

[image: Image 1]

[image: Image 2]

Wagtail CMS in Action MEAP V04

1. Copyright_2022_Manning_Publications

2. welcome

3. 1_Introducing_Wagtail

4. 2_Setting_up_and_completing_essential_tasks

5. 3_Creating_a_blog

6. 4_Styling_with_Tailwind_CSS

7. 5_Creating_a_Wagtail_store

[image: Image 3]

MEAP Edition Manning Early Access Program Wagtail CMS in Action With Django and Python Version 4

Copyright 2022 Manning Publications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://livebook.manning.com/#!/book/wagtail-cms-in-action/discussion For more information on this and other Manning titles go to manning.com

welcome

Thank you for purchasing the MEAP edition of Wagtail CMS in Action! To get the most from this book you should have a little experience with Object Oriented Programming and have Python installed on your computer. Don’t worry if you aren’t an OOP expert because I’ll walk you through everything you’ll need to know as you progress through this book. If you have any Django Web Framework experience as well, that’s a plus, but I’m making the assumption that not everybody has worked with Django in the past, and I’ll make it as clear as possible to show you how it works, and more importantly, when Django is being used and when Wagtail is being used, and how they connect to each other.

When I first started working with Wagtail in mid-2017 there were virtually no videos or articles that were helpful for developers. As I used Wagtail more and more in my professional career I had realized that it might be up to me to help. I then produced over 60 YouTube videos to help alleviate this problem.

Shortly after that I was asked to join the Wagtail core development team.

Since that time I have helped thousands of developers learn Wagtail, many who had never heard of Wagtail before, and many who have never written any Django or Python. If that sounds like you, just know that you’re in good hands.

Together, you and I will create a simple blog using Wagtail CMS as an introduction to some of its core features. From there I’ll take you into new territory by exploring ways to leverage Django and Python inside of your Wagtail website, along with more advanced ways to customize your Wagtail website.

At this point I think it’s good to point out that Wagtail does not reinvent features that it can use directly from Python and Django. This is important to note because along the way you’ll inevitably learn a little bit of Django, too.

Lastly, I’d love it if you could post any questions, comments or suggestions

you have about this book in the liveBook discussion forum. Your feedback is what will help make this the best possible book!

Thank you again for purchasing the MEAP edition of Wagtail CMS in Action, and I’m looking forward to hearing your feedback.

—Kalob Taulien

In this book

Copyright 2022 Manning Publications welcome brief contents 1 Introducing

Wagtail 2 Setting up and completing essential tasks 3 Creating a blog 4

Styling with Tailwind CSS 5 Creating a Wagtail store

1 Introducing Wagtail

This chapter covers

Introducing Wagtail, the most popular Python based CMS

Understanding content management systems

Determining if Wagtail is the right solution for you Learning how Wagtail works from the inside

Welcome to Wagtail CMS in Action.

Wagtail CMS, or just Wagtail, is an open source content management system designed for modern workflows and modern teams. At a high level, Wagtail is used to control the content of your website such as written paragraphs, images, documents, pages, and reusable pieces of data called snippets.

On the surface it seems that Wagtail is the same as every other content management system, but once you dive into the specifics you’ll realize it has a lot of amazing features that will enable your team to be more productive and enjoy their jobs, without the ability to accidentally break your website.

That’s why companies like Google, Twilio, The Motley Fool, Mozilla, and NASA are using Wagtail.

Now, at this point you might wonder, “What is a content management system?” A content management system, or CMS for short, is a suite of tools and features that help you maintain a website, along with the written content, images, videos, documents and anything else that might be needed to create well thought out pages. Basically, a CMS makes it easier for you to manage your website. If you’ve ever read a blog or visited a news website, chances are good that they are using a content management system to help them build beautiful web pages, write appealing content, and maintain their branded designs. You have hundreds, if not thousands, of CMSes to choose from, and in this chapter I attempt to convince you that Wagtail CMS is a top contender for most organizations.

Another common question I hear is, “What should a good CMS do?” This is the golden question that separates Wagtail from other content management systems, like WordPress, which you surely have heard of as a web developer.

A good CMS should, in all honesty, not do everything. It’s like that old saying from Aesop’s Fables, “Those who seek to please everybody please nobody”. And in terms of content management systems, it can be rephrased like this: If you can do it all, you’re not doing anything well.

This is where Wagtail shines. Although Wagtail has features for everybody, it doesn’t grant any lone person total system control. Instead, Wagtail wants you and your team to do what you all do best. Whether that’s writing (editing), SEO, coding, design, site administration, or anything else - Wagtail wants you to leverage your skills. The idea is that, with a good CMS, you are using all the top talent from your team. Or if you’re a single-person team, then you should be wearing different hats at different times and not trying to do it all at the exact same time.

Throughout this book I assume that you work with a team where each person has a specific role or a small handful of roles, but if you don’t work in a team then let’s assume you’ll be performing every role at different times. For instance, you might be writing a blog post but then decide you need to make an enlarged quote area to quote your favorite author. Then you do some coding (wearing the coders’ hat), deploy your changes (DevOps hat), and continue writing your blog post (editing hat).

With Wagtail you get to focus on each role one at a time. If you’re editing content or writing some new content, you can simply focus on writing interesting content. There’s no need to be thinking about coding or design.

You’re most likely a web developer if you’re reading this book, so you can focus purely on coding and giving your editors the best experience possible while keeping your designers happy because the site can’t easily be broken out of its pre-formatted design.

Why is this such a powerful concept to adopt? Well, the short answer is context switching, which is when you change tasks and all of a sudden you’re wasting time trying to remember where you left off and spending more time getting back into “the zone”. It’s hard to quantify but it absolutely does exist.

Think of it like this: you sleep for at least 8 hours, hopefully, and then immediately wake up and go for a run. And when you’re done running, you immediately go back to bed and sleep some more. You’ll be far too tired, or too awake, to switch context, so you’ll end up running slower, or lying in bed doing nothing. That’s context switching in an extreme example. And it happens to developers all the time.

This is where Wagtail steps in and says, “Just focus for the moment on what you do best”. If something else comes up, you need to purposely change context, making yourself aware of what you need to do, and being able to focus on one task at a time - which often leads to better decision making and, in this case, a functional website that looks and acts perfectly.

As a web developer, you likely want to focus on coding and not worry too much about other tasks such as design, content, or site administration. If that sounds like you, then good news is headed your way! Wagtail is probably the content management system for you based on that sentence alone. But allow me to continue trying to convince you that Wagtail is the right solution for you or your organization.

People, especially those who work in teams (or wear multiple hats), get excited about Wagtail websites because they can focus on a single task. You can channel your inner programmer to write the cleanest code possible without making your website feel complicated or overengineered while maintaining all the features and power you need to create a modern website.

Wagtail is built on top of one of the world’s most famous web frameworks, called Django. And Django is built on top of the world’s most popular programming language: Python.

One thing to keep in mind is that you need Python on your computer before starting this book. You will want Python 3.7 or newer but Python 3.8 or Python 3.9 might serve you even better over the next couple of years. You can download and install Python from python.org for free. I also think it would be beneficial to visualize how Python, Django and Wagtail all fit together.

Figure 1.1 Shows how Python, Django and Wagtail fit together. These are all large ecosystems of code, and it is helpful to see how Wagtail fits within Django’s ecosystem, and how Django fits into

[image: Image 4]

the Python ecosystem. This is not indicative of accurate market sizes.

Wagtail is a rather small sub-niche of the overall Python ecosystem. Granted the Python ecosystem is massive and includes more than just web related resources and code. When talking about a web-related focus, Django takes up about 50% of the ecosystem. Wagtail is, by its very nature, a complex Django app. Wagtail is also the most popular CMS built on top of Django’s existing codebase.

What’s really interesting to me is that, even though Wagtail utilizes a lot of Django, you don’t explicitly need to know Django. I’ve taught countless

people how to create Wagtail websites before they understood any part of Django. Granted, they had a basic understanding of Python - which you will need throughout this book.

Note

You don’t need to know anything about using Django or Wagtail to make use of this book. But you will need to know some basic Python, including object oriented programming (OOP).

Next we need to answer a hard question: how is Wagtail different from other content management systems?

Most content management systems fall into two categories: simple or complicated. You see, managing content is not easy. It seems easy, but content comes in such a variety of shapes and sizes and most CMSes try to offer every feature. Whether it’s laid out in a simple way, like WordPress, or feels more complicated, like Django CMS or Drupal, they all try to solve the same problem: giving you what you need to create your perfect website.

Where Wagtail differs is in its approach to content management. You always start a new Wagtail website assuming the site will be simple and you work towards giving the editors and site administrators a simple-yet-powerful editing interface. And as your website grows and becomes more complicated over time, your website code should continue to be maintainable and extendable without sacrificing speed or security.

Tip

Wagtail websites seamlessly scale with you, your needs, and your organization’s needs. There’s never any need to migrate away from Wagtail because your organization has different needs.

Beyond all of that, Wagtail comes with opt-in features that allow you to control your website in an easier way. Features like image cropping and focal points in photos make your images stand out better; storing documents and images in digital folders called collections lets you organize all of your non-written content easily; advanced workflows let you set up a process for your team to moderate, comment and adjust content before publishing, enabling a

 headless (websites that only serve an API) CMS for apps and modern website architectures to use that data from the API, which can be done with just a few lines of code; and you can host multiple websites from a single code base.

These are just some of the features that Wagtail offers. And of course it comes with everything else you would expect such as page previews, moderation, saving drafts, URL hierarchy, richtext sections and the beloved feature StreamFields which lets you rearrange content in any manner you want. And if you ever need to extend the functionality that Wagtail offers, you don’t usually have to overwrite any of the source code because Python is built to extend from pre-written code.

And because Wagtail uses Django Web Framework, it can do everything Django can do (and more!). Plus, Django and Wagtail are both written in Python, so if neither Django or Wagtail can do what you need, you can reach into the rich Python package ecosystem to extend your website’s functionality using vanilla Python. It doesn’t stop there, though! With Python you can access your filesystem to apply caching, transcode videos, crop images on the fly, send emails, set up automated background tasks, use any third party API, store data for machine learning training, and so much more.

What I personally love about Wagtail is that it’s open source. If you have an idea that doesn’t exist but you feel like it should exist, you can help the community create it (or contract companies like Torchbox to create it for you).

I would be lying if I told you that Wagtail is for everybody. It’s not. I don’t believe that any single program out there is a perfect fit for every organization. But I do believe Wagtail is a good fit for most organizations. In an effort to not lead you astray I’d like to quickly talk about who Wagtail is not for.

Quite often I see marketing teams wanting to create a website in a single afternoon to test their marketing assumptions or just to create a landing page to drive sales to. If you are tasked with setting up a website in an afternoon, Wagtail is not for you. If you are not a developer, or if your team does not have a developer, Wagtail is probably not for you. If you want to edit code on the fly, much like what Wordpress allows you to do, Wagtail is not for you. If you don’t know any Python whatsoever, Wagtail is definitely not for you.

(Not yet, anyway – there’s always time to learn Python!) If you’re still with me at this point, let’s talk about what you will learn in this book, and how you will learn it.

Together you and I will set up a new Wagtail website from scratch, create a simple blog that will introduce you to the Wagtail way of coding, and then create a functional, real-life e-commerce store. Lastly, you will deploy this website to the web on our own server. The goal is to use a real life example of when you would create a Wagtail website, though I don’t assume that you know anything about Wagtail - so we’ll start from scratch. Our website will touch the most common features of Wagtail and teach you some Django along the way. I’ll start each chapter with an example and then integrate the concept of the example into a working codebase. I will share the source code on GitHub for each chapter as well, so don’t feel like you need to write all the code by hand.

What is not covered in this book is the frontend work. Wagtail, by its very nature, is unopinionated about which frontend technologies you should use.

Whether you like Bootstrap, Tailwind CSS, React.js, Vue.js, or writing vanilla CSS and JavaScript, Wagtail doesn’t care. Wagtails job is to provide the editing interface for your team, but it’s your team’s job to make the website look the way you want. So our website may seem boring because, like Wagtail, I’m not forcing an opinionated frontend decision on you or your team. Likewise, you will not be creating a headless website in Wagtail CMS

 in Action. That’s a broad topic that could be a standalone book.

Now, I’d like to talk about whether this book is for you. You and I will write a fair amount of code and spend quite a bit of time together, so I want to make sure Wagtail CMS in Action is for you. I am making a few assumptions throughout this book, like the assumption that you know simple Python OOP.

You don’t need to know about databases or web requests, and anything outside of standard Python I will do my best to explain to you along the way (like deploying a website). If you are a developer who knows some Python, this book is absolutely for you. Or if you’re a manager trying to decide if Wagtail is for you and your organization, this book will help you understand whether Wagtail is a good fit. However, if you’re not code-inclined whatsoever, or you’d rather create a website in an afternoon by clicking some

[image: Image 5]

boxes, then Wagtail wont’ work well for you either (at least not at this very moment).

Let’s get started with an understanding of how Wagtail works. Because Wagtail is built on top of an existing web framework (Django), the lines between what is Wagtail and what is Django can be blurry at times. If I do my job properly, though, you’ll be able to discern the difference. But also keep in mind that it’s not a crucial subject to understand: you don’t need to know the difference between Wagtail and Django; it won’t make you a better developer - though it might help ease some of the initial confusion. Let’s jump right in.

When a user types your website link in their browser it produces a web request. This request is processed by Django, which uses Python on a deeper level to manage the request. The web request is then passed on to Wagtail for further processing with a template response showing your website design and content.

Figure 1.2. Shows you how web requests typically work when a user hits your Wagtail website.

When a user types in your website URL, the browser constructs an HTTP

request and sends it to the server where Python, Django and Wagtail are waiting. Python and Django accept the web request, and parse the data, format it nicely for developers to work with, then Django passes the final request to Wagtail before showing you the content.

To understand how Django and Wagtail work together, you must first look at how a simple web request works. Keep in mind that the flow chart is very basic and oversimplified. But here’s how it typically works: An internet user will type in your web address to interact with your website. Your website will be running Python and Django. Django, along with other technologies like Nginx, will understand the web request you’re making and take action. With

a standard Django website this would then return your request with an HTTP

response, along with the code your browser needs in order to render and draw your website. But with Wagtail added, if Django can’t complete the request, it will fall back to Wagtail where Wagtail will look for a matching page in the URL structure, such as /blog/, look up the page it needs to serve, perform any additional logic you’ve written, and then construct the HTTP response along with the code it needs.

At any time, you can create a Django view to render the HTTP response before it hits Wagtail. Let’s say you have a checkout page that doesn’t need to be controlled by your editing team. You can write it in plain Django and the checkout page won’t be visible in Wagtail. In some cases, you want this to happen, especially if you’re writing custom API endpoints and don’t want specific content to be editable or maintained whatsoever by your editing team. This creates a healthy separation between your editorial team and your development team. Sometimes you want to break this rule, however, depending on the tech-savviness of your editing team.

Note

Don’t think developers need to hide things from editors all the time. In fact, if the editing/content team is well trained you can give them more control. Each organization is different, so use your instincts to determine if giving up control is the right move for the people who will be using the website every day.

What happens when a web request reaches Wagtail is super interesting, in my opinion. Django and Wagtail handle this differently. Django will match a URL you have defined in your code, execute the view logic, and render a template. Wagtail is very similar, but you don’t need to define a URL or a view in your settings - these are handled by the Page object, which combines the two.

Figure 1.3 provides a high-level overview of what happens after a user’s web request reaches Wagtail, and what it does behind the scenes. There’s more to it than this, but this is a great starting point to understand what exactly Wagtail is trying to do for you and your users.

[image: Image 6]

This is a more detailed view of what’s going on under the hood of a web request being sent to your future Wagtail website. Once the request is sent to Wagtail, it will look for the correct page. If it can’t find the page, it returns a 404 Missing Page error and, typically, renders a missing page template. If the page is found, Wagtail will execute more logic, then execute your custom logic, if there is any, and render the final template. Templates can also hold logic. Wagtail, alongside Django, will try to execute template-based logic before rendering the final HTML output for your browser to show you.

Now you can see that the process is becoming a bit more complex, and you can see what Wagtail is trying to do.

Once the request reaches Wagtail, it will dissect the URL and look for the proper page. For example, if you go to YourWebsite.com/blog/hello-world/ it will parse /blog/hello-world/ and automatically recognize that /blog/ is a Wagtail page and that /hello-world/ is a child page.

Tip

Wagtail Pages use a parent/child relationship. Once you get started with Wagtail you can nest child pages under parent pages and the URL structure is automatically created for you. These are based on slugs, which are the words in your URL structure. /blog/hello-world/ turns into 1. `blogànd 2.

`hello-world`. Each represents a different unique page in Wagtail.

In this example Wagtail will look up the final page with the slug `hello-world`. If a page with that slug does not exist it will return a 404 Missing Page, or an error if there is no 404.html template file. But if the page does exist, it will read the Wagtail code and then read any additional code you give it before using Django’s template rendering system to read the code in your

.html file. If there is any extra logic in your template, Django will render that as well and return a final pure-HTML response for your server to send to the user.

Note

If you are new to Django it’s good to know that Django comes with a templating engine so that you can insert variables, loops, and other forms of logic into the template. Django reads that logic and converts it into pure-HTML before the users’ HTTP request is finished. Wagtail uses Django for this because Django has incredibly powerful features that don’t need to be reinvented.

At the end of the day, most of the code you write will interact with Django somehow. You might not see it, and it might not be immediately obvious to us, but that’s how frameworks tend to work. And with Wagtail, specifically, there’s a lot of back-and-forth between Django and Wagtail. If this concerns you, it shouldn’t. Django is a very powerful and mature framework used by Instagram, Pinterest, Dropbox and tons of other huge organizations. It’s reliable, well built, open source, and tested over time. Because of its maturity, not everything needs to be reinvented. Like the templating system - it’s an advanced feature that is hard to re-create and that works perfectly fine, so there’s no need for Wagtail to use its own. Instead, it can leverage what Django offers and layer additional features on top.

You and I will jump into code soon enough and you’ll get a better understanding of how Wagtail pages work from the inside. I also like to talk about the core pillars of Wagtail. Pages are what we’ve been looking at -

that’s absolutely vital in a content management system. But snippets, images/documents, reports and site settings also help a Wagtail page become its best self, so to speak. For instance, if a page has a user uploaded image Wagtail will need to know the relationship between that image and the page so the templating engine can understand what is going on. If that was a mind-melting statement - don’t give up yet! It’s my job to make this concept as easy to understand as humanly possible - and I’m going to do just that throughout the rest of this book.

Before we get started, I find it’s also helpful to understand the relationship between Django and Wagtail. As I mentioned earlier, this won’t make you a better developer, nor will it show up on any quizzes or tests down the road, but it will help your brain understand what is happening between Wagtail and Django – mostly because Wagtail leverages a lot of Django features, so it can be, at times, confusing. I like to teach this concept primarily because, if you ever get stuck, you’ll know to look at either the Django documentation or the Wagtail documentation, and you’ll know in which community to ask for help.

Figure 1.4. Shows the intricate interaction between Django and Wagtail. Because Wagtail cannot exist without Django, the lines between their activities can be blurry.

[image: Image 7]

The two sided figure demonstrates how Wagtail and Django cooperate with each other, and which system is responsible for particular tasks. It will look big and scary at first, but as you progress through this book it will make more sense.

The left side of the figure shows what Wagtail is doing, or trying to do. On the right, it’s Django. Let’s start at the top and work our way down this figure.

At the very top, the user is trying to access your website. Your website lives on a server that has no opinions about Wagtail or Django and that’s why it sits outside of the two large boxes. But as the request is being processed, it’s then passed onto Django, which then passes the request to Wagtail. Wagtail looks up the page by its slug and hopefully finds a published page, executes core Wagtail logic, looks for your custom logic (if any), and finalizes the backend (server) request by moving onto template rendering. Django’s template rendering engine will kick in, looking for Wagtail or Django functions (called template tags) and create a pure-HTML response. That response is ultimately what your browser will see as it tries to render the code into a beautiful modern website.

That’s a lot to take in. But, once again, this isn’t knowledge that helps you become the best developer in the world – it just helps when you’re seeking support after you finish this book.

You’ll be working with both sides of that flow chart, but you’ll be mostly sticking with the left side - the Wagtail side. It may help you understand which parts are Wagtail and why developers do certain things differently from Django, and which parts are Django and why developers do things differently from Wagtail.

With these diagrams in mind, let’s move into Chapter 2, where you and I get started installing our first Wagtail website.

2 Setting up and completing

essential tasks

This chapter covers

Creating a virtual environment

Setting up Wagtail as a developer

Walking through the Wagtail interface

Editing the initial home page

Adding custom content to your pages and templates Before you jump right into coding your new Wagtail website, you need to install Wagtail on your computer. As previously mentioned you’ll need Python 3.7 or newer on your computer. In this book I’ll be using Python 3.10.

I won’t be going through Python installation in this book as I’m assuming you have some familiarity with Python already. However, if you don’t have a modern version of Python setup on your computer yet, please do so now before continuing to read this book.

In this chapter you and I will tackle a number of beginner-friendly setup instructions, including creating a new Wagtail CMS project, what the editing interface looks like and making some small code changes to the default home page that Wagtail comes with. If you have never set up a Wagtail website on your computer for local web development, please do not skip this chapter.

It’s important to use layers of abstraction to separate this project from your future projects. Also, you’ll learn a little bit, with hands-on experience, about how Wagtail and Django work together so smoothly.

All the code written in this chapter can be found on GitHub in the Chapter 2

pull request located here: https://github.com/KalobTaulien/wagtail-cms-inaction/pull/1/files.

Figure 2.1. Shows the difference between Wagtail and Django in a new website request.

[image: Image 8]

For the majority of this book, and especially now, you’ll be working with the left side of the diagram. This is where Wagtail lives. I’m starting off at the very beginning of a Wagtail project and throughout this book I’ll guide you through various parts of Wagtail, including some features that aren’t shown in the diagram.

First I’ll show you how to create a layer of abstraction in Python, and why it’s important to use these layers. Then you will properly create a new Wagtail project on your computer for local development. After that you and I will take a quick break from coding and explore what Wagtail looks like and where to find some of the core features.

Note

Wagtail comes with its base set of features enabled by default. Or in other words, it will not give you every feature right away. In order to keep your website responding quickly for your users most features are disabled or come in 3rd party plugins known as packages.

Nearing the end of this chapter you will start writing some code. I’ll give you the code up front that you can use for reference later, and immediately afterwards I’ll break down everything so it makes sense to you. This will be a common theme throughout Wagtail CMS in Action where a bulk of code is presented first followed by breakdowns and explanations. This chapter is also when the lines between Wagtail and Django become blurry for most developers so I will do my best now, and throughout this book, to help you understand what is Wagtail and what is Django code. Often Wagtail and Django blend together, and it’s not super important that you know exactly where Wagtail becomes plain Django, so if it doesn’t make sense right away please don’t let that slow you down.

2.1 Installing Wagtail on your computer

The first thing you need to do, even before installing Wagtail, is to create a layer of abstraction. These layers are often referred to as virtual environments in the Python community. The idea behind a virtual environment is to

separate your projects. Let’s say you have this book as a project, but then create a second project. If you decided to use Wagtail 3 in one project, and Wagtail 2.16 in another project, you won’t have to uninstall and re-install Wagtail every time you change projects. You can simply change your virtual environment and your Python package versions will stay intact for each project.

Note

If you prefer to use Docker, Vagrant, or some other form of virtual environment system that you’re more familiar with, you can use that. These layers of abstraction can be swapped out for different or preferred tooling that you or your organization might prefer to use.

As you probably know already, things tend to work differently on different operating systems. Whenever it’s applicable I’ll show you how to do something on Windows and then MacOS/Linux next. Though I don’t suspect you’ll need to remember the differences.

Tip

You can type python -V or py -V on Windows to see which version of Python you are using. python3 is commonly how most people access Python 3 instead of Python 2. This is most common on MacOS. Also keep in mind if you used the Python installer on Windows you can likely use py instead of python or python3 commands in your command line.

First, you’ll want to create a new folder where your website will live on your computer. Using different folders for different projects and virtual environments will help keep you organized as a developer. This goes for all operating systems, regardless of which one you use. You’ll also need access to your command line, whether that’s through a dedicated program or through your code editor, it should all work for you the same.

Windows

>cd your-new-folder/

>python -m venv .venv

[image: Image 9]

>.\.venv\Scripts\activate

Open your command line and cd (change directory) to your new folder. There should be nothing in this folder yet.

This command will create your virtual environment. I’m opting to use Python’s built in virtual environment, but as mentioned before you can use a different tool for splitting up your projects in a new layer of abstraction. Once you’ve entered this command you will have a hidden folder called .venv/. If you don’t want to hide the folder, feel free to replace .venv/ with venv/ and it will create a visible folder for you.

This command doesn’t create anything, but instead it will activate your virtual environment on Windows. Every time you want to access a Python-based project on your computer you’ll want to activate the right virtual environment.

MacOS/Linux

>cd your-new-folder/

>python3 -m venv .venv

>source .venv/bin/activate

For Unix and Unix-like systems such as MacOS and any flavor of Linux you only need to write one different command. The only difference between Windows and Unix-like systems is how you enter your virtual environment.

Like Windows, you’ll create a new folder, create a new virtual environment (venv for short), and then activate it by sourcing the activate file.

A good practice is to keep your virtual environment folders in your main project folder rather than separating the virtual environment from the project itself. This makes for easier cleanup if you decide to delete the project, and doesn’t unnecessarily store hidden files in an unexpected location on your computer.

When you’re done with your virtual environment, type deactivate to exit.

To re-enter the virtual environment you just need to run the last line from the snippets above. No need to re-create a virtual environment.

For all future work throughout this book I am assuming you have activated your virtual environment. It’s important that you do this so you don’t install Python packages on your entire system (global package installation) and will help prevent confusion between your future projects even if you aren’t using Wagtail.

If you’re using Git, you may want to add an entry to your .gitignore file so you don’t accidentally commit the entire folder. Your .venv/ folder can get pretty big, and won’t be needed, so it’ll just slow you down. To do this, create a .gitignore file (with the period at the front of the filename) in your main project folder, and add .venv/ or venv/ on a single line. This will tell Git to ignore the entire folder. When a coworker clones your repository, they can install Wagtail from the requirements.txt file.

With your virtual environment activated you can now install Wagtail using Python’s package manager called pip.

Note

If you’re an experienced Python developer and don’t want to use pip you can swap this out for another tool. pip is the easiest to work with and I prefer to use the most simple solutions until my websites outgrow it - such as cases where Redis or ElasticSearch are needed, then I prefer Docker. Don’t feel like you need to know any of that right now.

I want you to download Wagtail now. In this book you’ll be using Wagtail 3.

>pip install wagtail==3.0.1

[image: Image 10]

That command will download Wagtail as a Python package directly into your

.venv/ folder. Feel free to explore that folder, but be careful not to edit files in that folder.

If you get an error, make sure you're running Python 3. pip also has different versions and will use different versions of Python. For pip it also needs to use Python 3, and you can check it with pip -V or pip3 -V. If python -V or pip

-V gives you a Python version less than 3.7 (3.6 or older) then use the python3 and pip3 commands instead.

Now that Wagtail was installed in your virtual environment you can create a pre-formatted project with a global Wagtail command.

>wagtail start mystore .

>pip install -r requirements.txt

These amazing commands will set up your files and file structures for you and install everything Wagtail needs, including Django and various other Python packages it relies on. It will download everything it needs into your

.venv/ folder and create a series of files and folders for your Wagtail website.

Note

If you’re using Windows and run into a path length limitation problem, where the file path is too long, try installing Wagtail on a shorter path such as C:\Websites\YourWebsiteHere\

If you open your main project folder, you should have all the files you need to start your website. Lastly, you need to run a few Django-based commands to run our website.

Listing 2.1 Provisioning your database and running the server

>python3 manage.py migrate #A

>python3 manage.py createsuperuser #B

>python3 manage.py createcachetable #C

>python3 manage.py runserver #D

Most of the commands are one-time setup commands. If you remember a single command from this section, remember the python3 manage.py runserver command. You’ll use the runserver command several times every day.

Note

If you’re on Windows and python3 doesn’t work for you, but py does work for you then please read python3 as py

Now that you have Django and Wagtail running on your computer using the runserver command, open your browser and navigate to http://127.0.0.1:8000/ - alternatively most developers can use http://localhost:8000/ as 127.0.0.1 typically maps to localhost on most computers, but not all. Use the link that works best for you.

If everything has gone according to plan, you will be welcomed with Wagtails welcoming home page.

Additionally, you can always try out the development version of Wagtail by going to https://wagtail.org/play/ to load an interactive editor in your browser that also provides a window where you can log into the admin and explore a fresh Wagtail website installation. It uses a tool called GitPod. You will need a free GitHub account to login and get this cool tool to start. Also note that GitPod is designed to be a temporary coding solution and your code will disappear after about 30 minutes of inactivity. But it’s a fantastic tool for exploring the code base, experimenting with the features you’ll learn about in this book, and for see your changes without needing to install anything on

your computer.

2.2 Editing interface introduction

Let’s dive into the editing interface that Wagtail provides, which I commonly call the Wagtail admin. Now that you have your website up and running using the Django management command called runserver you’ll be able to sign into the admin portion of your website. Your users won’t know about this section. And for the majority of Wagtail CMS in Action you’ll be operating inside the admin section of Wagtail that’s often called the editing interface, or just the Wagtail admin.

Head on over to http://127.0.0.1:8000/admin/ and enter the username and password you created in the last step when you ran the python3 manage.py createsuperuser command. If you skipped that step, or forgot the password, you can always re-run the createsuperuser command to create a new admin account.

Once you log into the Wagtail admin, you’ll see a navigation bar on the left that has Pages, Images, Documents, Reports, and Settings. There are more options that we, as developers, don’t see and even more that can be created.

Most of this is straightforward and probably doesn’t need an explanation, to the exception of the Pages menu option. Feel free to spend a couple minutes browsing around. Nothing can be broken at this point so you can safely explore without worry about breaking your website. Once you look around for a little bit, you’ll realize that Pages are different from everything else.

Pages are the core of Wagtail website, and in fact, are the core of most content management systems. Other features like image management or file management through the documents menu option are also core features of most content management systems, but I classify them as secondary core features.

Next, I want to talk about the Wagtail tree. This is vital information moving forward as you work more and more with Wagtail Pages.

[image: Image 11]

2.3 Wagtails’ page tree

The page tree in Wagtail allows you, the editor, to create new pages that automatically nest under each other. If you’ve ever used a CMS that didn’t automatically create a new blog post under the URL or /blog/, this will be a delight for you!

Every page stems from a page that you can’t edit, called the Root page. Then you typically have a Home page under the root page, and a setting that tells Wagtail that the homepage is the default page to serve when someone lands on your website. Because Wagtail can host multiple websites using the same code, called multi-site, you can have multiple home pages and multiple settings that point to different home pages. I’m not going to dive into multisite in this book, but it helps to understand why the Root page always exists.

Figure 2.2 Shows how a hypothetical Wagtail Page tree looks.

[image: Image 12]

At the very top of figure 2.2 is the Root page. Think of this like a real root of a real tree. Tree roots exist, but they often aren’t seen. Underneath the home page can be subpages, also referred to as child pages. This gets into the notion of parent and child pages. If you have a blog page called blog, and 10

blog posts under the original blog page, you have one parent blog page and 10 child pages. Where it can get confusing is the relativity behind this.

Because if that original blog page is nested under the home page, then our context changes and the homepage becomes the parent page and the original blog page becomes the child page. You can extend this beyond parent/child pages. If you have a home page, with a child blog page, and 10 blog posts, then you could call those 10 blog posts grandchild pages in relation to the homepage. I know, at first this is confusing but it will make more sense the more you use Wagtail, and you’ll never want to go back to the old way.

Figure 2.3 is the Wagtail Page tree as it’s visually shown in the page explorer inside of the Wagtail Admin interface (from left to right)

In the context of Wagtail and the Wagtail admin, you can picture the tree as a sideways tree. On the left is the root page, which is almost never seen. Then there is the homepage which will map to the / (as in http://yourwebsite.com/, it’s the last slash) URL of your website (and you’ll make changes to this page in the next section). Then you can have child pages, which you don’t have yet but, let's say you have a Blog Index Page (a blog home page) it would be

/blog/. And those blog post pages mentioned earlier would live at

/blog/your-blog-post-1/ and /blog/your-blog-post-2/ and so on.

Tuck this knowledge in your back pocket for now. You’ll get hands-on experience with new page types and creating child pages in Chapter 3.

2.4 Editing the home page

Now is the time that you can start writing some code and editing your initial Home Page. After all, you’re reading a coding book, so let’s get to the good stuff. In this section I’ll define models and fields, create a subtitle, add an image, a link to another Wagtail page, and then show them in the template.

Listing 2.2 Adding a subtitle field

>from django.db import models #A

>from wagtail.core.models import Page #A

>class HomePage(Page): #B

> subtitle = models.CharField(max_length=100, default='', blank=True) #C

> …

First, I need to introduce you to two new terms: models and fields. Models are how you map code to our database using Django’s object relationship manager (ORM). In Wagtail you call page models Pages because they come with more than just simple data mapping. Pages come with previews, revision history, privacy settings, and many more things that a Django model doesn’t come with - but at the end of the day a Wagtail Page is a really fancy Django model with loads of extra functionality and logic. And fields are the individual lines of code you add to a page model, known as a Wagtail Page, that is then mapped to a specific column in your database table.

Note

Uncertain about how databases work? Have no fear! You won’t need to know anything about databases throughout this book. But I talk about them from time to time just in case you are familiar with databases and want to know how it works with Wagtail and Django.

In Wagtail, every page you create inherits from wagtail.core.models. If you wrote HomePage(models.Model) instead of HomePage(Page) it won’t get all the great features you’re expecting from Wagtail. You also probably noticed that the subtitle field is using a module that comes from Django.

This is where the lines between Wagtail and Django get blurry because the entire page is from Wagtail, but you extend its functionality with a Django field. Wagtail also has a few of its own fields, but mostly you will use Django fields and Wagtail applies its magic to them. More on that later, though, I don’t want to overwhelm you the first time you write some Wagtail code.

2.4.1 Custom text field

Wagtail, and its framework Django, come with a lot of different field types.

 Wagtail CMS in Action won’t cover all of them, but it will cover the most common field types. For more information on all the field types you can reference the Django documentation, along with the Wagtail documentation.

Both sets of documentation will describe different field types.

In the suite of files that Wagtail created for you when you set up the project initially is a folder called home/ and a file in that folder called models.py.

Here you see yet another reference to Django where, typically, Django Models go in the models.py file. In the land of Wagtail, our Pages also typically go into the models.py file. Find that file and open it up.

Listing 2.3 Adding a custom text based field

>from django.db import models #A

>from wagtail.core.models import Page #A

>from wagtail.admin.panels import FieldPanel #A

>class HomePage(Page): #B

> subtitle = models.CharField(max_length=100, default='', blank=True) #C

> content_panels = Page.content_panels + [#D

> FieldPanel('subtitle'), #D

>] #D

Here you are adding a new field called subtitle and allowing it to be editable in the Wagtail admin interface through a Wagtail concept known as panels.

The FieldPanel is how you make a field editable by your editors and will determine how to handle each of your fields for you behind the scenes.

Note

Before Wagtail 3 there were different panel types such as ImageChooserPanel, PageChooserPanel, SnippetChooserPanel, and many more.. In this book you are using Wagtail 3 (or newer) and all of those panel types were merged into a simple FieldPanel.

The idea is that you add a simple character field, called a CharField, and let your content editors change the value and then display it on the website. But if you try to run this code as is, you’ll run into an error. That’s because Wagtail Pages, much like plain Django models, have fields that map to a table in your database. Think of it like creating a new column in a spreadsheet and naming that column subtitle.

However, in this case, the database doesn’t know about the subtitle column in the hypothetical spreadsheet, also known as our database. You need to tell Wagtail (and Django) to create a new column for it to store this information.

You can try editing your Home Page through the Wagtail admin interface at this time, but you’ll likely run into a database operations error. To fix this, stop running your Django server in your command line and type out the following commands:

>python3 manage.py makemigrations

>python3 manage.py migrate

Making migrations will create a new file in a folder called migrations/ with all the instructions that your Wagtail website will need to create a new column in the database table it’s working on. And running migrate will execute those instructions. You can safely run these commands more than once.

Tip

If you are ever stuck while working on new fields, models or Wagtail Pages, you can always run and re-run these commands. Running these commands more than once won’t do anything unexpected, and will only create new code, or execute code, when something new is detected. Feel free to use those commands more than once in a row to test it out.

Once you have made a new migration file and then executed the instructions from that file, you can re-run your server with python3 manage.py runserver and open http://127.0.0.1:8000/admin/ in your browser again. Try to edit your homepage once again, and that error should have disappeared allowing you to continue editing your home page. But this time your homepage has a new field - the subtitle field.

Add some text to your subtitle field in the Wagtail editing interface and publish the page.

Note

Wagtail Pages have different status types. They can be published/unpublished or drafts. And you can preview your work at any time by clicking the preview button.

Now load up your homepage in your browser (http://127.0.0.1:8000 or http://localhost:8000/) and notice that nothing has happened. Don’t worry, this is normal! Keep in mind that the only thing that changed was the backend code and the database, nothing on the frontend has changed yet.

That’s because Django and Wagtail, and most other content management systems, will not guess where you want your content to show up. Wagtail holds no opinions about your frontend build; it only cares about making editing easy and storing data in an easy-to-manage manner. Every website has a different design so you need to update the frontend on your own.

Throughout this book I’ll show you how to lightly style some frontend components, but I’m mostly leaving that up to you to make your website look the way you want. In the next section I’ll outline how you can get your new subtitle text to show up in your home page template.

2.4.2 Templates

Templates files are the default way to create a Wagtail or Django based website. Wagtail CMS in Action will not outline a headless Wagtail website, but should you need that functionality for a modern JavaScript-based website using React.js, Vue.js or any other frontend framework, you can always

[image: Image 13]

reference the Wagtail documentation at https://docs.wagtail.org/.

Jump back into the code, you can always assume that a Wagtail Page will explicitly map to a template, much like how model fields map to database columns. This is some of the magic behind Django, which controls a large portion of these connections. Regarding the home page, your home/ folder has a subfolder called templates/ and in there you can find a file called home_page.html. Open that file and read through it quickly. You’ll see that it’s including another .html file called home/welcome_page.html - that’s the first page you saw when you initially setup your Wagtail website, and it’s currently the page you see when you view your homepage, or even preview your home page while making editorial changes in the Wagtail editing interface.

Where it says {% include 'home/welcome_page.html' %} in your template file, delete that line and replace it with {{ page.title }} - {{

page.subtitle }}. If your home page has a title and a subtitle filled out in the backend, it will show the text you wrote.

Listing 2.4 Simple homepage template layout

>{% extends "base.html" %} # A

>{% block body_class %}template-homepage{% endblock %} #B

>{% block content %} #C

> {{ page.title }} - {{ page.subtitle }} #C

>{% endblock content %} #C

Your final home_page.html template can be as bare as this. There is still a lot going on but I only want to focus on the double curly braces which I like to call double mustache syntax.

Every Wagtail page template will have access to page and self. These are identical, but I prefer to use page as it’s more explicit about what’s going on, and other developers you work with will appreciate that. The page object holds everything that comes from wagtail.core.models.Page. You can always view the source code in your venv/ folder, or directly on GitHub. In this instance the page object is using title, and that comes with every Wagtail Page. The template also has {{ page.subtitle }} which is the field you added in the last section.

This is a great demonstration about how to add a simple text field into your templates after you have added it to the backend.

Note

When I say backend I’m most often referring to Python code including Wagtail and Django. When I say frontend I’m referring to templates, HTML, CSS and JavaScript. Most developers will follow this convention as well.

If you want a field to show up in your template the key takeaways are: 1. Write the backend code (model fields)

2. Make migration files and apply them

3. Write the frontend code (templates)

2.4.3 Adding images

Images are of different beasts in Wagtail. Wagtail comes with lots of great features around images. Most notably they come with a feature called focal points. Focal points are where you want to focus your image so if, for example, you had a large image with you and your friends and wanted to focus primarily on your faces, you can upload an image and select an area to be the important part of the image. When Wagtail tries to crop your image in your template it will take the focal point into consideration and try to get closer to that area. Oh yeah, Wagtail can perform automatic cropping on-the-fly, too. No more opening Photoshop and cropping your own images (unless you really want to!).

A Wagtail image comes with a suite of tools around images, like cropping for

instance. Because of that, images are different in Wagtail than they are in Django. Open up home/models.py and let’s edit the HomePage class.

Listing 2.5 Adding an image the Wagtail way

>from django.db import models

>from wagtail.core.models import Page

>from wagtail.admin.panels import FieldPanel

>class HomePage(Page):

> …

> image = models.ForeignKey(#A

> "wagtailimages.Image", #A

> null=True, #A

> blank=True, #A

> on_delete=models.SET_NULL, #A

> related_name="+" #A

>) #A

> content_panels = Page.content_panels + [

> …

> FieldPanel('image'), #B

>]

This is different from a regular text based field. This is a ForeignKey, which is a relationship to the Image model in Wagtail. Instead of using a Django ImageField, Wagtail uses a ForeignKey relationship to its own version of a Django ImageField. Again, it’s because Wagtail comes loaded with tons of features that Django doesn’t have.

Tip

If you’re keen on best practices it’s a good idea to create a custom image model. The Wagtail documentation covers how to do that quite nicely.

Now that the home page has another new field, it will need a migration.

These two commands are very useful and quite popular so you may want to memorize these as well:

>python3 manage.py makemigrations

>python3 manage.py migrate

Once again this will create a new migration file with instructions on how to change the database. And migrate tells Django to apply those instructions.

Open up your home page in your Wagtail admin and edit it, and you’ll be able to select an existing image or upload a new image.

Listing 2.6 Displaying a cropped image in the template

>{% extends "base.html" %}

>{% load wagtailimages_tags %} #A

>{% block body_class %}template-homepage{% endblock %}

>{% block content %}

> {{ page.title }} - {{ page.subtitle }}

> {% image page.image fill-250x250 %} #B

>{% endblock content %}

Make sure you’ve selected an image and published your page in the Wagtail admin before you view your new homepage. Load up http://127.0.0.1:8000/

and you will see your image, cropped to exactly 250 pixels wide by 250

pixels tall. And Wagtail was generous enough to add the HTML image tag along with it.

>{% image page.image fill-250x250 as img %}

> If you prefer to handle your images in a more controlled way, you can assign the output of the {% image %} function into a template variable and access raw object properties. I personally like using images as template variables because of the control it allows, and is very useful for things like background images in your design.

There are all sorts of ways to crop your images and to even produce .webp versions of images. All of that is well documented in the Wagtail documentation so I won’t copy and paste that for you to read through right now.

2.4.4 Linking to other Wagtail pages

Linking to other Wagtail pages is another vital part of Wagtail. Typically developers will hard code links, but with a content management system you want to avoid that because if a page changes locations in the tree and/or its slug is updated, the hard coded link will no longer work. Wagtail tries to be

smart about things like this so that your website will always work in the most optimized manner possible and tries to give your users the best viewing experience possible.

Listing 2.7 Linking to another Wagtail page

>from django.db import models

>from wagtail.core.models import Page

>from wagtail.admin.panels import FieldPanel #A

>class HomePage(Page):

> …

> linked_page = models.ForeignKey(#B

> "wagtailcore.Page", #B

> null=True, #B

> blank=True, #B

> on_delete=models.SET_NULL, #B

> related_name="+" #B

>) #B

> content_panels = Page.content_panels + [

> FieldPanel('linked_page'), #C

>]

Introducing another ForeignKey. This time it is creating a new relationship to the Page model in Wagtail, which happens to be the same Page you see being imported on line 2 and the same Page that’s used in class HomePage(Page): There are some keywords that are provided as well: null, blank, on_delete, and related_name. I think it’s important that everyone understands what they do and why. For the null keyword this tells Django when it creates a migration file that this field is allowed to have absolutely no value in the database; it’s completely empty. The blank keyword tells Wagtail whether or not this can be blank when the page is saved - it’s like making a field required or not required. The on_delete keyword provides instructions when the linked page is deleted - sometimes you see models.CASCADE which would delete this page too, but models.SET_NULL simply unlinks the selected page from the home page. And lastly, related_name sets the reverse name to travel from one object to another - this is set to + to avoid explicitly giving the relationship a name.

Listing 2.8 Linking to another Wagtail page in the template

[image: Image 14]

>{% extends "base.html" %}

>…

>{% block content %}

> …

> {{ page.linked_page.url }} #A

>{% endblock content %}

When you create a relationship using a ForeignKey you can access the final objects properties in the template. This is not unique to Wagtail, but it’s an incredibly powerful feature that comes baked into the Django templating engine, and Wagtail leverages the Django templating engine to render its pages.

Any of the default fields that come with a Wagtail Page can be immediately used. If you try to access a custom field you wrote on another page it won’t work and will show nothing, not even an error. This gets into specific class data which I want to talk about briefly before you finish this chapter.

At this point if you try to run the code in this section you will see an error. Oh wait! You’ve seen this error before and know how to handle it. Whenever you see the database operations error, it’s usually a good idea to run the makemigrations command followed by the migrate command.

2.5 Specific class data

Specific class data refers to a specific class's fields, properties and methods.

When you created a ForeignKey relationship in the last section to a generic Wagtail Page, Wagtail will only look up the data it needs. It doesn’t know that you might want specific fields from a specific model; it assumes generic fields only.

Listing 2.9 Class specificity example code

>from django.db import models

>from wagtail.core.models import Page

>class CarPage(models.Model): #A

> maker = models.CharField(max_length=15) #A

>class TeslaPage(Car): #B

> color = models.CharField(max_length=15) #B

I’m throwing you in the deep end, but don’t worry you don’t need to fully grasp this concept at this very moment. I’m merely arming you with the knowledge you will need at some point in your Wagtail journey.

If you were to hypothetically create a ForeignKey to a CarPage but you know the relationship is to a TeslaPage and you want the color, you’ll run into issues where your code does not understand that it’s a TeslaPage - because you linked to a CarPage.

When this inevitably happens to you, and I’ve seen this happen to just about every developer out there that was learning Wagtail, you’ll probably scratch your head and wonder what you’re doing wrong. The fact is, you’re not doing anything wrong. You may want to be able to select any type of car-based page in the future: Tesla, BMW, Audi, Lamborghini, etc. So you would tell Wagtail to allow every one of those pages to be selected by creating a relationship to the CarPage (and all of its child classes). But if a customer can only choose the color of their Tesla, and you need to find that color, you’ll run into this specificity issue.

I won’t bombard you with more reasons or information as to why at this moment because you’ve already done a lot of work in this chapter. But I do want to make you aware of this problem and the solution. The solution is easy: add .specific to the end of your relationship object. So if this were a real example in a real template file, you would write {{

page.car.specific.color }}. Likewise for the Python version of this:

>my_car = Car.objects.first()

>color = my_car.specific.color

Once again, tuck this in your back pocket for later. It’s not something you will need right now, but as you decide to customize your website you may

run into this and I want you to be well equipped to deal with this scenario.

2.6 Summary

You created a new virtual environment for your specific operating system, how to access it, how to get out of it, and why it’s important to use those layers of abstraction in Python projects.

You installed Wagtail and all of its requirements using Python’s package manager called pip that downloaded all the files you needed from various Python packages and laid the file and folder foundation for a new Wagtail website.

You were able to get your new Wagtail website up and running using python manage.py runserver, created a new superuser with python manage.py createsuperuser and accessed your website at http://127.0.0.1:8000 (or http://localhost:8000/) You learned how to modify the HomePage class by adding a CharField and two ForeignKeys, and the relevant template code needed to display the content your editors will enter.

You learned how Page models map to the database and how the template variables map to your page model.

You were armed with knowledge about Wagtails tree and model specificity a little bit, though it’s not vital information at the moment it’s good knowledge to put in your tool belt for later.

3 Creating a blog

This chapter covers

Creating a new Wagtail app

Creating new Wagtail page types from scratch

Exploring the page tree

Creating a global navigation menu

Before I start showing you how to create a functional e-commerce system using Wagtail, I’d like to go over some of the basics. Until now I had you customize the home page model and template, but you didn’t create any new Wagtail Page types. In about 99% of cases you will be working with websites that have different page types. That’s because certain pages require different functionality, and in most cases they need the same basic functionality from Wagtail but will act differently from the home page. In other words, no two page types are the same.

It’s usually a good idea to create a blog on most websites to keep your users up to date on new events, products, or general news. Blogs help your users see that you are an active business. But more than anything, a blog can help you market your products. After all, you’ll be creating an e-commerce website and need some marketing tools. This chapter doesn’t focus on the business aspect of your website, but it helps to set the underlying foundation for all future Wagtail websites and it just happens to give you another tool in your website tool belt.

Throughout this chapter you will be tackling a lot of Wagtail concepts, so I want to make sure this chapter is for you. If you’ve worked with different page types and with the get_context() function then you can likely skim this chapter quickly. If you are brand new to Wagtail then please do not take this chapter lightly as it will be setting the foundation for all of your future work.

First you’ll create a new app. Much like how the home page is in an app

called home, you’ll create a new app specifically for your blog. Then you’ll create two new page types and add them in specific areas in your Wagtail tree. After that you’ll enforce a strict page structure to make sure blog posts absolutely cannot exist under any page other than the blog. It’s after that point where the fun, and power, comes in with a feature called a StreamField.

You’ll need some form of navigation as well. For this feature you’ll dive into a Django feature known as a template tag. And lastly, I will show you a great way to learn by experimenting using the Django shell and a possible upgrade to your Django shell.

As you can tell, you have a lot to absorb in this chapter. My goal is to keep each section as short as possible so you can start writing more code. Don’t forget that it’s completely acceptable to experiment beyond what is covered in this book, too.

The source code for this chapter is broken down into individual commits based on each section on GitHub. Here are the commits for each section https://github.com/KalobTaulien/wagtail-cms-in-action/pull/2/commits. To see all the changes in one place you can view the Files Changed here https://github.com/KalobTaulien/wagtail-cms-in-action/pull/2/files.

3.1 Creating a new Wagtail app

When you start to create a new section in your website it’s often a good idea to create a new Django app. Apps are how we logically separate content. The idea is to separate apps so they can be easily enabled or disabled as your website grows. Typically, apps hold together similar functionality and logic.

In the case of this new blog, it has nothing in common with the home app or anything inside of it so we can put this into its own app.

Note

You don’t have to separate your apps, but it helps keep your code organized in a very friendly way. If you are brand new to Wagtail and Django I highly recommend getting into this habit.

With your virtual environment activated you need to type a new command

[image: Image 15]

that hasn’t been introduced yet:

python manage.py startapp blog

What you see here is a Django management command. Remember how Django and Wagtail are closely related? In this section you are dealing strictly with Django. Because Wagtail is a layer on top of Django, it can do everything Django can do. And in most cases there is no need to reinvent the wheel. So instead of using a Wagtail-specific command, you use a Django command. That’s not incredibly important to know, but one of my missions throughout this book is to help you understand where Django ends and where Wagtail starts. I find context is always helpful, as in this example: Now that you’ve run that command you will see a new folder in your project called blog. It comes with the following folder structure, as seen in figure 3.1:

Figure 3.1. A tree structure showing your new blog app, along with its files and folders.

[image: Image 16]

Figure 3.1 shows you the blog app you created by only showing the files and folders. In most cases, but not all, you can delete the admin.py and views.py files. In larger websites where you might write standard Django code inside of your Wagtail website you may want to keep the admin.py and views.py files, but you can safely delete them right now and recreate them if you find out you want them at a later date.Wagtail uses models.py to store its pages, and Wagtail will magically merge Django’s admin functionality, view functionality, and model functionality into its Page class.

Tip

I like to keep tests.py for writing and running unit tests. That topic is beyond the scope of this book. If you won’t be writing any unit tests you can delete tests.py as well.

Until this point, nothing has changed. You won’t see a blog magically appear in your Wagtail admin, and Django won’t even know that the blog app exists.

This is due to Django’s security. Unlike other content management systems, like WordPress, where you can simply add files and they have an immediate effect on your website, Django takes a security-first approach and ignores whatever it can until explicitly told to accept something. This isn’t the case 100% of the time, but it’s definitely the case when creating a new app on your website.

Open up settings/base.py and find your INSTALLED_APPS. It’s a Python list (the Python data type) of apps that are allowed to be installed. At the top

you’ll see home and search - those two apps come with every Wagtail website. You’ll then see a whole bunch of apps that start with wagtail.

{something}. Wagtail itself is nothing but a huge app layered on top of Django and enabled in the settings file. After that you will see modelcluster and taggit - those are two third--party packages that Wagtail uses out of the box. And lastly, you’ll see a handful of Django contrib apps. Unless you know exactly what you’re doing, I suggest not removing any of the apps listed in INSTALLED_APPS right now.

INSTALLED_APPS = [

'home',

'search',

'blog',

…

]

To enable your new blog app, simply add "blog" to your INSTALLED_APPS.

Keep in mind that this is a Python list with strings in it so you need to use commas after each app and use double or single quotes around the name of your app.

Go ahead and start your local development server with python manage.py runserver. If there were no complaints from your command line then you’ve successfully created and installed a new app! Don’t worry if your blog doesn’t show up in your Wagtail website yet; I’ll walk you through that process in the next section.

Practice creating a new app

As your website extends beyond this book you’ll eventually create new apps, whether that’s for new Wagtail Pages or for Django specific features. Try to create a new app called mytestapp, install it in your settings, and create a new Wagtail TestPage. Don’t forget your migrations along the way!

3.2 Creating custom Page types

Now that you’ve created a new app using the startapp management command and enabled it in your INSTALLED_APPS settings, you can begin

adding new page types. Pages rarely do the exact same thing as other pages, so we tend to create new page types for specific purposes. Wagtail, by default, makes no assumptions about your website, other than needing a home page and likely needing a search app. It doesn’t know if you’ll be creating a blog or anything else. Think of it like building a website from the ground up. At first this might seem like a lot of work, but I’ll show you how quickly you can create new page types and have them immediately work on your Wagtail website.

Tip

No two websites are the same, and Wagtail understands this as a core principle. This is why Wagtail websites are created with most features disabled and with the option to enable them later. That, and it keeps your website operating quickly, efficiently and it’s more secure due to less exposed surface area..

To create new page types you only need to create a Python class that inherits from the Wagtail Page class in an installed app. Open up your blog/models.py file and add the code in the following listing: Listing 3.1 Creating custom page types

from wagtail.models import Page

class BlogIndexPage(Page): #A

pass

class BlogPostPage(Page): #A

pass

You’ll notice that the Django models import line disappeared. At this time it isn’t needed, nor is it being used. Anytime you have an import that’s not being used you can safely delete it from your file. There are no additional fields yet so your new Wagtail pages will be the same as your initial home page before we added any fields. If you try to add a child page before making (and applying) your migration files may see an Error 404 page, depending on your version of Wagtail, as shown in figure 3.2.

[image: Image 17]

Figure 3.2. An example of a 404 page you should see when creating a new page that doesn’t yet have migration files.

When you create a new Wagtail Page and you don’t yet have any migration files and then you try to add a child page, you’ll run into a 404 error, as shown in figure 3.2. In recent versions of Wagtail you’ll be presented with a standard page editing interface to create a new page, but you may not be able to save the page without seeing an OperationalError, like you see in Figure 3.3.

Figure 3.3. An example error suggesting that you need to create and apply migrations.

[image: Image 18]

If you end up seeing a similar error, like what you see in figure 3.3, just know this is perfectly normal. I want you to experience a common problem by opening your Wagtail admin at http://127.0.0.1:8000/admin/, editing your homepage, and clicking Add Child Page at the top of the page. I’ll show you what this looks like using Wagtail 4, shown in figure 3.4.

Figure 3.4. You can find your page actions, such as adding a child page, in this dropdown menu.

[image: Image 19]

When you’re viewing any page in the Wagtail admin, as shown in figure 3.4, you will see three dots next to the name of the page near the top of the page.

This is your breadcrumb area, and the three dots are called an ellipsis. Click on the link that says Add child page.

You should see three options when adding a child page: Blog index page, Blog post page, and Home page. Click the Blog Index Page option. In Wagtail 4 and newer, you’ll be able to edit your content without making migration files and applying them; however, you won’t be able to successfully save the page.

If you are working with an older version of Wagtail, being Wagtail 3.0 or older, you are served a 404 error – 404 means missing page. This is Wagtail's way of politely telling you that the page you want to add doesn’t exist.

Whenever you run into this issue you need to make migrations and apply them. The reason this happens is that Wagtail is trying to look up your new page in the database and determine which fields you can edit. However, your

database hasn’t been set up to match your code. This is where migrations come into play.

python manage.py makemigrations

python manage.py migrate

When you create your migrations you’ll see a new file was created at blog/migrations/0001_initial.py. Feel free to open this file and read through it, but don’t edit it unless you know exactly what you’re doing.

Those are the instructions Django needs to create a new table in your database with two page types.

Refresh the page in your browser and you’ll be able to add your new page.

Keep in mind you want every page to exist under the original Home Page.

Your site is set up by default to serve the Home Page as the root of your website. So the Home Page will map directly to http://127.0.0.1:8000/. When you create a new Blog index page as a child page (under the home page), it will create http://127.0.0.1:8000/blog/ - that is if you named the page Blog and the slug under the Promote tab is blog. The slug will match the URL path on your website, such as a page with the slug of blog would be accessible at http://127.0.0.1:8000/blog/. If you see a Page Not Found error or a missing page template appears, it’s because Wagtail was unable to find a published page with blog as the slug.

Note

If you try to preview your page before it has an official template file you’ll see a TemplateDoesNotExist error. This is normal.

I’m assuming you’ll be calling this page Blog with the slug of blog, but you can name it anything you like. Just keep in mind if you use a different slug, the code in this chapter will need to be adapted for your use case.

Tip

You can change the slug of any page at any time. However, the home page will always map to thè/ÙRI on your website, and the root page will never be shown.

[image: Image 20]

Once you have created a Blog index page you can create a Blog post page as a child page to your Blog index page. So now you have: Root / Home Page / Blog Index Page / Blog Post Page This will map to http://127.0.0.1:8000/blog/blog-post-page/. Also keep in mind that there are no templates for these pages yet, so previewing your draft pages or published pages will result in a TemplateDoesNotExist error that looks similar to figure 3.5.

Figure 3.5. An example TemplateDoesNotExist error, showing the top half of the error page.

Django will display an error page that says TemplateDoesNotExist when it cannot find a template file to render, as you can see from the screenshot in figure 3.5.

If you take a look at the file structure of the home app, you’ll see a folder called templates/home/. This is just one location where Django will look for your page templates. Quickly click the Live button for your Blog index page or go to http://127.0.0.1:8000/blog/ and you’ll see a TemplateDoesNotExist error. Or if you are live-previewing your page while you edit it, in Wagtail 4, you’ll see the same error.

When you read the top portion of this error page, you’ll see it’s looking for blog/blog_index_page.html. That’s coming from your app name followed by the page model name. And in the first subsection of this page you’ll see

exactly where Django is looking - it will look in several directories for this file. As long as a file called blog_index_page.html exists in one of those directories, Django will stop throwing you a TemplateDoesNotExist error.

Tip

If you don’t declare an explicit template location in your Wagtail Page models then Wagtail will convert the class name to a file name. So BlogIndexPage turns into blog_index_page.html.

Personally, I like to keep relevant templates in their respective apps, like how the home app does it. However, Wagtail comes with a generic templates folder. If you open up mysite/templates/ you’ll see a 404.html, 500.html and base.html file. You can, if you wish, create a subfolder called blog/ and put your files in there. Let’s take this option so you have two working template examples in your project.

Create a new file located at

mystore/templates/blog/blog_index_page.html, as shown in the following listing:

Listing 3.2 BlogIndexPage template

{% extends "base.html" %} #A

{% block content %} #B

<h1>Welcome to {{ page.title }}</h1> #B

{% endblock content %} #B

If this does not work for you, it will boil down to one of these three scenarios: 1. The file is in a location that Django isn’t scanning for.

2. The file name has a typo in it.

3. The template file has a typo (usually with the block tags).

If you’ve double checked everything and it still doesn’t work, try stopping and restarting your local development server. Sometimes, but not often, Django fails to pick up on the fact that a new template file exists.

Next you’ll need to do the same thing for your BlogPostPage class.

Remember that it will convert BlogPostPage to blog_post_page.html and because this is inside of the blog app, it needs a template folder called blog/

as well. You can either create this file in your blog/templates/blog/ folder, or in the generic mystore/templates/blog/ folder. I decided to put the blog_post_page.html file inside of the blog/templates/blog/ folder so that all my blog related files are grouped together.

By now you might have realized that you can create unlimited blog pages anywhere in your Wagtail tree. In fact, you can create home pages as child pages to other home pages. Often this is not what you want, and it might confuse your content editors. So in the next section I want to introduce you to strict page structures in the Wagtail tree.

3.3 Enforcing a strict page tree structure

Enforcing a stricter page structure is a good way to help your content editors create content in the right place on your website. This concept can become truly powerful when you progress into advanced or complex websites. On the surface, restricting where pages can exist can be really helpful, especially in the case of your blog. You may not want people creating blog posts under blog posts under blog posts. It’s the same with home pages - you usually have just a single home page. A home page is typically a uniquely designed page and you may not want multiples of it. That’s where enforcing a strict page structure can be useful. You can see this problem in action by creating a child page under the home page, and you’ll see that you can create numerous Blog Index Pages, Blog Post Pages, and even more Home Pages.

Another benefit of restricting where pages can live, and how many can exist, is for search engine optimization. By forcing all of your blog posts to live under the /blog/ URL you are telling search engines like Google and Bing that all the child pages are relevant to the blog. Granted, search engines are typically smart enough to figure this out on their own and this isn’t needed for good SEO, but keeping a clean URL structure certainly helps search engines, and your readers, understand what is relevant.

I want to start off by limiting how many pages of a certain page type can

exist in your entire website. For instance, there needs to be only one blog index page:

class BlogIndexPage(Page):

max_count = 1

In your blog/models.py file, or any file that has a Page in it, you can restrict how many pages of this type can exist using the max_count property. Here I am limiting the BlogIndexPage to only ever have a single instance exist in my Wagtail website. If I don’t plan on having more than one BlogIndexPage, I typically restrict it. No migrations are needed for this functionality to work because it’s not creating new columns in the database. Try making this work for you and testing it out. Assuming you already have a BlogIndexPage that exists, add a second one as a child page to any other page. If done correctly, the option to create another instance of the BlogIndexPage will not show up.

You can apply the max_count property to any Page you have, as well. Go ahead and add it to your HomePage class now, then try to create a child Home Page. If you’ve applied the max_count property to your HomePage and your BlogIndexPage, you’ll see the only option left is the BlogPostPage –

and Wagtail will automatically assume you’re adding a blog post anywhere on your site, and will throw you right into the editing interface rather than giving you a choice of which page to choose. This alone is often not enough structure, so what I like to do is tell Wagtail that blog posts can only exist as child pages to the blog index, as shown in the following listing: Listing 3.3 Enforcing strict page structure

class BlogIndexPage(Page):

max_count = 1

subpage_types = ['blog.BlogPostPage'] #A

class BlogPostPage(Page):

parent_page_types = ['blog.BlogIndexPage'] #B

There are two ways to restrict where pages can live in your Wagtail tree: subpage_types are for child pages, and parent_page_types are for parent pages. You don’t need to set both as one option is usually good enough.

Personally, I like sticking with subpage_types because that tells me, and my

peers, that certain pages can be child pages and it seems to be a bit easier to understand than restricting parent page types. It’s good to know that both options exist.

Now that you have set the max_count, subpage_types and/or parent_page_types you can safely assume that your content editors are creating pages in the proper sections of your website. And in section 3.6

you’ll see why this can be important for you, your team or your organization.

Tip

If you want a page to have no child pages, you can use an empty list, like so: subpage_types = []. This is a Python list and takes any number of items (as strings), or no items at all.

As of right now, our two blog page types are very basic. They only come with whatever Wagtail gives us, which isn’t very much. In Chapter 2 you created new model fields for the Home Page but Wagtail has a very powerful feature called StreamFields that lets you create dynamic content and rearrange it in a way that looks great for your website. Once you’re finished up here please carry on to the next section where we learn about StreamFields and create some basic StreamField types.

3.4 Adding Wagtail StreamFields

StreamFields are a powerful feature in Wagtail and in this section I want to make it clear how they are so powerful and why they are absolutely vital to a modern website. You’ve surely seen a beautiful website where a page featured a nice image, then some rich text, followed by a video or another image, a large quote, and various other content. In some content management systems, those template components are hard coded so you always need to fill in those sections so that every page looks exactly the same. With a StreamField you can create these blocks of content and rearrange them. And each section is optional, so if you didn’t have a video to show on your page, you can simply omit adding that content. Each of these sections is called a block and you can have an unlimited number of blocks in each StreamField.

Tip

If you know about noSQL databases, StreamFields are stored as giant JSON

blobs in a large text field and will be unwrapped, processed, and rendered when someone views your page.

Why are StreamFields so important? Well, they let you mix and match content on the page. For apps like a blog, this means your readers aren’t looking at (basically) the same page with different written content. You can keep your content fresh and exciting, whereas standard fields on your page are typically hardcoded into your template in a specific location. You also benefit from reusability when using StreamFields, as shown in the following listing:

Listing 3.4 Adding a basic StreamField

from wagtail.admin.panels import FieldPanel #A

from wagtail.models import Page #A

from wagtail import blocks #A

from wagtail.fields import StreamField #A

from wagtail.images.blocks import ImageChooserBlock #A class BlogPostPage(Page):

…

body = StreamField([#B

("title", blocks.CharBlock(#B

form_classname="full title", #B

template="blocks/title_block.html" #B

)), #B

("richtext", blocks.RichTextBlock()), #B

("image", ImageChooserBlock()) #B

], blank=True, null=True)

content_panels = Page.content_panels + [#C

FieldPanel('body') #C

] #C

Let’s break this down and digest what’s going on. First, the body is the name of the field. By convention it’s usually called body but you can name it anything you like. The body is set to a StreamField field type and takes a list of tuples that can take optional keywords like form_classname and template.

The field itself takes additional keywords such as blank and null. If blank is

[image: Image 21]

True, this means you can save the page without any StreamField blocks in it, and null means the database value is allowed to be void of any value (including empty strings).

StreamFields are still a field, so whenever you add, remove, or change a StreamField you will need to create migrations and apply them.

python manage.py makemigrations

python manage.py migrate

Once you have created your migration files and applied them, you can load your Wagtail admin in your browser and edit your page. Figure 3.6 shows you what you should be seeing.

Figure 3.6. An example of what your StreamField will look like when editing the page.

Figure 3.6 shows what your StreamField blocks look like in your Wagtail admin when editing your page. Now you can add a title block, rich text block and an image. These are just examples and aren’t limited to these three types.

In a future chapter I’ll show you more advanced StreamField blocks. And like all things in the world of Wagtail and Django, there is no assumption about how you want to display your new content and thus the templates won’t magically guess where you want your StreamField blocks to show up, as shown in the following listing:

Listing 3.5 Displaying StreamField content in the template

{% extends "base.html" %} #A

{% load wagtailcore_tags %} #B

{% block content %}

<h1>{{ page.title }}</h1>

{% include_block page.body %} #C

{% endblock content %}

If you add some blocks to your BlogPostPage and preview (or publish the page and view the live page) you’ll see a TemplateDoesNotExist error. This is caused by template="blocks/title_block.html" in the page model. If you comment out that line you’ll see that the page renders perfectly, albeit a bit ugly because there isn’t any styling on the website yet. I dropped that template keyword in there on purpose to set you up for the next example.

Tip

You can add the template keyword to any StreamField block to give it more markup and styling.

If you are following along with the sample code so far, please uncomment the template=… line so you experience the TemplateDoesNotExist error again.

The TemplateDoesNotExist error will be familiar to you soon enough. This error page is incredibly useful if we read through it because it tells you exactly where it’s looking for the template file. For StreamField block templates I like to put them in the generic templates folder rather than in a specific app folder because blocks tend to be re-used across several apps.

Go ahead and create a new folder and file at mystore/templates/blocks/title_block.html and fill it with:

<h1>{{ self }}</h1>

Here we wrapped the content of the block in an HTML <h1> tag and placed the content of the tag in {{ self }}. Notice that blocks don’t use {{ page

}} because blocks aren’t limited to just pages and they always refer to themselves as self in their templates. Blocks can also be created in snippets and site settings, two topics that I cover later in this book.

If you view your blog post page now you will see that the title text is in a larger font whereas it was originally in a body-sized font and didn’t meet our purposes. With custom templates you can customize how your block is portrayed. Another example is the ImageChooserBlock where it shows the original image but we may want to crop the image, as shown in the following listing:

Listing 3.6 Adding a template keyword to a StreamField class BlogPostPage(Page):

…

body = StreamField([

("title", blocks.CharBlock(

form_classname="full title",

template="blocks/title_block.html"

)),

("richtext", blocks.RichTextBlock()),

("image", ImageChooserBlock(#A

template="blocks/image_block.html" #A

)) #A

], blank=True, null=True)

…

Now that I’ve told my ImageChooserBlock to render itself using a specific template, I can control exactly what it outputs. This is important because content editors tend to upload large images and you’ll need to crop them to fit the content on your website.

Also keep in mind that migrations need to be created and applied when a Wagtail Page model has field changes. Although StreamField changes don’t

actually create any database changes, Django will pick them up and create a migration file for you anyway, as shown in the following listing: Listing 3.7 Custom image block template

{% load wagtailimages_tags %} #A

{% image self fill-250x250 as img %} #B

 #C

In a custom template you have much more control over your StreamField blocks. You won’t always need to do this, but more often than not I see people preferring to use their own custom templates for their blocks.

Try this with the RichTextBlock and get it to render links and images normally. You may need to refer to the Wagtail documentation for this exercise and that’s OK – it’s good practice for when you outgrow this book.

You can add StreamFields to any page at this point. And if you want, you can add multiple StreamFields to a single page if you need to - though that’s fairly rare for most pages and websites that I’ve seen.

Next we want to take a look at adding blog posts to the /blog/ page because right now it’s a fairly empty page.

3.5 Adding blog posts to Page context

Adding context to your page is the act of passing additional information to your template. Context is the data that you, Django and Wagtail send to your templates. Whenever you see {{ page }} that means a variable called page is being passed to the template. In a StreamField template there is no explicit page variable because StreamFields can exist outside of a Wagtail Page.

Instead, you’ll use the {{ self }} variable to access StreamField block properties.

Wagtail adds these context variables on its own so you don’t have to write that functionality for every page. But sometimes you want to add something that’s unique to your site, as shown in the following listing. Or maybe you

want to execute some kind of logic written in Python and show it in your template - that’s a good example of when you need to add to your page context.

Listing 3.8 Adding custom context to a Wagtail page class BlogIndexPage(Page):

…

def get_context(self, request, *args, **kwargs): #A context = super().get_context(request, *args, **kwargs) #B

context['blog_posts'] = BlogPostPage.objects.live() #C

return context #D

If you’re familiar with object oriented programming in Python this will look somewhat familiar to you. But if you are new to OOP, this will look incredibly strange. What’s happening here, however, is quite simple if it’s broken down, line by line. First, I’m writing def get_context(…) which matches what Wagtail has in its Page model, in the original code Wagtail comes with. Then context = super().get_context(…) tells Wagtail to execute its original get_context() function and return it in a variable we can use. Then context['blog_posts'] = … is querying the website for BlogPostPages that are child pages of the BlogIndexPage, and are published using .live(). Lastly, the entire context, along with the new stuff I added, is returned.

[image: Image 22]

Now you can create new BlogPostPages, and publish them, and they’ll be available to you in the BlogIndexPage template. It’s also worth noting that your site should be restricting where pages can exist. If you have a BlogPostPage outside of the BlogIndexPage it will continue to get picked up in this example, but the link may not go to /blog/your-blog-post/.

Speaking of templates you’ll need to loop through each of the blog_posts from the context. Most of the time when you query your website for other pages using Django’s ORM you’ll get a QuerySet which is iterable and can be looped over. Open your blog/blog_index_page.html template file and replace your code with the code shown in the following listing: Listing 3.9 Looping through a PageQuerySet

{% extends "base.html" %}

{% block content %}

{% for child in blog_posts %} #A

<h1>{{ child.title }}</h1> #B

Read blog post #B

{% endfor %} #A

{% endblock content %}

Here I’m looping through all the blog_posts. If there are no blog posts,

[image: Image 23]

nothing will show up so make sure you have at least one published BlogPostPage in your website. With each loop, it’s assigning {{ child }} as a temporary variable in the template that mimics the {{ page }} variable, but this time it holds data for the child page rather than the overall BlogIndexPage. Head on over to http://127.0.0.1:8000/blog/ to see your new blog index page. You’ll notice it’s rather bland right now, but it’s automatically pulling in your blog posts. You can see an example of my work so far in figure 3.7.

Figure 3.7. A simple HTML-only page that shows my latest blog posts.

If everything is set up correctly you’ll have a bland looking BlogIndexPage that shows you the title of each BlogPostPage, as seen in figure 3.7, along with a link to the respective page.

Note

It’s often called an index page because it holds links to other pages, like an index of listings.

I often see context used for features like this. But it’s not limited to just this.

If you have custom Python logic you want to execute and then display, adding additional context is good for that too. Or if you end up creating a complex Wagtail website where Pages inherit from other custom page types you’ve created, you may want to overwrite, or delete, variables from your context entirely. As for the aesthetics of our pages, don’t worry too much about that right now. In the next chapter you and I will apply some frontend styling to make the website look a bit more modern, rather than plain text on a boring background.

3.6 Creating a global navigation

Global navigation is one of the most important parts of your website. Until now the website you’re creating didn’t need a global navigation because there weren’t links to other top level pages. Now I want people to land on any page and be able to click around. Without this ability, your users will have to guess pages and type them into the URL bar in their browser. So in this section you will create a simple template tag that will fetch child pages under the Home Page that are allowed to exist in menus.

Note

The foundations of the code in this section use pure Django to set the foundation of a template tag. But the function itself will use parts of Wagtail.

Open up your home/ folder and create two new files located at: 1. home/templatetags/__init__.py

2. home/templatetags/global_navigation.py

The __init__.py file tells Python that this folder can be used as a module and should not be overlooked. The __init__.py files are often left empty and that’s exactly what this is going to be: empty. The global_navigation.py will be loaded into the template using the {% load %} template tag and you’ll use the function that’s about to be created in the template.

Let’s start by opening up global_navigation.py, as shown in the following

listing:

Listing 3.10 Registering a Django template tag from django import template

from home.models import HomePage

register = template.Library() #A

@register.simple_tag #B

def global_nav_items(): #B

homepage = HomePage.objects.first() #C

return homepage.get_children().in_menu().live() #C

This template tag called global_nav_items will look up the first HomePage it can find (another reason why restricting your page tree can be important) and then look up the child pages that are published (not drafts) and are allowed in menus. The key here is the phrase allowed in menus. By default your pages are not allowed in menus. Stop here, edit your BlogIndexPage, click on Promote and check the box at the bottom that says Show In Menus.

You’ll need this turned on for your menu to work. And for all future pages you want to link to in your global navigation, you’ll need to check that box.

Keep that in mind as you grow your website over time as it’s a small but important feature.

Note

If you get a TemplateSyntaxError that’s because Django didn’t realize you created a new folder with files in it. You’ll need to stop your server, using CTRl+C on your command line, and restart Django, using python manage.py runserver to recognize these new files.

Next you’ll need to update the base.html file. Up until this point the base.html file hasn’t been edited whatsoever and for most websites, once it’s finalized it’s rarely edited. The base.html file is also the main point of entry for most of your future templates. Open up the base.html template file using your text editor. Your base.html file will be in the mystore/templates/ folder, as shown in the following listing:

Listing 3.11 Using the template tag in your template

{% load … global_navigation %}

…

<body class="{% block body_class %}{% endblock %}">

{% wagtailuserbar %}

<nav> #A

Home #AB

{% global_nav_items as nav_items %} #AC

{% for item in nav_items %} #AD

{{ item.title }} #AD

{% endfor %} #AD

</nav> #A

…

</body>

…

Notice how the {% load %} tag accepts the name of the file: global_navigation.py, with the .py part being chopped off the end. The function itself is called global_nav_items() and the template executes that function by using {% global_nav_items … %}

Note

If you don’t see a link to /blog/ on all your pages, make sure that it’s a direct child of the Home Page and that the Show In Menus option is checked and that the page is published.

Just like that, you now have a global navigation menu. Once you start creating new top level pages (directly under the HomePage) you can activate them in the menu by clicking the Show in Menus option under the Promote tab when you’re editing a page in the Wagtail admin. Go ahead and update that option in your BlogIndexPage and republish that page. When you visit any page on your website, you’ll see the link appears at the top, just as you see in figure 3.8.

Figure 3.8. A link to the main blog page is shown at the top of every page.

[image: Image 24]

In figure 3.8 you’ll see your navigation links to the main blog page now, along with a hardcoded link to your websites home page. If you don’t see the link to your blog, make sure you check the Show in Menus checkbox when editing your BlogIndexPage, and that the page has been published (and not just saved as a draft). Also keep in mind that Wagtail holds no opinions about your frontend, so the styling is completely up to you. However, in the next chapter I’ll provide some frontend styling using Tailwind CSS. This very light styling will help the website look more organized as this website gets converted from a simple blog to an e-commerce website.

In the next section I want to get you set up with an advanced way to experiment with Django and Wagtail. It’s not exactly related to creating a blog, but I think this chapter covered plenty of topics that you may want to experiment with, most notably Django's ORM (object relational mapper).

3.7 Learning by experimenting

Learning by experimenting is how I originally learned Wagtail. It’s fun and it exposes you to parts of Wagtail that aren’t formally documented. There are two primary ways to learn while experimenting: writing a ton of code, or using the Django shell and writing interactive snippets. Both are completely viable options but in this section I’m highlighting the second option: interactive coding.

Django comes with a powerful tool called a shell and you can access it at any time with python manage.py shell. You can import classes and functions you need and test them out directly in your terminal and get live feedback.

But the shell is typically quite limiting and doesn’t support a lot of great features. If you’ve ever used Jupyter Notebooks to experiment with Python, this is very similar to that but it goes through your command line.

The first upgrade I typically do is install ipython - an interactive python shell that can be installed using pip install ipython. The second thing I do is install django-extensions and that will give you access to shell_plus, which does things like automatic imports for you so you don’t need to waste time remembering all the different import paths. The django-extensions package can be installed with pip: pip install django-extensions and then activate it by putting it in your list of INSTALLED_APPS. You probably don’t want to install this in production since it won’t be used in production, so you’ll want to open your dev.py file and add it in there. Open up your dev.py file and add these lines:

INSTALLED_APPS = INSTALLED_APPS + [

'django_extensions',

]

If your local development server runs without any complaints, then you are good to use shell_plus.

1. python manage.py shell_plus

2. python manage.py shell_plus --ipython

The first option opens shell_plus and that gives you all the immediate imports

[image: Image 25]

you likely need. If you need to import something that shell_plus doesn’t support, you can import it like you normally would in a Python file.

Meanwhile the second option, which does the same thing, will load shell_plus but use interactive python and that comes with its own bag of goodies. Figure 3.9 is an example of shell_plus using the ipython flag in a standard command line program.

Figure 3.9. An example of my Django shell using shell_plus.

The shell_plus option is very powerful and can save you a lot of time because it will automatically import a lot of code for, as you can see from the green text in figure 3.9. I won’t go into all the power behind shell_plus and ipython because that could be its own book, so feel free to read through their

documentation if you want to learn more. The shell_plus functionality comes from a Django package called django-extensions and you can read more about it here https://django-extensions.readthedocs.io/en/latest/shell_plus.html Go ahead and open your Django shell, whichever one you prefer to use, and type the commands in the following listing, one by one: Listing 3.12 Interactive Django shell commands from home.models import HomePage

homepage = HomePage.objects.first()

homepage.title

homepage.get_children()

from blog.models import BlogPostPage

blog_posts = BlogPostPage.objects.all()

blog_posts

from wagtail.models import Page

all_pages = Page.objects.all()

for page in all_pages:

print(f”{page.title}, {page.id}”)

These are some basic examples of what you can do. Now I like to take this to the next level. Whenever you assign a variable, type a period after it and hit tab (on Windows you might need to hit tab twice). This should auto-populate some options for you and you can see what’s possible with each variable.

Pages come with lots of goodies that are worth exploring, along with standard Django Models, if you have any plain models at this time.

This section is purely meant to inspire you to explore and experiment in using interactive Python. It can be a lot of fun tinkering around with code this way, and it’s drastically faster than writing actual code and executing it in your browser. So have some fun with it and don’t feel like you have to know everything. This is simply a tool to put in your tool belt if you ever get stuck on something in Wagtail or Django.

3.8 Summary

To create a new app, run python manage.py startapp myappname and then add myappname to your INSTALLED_APPS in your base.py settings file.

To create a new custom page type first create a class that inherits from Wagtails’ Page class.

Wagtail Page models are written in the models.py file.

New page types need migration files applied for them to work in the Wagtail admin.

Use max_count to limit how many pages of a specific type can exist.

Limiting where pages may or may not exist can be controlled by using the subpage_types = […] or parent_page_types = […] properties in your Page model.

Adding a StreamField requires migrations.

StreamFields are made up of reorderable blocks. Each block can also have its own template file.

Adding extra data to your template is known as adding context.

Adding extra context to your page uses the get_context() function to automatically show all your blog posts in the blog index page.

Looping through a PageQuerySet uses the {% for x in y %}..{%

endfor %} template syntax.

4 Styling with Tailwind CSS

This chapter covers

Installing Tailwind CSS from a content delivery network Installing Tailwind CSS for production websites

Styling your base template to render global components Styling your specific templates to match your global theme Before you continue it’s a good idea to style the templates you’ve been working on. They don’t need to be perfect by any means, but your website should look like a basic website at a bare minimum, rather than plain text on a white background. The reason it’s a good idea to style some of your templates as you progress through Wagtail CMS in Action is to help reduce confusion when you add a lot of content to your templates. If your pages just look like giant walls of text and you come back to this chapter later on, you’ll likely be confused about where you left off and what your site is supposed to look like.

I’d like to emphasize two points. First, your templates do not need to be perfect right now — you need some kind of styling or design to help you understand where your content is. Without this step, most developers get stuck and think, “Why is my content not showing up?” when in reality the content is showing up but it’s in a massive heap of text and developers don’t see it right away. The second point I’d like to emphasize is that this is not a design book and you won’t be making the most beautiful website on the planet - the focus is on Wagtail, not on design. That said, if you are a frontend developer and would like to make your website look amazing right now, feel free to do that!

Wagtail is not opinionated about which frontend technologies you use, whether you use React, Vue, Angular, Svelte, jQuery, vanilla JavaScript, Bootstrap, Tailwind CSS, something else, or none of those. Wagtail does not hold any opinions or grudges. Wagtail is designed to help you manage your content in a friendly way for you and your team, and to help you extract the

information in a meaningful way. Every website is different and unique, and Wagtail does not want to dictate your website's design.

As always, the code is available on GitHub. The full pull request can be found here: https://github.com/KalobTaulien/wagtail-cms-in-action/pull/3.

You can also view the individual commits for each section of this chapter, along with all the files changed.

4.1 Installing Tailwind CSS

Installing Tailwind CSS can be quite the task for a non-frontend developer, and for that reason I provide you with two ways to install Tailwind CSS. The first option is more friendly for non-frontend developers and does not require you to use Node.js or NPM. Rather, you can simply add a single <script> element to your <head> in your base.html file. The second option is more involved, and is the proper way to install Tailwind CSS. It will require you to have Node.js installed on your computer, and the ability to run a second command in a second command line terminal window. But don’t worry, it’s not as scary as it used to be and I’ll guide you through it.

Throughout this book I’ll be using Tailwind CSS. Tailwind is easy to install and creates beautiful websites. Unlike Wagtail, I am applying my opinion here. But that does not mean you need to follow in my footsteps. If you’d rather use Bootstrap, write your own CSS, or use a different styling library —

that’s completely up to you. That’s one of the beautiful things about Wagtail!

It’s at this point that you have created a functional website. However, the website you’ve created so far is probably an eyesore. In this chapter you will apply some form of styling to your Wagtail website. But first, you need to install Tailwind.

4.1.1 Quick Tailwind installation

There are two ways to install Tailwind CSS. If you prefer not to dive into the world of frontend development but you still want to use Tailwind CSS, this option is the one you want to take. However, if you prefer to install Tailwind the proper way then you can skip this section and continue reading from

section 4.1.2.

It won’t be a professional or production-ready design, but what you’ll apply in this chapter using Tailwind CSS will do the job for now. For production-ready Tailwind you’ll want to use Node.js, npm, PurgeCSS, PostCSS and Webpack. That’s a lot to cover and out of scope for this book. Again, the emphasis here is to make the website look better than a wall of text. Nothing more, nothing less.

I’m going to cheat by installing the content delivery network (CDN) version of Tailwind CSS. CDNs are a good idea because they’ll connect you to the closest server to you in order to serve your files faster. This is better than reaching across the planet, so to speak, for a file.

Warning

You need to know that the CDN link to the Tailwind CSS file I’m about to use is not supposed to be used for production websites. I’m simply taking a shortcut at this point so we can focus more on Wagtail development than frontend development. When you are ready to launch your website, you will want to properly install Tailwind. The Tailwind documentation is quite good, as well, and you can find that here https://tailwindcss.com/docs/installation.

If you go to tailwindcss.com and click on Get Started, then click on Play CDN (https://tailwindcss.com/docs/installation/play-cdn) you’ll see one line of code you need to add. You’re looking for the Just-In-Time engine (JIT) so you can write whatever Tailwind CSS that you want without having to download a large .css file. That’s it. It’s quite amazing! That single line of code you’ll add to your website will go in the base.html file.

Start by opening up base.html and somewhere between the <head>..</head> tags, add the following line of code:

<script src="https://cdn.tailwindcss.com"></script> Then somewhere between your <body>..</body> tags add the following code, still inside the base.html file:

<div class="border bg-red-700 p-10 text-blue-200"> WOW THIS REALLY WORKS?!

</div>

This is just an example of how to use Tailwind. Tailwind is a utility-first library so you basically just add classes to your HTML elements and it will style your site the way you want. No more relying on components and nested CSS - this is essentially what you see is what you get (WYSIWYG). Need to add padding? Apply p-8 or some variation. And to figure out what the -8

stands for, you can always look at the Tailwind CSS docs - they are helpful!

Save your base.html file, start your Django server, and head on over to http://127.0.0.1/ (or http://localhost:8000/) to see your new styles.

If you don’t see any changes, make sure you reload your page once or twice.

Sometimes there is a level of caching that’s applied.

Note

If you run into caching problems using the JIT JavaScript file you can always load the full version of Tailwind using a CDN. The full version of Tailwind is a very large file, up to 5mb or more, so take extra caution not to deploy your production website using it as it’s not supposed to be used in production and should only be used in local development.

Once you see the styling affecting your website and can be assured that Tailwind CSS is loaded and working the way you expect, you can delete the sample code you wrote earlier as that was just a test to ensure your CSS

library is loaded properly. The sample code I’m referring to was the stuff here example:

<div class="border bg-red-700 p-10 text-blue-200"> WOW THIS REALLY WORKS?!

</div>

The sample code you can safely delete can be referenced again just before this paragraph.

4.1.2 Proper Tailwind installation

Properly installing Tailwind CSS is much more involved than adding a single line of HTML to your base.html file, but it’s a lot easier than it used to be, so don’t be scared. First, make sure you have Node.js installed. Node.js is a JavaScript-based programming language that most front-end developers use in modern development that allows them to write modern JavaScript and have it compiled down into cross-browser-friendly JavaScript, amongst many other things it does well. I’m using Node.js v14, but at the time of writing, Node.js v16 long term support, or LTS, is available, and you can use that.

If you’ve never worked with Node.js, that’s OK! It’s a lot like installing and using Python in the sense that you can execute commands directly from the command line. In the event that you do not have Node.js installed on your computer, please install it now by going to https://nodejs.org/en/download/

and downloading the LTS version for your operating system. Once the installer is downloaded, run it to install Node.js on your computer. After you have completed the full installation of Node.js, open a new command line window and type node -v to see your current version of Node.js.

Tip

When you install a new programming language you might need to close and re-open your command line program before the new commands will be available.

When you run the node -v command in your command line terminal you’ll see the version of Node.js that’s been installed on your computer, as demonstrated in figure 4.1.

Figure 4.1. Displays my currently installed version of Node.js through my command line program.

[image: Image 26]

Keep in mind that I’m using Node.js v14, as you can see in figure 4.1, because I installed Node.js prior to v16 being released. You might have Node.js v16 or newer, and that’s OK.

The next thing you want to do is head over to the Tailwind installation documentation, located here https://tailwindcss.com/docs/installation. I always keep this page open when I’m installing Tailwind into an existing project just for reference.

Open a new command line window (or tab) and cd (change directory) to your main Wagtail project folder. You’ll know when you’ve reached the right folder because you will seee a manage.py file in there.

Tip

On Mac and Linux you can type ls to list your files, and on Windows you can type dir to list your files.

Once you’ve located your main Wagtail project folder, go ahead and type the following commands:

npm install -D tailwindcss postcss autoprefixer postcss-import postcss-nesting npx tailwindcss init

The npm install command will install Tailwind CSS, PostCSS and Autoprefixer by downloading all the necessary files into a node_modules/

folder. The npx tailwindcss init command will generate your tailwind.config.js file for you, which tells Tailwind which options to consider when you, eventually, execute a Node.js command to generate a .css file.

Tip

Add node_modules/ to your .gitignore file, if you have decided to use Git with your project. This way you don’t accidentally commit thousands of small files to your repository.

Now that you have a file called tailwind.config.js in the root of your project.

Open that file and ensure it looks like the following listing: Listing 4.1 tailwind.config.js

/** @type {import('tailwindcss').Config} */

module.exports = {

content: [

"./**/*.html" #A

],

theme: {

extend: {},

},

plugins: []

}

I won’t need to watch and compile any JavaScript or custom CSS right now, so the only file type I’m telling Tailwind to look for are .html files.

Next, create a new file called postcss.config.js in the same directory that your tailwind.config.js file exists in, as shown in the following listing. Using PostCSS as a plugin is the most seamless way to integrate it with build tools

like webpack, Parcel and other build tools. It doesn’t hurt to have this in your project.

Listing 4.2 postcss.config.js

module.exports = {

plugins: {

'postcss-import': {},

'tailwindcss/nesting': {},

tailwindcss: {},

autoprefixer: {},

}

}

This is a fairly minimal PostCSS configuration file, but it’s slightly different from the one you’ll find in the official Tailwind documentation. I’ve opted in to use PostCSS imports, and to enable CSS nesting, like in standard SASS/SCSS files.

Lastly, before you start running Node.js commands to compile and create .css files for you, you need to create a frontend source folder, often called src/, as shown in the following listing. Inside of that folder, create a file called input.css. The final location of this file should be src/input.css, which you will need to manually create.

Listing 4.3 The source input file

@tailwind base; #A

@tailwind components; #A

@tailwind utilities; #A

* { border: 1px solid red; } #B

At this point you have a tailwind.config.js file, a postcss.config.js file, a src/input.css file, and a large folder called node_modules/, but none of this actually does anything for you. This has all been the initial setup, and your main Wagtail project folder (the one with manage.py in it) should now include these files and folders:

[image: Image 27]

The last step you’ll need to take is to run a couple of commands which depend on the phase of your development. I’ll explain that in more detail in just a moment.

During local development you may want to watch your files for any changes and have a new .css file automatically compiled for you. The magic at this stage can save you so much time! Imagine that every time you make a small design change in one of your Wagtail templates, you want to see what it looks like, but you need to open a second program and run another command to see those changes. That would get pretty annoying, pretty quickly! Maybe at first that doesn’t seem so bad, but imagine doing that 100 or 1,000 times every day. This is a tedious task, and it’s no way to spend your time as a developer! Instead, you can tell Tailwind to watch for changes in your .html files and recompile a final .css file immediately. All you need to do is refresh the page in your browser to see the differences. That’s the good life!

Open up your favorite command line program, and type the following command, as seen in figure 4.2:

npx tailwindcss -i ./src/input.css -o ./mystore/static/css/mystore.css --watch Figure 4.2. The tailwindcss watch command that looks for changed files and rebuilds the .css file your website uses.

[image: Image 28]

Enter the command you see in figure 4.2 into your command line, and hit Enter. It will continuously watch for changes in your .html files, and create a new mystore.css file whenever it detects a change. You can test this by changing any of your .html template files and watching it automatically update in your command line terminal.

Note

The output of that command was mystore.css. If your project was named something else, or if you’re using a different .css file in your base.html template, you will want to adjust the output command.

The previous command has three flags I want to identify for you: The -i flag, which is immediately followed by the input.css file. It takes a direct location to the input.css file, including the folder name.

The -o flag, which is your output file. You can tell it to create your final

.css file anywhere you like, with any name you like. I kept it simple by overwriting the existing mystore.css file in my mystore/static/css/ folder.

The --watch flag, which tells npx and tailwind to continue polling those files for changes.

Go ahead and open your mystore/static/css/mystore.css file in your IDE or text editor. You will see it contains all the Tailwind CSS you are using. It’s nicely formatted and easy to read, however, that can make for rather large file sizes in production. I’ll show you how to compress the file and make it production-ready in just a moment.

Next up, test out your new setup by writing some miscellaneous frontend code in your base.html file while the npx tailwindcss -i ./src/input.css

-o ./mystore/static/css/mystore.css --watch command is running. In another command line window, make sure your Django server is running.

You can write some test code like so:

<div class="border bg-red-700 p-10 text-blue-200"> I’m a frontend ninja now!

</div>

When you check your command line program, you will see it is rebuilding your assets and dumping the final code into your mystore.css file. When you view your website you will see a big red banner with some text, like in figure 4.3.

Figure 4.3. Shows that your entire website has changed and that the classes from your template files have been compiled properly.

[image: Image 29]

Load up your Wagtail website in your browser, and you should see your example code with a red background, blue text and a border, as shown in figure 4.3.

Tip

If your CSS is not loading properly in your browser, check that your website is loading the correct .css file by opening your browser’s dev tools. The filename must match the filename from the Node.js command. You will also want to check your command line terminal for possible errors when it tries to compile your CSS.

When you’re ready to compress your mystore.css file, or minify it, you can run another command that will remove all the unnecessary spaces and line breaks.

npx tailwindcss -o mystore/static/css/mystore.css --minify That command will take an existing .css file and minify it by removing all the spacing it can, in turn creating a smaller version of your .css file. This is the command you will want to use before deploying your website to production in the future. For now, tuck these two commands in your back pocket because you’ll need them later.

Once you see the styling affecting your website and can be assured that Tailwind CSS is loaded and working the way you expect, anyou can delete the sample code you wrote earlier as that was just a test to ensure your CSS

library is loaded properly.

Tailwind CSS is a utility-based CSS library, meaning you rarely ever need to write your own CSS because all your styles are in prewritten CSS classes for you. However, that means there are a lot of classes to make use of, and that’s nearly impossible to remember. So if you ever get stuck or become curious about what Tailwind CSS can offer, you can always go to the official documentation and see what they have to offer:

https://tailwindcss.com/docs/installation. The search feature is absolutely amazing!

4.2 Base template and home page styling

Every template a Wagtail Page uses will, technically, have a minimum of two templates: the template it’s trying to render, along with the template it extends from - which is typically the base.html template. When you’re just starting on a Wagtail project your website doesn’t look great. That decision was made on purpose because Wagtail holds no opinions about which frontend technologies you use. Again, Wagtail does not want to dictate how your website should look or act on the frontend of your website.

Note

When I say frontend I’m talking about the design of your website and any technologies related to it, such as React.js or Tailwind CSS.

Keep in mind that no two websites are exactly the same. So feel free to copy what I’m doing in this chapter,and steal anything you like or implement your own design. The goal is to add simple styling to your website so you can keep the frontend of your website organized as you continue to develop more features.

The first thing I usually tackle is the navigation. Right now the navigation is a bare bones list of links. Your navigation typically has two primary subsections: one for your logo and another for the links to other pages.

Your navigation is a global component, meaning it should exist on every page. If anything should exist on every page, that means you should be adding the code to your base.html website.

Note

For now, you’re not going to make this website responsive/mobile friendly -

let’s just focus on a desktop version. With Tailwind CSS it's easy to add mobile support later on.

Go ahead and replace the menu work in base.html with the following code.

Also feel free to read through this, take some time in the Tailwind CSS

documentation to read about each class and what it does. Most of it is pretty self-documenting, but classes like max-w-6xl aren’t exactly intuitive to begin with and the 6xl maps out to a certain number of rems.

Listing 4.4 Styling the global navigation bar

<nav class="border-b shadow-md p-4">

<div class="max-w-6xl mx-auto flex justify-between">

Home

<div>

{% global_nav_items as nav_items %}

{% for menu_page in nav_items %}

<a

href="{{ menu_page.url }}"

class="text-blue-500 hover:text-black transition"

>

{{ menu_page.title }}

 {% endfor %}

</div>

</div>

</nav>

The next section to add is the hero section. It’s the big banner that’s typically right below the navigation. It often has an image, some text and a call to action. The goal of the hero is to explain what the page is about and to get the user to take an action. But sometimes they are purely informative, too.

Keeping your base.html file open find your </nav> tag and immediately below it add the following:

…

</nav>

{% block hero %}{% endblock %} #A

{% block content %}{% endblock %}

…

The {% block hero %}{% endblock %} line of code is absolutely vital. It allows you to write {% block hero %}{% endblock %} in any template that extends from base.html, which is all of them right now. By default there’s nothing in it, but if you wanted placeholder styling or code you could add that between the starting and ending block tags. For your website, let’s keep it empty with no default value and allow other templates to inject code into that block.

Open up home/templates/home_page.html and add:

…

{% block hero %}

<h1>testing</h1>

{% endblock %}

{% block content %}

…

Then in your browser open http://127.0.0.1/ (or http://localhost:8000/) and you will see, in big text, the word testing. If you see it, you have successfully

extended the base.html template to give child templates the ability to inject code in that exact spot in your code.

Let’s add real content in your home_page.html file. Replace the {% block hero %}{% endblock %} code with the code in the following listing: Listing 4.5 Adding a hero block

{% block hero %}

<div class="bg-gradient-to-r from-green-300 via-blue-500 to-purple-600">

<header class="max-w-6xl mx-auto py-24 text-white grid grid-cols-3 gap-8">

<div class="col-span-2">

<h1 class="text-5xl">{{ page.title }}</h1>

</div>

<div>

{% if page.subtitle %}{{ page.subtitle }}{% endif %}

</div>

</header>

</div>

{% endblock %}

Feel free to experiment with the above code in any way you want. Once more, this website won’t win any awards for its spectacular design, but rather, it’s going to look quite basic and about 200% more organized than it originally did.

Now let’s make all of the future content for your website exist in a container.

Note

A container is a block of HTML and CSS that, typically, centers your code in the middle of the page so your words don’t hug either side of the browser.

In your base.html file, wrap a <div> with a max width and automatic left/right margin alignment around your {% block content %}. This will make sure that all of your future content from all of your pages has a max width and is centered. This also lines up with your navigation content and the hero content.

…

<div class="max-w-6xl mx-auto py-12">

 {% block content %}{% endblock %}

</div>

All of your content from every page will now be aligned in the middle of your page. This is a common theme that modern websites use to avoid having text stretch too wide across large monitors and TV displays.

Note

You can only have one block with the same name. If you run into an error that says you have two blocks named content, simply delete one of them and refresh your page.

Next up is the footer. Just about every website has a footer – it’s for adding additional links, copyright symbols, and other misc. information that your readers may want to see.

Note

Most web pages have a footer. These are great for helping Google and other search engines find their way around your website by adding extra links or information to every page.

If I ask you which template file you need to edit, knowing that every page has the same footer, which file would you open?

If you said base.html, you are correct!

In your base.html, and above the </div> element containing the {% block content %} add the code in the following listing: Listing 4.6 Adding a global footer

{% block footer %}

<footer class="max-w-6xl mx-auto border-t py-12 my-12">

<div class="flex justify-center space-x-4">

<div>

Home

</div>

{% for menu_page in nav_items %}

{{ menu_page.title }}

{% endfor %}

</div>

<div class="text-center text-sm"> Copyright © {% now "Y" %}

</div>

</footer>

{% endblock %}

I opted to wrap the footer in a {% block %} so that future pages can overwrite this with something else, possibly replacing the entire section with absolutely nothing. This is good for checkout pages that allow the user to focus on a task without being distracted by more links.

If you go to any blog page right now, you'll see that the navigation and the footer are applied to every page and that your content is immediately centered on the page, too. However the styling for each blog post in the BlogIndexPage template and the individual blog posts are not styled yet. At this point I would like you to attempt applying styling to your blog_index_page.html and the blog_post_page.html template files before moving on.

Tip

If you get stuck you can always undo your work and continue reading this chapter.

4.3 Blog page styling

There are only two templates left that need some styling. At this point most of the hard work is done because of the blocks and global components in the base.html file. The two templates remaining are the blog_index_page.html and the blog_post_page.html page. As I've mentioned before, this is a book about Wagtail CMS so I’m not going to dive too deep into the frontend specifics of this Wagtail website, but you can always pause here and continue styling your website the way that makes you happy. As always, this frontend code is completely optional. At no point should you feel any pressure to style

or template your website the same way I'm doing in this book. And you certainly don't need to learn and/or use Tailwind CSS, if you don't want to.

Let’s start with the blog_index_page.html template - the template that lists all the blog published blog posts. The blog index page, sometimes called a blog listing page, is a very simple page that links to other blog posts. That’s all it does, and rarely does it need anything more.

Because the blog detail pages are relatively simple you really don't have a lot to work with. But if you feel like this is too basic and want a challenge, I would suggest adding, and displaying, a preview image to each blog post, and displaying that image on the blog index page. But don't worry about adding authors right now. Adding blog authors gets into a feature known as Snippets, which I’ll guide you through later in this book.

First things first, let's add a hero section to the blog index page. This can be copied from the home_page.html if you’d like, and modified to suit your needs. You’ll notice that the hero section is nearly identical in code to the home_page.html, so if you’re feeling up for a challenge you can always take this code and make it reusable by creating a new template file and including it in both templates so that future changes will affect both page templates.

Open blog_index_page.html and add the code in the following listing: Listing 4.7 Adding another hero block

{% block hero %}

<div class="bg-gradient-to-r from-green-300 via-blue-500 to-purple-600">

<header class="max-w-6xl mx-auto py-24 text-white text-center">

<h1 class="text-5xl">{{ page.title }}</h1>

</header>

</div>

{% endblock %}

If you view your blog index page, which lives at http://127.0.0.1:8000/blog/

you'll see a nice hero with a colorful gradient background.

Then in your {% block content %} you just need to make this look a little nicer, as shown in thèsting. You can use a typical list if you'd like, but I

opted for a bigger section that could have room for a subtitle or image if you wanted a bit of a challenge.

Listing 4.8 Styling the blog index page

{% block content %}

<div class="divide-y divide-solid">

{% for child in blog_posts %}

<section class="py-12">

{{ child.title }}

{% comment %}

You could add a subtitle and image in here, too.

Don't forget to add those fields to your models.py file, run migrations, and then you can access them with {{ child.specific.subtitle }}

{% endcomment %}

</section>

{% endfor %}

</div>

{% endblock content %}

Save your blog_index_page.html file and view your main blog page. And it should look like figure 4.4:

Figure 4.4. Your BlogIndexPage template looks like this.

[image: Image 30]

So far, figure 4.4 shows what the BlogIndexPage, or the blog_index_page.html template, looks like. It’s quite basic at this point, and that’s OK. You can click through any of the links on this page to see a blog post. Those links go to the blog post page, also sometimes called a BlogDetailPage because, well, it’s a blog post and shows the details of said blog post.

Like the blog index page and home page templates, you probably want to add a hero section so users know what the post is called.

Note

We aren't using a standard hero template because all of the hero sections have been too different so far. But if your hero sections are all the same, you can write {% include "includes/hero.html" with title=page.title

subtitle=page.subtitle %} to write one file but use it over and over again.

Open up your blog/templates/blog/blog_post_page.html file and add to it the code in the following listing:

Listing 4.9 Adding the blog detail page hero section

{% block hero %}

<div class="bg-gradient-to-r from-green-300 via-blue-500 to-purple-600">

<header class="max-w-6xl mx-auto py-24 text-white text-center">

<small>{{ page.get_parent.title }}</small>

<h1 class="text-5xl">{{ page.title }}</h1>

</header>

</div>

{% endblock %}

This is very similar to the hero section from the blog index page. In fact, I stole about 90% of the code from the other template. But notice the one thing I added here: {{ page.get_parent.title }}

Every Wagtail page comes with a parent, even the home page. The template syntax {{ page.get_parent.title}} is the same as the following code, but used in the template rather than being written in Python.

def get_parent_page_title(page):

parent = page.get_parent()

title = parent.title

return title

Or

page.get_parent().title

Like all generic page objects, you can use .url, .title and any other field that comes with the Page object. The default Wagtail Page object is different from the custom page types that you’ve created so far in the sense that your custom page types have additional data. The only difference between what you did earlier, compared to what we're doing now, is you’re looking for the parent page information instead of the child page information.

Hopefully at this point the Wagtail page hierarchy starts to make more sense.

If you load up your website in your web browser you'll see that our entire website has a theme with different sections. Every page has these four elements:

1. Navigation bar

2. Hero section

3. Content section

4. Footer

The design isn't perfect. Not even close. But it's exponentially better than what I started with not that long ago, which was just a basic HTML page with no color or styling whatsoever. And design, like many things in web technology, is constantly evolving.

4.4 Summary

Your initial design work is a way to organize your content at this point.

Parent pages allow you to create child pages on your website.

Child pages are like files in a folder on your computer.

There can be numerous child pages beside each other called siblings.

Child pages can only have one parent page, whereas parent pages can have multiple child pages.

Think of parent pages and child pages like a folder system that has subfolders and files.

You can use Tailwind CSS, through the Just-In-Time JavaScript library, to start writing Tailwind without needing to compile and purge unused CSS – and no webpack or frontend build systems needed!

Global components almost always go in the base.html template file.

Injecting code into your global template system requires adding a {%

block %}{% endblock %} in your base.html file.

Reusing template files is as easy as writing {% include

"folder/template_name.html" %} and the file itself should exist in mystore/templates/folder/.

To access the parent page from inside of a template you can write {{

page.get_parent.title }} and {{ page.get_parent.url }} .

5 Creating a Wagtail store

This chapter covers

Setting up a brand new app

Using Wagtail Orderables

Adding more advanced StreamField blocks

Using Wagtail’s built-in search

Welcome to what I like to call “the good stuff.” In this chapter I will show you how to use more advanced features such as Orderables and customized StreamField blocks. Don’t worry if those topics sound daunting right now.

By the end of this chapter you’ll be familiar with how it all works. I’ll also show you how to use Wagtail’s built-in search capabilities to create a global search function so people can find your products. Some of this is repeated code for you, if you created the blog with me prior to this chapter. But I like to make sure everyone is on the same page without making assumptions about whether you started this book from the very beginning.

At first I will go over creating a new app called products and together you and I will create two new page types: a ProductIndexPage and a ProductPage.

You might have noticed, already, that this is following the same pattern from the blog. This is a standard pattern across most Wagtail websites I have seen, where the app's primary page is called an index page (or sometimes a listing page).

It’s absolutely vital that you have a clear understanding of how Wagtail’s tree works at this time, otherwise you may find yourself confused in the future when working with nested pages. Don’t worry, though, it’s super easy! An example of how the page tree works can be found in figure 5.1.

Figure 5.1 A set of Wagtail Pages shown in a file and folder tree.

[image: Image 31]

The homepage of your website will always be the first slash after your website's domain name. As an example, when somebody goes to https://yourwebsite.com/, Wagtail will look for the slash after the .com and lookup the default homepage. You can see this in action in figure 5.1.

Every page you create after the home page will be nested under the home page and the slugs of each page will be visible in the browser URL bar. So if you created a child page under your homepage called blog, that would convert into https://yourbwebsite.com/blog/. When you create another child page under the blog page, Wagtail will generate the URL like so: https://yourwebsite.com/blog/dev-life-or-goat-farmer/. An example of how this would be broken down inside of Wagtail can be seen in figure 5.2.

Figure 5.2 A breakdown of an example blog post URL from a Wagtail website.

[image: Image 32]

You might be asking yourself, “Kalob, why is this important to know right now?”. Well, this is the Wagtail Page tree, and in this example the /blog/

page is also known as your Index page (or Listing page), because that’s a page that, typically, links to its own child pages. All of this can be visually seen in figure 5.2.

Index pages are not strictly needed but provide a way for you to add functionality to your app and help keep your website (adn Wagtail Pages) neatly organized for your content editors. Let’s say you want to add an internal search function that only searches for products and doesn't search every page across your website. You could put that search bar on the ProductIndexPage, along with information about your policies, and then add marketing efforts and several calls to action, known as CTAs, that don’t interfere with the actual product itself.

Inside of the ProductDetailPage will be two types of reorderable content: Orderables and StreamField blocks. While these two features seem similar on the surface, they do very different things. As a quick glimpse before getting started, Orderables allow you to reorder pre-structured content, whereas StreamFields allow you to mix and match several different types of content.

Don’t worry, I’ll dive into these in more detail throughout this chapter. It will be helpful to keep in mind that Orderables are, typically, more strict for your editors.

Lastly, I’ll implement a product-focused search onto the ProductIndexPage. It will use key components from the search app, which comes as the default with a new Wagtail installation, and I’ll get you to adapt it to use ProductDetailPages with a custom query parameter in your URL.

This chapter tackles a lot all at once and by the end of the chapter you will have a catalog of products on your website. You won’t be able to accept payments yet – that comes a little bit later in this book. But at least your website will have the content and data laid out nicely for your editors, and your website will have a custom search feature that you can adapt and adopt for other parts of your future website, should you decide to modify your website beyond what this book teaches.

All the file changes are available on GitHub in this pull request: https://github.com/KalobTaulien/wagtail-cms-in-action/pull/4.

5.1 Creating the Products app

Let’s get started by creating a new app for your existing Wagtail website.

This app is different from the blog in enough ways that it warrants its own app.

Note

Sometimes the lines between apps become blurry. This is normal. If you can’t determine where to write a new function, for example, you can either create a utils app or put your code in the app that it has the most in common with.

First, open your command line and activate your virtual environment (or enter your Docker container, ssh into Vagrant, or access your preferred layer of abstraction). Then run the following command:

python manage.py startapp products

Here, you are telling Python to run the manage.py command which executes the startapp management command with the last parameter being products which is the name of your app. If you take a look at the folder structure in

your text editor, you will see a new folder called products/. By default, apps are not installed in Django and that’s for security. To install, or activate, this new app, open your mystore/settings/base.py file and add products to your INSTALLED_APPS. Your list of installed apps should now look like this: INSTALLED_APPS = [

'home',

'search',

'blog',

'products',

…

]

That is all you need to do to create and install a new app. Pretty easy, right?

Note

The reason I added the products app to the Python list of INSTALLED_APPS in the bae.py file, specifically, is because I want this app to be installed in development and production websites. If I only wanted an app to be available during local development, I would have added it to dev.py instead.

Next, I want you to create two new page types in products/models.py. One should be called ProductIndexPage and the other should be called ProductDetailPage. I’d like you to try adding these on your own. If you get stuck or break something, you can always delete the products/ folder and subfolders and start again. If you don’t know where to start with this, continue reading and I’ll walk you through the steps to create a new page type.

Listing 5.1 Creating two new page types

products/models.py

from wagtail.models import Page

class ProductIndexPage(Page):

max_count = 1 #A

subpage_types = ['products.ProductDetailPage'] #B

class ProductDetailPage(Page):

 parent_page_types = ['products.ProductIndexPage'] #C

subpage_types = [] #D

This is how you will create two new page types. Now keep in mind that the code does not reflect changes in the database yet. Pages, just like Django Models, need to have migrations created and applied. Your Wagtail Page should always have a migration file that sets up your database properly to store data. If you ever forget to run migrations, but you have this code and you try to create a new page, you will likely see an error in the Wagtail admin or a 404 Missing Page response. Go ahead and create a new migration and then apply the changes to your database.

python manage.py makemigrations

python manage.py migrate

If you ever run into an issue where Django says there are no migrations to create or apply, it’s likely that one of two things has happened: either your database is completely up to date already, or you don’t have the new app listed in your INSTALLED_APPS setting in base.py.

You may have also noticed I purposely added subpage_types and parent_page_types to the two new product pages, along with a max_count property. These are not necessary but I like putting them in here for two reasons:

1. To show you a couple more settings that developers can apply.

2. To show how you can restrict where pages can exist in your Wagtail website.

Go ahead and create a new ProductIndexPage under your existing HomePage in the Wagtail admin.

Note

If you can’t add a ProductIndexPage in your Wagtail admin interface make sure you open your home/models.py file to see which subpage_types are being restricted. If there’s an existing restriction, add products.ProductIndexPage to your Home.subpage_types property.

Try adding a couple of empty ProductDetailPages under your ProductIndexPage as well. Also take note that you cannot add any child pages to your ProductDetailPages. That’s due to the empty Python list that was provided in ProductDetailPage.subpage_types = []. This tells Wagtail that there are absolutely no child pages allowed. I like to add this in some of my projects to make sure editors can’t accidentally nest products under products.

Let’s leave this here for now and carry on to Orderables.

5.2 Orderables

Orderables are how you create repeatable content in Wagtail, and are one of my favorite features. They let editors create a limited set of objects, which can be reordered in the Wagtail admin editing interface (the Edit Page section of the Wagtail admin), and will reflect that ordering in your template.

Think of it like a shopping list. If you went to the grocery store with a list of 15 items you had to pick up, you might want to order them in your list so all your fruits and vegetables are together. On paper you need to cross out the item and rewrite it, or maybe even make a new list. Orderables allow you to move your item up or down the list without having to rewrite anything.

Repeatable content is often similar in nature. Another example, as shown in figure 5.3, are links to other pages, images or sometimes dedicated spots for advertisements.

Figure 5.3 What repeatable content looks like on a standard website.

[image: Image 33]

Repeating content, as shown in figure 5.3, is not as dynamic in nature as the main content of a page, which typically has rich text, images, links, videos, misc. embeds, quotes, and various other types of content. Orderables are slightly more strict about which data is used, but often repeats itself. Another great use for an Orderable would be selected related pages, like what you often see at the bottom of a blog post.

One thing to keep in mind as you learn about Orderables is their difference to StreamFields. An Orderable is a strict structure of data whereas a StreamField is fluid, like a stream of water, where you can mix and match several different content types like images, titles, richtext, embeds, and more. Unlike StreamFields, Orderables typically have a set of fields the editor needs to fill in and always generate the same design in your templates.

For the ProductDetailPage, you may want to show several images that highlight your product. One way to do this is to create a ForeignKey to a Wagtail Image object for every image you want. But if you want up to 15

images, that means selecting up to 15 different images, and if you want to reorder them, well, too bad, because those are hard coded. This is where an Orderable comes in. Because you want several images and may want to rearrange those images so the first image is the best, you can create an Orderable with a ForeignKey to an image and set a minimum to 1 and a maximum of 15, and these restrictions will be put in place for you. And in this scenario, your marketing team will likely want to rearrange the images so the first few are the best, and possibly replace them entirely at a later date.

Now, I realize at first this is tricky to wrap our minds around. So let’s create an Orderable and learn by writing code. Open your products/models.py file and add the following code:

Listing 5.2 Adding an Orderable

from django.db import models

from modelcluster.fields import ParentalKey

from wagtail.admin.panels import FieldPanel, InlinePanel from wagtail.models import Page, Orderable

… Your ProductIndexPage here …

class ProductDetailPage(Page):

…

content_panels = Page.content_panels + [#A

InlinePanel(#B

"product_images", #B

max_num=5, #B

min_num=1, #B

label="Product Images" #B

), #B

]

class ProductImages(Orderable):

page = ParentalKey('products.ProductDetailPage', related_name="product_images") #C

image = models.ForeignKey(#D

"wagtailimages.Image", #D

null=True, #D

blank=True, #D

on_delete=models.SET_NULL, #D

related_name="+" #D

) #D

alt_text = models.CharField(max_length=100, blank=False, default='') #D

 short_description = models.CharField(max_length=255, blank=True) #D

panels = [

FieldPanel("image"), #E

FieldPanel("alt_text"), #E

FieldPanel("short_description"), #E

]

Take a second to read through this. I strongly believe that great developers are taught to read through code, even if they don’t understand it at first. Once you’re finished reading, let’s carry on by breaking this down.

First off, there are a bunch of new imports at the top of your file such as Django models, a ParentalKey, InlinePanel and an Orderable.

Note

Even though Wagtail 3 introduced a centralized panel type called FieldPanel, some custom panels are still needed due to additional functionality, such as an InlinePanel.

Second, there’s a new InlinePanel in the content_panels. Content panels are how you tell Wagtail which fields to render when editing a page. This is an opt-in feature and if you forget to add a new field to your content panels it will not be seen by your editors. That in itself can be very useful if you want to track data on a page but never have it seen by your editors, such as page views or total downloads if you were to sell an ebook.

Lastly, there’s a new class that inherits from Wagtail's Orderable model: ProductImages(Orderable). This is where the real Orderable comes into play and requires some breakdown. An Orderable is a plain Django Model with one extra field, and default sorting. An Orderable comes with a sort_order IntegerField and then uses that number to sort the Orderables from lowest to highest. Wagtail takes care of that numbering for you and your editors, so you never need to do anything with that. Let’s take a look at the source code for an Orderable in figure 5.4.

Figure 5.4 The source code for a Wagtail Orderable.

[image: Image 34]

Figure 5.4 shows the source code for an Orderable, taken directly from the Wagtail source code on GitHub. As you can see an Orderable is simply a Django model with an IntegerField that sorts itself by the number in the IntegerField. As a developer, you simply need to extend a Python class using this Orderable class to gain the advantages of sorting. Wagtail will generate the proper user interface for your editors and handle saving your Orderable instances in the right order.

Typically in Django you would write a ForeignKey to another object and Django will understand the relationship, but with an Orderable you need to go a step further by using a ParentalKey to attach the Orderable to a specific page type. It comes with a related_name keyword argument that you can use in your template, which I’ll go over in a little bit.

Then there is an image which is a standard ForeignKey to wagtailimages.Image, two CharField’s that are standard Django fields, and lastly there are panels. These aren’t content_panels; they are just normal panels.

Tip

[image: Image 35]

A panel is how you get a field to display in the Wagtail admin so your editors can make changes. Also note that the sort_order field from the Orderable does not appear.

A page holds different panel types, such as settings panels, promote panels, and content panels (those are the three default panel types). That will make your content editable in different tabs while editing your page. However, an Orderable does not come with tabs on a page; it’s simply just content, so it’s called panels and it takes a list of FieldPanels.

Speaking of FieldPanels, now is a good time to mention that you can add fields that are not editable by your content editors. This can be a really useful technique as a developer when you want to store data but don’t want your editors to see it or change it. An example would be an original_published_time to track the very first time a Wagtail page was published. This could be setup to automatically store the data when the page is published the first time, and cannot be seen or edited by anyone. To prevent users from changing content on your page simply do not add it to your list of content_panels. Figure 5.5 demonstrates how to ignore a field so that the content editors cannot access it, but developers are able to save information whenever they need it.

Figure 5.5 Custom Page model fields are hidden by default unless put into a FieldPanel.

When you save all of this work, make your migration file(s) and then apply your migrations you’ll be able to edit a ProductDetailPage and see that you

can add product images. Try and save your page with zero images, and it won’t save because the minimum was set to one. Try to add more than five, and Wagtail won’t let you - again because the maximum was set to five. And your page will look something along these lines, in figure 5.6, (minus my custom content):

Figure 5.6 What an Orderable looks like in the Wagtail admin.

[image: Image 36]

Orderables look and feel a lot like a StreamField, but the interface is a little different, as seen in figure 5.6. Where StreamFields have different options to choose from, called blocks, an Orderable is one strict block that repeats itself.

Notice the arrow at the top right of the new Orderable area. No more copying and pasting – simply click a button and it will reorder the content for you.

This is a fantastic way to manage your content! It’s so much easier than deleting content, copying content, pasting content and re-selecting images.

Plus, you get the added benefit of setting a minimum and maximum number of Orderables the editors can add.

Tip

If you run into an error that says “ 'NoneType' object has no attribute

'_inc_path'” that means Django Tree Beard, a package Wagtail relies on to create its hierarchy of pages, has run into a problem. To solve this run the following command python manage.py fixtree.

Now you need to be able to display these orderables on your page. This requires a template loop and Wagtails built-in image cropping feature. But first, the template files themselves don’t exist yet. If you try to preview your page you should run into a big scary page that says TemplateDoesNotExist at the top. On this page it will tell you where Django is looking for your template file. Typically, you have two primary options as to where you should put this file:

products/templates/products/product_detail_page.html, or templates/products/product_detail_page.html

It’s up to you where you want to create the file. I personally enjoy keeping my app templates in the app folder that was created when I run python manage.py startapp {myappname}.

Note

You can always tell Wagtail to look in a different place for your template file by setting template = "folder/custom_template_name.html" in your

custom Page model.

If at any time you can’t figure out how to create a new template file in the right location, stop and ready through the problem that Django shows you.

An example of the standard error page Django will display can be seen in figure 5.7.

Figure 5.7 A typical TemplateDoesNotExist error, with highlighted sections to pay attention to.

[image: Image 37]

In figure 5.7 the error page is telling me: 1. The template does not exist

2. It’s looking for example_missing_template.html 3. It’s looking for the template file in /mystore/templates/,

/home/templates/ and /search/templates/.

To solve this problem, double check your template file exists in one of the directories Django is looking in, that you don’t have any typos in your template filename, and if all else fails you can always try stopping and restarting your local Django server in your command line.

Now this was just an example and does not reflect the actual code in this chapter, but I wanted to make sure you know exactly how to fix this problem when it comes up. And this problem will pop up at some point in your development career.

Wherever you decide to create your new template for your ProductDetailPage, make sure you add the following code: Listing 5.3 Looping through Orderables in a template

{% extends "base.html" %}

{% load wagtailimages_tags %} #B

{% block content %}

{% for product_image in page.product_images.all %} #A

{% image product_image.image fill-250x250 as img %} #B

<div>

 #C

{% if product_image.short_description %} #D

{{ product_image.short_description }} #D

{% endif %} #D

</div>

{% endfor %} #A

{% endblock content %}

I threw you into the deep end with this example. This is a fairly advanced Orderable. But what’s cool is, when you edit your page, you can rearrange your Orderables and preview your changes and then the images show up in a

different order.

So how does this fit in with the e-commerce website you’re creating? Great question! Imagine yourself shopping on Amazon and you come across a product that looks good but only has one image. Chances are you’re not buying that product if there is only one image.

The way I have you setting this up, so far, is perfect for adding a carousel of images to your Wagtail Page so potential buyers can scroll through the images on your page and evaluate your product. Should you ever need to replace an image in one spot, you can do that easily now. And should you ever need to rearrange images, well, that’s easy too! Figure 5.8 shows an example of four images in a row, but highlights the problem when you need to move an image from the first location to a different location.

Figure 5.8 Four images in a row highlighting the difficulty of swapping the first and third images.

[image: Image 38]

Let’s say, just for fun, you have four images on a page that you want to display, like in figure 5.8. You have a few options you can take advantage of, each with their own pros and cons:

1. Create four individual fields in your Page model with a ForeignKey to each image,

2. Create a StreamField just for images, or

3. Create an Orderable just for images

The first option isn’t a terrible option, it’s just not very flexible. What

happens if you want a fifth image? Well now you need to create a new field, make migrations, run migrations and redeploy your website. Or what if you wanted to change the order of the images? You would need to delete the selected images and reselect them in the right spot when editing a page.

Again, that’s not the worst thing in the world but it’s a bit of a hassle. And your content team will surely complain about this at some point.

The second and third options are usually the best options for a feature like this, where you may want to display more than one image. The second option, using a StreamField, isn’t necessarily a bad option, however, StreamFields are usually reserved for a mixed bag of content and not typically used for just one kind of content that repeats itself. That’s where the third option comes in: Orderables.

With an Orderable (and StreamFields) you are able to simply move content up or down while editing your page, making your content easy to rearrange.

Now, I see a lot of people trying to overuse Orderables. I highly recommend you stick with scenarios like this one, where you are adding multiple items to a particular section of your page. Orderables are not meant for primary content - that’s what StreamFields are for.

If you take one thing away from this section, consider this: A Wagtail Orderable is a feature that sits between hard coding several of the same field type, and a StreamField. They should be kept relatively simple, and ideally they should not have too many fields. They are great for adding related links when reading an article, similar blog posts when reading a blog, adding images for a carousel, and other features that are adjacent to those.

If you are still wondering what the difference between a StreamField and an Orderable is then carry on to the next section where I’ll outline creating a few custom StreamField blocks. By the end of the next section you should have a healthy understanding of both features and when to use them.

5.3 StreamField Blocks

StreamFields are a vital part of Wagtail, and always have been. Unlike

[image: Image 39]

Orderables, StreamFields allow developers to create a mix-and-match style of content and were invented before WordPress created their own version of StreamFields. In most cases, the content of your page is made up of different blocks, which are the individual components that make up a StreamField, and the field itself is a Wagtail-created field called a StreamField.

In the figure 5.9 you will see several components in the wireframe layout of a website. It has a header (sometimes called a hero), 5 reusable components on the right, which we assigned as Orderables in the last section, and the highlighted section for the primary content. The highlighted sections would be a StreamField made of 5 blocks.

Figure 5.9 Highlights the area that a StreamField typically occupies on a website using multiple

 blocks.

StreamFields, unlike Orderables, are made up of a more fluid type of content, as highlighted in figure 5.9. Rather than strictly using the same content

repeatedly, you can create all sorts of content and have it occupy a large area of your page. Technically, StreamFields can replace Orderables, and I’ve seen that method used before where one page uses two or more StreamFields.

However, the correct way is to use StreamFields and StreamField blocks to create more dynamic content, while using Orderables for more structured (and repeatable) content.

StreamFields are also harder to query data from your database as they are typically stored in a single column as JSONified text. Whereas Orderables, on the other hand, have their own dedicated table in the database and the data can be queried quite easily.

Thought experiment

If you had a popular product you were selling and wanted to link to other related products (other Wagtail Pages), which implementation technique do you think would be best to use?

Keep in mind you may have zero or more related products to display on any given ProductDetailPage and you may want to promote one product more than another.

1. Specific fields for each related product on the Page model 2. Orderables with a ForeignKey to other Wagtail Pages 3. StreamField blocks with a ForeignKy to other Wagtail Pages There technically isn’t a right or wrong way to do this, and it depends on how people use your website and how your content team manages content.

Typically Orderables or StreamField blocks are preferred, but sometimes a new field on the Page model is the way to go.

Listing 5.4 The simple way to add StreamField blocks from wagtail.fields import StreamField

from wagtail import blocks

from wagtail.images.blocks import ImageChooserBlock

class YourCustomPage(Page):

body = StreamField([

("text_block", blocks.CharBlock()),

("image_block", ImageChooserBlock()),

], null=True, blank=True)

There are two main methods to add blocks to a StreamField. The first way was covered when you created a blog in chapter 3 of Wagtail CMS in Action.

These are quite basic, yet still powerful. However, what do you do when you want to add an image and some text with it? Or how would you choose a page to link to with custom text for the button? This is where the basic implementation of StreamField blocks start to fall apart, and why there is a second method to creating highly customized StreamField blocks.

Usually I start a new app for just my StreamField blocks. It’s not strictly required, but that’s an option if you absolutely require the cleanest code base that either you, or your organization, prefer to have. For this section I’ll bypass creating a new Django app and create a file in the products/ folder called blocks.py

Listing 5.5 Custom StreamField block class

products/blocks.py

from wagtail import blocks

class TitleAndSubtitleBlock(blocks.StructBlock):

title = blocks.CharBlock(max_length=100, required=True) subtitle = blocks.CharBlock(max_length=250, required=False) class Meta:

template = "blocks/title_and_subtitle_block.html"

icon = "edit"

label = "Title & Text"

This is a sample StructBlock. A StructBlock lets you mix-and-match other block types, like a CharBlock, ImageChooserBlock, PageChooserBlock, SnippetChooserBlock and so many more. For reference to all the other types of StreamField blocks, see

https://docs.wagtail.org/en/latest/reference/streamfield/blocks.html.

Technically, it’s possible to write a StreamField block like this using the

original method, but again the code gets hard to read as blocks become nested inside of other blocks.

In the sample StructBlock there are two fields: a title and a subtitle. The title field is required whereas the subtitle is not required.

Note

When working with StreamField blocks you will use the keyword required to force the field to be filled out when saving a draft or publishing the page.

With a standard Page, much like a standard Django Model, you would use blank=False. The difference is that Wagtail blocks use Django Forms for validation.

There is also a subclass called Meta, where developers prefer to put most of their StreamField block settings. I’ve added three Meta settings for a template path, icon and label on the TitleAndSubtitleBlock class. The template path is, just like a Page, the path to which template should be rendered when this block is used. The icon and label will show up in the Wagtail admin when adding a StreamField block - which isn’t possible because StreamField itself isn’t hooked up to any of the pages yet.

Listing 5.6 Adding a StructBlock to your StreamField

… Your previous imports here

from wagtail.admin.panels import FieldPanel

from wagtail.fields import StreamField

from products import blocks #A

…

class ProductDetailPage(Page):

…

body = StreamField([

("title_and_subtitle", blocks.TitleAndSubtitleBlock()), #A

], null=True, blank=True)

content_panels = Page.content_panels + [

…

FieldPanel("body"),

]

Now that you’ve added a new field to your ProductDetailPage, you’ll need to make a new migration file and apply the migration changes to your database.

This step tells Django to create a new column called body in your database table. Think of it like adding a new column to a spreadsheet.

Tip

If you ever feel like exploring your local SQLite database, the tables and the columns in each table you can always download SQLite Browser for free at https://sqlitebrowser.org/. This was a tool that really helped me understand the connection between Page model fields and how the data is stored in the database.

I always find it helpful to think of databases like a series of spreadsheets, and each individual sheet is considered a database table. Picture this, if you will, a simple spreadsheet that holds one Wagtail Page, as shown in Figure 5.10.

Figure 5.10 A spreadsheet as a database table concept holding three Wagtail pages.

[image: Image 40]

In figure 5.10 you’ll notice one row with three columns, which is an over simplified version of what your database will store for your HomePage.

There’s typically only one row for the HomePage because your website

typically only has one home page, though that may be false if you are using Wagtail’s multisite feature. The rows in Figure 5.10 store the page data, and the columns will map to the fields in your Wagtail Page models. It’s good to note at this point that Wagtail Pages come with a lot of other fields and I’ve simplified these graphics to help maintain your sanity.

In Listing 5.6 I’ve added a new field called body to the ProductDetailPage class. Your code is going to think your database is set up with a new column called body, as you can see in the example table in figure 5.11.

Figure 5.11 Django and Wagtail will interpret your code by assuming the body column exists in your database.

[image: Image 41]

When you look at the table in figure 5.11 you’ll see a highlighted column called Body. As of right now, Django and Wagtail are making the assumption that there is a column in your database called body because you have written the code for it in your ProductDetailPage class. I’d love to say that’s all you need to do, but that’d be a lie. Aside from writing the code in your Page model, you also need to make a migration file and apply those migrations.

This will tell your database table that your code has new changes and those

changes need to be applied to your database.

When the fields in your Page models match the columns in your database table (or in this example, the hypothetical spreadsheet), then Django and Wagtail will be happy. Make sure you make those migration files and apply them!

python manage.py makemigrations

python manage.py migrate

A good rule of thumb is: whenever you see the word Field in one of your Wagtail Page models, you need to make and apply migrations.

Note

Whenever you add new blocks to your StreamField and try to run migrations, Django will always create a new file for you. Technically, it’s not making any changes to your database but it’s a core feature in Django to detect changes and try to match it up with the database. But StreamFields are stored as giant TextFields filled with JSON data and don’t need to be changed. Keep those migration files anyway.

You can see the StreamField takes a list of tuples, each with two values. The first value is the name of the block and the second value is the StructBlock that was imported from products.blocks. If keeping track of Wagtail blocks and your own blocks.py file gets confusing, feel free to rename your blocks.py file - just remember to change your imports to reflect the filename change.

The StreamField also takes null=True and blank=True. The null keyword means the database can be completely empty, allowing you to avoid setting a default value. And blank means a page can be saved with no blocks. Think of blank in a model and required in a block as doing the same job: making sure the field is filled out, or not filled out, when saving the page.

Lastly, you need to tell your template to render the StreamField. This is as easy as adding two lines of code to your page template. Open up product_detail_page.html and add:

Listing 5.7 Looping through a StreamField in your template

{% extends "base.html" %}

{% load wagtailcore_tags %} #A

{% block content %}

…

{% include_block page.body %} #A

{% endblock content %}

Keep in mind that you need to load a Python file in your template before you can use a function from that file.

Go ahead and edit one of your ProductDetailPages in your Wagtail admin.

You’ll be able to add a customized block that requires a title and has an option subtitle. If you save and view the page, or if you preview the page right now, you’ll run into the dreaded, and yet common, TemplateDoesNotExist error. It should be complaining about blocks/title_and_subtitle_block.html, in the sense that it simply cannot find that file. Similar to a Page you need to create that file and place it somewhere Django and Wagtail can find. If you created your own app you can place it in the templates folder in your new app. For this section of the book, I’m simply placing my blocks in a folder called blocks/ in the mystore/templates/ folder.

The final file will exist at:

mystore/templates/blocks/title_and_subtitle_block.html.

Refresh your page and you should see absolutely nothing at all from this block. That’s good, but sometimes confusing. It’s because you have the template file but there’s nothing in it. If you open the new title_and_subtitle_block.html file and add the following code you’ll see the title and optional subtitle appear in your page:

Listing 5.8 Custom StreamField block template

<h1 class=”text-xl”>{{ self.title }}</h1>

{% if self.subtitle %}

<h3>{{ self.subtitle }}</h3>

{% endif %}

There is an immediate difference between a page and this block. Pages use {{

page.property_name }} whereas blocks use {{ self.property_name }}.

On a technical level, a Page can use {{ page }} or {{ self }}, but using page is more explicit, whereas a block uses {{ self }} because it’s not actually part of the page. You can also use StreamFields in non-Page objects, like global site settings. So it merely names itself self rather than assuming it’s part of a page, when it may not be part of a page.

The last thing you need to do is style the block so that it looks good to you and fits into your vision of this website. I’d also like to challenge you to create more blocks this way. As a secondary challenge, you can also use any of the built-in block types that come with Wagtail by inheriting the block name rather than a StructBlock. It’s a bit cleaner to have your blocks exist as classes rather than one-liners in your page body.

Listing 5.9 Inherited block from Wagtail

class URLBlock(blocks.URLBlock):

class Meta:

template = …

icon = …

label = …

Go ahead and try those out. StreamFields and blocks are a vital part of the Wagtail experience, so it’s best to get familiar with them sooner rather than later.

5.4 Adding product search

Adding search to a website is often a tricky task and, sometimes, a difficult one. Luckily, Wagtail comes with a search app built into the website for us. It makes a few assumptions such as the query keyword in the URL, wanting to record the queries users made and paginating the page by 10 if there are more than ten results.

Note

 Pagination, or the act of paginating, is when you create multiple pages to get results. Think of page 2, 3, 4, etc. when you Google something - that is

pagination. Wagtail uses Django’s built-in pagination feature.

If you started your new Wagtail website using the wagtail start …

command, you’ll be pleasantly surprised that there is a folder called search. It comes with a views.py file, an __init__.py file to tell Python this is a folder with Python files, along with a single search template. The urls.py file that your site came with also has a path for search. All you need to do is open

http://127.0.0.1:8000/search/ (or http://localhost:8000/search/) and you’ll see a page render, without any styling, that immediately gives you search functionality for your entire website. Try typing in a keyword used by one of your other pages, like blog or in my case: sticker. You can see an example of the generic search page in figure 5.12.

Figure 5.12 The default search page that Wagtail comes with.

[image: Image 42]

The default search page, as seen in figure 5.12, comes with your Wagtail website is unstyled and very basic. That’s on purpose because Wagtail and the maintainers of Wagtail don’t know your website design plans but wanted to give you a sample search page to adapt for your own purposes.

Without doing any extra work you now have search functionality on your website. But let’s not leave it here. Instead, I’d like to dive a little deeper into

Wagtail's search functionality, and briefly talk about some of the additional capabilities you can enable with Wagtail search.

First, I want to take you through the code in search/views.py.

Listing 5.10 Wagtail’s search module code

from django.core.paginator import EmptyPage, PageNotAnInteger, Paginator #A from django.template.response import TemplateResponse #A from wagtail.models import Page #A

from wagtail.search.models import Query #A

def search(request):

search_query = request.GET.get("query", None) #B

page = request.GET.get("page", 1) #C

Search

if search_query:

search_results = Page.objects.live().search(search_query) #BD

query = Query.get(search_query) #B

Record hit

query.add_hit() #B

else:

search_results = Page.objects.none() #D

Pagination

paginator = Paginator(search_results, 10) #D

try:

search_results = paginator.page(page) #C

except PageNotAnInteger:

search_results = paginator.page(1) #C

except EmptyPage:

search_results = paginator.page(paginator.num_pages) #C

return TemplateResponse(#E

request, #E

"search/search.html", #E

{ #E

"search_query": search_query, #E

"search_results": search_results, #E

}, #E

) #E

There are quite a few things going on here that I’d like to explain. Most of it is self-explanatory, but it’s good to, at least, read through this code as a bare minimum.

Skipping past the imports and the search function definition, I’m jumping straight into search_query = request.GET.get(...). When you see request.GET.get(...), this is split functionality between Django and Python. Django will store the GET request and any GET parameters in the request.GET dictionary. The .get() portion is Python trying to get the keyword you used to look up the item in the dictionary. In this case, it’s saying the default is None if there is no query keyword in the URL.

Tip

GET requests come with query parameters, which are keywords in the URL

that map to a value. Such as mysite.com/search/?query=stickers&page=2.

This maps URL parameters to Python code that looks like query =

"stickers" and page = 2.

Then the value of page is set to 1 by default, or if page as a query parameter exists use that value. If youwebsite.com/search/?page=10 exists, it will skip to page 10 rather than page 1.

Here’s where it started to get interesting - search results. If there is a search query, meaning the query parameter was not blank in the URL, then attempt to query your Wagtail website for the search term. This happens with the

.search(search_query) part of the code. Notice in this code it’s only looking for live pages. Drafts and unpublished pages won’t be queried. After that, get the Query object for that particular search term, and add it as a hit to the database. And if there are no search results, return an empty QuerySet with Page.objects.none().

Note

By default the advanced search functionality is turned off. So logging query hits right now isn’t very valuable to your site. When you install the wagtail.contrib.search_promotions app in your INSTALLED_APPS, those query hits become visible, along with promoted search results (think:

ads).

The code is trying to paginate by the ?page= value in the URL, which defaults to 1. If page value is not an integer, default to 1 - this is to deal with malicious users. Lastly, if there is an empty page simply use the default num_pages that were set.

Lastly, and this is new to you at this point, return the TemplateResponse from a function based view. Up until now, everything you’ve worked with like Pages and StreamField blocks have been class-based. Functions are perfectly acceptable in Django and Wagtail, and in this case it’s preferred because the functionality isn’t tied to a specific page type or model. The TemplateResponse class is returned with three positional arguments: the request, the template to use (as a string), and the dictionary of context items to add to the page.

Under the hood the search page isn’t doing a lot. But what Wagtail does under that, the code we don’t see, is quite amazing. Search is a very big topic to go over, so we won’t go through all of it. But if your website is utilizing search functionality to its fullest extent, I highly recommend spending a little time today reading through the Wagtail search documentation found here: https://docs.wagtail.org/en/stable/topics/search/index.html. Search is powerful stuff, and Wagtail packs their search functionality full of amazing features, like hit logging and promoted search results.

There’s one problem. This will query the entire database for all published page types. If you wanted to adjust the search functionality to only search through your ProductDetailPages, you could swap out Page.objects. for ProductDetailPage.objects. in the search/views.py file. Don’t forget to import your page type too.

I’d like to challenge you at this point. Can you implement this search functionality into your ProductIndexPage? You are already listing products in that template, but now you can add search to it. This is more Python-based work than frontend work. Alternatively, you can take the search.html template and put it into your base.html file for a global search feature and this is going to be more frontend work than backend (Python) work.

Once you’re finished adding search to your website, make sure you add some basic styling to it. As I spoke about when you were creating your blog, creating a decent style for your features as you build them will help you maintain your sanity. It doesn’t need to be perfect, but it should, at least, look more than plain text.

5.5 Summary

To create a new app you would execute python manage.py startapp appname and then add it to your INSTALLED_APPS in base.py.

Orderables are similar to Inline Models that Django uses, but are set up a special way in Wagtail. Don’t forget to add your ParentalKey!

Pages come with content_panels whereas Orderables come with panels.

Looping through Orderables in your page is the same as looping through a QuerySet, where you need to type {% for item in page.related_name.all %}...{% endfor %}. Don’t forget the .all part of the for loop.

StreamFields are a way to add free-formed content to your page, whereas Orderables are more strictly written and repeat themselves.

StreamFields are made up of blocks that you can mix-and-match in any way.

StreamField blocks can be written two different ways: inline and by separating blocks into their own classes.

Simple search comes built-in with Wagtail. You can read through it in your search/views.py file.

Searching through published pages is as simple as YourPage.objects.search(query_here)

Fine-tuning your search functionality to search through specific page types is as easy as changing

Page.objects.live().search(search_query) to

ProductDetailPage.objects.live().search(search_query) Wagtail uses Django’s pagination functionality under the hood.

Function-based views are completely acceptable in Wagtail.

Document Outline

	Copyright_2022_Manning_Publications

	welcome

	1_Introducing_Wagtail

	2_Setting_up_and_completing_essential_tasks

	3_Creating_a_blog

	4_Styling_with_Tailwind_CSS

	5_Creating_a_Wagtail_store

index-95_1.jpg
Test blog post

Sample blog post

index-86_1.jpg
'm a frontend ninja now!

index-100_1.jpg
/

L— /blog/
— /welcome-to-my-website/
L— /dev-life-or-goat-farmer/

index-99_1.jpg
/ (Home Page)
|— /parent-page-1/ (Index/Listing Page type)
| | /child-page-1/ (Detail Page type)
| L— /child-page-2/
L— /parent-page-2/
— /child-page-1/
L— /child-page-2/

index-108_1.jpg
class Orderable(models.Model):
sort_order = models.IntegerField(null=True, blank=True, editable=False)

sort_order_field = "sort_order"

class Meta:
abstract = True
["sort_order"]

ordering

index-105_1.jpg
e com!
hitps oureos

Ropeaase

index-111_1.jpg
> Coding Sticker Pack

Title *

Q search Coding Sticker Pack

£ Pages

) Images Product Images

B Documents

@ Reports Image:

£ Settings

Alt text: *

Short description:

Image:

Alt text: *

[~ & Save draft
localhost:8000/adminfimages/

[ctear choice] [change image | [Edit this image

’ wagtail

A sticker that says Wagtail

This pack comes with 5x Wagtail stickers

[ctear choice] [change image] [Edit this image

djange

A sticker that says Django

You have

Preview
© Save th before leavin,

v ®

@ LIvE

index-109_1.jpg
class BlogDetailPage (Page) :
subtitle = models.CharField(...)
original published time - models.DateTimeField(..

content_panels = Page.content panels + [
FieldPanel ("subtitle"),

1 original_published_time is not editable

cover_image.jpg
Wagtail CMS in
Action MEAP
vo04

copyright-2022-
manning-
publications.html

index-83_1.jpg
|— node_modules/
— src/

| L— input.css
|— mystore/

| L static/

| L— css/

| L— mystore.css
|— tailwind.config.js

L— postcss.config.js

index-80_1.jpg
ceo
—kalobtaulien ~)
o node -v

V14.16.0
_kalobtaulien ~ ()

index-84_1.jpg
kalobtaulien
0 npx tailwindcss -i ./src/input.css -o ./mystore/static/css/mystore.css --watch

Rebuilding. ..
Done in 161ms.

index-52_1.jpg

index-60_1.jpg
Sampie blog page.

index-54_1.jpg
TemplateDoesNotExist at /blog/

blog/blog_index_page.html

Request Method: GET

Request URL: http:/localhost:8000/blog/
Django Version: 4.1
Exception Type: TemplateDoesNotExist
Exception Value: blog/blog_index_page.html

index-66_1.jpg
e]
Blog Post #1

Read blog post

Blog Post #2

Read blog post

Blog Post #3

Read blog post

index-65_1.jpg
Access Django's ORM

BlogPostPage.objects.live()

Only return published
Look for BlogPostPage types Wagtail pages

index-72_1.jpg
1: honepage
honepage. tit
honepage . get_c
PagequerySet [

index-70_1.jpg
Home Blog

Blog Post #1

Read blog post

Blog Post #2

Read blog post

Blog Post #3

Read blog post

index-47_1.jpg
L— blog/
— migrations/
— __init__.py
+— admin.py
— models.py
— tests.py
L— views.py

index-46_1.jpg
Run the manage.py file Call the app "blog"

python manage.py startapp blog

Invoke Python Start a new app

index-51_1.jpg
OperationalError at /admin/pages/add/blog/blogindexpage/3/

no such table: blog_blogindexpage

Request Method: POST
Request URL: http:/localhost:8000/admin/pages/add/blog/iblogindexpage/3/

Django Version: 4.1

Exception Type: OperationalError

Exception Value: no such table: blog_blogindexpage

index-50_1.jpg
Q ERROR 404

The requested page could not be found.

GOTOWAGTAIL ADMIN

index-27_1.jpg
Tell pip to run the Exactly install version
"install" command 3.0 of Wagtail

pip install wagtail==3.0

Run the Python Install the Wagtail
package program package

index-25_1.jpg
Use Python's module The folder to create the virtual
command environment in

python3 "m " venv venv/

Invoke Python Create a virtual env ("venv")

index-31_1.jpg
Root Page

About Page

lavoss
Hame Bogincex
Page ex. blog/

Contact Page
ex. lcontact/

index-30_1.jpg
—

Root Page

Home
Page

3

About Page
ex. fabout/

Blog Index
Page
ex. Plog/

Contact Page
ex. lcontact/

—

Jpog i

index-41_1.jpg
The 'page’ The property you
object want to access

{{ ‘page.linked page.url }}

Start-tag ForeignKey End-tag
object

index-36_1.jpg
The 'page’ The property you
object want to access

{{ page.property }}

Start-tag End-tag

index-119_1.jpg
hitps ourebste.com!

index-126_1.jpg
PagelD Title Slug

1 Wagtail Stickers wagtail-stickers
2 Django Stickers django-stickers
3 Sticker Mix Pack sticker-mix-pack

Example ProductDetailPage

index-124_1.jpg
A B c
Page ID Title Slug
1 Home home

Example HomePage

index-131_1.jpg
€ C @ localhost:8000/search/?

Search

sticker | Search |

¢ Coding Sticker Pack

index-117_1.jpg
Image Image Image Image
1 2 3 4
Image Image Image Image
3 2 1 4

index-114_1.jpg
TemplateDoesNotEXxist at /

example_missing_template.html

Request Method: GET
Request URL: http://localhost:8000/
Django Version: 4.1
Exception Type: TemplateDoesNotExist
Exception Value: example missing template.html
Exception Location: /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/.venv/lib/python3.9/site-packages/django/template/loader.py, line 19, in get_template
Raised during: wagtail.views.serve
Python Executable: /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/.venv/bin/python

Python Version: 3.9.9

Python Path: ['/Users/kalobtaulien/Sites/tmp/wagtaild4screenshots’,
' /usr/local/Cellar/python@3.9/3.9.9/Frameworks/Python.framework/Versions/3.9/1ib/python39.zip',
'/usr/local/Cellar/python@3.9/3.9.9/Frameworks/Python.framework/Versions/3.9/1ib/python3.9",
'/usr/local/Cellar/python@3.9/3.9.9/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/1lib-dynload',
' /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/.venv/lib/python3.9/site-packages']

Server time: Fri, 09 Sep 2022 17:28:08 +0000

Template-loader postmortem

Django tried loading these templates, in this order:

Using engine django:
* django.template.loaders.£filesystem.Loader: /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/mystore/templates/example_missing_template.html (Source does not exist)
* django.template.loaders.app directories.Loader: /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/home/templates/example_missing_template.html (Source does not exist)
¢ django.template.loaders.app_directories.Loader: /Users/kalobtaulien/Sites/tmp/wagtail4screenshots/search/templates/example_missing_template.html (Source does not exist)

index-1_1.jpg
INACTIO

With Django and Python

Kalob Taulien

index-4_1.jpg

index-2_1.jpg
INACTIO

With Django and Python

Kalob Taulien

index-14_1.jpg
YYourWebsite.com

Python and Django
web request

Wagtail CMS

Website

index-10_1.jpg
Python
Ecosystem

Django
Ecosystem

Wagtail CMS

index-19_1.jpg
YourWebsite.com

Wagtails actions and
responsibilies

Django’s actions and
responsibilies

v

Wagtai request |

Django request

¥

Look up the page by

its siug

v

Execute core Wagtall
logic

b

Missing
page

Custom
WagtailPythor/API
logic

Execute custom logic

Use Django 1o find
other data points

v

Finalize Python-

»| ReadtheDiango ||

based request

template.

—

_Il

Execute custom

Execute custom

Wagtail-based
template logic:

> Django-based
tempiate logic

I

Pure-HTML response|

‘Webpage

index-16_1.jpg
User

>

YourWebsite.com > P“’V‘I"e’;’z”;:ﬂ;"g" > Wagtail cMS
—
Look up page
; v
Cusiomlogicto | | Render HTML
execute Exsaute page logie template
>
I_ A
— Y
Read template
i e
-y
Execute template

logic, if any

index-22_1.jpg
YourWebsite.com

Wagtails actions and
responsibilies

Django’s actions and
responsibilies

v

Wagtai request |

Django request

¥

Look up the page by

its siug

v

Execute core Wagtall
logic

b

Missing
page

Custom
WagtailPythor/API
logic

Execute custom logic

Use Django 1o find
other data points

v

Finalize Python-

»| ReadtheDiango ||

based request

template.

—

_Il

Execute custom

Execute custom

Wagtail-based
template logic:

> Django-based
tempiate logic

I

Pure-HTML response|

‘Webpage

