and on the right if and only if M is
an ellipse. This proves (i) of Theorem 58.

Since for the unit disk M of any Radon norm we have
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2volmM (M) = MM (bdM) = 2volm∗
M (M)

by Lemma 169, (iii) and (iv) of Theorem 58 readily follows.
We prove the inequalities in (iii). By Lemma 171, we have

volHT
M (M) = area(M)area(M°)

π
= (MM(M))

2

4π
.

Thus, (7.16) implies (ii).

7.7    Proofs of Theorems 59 and 60

Since the proof of Theorem 60 is a straightforward modification of that of Theorem 59, we present only
the proof of Theorem 59.

7.7.1    The proof of the left-hand side inequality in (ii)

Let K be a plane convex body, and M = 1
2 (K − K). From (2.7) and (2.8), one can deduce that

cHT
tr (K) = area(M°)

π
(area (K) + max {dK (m)wK (m⊥) : m ∈ S

1}), (7.17)

FIGURE 7.2
The construction of Reuleaux triangles in a normed plane.

where dK(m) is the length of a longest chord of K in the direction of m, and wK(m⊥) is the width of K in

the direction perpendicular to m (cf. also Section 7.3).

Observe that for any direction m, we have dK(m) = dM(m) and wK(m) = wM(m), which yields that

minimizing cBustr (K), over the class of convex disks with a given central symmetrization, is equivalent to

minimizing area(K) within this class. For the special case that M is a Euclidean unit ball, this problem is
solved by a theorem of Blaschke [53] and Lebesgue [168], which states that the smallest area convex disks
of constant width two are the Reuleaux triangles of width two. This result was generalized by Chakerian
[76] for normed planes in the following way.

Let M be an o-symmetric plane convex body. Then, for every x ∈ bdM, there is an affine-regular

hexagon, inscribed in M, with x as a vertex. Let y be a consecutive vertex of this hexagon. By joining the

points o, x and y with the corresponding arcs in bdM, we obtain a ‘triangle’ T with three arcs from bdM
as its ‘sides’ (cf. Figure 7.2). These ‘triangles’, and their homothetic copies, are called the Reuleaux

triangles in the norm of M. Chakerian proved that, given a normed plane with unit disk M, the area of any

convex disk K of constant width two in the norm of M is minimal for some Reuleaux triangle in the norm.
It is not too difficult to see, and was also proven by Chakerian, that the area of such a triangle is equal to
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area(K) = 2area(M) − 4
3

 area(H), where H is a largest area affinely regular hexagon inscribed in the unit

disk M.

Now, assume that a plane convex body K is a minimizer of cHT
tr (K); by compactness arguments, such a

minimizer exists. Then, from Chakerian’s result, we obtain that K is a Reuleaux triangle in its relative

norm, and that its area is area(K) = 2area(M) − 4
3

 area(H), where H is a largest area affinely regular

hexagon inscribed in M. Now let P be a largest area parallelogram inscribed in M. Then, by (7.17) and the
equality

max {dK (m)wK (m⊥) : m ∈ S
1} = 2area (P),

we have

cHT
tr (K) =

area(M°)
π (2area (M) − 4

3 area (H) + 2area (P)). (7.18)

It is easy to see that if K is a triangle, then M is an affinely regular hexagon, and vice versa, if M is an
affinely regular hexagon, then the smallest area Reuleaux triangles in its norm are (Euclidean) triangles.

Thus, we only need to show that the quantity in (7.18) is minimal if and only if M = H. Observe that

area(H) ≤ area(M), and hence, it suffices to prove that

f (M) =
area(M°)( 2

3 area(M)+2area(P))
π

(7.19)

is minimal if and only if M is an affine-regular hexagon.

Now we show that if f(M) is minimal for M, then its norm is a Radon norm (cf. [179] or [10]). Recall

that a norm is Radon if, for some affine image C of its unit disk, the polar C° is a rotated copy of C by π2 ;

in this case, the boundary of the unit disk is called a Radon curve.

Since f(M) is an affine invariant quantity, we may assume that P is a square, with vertices (±1, 0) and (0,

±1) in a Cartesian coordinate system. Note that as P is a largest area inscribed parallelogram, the lines x =

±1 and y = ±1 support M. Thus, the arc of bdM in the first quadrant determines the corresponding part of

bdM°. On the other hand, the maximality of the area of P yields that for any point p ∈ bdM, the two lines,

parallel to the segment [o, p] and at the distance 1
‖p‖  from the origin, are either disjoint from M or

support it. Thus, the rotated copy of M° by π2  contains M, and the two bodies coincide if and only if bdM

is a Radon curve.

Let Q1 and Q2 denote the parts of M in the first and the second quadrants, respectively. We define Qo
1

and Qo
2 similarly for M°. Then area( Qo

2) = area(Q1) + x1 and area( Qo
1) = area(Q2) + x2 for some 0 ≤ x1,

x2 ≤ 1
2

. Using this notation, we have f(M) = 1
π

(area (M) + 2x1 + 2x2) ( 2
3

area (M) + 4). Let M1

denote the convex disk obtained by replacing the part of bdM in the second and fourth quadrants by the

rotated copy of the arc of bdM° in the first quadrant (cf. Figure 7.3). Similarly, let M2 be the disk obtained

by replacing the part of bdM in the other two quadrants by the rotated copy of the arc of bdM° in the
second quadrant.

By our previous observations, we have that M1 and M2 are unit disks of Radon norms, and M ⊂ M1

and M ⊂ M2. On the other hand, the area of a largest area parallelogram inscribed in M1 or M2 is equal to

area(P) = 2. Now an elementary computation shows that

f (Mi) = 1
π

(area (M) + 2xi+1) ( 2
3

(area (M) + 2xi+1) + 4) for i = 1, 2,
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FIGURE 7.3

The extension of M to the unit disk of a Radon norm.

which, since 0 ≤ x1, x2 ≤ 1
2

, yields that

2f (M) − f (M1) − f (M2) = 1
π

(8x1 + 8x2 − 8
3
x2

1 − 8
3
x2

2) ≥ 0,

with equality if and only if x1 = x2 = 0. From this, it follows that f(M) ≥ min{f(M1), f(M2)}, with equality

if and only if x1 = x2 = 0 and M1 = M2 = M. This readily implies that if f(M) is minimal for M, then M is

the unit disk of a Radon norm.

In the following, we assume that the norm of M is Radon. Observe that, under our assumption about P,

we have area(M) = area(M°), since M° is a rotated copy of M. On the other hand, since the volume

product area(M)area(M°) of M (cf., e.g., [61]) does not change under affine transformations, the definition
of Radon norm implies that, in general,

area (M°) = 4area(M)

(area(P))2 .

Since volmM (M) = 2
area(P) area (M) (cf. the definition in Section 2.2, this yields that

Hence, we need to find the minimum of volmM (M) under the condition that M defines a Radon norm.

This problem is examined in Theorem 58, which states, among other things, that for any Radon norm with

unit disk M, volmM (M) is at least 3, with equality if and only if M is an affinely regular hexagon. Thus,

the left-hand side of (ii) immediately follows.

7.7.2    The proof of the right-hand side inequality in (ii)

Assume that cHT
tr (K) is maximal for some plane convex body K and let M = 1

2
(K − K). Note that by the

Brunn-Minkowski Inequality, we have area(K) ≤ area(M), with equality if and only if K is centrally

symmetric. Thus, (7.17) implies that K is centrally symmetric and, without loss of generality, we may

assume that K = M.

f (M) =
4area(M)

(πarea(P))2 ( 2
3

area (M) + 2area (P))

= 2
3π

(volmM (M))2 + 2
π

volmM (M).
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(i)  

(ii)  

(iii)  

(iv)  

Let P be a largest area parallelogram inscribed in M. Since cHT
tr (M) is affine invariant, we may assume

that P is the square with vertices (±1, 0) and (0, ±1) in a Cartesian coordinate system. Then the lines x =

±1 and y = ±1 support M. Let M* = SH(M) be the Steiner symmetrization of M to a symmetry axis of P.

Then, clearly, area(M*) = area(M). Observe that P is inscribed in M* as well, which yields that if P* is a

maximal area parallelogram inscribed in M*, then area(P*) ≥ area(P). For the Euclidean version of the
problem (cf. Theorem 41), we have

ctr (M) = 1 + 2area(P)
area(M)

. (7.20)

Then, (i) of Theorem 33 yields that ctr(M) does not increase under Steiner symmetrization, which implies

that area(P*) ≤ area(P). Thus, we have area(P*) = area(P).
Now we apply a result of Meyer and Pajor [182] about the Blaschke-Santaló Inequality, who proved

that volume product does not decrease under Steiner symmetrizations, which yields that area((M*)°) ≥

area(M°). Thus, since M maximizes cHT
tr (M), (7.17) implies that area((M*)°) = area(M°). Unfortunately,

no geometric condition is known that characterizes the equality case for Steiner symmetrization.
Nevertheless, we may apply another method, used by Saint-Raymond [212], which he used to characterize
the equality case of the Blaschke-Santaló Inequality. This method, described also in [236], is as follows.

Let C be an o-symmetric convex body in Ed, and let H be the hyperplane with the equation xd = 0. For

any t ∈ ℝ, let Ct be the section of C with the hyperplane {xd = t}. Define C as the union of the (d − 1)-

dimensional convex bodies ted + 1
2  (Ct − Ct), where ed is the dth coordinate unit vector. Then we have the

following (cf. Lemma 5.3.1 and the proof of Theorem 5.3.2 of [236]).

C is an o-symmetric convex body.

vold( C) ≥ vold(C), with equality if and only if every t-section Ct has a center of symmetry.

vold( C
o
) ≥ vold(C°).

If vold( C°)vold( C) = vold(C°)vold(C), then the centers of symmetry of the sets Ct lie on a straight

line segment.

We note that this symmetrization procedure in the plane coincides with the Steiner symmetrization with
respect to the second coordinate axis.

Since in our case area(M*) = area(M) and area((M*)°) = area(M°), it follows from the theorem of

Saint-Raymond that the midpoints of the chords of M, perpendicular to H, lie on a straight line segment.

On the other hand, as SH(P) = P, we have that this segment is contained in H. Thus, M is symmetric to H.

Since H was an arbitrary symmetry axis of P, we obtain that the symmetry group of M contains that of P,

and, in particular, M has a 4-fold rotational symmetry.

Observe that in this case M ⊆ B2. Indeed, if for some p ∈ M we have ǁpǁ > 1, then, by the 4-fold

rotational symmetry of M, it follows that M contains a square of area greater than area(P) = 2, which

contradicts our assumption that P is a largest area parallelogram inscribed in M. Since it is easy to check

that cHT
tr (M) is not maximal if M = B2, this implies, in particular, that area(M) < π. Note that in our case

the area of the part of M in each quadrant is equal.
In the next step, we use the following Proposition from [59].

Proposition 172 Let Q = conv{o, x, y, z} be a convex deltoid symmetric about the line containing the

diagonal [o, y]. Assume that x, y ∈ S1 and that the lines containing [x, z] and [y, z] support B2. Let C be

any o-symmetric plane convex body such that x, y ∈ bdC and the lines containing [x, z] and [y, z] support

C, and set K = C ⋂ Q and K° = C° ⋂ Q. Let area(K) = α ≤ area(Q ⋂ B2) be fixed. Then λ(K°) is

maximal, e.g., if C is an o-symmetric ellipse E satisfying area(E ⋂ Q) = α.

¯

¯

¯

¯

¯̄
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Applying this theorem for the part of M, say, in the first quadrant, we have that, under our assumption

about P, M is a convex body bounded by four congruent elliptic arcs, having centers at o. Then it is a

matter of computation to verify that f(M) is maximal for a rotated copy of the body M0 described in

Section 2.2.

7.7.3    The proofs of (i), (iii) and (iv)

First, we prove (i). Observe that for any plane convex body K,

cBustr (K) = π
area(M)

(area (K) + 2area (P)),

where M = 1
2

(K − K), and P is a largest area parallelogram inscribed in M. By the result of Chakerian

[76] described in Subsection 7.7.1, we have that if K minimizes cBustr (K) over the family of plane convex

bodies, then K is a minimal area Reuleaux triangle in the norm of M, and its area is

area (K) = 2area (M) − 4
3

area (H), (7.21)

where H is a largest area affinely regular hexagon inscribed in M. Thus, we may assume, without loss of
generality, that

cBustr (K) = π
area(M)

(2area (M) + 2area (P) − 4
3

area (H)). (7.22)

Note that in this case K is a (Euclidean) triangle if and only if M = H.
From (7.22), it readily follows that

cBustr (K) = 2π + 2π 3area(P)−2area(H)
3area(M)

.

Observe that H contains a parallelogram whose area is equal to area(P) = 2
3

area (H). Since H ⊆ M,

this yields that area(P) ≥ 2
3  area(H), with equality if and only if M = H. This means that cBustr (K) ≥ 2π,

with equality if and only if M = H, which proves the left-hand side inequality about Busemann area.
Now we prove the right-hand side inequality. The formula in (7.21) and the Brunn-Minkowski

Inequality shows, like in Subsection 7.7.2, that if cBustr (K) is maximal over the family of plane convex

bodies, then K is centrally symmetric. Thus we may apply Theorem 34 about the maximum of ctr(K),

which yields the assertion.

Next, we prove (iii). Let P be a largest area parallelogram inscribed in M = 1
2

(K − K). Then we have

cmtr (K) =
2(area(K)+2area(P))

area(P)
= 4 +

area(K)

area(P)
. (7.23)

Observe that for any plane convex body K, we have

ctr (K) =
area(K)+2area(P)

area(K)
= 1 +

2area(P)

area(K)
.

By Theorem 34, the latter expression is maximal if and only if K is a convex quadrilateral, and by

Theorem 41, it is minimal if and only if K is an ellipse. Thus the assertion readily follows.
Our next case is the left-hand side inequality of (iv). Observe that

cm
*

tr (K) = 2(area(K)+2area(P))
area(P′)

, (7.24)

where P is a largest area inscribed, and P′ is a smallest area circumscribed parallelogram in M = 1
2

(K −

K).

¯
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As in the previous sections, if cm*
tr (K) is minimal for some plane convex body K, then, by [76], we

may assume that K is a Reuleaux triangle in its relative norm, and its area is area(K) = 2area(M) − 4
3

area(H), where H is a largest area affinely regular hexagon inscribed in M. Thus, area(M) ≥ area(H)
implies that

cm
*

tr (K) ≥
8(area(M)+3area(P))

3area(P′)
. (7.25)

On the other hand, we clearly have area(P) ≥ 1
2  area(P′), where we have equality, for example, if M is

an affinely regular hexagon. Furthermore, Theorem 57 states that Gromov’s mass* of any o-symmetric

convex disk is at least three, with equality if and only if M is an affinely regular hexagon. This implies that

area(M) ≥ 3
4  area(P′), and thus, we obtain cm*

tr (K) ≥ 6. Here, we have equality if and only if M is an

affinely regular hexagon, which immediately implies that K is a triangle.

Finally, we prove the right-hand side of (iv). Like in the previous cases, we may assume that K = M.

But then, clearly, area(M) ≤ area(P′), area(P) ≤ area(P′) and (7.24) yields that cm*
tr (K) ≤ 12. Since in both

inequalities equality is possible only if M is a parallelogram; the assertion follows.
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8

Proofs on the Kneser-Poulsen Conjecture

Summary. In this chapter we present selected proofs of some theorems from Chapter 3 about the Kneser-
Poulsen Conjecture. In Sections 8.1,8.2,8.3 we prove this conjecture, both for unions and for intersections

of Euclidean disks in E2. In Section 8.4 we prove a Blaschke-Santaló-type inequality for r-ball bodies in
spaces of constant curvature. In Section 8.5 we prove that the volume of the intersection of equal balls in a
space of constant curvature increases under uniform contractions. In Section 8.6, we drop the condition of
uniform contractions, and prove the Kneser-Poulsen Conjecture for unions and intersections of closed
hemispheres in Sd under arbitrary contractions. In Section 8.7 we extend the result of Section 8.4 to all

intrinsic volumes of r-ball bodies in Ed. In Section 8.8 we apply this result to prove the Kneser-Poulsen

Conjecture for intersections of sufficiently many equal balls in Ed under uniform contractions. In Section

8.9 we prove the dual of this result for unions of sufficiently many equal balls in Ed under uniform
contractions. Finally, in Section 8.10 we present the proof of the Kneser-Poulsen Conjecture for unions

(resp., intersections) of disks in S2 or ℍ2, under the condition that the first set has a simply connected
interior.

8.1    Proof of Theorem 67

As a first step in our proof of Theorem 67, we recall the following underlying system of (truncated)

Voronoi cells. For a given point configuration p = (p1, p2, …, pN) in Ed and radii r1, r2, …, rN consider

the following sets,

The set Vi (resp., Vi) is called the nearest (resp., farthest) point Voronoi cell of the point pi. We now

restrict each of these sets as follows,

We call the set Vi(ri) (resp., Vi(ri)) the nearest (resp., farthest) point truncated Voronoi cell of the point

pi. For each i ≠ j let Wij = Vi ∩ Vj and Wij = Vi ∩ Vj. The sets Wij and Wij are the walls between the

nearest point and farthest point Voronoi cells. Finally, it is natural to define the relevant truncated walls as
follows.

Vi = {x ∈ E
d for all j, ∥x − pi∥

2 − r2
i ≤ ∥x − pj∥2 − r2

j},

Vi = {x ∈ E
d for all j,∥x − pi∥2 − r2

i ≥ ∥x − pj∥2 − r2
j}.∣∣ Vi (ri) = Vi ∩ Bd [pi, ri],

Vi (ri) = Vi ∩ Bd [pi, ri].

Wij (pi, ri) = Wij ∩ Bd [pi, ri]

= Wij (pj, rj) = Wij ∩ Bd [pj, rj],

W ij (pi, ri) = W ij ∩ Bd [pi, ri]

= W ij (pj, rj) = W ij ∩ Bd [pj, rj].
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Second, for each i = 1, 2,…, N and 0 ≤ s, define ri(s) = √r2
i + s. Clearly,

d
ds ri (s) = 1

2ri(s) . (8.1)

Now, define r(s) = (r1(s),…, rN(s)), and introduce

Vd (t, s) := vold (Bd
∪ [p (t), r (s)]),

and

V d (t, s) := vold (Bd
∩ [p (t), r (s)])

as functions of the variables t and s, where

Bd
∪ [p (t), r (s)] :=

N
∪
i=1

Bd [pi (t), ri (s)],

and

Bd
∩ [p (t), r (s)] :=

N
∩
i=1

Bd [pi (t), ri (s)].

Throughout we assume that all ri > 0.

Lemma 173 Let d ≥ 2 and let p(t), 0 ≤ t ≤ 1 be a smooth motion of a point configuration in Ed such that
for each t, the points of the configuration are pairwise distinct. Then the volume functions Vd(t, s) and

Vd(t, s) are continuously differentiable in t and s simultaneously, and for any fixed t, the nearest point and
farthest point Voronoi cells are constant.

Proof. Let t = t0 be fixed. Then recall that the point x belongs to the Voronoi cell Vi(t0, s) (resp., Vi(t0, s)),

when for all j, ||x − pi(t0)||2 − ||x − pj(t0)||2 − ri(s)2 + rj(s)2 is non-positive (resp., non-negative). But ri(s)2

− rj(s)2 = r2
i − r2

j  is constant. So each Vi(t0, s) and Vi(t0, s) is a constant function of s.

As p(t) is continuously differentiable, therefore the partial derivatives of Vd(t, s) and Vd(t, s) with

respect to t exist and are continuous by Theorem 65. Each ball Bd [pi(t), ri(s)], d ≥ 2 is strictly convex.

Hence, the (d − 1)-dimensional surface volume of the boundaries of Bd
∪ [p (t), r (s)] and Bd

∩ [p (t), r (s)]

are continuous functions of s, and the partial derivatives of Vd(t, s) and Vd(t, s) with respect to s exist and

are continuous. Thus, Vd(t, s) and Vd(t, s) are both continuously differentiable with respect to t and s

simultaneously.

Lemma 174 Let p(t), 0 ≤ t ≤ 1 be an analytic motion of a point configuration in Ed, d ≥ 2. Then there
exists an open dense set U in [0, 1] × (0, ∞) such that for any (t, s) ∈ U the following hold.

∂ 2

∂t∂s Vd (t, s) = ∑
1≤i<j≤N

( d

dt
dij (t)) ⋅ ∂

∂s vold−1 [Wij (pi (t), ri (s))],

and

∂ 2

∂t∂s V
d (t, s) = ∑

1≤i<j≤N

−( d

dt
dij (t)) ⋅ ∂

∂s vold−1 [W ij (pi (t), ri (s))].
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Hence, if p(t) is contracting, then ∂
∂s Vd (t, s) is monotone decreasing in t, and ∂

∂s V
d (t, s) is monotone

increasing in t.

Proof. Given that p(t), 0 ≤ t ≤ 1 is an analytic function of t, we wish to define an open dense set U in [0, 1]

× (0, ∞), where the volume functions Vd(t, s) and Vd(t, s) are analytic in t and s simultaneously. Lemma

173 implies that the Voronoi cells Vi and Vi are functions of t alone. Moreover, clearly there are only a

finite number of values of t in the interval [0, 1], where the combinatorial type of the above Voronoi cells

changes. The volume of the truncated Voronoi cells Vi (ri(s)) and Vi (ri(s)) are obtained from the volume

of the d-dimensional Euclidean ball of radius ri(s) by removing or adding the volumes of the regions

obtained by conning over the walls Wij(pi(t), ri(s)) or Wij(pi(t), ri(s)) from the point pi(t). By induction on

d, starting at d = 1, each Wij and Wij is an analytic function of t and s, when the ball of radius ri(s) is not

tangent to any of the faces of Vi or Vi. So, for any fixed t the ball of radius ri(s) will not be tangent to any

of the faces Vi or Vi for all but a finite number of values of s. Thus, we define U to be the set of those (t,

s), where for some open interval about t in [0, 1], the combinatorial type of the Voronoi cells is constant

and for all i, the ball of radius ri(s) is not tangent to any of the faces of Vi or Vi. We also assume that the

points of the configuration p(t) are distinct for any (t, s) ∈ U. If, for i ≠ j and for infinitely many values of t

in the interval [0, 1], pi(t) = pj(t), then they are the same point for all t, and those points may be identified.

Then the set U is open and dense in [0, 1] × (0, ∞) and the volume functions Vd(t, s) and Vd(t, s) are

analytic in t and s. Thus, the formulas for the mixed partial derivatives in Lemma 174 follow from the
definition of U and from Theorem 65. (Note also that here we could interchange the order of partial
differentiation with respect to the variables t and s.)

To show that ∂
∂s Vd (t, s) and ∂

∂s V
d (t, s) are monotone, suppose they are not. We show a contradiction.

If we perturb s slightly to s0, say, then us- ing the formulas for the mixed partial derivatives in Lemma 174

we get that the partial derivative of ∂
∂s Vd (t, s) and ∂

∂s V
d (t, s) with respect to t exists and has the

appropriate sign, except for a finite number of values of t for s = s0. (Here we have also used the following

rather obvious monotonicity property of the walls: Wij(pi(t), ri(s)) ⊂ Wij(pi(t), ri(s*)) and Wij(pi(t), ri(s)) ⊂
Wij(pi(t), ri(s*)) for any s ≤ s*.) Since ∂

∂s Vd (t, s) and ∂
∂s V

d (t, s) are continuous as a function of t at s =

s0 by Lemma 173, they are monotone. But the functions at s0 approximate the functions at s (again by

Lemma 173) providing the contradiction. So, ∂
∂s Vd (t, s) and ∂

∂s V
d (t, s) are indeed monotone. This

completes the proof of Lemma 174.
First, note that

Fi (t) = Vi (t, 0) ∩ bd (Bd
∪ [p (t), r (0)]) (8.2)

and

(resp. ,Fi (t) = Vi (t, 0) ∩ bd (Bd
∩ [p (t), r (0)])). (8.3)

Second, (8.1), (8.2) and (8.3) imply in a straightforward way that

∂
∂s Vd (t, s)

s=0
= 1

2

N

∑
i=1

1

ri
svold−1 (Fi (t)) = lim

s0→0+

∂
∂s Vd (t, s)

s=s0

(8.4)

(resp. , ∂
∂s V

d (t, s)
s=0

= 1
2

N

∑
i=1

1

ri
svold−1 (Fi (t)) = lim

s0→0+

∂
∂s Vd (t, s)

s=s0
).

(8.5)

Thus, (8.4) and (8.5) together with Lemma 174 finish the proof of Theorem 67.∣ ∣∣ ∣
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8.2    Proof of Theorem 68

We start our proof with the following volume formula from calculus, which is based on cylindrical shells.

Lemma 175 Let X be a compact measurable set in Ed, d ≥ 3 that is a solid of revolution about Ed−2. In

other words, the orthogonal projection of X ⋂ { Ed−2 × (s cos θ, s sin θ)} onto Ed−2 is a measurable set

X(s) independent of θ. Then

vold (X) = ∫
∞

0
(2πs)vold−2 (X (s))ds.

By assumption the centers of the closed d-dimensional balls Bd[pi, ri], 1 ≤ i ≤ N lie in the (d − 2)-

dimensional affine subspace L of Ed. Now, recall the construction of the following (truncated) Voronoi
cells.

The set Vi(d) (resp., Vi(d)) is called the nearest (resp., farthest) point Voronoi cell of the point pi in Ed.

Then we restrict each of these sets as follows:

We call the set Vi(ri, d) (resp., Vi(ri, d)) the nearest (resp., farthest) point truncated Voronoi cell of the

point pi in Ed. As the point configuration p = (p1, p2,…, pN) lies in the (d − 2)-dimensional affine

subspace L ⊂ Ed and as without loss of generality we may assume that L = Ed−2; therefore, one can

introduce the relevant (d − 2)-dimensional truncated Voronoi cells Vi(ri, d − 2) and Vi(ri, d − 2) in a

straightforward way. We are especially interested in the relation of the volume of Vi(ri, d − 2) and Vi(ri, d

− 2) in Ed−2 to the volume of the corresponding truncated Voronoi cells Vi(ri, d) and Vi(ri, d)in Ed.

Lemma 176 We have that

vold (Vi (ri, d)) = ∫
ri

0
(2πs)vold−2 (Vi (s, d − 2))ds,

and

vold (Vi (ri, d)) = ∫
ri

0
(2πs)vold−2 (Vi (s, d − 2))ds.

Proof. It is clear, in both cases, that Vi(ri, d) and Vi(ri, d) are compact measurable sets of revolution (about

E
d−2). Note that the orthogonal projection of Bd[pi, ri] ⋂ { Ed−2 × (s cos θ, s sin θ)} onto Ed−2 is the (d −

2)-dimensional ball of radius √r2
i − s2 centered at pi. Thus, by Lemma 175 we have that

vold (Vi (ri, d)) = ∫
ri

0
(2πs)vold−2 (Vi(√r2

i − s2, d − 2))ds.

Vi (d) = {x ∈ E
d for all j,∥x − pi∥2 − r2

i ≤ ∥x − pj∥2 − r2
j},

Vi (d) = {x ∈ E
d for all j,∥x − pi∥2 − r2

i ≤ ∥x − pj∥2 − r2
j}.∣∣Vi (ri, d) = Vi ∩ Bd [pi, ri],

Vi (ri, d) = Vi ∩ Bd [pi, ri].
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But if we make the change of variable u = √r2
i − s2, we get the desired integral. A similar calculation

works for vold (Vi(ri, d)).

The following is an immediate corollary of Lemma 176.

Corollary 177 We have that

d
dr vold (Vi (r, d))

r=ri
= 2πrivold−2 (Vi (ri, d − 2)),

and

d
dr vold (Vi (r, d))

r=ri
= 2πrivold−2 (Vi (ri, d − 2)).

Moreover, it is clear that if Fi stands for the contribution of the ith ball to the boundary of the union

∪N
i=1Bd [pi, ri], then

svold−1 (Fi) = d
dr vold (Vi (r, d))

r=ri
. (8.6)

Similarly, if Fi denotes the contribution of the ith ball to the boundary of the intersection

∩N
i=1Bd [pi, ri], then

svold−1 (Fi) = d
dr

vold (Vi (r, d))
r=ri

. (8.7)

Finally, it is obvious that

vold−2 (
N
∪
i=1

Bd−2 [pi, ri]) =
N

∑
i=1

vold−2 (Vi (ri, d − 2)),
(8.8)

and

vold−2 (
N
∩
i=1

Bd−2 [pi, ri]) =
N

∑
i=1

vold−2 (Vi (ri, d − 2)).
(8.9)

Thus, Corollary 177 and (8.6), (8.8) (resp., (8.7), (8.9)) finish the proof of Theorem 68.

8.3    Proof of Theorem 69

Actually, we are going to prove the following even stronger statement. For more information on the
background of this theorem, we refer the interested reader to [38].

Theorem 178 Suppose that p and q are two configurations in Ed, d ≥ 1. Then the following is a

continuous motion p(t) = (p1(t),…,pN(t)) in E2d, that is analytic in t, such that p(0) = p, p(1) = q and for 0

≤ t ≤ 1, ||Pi(t) − Pj(t)|| is monotone:

Proof. We calculate:

∣∣ ∣∣pi (t) = ( pi+qi

2 + (cos πt) pi+qi

2 , (sin πt) pi+qi

2 ), 1 ≤ i < j ≤ N .

4∥pi (t) − pj (t)∥2 = ∥ (pi − pj) − (qi − qj)∥
2

+∥ (pi − pj) − (qi − qj)∥
2 + 2 (cos πt) (∥pi − pj∥2 − ∥qi − qj∥2).
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This function is monotone, as required.

8.4    Proof of Theorem 72

The following proof from [36] adapts the two-point symmetrization method of the proof of the Gao-Hug-
Schneider theorem from [117]. For this we need to recall the definition of two-point symmetrization,
which is also known under the names “two-point rearrangement”, “compression”, or “polarization”. (For
more details on two-point symmetrization, we refer the interested reader to the relevant section in [117]
and the references mentioned there.)

Definition 32 Let H be a hyperplane in Md with an orientation, which determines H+ and H− the two

closed half spaces bounded by H in Md, d > 1. Let σH denote the reflection about H in Md. If K ⊆ Md,

then the two-point symmetrization τH with respect to H transforms K into the set

τHK := (K ∩ σHK) ∪ ((K ∪ σHK) ∩ H+).

If KH : = K ⋂ σH K stands for the H-symmetric core of K, then we call

τHK = KH ∪ ((K ∩ H+)\KH) ∪ σH ((K ∩ H−)\KH) (8.10)

the canonical decomposition of τHK.

Remark 179 The canonical decomposition of τH K is a disjoint decomposition of τH K, which easily

implies that two-point symmetrization preserves volume.

Definition 33 Let K ⊂ Md, d > 1 and r ∈ R+. Then the r-convex hull convr K of K is defined by

convrK := ∩ {BMd [x, r]|K ⊆ BMd [x, r]}.

Moreover, let the r-convex hull of Md be Md. Furthermore, we say that K ⊆ Md is an r-convex set if K =

convr K.

Remark 180 We note that clearly, convr K =  if and only if Kr = .

Lemma 181 If K ⊆ Md, d > 1 and r ∈ R+, then

K r = (convrK)r. (8.11)

Proof. Based on Remark 180, the claim holds for convr K = . Thus, in what follows, we assume that

convr K ≠ , that is, Kr≠ . Then K ⊆ convr K and therefore (convr K)r ⊆ Kr. On the other hand, we

show that Kr ⊆ (convrK)r. So let y ∈ Kr. Then clearly, K ⊆ BMd [y, r] and so, convr K ⊆ BMd [y, r]

implying that y ∈ (convr K)r. Thus, (8.11) follows.

The core part of our proof of Theorem 72 is

Lemma 182 If K ⊆ Md, d > 1 and r ∈ R+, then

τH (K r) ⊆ (convr (τHK))r.

Proof. Lemma 181 implies that (convr (τH K))r = (τHK)r and so, it is sufficient to prove that τH(Kr) ⊆
(τHK)r. For this, we need to show that if x ∈ τH(Kr), then x ∈ (τHK)r, i.e.,

0 0

0

0 0
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τHK ⊆ BMd [x, r]. (8.12)

Remark 179 implies that

τH (K r) = (K r)H ∪ ((K r ∩ H+)\(K r)H) ∪ σH ((K r ∩ H−)\(K r)H)

is a disjoint decomposition of τH(Kr) with (Kr)H = Kr ⋂ σH(Kr). Thus, either x ∈ (Kr)H (Case 1), or x ∈
(Kr ⋂ H+)\(Kr)H (Case 2), or x ∈ σH ((Kr ⋂ H−)\(Kr)H) (Case 3). In all three cases, we use (8.10) for the

proof of (8.12).

Case 1: As (Kr)H = Kr ⋂ σH(Kr) therefore x, σHx ∈ (Kr)H. As x ∈ (Kr)H ⊆ Kr therefore KH ⋃ ((K ⋂
H+)\KH) ⊆ K ⊆ BMd  [x, r]. On the other hand, as σHx ∈ (Kr)H ⊆ Kr therefore (K ⋂ H−)\KH ⊆ K ⊆ BMd

[σHx, r] and so, σH ((K ⋂ H−)\KH) ⊆ BMd[x, r], finishing the proof of (8.12).

Case 2: As x ∈ (Kr ⋂ H+)\(Kr)H ⊆ Kr therefore KH ⋃((K ⋂ H+)\ KH) ⊆ K ⊆ BMd [x, r]. So, we are left to

show that

σH ((K ∩ H−)\KH) ⊆ BMd [x, r]. (8.13)

On the one hand, x ∈(Kr ⋂ H+)\(Kr)H ⊆ Kr implies that (K ⋂ H−)\KH ⊆ K ⊆ BMd [x, r]. On the other

hand, for any y ∈ (K ⋂ H−)\KH we have σHy ∈ σH ((K ⋂ H−)\KH). As x, σHy ∈ H+ and y ∈ H− therefore

dist distMd  (σHy,x) ≤ distMd  ≤ r. Thus, (8.13) follows.

Case 3: It follows from the assumption that σHx ∈ (Kr ⋂ H−)\(Kr)H ⊆ Kr and therefore (K ⋂ H−)\KH ⊆ K

⊆ BMd [σHx, r] implying that σH((K ⋂ H−)\KH) ⊆ BMd [x, r]. So, we are left to show that

KH ∪ ((K ∩ H+)\KH) ⊆ BMd [x, r]. (8.14)

As σHx ∈ (Kr ⋂ H−)\(Kr)H ⊆ Kr therefore KH ⋃ ((K ⋂ H+)\KH) ⊆ K ⊆ BMd [σHx, r]. Moreover, as σHx ∈
H− and x ∈ H+ therefore for all y ∈ (K ⋂ H+)\KH ⊆ H+ (resp., y ∈ KH ⋂ H+ ⊆ H+) we have

distMd (x, y) ≤ distMd (σHx, y) ≤ r implying that (KH ⋂ H+) ⋃ ((K ⋂ H+)\KH) ⊆ BMd [x, r]. Finally, for

any y ∈ KH ⋂ H− we have σHy ∈ KH ⋂ H+ ⊆ KH with distMd (x, y)=distMd (σHx,σHy) ≤ r implying

that KH ⋂ H− ⊆ BMd [x, r]. This completes the proof of (8.14).

Now, we are ready to prove Theorem 72. To avoid any trivial case, we may assume that VMd(Ar) > 0 for

A ⊆ Md with a := VMd(A) > 0. In fact, our goal is to maximize the volume VMd  (Ar) for compact sets A ⊆
M

d of given volume VMd (A) = a > 0 and for given d > 1 and r ∈ R+. As according to Lemma 181 we

have Ar = (convr A)r with A ⊆ convr A, it follows from the monotonicity of VMd ((⋅)r) in a

straightforward way that for the proof of Theorem 72 it is sufficient to maximize the volume VMd (Ar) for

r-convex sets A ⊆ Md of given volume VMd (A) = a with given d and r. Next, consider the extremal

family εa,r,d of r-convex sets A ⊆ Md with VMd (A) = a and maximal VMd (Ar) for given a, d and r. As

the Blaschke selection theorem ([217]) for non-empty, compact, convex subsets of Md (using the

convenient Hausdorff metric) extends to non-empty, r-convex subsets of Md in a rather straightforward

way; therefore, one obtains by standard arguments that εa,r,d ≠ .

Lemma 183 The extremal family εa,r,d is closed under two-point symmetrization.

Proof. Let A ∈ εa,r,d be an arbitrary extremal set and consider τH A for an arbitrary hyperplane H in Md.

Lemmas 181 and 182 imply that τH(Ar) ⊆ (convr(τHA)r = (τHA)r and therefore

0
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VMd (Ar) = VMd (τH (Ar)) ≤ VMd ((convr (τHA))r) = VMd ((τHA)r). (8.15)

Here τHA ⊆ convr(τHA) implying that

a = VMd (A) = VMd (τHA) ≤ VMd (convr (τHA)). (8.16)

We are left to show that τHA ∈ εa,r,d. Based on (8.15) and (8.16) we need to prove only that τHA is r-

convex, i.e., τHA = convr(τHA). We prove this by contradiction, i.e., assume that τHA ≠ convr(τHA). As

τhA ⊆ convr(τHA), this means that τHA ⊂ convr(τHA). Then there exists an r-convex set A′ ⊂ convr(τHA)

with VMd (A′) = a. Thus, (convr(τHA))r ⊂ (A′)r implying that VMd ((convr (τHA))r) < VMd ((A′)r), a

contradiction via (8.15).
We finish the proof of Theorem 72 by adapting an argument from [117]. Namely, we are going to show

that B ∈ εa,r,d, where B ⊆ Md is a ball with a = VMd (A) = VMd (B). By a standard argument there exists

an r-convex set C ∈ εa,r,d for which VMd (B ∩ C) is maximal. Suppose that B ≠ C. As

a = VMd (B) = VMd (C) therefore there are congruent balls C1 ⊆ C\B and C2 ⊆ B\C. Let H be the

hyperplane in Md with an orientation, which determines H+ and H− the two closed half spaces bounded

by H in Md, d > 1 such that σHC1 = C2 with C1 ⊂ H−. Clearly, VMd (B ∩ τHC) > VMd (B ∩ C);

moreover, Lemma 183 implies that τH ∈ εa,r,d, a contradiction. Thus, B = C ∈ εa, r, d, finishing the proof of

Theorem 72.

8.5    8.5 Proof of Theorem 73

Following [36], our proof is based on estimates of the following functionals.

Definition 34 Let

(8.17)

and

(8.18)

(We note that in this proof the maximum of the empty set is zero.) We need also

Definition 35 The circumradius crX of the set X ⊆ Md, d > 1 is defined by

crX := inf {r|X ⊆ BMd [x, r]}.

For the proof that follows, we need the following straightforward extension of the rather obvious but

very useful Euclidean identity (9) of [48]: for any X = {x1,…, xn} ⊂ Md, n > 1, d > 1, r ∈ R+, r* ∈ R+

with r + r* ∈ R+ one has

X r = (
n
∪
i=1

BMd [xi, r
∗])

r+r∗

.
(8.19)

8.5.1    Proof of (i) in Theorem 73

fMd (N , λ, δ) := min{VMd (Qδ) Q := {q1, … , qN} ⊂ M
d,

distMd (qi, qj) ≤ λ for all 1 ≤ i < j ≤ N}∣gMd (N , λ, δ) := max{VMd (P δ) P := {p1, … , pN} ⊂ M
d,

λ ≤ distMd (pi, pj) for all 1 ≤ i < j ≤ N}∣
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First, we give a lower bound for (8.17). Jung’s theorem ([87]) implies in a straightforward way that

crQ ≤ √ 2d
d+1

λ
2 < 1

√2
λ and so, BEd [x, δ − 1

√2
λ] ⊂ Qδ for some x ∈ Ed. (We note that by assumption

δ − 1
√2

λ ≥ 0 As a result, we get that

fEd (N , λ, δ) > VEd (BEd [x, δ − 1
√2

λ]). (8.20)

Second, we give an upper bound for (8.18). (8.19) implies that

P δ = (
N
∪
i=1

BEd [pi,
λ
2
])

δ+ λ
2

,
(8.21)

where the balls BEd [p1, λ
2 ], …, BEd [pN , λ

2 ] are pairwise non-overlapping in Ed. Thus,

VEd (
N
∪
i=1

BEd [pi,
λ
2
]) = NVEd (BEd [p1, λ

2 ]).
(8.22)

Let μ > 0 be chosen such that NVEd (BEd [p1, λ
2 ]) = VEd (BEd [p1,μ]). Clearly

μ = 1
2 N

1
d λ (8.23)

Now Theorem 72, (8.21), (8.22), and (8.23) imply in a straightforward way that

VEd (P δ) = VEd ((
N
∪
i=1

BEd [pi,
λ
2
])

δ+ λ
2

) ≤ VEd ((BEd [p1, 1
2 N

1
d λ])

δ+ λ
2 )

(8.24)

Clearly, (BEd [p1, 1
2 N

1
d λ])

δ+ λ
2

= BEd [p1, δ − N
1
d −1
2 λ] with the convention that if δ − N

1
d −1
2 λ < 0,

then BEd [p1, δ − N
1
d −1
2 λ] = . Hence (8.24) yields

gEd (N , λ, δ) ≤ VEd (BEd [p1, δ − N
1
d −1
2 λ]) (8.25)

(with VEd ( ) = 0). Finally, as N ≥ (1 + √2)
d

 therefore N
1
d −1
2 λ ≥ 1

√2
λ and so, (8.20) and (8.25)

yield gEd (N , λ, δ) < fEd (N , λ, δ), finishing the proof of (i) in Theorem 73.

8.5.2    Proof of (ii) in Theorem 73

First, we give a lower bound for (8.17). Let R := crQ. Then Jung’s theorem ([87]) yields sin 

R ≤ √ 2d
d+1 sin λ

2 . By assumption 0 < λ < π
2  and so,

0 ≤ 2
π R < sinR ≤ √ 2d

d+1 sin λ
2 < √ 2d

d+1
λ
2 < 1

√2
λ

implying that 0 ≤ R < π
2√2

λ. Thus, BSd [x, δ − π
2√2

λ] ⊂ Qδ for some x ∈ Sd. (We note that by

assumption δ − π
2√2

λ > 0.) As a result we get that

(8.26)

0

0
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fSd (N , λ, δ) > VSd (BSd [x, δ − π
2√2

λ]).

Second, we give an upper bound for (8.18). By assumption 0 < δ + λ
2 < π

2  and therefore (8.19) implies

that

P δ = (
N
∪
i=1

BSd [pi,
λ
2
])

δ+ λ
2

,
(8.27)

where the balls BSd [p1, λ
2 ], …, BSd [pN , λ

2 ] are pairwise non-overlapping in Sd. Thus,

VSd (
N
∪
i=1

BSd [pi,
λ
2
]) = NVSd (BSd [p1, λ

2 ]).
(8.28)

Let µ > 0 be chosen such that

NVSd (BSd [p1, λ
2 ]) = VSd (BSd [p1,μ]). (8.29)

Proposition 184 If 0 < µ < 
π
2 , then ( 1

2edπd−1 )
1
d

N
1
d λ < μ.

Proof. One can rewrite (8.29) using the integral representation of volume of balls in Sd ([78]) as follows:

Ndκd ∫
π
2

π
2 − λ

2

(cos t)d−1
dt = dκd ∫

π
2

π
2 −μ

(cos t)d−1
dt,

where κd := VEd (BEd [x, 1]), x ∈ Ed. Then Lemma 4.7 of [47] yields the following chain of inequalities

in a rather straightforward way:

From this, the claim follows.
Now Theorem 72, (8.27), (8.28), and (8.29) imply in a straightforward way that

VSd (P δ) = VSd ((
N
∪
i=1

BSd [pi,
λ
2
])

δ+ λ
2

) ≤ VSd ((BSd [p1,μ])δ+ λ
2 )

(8.30)

Clearly, (BSd [p1,μ])δ+ λ
2 = BSd [p1, δ + λ

2 − μ](with the usual convention that if δ + λ
2 − μ < 0, then

BSd [p1, δ + λ
2 − μ] = ). By assumption 0 < δ + λ

2 < π
2  and so, if δ + λ

2 − μ ≥ 0, then necessarily

0 < μ < π
2 . Thus, Proposition 184 and (8.30) yield

gSd (N , λ, δ) ≤ VSd (BSd [p1, δ − (( 1
2edπd−1 )

1
d

N
1
d − 1

2 )λ])
(8.31)

(with VSd ( ) = 0). As N ≥ 2edπd−1( 1
2 + π

2√2
)
d

 therefore

N

2edπd−1 λ
d < N

ed
λ
2 (sin λ

2 )
d−1

≤ N ∫
π
2

π
2 − λ

2

(cos t)d−1
dt

= ∫
π
2

π
2 −μ

(cos t)d−1
dt ≤ μ(sinμ)d−1 ≤ μd.

0

0
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(( 1
2edπd−1 )

1
d

N
1
d − 1

2 )λ ≥ π
2√2

λ

and so, (8.26) and (8.31) yield gSd (N , λ, δ) < fSd (N , λ, δ), finishing the proof of (ii) in Theorem 73.

8.5.3    Proof of (iii) in Theorem 73

Let us give a lower bound for (8.17) in a way similar to the previous cases. Let R := crQ. Then Jung’s

theorem ([87]) yields sinh R ≤ √ 2d
d+1 sinh λ

2 . By assumption we have 0 < 1
2 λ < sinh k

√2k
λ ≤ δ < k and so,

0 ≤ R ≤ sinhR ≤ √ 2d
d+1 sinh λ

2 < √2 sinh k
k

λ
2 , (8.32)

where for the last inequality we have used 0 < x < sinhx < sinh k
k

x that holds for all 0 < x < k. From

(8.32) it follows that 0 ≤ R < sinh k
√2k

λ. Thus, BHd [x, δ − sinh k
√2k

λ] ⊂ Qδ for some x ∈ ℍd. (We note that

by assumption δ − sinh k

√2k
λ ≥ 0 As a result we get that

fHd (N , λ, δ) > VHd (BHd [x, δ − sinh k

√2k
λ]). (8.33)

Next, we give an upper bound for (8.18). (8.19) implies that

P δ = (
N
∪
i=1

BHd [pi,
λ
2
])

δ+ λ
2

,
(8.34)

where the balls BHd [p1, λ
2 ], …, BHd [pN , λ

2 ] are pairwise non-overlapping in ℍd. Thus,

VHd (
N
∪
i=1

BHd [pi,
λ
2
]) = NVHd (BHd [p1, λ

2 ]).
(8.35)

Let µ > 0 be chosen such that

NVHd (BHd [p1, λ
2 ]) = VHd (BHd [p1,μ]). (8.36)

Now Theorem 72, (8.34), (8.35), and (8.36) imply in a straightforward way that

(8.37)

with the usual convention that if δ + λ
2 − μ < 0, then BHd [p1, δ + λ

2 − μ] = .

Proposition 185 If 0 < μ ≤ δ + λ
2  then ( 2k

sinh 2k )
d−1
d N

1
d
λ
2 < μ.

Proof. One can rewrite (8.36) using the integral representation of volume of balls in ℍd ([78]) as follows:

Ndκd ∫
λ
2

0
(sinh t)d−1

dt = dκd ∫
μ

0
(sinh t)d−1

dt.

VHd (P δ) = VHd ((
N
∪
i=1

BHd [pi,
λ
2
])

δ+ λ
2

)

≤ VHd ((BHd [p1,μ])δ+ λ
2 ) = VHd (BHd [p1, δ + λ

2 − μ])

0
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As 0 < μ ≤ δ + λ
2  therefore by assumption also the inequalities 0 < μ ≤ δ + λ

2 < 2δ < 2k hold. Hence

the following inequalities follow in a rather straightforward way:

where for the last inequality we have used 0 < x < sinhx < sinh 2k
2k x that holds for all 0 < x < 2k. From

this, the claim follows.
Thus, Proposition 185 and (8.37) yield

gHd (N , λ, δ) ≤ VHd (BHd [p1, δ − (( 2k
sinh 2k )

d−1
d N

1
d − 1) λ

2 ])
(8.38)

(with VHd ( ) = 0. As N ≥ ( sinh 2k
2k )

d−1( √2 sinh k
k

+ 1)
d

 therefore

(( 2k
sinh 2k )

d−1
d N

1
d − 1) λ

2 ≥ sinh k
√2k

λ

and so, (8.33) and (8.38) yield gHd (N , λ, δ) < fHd (N , λ, δ), finishing the proof of (iii) in Theorem 73.

8.6    Proof of Theorem 74

8.6.1  The spherical leapfrog lemma

As usual, let Sd, d ≥ 2 denote the unit sphere centered at the origin o in Ed+1, and let X(p) be a finite

intersection of closed balls of radius 
π
2  (i.e., of closed hemispheres) in Sd whose configuration of centers

is p = (p1,…, pN ). We say that another configuration q = (q1,…, qN) is a contraction of p if, for all 1 ≤ i ≤

j ≤ N, the spherical distance between pi and pj is not less than the spherical distance between qi and qj. We

denote the d-dimensional spherical volume measure by Svold(⋅). Thus, Theorem 74, which we need to

prove, can be phrased as follows: if q is a configuration in Sd that is a contraction of the configuration p,
then

Svold (X (p)) ≤ Svold (X (q)). (8.39)

We note that the part of Theorem 74 on the union of closed hemispheres is a simple set-theoretic
consequence of (8.39).

Next, we recall Theorem 178, which is called the Euclidean Leapfrog Lemma ([38]).

Theorem 186 Suppose that p and q are two configurations in Ed, d ≥ 1. Then the following is a

continuous motion p(t) = (p1(t),…, pN(t)) in E2d, that is analytic in t, such that p(0) = p, p(1) = q and for

0 ≤ t ≤ 1, ||pi(t) − pj(t)|| is monotone:

We need to apply this to a sphere. Here we consider the unit spheres Sd ⊂ Sd+1 ⊂ Sd+2 … in such a way

that each Sd is the set of points that are a unit distance from the origin o in Ed+1. The following statement
is called the Spherical Leapfrog Lemma.

N
d
( λ

2 )
d

= N ∫
λ
2

0
td−1dt < N ∫

λ
2

0
(sinh t)d−1dt = ∫

μ

0
(sinh t)d−1dt

< ∫
μ

0
( sinh 2k

2k
t)

d−1

dt = ( sinh 2k
2k )

d−1 μd

d
,

0

pi (t) = ( pi+qi

2 + (cos πt) pi+qi

2 , (sin πt) pi+qi

2 ), 1 ≤ i < j ≤ N .
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Corollary 187 Suppose that p and q are two configurations in Sd. Then there is a monotone analytic

motion from p to q in S2d+1.

Proof. Apply Theorem 186 to each configuration p and q with o as an additional configuration point for

each. So for each t, the configuration p(t) = (p1(t),…,pN(t)) lies at a unit distance from o in E2d+2, which

is just S2d+1. □

8.6.2    Smooth contractions via Schläfli’s differential formula

We look at the case when there is a smooth motion p(t) of the configuration p in Sd. More precisely, we

consider the family X(t) = X(p(t)) of convex spher-ical d-polytopes in Sd having the same combinatorial
face structure with facet hyperplanes being differentiable in the parameter t. The following classical

theorem of Schläfli describes how the volume of X(t) changes as a function of its dihedral angles and the
volume of its (d − 2)-dimensional faces.

Lemma 188 For each (d − 2)-face Fij(t) of the convex spherical d-polytope X(t) in Sd let αij(t) represent

the (inner) dihedral angle between the two facets Fi(t) and Fj(t) meeting at Fij(t). Then the following

holds.

d
dt

Svold (X (t)) = 1
d−1 ∑

Fij

Svold−2 (Fij (t)) ⋅
d

dt
αij (t),

to be summed over all (d − 2)-faces.

Corollary 189 Let q be a configuration in Sd with a differentiable contraction p(t) in t of the

configuration p in Sd and assume that the convex spherical d-polytopes X(t) = X(p(t)) of Sd have the
same combinatorial face structure. Then

d
dt

Svold (X (t)) ≥ 0.

Proof. As the spherical distance between pi(t) and pj(t) is decreasing, the derivative of the dihedral angle
d
dt
αij (t) ≥ 0. The result then follows from Lemma 188.

8.6.3    From higher- to lower-dimensional spherical volume

The last piece of information that we need before we get to the proof of Theorem 74 is a way of relating

higher-dimensional spherical volumes to lower-dimensional ones. Let X be any integrable set in Sn. Recall
that we regard

X ⊂ Sn = Sn × {o} ⊂ En+1 × Ek+1.

Regard

{o} × Sk ⊂ En+1 × Ek+1.

Let X * Sk be the subset of Sn+k+1 consisting of the union of the geodesic arcs from each point of X to

each point of {o} × Sk. (So, in particular, Sn * Sk = Sn+k+1)

Lemma 190 For any integrable subset X of Sn,

Svoln+k+1 (X ∗ Sk) = ωn+k+1

ωn
Svoln (X),

where ωn = Svoln ( Sn), ωn+k+1 = Svoln+k+1 ( Sn * Sk) = Svoln+k+1 ( Sn+k+1).
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Proof. Since the * operation (a kind of spherical join) is associative, we only need to consider the case

when k = 0. Regard {o} × S0 = S0 = {n, s}, the north pole and the south pole of Sn+1. We use polar

coordinates centered at n to calculate the (n + 1)-dimensional volume of X * S0. Let X(z) = (X * S0) ⋂ ( E
n+1 × {z}), and let θ be the angle that a point in Sn+1 makes with n, the north pole in Sn+1. So z = z(θ) =

cos θ. Then the spherical volume element for Sn(z) = Sn+1 ⋂ ( En+1 × {z}) is dVn(z) = (sinn θ)dVn(0)

because Sn(z) is obtained from Sn(0) by a dilation by sin θ. Then

Svoln+1 (X ∗ S0) = ∫
X∗S0

dVn (z)dθ
(8.40)

= ∫
π

0
∫
X(z(θ))

dVn (z)dθ = ∫
π

0
(sinnθ)Vn (X)dθ

(8.41)

= Svoln (X)∫
π

0
(sinnθ)dθ = Svoln (X) ωn+1

ωn
,

(8.42)

where (8.42) can be seen by taking X = Sn, or by performing the integral explicitly. □

8.6.4    Putting pieces together

Now, we are ready for the proof of Theorem 74.

Let the configuration q = (q1,…, qN) be a contraction of the configuration p = (p1,…,pN) in Sd. By

Corollary 187, there is an analytic motion p(t), in S2d+1 for 0 ≤ t ≤ 1, where p(0) = p, and p(1) = q, and all

the pairwise distances between the points of p(t) decrease in t.

Without loss of generality we may assume that Xd(p(0)) := X(p(0)) is a convex spherical d-polytope in

S
d. Since p(t) is analytic in t, the intersection X2d+1 (p(t)) of the (closed) hemispheres centered at the

points of the configuration p(t) in S2d+1 is a convex spherical (2d + 1)-polytope with a constant
combinatorial structure, except for a finite number of points in the interval [0, 1]. By Corollary 189,

Svol2d+1 (X2d+1(p(t))) is monotone increasing in t.

Recall that Xd(p) and Xd(q) are the intersections of the (closed) hemispheres centered at the points of p

and q in Sd. From the definition of the spherical join *,

Hence, by Lemma 190,

This finishes the proof of Theorem 74.

8.7    Proof of Theorem 75

Let A ⊂ Ed, d > 1 be a compact set of volume Vd(A) > 0 and B ⊂ Ed is a ball with Vd(A) = Vd(B) and r >

0. Clearly, if Br = , then Ar =  and (3.1) follows. Similarly, it is easy to see that if Br is a point in Ed,

then (3.1) follows. Hence, we may assume that Br = Bd[o, R] and B = Bd[o, r − R] with 0 < R < r. Next

Xd (p) ∗ Sd = X2d+1 (p) = X2d+1 (p (0))

Xd (q) ∗ Sd = X2d+1 (q) = X2d+1 (p (1)).

Svold (Xd (p)) = κd

κ2d+1
Svol2d+1 (X2d+1 (p (0)))

≤ κd

κ2d+1
Svol2d+1 (X2d+1 (p (1))) = Svold (Xd (q)).

0 0
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recall that a special case of the Alexandrov-Fenchel inequality yields the following statement ([217]): if K

is a convex body in Ed satisfying Vi(K) ≤ Vi(B
d[o, R]) for given 1 ≤ i < d and R > 0, then

Vj (K) ≤ Vj (Bd [o,R]) (8.43)

holds for all j with i < j ≤ d. Thus, it is sufficient to prove (3.1) for k = 1 and Br = Bd[o, R] with 0 < R < r.
We need the following special cases of the corresponding definition, remark, and lemma from Section 8.4.

Definition 36 Let  ≠ K ⊂ Ed, d > 1 and r > 0. Then the r-ball convex hull convr K of K is defined by

convrK := ∩{Bd [x, r] K ⊆ Bd [x, r]}.

Moreover, let the r-ball convex hull of Ed be Ed. Furthermore, we say that K ⊆ Ed is r-ball convex if K =

convrK.

Remark 191 We note that clearly, convrK =  if and only if K r = . Moreover, ≠ K ⊂ E
d is r-ball

convex if and only if K is an r-ball body.

We need the Euclidean version of Lemma 181 (cf. also [36]).

Lemma 192 If K ⊆ Ed, d > 1 and r > 0, then Kr = (convrK)r.

Hence, using Lemma 192 we may assume that A ⊂ Ed is an r-ball body of volume Vd(A) > 0 and B =

Bd[o, r − R] with 0 < R < r such that Vd(A) = Vd(B). Our goal is to prove that

V1 (Ar) ≤ V1 (Br) = V1 (Bd [o,R]). (8.44)

Next recall Theorem 1 of [73], which we state as follows.

Lemma 193 If A ⊂ Ed is an r-ball body (for r > 0), then A + Ar is a convex body of constant width 2r,

where + denotes the Minkowski sum.

Thus, we have:

Corollary 194 If A ⊂ Ed is an r-ball body (for r > 0), then

V1 (A) + V1 (Ar) = dκd

κd−1
r = V1 (B) + V1 (Br),

where B = Bd[o, r − R] and Br = Bd[o, R] with 0 < R < r and Vd (A) = Vd(B).

Finally, recall ([217]) that (8.43) for j = d can be restated as follows: if A is a convex body in Ed

satisfying Vd(A) = Vd(Bd[o, r − R]) for given d > 1 and 0 < R < r, then

Vi (A) ≥ Vi (Bd [o, r − R]) (8.45)

holds for all i with 1 < i < d.
Hence, Corollary 194 and (8.45) for i = 1 imply (8.44) in a straightforward way. This completes the

proof of Theorem 75.

8.8    Proof of Theorem 76

8.8.1  Proof of Part (i) of Theorem 76

0 ∣0 0 0
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Let d > 1, λ > 0, r > 0, and k ∈ [d] := {1,…, d} be given. If λ > 2r, then Vk (P r) = Vk ( ) = 0 and (3.2)

follows. Thus, we may assume that 0 < λ ≤ 2r, and as in [48], we proceed by proving the following
theorem, which implies part (i) of Theorem 76 in a straightforward way.

Theorem 195 Let d > 1, λ > 0, r > 0, and k ∈ [d] be given such that 0 < λ ≤ 2r. Let Q := {q1,…, qN} ⊂ Ed

be a uniform contraction of P := {p1,…, pN} ⊂ Ed with separating value λ in Ed. If

(i)  N ≥ (1 + 2r
λ )

d

, or

(ii)  0 < λ ≤ √2r and N ≥ (1 +√ 2d
d+1 )

d

, then (3.2) holds.

Proof Following [48], our proof is based on proper estimates of the following functionals.

Definition 37 Let

fk,d (N , λ, r) := min {Vk (Qr)|∥qi − qj∥ ≤ λ for all 1 ≤ i < j ≤ N} (8.46)

and

gk,d (N , λ, r) := max {Vk (P r)|λ ≤ ∥pi − pj∥ for all 1 ≤ i < j ≤ N} (8.47)

We note that in this paper the maximum of the empty set is zero. We need also

Definition 38 The circumradius crX of the set X ⊆ Ed, d > 1 is defined by

crX := inf {r|X ⊆ Bd [x, r]}.

Part (i): By assumption N ≥ (1 + 2r
λ )

d

 and so

N( λ
2 )

d

κd ≥ ( λ
2 + r)

d

κd,
(8.48)

where κd denotes the volume of a d-dimensional unit ball in E
d. As the balls pl +

Bd [o, λ
2 ], …, pN + Bd [o, λ

2 ] are pairwise non-overlapping in Ed therefore (8.48) yields in a

straightforward way that crP > r. Thus, Pr =  and therefore clearly gk,d(N, λ, r) = 0 ≤ fk,d(N, λ, r) holds,

finishing the proof of Theorem 195, part (i).
Part (ii): For the proof that follows, we need the following straightforward extension of the rather

obvious but very useful Euclidean identity (9) of [48]: for any X = {xl,…, xn} ⊂ Ed, n > 1, d > 1, r > 0,

and r* > 0 one has

X r = (
n
∪
i=1

Bd [xi, r
∗])

r+r∗

.
(8.49)

First, we give a lower bound for (8.46). Jung’s theorem ([87]) implies in a straightforward way that crQ

≤ √ 2d
d+1

λ
2  and so, Bd [x, r −√ 2d

d+1
λ
2 ] ⊂ Qr for some x ∈ Ed. (We note that by assumption

N ≥ (1 +√ 2d
d+1 )

d

> 1 and r −√ 2d
d+1

λ
2 > r − 1

√2
λ ≥ 0.) As a result, we get that

(8.50)

0

0
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fk,d (N , λ, r) > Vk(Bd [x, r −√ 2d
d+1

λ
2 ]).

Second, we give an upper bound for (8.47). (8.49) implies that

P r = (
N
∪
i=1

Bd [pi,
λ
2
])

r+ λ
2

,
(8.51)

where the balls Bd [p1, λ
2 ], …, Bd [pN , λ

2 ] are pairwise non-overlapping in Ed. Thus,

Vd(
N
∪
i=1

Bd [pi,
λ
2
]) = NVd (Bd [p1, λ

2 ]).
(8.52)

Let µ > 0 be chosen such that NVd (Bd [p1, λ
2 ]) = Vd (Bd [p1,μ]). Clearly,

μ = 1
2 N

1
d λ (8.53)

Now Theorem 75, (8.51), (8.52), and (8.53) imply in a straightforward way that

Vk (P r) = Vk((
N
∪
i=1

Bd [pi,
λ
2
])

r+ λ
2

) ≤ Vk((Bd [p1, 1
2 N

1
d λ])

r+ λ
2 ).

(8.54)

Clearly, (Bd [p1, 1
2 N

1
d λ])

r+ λ
2

= Bd [p1, r − N
1
d −1
2 λ] with the convention that if r − N

1
d −1
2 λ<0,

then Bd [p1, r − N
1
d −1
2 λ] = . Hence (8.54) yields

gk,d (N , λ, r) ≤ Vk(Bd [p1, r − N
1
d −1
2 λ]) (8.55)

(with Vk ( ) = 0). Finally, as N ≥ (1 +√ 2d
d+1 )

d

 therefore N
1
d −1
2 λ ≥ √ 2d

d+1
λ
2  and so, (8.50) and

(8.55) yield gk, d(N, λ, r) < fk, d(N, λ, r), finishing the proof of Theorem 195, part (ii).

8.8.2    Proof of Part (ii) of Theorem 76

The following strengthening of Theorem 195 implies Part (ii) of Theorem 76 in a straightforward way.
Thus, we are left to prove:

Theorem 196 Let d ≥ 42, λ > 0, r > 0, and k ∈ {1, 2, …, d} be given such that 0 < λ ≤ 2r. Let Q := {q1, …,

qN} ⊂ Ed be a uniform contraction of P := {pl, …, pN} ⊂ Ed with separating value λ in Ed. If

(i)   N ≥ √ π
2d (1 + 2r

λ )
d

+ 1, or

(ii)   0 < λ ≤ √2r and N ≥ √ π
2d (1 +√ 2d

d+1 )
d

+ 1, then (3.2) holds.

Proof. We use the notations and methods of the proof of Theorem 195. Furthermore, we need the

following well-known result of U. Betke and M. Henk [24], which proves the sausage conjecture of L.

0

0
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Fejes Tóth in Ed for d ≥ 42: whenever the balls Bd [p1, λ
2 ], …, Bd [pN , λ

2 ] are pairwise non-

overlapping in Ed then

Vd(conv(
N
∪
i=1

Bd [pi,
λ
2
])) ≥ (N − 1)λ( λ

2 )
d−1

κd−1 + ( λ
2 )

d

κd,
(8.56)

where conv(·) denotes the convex hull of the given set. Using the inequality 
κd−1

κd
> √ d

2π  for d ≥ 1 (see

Lemma 1 in [23]) we get in a straightforward way from (8.56) that

Vd(conv(
N
∪
i=1

Bd [pi,
λ
2
])) > ((N − 1)√ 2d

π + 1)( λ
2 )

d

κd.
(8.57)

Part (i): By assumption N ≥ √ π
2d (1 + 2r

λ )
d

+ 1 > √ π
2d [(1 + 2r

λ )
d

− 1] + 1 and so

((N − 1)√ 2d
π + 1)( λ

2 )
d

κd > ( λ
2 + r)

d

κd,
(8.58)

As the balls p1 + Bd [o, λ
2 ], …, pN + Bd [o, λ

2 ] are pairwise non-overlapping in Ed; therefore, (8.57)

and (8.58) yield in a straightforward way that cr P > r. Thus, Pr =  and therefore clearly, gk, d(N, λ, r) =

0 ≤ fk, d(N, λ, r) holds, finishing the proof of Theorem 196, part (i).

Part (ii): In the same way as in the proof of Part (ii) of Theorem 195, one can derive that

fk,d (N , λ, r) > Vk(Bd [x, r −√ 2R
d+1

λ
2 ]).

(8.59)

Next, recall that

P r = (
N
∪
i=1

Bd [pi,
λ
2
])

r+ λ
2

,
(8.60)

where the balls Bd [p1, λ
2 ], …, Bd [pN , λ

2 ] are pairwise non-overlapping in Ed. Lemma 192 applied to

(8.60) yields

(8.61)

Hence, Theorem 75, (8.57), and (8.61) imply in a straightforward way that

Vk (P r) < Vk((Bd [o,μ])
r+ λ

2 ),
(8.62)

where VdBd [o,μ] = ((N − 1)√ 2d
π + 1)( λ

2 )
d

κd. Thus, (8.62) yields

gk,d (N , λ, r) < Vk(Bd [o, r − (((N − 1)√ 2d
π + 1)

1
d

− 1) λ
2 ])

(8.63)

0

P r = (
N
∪
i=1

Bd [pi,
λ
2
])

r+ λ
2

= (conv
r+ λ

2
(

N
∪
i=1

Bd [pi,
λ
2
]))

r+ λ
2

⊂ (conv(
N
∪
i=1

Bd [pi,
λ
2
]))

r+ λ
2

.
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(with Vk ( ) = 0). Finally, as N ≥ √ π
2d (1 +√ 2d

d+1 )
d

+ 1 > √ π
2d (1 +√ 2d

d+1 )
d

+ (1 −√ π
2d )

therefore (((N − 1)√ 2d
π + 1)

1
d

− 1) λ
2 > √ 2d

d+1
λ
2  and so, (8.59) and (8.63) yield gk, d(N, λ, r) < fk,

d(N, λ, r), finishing the proof of Theorem 196, part (ii).

8.9    Proof of Theorem 78

As the claim holds trivially for 0 < r ≤ 
λ
2 , therefore we may assume that 0 < 

λ
2  < r. The diameter of

∪N
i=1Bd [qi, r] is at most 2r + λ. Thus, the isodiametric inequality ([217]) implies that

Vd(
N
∪
i=1

Bd [qi, r]) ≤ (r + λ
2 )

d

κd.
(8.64)

On the other hand, {Bd[pi, λ/2] : i = 1,…, N} is a packing of balls. Next, we are going to use the following

form of the isoperimetric inequality. Namely, the Brunn-Minkowski inequality ([118]) shows that if B ⊂
E
d is a ball of the same volume as A ⊂ Ed, then

Vd (Aε) ≥ Vd (Bε) (8.65)

holds for any ε > 0, where Xε := X + Bd[o, ε] is called the ε-neighborhood of X ⊆ Ed. Thus, (8.65) implies

in a straightforward way that

(8.66)

By assumption N ≥ 2d and therefore (r + (N 1
d − 1) λ

2 )
d

κd ≥ (r + λ
2 )

d

κd. This inequality, (8.64),

and (8.66) complete the proof of Theorem 78.

8.10  Proof of Theorem 79

8.10.1  Basic results on central sets of ball-polytopes

Recall that Md denotes the d-dimensional Euclidean, hyperbolic, or spherical space. In this subsection, we
collect the definitions and the relevant basic statements that are needed for the proof of Theorem 79 and

hold in Md for all d ≥ 2. The proofs of these statements are not difficult but technical and lengthy and so,
for details on them, we refer the interested reader to Section 4 in [124] as well as the references mentioned
there.

Definition 39 Let U ⊂ Md be a compact set. We say that the closed ball B ⊂ U (possibly with zero radius)

is maximal in U, if it is not a proper subset of any other ball B′ ⊂ U. The set CU ⊂ U that consists of the

centers of all maximal balls in U, is called the central set of U.

Definition 40 For a continuous map f : CU → Md that rearranges the centers of the maximal balls in U,

we denote by Uf ⊂ Md the union of these maximal balls after their rearrangement by the map f.

0

Vd(
N
∪
i=1

Bd [pi, r]) = Vd((
N
∪
i=1

Bd [pi,
λ
2
])

r− λ
2

)

≥ Vd((Bd [o,N
1
d
λ
2 ])

r− λ
2

) = (r + (N 1
d − 1) λ

2 )
d

κd
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The following statement has been explained in [124] by saying that “if there is a counterexample to the
Kneser-Poulsen conjecture, then that counterexample can be chosen so that the centers of the balls before
the rearrangement lie in the central set of their union”.

Lemma 197 Let U ⊂ Md be the union of finitely many closed balls and let V ⊂ Md be the union of the

same balls after a contractive rearrangement. Let f : U → Md be an arbitrary contraction (1 -Lipschitz
map), such that its restriction to the centers of the balls provides the considered contractive

rearrangement. Then the set Uf is compact and V ⊆ Uf. In particular, if vol Md(Uf) ≤ vol Md(U), then vol

M
d(V) ≤ vol Md(U), where vol Md(·) the Lebesgue measure in Md.

According to Lemma 197, in order to prove the Kneser-Poulsen conjecture, it is enough to rule out the
counterexample with (possibly infinitely many) balls, whose centers in the initial configuration lie in the
central set of their union. Thus, the following combinatorial and topological description of the structure of
the central set will be helpful for the proof of Theorem 79.

Definition 41 We say that a set U ⊂ Md is a d-dimensional ball-polytope, if it can be represented as a

union of finitely many closed balls of positive radii, and its boundary bdU is a codimension one

topological submanifold of Md.

Lemma 198 Let U ⊂ Md be a ball-polytope. Then the following holds:

(i)  The central set CU has a structure of a finite (d − 1)-dimensional cell complex whose k-dimensional

cells are k-dimensional convex polytopes;

(ii)   The set U can be represented as the union of finitely many balls with centers at the 0-dimensional
cells of the cell complex CU ;

(iii)  The sets CU and U are homotopy equivalent.

The following statement is called the Splitting Lemma in [124] because it provides the basis for
applying the “divide and conquer” principle and constructing the inductive argument.

Definition 42 Let X ⊆ CU be a closed non-empty subset. We denote by UX the union of all maximal balls

in U that are centered at the points of X.

Lemma 199 Let U ⊂ Md be a ball-polytope and let X, Y ⊆ CU be closed non-empty sets such that X ⋃ Y

= CU. Then

UX ∩ UY = UX∩Y .

The following statement formulates a version of the “divide and conquer” principle, which is sufficient
for the proof of Theorem 79.

Definition 43 For a closed set X ⊆ U and a contraction f : CU → Md that rearranges the centers of the

maximal balls in U, let UX, f ⊆ Uf represent the union of the balls that are obtained from all maximal balls

in U with centers in X after these balls are rearranged by the map f.

Proposition 200 Let U ⊂ Md be a ball-polytope and let X, Y ⊆ CU be closed non-empty sets such that X

⋃ Y = CU. If f : CU → M
d is a contraction such that

volMd (UX,f) ≤ volMd (UX), volMd (UY ,f) ≤ volMd (UY ), and volMd (UX∩Y ,f) = volMd (UX∩Y ), then

volMd (Uf) ≤ volMd (U).

Finally, the following statement is a rather technical lemma, which is needed as well for the proof of
Theorem 79.



153

Lemma 201 Let U ⊂ Md be a ball-polytope and let X ⊆ CU be a closed nonempty set and let Z ⊆ X be the

relative boundary of X in CU. If CUz
⊆ X, then CUX

= X.

8.10.2  An extension theorem via piecewise isometries

Besides the central sets, the other core ingredient for the proof of Theorem 79 is generated by piecewise
isometries. For proofs of the following extension theorem via piecewise isometries, we refer the interested
reader to the relevant references mentioned in Subsection 2.4 of [124].

Definition 44 A map f : Md → Md is called a piecewise isometry, if the map f is continuous and there

exists a locally finite triangulation of Md such that for any simplex T of the triangulation, the restriction

of f to T is an isometry.

Theorem 202 Any contraction f : X → Md of a finite set X ⊂ Md can be extended to a piecewise isometry

on Md.

8.10.3  Deriving Theorem 79 from the preliminary results

We follow the presentation of Gorbovickis’ proof published in Subsection 2.4 of [124]. Assume that there
exists a counterexample to the statement of Theorem 79. According to Theorem 202, the corresponding

rearrangement of the centers of the disks can be extended to a piecewise isometry f : Md → Md. We fix

this piecewise isometry f together with the associated triangulation of Md. Without loss of generality we
may assume that every interior point of the union of the disks in the initial configuration is also an interior
point of some disk. (Namely, if an interior point is not in the interior of some disk, then it lies in the
intersection of at least two boundary circles. There are finitely many such points and we can always place
new small disks that cover them.) We decrease the radii of the disks slightly, if necessary, so that the union
of the disks in the initial configuration of the counterexample is a simply connected ball-polytope. Let us

denote this ball-polytope by U ⊆ Md. Since the perturbation of the radii can be arbitrarily small, we may

assume that the new configuration of the disks still provides a counterexample to the statement of
Theorem 79. Then Lemma 197 implies that

volMd (Uf) > volMd (U). (8.67)

Let U  be the set of all simply connected ball-polytopes U ⊆ Md such that inequality (8.67) holds. As

we just noticed, the set U  is non-empty. It follows from Lemma 198 that for every U ∈ U , the central set
CU has the structure of a tree with straight edges. Every edge intersects only finitely many simplices from

the triangulation associated to f, so it can be split into finitely many edges such that f restricted to each one
of them is an isometry.

For U ∈ U , let Γ(U) denote the tree structure on CU such that f restricted to every edge of Γ(U) is an

isometry and Γ(U) has the smallest possible number of edges. Let |Γ(U)| ≥ 0 denote the number of edges in

the graph Γ(U).

We choose an element U ∈ U  with the minimal number |Γ(U)|. This number is strictly positive, since

otherwise U is a ball and inequality (8.67) does not hold. Now since |Γ(U)| > 0 and Γ(U) is a tree, it has an

edge with a vertex of degree 1. Let us denote this edge by Y ⊆CU and define X = CU\Y , that is, let X be

the closure of CU\Y. Since X ⋂ Y is a singleton, the sets UX ⋂ Y and UX ⋂ Y, f are congruent balls; hence,

their volumes are equal, and since f is an isometry on Y, it follows from Proposition 200 that

volMd (UX,f) > volMd (UX).

Moreover, it follows from part (ii) of Lemma 198 and Lemma 199 that the set U\UX has the form

B1\B2, where B1, B2 ⊆ M2 are two closed disks centered at the vertices of the edge Y. The latter implies

that UX is a simply connected ball-polytope, hence UX ∈ U .

¯
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Finally, since the relative boundary of X in CU is the set X ∩ Y that consists of one point, we have

CUX∩Y = X ∩ Y ⊆ X, and Lemma 201 implies that CUX
= X. Thus, |Γ(UX)| < |Γ(U)|, which contradicts

the choice of the ball-polytope U. This completes the proof of Theorem 79 also in the case when M2= E2.
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9

Proofs on Volumetric Bounds for Contact Numbers

Summary. In this chapter we present selected proofs of some of the theorems in Chapter 4. In particular,
in Section 9.1 we prove estimates for c(n, 3) and cfcc(n). In Section 9.2 we treat the general case, i.e., we

examine the contact numbers of translative packings of an arbitrary convex body in Ed. In Sections 9.3
and 9.4 we establish a connection between contact numbers of ball packings and the densities of packings
of soft balls, and prove a Blichfeldt-type estimate for the latter quantities, respectively. In Section 9.5 we
solve the maximum packing density problem for soft Euclidean disks. In Section 9.6 we prove a Rogers-
type bound for soft packings in E3. Then we turn our attention to totally separable packings. In Section
9.7 we determine the values of csep(n, 2) and prove bounds for csep(n, 3). In Section 9.8 we prove

estimates for cℤ(n, d), while in Section 9.9 we examine the general problem of finding csep(n, d). In

Section 9.10 we determine the Hadwiger numbers of strictly convex and smooth convex bodies in Ed for d

≤ 4, and apply these results to prove estimates for csep(K, n, d) with d ≤ 4. In Section 9.11 we construct

topological disks with arbitrarily large Hadwiger numbers, and in Sections 9.12 and 9.13 we prove upper
bounds for the Hadwiger numbers of starlike disks in the centrally symmetric and in the general case,
respectively.

9.1    Proof of Theorem 87

9.1.1    An upper bound for sphere packings: Proof of (i)

The proof presented in this section follows the proof of (i) of Theorem 1.1 in [50] and as such it is based
on the recent breakthrough results of Hales [136]. The details are as follows.

Let B denote the (closed) unit ball centered at the origin o of E3 and let P ≔ {c1 + B, c2 + B, …, cn +

B} denote the packing of n unit balls with centers c1, c2, …, cn in E3 having the largest number C(n) of

touching pairs among all packings of n unit balls in E3. ( P might not be uniquely determined up to
congruence in which case P stands for any of those extremal packings.) Now, let r̂ := 1.58731. The
following statement shows the main property of r̂ that is needed for our proof of Theorem 87.

FIGURE 9.1

The isosceles triangle conv{o1, p, q}.

Theorem 203 Let B1, B2, …, B13 be 13 different members of a packing of unit balls in E3. Assume that

each ball of the family B2, B3, …, B13 touches B1. Let B̂i be the closed ball concentric with Bi having

radius r̂, 1 ≤ i ≤ 13. Then the boundary bd( B̂1) of B̂1 is covered by the balls B̂2, B̂3, … , B̂13, that is,
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bd(B̂1) ⊂ ∪13
j=2B̂j.

Proof. Let oi be the center of the unit ball Bi, 1 ≤ i ≤ 13 and assume that B1 is tangent to the unit balls B2,

B3, …, B13 at the points tj ∈ bd(Bj) ∩ bd(B1), 2 ≤ j ≤ 13.

Let α denote the measure of the angles opposite to the equal sides of the isosceles triangle conv{o1, p,

q} with dist(o1, p) = 2 and dist(p, q) = dist(o1, q) = r̂, where dist(⋅, ⋅) denotes the Euclidean distance

between the corresponding two points (Figure 9.1). Clearly, cos α = 1
r̂

 with α < π
3 .

Lemma 204 Let T be the convex hull of the points t2, t3, …, t13. Then the radius of the circumscribed

circle of each face of the convex polyhedron T is less than sin α.

Proof. Let F be an arbitrary face of T with vertices tj, j ∈ IF ⊂ {2, 3, …, 13} and let cF denote the center

of the circumscribed circle of F. Clearly, the triangle conv{o1, cF, tj} is a right triangle with a right angle

at cF and with an acute angle of measure βF at o1 for all j ∈ IF. We have to show that βF < α. We prove this

by contradiction. Namely, assume that α ≤ βF. Then either π
3 < βF  or α ≤ βF ≤ π

3 . First, let us take a

closer look of the case π3 < βF . Reflect the point o1 about the plane of F and label the point obtained by

o′
1.

Clearly, the triangle conv{o1, o′
1, oj} is a right triangle with a right angle at o′

1 and with an acute angle

of measure βF at o1 for all j ∈ IF. Then reflect the point o1 about o′
1 and label the obtained point by o′′

1

furthermore, let B′′
1 denote the unit ball centered at o′′

1 (Figure 9.2). As π
3 < βF  therefore dist(o1, o′′

1)

< 2 and so, one can simply translate B′′
1 along the line o1 o′′

1 away from o1 to a new position, say B′′′
1,

such that it is tangent to B1. However, this would mean that B1 is tangent to 13 non-overlapping unit balls

namely, to B′′′
1, B2, B3, …, B13, clearly contradicting the well-known fact ([220]) that this number cannot

be larger than 12. Thus, we are left with the case when α ≤ βF ≤ π
3 . By repeating the definitions of

o′
1, o′′

1 and B′′
1, the inequality βF ≤ π

3  implies in a straightforward way that the 14 unit balls B1, B′′
1,

B2, B3, …, B13 form a packing in E
3. Moreover, the inequality α ≤ βF yields that

dist (o1, o′′
1) ≤ 4 cos α = 4

r̂
= 2.51998 … < 2.52. Finally, notice that the latter inequality contradicts

the following recent result of Hales [136].

FIGURE 9.2
The plane reections to obtain o′

1 and o′′
1.
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Theorem 205 Let B1, B2, …, B14 be 14 different members of a packing of unit balls in E3. Assume that

each ball of the family B2, B3, …, B13 touches B1. Then the distance between the centers of B1 and B14 is

at least 2.52.

This completes the proof of Lemma 204.

Now, we are ready to prove Theorem 203. First, we note that by projecting the faces F of T from the

center point o1 onto the sphere bd( B̂1) we get a tiling of bd( B̂1) into spherically convex polygons F̂ .

Thus, it is sufficient to show that if F is an arbitrary face of T with vertices tj, j ∈ IF ⊂{2, 3, …, 13}, then

its central projection F̂ ⊂ bd(B̂1) is covered by the closed balls B̂j, j ∈ IF ⊂ {2, 3, …, 13}. Second, in

order to achieve this, it is sufficient to prove that the projection ĉF  of the center cF of the circumscribed

circle of F from the center point o1 onto the sphere bd( B̂1) is covered by each of the closed balls B̂j, j ∈
IF ⊂ {2, 3, …, 13}. Indeed, if in the triangle conv{o1, oj, ĉF} the measure of the angle at o1 is denoted by

βF, then Lemma 204 implies in a straighforward way that βF < α. Hence, based on dist(o1, oj) = 2 and

dist (o1, ĉF) = r̂, a simple comparison of the triangle conv{o1, oj, ĉF} with the triangle conv{o1, p, q}

yields that dist (oj, ĉF) < r̂ holds for all j ∈ IF ⊂{2, 3, …, 13}, finishing the proof of Theorem 203.

Next, let us take the union ∪n
i=1 (ci + r̂B) of the closed balls c1 + r̂B, c2 + r̂B, … , cn + r̂B of radii

r̂ centered at the points c1, c2, …, cn in E3.

Theorem 206

nvol3(B)
vol3(∪n

i=1(ci+r̂B))
< 0.7547,

where vol3(⋅) refers to the 3-dimensional volume of the corresponding set.

Proof. First, partition ∪n
i=1 (ci + r̂B) into truncated Voronoi cells as follows. Let Pi denote the Voronoi

cell of the packing P assigned to ci + B, 1 ≤ i ≤ n, that is, let Pi stand for the set of points of E3 that are

not farther away from ci than from any other cj with j ≠ i, 1 ≤ j ≤ n. Then, recall the well-known fact (see

for example, [106]) that the Voronoi cells Pi, 1 ≤ i ≤ n just introduced form a tiling of E3. Based on this, it

is easy to see that the truncated Voronoi cells Pi ∩ (ci + r̂B), 1 ≤ i ≤ n generate a tiling of the non-convex

container ∪n
i=1 (ci + r̂B) for the packing P (Figure 9.3). Second, as √2 < r̂; therefore, the following

very recent result of Hales [136] (see Lemma 9.13 on p. 228) applied to the truncated Voronoi cells

Pi ∩ (ci + r̂B), 1 ≤ i ≤ n implies the inequality of Theorem 206 in a straightforward way.
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FIGURE 9.3

Voronoi cells of a packing with black ci + B’s and dashed ci + r̂B’s.

Theorem 207 Let F  be an arbitrary (finite or infinite) family of non-overlapping unit balls in E3 with the

unit ball B centered at the origin o of E3 belonging to F . Let P stand for the Voronoi cell of the packing

F  assigned to B. Let Q denote a regular dodecahedron circumscribed B (having circumradius

√3 tan π
5 = 1.2584 …). Finally, let r ≔ √2 = 1.4142… and let rB denote the ball of radius r centered

at the origin o of E3. Then

vol3(B)
vol3(P) ≤ vol3(B)

vol3(P∩rB) ≤ vol3(B)
vol3(Q) < 0.7547.

This finishes the proof of Theorem 206.
The well-known isoperimetric inequality [194] applied to ∪n

i=1 (ci + r̂B) yields:

Lemma 208

36πvol2
3 (

n
∪
i=1

(ci + r̂B)) ≤ svol3
2 (bd(

n
∪
i=1

(ci + r̂B))),

where svol2(⋅) refers to the 2-dimensional surface volume of the corresponding set.

Thus, Theorem 206 and Lemma 208 generate the following inequality.

Corollary 209

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti, where Ti ⊂ {1, 2, …, n} stands for

the family of indices 1 ≤ j ≤ n for which dist(ci, cj) = 2. Then let Ŝi := bd (ci + r̂B) and let ĉij be the

intersection of the line segment cicj with Ŝi for all j ∈ Ti. Moreover, let C
Ŝi
(ĉij,

π
6 ) (resp., C

Ŝi
(ĉij,α))

denote the open spherical cap of Ŝi centered at ĉij ∈ Ŝi having angular radius π6  (resp., α with 0 < α < π2
and cos α = 1

r̂
). Clearly, the family { C

Ŝi
(ĉij,

π
6 ), j ∈ Ti} consists of pairwise disjoint open spherical

caps of Ŝi; moreover,

∑
j∈Ti

svol2(CŜi
(ĉij,

π
6 ))

svol2(∪j∈TiCŜi
(ĉij,α))

=
∑j∈Ti

Sarea(C(uij,
π
6 ))

Sarea(∪j∈TiC(uij,α))
,

(9.1)

where uij ≔ 1
2 (cj − ci) ∈ S2 ≔ bd(B) and C(uij, 

π
6 ) ⊂ S2 (resp., C(uij, α) ⊂ S2) denotes the open spherical

cap of S2 centered at uij having angular radius π6  (resp., α) and where Sarea(⋅) refers to the spherical area

measure on S2. Now, Molnár’s density bound (Satz I in [185]) implies that

∑j∈Ti
Sarea(C(uij, π6 ))

Sarea(∪j∈TiC(uij,α))
< 0.89332. (9.2)

In order to estimate

svol2 (bd(
n
∪
i=1

(ci + r̂B)))

15.159805n
2
3 < 15.15980554 …n

2
3 = 4π

(0.7547)
2
3

n
2
3

< svol2 (bd(
n
∪
i=1

(ci + r̂B))).
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from above, let us assume that m members of P have 12 touching neighbors in P and k members of P
have at most 9 touching neighbors in P. Thus, n − m − k members of P have either 10 or 11 touching
neighbors in P. (Here we have used the well-known fact that τ3 = 12, that is, no member of P can have

more than 12 touching neighbors.) Without loss of generality we may assume that 4 ≤ k ≤ n − m.

First, we note that Sarea (C(uij, 
π
6 )) = 2π (1− cos π

6 ) = 2π(1 − √3
2 ) and svol2

(C
Ŝi
(ĉij,

π
6 )) = 2π(1 − √3

2 )r̂2. Second, recall Theorem 203 according to which if a member of P,

say ci + B, has exactly 12 touching neighbors in P, then Ŝi ⊂ ∪j∈Ti
(cj + r̂B). These facts together with

(9.1) and (9.2) imply the following estimate.

Corollary 210 svol2 (bd (∪n
i=1 (ci + r̂B))) < 24.53902

3 (n − m − k) + 24.53902k.

Proof.

Hence, Corollaries 209 and 210 yield in a straightforward way that

1.85335n
2
3 − 3k < n − m − k. (9.3)

Finally, as the number C(n) of touching pairs in P is obviously at most

1
2 (12n − (n − m − k) − 3k),

therefore (9.3) implies that

C (n) ≤ 1
2 (12n − (n − m − k) − 3k) < 6n − 0.926675n

2
3 < 6n − 0.926n

2
3 ,

finishing the proof of (i) in Theorem 87.

9.1.2    An upper bound for the fcc lattice: Proof of (ii)

Although the idea of the proof of (ii) is similar to that of (i), they differ in the combinatorial counting part
(see (9.9)) as well as in the density estimate for packings of spherical caps of angular radii π6  (see (9.8)).

Moreover, the proof of (ii) is based on the new parameter value r := √2(replacing r̂ = 1.81383). The
details are as follows.

First, recall that if Λfcc denotes the face-centered cubic lattice with shortest non-zero lattice vector of

length 2 in E3 and we place unit balls centered at each lattice point of Λfcc, then we get the fcc lattice

packing of unit balls, labelled by Pfcc, in which each unit ball is touched by 12 others such that their

centers form the vertices of a cuboctahedron. (Recall that a cubocta-hedron is a convex polyhedron with 8
triangular faces and 6 square faces having 12 identical vertices, with 2 triangles and 2 squares meeting at
each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular
polyhedron, i.e., an Archimedean solid, being vertex-transitive and edge-transitive.) Second, it is well
known (see [106] for more details) that the Voronoi cell of each unit ball in Pfcc is a rhombic

dodecahedron (the dual of a cuboctahedron) of volume √32 (and of circumradius √2). Thus, the density

of Pfcc is 
4π
3

√32
= π

√18
.

svol2 (bd(
n
∪
i=1

(ci + r̂B)))

< (4πr̂2 −
10⋅2π(1− √3

2 )r̂2

0.89332 ) (n − m − k) +(4πr̂2 −
3⋅2π(1− √3

2 )r̂2

0.89332 )k

< 7.91956 (n − m − k) + 24.53902k < 24.53902
3 (n − m − k) + 24.53902k.

¯
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Now, let B denote the unit ball centered at the origin o ∈ Λfcc of E3 and let P ≔ {c1 + B, c2 + B, …, cn

+ B} denote the packing of n unit balls with centers {c1, c2, …, cn} ⊂ Λfcc in E3 having the largest

number Cfcc(n) of touching pairs among all packings of n unit balls being a subpacking of Pfcc. ( P

might not be uniquely determined up to congruence in which case P stands for any of those extremal

packings.) As the Voronoi cell of each unit ball in Pfcc is contained in a ball of radius r = √2, therefore,

based on the corresponding decomposition of ∪n
i=1 (ci + rB) into truncated Voronoi cells, we get that

nvol3(B)

vol3(∪n
i=1(ci+rB))

< π

√18
= 0.7404 … . (9.4)

As a next step we apply the isoperimetric inequality ([194]):

36πvol2
3 (

n
∪
i=1

(ci + rB)) ≤ svol3
2 (bd(

n
∪
i=1

(ci + rB))).
(9.5)

Thus, (9.4) and (9.5) yield in a straightforward way that

15.3532 …n
2
3 = 4 3√18πn

2
3 < svol2 (bd(

n
∪
i=1

(ci + rB))).
(9.6)

Now, assume that ci + B ∈ P is tangent to cj + B ∈ P for all j ∈ Ti, where Ti ⊂ {1, 2, …, n} stands for

the family of indices 1 ≤ j ≤ n for which dist(ci, cj) = 2. Then let S i := bd (ci + rB) and let cij be the

intersection of the line segment cicj with S i for all j ∈ Ti. Moreover, let CS i
(cij,

π
6 ) (resp., CS i

(cij,
π
4 ))

denote the open spherical cap of S i centered at cij ∈ S i having angular radius π
6  (resp., π

4 ). Clearly, the

family { CS i
(cij,

π
6 ), j ∈ Ti} consists of pairwise disjoint open spherical caps of S i; moreover,

∑j∈Ti
svol2(CSi

(cij,
π
6 ))

svol2(∪j∈Ti
C

Si
(cij,

π
4 ))

=
∑

j∈Ti
Sarea(C(uij, π6 ))

Sarea(∪j∈TiC(uij,
π
4 ))

,
(9.7)

where uij = 1
2 (cj − ci) ∈ S2 and C(uij, 

π
6 ) ⊂ S2 (resp., C(uij, 

π
4 ) ⊂ S2) denotes the open spherical cap of

S
2 centered at uij having angular radius π

6  (resp., π
4 ). Now, the geometry of the cuboctahedron

representing the 12 touching neighbors of an arbitrary unit ball in Pfcc implies in a straightforward way

that

∑j∈Ti
Sarea(C(uij, π6 ))

Sarea(∪j∈TiC(uij,
π
4 ))

≤ 6(1 − √3
2 ) = 0.8038 … (9.8)

with equality when 12 spherical caps of angular radius π6  are packed on S2.

Finally, as svol2 (C (uij,
π
6 )) = 2π (1− cos π

6 ) and svol2 (CS i
(cij,

π
6 )) = 2π(1 − √3

2 )r
2,

therefore, (9.7) and (9.8) yield that

(9.9)

Thus, (9.6) and (9.9) imply that

4 3√18πn
2
3 < 8πn − 4π

3 Cfcc (n). (9.10)

From (9.10) the inequality Cfcc (n) < 6n − 3 3√18π
π n

2
3 = 6n − 3.665 …n

2
3  follows in a

straightforward way for all n ≥ 2. This completes the proof of (ii) in Theorem 87.

¯

¯

¯

¯̄

¯

¯̄̄

¯̄̄̄̄

¯̄̄

¯̄̄

¯̄

¯̄

¯̄̄

svol2 (bd(
n
∪
i=1

(ci + rB))) ≤ 4πr2n − 1

6(1− √3
2 )

2(2π(1 − √3
2 )r

2)Cfcc (n)

= 8πn − 4π
3 Cfcc (n).

¯̄̄
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9.1.3    Octahedral unit sphere packings: Proof of (iii)

It is rather easy to show that for any positive integer k ≥ 2 there are n (k) := 2k3+k
3 =

k(2k2+1)
3  lattice

points of the face-centered cubic lattice Λfcc such that their convex hull is a regular octahedron K ⊂ E3 of

edge length 2(k − 1) having exactly k lattice points along each of its edges (see Figure 9.4 for k = 4).

Now, draw a unit ball around each lattice point of Λfcc ∩ K and label the packing of the n(k) unit balls

obtained in this way by Pfcc(k). It is easy to check that if the center of a unit ball of Pfcc(k) is a relative

interior point of an edge (resp., of a face) of K, then the unit ball in question has 7 (resp., 9) touching

neighbors in Pfcc(k). Last but not least, any unit ball of Pfcc(k) whose center is an interior point of K has

12 touching neighbors in Pfcc(k). Next we note that the number of lattice points of Λfcc lying in the

relative interior of the edges (resp., faces) of K is 12(k − 2) = 12k − 24 (resp.,

8( 1
2 (k − 3)2 + 1

2 (k − 3)) = 4(k − 3)2 + 4 (k − 3)). Furthermore, the number of lattice points of Λfcc

in the interior of K is equal to 2
3 (k − 2)3 + 1

3 (k − 2). Thus, the contact number C( Pfcc(k)) of the

packing Pfcc(k) is equal to

FIGURE 9.4
The Octahedral Construction for k = 4.

As a result, we get that

C (Pfcc (k)) = 6n (k) − 6k2. (9.11)

Finally, as 2k3

3 < n (k), therefore, 6k2 < 3√486n
2
3 (k) and so, (9.11) implies (iii) of Theorem 87 in a

straightforward way.

9.2    Proof of Theorem 88

12
2 (

2
3 (k − 2)3 + 1

3 (k − 2))+ 9
2 (4(k − 3)2 + 4 (k − 3))+ 7

2 (12k − 24) + 24
2

= 4k3 − 6k2 + 2k.
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Let {c1 + K, c2 + K, …, cn + K} be an arbitrary packing of n > 1 translates of the convex body K in Ed, d

≥ 3 with Cn = {c1, c2, …, cn}. Clearly, (c1 + K) ∪ (c2 + K) ∪…∪ (cn + K) = Cn + K.

Recall that the Minkowski symmetrization of the convex body K in Ed denoted by Ko is defined by

Ko := 1
2 (K + (−K)) = 1

2 (K − K) = 1
2 {x − y : x, y ∈ K}. Clearly, Ko is an o-symmetric d-

dimensional convex body. Minkowski [184] showed that if P = {x1 + K, x2 + K, …, xn + K} is a packing

of translates of K, then Po = {x1 + Ko, x2 + Ko, …, xn + Ko} is a packing as well. Moreover, the contact

graphs of P and Po are the same. Thus, it is sufficient to give an upper bound for the number of touching

pairs in the packing K = {c1 + Ko, c2 + Ko, … , cn + Ko}.

Notice that if ci + Ko is tangent to H(Ko) members of the packing K , then

ci + 2Ko ⊂ ∪
j≠i,1≤j≤n

(cj + 2Ko).

Hence, if m denotes the number of members of K  that are touched by exactly H(Ko) members of K ,

then the (d − 1)-dimensional surface volume svold−1 (bd(Cn + 2Ko)) of the boundary bd(Cn + 2Ko) of the

(non-convex) set Cn + 2Ko must satisfy the inequality

svold−1 (bd (Cn + 2Ko)) ≤ (n − m)2d−1svold−1 (bdKo). (9.12)

On the other hand, the isoperimetric inequality applied to Cn + 2Ko yields

iq (Bd) ≤ iq (Cn + 2Ko) = (svold−1(bd(Cn+2Ko)))d

(vold(Cn+2Ko))d−1
(9.13)

Finally, Lemma 235 with ρ = 1 implies the following inequality in a straightforward way:

vold(Cn+Ko)
vold(Cn+2Ko) ≤ δ (Ko) (9.14)

Hence, (9.12), (9.13), and (9.14) yield

1

2d−1[δ(Ko)]
d−1
d

[ iq(Bd)
iq(Ko) ]

1
d

n
d−1
d ≤ n − m.

(9.15)

Finally, notice that the convex hull of Cn, n > 1 must have at least two vertices in Ed, say, ci and cj.

Then, it is obvious that the number of members of K  that are tangent to ci + Ko (resp., cj + Ko) is at most

h(Ko). From this and (9.15), the first inequality of Theorem 88 follows in a straightforward way.

To prove the second inequality, we note that δ(Ko) ≤ 1, and (iq(Bd))1/d = dvold(Bd). Next, according to

Ball’s reverse isoperimetric inequality [16], for any o-symmetric convex body Ko there is a non-

degenerate affine map T : Ed → Ed with iq(TKo) ≤ (2d)d. Finally, notice that c(Ko, n, d) = c(TKo, n, d),

and the inequality follows in a straightforward way. This completes the proof of Theorem 88.

9.3    Proof of Theorem 92

First, we show that there exists λ′
d,n > 0 such that for every λ satisfying 0 < λ < λ′

d,n, δd(n, λ) is generated

by a packing of n unit balls in Ed possessing the largest contact number c(n, d) for the given n. Our proof
is by contradiction and starts by assuming that the claim is not true. Then there exists a sequence λ1 > λ2 >

… > λm > … > 0 of positive reals with limm→+∞ λm = 0 such that the unit ball packing P(λm) ≔ {ci(λm)

+ Bd | 1 ≤ i ≤ n with ǁcj(λm) − ck(λm)ǁ ≥ 2 for all 1 ≤ j < k ≤ n} that generates δd(n, λm) has a contact

number c( P(λm)) satisfying
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c (P (λm)) ≤ c (n, d) − 1 (9.16)

for all m = 1, 2,…. Clearly, by assumption

vold (Pn
λm) ≥ vold (P (λm)) (9.17)

must hold for every packing Pn = {ci + Bd | 1 ≤ i ≤ n with ǁcj − ckǁ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit balls

in Ed and for all m = 1, 2, …, where

Pn
λm

=
n
∪
i=1

(ci + (1 + λm)Bd)and P (λm) :=
n
∪
i=1

(ci (λm) + (1 + λm)Bd).

By choosing convergent subsequences if necessary, one may assume that limm→+∞ ci(λm) = c′
i ∈ Ed for

all 1 ≤ i ≤ n. Clearly, P′ ≔ { c′
i + Bd | 1 ≤ i ≤ n} is a packing of n unit balls in Ed. Now, let P″ ≔ { c′′

i +

Bd | 1 ≤ i ≤ n} be a packing of n unit balls in Ed with maximum contact number c(n, d). Finally, let 2 + 2λ′
be the smallest distance between the centers of non-touching pairs of unit balls in the packings P′ and P
″. Thus, if 0 < λm < λ′ and m is sufficiently large, then the number of overlapping pairs in the ball

arrangement {ci(λm) + (1 + λm)Bd | 1 ≤ i ≤ n} is at most c(n, d). On the other hand, the number of

overlapping pairs in the ball arrangement { c′′
i + (1 + λm)Bd | 1 ≤ i ≤ n} is c(n, d). Hence, (9.16) implies in

a straightforward way that vold(P(λm)) > vold (∪n
i=1 (c

′′
i + (1 + λm)Bd)), a contradiction to (9.17). This

completes our proof on the existence of λ′
d,n > 0.

Second, we turn to the proof of the existence of the packing P̂n of n unit balls in Ed with the extremal
property stated in Theorem 92. According to the first part of our proof, for every λ satisfying 0 < λ < λ′

d,n

there exist a packing P(λ) ≔ {ci(λ) + Bd | 1 ≤ i ≤ n with ǁcj(λ) − ck(λ)ǁ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit

balls in Ed with contact number c( P(λ)) = c(n, d) such that

vold (Pn
λ) ≥ vold (P (λ)) (9.18)

holds for every packing Pn = {ci + Bd | 1 ≤ i ≤ n with ǁcj − ckǁ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit balls in Ed

, where

Pn
λ =

n
∪
i=1

(ci + (1 + λ)Bd)and P (λ) :=
n
∪
i=1

(ci (λ) + (1 + λ)Bd).

Now, if we assume that P̂n does not exist, then clearly we must have a sequence λ1 > λ2 > … > λm > … >

0 of positive reals with limm→+∞ λm = 0 and with unit ball packings P(λm) ≔ {ci(λm) + Bd | 1 ≤ i ≤ n with

ǁcj(λm) − ck(λm)ǁ ≥ 2 for all 1 ≤ j < k ≤ n} in Ed each with maximum contact number c( P(λm)) = c(n, d)

such that we have (9.18), i.e.,

vold (Pn
λm
) ≥ vold (P (λm)) (9.19)

for every packing Pn = {ci + Bd | 1 ≤ i ≤ n with ǁcj − ckǁ ≥ 2 for all 1 ≤ j < k ≤ n} of n unit balls in Ed and

for all m = 1, 2,…. In particular, we must have

vold (P (λM)) ≥ vold (P (λm)) (9.20)

for all positive integers 1 ≤ m ≤ M. Last but not least, by the non-existence of P̂n we may assume about

the sequence of the unit ball packings P(λm), m = 1, 2, … (resp., of volumes vold(P(λm)), m = 1, 2,…)

that for every positive integer N there exist m″ > m′ ≥ N with

vold (P (λm′′)) > vold (P (λm′)). (9.21)
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Finally, let 2 + 2 λ′
m be the smallest distance between the centers of nontouching pairs of unit balls in the

packing P(λm), m = 1, 2,…. We claim touching pairs of unit balls in the packing P(λm), m = 1, 2, …. We

claim that there exists a positive integer N′ such that

0 < λm < λ′
m for allm ≥ N ′. (9.22)

Indeed, otherwise there exists a subsequence λ′
mi

, i = 1, 2,… with λmi
≥ λ′

mi
> 0 for all i = 1, 2,… and

so, with limi→+∞ λ′
mi

= 0 implying the existence of a packing of n unit balls in Ed (via taking a

convergent subsequence of the unit ball packings P (λmi
), i =1, 2,… in Ed) with contact number at least

c(n, d) + 1, a contradiction.
Thus, (9.22) and c( P(λm)) = c(d, n) imply in a straightforward way that

vold (P (λm′′)) = vold (P (λm′)) must hold for all m″ > m′ ≥ N′, a contradiction to (9.21). This completes

our proof of Theorem 92.

9.4    Proof of Theorem 93

For simplicity, we set λ≔ 1 + λ. In the following proof of [43], we apply Blichfeldt’s idea to Pn within

the container ∪n
i=1 (ci + λBd) using the presentation of Blichfeldt’s method in [105].

For i = 1, 2, …, n, let ci = (ci1, ci2, …, cin). Clearly, if i ≠ j, we have ǁci − cjǁ2 ≥ 4, or equivalently,

∑d

k=1
(cik − cjk)2 ≥ 4. Summing up for all possible pairs of different indices, we obtain

2n (n − 1) = 4( ) ≤ n

n

∑
i=1

(
d

∑
j=1

c2
ij)−

d

∑
j=1

(
n

∑
i=1

cij)
2

,

which yields

2 (n − 1) ≤
n

∑
i=1

||ci||
2.

(9.23)

We need the following definitions and lemma.

Definition 45 The function

ρλ (x) = {

is called the Blichfeldt gauge function.

Lemma 211 For any y ∈ Ed, we have

n

∑
i=1

ρλ (y − ci) ≤ 1.

Proof. Without loss of generality, let y be the origin. Then, from (9.23), it follows that

¯

¯

n

2

1 − 1
2 ‖x‖2, if ‖x‖ ≤ λ

0, if ‖x‖ > λ

¯

¯

n

∑
i=1

ρλ (ci) = ∑
‖ci‖≤λ

(1 −
1

2
‖ci‖

2) ≤
n

∑
i=1

(1 −
1

2
‖ci‖

2)

= n − 1
2

n

∑
i=1

‖ci‖
2 ≤ n −

1

2
2 ⋅ (n − 1) = 1.

¯
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Definition 46 Let

Clearly, Lemma 211 implies that ∆ ≤ 1, and therefore δ ≤ κd

I(ρλ) , which yields that δd(n, λ) ≤ κd

I(ρλ) .

Now,

Hence, we have

δd (n,λ) ≤ 1

λd(1− d
2d+4 λ

2)
= 2d+4

(2−λ2)d+4
λ−d,

and the assertion follows.

9.5    Proof of Theorem 94

The following proof follows closely the relevant parts of [43]. Let Pn = {ci + B2 : i = 1, 2, …, n} be a

packing of n unit disks in E2, and let 1 < λ = 1 + λ < 2
√3

.

Definition 47 The λ-intersection graph of Pn is the graph G( Pn) with {ci = 1, 2, …, n} as vertices, and

with two vertices connected by a line segment if their distance is at most 2 λ.

Note that since 1 < λ < 2
√3

, the λ-intersection graph of Pn is planar, but if λ > 2
√3

, it is not

necessarily so.

Definition 48 The unbounded face of the λ-intersection graph G( Pn) is bounded by finitely many closed

sequences of edges of G( Pn). We call the collection of these sequences the boundary of G( Pn), and

denote the sum of the lengths of the edges in them by perim(G( Pn)).

We remark that an edge of G( Pn) may appear more than once in the boundary of G( Pn) (for instance,
if the boundary of the unbounded face contains a vertex of degree one). Such an edge contributes its length

more than once to perim(G( Pn)).
We prove the following, stronger statement, which readily implies Theorem 94.

Theorem 212 Let Pn = {ci + B2 : i = 1, 2, …, n} be a packing of n unit disks in E2, and let 1 < λ < 2
√3

.

Let A = area (∪n
i=1 (ci + λB2)) and P = perim(G( Pn)). Then

A ≥ (area(H ∩ λB2))n + (λ2 arccos 1
λ

−√λ2 − 1)P + λ2π. (9.24)

Proof. An elementary computation yields

area(H ∩ λB2) = λ2 (π − 6 arccos 1
λ
)+ 6√λ2 − 1. (9.25)

I (ρλ) = ∫
Ed

ρλ (x)dx, δ = nκd

vold(∪n
i=1(ci+λBd))

, Δ = δ
I(ρλ)
κd

.̄

I (ρλ) = ∫
Ed

ρλ (x)dx = ∫
λBd

(1 −
1

2
‖x‖2)dx = ∫

λ

0
(1 −

1

2
r2)rd−1dκddr

= κd (λd − d
2(d+2) λ

d+2).

¯

¯

¯̄

¯̄̄
¯

¯

¯̄

¯

¯

¯̄
¯
¯̄

¯̄
¯
¯



166

Let C denote the union of the bounded faces of the graph G( Pn). Consider the Voronoi decomposition

of E2 by Pn. Observe that as λ < 2
√3

, no point of the plane belongs to more than two disks of the family

{ci + λB2 : i = 1, 2, …, n}. Thus, if E = [ci, cj] is an edge of G( Pn), the midpoint m of E is a common

point of the Voronoi cells of ci + B2 and cj + B2; more specifically, m is the point of the common edge of

these cells, closest to both ci and cj. Hence, following Rogers’s method [208], we may partition C into

triangles of the form T = conv {ci, c′
i, c′′

i}, where c′
i is the point on an edge E of the Voronoi cell of ci +

B2, closest to ci, and c′′
i is an endpoint of E. We call these triangles interior cells, define the center of any

such cell T = conv {ci, c′
i, c′′

i} as ci, and its angle as the angle ∠ (c′
i, ci, c′′

i). Furthermore, we define

the edge contribution of an interior cell to be zero.

Now, let [ci, cj] be an edge in the boundary of G( Pn), with outer unit normal vector u and midpoint m.

Then the sets ([ct, m] + [o, λ u]) ⋂ (ct + λ B2), where t ∈ {i, j}, are called boundary cells, with center ct

(Figure 9.5). We define their angles as π
2

, and their edge contributions as 1
2
ǁci − cjǁ. Note that, even though

no two interior cells overlap, this is not necessarily true for boundary cells: such a cell may have some
overlap with interior as well as boundary cells.
The proof of Theorem 212 is based on Lemma 213.

Lemma 213 Let T be an interior or boundary cell with center c, edge contribution x and angle α. Then

(9.26)

First, we show how Lemma 213 yields Theorem 212. Let the (interior and boundary) cells of Pn be Tj,

j = 1, 2, …, k, with center cj, angle αj and edge contribution xj. Let T′
j = Tj ∩ (cj + λB2). Since the

sum of the (signed) turning angles at the vertices of a simple polygon is equal to 2π, we have

A =
k

∑
j=1

area (T′
j)+ sλ2π,

FIGURE 9.5

Boundary cells: the one with centre ci is denoted by crosses, and intC is represented by dots.

where s is the number of components of the boundary of G( Pn). On the other hand,

¯

¯

¯̄

area(T ∩ (c + λB2))

≥
λ2( π

6 −arccos 1

λ
)+√λ2−1

π
3

α + (λ2 arccos 1
λ

−√λ2 − 1)x.

¯

¯
¯
¯
¯
¯
¯

¯

¯
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Thus, summing up both sides in Lemma 213, and using the estimate s ≥ 1 implies Theorem 212.

Proof of Lemma 213. For simplicity, let T′ = T ∩ (c + λB2). First, we consider the case that T is a

boundary triangle. Then α = π
2 , and an elementary computation yields that

area (T′) = λ2

2 (
π
2 − arccos x

λ
)+ x

2
√λ2 − x2. (9.27)

Combining (9.26) and (9.27), it suffices to show that the function

f (x) = − λ2

2 arccos x

λ
+ x

2
√λ2 − x2 + ( 3

2 − x)(λ2 arccos 1
λ

−√λ2 − 1)

is not negative for any 1 ≤ x ≤ λ ≤ 2
√3

. Note that

f ′′ (x) = −x

√λ2−x2
,

and hence, f is a strictly concave function of x, from which it follows that it is minimal either at x = 1 or at

x = λ.

Now, we have f(1) = 0, and f (λ) = ( 3
2 − λ)(λ2 arccos 1

λ
−√λ2 − 1). Since λ ≤ 2

√3
< 3

2 , the

first factor of f (λ) is positive. On the other hand, comparing the second factor to (9.25), we can see that

it is equal to 1
6 area(λB2\H) > 0.

Second, let T be an interior cell triangle, which yields that x = 0. Observe that if T = conv{c, x, y} is not

a right triangle, then both x and y are vertices of the Voronoi cell of c + B2, from which it follows that ǁx −

cǁ, ǁy − cǁ ≥ 2
√3

. In this case T′ is a circle sector, and area(T′) = λ2 α
2 , which yields the assertion. Thus, we

may assume that T = conv{x, y} has a right angle at x, and that ǁx − cǁ < 2
√3

. Moving y towards x

increases the ratio 
area(T′)

α , and hence, we may assume that ǁy − cǁ = 2
√3

. Under these conditions, we have

area (T′) = λ2

2 (α − arccos 2cosα
√3λ

)+ 1
√3

cos α√λ2 − 4
3 cos2 α,

and, combining it with (9.26), it suffices to show that the function

is not negative if 1 ≤ λ ≤ 2
√3

 and arccos √3λ
2 ≤ α ≤ π

6 . To do this, we may apply a computation similar

to the one in case of a boundary triangle.

9.6    Proof of Theorem 95

First of all, recall that λ = 1 + λ, and let

δ := π−6ψ0

π−6ψ0+(3π−18ψ0)λ−18ψ0λ2−(π+6ψ0)λ3 < σ3 (λ).

k

∑
j=1

αj = 2πn, and
k

∑
j=1

xj = P .

¯

¯
¯
¯

¯
¯
¯̄
¯
¯

¯

¯

¯

¯̄̄̄̄

¯

¯

¯

¯
¯
¯

g (α) = − λ2

2
arccos 2cosα

√3λ

+ 1
√3

cos α√λ2 − 4
3 cos2 α + λ2

2 arccos 1
λ
α − α

2
√r2 − 1

¯
¯

¯¯
¯

¯̄

¯
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Consider a unit ball packing Pn in E3, and let V be the Voronoi cell of some ball of Pn, say B3. Let F

be a face of V, and denote the intersection of the conic hull of F with V, B3 and bdB3 = S2 by VF, BF and

SF, respectively. Furthermore, we set V′
F = VF ∩ (λB3). To prove Theorem 95, it is sufficient to show

that

vol3(BF )
vol3(V′

F )
≤ δ. (9.28)

Recall the well-known fact (cf. [208]) that the distance of any (d − i)-dimensional face of V from o is at

least √ 2i
i+1 . Thus, λ < 2

√3
 yields that the intersection of affF with λB3 is either contained in F, or

disjoint from it. In the second case 
vol3(BF )
vol3(V′

F ) = 1
λ3

< δ, and thus, we may assume that aff F ⋂ ( λB3) ⊂F.

Let the distance of F and o be x, where 1 ≤ x ≤ λ < 2
√3

. An ele-mentary computation yields that vol3

((λBF)\VF) = π( 2
3 λ

3 − λ2x + 1
3 x

3), from which it follows that

vol3(V′
F )

vol3(BF ) = λ3 −
π( 2

3 λ
3−λ2x+ 1

3 x
3)

vol3(BF ) .
(9.29)

First, we intend to minimize vol3(BF), while keeping the value of x fixed. Recall the following lemma

from [33].

Lemma 214 Let Fi be an i-dimensional face of the Dirichlet-Voronoi cell of p + Bd, in a unit ball packing

in Ed. Let the distance of aff Fi from p be R < √2. If Fi−1 is an (i − 1)-dimensional face of Fi, then the

distance of affFi−1 from p is at least 2
√4−R2

.

This immediately yields that the distance of o from any sideline of F is at least 2
√4−x2

, and from any

vertex of F at least √ 4−x2

3−x2 . By setting H = affF and denoting the projection of o onto H by c, we may

rephrase this observation in the following way: F is a polygon in H, containing the circle C1 with center c

and radius √ 4
4−x2 − x2 = 2−x2

√4−x2
, such that each vertex of H is outside the circle C1, with center c and

radius 2−x2

√3−x2
. Observe that we have a similar condition for the projection of F onto the sphere S2. Thus,

to minimize vol3(BF), or equivalently, Svol2(SF) = 3vol3(BF), we may apply the following lemma from

[?].

Lemma 215 (Hajós) Let 0 < r < R < π2 , and let Cr and CR be two concentric circles on the sphere S2, of

radii r and R, respectively. Let P denote the family of convex spherical polygons containing Cr, with no

vertex contained in the interior of CR. If P ∈ P has minimal spherical area over all the elements of P,

then each vertex of P lies on CR, and each but at most one edge of P touches Cr.

Such a polygon is called a Hajós polygon of the two circles. By Lemma 215, we may assume that F is a

Hajós polygon, and compute Svol2(SF) = 3vol3(BF) under this condition.

Let [p, q] be an edge of H that touches C1, and let m be the midpoint of [p, q]. Let the angles of the

triangle T = conv{p, m, c}, at p, m c, be β, γ = π2  and α, respectively. Let T′ be the central projection of T

onto S2 from o, and denote the angles of T′ by α′, β′, γ′, according to the notation in T. We compute
Svol2(T′) = α′ + β′ + γ′ − π. First, we observe that, by the properties of the projection, we have α′ = α, and

γ′ = γ = π
2

. Since ǁp − cǁ = 2−x2

√3−x2
 and ǁm − cǁ = 2−x2

√4−x2
, an elementary computation yields ǁp − mǁ =

2−x2

√(3−x2)(4−x2)
, and

¯

¯̄

¯
¯

¯

¯̄̄

¯
¯̄
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α′ =arctan 1
√3−x2

.

In the following, we use Lemma 216.

Lemma 216 Let H denote the tangent plane of the unit sphere S2 at some point p ∈ S2. Let T = conv{p1,

p2, p3} with p1 = p. For i = 1, 2, 3, let ϕi be the angle of T at pi, and p′
i be the central projection of pi on

S
2 from o. Furthermore, let T′ be the central projection of T, with p′

i and ϕ′
i and d′

i being the

projections of pi and ϕ′
i, and the spherical length of the side of T′ opposite of p′

i, respectively. Then

.

Proof. Let q be the orthogonal projection of p1 onto the line containing p2 and p3, and let q′ be the central

projection of q onto S2. Observe that the spherical angle p′
1q′p′

2∠ is a right angle. Thus, from the

spherical law of cosines for angles, it follows that

1 =tan (q′p′
1p′

2∠) tan ϕ′
2 cos d′

3.

Now, we have q′p′
1p′

2∠ = qp1p2∠ = π
2 − ϕ2, from which the first equality readily follows. The

second one can be proven in a similar way.

From Lemma 216, we readily obtain that tan β = tan β′cos arctan 
∥p−c∥

x
, which yields

β′ =arctan √4−x2

x
.

Thus,

Svol2 (T ′) =arctan 1
√3−x2

+ arctan √4−x2

x − π
2 . (9.30)

Now, if 1 ≤ x ≤ 2
√3

, then π
6 < ϕ0 ≤ α′ ≤ 0.659058 < π

4 . Thus, F has either five or six edges,

depending on the values of x. More specifically, if 1 ≤ x < √ 10−2√5
5  = 1.051462 …, then F has six, and

otherwise five edges. Using this, vol3(BF) = 1
3 Svol2(SF) can be computed similarly to Svol2(T′), which

yields that if 1 ≤ x ≤ √ 10−2√5
5 , then

Let us denote the expression on the right by f(x). We may observe that if √ 10−2√5
5 < x ≤ 2

√3
, then the

area of the sixth triangle appears with a negative sign in f(x), which yields, using a geometric observation,

that in this case vol3(BF) > f(x).

Let

F (x, λ) = f (x) − Cπ( 2
3 λ

3 − λ2x + 1
3 x

3),

where C = 
f(1)

π( 2
3 λ

3−λ2+ 1
3 )

. Note that F(1, λ) = 0 for every value of λ. Thus, by (9.28), (9.29) and the

inequality vol3(BF) ≥ f(x), it follows that to prove Theorem 95, it is sufficient to show that F(x, λ) ≥ 0 for

every 1 ≤ λ < 2
√3

 and 1 ≤ x ≤ λ. On the other hand, it is an elementary exercise to check that ∂ 2F
∂x2  < 0 on

this region, which yields that F(x, λ) is minimal at F(1, λ) or F( (λ, λ)). We may observe that F (λ, λ) =

tan ϕ2 =tan ϕ′
2 cos d′

3, and tan ϕ3 =tan ϕ′
3 cos d′

2

vol3 (BF ) = 10
3 arctan √4−x2

x

− 2
3 arccot

x√3−x2tan(5arctan( 1
√3−x2

))

√4−x2
− 2

3 π.

¯̄̄

¯̄
¯̄

¯̄

¯̄̄̄̄̄
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f( λ) is greater than four times the value of the expression in (9.30) at x = λ, which is positive. Thus, F(x, λ
) is not negative on the examined region, from which Theorem 95 follows.

9.7    Proof of Theorem 98

The following proof is an analogue of the proof of Theorem 1.1 in [34] and as such it is based on the
proper modifications of the main (resp., technical) lemmas of [34]. Overall, the method discussed below
turns out to be more efficient for totally separable unit ball packings than for unit ball packings in general.
The more exact details are as follows.

Let P ≔ {c1 + B3, c2 + B3, …, cn + B3} denote the totally separable packing of n unit balls with

centers c1, c2, …, cn in E3, which has the largest number, namely c(n, 3), of touching pairs among all

totally separable packings of n unit balls in E3. ( P might not be uniquely determined up to congruence in
which case P stands for any of those extremal packings.)

Lemma 217

4π
3 n

vol3(∪n
i=1(ci+√3B3))

< 0.6401,

where vol3(⋅) refers to the 3-dimensional volume of the corresponding set.

Proof. First, partition ∪n
i=1 (ci + √3B3) into truncated Voronoi cells as follows. Let Pi denote the Voronoi

cell of the packing P assigned to ci + B3, 1 ≤ i ≤ n, that is, let Pi stand for the set of points of E3 that are

not farther away from ci than from any other cj with j ≠ i, 1 ≤ j ≤ n. Then, recall the well-known fact (see

for example, [106]) that the Voronoi cells Pi, 1 ≤ i ≤ n just introduced form a tiling of E3. Based on this, it

is easy to see that the truncated Voronoi cells Pi ∩ (ci + √3 B3), 1 ≤ i ≤ n generate a tiling of the non-

convex container ∪n
i=1 (ci + √3B3) for the packing P. Second, we prove the following metric properties

of the Voronoi cells introduced above.

Sublemma 218 The distance between the line of an arbitrary edge of the Voronoi cell Pi and the center ci

is always at least 3√3
4  = 1.299… for any 1 ≤ i ≤ n.

Proof. It is easy to see that the claim follows from the following 2-dimensional statement: If {a + B2, b +

B2, c + B2} is a totally separable packing of three unit disks with centers a, b, c in E2, then the

circumradius of the triangle conv{a, b, c} is at least 3√3
4 . We prove the latter statement as follows. If some

side of the triangle conv{a, b, c} has length at least 2 √2, then the circumradius of the triangle conv{a, b,

c} is at least √2 > 3√3
4  = 1.299…. So, without loss of generality we may assume that 2 < ǁa − bǁ < 2 √2,

2 < ǁa − cǁ < 2 √2, and 2 < ǁb − cǁ < 2 √2 and so conv{a, b, c} is an acute triangle. Moreover, as the three

unit disks with centers a, b, c form a totally separable packing, therefore, there must exist two unit disks

say, a + B2 and b + B2 such that their two inner tangent lines are disjoint from the interior of the third unit

disk c + B2 separating the unit disks a + B2, c + B2 (resp., b + B2, c + B2) from b + B2 (resp., a + B2).

Finally, if necessary then by properly translating c + B2 and thereby decreasing the circumradius of the

triangle conv{a, b, c} one can assume that the two inner tangent lines of the unit disks a + B2 and b + B2

are tangent to the unit disk c + B2 with 2 < ǁa − bǁ < 2 √2 and 2 < ǁa − cǁ = ǁb − cǁ < 2 √2. Now, if x = 1
2

ǁa − bǁ, then an elementary computation yields that the circumradius of the triangle conv{a, b, c} is equal

¯̄̄
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to f(x) = x3

2√x2−1
 with 1 < x < √2. Hence, f′(x) = 

x2(2x2−3)

2(x2−1)√x2−1
 implies in a straightforward way that

f (√ 3
2 ) = 3√3

4  is a global minimum of f(x) over 1< x < √2. This finishes the proof of Sublemma 218.

Remark 219 As one can see from the above proof, the lower bound of Sublemma 218 is a sharp one and it

should be compared to the lower bound 2
√3

 = 1.154…valid for any unit ball packing not necessarily

totally separable in E3. (For more details on the lower bound 2
√3

 see for example the discussion on page

29 in [35].)

Sublemma 220 The distance between an arbitrary vertex of the Voronoi cell Pi and the center ci is always

at least √2 = 1.414…for any 1 ≤ i ≤ n.

Proof. Clearly, the claim follows from the following statement: If P4 = {c1 + B3, c2 + B3, c3 + B3, c4 +

B3} is a totally separable packing of four unit balls with centers c1, c2, c3, c4 in E3, then the circumradius

of the tetrahedron conv{c1, c2, c3, c4} is at least √2. We prove the latter claim by looking at the following

two possible cases. P4 is a totally separable packing with plane H separating either c1 + B3, c2 + B3 from

c3 + B3, c4 + B3 (Case 1) or c1 + B3 from c2 + B3, c3 + B3, c4 + B3 (Case 2). In both cases, it is sufficient

to show that if ∪4
i=1(ci + B3) ⊂ x + rB3 for some x ∈ E3 and r ∈ ℝ, then r ≥ 1 + √2. Case 1: Let H+ and

H− denote the two closed half spaces bounded by H with c1 + B3 ⋃ c2 + B3 ⊂ H+ and c3 + B3 ⋃ c4 + B3

⊂ H−. Without loss of generality, we may assume that x ∈H−. Now, if c′
1 (resp., c′

2) denotes the image of

c1 (resp., c2) under the reflection in H, then clearly P′ = {c1 + B3, c2 + B3, c′
1 + B3, c′

1+ B3} is a

packing of four unit balls in x + rB3 symmetric about H. Then using the symmetry of P′ with respect to

H it is easy to see that r ≥ 1 + √2.

Case 2: Let H+ and H− denote the two closed half spaces bounded by H with c1 + B3 ⊂ ℍ+ and c2 + B3 ⋃
c3 + B3 ⋃ c4 + B3 ⊂ H−. If one assumes that r − 1 < √2, then using c1 ∈ (x + (r − 1)B3) ⋂ ℍ+ and {c2,

c3, c4} ⊂ (x + (r − 1)B3) ⋂ H− it is easy to see that the triangle conv{c2, c3, c4} is contained in a disk of

radius less than 2√√2 − 1 = 1.287…. On the other hand, as the unit balls c2 + B3, c3 + B3, c4 + B3 form

a totally separable packing, therefore, the proof of Sublemma 218 implies that the radius of any disk

containing the triangle conv{c2, c3, c4} must be at least 3√3
4  = 1.299…, a contradiction.

Remark 221 As one can see from the above proof, the lower bound of Sublemma 220 is a sharp one and it

should be compared to the lower bound √ 3
2  = 1.224…valid for any unit ball packing not necessarily

totally separable in E3. (For more details on the lower bound √ 3
2

 see for example the discussion on page

29 in [35].)

Now, we are ready to prove Sublemma 223. As the method used is well-known we give only an outline
of the major steps of its proof, which originates from Rogers ([208]). In fact, what we need here is a
truncated version of Rogers’s method that has been introduced by Böröczky [56] (also for spherical and
hyperbolic spaces). We recommend the interested reader to look up the relevant details in [56]. First we
need to recall the notion of an orthoscheme.

Definition 49 The i-dimensional simplex Y = conv{o, y1, …, yi} ⊂ Ed with vertices y0 = o, y1, …, yi is

called an i-dimensional orthoscheme if for each j, 0 ≤ j ≤ i − 1 the vector yj is orthogonal to the linear hull

lin{yk − yj |j + 1 ≤ k ≤ i}, where 1 ≤ i ≤ d.
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Next we dissect each truncated Voronoi cell Pi ⋂ (ci + √2B3), 1 ≤ i ≤ n into 3-dimensional, 2-dimensional,

and 1-dimensional orthoschemes having pairwise disjoint relative interiors as follows. Namely, for each x

∈ Pi ⋂ bd(ci + √2 B3) we assign an orthoscheme in the following well-defined way. (We note that due to

Sublemma 220 the intersection Pi ⋂ bd(ci + √2 B3) is always non-empty.) We distinguish three cases. If x

∈ intPi, then the assigned orthoscheme is the line segment conv{ci, x}. If x is a relative interior point of

some face F of Pi, then we assign to x the orthoscheme conv{ci, f, x}, where f is the orthogonal projection

of ci onto the plane of F. (We note that f lies in F). If x is a (relative interior) point of some edge E of Pi

with E lying on the face F of Pi, then we assign to x the orthoscheme conv{ci, f, e, x}, where e (resp., f) is

the orthogonal projection of ci onto the line of E (resp., onto the plane of F). We note that e (resp., f)

belongs to E (resp., F). This completes the process of dissecting Pi ⋂ (ci + √2B3) into orthoschemes.

As a next step we need to recall the so-called Lemma of Comparison of Rogers (for more details see, for
example, page 33 in [35]).

Proposition 222 Let W ≔ conv{o, w1, …, wd} be a d-dimensional orthoscheme in Ed. Moreover, let U

≔ conv{o, u1, …, ud} be a d-dimensional simplex of Ed such that ǁuiǁ = dist (o, conv{ui, ui+1, …, ud})

for all 1 ≤ i ≤ d, where dist(⋅, ⋅) refers to the usual Euclidean distance between two given sets. If 1 ≤ ǁ wiǁ ≤
ǁuiǁ holds for all 1 ≤ i ≤ d, then

vold(U∩Bd)
vold(U) ≤

vold(W∩Bd)
vold(W)

Finally, let W3 ≔ conv{o, w1, w2, w3} be the 3-dimensional orthoscheme with ǁw1ǁ = 1, ǁw2ǁ = 3√3
4 , and

ǁw3ǁ = √2. Clearly, Sublemmas 218, 220, and Proposition 222 imply that for any 3-dimensional

orthoscheme U3 ≔ conv{ci, f, e, x} of the above dissection of the truncated Voronoi cell Pi ⋂ (ci + √2

B3) we have that

vol3(U3∩B3)
vold(U3) ≤

vol3(W3∩B3)
vold(W3) .

As each 2-dimensional (resp., 1-dimensional) orthoscheme of the above dissection of Pi ⋂ (ci + √2 B3)

can be obtained as a limit of proper 3-dimensional orthoschemes, therefore, one can use the method of
limiting density exactly the same way as it is described in [56] to obtain the following conclusion.

Sublemma 223

Finally, as Pi ⋂ (ci + √2B3) ⊂ Pi ⋂ (ci + √3B3), therefore, Sublemma 223 completes the proof of

Lemma 217.

As in Lemma 208, the well-known isoperimetric inequality ([194]) applied to ∪n
i=1 (ci + √3B3) yields

vol3((Pi∩(ci+√2B3))∩(ci+B3))

vol3(Pi∩(ci+√2B3))
=

4π
3

vol3(Pi∩(ci+√2B3))

≤
vol3(W3∩B3)

vol3(W3) < 0.6401.
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Lemma 224

where svol2(⋅) refers to the surface area of the corresponding set.

Thus, Lemma 217 and Lemma 224 generate the following inequality.

Corollary 225

4π

(0.6401)
2
3
n

2
3 < svol2 (bd(

n
∪
i=1

(ci + √3B3))).

Now, assume that ci + B3 ∈ P is tangent to cj + B3 ∈ P for all j ∈ Ti, where Ti ⊂ {1, 2, …, n} stands

for the family of indices 1 ≤ j ≤ n for which dist(ci, cj) = 2. Then let Ŝi ≔ bd(ci + √3 B) and let ĉij be the

intersection of the line segment [ci, cj] with Ŝi for all j ∈ Ti. Moreover, let C
Ŝi

(ĉij,
π
4 ) (resp., C

Ŝi
(ĉij,α)

) denote the open spherical cap of Ŝi centered at ĉij ∈ Ŝi having angular radius π4  (resp., α with 0 < α < π2
and cos α = 1

√3
). As P is totally separable, therefore, the family { C

Ŝi
(ĉij,

π
4 ), j ∈ Ti} consists of

pairwise disjoint open spherical caps of Ŝi; moreover,

∑j∈Ti
svol2(C

Ŝi
(ĉij, π4 ))

svol2(∪j∈Ti
C

Ŝi
(ĉij,α))

=
∑

j∈Ti
Sarea(C(uij,

π
4 ))

Sarea(∪j∈TiC(uij,α))
,

(9.31)

where uij ≔ 1
2 (cj − ci) ∈ S2 ≔ bd(B3) and C(uij, 

π
4 ) ⊂ S2 (resp., C(uij, α) ⊂ S2) denotes the open

spherical cap of S2 centered at uij having angular radius π
4  (resp., α) and where Sarea(⋅) refers to the

spherical area measure on S2.

Lemma 226

∑
j∈Ti

Sarea(C(uij,
π
4 ))

Sarea(∪j∈TiC(uij,α))
≤ 3(1 − 1

√2
) = 0.8786 … .

Proof. By assumption Pi( S
2) = {C(uij, 

π
4 ) | j ∈ Ti} is a packing of spherical caps of angular radius π4  in

S
2. Let Vij( S

2) denote the Voronoi region of the packing Pi( S
2) assigned to C(uij, 

π
4 ), that is, let Vij( S

2)

stand for the set of points of S2 that are not farther away from uij than from any other uik with k ≠ j, k ∈ Ti.

Recall (see for example [106]) that the Voronoi regions Vij( S
2), j ∈ Ti are spherically convex polygons

and form a tiling of S2. Moreover, it is easy to see that no vertex of Vij( S
2) belongs to the interior of C(uij,

α) in S2. Thus, the Hajós Lemma (Hilfssatz 1 in [185], cf. also Lemma 215) implies that Sarea(Vij( S
2) ⋂

C(uij,α)) ≥ 
2π
3  because 

2π
3  is the spherical area of a regular spherical quadrilateral inscribed into C(uij, α)

with sides tangent to C(uij, 
π
4 ). Hence,

Sarea(C(uij, π4 ))
Sarea(Vij(S2)∩C(uij,α)) ≤ 3(1 − 1

√2
). (9.32)

As the truncated Voronoi regions Vij( S
2) ⋂ C(uij, α), j ∈ Ti form a tiling of ⋃j∈Ti

C(uij, α), therefore,

(9.32) finishes the proof of Lemma 226.
Lemma 226 implies in a straightforward way that

36π vol3(
n
∪
i=1

(ci + √3B3))
2

≤ svol2(bd(
n
∪
i=1

(ci + √3B3)))
3

,
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(9.33)

Hence, Corollary 225 and (9.33) yield

4π

(0.6401)
2
3

n
2
3 < 12πn − 4πc (n, 3),

from which it follows that c(n, 3) < 3n − 1

(0.6401)
2
3
n

2
3  < 3n − 1.346 i

2
3 , finishing the proof of Theorem 98.

9.8    Proof of Theorem 99

The following short proof of Theorem 99 is taken from [51]. A union of finitely many axis parallel d-

dimensional orthogonal boxes having pairwise disjoint interiors in Ed is called a box-polytope. One may
call the following statement the isoperimetric inequality for box-polytopes, which together with its proof
presented below is an analogue of the isoperimetric inequality for convex bodies derived from the Brunn-
Minkowski inequality. (For more details on the latter, see for example [17].)

Lemma 227 Among box-polytopes of given volume, the cubes have the least surface volume.

Proof. Without loss of generality, we may assume that the volume vold(A) of the given box-polytope A in

E
d is equal to 2d, i.e., vold(A) = 2d. Let Cd be an axis parallel d-dimensional cube of Ed with vold(Cd) =

2d. Let the surface volume of Cd be denoted by svold−1bdCd). Clearly svold−1 (bdCd) = d ⋅vold(Cd). On

the other hand, if svold−1(bdA) denotes the surface volume of the box-polytope A, then it is rather

straightforward to show that

svold−1 (A) = lim
ε→0+

vold(A+εCd)−vold(A)
ε

,

where “+” in the numerator stands for the Minkowski addition of the given sets. Using the Brunn–
Minkowski inequality ([17]) we get that

vold (A + εCd) ≥ (vold(A)
1
d + vold(εCd)

1
d )

d

= (vold(A)
1
d + ε ⋅ vold(Cd)

1
d )

d

.

Hence,

So,

vold(A+εCd)−vold(A)

ε
≥ svold−1 (bdCd)

and therefore, svold−1(bdA) ≥ svold−1(bdCd), finishing the proof of Lemma 227.

Corollary 228 For any box-polytope P of Ed the isoperimetric quotient of P is at least as large as the
isoperimetric quotient of a cube, i.e.,

svol2 (bd(
n
∪
i=1

(ci + √3B3))) ≤ 12πn − 1

3(1− 1
√2
)

12π(1 − 1
√2
)c (n, 3)

= 12πn − 4πc (n, 3).

vold (A + εCd) ≥ vold (A) + d ⋅ vold(A)
d−1
d ⋅ ε ⋅ vold(Cd)

1
d

= vold (A) + ε ⋅ d ⋅ vold (Cd)

= vold (A) + ε ⋅ svold−1 (bdCd).
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svold−1(bdP)d

vold(P)d−1 ≥ (2d)d.

Now, let P := {c1 + Bd, c2 + Bd, … , cn + Bd} denote the totally separable packing of n unit

diameter balls with centers {c1, c2, …, cn} ⊂ ℤd having contact number cℤ(n, d) in Ed. ( P  might not be

uniquely determined up to congruence in which case P  stands for any of those extremal packings.) Let

Ud be the axis parallel d-dimensional unit cube centered at the origin o in Ed. Then the unit cubes {c1 +

Ud, c2 + Ud, …, cn + Ud} have pairwise disjoint interiors and P = ∪n
i=1 (ci + Ud) is a box-polytope.

Clearly, svold−1(bdP) = 2dn − 2cℤ(n, d). Hence, Corollary 228 implies that

2dn − 2cZ (n, d) = svold−1 (bdP) ≥ 2dvold(P)
d−1
d = 2dn

d−1
d .

So, dn − dn d−1
d  ≥ cℤ(n, d), finishing the proof of Theorem 99.

9.9    Proof of Theorem 100

Definition 50 Let Bd= {x ∈ Ed ǁxǁ ≤ 1} be the closed unit ball centered at the origin o in Ed, where ǁ · ǁ
refers to the standard Euclidean norm of Ed. Let R ≥ 1. We say that the packing

Psep = {ci + Bd i ∈ I with ∥cj − ck∥ ≥ 2 for all j ≠ k ∈ I}

of (finitely or infinitely many) non-overlapping translates of Bd with centers {ci | i ∈ I} is an R-separable

packing in Ed if for each i ∈ I the finite packing {cj + Bd | cj+ Bd ⊆ ci + RBd} is a totally separable

packing (in ci + RBd). Finally, let δsep(R, d) denote the largest density of all R-separable unit ball

packings in Ed, i.e., let

δsep (R, d) = sup
Psep

(lim sup
λ→+∞

∑
ci+Bd⊂Qλ

vold(ci+Bd)

vold(Qλ)
),

where Qλ denotes the d-dimensional cube of edge length 2λ centered at o in Ed having edges parallel to

the coordinate axes of Ed.

Remark 229 For any 1 ≤ R < 3 we have that δsep(R, d) = δd, where δd stands for the supremum of the

upper densities of all unit ball packings in Ed.

The following statement is a special case of Lemma 235 and it is the core part of the proof of Theorem
100 published in [51] and discussed below.

Lemma 230 If {ci + Bd | 1 ≤ i ≤ n} is an R-separable packing of n unit balls in Ed with R ≥ 1, n ≥ 1, and d

≥ 2, then

nvold(Bd)
vold(∪n

i=1ci+2RBd)
≤ δsep (R, d).

Next, let P = {c1 + Bd, c2 + Bd, …, cn + Bd} be a totally separable packing of n translates of Bd with

centers at the points of Cn = {c1, c2, …, cn} in Ed. Recall that any member of P is tangent to at most 2d

members of P and if ci + Bd is tangent to 2d members, then the tangent points are the vertices of a regular

cross-polytope inscribed in ci + Bd and therefore

¯̄̄̄

¯

¯∣
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ci + √dBd ⊂ ∪
1≤j≤n,j≠i

cj + √dBd.

Thus, if m denotes the number of members of P that are tangent to 2d members in P, then the (d − 1)-

dimensional surface volume svold − 1 (bd(Cn + √d Bd)) of the boundary bd(Cn + √dBd) of the non-

convex set Cn + √dBd must satisfy the inequality

svold−1 (bd(Cn + √dBd)) ≤ (n − m)d
d−1

2 svold−1 (bd (Bd)). (9.34)

Finally, the isoperimetric inequality ([194]) applied to Cn + √dBd yields

iq (Bd) =
svold−1(bd(Bd))d

vold(Bd)d−1 = ddvold (Bd)

≤ iq(Cn + √dBd) =
svold−1(bd(Cn+√dBd))

d

vold(Cn+√dBd)
d−1 ,

(9.35)

where iq(⋅) stands for the isoperimetric quotient of the given set. As d ≥ 4, P is a 
√d
2 -separable packing

(in fact, it is an R-separable packing for all R ≥ 1) and therefore (9.34), (9.35), and Lemma 230 imply in a
straightforward way that

Thus, the number of contacts in P is at most

1
2 (2dn − (n − m)) ≤ dn − 1

2d
d−1

2 δsep(
√d
2 ,d)

d−1
d

n
d−1
d < dn − 1

2d
d−1

2

n
d−1
d ,

finishing the proof of Theorem 100.

9.10    Proofs of Theorems 101, 102, and 103

9.10.1    Linearization, fundamental properties

First, in order to give a linearization of the problem, we consider a set of n pairs (x1, f1), …, (xn, fn) where

xi ∈ Ed and fi is a linear functional on Ed for all 1 ≤ i ≤ n, and we define the following conditions that they

may satisfy.

n − m ≥
svold−1(bd(Cn+√dBd))

d
d−1

2 svold−1(bd(Bd))
=

svold−1(bd(Cn+√dBd))

d
d+1

2 vold(Bd)

≥
iq(Bd)

1
d vold(Cn+√dBd)

d−1
d

d
d+1

2 vold(Bd)

≥
iq(Bd)

1
d

d
d+1

2 vold(Bd)
( nvold(Bd)

δsep( √d
2 ,d)

)

d−1
d

= 1

d
d−1

2 δsep( √d
2 ,d)

d−1
d

n
d−1
d .
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Lemma 231 There is an o-symmetric, strictly convex body K in Ed with Hsep(K) ≥ n if and only if there is

a set of n vector-linear functional pairs (x1, f1), …,(xn, fn) in Ed satisfying (Lin) and (StrictC).

Similarly, there is an o-symmetric, smooth convex body K in Ed with Hsep(K) ≥ n if and only if, there is

a set of n vector-linear functional pairs (x1, f1), …,(xn, fn) in Ed satisfying (Lin) and (Smooth).

Furthermore, the existence of an o-symmetric, smooth and strictly convex body with Hsep(K) ≥ n is

equivalent to the existence of n vector-linear functional pairs satisfying (Lin), (StrictC) and (Smooth).

Proof. Let K be an o-symmetric convex body in Ed. Assume that 2x1 + K, 2x2 + K, …, 2xn + K is a

separable Hadwiger configuration of K, where x1, …, xn ∈ bdK. For 1 ≤ i ≤ n, let fi be the linear

functional corresponding to the separating hyperplane of K and 2xi + K which is disjoint from the interior

of all members of the family. That is, fi(xi) = 1 and −1 ≤ fi|K ≤ 1.

Total separability yields that fi(xj)∈ [−1, 1]\(0, 1), for any 1 ≤ i, j ≤ n, i ≠ j. Suppose that fi(xj) = 1. Then

2xi + K and 2xj + K both touch the hyperplane H ≔ {x ∈ Ed : fi(x) = 1} from one side, while K is on the

other side of this hyperplane.

If K is strictly convex, then this is clearly not possible.

If K is smooth, then let S be a separating hyperplane of 2xi + K and 2xj + K which is disjoint from

intK. Since K is smooth, K ⋂ H ⋂ S = , and hence, K does not touch 2xi + K or 2xj + K, a

contradiction.

Thus, if K is strictly convex or smooth, then (Lin) holds.

If K is strictly convex (resp., smooth), then (StrictC) (resp., (Smooth)) follows immediately.

Next, assume that (x1, f1), …, (xn, fn) is a set of n vector-linear functional pairs satisfying (Lin) and

(StrictC). We need to show that there is a strictly convex body K with Hsep(K) ≥ n. Consider the o-

symmetric convex set L ≔ {x ∈ Ed : fi(x) ∈ [−1, 1] for all 1 ≤ i ≤ n}, the intersection of n o-symmetric

slabs.

Fix an 1 ≤ i ≤ n. If there is no j ≠ i with fj(xi) = −1, then xi is in the relative interior of a facet of the

polyhedral set L, moreover, by (StrictC), no other point of the set {±x1, …, ±xn} lies on that facet.

If there is a j ≠ i with fj(xi) = −1, then xi is in the intersection of two facets of L, moreover, by (StrictC),

no other point of the set {±x1, …, ±xn} lies on the union of those two facets.

Thus, there is an o-symmetric, strictly convex body K ⊂ L which contains each xi. Clearly, for 1 ≤ i ≤ n,

the hyperplane {x ∈ Ed : fi(x) = 1} supports K at xi. It is an easy exercise to see that the family 2x1 + K,

2x2 + K, …, 2xn + K is a separable Hadwiger configuration of K.

Next, assume that (x1, f1), …, (xn, fn) is a set of n vector-linear functional pairs satisfying (Lin) and

(Smooth). To show that there is a smooth convex body K with Hsep(K) ≥ n, one may either copy the above

proof and make the obvious modifications, or use duality: interchange the role of the xis with that of the

fis, obtain a strictly convex body in the space of linear functionals, and then, by polarity obtain a smooth

convex body in Ed. We leave the details to the reader.
Finally, if (Lin), (StrictC) and (Smooth) hold, then in the above construction of a strictly convex body,

we had that each point of the set {±x1, …, ±xn} lies in the interior of a facet of L, with no other point

fi (xj) = −1, if and only if xj = −xi holds for all 1 ≤ i, j ≤ n, i ≠ j.

(StrictC)

fi (xj) = −1, if and only if fj = −fi holds for all 1 ≤ i, j ≤ n, i ≠ j.

(Smooth)

fi (xi) = 1 and fi (xj) ∈ (−1, 0] holds for all 1 ≤ i, j ≤ n, i ≠ j.

(OpenLin)

fi (xi) = 1 and fi (xj) ∈ [−1, 0] holds for all 1 ≤ i, j ≤ n, i ≠ j. (Lin)

0
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lying on the same facet. Thus, there is an o-symmetric, smooth and strictly convex body K ⊂ L which

contains each xi. Clearly, we have Hsep(K) ≥ n.

Note 1 Let K be an o-symmetric, strictly convex body in Ed, and consider a separable Hadwiger

configuration of K with n members. Then, by Lemma 231, we have a set of n vector-linear functional pairs
satisfying (Lin) and (StrictC).

If for each 1 ≤ i ≤ n, we have that −xi is not in the set of vectors, then (OpenLin) is automatically

satisfied. We remark that in this case, we may replace K with a strictly convex and smooth body.

If for some k ≠ ℓ we have xℓ = −xk, then by (Lin), fj (xk) = 0 for all j ∈ [n]\{k, ℓ }. Thus, if we remove (xk,

fk) and (xℓ, fℓ) from the set of vector-linear functional pairs, then we obtain n − 2 pairs that still satisfy

(Lin) and (StrictC), and the linear functionals lie in a (d − 1)-dimensional linear hyperplane. Thus, we

may consider the problem of bounding their maximum number, n − 2 in Ed − 1.

The same dimension reduction argument can be repeated when K is smooth. Thus, in order to bound

Hsep(K) for smooth or strictly convex bodies, it is sufficient to consider smooth and strictly convex bodies,

and bound n for which there are n vectors with linear functionals satisfying (OpenLin).
We will rely on the following basic fact from convexity due to Steinitz [227] in its original form, and

then refined later with the characterization of the case of equality, see [205].

Lemma 232 Let x1, …, xn be points in Ed with o ∈ intconv{x1, …, xn}. Then there is a subset A ⊆ {x1,

…, xn} of cardinality at most 2d with o ∈ intconvA.

Furthermore, if the minimal cardinality of such an A is 2d, then A consists of the endpoints of d line

segments which span Ed, and whose relative interiors intersect in o.

Proposition 233 Let (x1, f1), …, (xn, fn) be vector-linear functional pairs in Ed satisfying (Lin). Assume

further that o ∈ intconv{x1, …, xn}. Then n ≤ 2d.

Moreover, if n = 2d, then the points x1, …, xn are vertices of a cross-polytope with center o.

Proof. By (Lin), for any proper subset A ⊊ {x1, …, xn}, we have that the origin is not in the interior of

convA. Thus, by Lemma 232, n ≤ 2d.
Next, assume that n = 2d. Observe that it follows from (Lin) that if xi = λxj for some 1 ≤ i, j ≤ n, i ≠ j and

λ ∈ ℝ, then λ = −1. Thus, combining the argument in the previous paragraph with the second part of

Lemma 232 yields the second part of Proposition 233.

Proposition 234 Let (x1, f1), …, (xn, fn) be vector-linear functional pairs in Ed satisfying (OpenLin).

Assume that o ∉ conv{x1, …, xn}. Then for any 1 ≤ k < ℓ ≤ n, the triangle conv{o, xk, xℓ} is a face of the

convex polytope P ≔ conv{x1, …, xn, o}.

Proof. By (OpenLin), we have that fi(xj) > −1 for all 1 ≤ i, j ≤ n, i ≠ j. Suppose for a contradiction that

conv{xj : j ∈ {1, 2, …, n}\{k, ℓ}} contains a point of the form x = λxk + µxℓ with λ, µ ≥ 0, 0 < λ + µ ≤ 1. By

(OpenLin), we have fk(x),fℓ (x) ≤ 0. Thus,

0 ≥ fk (x) + fℓ (x) = λ (1 + fℓ (xk)) + μ (1 + fk (xℓ)) > 0,

a contradiction.

9.10.2    Proofs of Theorems 101 and 102

To prove part (i) of Theorem 102, we will use induction on d, the base case, d = 1 being trivial. By the
dimension-reduction argument in Note 1, we may assume that there are n vector-linear functional pairs

(x1, f1), …, (xn, fn) satisfying (OpenLin).

If o ∉ conv{x1, …, xn}, and o ∉ conv{f1, …, fn}, then, clearly, n ≤ hsep(d).
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Thus, we may assume that o ∈ conv{x1, …, xn}. We may also assume that F = conv{x1, …, xk} is the

face of the polytope conv{x1, …, xn} that supports o, that is the face which contains o in its relative

interior. Let H ≔ span F. If H is the entire space Ed, then o ∈ intconv{x1, …, xn} and hence, n ≤ 2d

follows from Proposition 233.

On the other hand, if H is a proper linear subspace of Ed, then clearly, for any i > k, we have that fi is

identically zero on H.

Applying Proposition 233 on H for {xi : i ≤ k} with {fi|H : i ≤ k}, we have

k ≤ 2 dim H. (9.36)

Denote by H⊥ the orthogonal complement of H, and by P the orthogonal projection of Ed onto H⊥. It is

not hard to see that P is one-to-one on the set {xi : i > k}. Moreover, the set of points {Pxi : i > k}, with

linear functionals {fi|H⊥ : i > k} restricted to H⊥, satisfy (OpenLin) in H⊥.

Combining (9.36) with the induction hypothesis applied on H⊥, we complete the proof of part (i) of
Theorem 102.

For the three-dimensional bound in part (ii) of Theorem 102, suppose that o ∉ conv{x1, …, x4} ∈ E3.

By Radon’s lemma, the set {o, x1, …, x4} admits a partition into two parts whose convex hulls intersect

contradicting Proposition 234. The same proof yields the two- and the four-dimensional statements, while
the one-dimensional claim is trivial.

We use a projection argument to prove part (iii) of Theorem 102. Assume that x1, …, xn is a set of

Euclidean unit vectors with 〈 xi, xj〉 ∈ (−1, 0] for all 1 ≤ i, j ≤ n, i ≠ j. Furthermore, let y be a unit vector

with 〈y, xi 〉 > 0 for all 1 ≤ i ≤ n. Consider the set of vectors x′
i ≔ xi − 〈 y, xi 〉 y, i = 1, …, n, all lying in

the hyperplane y⊥. Now, for 1 ≤ i, j ≤ n, i ≠ j, we have

⟨x′
i, x′

j⟩ = ⟨xi, xj⟩ − ⟨y, xi⟩ ⟨y, xj⟩ < 0.

Thus, x′
i, i = 1, …, n form a set of n vectors in a (d − 1)-dimensional space with pairwise obtuse angles. It

is known [85, 157, 204], or may be proved using the same projection argument and induction on the

dimension (projecting orthogonally to (x′
n)⊥

) that n ≤ d follows. This completes the proof of Theorem

102.

Example 2 By Lemma 231, it is sufficient to exhibit 6 vectors (with their convex hull not containing o in

E
5) and corresponding linear functionals satisfying (OpenLin). Let the unit vectors v4, v5, v6 be the

vertices of an equilateral triangle centered at o in the linear plane span{e4, e5} of E5. Let xi = ei, for i = 1,

2, 3, and let xi = (e1 + e2 + e3)/3 + vi, for i = 4, 5, 6. Observe that o ∉ conv{x1, …, x6}, as 〈 e1 + e2 + e3,

xi 〉 > 0 for i = 1, …, 6.

We define the following linear functionals.

f1 (x) = ⟨e1 − e2+e3

2 , x⟩, f2 (x) = ⟨e2 − e1+e3

2 , x⟩, f3 (x) = ⟨e3 − e1+e2

2 , x⟩, and fi(x) = 〈vi, x〉, for

i = 4, 5, 6. Clearly, (OpenLin) holds.

Now, we are set for the proof of Theorem 101. First, we prove part (i). If the origin is in the interior of
the convex hull of the translation vectors, then Proposition 233 yields n ≤ 2d and the characterization of

equality. In the case when o ∉ intconv{xi}, Theorem 102 combined with Note 1 yields n < 2d.

The proof of part (ii) follows closely a classical proof of Danzer and Grünbaum [84] on the maximum

size of an antipodal set in Ed.

By Lemma 231 and Note 1, we may assume that K is an o-symmetric smooth strictly convex body in

E
d. Assume that 2x1 + K, 2x2 + K, …, 2xn + K is a separable Hadwiger configuration of K, where x1, …,

xn ∈ bdK. Let fi denote the linear functional corresponding to the hyperplane that separates K from 2xi +

K.
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For each 1 ≤ i ≤ n, let Ki be the set that we obtain by applying a homothety of ratio 1/2 with center xi on

the set K ⋂ {x ∈ Ed : fi(x) ≥ 0}, that is,

Ki := 1
2 (K ∩ {x ∈ E

d : fi (x) ≥ 0}) + xi

2 .

These sets are pairwise non-overlapping. In fact, it is easy to see that the following even stronger
statement holds:

(μxi + int ( 1
2 K)) ∩ ( ∪

j≠i
Kj) =

for any µ ≥ 0 and 1 ≤ i ≤ n. On the other hand, vold(Ki) = 2−(d + 1) vold(K) by the central symmetry of K,

where vold(·) stands for the d-dimensional volume of the given set. We remark that – unlike in the proof of

the main result of [84] by Danzer and Grünbaum – the sets Ki are not translates of each other. Since each

Ki is contained in K\int ( 1
2 K), we immediately obtain the bound n ≤ 2d + 1 − 2.

To decrease the bound further, replace K1 by

K̂1 := K ∩ {x ∈ E
d : f1 (x) ≥ 1/2}.

Now, K̂1, K2, …, Kn are still pairwise non-overlapping, and are contained in K\int ( 1
2  K). The

smoothness of K yields K̂1 ⊋ K1, and hence, vold( K̂1) > 2−(d + 1) vold(K). This completes the proof of

part (ii) of Theorem 101.

9.10.3    Proof of Theorem 103

We recall Definition 31 in the following form.

Definition 51 Let P ≔ {xi + K : i ∈ I} be a finite or infinite packing of translates of K, and ρ > 0. We say

that P is ρ-separable if for each i ∈ I we have that the family {xj + K : j ∈ I, xj + K ⊂ xi + ρK} is a totally

separable packing of translates of K. Let δsep (ρ, K) denote the largest density of a ρ-separable packing of

translates of K, that is,

δsep (ρ, K) := sup
P

lim sup
λ→∞

∑
i:xi+K⊂[−λ,λ]d

vold(xi+K)

(2λ)d
,

where the supremum is taken over all ρ-separable packings P of translates of K.

We quote Lemma 1 of [45].

Lemma 235 Let {xi + K : 1 ≤ i ≤ n} be a ρ-separable packing of translates of an o-symmetric convex body

K in Ed with ρ ≥ 1, n ≥ 1 and d ≥ 2. Then

nvold(K)

vold( ∪
1≤i≤n

(xi+2ρK))
≤ δsep (ρ, K).

Proof. We use the method of the proof of the Lemma in [33] with proper modifications. The details are as
follows. Assume that the claim is not true. Then there is an ε > 0 such that

vold (∪n
i=1 (ci + 2ρC)) =

nvold(C)
δsep(ρ,C) − ε (9.37)

0
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Let Cn = {ci | i = 1, …, n} and let Λ be a packing lattice of Cn + 2ρC = ∪n
i=1(ci + 2ρC) such that Cn + 2ρC

is contained in a fundamental parallelotope of Λ say, in P, which is symmetric about the origin. Recall that

for each λ > 0, Wd
λ denotes the d-dimensional cube of edge length 2λ centered at the origin o in Ed having

edges parallel to the coordinate axes of Ed. Clearly, there is a constant μ > 0 depending on P only, such
that for each λ > 0 there is a subset Lλ of Λ with

Wd
λ ⊆ Lλ + P andLλ + 2P ⊆ Wd

λ+μ
. (9.38)

The definition of δsep(ρ, C) implies that for each λ > 0 there exists a ρ-separable packing of m(λ) translates

of C in Ed with centers at the points of C(λ) such that

C (λ) + C ⊂ Wd
λ

and

lim
λ→+∞

m(λ)vold(C)

vold(Wd
λ)

= δsep (ρ, C).

As lim𝛌→+∞

vold(Wd
λ+μ

)
vold(Wd

λ
)

 = 1 therefore there exist ξ > 0 and a ρ-separable packing of m(ξ) translates of C

in Ed with centers at the points of C(ξ) and with C(ξ) + C ⊂ Wd
ξ
 such that

vold(P)δsep(ρ,C)
vold(P)+ε

<
m(ξ)vold(C)

vold(Wd
ξ+μ

)
and

nvold(C)
vold(P)+ε

<
nvold(C)card(Lξ)

vold(Wd
ξ+μ

)
, (9.39)

where card(⋅) refers to the cardinality of the given set. Now, for each x ∈ P we define a ρ-separable

packing of m (x) translates of C in Ed with centers at the points of

C (x) := {x+Lξ + Cn} ∪ {y ∈ C (ξ)|y ∉ x+Lξ + Cn + int (2ρC)}.

Clearly, (9.38) implies that C (x) + C ⊂ Wd
ξ+μ. Now, in order to evaluate ∫

x∈P

m (x)dx, we introduce

the function χy for each y ∈ C(ξ) defined as follows: χy(x) = 1 if y ∉ x + Lξ + Cn + int(2 ρC) and χy(x) = 0

for any other x ∈ P. Based on the origin symmetric P, it is easy to see that for any y ∈ C(ξ) one has

∫
x∈P

χy (x)dx = vold(P) − vold(Cn + 2ρ C). Thus, it follows in a straightforward way that

Hence, there is a point p ∈ P with

m (p) ≥ m (ξ)(1 −
vold(Cn+2ρC)

vold(P) ) + ncard (Lξ)

and so

m(p)vold(C)

vold(Wd
ξ+μ)

≥ m(ξ)vold(C)

vold(Wd
ξ+μ)

(1 − vold(Cn+2ρC)
vold(P) ) +

nvold(C)card(Lξ)

vold(Wd
ξ+μ)

. (9.40)

¯

¯

¯̄

∫
x∈P

m (x)dx = ∫
x∈P

ncard (Lξ) + ∑
y∈C(ξ)

χy (x) dx

= nvold (P)card (Lξ) + m (ξ) (vold (P) − vold (Cn + 2ρC)).

¯
⎛

⎝

⎞

⎠

¯

¯
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Now, (9.37) implies in a straightforward way that

vold(P)δsep(ρ,C)
vold(P)+ε

(1 −
vold(Cn+2ρC)

vold(P) ) +
nvold(C)

vold(P)+ε
= δsep (ρ, C). (9.41)

Thus, (9.39), (9.40), and (9.41) yield that

m(p)vold(C)

vold(Wd
ξ+μ)

> δsep (ρ, C).

As C (p) + C ⊂ Wd
ξ+μ

 this contradicts the definition of δsep(ρ, C), finishing the proof of Lemma 235.

Lemma 236 Let K be a smooth o-symmetric convex body in Ed with d ∈ {1, 2, 3, 4}. Then there is a λ > 0

such that for any separable Hadwiger configuration {K} ⋃ {xi + K : i = 1, …, 2d} of K,

λK ⊆
2d
∪
i=1

(xi + λK).
(9.42)

holds. In particular, (9.42) holds with λ = 2 when d = 2.

Definition 52 We denote the smallest λ satisfying (9.42) by λsep (K), and note that λsep (K) ≥ 2, since

otherwise ∪2d
i=1(xi + λK) does not contain o.

Proof. Clearly, λ satisfies (9.42) if and only if for each boundary point b ∈ bd(K) we have that at least one

of the 2d points b − 2
λ

 xi is in K.

First, we fix a separable Hadwiger configuration of K with 2d members and show that for some λ > 0,

(9.42) holds. By Theorem 101, we have that {xi : i = 1, …, 2d} is an Auerbach basis of K, and, in

particular, the origin is in the interior of conv{xi : i = 1, …, 2d}. It follows from the smoothness of K that

for each boundary point b ∈ bd(K) we have that at least one of the 2d rays {b − txi : t > 0} intersects the

interior of K. The existence of λ now follows from the compactness of K.

Next, since the set of Auerbach bases of K is compact (consider them as points in Kd), it follows in a
straightforward way that there is a λ > 0, for which (9.42) holds for all separable Hadwiger configurations

of K with 2d members.
To prove the part concerning d = 2, we make use of the characterization of the equality case in part (i)

of Theorem 101. An Auerbach basis of a planar o-symmetric convex body K means that K is contained in

an o-symmetric parallelogram, the midpoints of whose edges are ±x1, ±x2, and ±x1, ±x2 ∈ K. We leave it

as an exercise to the reader that in this case, for each boundary point b ∈ bd(K) we have that at least one

of the 4 points b ± x1

2 , b ± x2

2  is in K

Finally, we are ready to state our main result, from which Theorem 103 immediately follows.

Theorem 237 Let K be a smooth o-symmetric convex body in Ed with d ∈ {1, 2, 3, 4}. Then

for all n > 1.
In particular, in the plane, we have

¯

¯

csep (K,n, d) ≤

dn − n(d−1)/d

2[λsep(K)]d−1[δsep(
λsep(K)

2 ,K)]
(d−1)/d [

iq(Bd)
iq(K) ]

1/d

≤ dn −
n(d−1)/d(vold(Bd))

1/d

4[λsep(K)]d−1
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csep (K,n, 2) ≤ 2n −
√π
8 √n

for all n > 1.

Proof. Let P = C + K be a totally separable packing of translates of K, where C denotes the set of centers

C = {x1, …, xn}. Assume that m of the n translates is touched by the maximum number, that is, by

Theorem 101, Hsep(K) = 2d others. By Lemma 236, we have

(9.43)

By the isoperimetric inequality, we have

iq (Bd) ≤ iq (C + λsep (K)K) =
(svold−1(bd(C+λsep(K)K)))d

(vold(C+λsep(K)K))d−1 . (9.44)

Combining (9.43) and (9.44) yields

n − m ≥
(iq(Bd))

1/d
[vold(C+λsep(K)K)](d−1)/d

(λsep(K))d−1svold−1(bdK)
.

The latter, by Lemma 235 is at least

(iq(Bd))
1/d[ nvold(K)

δsep(λsep(K)/2,K) ]
(d−1)/d

(λsep(K))d−1svold−1(bdK)
.

After rearrangement, we obtain the desired bound on n completing the proof of the first inequality in
Theorem 237.

To prove the second inequality, we adopt the proof of [33, Corollary 1]. First, note that δsep

( λsep(K)
2 , K) ≤ 1, and (iq(Bd))1/d = dvold(Bd). Next, according to Ball’s reverse isoperimetric inequality

(see Theorem 3 or [16]), for any convex body K, there is a non-degenerate affine map T : Ed → Ed with

iq(TK) ≤ (2d)d. Finally, notice that csep(K, n, d) = csep(TK, n, d), and the inequality follows in a

straightforward way.

The planar bound follows by substituting the value λsep (K) = 2 from Lemma 236.

9.10.4    Remarks

Lemma 236 does not hold for strictly convex but not smooth convex bodies. Indeed, in E3, consider the o-

symmetric polytope P ≔ conv{±e1, ±e2, ±e3, ±0.9(e1 + e2 + e3)} where the eis are the standard basis

vectors. The six translation vectors ±2e1, ±2e2, ±2e3 generate a separable Hadwiger configuration of P.

For the vertex b ≔ 0.9(e1 + e2 + e3), we have that each of the 3 lines {b + tei : t ∈ ℝ} intersect P in b only.

Thus, there is a strictly convex o-symmetric body K with the following properties. P ⊂ K, and ±ei is a

boundary point of K for each i = 1, 2, 3, and at ±ei, the plane orthogonal to ei is a support plane of K, and

b is a boundary point of K, and the 3 lines {b + tei : t ∈ ℝ } intersect K in b only. For this strictly convex

K, we have λsep(K) = ∞.

Thus, it is natural to ask if in Theorem 103 smoothness can be replaced by strict convexity. We note that
in our proof, Lemma 236 is the only place which does not carry over to this case.

The same construction of the polytope P shows that λsep (K) may be arbitrarily large for a three-

dimensional smooth convex body K. Indeed, if we take K ≔ P + εBd with a small ε > 0, we obtain a

smooth body for which, by the previous argument, λsep (K) is large.

svold−1 (bd (C + λsep (K)K)) ≤

(n − m)(λsep (K))d−1svold−1 (bd (K)).
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Thus, it would be very interesting to see a lower bound on f(K) of Theorem 103 which depends on d
only.

9.11    Proof of Theorem 108

In the proof we use the following concepts and lemma.
Let S denote the sequence whose jth element sj is the number of bits one needs to count from the right

to reach the first non-zero value in the binary form of j; in other words, sj is the smallest integer k such that

2k is not a divisor of k. The first few elements of this sequence are

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6 …

First, we prove a property of this sequence that we need in the construction of a topological disk with
large Hadwiger number.

Lemma 238 For any positive integer m, the sum of any m consecutive elements of S is minimal for the
first m elements of S. In other words, for any non-negative integer r, we have

m

∑
i=1

si ≤
r+m

∑
i=r+1

si.

Proof. We prove by induction on m. If m = 1, then the assertion clearly holds, since s1 = 1 ≤ sr for all

values of r. Assume that m > 1, and the statement holds for any positive integer smaller than m. If m is
odd, then sm = 1, and thus, by the induction hypothesis,

m

∑
i=1

si = 1 +
m−1

∑
i=1

si ≤ 1 +
r+m−1

∑
i=r+1

si ≤ sr+m +
r+m−1

∑
i=r+1

si =
r+m

∑
i=r+1

si.

Consider the case that m is even. Observe that si = 1 if and only if i is odd, and if we remove all elements

with an odd index, and decrease the value of every element with an even index, the obtained sequence
coincides with S. Thus, if m is even, then

where r′ = ⌊ r
2 ⌋.

To prove Theorem 108, for every positive integer m we construct a topological disk Km, and m

translates of Km which are pairwise non-overlapping, and each touches Km. To do it, first we introduce a

2-parameter family of topological disks.

Consider some arbitrary integers k ≥ 2 and m ≥ 1. To construct a topological disk Kk
m corresponding to

these numbers, we use 2m rectangles of size k × 1, called bars, and 2m −1 rectangles with unit base, called

connectors. We denote the bars by B1, B2, …, B2m, and the connectors by C1, C2, …, C2m−1. Here, the

height of the ith connector is si.

From these pieces, we build up Kk
m such that, starting with B1, in each step we attach the bottom side

of Ci to the top side of the rightmost square of Bi, and the left side of Bi + 1 to the right side of the

uppermost square of Ci. More formally, we set

m

∑
i=1

si = m
2 +

m/2

∑
i=1

(si + 1) = m +
m/2

∑
i=1

si ≤ m +
r′+m/2

∑
i=r′+1

si =
m

2
+

r′+m/2

∑
i=r′+1

(si + 1)

=
r+m

∑
i=r+1

si,
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Bi = [(i − 1)k, ik] × [yi, yi + 1] and Ci = [ik − 1, ik] × [yi + 1, yi+1 + 1],

where yi = 

i−1

∑
j=1

sj. Note that in this case the bottom, left corner of B1 is the origin.

Note that these disks can be constructed recursively as well by connecting two translates of Kk
m−1 by

C2m−1.

First, we prove the next lemma.

Lemma 239 Let F and F′ be two translates of Kk
m, where m, k ≥ 2, such that the first bar B′

1 of F′ is

obtained by translating some bar Br of F with the vector (x*, y*), where y* ≤ − 1, and 1 ≤ x* ≤ k − 1. Then

F and F′ do not overlap.

Proof. Assume that F = Kk
m, and consider the vertical strip determined by the bar Br − 1 + i for some 1 ≤ i

≤ 2m − r + 1. This strip may intersect only at most B′
i−1, B′

i and C′
i−1. The maximum y-coordinate of

the points of B′
i−1 ∪ B′

i ∪ C′
i−1, measured from the bottom, left corner of F′, is yi + 1. Since the y-

coordinate of this corner of F′ is yr + y* ≤ yr − 1, the set B′
i−1 ∪ B′

i ∪ C′
i−1 lies below the line y = yr +

yi.

On the other hand, the y-coordinate of the points of the bottom edge of Br − 1 + i is yr − 1 + i, from which

yr−1+i − (yr + yi) = (yr−1+i − yr − yi) =
r+i−2

∑
j=r

sj −
i−1

∑
j=1

sj ≥ 0

follows.
Now we return to the proof of Theorem 108. Let k ≥ m > 1 be arbitrary. Consider the topological disk

X1 = Kk
m. We define the translates X2, X3, …, Xm in the following way: The translate Xi is obtained from

Xi − 1 in such a way that by translating the second instance of Kk
m+1−i from the left in Xi − 1 by one to the

right and by one downward we obtain the first instance of Kk
m+1−i from the left in Xi.

Let 1 ≤ i ≤ j ≤ m arbitrary. Then the first instance of Km + 1 − i from the left in Xj is obtained by

translating some instance of this set in Xi to the right and downward by j − i. Since 1 ≤ j − i ≤ m ≤ k,

Lemma 239 implies that Xi and Xj do not overlap.

Define X as the translate of Xi downward by m + 1. To prove the theorem, it is sufficient to show that

X1, X2, …, Xm touch X (cf. Figure 9.6).

Let i be fixed. Let K be the last instance of Kk
m+1−i from the left in X, and let K′ be the first instance of

Km + 1 − i from the left in Xi. Then K′ is obtained from K by translating it first upward by m + 1, then both

to the right and downward by i − 1. Thus, K′ is the translate of K by the vector (i − 1, m + 2 − i). Since the

height of the middle connector of K is m + 2 − i, this yields that K and K′ touch. On the other hand, as K

is the last, and K′ is the first instance of Kk
m+1−i in X and Xi, respectively, X and Xi do not overlap.
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FIGURE 9.6

The translates of K4
3.

9.12    Proof of Theorem 110

Let S be an o-symmetric starlike disk. Let F  = {Si : i = 1, 2, …, n} be a family of translates of S such that

n = H(S) and, for i = 1, 2, …, n, Si = ci + S touches S and does not overlap with any other element of F .

Let K = convS, X = {ci : i = 1, 2, …, n}, C = convX and C = conv(X ⋃(−X)). Furthermore, let Ri denote

the closed ray Ri = {λci : λ ∈ ℝ and λ ≥ 0}.

First, we prove a few lemmas.

Lemma 240 The disk S is starlike relative to the origin o. Furthermore, o ∈ intS.

Proof. Let S be starlike relative to p ∈ S, and assume that p ≠ o. By symmetry, S is starlike relative to −p.

Consider a point q ∈ S. Since S is starlike relative to p and −p, the segments [p, q] and [−p, q] are

contained in S. Thus, any segment [p, r], where r ∈ [−p, q], is contained in S. In other words, we have

conv{p, −p, q} ⊂ S, which yields that [o, q] ⊂ S. The second assertion follows from the first and the

symmetry of S.

Before the next lemma, recall that the relative norm of a convex body K is the norm induced by the

central symmetrization of K. In the following, we denote the distance of two points x, y measured in the

relative norm of K by distK(x, y). An alternative definition of this concept is

distK (x, y) =
2||y−x||
||p−q|| ,

where [p, q] is a longest chord of K parallel to [x, y], and ǁ⋅ǁ denotes Euclidean norm.

Lemma 241 If x + S and y + S are non-overlapping translates of S, then we have distK(x, y) ≥ 1.

Proof. Without loss of generality, we may assume that x = o. Suppose that y ∈ intK. Note that there are

points p, q ∈ S such that y ∈ intconv{o, p, q}. By the symmetry of S, [y − p, y] and [y − q, y] are

contained in y + S. Since y ∈ intconv{o, p, q}, the segments [y − p, y] and [o, q] cross, which yields that

S and y + S overlap; a contradiction. Hence, y ∉ intK. Since intK is the set of points in the plane whose

distance from o, in the norm with unit ball K, is less than one, we have distK(o, y) ≥ 1.

Remark 242 The Hadwiger number H(S) of S is at most twenty-four.

¯
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Proof. Note that, for every value of i, K and ci + K either overlap or touch. Since K is o-symmetric, it

follows that ci ∈ 2K, and ci + 1
2 K is contained in 5

2 K. By Lemma 241, {ci + 1
2 K : i = 1, 2, …, n}⋃ { 1

2

K} is a family of pairwise non-overlapping translates of 1
2 K. Thus, n ≤ 24 follows from an area estimate.

Lemma 243 If j ≠ i, then Ri ⋂ intSj = . Furthermore, Ri ⋂ Sj ⊂(o, ci).

Proof. Since S and Si touch, there is a (possibly degenerate) parallelogram P such that bdP ⊂ (S ⋃ Si) and

[o, ci] ⊂ P (cf. Figure 9.7). Note that if int(x + S) intersects neither S nor Si, then x ∉ P and int(x + S) ⋂
(o, ci) = .

If Sj ⋂ Ri = , we have nothing to prove. Let Sj ⋂ Ri ≠  and consider a point cj + p ∈ Sj ⋂ Ri. Since

o ∈ intS, cj + p ≠ o and cj + p ≠ ci. By the previous paragraph, if cj + p ∈ (o, ci), then cj + p ∉ intSj. Thus,

we are left with the case that cj + p ∈ Ri\[o, ci]. By symmetry, ci−p ∈ Si. Note that (ci, ci − p) ⋂(o, cj) ≠ 

, which yields that intSi intersects (o, cj); a contradiction.

Lemma 244 We have o ∈ intC, and X ⊂ bdC.

Proof. Assume that o ∉ intC. Note that there is a closed half plane H, containing o in its boundary, such

that C ⊂ H. Let p be a boundary point of S satisfying S ⊂ p + H. Then, for i = 1, 2, …, n, we have Si ⊂ p

+ H. Observe that, for any value of i, 2p + S touches S and does not overlap Si. Thus, F  ⋃ {2p + S} is a

family of pairwise non-overlapping translates of S in which every element touches S, which contradicts

our assumption that card F  = n = H(S).

FIGURE 9.7

Touching pairs of translates of S.

Assume that ci ∉ bdC for some i, and note that there are values j and k such that ci ∈ intconv{o, cj, ck}.

Since Sj and Sk touch S, 1
2  cj and 1

2 ck are contained in K. Observe that at least one of dj = ci − 1
2 cj and dk

= ci − 1
2 ck is in the exterior of the closed, convex angular domain D bounded by Rj ⋃ Rk (cf. Figure 9.8).

Since dj and dk are points of ci + K, we obtain (ci + K)\D ≠ . On the other hand, Lemma 243 yields that

Si ⊂ D, hence, ci + K = convSi ⊂ D; a contradiction.

0

0

0 0

0

0
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FIGURE 9.8
The angular domain bounded by Rj ⋃ Rk.

Remark 245 The Hadwiger number H(S) of S is at most sixteen.

Proof. Gołab proved that the circumference of every centrally symmetric convex disk measured in its
norm is at least six and at most eight (cf. Theorem 49 or [120]). Fáry and Makai proved that, in any norm,

the circumferences of any convex disk C and its central symmetral 1
2 (C − C) are equal (cf. Theorem 50 or

[101]). Thus, the circumference of C measured in the norm with unit ball 1
2 (C − C) is at most eight.

FIGURE 9.9
An illustration for the proof of Theorem 110.

Since C ⊂ 2K we have distC ≥ dist2K(p, q) = 1
2  distK(p, q) for any points p, q. By Lemma 241,

distK(ci, cj) ≥ 1 for every i ≠ j. Thus, X = {ci : i = 1, 2, …, n} is a set of n points in the boundary of C at

pairwise C-distances at least 1
2 . Hence, n ≤ 16.

Now we are ready to prove our theorem. By [86], there is a parallelogram P, circumscribed about C,

such that the midpoints of the edges of P belong to C. Since the Hadwiger number of any affine image of

S is equal to H(S), we may assume that P = {(α, β) ∈ E2 : |α| ≤ 1 and |β| ≤ 1}. Note that the points ex = (1,

0) and ey = (0, 1) are in the boundary of C.

First, we show that there are two points rx and sx in S, with x-coordinates ρx and σx, respectively, such

that ex ∈ conv{o, 2rx, 2sx} and ρx + σx ≥ 1.

Assume that ex = ci for some value of i. Since S and Si touch, there is a (possibly degenerate)

parallelogram Pi = conv{o, rx, sx, ci} such that ci = rx +sx, ([o, rx] ⋃ [o, sx]) ⋃ S and ([ci, rx] ⋃ [ci, sx]) ⊂

¯
¯

¯
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Si (cf. Figure 9.7). Observe that ci ∈ conv{o, 2rx, 2sx} and ρx + σx = 1. If ex = −ci, we may choose rx and

sx similarly.

Assume that ex ∈ (ci, cj) for some values of i and j. Consider a parallelogram Pi = conv {o, ri, si, ci}

such that ci = ri + si, ([o, ri] ⋃ [o, si]) ⊂ S and ([ci, ri] ⋃ [ci, si]) { Si. Let L denote the line with equation x

= 1
2 . We may assume that L separates si from o. We define rj and sj similarly. If the x-axis separates the

points si and sj, we may choose si and sj as rx and sx. If both si and sj are contained in the open half plane,

bounded by the x-axis and containing ci or cj, say, ci, we may choose rj and sj as rx and sx (cf. Figure 9.9).

If ex is in (−ci, cj) or (−ci, −cj), we may apply a similar argument.

Analogously, we may choose points ry and sy in S, with y-coordinates ρy and σy, respectively, such that

ey ∈ conv{o, 2ry, 2sy} and ρy + σy ≥ 1. We may assume that ρx ≤ σx and that ρy ≤ σy.

Let Q1, Q2, Q3 and Q4 denote the four closed quadrants of the coordinate system in counterclockwise

cyclic order. We may assume that X ⋂ Q1 ≠ , and that Q1 contains the points with non-negative x- and

y-coordinates. We relabel the indices of the elements of F  in a way that R1,R2, …, Rn are in

counterclockwise cyclic order, and the angle between R1 and the positive half of the x-axis, measured in

the counterclockwise direction, is the smallest amongst all rays in{Ri : i = 1, 2, …, n}.

FIGURE 9.10

The y-coordinate of ci is at least σj.

If card(Qi ⋂ X) ≤ 3 for each value of i, the assertion holds. Thus, we may assume that, say, j = card(Q1

⋂ X) > 3. By Lemma 243, [ci, ci − sy] does not cross the rays R1 and Rj for i = 2, 3, …, j − 1. Thus, the y-

coordinate of ci is at least σy (cf. Figure 9.10, note that ci is not contained in the dotted region). Similarly,

the x-coordinate of ci is at least σx for i = 2, …, j − 1. Thus, σx ≤ 1 and σy ≤ 1, which yield that ρx ≥ 0 and

ρy ≥ 0. Since σx > 1 − ρx and σy ≥ 1 − ρy, each ci, with 2 ≤ i ≤ j − 1, is contained in the rectangle T = {(α, β)

∈ E2 : 1 − ρx ≤ α ≤ 1 and 1 − ρy ≤ β ≤ 1}.

Let B = {(α, β) ∈ E2 : |α| ≤ ρx and |β| ≤ ρy}. Note that if S and p + S are non-overlaping and x, y ∈ S

then the parallelogram conv {o, x, y, x + y} does not contain p in its interior. Thus, applying this

observation with {x, y} ⊂ {±rx, ± ρx
σx

sx, ±ry, ±
ρy
σy

sx}, we obtain that p ∉ intB (cf. Figure 9.11, the

dotted parallelogram show the region ‘forbidden’ for p).

Furthermore, if rx and sx do not lie on the x-axis and ry and sy do not lie on the y-axis, then the interiors

of these parallelograms cover B, apart from some points of S, and thus, we have p ∉ B. If p is on a vertical

side of B, then ry or sy lies on the y-axis (cf. Figure 9.12). Note that if ry lies on the y-axis, then ey ∈
conv{o, 2ry, 2sy} yields ρy ≥ 1

2 , or that also sy lies on the y-axis. Thus, it follows in this case that 1
2  ey ∈

S. Similarly, if p is on a horizontal side of B, then 1
2 ex ∈ S. We use this observation several times in the

next three paragraphs.

0
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Note that T = (1 − ρx
2 , 1 −

ρy
2 ) + 1

2 B. Since for any 2 ≤ i < k ≤ j − 1, ci + 1
2 B and ck + 1

2 B do not

overlap, it follows that ci and ck lie on opposite sides of T. By Lemma 4, we immediately obtain that j ≤ 5.

Assume that j = 5. Then, we have card(X ⋂ T) = 3, which implies that two points of X ⋂ T are

consecutive vertices of T. Without loss of generality, we may assume that c4 = (1 − ρx, 1), c3 = (1, 1) and

c2 = (τ, 1 − ρy) for some τ ∈ [1 − ρy, 1]. Since c3 − c4 lies on a vertical side of B, we obtain that 1
2 ey ∈ S.

From the position of c3 − c2, we obtain similarly that 1
2 ex ∈ S. Thus, if c1 is not on the x-axis or c5 is not

on the y-axis, then R1 ⋂ intS2 ≠  or R5 ⋂ intS4 ≠ , respectively; a contradiction. Hence, from 1
2  ex, 1

2

ey ∈ S, it follows that c1 = ex and c5 = ey. By Lemma 244, we have that c2 = (1, 1 − ρy), which yields that,

for example, S1 and S2 overlap; a contradiction.

FIGURE 9.11

The regions ‘forbidden’ for p.

FIGURE 9.12

p is on a vertical side of B.

0 0
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FIGURE 9.13
The case j = 5.

We are left with the case j = 4. We may assume that c2 and c3 lie, say, on the vertical sides of T. Then

we immediately have 1
2 ey ∈ S. If c4 is not on the y-axis, then R4 ⋂ intS3 ≠ , and thus, it follows that c4

= ey. We show, by contradiction, that card((Q1 ⋃ Q2) ⋂ X) ≤ 6.

Assume that card((Q1 ⋃ Q2) ⋂ X) > 6. Note that in this case card(Q2 ⋂ X) = 4, and both c5 and c6 are

either on the horizontal sides, or on the vertical sides of T′ = (−2 + ρx, 0) + T. If they are on the horizontal

sides, then 1
2 ex ∈ S, c5 = (−1, 1), c7 = −ex, and, by Lemma 244, c6 = (−1, 1 − ρy). Thus, S6 overlaps both

S5 and S7; a contradiction, and we may assume that c5 and c6 are on the vertical sides of T′.
Since the y-coordinate of c2 is at least 1

2 , and since (c3, c3 − 1
2  ey) does not intersect the ray R2, we

obtain that the y-coordinate of c3 is at least 3
4 . Similarly, the y-coordinate of c5 is at least 3

4 . Note that c3

− sx and c5 + sx are on the positive half of the y-axis. Then it follows from Lemma 243 that c3 − sx and c5

+ sx lie on the open segment (o, c4) (cf. Figure 9.13). If c3 − sx ∉ ( 1
2 c4, c4) or c5 + sx ∉ ( 1

2 c4, c4), then

we have c5 + sx ∉ (o, c4) or c3 − sx ∉ (o, c4), respectively. Thus, both c5 + sx and c3 − sx belong to ( 1
2 c4,

c4), and a neighborhood of 1
2  c4 intersects S4 in a segment, which yields that S4 is not a disk; a

contradiction.

Assume that card(Q4 ⋂ X) > 3. Then card((Q1 ⋃ Q4) ⋂ X) > 6 yields that card((Q3 ⋃ Q4) ⋂ X) ≤ 6,

and the assertion follows. Thus, we may assume that card (Q4 ⋂ X) ≤ 3.

Finally, assume that card(Q3 ⋂ X) > 3. Then we have card((Q3 ⋃ Q4) ⋂ X) ≤ 6 or card((Q2 ⋃ Q3) ⋂ X)

≤ 6. In the first case, we clearly have card X ≤ 12. In the second case, by the argument used for Q1 ⋂ X, we

obtain that −ex ∈ X and card(Q2 ⋂ X) ≤ 3, from which it follows that card((Q1 ⋃ Q2 ⋃ Q3) ⋂ X) ≤ 9.

Since card(Q4 ⋂ X) ≤ 3, the assertion holds.

9.13    Proof of Theorem 111

The proof of Theorem 111 is a variant of the proof of Theorem 110. Again, let S ⊂ E2 be a disk that is

starlike relative to the origin, and let F  = {Si : i = 1, 2, …, n} be a family of pairwise non-overlapping

translates of S, with n = H(S), such that each Si = xi + S touches S. Let K = convS, Ki = convSi for i = 1,

2, …, n, X = {xi : i = 1, 2, …, n}, and C = convX. Furthermore, let Ri = {λxi: λ ∈ ℝ and λ ≥ 0}.

First, we prove a few lemmas that we use in the proof.

Lemma 246 We have o ∈ intC, and X ⊂ bdC.

0



192

Proof. Note that if o ∈ bdconv (X ⋃ {o}), then there is a supporting line L of F = conv (S ⋃ ( ∪n
i=1 Si))

that passes through a point of S. Thus, there is a translate of S, on the other side of L, that touches S and

does not overlap F. Since n = H(S), we have a contradiction, which proves the first statement.

For contradiction, suppose that xi ∈ intC for some value of i. Note that if i ≠ j, then xi ∉ [o, xj]. Thus,

there are indices j ≠ k such that xi ∈ intconv{o, xj, xk}. Since H(S′) = H(S) for any affine image S′ of S, we

may assume that xj = ex and xk = ey.

Consider points p ∈ Sj⋂S and q ∈ Sk⋂S, and note that [o, p], [o, q], [o, p − xj], [o, q − xk] ⊂ S. Our

aim is to show that for any such starlike disk S, Si overlaps S, Sj or Sk. In our examination, to help the

reader follow the arguments, the segments in the figures belonging to S, Sj or Sk are drawn with

continuous lines, and all the other lines are dotted or dashed.

Observe that xi is not contained in the open parallelograms Pj = intconv{o, xj, p, xj − p}, as otherwise

the segment [xi, xi + p] crosses [xj, p], and thus, Si and Sj overlap (note that this argument is valid also in

the case that p ∈ [o, xj]). Similarly, xi is not contained in Pk = intconv{o, xk, q, xk − q}, since otherwise Si

and Sk overlap. We set T = [o, xj, xk] and Q = (intT)\( Pj ⋃ Pk). So far, we have that xi ∈ Q.

Let f : E2 → ℝ be defined by f((α, β)) = α + β. We show that 0 ≤ f(p) ≤ 1 and 0 < f(q) < 1.

For contradiction, suppose first that f(p) < 0 or f(q) < 0. Without loss of generality, we may assume that

f(p) < 0 and f(p) < f(q) (cf. Figure 9.14), which yields that Q ⊆ [o, xj − p) + ([o, q] ⋃ [q, xk]). If xi ∈ ([o,

xj − p) + [o, q)), then [xi, xi + xj − p] crosses [o, q], and thus, Si overlaps S; a contradiction. Similarly, if

xi ∈ ([o, xj − p) + (q, xk]), then [xi, xi + xj − p] crosses [q, xk], and Si overlaps Sk. Finally, if xi ∈ [q, q + xj

− p), then q lies in the relative interior of a segment in Si, from which it readily follows that Si is not a

disk; a contradiction.

Next, suppose that f(p) > 1 or f(q) > 1. Without loss of generality, we may assume that f(p) > 1 and that

0 ≤ f(q) ≤ f(p). Then Q ⊆ [o, p) + ([o, xk − q] ⋃ [xk − q, xk]). From here, the assertion follows by an

argument similar to the one in the previous paragraph.
In the following, we denote the line with equation x + y = 1 by L.

Case 1: both the y-coordinate of p and the x-coordinate of q are negative. Without loss of generality, we

may assume that f(q) ≥ f(p). Then, since f is linear, we have that f(xj + q − p) ≥ 1, or in other words, that L

separates xj + q − p from the origin. Note that Q is covered by the union of the sets U1 = [xj, xj − p) + [o,

q), U2 = [o, q) + [o, xj − p), U3 = [xk, q) + [o, xj − p), [q, xj + q − p) and [xj − p, xj + q − p) (cf. the left-

hand side of Figure 9.15). If xi ∈ U1, then [xi, xi + p] and [xj, xj + q] cross, and thus, Si and Sj overlap; a

contradiction. If xi ∈ U2 or xi ∈ U3, then [xi, xi + xj − p] crosses [o, q] or [q, xk], respectively, and thus, Si

overlaps S or Sk. If xi ∈ [q, xj + q − p), then S and Sk touch each other in a relative interior point of [xi, xi

− p], which yields that Si is not a disk; a contradiction. Finally, if xi ∈ [xj − p, xj + q − p), then Si meets

the segments [o, q) and [xj, xj + q) from different sides. Since [xj, xj + q) is the translate of [o, q) in Sj,

from this it follows that S is not a disk; a contradiction.

Case 2: either the y-coordinate of p or the x-coordinate of q is negative. Without loss of generality, we

may assume that the y-coordinate of p is non-negative and that the x-coordinate of q is negative. First, we

examine the case that f(p) ≥ f(q), which yields that L separates o and xk + p − q (cf. the right-hand side of

Figure 9.15). Then Q is covered by the union of the sets V1 = [xk, xk − q) + [o, p), V2 = [o, xk − q) + [o,

p), V3 = [xj, p) + [o, xk − q), [p, xk + p − q) and [xk − q, xj + p − q). If xi ∈ V1, xi ∈ V2 or xi ∈ V3, then Si

overlaps Sk, S or Sj, respectively. If xi ∈ [p, xk + p − q) or xi ∈ [xk − q, xj + p − q), then S is not a disk.

¯

¯
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FIGURE 9.15
Illustrations for Cases 1 and 2 of Lemma 246.

FIGURE 9.14
An illustration for Lemma 246.

If f(p) ≤ f(q), then the assertion follows by a similar argument.

Case 3: both the y-coordinate of p and the x-coordinate of q are non-negative. The proof in this case is
similar to the proof in the previous two cases, hence we omit it.

With reference to Lemma 246, we may relabel the indices of the elements of F  in a way that x1, x2, …,

xn = x0 are in counterclockwise order on bdC.

Lemma 247 Consider points wi ∈ S ⋂ Si for i = 1, 2, …, n. Then w1, w2, …, wn are in this

counterclockwise order around o.

Proof. Note that as o ∈ intC, and the points x1, x2, …, xn are in this counterclockwise order on bdC, they

are in the same order around o. We define the points xi as follows: If wi ∈ intC, then xi = xi, and̄̄
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otherwise it is the intersection point of [o, wi] and bdC. Let R i = {λ xi : λ ∈ ℝ and λ ≥ 0}, and let Qi =

intconv(Ri ⋃ Ri).

First, we show that if xj ∈ Qi for some j ≠ i, then xj ∉ conv{o, wi, xi}, wi ∈ conv{o, wj, xj} and wj ∉
intC. Consider some i ≠ j with xj ∈ Qi. Then wi ∉ intC, as otherwise Ri = R i. If xj ∈ intconv{o, wi, xi},

then [xj, xj + wi] crosses [xi, wi], and Si and Sj overlap; a contradiction. If xj ∈ (wi, xi), then [xj, xj + (wi −

xi)] ⊂ Sj, which, since this segment is the translate of [xi, wi] by xj − xi and since their relative interiors

intersect, yields that S is not a disk; a contradiction. If xj ∉ conv{o, wi, xi}, then [wj, xj] ⋂ R i ≠ , as

otherwise [o, wj] crosses [wi, xi] or xi ∈ intconv{o, wj, xj} (cf. Figure 9.16). Thus, in this case wi ∈
conv{o, wj, xj}, which, as xj ∈ bdC, yields that wj ∉ intC.

FIGURE 9.16
An illustration for Lemma 247.

Next, we show that x1, x2, … , xn are in this counterclockwise order around o. To do this, it suffices to

show that there are no values of i ≠ j such that xi, xj and xi+1 are in this counterclockwise order around o.

Suppose for contradiction that there are such values.

First we consider the case that xi, wj and xi+1 are in this counterclockwise order around o. Since xi, xj

and xi+1 are not in this counterclockwise order, we have xi ∈ Qj or xi+1 ∈ Qj, say xi ∈ Qj. Then, clearly,

xi+1 ∉ Qj, and, by the argument in the second paragraph of this proof, we have xi ∉ conv{o, xj, wj}, wj ∉
intC and wj ∈ conv{o, wi, xi}. Thus, wi ∉ intC, which yields that xi, wi and xi+1 are in this

counterclockwise order. Since xj, wi and wi+1 are in this counterclockwise order, it follows that so are

xj, xi and xi+1.

Now we examine the case that xi, wj and xi+1 are not in this counterclockwise order. Then, since neither

are xi, xj and xi+1, we have that wj ∈ Qi or wj ∈ Qi+1, say wj ∈ Qi. From this, we obtain that wj ∈ conv{o,

wi, xi}, and as xj ∉ conv{o, wi, xi}, we have that [wj, xj] intersects both [o, xi] and [o, xi+1]. Since xi, xj ∉
conv{o, wi+1, xi+1}, this implies that wj ∈ conv{o, wi+1, xi+1} and wi+1 ∈ conv{o, wi, xi}. From this, it

readily follows that wi, wj, wi+1 ∉ intC, and thus, xi, xi+1 and xj are in this counterclockwise order

around o.

We have shown that x1, x2, … , xn are in this counterclockwise order around o. Since these points are

in bdC and they can be connected to o by mutually non-crossing polygonal curves in intC, their

counterclockwise order around o is the same as that of the points w1, w2, …, wn.

We need the next lemma of A. Bezdek to prove Lemma 249 (cf. Lemma 3 in [28]).

Lemma 248 For any i = 1, 2, …, n, intKi contains at most one element of X\{xi}.

We call Si and Sj separated, if xi ∉ intKj, and xj ∉ intKi.

Lemma 249 There is a subfamily F ′ of F, of cardinality at least ⌊ n−2
2 ⌋, such that any two elements of F ′

are separated.
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Proof. For i = 1, 2, …, n, we choose points wi ∈ S ⋂ Si, and set Γi = [o, wi] ⋃ [wi, xi]. By Lemma 247, the

points w1, w2, …, wn are in counterclockwise order around o.

By Lemma 248, intKi contains at most one point of X different from xi. Hence, if X ⋂ intKi ⊂ {xi−1, xi,

xi+1} for every value of i, the assertion immediately follows with F ′ = {S2m : m = 1, 2, …, ⌊n/2⌋. Thus, it

suffices to show that X ⋂ intKi ⊄ {xi−1, xi, xi+1} for at most two values of i, as in this case, after removing

these elements of F , we may choose the elements of F ′ like in the previous case.

Consider the case that xj ∈ intKi for some j ∉ {i − 1, i, i + 1}. Without loss of generality, let i = 2. Since

o ∈ intC, we have that the line L2 = R2 ⋃ (−R2) separates x1 and x3. Without loss of generality, we may

assume that xj and x3 lie in the same closed half plane H bounded by L2, which yields that L3 = R3 ⋃
(−R3) separates x2 and xj.

Since xj ∈ intK2, there are points p, q ∈ S such that xj ∈ intconv{x2, x2 + p, x2 + q}. Note that by

Lemma 248, we have that x3 ∉ intconv{x2, x2 + p, x2 + q}. For contradiction, suppose that o ∉
intconv{x2, x2 + p, x2 + q}. Considering the cases that the line, passing through x2 + p and x2 + q,

separates xj from o, x3 or neither, it readily follows that at least one of [x2, x2 + p] or [x2, x2 + q] crosses

both [o, x3] and the ray emanating from x3 and passing through xj. Since Γ3 does not cross [x2, x2 + p]

and [x2, x2 + q], we obtain that xj ∈ conv{o, x3, w3} or x2 ∈ conv{o, x3, w3}, which, like in the proof of

Lemma 247, immediately yields that Sj or S2 overlaps S3; a contradiction. Hence, we obtain that o ∈
intconv{x2, x2 + p, x2 + q}. Without loss of generality, we may choose our notation so that q ∈ H, which

implies that R3 crosses the segment [x2, x2 + q].

Let Q = int (conv{x2, o, x2 + p} ⋃ conv{x2, o, x2 + q}), and consider the case that w1 ∈ Q. Since S1

and S do not overlap, we have that x1 ∈ intconv{q, p + q, −q, p − q}. By Lemma 248, x1 ∉ intconv{x2, x2

+ p, x2 + q}, from which it readily follows that x1 = αp + βq with α ≥ 1. Thus, the segment [x2, x2 + q]

crosses [o, w1 − x1] (cf. Figure 9.17). As [o, w1 − x1] ⊂ S, it follows that S and S2 overlap; a

contradiction. We may show similarly that w3 ∉ Q.

We obtained that, from xj ∈ intK2 and xj ∉ {x1, x2, x3}, it follows that the angle ∠(w1, o, w3) measured

from [o, w1] to [o, w3] in the counterclockwise direction is strictly greater than π. Note that ∠(wk, o, wk+2)

≤ π if k ∉ {n, 1, 2}, and that ∠(wn, o, w2) ≤ π or ∠(w2, o, w4) ≤ π. Thus, ∠(wi−1, o, wi+1) > π holds for at

most two values of i, and hence the as- sertion immediately follows.
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FIGURE 9.17
An illustration for Lemma 249.

Now we are ready to prove Theorem 111. In the proof we use the notion of relative norm, described for
example in Section 9.12, and apply an argument similar to the one in the proof of Remark 245.

Note that since Si touches S for every i, K and xi + K intersect. Thus, distK(o, xi) = dist K(o, xi) ≤ 2,

where K = 1
2 (K − K). In other words, we have X ⊂ 2 K = K − K, which yields that distC(xi, xj) ≥ dist2 

K(xi, xj) = 1
2 distK(xi, xj) for any i ≠ j.

By Lemma 249, we may choose a subfamily F ′ of at least ⌊ n−2
2 ⌋ pairwise separated elements of F .

Let X′ denote the set of the translation vectors of the members of F ′. Note that if y + S and z + S are

separated, then y + 1
2 K and z + 1

2 K are non-overlapping. In other words, we have distK(y, z) ≥ 1 for any

distinct y, z ∈ X′, which yields that dist C(y, z) = distC(y, z) ≥ 1
2 , with C = 1

2 (C − C).

Golab [120] proved that the circumference of every centrally symmetric convex disk measured in its
norm is at least six and at most eight (cf. also Theorem 49). Fáry and Makai [101] proved that, in any

norm, the circumferences of any convex disk C and its central symmetrization 1
2 (C − C) are equal (cf.

also Theorem 50). Thus, the circumference of C measured in the norm with unit ball C is at most eight.

Since X′ is a set of points in bdC at pairwise C-distances at least 1
2 , we have ⌊ n−2

2 ⌋ ≤ card X′ ≤ 16, from

which the assertion immediately follows.

¯

¯̄

¯̄

¯̄

¯
¯
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10

More Proofs on Volumetric Properties of Separable Packings

Summary. In this chapter we present selected proofs of some of the theorems in Chapter 5. Continuing
our investigation of the contact numbers of totally separable translative packings, in Section 10.1 we
determine csep(D, n, 2) for any Birkhoff domain D. In Section 10.2 we prove that Birkhoff domains are

dense in the family of o-symmetric, smooth strictly convex domains, and use this result in Section 10.3 to
determine csep(K, n, 2) for any o-symmetric, smooth strictly convex region. In Section 10.4 we prove an

Oler-type inequality for totally separable translative packings. Based on this result, we determine the value
of δsep(K) for any plane convex body K in Section 10.5, and prove sharp bounds for this quantity in the

family of plane convex bodies in Section 10.6. We apply these results to find the minimum area of the
convex hull of a totally separable packing of n translates of a plane convex body in Section 10.7, showing
that the minimum is attained for example for linear packings. In Section 10.8 we prove that for ρ-
separable packings, which can be regarded as local versions of totally separable packings, the same does
not hold for the mean i-dimensional projection for any i < d if n is suffficiently large, since in this case the
minimal mean projection is attained if the convex hull is close to a Euclidean ball.

10.1  Proof of Theorem 113

Before getting to the main proof of this section, we take a detour to introduce some ideas that will be

needed later. Consider the two-dimensional integer lattice Z2, which can also be thought of as an infinite
plane tiling array of unit squares called lattice cells. For convenience, we imagine these squares to be
centered at the integer points, rather than having their vertices at these points.

Definition 53 Two lattice cells of Z2 are connected if they share an edge. A polyomino or n-omino is a

collection of n lattice cells of Z2 such that from any cell we can reach any other cell through consecutive
connected cells.

Definition 54 A packing of congruent unit diameter circular disks centered at the points of Z2 is called a
digital circle packing [41, Section 6]. We denote the maximum contact number of such a packing of n
circular disks by cℤ(n, 2).

Recall that csep(n, 2) stands for csep(B2, n, 2). Clearly, every digital circle packing is totally separable

and therefore cℤ(n, 2) ≤ csep(n, 2). Consider a digital packing of n circular disks inscribed in the cells of an

n-omino. Since each circular disk touches its circumscribing square at the midpoint of each edge and at no
other point, it follows that the number of edges shared between the cells of the polyomino equals the
contact number of the corresponding digital circle packing.

Through the rest of this section k, ℓ and ϵ are integers satisfying ϵ ∈ {0, 1} and 0 ≤ k < ℓ + ϵ. We note

that any positive integer n can be uniquely expressed as n = ℓ ( ℓ  + ϵ) + k (as in [8]). We call this the
decomposition of n.

Harary and Harborth [138] studied minimum-perimeter n-ominoes and Alonso and Cerf [8]

characterized these in ℤ2. The latter also constructed a special class of minimum-perimeter polyominoes

called basic polyominoes. Let n = ℓ(ℓ  + ϵ) + k. A basic n-omino in ℤ2 is formed by first completing a
quasisquare Qα×β (a rectangle whose dimensions differ by at most 1 unit) of dimensions α × β with {α, β}
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= {ℓ , ℓ  + ϵ} and then attaching a strip S1×k of dimensions 1 × k (resp. Sk×1 of dimensions k × 1) to a

vertical side of the quasisquare (resp. a horizontal side of the quasisquare). Here, We assume that the first
dimension is along the horizontal direction. Moreover, we denote any of the resulting polyominoes by
Qα×β + S1×k (resp. Qα×β + Sk×1). The results from [8, 138] indirectly show that cℤ(n, 2) = ⌊2n − 2√n⌋.

On the other hand, Bezdek, Szalkai and Szalkai [51] showed that csep(n, 2) = ⌊2n − 2√n⌋. Thus, csep(n,

2) = cℤ(n, 2) and therefore maximal contact digital packings of n circular disks are among maximal

contact totally separable packings of n circular disks.
In order to make use of these ideas, we present analogues of polyominoes and digital circle packings in

arbitrary normed planes.

Definition 55 Let Ko be a smooth o-symmetric convex domain in E
2 and P any parallelogram (not

necessarily of minimum area) circumscribing Ko such that Ko touches each side of P at its midpoint (and

not at the corners of P as Ko is smooth). Let x and y be the midpoints of any two adjacent sides of P. Then

−x and −y are also points of bdKo ⋂ bdP. It is easy to see that {x, y} is an Auerbach basis of the normed

plane (ℝ2, ǁ⋅ǁKo
). We call the lattice L P in (ℝ2, ǁ⋅ǁKo

) with fundamental cell P, an Auerbach lattice of Ko

as we can think of L P as being generated by the Auerbach basis {x, y} of (ℝ2, ǁ⋅ǁKo
).

On the other hand, any Auerbach basis {x, y} of a smooth o-symmetric convex domain Ko generates an

Auerbach lattice L P of Ko, with fundamental cell determined by the unique lines supporting Ko at x, y,

−x and −y, respectively. In the sequel, we will use L P to denote the tiling of ℝ2 by translates of P as well

as the set of centers of the tiling cells. Indeed, the integer lattice ℤ2 is an Auerbach lattice of the circular

disk B2.

FIGURE 10.1

Some realizations of the basic polyomino Q2×4 + S1×2 in some Auerbach lattice and the

corresponding graphs.

Given an Auerbach lattice L P of a smooth o-symmetric convex domain Ko ⊆ E2 corresponding to the

Auerbach basis {x, y}, we define polyominoes in L P as in Definition 53. We also define basic n-ominoes

in L P on the same lines as in ℤ2 with the first dimension along x, while the second dimension along y.

The left and right rows of an L P-polyomino F are defined along x-direction, while the top and bottom

rows are defined along y-direction in the natural way. The base-lines of F are the four sides of a minimal
area parallelogram containing F (and having sides parallel to the sides of the cells of F) and are designated
(in a natural way) as the top, bottom, right and left base-line of F. The graph of F, denoted by G(F), has a
vertex for each cell of F, with two vertices adjacent if and only if the corresponding cells share a side.
Figure 10.1 shows some basic polyominoes and their graphs in some Auerbach lattice. We refer to the
translates of Ko centered at the lattice points of L P (inscribed in the cells of L P) as L P-translates of Ko.
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Any packing of such translates will be called an L P-packing of Ko. Since L P is a linear image of ℤ2, the

results of [8, 138] also hold for L P-polyominoes.

Lemma 250 Let Ko be a smooth o-symmetric convex domain, n = ℓ(ℓ + ϵ) + k be the decomposition of a

positive integer n and F be an n-omino in an Auerbach lattice L P of Ko.

(i)  If P is a packing of n translates of Ko inscribed in the cells of F, then G(F) is the contact graph of P

and therefore, the number of edges in G(F) is equal to the contact number c( P) of P.
(ii)  If in addition F is a minimum-perimeter (or basic) n-omino, then c( P) = ⌊2n − 2√n⌋.

Proof. Since Ko is smooth, no L P-translate of Ko meets the cell of L P containing it at a corner of the

cell. Also any L P-translates of Ko touches the cell containing it at the midpoints of the four sides of the

cell. Therefore, two L P-translates of Ko touch if and only if the cells of L P containing them share a side.

This proves (i).
Statement (ii) now follows from (i) and [8, 138].
We now show that csep(D, n, 2) = ⌊2n − 2√n⌋, for any smooth B-domain D. The existence of a B-

measure plays a key role in the following proof as it provides us a Euclidean-like angle measure to work
with. The proof also heavily relies on the L P-packing ideas discussed above.

Remark 251 As D is a smooth B-domain, therefore by part (i) of Theorem 101, we have that Hsep(D) = 4.

First, we establish the lower bound whose proof neither uses smoothness nor the B-measure. Consider

an Auerbach lattice L P of D corresponding to an Auerbach basis {x, y} of (ℝ2, ǁ⋅ǁD). Then L P = T(ℤ2),

for some linear transformation T : ℝ2 → ℝ2. Now for any n ≥ 2, consider a maximal contact digital

packing C  of n circular disks and let F be the corresponding polyomino in ℤ2. Then T(F) is an L P -

polyomino with n cells. Let P be the packing of L P -translates of D inscribed in the cells of T(F), then

by Lemma 250, the contact number of P is at least as large as the contact number of C . Thus csep(D, n,

2) ≥ ⌊2n − 2√n⌋.

Our goal is to show the reverse inequality

csep (D,n, 2) ≤ ⌊2n − 2√n⌋. (10.1)

for any smooth B-domain D in E2 and n ≥ 2. Since (10.1) clearly holds for n ≤ 3, for proving it, we
proceed by induction on n, the number of translates in the packing. For the sake of brevity, we write
csep(n) = csep(D, n, 2). Suppose (10.1) is true for totally separable packings of up to n − 1 translates of D.

Let G denote the contact graph of a maximal contact totally separable packing P of n ≥ 4 translates of D.

Since n ≥ 2 and csep(n − 1) + 1 = ⌊2 (n − 1) − 2√n − 1⌋+ 1 ≤ ⌊2n − 2√n⌋, we can assume without

loss of generality that every vertex of G has degree at least 2.

Proposition 252 If G is not 2-connected, then the number of edges of G is at most ⌊2n − 2√n⌋.

Proof. To prove Proposition 252 suppose that G has two subgraphs G1 and G2 with only one vertex in

common and with n1 and n2 vertices, respectively. Then n1, n2 ≥ 2 and n1 + n2 = n + 1, and by induction

the number of edges of G is at most (2n1 − 2 √n1) + (2n2 − 2 √n2), which is easy to estimate from above

by 2n − 2 √n. This completes the proof of Proposition 252.
Thus, by Proposition 252 we may assume that G is a 2-connected planar graph with csep(n) edges

having minimum vertex degree at least 2 and so, every face of G – including the external one – is bounded
by a cycle. Thus G is bounded by a simple closed polygonal curve P. Let v denote the number of vertices
of P. By Remark 251, the degree of each vertex in G is 2, 3 or 4. For j ∈ {2, 3, 4}, let vj be the number of

vertices of P of degree j. By definition of B-domains, there exists a B-measure m in (R2, ǁ⋅ǁD) so that using
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the total separability of our packing, the internal angle of P at a vertex of degree j is at least 
(j−1)π

2 . Since

the internal angle sum formula holds for angular measures, the sum of these angles will be (v − 2)π.
Clearly v = v2 + v3 + v4, and thus we get the inequality

v2 + 2v3 + 3v4 ≤ 2v − 4. (10.2)

Now let gj be the number of internal faces of G that have j sides. By total separability and smoothness, j

≥ 4. It follows from Euler’s polyhedral formula that

n − csep (n) + g4 + g5 + … = 1. (10.3)

In the process of adding up the number of sides of the internal faces of G, every edge of P is counted
once and all the other edges are counted twice. Therefore,

4 (g4 + g5 + …) ≤ 4g4 + 5g5 + … = v + 2 (csep (n) − v). (10.4)

This, together with (10.3), implies that 4(1 − n + csep(n)) ≤ v + 2(csep(n) − v), and thus we obtain

2csep (n) − 3n + 4 ≤ n − v. (10.5)

From G, delete the vertices of P along with the edges that are incident to them. From the definition of
csep(n − v), we get csep(n) − v − (v3 + 2v4) ≤ csep(n − v), which together with (10.2) implies that csep(n) ≤

csep(n − v) + 2v − 4. By induction hypothesis, csep(n − v) ≤ 2(n − v) − 2 √n − v, and so

csep (n) ≤ (2n − 4) − 2√n − v. (10.6)

Using (10.5) it follows that csep(n) ≤ (2n − 4) − 2 √2csep (n) − 3n + 4, and so

csep(n)2 − 4ncsep (n) + (4n2 − 4n) ≥ 0.

Finally, since the solutions of the quadratic equation x2 − 4nx + (4n2 − 4n) = 0 are x = 2n ± 2 √n and
csep(n) < 2n, therefore, it follows that csep(n) ≤ 2n − 2 √n.

10.2  Proof of Theorem 116

Let Ko be a smooth o-symmetric strictly convex domain and ε > 0 be sufficiently small. We describe the

construction of a smooth strictly convex A-domain A with the property that h(A′, Ko) ≤ ε, for some image

A′ = T(A) of A under an invertible linear transformation T ≔ E2 → E2. Let K′
o ≔ T−1(Ko). We note that

K′
o is a smooth o-symmetric strictly convex domain in E2. It is sufficient to show that bdA lies in the

annulus bdK′
o + εB2 (see Figure 10.2) and the length of bdA ⋂ bdK′

o can be made arbitrarily close to

the length of bdK′
o during the construction.
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FIGURE 10.2

Replacing a part of the boundary of the smooth o-symmetric strictly convex domain K′
o in

the proof of Theorem 116 by a circular arc. The circular arc connecting x and x1 is on bdB,

while the one connecting x and p belongs to the boundary of K′
o. The arcs ∂U+ and ∂U−

represent the outer and inner boundary of the annulus bdK′
o + εB2, respectively. The

construction is independent of whether x1 ∈ K′
o or not.

We choose T so that the minimal area parallelogram P containing K′
o is a square. Let x, y, −x, −y ∈

bdK′
o be the midpoints of the sides of P. Then {x, y} is an Auerbach basis of (ℝ2, ‖ ⋅ ‖K′

o
) [202] and,

by strict convexity, bdK′
o intersects bdP only at points x, −x, y and −y. Let B be the circular disk

centered at o that touches bdP at the points x, y, −x, −y. Without loss of generality, we may assume that
the side of P passing through x is horizontal and y lies on the clockwise arc on bdK′

o from x to −x.

Let Uε = bdK′
o + εB2 be the ε-annular neighborhood of bdK′

o with outer boundary curve ∂U+ and

inner boundary curve ∂U−. Let x+ be the unique point of intersection of ∂U+ and x + εB2. Moving

clockwise along ∂U+ starting from x+, let u be the first point where ∂U+ intersects bdP. Starting from x
and moving along bdK′

o clockwise, choose a point p ∈ bdK′
o so that the tangent line supporting K′

o at

p intersects (x, u). This unique point of intersection is represented by v in Figure 10.2. Note that by the
strict convexity of K′

o, such a point p necessarily exists (for example, choose the point on bdK′
o directly

below u) and any such p can be replaced by any point on the open arc (x, p) K′
o
. Now choose a point x1 ∈

bdB close to x in clockwise direction so that the line tangent to B at x1 intersects (p, v). In Figure 10.2, q

denotes this point of intersection. Again note that such a point x1 necessarily exists as the line supporting

B at x is horizontal. Moreover, x1 can be replaced by any point on the open arc (x, x1)B. Therefore, we

may assume that x1 ≠ q and so p, q and x1 form a triangle Δ. Thus there exists a (actually, infinitely many)

smooth strictly convex curve S ⊆ Δ with endpoints x1 and p such that the convex domain
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FIGURE 10.3

Construction of a smooth strictly convex A-domain approximating the smooth o-symmetric
strictly convex domain K′

o in the proof of Theorem 116. The circular arcs are drawn with
solid lines, while the dashed-dotted arcs represent parts of the boundary of K′

o. The dashed
arcs represent smooth strictly convex connections.

A1 = conv ((bdK′
o\ ([x, p]K′

o
∪ [−x, −p]K′

o
)) ∪ S ∪ [x, x1]B ∪ (−S) ∪ [−x, −x1]B)

obtained by replacing the antipodal boundary arcs [x, p] K′
o
 and [−x, − p] K′

o
 of K′

o with the antipodal

circular arcs [x, x1]B and [−x, −x1]B and the smooth and strictly convex connecting curves S and −S is a

smooth o-symmetric strictly convex domain with bdA1 ⊆ bdK′
o + εB2. Repeat the procedure for A1, but

this time move counterclockwise along bdA1 starting from x. The result is another smooth o-symmetric

strictly convex domain A2 with bdA2 ⊆ bdK′
o + εB2.

Let [x1, x2]B ⊆ bdA2 be the counterclockwise circular arc containing x (but not necessarily centered at

x) obtained in this way. We say that [x1, x2]B is a replacement arc for K′
o at x (and therefore, [−x1, −x2]B

is a replacement arc for K′
o at − x). Let y1, y2 ∈ bdB be such that x1 ⊣B y1 and x2 ⊣B y2 (and so y1 ⊣B

x1, y2 ⊣B x2). By choosing [x1, x2]B small enough, we can ensure that [y1, y2]B is a replacement arc for

K′
o at y. Let A be the resulting convex domain as illustrated in Figure 10.3. Then A is a smooth strictly

convex A-domain with circular pieces [x1, x2]B, [−x2, −x2]B, [y1, y2]B and [−y1, −y2]B. Clearly, h(A, K′
o

) ≤ ε. Furthermore, we can make the length of bdA ⋂ K′
o as close to the length of bdK′

o, as we like.

Therefore, h(A′, Ko) ≤ ε and we can make the length of bdA′ ⋂ Ko as close to the length of bdKo as We

like.

10.3  Proof of Corollary 117

Let Ko be a smooth o-symmetric strictly convex domain. It is not hard to see that csep(Ko, n, 2) ≥

⌊2n − 2√n⌋ (for details see [42]). Let P be a maximal contact totally separable packing of n translates

of Ko and H  be a finite set of lines in E2 disjoint from the interiors of the translates in P such that any

two translates are separated by at least one line in H . We will construct a smooth strictly convex A-
domain A such that csep(Ko, n, 2) ≤ csep(A′, n, 2), for A′ = T(A), where T : E2 → E2 is a properly chosen

invertible linear transformation.
Let Ko + c ∈ P, By the strict convexity of Ko, there exist finitely many points c1…, cm ∈ bd(Ko + c)

where Ko + c touches other translates in P and the lines in H . Then we call the points ci − c ∈ bdKo, i =
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1, …, m, the contact positions on Ko corresponding to Ko + x ∈ P. Let Con( P) denote the set of all

contact positions on Ko corresponding to all the translates in P.

Let x, y, P and B be as in the proof of Theorem 116. Using Theorem 116, construct a smooth strictly
convex A-domain A with circular pieces c = [x1, x2]A = [x1, x2]B, −c = [−x1, −x2]A = [−x1, −x2]B, c′ =
[y1, y2]A = [y1, y2]B and −c′ = [−y1, −y2]A = [−y1, −y2]B.

Using Theorem 116, we can make c = [x1, x2]A sufficiently small so that

Con (P) ⊆ (bdA′ ∩ bdKo) ∪ {±T (x), ±T (y)}. (10.7)

(Recall that both B and K′
o = T−1(Ko) are supported by the sides of P at the points {±x, ±y}.) Thus from

(10.7), the arrangement obtained by replacing each translate in P by the corresponding translate of A′ is a
totally separable packing with at least csep(Ko, n, 2) contacts.

10.4  Proof of Theorem 119

For any permissible closed polygonal curve ∏ in Theorem 119, we set

F (∏) =
area(∏*)

area(□(K)) + MK(∏)
4 + 1.

We prove the assertion by induction on n. Clearly, if n = 1, then F(∏) = 0 + 0 + 1 = 1, and Theorem 119
holds.

Assume that for any n′ < n, Theorem 119 holds for any totally separable translative packing of K with n′
elements and for any permissible polygonal curve associated to it. We prove that it holds for n element
packings as well.

Let L be a line intersecting ∏ and separating the elements of F . We present the proof for the case only
when L intersects ∏ at exactly two points, as the proof in the other cases is similar. Let these intersection
points be p and q. Then p and q are points in the relative interiors of some edges p ∈ [p1, p2] and q ∈ [q1,

q2] of ∏ whose vertices are not contained in L + intK. For simplicity, we imagine L as a horizontal line, p

to the left of q, and p1 and q1 to be above L. Let L1 and L2 be the upper, respectively lower, line bounding

L + K. For i = 1, 2, let p′
i and q′

i be the intersection points of Li with [p, pi] and [q, qi], respectively.

Observe that if ϕ : E2 → E2 is an (invertible) affine transformation, then the translates ϕ(xi + K), where

i = 1, 2…, n form a totally separable packing, the polygon ϕ(∏) satisfies the conditions in Theorem 119,
and the quantity on the left-hand side of (5.5) remains invariant under ϕ. Thus, without loss of generality,
we may assume that the parallelogram PL circumscribed about K and having the property that its area is

minimal among the circumscribed parallelograms, under the condition that it has a pair of sides parallel to
L, is a square of edge length 2, implying that area(PL) = 4.

Observe that the lines L1 and L2 decompose ∏ into four components: one above L1, one below L2, and

the last two ones being the segments [ p′
1, p′

2] and [ q′
1, q′

2]. We define ∏′
1 as the union of the

component above L1 and the segment [ p′
1, q′

1], and we define ∏′
2 similarly. Clearly, these polygonal

curves are permissible. Finally, for i = 1, 2, we let ∏′*

i  = ∏′
i ∪ ⋃ int ∏′

i (cf. Figure 10.4).
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FIGURE 10.4
Notations in the proof of Theorem 119.

Then we have

(10.8)

Furthermore, since the normed distance of L1 and L2 is two, we have

(10.9)

Now we define a polygonal curve in ∏′*

1. Consider the points of X in the region R1 bounded by [p1, p′
1

], [ p′
1, q′

1], [ q′
1, q1] and [q1, p1]. Note that this region is a (not necessarily convex) quadrangle. If R1 is

not convex, we assume, without loss of generality, that p1 ∈ conv{ p′
1, q1, q′

1}. Consider the ray starting

at p1 through p′
1 and begin to rotate it counterclockwise until it hits the first point p1 of X in R1. Then

rotate this half line about p1 counterclockwise until it hits the next point of X. Continuing this process we
end up with a simple curve C1 in R1, starting at p1 and ending at q1, which divides R1 into two connected

components one of which contains all points of X in R1. We remark that if R1 is convex, then C1 is a

convex curve.
Let ∏1 denote the closed polygonal curve

(∏′
1 \ ([p1, p′

1] ∪ [p′
1, q′

1] ∪ [q′
1, q1])) ∪ C1.

It is easy to see that ∏1 is a permissible polygonal curve whose vertices are points of X above L, and

whose interior contains every other point of X above L. Let ∏
*

1 = ∏1 ⋃ int∏1. Clearly, area( ∏
*

1) ≤ area( 

∏′*

1). We show that MK(∏1) ≤ MK( ∏′
1).

Case 1: R1 is convex. Note that in this case C1 ⋃ [p1, q1] is a convex region contained in the convex

region R1, and thus, MK(C1) + ǁp1 − q1ǁK ≤ MK(bdR1), which readily implies our claim.

area(∏*) = area (∏′
1

*) + area (∏′
2

*) + area (conv {p′
1, p′

2, q′
2, q′

1}) =

area (∏′
1

*) + area (∏′
2

*) + 2 ∥p − q∥ = area (∏′
1

*) + area (∏′
2

*) + 2∥p − q∥K.

MK (∏) = MK (∏′
1) + MK (∏′

2) − ∥p′
1 − q′

1∥K − ∥p′
2 − q′

2∥K + ∥p′
1 − p′

2∥K

+∥q′
1 − q′

2∥K ≥ MK (∏′
1) + MK (∏′

2) − 2∥p − q∥K + 4.

¯

¯
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FIGURE 10.5
The points p1, p′

1, q1, q′
1 are not in convex position as in Case 2.

Case 2: R1 is not convex. Then, according to our assumption, the line through p′
1 and p1 intersects [q1,

q′
1] (cf. Figure 10.5). This line intersects C1 at exactly one point z, and there is a line Lz through z which

supports C1 at z. Let Lz intersect [q1, q′
1] at x, and [ p′

1, q′
1] at y. The point z decomposes C1 into two

convex polygonal curves Cx and Cy such that p1 ∈ Cy and q1 ∈ Cx. Then we have

This implies that MK(∏1) ≤ MK( ∏′
1).

To construct a permissible polygon ∏2 in ∏′*

2 with the same properties, we may apply an analogous

process.
Thus, we have obtained two permissible polygons ∏1 and ∏2 associated to totally separable translative

packings of K, with strictly less elements than n, say k and n − k. Now, by (10.8), (10.9),

area (□ (K)) ≤ 4, area (∏∗
i ) ≤ area(∏′∗

i),MK (∏i) ≤ MK (∏′
i) (for i = 1, 2), and the induction

hypothesis, we have

This completes the proof of Theorem 119.

10.5  Proof of Theorem 123

Clearly, δsep (K) ≥ area(K)
area(□(K)) . To show the opposite inequality, without loss of generality we may

assume that o ∈ intK.

Set C = min{μ > 0 : K − K ⊆ μK}, and C ′ =
MK(bdK)

4 , Consider any totally separable packing F  of

translates of K in E2. For any t > 0, let F t denote the subfamily of F  consisting of the elements that

intersect tK, and let Xt denote the set of the translation vectors of the elements of F t and nt the cardinality

of F t. Note that if y ∈ (x + K) ⋂ tK, then x + K ⊆ y + (K − K) and therefore x + K ⊆ (t + C)K, implying

that ⋃ Ft ⊆ (t + C)K. On the other hand, by Theorem 119 and Remark 122, it follows that

MK (C1) = MK (Cy) + MK (Cx)

≤ ∥p1, p′
1∥K + ∥p′

1 − y∥K + ∥y − z∥K + ∥z − x∥K + ∥x − q1∥K

≤ ∥p1, p′
1∥K + ∥p′

1 − q′
1∥K + ∥q′

1 − q1∥K.

F (∏) ≥
area(∏

*

1)+area(∏
*

2)+2∥p−q∥K

area(□(K))

+
MK(∏1)+MK(∏2)−2∥p−q∥K+4

4 + 1

≥ F (∏1) + F (∏2) ≥ k + n − k = n.
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(i)  

This yields that

from which the claim follows by letting t → +∞.

10.6  Proof of Theorem 125

The right-hand side inequality in (5.7) is an immediate consequence of Theorem 123. We prove only the
left-hand side inequality. Let P be a minimum area parallelogram circumscribed about K. Without loss of

generality, we may assume that P is the square [0, 1]2 in a suitable Cartesian coordinate system. Let the
sides of P be S1, S2, S3, S4 in counterclockwise order such that the endpoints of S1 are (0, 0) and (1, 0).

Since P has minimum area, each side of P intersects K.
We show that S2 ⋂ K and S4 ⋂ K contain points with equal y-coordinates. Suppose for contradiction

that it is not so. Then (1, 0) + (S4 ⋂ K) and S2 ⋂ K are disjoint, implying that there is some point p2 ∈ S2

separating these two sets. Set p4 = (−1, 0) + p2. Then we may rotate the line of S2 around p2, and the line

of S4 around p4 slightly, with the same angle, to obtain a parallelogram containing K, with area equal to

area(P) and having two sides disjoint from K, which contradicts our assumption that P has minimum area.
Thus, there are some points p4 = (0, t) ∈ S4 ⋂ K and p2 = (1, t) ∈ S2 ⋂ K for some t ∈ [0, 1]. We obtain

similarly the existence of points p1 = (s, 0) ∈ S1 ⋂ K and p3 = (s, 1) ∈ S3 ⋂ K. Hence, area(K) ≥

area(conv{p1, p2, p3, p4}) = 1
2  area(P), which yields the left-hand side inequality in (5.7).

Now we examine the equality case. Note that, using the notations of the previous paragraph,
1
2 = δsep (K) implies that K = conv{p1, p2, p3, p4}. Consider the case that s, t ∈ (0, 1). Let P′ be the

parallelogram obtained by rotating the line of S2 around p2 and the line of S4 around p4, with the same

small angle. Then P′ is a parallelogram circumscribed about K, having area equal to area(P). Let the sides
of P′ be S ′

1,S ′
2,S ′

3,S ′
4 such that for i = 1, 2, 3, 4, pi ∈ S ′

i. Observe that

S ′
1 ∩ K = {p1},S ′

3 ∩ K = {p3}, and [p1, p3] is not parallel to S ′
2 and S ′

4. Thus, applying the

argument in the previous paragraph, it follows that P′ is not a minimum area circumscribed parallelogram,
a contradiction. Thus, s or t is equal to 0 or 1, which implies that K is a triangle. This completes the proof
of Theorem 125.

10.7  Proof of Theorem 126

We start with proving the following inequalities.

Lemma 253 Let K be a convex domain in E2 and let Q be a convex polygon. Furthermore, let A(Q, K)
denote the mixed area of Q and K.

Then we have

12A(Q,K)
area(□(K)) ≥ MK (bdQ).

Here, equality holds, for instance, if Q = K is a triangle.

nt ≤ area(conv(Xt))
area(□(K)) + MK(bdconv(Xt))

4 + 1

≤ area((t+C)K)
area(□(K)) + MK(bd((t+C)K))

4 + 1 = (t + C)2 area(K)
area(□(K)) + (t + C)C ′ + 1.

area((∪F)∩tK)
area(tK) ≤ area(∪Ft)

area(tK) = ntarea(K)
area(tK) = nt

t2

≤ (t+C)2area(K)
t2area(□(K))

+ tC ′+CC ′+1
t2 ,
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(ii)  If K or Q is centrally symmetric, then

8A(Q,K)
area(□(K)) ≥ MK (bdQ).

Furthermore, if K is centrally symmetric, then equality holds for every convex polygon Q if and only if

bdK is a Radon curve.

Proof. Without loss of generality, we may assume that area (□ (K)) = 1.

Let k denote the number of sides of Q, and for i = 1, 2, …, k, let li and xi denote the (Euclidean) length

and the outer unit normal vector of the ith side of Q. Note that for every value of i, wK(xi) = hK(xi) +

hK(−xi), where wK(xi) is the width of K in the direction of xi and hK(x) = sup{〈x, k〉 : k ∈ K} is the

support function of K evaluated at x ∈ E
2 with “·” standing for the standard inner product of E

2.

Furthermore, observe that

A (Q,K) = 1
2

k

∑
i=1

lihK (xi).
(10.10)

First, we prove (i) for the case that K is centrally symmetric. Since a translation of K or Q does not
change their mixed area, we may assume that K is o-symmetric, which implies that hK (xi) = 1

2 wK(xi) for

every i. Let ri be the Euclidean length of the radius of K in the direction of the ith. side of Q. Then the

normed length of this side is li
ri

. On the other hand, since 2riwK(xi) is the area of a parallelogram

circumscribed about K having minimum area under the condition that it has a side parallel to the ith side
of Q, therefore, for every value of i we have riwK(xi) ≥ 1

2 . Combining these observations and (10.10), it

follows that

A (Q, K) = 1
4

k

∑
i=1

liwK (xi) = 1
4

k

∑
i=1

li

ri
riwK (xi) ≥ 1

8

k

∑
i=1

li

ri
= 1

8 MK (Q).

Here, equality holds for every convex polygon Q if and only if for any v ∈ S1 = {x ∈ E2 : |x| = 1}, there is

a minimum area parallelogram circumscribed about K, which has a side parallel to v. In other words, for

any v ∈ S1, we have that lK(v)wK(v⊥) is independent of v, where lK(v) is the length of a longest chord of

K in the direction of v, and wK(v⊥) is the width of K in the direction perpendicular to v. The observation

that this property is equivalent to the fact that bdK is a Radon curve can be found, for example, in the
proof of Theorem 2 of [144] (see also the proof of Theorem 46).

Now consider the case that Q is o-symmetric, but K is not necessarily. Note that in this case k is even,
and for every i we have li+k/2 = li, and xi+k/2 = −xi. Thus, by (10.10)

A (Q, K) = 1
2

k/2

∑
i=1

li (hK (xi) + hK (−xi)) = 1
2

k/2

∑
i=1

liwK (xi) = 1
4

k

∑
i=1

liwK (xi).

From this equality, the statement follows by a similar argument using the relative norm of K whenever K
is not centrally symmetric.

Finally, we prove (i) about the general case. Let K = 1
2 (K − K). Without loss of generality, We may

assume that the origin o is the center of a maximum area triangle inscribed in K. Then, clearly,

− 1
2 K ⊆ K, from which a simple algebraic transformation yields that 2

3 K ⊆ K. This implies that for any

unit vector x we have

hK (x) ≥ 2
3 hK (x). (10.11)

Then, by (10.10), we have

¯

¯

¯
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A (Q, K) ≥ 1
3

k

∑
i=1

lihK (xi) = 2
3 A(Q, K).

Thus, our inequality readily follows from (253.2). The fact that here equality holds if Q = K is a triangle
can be shown by an elementary computation.

First, we prove (ii). Note that bdC satisfies the conditions in Theorem 119, and thus (using Remark 122
if K is not centrally symmetric), we have

area(C)
area(□(K)) +

MK(bdC)
4 + 1 ≥ n.

Thus, (253.2) of Lemma 253 yields that

area(C)
area(□(K)) +

2A(C,K)
area(□(K)) + 1 ≥ n.

From this, it follows that

Now we prove (126.1). In this case, Theorem 119 applied to bdC in the same way as above followed by
(253.1) of Lemma 253 implies that

This inequality yields

area (C + K) ≥
2(n−1)

3 area (□ (K)) + area (K) + 1
3 area (C),

finishing the proof of (126.1).

10.8  Proof of Theorem 130

We start recalling Lemma 235 in the following form.

Lemma 254 Let {ci + C | 1 ≤ i ≤ n} be an arbitrary ρ-separable packing of n translates of the o-symmetric

convex body C in Ed with ρ ≥ 1, n ≥ 1, and d ≥ 2. Then

nvold(C)

vold(∪n
i=1ci+2ρC)

≤ δsep (ρ, C).

Definition 56 Let d ≥ 2, ρ ≥ l, and let K (resp., C) be a convex body (resp., an o-symmetric convex body)

in Ed. Then let v C (ρ, K) denote the largest n with the property that there exists a ρ-separable packing {ci

+ C | 1 ≤ i ≤ n} such that {ci | 1 ≤ i ≤ n} ⊂ K.

Lemma 255 Let d ≥ 2, ρ ≥ 1, and let K (resp., C) be a convex body (resp., an o-symmetric convex body) in

E
d. Then

(1 +
2ρR(C)
r(K) )

−d vold(C)vC(ρ,K)
δsep(ρ,C) ≤ vold (K) ≤

vold(C)vC(ρ,K)
δsep(ρ,C) .

¯̄

area(conv(
n
∪
i=1

(ci + K))) = area (C + K) = area (C) + 2A (C, K) + area (K)

≥ (n − 1)area (□ (K))+area (K).

(n − 1)area (□ (K)) ≤ area (C) + 3A (C, K)

= 3
2 area (C + K) − 1

2 area (C) − 3
2 area (K).
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Proof. Observe that Lemma 254 and the containments K + 2ρC ⊆ (1 +
2ρR(C)
r(K) ) K yield the lower bound

immediately.
We prove the upper bound. Let 0 < ε < δsep(ρ, C). By the definition of δsep(ρ, C), if λ is sufficiently

large, then there is a ρ-separable packing {ci + C | 1 ≤ i ≤ n} such that Cn ≔ {ci | 1 ≤ i ≤ n} ⊂ Wd
λ  and

nvold(C)

vold(Wd
λ)

≥ δsep (ρ, C) − ε. (10.12)

Sublemma 256 If X and Y are convex bodies in Ed and C is an o-symmetric convex body in Ed, then

vC (ρ, Y) ≥
vold(Y)vC(ρ,X)

vold(X−Y) . (10.13)

Proof. Indeed, consider any finite point set X ≔ {x1, …, xN} ⊂ X. Observe that the following are

equivalent for a positive integer k:

•  k is the maximum number a point of X − Y is covered by the sets xi − Y, xi ∈ X,

•  k is the maximum number such that card((z + Y) ⋂ X) = k for some point z ∈ X − Y.

Thus, N vold(Y) ≤ card((z + Y) ⋂ X)vold(X − Y) for some z ∈ X − Y. Hence, if {xi + C | 1 ≤ i ≤ N} is an

arbitrary, ρ-separable packing with X = {x1, …, xN} ⊂ X, then

vC (ρ, Y) ≥ card ((z + Y) ∩ X) ≥
vold(Y)N

vold(X−Y) ,

which implies (10.13).
Applying (10.13) to X = Wd

λ  and Y = −K and using (10.12), we obtain

vC (ρ, K) ≥ nvold(K)

vold(Wd
λ+K)

≥ vold(K)

vold(Wd
λ+R(K))

⋅
vold(Wd

λ)(δsep(ρ,C)−ε)

vold(C) ,

which finishes the proof of Lemma 255.

Definition 57 Let d ≥ 2, n ≥ 1, ρ ≥ 1, and let C be an o-symmetric convex body in Ed. Then let RC(ρ, n) be

the smallest radius R > 0 with the property that vC(ρ, RBd) ≥ n.

Clearly, for any ε > 0 we have vC(ρ, (RC(ρ, n) − ε)Bd) < n, and thus, by Lemma 255 (for K = RC(ρ,

n)Bd), we obtain

Corollary 257 Let d ≥ 2, n ≥ 1, ρ ≥ 1, and let C be an o-symmetric convex body in Ed. Then

RC(ρ,n)d ≤
vold(C)n
δsep(ρ,C)kd

≤ (RC (ρ,n) + 2ρR (C))d. (10.14)

Lemma 258 Let n ≥
4dδsep(ρ,C)ρdR(C)d

r(C)d
 and i = 1, 2, …, d − 1. Then for R = RC(ρ, n),

Proof. Set t = R + 2ρR(C). Then the first inequality in (10.14) yields that

Mi ((R + ρR (C))Bd) ≤

Mi (Bd)( vold(C)n
δsep(ρ,C)κd

)
i
d (1 +

2δsep(ρ,C)
1
d ρR(C)

r(C) ⋅ 1

n
1
d

)
i

.
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R + ρR (C) ≤
t−ρR(C)
t−2ρR(C) (

vold(C)n
δsep(ρ,C)κd

)
1
d

.

Thus, by the second inequality in (10.14) and the condition that

n ≥
4dδsep(ρ,C)ρdR(C)d

r(C)d
≥

4dδsep(ρ,C)ρdR(C)dκd

vold(C) , we obtain that

In the proof of Theorem 130 that follows, we are going to use the following special case of the

Alexandrov-Fenchel inequality ([217]): if K is a convex body in Ed satisfying Mi(K) ≤ Mi(rBd) for given 1

≤ i < d and r > 0, then

Mj (K) ≤ Mj (rBd) (10.15)

holds for all j with i < j ≤ d. In particular, this statement for j = d can be restated as follows: if K is a

convex body in Ed satisfying Md(K) = Md(rBd) for given d ≥ 2 and r > 0, then Mi(K) ≥ Mi(rBd) holds for

all i with 1 ≤ i < d.
Let d ≥ 2, 1 ≤ i ≤ d − 1, ρ ≥ 1, and let Q be the convex hull of the ρ -separable packing of n translates of

the o-symmetric convex body C in Ed such that Mi(Q) is minimal and

n ≥ 4dd4d

δsep(ρ,C)d−1 ⋅ (ρ R(C)
r(C) )

d

.
(10.16)

By the minimality of Mi(Q) we have that

Mi (Q) ≤ Mi (RBd + C) ≤ Mi ((R + ρR (C))Bd) (10.17)

with R = RC(ρ, n). Note that (10.17) and Lemma 258 imply that

Mi (Q) ≤ (1 +
2δsep(ρ,C)

1
d ρR(C)

r(C) ⋅ 1

n
1
d

)
i

Mi (Bd)( vold(C)
δsep(ρ,C)κd

)
i
d

⋅ n
i
d .

We examine the function x ↦ (1 + x)i, where, by (10.16), we have x ≤ x0 = 1
2d4 . The convexity of this

function implies that (1 + x)i ≤ 1 + i(l + x0)i − 1x. Thus, from the inequality (1 + 1
2d4 )d−1

≤ 33
32 < 1.05,

where d ≥ 2, the upper bound for Mi(Q) in Theorem 130 follows.

On the other hand, in order to prove the lower bound for Mi(Q) in Theorem 130, we start with the

observation that (10.15) (based on (10.17)), (10.16), and Lemma 258 yield that

(10.18)

Thus, (10.18) together with the inequalities svold − 1(Q)r(Q) ≥ vold(Q) (cf. [195]) and vold(Q) ≥

nvold(C) yield

(10.19)

t−ρR(C)
t−2ρR(C) = 1 + ( t

ρR(C) − 2)
−1

≤ 1 +
2δsep(ρ,C)

1
d ρR(C)κ

1
d
d

vold(C)
1
d

⋅ 1

n
1
d

≤ 1 +
2δsep(ρ,C)

1
d ρR(C)

r(C) ⋅ 1

n
1
d

.

svold−1 (Q) ≤ svold−1 ((R + ρR (C))Bd)

≤ κd( nvold(C)
δsep(ρ,C)κd

)
d−1
d (1 +

2δsep(ρ,C)
1
d ρR(C)

r(C) ⋅ 1

n
1
d

)
d−1

.
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r(Q) ≥ (1 +
2δsep(ρ,C)

1
d ρR(C)

r(C) ⋅ 1

n
1
d

)
−(d−1)

vold(C)
1
d δsep(ρ,C)

d−1
d

dk
1
d
d

⋅ n
1
d .

Applying the assumption (10.16) and vold(C) ≥ κdr(C)d to (10.19), we get that

(10.20)

Let P denote the convex hull of the centers of the translates of C in Q. Then, (10.20) implies

r (P) ≥ r (Q) − R (C) ≥ 30
31 r (Q) ≥

8δsep(ρ,C)
d−1
d r(C)

9d ⋅ n
1
d .

(10.21)

Hence, by (10.21) and Lemma 255,

vold (Q) ≥ vold (P) ≥ (1 +
9dρR(C)

4δsep(ρ,C)
d−1
d r(C)

⋅ 1

n
1
d

)
−d

⋅
nvold(C)
δsep(ρ,C) ,

(10.22)

which implies in a straightforward way that

vold (Q) ≥ (1 +
9dρR(C)

4δsep(ρ,C)r(C) ⋅ 1

n
1
d

)
−d

⋅
nvold(C)
δsep(ρ,C) .

(10.23)

Note that (10.15) (see the restated version for j = d) implies that Mi(Q) ≥ ( vold(Q)
κd

)
i
d

κi. Then, replacing

vold(Q) by the right-hand side of (10.23), and using the convexity of the function x ↦ (1 + x)−i for x > − 1

yields the lower bound for Mi(Q) in Theorem 130.

Finally, we prove the statement about the spherical shape of Q, that is, the inequality (5.8). As in [58],
let

θ (d) = 1

2
d+3

2 √2π√d(d−1)(d+3)
min{ 3

π2d(d+2)2d , 16

(dπ)
d−1

4

}.

Using the inequality 
κd−1

κd
≥ √ d

2π  (cf. [23]) and (6) of [125], we obtain

( svold−1(Q)
svold−1(Bd) )

d

( vold(Bd)
vold(Q) )

d−1
− 1 ≥ θ (d) ⋅ (1 −

r(Q)
R(Q) )

d+3
2

(see also (5) of [56]). Substituting (10.18) and (10.22) into this inequality, we obtain

By the assumptions d ≥ 2 and (10.16), it follows that

4d2 (d − 1) ρR(C)
δsep(ρ,C)r(C) ⋅ 1

n
1
d

≥ θ (d)(1 − r(Q)
R(Q) )

d+3
2

.
(10.24)

r (Q) ≥ (1 + 1
2d4 )

−(d−1) δsep(ρ,C)
d−1
d r(C)

d
n

1
d

≥ 4d3

(1+ 1

2d4 )
(d−1) R (C) ≥ 31R (C).

(1 +
2δsep(ρ,C)

1
d ρR(C)

r(C) ⋅ 1

n
1
d

)
d(d−1)

(1 +
9dρR(C)

4δsep(ρ,C)
d−1
d r(C)

⋅ 1

n
1
d

)
d(d−1)

≥ ( svold−1(Q)
svold−1(Bd) )

d

( vold(Bd)
vold(Q) )

d−1
.
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Note that by [199], 1
δsep(ρ,C) ≤

2
3d
2 ⋅ ( )

(d+1)
d
2 π

d
2 Γ( d

2 +1)
. This and (10.24) implies (5.8), finishing the proof of

Theorem 130.

⎷ d(d+1)
2

d
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11

Open Problems: An Overview

Summary. In this chapter we collect the open problems, questions and conjectures presented in the book.
In particular, Sections 11.1,11.2,11.3,11.4,11.5 contain these problems from Chapters 1,2,3,4,5,
respectively. For more information, the interested reader is referred to the appropriate place in the
corresponding chapter, or the papers cited there.

11.1  Chapter 1

Theorem 4 by Lindelöf states that among polytopes in Ed with given outer facet normals, the ones with
maximal isoperimetric ratio is circumscribed about a ball, implying also the same statement for polytopes
with a given number of facets.

Question 12 Can Theorem 4 be modified for convex polytopes in Sd or ℍd?

Open Problem 1 Prove or disprove that among simplices in Sd or ℍd of a given volume, where d > 2, the
regular ones have smallest surface volume.

Open Problem 2 Prove or disprove that among simplices in Sd or ℍd circumscribed about a ball, where
d > 3, the regular ones have smallest volume.

Open Problem 3 Among convex polytopes in Ed, inscribed in Sd−1 and having n vertices, which polytope
has the largest volume?

Recall that a simplicial convex polyhedron in E3 with n vertices is called medial, if the valence of each

of its vertices is at least ⌊6 − 12
n

⌋] and at most ⌊6 − 12
n

⌋.

Conjecture 15 Let P be a convex polyhedron with n vertices and inscribed in B3. If there is a medial

polyhedron satisfying these properties, then vol3(P)is maximal under these conditions for a medial

polyhedron.

Open Problem 4 By Steiner symmetrization, it can be easily shown that the maximum volume of the

intersection of a fixed ball in Ed and a variable simplex of given volume V is attained when the simplex is
regular and concentric with the ball. Show that the above statement holds true in spherical and hyperbolic
space as well.

Open Problem 5 Prove or disprove that if S is a simplex contained in Bd, and for some x ∈ S, x + ρBd is

a Euclidean ball whose interior is disjoint from the k-skeleton of S, then ρ ≤ √ d−k
d(k+1) .

Question 25 Does the statement in Problem 5 hold for spherical or hyperbolic simplices?

Question 26 Consider a ball S in S3 or in ℍ3. What is the infimum and the supremum of volumes of the

tetrahedra midscribed to S?

Open Problem 6 Prove or disprove that every combinatorial class of convex polyhedra contains a Koebe
polyhedron whose center of mass is the origin.

For Theorem 29 and the notations in the next problem, see Section 1.4.

Open Problem 7 Is it possible to prove variants of Theorem 29 if the weight functions wi in (1.4) depend

not only on ρT(Ci), but also on the radii of the other spherical caps as well?

Open Problem 8 As we already remarked in this section, Schramm [218] proved that if K is any smooth,
strictly convex body in E3, then every combinatorial class of convex polyhedra contains a representative

midscribed about K. If K is symmetric to the origin, does this statement remain true with the additional
assumption that the barycenter of the tangency points of this representative is the origin? Can the
barycenter of the tangency points be replaced by other centers of the polyhedron?
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11.2  Chapter 2

Conjecture 35 Let K be a convex body in Ed. Then there is a point x ∈ K such that

vold(conv(K∪(2x−K)))
vold(K) ≤ ( ).

Recall that for any i = 0, 1 …, d − 1 and convex body K ⊂ Ed, we denote by ci(K) the maximal volume

of the convex hull of K and one of its reflections about an i-dimensional subspace of Ed intersecting K,

divided by vold(K). We obtain the quantity cco(K) in the same way by replacing the reflected copy of K by

any congruent copy of K.

Conjecture 45 Let d ≥ 3 and 1 < i < d − 1. Prove that for any convex bodyK ⊂ Ed, ci (K) ≥ 1 + 2κd−1

κd
. Is

it true that equality holds only for Euclidean balls?

If, for a convex body K ⊂ Ed, we have that vold(conv((p + K) ⋃ (q + K))) has the same value for any

touching pair of translates, we say that K satisfies the translative constant volume property.

Conjecture 47 Let d ≥ 3. If some o-symmetric convex body K ⊂ Ed satisfies the translative constant

volume property, then K is an ellipsoid.

Open Problem 9 For any d ≥ 3 and 1 ≤ i ≤ d − 1, find the least upper bound of ci(K) on the family of

convex bodies in Ed. Furthermore, find the least upper bound on cco(K) on the same family.

Four variants of volume in a d-dimensional normed space with unit ball M appear in the literature, each
of which is a scalar multiple of standard Lebesgue measure. In these variants, denoted by

volBusM (⋅), volHT
M (⋅), volmM (⋅), and volm∗

M (⋅), the scalar multiple chosen in such a way that the volume of

M is κd,, the volume of M is 
vold(M)vold(M∘)

κd
, the volume of a largest cross-polytope inscribed in M is 2d

d! ,

and the volume of a smallest parallelotope circumscribed about M is 2d, respectively.

Conjecture (Mahler Conjecture) 55 Prove that among d-dimensional, o-symmetric convex bodies, the

minimum of volHT
M (M) is attained, e.g., if M is a d-cube.

For any τ ∈ {HT, m, m*} and convex body K, the quantity cτtr (K) denotes the maximum of volτM
(conv(K ⋃ (p + K))) for any translate p + K of K intersecting K, where M = 1

2 (K − K).

Open Problem 10 Prove or disprove that if cHT
tr (K) is maximal for some plane convex body K, then K is

an affine image of M0.

Open Problem 11 For d ≥ 3 and τ ∈ {HT, m, m*}, find the maximal values of cτtr (K) over the family of d-

dimensional convex bodies.

Open Problem 12 For d ≥3 and τ ∈ {Bus, HT, m, m*}, find the minimal values of cτtr (K) over the family

of d-dimensional convex bodies.

11.3  Chapter 3

Conjecture (Kneser-Poulsen Conjecture - Part 1) 63 If q =(q1, q2, …, qN) is a contraction of p = (p1,

P2, …, Pn) in Ed, d ≥ 3, then

vold(
N
∪
i=1

Bd [pi, ri]) ≥ vold(
N
∪
i=1

Bd [qi, ri]).

Conjecture (Kneser-Poulsen Conjecture - Part 2) 64 If q = (q1, q2, …, qN) is a contraction of p = (p1,

P2, …, PN) in Ed, d ≥ 3, then

vold(
N
∩
i=1

Bd [pi, ri]) ≤ vold(
N
∩
i=1

Bd [qi, ri]).

d

⌊ d
2 ⌋
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Open Problem 13 Prove the Kneser-Poulsen conjecture (i.e., Conjectures 63 and 64) for d + 4 balls in

E
d, d ≥ 3.

Open Problem 14 Let 1 ≤ k ≤ d, 1 < N, and r > 0. Prove or disprove that if q = (q1, q2, …, qN) is a

contraction of p = (p1, P2, …, Pn) in Ed, then

Vk(
N
∩
i=1

Bd [pi, r]) ≤ Vk(
N
∩
i=1

Bd [qi, r]),

where Vk(⋅) denotes the k-th intrinsic volume.

Conjecture (Alexander Conjecture) 77 Under an arbitrary contraction of the center points of finitely
many congruent disks in the plane, the perimeter of the intersection of the disks cannot decrease.

11.4  Chapter 4

Recall that degavr( Pr) denotes the average degree of the vertices of the contact graph of an arbitrary

packing Pr of circles of radius r > 0. It was proved in [31] that for packings Pr in S2, lim supr→0

(supPr
degavr (Pr)) < 5.

Conjecture 86 Let Pr be an arbitrary packing Pr of disks of radius r > 0 in ℍ2. Then

lim sup
r→0

(sup
Pr

degavr (Pr)) < 5.

The next problem refers to the packing densities of packings of unit balls in Ed with respect to the
Union of balls of radius 1 + λ centered at the centers of the elements of the packing.

Open Problem 15 Determine δd(λ) for d ≥ 2, 0 < λ < √ 2d
d+1 − 1.

Recall that the maximum contact number of a totally separable packing of n unit balls in Ed is denoted
by csep(n, 3), and the maximum contact number of a packing of n unit diameter balls in Ed whose centers

are points of ℤd is denoted by cℤ(n, d).

Open Problem 16 Show that

lim
n→+∞

3n−csep(n,3)

n
2
3

= 3.

In particular, is it the case that csep(n, 3) = cℤ(n, 3), for all positive integers n?

Recall that if K be a convex body in Ed, then a family of translates of K that all touch K and, together

with K, form a totally separable packing in Ed is called a separable Hadwiger configuration of K.

Moreover, the separable Hadwiger number Hsep(K) of K. is the maximum size of a separable Hadwiger

configuration of K.

Open Problem 17 Determine the largest value of Hsep(K) for o-symmetric smooth strictly convex bodies

in Ed, d ≥ 5.

Conjecture 106 The Hadwiger number of any starlike disk is at most 8.

Open Problem 18 Is it true that for every positive integer k there is an integer N(k) such that for any

topological disk S, if (convS)\S has at most k connected components, then H(S) ≤ N(k)?

11.5  Chapter 5

Corollary 117 states that for any o-symmetric smooth strictly convex domain in E2 and n ≥ 2, csep(K, n, 2)

= ⌊2n − 2√n⌋.
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Open Problem 19 One may wonder whether csep (K, n, 2) = ⌊2n − 2√n⌋ holds for any o-symmetric

smooth convex domain K in E2 and n ≥ 2.

Open Problem 20 Let K be a convex body in Ed, d ≥ 3. Prove or disprove that the highest density of

totally separable translative packings of K in Ed is attained by the totally separable lattice packing of K

generated by (any of) the smallest volume parallelotope (i.e., affine d-cube) circumscribed K.

Open Problem 21 Let C be an o-symmetric convex body in Ed, d ≥ 3 and n > 1. Prove or disprove that

the smallest volume of the convex hull of n translates of C forming a totally separable packing in Ed is

obtained when the n translates of C form a sausage, that is, a linear packing.

Recall that δsep(C) ≤ δsep(ρ, C) ≤ δ(C) hold for any o-symmetric convex body C in Ed, d ≥ 2 and for all

ρ ≥ 1.

Open Problem 22 Let C be an o-symmetric convex body C in Ed, d ≥ 2. Then prove or disprove that there

exists ρ(C) > 1 such that for any ρ ≥ ρ(C) one has δsep(C) = δsep(ρ, C).

Open Problem 23 The nature of the question analogue to Theorem 130 on minimizing Md(Q) = vold(Q)

is very different. Namely, recall that Betke and Henk [24] proved L. Fejes Tóth’s sausage conjecture for d

≥ 42 according to which the smallest volume of the convex hull of n non-overlapping unit balls in Ed is
obtained when the n unit balls form a sausage, that is, a linear packing (see also [25, 26]). As linear
packings of unit balls are ρ-separable, therefore, the above theorem of Betke and Henk applies to ρ-

separable packings of unit balls in Ed for all ρ ≥ 1 and d ≥ 42. On the other hand, the problem of
minimizing the volume of the convex hull of n unit balls forming a ρ-separable packing in Ed remains an

interesting open problem for ρ ≥ 1 and 2 ≤ d < 42. Last but not least, the problem of minimizing Md(Q) for

o-symmetric convex bodies C different from a ball in Ed seems to be wide open for ρ ≥ 1 and d ≥ 2.
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