
Hadley Wickham

Mastering
Shiny
Build Interactive Apps, Reports & Dashboards
Powered by R

Hadley Wickham

Mastering Shiny
Build Interactive Apps, Reports,

and Dashboards Powered by R

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04738-4

[LSI]

Mastering Shiny
by Hadley Wickham

Copyright © 2021 Hadley Wickham. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jessica Haberman
Development Editor: Melissa Potter
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.
Proofreader: Piper Editorial Consulting, LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

May 2021: First Edition

Revision History for the First Edition
2021-04-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492047384 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Mastering Shiny, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Mastering Shiny is available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. The author maintains an online version at https://mastering-shiny.org.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492047384
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0

Table of Contents

Preface. xiii

Part I. Getting Started

1. Your First Shiny App. 3
Introduction 3
Create App Directory and File 3
Running and Stopping 4
Adding UI Controls 6
Adding Behavior 7
Reducing Duplication with Reactive Expressions 8
Summary 9
Exercises 10

2. Basic UI. 15
Introduction 15
Inputs 15

Common Structure 16
Free Text 16
Numeric Inputs 17
Dates 18
Limited Choices 18
File Uploads 20
Action Buttons 20
Exercises 21

Outputs 22
Text 22

iii

Tables 24
Plots 25
Downloads 25
Exercises 26

Summary 26

3. Basic Reactivity. 27
Introduction 27
The Server Function 27

Input 28
Output 29

Reactive Programming 30
Imperative Versus Declarative Programming 31
Laziness 32
The Reactive Graph 33
Reactive Expressions 33
Execution Order 34
Exercises 35

Reactive Expressions 36
The Motivation 36
The App 38
The Reactive Graph 40
Simplifying the Graph 41
Why Do We Need Reactive Expressions? 43

Controlling Timing of Evaluation 44
Timed Invalidation 45
On Click 46

Observers 49
Summary 50

4. Case Study: ER Injuries. 51
Introduction 51
The Data 51
Exploration 53
Prototype 57
Polish Tables 60
Rate Versus Count 61
Narrative 63
Exercises 64
Summary 64

iv | Table of Contents

Part II. Shiny in Action

5. Workflow. 67
Development Workflow 67

Creating the App 68
Seeing Your Changes 69
Controlling the View 70

Debugging 70
Reading Tracebacks 71
Tracebacks in Shiny 72
The Interactive Debugger 73
Case Study 75
Debugging Reactivity 79

Getting Help 80
Reprex Basics 81
Making a Reprex 81
Making a Minimal Reprex 82
Case Study 83

Summary 87

6. Layout, Themes, HTML. 89
Introduction 89
Single-Page Layouts 89

Page Functions 90
Page with Sidebar 91
Multirow 93
Exercises 94

Multipage Layouts 94
Tabsets 94
Navlists and Navbars 96

Bootstrap 97
Themes 98

Getting Started 98
Shiny Themes 99
Plot Themes 100
Exercises 101

Under the Hood 101
Summary 103

7. Graphics. 105
Interactivity 105

Basics 105

Table of Contents | v

Clicking 107
Other Point Events 109
Brushing 109
Modifying the Plot 111
Interactivity Limitations 115

Dynamic Height and Width 115
Images 116
Summary 118

8. User Feedback. 119
Validation 119

Validating Input 120
Canceling Execution with req() 121
req() and Validation 124
Validate Output 125

Notifications 126
Transient Notification 127
Removing on Completion 128
Progressive Updates 129

Progress Bars 129
Shiny 130
Waiter 132
Spinners 133

Confirming and Undoing 136
Explicit Confirmation 136
Undoing an Action 137
Trash 139

Summary 139

9. Uploads and Downloads. 141
Upload 141

UI 141
Server 142
Uploading Data 143

Download 144
Basics 144
Downloading Data 145
Downloading Reports 146

Case Study 149
Exercises 151
Summary 152

vi | Table of Contents

10. Dynamic UI. 153
Updating Inputs 153

Simple Uses 155
Hierarchical Select Boxes 156
Freezing Reactive Inputs 158
Circular References 160
Interrelated Inputs 160
Exercises 161

Dynamic Visibility 162
Conditional UI 163
Wizard Interface 165
Exercises 166

Creating UI with Code 166
Getting Started 167
Multiple Controls 168
Dynamic Filtering 171
Dialog Boxes 175
Exercises 176

Summary 177

11. Bookmarking. 179
Basic Idea 179

Updating the URL 182
Storing Richer State 182

Bookmarking Challenges 183
Exercises 184
Summary 184

12. Tidy Evaluation. 185
Motivation 185
Data-Masking 187

Getting Started 187
Example: ggplot2 189
Example: dplyr 191
User-Supplied Data 193
Why Not Use Base R? 194

Tidy-Selection 195
Indirection 195
Tidy-Selection and Data-Masking 196

parse() and eval() 197
Summary 197

Table of Contents | vii

Part III. Mastering Reactivity

13. Why Reactivity?. 201
Introduction 201
Why Do We Need Reactive Programming? 202

Why Can’t You Use Variables? 202
What About Functions? 202
Event-Driven Programming 203
Reactive Programming 204

A Brief History of Reactive Programming 206
Summary 207

14. The Reactive Graph. 209
Introduction 209
A Step-by-Step Tour of Reactive Execution 209
A Session Begins 211

Execution Begins 211
Reading a Reactive Expression 212
Reading an Input 213
Reactive Expression Completes 213
Output Completes 214
The Next Output Executes 214
Execution Completes, Outputs Flushed 214

An Input Changes 215
Invalidating the Inputs 215
Notifying Dependencies 216
Removing Relationships 216
Re-execution 217
Exercises 217

Dynamism 218
The Reactlog Package 220
Summary 221

15. Reactive Building Blocks. 223
Reactive Values 223

Exercises 224
Reactive Expressions 225

Errors 225
on.exit() 226
Exercises 226

Observers and Outputs 226
Isolating Code 228

viii | Table of Contents

isolate() 228
observeEvent() and eventReactive() 229
Exercises 230

Timed Invalidation 230
Polling 231
Long-Running Reactives 231
Timer Accuracy 232
Exercises 233

Summary 233

16. Escaping the Graph. 235
Introduction 235
What Doesn’t the Reactive Graph Capture? 235
Case Studies 237

One Output Modified by Multiple Inputs 237
Accumulating Inputs 238
Pausing Animations 239
Exercises 240

Antipatterns 240
Summary 242

Part IV. Best Practices

17. General Guidelines. 245
Introduction 245
Code Organization 246
Testing 247
Dependency Management 247
Source Code Management 248
Continuous Integration/Deployment 249
Code Reviews 249
Summary 250

18. Functions. 251
File Organization 252
UI Functions 252

Other Applications 253
Functional Programming 254
UI as Data 254

Server Functions 255
Reading Uploaded Data 255

Table of Contents | ix

Internal Functions 256
Summary 257

19. Shiny Modules. 259
Motivation 259
Module Basics 261

Module UI 262
Module Server 262
Updated App 263
Namespacing 264
Naming Conventions 265
Exercises 265

Inputs and Outputs 266
Getting Started: UI Input and Server Output 267
Case Study: Selecting a Numeric Variable 268
Server Inputs 269
Modules Inside of Modules 270
Case Study: Histogram 271
Multiple Outputs 272
Exercises 274

Case Studies 275
Limited Selection and Other 275
Wizard 278
Dynamic UI 282

Single Object Modules 284
Summary 286

20. Packages. 287
Converting an Existing App 288

Single File 288
Module Files 290
A Package 291

Benefits 292
Workflow 292
Sharing 293

Extra Steps 293
Deploying Your App-Package 294
R CMD check 294

Summary 296

21. Testing. 297
Testing Functions 298

x | Table of Contents

Basic Structure 298
Basic Workflow 299
Key Expectations 300
User Interface Functions 302

Workflow 304
Code Coverage 304
Keyboard Shortcuts 304
Workflow Summary 305

Testing Reactivity 305
Modules 307
Limitations 309

Testing JavaScript 309
Basic Operation 310
Case Study 311

Testing Visuals 313
Philosophy 314

When Should You Write Tests? 314
Summary 315

22. Security. 317
Data 318
Compute Resources 319

23. Performance. 323
Dining at Restaurant Shiny 324
Benchmark 325

Recording 325
Replay 326
Analysis 327

Profiling 328
The Flame Graph 328
Profiling R Code 331
Profiling a Shiny App 331
Limitations 332

Improve Performance 333
Caching 333

Basics 334
Caching a Reactive 334
Caching Plots 336
Cache Key 337
Cache Scope 337

Other Optimizations 338

Table of Contents | xi

Schedule Data Munging 338
Manage User Expectations 339

Summary 339

Index. 341

xii | Table of Contents

Preface

What Is Shiny?
If you’ve never used Shiny before, welcome! Shiny is an R package that allows you to
easily create rich, interactive web apps. Shiny allows you to take your work in R and
expose it via a web browser so that anyone can use it. Shiny makes you look awesome
by making it easy to produce polished web apps with a minimum amount of pain.

In the past, creating web apps was hard for most R users because:

• You need a deep knowledge of web technologies like HTML, CSS, and JavaScript.
• Making complex interactive apps requires careful analysis of interaction flows to

make sure that when an input changes, only the related outputs are updated.

Shiny makes it significantly easier for the R programmer to create web apps by:

• Providing a carefully curated set of user interface (UI for short) functions that
generate the HTML, CSS, and JavaScript needed for common tasks. This means
that you don’t need to know the details of HTML/CSS/JavaScript until you want
to go beyond the basics that Shiny provides for you.

• Introducing a new style of programming called reactive programming, which
automatically tracks the dependencies of pieces of code. This means that when‐
ever an input changes, Shiny can automatically figure out how to do the smallest
amount of work to update all the related outputs.

People use Shiny to:

• Create dashboards that track important high-level performance indicators while
facilitating drill-down into metrics that need more investigation.

• Replace hundreds of pages of PDFs with interactive apps that allow the user to
jump to the exact slice of the results that they care about.

xiii

• Communicate complex models to a nontechnical audience with informative visu‐
alizations and interactive sensitivity analysis.

• Provide self-service data analysis for common workflows, replacing email
requests with a Shiny app that allows people to upload their own data and per‐
form standard analyses. You can make sophisticated R analyses available to users
with no programming skills.

• Create interactive demos for teaching statistics and data science concepts that
allow learners to tweak inputs and observe the downstream effects of those
changes in an analysis.

In short, Shiny gives you the ability to pass on some of your R superpowers to anyone
who can use the web.

Who Should Read This Book?
This book is aimed at two main audiences:

• R users who are interested in learning about Shiny in order to turn their analyses
into interactive web apps. To get the most out of this book, you should be com‐
fortable using R to do data analysis and should have written at least a few
functions.

• Existing Shiny users who want to improve their knowledge of the theory under‐
lying Shiny in order to write higher-quality apps faster and more easily. You
should find this book particularly helpful if your apps are starting to get bigger
and you’re starting to have problems managing the complexity.

What Will You Learn?
The book is divided into four parts:

1. In Part I, you’ll learn the basics of Shiny so you can get up and running as quickly
as possible. You’ll learn about the basics of app structure, useful UI components,
and the foundations of reactive programming.

2. Part II builds on the basics to help you solve common problems, including giving
feedback to the user, uploading and downloading data, generating UI with code,
reducing code duplication, and using Shiny to program the tidyverse.

3. In Part III, you’ll go deep into the theory and practice of reactive programming,
the programming paradigm that underlies Shiny. If you’re an existing Shiny user,
you’ll get the most value out of this chapter as it will give you a solid theoretical
underpinning that will allow you to create new tools specifically tailored for your
problems.

xiv | Preface

4. Finally, in Part IV we’ll finish up with a survey of useful techniques for making
your Shiny apps work well in production. You’ll learn how to decompose com‐
plex apps into functions and modules, how to use packages to organize your
code, how to test your code to ensure it’s correct, and how to measure and
improve performance.

What Won’t You Learn?
The focus of this book is making effective Shiny apps and understanding the underly‐
ing theory of reactivity. I’ll do my best to showcase best practices for data science, R
programming, and software engineering, but you’ll need other references to master
these important skills. If you enjoy my writing in this book, you might enjoy my other
books on these topics: R for Data Science, Advanced R, and R Packages.

There are also a number of important topics specific to Shiny that I don’t cover:

• This book only covers the built-in user interface toolkit. This doesn’t provide the
sexiest possible design, but it’s simple to learn and gets you a long way. If you
have additional needs (or just get bored with the defaults), there are a number of
other packages that provide alternative frontends. See “Bootstrap” on page 97 for
more details.

• Deployment of Shiny apps. Putting Shiny “into production” is outside the scope
of this book because it hugely varies from company to company, and much of it is
unrelated to R (the majority of challenges tend to be cultural or organizational,
not technical). If you’re new to Shiny in production, I recommend starting with
Joe Cheng’s 2019 rstudio::conf keynote. That will give you the lay of the land, dis‐
cussing broadly what putting Shiny into production entails and how to overcome
some of the challenges that you’re likely to face. Once you’ve done that, see the
RStudio Connect website to learn about RStudio’s product for deploying apps
within your company, and the Shiny website for other common deployment
scenarios.

Prerequisites
Before we continue, make sure you have all the software you need for this book:

R
If you don’t have R installed already, you may be reading the wrong book; I
assume a basic familiarity with R throughout this book. If you’d like to learn how
to use R, I’d recommend my R for Data Science, which is designed to get you up
and running with R with a minimum of fuss.

Preface | xv

http://r4ds.had.co.nz
http://adv-r.hadley.nz
http://r-pkgs.org
https://oreil.ly/XNCRf
https://oreil.ly/FdrYc
https://oreil.ly/z8kRP
https://r4ds.had.co.nz

RStudio
RStudio is a free and open source integrated development environment (IDE) for
R. While you can write and use Shiny apps with any R environment (including R
GUI and ESS), RStudio has some nice features specifically for authoring, debug‐
ging, and deploying Shiny apps. We recommend downloading RStudio Desktop
and giving it a try, but it’s not required to be successful with Shiny or with this
book.

R packages
This book uses a bunch of R packages. You can install them all at once by
running:

install.packages(c(
 "gapminder", "ggforce", "gh", "globals", "openintro", "profvis",
 "RSQLite", "shiny", "shinycssloaders", "shinyFeedback",
 "shinythemes", "testthat", "thematic", "tidyverse", "vroom",
 "waiter", "xml2", "zeallot"
))

If you’ve downloaded Shiny in the past, make sure that you have at least version
1.6.0.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xvi | Preface

http://ess.r-project.org
https://oreil.ly/aUoYe

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://mastering-shiny.org. The code samples in this book are licensed under the MIT
License.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Mastering Shiny by Had‐
ley Wickham (O’Reilly). Copyright 2021 Hadley Wickham, 978-1-492-04738-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xvii

https://mastering-shiny.org
https://www.mit.edu/~amini/LICENSE.md
https://www.mit.edu/~amini/LICENSE.md
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/mastering-shiny.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

xviii | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/mastering-shiny
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Acknowledgments
This book was written in the open, and chapters were advertised on Twitter when
complete. It is truly a community effort: many people read drafts, fixed typos, sug‐
gested improvements, and contributed content. Without those contributors, the book
wouldn’t be nearly as good as it is, and I’m deeply grateful for their help.

A big thank-you to all 83 people who contributed specific improvements via GitHub
pull requests (in alphabetical order by username): Adam Pearce (@1wheel), Adi Sarid
(@adisarid), Alexandros Melemenidis (@alex-m-ffm), Anton Klåvus (@antonvsdata),
Betsy Rosalen (@betsyrosalen), Michael Beigelmacher (@brooklynbagel), Bryan
Smith (@BSCowboy), c1au6io_hh (@c1au6i0), @canovasjm, Chris Beeley (@Chris‐
Beeley), @chsafouane, Chuliang Xiao (@ChuliangXiao), Conor Neilson (@condwa‐
naland), @d-edison, Dean Attali (@daattali), DanielDavid521 (@Danieldavid521),
David Granjon (@DivadNojnarg), Eduardo Vásquez (@edovtp), Emil Hvitfeldt
(@EmilHvitfeldt), Emilio (@emilopezcano), Emily Riederer (@emilyriederer), Eric
Simms (@esimms999), Federico Marini (@federicomarini), Frederik Kok Hansen
(@fkoh111), Frans van Dunné (@FvD), Giorgio Comai (@giocomai), Hedley
(@heds1), Henning (@henningsway), Hlynur (@hlynurhallgrims), @hsm207,
@jacobxk, James Pooley (@jamespooley), Joe Cheng (@jcheng5), Julien Colomb
(@jcolomb), Juan C. Rodriguez (@jcrodriguez1989), Jennifer (Jenny) Bryan (@jen‐
nybc), Jim Hester (@jimhester), Joachim Gassen (@joachim-gassen), Jon Calder
(@jonmcalder), Jonathan Carroll (@jonocarroll), Julian Stanley (@julianstanley),
@jyuu, @kaanpekel, Karandeep Singh (@kdpsingh), Robert Kirk DeLisle
(@KirkDCO), Elaine (@loomalaine), Malcolm Barrett (@malcolmbarrett), Marly
Gotti (@marlycormar), Matthew Wilson (@MattW-Geospatial), Matthew T. Warken‐
tin (@mattwarkentin), Mauro Lepore (@maurolepore), Maximilian Rohde (@max‐
drohde), Matthew Berginski (@mbergins), Michael Dewar (@michael-dewar), Mine
Cetinkaya-Rundel (@mine-cetinkaya-rundel), Maria Paula Caldas (@mpaulacaldas),
nthobservation (@nthobservation), Pietro Monticone (@pitmonticone), psychometri‐
cian (@psychometrician), Ram Thapa (@raamthapa), Janko Thyson (@rappster),
Rebecca Janis (@rbjanis), Tom Palmer (@remlapmot), Russ Hyde (@russHyde), Bar‐
ret Schloerke (@schloerke), Scott (@scottyd22), Matthew Sedaghatfar (@sedaghatfar),
Shixiang Wang (@ShixiangWang), Praer (Suthira Owlarn) (@sowla), Sébastien Roch‐
ette (@statnmap), @stevensbr, André Calero Valdez (@Sumidu), Tanner Stauss
(@tmstauss), Tony Fujs (@tonyfujs), Stefan Moog (@trekonom), Jeff Allen (@trestle‐
tech), Trey Gilliland (@treygilliland), Albrecht (@Tungurahua), Valeri Voev (@Valeri‐
Voev), Vickus (@Vickusr), William Doane (@WilDoane), 黄 湘 云
(@XiangyunHuang), and gXcloud (@xwydq).

Preface | xix

How This Book Was Built
This book was written in RStudio using bookdown. The book’s website is hosted with
netlify and is automatically updated after every commit by GitHub Actions. The com‐
plete source is available from GitHub.

This version of the book was built with R version 4.0.3 (2020-10-10) and the follow‐
ing packages:

Package Version Source
gapminder 0.3.0 standard (@0.3.0)

ggforce 0.3.2 standard (@0.3.2)

gh 1.2.0 standard (@1.2.0)

globals 0.14.0 standard (@0.14.0)

openintro 2.0.0 standard (@2.0.0)

profvis 0.3.7.9000 GitHub (rstudio/profvis@ca1b272)

RSQLite 2.2.3 standard (@2.2.3)

shiny 1.6.0 standard (@1.6.0)

shinycssloaders 1.0.0 standard (@1.0.0)

shinyFeedback 0.3.0 standard (@0.3.0)

shinythemes 1.2.0 standard (@1.2.0)

testthat 3.0.2.9000 GitHub (r-lib/testthat@4793514)

thematic 0.1.1 GitHub (rstudio/thematic@d78d24a)

tidyverse 1.3.0 standard (@1.3.0)

vroom 1.3.2 standard (@1.3.2)

waiter 0.2.0 standard (@0.2.0)

xml2 1.3.2 standard (@1.3.2)

zeallot 0.1.0 standard (@0.1.0)

xx | Preface

http://www.rstudio.com/ide
http://bookdown.org
http://mastering-shiny.org
http://netlify.com
https://github.com/features/actions
https://github.com/hadley/mastering-shiny

PART I

Getting Started

The goal of the next four chapters is to get you writing Shiny apps as quickly as possi‐
ble. In Chapter 1, I’ll start small, but complete, showing you all the major pieces of an
app and how they fit together. Then in Chapters 2 and 3 you’ll start to get into the
details of the two major parts of a Shiny app: the frontend (what the user sees in the
browser) and the backend (the code that makes it all work). We’ll finish up in Chap‐
ter 4 with a case study to help cement the concepts you’ve learned so far.

CHAPTER 1

Your First Shiny App

Introduction
In this chapter, we’ll create a simple Shiny app. I’ll start by showing you the minimum
boilerplate needed for a Shiny app, and then you’ll learn how to start and stop it. Next
you’ll learn the two key components of every Shiny app: the UI (short for user inter‐
face), which defines how your app looks, and the server function, which defines how
your app works. Shiny uses reactive programming to automatically update outputs
when inputs change, so we’ll finish off the chapter by learning the third important
component of Shiny apps: reactive expressions.

If you haven’t already installed Shiny, install it now with:

install.packages("shiny")

If you’ve already installed Shiny, use packageVersion("shiny") to check that you
have version 1.5.0 or greater.

Then load in your current R session:

library(shiny)

Create App Directory and File
There are several ways to create a Shiny app. The simplest is to create a new directory
for your app and put a single file called app.R in it. This app.R file will be used to tell
Shiny both how your app should look and how it should behave.

Try it out by creating a new directory and adding an app.R file that looks like this:

library(shiny)
ui <- fluidPage(
 "Hello, world!"

3

1 The extra () on the outside are important. shinyApp() only creates an app when printed, and () forces the
printing of the last result in the file being sourced, which is otherwise returned invisibly.

)
server <- function(input, output, session) {
}
shinyApp(ui, server)

This is a complete, if trivial, Shiny app! Looking closely at the preceding code, our
app.R does four things:

1. It calls library(shiny) to load the shiny package.
2. It defines the user interface, the HTML webpage that humans interact with. In

this case, it’s a page containing the words “Hello, world!”
3. It specifies the behavior of our app by defining a server function. It’s currently

empty, so our app doesn’t do anything, but we’ll be back to revisit this shortly.
4. It executes shinyApp(ui, server) to construct and start a Shiny application

from the UI and server.

There are two convenient ways to create a new app in RStudio:

• Create a new directory and an app.R file containing a basic app
in one step by clicking File → New Project, then selecting New
Directory and Shiny Web Application.

• If you’ve already created the app.R file, you can quickly add the
app boilerplate by typing shinyapp and pressing Shift+Tab.

Running and Stopping
There are a few ways you can run this app:

• Click the Run App (Figure 1-1) button in the document toolbar.
• Use a keyboard shortcut: Cmd/Ctrl+Shift+Enter.
• If you’re not using RStudio, you can (source())1 the whole document or call
shiny::runApp() with the path to the directory containing app.R.

Figure 1-1. The Run App button can be found at the top right of the source pane.

4 | Chapter 1: Your First Shiny App

2 Shiny strives to support all modern browsers. Note that Internet Explorer versions prior to IE11 are not com‐
patible when running Shiny directly from your R session. However, Shiny apps deployed on Shiny Server or
ShinyApps.io can work with IE10 (earlier versions of IE are no longer supported).

Pick one of these options, and check that you see the same app as in Figure 1-2. Con‐
gratulations! You’ve made your first Shiny app.

Figure 1-2. They very basic Shiny app you’ll see when you run the preceding code.

Before you close the app, go back to RStudio and look at the R console. You’ll notice
that it says something like:

#> Listening on http://127.0.0.1:3827

This tells you the URL where your app can be found: 127.0.0.1 is a standard address
that means “this computer,” and 3827 is a randomly assigned port number. You can
enter that URL into any compatible2 web browser to open another copy of your app.

Also notice that R is busy: the R prompt isn’t visible, and the console toolbar displays
a stop-sign icon. While a Shiny app is running, it “blocks” the R console. This means
that you can’t run new commands at the R console until the Shiny app stops.

You can stop the app and return access to the console using any one of these options:

• Click the stop-sign icon on the R console toolbar.
• Click on the console, then press Esc (or press Ctrl+C if you’re not using RStudio).
• Close the Shiny app window.

Running and Stopping | 5

https://oreil.ly/CNDxd

The basic workflow of Shiny app development is to write some code, start the app,
play with the app, write some more code, and repeat. If you’re using RStudio, you
don’t even need to stop and restart the app to see your changes—you can either press
the “Reload app” button in the toolbox or use the Cmd/Ctrl+Shift+Enter keyboard
shortcut. I’ll cover other workflow patterns in Chapter 5.

Adding UI Controls
Next, we’ll add some inputs and outputs to our UI so it’s not quite so minimal. We’re
going to make a very simple app that shows you all the built-in data frames included
in the datasets package.

Replace your ui with this code:

ui <- fluidPage(
 selectInput("dataset", label = "Dataset", choices = ls("package:datasets")),
 verbatimTextOutput("summary"),
 tableOutput("table")
)

This example uses four new functions:

fluidPage()

A layout function that sets up the basic visual structure of the page. You’ll learn
more about them in “Single-Page Layouts” on page 89.

selectInput()

An input control that lets the user interact with the app by providing a value. In
this case, it’s a select box with the label “Dataset” and lets you choose one of the
built-in datasets that come with R. You’ll learn more about inputs in “Inputs” on
page 15.

verbatimTextOutput() and tableOutput()
Output controls that tell Shiny where to put rendered output (we’ll get into the
how in a moment). verbatimTextOutput() displays code, and tableOutput()
displays tables. You’ll learn more about outputs in “Outputs” on page 22.

Layout functions, inputs, and outputs have different uses, but they are fundamentally
the same under the covers: they’re all just fancy ways to generate HTML, and if you
call any of them outside of a Shiny app, you’ll see HTML printed out at the console.
Don’t be afraid to poke around to see how these various layouts and controls work
under the hood.

Go ahead and run the app again. You’ll now see what appears in Figure 1-3, a page
containing a select box. We only see the input, not the two outputs, because we
haven’t yet told Shiny how the input and outputs are related.

6 | Chapter 1: Your First Shiny App

Figure 1-3. The datasets app with UI.

Adding Behavior
Next, we’ll bring the outputs to life by defining them in the server function.

Shiny uses reactive programming to make apps interactive. You’ll learn more about
reactive programming in Chapter 3, but for now, just be aware that it involves telling
Shiny how to perform a computation, not ordering Shiny to actually go do it. It’s like
the difference between giving someone a recipe and demanding that they go make
you a sandwich.

We’ll tell Shiny how to fill in the summary and table outputs in the sample app by
providing the “recipes” for those outputs. Replace your empty server function with
this:

server <- function(input, output, session) {
 output$summary <- renderPrint({
 dataset <- get(input$dataset, "package:datasets")
 summary(dataset)
 })

 output$table <- renderTable({
 dataset <- get(input$dataset, "package:datasets")
 dataset
 })
}

The left-hand side of the assignment operator (<-), output$ID, indicates that you’re
providing the recipe for the Shiny output with that ID. The right-hand side of the
assignment uses a specific render function to wrap some code that you provide. Each
render{Type} function is designed to produce a particular type of output (e.g., text,
tables, and plots) and is often paired with a {type}Output function. For example, in
this app, renderPrint() is paired with verbatimTextOutput() to display a statistical
summary with fixed-width (verbatim) text, and renderTable() is paired with
tableOutput() to show the input data in a table.

Run the app again and play around, watching what happens to the output when you
change an input. Figure 1-4 shows what you should see when you open the app.

Adding Behavior | 7

Figure 1-4. Now that we’ve provided a server function that connects outputs and inputs,
we have a fully functional app.

Notice that the summary and table update whenever you change the input dataset.
This dependency is created implicitly because we’ve referred to input$dataset within
the output functions. input$dataset is populated with the current value of the UI
component with ID dataset and will cause the outputs to automatically update
whenever that value changes. This is the essence of reactivity: outputs automatically
react (recalculate) when their inputs change.

Reducing Duplication with Reactive Expressions
Even in this simple example, we have some code that’s duplicated: the following line is
present in both outputs:

dataset <- get(input$dataset, "package:datasets")

In every kind of programming, it’s poor practice to have duplicated code; it can be
computationally wasteful, and more importantly, it increases the difficulty of main‐
taining or debugging the code. It’s not that important here, but I wanted to illustrate
the basic idea in a very simple context.

In traditional R scripting, we use two techniques to deal with duplicated code: either
we capture the value using a variable or we capture the computation with a function.
Unfortunately, neither of these approaches works here, for reasons you’ll learn about
in “Why Do We Need Reactive Programming?” on page 202, and we need a new
mechanism: reactive expressions.

8 | Chapter 1: Your First Shiny App

You create a reactive expression by wrapping a block of code in reactive({...}) and
assigning it to a variable, and you use a reactive expression by calling it like a func‐
tion. But while it looks like you’re calling a function, a reactive expression has an
important difference: it only runs the first time it is called, and then it caches its result
until it needs to be updated.

We can update our server() to use reactive expressions, as shown in the following
code. The app behaves identically but works a little more efficiently because it only
needs to retrieve the dataset once, not twice:

server <- function(input, output, session) {
 # Create a reactive expression
 dataset <- reactive({
 get(input$dataset, "package:datasets")
 })

 output$summary <- renderPrint({
 # Use a reactive expression by calling it like a function
 summary(dataset())
 })

 output$table <- renderTable({
 dataset()
 })
}

We’ll come back to reactive programming multiple times, but even armed with a cur‐
sory knowledge of inputs, outputs, and reactive expressions, it’s possible to build
quite useful Shiny apps!

Summary
In this chapter you’ve created a simple app—it’s not very exciting or useful, but you
can see how easy it is to construct a web app using your existing R knowledge. In the
next two chapters, you’ll learn more about user interfaces and reactive programming,
the two basic building blocks of Shiny. Now is a great time to grab a copy of the Shiny
cheat sheet. This is a great resource to help jog your memory of the main components
of a Shiny app.

Summary | 9

https://oreil.ly/vJbBe
https://oreil.ly/vJbBe

Figure 1-5. The Shiny cheat sheet.

Exercises
1. Create an app that greets the user by name. You don’t know all the functions you

need to do this yet, so I’ve included some lines of code here. Think about which
lines you’ll use and then copy and paste them into the right place in a Shiny app:

tableOutput("mortgage")
output$greeting <- renderText({
 paste0("Hello ", input$name)
})
numericInput("age", "How old are you?", value = NA)
textInput("name", "What's your name?")
textOutput("greeting")
output$histogram <- renderPlot({
 hist(rnorm(1000))
}, res = 96)

10 | Chapter 1: Your First Shiny App

https://www.rstudio.com/resources/cheatsheets

2. Suppose your friend wants to design an app that allows the user to set a number
(x) between 1 and 50 and displays the result of multiplying this number by 5.
This is their first attempt:

library(shiny)

ui <- fluidPage(
 sliderInput("x", label = "If x is", min = 1, max = 50, value = 30),
 "then x times 5 is",
 textOutput("product")
)

server <- function(input, output, session) {
 output$product <- renderText({
 x * 5
 })
}

shinyApp(ui, server)

But unfortunately it has an error:

Can you help them find and correct the error?
3. Extend the app from the previous exercise to allow the user to set the value of the

multiplier, y, so that the app yields the value of x * y. The final result should
look like this:.

Exercises | 11

4. Take the following app, which adds some additional functionality to the last app
described in the last exercise. What’s new? How could you reduce the amount of
duplicated code in the app by using a reactive expression?

library(shiny)

ui <- fluidPage(
 sliderInput("x", "If x is", min = 1, max = 50, value = 30),
 sliderInput("y", "and y is", min = 1, max = 50, value = 5),
 "then, (x * y) is", textOutput("product"),
 "and, (x * y) + 5 is", textOutput("product_plus5"),
 "and (x * y) + 10 is", textOutput("product_plus10")
)

server <- function(input, output, session) {
 output$product <- renderText({
 product <- input$x * input$y
 product
 })
 output$product_plus5 <- renderText({
 product <- input$x * input$y
 product + 5
 })
 output$product_plus10 <- renderText({
 product <- input$x * input$y
 product + 10
 })
}

shinyApp(ui, server)

5. The following app is very similar to one you’ve seen earlier in the chapter: you
select a dataset from a package (this time we’re using the ggplot2 package), and
the app prints out a summary and plot of the data. It also follows good practice
and makes use of reactive expressions to avoid redundancy of code. However,
there are three bugs in the following code. Can you find and fix them?

library(shiny)
library(ggplot2)

datasets <- c("economics", "faithfuld", "seals")
ui <- fluidPage(
 selectInput("dataset", "Dataset", choices = datasets),
 verbatimTextOutput("summary"),
 tableOutput("plot")
)

server <- function(input, output, session) {
 dataset <- reactive({
 get(input$dataset, "package:ggplot2")

12 | Chapter 1: Your First Shiny App

 })
 output$summary <- renderPrint({
 summary(dataset())
 })
 output$plot <- renderPlot({
 plot(dataset)
 }, res = 96)
}

shinyApp(ui, server)

Exercises | 13

CHAPTER 2

Basic UI

Introduction
Now that you have a basic app under your belt, we can start to explore the details that
make Shiny tick. As you saw in the previous chapter, Shiny encourages separation of
the code that generates your user interface (the frontend) from the code that drives
your app’s behavior (the backend).

In this chapter, we’ll focus on the frontend and give you a whirlwind tour of the
HTML inputs and outputs provided by Shiny. This gives you the ability to capture
many types of data and display many types of R output. You don’t yet have many ways
to stitch the inputs and outputs together, but we’ll come back to that in Chapter 6.

Here I’ll mostly stick to the inputs and outputs built into Shiny itself. However, there
is a rich and vibrant community of extension packages, like shinyWidgets, colour‐
picker, and sortable. Nan Xiao maintains an active and comprehensive list of other
Shiny packages.

As usual, we’ll begin by loading the Shiny package:

library(shiny)

Inputs
As we saw in the previous chapter, you use functions like sliderInput(), selectIn
put(), textInput(), and numericInput() to insert input controls into your UI speci‐
fication. Now we’ll discuss the common structure that underlies all input functions
and give a quick overview of the inputs built into Shiny.

Basic UI | 15

https://oreil.ly/7WHmU
https://oreil.ly/sFdk6
https://oreil.ly/sFdk6
https://rstudio.github.io/sortable
https://nanx.me
https://oreil.ly/t2TQ9
https://oreil.ly/t2TQ9

1 All passwordInput() does is hide what the user is typing so that someone looking over their shoulder can’t
read it. It’s up to you to make sure that any passwords are not accidentally exposed, so we don’t recommend
using passwords unless you have had some training in secure programming.

Common Structure
All input functions have the same first argument: inputId. This is the identifier used
to connect the frontend with the backend: if your UI has an input with ID "name", the
server function will access it with input$name.

The inputId has two constraints:

• It must be a simple string that contains only letters, numbers, and underscores
(no spaces, dashes, periods, or other special characters allowed!). Name it like
you would name a variable in R.

• It must be unique. If it’s not unique, you’ll have no way to refer to this control in
your server function!

Most input functions have a second parameter called label. This is used to create a
human-readable label for the control. Shiny doesn’t place any restrictions on this
string, but you’ll need to carefully think about it to make sure that your app is usable
by humans! The third parameter is typically value, which, where possible, lets you set
the default value. The remaining parameters are unique to the control.

When creating an input, I recommend supplying the inputId and label arguments
by position and all other arguments by name:

sliderInput("min", "Limit (minimum)", value = 50, min = 0, max = 100)

The following sections describe the inputs built into Shiny, loosely grouped according
to the type of control they create. The goal is to give you a rapid overview of your
options, not to exhaustively describe all the arguments. I’ll show the most important
parameters for each control here, but you’ll need to read the documentation to get the
full details.

Free Text
Collect small amounts of text with textInput(), passwords with passwordInput(),1

and paragraphs of text with textAreaInput():

ui <- fluidPage(
 textInput("name", "What's your name?"),
 passwordInput("password", "What's your password?"),
 textAreaInput("story", "Tell me about yourself", rows = 3)
)

16

16 | Chapter 2: Basic UI

If you want to ensure that the text has certain properties, you can use validate(),
which we’ll come back to in Chapter 8.

Numeric Inputs
To collect numeric values, create a constrained text box with numericInput() or a
slider with sliderInput(). If you supply a length-2 numeric vector for the default
value of sliderInput(), you get a “range” slider with two ends:

ui <- fluidPage(
 numericInput("num", "Number one", value = 0, min = 0, max = 100),
 sliderInput("num2", "Number two", value = 50, min = 0, max = 100),
 sliderInput("rng", "Range", value = c(10, 20), min = 0, max = 100)
)

Generally, I recommend only using sliders for small ranges or cases where the precise
value is not so important. Attempting to precisely select a number on a small slider is
an exercise in frustration!

Sliders are extremely customizable, and there are many ways to tweak their appear‐
ance. See ?sliderInput and “Using sliders” for more details.

Inputs | 17

https://oreil.ly/BLsCJ

Dates
Collect a single day with dateInput() or a range of two days with dateRangeInput().
These functions provide a convenient calendar picker, and additional arguments like
datesdisabled and daysofweekdisabled allow you to restrict the set of valid inputs:

ui <- fluidPage(
 dateInput("dob", "When were you born?"),
 dateRangeInput("holiday", "When do you want to go on vacation next?")
)

Date format, language, and the day on which the week starts defaults to US standards.
If you are creating an app with an international audience, set format, language, and
weekstart so that the dates are natural to your users.

Limited Choices
There are two different approaches to allow the user to choose from a prespecified set
of options: selectInput() and radioButtons():

animals <- c("dog", "cat", "mouse", "bird", "other", "I hate animals")

ui <- fluidPage(
 selectInput("state", "What's your favourite state?", state.name),
 radioButtons("animal", "What's your favourite animal?", animals)
)

Radio buttons have two nice features: they show all possible options, making them
suitable for short lists, and via the choiceNames/choiceValues arguments, they can

18 | Chapter 2: Basic UI

display options other than plain text. choiceNames determines what is shown to the
user; choiceValues determines what is returned in your server function:

ui <- fluidPage(
 radioButtons("rb", "Choose one:",
 choiceNames = list(
 icon("angry"),
 icon("smile"),
 icon("sad-tear")
),
 choiceValues = list("angry", "happy", "sad")
)
)

Drop-downs created with selectInput() take up the same amount of space, regard‐
less of the number of options, making them more suitable for longer options. You can
also set multiple = TRUE to allow the user to select multiple elements:

ui <- fluidPage(
 selectInput(
 "state", "What's your favourite state?", state.name,
 multiple = TRUE
)
)

If you have a very large set of possible options, you may want to use “server-side”
selectInput() so that the complete set of possible options is not embedded in the UI
(which can make it slow to load) but instead sent as needed by the server. You can
learn more about this advanced topic in the Shiny documentation.

There’s no way to select multiple values with radio buttons, but there’s an alternative
that’s conceptually similar: checkboxGroupInput():

ui <- fluidPage(
 checkboxGroupInput("animal", "What animals do you like?", animals)
)

Inputs | 19

https://oreil.ly/FgvCM

If you want a single checkbox for a single yes/no question, use checkboxInput():

ui <- fluidPage(
 checkboxInput("cleanup", "Clean up?", value = TRUE),
 checkboxInput("shutdown", "Shutdown?")
)

File Uploads
Allow the user to upload a file with fileInput():

ui <- fluidPage(
 fileInput("upload", NULL)
)

fileInput() requires special handling on the server side and is discussed in detail in
Chapter 9.

Action Buttons
Let the user perform an action with actionButton() or actionLink():

ui <- fluidPage(
 actionButton("click", "Click me!"),
 actionButton("drink", "Drink me!", icon = icon("cocktail"))
)

Action links and buttons are most naturally paired with observeEvent() or even
tReactive() in your server function. You haven’t learned about these important

20 | Chapter 2: Basic UI

functions yet, but we’ll come back to them in “Controlling Timing of Evaluation” on
page 44.

You can customize the appearance using the class argument by using one of
"btn-primary", "btn-success", "btn-info", "btn-warning", or "btn-danger". You
can also change the size with "btn-lg", "btn-sm", or "btn-xs". Finally, you can make
buttons span the entire width of the element they are embedded within using
"btn-block":

ui <- fluidPage(
 fluidRow(
 actionButton("click", "Click me!", class = "btn-danger"),
 actionButton("drink", "Drink me!", class = "btn-lg btn-success")
),
 fluidRow(
 actionButton("eat", "Eat me!", class = "btn-block")
)
)

The class argument works by setting the class attribute of the underlying HTML,
which affects how the element is styled. To see other options, you can read the docu‐
mentation for Bootstrap, the CSS design system used by Shiny.

Exercises
1. When space is at a premium, it’s useful to label text boxes using a placeholder

that appears inside the text entry area. How do you call textInput() to generate
the following UI?

2. Carefully read the documentation for sliderInput() to figure out how to create
a date slider, as shown here:

3. Create a slider input to select values between 0 and 100 where the interval
between each selectable value on the slider is 5. Then, add animation to the input

Inputs | 21

https://oreil.ly/6VHyv
https://oreil.ly/6VHyv

2 Note that the name of that argument is different for inputs (inputId) and outputs (outputId). I don’t use the
name of the first argument because it’s so important, and I expect you to remember what it does without an
additional hint.

widget so when the user presses play, the input widget scrolls through the range
automatically.

4. If you have a moderately long list in a selectInput(), it’s useful to create sub-
headings that break the list up into pieces. Read the documentation to figure out
how. (Hint: The underlying HTML is called <optgroup>.)

Outputs
Outputs in the UI create placeholders that are later filled by the server function. Like
inputs, outputs take a unique ID as their first argument:2 if your UI specification cre‐
ates an output with ID "plot", you’ll access it in the server function with
output$plot.

Each output function on the frontend is coupled with a render function in the back‐
end. There are three main types of output, corresponding to the three things you usu‐
ally include in a report: text, tables, and plots. The following sections show you the
basics of the output functions on the frontend, along with the corresponding render
functions in the backend.

Text
Output regular text with textOutput() and fixed width text (e.g., console output)
with verbatimTextOutput():

ui <- fluidPage(
 textOutput("text"),
 verbatimTextOutput("code")
)
server <- function(input, output, session) {
 output$text <- renderText({
 "Hello friend!"
 })
 output$code <- renderPrint({
 summary(1:10)
 })
}

22 | Chapter 2: Basic UI

Note that the {} are only required in render functions if you need to run multiple
lines of code. As you’ll learn shortly, you should do as little computation in your ren‐
der functions as possible, which means you can often omit them. Here’s what the pre‐
ceding server function would look like if written more compactly:

server <- function(input, output, session) {
 output$text <- renderText("Hello friend!")
 output$code <- renderPrint(summary(1:10))
}

Note that there are two render functions, which behave slightly differently:

renderText()

This combines the result into a single string and is usually paired with
textOutput().

renderPrint()

This prints the result, as if you were in an R console, and is usually paired with
verbatimTextOutput().

We can see the difference with a toy app:

ui <- fluidPage(
 textOutput("text"),
 verbatimTextOutput("print")
)
server <- function(input, output, session) {
 output$text <- renderText("hello!")
 output$print <- renderPrint("hello!")
}

This is equivalent to the difference between cat() and print() in base R.

Outputs | 23

Tables
There are two options for displaying data frames in tables:

tableOutput() and renderTable()
These render a static table of data, showing all the data at once.

dataTableOutput() and renderDataTable()
These render a dynamic table, showing a fixed number of rows along with con‐
trols to change which rows are visible.

tableOutput() is most useful for small, fixed summaries (e.g., model coefficients);
dataTableOutput() is most appropriate if you want to expose a complete data frame
to the user. The following code shows a very simple example of tableOutput() and
dataTableOutput():

ui <- fluidPage(
 tableOutput("static"),
 dataTableOutput("dynamic")
)
server <- function(input, output, session) {
 output$static <- renderTable(head(mtcars))
 output$dynamic <- renderDataTable(mtcars, options = list(pageLength = 5))
}

If you want greater control over the output of dataTableOutput(), I highly recom‐
mend the reactable package by Greg Lin.

24 | Chapter 2: Basic UI

https://glin.github.io/reactable

Plots
You can display any type of R graphic (e.g., base or ggplot2) with plotOutput() and
renderPlot():

ui <- fluidPage(
 plotOutput("plot", width = "400px")
)
server <- function(input, output, session) {
 output$plot <- renderPlot(plot(1:5), res = 96)
}

By default, plotOutput() will take up the full width of its container (more on that
shortly) and will be 400 pixels high. You can override these defaults with the height
and width arguments. We recommend always setting res = 96 as that will make your
Shiny plots match what you see in RStudio as closely as possible.

Plots are special because they are outputs that can also act as inputs. plotOutput()
has a number of arguments like click, dblclick, and hover. If you pass these a
string, like click = "plot_click", they’ll create a reactive input (input
$plot_click) that you can use to handle user interaction on the plot (e.g., clicking on
the plot). We’ll come back to interactive plots in Shiny in Chapter 7.

Downloads
You can let the user download a file with downloadButton() or downloadLink().
These require new techniques in the server function, so we’ll come back to that in
Chapter 9.

Outputs | 25

Exercises
1. Which of textOutput() and verbatimTextOutput() should each of the follow‐

ing render functions be paired with?
a. renderPrint(summary(mtcars))

b. renderText("Good morning!")

c. renderPrint(t.test(1:5, 2:6))

d. renderText(str(lm(mpg ~ wt, data = mtcars)))

2. Re-create the Shiny app from “Plots” on page 25, this time setting height to 300px
and width to 700px. Set the plot “alt” text so that a visually impaired user can tell
that it’s a scatterplot of five random numbers.

3. Update the options in the call to renderDataTable() so that the data is displayed
but all other controls are suppressed (i.e., remove the search, ordering, and filter‐
ing commands). You’ll need to read ?renderDataTable and review the options in
the underlying JavaScript library:

ui <- fluidPage(
 dataTableOutput("table")
)
server <- function(input, output, session) {
 output$table <- renderDataTable(mtcars, options = list(pageLength = 5))
}

4. Alternatively, read up on reactable and convert the preceding app to use it
instead.

Summary
This chapter has introduced you to the major input and output functions that make
up the frontend of a Shiny app. This was a big infodump, so don’t expect to remember
everything after a single read. Instead, come back to this chapter when you’re looking
for a specific component: you can quickly scan the figures and then find the code you
need.

In the next chapter, we’ll move on to the backend of a Shiny app: the R code that
makes your user interface come to life.

26 | Chapter 2: Basic UI

https://datatables.net/reference/option
https://glin.github.io/reactable

CHAPTER 3

Basic Reactivity

Introduction
In Shiny, you express your server logic using reactive programming. Reactive pro‐
gramming is an elegant and powerful programming paradigm, but it can be disori‐
enting at first because it’s a very different paradigm to writing a script. The key idea of
reactive programming is to specify a graph of dependencies so that when an input
changes, all related outputs are automatically updated. This makes the flow of an app
considerably simpler, but it takes a while to get your head around how it all fits
together.

This chapter will provide a gentle introduction to reactive programming, teaching
you the basics of the most common reactive constructs you’ll use in Shiny apps. We’ll
start with a survey of the server function, discussing in more detail how the input
and output arguments work. Next we’ll review the simplest form of reactivity (where
inputs are directly connected to outputs) and then discuss how reactive expressions
allow you to eliminate duplicated work. We’ll finish by reviewing some common
roadblocks encountered by newer Shiny users.

The Server Function
As you’ve seen, the guts of every Shiny app look like this:

library(shiny)

ui <- fluidPage(
 # frontend interface
)

server <- function(input, output, session) {
 # backend logic

27

1 Each connection to a Shiny app starts a new session, whether it’s connections from different people or multi‐
ple tabs from the same person.

2 The primary exception is where there’s some work that can be shared across multiple users. For example, all
users might be looking at the same large CSV file, so you might as well load it once and share it between users.
We’ll come back to that idea in “Schedule Data Munging” on page 338.

}

shinyApp(ui, server)

The previous chapter covered the basics of the frontend, the ui object that contains
the HTML presented to every user of your app. The ui is simple because every user
gets the same HTML. The server is more complicated because every user needs to
get an independent version of the app; when user A moves a slider, user B shouldn’t
see their outputs change.

To achieve this independence, Shiny invokes your server() function each time a new
session starts.1 Just like any other R function, when the server function is called, it
creates a new local environment that is independent of every other invocation of the
function. This allows each session to have a unique state and isolate the variables cre‐
ated inside the function. This is why almost all of the reactive programming you’ll do
in Shiny will be inside the server function.2

Server functions take three parameters: input, output, and session. Because you
never call the server function yourself, you’ll never create these objects yourself.
Instead, they’re created by Shiny when the session begins, connecting back to a spe‐
cific session. For the moment, we’ll focus on the input and output arguments and
leave session for later chapters.

Input
The input argument is a list-like object that contains all the input data sent from the
browser, named according to the input ID. For example, if your UI contains a
numeric input control with an input ID of count, like so:

ui <- fluidPage(
 numericInput("count", label = "Number of values", value = 100)
)

then you can access the value of that input with input$count. It will initially contain
the value 100, and it will be automatically updated as the user changes the value in the
browser.

28 | Chapter 3: Basic Reactivity

Unlike a typical list, input objects are read-only. If you attempt to modify an input
inside the server function, you’ll get an error:

server <- function(input, output, session) {
 input$count <- 10
}

shinyApp(ui, server)
#> Error: Can't modify read-only reactive value 'count'

This error occurs because input reflects what’s happening in the browser, and the
browser is Shiny’s “single source of truth.” If you could modify the value in R, you
could introduce inconsistencies, where the input slider said one thing in the browser
and input$count said something different in R. That would make programming
challenging! Later, in Chapter 8, you’ll learn how to use functions like updateNumeri
cInput() to modify the value in the browser, and then input$count will update
accordingly.

One more important thing about input: it’s selective about who is allowed to read it.
To read from an input, you must be in a reactive context created by a function like
renderText() or reactive(). We’ll come back to that idea very shortly, but it’s an
important constraint that allows outputs to automatically update when an input
changes. This code illustrates the error you’ll see if you make this mistake:

server <- function(input, output, session) {
 message("The value of input$count is ", input$count)
}

shinyApp(ui, server)
#> Error: Can't access reactive value 'count' outside of reactive consumer.
#> ℹ Do you need to wrap inside reactive() or observer()?

Output
output is very similar to input: it’s also a list-like object named according to the out‐
put ID. The main difference is that you use it for sending output instead of receiving
input. You always use the output object in concert with a render function, as in the
following simple example:

ui <- fluidPage(
 textOutput("greeting")
)

server <- function(input, output, session) {
 output$greeting <- renderText("Hello human!")
}

(Note that the ID is quoted in the UI but not in the server.)

The Server Function | 29

The render function does two things:

• It sets up a special reactive context that automatically tracks what inputs the out‐
put uses.

• It converts the output of your R code into HTML suitable for display on a web
page.

Like the input, the output is picky about how you use it. You’ll get an error if:

• You forget the render function:
server <- function(input, output, session) {
 output$greeting <- "Hello human"
}
shinyApp(ui, server)
#> Error: Unexpected character object for output$greeting
#> ℹ Did you forget to use a render function?

• You attempt to read from an output:
server <- function(input, output, session) {
 message("The greeting is ", output$greeting)
}
shinyApp(ui, server)
#> Error: Reading from shinyoutput object is not allowed.

Reactive Programming
An app is going to be pretty boring if it only has inputs or only has outputs. The real
magic of Shiny happens when you have an app with both. Let’s look at a simple
example:

ui <- fluidPage(
 textInput("name", "What's your name?"),
 textOutput("greeting")
)

server <- function(input, output, session) {
 output$greeting <- renderText({
 paste0("Hello ", input$name, "!")
 })
}

30 | Chapter 3: Basic Reactivity

3 If you’re running the live app, notice that you have to type fairly slowly for the output to update one letter at a
time. That’s because Shiny uses a technique called debouncing, which means that it waits for a few ms before
sending an update. That considerably reduces the amount of work that Shiny needs to do, without appreciably
reducing the response time of the app.

It’s hard to show how this works in a book, but I do my best in Figure 3-1. If you run
the app, and type in the name box, you’ll see that the greeting updates automatically
as you type.3

Figure 3-1. Reactivity means that outputs automatically update as inputs change, as in
this app where I type: J, o, e. See live at https://hadley.shinyapps.io/ms-connection.

This is the big idea in Shiny: you don’t need to tell an output when to update, because
Shiny automatically figures it out for you. How does it work? What exactly is going
on in the body of the function? Let’s think about the code inside the server function
more precisely:

output$greeting <- renderText({
 paste0("Hello ", input$name, "!")
})

It’s easy to read this as “paste together ‘hello’ and the user’s name, then send the ren‐
dered text to output$greeting.” But this mental model is wrong in a subtle, but
important, way. Think about it: with this model, you only issue the instruction once.
But Shiny performs the action every time we update input$name, so there must be
something more going on.

The app works because the code doesn’t tell Shiny to create the string and send it to
the browser but instead informs Shiny how it could create the string if it needs to. It’s
up to Shiny when (and even if!) the code should be run. It might be run as soon as the
app launches, or it might be quite a bit later; it might be run many times, or it might
never be run! This isn’t to imply that Shiny is capricious, only that it’s Shiny’s respon‐
sibility to decide when code is executed, not yours. Think of your app as providing
Shiny with recipes, not giving it commands.

Imperative Versus Declarative Programming
This difference between commands and recipes is one of the key differences between
two important styles of programming:

Reactive Programming | 31

https://hadley.shinyapps.io/ms-connection

4 Read this xkcd comic for reference.
5 If you’ve ever struggled to get a ggplot2 legend to look exactly the way you want, you’ve encountered this

problem!
6 Yes, Shiny doesn’t update the output if you can’t see it in your browser! Shiny is so lazy that it doesn’t do the

work unless you can actually see the results.

Imperative programming
Issue a specific command and it’s carried out immediately. This is the style of
programming you’re used to in your analysis scripts: you command R to load
your data, transform it, visualize it, and save the results to disk.

Declarative programming
Express higher-level goals or describe important constraints, and rely on some‐
one else to decide how and/or when to translate that into action. This is the style
of programming you use in Shiny.

With imperative code, you say, “Make me a sandwich.”4 With declarative code, you
say, “Ensure there is a sandwich in the refrigerator whenever I look inside of it.”
Imperative code is assertive; declarative code is passive-aggressive.

Most of the time, declarative programming is tremendously freeing: you describe
your overall goals, and the software figures out how to achieve them without further
intervention. The downside is the occasional time when you know exactly what you
want, but you can’t figure out how to frame it in a way that the declarative system
understands.5 The goal of this book is to help you develop your understanding of the
underlying theory so that happens as infrequently as possible.

Laziness
One of the strengths of declarative programming in Shiny is that it allows apps to be
extremely lazy. A Shiny app will only ever do the minimal amount of work needed to
update the output controls that you can currently see.6 This laziness, however, comes
with an important downside that you should be aware of. Can you spot what’s wrong
with the following server function?

server <- function(input, output, session) {
 output$greting <- renderText({
 paste0("Hello ", input$name, "!")
 })
}

If you look closely, you might notice that I’ve written greting instead of greeting.
This won’t generate an error in Shiny, but it won’t do what you want. The greting
output doesn’t exist, so the code inside renderText() will never be run.

32 | Chapter 3: Basic Reactivity

https://xkcd.com/149

If you’re working on a Shiny app and you just can’t figure out why your code never
gets run, double-check that your UI and server functions are using the same
identifiers.

The Reactive Graph
Shiny’s laziness has another important property. In most R code, you can understand
the order of execution by reading the code from top to bottom. That doesn’t work in
Shiny, because code is only run when needed. To understand the order of execution,
you need to instead look at the reactive graph, which describes how inputs and out‐
puts are connected. The reactive graph for the preceding app is very simple and
shown in Figure 3-2.

Figure 3-2. The reactive graph shows how the inputs and outputs are connected.

The reactive graph contains one symbol for every input and output, and we connect
an input to an output whenever the output accesses the input. This graph tells you
that greeting will need to be recomputed whenever name is changed. To describe this
relationship, we’ll often say that greeting has a reactive dependency on name.

Note the graphical conventions we used for the inputs and outputs: the name input
naturally fits into the greeting output. We could draw them closely packed together,
as in Figure 3-3, to emphasize the way that they fit together; we won’t normally do
that because it only works for the simplest of apps.

Figure 3-3. The shapes used by the components of the reactive graph evoke the ways in
which they connect.

The reactive graph is a powerful tool for understanding how your app works. As your
app gets more complicated, it’s often useful to make a quick high-level sketch of the
reactive graph to remind you how all the pieces fit together. Throughout this book
we’ll show you the reactive graph to help understand how the examples work, and
later on, in Chapter 14, you’ll learn how to use reactlog, which will draw the graph for
you.

Reactive Expressions
There’s one more important component that you’ll see in the reactive graph: the reac‐
tive expression. We’ll come back to the reactive expression in detail very shortly; for

Reactive Programming | 33

7 The technical term for this ordering is a topological sort.

now, think of it as a tool that reduces duplication in your reactive code by introducing
additional nodes into the reactive graph.

We don’t need a reactive expression in our very simple app, but I’ll add one anyway so
you can see how it affects the reactive graph, Figure 3-4:

server <- function(input, output, session) {
 string <- reactive(paste0("Hello ", input$name, "!"))
 output$greeting <- renderText(string())
}

Figure 3-4. A reactive expression is drawn with angles on both sides because it connects
inputs to outputs.

Reactive expressions take inputs and produce outputs so they have a shape that com‐
bines features of both inputs and outputs. Hopefully, the shapes will help you remem‐
ber how the components fit together.

Execution Order
It’s important to understand that the order in which your code is run is determined
solely by the reactive graph. This is different from most R code where the execution
order is determined by the order of lines. For example, we could flip the order of the
two lines in our simple server function:

server <- function(input, output, session) {
 output$greeting <- renderText(string())
 string <- reactive(paste0("Hello ", input$name, "!"))
}

You might think that this would yield an error because output$greeting refers to a
reactive expression, string, that hasn’t been created yet. But remember that Shiny is
lazy, so that code is only run when the session starts, after string has been created.

This code yields the same reactive graph as before, so the order in which the code is
run is exactly the same. But organizing your code like this is confusing for humans
and best avoided. Instead, make sure that reactive expressions and outputs only refer
to things defined above, not below.7 This will make your code easier to understand.

This concept is very important and different from most other R code, so I’ll say it
again: the order in which reactive code is run is determined only by the reactive
graph, not by its layout in the server function.

34 | Chapter 3: Basic Reactivity

Exercises
1. Given this UI:

ui <- fluidPage(
 textInput("name", "What's your name?"),
 textOutput("greeting")
)

fix the simple errors found in each of the following three server functions. First
try spotting the problem just by reading the code; then run the code to make sure
you’ve fixed it:

server1 <- function(input, output, server) {
 input$greeting <- renderText(paste0("Hello ", name))
}

server2 <- function(input, output, server) {
 greeting <- paste0("Hello ", input$name)
 output$greeting <- renderText(greeting)
}

server3 <- function(input, output, server) {
 output$greting <- paste0("Hello", input$name)
}

2. Draw the reactive graph for the following server functions:
server1 <- function(input, output, session) {
 c <- reactive(input$a + input$b)
 e <- reactive(c() + input$d)
 output$f <- renderText(e())
}
server2 <- function(input, output, session) {
 x <- reactive(input$x1 + input$x2 + input$x3)
 y <- reactive(input$y1 + input$y2)
 output$z <- renderText(x() / y())
}
server3 <- function(input, output, session) {
 d <- reactive(c() ^ input$d)
 a <- reactive(input$a * 10)
 c <- reactive(b() / input$c)
 b <- reactive(a() + input$b)
}

3. Why will this code fail?
var <- reactive(df[[input$var]])
range <- reactive(range(var(), na.rm = TRUE))

Why are range() and var() bad names for reactive?

Reactive Programming | 35

8 If you haven’t heard of a frequency polygon before, it’s just a histogram that’s drawn with a line instead of bars,
which makes it easier to compare multiple datasets on the same plot.

Reactive Expressions
We’ve quickly skimmed over reactive expressions a couple of times, so you’re hope‐
fully getting a sense of what they might do. Now we’ll dive into more of the details
and show why they are so important when constructing real apps.

Reactive expressions are important because they give Shiny more information so that
it can do less recomputation when inputs change, making apps more efficient, and
they make it easier for humans to understand the app by simplifying the reactive
graph. Reactive expressions have a flavor of both inputs and outputs:

• Like inputs, you can use the results of a reactive expression in an output.
• Like outputs, reactive expressions depend on inputs and automatically know

when they need updating.

This duality means we need some new vocab: I’ll use producers to refer to reactive
inputs and expressions, and consumers to refer to reactive expressions and outputs.
Figure 3-5 shows this relationship with a Venn diagram.

Figure 3-5. Inputs and expressions are reactive producers; expressions and outputs are
reactive consumers.

We’re going to need a more complex app to see the benefits of using reactive expres‐
sions. First, we’ll set the stage by defining some regular R functions that we’ll use to
power our app.

The Motivation
Imagine I want to compare two simulated datasets with a plot and a hypothesis test.
I’ve done a little experimentation and come up with the following functions: freqp
oly() visualizes the two distributions with frequency polygons,8 and t_test() uses a
t-test to compare means and summarizes the results with a string:

library(ggplot2)

freqpoly <- function(x1, x2, binwidth = 0.1, xlim = c(-3, 3)) {
 df <- data.frame(

36 | Chapter 3: Basic Reactivity

 x = c(x1, x2),
 g = c(rep("x1", length(x1)), rep("x2", length(x2)))
)

 ggplot(df, aes(x, colour = g)) +
 geom_freqpoly(binwidth = binwidth, size = 1) +
 coord_cartesian(xlim = xlim)
}

t_test <- function(x1, x2) {
 test <- t.test(x1, x2)

 # use sprintf() to format t.test() results compactly
 sprintf(
 "p value: %0.3f\n[%0.2f, %0.2f]",
 test$p.value, test$conf.int[1], test$conf.int[2]
)
}

If I have some simulated data, I can use these functions to compare two variables:

x1 <- rnorm(100, mean = 0, sd = 0.5)
x2 <- rnorm(200, mean = 0.15, sd = 0.9)

freqpoly(x1, x2)
cat(t_test(x1, x2))
#> p value: 0.003
#> [-0.38, -0.08]

In a real analysis, you probably would’ve done a bunch of exploration before you
ended up with these functions. I’ve skipped that exploration here so we can get to the
app as quickly as possible. But extracting imperative code out into regular functions is

Reactive Expressions | 37

an important technique for all Shiny apps: the more code you can extract out of your
app, the easier it will be to understand. This is good software engineering because it
helps isolate concerns: the functions outside of the app focus on the computation so
that the code inside of the app can focus on responding to user actions. We’ll come
back to that idea again in Chapter 18.

The App
I’d like to use these two tools to quickly explore a bunch of simulations. A Shiny app
is a great way to do this because it lets you avoid tediously modifying and rerunning
R code. In the following, I wrap the pieces into a Shiny app, where I can interactively
tweak the inputs.

Let’s start with the UI. We’ll come back to exactly what fluidRow() and column() do
in “Multirow” on page 93; but you can guess their purpose from their names . The
first row has three columns for input controls (distribution 1, distribution 2, and plot
controls). The second row has a wide column for the plot and a narrow column for
the hypothesis test:

ui <- fluidPage(
 fluidRow(
 column(4,
 "Distribution 1",
 numericInput("n1", label = "n", value = 1000, min = 1),
 numericInput("mean1", label = "µ", value = 0, step = 0.1),
 numericInput("sd1", label = "σ", value = 0.5, min = 0.1, step = 0.1)
),
 column(4,
 "Distribution 2",
 numericInput("n2", label = "n", value = 1000, min = 1),
 numericInput("mean2", label = "µ", value = 0, step = 0.1),
 numericInput("sd2", label = "σ", value = 0.5, min = 0.1, step = 0.1)
),
 column(4,
 "Frequency polygon",
 numericInput("binwidth", label = "Bin width", value = 0.1, step = 0.1),
 sliderInput("range", label = "range", value = c(-3, 3), min = -5, max = 5)
)
),
 fluidRow(
 column(9, plotOutput("hist")),
 column(3, verbatimTextOutput("ttest"))
)
)

The server function combines calls to freqpoly() and t_test() functions after
drawing from the specified distributions:

38 | Chapter 3: Basic Reactivity

server <- function(input, output, session) {
 output$hist <- renderPlot({
 x1 <- rnorm(input$n1, input$mean1, input$sd1)
 x2 <- rnorm(input$n2, input$mean2, input$sd2)

 freqpoly(x1, x2, binwidth = input$binwidth, xlim = input$range)
 }, res = 96)

 output$ttest <- renderText({
 x1 <- rnorm(input$n1, input$mean1, input$sd1)
 x2 <- rnorm(input$n2, input$mean2, input$sd2)

 t_test(x1, x2)
 })
}

This definition of server and ui yields Figure 3-6. I recommend opening the live ver‐
sion and having a quick play to make sure you understand its basic operation before
you continue reading.

Figure 3-6. This Shiny app lets you compare two simulated distributions with a t-test
and a frequency polygon. See live at https://hadley.shinyapps.io/ms-case-study-1.

Reactive Expressions | 39

https://hadley.shinyapps.io/ms-case-study-1

The Reactive Graph
Let’s start by drawing the reactive graph of this app. Shiny is smart enough to update
an output only when the inputs it refers to change; it’s not smart enough to only
selectively run pieces of code inside an output. In other words, outputs are atomic:
they’re either executed or not as a whole.

For example, take this snippet from the server:

x1 <- rnorm(input$n1, input$mean1, input$sd1)
x2 <- rnorm(input$n2, input$mean2, input$sd2)
t_test(x1, x2)

As a human reading this code, you can tell that we only need to update x1 when n1,
mean1, or sd1 changes, and we only need to update x2 when n2, mean2, or sd2
changes. Shiny, however, only looks at the output as a whole, so it will update both x1
and x2 every time one of n1, mean1, sd1, n2, mean2, or sd2 changes. This leads to the
reactive graph shown in Figure 3-7:

Figure 3-7. The reactive graph shows that every output depends on every input.

You’ll notice that the graph is very dense: almost every input is connected directly to
every output. This creates two problems:

• The app is hard to understand because there are so many connections. There are
no pieces of the app that you can pull out and analyze in isolation.

• The app is inefficient because it does more work than necessary. For example, if
you change the breaks of the plot, the data is recalculated; if you change the value
of n1, x2 is updated (in two places!).

40 | Chapter 3: Basic Reactivity

There’s one other major flaw in the app: the frequency polygon and t-test use separate
random draws. This is rather misleading, as you’d expect them to be working on the
same underlying data.

Fortunately, we can fix all these problems by using reactive expressions to pull out
repeated computation.

Simplifying the Graph
In the following server function, we refactor the existing code to pull out the repeated
code into two new reactive expressions, x1 and x2, which simulate the data from the
two distributions. To create a reactive expression, we call reactive() and assign the
results to a variable. To later use the expression, we call the variable like it’s a function:

server <- function(input, output, session) {
 x1 <- reactive(rnorm(input$n1, input$mean1, input$sd1))
 x2 <- reactive(rnorm(input$n2, input$mean2, input$sd2))

 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = input$binwidth, xlim = input$range)
 }, res = 96)

 output$ttest <- renderText({
 t_test(x1(), x2())
 })
}

This transformation yields the substantially simpler graph shown in Figure 3-8.

Figure 3-8. Using reactive expressions considerably simplifies the graph, making it much
easier to understand.

Reactive Expressions | 41

This simpler graph makes it easier to understand the app because you can understand
connected components in isolation; the values of the distribution parameters only
affect the output via x1 and x2. This rewrite also makes the app much more efficient
since it does much less computation. Now, when you change the binwidth or range,
only the plot changes, not the underlying data.

To emphasize this modularity, Figure 3-9 draws boxes around the independent com‐
ponents. We’ll come back to this idea in Chapter 19, when we discuss modules. Mod‐
ules allow you to extract out repeated code for reuse while guaranteeing that it’s
isolated from everything else in the app. Modules are an extremely useful and power‐
ful technique for more complex apps.

Figure 3-9. Modules enforce isolation between parts of an app.

You might be familiar with the “rule of three” of programming: whenever you copy
and paste something three times, you should figure out how to reduce the duplication
(typically by writing a function). This is important because it reduces the amount of
duplication in your code, which makes it easier to understand and easier to update as
your requirements change.

In Shiny, however, I think you should consider the rule of one: whenever you copy
and paste something once, you should consider extracting the repeated code out into
a reactive expression. The rule is stricter for Shiny because reactive expressions don’t
just make it easier for humans to understand the code, but they also improve Shiny’s
ability to efficiently rerun code.

42 | Chapter 3: Basic Reactivity

Why Do We Need Reactive Expressions?
When you first start working with reactive code, you might wonder why we need
reactive expressions. Why can’t you use your existing tools—creating new variables
and writing functions—for reducing duplication in code? Unfortunately, neither of
these techniques work in a reactive environment.

If you try to use a variable to reduce duplication, you might write something like this:

server <- function(input, output, session) {
 x1 <- rnorm(input$n1, input$mean1, input$sd1)
 x2 <- rnorm(input$n2, input$mean2, input$sd2)

 output$hist <- renderPlot({
 freqpoly(x1, x2, binwidth = input$binwidth, xlim = input$range)
 }, res = 96)

 output$ttest <- renderText({
 t_test(x1, x2)
 })
}

If you run this code, you’ll get an error because you’re attempting to access input val‐
ues outside of a reactive context. Even if you didn’t get that error, you’d still have a
problem: x1 and x2 would only be computed once, when the session begins, not every
time one of the inputs was updated.

If you try to use a function, the app will work:

server <- function(input, output, session) {
 x1 <- function() rnorm(input$n1, input$mean1, input$sd1)
 x2 <- function() rnorm(input$n2, input$mean2, input$sd2)

 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = input$binwidth, xlim = input$range)
 }, res = 96)

 output$ttest <- renderText({
 t_test(x1(), x2())
 })
}

Reactive Expressions | 43

9 If you’re familiar with memoization, this is a similar idea.

But it has the same problem as the original code: any input will cause all outputs to be
recomputed, and the t-test and the frequency polygon will be run on separate sam‐
ples. Reactive expressions automatically cache their results and only update when
their inputs change.9

While variables calculate the value only once (the porridge is too cold), and functions
calculate the value every time they’re called (the porridge is too hot), reactive expres‐
sions calculate the value only when it might have changed (the porridge is just right!).

Controlling Timing of Evaluation
Now that you’re familiar with the basic ideas of reactivity, we’ll discuss two more
advanced techniques that allow you to either increase or decrease how often a reac‐
tive expression is executed. Here, I’ll show how to use the basic techniques; in Chap‐
ter 15, we’ll come back to their underlying implementations.

To explore the basic ideas, I’m going to simplify my simulation app. I’ll use a distribu‐
tion with only one parameter, and force both samples to share the same n. I’ll also
remove the plot controls. This yields a smaller UI object and server function:

ui <- fluidPage(
 fluidRow(
 column(3,
 numericInput("lambda1", label = "lambda1", value = 3),
 numericInput("lambda2", label = "lambda2", value = 5),
 numericInput("n", label = "n", value = 1e4, min = 0)
),
 column(9, plotOutput("hist"))
)
)
server <- function(input, output, session) {
 x1 <- reactive(rpois(input$n, input$lambda1))
 x2 <- reactive(rpois(input$n, input$lambda2))
 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = 1, xlim = c(0, 40))
 }, res = 96)
}

This generates the app shown in Figure 3-10 and reactive graph shown in
Figure 3-11.

44 | Chapter 3: Basic Reactivity

10 The New York Times used this technique particularly effectively in their article discussing how to interpret the
jobs report.

Figure 3-10. This simpler app displays a frequency polygon of random numbers drawn
from two Poisson distributions. See live at https://hadley.shinyapps.io/ms-simulation-2.

Figure 3-11. The reactive graph.

Timed Invalidation
Imagine you wanted to reinforce the fact that this is for simulated data by constantly
resimulating the data so that you see an animation rather than a static plot.10 We can
increase the frequency of updates with a new function: reactiveTimer().

reactiveTimer() is a reactive expression that has a dependency on a hidden input:
the current time. You can use a reactiveTimer() when you want a reactive expres‐
sion to invalidate itself more often than it otherwise would. For example, the follow‐
ing code uses an interval of 500 ms so that the plot will update twice a second. This is
fast enough to remind you that you’re looking at a simulation, without dizzying you
with rapid changes. This change yields the reactive graph shown in Figure 3-12:

server <- function(input, output, session) {
 timer <- reactiveTimer(500)

 x1 <- reactive({

Controlling Timing of Evaluation | 45

https://oreil.ly/PhqSA
https://oreil.ly/PhqSA
https://hadley.shinyapps.io/ms-simulation-2

 timer()
 rpois(input$n, input$lambda1)
 })
 x2 <- reactive({
 timer()
 rpois(input$n, input$lambda2)
 })

 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = 1, xlim = c(0, 40))
 }, res = 96)
}

Figure 3-12. reactiveTimer(500) introduces a new reactive input that automatically
invalidates every half a second.

Note how we use timer() in the reactive expressions that compute x1() and x2(): we
call it but don’t use the value. This lets x1 and x2 take a reactive dependency on
timer, without worrying about exactly what value it returns.

On Click
In the preceding scenario, think about what would happen if the simulation code
took 1 second to run. We perform the simulation every 0.5s, so Shiny would have
more and more to do and would never be able to catch up. The same problem can
happen if someone is rapidly clicking buttons in your app and the computation you
are doing is relatively expensive. It’s possible to create a big backlog of work for Shiny,
and while it’s working on the backlog, it can’t respond to any new events. This leads to
a poor user experience.

If this situation arises in your app, you might want to require the user to opt in to
performing the expensive calculation by requiring them to click a button. This is a
great use case for an actionButton():

ui <- fluidPage(
 fluidRow(
 column(3,
 numericInput("lambda1", label = "lambda1", value = 3),
 numericInput("lambda2", label = "lambda2", value = 5),

46 | Chapter 3: Basic Reactivity

 numericInput("n", label = "n", value = 1e4, min = 0),
 actionButton("simulate", "Simulate!")
),
 column(9, plotOutput("hist"))
)
)

To use the action button, we need to learn a new tool. To see why, let’s first tackle the
problem using the previous approach. As we did before, we refer to simulate without
using its value to take a reactive dependency on it:

server <- function(input, output, session) {
 x1 <- reactive({
 input$simulate
 rpois(input$n, input$lambda1)
 })
 x2 <- reactive({
 input$simulate
 rpois(input$n, input$lambda2)
 })
 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = 1, xlim = c(0, 40))
 }, res = 96)
}

This yields the app in Figure 3-13 and reactive graph in Figure 3-14. This doesn’t ach‐
ieve our goal because it just introduces a new dependency: x1() and x2() will update
when we click the simulate button, but they’ll also continue to update when lambda1,
lambda2, or n change. We want to replace the existing dependencies, not add to them.

Figure 3-13. App with action button. See live at https://hadley.shinyapps.io/ms-action-
button.

Controlling Timing of Evaluation | 47

https://hadley.shinyapps.io/ms-action-button
https://hadley.shinyapps.io/ms-action-button

Figure 3-14. This reactive graph doesn’t accomplish our goal; we’ve added a dependency
instead of replacing the existing dependencies.

To solve this problem we need a new tool: a way to use input values without taking a
reactive dependency on them. We need eventReactive(), which has two arguments:
the first argument specifies what to take a dependency on, and the second argument
specifies what to compute. That allows this app to only compute x1() and x2() when
simulate is clicked:

server <- function(input, output, session) {
 x1 <- eventReactive(input$simulate, {
 rpois(input$n, input$lambda1)
 })
 x2 <- eventReactive(input$simulate, {
 rpois(input$n, input$lambda2)
 })

 output$hist <- renderPlot({
 freqpoly(x1(), x2(), binwidth = 1, xlim = c(0, 40))
 }, res = 96)
}

Figure 3-15 shows the new reactive graph. Note that, as desired, x1 and x2 no longer
have a reactive dependency on lambda1, lambda2, and n: changing their values will
not trigger computation. I left the arrows in very pale gray just to remind you that x1
and x2 continue to use the values but no longer take a reactive dependency on them.

Figure 3-15. eventReactive() makes it possible to separate the dependencies (black
arrows) from the values used to compute the result (pale-gray arrows).

48 | Chapter 3: Basic Reactivity

Observers
So far, we’ve focused on what’s happening inside the app. But sometimes you need to
reach outside of the app and cause side effects to happen elsewhere in the world. This
might be saving a file to a shared network drive, sending data to a web API, updating
a database, or (most commonly) printing a debugging message to the console. These
actions don’t affect how your app looks, so you shouldn’t use an output and a render
function. Instead you need to use an observer.

There are multiple ways to create an observer, and we’ll come back to them later in
“Observers and Outputs” on page 226. For now, I wanted to show you how to use
observeEvent(), because it gives you an important debugging tool when you’re first
learning Shiny.

observeEvent() is very similar to eventReactive(). It has two important arguments:
eventExpr and handlerExpr. The first argument is the input or expression to take a
dependency on; the second argument is the code that will be run. For example, the
following modification to server() means that every time that name is updated, a
message will be sent to the console:

ui <- fluidPage(
 textInput("name", "What's your name?"),
 textOutput("greeting")
)

server <- function(input, output, session) {
 string <- reactive(paste0("Hello ", input$name, "!"))

 output$greeting <- renderText(string())
 observeEvent(input$name, {
 message("Greeting performed")
 })
}

There are two important differences between observeEvent() and eventReactive():

• You don’t assign the result of observeEvent() to a variable.
• As a result, you can’t refer to it from other reactive consumers.

Observers and outputs are closely related. You can think of outputs as having a spe‐
cial side effect: updating the HTML in the user’s browser. To emphasize this closeness,
we’ll draw them the same way in the reactive graph. This yields the reactive graph
shown in Figure 3-16.

Observers | 49

Figure 3-16. In the reactive graph, an observer looks the same as an output.

Summary
This chapter should have improved your understanding of the backend of Shiny apps,
the server() code that responds to user actions. You’ve also taken the first steps in
mastering the reactive programming paradigm that underpins Shiny. What you’ve
learned here will carry you a long way; we’ll come back to the underlying theory in
Chapter 13. Reactivity is extremely powerful, but it is also very different from the
imperative style of R programming that you’re most used to. Don’t be surprised if it
takes a while for all the consequences to sink in.

This chapter concludes our overview of the foundations of Shiny. The next chapter
will help you practice the material you’ve seen so far by creating a bigger Shiny app
designed to support a data analysis.

50 | Chapter 3: Basic Reactivity

CHAPTER 4

Case Study: ER Injuries

Introduction
I’ve introduced you to a bunch of new concepts in the last three chapters. So to help
them sink in, we’ll now walk through a richer Shiny app that explores a fun dataset
and pulls together many of the ideas that you’ve seen so far. We’ll start by doing a
little data analysis outside of Shiny, then turn it into an app, starting simply, then pro‐
gressively layering on more detail.

In this chapter, we’ll supplement Shiny with vroom (for fast file reading) and the tidy‐
verse (for general data analysis):

library(shiny)
library(vroom)
library(tidyverse)

The Data
We’re going to explore data from the National Electronic Injury Surveillance System
(NEISS), collected by the Consumer Product Safety Commission. This is a long-term
study that records all accidents seen in a representative sample of hospitals in the
United States. It’s an interesting dataset to explore because everyone is already famil‐
iar with the domain, and each observation is accompanied by a short narrative that
explains how the accident occurred. You can find out more about this dataset on
GitHub.

In this chapter, I’m going to focus on just the data from 2017. This keeps the data
small enough (~10 MB) that it’s easy to store in Git (along with the rest of the book),
which means we don’t need to think about sophisticated strategies for importing the
data quickly (we’ll come back to those later in the book). You can see the code I used
to create the extract for this chapter on GitHub.

51

https://github.com/hadley/neiss
https://oreil.ly/ERRCh

If you want to get the data on to your own computer, run this code:

dir.create("neiss")
#> Warning in dir.create("neiss"): 'neiss' already exists
download <- function(name) {
 url <- "https://github.com/hadley/mastering-shiny/raw/master/neiss/"
 download.file(paste0(url, name), paste0("neiss/", name), quiet = TRUE)
}
download("injuries.tsv.gz")
download("population.tsv")
download("products.tsv")

The main dataset we’ll use is injuries, which contains around 250,000 observations:
injuries <- vroom::vroom("neiss/injuries.tsv.gz")
injuries
#> # A tibble: 255,064 x 10
#> trmt_date age sex race body_part diag location prod_code weight
#> <date> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2017-01-01 71 male white Upper Tru… Contusion… Other Publ… 1807 77.7
#> 2 2017-01-01 16 male white Lower Arm Burns, Th… Home 676 77.7
#> 3 2017-01-01 58 male white Upper Tru… Contusion… Home 649 77.7
#> 4 2017-01-01 21 male white Lower Tru… Strain, S… Home 4076 77.7
#> 5 2017-01-01 54 male white Head Inter Org… Other Publ… 1807 77.7
#> 6 2017-01-01 21 male white Hand Fracture Home 1884 77.7
#> # … with 255,058 more rows, and 1 more variable: narrative <chr>

Each row represents a single accident with 10 variables:

trmt_date

The date the person was seen in the hospital (not when the accident occurred).

age, sex, and race
Demographic information about the person who experienced the accident.

body_part

The location of the injury on the body (like ankle or ear); location is the place
where the accident occurred (like home or school).

diag

The basic diagnosis of the injury (like fracture or laceration).

prod_code

The primary product associated with the injury.

weight

The statistical weight giving the estimated number of people who would suffer
this injury if this dataset was scaled to the entire population of the US.

narrative

A brief story about how the accident occurred.

52 | Chapter 4: Case Study: ER Injuries

We’ll pair it with two other data frames for additional context: products lets us look
up the product name from the product code, and population tells us the total US
population in 2017 for each combination of age and sex:

products <- vroom::vroom("neiss/products.tsv")
products
#> # A tibble: 38 x 2
#> prod_code title
#> <dbl> <chr>
#> 1 464 knives, not elsewhere classified
#> 2 474 tableware and accessories
#> 3 604 desks, chests, bureaus or buffets
#> 4 611 bathtubs or showers
#> 5 649 toilets
#> 6 676 rugs or carpets, not specified
#> # … with 32 more rows

population <- vroom::vroom("neiss/population.tsv")
population
#> # A tibble: 170 x 3
#> age sex population
#> <dbl> <chr> <dbl>
#> 1 0 female 1924145
#> 2 0 male 2015150
#> 3 1 female 1943534
#> 4 1 male 2031718
#> 5 2 female 1965150
#> 6 2 male 2056625
#> # … with 164 more rows

Exploration
Before we create the app, let’s explore the data a little. We’ll start by looking at a prod‐
uct with an interesting story: 649, “toilets.” First we’ll pull out the injuries associated
with this product:

selected <- injuries %>% filter(prod_code == 649)
nrow(selected)
#> [1] 2993

Next we’ll perform some basic summaries looking at the location, body part, and
diagnosis of toilet-related injuries. Note that I weight by the weight variable so that
the counts can be interpreted as estimated total injuries across the whole US:

selected %>% count(location, wt = weight, sort = TRUE)
#> # A tibble: 6 x 2
#> location n
#> <chr> <dbl>
#> 1 Home 99603.
#> 2 Other Public Property 18663.
#> 3 Unknown 16267.

Exploration | 53

#> 4 School 659.
#> 5 Street Or Highway 16.2
#> 6 Sports Or Recreation Place 14.8

selected %>% count(body_part, wt = weight, sort = TRUE)
#> # A tibble: 24 x 2
#> body_part n
#> <chr> <dbl>
#> 1 Head 31370.
#> 2 Lower Trunk 26855.
#> 3 Face 13016.
#> 4 Upper Trunk 12508.
#> 5 Knee 6968.
#> 6 N.S./Unk 6741.
#> # … with 18 more rows

selected %>% count(diag, wt = weight, sort = TRUE)
#> # A tibble: 20 x 2
#> diag n
#> <chr> <dbl>
#> 1 Other Or Not Stated 32897.
#> 2 Contusion Or Abrasion 22493.
#> 3 Inter Organ Injury 21525.
#> 4 Fracture 21497.
#> 5 Laceration 18734.
#> 6 Strain, Sprain 7609.
#> # … with 14 more rows

As you might expect, injuries involving toilets most often occur at home. The most
common body parts involved possibly suggest that these are falls (since the head and
face are not usually involved in routine toilet usage), and the diagnoses seem rather
varied.

We can also explore the pattern across age and sex. We have enough data here that a
table is not that useful, and so I make a plot, as seen in Figure 4-1, that makes the
patterns more obvious:

summary <- selected %>%
 count(age, sex, wt = weight)
summary
#> # A tibble: 208 x 3
#> age sex n
#> <dbl> <chr> <dbl>
#> 1 0 female 4.76
#> 2 0 male 14.3
#> 3 1 female 253.
#> 4 1 male 231.
#> 5 2 female 438.
#> 6 2 male 632.
#> # … with 202 more rows

summary %>%

54 | Chapter 4: Case Study: ER Injuries

 ggplot(aes(age, n, colour = sex)) +
 geom_line() +
 labs(y = "Estimated number of injuries")

Figure 4-1. Estimated number of injuries caused by toilets, broken down by age and sex.

We see a spike for young boys peaking at age 3, and then an increase (particularly for
women) starting around middle age, and a gradual decline after age 80. I suspect the
peak is because boys usually use the toilet standing up, and the increase for women is
due to osteoporosis (i.e., I suspect women and men have injuries at the same rate, but
more women end up in the ER because they are at higher risk of fractures).

One problem with interpreting this pattern is that we know that there are fewer older
people than younger people, so the population available to be injured is smaller. We
can control for this by comparing the number of people injured with the total popula‐
tion and calculating an injury rate. Here I use a rate per 10,000:

summary <- selected %>%
 count(age, sex, wt = weight) %>%
 left_join(population, by = c("age", "sex")) %>%
 mutate(rate = n / population * 1e4)

summary
#> # A tibble: 208 x 5
#> age sex n population rate
#> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 0 female 4.76 1924145 0.0247
#> 2 0 male 14.3 2015150 0.0708
#> 3 1 female 253. 1943534 1.30
#> 4 1 male 231. 2031718 1.14
#> 5 2 female 438. 1965150 2.23
#> 6 2 male 632. 2056625 3.07
#> # … with 202 more rows

Exploration | 55

Plotting the rate, as shown in Figure 4-2, yields a strikingly different trend after age
50: the difference between men and women is much smaller, and we no longer see a
decrease. This is because women tend to live longer than men, so at older ages there
are simply more women alive to be injured by toilets:

summary %>%
 ggplot(aes(age, rate, colour = sex)) +
 geom_line(na.rm = TRUE) +
 labs(y = "Injuries per 10,000 people")

Figure 4-2. Estimated rate of injuries per 10,000 people, broken down by age and sex.

(Note that the rates only go up to age 80 because I couldn’t find population data for
ages over 80.)

Finally, we can look at some of the narratives. Browsing through these is an informal
way to check our hypotheses and generate new ideas for further exploration. Here I
pull out a random sample of 10:

selected %>%
 sample_n(10) %>%
 pull(narrative)
#> [1] "68YOF STRAINED KNEE MOVING FROM TOILET TO POWER CHAIR AT HOME. DX:...
#> [2] "97YOM LWR BACK PAIN - MISSED TOILET SEAT, FELL FLOOR AT NH"
#> [3] "54 YOF DX ALCOHOL INTOXICATION - PT STATES SHE FELL OFF TOILET."
#> [4] "85YOF-STAFF AT NH STATES PT WAS TRANSITIONIN TO TOILET FROM WHEELCH...
#> [5] "FOREHEAD LACERATION. 64 YOM FELL AND HIT HIS HEAD ON TOILET."
#> [6] "70YOM-STAFF STATES PT FELL OFF TOILET ONTO CONCRETE FLOOR AT *** AR...
#> [7] "40YOF WAS INTOXICATED AND FELL OFF THE TOILET STRUCK HEAD ON THE WA...
#> [8] "66 Y/O F FELL FROM COMMODE ONTO FLOOR AND FRACTURED CLAVICLE"
#> [9] "25YOF SYNCOPAL EPS W ON TOILET FELL HIT RS OF HEAD REPORTLY LOC UNK...
#> [10] "4 YO M W/LAC TO FOREHEAD SLIPPED IN BATHROOM HIT ON TOILET FLUSH HA...

56 | Chapter 4: Case Study: ER Injuries

Having done this exploration for one product, it would be very nice if we could easily
do it for other products, without having to retype the code. So let’s make a Shiny app!

Prototype
When building a complex app, I strongly recommend starting as simple as possible so
that you can confirm that the basic mechanics work before you start doing something
more complicated. Here I’ll start with one input (the product code), three tables, and
one plot.

When designing a first prototype, the challenge is in making it “as simple as possible.”
There’s a tension between getting the basics working quickly and planning for the
future of the app. Either extreme can be bad: if you design too narrowly, you’ll spend
a lot of time later reworking your app; if you design too rigorously, you’ll spend a
bunch of time writing code that later ends up on the cutting room floor. To help get
the balance right, I often do a few pencil-and-paper sketches to rapidly explore the UI
and reactive graph before committing to code.

Here I decided to have 1 row for the inputs (accepting that I’m probably going to add
more inputs before this app is done), 1 row for all three tables (giving each table 4
columns, 1/3 of the 12-column width), and then 1 row for the plot:

prod_codes <- setNames(products$prod_code, products$title)

ui <- fluidPage(
 fluidRow(
 column(6,
 selectInput("code", "Product", choices = prod_codes)
)
),
 fluidRow(
 column(4, tableOutput("diag")),
 column(4, tableOutput("body_part")),
 column(4, tableOutput("location"))
),
 fluidRow(
 column(12, plotOutput("age_sex"))
)
)

We haven’t talked about fluidRow() and column() yet, but you should be able to
guess what they do from the context, and we’ll come back to talk about them in “Mul‐
tirow” on page 93. Also note the use of setNames() in the selectInput() choices:
this shows the product name in the UI and returns the product code to the server.

Prototype | 57

The server function is relatively straightforward. I first convert the static selected
and summary variables to reactive expressions. This is a reasonable general pattern:
you create variables in your data analysis to decompose the analysis into steps and to
avoid recomputing things multiple times, and reactive expressions play the same role
in Shiny apps.

Often it’s a good idea to spend a little time cleaning up your analysis code before you
start your Shiny app, so you can think about these problems in regular R code before
you add the additional complexity of reactivity:

server <- function(input, output, session) {
 selected <- reactive(injuries %>% filter(prod_code == input$code))

 output$diag <- renderTable(
 selected() %>% count(diag, wt = weight, sort = TRUE)
)
 output$body_part <- renderTable(
 selected() %>% count(body_part, wt = weight, sort = TRUE)
)
 output$location <- renderTable(
 selected() %>% count(location, wt = weight, sort = TRUE)
)

 summary <- reactive({
 selected() %>%
 count(age, sex, wt = weight) %>%
 left_join(population, by = c("age", "sex")) %>%
 mutate(rate = n / population * 1e4)
 })

 output$age_sex <- renderPlot({
 summary() %>%
 ggplot(aes(age, n, colour = sex)) +
 geom_line() +
 labs(y = "Estimated number of injuries")
 }, res = 96)
}

Note that creating the summary reactive isn’t strictly necessary here, as it’s only used by
a single reactive consumer. But it’s good practice to keep computing and plotting sep‐
arate as it makes the flow of the app easier to understand and will make it easier to
generalize in the future.

A screenshot of the resulting app is shown in Figure 4-3. You can view the source
code on GitHub.

58 | Chapter 4: Case Study: ER Injuries

https://oreil.ly/L7xcN

Figure 4-3. First prototype of NEISS exploration app. See live at https://
hadley.shinyapps.io/ms-prototype.

Prototype | 59

https://hadley.shinyapps.io/ms-prototype
https://hadley.shinyapps.io/ms-prototype

Polish Tables
Now that we have the basic components in place and working, we can progressively
improve our app. The first problem with this app is that it shows a lot of information
in the tables, where we probably just want the highlights. To fix this we need to first
figure out how to truncate the tables. I’ve chosen to do that with a combination of
forcats functions: I convert the variable to a factor, order by the frequency of the lev‐
els, and then lump together all levels after the top five:

injuries %>%
 mutate(diag = fct_lump(fct_infreq(diag), n = 5)) %>%
 group_by(diag) %>%
 summarise(n = as.integer(sum(weight)))
#> # A tibble: 6 x 2
#> diag n
#> * <fct> <int>
#> 1 Other Or Not Stated 1806436
#> 2 Fracture 1558961
#> 3 Laceration 1432407
#> 4 Strain, Sprain 1432556
#> 5 Contusion Or Abrasion 1451987
#> 6 Other 1929147

Because I knew how to do it, I wrote a little function to automate this for any variable.
The details aren’t really important here, but we’ll come back to them in Chapter 12.
You could also solve the problem with copy and paste, so don’t worry if the code
looks totally foreign:

count_top <- function(df, var, n = 5) {
 df %>%
 mutate({{ var }} := fct_lump(fct_infreq({{ var }}), n = n)) %>%
 group_by({{ var }}) %>%
 summarise(n = as.integer(sum(weight)))
}

I then use this in the server function:
 output$diag <- renderTable(count_top(selected(), diag), width = "100%")
 output$body_part <- renderTable(count_top(selected(), body_part), width = "100%")
 output$location <- renderTable(count_top(selected(), location), width = "100%")

I made one other change to improve the aesthetics of the app: I forced all tables to
take up the maximum width (i.e., fill the column that they appear in). This makes the
output more aesthetically pleasing because it reduces the amount of incidental
variation.

A screenshot of the resulting app is shown in Figure 4-4. You can view the source
code on GitHub.

60 | Chapter 4: Case Study: ER Injuries

https://oreil.ly/Mya71

Figure 4-4. The second iteration of the app improves the display by only showing the
most frequent rows in the summary tables. See live at https://hadley.shinyapps.io/ms-
polish-tables.

Rate Versus Count
So far, we’re displaying only a single plot, but we’d like to give the user the choice
between visualizing the number of injuries or the population-standardized rate. First
I add a control to the UI. Here I’ve chosen to use a selectInput() because it makes
both states explicit, and it would be easy to add new states in the future:

 fluidRow(
 column(8,
 selectInput("code", "Product",
 choices = setNames(products$prod_code, products$title),
 width = "100%"
)
),
 column(2, selectInput("y", "Y axis", c("rate", "count")))
),

(I default to rate because I think it’s safer; you don’t need to understand the popula‐
tion distribution in order to correctly interpret the plot.)

Rate Versus Count | 61

https://hadley.shinyapps.io/ms-polish-tables
https://hadley.shinyapps.io/ms-polish-tables

Then I condition on that input when generating the plot:

 output$age_sex <- renderPlot({
 if (input$y == "count") {
 summary() %>%
 ggplot(aes(age, n, colour = sex)) +
 geom_line() +
 labs(y = "Estimated number of injuries")
 } else {
 summary() %>%
 ggplot(aes(age, rate, colour = sex)) +
 geom_line(na.rm = TRUE) +
 labs(y = "Injuries per 10,000 people")
 }
 }, res = 96)

A screenshot of the resulting app is shown in Figure 4-5. You can view the source
code on GitHub.

Figure 4-5. In this iteration, we give the user the ability to switch between displaying the
count and the population standardized rate on the y-axis. See live at https://
hadley.shinyapps.io/ms-rate-vs-count.

62 | Chapter 4: Case Study: ER Injuries

https://oreil.ly/3AwYf
https://hadley.shinyapps.io/ms-rate-vs-count
https://hadley.shinyapps.io/ms-rate-vs-count

Narrative
Finally, I want to provide some way to access the narratives because they are so inter‐
esting, and they give an informal way to cross-check the hypotheses you come up
with when looking at the plots. In the R code, I sample multiple narratives at once,
but there’s no reason to do that in an app where you can explore interactively.

There are two parts to the solution. First we add a new row to the bottom of the UI. I
use an action button to trigger a new story, and put the narrative in a textOutput():

 fluidRow(
 column(2, actionButton("story", "Tell me a story")),
 column(10, textOutput("narrative"))
)

A screenshot of the resulting app is shown in Figure 4-6. You can view the source
code on GitHub.

Figure 4-6. The final iteration adds the ability to pull out a random narrative from the
selected rows. See live at https://hadley.shinyapps.io/ms-narrative.

Narrative | 63

https://oreil.ly/dsqIH
https://hadley.shinyapps.io/ms-narrative

I then use eventReactive() to create a reactive that only updates when the button is
clicked or the underlying data changes:

 narrative_sample <- eventReactive(
 list(input$story, selected()),
 selected() %>% pull(narrative) %>% sample(1)
)
 output$narrative <- renderText(narrative_sample())

Exercises
1. Draw the reactive graph for each app.
2. What happens if you flip fct_infreq() and fct_lump() in the code that reduces

the summary tables?
3. Add an input control that lets the user decide how many rows to show in the

summary tables.
4. Provide a way to step through every narrative systematically with forward and

backward buttons.
Advanced: Make the list of narratives “circular” so that advancing forward from
the last narrative takes you to the first.

Summary
Now that you have the basics of Shiny apps under your belt, the following seven
chapters will give you a grab bag of important techniques. Once you’ve read the next
chapter on workflow, I recommend skimming the remaining chapters so you get a
good sense of what they cover, then dip your toes back in as you need the techniques
for an app.

64 | Chapter 4: Case Study: ER Injuries

PART II

Shiny in Action

The following chapters give you a grab bag of useful techniques. I think everyone
should start with Chapter 5, because it gives you important tools for developing and
debugging apps and getting help when you’re stuck. After that, there’s no prescribed
order and relatively few connections between the chapters: I’d suggest quickly skim‐
ming to get the lay of the land (and so you might remember these tools if related
problems crop up in the future) and otherwise only deeply reading the bits that you
currently need. Here’s a quick rundown of the main topics:

• Chapter 6 details the various ways you can layout input and output components
on a page and how you can customize their appearance with themes.

• Chapter 7 shows you how to add direct interaction to your plot and how to dis‐
play images generated in other ways.

• Chapter 8 covers a family of techniques (inline errors, notifications, progress
bars, dialog boxes, etc.) for giving feedback to your users while your app runs.

• Chapter 9 discusses how to transfer files to and from your app.
• Chapter 10 shows you how to dynamically modify your app’s user interface while

it runs.
• Chapter 11 shows how to record app state in such a way that your users can

bookmark it.
• Chapter 12 shows you how to allow users to select variables when working with

tidyverse packages.

Let’s begin by working on your workflow for developing apps.

CHAPTER 5

Workflow

If you’re going to be writing a lot of Shiny apps (and since you’re reading this book, I
hope you will be!), it’s worth investing some time in your basic workflow. Improving
workflow is a good place to invest time because it tends to pay great dividends in the
long run. It doesn’t just increase the proportion of your time spent writing R code,
but because you see the results more quickly, it makes the process of writing Shiny
apps more enjoyable and helps your skills improve more quickly.

The goal of this chapter is to help you improve three important Shiny workflows:

• The basic development cycle of creating apps, making changes, and experiment‐
ing with the results.

• Debugging, the workflow where you figure out what’s gone wrong with your
code and then brainstorm solutions to fix it.

• Writing reprexes, self-contained chunks of code that illustrate a problem. Repre‐
xes are a powerful debugging technique, and they are essential if you want to get
help from someone else.

Development Workflow
The goal of optimizing your development workflow is to reduce the time between
making a change and seeing the outcome. The faster you can iterate, the faster you
can experiment and the faster you can become a better Shiny developer. There are
two main workflows to optimize here: creating an app for the first time and speeding
up the iterative cycle of tweaking code and trying out the results.

67

1 Snippets are text macros that you can use to insert common code fragments. If you enjoy using snippets,
make sure to check the collection of Shiny-specific snippets put together by ThinkR.

2 A project is a self-contained directory that is isolated from the other projects that you’re working on. If you
use RStudio, but don’t currently use projects, I highly recommend reading about the project-oriented lifestyle.

Creating the App
You will start every app with the same six lines of R code:

library(shiny)
ui <- fluidPage(
)
server <- function(input, output, session) {
}
shinyApp(ui, server)

You’ll likely quickly get sick of typing that code in, so RStudio provides a couple of
shortcuts:

• If you already have your future app.R open, type shinyapp, then press Shift+Tab
to insert the Shiny app snippet.1

• If you want to start a new project,2 go to the File menu, select New Project, then
select Shiny Web Application, as in Figure 5-1.

Figure 5-1. To create a new Shiny app within RStudio, choose Shiny Web Application as
the project type.

68 | Chapter 5: Workflow

https://oreil.ly/LDRpo
https://oreil.ly/kXGFY
https://oreil.ly/px2Gi

You might think it’s not worthwhile to learn these shortcuts because you’ll only create
an app or two a day, but creating simple apps is a great way to check that you have the
basic concepts down before you start on a bigger project, and they’re a great tool for
debugging.

Seeing Your Changes
At most, you’ll create a few apps a day, but you’ll run apps hundreds of times, so mas‐
tering the development workflow is particularly important. The first way to reduce
your iteration time is to avoid clicking on the Run App button and instead learn the
keyboard shortcut Cmd/Ctrl+Shift+Enter. This gives you the following development
workflow:

1. Write some code.
2. Launch the app with Cmd/Ctrl+Shift+Enter.
3. Interactively experiment with the app.
4. Close the app.
5. Go to 1.

Another way to increase your iteration speed still further is to turn autoreload on and
run the app in a background job. With this workflow, as soon as you save a file, your
app will relaunch: no need to close and restart. This leads to an even faster workflow:

1. Write some code, and press Cmd/Ctrl+S to save the file.
2. Interactively experiment.
3. Go to 1.

The chief disadvantage of this technique is that it’s considerably harder to debug
because the app is running in a separate process.

As your app gets bigger and bigger, you’ll find that the “interactively experiment” step
starts to become onerous. It’s too hard to remember to recheck every component of
your app that you might have affected with your changes. Later, in Chapter 21, you’ll
learn the tools of automated testing, which allows you to turn the interactive experi‐
ments you’re running into automated code. This lets you run the tests more quickly
(because they’re automated) and means that you can’t forget to run an important test.
It requires some initial investment to develop the tests, but the investment pays off
handsomely for large apps.

Development Workflow | 69

https://oreil.ly/jtX8d

Controlling the View
By default, when you run the app, it will appear in a pop-out window. There are two
other options that you can choose from the Run App drop-down, as shown in
Figure 5-2:

• Run in Viewer Pane opens the app in the viewer pane (usually located on the
right-hand side of the IDE). It’s useful for smaller apps because you can see it at
the same time as you run your app code.

• Run External opens the app in your usual web browser. It’s useful for larger apps
and when you want to see what your app looks like in the context that most users
will experience it.

Figure 5-2. The Run App button allows you to choose how the running app will be
displayed.

Debugging
When you start writing apps, it is almost guaranteed that something will go wrong.
The cause of most bugs is a mismatch between your mental model of Shiny and what
Shiny actually does. As you read this book, your mental model will improve so that
you make fewer mistakes, and when you do make one, it’s easier to spot the problem.
However, it takes years of experience in any language before you can reliably write
code that works the first time. This means you need to develop a robust workflow
for identifying and fixing mistakes. Here we’ll focus on the challenges specific to
Shiny apps; if you’re new to debugging in R, start with watching the “Object of type
closure is not subsettable” keynote Jenny Bryan gave at rstudio::conf(2020).

There are three main cases of problems that we’ll discuss:

• You get an unexpected error. This is the easiest case, because you’ll get a trace‐
back, which allows you to figure out exactly where the error occurred. Once

70 | Chapter 5: Workflow

https://oreil.ly/QXvtt
https://oreil.ly/QXvtt

you’ve identified the problem, you’ll need to systematically test your assumptions
until you find a difference between your expectations and reality. The interactive
debugger is a powerful assistant for this process.

• You don’t get any errors, but some value is incorrect. Here, you’ll need to use the
interactive debugger along with your investigative skills to track down the root
cause.

• All the values are correct, but they’re not updated when you expect. This is the
most challenging problem because it’s unique to Shiny, so you can’t take advan‐
tage of your existing R debugging skills.

It’s frustrating when these situations arise, but you can turn them into opportunities
to practice your debugging skills.

We’ll come back to another important technique—making a minimal reproducible
example—in the next section. Creating a minimal example is crucial if you get stuck
and need to get help from someone else. But creating a minimal example is also a
profoundly important skill when debugging your own code. Typically you have a lot
of code that works just fine and a very small amount of code that’s causing problems.
If you can narrow in on the problematic code by removing the code that works, you’ll
be able to iterate on a solution much more quickly. This is a technique that I use every
day.

Reading Tracebacks
In R, every error is accompanied by a traceback, or call stack, which literally traces
back through the sequence of calls that lead to the error. For example, take this simple
sequence of calls: f() calls g() calls h(), which calls the multiplication operator:

f <- function(x) g(x)
g <- function(x) h(x)
h <- function(x) x * 2

If this code errors, as follows:

f("a")
#> Error in x * 2: non-numeric argument to binary operator

you can call traceback() to find the sequence of calls that led to the problem:

traceback()
#> 3: h(x)
#> 2: g(x)
#> 1: f("a")

I think it’s easiest to understand the traceback by flipping it upside down:

1: f("a")
2: g(x)
3: h(x)

Debugging | 71

This now tells you the sequence of calls that led to the error: f() called g() called h()
(which errors).

Tracebacks in Shiny
Unfortunately, you can’t use traceback() in Shiny because you can’t run code while
an app is running. Instead, Shiny will automatically print the traceback for you. For
example, take this simple app using the f() function I defined previously:

library(shiny)

f <- function(x) g(x)
g <- function(x) h(x)
h <- function(x) x * 2

ui <- fluidPage(
 selectInput("n", "N", 1:10),
 plotOutput("plot")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 n <- f(input$n)
 plot(head(cars, n))
 }, res = 96)
}
shinyApp(ui, server)

If you run this app, you’ll see an error message in the app and a traceback in the
console:

Error in *: non-numeric argument to binary operator
 169: g [app.R#4]
 168: f [app.R#3]
 167: renderPlot [app.R#13]
 165: func
 125: drawPlot
 111: <reactive:plotObj>
 95: drawReactive
 82: renderFunc
 81: output$plot
 1: runApp

To understand what’s going on, we again start by flipping it upside down, so you can
see the sequence of calls in the order they appear:

Error in *: non-numeric argument to binary operator
 1: runApp
 81: output$plot
 82: renderFunc
 95: drawReactive
 111: <reactive:plotObj>
 125: drawPlot

72 | Chapter 5: Workflow

 165: func
 167: renderPlot [app.R#13]
 168: f [app.R#3]
 169: g [app.R#4]

There are three basic parts to the call stack:

• The first few calls start the app. In this case you just see runApp(), but depending
on how you start the app, you might see something more complicated. For exam‐
ple, if you called source() to run the app, you might see this:

1: source
3: print.shiny.appobj
5: runApp

In general, you can ignore anything before the first runApp(); this is just the
setup code to get the app running.

• Next, you’ll see some internal Shiny code in charge of calling the reactive
expression:

 81: output$plot
 82: renderFunc
 95: drawReactive
111: <reactive:plotObj>
125: drawPlot
165: func

Here, spotting output$plot is really important: that tells which of your reactives
(plot) is causing the error. The next few functions are internal, and you can
ignore them.

• Finally, at the very bottom, you’ll see the code that you have written:
167: renderPlot [app.R#13]
168: f [app.R#3]
169: g [app.R#4]

This is the code called inside of renderPlot(). You can tell you should pay atten‐
tion here because of the filepath and line number; this lets you know that it’s your
code.

If you get an error in your app but don’t see a traceback, make sure that you’re run‐
ning the app using Cmd/Ctrl+Shift+Enter (or, if not in RStudio, calling runApp())
and that you’ve saved the file that you’re running it from. Other ways of running the
app don’t always capture the information necessary to make a traceback.

The Interactive Debugger
Once you’ve located the source of the error and want to figure out what’s causing it,
the most powerful tool you have at your disposal is the interactive debugger. The

Debugging | 73

debugger pauses execution and gives you an interactive R console where you can run
any code to figure out what’s gone wrong. There are two ways to launch the debugger:

• Add a call to browser() in your source code. This is the standard R way of
launching the interactive debugger and will work however you’re running Shiny.
The other advantage of browser() is that because it’s R code, you can make it
conditional by combining it with an if statement. This allows you to launch the
debugger only for problematic inputs:

if (input$value == "a") {
 browser()
}
Or maybe
if (my_reactive() < 0) {
 browser()
}

• Add an RStudio breakpoint by clicking to the left of the line number. You can
remove the breakpoint by clicking on the red circle:

The advantage of breakpoints is that they’re not code, so you never have to worry
about accidentally checking them into your version control system.

If you’re using RStudio, the toolbar in Figure 5-3 will appear at the top of the console
when you’re in the debugger. The toolbar is an easy way to remember the debugging
commands that are now available to you. They’re also available outside of RStudio;
you’ll just need to remember the one-letter command to activate them. The three
most useful commands are:

Next (press n)
Executes the next step in the function. Note that if you have a variable named n,
you’ll need to use print(n) to display its value.

Continue (press c)
Leaves interactive debugging and continues regular execution of the function.
This is useful if you’ve fixed the bad state and want to check that the function
proceeds correctly.

74 | Chapter 5: Workflow

Stop (press Q)
Stops debugging, terminates the function, and returns to the global workspace.
Use this once you’ve figured out where the problem is and you’re ready to fix it
and reload the code.

Figure 5-3. RStudio’s debugging toolbar.

As well as stepping through the code line by line using these tools, you’ll also write
and run a bunch of interactive code to track down what’s going wrong. Debugging is
the process of systematically comparing your expectations to reality until you find the
mismatch. If you’re new to debugging in R, you might want to read the Debugging
chapter of “Advanced R” to learn some general techniques.

Case Study
When you have eliminated the impossible, whatever remains, however improbable,
must be the truth.

—Sherlock Holmes in Arthur Conan Doyle’s The Sign of the Four

To demonstrate the basic debugging approach, I’ll show you a little problem I
encountered when writing “Hierarchical Select Boxes” on page 156. I’ll first show you
the basic context, then you’ll see a problem I resolved without interactive debugging
tools—a problem that required interactive debugging—and discover a final surprise.

The initial goal is pretty simple: I have a dataset of sales, and I want to filter it by terri‐
tory. Here’s what the data looks like:

sales <- readr::read_csv("sales-dashboard/sales_data_sample.csv")
sales <- sales[c(
 "TERRITORY", "ORDERDATE", "ORDERNUMBER", "PRODUCTCODE",
 "QUANTITYORDERED", "PRICEEACH"
)]
sales
#> # A tibble: 2,823 x 6
#> TERRITORY ORDERDATE ORDERNUMBER PRODUCTCODE QUANTITYORDERED PRICEEACH
#> <chr> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 <NA> 2/24/2003 0:00 10107 S10_1678 30 95.7
#> 2 EMEA 5/7/2003 0:00 10121 S10_1678 34 81.4
#> 3 EMEA 7/1/2003 0:00 10134 S10_1678 41 94.7
#> 4 <NA> 8/25/2003 0:00 10145 S10_1678 45 83.3
#> # … with 2,819 more rows

And here are the territories:

unique(sales$TERRITORY)
#> [1] NA "EMEA" "APAC" "Japan"

Debugging | 75

https://oreil.ly/5jiRp
https://oreil.ly/5jiRp

3 I’m using subset() so that my app doesn’t require any other packages. In a bigger app, I’d probably prefer
dplyr::filter() just because I’m a little more familiar with its behavior.

When I first started on this problem, I thought it was simple enough that I could just
write the app without doing any other research:

ui <- fluidPage(
 selectInput("territory", "territory", choices = unique(sales$TERRITORY)),
 tableOutput("selected")
)
server <- function(input, output, session) {
 selected <- reactive(sales[sales$TERRITORY == input$territory,])
 output$selected <- renderTable(head(selected(), 10))
}

I thought, It’s an eight-line app—what could possibly go wrong? Well, when I opened
the app up, I saw a lot of missing values, no matter what territory I selected. The code
most likely to be the source of the problem was the reactive that selected the data to
show: sales[sales$TERRITORY == input$territory,]. So, I stopped the app and
quickly verified that the subsetting worked the way I thought it did:

sales[sales$TERRITORY == "EMEA",]
#> # A tibble: 2,481 x 6
#> TERRITORY ORDERDATE ORDERNUMBER PRODUCTCODE QUANTITYORDERED PRICEEACH
#> <chr> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 <NA> <NA> NA <NA> NA NA
#> 2 EMEA 5/7/2003 0:00 10121 S10_1678 34 81.4
#> 3 EMEA 7/1/2003 0:00 10134 S10_1678 41 94.7
#> 4 <NA> <NA> NA <NA> NA NA
#> # … with 2,477 more rows

Oops! I’d forgotten that TERRITORY contained a bunch of missing values, which
means that sales$TERRITORY == "EMEA" would contain a bunch of missing values:

head(sales$TERRITORY == "EMEA", 25)
#> [1] NA TRUE TRUE NA NA NA TRUE TRUE NA TRUE FALSE NA
#> [13] NA NA TRUE NA TRUE TRUE NA NA TRUE FALSE TRUE NA
#> [25] TRUE

These missing values become missing rows, and when I use them to subset the sales
data frame with [, any missing values in input will be preserved in the output. There
are lots of ways to resolve this problem, but I decided to use subset()3 because it
automatically removes missing values and reduces the number of times I need to type
sales. I then double-checked this actually worked:

subset(sales, TERRITORY == "EMEA")
#> # A tibble: 1,407 x 6
#> TERRITORY ORDERDATE ORDERNUMBER PRODUCTCODE QUANTITYORDERED PRICEEACH
#> <chr> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 EMEA 5/7/2003 0:00 10121 S10_1678 34 81.4

76 | Chapter 5: Workflow

#> 2 EMEA 7/1/2003 0:00 10134 S10_1678 41 94.7
#> 3 EMEA 11/11/2003 0:00 10180 S10_1678 29 86.1
#> 4 EMEA 11/18/2003 0:00 10188 S10_1678 48 100
#> # … with 1,403 more rows

This fixed most of the problems, but I still had a problem when I selected NA in the
territory drop-down: there were still no rows appearing. So again, I checked on the
console:

subset(sales, TERRITORY == NA)
#> # A tibble: 0 x 6
#> # … with 6 variables: TERRITORY <chr>, ORDERDATE <chr>, ORDERNUMBER <dbl>,
#> # PRODUCTCODE <chr>, QUANTITYORDERED <dbl>, PRICEEACH <dbl>

And then I remembered that of course this won’t work because missing values are
infectious:

head(sales$TERRITORY == NA, 25)
#> [1] NA

There’s another trick you can use to resolve this problem: switch from == to %in%:

head(sales$TERRITORY %in% NA, 25)
#> [1] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
#> [13] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
#> [25] FALSE
subset(sales, TERRITORY %in% NA)
#> # A tibble: 1,074 x 6
#> TERRITORY ORDERDATE ORDERNUMBER PRODUCTCODE QUANTITYORDERED PRICEEACH
#> <chr> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 <NA> 2/24/2003 0:00 10107 S10_1678 30 95.7
#> 2 <NA> 8/25/2003 0:00 10145 S10_1678 45 83.3
#> 3 <NA> 10/10/2003 0:00 10159 S10_1678 49 100
#> 4 <NA> 10/28/2003 0:00 10168 S10_1678 36 96.7
#> # … with 1,070 more rows

So I updated the app and tried again. It still didn’t work! When I selected “NA” in the
drop-down, I didn’t see any rows.

At this point, I figured I’d done everything I could on the console, and I needed to
perform an experiment to figure out why the code inside of Shiny was working the
way I expected. I guessed that the most likely source of the problem would be in the
selected reactive, so I added a browser() statement there. This made it a two-line
reactive, so I also needed to wrap it in {}:

server <- function(input, output, session) {
 selected <- reactive({
 browser()
 subset(sales, TERRITORY %in% input$territory)
 })
 output$selected <- renderTable(head(selected(), 10))
}

Debugging | 77

Now when my app ran, I was immediately dumped into an interactive console. My
first step was to verify that I was in the problematic situation, so I ran subset(sales,
TERRITORY %in% input$territory). It returned an empty data frame, so I knew I
was where I needed to be. If I hadn’t seen the problem, I would have typed c to let the
app continue running, then interacted with it some more in order to get it to the fail‐
ing state.

I then checked that inputs to subset() were as I expected. I first double-checked that
that the sales dataset looked OK. I didn’t really expect it to be corrupted, since noth‐
ing in the app was touching it, but it’s safest to carefully check every assumption that
you’re making. sales looked OK, so the problem must be in TERRITORY %in% input
$territory. I started by inspecting input$territory, since TERRITORY is part of
sales:

input$territory
#> [1] "NA"

I stared at this for a while, because it also looked OK. Then it occurred to me: I was
expecting it to be NA, but it’s actually "NA"! Now I could re-create the problem outside
of the Shiny app:

subset(sales, TERRITORY %in% "NA")
#> # A tibble: 0 x 6
#> # … with 6 variables: TERRITORY <chr>, ORDERDATE <chr>, ORDERNUMBER <dbl>,
#> # PRODUCTCODE <chr>, QUANTITYORDERED <dbl>, PRICEEACH <dbl>

Then I figured out a simple fix, applied it to my server, and reran the app:

server <- function(input, output, session) {
 selected <- reactive({
 if (input$territory == "NA") {
 subset(sales, is.na(TERRITORY))
 } else {
 subset(sales, TERRITORY == input$territory)
 }
 })
 output$selected <- renderTable(head(selected(), 10))
}

Hooray! The problem was fixed! But this felt pretty surprising to me: Shiny had
silently converted an NA to an "NA", so I also filed a bug report.

Several weeks later, I looked at this example again and started thinking about the dif‐
ferent territories. We have Europe, Middle East, and Africa (EMEA) and Asia-Pacific
(APAC). Where was North America? Then it dawned on me: the source data proba‐
bly used the abbreviation NA, and R was reading it in as a missing value. So the real
fix should happen during the data loading:

78 | Chapter 5: Workflow

https://oreil.ly/nZCg5

sales <- readr::read_csv("sales-dashboard/sales_data_sample.csv", na = "")
unique(sales$TERRITORY)
#> [1] "NA" "EMEA" "APAC" "Japan"

That made life much simpler!

This is a common pattern when it comes to debugging: you often need to peel back
multiple layers of the onion before you fully understand the source of the issue.

Debugging Reactivity
The hardest type of problem to debug is when your reactives fire in an unexpected
order. At this point in the book, we have relatively few tools to recommend to help
you debug this issue. In the next section, you’ll learn how to create a minimal reprex,
which is crucial for this type of problem, and later in the book, you’ll learn more
about the underlying theory and about tools like the reactive log. But for now, we’ll
focus on a classic technique that’s useful here: “print” debugging.

The basic idea of print debugging is to call print() whenever you need to understand
when a part of your code is evaluated and to show the values of important variables.
We call this “print” debugging (because in most languages you’d use a print function),
but in R, it makes more sense to use message():

• print() is designed for displaying vectors of data so it puts quotes around strings
and starts the first line with [1].

• message() sends its result to “standard error,” rather than “standard output.”
These are technical terms describing output streams, which you don’t normally
notice because they’re both displayed in the same way when running interac‐
tively. But if your app is hosted elsewhere, then output sent to “standard error”
will be recorded in the logs.

I also recommend coupling message() with glue::glue(), which makes it easy to
interleave text and values in a message. If you haven’t seen glue before, the basic idea
is that anything wrapped inside {} will be evaluated and inserted into the output:

library(glue)
name <- "Hadley"
message(glue("Hello {name}"))
#> Hello Hadley

A final useful tool is str(), which prints the detailed structure of any object. This is
particularly useful if you need to double-check you have the type of object that you
expect.

Here’s a toy app that shows off some of the basic ideas. Note how I use message()
inside a reactive(): I have to perform the computation, send the message, and then
return the previously computed value:

Debugging | 79

https://github.com/rstudio/reactlog
http://glue.tidyverse.org

ui <- fluidPage(
 sliderInput("x", "x", value = 1, min = 0, max = 10),
 sliderInput("y", "y", value = 2, min = 0, max = 10),
 sliderInput("z", "z", value = 3, min = 0, max = 10),
 textOutput("total")
)
server <- function(input, output, session) {
 observeEvent(input$x, {
 message(glue("Updating y from {input$y} to {input$x * 2}"))
 updateSliderInput(session, "y", value = input$x * 2)
 })

 total <- reactive({
 total <- input$x + input$y + input$z
 message(glue("New total is {total}"))
 total
 })

 output$total <- renderText({
 total()
 })
}

When I start the app, the console shows:

Updating y from 2 to 2
New total is 6

And if I drag the x slider to 3, I see:

Updating y from 2 to 6
New total is 8
New total is 12

Don’t worry if you find the results a little surprising. You’ll learn more about what’s
going on in Chapter 8 and “The Reactive Graph” on page 33.

Getting Help
If you’re still stuck after trying these techniques, it’s probably time to ask someone
else. A great place to get help is the RStudio Community site. This site is read by
many Shiny users as well as the developers of the Shiny package itself. It’s also a great
place to visit if you want to improve your Shiny skills by helping others.

To get the most useful help as quickly as possible, you need to create a reprex, or
reproducible example. The goal of a reprex is to provide the smallest possible snippet
of R code that illustrates the problem and can easily be run on another computer. It’s
common courtesy (and in your own best interest) to create a reprex: if you want
someone to help you, you should make it as easy as possible for them!

80 | Chapter 5: Workflow

https://oreil.ly/SXMCw

4 Regardless of how you normally load packages, I strongly recommend using multiple library() calls. This
eliminates a source of potential confusion for people who might not be familiar with the tool that you’re
using.

Making a reprex is polite because it captures the essential elements of the problem in
a form that anyone else can run so that whoever attempts to help you can quickly see
exactly what the problem is and can easily experiment with possible solutions.

Reprex Basics
A reprex is just some R code that works when you copy and paste it into an R session
on another computer. Here’s a simple Shiny app reprex:

library(shiny)
ui <- fluidPage(
 selectInput("n", "N", 1:10),
 plotOutput("plot")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 n <- input$n * 2
 plot(head(cars, n))
 })
}
shinyApp(ui, server)

This code doesn’t make any assumptions about the computer on which it’s running
(except that Shiny is installed!), so anyone can run this code and see the problem: the
app throws an error saying non-numeric argument to binary operator.

Clearly illustrating the problem is the first step to getting help, and because anyone
can reproduce the problem by just copying and pasting the code, they can easily
explore your code and test possible solutions. (In this case, you need
as.numeric(input$n) since selectInput() creates a string in input$n.)

Making a Reprex
The first step in making a reprex is to create a single self-contained file that contains
everything needed to run your code. You should check that it works by starting a
fresh R session and then running the code. Make sure you haven’t forgotten to load
any packages4 that make your app work.

Typically, the most challenging part of making your app work on someone else’s com‐
puter is eliminating the use of data that’s only stored on your computer. There are
three useful patterns:

Getting Help | 81

• Often the data you’re using is not directly related to the problem, and you can
instead use a built-in dataset like mtcars or iris.

• Other times, you might be able to write a little R code that creates a dataset that
illustrates the problem:

mydata <- data.frame(x = 1:5, y = c("a", "b", "c", "d", "e"))

• If both of those techniques fail, you can turn your data into code with dput().
For example, dput(mydata) generates the code that will re-create mydata:

dput(mydata)
#> structure(list(x = 1:5, y = c("a", "b", "c", "d", "e")),
#> class = "data.frame", row.names = c(NA, -5L))

Once you have that code, you can put this in your reprex to generate mydata:
mydata <- structure(list(x = 1:5, y = structure(1:5, .Label = c("a", "b",
"c", "d", "e"), class = "factor")), class = "data.frame", row.names =
c(NA, -5L))

Often, running dput() on your original data will generate a huge amount of
code, so find a subset of your data that illustrates the problem. The smaller the
dataset that you supply, the easier it will be for others to help you with your
problem.

If reading data from a disk seems to be an irreducible part of the problem, a strategy
of last resort is to provide a complete project containing both an app.R and the
needed data files. The best way to provide this is as an RStudio project hosted on Git‐
Hub, but failing that, you can carefully make a zip file that can be run locally. Make
sure that you use relative paths (i.e., read.csv("my-data.csv"), not read.csv("c:\
\my-user-name\\files\\my-data.csv")), so that your code still works when run on
a different computer.

You should also consider the reader and spend some formatting your code so that it’s
easy to read. If you adopt the tidyverse style guide, you can automatically reformat
your code using the styler package; that quickly gets your code to a place that’s easier
to read.

Making a Minimal Reprex
Creating a reproducible example is a great first step because it allows someone else to
precisely re-create your problem. However, the problematic code will often be buried
among code that works just fine, so you can make the life of a helper much easier by
trimming out the code that’s OK.

Creating the smallest possible reprex is particularly important for Shiny apps, which
are often complicated. You will get faster, higher-quality help if you can extract out
the exact piece of the app that you’re struggling with rather than forcing a potential

82 | Chapter 5: Workflow

http://style.tidyverse.org
http://styler.r-lib.org

helper to understand your entire app. As an added benefit, this process will often lead
you to discover what the problem is so you don’t have to wait for help from someone
else!

Reducing a bunch of code to the essential problem is a skill, and you probably won’t
be very good at it at first. That’s OK! Even the smallest reduction in code complexity
helps the person helping you, and over time your reprex shrinking skills will
improve.

If you don’t know what part of your code is triggering the problem, a good way to
find it is to remove sections of code from your application, piece by piece, until the
problem goes away. If removing a particular piece of code makes the problem stop,
it’s likely that that code is related to the problem. Alternatively, sometimes it’s simpler
to start with a fresh, empty app and progressively build it up until you find the prob‐
lem once more.

Once you’ve simplified your app to demonstrate the problem, it’s worthwhile to take a
final pass through and check:

• Is every input and output in UI related to the problem?
• Does your app have a complex layout that you can simplify to help focus on the

problem at hand? Have you removed all UI customization that makes your app
look good but isn’t related to the problem?

• Are there any reactives in server() that you can now remove?
• If you’ve tried multiple ways to solve the problem, have you removed all the ves‐

tiges of the attempts that didn’t work?
• Is every package that you load needed to illustrate the problem? Can you elimi‐

nate packages by replacing functions with dummy code?

This can be a lot of work, but the payoff is big: often you’ll discover the solution while
you make the reprex, and if not, it’s much, much easier to get help.

Case Study
To illustrate the process of making a top-notch reprex, I’m going to use an example
from Scott Novogoratz posted on RStudio Community. The initial code was very
close to being a reprex but wasn’t quite reproducible because it forgot to load a pair of
packages. As a starting point, I:

• Added missing library(lubridate) and library(xts).
• Split apart ui and server into separate objects.
• Reformatted the code with styler::style_selection().

Getting Help | 83

https://oreil.ly/FkqDU
https://oreil.ly/rJgWH

That yielded the following reprex:
library(xts)
library(lubridate)
library(shiny)

ui <- fluidPage(
 uiOutput("interaction_slider"),
 verbatimTextOutput("breaks")
)
server <- function(input, output, session) {
 df <- data.frame(
 dateTime = c(
 "2019-08-20 16:00:00",
 "2019-08-20 16:00:01",
 "2019-08-20 16:00:02",
 "2019-08-20 16:00:03",
 "2019-08-20 16:00:04",
 "2019-08-20 16:00:05"
),
 var1 = c(9, 8, 11, 14, 16, 1),
 var2 = c(3, 4, 15, 12, 11, 19),
 var3 = c(2, 11, 9, 7, 14, 1)
)

 timeSeries <- as.xts(df[, 2:4],
 order.by = strptime(df[, 1], format = "%Y-%m-%d %H:%M:%S")
)
 print(paste(min(time(timeSeries)), is.POSIXt(min(time(timeSeries))), sep = " "))
 print(paste(max(time(timeSeries)), is.POSIXt(max(time(timeSeries))), sep = " "))

 output$interaction_slider <- renderUI({
 sliderInput(
 "slider",
 "Select Range:",
 min = min(time(timeSeries)),
 max = max(time(timeSeries)),
 value = c(min, max)
)
 })

 brks <- reactive({
 req(input$slider)
 seq(input$slider[1], input$slider[2], length.out = 10)
 })

 output$breaks <- brks
}
shinyApp(ui, server)

If you run this reprex, you’ll see the same problem in the initial post: an error stating
“Type mismatch for min, max, and value. Each must be Date, POSIXt, or number.”
This is a solid reprex: I can easily run it on my computer, and it immediately illus‐
trates the problem. However, it’s a bit long, so it’s not clear what’s causing the
problem.

84 | Chapter 5: Workflow

To make this reprex simpler, we can carefully work through each line of code and see
if it’s important. While doing this, I discovered:

• Removing the two lines starting with print() didn’t affect the error. Those two
lines used lubridate::is.POSIXt(), which was the only use of lubridate, so
once I removed them, I no longer needed to load lubridate.

• df is a data frame that’s converted to an xts data frame called timeSeries. But the
only way timeSeries is used is via time(timeSeries), which returns a date-
time. So I created a new variable datetime that contained some dummy date-
time data. This still yielded the same error, so I removed timeSeries and df, and
since that was the only place xts was used, I also removed library(xts).

Together, those changes yielded a new server() that looked like this:

datetime <- Sys.time() + (86400 * 0:10)

server <- function(input, output, session) {
 output$interaction_slider <- renderUI({
 sliderInput(
 "slider",
 "Select Range:",
 min = min(datetime),
 max = max(datetime),
 value = c(min, max)
)
 })

 brks <- reactive({
 req(input$slider)
 seq(input$slider[1], input$slider[2], length.out = 10)
 })

 output$breaks <- brks
}

Next, I noticed that this example uses a relatively sophisticated Shiny technique where
the UI is generated in the server function. But here renderUI() doesn’t use any reac‐
tive inputs, so it should work the same way if moved out of the server function and
into the UI.

This yielded a particularly nice result, because now the error occurs much earlier,
before we even start the app:

ui <- fluidPage(
 sliderInput("slider",
 "Select Range:",
 min = min(datetime),
 max = max(datetime),
 value = c(min, max)

Getting Help | 85

5 For example, I had no idea that is.POSIXt() was part of the lubridate package!

),
 verbatimTextOutput("breaks")
)
#> Error: Type mismatch for `min`, `max`, and `value`.
#> i All values must have same type: either numeric, Date, or POSIXt.

And now we can take the hint from the error message and look at each of the inputs
we’re feeding to min, max, and value to see where the problem is:

min(datetime)
#> [1] "2021-03-05 16:38:02 CST"
max(datetime)
#> [1] "2021-03-15 17:38:02 CDT"
c(min, max)
#> [[1]]
#> function (..., na.rm = FALSE) .Primitive("min")
#>
#> [[2]]
#> function (..., na.rm = FALSE) .Primitive("max")

Now the problem is obvious: we haven’t assigned min and max variables, so we’re acci‐
dentally passing the min() and max() functions into sliderInput(). One way to
solve that problem is to use range() instead:

ui <- fluidPage(
 sliderInput("slider",
 "Select Range:",
 min = min(datetime),
 max = max(datetime),
 value = range(datetime)
),
 verbatimTextOutput("breaks")
)

This is a fairly typical outcome from creating a reprex: once you’ve simplified the
problem to its key components, the solution becomes obvious. Creating a good rep‐
rex is an incredibly powerful debugging technique.

To simplify this reprex, I had to do a bunch of experimenting and reading up on
functions that I wasn’t very familiar with.5 It’s typically much easier to do this if it’s
your reprex, because you already understand the intent of the code. Still, you’ll often
need to do a bunch of experimentation to figure out where exactly the problem is
coming from. That can be frustrating and feel time-consuming, but it has a number
of benefits:

86 | Chapter 5: Workflow

• It enables you to create a description of the problem that is accessible to anyone
who knows Shiny, not anyone who knows Shiny and the particular domain that
you’re working in.

• You will build up a better mental model of how your code works, which means
that you’re less likely to make the same or similar mistakes in the future.

• Over time, you’ll get faster and faster at creating reprexes, and this will become
one of your go-to techniques when debugging.

• Even if you don’t create a perfect reprex, any work you can do to improve your
reprex is less work for someone else to do. This is particularly important if you’re
trying to get help from package developers because they usually have many
demands on their time.

When I try to help someone with their app on RStudio Community, creating a reprex
is always the first thing I do. This isn’t some make-work exercise I use to fob off peo‐
ple I don’t want to help: it’s exactly where I start!

Summary
This chapter has given you some useful workflows for developing apps, debugging
problems, and getting help. These workflows might seem a little abstract and easy to
dismiss because they’re not concretely improving an individual app. But I think of
workflow as one of my “secret” powers: one of the reasons that I’ve been able to
accomplish so much is that I devote time to analyzing and improving my workflow. I
highly encourage you to do the same!

The next chapter on layouts and themes is the first of a grab bag of useful techniques.
There’s no need to read in sequence; feel free to skip ahead to a chapter that you need
for a current app.

Summary | 87

https://oreil.ly/EHtZI

CHAPTER 6

Layout, Themes, HTML

Introduction
In this chapter you’ll unlock some new tools for controlling the overall appearance of
your app. We’ll start by talking about page layouts (both single and “multiple”) that let
you organize your inputs and outputs. Then you’ll learn about Bootstrap, the CSS
toolkit that Shiny uses, and how to customize its overall visual appearance with
themes. We’ll finish with a brief discussion of what’s going on under the hood so that
if you know HTML and CSS, you can customize Shiny apps still further. As usual, we
begin by loading shiny:

library(shiny)

Single-Page Layouts
In Chapter 2 you learned about the inputs and outputs that form the interactive com‐
ponents of the app. But I didn’t talk about how to lay them out on the page, and
instead I just used fluidPage() to slap them together as quickly as possible. While
this is fine for learning Shiny, it doesn’t create usable or visually appealing apps, so
now it’s time to learn some more layout functions.

Layout functions provide the high-level visual structure of an app. Layouts are cre‐
ated by a hierarchy of function calls, where the hierarchy in R matches the hierarchy
in the generated HTML. This helps you understand layout code. For example, when
you look at layout code like this:

fluidPage(
 titlePanel("Hello Shiny!"),
 sidebarLayout(
 sidebarPanel(
 sliderInput("obs", "Observations:", min = 0, max = 1000, value = 500)

89

),
 mainPanel(
 plotOutput("distPlot")
)
)
)

focus on the hierarchy of the function calls:

fluidPage(
 titlePanel(),
 sidebarLayout(
 sidebarPanel(),
 mainPanel()
)
)

Even though you don’t have these functions yet, you can guess what’s going on by
reading their names. You might imagine that this code will generate a classic app
design: a title bar at top, followed by a sidebar (containing a slider) and main panel
(containing a plot). The ability to easily see hierarchy through indentation is one of
the reasons it’s a good idea to use a consistent style.

In the remainder of this section, I’ll discuss the functions that help you design single-
page apps, then I’ll move on to multipage apps in the next section. I also recommend
checking out the Shiny Application layout guide; it’s a little dated but contains some
useful gems.

Page Functions
The most important, but least interesting, layout function is fluidPage(), which
you’ve seen in pretty much every example so far. But what’s it doing, and what hap‐
pens if you use it by itself? Figure 6-1 shows the results: it looks like a very boring
app, but there’s a lot going on behind the scenes, because fluidPage() sets up all the
HTML, CSS, and JavaScript that Shiny needs.

In addition to fluidPage(), Shiny provides a couple of other page functions that can
come in handy in more specialized situations: fixedPage() and fillPage(). fixed
Page() works like fluidPage() but has a fixed maximum width, which stops your
apps from becoming unreasonably wide on bigger screens. fillPage() fills the full
height of the browser and is useful if you want to make a plot that occupies the whole
screen. You can find the details in their documentation.

90 | Chapter 6: Layout, Themes, HTML

https://oreil.ly/ZXl62

Figure 6-1. A UI consisting only of fluidPage().

Page with Sidebar
To make more complex layouts, you’ll need call layout functions inside of fluid
Page(). For example, to make a two-column layout with inputs on the left and out‐
puts on the right, you can use sidebarLayout() (along with its friends
titlePanel(), sidebarPanel(), and mainPanel()). The following code shows the
basic structure to generate Figure 6-2:

fluidPage(
 titlePanel(
 # app title/description
),
 sidebarLayout(
 sidebarPanel(
 # inputs
),
 mainPanel(
 # outputs
)
)
)

Figure 6-2. Structure of a basic app with sidebar.

Single-Page Layouts | 91

To make it more realistic, let’s add an input and output to create a very simple app
that demonstrates the central limit theorem, as shown in Figure 6-3. If you run this
app yourself, you can increase the number of samples to see the distribution become
more normal:

ui <- fluidPage(
 titlePanel("Central limit theorem"),
 sidebarLayout(
 sidebarPanel(
 numericInput("m", "Number of samples:", 2, min = 1, max = 100)
),
 mainPanel(
 plotOutput("hist")
)
)
)
server <- function(input, output, session) {
 output$hist <- renderPlot({
 means <- replicate(1e4, mean(runif(input$m)))
 hist(means, breaks = 20)
 }, res = 96)
}

Figure 6-3. A common app design is to put controls in a sidebar and display results in
the main panel.

92 | Chapter 6: Layout, Themes, HTML

Multirow
Under the hood, sidebarLayout() is built on top of a flexible multirow layout, which
you can use directly to create more visually complex apps. Start with fluidPage(),
then you create rows with fluidRow() and columns with column(). The following
template generates the structure shown in Figure 6-4:

fluidPage(
 fluidRow(
 column(4,
 ...
),
 column(8,
 ...
)
),
 fluidRow(
 column(6,
 ...
),
 column(6,
 ...
)
)
)

Figure 6-4. The structure underlying a simple multirow app.

Each row is made up of 12 columns, and the first argument to column() gives how
many of those columns to occupy. A 12-column layout gives you substantial flexibil‐
ity because you can easily create 2-, 3-, or 4-column layouts, or use narrow columns
to create spacers. You can see an example of this layout in Figure 4-3.

If you’d like to learn more about designing using a grid system, I highly recommend
the classic text on the subject, Grid Systems in Graphic Design by Josef Müller-
Brockmann.

Single-Page Layouts | 93

https://www.amazon.com/dp/3721201450

Exercises
1. Read the documentation of sidebarLayout() to determine the width (in col‐

umns) of the sidebar and the main panel. Can you re-create its appearance using
fluidRow() and column()? What are you missing?

2. Modify the central limit theorem app to put the sidebar on the right instead of
the left.

3. Create an app that contains two plots, each of which takes up half of the width.
Put the controls in a full-width container below the plots.

Multipage Layouts
As your app grows in complexity, it might become impossible to fit everything on a
single page. In this section you’ll learn various uses of tabPanel() that create the illu‐
sion of multiple pages. This is an illusion because you’ll still have a single app with a
single underlying HTML file, but it’s now broken into pieces, and only one piece is
visible at a time.

Multipage apps pair particularly well with modules, which you’ll learn about in Chap‐
ter 19. Modules allow you to partition the server function in the same way you parti‐
tion the user interface, creating independent components that only interact through
well-defined connections.

Tabsets
The simple way to break up a page into pieces is to use tabsetPanel() and its close
friend tabPanel(). As you can see in the following code, tabsetPanel() creates a
container for any number of tabPanels(), which can in turn contain any other
HTML components. Figure 6-5 shows a simple example:

ui <- fluidPage(
 tabsetPanel(
 tabPanel("Import data",
 fileInput("file", "Data", buttonLabel = "Upload..."),
 textInput("delim", "Delimiter (leave blank to guess)", ""),
 numericInput("skip", "Rows to skip", 0, min = 0),
 numericInput("rows", "Rows to preview", 10, min = 1)
),
 tabPanel("Set parameters"),
 tabPanel("Visualise results")
)
)

94 | Chapter 6: Layout, Themes, HTML

Figure 6-5. A tabsetPanel() allows the user to select a single tabPanel() to view.

If you want to know what tab a user has selected, you can provide the id argument to
tabsetPanel() and it becomes an input. Figure 6-6 shows this in action:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 textOutput("panel")
),
 mainPanel(
 tabsetPanel(
 id = "tabset",
 tabPanel("panel 1", "one"),
 tabPanel("panel 2", "two"),
 tabPanel("panel 3", "three")
)
)
)
)
server <- function(input, output, session) {
 output$panel <- renderText({
 paste("Current panel: ", input$tabset)
 })
}

Multipage Layouts | 95

Figure 6-6. A tabset becomes an input when you use the id argument. This allows you to
make your app behave differently depending on which tab is currently visible.

Note that tabsetPanel() can be used anywhere in your app; it’s totally fine to nest
tabsets inside of other components (including tabsets!) if needed.

Navlists and Navbars
Because tabs are displayed horizontally, there’s a fundamental limit to how many tabs
you can use, particularly if they have long titles. navbarPage() and navbarMenu()
provide two alternative layouts that let you use more tabs with longer titles.

navlistPanel() is similar to tabsetPanel(), but instead of running the tab titles
horizontally, it shows them vertically in a sidebar. It also allows you to add headings
with plain strings, as shown in the following code, which generates Figure 6-7:

ui <- fluidPage(
 navlistPanel(
 id = "tabset",
 "Heading 1",
 tabPanel("panel 1", "Panel one contents"),
 "Heading 2",
 tabPanel("panel 2", "Panel two contents"),
 tabPanel("panel 3", "Panel three contents")
)
)

Figure 6-7. A navlistPanel() displays the tab titles vertically rather than horizontally.

96 | Chapter 6: Layout, Themes, HTML

Another approach is to use navbarPage(): it still runs the tab titles horizontally, but
you can use navbarMenu() to add drop-down menus for an additional level of hierar‐
chy. Figure 6-8 shows a simple example:

ui <- navbarPage(
 "Page title",
 tabPanel("panel 1", "one"),
 tabPanel("panel 2", "two"),
 tabPanel("panel 3", "three"),
 navbarMenu("subpanels",
 tabPanel("panel 4a", "four-a"),
 tabPanel("panel 4b", "four-b"),
 tabPanel("panel 4c", "four-c")
)
)

Figure 6-8. A navbarPage() sets up a horizontal nav bar at the top of the page.

These layouts give you considerable ability to create rich and satisfying apps. To go
further, you’ll need to learn more about the underlying design system.

Bootstrap
To continue your app customization journey, you’ll need to learn a little more about
the Bootstrap framework used by Shiny. Bootstrap is a collection of HTML conven‐
tions, CSS styles, and JavaScript snippets bundled up into a convenient form. Boot‐
strap grew out of a framework originally developed for Twitter and over the last 10
years has grown to become one of the most popular CSS frameworks used on the
web. Bootstrap is also popular in R—you’ve undoubtedly seen many documents pro‐
duced by rmarkdown::html_document() and used many package websites made by
pkgdown, both of which also use Bootstrap.

As a Shiny developer, you don’t need to think too much about Bootstrap, because
Shiny functions automatically generate bootstrap-compatible HTML for you. But it’s
good to know that Bootstrap exists because then:

• You can use bslib::bs_theme() to customize the visual appearance of your
code, as discussed in “Themes” on page 98.

• You can use the class argument to customize some layouts, inputs, and outputs
using Bootstrap class names, as you saw in “Action Buttons” on page 20.

Bootstrap | 97

https://getbootstrap.com
http://pkgdown.r-lib.org

• You can make your own functions to generate Bootstrap components that Shiny
doesn’t provide, as explained in the Utility classes section of the bslib documenta‐
tion.

It’s also possible to use a completely different CSS framework. A number of existing R
packages make this easy by wrapping popular alternatives to Bootstrap:

• shiny.semantic, by Appsilon, builds on top of Fomantic-UI.
• shinyMobile, by RinteRface, builds on top of Framework7 and is specifically

designed for mobile apps.
• shinymaterial, by Eric Anderson, is built on top of Google’s Material design

framework.
• shinydashboard, also by RStudio, provides a layout system designed to create

dashboards.

You can find a fuller, and actively maintained, list on GitHub.

Themes
Bootstrap is so ubiquitous within the R community that it’s easy to get style fatigue:
after a while, every Shiny app and Rmd start to look the same. The solution is them‐
ing with the bslib package. bslib is a relatively new package that allows you to over‐
ride many Bootstrap defaults in order to create an appearance that is uniquely yours.
As I write this, bslib is mostly applicable only to Shiny, but work is afoot to bring its
enhanced theming power to RMarkdown, pkgdown, and more.

If you’re producing apps for your company, I highly recommend investing a little
time in theming—theming your app to match your corporate style guide is an easy
way to make yourself look good.

Getting Started
Create a theme with bslib::bs_theme(), then apply it to an app with the theme argu‐
ment of the page layout function:

fluidPage(
 theme = bslib::bs_theme(...)
)

If not specified, Shiny will use the classic Bootstrap v3 theme that it has used basically
since it was created. By default, bslib::bs_theme() will use Bootstrap v4. Using
Bootstrap v4 instead of v3 will not cause problems if you only use built-in compo‐
nents. There is a possibility that it might cause problems if you’ve used custom
HTML, so you can force it to stay with v3 with version = 3.

98 | Chapter 6: Layout, Themes, HTML

https://oreil.ly/ocDhF
https://appsilon.github.io/shiny.semantic
https://appsilon.com
https://fomantic-ui.com
https://github.com/RinteRface/shinyMobile
https://rinterface.com
https://framework7.io
https://ericrayanderson.github.io/shinymaterial
https://github.com/ericrayanderson
https://material.io/design
https://rstudio.github.io/shinydashboard
https://github.com/nanxstats/awesome-shiny-extensions
https://rstudio.github.io/bslib

1 Fonts are a little trickier than colors because you have to make sure the app viewer also has the font. Make
sure to read the bs_theme() docs for all the details.

Shiny Themes
The easiest way to change the overall look of your app is to pick a premade “boots‐
watch” theme using the bootswatch argument to bslib::bs_theme(). Figure 6-9
shows the results of the following code, switching "darkly" out for other themes:

ui <- fluidPage(
 theme = bslib::bs_theme(bootswatch = "darkly"),
 sidebarLayout(
 sidebarPanel(
 textInput("txt", "Text input:", "text here"),
 sliderInput("slider", "Slider input:", 1, 100, 30)
),
 mainPanel(
 h1(paste0("Theme: darkly")),
 h2("Header 2"),
 p("Some text")
)
)
)

Figure 6-9. The same app styled with four bootswatch themes: darkly, flatly, sandstone,
and united.

Alternatively, you can construct your own theme using the other arguments to
bs_theme() like bg (background color), fg (foreground color), and base_font:1

theme <- bslib::bs_theme(
 bg = "#0b3d91",
 fg = "white",

Themes | 99

https://bootswatch.com
https://bootswatch.com

 base_font = "Source Sans Pro"
)

An easy way to preview and customize your theme is to use bslib::bs_theme_pre
view(theme). This will open a Shiny app that shows what the theme looks like when
many standard controls are applied and also provides you with interactive controls
for customizing the most important parameters.

Plot Themes
If you’ve heavily customized the style of your app, you may want to also customize
your plots to match. Luckily, this is really easy thanks to the thematic package, which
automatically themes ggplot2, lattice, and base plots. Just call thematic_shiny() in
your server function. This will automatically determine all of the settings from your
app theme, as in Figure 6-10:

library(ggplot2)

ui <- fluidPage(
 theme = bslib::bs_theme(bootswatch = "darkly"),
 titlePanel("A themed plot"),
 plotOutput("plot"),
)

server <- function(input, output, session) {
 thematic::thematic_shiny()

 output$plot <- renderPlot({
 ggplot(mtcars, aes(wt, mpg)) +
 geom_point() +
 geom_smooth()
 }, res = 96)
}

100 | Chapter 6: Layout, Themes, HTML

https://rstudio.github.io/thematic

2 The magic that connects inputs and outputs to R happens elsewhere (via JavaScript), but that’s well beyond
the scope of this book.

Figure 6-10. thematic::thematic_shiny() ensures that the ggplot2 automatically
matches the app theme.

Exercises
1. Use bslib::bs_theme_preview() to make the ugliest theme you can.

Under the Hood
Shiny is designed so that, as an R user, you don’t need to learn about the details of
HTML. However, if you know some HTML and CSS, it’s possible to customize Shiny
still further. Unfortunately, teaching HTML and CSS is beyond the scope of this book,
but the HTML and CSS basics tutorials by MDN are good places to start.

The most important thing to know is that there’s no magic behind all the input, out‐
put, and layout functions: they just generate HTML.2 You can see that HTML by exe‐
cuting UI functions directly in the console:

fluidPage(
 textInput("name", "What's your name?")
)

<div class="container-fluid">
 <div class="form-group shiny-input-container">
 <label for="name">What's your name?</label>
 <input id="name" type="text" class="form-control" value=""/>
 </div>
</div>

Under the Hood | 101

https://oreil.ly/ig3dW
https://oreil.ly/4Utd6

3 Introduced in R 4.0.0.

Note that this is the contents of the <body> tag; other parts of Shiny take care of gen‐
erating the <head>. If you want to include additional CSS or JavaScript dependencies,
you’ll need to learn htmltools::htmlDependency(). Two good places to start are the
R-hub blog post “JavaScript for the R Package Developer” and Chapter 4 of Outstand‐
ing User Interfaces with Shiny.

It’s possible to add your own HTML to the ui. One way to do so is by including literal
HTML with the HTML() function. In the next example, I use the “raw character con‐
stant,”3 r"()", to make it easier to include quotes in the string:

ui <- fluidPage(
 HTML(r"(
 <h1>This is a heading</h1>
 <p class="my-class">This is some text!</p>

 First bullet
 Second bullet

)")
)

If you’re an HTML/CSS expert, you might be interested to know that you can skip
fluidPage() altogether and supply raw HTML. See “Build Your Entire UI with
HTML” for more details.

Alternatively, you can use the HTML helper that Shiny provides. There are regular
functions for the most important elements like h1() and p(), and all others can be
accessed via the tags helper. Named arguments become attributes, and unnamed
arguments become children, so we can re-create the preceding HTML as:

ui <- fluidPage(
 h1("This is a heading"),
 p("This is some text", class = "my-class"),
 tags$ul(
 tags$li("First bullet"),
 tags$li("Second bullet")
)
)

102 | Chapter 6: Layout, Themes, HTML

https://oreil.ly/vUVAj
https://oreil.ly/vUVAj
https://oreil.ly/eOYCN
https://oreil.ly/eOYCN
https://oreil.ly/7UCaY
https://oreil.ly/7UCaY

One advantage of generating HTML with code is that you can interweave existing
Shiny components into a custom structure. For example, the following code makes a
paragraph of text containing two outputs, one that is bold:

tags$p(
 "You made ",
 tags$b("$", textOutput("amount", inline = TRUE)),
 " in the last ",
 textOutput("days", inline = TRUE),
 " days "
)

Note the use of inline = TRUE; the textOutput() default is to produce a complete
paragraph.

If you want to learn more about using HTML, CSS, and JavaScript to make compel‐
ling user interfaces, I highly recommend David Granjon’s Outstanding User Interfaces
with Shiny.

Summary
This chapter has given you the tools you need to make complex and attractive Shiny
apps. You’ve learned the Shiny functions that allow you to layout single and multi-
page apps (like fluidPage() and tabsetPanel()) and how to customize the overall
visual appearance with themes. You’ve also learned a little bit about what’s going on
under the hood: you know that Shiny uses Bootstrap and that the input and output
functions just return HTML, which you can also create yourself.

In the next chapter you’ll learn more about another important visual component of
your app: graphics.

Summary | 103

https://oreil.ly/q7aKy
https://oreil.ly/q7aKy

1 When I wrote this chapter, Shiny didn’t support touch events, which means that plot interactivity won’t work
on mobile devices. Hopefully it will support these events by the time you read this.

CHAPTER 7

Graphics

We talked briefly about renderPlot() in Chapter 2; it’s a powerful tool for displaying
graphics in your app. This chapter will show you how to use it to its full extent to
create interactive plots, plots that respond to mouse events. You’ll also learn a couple
of other useful techniques, including making plots with dynamic width and height
and displaying images with the renderImage().

In this chapter, we’ll need ggplot2 as well as shiny, since that’s what I’ll use for the
majority of the graphics:

library(shiny)
library(ggplot2)

Interactivity
One of the coolest things about plotOutput() is that as well as being an output that
displays plots, it can also be an input that responds to pointer events. That allows you
to create interactive graphics where the user interacts directly with the data on the
plot. Interactive graphics are a powerful tool, with a wide range of applications. I
don’t have space to show you all the possibilities, so here I’ll focus on the basics, then
point you toward resources to learn more.

Basics
A plot can respond to four different mouse1 events: click, dblclick (double-click),
hover (when the mouse stays in the same place for a little while), and brush (a

105

rectangular selection tool). To turn these events into Shiny inputs, you supply a string
to the corresponding plotOutput() argument—for example, plotOutput("plot",
click = "plot_click"). This creates an input$plot_click that you can use to han‐
dle mouse clicks on the plot.

Here’s a very simple example of handling a mouse click. We register the plot_click
input and then use that to update an output with the coordinates of the mouse click.
Figure 7-1 shows the results:

ui <- fluidPage(
 plotOutput("plot", click = "plot_click"),
 verbatimTextOutput("info")
)

server <- function(input, output) {
 output$plot <- renderPlot({
 plot(mtcars$wt, mtcars$mpg)
 }, res = 96)

 output$info <- renderPrint({
 req(input$plot_click)
 x <- round(input$plot_click$x, 2)
 y <- round(input$plot_click$y, 2)
 cat("[", x, ", ", y, "]", sep = "")
 })
}

Figure 7-1. Clicking on the top-left point updates the printed coordinates. See live at
https://hadley.shinyapps.io/ms-click.

106 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-click

2 Note that it’s not called nearestPoints(); it won’t return anything if you don’t click near an existing data
point.

(Note the use of req() to make sure the app doesn’t do anything before the first click
and that the coordinates are in terms of the underlying wt and mpg variables.)

The following sections describe the events in more detail. We’ll start with the click
events, then briefly discuss the closely related dblclick and hover. Then you’ll learn
about the brush event, which provides a rectangular “brush” defined by its four sides
(xmin, xmax, ymin, and ymax). I’ll then give a couple of examples of updating the plot
with the results of the action, and then discuss some of the limitations of interactive
graphics in Shiny.

Clicking
The point events return a relatively rich list containing a lot of information. The most
important components are x and y, which give the location of the event in data coor‐
dinates. But I’m not going to talk about this data structure since you’ll only need it in
relatively rare situations. (If you do want the details, use this app in the Shiny gallery.)
Instead, you’ll use the nearPoints() helper, which returns a data frame containing
rows near2 the click, taking care of a bunch of fiddly details.

Here’s a simple example of nearPoints() in action, showing a table of data about the
points near the event. Figure 7-2 shows a screenshot of the app:

ui <- fluidPage(
 plotOutput("plot", click = "plot_click"),
 tableOutput("data")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 plot(mtcars$wt, mtcars$mpg)
 }, res = 96)

 output$data <- renderTable({
 nearPoints(mtcars, input$plot_click, xvar = "wt", yvar = "mpg")
 })
}

Interactivity | 107

https://oreil.ly/Kkh0H

Figure 7-2. nearPoints() translates plot coordinates to data rows, making it easy to
show the underlying data for a point you clicked on. See live at https://
hadley.shinyapps.io/ms-nearPoints.

Here we give nearPoints() four arguments: the data frame that underlies the plot,
the input event, and the names of the variables on the axes. If you use ggplot2, you
only need to provide the first two arguments since xvar and yvar can be automati‐
cally imputed from the plot data structure. For that reason, I’ll use ggplot2 through‐
out the rest of the chapter. Here’s that previous example reimplemented with ggplot2:

ui <- fluidPage(
 plotOutput("plot", click = "plot_click"),
 tableOutput("data")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 ggplot(mtcars, aes(wt, mpg)) + geom_point()
 }, res = 96)

 output$data <- renderTable({
 req(input$plot_click)
 nearPoints(mtcars, input$plot_click)
 })
}

108 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-nearPoints
https://hadley.shinyapps.io/ms-nearPoints

3 As a general rule, adding explanatory text suggests that your interface is too complex, so it’s best avoided,
where possible. This is the key idea behind affordances, the idea that an object should suggest naturally how to
interact with it, as introduced by Don Norman in The Design of Everyday Things.

You might wonder exactly what nearPoints() returns. This is a good place to use
browser(), which we discussed in “The Interactive Debugger” on page 73:

...
 output$data <- renderTable({
 req(input$plot_click)
 browser()
 nearPoints(mtcars, input$plot_click)
 })
...

Now after I start the app and click on a point, I’m dropped into the interactive debug‐
ger, where I can run nearPoints() and see what it returns:

nearPoints(mtcars, input$plot_click)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1

Another way to use nearPoints() is with allRows = TRUE and addDist = TRUE.
That will return the original data frame with two new columns:

• dist_ gives the distance between the row and the event (in pixels).
• selected_ says whether or not it’s near the click event (i.e., whether or not it’s a

row that would be returned when allRows = FALSE).

We’ll see an example of that a little later.

Other Point Events
The same approach works equally well with click, dblclick, and hover: just change
the name of the argument. If needed, you can get additional control over the events
by supplying clickOpts(), dblclickOpts(), or hoverOpts() instead of a string giv‐
ing the input ID. These are rarely needed, so I won’t discuss them here; see the docu‐
mentation for details.

You can use multiple interaction types on one plot. Just make sure to explain to the
user what they can do: one downside of using mouse events to interact with an app is
that they’re not immediately discoverable.3

Brushing
Another way of selecting points on a plot is to use a brush, a rectangular selection
defined by four edges. In Shiny, using a brush is straightforward once you’ve

Interactivity | 109

https://mitpress.mit.edu/books/design-everyday-things

mastered click and nearPoints(): you just switch to brush argument and the brush
edPoints() helper.

Here’s another simple example that shows which points have been selected by the
brush. Figure 7-3 shows the results:

ui <- fluidPage(
 plotOutput("plot", brush = "plot_brush"),
 tableOutput("data")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 ggplot(mtcars, aes(wt, mpg)) + geom_point()
 }, res = 96)

 output$data <- renderTable({
 brushedPoints(mtcars, input$plot_brush)
 })
}

Figure 7-3. Setting the brush argument provides the user with a draggable “brush.” In
this app, the points beneath the brush are shown in a table. See live at https://
hadley.shinyapps.io/ms-brushedPoints.

110 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-brushedPoints
https://hadley.shinyapps.io/ms-brushedPoints

Use brushOpts() to control the color (fill and stroke), or restrict brushing to a sin‐
gle dimension with direction = "x" or "y" (useful, for example, for brushing time
series).

Modifying the Plot
So far we’ve displayed the results of the interaction in another output. But the true
beauty of interactivity comes when you display the changes in the same plot you’re
interacting with. Unfortunately, this requires an advanced reactivity technique that
you have not yet learned about: reactiveVal(). We’ll come back to reactiveVal()
in Chapter 16, but I wanted to show it here because it’s such a useful technique. You’ll
probably need to reread this section after you’ve read that chapter, but hopefully, even
without all the theory, you’ll get a sense of the potential applications.

As you might guess from the name, reactiveVal() is rather similar to reactive().
You create a reactive value by calling reactiveVal() with its initial value, and
retrieve that value in the same way as a reactive:

val <- reactiveVal(10)
val()
#> [1] 10

The big difference is that you can also update a reactive value, and all reactive con‐
sumers that refer to it will recompute. A reactive value uses a special syntax for
updating—you call it like a function, with the first argument being the new value:

val(20)
val()
#> [1] 20

That means updating a reactive value using its current value looks something like
this:

val(val() + 1)
val()
#> [1] 21

Unfortunately, if you actually try to run this code in the console, you’ll get an error
because it has to be run in a reactive environment. That makes experimentation and
debugging more challenging because you’ll need to use browser() or similar to pause
execution within the call to shinyApp(). This is one of the challenges we’ll come back
to later in Chapter 16.

For now, let’s put the challenges of learning reactiveVal() aside and show you why
you might bother. Imagine that you want to visualize the distance between a click and
the points on the plot. In the following app, we start by creating a reactive value to
store those distances, initializing it with a constant that will be used before we click
anything. Then we use observeEvent() to update the reactive value when the mouse

Interactivity | 111

is clicked and create a ggplot that visualizes the distance with point size. All up, this
looks something like the following code and results in Figure 7-4:

set.seed(1014)
df <- data.frame(x = rnorm(100), y = rnorm(100))

ui <- fluidPage(
 plotOutput("plot", click = "plot_click",)
)
server <- function(input, output, session) {
 dist <- reactiveVal(rep(1, nrow(df)))
 observeEvent(input$plot_click,
 dist(nearPoints(df, input$plot_click, allRows = TRUE, addDist = TRUE)$dist_)
)

 output$plot <- renderPlot({
 df$dist <- dist()
 ggplot(df, aes(x, y, size = dist)) +
 geom_point() +
 scale_size_area(limits = c(0, 1000), max_size = 10, guide = NULL)
 }, res = 96)
}

Figure 7-4. This app uses a reactiveVal() to store the distance to the point that was
last clicked, which is then mapped to point size. Here I show the results of clicking on a
point on the far left. See live at https://hadley.shinyapps.io/ms-modifying-size.

112 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-modifying-size

There are two important ggplot2 techniques to note here:

• I add the distances to the data frame before plotting. I think it’s good practice to
put related variables together in a data frame before visualizing it.

• I set the limits to scale_size_area() to ensure that sizes are comparable across
clicks. To find the correct range, I did a little interactive experimentation, but you
can work out the exact details if needed (see the exercises at the end of the
chapter).

Here’s a more complicated idea. I want to use a brush to progressively add points to a
selection. Here I display the selection using different colors, but you could imagine
many other applications. To make this work, I initialize the reactiveVal() to a vec‐
tor of FALSEs, then use brushedPoints() and | to add any points under the brush to
the selection. To give the user some way to start afresh, I make double-clicking reset
the selection. Figure 7-5 shows a couple of screenshots from the running app:

ui <- fluidPage(
 plotOutput("plot", brush = "plot_brush", dblclick = "plot_reset")
)
server <- function(input, output, session) {
 selected <- reactiveVal(rep(FALSE, nrow(mtcars)))

 observeEvent(input$plot_brush, {
 brushed <- brushedPoints(mtcars, input$plot_brush, allRows = TRUE)$selected_
 selected(brushed | selected())
 })
 observeEvent(input$plot_reset, {
 selected(rep(FALSE, nrow(mtcars)))
 })

 output$plot <- renderPlot({
 mtcars$sel <- selected()
 ggplot(mtcars, aes(wt, mpg)) +
 geom_point(aes(colour = sel)) +
 scale_colour_discrete(limits = c("TRUE", "FALSE"))
 }, res = 96)
}

Interactivity | 113

Figure 7-5. This app makes the brush “persistent” so that dragging it adds to the current
selection.

Again, I set the limits of the scale to ensure that the legend (and colors) don’t change
after the first click.

114 | Chapter 7: Graphics

Interactivity Limitations
Before we move on, it’s important to understand the basic data flow in interactive
plots in order to understand their limitations. The basic flow is something like this:

1. JavaScript captures the mouse event.
2. Shiny sends the mouse event data back to R, telling the app that the input is now

out of date.
3. All the downstream reactive consumers are recomputed.
4. plotOutput() generates a new PNG and sends it to the browser.

For local apps, the bottleneck tends to be the time taken to draw the plot. Depending
on how complex the plot is, this may take a significant fraction of a second. But for
hosted apps, you also have to take into account the time needed to transmit the event
from the browser to R and then the rendered plot back from R to the browser.

In general, this means that it’s not possible to create Shiny apps where action and
response is perceived as instantaneous (i.e., the plot appears to update simultaneously
with your action upon it). If you need that level of speed, you’ll have to perform more
computation in JavaScript. One way to do this is to use an R package that wraps a
JavaScript graphics library. Right now, as I write this book, I think you’ll get the best
experience with the plotly package, as documented in the book Interactive Web-Based
Data Visualization with R, Plotly, and Shiny, by Carson Sievert.

Dynamic Height and Width
The rest of this chapter is less exciting than interactive graphics but contains material
that’s important to cover somewhere.

First of all, it’s possible to make the plot size reactive so the width and height changes
in response to user actions. To do this, supply zero-argument functions to the width
and height arguments of renderPlot()—these now must be defined in the server,
not the UI, since they can change. These functions should have no argument and
return the desired size in pixels. They are evaluated in a reactive environment so that
you can make the size of your plot dynamic.

The following app illustrates the basic idea. It provides two sliders that directly con‐
trol the size of the plot. A couple of sample screenshots are shown in Figure 7-6. Note
that when you resize the plot, the data stays the same: you don’t get new random
numbers:

ui <- fluidPage(
 sliderInput("height", "height", min = 100, max = 500, value = 250),
 sliderInput("width", "width", min = 100, max = 500, value = 250),
 plotOutput("plot", width = 250, height = 250)

Dynamic Height and Width | 115

https://plotly-r.com
https://plotly-r.com

4 Unfortunately, there’s no easy way to keep them exactly the same because it’s currently not possible to find out
the size of the fixed elements around the borders of the plot.

)
server <- function(input, output, session) {
 output$plot <- renderPlot(
 width = function() input$width,
 height = function() input$height,
 res = 96,
 {
 plot(rnorm(20), rnorm(20))
 }
)
}

Figure 7-6. You can make the plot size dynamic so that it responds to user actions. This
figure shows off the effect of changing the width. See live at https://hadley.shinyapps.io/
ms-resize.

In real apps, you’ll use more complicated expressions in the width and height func‐
tions. For example, if you’re using a faceted plot in ggplot2, you might use it to
increase the size of the plot to keep the individual facet sizes roughly the same.4

Images
You can use renderImage() if you want to display existing images (not plots). For
example, you might have a directory of photographs that you want shown to the user.

116 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-resize
https://hadley.shinyapps.io/ms-resize

The following app illustrates the basics of renderImage() by showing cute puppy
photos (Figure 7-7). The photos come from Unsplash, my favorite source of royalty-
free stock photographs:

puppies <- tibble::tribble(
 ~breed, ~ id, ~author,
 "corgi", "eoqnr8ikwFE","alvannee",
 "labrador", "KCdYn0xu2fU", "shaneguymon",
 "spaniel", "TzjMd7i5WQI", "_redo_"
)

ui <- fluidPage(
 selectInput("id", "Pick a breed", choices = setNames(puppies$id, puppies$breed)),
 htmlOutput("source"),
 imageOutput("photo")
)
server <- function(input, output, session) {
 output$photo <- renderImage({
 list(
 src = file.path("puppy-photos", paste0(input$id, ".jpg")),
 contentType = "image/jpeg",
 width = 500,
 height = 650
)
 }, deleteFile = FALSE)

 output$source <- renderUI({
 info <- puppies[puppies$id == input$id, , drop = FALSE]
 HTML(glue::glue("<p>
 original by
 {info$author}
 </p>"))
 })
}

renderImage() needs to return a list. The only crucial argument is src, a local path to
the image file. You can additionally supply:

• A contentType, which defines the MIME type of the image. If not provided,
Shiny will guess from the file extension, so you only need to supply this if your
images don’t have extensions.

• The width and height of the image, if known.
• Any other arguments, like class or alt, will be added as attributes to the

tag in the HTML.

Images | 117

https://unsplash.com

Figure 7-7. An app that displays cute pictures of puppies using renderImage(). See live
at https://hadley.shinyapps.io/ms-puppies.

You must also supply the deleteFile argument. Unfortunately, renderImage() was
originally designed to work with temporary files, so it automatically deleted images
after rendering them. This was obviously very dangerous, so the behavior changed in
Shiny 1.5.0. Now Shiny no longer deletes the images but instead forces you to explic‐
itly choose which behavior you want.

You can learn more about renderImage() and see other ways that you might use it on
the Shiny website.

Summary
Visualizations are a tremendously powerful way to communicate data, and this chap‐
ter has given you a few advanced techniques to empower your Shiny apps. Next,
you’ll learn techniques to provide feedback to your users about what’s going on in
your app, which is particularly important for actions that take a nontrivial amount of
time.

118 | Chapter 7: Graphics

https://hadley.shinyapps.io/ms-puppies
https://oreil.ly/zgzNm

CHAPTER 8

User Feedback

You can often make your app more usable by giving the user more insight into what
is happening. This might take the form of better messages when inputs don’t make
sense, or progress bars for operations that take a long time. Some feedback occurs
naturally through outputs, which you already know how to use, but you’ll often need
something else. The goal of this chapter is to show you some of your other options.

We’ll start with techniques for validation, informing the user when an input (or com‐
bination of inputs) is in an invalid state. We’ll then continue on to notification, send‐
ing general messages to the user, and progress bars, which give details for time-
consuming operations made up of many small steps. We’ll finish up by discussing
dangerous actions and how you give your users peace of mind with confirmation dia‐
logs or the ability to undo an action.

In this chapter we’ll use shinyFeedback, by Andy Merlino, and waiter, by John Coene.
You should also keep your eyes open for shinyvalidate, a package by Joe Cheng, which
is currently under development. Let’s begin by loading shiny:

library(shiny)

Validation
The first and most important feedback you can give to the user is that they’ve given
you bad input. This is analogous to writing good functions in R: user-friendly func‐
tions give clear error messages describing what the expected input is and how you
have violated those expectations. Thinking through how the user might misuse your
app allows you to provide informative messages in the UI rather than allowing errors
to trickle through into the R code and generate uninformative errors.

119

https://oreil.ly/luGeN
http://waiter.john-coene.com
https://oreil.ly/XADgf

Validating Input
A great way to give additional feedback to the user is via the shinyFeedback package.
Using it is a two-step process. First, you add useShinyFeedback() to the ui. This sets
up the needed HTML and JavaScript for attractive error message display:

ui <- fluidPage(
 shinyFeedback::useShinyFeedback(),
 numericInput("n", "n", value = 10),
 textOutput("half")
)

Then in your server() function, you call one of the feedback functions: feedback(),
feedbackWarning(), feedbackDanger(), and feedbackSuccess(). They all have
three key arguments:

inputId

The ID of the input where the feedback should be placed.

show

A logical value determining whether or not to show the feedback.

text

The text to display.

They also have color and icon arguments that you can use to further customize the
appearance. See the documentation for more details.

Let’s see how this comes together in a real example, pretending that we only want to
allow even numbers:

server <- function(input, output, session) {
 half <- reactive({
 even <- input$n %% 2 == 0
 shinyFeedback::feedbackWarning("n", !even, "Please select an even number")
 input$n / 2
 })

 output$half <- renderText(half())
}

Figure 8-1 shows the results.

120 | Chapter 8: User Feedback

https://oreil.ly/luGeN

Figure 8-1. feedbackWarning() displays a warning for invalid inputs. The app on the
left shows a valid input, and the app on the right shows an invalid (odd) input with
warning message. See live at https://hadley.shinyapps.io/ms-feedback.

Notice that the error message is displayed but the output is still updated. Typically
you don’t want that because invalid inputs are likely to cause uninformative R errors
that you don’t want to show to the user. To stop inputs from triggering reactive
changes, you need a new tool: req(), short for “required.” It looks like this:

server <- function(input, output, session) {
 half <- reactive({
 even <- input$n %% 2 == 0
 shinyFeedback::feedbackWarning("n", !even, "Please select an even number")
 req(even)
 input$n / 2
 })

 output$half <- renderText(half())
}

When the input to req() is not true, it sends a special signal to tell Shiny that the
reactive does not have all the inputs that it requires, so it should be “paused.” We’ll
take a brief digression to talk about this before we come back to using it in concert
with validate().

Canceling Execution with req()
It’s easiest to understand req() by starting outside of validation. You may have
noticed that when you start an app, the complete reactive graph is computed even
before the user does anything. This works well when you can choose meaningful
default values for your inputs. But that’s not always possible, and sometimes you
want to wait until the user actually does something. This tends to crop up with three
controls:

• In textInput(), when you have used value = "" and you don’t want to do any‐
thing until the user types something.

• In selectInput(), when you have provided an empty choice, "", and you don’t
want to do anything until the user makes a selection.

Validation | 121

https://hadley.shinyapps.io/ms-feedback

• In fileInput(), which has an empty result before the user has uploaded any‐
thing. We’ll come back to this in Figure 9-1.

We need some way to “pause” reactives so that nothing happens until some condition
is true. That’s the job of req(), which checks for required values before allowing a
reactive producer to continue.

For example, consider the following app, which will generate a greeting in English or
Maori. If you run this app, you’ll see an error, as in Figure 8-2, because there’s no
entry in the greetings vector that corresponds to the default choice of "":

ui <- fluidPage(
 selectInput("language", "Language", choices = c("", "English", "Maori")),
 textInput("name", "Name"),
 textOutput("greeting")
)

server <- function(input, output, session) {
 greetings <- c(
 English = "Hello",
 Maori = "Ki ora"
)
 output$greeting <- renderText({
 paste0(greetings[[input$language]], " ", input$name, "!")
 })
}

Figure 8-2. The app displays an uninformative error when it is loaded because a lan‐
guage hasn’t been selected yet.

We can fix this problem by using req(). Now nothing will be displayed until the user
has supplied values for both language and name, as shown in the following code and
in Figure 8-3:

server <- function(input, output, session) {
 greetings <- c(
 English = "Hello",
 Maori = "Ki ora"
)
 output$greeting <- renderText({
 req(input$language, input$name)

122 | Chapter 8: User Feedback

1 Condition is a technical term that includes errors, warnings, and messages. If you’re interested, you can learn
more of the details of R’s condition system in Chapter 8 of Advanced R.

2 More precisely, req() proceeds only if its inputs are truthy, that is, any value apart from FALSE, NULL , "", or a
handful of other special cases described in ?isTruthy.

 paste0(greetings[[input$language]], " ", input$name, "!")
 })
}

Figure 8-3. By using req(), the output is only shown once both language and name have
been supplied. See live at https://hadley.shinyapps.io/ms-require-simple2.

req() works by signaling a special condition.1 This special condition causes all down‐
stream reactives and outputs to stop executing. Technically, it leaves any downstream
reactive consumers in an invalidated state. We’ll come back to this terminology in
Chapter 16.

req() is designed so that req(input$x) will only proceed if the user has supplied a
value, regardless of the type of input control.2 You can also use req() with your own
logical statement if needed. For example, req(input$a > 0) will permit computation
to proceed when a is greater than 0; this is typically the form you’ll use when per‐
forming validation, as we’ll see next.

Validation | 123

https://oreil.ly/gP3i8
https://hadley.shinyapps.io/ms-require-simple2

req() and Validation
Let’s combine req() and shinyFeedback to solve a more challenging problem. I’m
going to return to the simple app we made in Chapter 1, which allowed you to select a
built-in dataset and see its contents. I’m going to make it more general and more
complex by using textInput() instead of selectInput(). The UI changes very little:

ui <- fluidPage(
 shinyFeedback::useShinyFeedback(),
 textInput("dataset", "Dataset name"),
 tableOutput("data")
)

But the server function needs to get a little more complex. We’re going to use req()
in two ways:

• We only want to proceed with computation if the user has entered a value, so we
do req(input$dataset).

• Then we check to see if the supplied name actually exists. If it doesn’t, we display
an error message and then use req() to cancel computation. Note the use of can
celOutput = TRUE: normally, canceling a reactive will reset all downstream out‐
puts; using cancelOutput = TRUE leaves them displaying the last good value.
This is important for textInput(), which may trigger an update while you’re in
the middle of typing a name.

The results are shown in Figure 8-4.

server <- function(input, output, session) {
 data <- reactive({
 req(input$dataset)

 exists <- exists(input$dataset, "package:datasets")
 shinyFeedback::feedbackDanger("dataset", !exists, "Unknown dataset")
 req(exists, cancelOutput = TRUE)

 get(input$dataset, "package:datasets")
 })

 output$data <- renderTable({
 head(data())
 })
}

124 | Chapter 8: User Feedback

Figure 8-4. On load, the table is empty because the dataset name is empty. The data is
shown after we type a valid dataset name (iris) and continues to be shown when we
press Backspace in order to type a new dataset name. See live at https://
hadley.shinyapps.io/ms-require-cancel.

Validate Output
shinyFeedback is great when the problem is related to a single input. But sometimes
the invalid state is a result of a combination of inputs. In this case, it doesn’t really
make sense to put the error next to an input (which one would you put it beside?),
and instead it makes more sense to put it in the output.

You can do so with a tool built into shiny: validate(). When called inside a reactive
or an output, validate(message) stops execution of the rest of the code and instead
displays message in any downstream outputs. The following code shows a simple
example where we don’t want to log or square-root negative values:

Validation | 125

https://hadley.shinyapps.io/ms-require-cancel
https://hadley.shinyapps.io/ms-require-cancel

ui <- fluidPage(
 numericInput("x", "x", value = 0),
 selectInput("trans", "transformation",
 choices = c("square", "log", "square-root")
),
 textOutput("out")
)

server <- function(input, output, server) {
 output$out <- renderText({
 if (input$x < 0 && input$trans %in% c("log", "square-root")) {
 validate("x can not be negative for this transformation")
 }

 switch(input$trans,
 square = input$x ^ 2,
 "square-root" = sqrt(input$x),
 log = log(input$x)
)
 })
}

You can see the results in Figure 8-5.

Figure 8-5. If the inputs are valid, the output shows the transformation. If the combina‐
tion of inputs is invalid, then the output is replaced with an informative message.

Notifications
If there isn’t a problem and you just want to let the user know what’s happening, use a
notification. In Shiny, notifications are created with showNotification() and stack in
the bottom right of the page. There are three basic ways to use showNotification():

• To show a transient notification that automatically disappears after a fixed
amount of time

• To show a notification when a process starts and remove it when the process
ends

• To update a single notification with progressive updates

126 | Chapter 8: User Feedback

These three techniques are discussed in the following sections.

Transient Notification
The simplest way to use showNotification() is to call it with a single argument: the
message that you want to display. It’s very hard to capture this behavior with a screen‐
shot, so go to the live app if you want to see it in action:

ui <- fluidPage(
 actionButton("goodnight", "Good night")
)
server <- function(input, output, session) {
 observeEvent(input$goodnight, {
 showNotification("So long")
 Sys.sleep(1)
 showNotification("Farewell")
 Sys.sleep(1)
 showNotification("Auf Wiedersehen")
 Sys.sleep(1)
 showNotification("Adieu")
 })
}

By default, the message will disappear after five seconds, but you can override it by
setting duration, or the user can dismiss it earlier by clicking the close button. If you
want to make the notification more prominent, you can set the type argument to one
of “message,” “warning,” or “error”:

server <- function(input, output, session) {
 observeEvent(input$goodnight, {
 showNotification("So long")
 Sys.sleep(1)
 showNotification("Farewell", type = "message")
 Sys.sleep(1)
 showNotification("Auf Wiedersehen", type = "warning")
 Sys.sleep(1)
 showNotification("Adieu", type = "error")
 })
}

Figure 8-6 gives a sense of what this looks like.

Notifications | 127

https://hadley.shinyapps.io/ms-notification-transient

3 If reading CSV files is a bottleneck in your application, you should consider using data.table::fread() and
vroom::vroom() instead; they can be orders of magnitude faster than read.csv().

Figure 8-6. The progression of notifications after clicking “Good night”: the first notifica‐
tion appears, after three more seconds all notifications are shown, then the notifications
start to fade away. See live at https://hadley.shinyapps.io/ms-notify-persistent.

Removing on Completion
It’s often useful to tie the presence of a notification to a long-running task. In this
case, you want to show the notification when the task starts and remove the notifica‐
tion when the task completes. To do this, you’ll need to:

• Set duration = NULL and closeButton = FALSE so that the notification stays
visible until the task is complete.

• Store the id returned by showNotification(), and then pass this value to remove
Notification(). The most reliable way to do so is to use on.exit(), which
ensures that the notification is removed regardless of how the task completes
(either successfully or with an error). Read the article “Changing and Restoring
State” to learn more about on.exit().

The following example puts the pieces together to show how you might keep the user
up to date when reading in a large CSV file:3

server <- function(input, output, session) {
 data <- reactive({
 id <- showNotification("Reading data...", duration = NULL, closeButton = FALSE)
 on.exit(removeNotification(id), add = TRUE)

 read.csv(input$file$datapath)
 })
}

Generally, these sorts of notifications will live in a reactive, because that ensures that
the long-running computation is only rerun when needed.

128 | Chapter 8: User Feedback

https://hadley.shinyapps.io/ms-notify-persistent
https://oreil.ly/8RFsu
https://oreil.ly/8RFsu

Progressive Updates
As you saw in the first example, multiple calls to showNotification() usually create
multiple notifications. You can instead update a single notification by capturing the
id from the first call and using it in subsequent calls:

ui <- fluidPage(
 tableOutput("data")
)

server <- function(input, output, session) {
 notify <- function(msg, id = NULL) {
 showNotification(msg, id = id, duration = NULL, closeButton = FALSE)
 }

 data <- reactive({
 id <- notify("Reading data...")
 on.exit(removeNotification(id), add = TRUE)
 Sys.sleep(1)

 notify("Reticulating splines...", id = id)
 Sys.sleep(1)

 notify("Herding llamas...", id = id)
 Sys.sleep(1)

 notify("Orthogonalizing matrices...", id = id)
 Sys.sleep(1)

 mtcars
 })

 output$data <- renderTable(head(data()))
}

This is useful if your long-running task has multiple subcomponents. You can see the
results in the live app.

Progress Bars
For long-running tasks, the best type of feedback is a progress bar. As well as telling
you where you are in the process, it also helps you estimate how much longer it’s
going to be: Should you take a deep breath, go get a coffee, or come back tomorrow?
In this section, I’ll show two techniques for displaying progress bars, one built into
Shiny and one from the waiter package developed by John Coene.

Progress Bars | 129

https://hadley.shinyapps.io/ms-notification-updates
https://waiter.john-coene.com

4 If your code doesn’t involve a for loop or an apply/map function, it’s going to be very difficult to make a pro‐
gress bar.

Unfortunately, both techniques suffer from the same major drawback: to use a pro‐
gress bar, you need to be able to divide the big task into a known number of small
pieces that each take roughly the same amount of time. This is often hard, particu‐
larly since the underlying code is often written in C, and it has no way to communi‐
cate progress updates to you. We are working on tools in the progress package so that
packages like dplyr, readr, and vroom will one day generate progress bars that you can
easily forward to Shiny.

Shiny
To create a progress bar with Shiny, you need to use withProgress() and incPro
gress(). Imagine you have some slow-running code that looks like this:4

for (i in seq_len(step)) {
 x <- function_that_takes_a_long_time(x)
}

You start by wrapping it in withProgress(). This shows the progress bar when the
code starts and automatically removes it when it’s done:

withProgress({
 for (i in seq_len(step)) {
 x <- function_that_takes_a_long_time(x)
 }
})

Then call incProgress() after each step:

withProgress({
 for (i in seq_len(step)) {
 x <- function_that_takes_a_long_time(x)
 incProgress(1 / length(step))
 }
})

The first argument of incProgress() is the amount to increment the progress bar. By
default, the progress bar starts at 0 and ends at 1, so the incrementing by 1 divided by
the number of steps will ensure that the progress bar is complete at the end of the
loop.

130 | Chapter 8: User Feedback

https://github.com/r-lib/progress

Here’s how that might look in a complete Shiny app, as shown in Figure 8-7:

ui <- fluidPage(
 numericInput("steps", "How many steps?", 10),
 actionButton("go", "go"),
 textOutput("result")
)

server <- function(input, output, session) {
 data <- eventReactive(input$go, {
 withProgress(message = "Computing random number", {
 for (i in seq_len(input$steps)) {
 Sys.sleep(0.5)
 incProgress(1 / input$steps)
 }
 runif(1)
 })
 })

 output$result <- renderText(round(data(), 2))
}

Figure 8-7. A progress bar helps indicate how much longer a calculation has to run. See
live at https://hadley.shinyapps.io/ms-progress.

A few things to note:

• I used the optional message argument to add some explanatory text to the pro‐
gress bar.

• I used Sys.sleep() to simulate a long-running operation; in your code, this
would be a slow function.

• I allowed the user to control when the event starts by combining a button with
eventReactive(). This is good practice for any task that requires a progress bar.

Progress Bars | 131

https://hadley.shinyapps.io/ms-progress

Waiter
The built-in progress bar is great for the basics, but if you want something that pro‐
vides more visual options, you might try the waiter package. Adapting the preceding
code to work with waiter is straightforward. In the UI, we add use_waitress():

ui <- fluidPage(
 waiter::use_waitress(),
 numericInput("steps", "How many steps?", 10),
 actionButton("go", "go"),
 textOutput("result")
)

The interface for waiter’s progress bars are a little different. The waiter package uses
an R6 object to bundle all progress-related functions into a single object. If you’ve
never used an R6 object before, don’t worry too much about the details; you can just
copy and paste this template. The basic life cycle looks like this:

Create a new progress bar
waitress <- waiter::Waitress$new(max = input$steps)
Automatically close it when done
on.exit(waitress$close())

for (i in seq_len(input$steps)) {
 Sys.sleep(0.5)
 # increment one step
 waitress$inc(1)
}

And we can use it in a Shiny app as follows:

server <- function(input, output, session) {
 data <- eventReactive(input$go, {
 waitress <- waiter::Waitress$new(max = input$steps)
 on.exit(waitress$close())

 for (i in seq_len(input$steps)) {
 Sys.sleep(0.5)
 waitress$inc(1)
 }

 runif(1)
 })

 output$result <- renderText(round(data(), 2))
}

132 | Chapter 8: User Feedback

https://waiter.john-coene.com

The default display is a thin progress bar at the top of the page—which you can see in
the live app—but there are a number of ways to customize the output:

• You can override the default theme to use one of the following:

overlay

An opaque progress bar that hides the whole page

overlay-opacity

A translucent progress bar that covers the whole page

overlay-percent

An opaque progress bar that also displays a numeric percentage

• Instead of showing a progress bar for the entire page, you can overlay it on an
existing input or output by setting the selector parameter. For example:

waitress <- Waitress$new(selector = "#steps", theme = "overlay")

Spinners
Sometimes you don’t know exactly how long an operation will take, and you just want
to display an animated spinner that reassures the user that something is happening.
You can also use the waiter package for this task; just switch from using a Waitress to
using a Waiter:

ui <- fluidPage(
 waiter::use_waiter(),
 actionButton("go", "go"),
 textOutput("result")
)

server <- function(input, output, session) {
 data <- eventReactive(input$go, {
 waiter <- waiter::Waiter$new()
 waiter$show()
 on.exit(waiter$hide())

 Sys.sleep(sample(5, 1))
 runif(1)
 })
 output$result <- renderText(round(data(), 2))
}

Progress Bars | 133

https://hadley.shinyapps.io/ms-waiter

Figure 8-8 shows how this will appear in the app.

Figure 8-8. A waiter displays a whole app spinner while something is happening. See
live at https://hadley.shinyapps.io/ms-spinner-1.

Like Waitress, you can also use Waiters for specific outputs. These waiters can
automatically remove the spinner when the output updates, so the code is even
simpler:

ui <- fluidPage(
 waiter::use_waiter(),
 actionButton("go", "go"),
 plotOutput("plot"),
)

server <- function(input, output, session) {
 data <- eventReactive(input$go, {
 waiter::Waiter$new(id = "plot")$show()

 Sys.sleep(3)
 data.frame(x = runif(50), y = runif(50))
 })

 output$plot <- renderPlot(plot(data()), res = 96)
}

134 | Chapter 8: User Feedback

https://hadley.shinyapps.io/ms-spinner-1

Figure 8-9 shows the result.

Figure 8-9. You can instead display a spinner for a single output. See live at https://
hadley.shinyapps.io/ms-spinner-2.

The waiter package provides a large variety of spinners to choose from; see your
options at ?waiter::spinners and then choose one with (for example) Waiter
$new(html = spin_ripple()).

An even simpler alternative is to use the shinycssloaders package by Dean Attali. It
uses JavaScript to listen to Shiny events, so it doesn’t even need any code on the server
side. Instead, you just use shinycssloaders::withSpinner() to wrap outputs from
which you want to automatically get a spinner when they have been invalidated:

library(shinycssloaders)

ui <- fluidPage(
 actionButton("go", "go"),
 withSpinner(plotOutput("plot")),
)
server <- function(input, output, session) {
 data <- eventReactive(input$go, {
 Sys.sleep(3)
 data.frame(x = runif(50), y = runif(50))
 })

 output$plot <- renderPlot(plot(data()), res = 96)
}

Progress Bars | 135

https://hadley.shinyapps.io/ms-spinner-2
https://hadley.shinyapps.io/ms-spinner-2
https://oreil.ly/qIcuN

Confirming and Undoing
Sometimes an action is potentially dangerous, and you either want to make sure that
the user really wants to do it or you want to give them the ability to back out before
it’s too late. The three techniques in this section lay out your basic options and give
you some tips for how you might implement them in your app.

Explicit Confirmation
The simplest approach to protecting the user from accidentally performing a danger‐
ous action is to require an explicit confirmation. The easiest way is to use a dialog
box, which forces the user to pick from one of a small set of actions. In Shiny, you
create a dialog box with modalDialog(). This is called a “modal” dialog because it
creates a new “mode” of interaction; you can’t interact with the main application until
you have dealt with the dialog.

Imagine you have a Shiny app that deletes some files from a directory (or rows in a
database, etc.). This is hard to undo, so you want to make sure that the user is really
sure. You could create a dialog box, as shown in Figure 8-10, that requires an explicit
confirmation, as follows:

modal_confirm <- modalDialog(
 "Are you sure you want to continue?",
 title = "Deleting files",
 footer = tagList(
 actionButton("cancel", "Cancel"),
 actionButton("ok", "Delete", class = "btn btn-danger")
)
)

Figure 8-10. A dialog box checks whether or not you want to delete some files.

There are a few small, but important, details to consider when creating a dialog box:

• What should you call the buttons? It’s best to be descriptive, so avoid yes/no or
continue/cancel in favor of recapitulating the key verb.

136 | Chapter 8: User Feedback

• How should you order the buttons? Do you put cancel first (like the Mac) or con‐
tinue first (like Windows)? Your best option is to mirror the platform that you
think most people will be using.

• Can you make the dangerous option more obvious? Here I’ve used class = "btn
btn-danger" to style the button prominently.

Jakob Nielsen has more good advice in his “OK-Cancel or Cancel-OK? The Trouble
With Buttons” article.

Let’s use this dialog in a real (if very simple) app. Our UI exposes a single button to
“delete all the files”:

ui <- fluidPage(
 actionButton("delete", "Delete all files?")
)

There are two new ideas in the server():

• We use showModal() and removeModal() to show and hide the dialog.
• We observe events generated by the UI from modal_confirm. These objects aren’t

created statically in the ui but are instead dynamically added in the server() by
showModal():

server <- function(input, output, session) {
 observeEvent(input$delete, {
 showModal(modal_confirm)
 })

 observeEvent(input$ok, {
 showNotification("Files deleted")
 removeModal()
 })
 observeEvent(input$cancel, {
 removeModal()
 })
}

You’ll see this idea in much more detail in Chapter 10.

Undoing an Action
Explicit confirmation is most useful for destructive actions that are only performed
infrequently. You should avoid it if you want to reduce the errors made by frequent
actions. For example, this technique would not work for Twitter. If there was a dialog
box that said “Are you sure you want to tweet this?” you would soon learn to auto‐
matically click yes and still feel the same feeling of regret when you notice a typo 10
seconds after tweeting.

Confirming and Undoing | 137

https://oreil.ly/php5k
https://oreil.ly/php5k

In this situation, a better approach is to wait a few seconds before actually performing
the action, giving the user a chance to notice any problems and undo them. This isn’t
really an undo (since you’re not actually doing anything), but it’s an evocative word
that users will understand.

I illustrate the technique with a website that I personally wish had an undo button:
Twitter. The essence of the Twitter UI is very simple: there’s a text area to compose
your tweet and a button to send it:

ui <- fluidPage(
 textAreaInput("message",
 label = NULL,
 placeholder = "What's happening?",
 rows = 3
),
 actionButton("tweet", "Tweet")
)

The server function is quite complex and requires some techniques that we haven’t
talked about. Don’t worry too much about understanding the code; focus on the basic
idea: we use some special arguments to observeEvent() to run some code after a few
seconds. The big new idea is that we capture the result of observeEvent() and save it
to a variable; this allows us to destroy the observer so the code that would really send
the tweet is never run:

runLater <- function(action, seconds = 3) {
 observeEvent(
 invalidateLater(seconds * 1000), action,
 ignoreInit = TRUE,
 once = TRUE,
 ignoreNULL = FALSE,
 autoDestroy = FALSE
)
}

server <- function(input, output, session) {
 waiting <- NULL
 last_message <- NULL

 observeEvent(input$tweet, {
 notification <- glue::glue("Tweeted '{input$message}'")
 last_message <<- input$message
 updateTextAreaInput(session, "message", value = "")

 showNotification(
 notification,
 action = actionButton("undo", "Undo?"),
 duration = NULL,
 closeButton = FALSE,
 id = "tweeted",
 type = "warning"

138 | Chapter 8: User Feedback

)

 waiting <<- runLater({
 cat("Actually sending tweet...\n")
 removeNotification("tweeted")
 })
 })

 observeEvent(input$undo, {
 waiting$destroy()
 showNotification("Tweet retracted", id = "tweeted")
 updateTextAreaInput(session, "message", value = last_message)
 })
}

See it in action in the live app.

Trash
For actions that you might regret days later, a more sophisticated pattern is to imple‐
ment something like the trash or recycling bin on your computer. When you delete a
file, it isn’t permanently deleted but instead is moved to a holding cell, which requires
a separate action to empty. This is like the “undo” option on steroids; you have a lot of
time to regret your action. It’s also a bit like the confirmation; you have to do two
separate actions to make deletion permanent.

The primary downside of this technique is that it is substantially more complicated to
implement (you have to have a separate “holding cell” that stores the information
needed to undo the action) and requires regular intervention from the user to avoid
accumulating. For that reason, I think it’s beyond the scope of all but the most com‐
plicated Shiny apps, so I’m not going to show an implementation here.

Summary
This chapter has given you a number of tools to help communicate to the user what’s
happening with your app. In some sense, these techniques are mostly optional. But
while your app will work without them, their thoughtful application can have a huge
impact on the quality of the user experience. You can often omit feedback when
you’re the only user of an app, but the more people use it, the more that thoughtful
notification will pay off.

In the next chapter, you’ll learn how to transfer files to and from the user.

Summary | 139

https://hadley.shinyapps.io/ms-undo

CHAPTER 9

Uploads and Downloads

Transferring files to and from the user is a common feature of apps. You can use it to
upload data for analysis or download the results as a dataset or as a report. This chap‐
ter shows the UI and server components that you’ll need to transfer files in and out of
your app. We begin by loading shiny:

library(shiny)

Upload
We’ll start by discussing file uploads, showing you the basic UI and server compo‐
nents, and then showing how they fit together in a simple app.

UI
The UI needed to support file uploads is simple: just add fileInput() to your UI:

ui <- fluidPage(
 fileInput("upload", "Upload a file")
)

Like most other UI components, there are only two required arguments: id and
label. The width, buttonLabel, and placeholder arguments allow you to tweak the
appearance in other ways. I won’t discuss them here, but you can read more about
them in ?fileInput.

141

1 MIME type is short for “multipurpose internet mail extensions type.” As you might guess from the name, it
was originally designed for email systems, but now it’s used widely across many internet tools. A MIME type
looks like type/subtype. Some common examples are text/csv, text/html, image/png, application/pdf,
application/vnd.ms-excel (excel file).

Server
Handling fileInput() on the server is a little more complicated than other inputs.
Most inputs return simple vectors, but fileInput() returns a data frame with four
columns:

name

The original filename on the user’s computer.

size

The file size, in bytes. By default, the user can only upload files up to 5 MB. You
can increase this limit by setting the shiny.maxRequestSize option prior to
starting Shiny—to allow up to 10 MB run options(shiny.maxRequestSize = 10
* 1024^2), for example.

type

The “MIME type” of the file.1 This is a formal specification of the file type that is
usually derived from the extension and is rarely needed in Shiny apps.

datapath

The path to where the data has been uploaded on the server. Treat this path as
ephemeral: if the user uploads more files, this file may be deleted. The data is
always saved to a temporary directory and given a temporary name.

I think the easiest way to understand this data structure is to make a simple app. Run
the following code and upload a few files to get a sense of what data Shiny is
providing:

ui <- fluidPage(
 fileInput("upload", NULL, buttonLabel = "Upload...", multiple = TRUE),
 tableOutput("files")
)
server <- function(input, output, session) {
 output$files <- renderTable(input$upload)
}

You can see the results after I uploaded a couple of puppy photos (from “Images” on
page 116) in Figure 9-1.

142 | Chapter 9: Uploads and Downloads

Figure 9-1. This simple app lets you see exactly what data Shiny provides to you for
uploaded files. See live at https://hadley.shinyapps.io/ms-upload.

Note my use of the label and buttonLabel arguments to mildly customize the
appearance, and my use of multiple = TRUE to allow the user to upload multiple
files.

Uploading Data
If the user is uploading a dataset, there are two details that you need to be aware of:

• input$upload is initialized to NULL on page load, so you’ll need req(input$file)
to make sure your code waits until the first file is uploaded.

• The accept argument allows you to limit the possible inputs. The easiest way is
to supply a character vector of file extensions, like accept = ".csv". But the
accept argument is only a suggestion to the browser and is not always enforced,
so it’s good practice to also validate it (e.g., “Validation” on page 119) yourself.
The easiest way to get the file extension in R is tools::file_ext(), but just be
aware that it removes the leading . from the extension.

Putting all these ideas together gives us the following, where you can upload a .csv
or .tsv file and see the first n rows:

ui <- fluidPage(
 fileInput("file", NULL, accept = c(".csv", ".tsv")),
 numericInput("n", "Rows", value = 5, min = 1, step = 1),
 tableOutput("head")
)

server <- function(input, output, session) {
 data <- reactive({
 req(input$file)

 ext <- tools::file_ext(input$file$name)
 switch(ext,
 csv = vroom::vroom(input$file$datapath, delim = ","),
 tsv = vroom::vroom(input$file$datapath, delim = "\t"),
 validate("Invalid file; Please upload a .csv or .tsv file")
)

Upload | 143

https://hadley.shinyapps.io/ms-upload

 })

 output$head <- renderTable({
 head(data(), input$n)
 })
}

See it in action in the live app.

Note that since multiple = FALSE (the default), input$file will be a single-row data
frame, and input$file$name and input$file$datapath will be a length-1 character
vector.

Download
Next, we’ll look at file downloads, showing you the basic UI and server components,
then demonstrating how you might use them to allow the user to download data or
reports.

Basics
Again, the UI is straightforward: use downloadButton(id) or downloadLink(id) to
give the user something to click to download a file:

ui <- fluidPage(
 downloadButton("download1"),
 downloadLink("download2")
)

The results are shown in Figure 9-2.

Figure 9-2. A download button and a download link.

You can customize their appearance using the same class and icon arguments as for
actionButtons(), as described in “Action Buttons” on page 20.

Unlike other outputs, downloadButton() is not paired with a render function.
Instead, you use downloadHandler(), which looks something like this:

output$download <- downloadHandler(
 filename = function() {
 paste0(input$dataset, ".csv")
 },
 content = function(file) {
 write.csv(data(), file)
 }
)

144 | Chapter 9: Uploads and Downloads

https://hadley.shinyapps.io/ms-upload-validate

downloadHandler() has two arguments, both functions:

filename

A function with no arguments that returns a filename (as a string). The job of
this function is to create the name that will be shown to the user in the download
dialog box.

content

A function with one argument, file, which is the path to save the file. The job of
this function is to save the file in a place that Shiny knows about so it can then
send it to the user.

This is an unusual interface, but it allows Shiny to control where the file should be
saved (so it can be placed in a secure location) while you still control the contents of
that file.

Next we’ll put these pieces together to show how to transfer data files or reports to the
user.

Downloading Data
The following app shows off the basics of data download by allowing you to down‐
load any dataset in the datasets package as a tab-separated file, as shown in
Figure 9-3. I recommend using .tsv (tab-separated values) instead of .csv (comma-
separated values) because many European countries use commas to separate the
whole and fractional parts of a number (e.g., 1,23 versus 1.23). This means they can’t
use commas to separate fields and instead use semicolons in so-called CSV files! You
can avoid this complexity by using tab-separated files, which work the same way
everywhere:

ui <- fluidPage(
 selectInput("dataset", "Pick a dataset", ls("package:datasets")),
 tableOutput("preview"),
 downloadButton("download", "Download .tsv")
)

server <- function(input, output, session) {
 data <- reactive({
 out <- get(input$dataset, "package:datasets")
 if (!is.data.frame(out)) {
 validate(paste0("'", input$dataset, "' is not a data frame"))
 }
 out
 })

 output$preview <- renderTable({
 head(data())
 })

Download | 145

 output$download <- downloadHandler(
 filename = function() {
 paste0(input$dataset, ".tsv")
 },
 content = function(file) {
 vroom::vroom_write(data(), file)
 }
)
}

Figure 9-3. This richer app allows you to select a built-in dataset and preview it before
downloading. See live at https://hadley.shinyapps.io/ms-download-data.

Note the use of validate() to only allow the user to download datasets that are data
frames. A better approach would be to prefilter the list, but this lets you see another
application of validate().

Downloading Reports
As well as downloading data, you may want the users of your app to download a
report that summarizes the result of interactive exploration in the Shiny app. This is
quite a lot of work, because you also need to display the same information in a differ‐
ent format, but it is very useful for high-stakes apps.

One powerful way to generate such a report is with a parameterized RMarkdown
document. A parameterized RMarkdown file has a params field in the YAML
metadata:

title: My Document
output: html_document
params:
 year: 2018
 region: Europe

146 | Chapter 9: Uploads and Downloads

https://hadley.shinyapps.io/ms-download-data
https://oreil.ly/ZlvJg
https://oreil.ly/ZlvJg

 printcode: TRUE
 data: file.csv

Inside the document, you can refer to these values using elements of the params list
(e.g., params$year, params$region). The values in the YAML metadata are defaults;
you’ll generally override them by providing the params argument in a call to rmark
down::render(). This makes it easy to generate many different reports from the
same .Rmd.

Here’s a simple example adapted from “Generating downloadable reports”, which
describes this technique in more detail. The key idea is to call rmarkdown::render()
from the content argument of downloadHandler():

ui <- fluidPage(
 sliderInput("n", "Number of points", 1, 100, 50),
 downloadButton("report", "Generate report")
)

server <- function(input, output, session) {
 output$report <- downloadHandler(
 filename = "report.html",
 content = function(file) {
 params <- list(n = input$n)

 id <- showNotification(
 "Rendering report...",
 duration = NULL,
 closeButton = FALSE
)
 on.exit(removeNotification(id), add = TRUE)

 rmarkdown::render("report.Rmd",
 output_file = file,
 params = params,
 envir = new.env(parent = globalenv())
)
 }
)
}

If you want to produce other output formats, just change the output format in
the .Rmd, and make sure to update the extension (e.g., to .pdf). See it in action in the
live app. It’ll generally take at least a few seconds to render an .Rmd, so this is a good
place to use a notification from “Notifications” on page 126.

There are a couple of other tricks worth knowing about:

• RMarkdown works in the current working directory, which will fail in many
deployment scenarios (e.g., on shinyapps.io). You can work around this by

Download | 147

https://oreil.ly/QcleZ
https://hadley.shinyapps.io/ms-download-rmd

copying the report to a temporary directory when your app starts (i.e., outside of
the server function):

report_path <- tempfile(fileext = ".Rmd")
file.copy("report.Rmd", report_path, overwrite = TRUE)

Then replace "report.Rmd" with report_path in the call to rmarkdown::ren
der():

rmarkdown::render(report_path,
 output_file = file,
 params = params,
 envir = new.env(parent = globalenv())
)

• By default, RMarkdown will render the report in the current process, which
means that it will inherit many settings from the Shiny app (like loaded packages,
options, etc.). For greater robustness, I recommend running render() in a sepa‐
rate R session using the callr package:

render_report <- function(input, output, params) {
 rmarkdown::render(input,
 output_file = output,
 params = params,
 envir = new.env(parent = globalenv())
)
}

server <- function(input, output) {
 output$report <- downloadHandler(
 filename = "report.html",
 content = function(file) {
 params <- list(n = input$slider)
 callr::r(
 render_report,
 list(input = report_path, output = file, params = params)
)
 }
)
}

You can see all these pieces put together in rmarkdown-report/, found inside the
Mastering Shiny GitHub repo.

The shinymeta package solves a related problem: sometimes you need to be able to
turn the current state of a Shiny app into a reproducible report that can be rerun in
the future. Joe Cheng’s useR! 2019 keynote “Shiny’s Holy Grail: Interactivity with
Reproducibility” offers more information.

148 | Chapter 9: Uploads and Downloads

https://oreil.ly/OZuFs
https://oreil.ly/f8uj4
https://oreil.ly/Q7f2P
https://oreil.ly/Q7f2P

Case Study
To finish up, we’ll work through a small case study where we upload a file (with user-
supplied separator), preview it, perform some optional transformations using the jan‐
itor package, by Sam Firke, and then let the user download it as a .tsv.

To make it easier to understand how to use the app, I’ve used sidebarLayout() to
divide the app into three main steps:

1. Uploading and parsing the file:
ui_upload <- sidebarLayout(
 sidebarPanel(
 fileInput("file", "Data", buttonLabel = "Upload..."),
 textInput("delim", "Delimiter (leave blank to guess)", ""),
 numericInput("skip", "Rows to skip", 0, min = 0),
 numericInput("rows", "Rows to preview", 10, min = 1)
),
 mainPanel(
 h3("Raw data"),
 tableOutput("preview1")
)
)

2. Cleaning the file:
ui_clean <- sidebarLayout(
 sidebarPanel(
 checkboxInput("snake", "Rename columns to snake case?"),
 checkboxInput("constant", "Remove constant columns?"),
 checkboxInput("empty", "Remove empty cols?")
),
 mainPanel(
 h3("Cleaner data"),
 tableOutput("preview2")
)
)

3. Downloading the file:
ui_download <- fluidRow(
 column(width = 12, downloadButton("download", class = "btn-block"))
)

Case Study | 149

http://sfirke.github.io/janitor
http://sfirke.github.io/janitor

These get assembled into a single fluidPage():
ui <- fluidPage(
 ui_upload,
 ui_clean,
 ui_download
)

This same organization makes it easier to understand the app:

server <- function(input, output, session) {
 # Upload ---
 raw <- reactive({
 req(input$file)
 delim <- if (input$delim == "") NULL else input$delim
 vroom::vroom(input$file$datapath, delim = delim, skip = input$skip)
 })
 output$preview1 <- renderTable(head(raw(), input$rows))

 # Clean --
 tidied <- reactive({
 out <- raw()
 if (input$snake) {
 names(out) <- janitor::make_clean_names(names(out))
 }
 if (input$empty) {
 out <- janitor::remove_empty(out, "cols")
 }
 if (input$constant) {
 out <- janitor::remove_constant(out)
 }

 out
 })
 output$preview2 <- renderTable(head(tidied(), input$rows))

 # Download ---
 output$download <- downloadHandler(
 filename = function() {
 paste0(tools::file_path_sans_ext(input$file$name), ".tsv")
 },
 content = function(file) {
 vroom::vroom_write(tidied(), file)
 }
)
}

150 | Chapter 9: Uploads and Downloads

Figure 9-4 displays the result.

Figure 9-4. This app lets the user upload a file, perform some simple cleaning, and then
download the results. See live at https://hadley.shinyapps.io/ms-case-study.

Exercises
1. Use the ambient package by Thomas Lin Pedersen to generate worley noise and

download a PNG of it.
2. Create an app that lets you upload a CSV file, select a variable, and then perform

a t.test() on that variable. After the user has uploaded the CSV file, you’ll need
to use updateSelectInput() to fill in the available variables. See “Updating
Inputs” on page 153 for details.

3. Create an app that lets the user upload a CSV file, select one variable, draw a his‐
togram, and then download the histogram. For an additional challenge, allow the
user to select from .png, .pdf, and .svg output formats.

4. Write an app that allows the user to create a Lego mosaic from any .png file using
Ryan Timpe’s brickr package. Once you’ve completed the basics, add controls to
allow the user to select the size of the mosaic (in bricks), and choose whether to
use “universal” or “generic” color palettes.

Exercises | 151

https://hadley.shinyapps.io/ms-case-study
https://ambient.data-imaginist.com
https://oreil.ly/qA10s
https://github.com/ryantimpe/brickr

5. The final app in “Case Study” on page 149 contains this one large reactive:
tidied <- reactive({
 out <- raw()
 if (input$snake) {
 names(out) <- janitor::make_clean_names(names(out))
 }
 if (input$empty) {
 out <- janitor::remove_empty(out, "cols")
 }
 if (input$constant) {
 out <- janitor::remove_constant(out)
 }

 out
})

Break it up into multiple pieces so that (for example) jani

tor::make_clean_names() is not rerun when input$empty changes.

Summary
In this chapter, you’ve learned how to transfer files to and from the user using fileIn
put() and downloadButton(). Most of the challenges arise either handling the uploa‐
ded files or generating the files to download, so I showed you how to handle a couple
of common cases. If I didn’t cover your specific challenge here, you’ll need to apply
your own unique creativity to the problem .

The next chapter will help you handle a common challenge when working with user
supplied data: you need to dynamically adapt the user interface to better fit the data.
I’ll start with some simple techniques that are easy to understand and can be applied
in many situations, and gradually work my way up to fully a dynamic user interface
generated by code.

152 | Chapter 9: Uploads and Downloads

CHAPTER 10

Dynamic UI

So far, we’ve seen a clean separation between the user interface and the server func‐
tion: the user interface is defined statically when the app is launched so it can’t
respond to anything that happens in the app. In this chapter, you’ll learn how to cre‐
ate dynamic user interfaces, changing the UI using code run in the server function.

There are three key techniques for creating dynamic user interfaces:

• Using the update family of functions to modify parameters of input controls
• Using tabsetPanel() to conditionally show and hide parts of the user interface
• Using uiOutput() and renderUI() to generate selected parts of the user interface

with code

These three tools give you considerable power to respond to the user by modifying
inputs and outputs. I’ll demonstrate some of the more useful ways in which you can
apply them, but ultimately you’re only constrained by your creativity. At the same
time, these tools can make your app substantially more difficult to understand, so
deploy them sparingly, and always strive to use the simplest technique that solves
your problem. Let’s begin:

library(shiny)
library(dplyr, warn.conflicts = FALSE)

Updating Inputs
We’ll start with a simple technique that allows you to modify an input after it has
been created: the update family of functions. Every input control—for example tex
tInput()—is paired with an update function—for example updateTextInput()—that
allows you to modify the control after it has been created.

153

1 I introduced observeEvent() in “Observers” on page 49 and will discuss it in more detail in “Observers and
Outputs” on page 226.

2 The first argument, session, exists for backward compatibility but is very rarely needed.

Take the example in the following code, with the results shown in Figure 10-1. The
app has two inputs that control the range (the min and max) of another input, a slider.
The key idea is to use observeEvent()1 to trigger updateSliderInput() whenever
the min or max inputs change:

ui <- fluidPage(
 numericInput("min", "Minimum", 0),
 numericInput("max", "Maximum", 3),
 sliderInput("n", "n", min = 0, max = 3, value = 1)
)
server <- function(input, output, session) {
 observeEvent(input$min, {
 updateSliderInput(inputId = "n", min = input$min)
 })
 observeEvent(input$max, {
 updateSliderInput(inputId = "n", max = input$max)
 })
}

Figure 10-1. The app on load (left), after increasing max (middle), and then decreasing
min (right). See live at https://hadley.shinyapps.io/ms-update-basics.

The update functions look a little different than other Shiny functions: they all take
the name of the input (as a string) as the inputId argument.2 The remaining argu‐
ments correspond to the arguments to the input constructor that can be modified
after creation.

To help you get the hang of the update functions, I’ll show a couple more simple
examples, then we’ll dive into a more complicated case study using hierarchical select
boxes, and finish off by discussing the problem of circular references.

154 | Chapter 10: Dynamic UI

https://hadley.shinyapps.io/ms-update-basics

Simple Uses
The simplest uses of the update functions are to provide small conveniences for the
user. For example, maybe you want to make it easy to reset parameters back to their
initial value. The following snippet shows how you might combine an actionBut
ton(), observeEvent(), and updateSliderInput(), with the output shown in
Figure 10-2:

ui <- fluidPage(
 sliderInput("x1", "x1", 0, min = -10, max = 10),
 sliderInput("x2", "x2", 0, min = -10, max = 10),
 sliderInput("x3", "x3", 0, min = -10, max = 10),
 actionButton("reset", "Reset")
)

server <- function(input, output, session) {
 observeEvent(input$reset, {
 updateSliderInput(inputId = "x1", value = 0)
 updateSliderInput(inputId = "x2", value = 0)
 updateSliderInput(inputId = "x3", value = 0)
 })
}

Figure 10-2. The app on load (left), after dragging some sliders (middle), then clicking
reset (right). See live at https://hadley.shinyapps.io/ms-update-reset.

A similar application is to tweak the text of an action button so you know exactly
what it’s going to do. Figure 10-3 shows the results of the following code:

ui <- fluidPage(
 numericInput("n", "Simulations", 10),
 actionButton("simulate", "Simulate")
)

server <- function(input, output, session) {
 observeEvent(input$n, {
 label <- paste0("Simulate ", input$n, " times")
 updateActionButton(inputId = "simulate", label = label)

Updating Inputs | 155

https://hadley.shinyapps.io/ms-update-reset

 })
}

Figure 10-3. The app on load (left), after setting simulations to 1 (middle), then setting
simulations to 100 (right). See live at https://hadley.shinyapps.io/ms-update-button.

There are many ways to use update functions in this way; be on the lookout for ways
to give more information to the user when you are working on sophisticated applica‐
tions. A particularly important application is making it easier to select from a long list
of possible options through step-by-step filtering. That’s often a problem for “hier‐
archical select boxes.”

Hierarchical Select Boxes
A more complicated, but particularly useful, application of the update functions is to
allow interactive drill-down across multiple categories. I’ll illustrate their usage with
some imaginary data for a sales dashboard that comes from Kaggle:

sales <- vroom::vroom(
 "sales-dashboard/sales_data_sample.csv",
 col_types = list(),
 na = ""
)
sales %>%
 select(TERRITORY, CUSTOMERNAME, ORDERNUMBER, everything()) %>%
 arrange(ORDERNUMBER)
#> # A tibble: 2,823 x 25
#> TERRITORY CUSTOMERNAME ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 NA Online Diecas… 10100 30 100 3
#> 2 NA Online Diecas… 10100 50 67.8 2
#> 3 NA Online Diecas… 10100 22 86.5 4
#> 4 NA Online Diecas… 10100 49 34.5 1
#> 5 EMEA Blauer See Au… 10101 25 100 4
#> 6 EMEA Blauer See Au… 10101 26 100 1
#> 7 EMEA Blauer See Au… 10101 45 31.2 3
#> 8 EMEA Blauer See Au… 10101 46 53.8 2
#> 9 NA Vitachrome In… 10102 39 100 2
#> 10 NA Vitachrome In… 10102 41 50.1 1
#> # … with 2,813 more rows, and 19 more variables: SALES <dbl>, ORDERDATE <chr>,
#> # STATUS <chr>, QTR_ID <dbl>, MONTH_ID <dbl>, YEAR_ID <dbl>,
#> # PRODUCTLINE <chr>, MSRP <dbl>, PRODUCTCODE <chr>, PHONE <chr>,
#> # ADDRESSLINE1 <chr>, ADDRESSLINE2 <chr>, CITY <chr>, STATE <chr>,
#> # POSTALCODE <chr>, COUNTRY <chr>, CONTACTLASTNAME <chr>,
#> # CONTACTFIRSTNAME <chr>, DEALSIZE <chr>

For this demo, I’m going to focus on a natural hierarchy in the data:

156 | Chapter 10: Dynamic UI

https://hadley.shinyapps.io/ms-update-button
https://oreil.ly/Oclev

• Each territory contains customers.
• Each customer has multiple orders.
• Each order contains rows.

I want to create a user interface where you can:

• Select a territory to see all customers.
• Select a customer to see all orders.
• Select an order to see the underlying rows.

The essence of the UI is simple: I’ll create three select boxes and one output table. The
choices for the customername and ordernumber select boxes will be dynamically gen‐
erated, so I set choices = NULL:

ui <- fluidPage(
 selectInput("territory", "Territory", choices = unique(sales$TERRITORY)),
 selectInput("customername", "Customer", choices = NULL),
 selectInput("ordernumber", "Order number", choices = NULL),
 tableOutput("data")
)

In the server function, I work top-down:

1. I create a reactive, territory(), that contains the rows from sales that match
the selected territory.

2. Whenever territory() changes, I update the list of choices in the input$cus
tomername select box.

3. I create another reactive, customer(), that contains the rows from territory()
that match the selected customer.

4. Whenever customer() changes, I update the list of choices in the input$order
number select box.

5. I display the selected orders in output$data.

You can see that organization here and see the result in Figure 10-4:

server <- function(input, output, session) {
 territory <- reactive({
 filter(sales, TERRITORY == input$territory)
 })
 observeEvent(territory(), {
 choices <- unique(territory()$CUSTOMERNAME)
 updateSelectInput(inputId = "customername", choices = choices)
 })

 customer <- reactive({

Updating Inputs | 157

 req(input$customername)
 filter(territory(), CUSTOMERNAME == input$customername)
 })
 observeEvent(customer(), {
 choices <- unique(customer()$ORDERNUMBER)
 updateSelectInput(inputId = "ordernumber", choices = choices)
 })

 output$data <- renderTable({
 req(input$ordernumber)
 customer() %>%
 filter(ORDERNUMBER == input$ordernumber) %>%
 select(QUANTITYORDERED, PRICEEACH, PRODUCTCODE)
 })
}

Figure 10-4. I select “EMEA” (left), then “Lyon Souveniers” (middle), then (right) look at
the orders. See live at https://hadley.shinyapps.io/ms-update-nested.

Try out the simple app or see the source for a more fully fleshed out application.

Freezing Reactive Inputs
Sometimes this sort of hierarchical selection can briefly create an invalid set of inputs,
leading to a flicker of undesirable output. For example, consider this simple app
where you select a dataset and then select a variable to summarize:

ui <- fluidPage(
 selectInput("dataset", "Choose a dataset", c("pressure", "cars")),
 selectInput("column", "Choose column", character(0)),
 verbatimTextOutput("summary")
)

server <- function(input, output, session) {
 dataset <- reactive(get(input$dataset, "package:datasets"))

158 | Chapter 10: Dynamic UI

https://hadley.shinyapps.io/ms-update-nested
https://oreil.ly/XBU1r

3 To be more precise, any attempt to read a frozen input will result in req(FALSE).

 observeEvent(input$dataset, {
 updateSelectInput(inputId = "column", choices = names(dataset()))
 })

 output$summary <- renderPrint({
 summary(dataset()[[input$column]])
 })
}

If you try out the live app, you’ll notice that when you switch datasets, the summary
output will briefly flicker. The reason for this is that updateSelectInput() only has
an effect after all outputs and observers have run, so there’s temporarily a state where
you have dataset B and a variable from dataset A so that the output contains
summary(NULL).

You can resolve this problem by “freezing” the input with freezeReactiveValue().
This ensures that any reactives or outputs that use the input won’t be updated until
the next full round of invalidation:3

server <- function(input, output, session) {
 dataset <- reactive(get(input$dataset, "package:datasets"))

 observeEvent(input$dataset, {
 freezeReactiveValue(input, "column")
 updateSelectInput(inputId = "column", choices = names(dataset()))
 })

 output$summary <- renderPrint({
 summary(dataset()[[input$column]])
 })
}

Note that there’s no need to “thaw” the input value; this happens automatically after
Shiny detects that the session and server are once again in sync.

You might wonder when you should use freezeReactiveValue(): it’s actually good
practice to always use it when you dynamically change an input value. The actual
modification takes some time to flow to the browser then back to Shiny, and in the
interim, any reads of the value are at best wasted and at worst lead to errors. Use
freezeReactiveValue() to tell all downstream calculations that an input value is
stale and that they should save their effort until it’s useful.

Updating Inputs | 159

https://hadley.shinyapps.io/ms-freeze

4 This is generally only a concern when you are changing the value, but beware that some other parameters
can change the value indirectly. For example, if you modify the choices in selectInput() or min and max in
sliderInput(), the current value will be modified if it’s no longer in the allowed set of values.

Circular References
There’s an important issue we need to discuss if you want to use the update functions
to change the current value4 of an input. From Shiny’s perspective, using an update
function to modify value is no different from the user modifying the value by click‐
ing or typing. That means an update function can trigger reactive updates in exactly
the same way that a human can. This means that you are now stepping outside of the
bounds of pure reactive programming, and you need to start worrying about circular
references and infinite loops.

For example, take the following simple app. It contains a single input control and an
observer that increments its value by one. Every time updateNumericInput() runs, it
changes input$n, causing updateNumericInput() to run again, so the app gets stuck
in an infinite loop constantly increasing the value of input$n:

ui <- fluidPage(
 numericInput("n", "n", 0)
)
server <- function(input, output, session) {
 observeEvent(input$n,
 updateNumericInput(inputId = "n", value = input$n + 1)
)
}

You’re unlikely to create such an obvious problem in your own app, but it can crop up
if you update multiple controls that depend on one another, as in the next example.

Interrelated Inputs
One place where it’s easy to end up with circular references is when you have multiple
“sources of truth” in an app. For example, imagine that you want to create a tempera‐
ture conversion app where you can either enter the temperature in Celsius or in
Fahrenheit:

ui <- fluidPage(
 numericInput("temp_c", "Celsius", NA, step = 1),
 numericInput("temp_f", "Fahrenheit", NA, step = 1)
)

server <- function(input, output, session) {
 observeEvent(input$temp_f, {
 c <- round((input$temp_f - 32) * 5 / 9)
 updateNumericInput(inputId = "temp_c", value = c)
 })

160 | Chapter 10: Dynamic UI

 observeEvent(input$temp_c, {
 f <- round((input$temp_c * 9 / 5) + 32)
 updateNumericInput(inputId = "temp_f", value = f)
 })
}

If you play around with this app, you’ll notice that it mostly works, but you might
notice that it’ll sometimes trigger multiple changes. For example:

• Set 120 F, then click the down arrow.
• F changes to 119, and C is updated to 48.
• 48 C converts to 118 F, so F changes again to 118.
• Fortunately 118 F is still 48 C, so the updates stop there.

There’s no way around this problem because you have one idea (the temperature)
with two expressions in the app (Celsius and Fahrenheit). Here we are lucky that
cycle quickly converges to a value that satisfies both constraints. In general, you are
better off avoiding these situations, unless you are willing to very carefully analyze the
convergence properties of the underlying dynamic system that you’ve created.

Exercises
1. Complete the following user interface with a server function that updates input

$date so that you can only select dates in input$year:
ui <- fluidPage(
 numericInput("year", "year", value = 2020),
 dateInput("date", "date")
)

2. Complete the following user interface with a server function that updates input
$county choices based on input$state. For an added challenge, also change the
label from “County” to “Parish” for Louisiana and “Borough” for Alaska:

library(openintro, warn.conflicts = FALSE)
states <- unique(county$state)

ui <- fluidPage(
 selectInput("state", "State", choices = states),
 selectInput("county", "County", choices = NULL)
)

3. Complete the following user interface with a server function that updates input
$country choices based on the input$continent. Use output$data to display all
matching rows:

Updating Inputs | 161

https://hadley.shinyapps.io/ms-temperature

library(gapminder)
continents <- unique(gapminder$continent)

ui <- fluidPage(
 selectInput("continent", "Continent", choices = continents),
 selectInput("country", "Country", choices = NULL),
 tableOutput("data")
)

4. Extend the previous app so that you can also choose to select all continents and
hence see all countries. You’ll need to add "(All)" to the list of choices and then
handle that specially when filtering.

5. What is at the heart of the problem described in this RStudio Community post?

Dynamic Visibility
The next step up in complexity is to selectively show and hide parts of the UI. There
are more sophisticated approaches if you know a little JavaScript and CSS, but there’s
a useful technique that doesn’t require any extra knowledge: concealing optional UI
with a tabset (as introduced in “Tabsets” on page 94). This is a clever hack that allows
you to show and hide UI as needed, without having to regenerate it from scratch (as
you’ll learn in the next section):

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 selectInput("controller", "Show", choices = paste0("panel", 1:3))
),
 mainPanel(
 tabsetPanel(
 id = "switcher",
 type = "hidden",
 tabPanelBody("panel1", "Panel 1 content"),
 tabPanelBody("panel2", "Panel 2 content"),
 tabPanelBody("panel3", "Panel 3 content")
)
)
)
)

server <- function(input, output, session) {
 observeEvent(input$controller, {
 updateTabsetPanel(inputId = "switcher", selected = input$controller)
 })
}

162 | Chapter 10: Dynamic UI

https://oreil.ly/WIuFK

Figure 10-5 shows the result.

Figure 10-5. Selecting panel1 (left), then panel2 (middle), then panel3 (right). See live at
https://hadley.shinyapps.io/ms-dynamic-panels.

There are two main ideas here:

• Use tabset panel with hidden tabs.
• Use updateTabsetPanel() to switch tabs from the server.

This is a simple idea, but when combined with a little creativity, it gives you a consid‐
erable amount of power. The following two sections illustrate a couple of small exam‐
ples of how you might use it in practice.

Conditional UI
Imagine that you want an app that allows the user to simulate from the normal, uni‐
form, and exponential distributions. Each distribution has different parameters, so
we’ll need some way to show different controls for different distributions. Here, I’ll
put the unique user interface for each distribution in its own tabPanel() and then
arrange the three tabs into a tabsetPanel():

parameter_tabs <- tabsetPanel(
 id = "params",
 type = "hidden",
 tabPanel("normal",
 numericInput("mean", "mean", value = 1),
 numericInput("sd", "standard deviation", min = 0, value = 1)
),
 tabPanel("uniform",
 numericInput("min", "min", value = 0),
 numericInput("max", "max", value = 1)
),
 tabPanel("exponential",
 numericInput("rate", "rate", value = 1, min = 0),
)
)

Dynamic Visibility | 163

https://hadley.shinyapps.io/ms-dynamic-panels

I’ll then embed that inside a fuller UI, which allows the user to pick the number of
samples and shows a histogram of the results:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 selectInput("dist", "Distribution",
 choices = c("normal", "uniform", "exponential")
),
 numericInput("n", "Number of samples", value = 100),
 parameter_tabs,
),
 mainPanel(
 plotOutput("hist")
)
)
)

Note that I’ve carefully matched the choices in input$dist to the names of the tab
panels. That makes it easy to write the following observeEvent() code that automati‐
cally switches controls when the distribution changes. The rest of the app uses techni‐
ques that you’re already familiar with:

server <- function(input, output, session) {
 observeEvent(input$dist, {
 updateTabsetPanel(inputId = "params", selected = input$dist)
 })

 sample <- reactive({
 switch(input$dist,
 normal = rnorm(input$n, input$mean, input$sd),
 uniform = runif(input$n, input$min, input$max),
 exponential = rexp(input$n, input$rate)
)
 })
 output$hist <- renderPlot(hist(sample()), res = 96)
}

See the final result in Figure 10-6. Note that note the value of (for example) input
$mean is independent of whether or not it’s visible to the user. The underlying HTML
control still exists; you just can’t see it.

164 | Chapter 10: Dynamic UI

Figure 10-6. Results for normal (left), uniform (middle), and exponential (right) distri‐
butions. See live at https://hadley.shinyapps.io/ms-dynamic-conditional.

Wizard Interface
You can also use this idea to create a “wizard,” a type of interface that makes it easier
to collect a bunch of information by spreading it across multiple pages. Here we
embed action buttons within each “page,” making it easy to go forward and back:

ui <- fluidPage(
 tabsetPanel(
 id = "wizard",
 type = "hidden",
 tabPanel("page_1",
 "Welcome!",
 actionButton("page_12", "next")
),
 tabPanel("page_2",
 "Only one page to go",
 actionButton("page_21", "prev"),
 actionButton("page_23", "next")
),
 tabPanel("page_3",
 "You're done!",
 actionButton("page_32", "prev")
)
)
)

server <- function(input, output, session) {
 switch_page <- function(i) {
 updateTabsetPanel(inputId = "wizard", selected = paste0("page_", i))

Dynamic Visibility | 165

https://hadley.shinyapps.io/ms-dynamic-conditional

 }

 observeEvent(input$page_12, switch_page(2))
 observeEvent(input$page_21, switch_page(1))
 observeEvent(input$page_23, switch_page(3))
 observeEvent(input$page_32, switch_page(2))
}

The results are shown in Figure 10-7.

Figure 10-7. A wizard interface portions complex UI over multiple pages. Here we
demonstrate the idea with a very simple example, clicking “next” to advance to the next
page. See live at https://hadley.shinyapps.io/ms-wizard.

Note the use of the switch_page() function to reduce the amount of duplication in
the server code. We’ll come back to this idea in Chapter 18 and then create a module
to automate wizard interfaces in “Wizard” on page 278.

Exercises
1. Use a hidden tabset to show additional controls only if the user checks an

“advanced” checkbox.
2. Create an app that plots ggplot(diamonds, aes(carat)) but allows the user to

choose which geom to use: geom_histogram(), geom_freqpoly(), or geom_den
sity(). Use a hidden tabset to allow the user to select different arguments
depending on the geom: geom_histogram() and geom_freqpoly() have a bin‐
width argument; geom_density() has a bw argument.

3. Modify the app you created in the previous exercise to allow the user to choose
whether each geom is shown or not (i.e., instead of always using one geom, they
can pick 0, 1, 2, or 3). Make sure that you can control the binwidth of the histo‐
gram and frequency polygon independently.

Creating UI with Code
Sometimes none of the techniques previously described gives you the level of dyna‐
mism that you need: the update functions only allow you to change existing inputs,
and a tabset only works if you have a fixed and known set of possible combinations.
Sometimes you need to create different types or numbers of inputs (or outputs),
depending on other inputs. This final technique gives you the ability to do so.

166 | Chapter 10: Dynamic UI

https://hadley.shinyapps.io/ms-wizard

It’s worth noting that you’ve always created your user interface with code, but so far
you’ve always done it before the app starts. This technique gives you the ability to cre‐
ate and modify the user interface while the app is running. There are two parts to this
solution:

• uiOutput() inserts a placeholder in your ui. This leaves a “hole” that your server
code can later fill in.

• renderUI() is called within server() to fill in the placeholder with dynamically
generated UI.

We’ll see how this works with a simple example and then dive into some realistic uses.

Getting Started
Let’s begin with a simple app that dynamically creates an input control, with the type
and label control by two other inputs:

ui <- fluidPage(
 textInput("label", "label"),
 selectInput("type", "type", c("slider", "numeric")),
 uiOutput("numeric")
)
server <- function(input, output, session) {
 output$numeric <- renderUI({
 if (input$type == "slider") {
 sliderInput("dynamic", input$label, value = 0, min = 0, max = 10)
 } else {
 numericInput("dynamic", input$label, value = 0, min = 0, max = 10)
 }
 })
}

The resulting app is shown in Figure 10-8.

Figure 10-8. App on load (left), then changing type to numeric (middle), then label to
“my label.” See live at https://hadley.shinyapps.io/ms-render-simple.

Creating UI with Code | 167

https://hadley.shinyapps.io/ms-render-simple

If you run this code yourself, you’ll notice that it takes a fraction of a second to appear
after the app loads. That’s because it’s reactive: the app must load and trigger a reac‐
tive event, which calls the server function, yielding HTML to insert into the page.
This is one of the downsides of renderUI(); relying on it too much can create a laggy
UI. For good performance, strive to keep fixed as much of the user interface as possi‐
ble, using the techniques described earlier in the chapter.

There’s one other problem with this approach: when you change controls, you lose
the currently selected value. Maintaining existing state is one of the big challenges of
creating UI with code. This is one reason that selectively showing and hiding UI is a
better approach if it works for you—because you’re not destroying and re-creating the
controls, you don’t need to do anything to preserve the values. However, in many
cases, we can fix the problem by setting the value of the new input to the current
value of the existing control:

server <- function(input, output, session) {
 output$numeric <- renderUI({
 value <- isolate(input$dynamic)
 if (input$type == "slider") {
 sliderInput("dynamic", input$label, value = value, min = 0, max = 10)
 } else {
 numericInput("dynamic", input$label, value = value, min = 0, max = 10)
 }
 })
}

The use of isolate() is important. We’ll come back to what it does in “isolate()” on
page 228, but here it ensures that we don’t create a reactive dependency that would
cause this code to rerun every time input$dynamic changes (which will happen
whenever the user modifies the value). We only want it to change when input$type
or input$label changes.

Multiple Controls
Dynamic UI is most useful when you are generating an arbitrary number or type of
controls. That means that you’ll be generating UI with code, and I recommend using
functional programming for this sort of task. Here I’ll use purrr::map() and
purrr::reduce(), but you could certainly do the same with the base lapply() and
Reduce() functions:

library(purrr)

If you’re not familiar with the map() and reduce() of functional programming, you
might want to take a brief detour to read Functional Programming before continuing.
We’ll also come back to this idea in Chapter 18. These are complex ideas, so don’t
stress out if it doesn’t make sense on your first read-through.

168 | Chapter 10: Dynamic UI

https://oreil.ly/mVxlM

To make this concrete, imagine that you’d like the user to be able to supply their own
color palette. They’ll first specify how many colors they want and then supply a value
for each color. The ui is pretty simple: we have a numericInput() that controls the
number of inputs, a uiOutput() where the generated text boxes will go, and a tex
tOutput() that demonstrates that we’ve plumbed everything together correctly:

ui <- fluidPage(
 numericInput("n", "Number of colours", value = 5, min = 1),
 uiOutput("col"),
 textOutput("palette")
)

The server function is short but contains some big ideas:

server <- function(input, output, session) {
 col_names <- reactive(paste0("col", seq_len(input$n)))

 output$col <- renderUI({
 map(col_names(), ~ textInput(.x, NULL))
 })

 output$palette <- renderText({
 map_chr(col_names(), ~ input[[.x]] %||% "")
 })
}

• I use a reactive, col_names(), to store the names of each of the color inputs I’m
about to generate.

• I then use map() to create a list of textInput()s, one each for each name in
col_names(). renderUI() then takes this list of HTML components and adds it
to UI.

• I need to use a new trick to access the values the input values. So far we’ve always
accessed the components of input with $, e.g., input$col1. But here we have the
input names in a character vector, like var <- "col1". $ no longer works in this
scenario, so we need to switch to [[, i.e., input[[var]].

• I use map_chr() to collect all values into a character vector and display that in
output$palette. Unfortunately there’s a brief period, just before the new inputs
are rendered by the browser, where their values are NULL. This causes map_chr()
to error, which we fix by using the handy %||% function: it returns the right-hand
side whenever the left-hand side is NULL.

You can see the results in Figure 10-9.

Creating UI with Code | 169

Figure 10-9. App on load (left), after setting n to 3 (middle), then entering some colors
(right). See live at https://hadley.shinyapps.io/ms-render-palette.

If you run this app, you’ll discover a really annoying behavior: whenever you change
the number of colors, all the data you’ve entered disappears. We can fix this problem
by using the same technique as before: setting value to the (isolated) current value.
I’ll also tweak the appearance to look a little nicer, including displaying the selected
colors in a plot. Sample screenshots are shown in Figure 10-10:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 numericInput("n", "Number of colours", value = 5, min = 1),
 uiOutput("col"),
),
 mainPanel(
 plotOutput("plot")
)
)
)

server <- function(input, output, session) {
 col_names <- reactive(paste0("col", seq_len(input$n)))

 output$col <- renderUI({
 map(col_names(), ~ textInput(.x, NULL, value = isolate(input[[.x]])))
 })

 output$plot <- renderPlot({
 cols <- map_chr(col_names(), ~ input[[.x]] %||% "")
 # convert empty inputs to transparent
 cols[cols == ""] <- NA

 barplot(
 rep(1, length(cols)),
 col = cols,
 space = 0,
 axes = FALSE

170 | Chapter 10: Dynamic UI

https://hadley.shinyapps.io/ms-render-palette

)
 }, res = 96)
}

Figure 10-10. Filling out the colors of the rainbow (top), then reducing the number of
colors to 3 (bottom); note that the existing colors are preserved. See live at https://
hadley.shinyapps.io/ms-render-palette-full.

Dynamic Filtering
To finish off the chapter, I’m going to create an app that lets you dynamically filter
any data frame. Each numeric variable will get a range slider, and each factor variable
will get a multiselect, so (for example) if a data frame has three numeric variables and
two factors, the app will have three sliders and two select boxes.

I’ll start with a function that creates the UI for a single variable. It’ll return a range
slider for numeric inputs, a multiselect for factor inputs, and NULL (nothing) for all
other types:

make_ui <- function(x, var) {
 if (is.numeric(x)) {
 rng <- range(x, na.rm = TRUE)
 sliderInput(var, var, min = rng[1], max = rng[2], value = rng)

Creating UI with Code | 171

https://hadley.shinyapps.io/ms-render-palette-full
https://hadley.shinyapps.io/ms-render-palette-full

 } else if (is.factor(x)) {
 levs <- levels(x)
 selectInput(var, var, choices = levs, selected = levs, multiple = TRUE)
 } else {
 # Not supported
 NULL
 }
}

Then I’ll write the server side equivalent of this function: it takes the variable and
value of the input control and returns a logical vector saying whether or not to
include each observation. Using a logical vector makes it easy to combine the results
from multiple columns:

filter_var <- function(x, val) {
 if (is.numeric(x)) {
 !is.na(x) & x >= val[1] & x <= val[2]
 } else if (is.factor(x)) {
 x %in% val
 } else {
 # No control, so don't filter
 TRUE
 }
}

I can then use these functions “by hand” to generate a simple filtering UI for the iris
dataset:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 make_ui(iris$Sepal.Length, "Sepal.Length"),
 make_ui(iris$Sepal.Width, "Sepal.Width"),
 make_ui(iris$Species, "Species")
),
 mainPanel(
 tableOutput("data")
)
)
)
server <- function(input, output, session) {
 selected <- reactive({
 filter_var(iris$Sepal.Length, input$Sepal.Length) &
 filter_var(iris$Sepal.Width, input$Sepal.Width) &
 filter_var(iris$Species, input$Species)
 })

 output$data <- renderTable(head(iris[selected(),], 12))
}

172 | Chapter 10: Dynamic UI

Figure 10-11 shows you the filter interface.

Figure 10-11. Simple filter interface for the iris dataset.

You might notice that I got sick of copying and pasting, so the app only works with
three columns. I can make it work with all the columns by using a little functional
programming:

• In ui, I use map() to generate one control for each variable.
• In server(), I use map() to generate the selection vector for each variable. Then I

use reduce() to take the logical vector for each variable and combine into a sin‐
gle logical vector by &-ing each vector together.

Again, don’t worry too much if you don’t understand exactly what’s happening here.
The main takeaway is that once you master functional programming, you can write
very succinct code that generates complex, dynamic apps:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 map(names(iris), ~ make_ui(iris[[.x]], .x))
),
 mainPanel(
 tableOutput("data")
)
)
)
server <- function(input, output, session) {
 selected <- reactive({
 each_var <- map(names(iris), ~ filter_var(iris[[.x]], input[[.x]]))
 reduce(each_var, ~ .x & .y)

Creating UI with Code | 173

 })

 output$data <- renderTable(head(iris[selected(),], 12))
}

This creates what you see in Figure 10-12.

Figure 10-12. Using functional programming to build a filtering app for the iris
dataset.

From there, it’s a simple generalization to work with any data frame. Here, I’ll illus‐
trate it using the data frames in the datasets package, but you can easily imagine how
you might extend this to user-uploaded data:

dfs <- keep(ls("package:datasets"), ~ is.data.frame(get(.x, "package:datasets")))

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 selectInput("dataset", label = "Dataset", choices = dfs),
 uiOutput("filter")
),
 mainPanel(
 tableOutput("data")
)
)
)
server <- function(input, output, session) {

174 | Chapter 10: Dynamic UI

 data <- reactive({
 get(input$dataset, "package:datasets")
 })
 vars <- reactive(names(data()))

 output$filter <- renderUI(
 map(vars(), ~ make_ui(data()[[.x]], .x))
)

 selected <- reactive({
 each_var <- map(vars(), ~ filter_var(data()[[.x]], input[[.x]]))
 reduce(each_var, `&`)
 })

 output$data <- renderTable(head(data()[selected(),], 12))
}

See the result in Figure 10-13.

Figure 10-13. A dynamic user interface automatically generated from the fields of the
selected dataset. See live at https://hadley.shinyapps.io/ms-filtering-final.

Dialog Boxes
Before we finish up, I wanted to mention a related technique: dialog boxes. You’ve
seen them already in “Explicit Confirmation” on page 136, where the contents of the
dialog was a fixed text string. But because modalDialog() is called from within the
server function, you can actually dynamically generate content in the same way as
renderUI(). This is a useful technique to have in your back pocket if you want to
force the user to make some decision before continuing on with the regular app flow.

Creating UI with Code | 175

https://hadley.shinyapps.io/ms-filtering-final

Exercises
1. Take this very simple app based on the initial example in the section:

ui <- fluidPage(
 selectInput("type", "type", c("slider", "numeric")),
 uiOutput("numeric")
)
server <- function(input, output, session) {
 output$numeric <- renderUI({
 if (input$type == "slider") {
 sliderInput("n", "n", value = 0, min = 0, max = 100)
 } else {
 numericInput("n", "n", value = 0, min = 0, max = 100)
 }
 })
}

How could you instead implement it using dynamic visibility? If you implement
dynamic visibility, how could you keep the values in sync when you change the
controls?

2. Explain how this app works. Why does the password disappear when you click
the “Enter password” button a second time?

ui <- fluidPage(
 actionButton("go", "Enter password"),
 textOutput("text")
)
server <- function(input, output, session) {
 observeEvent(input$go, {
 showModal(modalDialog(
 passwordInput("password", NULL),
 title = "Please enter your password"
))
 })

 output$text <- renderText({
 if (!isTruthy(input$password)) {
 "No password"
 } else {
 "Password entered"
 }
 })
}

3. In the app in “Getting Started” on page 167, what happens if you drop the iso
late() from value <- isolate(input$dynamic)?

4. Add support for date and date-time columns make_ui() and filter_var().

176 | Chapter 10: Dynamic UI

5. (Advanced) If you know the S3 OOP system, consider how you could replace the
if blocks in make_ui() and filter_var() with generic functions.

Summary
Before reading this chapter, you were limited to creating the user interface statically,
before the server function was run. Now you’ve learned how to both modify the user
interface and completely re-create it in response to user actions. A dynamic user
interface will dramatically increase the complexity of your app, so don’t be surprised
if you find yourself struggling to debug what’s going in. Always remember to use the
simplest technique that solves your problem and fall back to the debugging advice in
“Debugging” on page 70.

The next chapter switches tack to talk about bookmarking, which makes it possible to
share the current state of an app with others.

Summary | 177

http://adv-r.hadley.nz/S3.html

CHAPTER 11

Bookmarking

By default, Shiny apps have one major drawback compared to most websites: you
can’t bookmark the app to return to the same place in the future or share your work
with someone else with a link in an email. That’s because, by default, Shiny does not
expose the current state of the app in its URL. Fortunately, however, you can change
this behavior with a little extra work, and this chapter will show you how. As usual,
we begin by loading shiny:

library(shiny)

Basic Idea
Let’s take a simple app that we want to make bookmarkable. This app draws Lissajous
figures, which replicate the motion of a pendulum. This app can produce a variety of
interesting patterns that you might want to share:

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 sliderInput("omega", "omega", value = 1, min = -2, max = 2, step = 0.01),
 sliderInput("delta", "delta", value = 1, min = 0, max = 2, step = 0.01),
 sliderInput("damping", "damping", value = 1, min = 0.9, max = 1, step = 0.001),
 numericInput("length", "length", value = 100)
),
 mainPanel(
 plotOutput("fig")
)
)
)
server <- function(input, output, session) {
 t <- reactive(seq(0, input$length, length.out = input$length * 100))
 x <- reactive(sin(input$omega * t() + input$delta) * input$damping ^ t())
 y <- reactive(sin(t()) * input$damping ^ t())

179

 output$fig <- renderPlot({
 plot(x(), y(), axes = FALSE, xlab = "", ylab = "", type = "l", lwd = 2)
 }, res = 96)
}

Figure 11-1 shows the result.

Figure 11-1. This app allows you to generate interesting figures using a model of a pen‐
dulum. Wouldn’t it be cool to share a link with your friends?

There are three things we need to do to make this app bookmarkable:

1. Add a bookmarkButton() to the UI. This generates a button that the user clicks
to generate the bookmarkable URL.

2. Turn ui into a function. You need to do this because bookmarked apps have to
replay the bookmarked values: effectively, Shiny modifies the default value for
each input control. This means there’s no longer a single static UI but multiple
possible UIs that depend on parameters in the URL (i.e., it has to be a function).

3. Add enableBookmarking = "url" to the shinyApp() call.

Making those changes gives us:
ui <- function(request) {
 fluidPage(
 sidebarLayout(
 sidebarPanel(
 sliderInput("omega", "omega", value = 1, min = -2, max = 2, step = 0.01),
 sliderInput("delta", "delta", value = 1, min = 0, max = 2, step = 0.01),
 sliderInput("damping", "damping", value = 1, min = 0.9, max = 1, step = 0.001),
 numericInput("length", "length", value = 100),
 bookmarkButton()
),
 mainPanel(
 plotOutput("fig")

180 | Chapter 11: Bookmarking

)
)
)
}

shinyApp(ui, server, enableBookmarking = "url")

If you play around in the live app and bookmark a few interesting states, you’ll see
that the generated URLs look something like this:

https://hadley.shinyapps.io/ms-bookmark-url/
 ?_inputs_&damping=1&delta=1&length=100&omega=1

https://hadley.shinyapps.io/ms-bookmark-url/
 ?_inputs_&damping=0.966&delta=1.25&length=100&omega=-0.54

https://hadley.shinyapps.io/ms-bookmark-url/
 ?_inputs_&damping=0.997&delta=1.37&length=500&omega=-0.9

To understand what’s happening, let’s take the first URL and tease it apart into pieces:

• http:// is the “protocol” used to communicate with the app. This will always be
http or https.

• hadley.shinyapps.io/ms-bookmark-url is the location of the app.
• Everything after ? is a “parameter.” Each parameter is separated by &, and if you

break it apart, you can see the values of each input in the app:
— damping=1

— delta=1

— length=100

— omega=1

So “generating a bookmark” means recording the current values of the inputs in the
parameters of URL. If you play around with the app locally, the URLs will look
slightly different:

http://127.0.0.1:4087/
 ?_inputs_&damping=1&delta=1&length=100&omega=1

http://127.0.0.1:4087/
 ?_inputs_&damping=0.966&delta=1.25&length=100&omega=-0.54

http://127.0.0.1:4087/
 ?_inputs_&damping=0.997&delta=1.37&length=500&omega=-0.9

Most of the pieces are the same except that instead of hadley.shinyapps.io/ms-
bookmark-url, you’ll see something like 127.0.0.1:4087. 127.0.0.1 is a special
address that always points to your own computer, and 4087 is a randomly assigned

Basic Idea | 181

https://hadley.shinyapps.io/ms-bookmark-url

port. Normally, different apps get different paths or IP addresses, but that’s not possi‐
ble when you’re hosting multiple apps on your own computer.

Updating the URL
Instead of providing an explicit button, another option is to automatically update the
URL in the browser. This allows your users to use the user bookmark command in
their browser or copy and paste the URL from the location bar.

Automatically updating the URL requires a little boilerplate in the server function:

Automatically bookmark every time an input changes
observe({
 reactiveValuesToList(input)
 session$doBookmark()
})
Update the query string
onBookmarked(updateQueryString)

This gives us an updated server function as follows:

server <- function(input, output, session) {
 t <- reactive(seq(0, input$length, length = input$length * 100))
 x <- reactive(sin(input$omega * t() + input$delta) * input$damping ^ t())
 y <- reactive(sin(t()) * input$damping ^ t())

 output$fig <- renderPlot({
 plot(x(), y(), axes = FALSE, xlab = "", ylab = "", type = "l", lwd = 2)
 }, res = 96)

 observe({
 reactiveValuesToList(input)
 session$doBookmark()
 })
 onBookmarked(updateQueryString)
}

shinyApp(ui, server, enableBookmarking = "url")

You can see what this yields in the live app. Since the URL now automatically updates,
you could now remove the bookmark button from the UI.

Storing Richer State
So far we’ve used enableBookmarking = "url", which stores the state directly in the
URL. This is a good place to start because it’s very simple and works everywhere you
might deploy your Shiny app. As you can imagine, however, the URL is going to get
very long if you have a large number of inputs, and it’s obviously not going to be able
to capture an uploaded file.

182 | Chapter 11: Bookmarking

https://hadley.shinyapps.io/ms-bookmark-auto

For these cases, you might instead want to use enableBookmarking = "server",
which saves the state to an .rds file on the server. This always generates a short, opa‐
que URL but requires additional storage on the server:

shinyApp(ui, server, enableBookmarking = "server")

shinyapps.io doesn’t currently support server-side bookmarking, so you’ll need to try
this out locally. If you do so, you’ll see that the bookmark button generates URLs like:

http://127.0.0.1:4087/?_state_id_=0d645f1b28f05c97

http://127.0.0.1:4087/?_state_id_=87b56383d8a1062c

http://127.0.0.1:4087/?_state_id_=c8b0291ba622b69c

These are paired with matching directories in your working directory:

shiny_bookmarks/0d645f1b28f05c97

shiny_bookmarks/87b56383d8a1062c

shiny_bookmarks/c8b0291ba622b69c

The main drawbacks with server bookmarking is that it requires files to be saved on
the server, and it’s not obvious how long these need to hang around for. If you’re
bookmarking complex state and you never delete these files, your app is going to take
up more and more disk space over time. If you do delete the files, some old book‐
marks are going to stop working.

Bookmarking Challenges
Automated bookmarking relies on the reactive graph. It seeds the inputs with the
saved values, then replays all reactive expressions and outputs, which will yield the
same app that you see, as long as your app’s reactive graph is straightforward. This
section briefly covers some of the cases, which need a little extra care:

• If your app uses random numbers, the results might be different even if all the
inputs are the same. If it’s really important to always generate the same numbers,
you’ll need to think about how to make your random process reproducible. The
easiest way to do this is to use repeatable(); see the documentation for more
details.

• If you have tabs and want to bookmark and restore the active tab, make sure to
supply an id in your call to tabsetPanel().

• If there are inputs that should not be bookmarked (e.g., they contain private
information that shouldn’t be shared), include a call to setBookmarkExclude()
somewhere in your server function. For example,

setBookmarkExclude(c("secret1", "secret2"))

Bookmarking Challenges | 183

will ensure that the secret1 and secret2 inputs are not bookmarked.
• If you are manually managing reactive state in your own reactiveValues()

object (as we’ll discuss in Chapter 16), you’ll need to use the onBookmark() and
onRestore() callbacks to manually save and load your additional state. See
Advanced Bookmarking for more details.

Exercises
1. Generate an app for visualizing the results of ambient::noise_simplex(). Your app

should allow the user to control the frequency, fractal, lacunarity, and gain and be
bookmarkable. How can you ensure the image looks exactly the same when
reloaded from the bookmark? (Think about what the seed argument implies.)

2. Make a simple app that lets you upload a CSV file and then bookmark it. Upload
a few files and then look in shiny_bookmarks. How do the files correspond to the
bookmarks? (Hint: You can use readRDS() to look inside the cache files that
Shiny is generating.)

Summary
This chapter has shown how to enable bookmarking for your app. This is a great fea‐
ture to provide your users because it allows them to easily share their work with oth‐
ers. Next, we’ll talk about how to use tidy evaluation within Shiny apps. Tidy
evaluation is a feature of many tidyverse functions, and you’ll need to learn about it if
you want to allow the user to change variables in (for example) dplyr pipelines or
ggplot2 graphics.

184 | Chapter 11: Bookmarking

https://oreil.ly/S6D8c
https://oreil.ly/UyK1G

CHAPTER 12

Tidy Evaluation

If you are using Shiny with the tidyverse, you will almost certainly encounter the
challenge of programming with tidy evaluation. Tidy evaluation is used throughout
the tidyverse to make interactive data exploration more fluid, but it comes with a
cost: it’s hard to refer to variables indirectly and hence harder to program with.

In this chapter, you’ll learn how to wrap ggplot2 and dplyr functions in a Shiny app.
(If you don’t use the tidyverse, you can skip this chapter .) The techniques for
wrapping ggplot2 and dplyr functions in other functions or a package are a little dif‐
ferent and are covered in other resources like Using ggplot2 in Packages or Program‐
ming with dplyr. Let’s get started:

library(shiny)
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)

Motivation
Imagine I want to create an app that allows you to filter a numeric variable to select
rows that are greater than a threshold. You might write something like this:

num_vars <- c("carat", "depth", "table", "price", "x", "y", "z")
ui <- fluidPage(
 selectInput("var", "Variable", choices = num_vars),
 numericInput("min", "Minimum", value = 1),
 tableOutput("output")
)
server <- function(input, output, session) {
 data <- reactive(diamonds %>% filter(input$var > input$min))
 output$output <- renderTable(head(data()))
}

185

https://oreil.ly/N0a1J
https://oreil.ly/4Mdfc
https://oreil.ly/4Mdfc

Figure 12-1. An app that tries to select rows that are greater than a threshold on a user-
selected variable.

As you can see from Figure 12-1, the app runs without error, but it doesn’t return the
correct result—all the rows have values of carat less than 1. The goal of the chapter is
to help you understand why this doesn’t work and why dplyr thinks you have asked
for filter(diamonds, "carat" > 1).

This is a problem of indirection: normally when using tidyverse functions, you type
the name of the variable directly in the function call. But now you want to refer to it
indirectly: the variable (carat) is stored inside another variable (input$var).

That sentence might have made intuitive sense to you, but it’s a bit confusing because
I’m using “variable” to mean two slightly different things. It’s going to be easier to
understand what’s happening if we can disambiguate the two uses by introducing two
new terms:

env-variable
An environment variable is a “programming” variable that you create with <-.
input$var is an env-variable.

data-variable
A data frame variable is a “statistical” variable that lives inside a data frame.
carat is a data-variable.

With these new terms we can make the problem of indirection more clear: we have a
data-variable (carat) stored inside an env-variable (input$var), and we need some
way to tell dplyr this. There are two slightly different ways to do this, depending on
whether the function you’re working with is a “data-masking” function or a “tidy-
selection” function.

186 | Chapter 12: Tidy Evaluation

1 dplyr::filter() is inspired by base::subset(). subset() uses data-masking but not through tidy evalua‐
tion, so unfortunately the techniques discussed in this chapter don’t apply to it.

2 In Shiny apps, the most common form of indirection is having the name of the data-variable stored in a reac‐
tive value. There’s another form of indirection called embracing that happens when you’re writing functions
that is solved using {{ x }}. You can learn more about that in Programming with dplyr.

Data-Masking
Data-masking functions allow you to use variables in the “current” data frame
without any extra syntax. Data-masking is used in many dplyr functions like
arrange(), filter(), group_by(), mutate(), and summarise(), and in ggplot2’s
aes(). Data-masking is useful because it lets you use data-variables without any addi‐
tional syntax.

Getting Started
Let’s begin with this call to filter(), which uses a data-variable (carat) and an env-
variable (min):

min <- 1
diamonds %>% filter(carat > min)
#> # A tibble: 17,502 x 10
#> carat cut color clarity depth table price x y z
#> <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 1.17 Very Good J I1 60.2 61 2774 6.83 6.9 4.13
#> 2 1.01 Premium F I1 61.8 60 2781 6.39 6.36 3.94
#> 3 1.01 Fair E I1 64.5 58 2788 6.29 6.21 4.03
#> 4 1.01 Premium H SI2 62.7 59 2788 6.31 6.22 3.93
#> 5 1.05 Very Good J SI2 63.2 56 2789 6.49 6.45 4.09
#> 6 1.05 Fair J SI2 65.8 59 2789 6.41 6.27 4.18
#> # … with 17,496 more rows

Compare this to the base R equivalent:

diamonds[diamonds$carat > min,]

In most, but not all,1 base R functions, you have to refer to data-variables with $. This
means that you often have to repeat the name of the data frame multiple times, but it
does make it clear exactly what is a data-variable and what is an env-variable. It also
makes it straightforward to use indirection2 because you can store the name of the
data-variable in an env-variable and then switch from $ to [[:

var <- "carat"
diamonds[diamonds[[var]] > min,]

Data-Masking | 187

https://oreil.ly/4Mdfc

How can we achieve the same result with tidy evaluation? We need some way to add $
back into the picture. Fortunately, inside data-masking functions you can use .data
or .env if you want to be explicit about whether you’re talking about a data-variable
or an env-variable:

diamonds %>% filter(.data$carat > .env$min)

Now we can switch from $ to [[:

diamonds %>% filter(.data[[var]] > .env$min)

Let’s check that it works by updating the server function that we started the chapter
with:

num_vars <- c("carat", "depth", "table", "price", "x", "y", "z")
ui <- fluidPage(
 selectInput("var", "Variable", choices = num_vars),
 numericInput("min", "Minimum", value = 1),
 tableOutput("output")
)
server <- function(input, output, session) {
 data <- reactive(diamonds %>% filter(.data[[input$var]] > .env$input$min))
 output$output <- renderTable(head(data()))
}

Figure 12-2 shows that we’ve been successful—we only see diamonds with values of
carat greater than 1.

Figure 12-2. Our app works now that we’ve been explicit about .data and .env and
[[vs $. See live at https://hadley.shinyapps.io/ms-tidied-up.

188 | Chapter 12: Tidy Evaluation

https://hadley.shinyapps.io/ms-tidied-up

Now that you’ve seen the basics, we’ll develop a couple more realistic, but still simple,
Shiny apps.

Example: ggplot2
Let’s apply this idea to a dynamic plot where we allow the user to create a scatterplot
by selecting the variables to appear on the x and y axes:

ui <- fluidPage(
 selectInput("x", "X variable", choices = names(iris)),
 selectInput("y", "Y variable", choices = names(iris)),
 plotOutput("plot")
)
server <- function(input, output, session) {
 output$plot <- renderPlot({
 ggplot(iris, aes(.data[[input$x]], .data[[input$y]])) +
 geom_point(position = ggforce::position_auto())
 }, res = 96)
}

The results are shown in Figure 12-3.

Here I’ve used ggforce::position_auto() so that geom_point() works nicely
regardless of whether the x and y variables are continuous or discrete. Alternatively,
we could allow the user to pick the geom. The following app uses a switch() state‐
ment to generate a reactive geom that is later added to the plot:

ui <- fluidPage(
 selectInput("x", "X variable", choices = names(iris)),
 selectInput("y", "Y variable", choices = names(iris)),
 selectInput("geom", "geom", c("point", "smooth", "jitter")),
 plotOutput("plot")
)
server <- function(input, output, session) {
 plot_geom <- reactive({
 switch(input$geom,
 point = geom_point(),
 smooth = geom_smooth(se = FALSE),
 jitter = geom_jitter()
)
 })

 output$plot <- renderPlot({
 ggplot(iris, aes(.data[[input$x]], .data[[input$y]])) +
 plot_geom()
 }, res = 96)
}

This is one of the challenges of programming with user-selected variables: your code
has to become more complicated to handle all the cases the user might generate.

Data-Masking | 189

Figure 12-3. A simple app that allows you to select which variables are plotted on the x
and y axes. See live at https://hadley.shinyapps.io/ms-ggplot2.

190 | Chapter 12: Tidy Evaluation

https://hadley.shinyapps.io/ms-ggplot2

Example: dplyr
The same technique also works for dplyr. The following app extends the previous
simple example to allow you to choose a variable to filter, a minimum value to select,
and a variable to sort by:

ui <- fluidPage(
 selectInput("var", "Select variable", choices = names(mtcars)),
 sliderInput("min", "Minimum value", 0, min = 0, max = 100),
 selectInput("sort", "Sort by", choices = names(mtcars)),
 tableOutput("data")
)
server <- function(input, output, session) {
 observeEvent(input$var, {
 rng <- range(mtcars[[input$var]])
 updateSliderInput(
 session, "min",
 value = rng[[1]],
 min = rng[[1]],
 max = rng[[2]]
)
 })

 output$data <- renderTable({
 mtcars %>%
 filter(.data[[input$var]] > input$min) %>%
 arrange(.data[[input$sort]])
 })
}

Figure 12-4 shows the updated result.

Data-Masking | 191

Figure 12-4. A simple app that allows you to pick a variable to threshold and choose how
to sort the results. See live at https://hadley.shinyapps.io/ms-dplyr.

Most other problems can be solved by combining .data with your existing program‐
ming skills. For example, what if you wanted to conditionally sort in either ascending
or descending order?

ui <- fluidPage(
 selectInput("var", "Sort by", choices = names(mtcars)),
 checkboxInput("desc", "Descending order?"),
 tableOutput("data")
)
server <- function(input, output, session) {
 sorted <- reactive({
 if (input$desc) {
 arrange(mtcars, desc(.data[[input$var]]))
 } else {
 arrange(mtcars, .data[[input$var]])
 }
 })
 output$data <- renderTable(sorted())
}

As you provide more control, you’ll find your code gets more and more complicated,
and it becomes harder and harder to create a user interface that is both comprehen‐
sive and user-friendly. This is why I’ve always focused on code tools for data analysis:
creating good UIs is really, really hard!

192 | Chapter 12: Tidy Evaluation

https://hadley.shinyapps.io/ms-dplyr

User-Supplied Data
Before we move on to talk about tidy-selection, there’s one last topic we need to dis‐
cuss: user-supplied data. Take this app shown in Figure 12-5: it allows the user to
upload a TSV file, then select a variable and filter by it. It will work for the vast major‐
ity of inputs that you might try it with.

ui <- fluidPage(
 fileInput("data", "dataset", accept = ".tsv"),
 selectInput("var", "var", character()),
 numericInput("min", "min", 1, min = 0, step = 1),
 tableOutput("output")
)
server <- function(input, output, session) {
 data <- reactive({
 req(input$data)
 vroom::vroom(input$data$datapath)
 })
 observeEvent(data(), {
 updateSelectInput(session, "var", choices = names(data()))
 })
 observeEvent(input$var, {
 val <- data()[[input$var]]
 updateNumericInput(session, "min", value = min(val))
 })

 output$output <- renderTable({
 req(input$var)

 data() %>%
 filter(.data[[input$var]] > input$min) %>%
 arrange(.data[[input$var]]) %>%
 head(10)
 })
}

Figure 12-5. An app that filters user-supplied data, with a surprising failure mode. See
live at https://hadley.shinyapps.io/ms-user-supplied.

Data-Masking | 193

https://hadley.shinyapps.io/ms-user-supplied

3 You might wonder if the same problem applies to variables called .data and .env. In the unlikely event of
having columns with those names, you’ll need to refer to them explicitly with .data$.data and .data$.env.

There is a subtle problem with the use of filter() here. Let’s pull out the call to
filter() so we can play around with it directly, outside of the app:

df <- data.frame(x = 1, y = 2)
input <- list(var = "x", min = 0)

df %>% filter(.data[[input$var]] > input$min)
#> x y
#> 1 1 2

If you experiment with this code, you’ll find that it appears to work just fine for the
vast majority of data frames. However, there’s a subtle issue: What happens if the data
frame contains a variable called input?

df <- data.frame(x = 1, y = 2, input = 3)
df %>% filter(.data[[input$var]] > input$min)
#> Error: Problem with `filter()` input `..1`.
#> x $ operator is invalid for atomic vectors
#> ℹ Input `..1` is `.data[["x"]] > input$min`.

We get an error message because filter() is attempting to evaluate df$input$min:

df$input$min
#> Error in df$input$min: $ operator is invalid for atomic vectors

This problem is due to the ambiguity of data-variables and env-variables and because
data-masking prefers to use a data-variable if both are available. We can resolve the
problem by using .env3 to tell filter() to only look for min in the env-variables:

df %>% filter(.data[[input$var]] > .env$input$min)
#> x y input
#> 1 1 2 3

Note that you only need to worry about this problem when working with user-
supplied data; when working with your own data, you can ensure the names of your
data-variables don’t clash with the names of your env-variables (and if they acciden‐
tally do, you’ll discover it right away).

Why Not Use Base R?
At this point you might wonder if you’re better off without filter() and if instead
you should use the equivalent base R code:

df[df[[input$var]] > input$min,]
#> x y input
#> 1 1 2 3

194 | Chapter 12: Tidy Evaluation

4 In older versions of tidyselect and dplyr, you’ll need to use one_of(). It has the same semantics as any_of()
but a less informative name.

That’s a totally legitimate position, as long as you’re aware of the work that filter()
does for you so you can generate the equivalent base R code. In this case:

• You’ll need drop = FALSE if df only contains a single column (otherwise you’ll
get a vector instead of a data frame).

• You’ll need to use which() or similar to drop any missing values.
• You can’t do group-wise filtering (e.g., df %>% group_by(g) %>% filter(n() ==
1)).

In general, if you’re using dplyr for very simple cases, you might find it easier to use
base R functions that don’t use data-masking. However, in my opinion, one of the
advantages of the tidyverse is the careful thought that has been applied to edge cases
so that functions work more consistently. I don’t want to oversell this, but at the same
time, it’s easy to forget the quirks of specific base R functions and write code that
works 95% of the time but fails in unusual ways the other 5% of the time.

Tidy-Selection
As well as data-masking, there’s one other important part of tidy evaluation: tidy-
selection. Tidy-selection provides a concise way of selecting columns by position,
name, or type. It’s used in dplyr::select() and dplyr::across() and in many func‐
tions from tidyr, like pivot_longer(), pivot_wider(), separate(), extract(), and
unite().

Indirection
To refer to variables indirectly, use any_of() or all_of():4 both expect a character
vector env-variable containing the names of data-variables. The only difference is
what happens if you supply a variable name that doesn’t exist in the input: all_of()
will throw an error, while any_of() will silently ignore it.

For example, the following app lets the user select any number of variables using a
multiselect input, along with all_of():

ui <- fluidPage(
 selectInput("vars", "Variables", names(mtcars), multiple = TRUE),
 tableOutput("data")
)

server <- function(input, output, session) {

Tidy-Selection | 195

 output$data <- renderTable({
 req(input$vars)
 mtcars %>% select(all_of(input$vars))
 })
}

Tidy-Selection and Data-Masking
Working with multiple variables is trivial when you’re working with a function that
uses tidy-selection: you can just pass a character vector of variable names into
any_of() or all_of(). Wouldn’t it be nice if we could do that in data-masking func‐
tions too? That’s the idea of the across() function, added in dplyr 1.0.0. It allows you
to use tidy-selection inside data-masking functions.

across() is typically used with either one or two arguments. The first argument
selects variables and is useful in functions like group_by() or distinct(). For exam‐
ple, the app in Figure 12-4 allows you to select any number of variables and count
their unique values:

ui <- fluidPage(
 selectInput("vars", "Variables", names(mtcars), multiple = TRUE),
 tableOutput("count")
)

server <- function(input, output, session) {
 output$count <- renderTable({
 req(input$vars)

 mtcars %>%
 group_by(across(all_of(input$vars))) %>%
 summarise(n = n(), .groups = "drop")
 })
}

Figure 12-6. This app allows you to select any number of variables and count their
unique combinations. See live at https://hadley.shinyapps.io/ms-across.

196 | Chapter 12: Tidy Evaluation

https://hadley.shinyapps.io/ms-across

The second argument is a function (or list of functions) that’s applied to each selected
column. That makes it a good fit for mutate() and summarise() where you typically
want to transform each variable in some way. For example, the following code lets the
user select any number of grouping variables and any number of variables to summa‐
rize with their means:

ui <- fluidPage(
 selectInput("vars_g", "Group by", names(mtcars), multiple = TRUE),
 selectInput("vars_s", "Summarise", names(mtcars), multiple = TRUE),
 tableOutput("data")
)

server <- function(input, output, session) {
 output$data <- renderTable({
 mtcars %>%
 group_by(across(all_of(input$vars_g))) %>%
 summarise(across(all_of(input$vars_s), mean), n = n())
 })
}

parse() and eval()
Before we conclude, it’s worth a brief comment about paste() + parse() + eval(). If
you have no idea what this combination is, you can skip this section, but if you have
used it, I’d like to pass on a small note of caution.

It’s a tempting approach because it requires learning very few new ideas. But it has
some major downsides: because you are pasting strings together, it’s very easy to acci‐
dentally create invalid code or code that can be abused to do something that you
didn’t want. This isn’t super important if it’s a Shiny app that only you use, but it isn’t
a good habit to get into—otherwise it’s very easy to accidentally create a security hole
in an app that you share more widely. We’ll come back that idea in Chapter 22.

(You shouldn’t feel bad if this is the only way you can figure out to solve a problem,
but when you have a bit more mental space, I’d recommend spending some time fig‐
uring out how to do it without string manipulation. This will help you to become a
better R programmer.)

Summary
In this chapter you’ve learned how to create Shiny apps that let the user choose which
variables will be fed into tidyverse functions like dplyr::filter() and
ggplot2::aes(). This requires getting your head around a key distinction that you
haven’t had to think about before: the difference between a data-variable and an env-
variable. It will take some practice before this becomes second nature, but once you

parse() and eval() | 197

master the ideas, you unlock the power to expose the data analysis powers of the tidy‐
verse to non-R users.

This is the last chapter in the “Shiny in Action” part of the book. Now that you have
the tools you need to make a range of useful apps, I’m going to focus on improving
your understanding of the theory that underlies Shiny.

198 | Chapter 12: Tidy Evaluation

PART III

Mastering Reactivity

You now have a bundle of useful techniques under your belt, giving you the ability to
create a wide range of useful apps. Next we’ll turn our attention to the theory of reac‐
tivity that underlies the magic of Shiny:

• In Chapter 13, you’ll learn why the reactivity programming model is needed and
a little bit about the history of reactive programming outside of R.

• In Chapter 14, you’ll learn the full details of the reactive graph, which determines
exactly when reactive components are updated.

• In Chapter 15, you’ll learn about the underlying building blocks, particularly
observers and timed invalidation.

• In Chapter 16, you’ll learn how to escape the constraints of the reactive graph
using reactiveVal() and observe().

You certainly don’t need to understand all these details for routine development of
Shiny apps. But improving your understanding will help you write correct apps from
the get-go, and when something behaves unexpectedly, you can more quickly narrow
in on the underlying issue.

1 Steve Sanderson, “Rich JavaScript Applications—The Seven Frameworks (Throne of JS, 2012),” Steve Sander‐
son’s Blog, August 1, 2012.

CHAPTER 13

Why Reactivity?

Introduction
The initial impression of Shiny is often that it’s “magic.” Magic is great when you get
started because you can make simple apps very, very quickly. But magic in software
usually leads to disillusionment: without a solid mental model, it’s extremely difficult
to predict how the software will act when you venture beyond the borders of its
demos and examples. And when things don’t go the way you expect, debugging is
almost impossible.

Fortunately, Shiny is “good” magic. As Tom Dale said of his Ember.js JavaScript
framework: “We do a lot of magic, but it’s good magic, which means it decomposes
into sane primitives.”1 This is the quality that the Shiny team aspires to for Shiny,
especially when it comes to reactive programming. When you peel back the layers of
reactive programming, you won’t find a pile of heuristics, special cases, and hacks;
instead you’ll find a clever but ultimately fairly straightforward mechanism. Once
you’ve formed an accurate mental model of reactivity, you’ll see that there’s nothing
up Shiny’s sleeves: the magic comes from simple concepts combined in consistent
ways.

In this chapter, we’ll motivate reactive programming by trying to do without it and
then give a brief history of reactivity as it pertains to Shiny.

201

https://oreil.ly/HBSKI

Why Do We Need Reactive Programming?
Reactive programming is a style of programming that focuses on values that change
over time and calculations and actions that depend on those values. Reactivity is
important for Shiny apps because they’re interactive: users change input controls
(dragging sliders, typing in text boxes, checking checkboxes, etc.), which causes logic
to run on the server (reading CSVs, subsetting data, fitting models, etc.), ultimately
resulting in outputs updating (plots redrawing, tables updating, etc.). This is quite
different from most R code, which typically deals with fairly static data.

For Shiny apps to be maximally useful, we need reactive expressions and outputs to
update if and only if their inputs change. We want outputs to stay in sync with inputs
while ensuring that we never do more work than necessary. To see why reactivity is so
helpful here, we’ll take a stab at solving a simple problem without reactivity.

Why Can’t You Use Variables?
In one sense, you already know how to handle “values that change over time”: they’re
called variables. Variables in R represent values, and they can change over time, but
they’re not designed to help you when they change. Take this simple example of con‐
verting a temperature from Celsius to Fahrenheit:

temp_c <- 10
temp_f <- (temp_c * 9 / 5) + 32
temp_f
#> [1] 50

So far, so good: the temp_c variable has the value 10, the temp_f variable has the value
50, and we can change temp_c:

temp_c <- 30

But changing temp_c does not affect temp_f:

temp_f
#> [1] 50

Variables can change over time, but they never change automatically.

What About Functions?
You could instead attack this problem with a function:

temp_c <- 10
temp_f <- function() {
 message("Converting")
 (temp_c * 9 / 5) + 32
}
temp_f()

202 | Chapter 13: Why Reactivity?

2 R uses “lexical scoping” for looking up the values associated with variable names.

#> Converting
#> [1] 50

(This is a slightly weird function because it doesn’t have any arguments, instead
accessing temp_c from its enclosing environment,2 but it’s perfectly valid R code.)

This solves the first problem that reactivity is trying to solve: whenever you access
temp_f(), you get the latest computation:

temp_c <- -3
temp_f()
#> Converting
#> [1] 26.6

It doesn’t, however, minimize computation. Every time you call temp_f(), it recom‐
putes, even if temp_c hasn’t changed:

temp_f()
#> Converting
#> [1] 26.6

Computation is cheap in this trivial example, so needlessly repeating it isn’t a big deal,
but it’s still unnecessary: if the inputs haven’t changed, why do we need to recompute
the output?

Event-Driven Programming
Since neither variables nor functions work, we need to create something new. In pre‐
vious decades, we would’ve jumped directly to event-driven programming. Event-
driven programming is an appealingly simple paradigm: you register callback
functions that will be executed in response to events.

We could implement a very simple event-driven toolkit using R6, as in the following
example. Here we define a DynamicValue that has three important methods: get()
and set() to access and change the underlying value, and onUpdate() to register
code to run whenever the value is modified. If you’re not familiar with R6, don’t
worry about the details and instead focus on the following examples:

DynamicValue <- R6::R6Class("DynamicValue", list(
 value = NULL,
 on_update = NULL,

 get = function() self$value,

 set = function(value) {
 self$value <- value
 if (!is.null(self$on_update))

Why Do We Need Reactive Programming? | 203

https://oreil.ly/infBc

3 <<- is called the super-assignment operator, and here it modifies temp_f in the global environment rather
than creating a new temp_f variable inside the function as <- would.

 self$on_update(value)
 invisible(self)
 },

 onUpdate = function(on_update) {
 self$on_update <- on_update
 invisible(self)
 }
))

So if Shiny had been invented five years earlier, it might have looked more like this,
where temp_c uses <<- to update temp_f whenever needed:3

temp_c <- DynamicValue$new()
temp_c$onUpdate(function(value) {
 message("Converting")
 temp_f <<- (value * 9 / 5) + 32
})

temp_c$set(10)
#> Converting
temp_f
#> [1] 50

temp_c$set(-3)
#> Converting
temp_f
#> [1] 26.6

Event-driven programming solves the problem of unnecessary computation, but it
creates a new problem: you have to carefully track which inputs affect which compu‐
tations. Before long, you start to trade off correctness (just update everything when‐
ever anything changes) against performance (try to update only the necessary parts
and hope that you didn’t miss any edge cases) because it’s so difficult to do both.

Reactive Programming
Reactive programming elegantly solves both problems by combining features of the
preceding solutions. Now we can show you some real Shiny code, using a special
Shiny mode, reactiveConsole(TRUE), that makes it possible to experiment with
reactivity directly in the console:

library(shiny)
reactiveConsole(TRUE)

204 | Chapter 13: Why Reactivity?

https://oreil.ly/z26ra

4 If you happen to have ever used R’s active bindings, you might notice that the syntax is very similar. This is
not a coincidence.

5 You can tell it doesn’t recompute because “Converting” is not printed.

As with event-driven programming, we need some way to indicate that we have a
special type of variable. In Shiny, we create a reactive value with reactiveVal(). A
reactive value has special syntax4 for getting its value (calling it like a zero-argument
function) and setting its value (set its value by calling it like a one-argument
function):

temp_c <- reactiveVal(10) # create
temp_c() # get
#> [1] 10
temp_c(20) # set
temp_c() # get
#> [1] 20

Now we can create a reactive expression that depends on this value:

temp_f <- reactive({
 message("Converting")
 (temp_c() * 9 / 5) + 32
})
temp_f()
#> Converting
#> [1] 68

As you’ve learned when creating apps, a reactive expression automatically tracks all of
its dependencies so that later, if temp_c changes, temp_f will automatically update:

temp_c(-3)
temp_c(-10)
temp_f()
#> Converting
#> [1] 14

But if temp_c() hasn’t changed, then temp_f() doesn’t need to recompute5 and can
just be retrieved from the cache:

temp_f()
#> [1] 14

A reactive expression has two important properties:

• It’s lazy: it doesn’t do any work until it’s called.
• It’s cached: it doesn’t do any work the second and subsequent times it’s called

because it caches the previous result.

We’ll come back to these important properties in Chapter 14.

Why Do We Need Reactive Programming? | 205

A Brief History of Reactive Programming
If you want to learn more about reactive programming in other languages, a little his‐
tory might be helpful. You can see the genesis of reactive programming over 40 years
ago in VisiCalc, the first spreadsheet:

I imagined a magic blackboard that if you erased one number and wrote a new thing
in, all of the other numbers would automatically change, like word processing with
numbers.

—Dan Bricklin

Spreadsheets are closely related to reactive programming: you declare the relation‐
ship between cells using formulas, and when one cell changes, all of its dependencies
automatically update. So you’ve probably already done a bunch of reactive program‐
ming without knowing it!

While the ideas of reactivity have been around for a long time, it wasn’t until the late
1990s that they were seriously studied in academic computer science. Research in
reactive programming was kicked off by FRAN [@fran], functional reactive anima‐
tion, a novel system for incorporating changes over time, and user input into a func‐
tional programming language. This spawned a rich literature [@rp-survey] but had
little impact on the practice of programming.

It wasn’t until the 2010s that reactive programming roared into the programming
mainstream through the fast-paced world of JavaScript UI frameworks. Pioneering
frameworks like Knockout, Ember, and Meteor (Joe Cheng’s personal inspiration for
Shiny) demonstrated that reactive programming could make UI programming dra‐
matically easier. Within a few short years, reactive programming has come to domi‐
nate web programming through hugely popular frameworks like React, Vue.js, and
Angular, which are all either inherently reactive or designed to work hand in hand
with reactive backends.

It’s worth bearing in mind that “reactive programming” is a fairly general term. While
all reactive programming libraries, frameworks, and languages are broadly concerned
with writing programs that respond to changing values, they vary enormously in
their terminology, designs, and implementations. In this book, whenever we refer to
“reactive programming,” we are referring specifically to reactive programming as
implemented in Shiny. So if you read material about reactive programming that isn’t
specifically about Shiny, it’s unlikely that those concepts or even terminology will be
relevant to writing Shiny apps. For readers who do have some experience with other
reactive programming frameworks, Shiny’s approach is similar to Meteor and MobX
and very different from the ReactiveX family or anything that labels itself Functional
Reactive Programming.

206 | Chapter 13: Why Reactivity?

https://oreil.ly/K4l08
https://youtu.be/YDvbDiJZpy0
https://knockoutjs.com
https://emberjs.com
https://www.meteor.com
https://reactjs.org
https://vuejs.org
https://angularjs.org
https://www.meteor.com
https://mobx.js.org
http://reactivex.io

Summary
Now that you understand why reactive programming is needed and have learned a
little bit of history, the next chapter will discuss more details of the underlying theory.
Most importantly, you’ll solidify your understanding of the reactive graph, which
connects reactive values, reactive expressions, and observers and controls exactly
what is run and when.

Summary | 207

1 Anywhere you see output, you can also think observer. The primary difference is that certain outputs that
aren’t visible will never be computed. We’ll discuss the details in “Observers and Outputs” on page 226.

CHAPTER 14

The Reactive Graph

Introduction
To understand reactive computation, you must first understand the reactive graph. In
this chapter, we’ll dive into the details of the graph, paying more attention to the pre‐
cise order in which things happen. In particular, you’ll learn about the importance of
invalidation, the process that is key to ensuring that Shiny does the minimum amount
of work. You’ll also learn about the reactlog package, which can automatically draw
the reactive graph for real apps.

If it’s been a while since you looked at Chapter 3, I highly recommend that you refa‐
miliarize yourself with it before continuing. It lays the groundwork for the concepts
that we’ll explore in more detail here.

A Step-by-Step Tour of Reactive Execution
To explain the process of reactive execution, we’ll use the graphic shown in
Figure 14-1. It contains three reactive inputs, three reactive expressions, and three
outputs.1 Recall that reactive inputs and expressions are collectively called reactive
producers; reactive expressions and outputs are reactive consumers.

209

Figure 14-1. Complete reactive graph of an imaginary app containing three inputs, three
reactive expressions, and three outputs.

The connections between the components are directional, with the arrows indicating
the direction of reactivity. The direction might surprise you, as it’s easy to think of a
consumer taking dependencies on one or more producers. Shortly, however, you’ll
see that the flow of reactivity is more accurately modeled in the opposite direction.

The underlying app is not important, but if it helps you to have something concrete,
you could pretend that it was derived from this not-very-useful app:

ui <- fluidPage(
 numericInput("a", "a", value = 10),
 numericInput("b", "b", value = 1),
 numericInput("c", "c", value = 1),
 plotOutput("x"),
 tableOutput("y"),
 textOutput("z")
)

server <- function(input, output, session) {
 rng <- reactive(input$a * 2)
 smp <- reactive(sample(rng(), input$b, replace = TRUE))
 bc <- reactive(input$b * input$c)

 output$x <- renderPlot(hist(smp()))
 output$y <- renderTable(max(smp()))
 output$z <- renderText(bc())
}

Let’s get started!

210 | Chapter 14: The Reactive Graph

A Session Begins
Figure 14-2 shows the reactive graph right after the app has started and the server
function has been executed for the first time.

Figure 14-2. Initial state after app load. There are no connections between objects, and
all reactive expressions are invalidated (gray). There are six reactive consumers and six
reactive producers.

There are three important messages in this figure:

• There are no connections between the elements because Shiny has no a priori
knowledge of the relationships between reactives.

• All reactive expressions and outputs are in their starting state, invalidated (gray),
which means that they have yet to be run.

• The reactive inputs are ready (green), indicating that their values are available for
computation.

Execution Begins
Now we start the execution phase, as shown in Figure 14-3.

Figure 14-3. Shiny starts executing an arbitrary observer/output, colored yellow.

A Session Begins | 211

2 If you have observers whose side effects must happen in a certain order, you’re generally better off re-
designing your system. Failing that, you can control the relative order of observers with the priority argu‐
ment to observe().

In this phase, Shiny picks an invalidated output and starts executing it (yellow). You
might wonder how Shiny decides which of the invalidated outputs to execute. In
short, you should act as if it’s random: your observers and outputs shouldn’t care
what order they execute in, because they’ve been designed to function independently.2

Reading a Reactive Expression
Executing an output may require a value from a reactive, as in Figure 14-4.

Figure 14-4. The output needs the value of a reactive expression, so it starts executing the
expression.

Reading a reactive changes the graph in two ways:

• The reactive expression also needs to start computing its value (turn yellow).
Note that the output is still computing: it’s waiting on the reactive expression to
return its value so its own execution can continue, just like a regular function call
in R.

• Shiny records a relationship between the output and reactive expression (i.e., we
draw an arrow). The direction of the arrow is important: the expression records
that it is used by the output; the output doesn’t record that it uses the expression.
This is a subtle distinction, but its importance will become more clear when you
learn about invalidation.

212 | Chapter 14: The Reactive Graph

Reading an Input
This particular reactive expression happens to read a reactive input. Again, a depend‐
ency/dependent relationship is established, so in Figure 14-5 we add another arrow.

Figure 14-5. The reactive expression also reads from a reactive value, so we add another
arrow.

Unlike reactive expressions and outputs, reactive inputs have nothing to execute so
they can return immediately.

Reactive Expression Completes
In our example, the reactive expression reads another reactive expression, which in
turn reads another input. We’ll skip over the blow-by-blow description of those steps,
since they’re a repeat of what we’ve already described, and jump directly to
Figure 14-6.

Figure 14-6. The reactive expression has finished computing, so it turns green.

Now that the reactive expression has finished executing, it turns green to indicate that
it’s ready. It caches the result so it doesn’t need to recompute unless its inputs change.

A Session Begins | 213

Output Completes
Now that the reactive expression has returned its value, the output can finish execut‐
ing and change color to green, as in Figure 14-7.

Figure 14-7. The output has finished computation and turns green.

The Next Output Executes
Now that the first output is complete, Shiny chooses another to execute. This output
turns yellow, as seen in Figure 14-8, and starts reading values from reactive
producers.

Figure 14-8. The next output starts computing, turning yellow.

Complete reactives can return their values immediately; invalidated reactives will
kick off their own execution graph. This cycle will repeat until every invalidated out‐
put enters the complete (green) state.

Execution Completes, Outputs Flushed
Now all of the outputs have finished execution and are idle, as shown in Figure 14-9.

This round of reactive execution is complete, and no more work will occur until
some external force acts on the system (e.g., the user of the Shiny app moving a slider
in the user interface). In reactive terms, this session is now at rest.

214 | Chapter 14: The Reactive Graph

Figure 14-9. All output and reactive expressions have finished and turned green.

Let’s stop here for a moment and think about what we’ve done. We’ve read some
inputs, calculated some values, and generated some outputs. But more importantly,
we also discovered the relationships between the reactive objects. When a reactive
input changes, we know exactly which reactives we need to update.

An Input Changes
The previous step left off with our Shiny session in a fully idle state. Now imagine that
the user of the application changes the value of a slider. This causes the browser to
send a message to the server function, instructing Shiny to update the corresponding
reactive input. This kicks off an invalidation phase, which has three parts: invalidating
the input, notifying the dependencies, then removing the existing connections.

Invalidating the Inputs
The invalidation phase starts at the changed input/value, which we’ll fill with gray,
our usual color for invalidation, as in Figure 14-10.

Figure 14-10. The user interacts with the app, invalidating an input.

An Input Changes | 215

Notifying Dependencies
Now, we follow the arrows that we drew earlier, coloring each node in gray and color‐
ing the arrows we followed in light-gray. This yields Figure 14-11.

Figure 14-11. Invalidation flows out from the input, following every arrow from left to
right. Arrows that Shiny has followed during invalidation are colored in a lighter gray.

Removing Relationships
Next, each invalidated reactive expression and output “erases” all of the arrows com‐
ing into and out of it, yielding Figure 14-12 and completing the invalidation phase.

Figure 14-12. Invalidated nodes forget all their previous relationships so they can be dis‐
covered afresh.

The arrows coming out of a node are one-shot notifications that will fire the next
time a value changes. Now that they’ve fired, they’ve fulfilled their purpose and we
can erase them.

It’s less obvious why we erase the arrows coming into an invalidated node, even if the
node they’re coming from isn’t invalidated. While those arrows represent notifica‐
tions that haven’t fired, the invalidated node no longer cares about them: reactive
consumers only care about notifications in order to invalidate themselves, and that
that has already happened.

216 | Chapter 14: The Reactive Graph

It may seem perverse that we put so much value on those relationships and now we’ve
thrown them away! But this is a key part of Shiny’s reactive programming model:
though these particular arrows were important, they are now out of date. The only
way to ensure that our graph stays accurate is to erase arrows when they become stale
and let Shiny rediscover the relationships around these nodes as they re-execute.
We’ll come back to this important topic in “Dynamism” on page 218.

Re-execution
Now we’re in a pretty similar situation to when we executed the second output, with a
mix of valid and invalid reactives. It’s time to do exactly what we did then: execute the
invalidated outputs, one at a time, starting off in Figure 14-13.

Figure 14-13. Now re-execution proceeds in the same way as execution, but there’s less
work to do since we’re not starting from scratch.

Again, I won’t show you the details, but the end result will be a reactive graph at rest,
with all nodes marked in green. The neat thing about this process is that Shiny has
done the minimum amount of work—we’ve only done the work needed to update the
outputs that are actually affected by the changed inputs.

Exercises
1. Draw the reactive graph for the following server function and then explain why

the reactives are not run:
server <- function(input, output, session) {
 sum <- reactive(input$x + input$y + input$z)
 prod <- reactive(input$x * input$y * input$z)
 division <- reactive(prod() / sum())
}

2. The following reactive graph simulates long-running computation by using
Sys.sleep():

x1 <- reactiveVal(1)
x2 <- reactiveVal(2)
x3 <- reactiveVal(3)

An Input Changes | 217

y1 <- reactive({
 Sys.sleep(1)
 x1()
})
y2 <- reactive({
 Sys.sleep(1)
 x2()
})
y3 <- reactive({
 Sys.sleep(1)
 x2() + x3() + y2() + y2()
})

observe({
 print(y1())
 print(y2())
 print(y3())
})

How long will the graph take to recompute if x1 changes? What about x2 or x3?
3. What happens if you attempt to create a reactive graph with cycles?

x <- reactiveVal(1)
y <- reactive(x + y())
y()

Dynamism
In “Removing Relationships” on page 216, you learned that Shiny “forgets” the con‐
nections between reactive components that it spent so much effort recording. This
makes Shiny’s reactive dynamic because it can change while your app runs. This
dynamism is so important that I want to reinforce it with a simple example:

ui <- fluidPage(
 selectInput("choice", "A or B?", c("a", "b")),
 numericInput("a", "a", 0),
 numericInput("b", "b", 10),
 textOutput("out")
)

server <- function(input, output, session) {
 output$out <- renderText({
 if (input$choice == "a") {
 input$a
 } else {
 input$b
 }
 })
}

218 | Chapter 14: The Reactive Graph

You might expect the reactive graph to look like Figure 14-14.

Figure 14-14. If Shiny analyzed reactivity statically, the reactive graph would always
connect choice, a, and b to out.

But because Shiny dynamically reconstructs the graph after the output has been inva‐
lidated, it actually looks like either of the graphs in Figure 14-15, depending on the
value of input$choice. This ensures that Shiny does the minimum amount of work
when an input is invalidated. In this case, if input$choice is set to “b,” then the value
of input$a doesn’t affect the output$out and there’s no need to recompute it.

Figure 14-15. But Shiny’s reactive graph is dynamic, so the graph either connects out to
choice and a (left) or choice and b (right).

It’s worth noting, as Yindeng Jiang does in their blog, that a minor change will cause
the output to always depend on both a and b:

output$out <- renderText({
 a <- input$a
 b <- input$b

 if (input$choice == "a") {
 a
 } else {
 b
 }
})

This would have no impact on the output of normal R code, but it makes a difference
here because the reactive dependency is established when you read a value from
input, not when you use that value.

Dynamism | 219

https://oreil.ly/6dDa4

The Reactlog Package
Drawing the reactive graph by hand is a powerful technique to help you understand
simple apps and build up an accurate mental model of reactive programming. But it’s
painful to do for real apps that have many moving parts. Wouldn’t it be great if we
could automatically draw the graph using what Shiny knows about it? This is the job
of the reactlog package, which generates the so-called reactlog, which shows how the
reactive graph evolves over time.

To see the reactlog, you’ll need to first install the reactlog package, turn it on with
reactlog::reactlog_enable(), then start your app. You then have two options:

• While the app is running, press Cmd+F3 (Ctrl+F3 on Windows) to show the
reactlog generated up to that point.

• After the app has closed, run shiny::reactlogShow() to see the log for the com‐
plete session.

reactlog uses the same graphical conventions as this chapter, so it should feel instantly
familiar. The biggest difference is that reactlog draws every dependency, even if it’s
not currently used, to keep the automated layout stable. Connections that are not cur‐
rently active (but were in the past or will be in the future) are drawn as thin dotted
lines.

Figure 14-16 shows the reactive graph that reactlog draws for the app we used earlier.
There’s a surprise in this screenshot: there are three additional reactive inputs (client
Data$output_x_height, clientData$output_x_width, and clientData$pixelra

tio) that don’t appear in the source code. These exist because plots have an implicit
dependency on the size of the output; whenever the output changes size, the plot
needs to be redrawn.

Figure 14-16. The reactive graph of our hypothetical app as drawn by reactlog.

220 | Chapter 14: The Reactive Graph

https://rstudio.github.io/reactlog

Note that while reactive inputs and outputs have names, reactive expressions and
observers do not, so they’re labeled with their contents. To make things easier to
understand, you may want use the label argument to reactive() and observe(),
which will then appear in the reactlog. You can use emojis to make particularly
important reactives stand out visually.

Summary
In this chapter, you’ve learned precisely how the reactive graph operates. In particu‐
lar, you’ve learned for the first time about the invalidation phase, which doesn’t
immediately cause recomputation but instead marks reactive consumers as invalid so
that they will be recomputed when needed. The invalidation cycle is also important
because it clears out previously discovered dependencies so that they can be automat‐
ically rediscovered, making the reactive graphic dynamic.

Now that you’ve got the big picture under your belt, the next chapter will give some
additional details about the underlying data structures that power reactive values,
expressions, and output, and we’ll discuss the related concept of timed invalidation.

Summary | 221

CHAPTER 15

Reactive Building Blocks

Now that you have the theory underpinning the reactive graph and you’ve got some
practical experience, this is a good time to talk in more detail about how reactivity fits
into R, the programming language. There are three fundamental building blocks of
reactive programming: reactive values, reactive expressions, and observers. You’ve
already seen most of the important parts of reactive values and expressions, so this
chapter will spend more time on observers and outputs (which as you’ll learn are a
special type of observer). You’ll also learn two other tools for controlling the reactive
graph: isolation and timed invalidation.

This chapter will again use the reactive console so that we can experiment with reac‐
tivity directly in the console without having to launch a Shiny app each time. To
begin, we’ll load shiny and turn on reactivity for interactive experimentation:

library(shiny)
reactiveConsole(TRUE)

Reactive Values
There are two types of reactive values:

• A single reactive value, created by reactiveVal()
• A list of reactive values, created by reactiveValues()

They have slightly different interfaces for getting and setting values:

x <- reactiveVal(10)
x() # get
#> [1] 10
x(20) # set
x() # get

223

#> [1] 20

r <- reactiveValues(x = 10)
r$x # get
#> [1] 10
r$x <- 20 # set
r$x # get
#> [1] 20

It’s unfortunate that these two similar objects have rather different interfaces, but
there’s no way to standardize them. However, while they look different, they behave
the same, so you can choose between them based on which syntax you prefer. In this
book I use reactiveValues() because the syntax is easier to understand at a glance,
but in my own code I tend to use reactiveVal() because the syntax makes it clear
that something weird is going on.

It’s important to note that both types of reactive values have so-called reference
semantics. Most R objects have copy-on-modify semantics, which means that if you
assign the same value to two names, the connection is broken as soon as you modify
one:

a1 <- a2 <- 10
a2 <- 20
a1 # unchanged
#> [1] 10

This is not the case with reactive values—they always keep a reference back to the
same value so that modifying any copy modifies all values:

b1 <- b2 <- reactiveValues(x = 10)
b1$x <- 20
b2$x
#> [1] 20

We’ll come back to why you might create your own reactive values in Chapter 16.
Otherwise, most of the reactive values you’ll encounter will come from the input
argument to the server function. These are a little different from the reactiveVal
ues() that you create yourself because they’re read-only: you can’t modify the values
because Shiny automatically updates them based on user actions in the browser.

Exercises
1. What are the differences between these two lists of reactive values? Compare the

syntax for getting and setting individual reactive values:
l1 <- reactiveValues(a = 1, b = 2)
l2 <- list(a = reactiveVal(1), b = reactiveVal(2))

2. Design and perform a small experiment to verify that reactiveValue() also has
reference semantics.

224 | Chapter 15: Reactive Building Blocks

https://oreil.ly/W1PzT

1 By default, you’ll see the whole error message. You can show a generic error message by turning error sanitiz‐
ing on.

2 Technically, a custom condition.

Reactive Expressions
Recall that a reactive has two important properties: it’s lazy and cached. This means
that it only does work when it’s actually needed, and if called twice in a row, it returns
the previous value.

There are two important details that we haven’t yet covered: what reactive expressions
do with errors and why on.exit() works inside of them.

Errors
Reactive expressions cache errors in exactly the same way that they cache values. For
example, take this reactive:

r <- reactive(stop("Error occurred at ", Sys.time(), call. = FALSE))
r()
#> Error: Error occurred at 2021-03-05 16:38:19

If we wait a second or two, we can see that we get the same error as before:

Sys.sleep(2)
r()
#> Error: Error occurred at 2021-03-05 16:38:19

Errors are also treated the same way as values when it comes to the reactive graph:
errors propagate through the reactive graph exactly the same way as regular values.
The only difference is what happens when an error hits an output or observer:

• An error in an output will be displayed in the app.1

• An error in an observer will cause the current session to terminate. If you don’t
want this to happen, you’ll need to wrap the code in try() or tryCatch().

This same system powers req() (“Canceling Execution with req()” on page 121),
which emits a special type of error.2 This special error causes observers and outputs to
stop what they’re doing but not to otherwise fail. By default, it will cause outputs to
reset to their initial blank state, but if you use req(..., cancelOutput = TRUE),
they’ll preserve their current display.

Reactive Expressions | 225

https://oreil.ly/Q8HoR
https://oreil.ly/Q8HoR
https://oreil.ly/kUHXg

on.exit()
You can think of reactive(x()) as a shortcut for function() x(), automatically
adding laziness and caching. This is mostly of importance if you want to understand
how Shiny is implemented but means that you can use functions that only work
inside functions. The most useful of these is on.exit(), which allows you to run code
when a reactive expression finishes, regardless of whether the reactive successfully
returns an error or fails with an error. This is what makes on.exit() work in
“Removing on Completion” on page 128.

Exercises
1. Use the reactlog package to observe an error propagating through the reactives in

the following app, confirming that it follows the same rules as value propagation:
ui <- fluidPage(
 checkboxInput("error", "error?"),
 textOutput("result")
)
server <- function(input, output, session) {
 a <- reactive({
 if (input$error) {
 stop("Error!")
 } else {
 1
 }
 })
 b <- reactive(a() + 1)
 c <- reactive(b() + 1)
 output$result <- renderText(c())
}

2. Modify the preceding app to use req() instead of stop(). Verify that events still
propagate the same way. What happens when you use the cancelOutput
argument?

Observers and Outputs
Observers and outputs are terminal nodes in the reactive graph. They differ from
reactive expressions in two important ways:

• They are eager and forgetful—they run as soon as they possibly can, and they
don’t remember their previous action. This eagerness is “infectious” because if
they use a reactive expression, that reactive expression will also be evaluated.

226 | Chapter 15: Reactive Building Blocks

3 In rare cases, you may prefer to process even outputs that are hidden. You can use the outputOptions() func‐
tion’s suspendWhenHidden to opt out of the automatic suspension feature on an output-by-output basis.

• The value returned by an observer is ignored because they are designed to work
with functions called for their side effects, like cat() or write.csv().

Observers and outputs are powered by the same underlying tool: observe(). This
sets up a block of code that is run every time one of the reactive values or expressions
it uses is updated. Note that the observer runs immediately when you create it—it
must do this in order to determine its reactive dependencies:

y <- reactiveVal(10)
observe({
 message("`y` is ", y())
})
#> Warning: Error in y: could not find function "y"

y(5)
y(4)

I rarely use observe() in this book, because it’s the low-level tool that powers the
user-friendly observeEvent(). Generally, you should stick with observeEvent()
unless it’s impossible to get it to do what you want. In this book, I’ll only show you
one case where observe() is necessary, “Pausing Animations” on page 239.

observe() also powers reactive outputs. Reactive outputs are a special type of
observer that has two important properties:

• They are defined when you assign them into output (i.e., output$text <- ...
creates the observer).

• They have some limited ability to detect when they’re not visible (i.e., they’re in
nonactive tab) so they don’t have to recompute.3

It’s important to note that observe() and the reactive outputs don’t “do” something
but “create” something (which then takes action as needed). That mindset helps you
to understand what’s going on in this example:

x <- reactiveVal(1)
y <- observe({
 x()
 observe(print(x()))
})
#> Warning: Error in x: could not find function "x"
x(2)
x(3)

Observers and Outputs | 227

Each change to x causes the observer to be triggered. The observer itself calls
observe(), setting up another observer. So each time x changes, it gets another
observer, so its value is printed another time.

As a general rule, you should only ever create observers or outputs at the top level of
your server function. If you find yourself trying to nest them or create an observer
inside an output, sit down and sketch out the reactive graph that you’re trying to cre‐
ate—there’s almost certainly a better approach. It can be harder to spot this mistake
directly in a more complex app, but you can always use the reactlog: just look for
unexpected churn in observers (or outputs), then track back to what is creating them.

Isolating Code
To finish off the chapter, I will discuss two important tools for controlling exactly how
and when the reactive graph is invalidated. In this section, I’ll discuss isolate(), the
tool that powers observeEvent() and eventReactive() and that lets you avoid creat‐
ing reactive dependencies when not needed. In the next section, you’ll learn about
invalidateLater(), which allows you to generate reactive invalidations on a
schedule.

isolate()
Observers are often coupled with reactive values in order to track state changes over
time. For example, take this code that tracks how many times x changes:

r <- reactiveValues(count = 0, x = 1)
observe({
 r$x
 r$count <- r$count + 1
})

If you were to run it, you’d immediately get stuck in an infinite loop because the
observer will take a reactive dependency on x and count; and since the observer
modifies count, it will immediately rerun.

Fortunately, Shiny provides isolate() to resolve this problem. This function allows
you to access the current value of a reactive value or expression without taking a
dependency on it:

r <- reactiveValues(count = 0, x = 1)
class(r)
#> [1] "rv_flush_on_write" "reactivevalues"
observe({
 r$x
 r$count <- isolate(r$count) + 1
})
#> Warning: Error in <observer>: object 'r' not found

228 | Chapter 15: Reactive Building Blocks

r$x <- 1
r$x <- 2
r$count
#> [1] 0

r$x <- 3
r$count
#> [1] 0

Like observe(), a lot of the time you don’t need to use isolate() directly because
there are two useful functions that wrap up the most common usage: observeE
vent() and eventReactive().

observeEvent() and eventReactive()
When you saw the preceding code, you might have remembered “Observers” on page
49 and wondered why I didn’t use observeEvent():

observeEvent(x(), {
 count(count() + 1)
})

And indeed, I could have because observeEvent(x, y) is equivalent to observe({x;
isolate(y)}). It elegantly decouples what you want to listen to from what action
you want to take. And eventReactive() performs the analogous job for reactives:
eventReactive(x, y) is equivalent to reactive({x; isolate(y)}).

observeEvent() and eventReactive() have additional arguments that allow you to
control the details of their operation:

• By default, both functions will ignore any event that yields NULL (or, in the special
case of action buttons, 0). Use ignoreNULL = FALSE to also handle NULL values.

• By default, both functions will run once when you create them. Use ignoreInit
= TRUE to skip this run.

• For observeEvent() only, you can use once = TRUE to run the handler only
once.

These are rarely needed but good to know about so that you can look up the details
from the documentation when you need them.

Isolating Code | 229

4 Assuming that it’s used by some output or observer; otherwise, it will stay in its initial invalidated state
forever.

Exercises
1. Complete the following app with a server function that updates out with the

value of x only when the button is pressed:
ui <- fluidPage(
 numericInput("x", "x", value = 50, min = 0, max = 100),
 actionButton("capture", "capture"),
 textOutput("out")
)

Timed Invalidation
isolate() reduces the times the reactive graph is invalidated. The topic of this sec‐
tion, invalidateLater(), does the opposite: it lets you invalidate the reactive graph
when no data has changed. You saw an example of this in “Timed Invalidation” on
page 45 with reactiveTimer(), but the time has come to discuss the underlying tool
that powers it: invalidateLater().

invalidateLater(ms) causes any reactive consumer to be invalidated in the future,
after ms (milliseconds). It is useful for creating animations and connecting to data
sources outside of Shiny’s reactive framework that may be changing over time. For
example, this reactive will automatically generate 10 fresh random normals every half
a second:4

x <- reactive({
 invalidateLater(500)
 rnorm(10)
})

And this observer will increment a cumulative sum with a random number:

sum <- reactiveVal(0)
observe({
 invalidateLater(300)
 sum(isolate(sum()) + runif(1))
})

In the following sections, you’ll learn how to use invalidateLater() to read chang‐
ing data from disk, how to avoid getting invalidateLater() stuck in an infinite loop,
and some occasionally important details of exactly when the invalidation happens.

230 | Chapter 15: Reactive Building Blocks

Polling
A useful application of invalidateLater() is to connect Shiny to data that is chang‐
ing outside of R. For example, you could use the following reactive to reread a CSV
file every second:

data <- reactive({
 on.exit(invalidateLater(1000))
 read.csv("data.csv")
})

This connects changing data into Shiny’s reactive graph, but it has a serious down‐
side: when you invalidate the reactive, you’re also invalidating all downstream con‐
sumers, so even if the data is the same, all the downstream work has to be redone.

To avoid this problem, Shiny provides reactivePoll(), which takes two functions:
one that performs a relatively cheap check to see if the data has changed, and another
more expensive function that actually does the computation. We can use reactive
Poll() to rewrite the previous reactive:

server <- function(input, output, session) {
 data <- reactivePoll(1000, session,
 function() file.mtime("data.csv"),
 function() read.csv("data.csv")
)
}

Here we used file.mtime(), which returns the last time the file was modified, as a
cheap check to see if we needed to reload the file.

Reading a file when it changes is a common task, so Shiny provides an even more
specific helper that just needs a filename and a reader function:

server <- function(input, output, session) {
 data <- reactiveFileReader(1000, session, "data.csv", read.csv)
}

If you need to read changing data from other sources (e.g., a database), you’ll need to
come up with your own reactivePoll() code.

Long-Running Reactives
If you’re performing a long-running computation, there’s an important question you
need to consider: When should you execute invalidateLater()? For example, take
this reactive:

x <- reactive({
 invalidateLater(500)
 Sys.sleep(1)
 10
})

Timed Invalidation | 231

Assume Shiny starts the reactive running at time 0 and will request invalidation at
time 500. The reactive takes 1000 ms to run, so it’s now time 1000, and it’s immedi‐
ately invalidated and must be recomputed, which then sets up another invalidation:
we’re stuck in an infinite loop.

On the other hand, if you run invalidateLater() at the end, it will invalidate 500 ms
after completion, so the reactive will be rerun every 1500 ms:

x <- reactive({
 on.exit(invalidateLater(500), add = TRUE)
 Sys.sleep(1)
 10
})

This is the main reason to prefer invalidateLater() to the simpler reactive
Timer() that we used earlier: it gives you greater control over exactly when the inva‐
lidation occurs.

Timer Accuracy
The number of milliseconds specified in invalidateLater() is a polite request, not a
demand. R may be doing other things when you asked for invalidation to occur, so
your request has to wait. This effectively means that the number is a minimum and
invalidation might take longer than you expect. In most cases, this doesn’t matter
because small differences are unlikely to affect user perception of your app. However,
in situations where many small errors will accumulate, you should compute the exact
elapsed time and use it to adjust your calculations.

For example, the following code computes distance based on velocity and elapsed
time. Rather than assuming invalidateLater(100) always delays by exactly 100 ms,
I compute the elapsed time and use it in my calculation of position:

velocity <- 3
r <- reactiveValues(distance = 1)

last <- proc.time()[[3]]
observe({
 cur <- proc.time()[[3]]
 time <- last - cur
 last <<- cur

 r$distance <- isolate(r$distance) + velocity * time
 invalidateLater(100)
})

If you’re not doing careful animation, feel free to ignore the inherent variation in
invalidateLater(). Just remember that it’s a polite request, not a demand.

232 | Chapter 15: Reactive Building Blocks

Exercises
1. Why will this reactive never be executed? Your explanation should talk about the

reactive graph and invalidation:
server <- function(input, output, session) {
 x <- reactive({
 invalidateLater(500)
 rnorm(10)
 })
}

2. If you’re familiar with SQL, use reactivePoll() to only reread an imaginary
“Results” table whenever a new row is added. You can assume the Results table
has a timestamp field that contains the date-time that a record was added.

Summary
In this chapter you’ve learned more about the building blocks that make Shiny work:
reactive values, reactive expressions, observers, and timed evaluation. Now we’ll turn
our attention to a specific combination of reactive values and observers that allows us
to escape some of the constraints (for better and worse) of the reactive graph.

Summary | 233

CHAPTER 16

Escaping the Graph

Introduction
Shiny’s reactive programming framework is incredibly useful because it automatically
determines the minimal set of computations needed to update all outputs when an
input changes. But this framework is deliberately constraining, and sometimes you
need to break free to do something risky but necessary.

In this chapter you’ll learn how you can combine reactiveValues() and observe()/
observeEvent() to connect the right-hand side of the reactive graph back to the left‐
hand side. These techniques are powerful because they give you manual control over
parts of the graph. But they’re also dangerous because they allow your app to do
unnecessary work. Most importantly, you can now create infinite loops where your
app gets stuck in a cycle of updates that never ends.

If you find the ideas explored in this chapter to be interesting, you might also want to
look at the shinySignals and rxtools packages. These are both experimental packages
designed to explore “higher order” reactivity, reactives that are created programmati‐
cally from other reactives. I wouldn’t recommend you use them in “real” apps, but
reading the source code might be illuminating. To begin, we’ll load shiny:

library(shiny)

What Doesn’t the Reactive Graph Capture?
In “An Input Changes” on page 215, we discussed what happens when the user causes
an input to be invalidated. There are two other important cases where you as the app
author might invalidate an input:

235

https://oreil.ly/nvsID
https://oreil.ly/eCqn3

1 As a debugging aid, the reactlog package can capture and draw these connections when you modify reactive
values from an observer, but this information is not used by Shiny.

• When you call an update function setting the value argument. This sends a mes‐
sage to the browser to change the value of an input, which then notifies R that the
input value has been changed.

• When you modify the value of a reactive value (created with reactiveVal() or
reactiveValues()).

It’s important to understand that in both of these cases a reactive dependency is not
created between the reactive value and the observer. While these actions cause the
graph to invalidate, they are not recorded through new connections.1

To make this idea concrete, take the following simple app, with reactive graph shown
in Figure 16-1:

ui <- fluidPage(
 textInput("nm", "name"),
 actionButton("clr", "Clear"),
 textOutput("hi")
)
server <- function(input, output, session) {
 hi <- reactive(paste0("Hi ", input$nm))
 output$hi <- renderText(hi())
 observeEvent(input$clr, {
 updateTextInput(session, "nm", value = "")
 })
}

Figure 16-1. The reactive graph does not record the connection between the unnamed
observer and the nm input; this dependency is outside of its scope.

What happens when you press the clear button?

1. input$clr invalidates, which then invalidates the observer.
2. The observer recomputes, re-creating the dependency on input$clr and telling

the browser to change the value of the input control.
3. The browser changes the value of nm.
4. input$nm invalidates, invalidating hi() then output$hi.

236 | Chapter 16: Escaping the Graph

2 This is rather similar to a notification, as seen in “Notifications” on page 126.

5. output$hi recomputes, forcing hi() to recompute.

None of these actions change the reactive graph, so it remains as in Figure 16-1, and
the graph does not capture the connection from the observer to input$nm.

Case Studies
Next, let’s take a look at a few cases where you might combine reactiveValues() and
observeEvent() or observe() to solve problems that are otherwise very challenging
(if not impossible). These are useful templates for your own apps.

One Output Modified by Multiple Inputs
To get started, we’ll tackle a very simple problem: I want a common text box that’s
updated by multiple events:2

ui <- fluidPage(
 actionButton("drink", "drink me"),
 actionButton("eat", "eat me"),
 textOutput("notice")
)
server <- function(input, output, session) {
 r <- reactiveValues(notice = "")
 observeEvent(input$drink, {
 r$notice <- "You are no longer thirsty"
 })
 observeEvent(input$eat, {
 r$notice <- "You are no longer hungry"
 })
 output$notice <- renderText(r$notice)
}

Things get slightly more complicated in the next example, where we have an app with
two buttons that let you increase and decrease values. We use a reactiveValues() to
store the current value, and then use observeEvent() to increment and decrement
the value when the appropriate button is pushed. The main additional complexity
here is that the new value of n() depends on the previous value:

ui <- fluidPage(
 actionButton("up", "up"),
 actionButton("down", "down"),
 textOutput("n")
)
server <- function(input, output, session) {
 r <- reactiveValues(n = 0)
 observeEvent(input$up, {

Case Studies | 237

 r$n <- r$n + 1
 })
 observeEvent(input$down, {
 r$n <- r$n - 1
 })

 output$n <- renderText(r$n)
}

Figure 16-2 shows the reactive graph for this example. Again, note that the reactive
graph does not include any connection from the observers back to the reactive
value n.

Figure 16-2. The reactive graph does not capture connections from observers to input
values.

Accumulating Inputs
It’s a similar pattern if you want to accumulate data in order to support data entry.
Here the main difference is that we use updateTextInput() to reset the text box after
the user clicks the add button:

ui <- fluidPage(
 textInput("name", "name"),
 actionButton("add", "add"),
 textOutput("names")
)
server <- function(input, output, session) {
 r <- reactiveValues(names = character())
 observeEvent(input$add, {
 r$names <- c(input$name, r$names)
 updateTextInput(session, "name", value = "")
 })

 output$names <- renderText(r$names)
}

We could make this slightly more useful by providing a delete button and making
sure that the add button doesn’t create duplicate names:

ui <- fluidPage(
 textInput("name", "name"),
 actionButton("add", "add"),
 actionButton("del", "delete"),

238 | Chapter 16: Escaping the Graph

 textOutput("names")
)
server <- function(input, output, session) {
 r <- reactiveValues(names = character())
 observeEvent(input$add, {
 r$names <- union(r$names, input$name)
 updateTextInput(session, "name", value = "")
 })
 observeEvent(input$del, {
 r$names <- setdiff(r$names, input$name)
 updateTextInput(session, "name", value = "")
 })

 output$names <- renderText(r$names)
}

Pausing Animations
Another common use case is to provide a pair of start and stop buttons that lets you
control some recurring event. This example uses a running reactive value to control
whether or not the number increments, and invalidateLater() to ensure that the
observer is invalidated every 250 ms when running:

ui <- fluidPage(
 actionButton("start", "start"),
 actionButton("stop", "stop"),
 textOutput("n")
)
server <- function(input, output, session) {
 r <- reactiveValues(running = FALSE, n = 0)

 observeEvent(input$start, {
 r$running <- TRUE
 })
 observeEvent(input$stop, {
 r$running <- FALSE
 })

 observe({
 if (r$running) {
 r$n <- isolate(r$n) + 1
 invalidateLater(250)
 }
 })
 output$n <- renderText(r$n)
}

Notice in this case we can’t easily use observeEvent() because we perform different
actions depending on whether running() is TRUE or FALSE. We must instead use iso
late(). If we don’t, this observer would also take a reactive dependency on n, which
it updates, so it would get stuck in an infinite loop.

Case Studies | 239

Hopefully these examples start to give you a flavor of what programming with these
functions feels like. It’s very imperative: when this happens, do that; when that hap‐
pens, do the other thing. This makes it easier to understand on a small scale but
harder to understand when bigger pieces start interacting. So generally, you’ll want to
use this as sparingly as possible and keep it isolated so that the smallest possible num‐
ber of observers modify the reactive value.

Exercises
1. Provide a server function that draws a histogram of one hundred random num‐

bers from a normal distribution when Normal is clicked and one hundred ran‐
dom uniforms when Uniform is clicked:

ui <- fluidPage(
 actionButton("rnorm", "Normal"),
 actionButton("runif", "Uniform"),
 plotOutput("plot")
)

2. Modify the preceding code to work with this UI:
ui <- fluidPage(
 selectInput("type", "type", c("Normal", "Uniform")),
 actionButton("go", "go"),
 plotOutput("plot")
)

3. Rewrite your code from the previous answer to eliminate the use of observe()/
observeEvent() and only use reactive(). Why can you do that for the second
UI but not the first?

Antipatterns
Once you get the hang of this pattern, it’s easy to fall into bad habits:

server <- function(input, output, session) {
 r <- reactiveValues(df = cars)
 observe({
 r$df <- head(cars, input$nrows)
 })

 output$plot <- renderPlot(plot(r$df))
 output$table <- renderTable(r$df)
}

240 | Chapter 16: Escaping the Graph

In this simple case, this code doesn’t do much extra work compared to the alternative
that uses reactive():

server <- function(input, output, session) {
 df <- reactive(head(cars, input$nrows))

 output$plot <- renderPlot(plot(df()))
 output$table <- renderTable(df())
}

But there are still two drawbacks:

• If the table or plot are in tabs that are not currently visible, the observer will still
draw/plot them.

• If the head() throws an error, the observe() will terminate the app, but the reac
tive() will propagate it so its displayed reactive throws an error and it won’t get
propagated.

And things will get progressively worse as the app gets more complicated. It’s very
easy to revert to the event-driven programming situation described in “Event-Driven
Programming” on page 203. You end up doing a lot of hard work to analyze the flow
of events in your app rather than relying on Shiny to handle it for you automatically.

It’s informative to compare the two reactive graphs. Figure 16-3 shows the graph from
the first example. It’s misleading because it doesn’t look like nrows is connected to
df(). Using a reactive, as in Figure 16-4, makes the precise connection easy to see.
Having a reactive graph that is as simple as possible is important for both humans
and for Shiny. A simple graph is easier for humans to understand, and a simple graph
is easier for Shiny to optimize.

Figure 16-3. Using reactive values and observers leaves part of the graph disconnected.

Figure 16-4. Using a reactive makes the dependencies between the components very
clear.

Antipatterns | 241

Summary
In the last four chapters, you have learned much more about the reactive program‐
ming model used by Shiny. You’ve learned why reactive programming is important (it
allows Shiny to do just as much work as is required and no more) and the details of
the reactive graph. You’ve also learned a bit about how the fundamental building
blocks work under the hood and how you can use them to escape the constraints of
the reactive graph when needed.

The remainder of the book discusses Shiny through the lens of software engineering.
In the next seven chapters, you’ll learn how to keep your Shiny apps maintainable,
performant, and safe as they continue to grow in size and impact.

242 | Chapter 16: Escaping the Graph

PART IV

Best Practices

When you start using Shiny, it’ll take you a long time to make even small apps,
because you have to learn the fundamentals. Over time, however, you’ll become more
comfortable with the basic interface of the package and the key ideas of reactivity, and
you’ll be able to create larger, more complex applications. As you start to write larger
apps, you’ll encounter a new set of challenges: keeping a complex and growing code-
base organized, stable, and maintainable. This will include problems like:

• “I can’t find the code I’m looking for in this huge file.”
• “I haven’t worked on this code in six months, and I’m afraid I’m going to break it

if I make any changes.”
• “Someone else started working with me on the application, and we keep standing

on each other’s toes.”
• “The app works on my computer but doesn’t work on my collaborator’s or in

production.”

In this, the “best practices,” part of the book, you’ll learn some key concepts and tools
from software engineering that will help you overcome these challenges:

• In Chapter 17, I’ll briefly introduce you to the big ideas of software engineering.
• In Chapter 18, I’ll show you how to extract code out of your Shiny app into inde‐

pendent apps and discuss why you might want to do so.
• In Chapter 19, you’ll learn about Shiny’s module system, which allows you to

extract coupled UI and server code into isolated and reusable components.

• In Chapter 20, I’ll show you how to turn your app in R package and show you
why that investment will pay off for bigger apps.

• In Chapter 21, you’ll learn how to turn your existing informal tests into automa‐
ted tests that can easily be rerun whenever your app changes.

• In Chapter 22, you’ll learn the patterns to avoid to keep your app secure.
• In Chapter 23, you’ll learn how to identify and resolve performance bottlenecks

in your apps, ensuring they remain speedy even when used by hundreds of users.

Of course, you can’t learn everything about software engineering in one part of one
book, so I’ll also point you to good places to learn more.

CHAPTER 17

General Guidelines

Introduction
This chapter introduces the most important software engineering skills you’ll need
when writing Shiny apps: code organization, testing, dependency management,
source code control, continuous integration, and code reviews. These skills are not
specific to Shiny apps, but you’ll need to learn a bit about all of them if you want to
write complex apps that get easier to maintain over time, not harder.

Improving your software engineering skills is a lifelong journey. Expect to have frus‐
trations as you start learning them, but understand that everyone experiences the
same issues, and if you persevere you’ll get past them. Most people go through the
same evolution when learning a new technique: “I don’t understand it and have to
look it up every time I use it” to “I vaguely understand it but still read the documen‐
tation a lot” to eventually “I understand it and can use it fluidly.” It takes time and
practice to get to the final stage.

I recommend setting aside some time each week to practice your software develop‐
ment skills. During this time, try to avoid touching the behavior or appearance of
your app and instead focus your efforts on making the app easier to understand and
develop. This will make your app easier to change in the future, and as you improve
your software development skills, your first attempt at an app will also become higher
quality.

(Thanks to my colleague Jeff Allen for contributing the bulk of this chapter.)

245

Code Organization
Any fool can write code that a computer can understand. Good programmers write
code that humans can understand.

—Martin Fowler, Refactoring: Improving the Design of Existing Code

One of the most obvious ways to improve the quality of an application is to improve
the readability and understandability of its code. The best programmers in the world
can’t maintain a codebase that they can’t understand, so this is a good place to start.

Being a good programmer means developing empathy for others who will need to
interact with this codebase in the future (even if it’s just future-you!). Like all forms of
empathy, this takes practice and becomes easier only after you’ve done it many times.
Over time, you’ll start to notice that certain practices improve the readability of your
code. There are no universal rules, but some general guidelines include:

• Are the variable and function names clear and concise? If not, what names would
better communicate the intent of the code?

• Do I have comments where needed to explain complex bits of code?
• Does this whole function fit on my screen, or could it be printed on a single piece

of paper? If not, is there a way to break it up into smaller pieces?
• Am I copying and pasting the same block of code many times throughout my

app? If so, is there a way to use a function or a variable to avoid the repetition?
• Are all the parts of my application tangled together, or can I manage the different

components of my application in isolation?

There’s no silver bullet to address all of these points—and many times they involve
subjective judgment calls—but there are two particularly important tools:

Functions
The topic of Chapter 18, functions allow you to reduce duplication in your UI
code, make your server functions easier to understand and test, and allow you to
more flexibly organize your app code.

Shiny modules
The topic of Chapter 19, Shiny modules make it possible to write isolated, reusa‐
ble code that coordinates frontend and backend behavior. Modules allow you to
gracefully separate concerns so that (for example) individual pages in your appli‐
cation can operate independently or repeated components no longer need to be
copied and pasted.

246 | Chapter 17: General Guidelines

Testing
Developing a test plan for an application is critical to ensure its ongoing stability.
Without a test plan, every change jeopardizes the application. When the application is
small enough that you can hold it all in your head, you might feel that there’s no need
for an additional test plan. And sure, testing very simple apps can seem like more
trouble than it’s worth. However, the lack of a plan is likely to cause pain as soon as
someone else starts contributing to your app, or when you’ve spent enough time away
from it that you’ve forgotten how it all fits together.

A testing plan could be entirely manual. A great place to start is a simple text file giv‐
ing a script to follow to check that all is well. However, that script will have to grow as
the application becomes more complex, and you’ll either spend more and more of
your time manually testing the application or start skipping some of the script.

So the next step is to start to automate some of your testing. Automation takes time to
set up, but it pays off over time because you can run the tests more frequently. For
that reason, various forms of automated testing have been developed for Shiny, as
outlined in Chapter 21. As that chapter will explain, you can develop:

• Unit tests that confirm the correct behavior of an individual function
• Integration tests to confirm the interactions between reactives
• Functional tests to validate the end-to-end experience from a browser
• Load tests to ensure that the application can withstand the amount of traffic you

anticipate for it

The beauty of writing an automated test is that once you’ve taken the time to write it,
you’ll never need to manually test that portion of the application again. You can even
leverage continuous integration (more on that shortly) to run these tests every time
you make a change to your code before publishing the application.

Dependency Management
If you’ve ever tried to reproduce some analysis in R written by someone else, or even
tried to rerun some analysis or Shiny application you wrote some time ago, you may
have run into trouble around dependencies. An app’s dependencies are anything
beyond the source code that it requires to run. These could include files on the hard
drive, an external database or API, or other R packages that are used by the app.

For any analysis that you may want to reproduce in the future, consider using renv,
which enables you to create reproducible R environments. Using renv, you can cap‐
ture the exact package versions that your application uses so that when you go to use
this application on another computer, you can use exactly the same package versions.

Testing | 247

https://rstudio.github.io/renv

This is vital for apps run in production, not just because it gets the versions right on
the first run but because it also isolates your app from version changes over time.

Another tool for managing dependencies is the config package. The config package
doesn’t actually manage dependencies itself, but it does provide a convenient place for
you to track and manage dependencies other than R packages. For instance, you
might specify the path to a CSV file that your application depends on or the URL of
an API that you require. Having these enumerated in the config file gives you a single
place where you can track and manage these dependencies. Even better, it enables
you to create different configurations for different environments. For example, if your
application analyzes a database with lots of data, you might choose to configure a few
different environments:

• In the production environment, you connect the app to the real “production”
database.

• In a test environment, you can configure the app to use a test database so that
you properly exercise the database connections in your tests, but you don’t risk
corrupting your production database if you accidentally make a change that cor‐
rupts the data.

• In development, you might configure the application to use a small CSV with a
subset of data to allow for faster iterating.

Lastly, be wary of making assumptions about the local filesystem. If your code has
references to data at C:\data\cars.csv or ~/my-projects/genes.rds, for example, you
need to realize that it’s very unlikely that these files will exist on another computer.
Instead, either use a path relative to the app directory (e.g., data/cars.csv or genes.rds),
or use the config package to make the external path explicit and configurable.

Source Code Management
Anyone who’s been programming for a long time has inevitably arrived at a state
where they’ve accidentally broken their app and want to roll back to a previous work‐
ing state. This is incredibly arduous when done manually. Fortunately, however, you
can rely on a “version-control system” that makes it easy to track atomic changes, roll
back to previous work, and integrate the work of multiple contributors.

The most popular version-control system in the R community is Git. Git is typically
paired with GitHub, a website that makes it easy to share your Git repos with others.
It definitely takes work to become proficient with Git and GitHub, but any experi‐
enced developer will confirm that the effort is well worth it. If you’re new to Git, I’d
highly recommend starting with Happy Git and GitHub for the useR, by Jenny Bryan.

248 | Chapter 17: General Guidelines

https://github.com/rstudio/config
https://happygitwithr.com

Continuous Integration/Deployment
Once you are using a version control system and have a robust set of automated tests,
you might benefit from continuous integration (CI). CI is a way to perpetually vali‐
date that the changes you’re making to your application haven’t broken anything. You
can use it retroactively (to notify you if a change you just made broke your applica‐
tion) or proactively (to notify you if a proposed change would break your app).

There are a variety of services that can connect to a Git repo and automatically run
tests when you push a new commit or propose changes. Depending on where your
code is hosted, you can consider GitHub actions, Travis CI, Azure Pipelines, App‐
Veyor, Jenkins, or GitLab CI/CD, to name a few.

Figure 17-1. An example CI run, showing successful results across four independent test‐
ing environments.

Figure 17-1 shows what this looks like when a CI system is connected to GitHub to
test pull requests. As you can see, all the CI tests show green checks, meaning that
each of the automated test environments were successful. If any of the tests had failed,
you would be alerted to the failure before you merge the changes into your app. Hav‐
ing a CI process not only prevents experienced developers from making accidental
mistakes but also helps new contributors feel confident in their changes.

Code Reviews
Many software companies have found the benefits of having someone else review
code before it’s formally incorporated into a codebase. This process of “code review”
has a number of benefits:

Continuous Integration/Deployment | 249

https://github.com/features/actions
https://travis-ci.org
https://oreil.ly/NFbFQ
https://www.appveyor.com
https://www.appveyor.com
https://jenkins.io
https://oreil.ly/WYsfG

• It catches bugs before they get incorporated into the application, making them
much less expensive to fix.

• It offers teaching opportunities—programmers at all levels often learn something
new by reviewing others’ code or by having their code reviewed.

• It facilitates cross-pollination and knowledge sharing across a team to eliminate
having only one person who understands the app.

• The resulting conversation often improves the readability of the code.

Typically, a code review involves someone other than you, but you can still benefit
even if it’s only you. Most experienced developers will agree that taking a moment to
review your own code often reveals some small flaw, particularly if you can let it sit
for at least a few hours between writing and review.

Here are few questions to hold in your head when reviewing code:

• Do new functions have concise but evocative names?
• Are there parts of the code you find confusing?
• What areas are likely to change in the future and would particularly benefit from

automated testing?
• Does the style of the code match the rest of the app (or, even better, your group’s

documented code style)?

If you’re embedded in an organization with a strong engineering culture, setting up
code reviews for data science code should be relatively straightforward, and you’ll
have existing tools and experience to draw on. If you’re in an organization that has
few other software engineers, you may need to do more convincing.

Two resources I’d recommend:

• thoughtbot guides
• Code Review Developer Guide

Summary
Now that you’ve learned a little bit of the software engineer mindset, the next chap‐
ters are going to dive into the details of function writing, testing, security, and perfor‐
mance as they apply to Shiny apps. You’ll need to read Chapter 18 before the other
chapters, but otherwise you can skip around.

250 | Chapter 17: General Guidelines

https://oreil.ly/949mo
https://oreil.ly/VZEpM

1 If you’re not, and you’d like to learn the basics, you might try reading the Functions chapter of R for Data
Science.

CHAPTER 18

Functions

As your app gets bigger, it will get harder and harder to hold all the pieces in your
head, making it harder and harder to understand. In turn, this makes it harder to add
new features and harder to find a solution when something goes wrong (i.e., it’s
harder to debug). If you don’t take deliberate steps, the development pace of your app
will slow, and it will become less and less enjoyable to work on.

In this chapter, you’ll learn how writing functions can help. This tends to have slightly
different flavors for UI and server components:

• In the UI, you have components that are repeated in multiple places with minor
variations. Pulling out repeated code into a function reduces duplication (making
it easier to update many controls from one place) and can be combined with
functional programming techniques to generate many controls at once.

• In the server, complex reactives are hard to debug because you need to be in the
midst of the app. Pulling out a reactive into a separate function, even if that func‐
tion is only called in one place, makes it substantially easier to debug, because
you can experiment with computation independent of reactivity.

Functions have another important role in Shiny apps: they allow you to spread out
your app code across multiple files. While you certainly can have one giant app.R file,
it’s much easier to manage when spread across multiple files.

I assume that you’re already familiar with the basics of functions.1 The goal of this
chapter is to activate your existing skills, showing you some specific cases where
using functions can substantially improve the clarity of your app. Once you’ve

251

https://oreil.ly/yrvYN

mastered the ideas in this chapter, the next step is to learn how to write code that
requires coordination across the UI and server. That requires modules, which you’ll
learn about in Chapter 19. As usual, we begin by loading shiny:

library(shiny)

File Organization
Before we go on to talk about exactly how you might use functions in your app, I
want to start with one immediate benefit: functions can live outside of app.R. There
are two places you might put them, depending on how big they are:

• I recommend putting large functions (and any smaller helper functions that they
need) into their own R/{function-name}.R file.

• You might want to collect smaller, simpler, functions into one place. I often use
R/utils.R for this, but if they’re primarily used in your UI, you might use R/ui.R.

If you’ve made an R package before, you might notice that Shiny uses the same con‐
vention for storing files containing functions. And indeed, if you’re making a compli‐
cated app, particularly if there are multiple authors, there are substantial advantages
to making a full-fledged package. If you want to do this, I recommend reading Engi‐
neering Production-Grade Shiny Apps and using the accompanying golem package.
We’ll touch on packages again when we talk more about testing.

UI Functions
Functions are a powerful tool to reduce duplication in your UI code. Let’s start with a
concrete example of some duplicated code. Imagine that you’re creating a bunch of
sliders that each need to range from 0 to 1, starting at 0.5, with a 0.1 step. You could
do a bunch of copy and paste to generate all the sliders:

ui <- fluidRow(
 sliderInput("alpha", "alpha", min = 0, max = 1, value = 0.5, step = 0.1),
 sliderInput("beta", "beta", min = 0, max = 1, value = 0.5, step = 0.1),
 sliderInput("gamma", "gamma", min = 0, max = 1, value = 0.5, step = 0.1),
 sliderInput("delta", "delta", min = 0, max = 1, value = 0.5, step = 0.1)
)

But I think it’s worthwhile to recognize the repeated pattern and extract out a func‐
tion. That makes the UI code substantially simpler:

sliderInput01 <- function(id) {
 sliderInput(id, label = id, min = 0, max = 1, value = 0.5, step = 0.1)
}

ui <- fluidRow(
 sliderInput01("alpha"),

252 | Chapter 18: Functions

https://engineering-shiny.org
https://engineering-shiny.org
https://thinkr-open.github.io/golem

 sliderInput01("beta"),
 sliderInput01("gamma"),
 sliderInput01("delta")
)

Here, a function helps in two ways:

• We can give the function an evocative name, making it easier to understand
what’s going on when we reread the code in the future.

• If we need to change the behavior, we only need to do it in one place. For exam‐
ple, if we decided that we needed a finer resolution for the steps, we only need to
write step = 0.01 in one place, not four.

Other Applications
Functions can be useful in many other places. Here are a few ideas to get your crea‐
tive juices flowing:

• If you’re using a customized dateInput() for your country, pull it out into one
place so that you can use consistent arguments. For example, imagine you
wanted a date control for Americans to use to select weekdays:

usWeekDateInput <- function(inputId, ...) {
 dateInput(inputId, ..., format = "dd M, yy", daysofweekdisabled = c(0, 6))
}

Note the use of ...; it means that you can still pass along any other arguments to
dateInput().

• Or maybe you want a radio button that makes it easier to provide icons:
iconRadioButtons <- function(inputId, label, choices, selected = NULL) {
 names <- lapply(choices, icon)
 values <- if (is.null(names(choices))) names(choices) else choices
 radioButtons(inputId,
 label = label,
 choiceNames = names, choiceValues = values, selected = selected
)
}

• Or if there are multiple selections you reuse in multiple places:
stateSelectInput <- function(inputId, ...) {
 selectInput(inputId, ..., choices = state.name)
}

If you’re developing a lot of Shiny apps within your organization, you can help
improve cross-app consistency by putting functions like this in a shared package.

UI Functions | 253

Functional Programming
To return back to our motivating example, you could reduce the code still further if
you’re comfortable with functional programming:

library(purrr)

vars <- c("alpha", "beta", "gamma", "delta")
sliders <- map(vars, sliderInput01)
ui <- fluidRow(sliders)

There are two big ideas here:

• map() calls sliderInput01() once for each string stored in vars. It returns a list
of sliders.

• When you pass a list into fluidRow() (or any HTML container), it automatically
unpacks the list so that the elements become the children of the container.

If you would like to learn more about map() (or its base equivalent, lapply()), you
might enjoy the Functionals chapter of Advanced R.

UI as Data
It’s possible to generalize this idea further if the controls have more than one varying
input. First, we create an inline data frame that defines the parameters of each control
using tibble::tribble(). We’re turning UI structure into an explicit data structure:

vars <- tibble::tribble(
 ~ id, ~ min, ~ max,
 "alpha", 0, 1,
 "beta", 0, 10,
 "gamma", -1, 1,
 "delta", 0, 1,
)

Then we create a function where the argument names match the column names:

mySliderInput <- function(id, label = id, min = 0, max = 1) {
 sliderInput(id, label, min = min, max = max, value = 0.5, step = 0.1)
}

Then finally we use purrr::pmap() to call mySliderInput() once for each row of
vars:

sliders <- pmap(vars, mySliderInput)

Don’t worry if this code looks like gibberish to you: you can continue to use copy and
paste. But in the long run, I’d recommend learning more about functional program‐
ming, because it gives you such a wonderful ability to concisely express otherwise

254 | Chapter 18: Functions

https://oreil.ly/Jd73D

long-winded concepts. See “Creating UI with Code” on page 166 for more examples
of using these techniques to generate a dynamic UI in response to user actions.

Server Functions
Whenever you have a long reactive (say > 10 lines), you should consider pulling it out
into a separate function that does not use any reactivity. This has two advantages:

• It is much easier to debug and test your code if you can partition it so that reac‐
tivity lives inside of server() and complex computation lives in your functions.

• When looking at a reactive expression or output, there’s no way to easily tell
exactly what values it depends on, except by carefully reading the code block. A
function definition, however, tells you exactly what the inputs are.

The key benefits of a function in the UI tend to be around reducing duplication. The
key benefits of functions in a server tend to be around isolation and testing.

Reading Uploaded Data
Take this server from “Uploading Data” on page 143. It contains a moderately com‐
plex reactive():

server <- function(input, output, session) {
 data <- reactive({
 req(input$file)

 ext <- tools::file_ext(input$file$name)
 switch(ext,
 csv = vroom::vroom(input$file$datapath, delim = ","),
 tsv = vroom::vroom(input$file$datapath, delim = "\t"),
 validate("Invalid file; Please upload a .csv or .tsv file")
)
 })

 output$head <- renderTable({
 head(data(), input$n)
 })
}

If this was a real app, I’d seriously consider extracting out a function specifically for
reading uploaded files:

load_file <- function(name, path) {
 ext <- tools::file_ext(name)
 switch(ext,
 csv = vroom::vroom(path, delim = ","),
 tsv = vroom::vroom(path, delim = "\t"),
 validate("Invalid file; Please upload a .csv or .tsv file")

Server Functions | 255

)
}

When extracting out such helpers, avoid taking reactives as input or returning out‐
puts. Instead, pass values into arguments and assume the caller will turn the result
into a reactive if needed. This isn’t a hard-and-fast rule; sometimes it will make sense
for your functions to input or output reactives. But generally, I think it’s better to
keep the reactive and nonreactive parts of your app as separate as possible. In this
case, I’m still using validate(); that works because outside of Shiny, validate()
works similarly to stop(). But I keep the req() in the server, because it shouldn’t be
the responsibility of the file parsing code to know when it’s run.

Since this is now an independent function, it could live in its own file (R/load_file.R,
say), keeping the server() svelte. This helps keep the server function focused on the
big picture of reactivity rather than on the smaller details underlying each
component:

server <- function(input, output, session) {
 data <- reactive({
 req(input$file)
 load_file(input$file$name, input$file$datapath)
 })

 output$head <- renderTable({
 head(data(), input$n)
 })
}

The other big advantage is that you can play with load_file() at the console, outside
of your Shiny app. If you move toward formal testing of your app (see Chapter 21),
this also makes that code easier to test.

Internal Functions
Most of the time you’ll want to make the function completely independent of the
server function so that you can put it in a separate file. However, if the function needs
to use input, output, or session, it may make sense for the function to live inside the
server function:

server <- function(input, output, session) {
 switch_page <- function(i) {
 updateTabsetPanel(input = "wizard", selected = paste0("page_", i))
 }

 observeEvent(input$page_12, switch_page(2))
 observeEvent(input$page_21, switch_page(1))
 observeEvent(input$page_23, switch_page(3))
 observeEvent(input$page_32, switch_page(2))
}

256 | Chapter 18: Functions

This doesn’t make testing or debugging any easier, but it does reduce duplicated code.

We could, of course, add session to the arguments of the function:

switch_page <- function(i) {
 updateTabsetPanel(input = "wizard", selected = paste0("page_", i))
}

server <- function(input, output, session) {
 observeEvent(input$page_12, switch_page(2))
 observeEvent(input$page_21, switch_page(1))
 observeEvent(input$page_23, switch_page(3))
 observeEvent(input$page_32, switch_page(2))
}

But this feels weird as the function is still fundamentally coupled to this app because
it only affects a control named “wizard” with a very specific set of tabs.

Summary
As your apps get bigger, extracting nonreactive functions out of the flow of the app
will make your life substantially easier. Functions allow you to separate reactive and
nonreactive code and spread your code out over multiple files. This often makes it
much easier to see the big-picture shape of your app, and by moving complex logic
out of the app into regular R code, it makes it much easier to experiment, iterate, and
test. When you start extracting out function, it’s likely to feel a bit slow and frustrat‐
ing, but over time you’ll get faster and faster, and soon it will become a key tool in
your toolbox.

The functions in this chapter have one important drawback: they can generate only
UI or server components, not both. In the next chapter, you’ll learn how to create
Shiny modules, which coordinate UI and server code into a single object.

Summary | 257

CHAPTER 19

Shiny Modules

In the last chapter we used functions to decompose parts of your Shiny app into inde‐
pendent pieces. Functions work well for code that is either completely on the server
side or completely on the client side. For code that spans both (i.e., whether the server
code relies on specific structure in the UI), you’ll need a new technique: modules.

At the simplest level, a module is a pair of UI and server functions. The magic of
modules comes because these functions are constructed in a special way that creates a
“namespace.” So far, when writing an app, the names (ids) of the controls are global:
all parts of your server function can see all parts of your UI. Modules give you the
ability to create controls that can only be seen from within the module. This is called
a namespace because it creates “spaces” of “names” that are isolated from the rest of
the app.

Shiny modules have two big advantages. First, namespacing makes it easier to under‐
stand how your app works because you can write, analyze, and test individual compo‐
nents in isolation. Second, because modules are functions, they help you reuse code;
anything you can do with a function, you can do with a module. Let’s begin by load‐
ing shiny:

library(shiny)

Motivation
Before we dive into the details of creating modules, it’s useful to get a sense for how
they change the “shape” of your app. I’m going to borrow an example from Eric
Nantz, who talked about modules at rstudio::conf(2019). Eric was motivated to use
modules because he had a big, complex app, as shown in Figure 19-1. You don’t know
the specifics of this app, but you can get some sense of the complexity due to the
many interconnected components.

259

https://github.com/rpodcast
https://github.com/rpodcast
https://youtu.be/ylLLVo2VL50

Figure 19-1. A rough sketch of a complex app. I’ve done my best to display it simply in a
diagram, but it’s still hard to understand what all the pieces are.

Figure 19-2 shows the how the app looks now, after a rewrite that uses modules:

• The app is divided up into pieces, and each piece has a name. Naming the pieces
means that the names of the controls can be simpler. For example, previously the
app had “session manage” and “session activate,” but now we only need “manage”
and “activate” because those controls are nested inside the session module. This is
namespacing!

• A module is a black box with defined inputs and outputs. Other modules can
only communicate via the interface (outside) of a module; they can’t reach inside
and directly inspect or modify the internal controls and reactives. This enforces a
simpler structure to the whole app.

• Modules are reusable so we can write functions to generate both yellow and blue
components. This can significantly reduce the total amount of code in the app.

260 | Chapter 19: Shiny Modules

Figure 19-2. After converting the app to use modules, it’s much easier to see the big-
picture components of the app and see what is reused in multiple places (the blue and
yellow components).

Module Basics
To create your first module, we’ll pull a module out of a very simple app that draws a
histogram:

ui <- fluidPage(
 selectInput("var", "Variable", names(mtcars)),
 numericInput("bins", "bins", 10, min = 1),
 plotOutput("hist")
)
server <- function(input, output, session) {
 data <- reactive(mtcars[[input$var]])
 output$hist <- renderPlot({
 hist(data(), breaks = input$bins, main = input$var)
 }, res = 96)
}

This app is so simple that there’s no real benefit to pulling out a module, but it will
serve to illustrate the basic mechanics before we dive into more realistic, and hence
complicated, use cases.

Module Basics | 261

1 Unlike an app, both module UI and server are functions.

A module is very similar to an app. Like an app, it’s composed of two pieces:1

• The module UI function that generates the ui specification
• The module server function that runs code inside the server function

The two functions have standard forms. They both take an id argument and use it to
namespace the module. To create a module, we need to extract code out of the app UI
and server and put it into the module UI and server.

Module UI
We’ll start with the module UI. There are two steps:

• Put the UI code inside a function that has an id argument.
• Wrap each existing ID in a call to NS() so that (for example) "var" turns into
NS(id, "var").

This yields the following function:

histogramUI <- function(id) {
 tagList(
 selectInput(NS(id, "var"), "Variable", choices = names(mtcars)),
 numericInput(NS(id, "bins"), "bins", value = 10, min = 1),
 plotOutput(NS(id, "hist"))
)
}

Here I’ve returned the UI components in a tagList(), which is a special type of lay‐
out function that allows you to bundle together multiple components without
actually implying how they’ll be laid out. It’s the responsibility of the person calling
histogramUI() to wrap the result in a layout function like column() or fluidRow()
according to their needs.

Module Server
Next we tackle the server function. This gets wrapped inside another function, which
must have an id argument. This function calls moduleServer() with the id and a
function that looks like a regular server function:

histogramServer <- function(id) {
 moduleServer(id, function(input, output, session) {
 data <- reactive(mtcars[[input$var]])
 output$hist <- renderPlot({
 hist(data(), breaks = input$bins, main = input$var)

262 | Chapter 19: Shiny Modules

 }, res = 96)
 })
}

The two levels of functions are important here. We’ll come back to them later, but in
short they help distinguish the argument to your module from the arguments to the
server function. Don’t worry if this looks very complex; it’s basically boilerplate that
you can copy and paste for each new module that you create.

Note that moduleServer() takes care of the namespacing automatically: inside of mod
uleServer(id), input$var and input$bins refer to the inputs with names NS(id,
"var") and NS(id, "bins").

Updated App
Now that we have the UI and server functions, it’s good practice to write a function
that uses them to generate an app we can use for experimentation and testing:

histogramApp <- function() {
 ui <- fluidPage(
 histogramUI("hist1")
)
 server <- function(input, output, session) {
 histogramServer("hist1")
 }
 shinyApp(ui, server)
}

Note that, like all Shiny control, you need to use the same id in both UI and server;
otherwise the two pieces will not be connected.

Some Module History
Modules were introduced in Shiny 0.13 (January 2016) with callModule() and over‐
hauled in Shiny 1.5.0 (June 2020) with the introduction of moduleServer(). If you’ve
learned modules a while ago, you might have learned callModule() and be wonder‐
ing what the deal is with moduleServer(). These two functions are identical, except
that the first two arguments are flipped. This is a simple change that leads to a rather
different structure for the entire app:

histogramServerOld <- function(input, output, session) {
 data <- reactive(mtcars[[input$var]])
 output$hist <- renderPlot({
 hist(data(), breaks = input$bins, main = input$var)
 }, res = 96)
}
server <- function(input, output, session) {
 callModule(histogramServerOld, "hist1")
}

Module Basics | 263

The difference is largely superficial for this simple app, but moduleServer() makes
more complicated modules with arguments considerably easier to understand.

Namespacing
Now that we have a complete app, let’s circle back and talk about namespacing some
more. The key idea that makes modules work is that the name of each control (i.e., its
id) is now determined by two pieces:

• The first piece comes from the module user, the developer who calls histogram
Server().

• The second piece comes from the module author, the developer who wrote histo
gramServer().

This two-part specification means that you, the module author, don’t need to worry
about clashing with other UI components created by the user. You have your own
“space” of names that you own and can arrange to best meet your own needs.

Namespacing turns modules into black boxes. From outside of the module, you can’t
see any of the inputs, outputs, or reactives inside of it. For example, take the following
app. The text output output$out will never get updated because there is no input
$bins; the bins input can only be seen inside of the hist1 module:

ui <- fluidPage(
 histogramUI("hist1"),
 textOutput("out")
)
server <- function(input, output, session) {
 histogramServer("hist1")
 output$out <- renderText(paste0("Bins: ", input$bins))
}

If you want to take input from reactives elsewhere in the app, you’ll need to pass them
to the module function explicitly; we’ll come back to that shortly.

Note that the module UI and server differ in how the namespacing is expressed:

• In the module UI, the namespacing is explicit: you have to call NS(id, "name")
every time you create an input or output.

• In the module server, the namespacing is implicit. You only need to use id in the
call to moduleServer(). Shiny automatically namespaces input and output so
that, in your module code, input$name means the input with name NS(id,
"name").

264 | Chapter 19: Shiny Modules

Naming Conventions
In this example, I’ve used a special naming scheme for all the components of the
module, and I recommend that you also use it for your own modules. Here, the mod‐
ule draws a histogram, so I’ve called it the histogram module. This base name is then
used in a variety of places:

• R/histogram.R holds all the code for the module.
• histogramUI() is the module UI. If it’s used primarily for input or output, I’d call

it histogramInput() or histogramOutput() instead.
• histogramServer() is the module server.
• histogramApp() creates a complete app for interactive experimentation and

more formal testing.

Exercises
1. Why is it good practice to put a module in its own file in the R/ directory? What

do you need to do to make sure it’s loaded by your Shiny app?
2. The following module UI includes a critical mistake. What is it, and why will it

cause problems?
histogramUI <- function(id) {
 tagList(
 selectInput("var", "Variable", choices = names(mtcars)),
 numericInput("bins", "bins", value = 10, min = 1),
 plotOutput("hist")
)
}

3. The following module generates a new random number every time you click go:
randomUI <- function(id) {
 tagList(
 textOutput(NS(id, "val")),
 actionButton(NS(id, "go"), "Go!")
)
}
randomServer <- function(id) {
 moduleServer(id, function(input, output, session) {
 rand <- eventReactive(input$go, sample(100, 1))
 output$val <- renderText(rand())
 })
}

Create an app that displays four copies of this module on a single page. Verify
that each module is independent. How could you change the return value of ran
domUI() to make the display more attractive?

Module Basics | 265

4. Are you sick of typing module boilerplate already? Read about RStudio snippets
and add the following snippet to your RStudio config to make it even easier to
create new modules:

${1}UI <- function(id) {
 tagList(
 ${2}
)
}

${1}Server <- function(id) {
 moduleServer(id, function(input, output, session) {
 ${3}
 }
}

Inputs and Outputs
Sometimes a module with only an id argument to the module UI and server is useful
because it allows you to isolate complex code in its own file. This is particularly useful
for apps that aggregate independent components, such as a corporate dashboard
where each tab shows tailored reports for each line of business. Here modules allow
you to develop each piece in its own file without having to worry about IDs clashing
across components.

A lot of the time, however, your module UI and server will need additional argu‐
ments. Adding arguments to the module UI gives greater control over module
appearance, allowing you to use the same module in more places in your app. But the
module UI is just a regular R function, so there’s relatively little to learn that’s specific
to Shiny, and much of it was already covered in Chapter 18.

So in the following sections, I’ll focus on the module server and discuss how your
module can take additional reactive inputs and return one or more reactive outputs.
Unlike regular Shiny code, connecting modules together requires you to be explicit
about inputs and outputs. Initially, this is going to feel tiresome. And it’s certainly
more work than Shiny’s usual free-form association. But modules enforce specific
lines of communication for a reason: they’re a little more work to create but much
easier to understand and allow you to build substantially more complex apps.

You might see advice to use session$userData or other techniques to break out of
the module straitjacket. Be wary of such advice: it’s showing you how to work around
the rules imposed by namespacing, making it easy to reintroduce much complexity to
your app and significantly reducing the benefits of using a module in the first place.

266 | Chapter 19: Shiny Modules

https://oreil.ly/yhvm1

2 The tidyverse style guide recommends reserving return() only for cases where you are returning early.

Getting Started: UI Input and Server Output
To see how inputs and outputs work, we’ll start off easy with a module that allows the
user to select a dataset from built-in data provided by the datasets package. This isn’t
terribly useful by itself, but it illustrates some of the basic principles and is a useful
building block for more complex modules, as you’ve seen before in “Adding UI Con‐
trols” on page 6.

We’ll start with the module UI. Here I use a single additional argument so that you
can limit the options to built-in datasets that are either data frames (filter =

is.data.frame) or matrices (filter = is.matrix). I use this argument to optionally
filter the objects found in the datasets package, then create a selectInput():

datasetInput <- function(id, filter = NULL) {
 names <- ls("package:datasets")
 if (!is.null(filter)) {
 data <- lapply(names, get, "package:datasets")
 names <- names[vapply(data, filter, logical(1))]
 }

 selectInput(NS(id, "dataset"), "Pick a dataset", choices = names)
}

The module server is also simple: we just use get() to retrieve the dataset with its
name. There’s one new idea here: like a function and unlike a regular server(), this
module server returns a value. Here we take advantage of the usual rule that the last
expression processed in the function becomes the return value.2 This value should
always be a reactive:

datasetServer <- function(id) {
 moduleServer(id, function(input, output, session) {
 reactive(get(input$dataset, "package:datasets"))
 })
}

To use a module server that returns something, you just have to capture its return
value with <-. That’s demonstrated in the following module app, where I capture the
dataset and then display it in a tableOutput():

datasetApp <- function(filter = NULL) {
 ui <- fluidPage(
 datasetInput("dataset", filter = filter),
 tableOutput("data")
)
 server <- function(input, output, session) {
 data <- datasetServer("dataset")
 output$data <- renderTable(head(data()))

Inputs and Outputs | 267

https://oreil.ly/HFWiL

 }
 shinyApp(ui, server)
}

I’ve made a few executive decisions in my design of this function:

• It takes a filter argument that’s passed along to the module UI, making it easy
to experiment with that input argument.

• I use a tabular output to show all the data. It doesn’t really matter what you use
here, but the more expressive your UI, the easier it is to check that the module
does what you expect.

Case Study: Selecting a Numeric Variable
Next, we’ll create a control that allows the user to select variables of a specified type
from a given reactive dataset. Because we want the dataset to be reactive, we can’t fill
in the choices when we start the app. This makes the module UI very simple:

selectVarInput <- function(id) {
 selectInput(NS(id, "var"), "Variable", choices = NULL)
}

The server function will have two arguments:

• The data to select variables from. I want this to be reactive so it can work with
the dataset module I created previously.

• A filter used to select which variables to list. This will be set by the caller of the
module, so it doesn’t need to be reactive. To keep the module server simple, I’ve
extracted out the key idea into a helper function:

find_vars <- function(data, filter) {
 names(data)[vapply(data, filter, logical(1))]
}

Then the module server uses observeEvent() to update the inputSelect choices
when the data changes and returns a reactive that provides the values of the selected
variable:

selectVarServer <- function(id, data, filter = is.numeric) {
 moduleServer(id, function(input, output, session) {
 observeEvent(data(), {
 updateSelectInput(session, "var", choices = find_vars(data(), filter))
 })

 reactive(data()[[input$var]])
 })
}

268 | Chapter 19: Shiny Modules

To make our app, we again capture the results of the module server and connect it to
an output in our UI. I want to make sure all the reactive plumbing is correct, so I use
the dataset module as a source of reactive data frames:

selectVarApp <- function(filter = is.numeric) {
 ui <- fluidPage(
 datasetInput("data", is.data.frame),
 selectVarInput("var"),
 verbatimTextOutput("out")
)
 server <- function(input, output, session) {
 data <- datasetServer("data")
 var <- selectVarServer("var", data, filter = filter)
 output$out <- renderPrint(var())
 }

 shinyApp(ui, server)
}

Server Inputs
When designing a module server, you need to think about who is going to provide
the value for each argument: is it the R programmer calling your module or the per‐
son using the app? Another way to think about this is when can the value change: is it
fixed and constant over the lifetime of the app, or is it reactive, changing as the user
interacts with the app? This is an important design decision that determines whether
or not an argument should be a reactive or not.

Once you’ve made this decision, I think it’s good practice to check that each input to
your module is either reactive or constant. If you don’t, and the user supplies the
wrong type, they’ll get a cryptic error message. You can make the life of a module
user much easier with a quick and dirty call to stopifnot(). For example, selectVar
Server() could check that data is reactive and filter is not with the following code:

selectVarServer <- function(id, data, filter = is.numeric) {
 stopifnot(is.reactive(data))
 stopifnot(!is.reactive(filter))

 moduleServer(id, function(input, output, session) {
 observeEvent(data(), {
 updateSelectInput(session, "var", choices = find_vars(data(), filter))
 })

 reactive(data()[[input$var]])
 })
}

If you expect the module to be used many times by many people, you might also con‐
sider hand-crafting an error message with an if statement and a call to stop().

Inputs and Outputs | 269

Checking that the module inputs are reactive (or not) helps you avoid a common
problem when you mix modules with other input controls. input$var is not a reac‐
tive, so whenever you pass an input value into a module, you’ll need to wrap it in a
reactive() (e.g., selectVarServer("var", reactive(input$x))). If you check the
inputs like I recommend here, you’ll get a clear error; if you don’t, you’ll get some‐
thing cryptic like could not find function "data".

You might also apply this strategy to find_vars(). It’s not quite as
important here, but because debugging Shiny apps is a little harder
than debugging regular R code, I think it does make sense to invest
a little more time in checking inputs so that you get clearer error
messages when something goes wrong:

find_vars <- function(data, filter) {
 stopifnot(is.data.frame(data))
 stopifnot(is.function(filter))
 names(data)[vapply(data, filter, logical(1))]
}

This caught a couple of errors that I made while working on this
chapter.

Modules Inside of Modules
Before we continue on to talk more about outputs from your server function, I
wanted to highlight that modules are composable, and it may make sense to create a
module that itself contains a module. For example, we could combine the dataset
and selectVar modules to make a module that allows the user to pick a variable from
a built-in dataset:

selectDataVarUI <- function(id) {
 tagList(
 datasetInput(NS(id, "data"), filter = is.data.frame),
 selectVarInput(NS(id, "var"))
)
}
selectDataVarServer <- function(id, filter = is.numeric) {
 moduleServer(id, function(input, output, session) {
 data <- datasetServer("data")
 var <- selectVarServer("var", data, filter = filter)
 var
 })
}

selectDataVarApp <- function(filter = is.numeric) {
 ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(selectDataVarUI("var")),
 mainPanel(verbatimTextOutput("out"))

270 | Chapter 19: Shiny Modules

)
)
 server <- function(input, output, session) {
 var <- selectDataVarServer("var", filter)
 output$out <- renderPrint(var(), width = 40)
 }
 shinyApp(ui, server)
}

Case Study: Histogram
Now let’s circle back to the original histogram module and refactor it into something
more composable. The key challenge of creating modules is creating functions that
are flexible enough to be used in multiple places but simple enough that they can be
easily understood. Figuring out how to write functions that are good building blocks
is the journey of a lifetime; expect that you’ll have to do it wrong quite a few times
before you get it right. (I wish I could offer more concrete advice here, but currently
this is a skill that you’ll have to refine through practice and conscious reflection.)

I’m also going to consider it as an output control because while it does use an input
(the number of bins), that’s used only to tweak the display and doesn’t need to be
returned by the module:

histogramOutput <- function(id) {
 tagList(
 numericInput(NS(id, "bins"), "bins", 10, min = 1, step = 1),
 plotOutput(NS(id, "hist"))
)
}

I’ve decided to give this module two inputs: x, the variable to plot, and a title for the
histogram. Both will be reactive so that they can change over time. (The title is a bit
frivolous, but it’s going to motivate an important technique very shortly.) Note the
default value of title—it has to be reactive, so we need to wrap a constant value
inside of reactive():

histogramServer <- function(id, x, title = reactive("Histogram")) {
 stopifnot(is.reactive(x))
 stopifnot(is.reactive(title))

 moduleServer(id, function(input, output, session) {
 output$hist <- renderPlot({
 req(is.numeric(x()))
 main <- paste0(title(), " [", input$bins, "]")
 hist(x(), breaks = input$bins, main = main)
 }, res = 96)
 })
}

Inputs and Outputs | 271

histogramApp <- function() {
 ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 datasetInput("data", is.data.frame),
 selectVarInput("var"),
),
 mainPanel(
 histogramOutput("hist")
)
)
)

 server <- function(input, output, session) {
 data <- datasetServer("data")
 x <- selectVarServer("var", data)
 histogramServer("hist", x)
 }
 shinyApp(ui, server)
}
histogramApp()

Note that if you wanted to allow the module user to place the
breaks control and histogram in different places of the app, you
could use multiple UI functions. It’s not terribly useful here, but it’s
useful to see the basic approach:

histogramOutputBins <- function(id) {
 numericInput(NS(id, "bins"), "bins", 10, min = 1, step = 1)
}
histogramOutputPlot <- function(id) {
 plotOutput(NS(id, "hist"))
}

ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 datasetInput("data", is.data.frame),
 selectVarInput("var"),
 histogramOutputBins("hist")
),
 mainPanel(
 histogramOutputPlot("hist")
)
)
)

Multiple Outputs
It would be nice if we could include the name of the selected variable in the title of the
histogram. There’s currently no way to do that because selectVarServer() only

272 | Chapter 19: Shiny Modules

returns the value of the variable, not its name. We could certainly rewrite selectVar
Server() to return the name instead, but then the module user would have to do the
subsetting. A better approach would be for the selectVarServer() to return both the
name and the value.

A server function can return multiple values exactly the same way that any R function
can return multiple values: by returning a list. Here, we modify selectVarServer()
to return both the name and value as reactives:

selectVarServer <- function(id, data, filter = is.numeric) {
 stopifnot(is.reactive(data))
 stopifnot(!is.reactive(filter))

 moduleServer(id, function(input, output, session) {
 observeEvent(data(), {
 updateSelectInput(session, "var", choices = find_vars(data(), filter))
 })

 list(
 name = reactive(input$var),
 value = reactive(data()[[input$var]])
)
 })
}

Now we can update our histogramApp() to make use of this. The UI stays the same;
but now we pass both the selected variable’s value and its name to histogram
Server():

histogramApp <- function() {
 ui <- fluidPage(...)

 server <- function(input, output, session) {
 data <- datasetServer("data")
 x <- selectVarServer("var", data)
 histogramServer("hist", x$value, x$name)
 }
 shinyApp(ui, server)
}

The main challenge with this sort of code is remembering when you use the reactive
(e.g., x$value) versus when you use its value (e.g., x$value()). Just remember that
when passing an argument to a module, you want the module to react to the value
changing, which means that you have to pass the reactive, not its current value.

If you find yourself frequently returning multiple values from a reactive, you might
also consider using the zeallot package. zeallot provides the %<-% operator, which
allows you to assign into multiple variables (sometimes called multiple, unpacking, or
destructuring assignment). This can be useful when returning multiple values
because you avoid a layer of indirection:

Inputs and Outputs | 273

https://github.com/r-lib/zeallot

library(zeallot)

histogramApp <- function() {
 ui <- fluidPage(...)

 server <- function(input, output, session) {
 data <- datasetServer("data")
 c(value, name) %<-% selectVarServer("var", data)
 histogramServer("hist", value, name)
 }
 shinyApp(ui, server)
}

Exercises
1. Rewrite selectVarServer() so that both data and filter are reactive. Then use

it with an app function that lets the user pick the dataset with the dataset mod‐
ule and filtering function using inputSelect(). Give the user the ability to filter
numeric, character, or factor variables.

2. The following code defines output and server components of a module that takes
a numeric input and produces a bulleted list of three summary statistics. Create
an app function that allows you to experiment with it. The app function should
take a data frame as input and use numericVarSelectInput() to pick the variable
to summarize:

summaryOutput <- function(id) {
 tags$ul(
 tags$li("Min: ", textOutput(NS(id, "min"), inline = TRUE)),
 tags$li("Max: ", textOutput(NS(id, "max"), inline = TRUE)),
 tags$li("Missing: ", textOutput(NS(id, "n_na"), inline = TRUE))
)
}

summaryServer <- function(id, var) {
 moduleServer(id, function(input, output, session) {
 rng <- reactive({
 req(var())
 range(var(), na.rm = TRUE)
 })

 output$min <- renderText(rng()[[1]])
 output$max <- renderText(rng()[[2]])
 output$n_na <- renderText(sum(is.na(var())))
 })
}

3. The following module input provides a text control that lets you type a date in
ISO8601 format (yyyy-mm-dd). Complete the module by providing a server

274 | Chapter 19: Shiny Modules

function that uses output$error to display a message if the entered value is not a
valid date. The module should return a Date object for valid dates. (Hint: use
strptime(x, "%Y-%m-%d") to parse the string; it will return NA if the value isn’t a
valid date.)

ymdDateUI <- function(id, label) {
 label <- paste0(label, " (yyyy-mm-dd)")

 fluidRow(
 textInput(NS(id, "date"), label),
 textOutput(NS(id, "error"))
)
}

Case Studies
To summarize what you’ve learned so far:

• Module inputs (i.e., additional arguments to the module server) can be reactives
or constants. The choice is a design decision that you make based on who sets the
arguments and when they change. You should always check that the arguments
are of the expected type to avoid unhelpful error messages.

• Unlike app servers, but like regular functions, module servers can return values.
The return value of a module should always be a reactive or, if you want to return
multiple values, a list of reactives.

To help these ideas to sink in, I’ll present a few case studies that show a few more
examples of using modules. Unfortunately, I don’t have the space to show every possi‐
ble way you might use a module to help simplify your app, but hopefully these exam‐
ples will give you a little flavor for what you can do and suggest directions to consider
in the future.

Limited Selection and Other
Another important use of modules is to give complex UI elements a simpler user
interface. Here I’m going to create a useful control that Shiny doesn’t provide by
default: a small set of options displayed with radio buttons coupled with an “Other”
field. The inside of this module uses multiple input elements, but from the outside it
works as a single combined object.

I’m going to parameterize the UI side with label, choices, and selected, which get
passed directly to radioButtons(). I also create a textInput() containing a place‐
holder, which defaults to “Other.” To combine the text box and the radio button, I
take advantage of the fact that choiceNames can be a list of HTML elements, includ‐
ing other input widgets. Figure 19-3 gives you a sense of what it’ll look like:

Case Studies | 275

radioExtraUI <- function(id, label, choices, selected = NULL, placeholder = "Other") {
 other <- textInput(NS(id, "other"), label = NULL, placeholder = placeholder)

 names <- if (is.null(names(choices))) choices else names(choices)
 values <- unname(choices)

 radioButtons(NS(id, "primary"),
 label = label,
 choiceValues = c(names, "other"),
 choiceNames = c(as.list(values), list(other)),
 selected = selected
)
}

Figure 19-3. An example using radioExtraUI() to find out how you usually read CSV
files.

On the server, I want to automatically select the “Other” radio button if you modify
the placeholder value. You could also imagine using validation to ensure that some
text is present if Other is selected:

radioExtraServer <- function(id) {
 moduleServer(id, function(input, output, session) {
 observeEvent(input$other, ignoreInit = TRUE, {
 updateRadioButtons(session, "primary", selected = "other")
 })

 reactive({
 if (input$primary == "other") {
 input$other
 } else {
 input$primary
 }
 })
 })
}

Then I wrap up both pieces in an app function so that I can test it. Here I use … to pass
down any number of arguments into my radioExtraUI():

radioExtraApp <- function(...) {
 ui <- fluidPage(
 radioExtraUI("extra", ...),
 textOutput("value")
)

276 | Chapter 19: Shiny Modules

 server <- function(input, output, server) {
 extra <- radioExtraServer("extra")
 output$value <- renderText(paste0("Selected: ", extra()))
 }

 shinyApp(ui, server)
}

Figure 19-4 gives you a sense of how it behaves:

Figure 19-4. Testing radioExtraApp() with the same question about how you read
CSVs. Now, if you type something in the other field, the corresponding radio button is
automatically selected.

You could continue to wrap up this module for still more specific purposes. For
example, one variable that requires a little care is gender, because there are many dif‐
ferent ways for people to express their gender:

genderUI <- function(id, label = "Gender") {
 radioExtraUI(id,
 label = label,
 choices = c(
 male = "Male",
 female = "Female",
 na = "Prefer not to say"
),
 placeholder = "Self-described",
 selected = "na"
)
}

Here it’s important to provide the most common choices, male and female; an option
to not provide that data; and then a write-in option where people can use whatever
term they’re most comfortable with. It’s considerate not to use a placeholder of
“Other” here.

For a deeper dive into this issue, and a discussion of why many commonly used ways
of asking about gender can be hurtful to some people, I recommend reading “Design‐
ing Forms for Gender Diversity and Inclusion” by Sabrina Fonseca or “Standard for
Sex, Gender, Variations of Sex Characteristics and Sexual Orientation Variables” by
the Australian Bureau of Statistics.

Case Studies | 277

https://uxdesign.cc/d8194cf1f51
https://uxdesign.cc/d8194cf1f51
https://oreil.ly/D9snI
https://oreil.ly/D9snI

3 Not every page will have both buttons (more on that shortly), so I mark them as optional by supplying a
default value of NULL.

Wizard
Next we’ll tackle a pair of case studies that dive into some subtleties of namespacing,
where the UI is generated at different times by different people. These situations are
complex because you need to remember the details of how namespacing works.

We’ll start with a module that wraps up a wizard interface, a style of UI where you
break a complex process down into a series of simple pages that the user works
through one by one. I showed how to create a basic wizard in “Wizard Interface” on
page 165. Now we’ll automate the process so that when creating a wizard you can
focus on the content of each page rather than on how they are connected together to
form a whole.

To explain this module, I’m going to start from the bottom and work my way up. The
main part of the wizard UI are the buttons. Each page has two buttons: one to take
them to the next page and one to return them to the previous page. We’ll start by cre‐
ating helpers to build these buttons:

nextPage <- function(id, i) {
 actionButton(NS(id, paste0("go_", i, "_", i + 1)), "next")
}
prevPage <- function(id, i) {
 actionButton(NS(id, paste0("go_", i, "_", i - 1)), "prev")
}

The only real complexity here is the id: since each input element needs to have a
unique ID, the ID for each button needs to include both the current and the destina‐
tion page.

Next I write a function to generate a page of the wizard. This includes a “title” (not
shown but used to identify the page for switching), the contents of the page (supplied
by the user), and the two buttons:3

wrapPage <- function(title, page, button_left = NULL, button_right = NULL) {
 tabPanel(
 title = title,
 fluidRow(
 column(12, page)
),
 fluidRow(
 column(6, button_left),
 column(6, button_right)
)
)
}

278 | Chapter 19: Shiny Modules

Then we can put it all together to generate the whole wizard (Figure 19-5). We loop
over the list of pages provided by the user, create the buttons, wrap up the user-
supplied page into a tabPanel, then combine all the panels into a tabsetPanel. Note
that there are two special cases for buttons:

• The first page doesn’t have a previous button. Here I use a trick that if returns
NULL if the condition is FALSE and there is no else block.

• The last page uses an input control supplied by the user. I think this is the sim‐
plest way to allow the user to control what happens when the wizard is done.

wizardUI <- function(id, pages, doneButton = NULL) {
 stopifnot(is.list(pages))
 n <- length(pages)

 wrapped <- vector("list", n)
 for (i in seq_along(pages)) {
 # First page only has next; last page only prev + done
 lhs <- if (i > 1) prevPage(id, i)
 rhs <- if (i < n) nextPage(id, i) else doneButton
 wrapped[[i]] <- wrapPage(paste0("page_", i), pages[[i]], lhs, rhs)
 }

 # Create tabsetPanel
 # https://github.com/rstudio/shiny/issues/2927
 wrapped$id <- NS(id, "wizard")
 wrapped$type <- "hidden"
 do.call("tabsetPanel", wrapped)
}

Figure 19-5. A simple example of the wizard UI.

The code to create the tabset panel requires a little explanation: unfortunately, tabset
Panel() doesn’t allow us to pass in a list of tabs. So instead we need to do a little
do.call() magic to make it work. do.call(function_name, list(arg1, arg2, …)
is equivalent to function_name(arg1, arg2, …), so here we’re creating a call like
tabsetPanel(pages[[1]], pages[[2]], …, id = NS(id, "wizard"), type =

"hidden"). Hopefully this will be simplified in a future version of Shiny.

Case Studies | 279

Now that we’ve completed the module UI, we need to turn our attention to the mod‐
ule server. The essence of the server is straightforward: we just need to make buttons
work so that you can travel from page to page in either direction. To do that we need
to set up an observeEvent() for each button that calls updateTabsetPanel(). This
would be relatively simple if we knew exactly how many pages there were. But we
don’t because the user of the module gets to control that.

So instead we need to do a little functional programming to set up the (n - 1) * 2
observers (two observers for each page except for the first and last, which only need
one). The following server function starts by extracting out the basic code we need
for one button in the changePage() function. It uses input[[]], as in “Multiple Con‐
trols” on page 168, so we can refer to control dynamically. Then we use lapply() to
loop over all the previous buttons (needed for every page except the first) and all the
next buttons (needed for every page except the last):

wizardServer <- function(id, n) {
 moduleServer(id, function(input, output, session) {
 changePage <- function(from, to) {
 observeEvent(input[[paste0("go_", from, "_", to)]], {
 updateTabsetPanel(session, "wizard", selected = paste0("page_", to))
 })
 }
 ids <- seq_len(n)
 lapply(ids[-1], function(i) changePage(i, i - 1))
 lapply(ids[-n], function(i) changePage(i, i + 1))
 })
}

Note that it’s not possible to use a for loop instead of map()/lapply() here. A for loop
works by changing the value of the same i variable so that by the time the loop is
done, every changePage() would use the same value. map() and lapply() work by
creating new environments, each with their own value of i.

Now we can construct an app and simple example to make sure we’ve plumbed every‐
thing together correctly:

wizardApp <- function(...) {
 pages <- list(...)

 ui <- fluidPage(
 wizardUI("whiz", pages)
)
 server <- function(input, output, session) {
 wizardServer("whiz", length(pages))
 }
 shinyApp(ui, server)
}

280 | Chapter 19: Shiny Modules

Unfortunately, we need to repeat ourselves slightly when using the module, and we
need to make sure that the n argument to wizardServer() is consistent with the
pages argument to wizardUi(). This is a principled limitation of the module system,
which we’ll discuss in more detail in “Single Object Modules” on page 284.

Now let’s use the wizard in a slightly more realistic app that has inputs and outputs
and yields Figure 19-6. The main point to notice is that even though the pages are
displayed by the module, their IDs are controlled by the user of the module. The
developer who creates the component controls the name; it doesn’t matter who
assembles the control for final display on the webpage:

page1 <- tagList(
 textInput("name", "What's your name?")
)
page2 <- tagList(
 numericInput("age", "How old are you?", 20)
)
page3 <- tagList(
 "Is this data correct?",
 verbatimTextOutput("info")
)

ui <- fluidPage(
 wizardUI(
 id = "demographics",
 pages = list(page1, page2, page3),
 doneButton = actionButton("done", "Submit")
)
)
server <- function(input, output, session) {
 wizardServer("demographics", 3)

 observeEvent(input$done, showModal(
 modalDialog("Thank you!", footer = NULL)
))

 output$info <- renderText(paste0(
 "Age: ", input$age, "\n",
 "Name: ", input$name, "\n"
))
}

Case Studies | 281

Figure 19-6. A simple, but complete, wizard created with our new module.

Dynamic UI
We’ll finish up with a case study that uses dynamic UI, taking part of the dynamic
filtering code found in “Dynamic Filtering” on page 171 and turning it into a module.
The main challenge of dynamic UI within a module is that because you will be gener‐
ating UI code within your server function, we need a more precise definition of when
explicit namespacing is needed.

As usual, we’ll start with the module UI. It’s very simple here, because we’re just gen‐
erating a “hole” that the server functions will fill in dynamically:

filterUI <- function(id) {
 uiOutput(NS(id, "controls"))
}

To create the module server, we’ll first copy in the helper functions from “Dynamic
Filtering” on page 171: make_ui() makes a control for each column, and then fil
ter_var() helps generate the final logical vector. There’s only one difference here:
make_ui() gains an additional id argument so that we can namespace the controls to
the module:

library(purrr)

make_ui <- function(x, id, var) {
 if (is.numeric(x)) {
 rng <- range(x, na.rm = TRUE)
 sliderInput(id, var, min = rng[1], max = rng[2], value = rng)
 } else if (is.factor(x)) {
 levs <- levels(x)
 selectInput(id, var, choices = levs, selected = levs, multiple = TRUE)

282 | Chapter 19: Shiny Modules

 } else {
 # Not supported
 NULL
 }
}
filter_var <- function(x, val) {
 if (is.numeric(x)) {
 !is.na(x) & x >= val[1] & x <= val[2]
 } else if (is.factor(x)) {
 x %in% val
 } else {
 # No control, so don't filter
 TRUE
 }
}

Now we create the module server. There are two main parts:

• We generate the controls using purrr::map() and make_ui(). Note the explicit
use of NS() here. That’s needed because even though we’re inside the module
server, the automatic namespacing only applies to input, output, and session.

• We return the logical filtering vector as the module output.

filterServer <- function(id, df) {
 stopifnot(is.reactive(df))

 moduleServer(id, function(input, output, session) {
 vars <- reactive(names(df()))

 output$controls <- renderUI({
 map(vars(), function(var) make_ui(df()[[var]], NS(id, var), var))
 })

 reactive({
 each_var <- map(vars(), function(var) filter_var(df()[[var]], input[[var]]))
 reduce(each_var, `&`)
 })
 })
}

Now we can put it all together in a module app that allows you to select a built-in
dataset and then filter on any numeric or categorical variable:

filterApp <- function() {
 ui <- fluidPage(
 sidebarLayout(
 sidebarPanel(
 datasetInput("data", is.data.frame),
 textOutput("n"),
 filterUI("filter"),
),
 mainPanel(

Case Studies | 283

 tableOutput("table")
)
)
)
 server <- function(input, output, session) {
 df <- datasetServer("data")
 filter <- filterServer("filter", df)

 output$table <- renderTable(df()[filter(), , drop = FALSE])
 output$n <- renderText(paste0(sum(filter()), " rows"))
 }
 shinyApp(ui, server)
}

A big advantage of using a module here is that it wraps up a bunch of advanced Shiny
programming techniques. You can use the filter module without having to under‐
stand the dynamic UI and functional programming techniques that make it work.

Single Object Modules
To conclude the chapter, I wanted to finish up with a brief discussion of a common
reaction to modules. Feel free to skip this section if that wasn’t your reaction. When
some people (like me!) encounter modules for the first time, they immediately
attempt to combine the module server and module UI into a single-module object. To
illustrate the problem, let’s generalize the motivating example from the first part of
the chapter so that the data frame is now a parameter:

histogramUI <- function(id, df) {
 tagList(
 selectInput(NS(id, "var"), "Variable", names(df)),
 numericInput(NS(id, "bins"), "bins", 10, min = 1),
 plotOutput(NS(id, "hist"))
)
}

histogramServer <- function(id, df) {
 moduleServer(id, function(input, output, session) {
 data <- reactive(df[[input$var]])
 output$hist <- renderPlot({
 hist(data(), breaks = input$bins, main = input$var)
 }, res = 96)
 })
}

And that leads to the following app:

ui <- fluidPage(
 tabsetPanel(
 tabPanel("mtcars", histogramUI("mtcars", mtcars)),
 tabPanel("iris", histogramUI("iris", iris))
)

284 | Chapter 19: Shiny Modules

)
server <- function(input, output, session) {
 histogramServer("mtcars", mtcars)
 histogramServer("iris", iris)
}

It seems undesirable that we have to repeat both the ID and the name of the dataset in
both the UI and server, so it’s natural to want to wrap into a single function that
returns both the UI and the server:

histogramApp <- function(id, df) {
 list(
 ui = histogramUI(id, df),
 server = histogramServer(id, df)
)
}

Then we define the module outside of the UI and server, extracting elements from the
list as needed:

hist1 <- histogramApp("mtcars", mtcars)
hist2 <- histogramApp("iris", iris)

ui <- fluidPage(
 tabsetPanel(
 tabPanel("mtcars", hist1$ui()),
 tabPanel("iris", hist2$ui())
)
)
server <- function(input, output, session) {
 hist1$server()
 hist2$server()
}

There are two problems with this code. First, it doesn’t work, because module
Server() must be called inside a server function. But imagine that problem didn’t
exist or you worked around it some other way. There’s still a big problem: what if we
want to allow the user to select the dataset (i.e., we want to make the df argument
reactive)? That can’t work because the module is instantiated before the server func‐
tion (i.e., before we know that information).

In Shiny, UI and server are inherently disconnected; Shiny doesn’t know which UI
invocation belongs to which server session. You can see this pattern throughout
Shiny: for example, plotOutput() and renderPlot() are connected only by shared
ID. Writing modules as separate functions reflects that reality: they’re distinct func‐
tions that are not connected other than through a shared ID.

Single Object Modules | 285

Summary
This chapter has shown you how to use Shiny modules, a generalization of functions
that allow you to extract coordinated UI and server code into reusable components. It
takes a while to get your head around modules, but once you do, you’ll have unlocked
a powerful technique for simplifying complex apps.

In the next chapter, you’ll learn how to structure your Shiny app like a package so that
you can take advantage of the testing tools available to R packages.

286 | Chapter 19: Shiny Modules

CHAPTER 20

Packages

If you are creating a large or long-term Shiny app, I highly recommend that you orga‐
nize your app in the same way as an R package. This means that you:

• Put all R code in the R/ directory.
• Write a function that starts your app (i.e., that calls shinyApp() with your UI and

server).
• Create a DESCRIPTION file in the root directory of your app.

This structure gets your toes into the water of package development. It’s a long way
from a complete package, but it’s still useful because it activates new tools that make it
easier to work with a larger app. The package structure will pay off further when we
talk about testing in Chapter 21, because you get tools that make it easy to run the
tests and to see what code is tested. In the long run, it also helps you document com‐
plex apps using roxygen2, although we won’t discuss that in this book.

It’s easy to think of packages as giant complicated things like Shiny, ggplot2, or dplyr.
But packages can also be very simple. The core idea of a package is that it’s a set of
conventions for organizing your code and related artifacts: if you follow those con‐
ventions, you get a bunch of tools for free. In this chapter, I’ll show you the most
important conventions and then provide a few hints as to next steps.

As you start working with app-packages, you may find that you enjoy the process of
package development and want to learn more. I’d suggest starting with R Packages to
get the lay of the package development land, then continuing on to Engineering Pro‐
duction Grade Shiny Apps, by Colin Fay, Sébastien Rochette, Vincent Guyader, and
Cervan Girard to learn more about the intersection of R packages and Shiny apps.

As usual, we begin by loading shiny:

287

https://roxygen2.r-lib.org
https://r-pkgs.org
http://engineering-shiny.org
http://engineering-shiny.org

library(shiny)

Converting an Existing App
Converting an app to a package requires some up-front work. Assuming that you
have an app called myApp and it already lives in a directory called myApp/, you’ll need
to do the following things:

• Create an R directory and move app.R into it.
• Transform your app into a standalone function by wrapping:

library(shiny)

myApp <- function(...) {
 ui <- fluidPage(
 ...
)
 server <- function(input, output, session) {
 ...
 }
 shinyApp(ui, server, ...)
}

• Call usethis::use_description() to create a description file. In many cases,
you’ll never need to look at this file, but you need it to activate RStudio’s “package
development mode,” which provides the keyboard shortcuts we’ll use later.

• If you don’t already have one, create an RStudio project by calling use
this::use_rstudio().

• Restart RStudio and reopen your project.

You can now press Cmd/Ctrl+Shift+L to run devtools::load_all() and load all the
package code and data. This means that you can now:

• Remove any calls to source(), since load_all() automatically sources all .R files
in R/.

• If you are loading datasets using read.csv() or similar, you can instead use use
this::use_data(mydataset) to save the data in the data/ directory. load_all()
automatically loads the data for you.

To make this process more concrete, we’ll next work through a simple case study
before coming back to the other benefits of this work in “Benefits” on page 292.

Single File
Imagine I have a relatively complex app that currently lives in a single app.R:

288 | Chapter 20: Packages

library(shiny)

monthFeedbackUI <- function(id) {
 textOutput(NS(id, "feedback"))
}
monthFeedbackServer <- function(id, month) {
 stopifnot(is.reactive(month))

 moduleServer(id, function(input, output, session) {
 output$feedback <- renderText({
 if (month() == "October") {
 "You picked a great month!"
 } else {
 "Eh, you could do better."
 }
 })
 })
}

stones <- vroom::vroom("birthstones.csv")
birthstoneUI <- function(id) {
 p(
 "The birthstone for ", textOutput(NS(id, "month"), inline = TRUE),
 " is ", textOutput(NS(id, "stone"), inline = TRUE)
)
}
birthstoneServer <- function(id, month) {
 stopifnot(is.reactive(month))

 moduleServer(id, function(input, output, session) {
 stone <- reactive(stones$stone[stones$month == month()])
 output$month <- renderText(month())
 output$stone <- renderText(stone())
 })
}

months <- c(
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December"
)
ui <- navbarPage(
 "Sample app",
 tabPanel("Pick a month",
 selectInput("month", "What's your favourite month?", choices = months)
),
 tabPanel("Feedback", monthFeedbackUI("tab1")),
 tabPanel("Birthstone", birthstoneUI("tab2"))
)
server <- function(input, output, session) {
 monthFeedbackServer("tab1", reactive(input$month))
 birthstoneServer("tab2", reactive(input$month))

Converting an Existing App | 289

}
shinyApp(ui, server)

This code creates a simple three-page app that uses modules to keep the pages iso‐
lated. It’s a toy app, but it’s still realistic. The main difference compared to a real app is
that here the individual UI and server components are much simpler.

Module Files
Before turning it into a package, my first step is to pull the two modules out into their
own files following the advice in “Naming Conventions” on page 265:

• R/monthFeedback.R:
monthFeedbackUI <- function(id) {
 textOutput(NS(id, "feedback"))
}
monthFeedbackServer <- function(id, month) {
 stopifnot(is.reactive(month))

 moduleServer(id, function(input, output, session) {
 output$feedback <- renderText({
 if (month() == "October") {
 "You picked a great month!"
 } else {
 "Eh, you could do better."
 }
 })
 })
}

• R/birthstone.R:
birthstoneUI <- function(id) {
 p(
 "The birthstone for ", textOutput(NS(id, "month"), inline = TRUE),
 " is ", textOutput(NS(id, "stone"), inline = TRUE)
)
}
birthstoneServer <- function(id, month) {
 stopifnot(is.reactive(month))

 moduleServer(id, function(input, output, session) {
 stone <- reactive(stones$stone[stones$month == month()])
 output$month <- renderText(month())
 output$stone <- renderText(stone())
 })
}

That leaves me with the following app.R:

290 | Chapter 20: Packages

library(shiny)

stones <- vroom::vroom("birthstones.csv")
#> Rows: 12
#> Columns: 2
#> Delimiter: ","
#> chr [2]: month, stone
#>
#> Use `spec()` to retrieve the guessed column specification
#> Pass a specification to the `col_types` argument to quiet this message
months <- c(
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December"
)

ui <- navbarPage(
 "Sample app",
 tabPanel("Pick a month",
 selectInput("month", "What's your favourite month?", choices = months)
),
 tabPanel("Feedback", monthFeedbackUI("tab1")),
 tabPanel("Birthstone", birthstoneUI("tab2"))
)
server <- function(input, output, session) {
 monthFeedbackServer("tab1", reactive(input$month))
 birthstoneServer("tab2", reactive(input$month))
}
shinyApp(ui, server)

Just pulling the modules out into separate files is useful because it helps me under‐
stand the big picture of the app. If instead I want to dive into the details, I can look at
the modules files.

A Package
Now let’s make this into a package. First I run usethis::use_description(), which
creates a DESCRIPTION file. Next, I move app.R to R/app.R and wrap shinyApp() into a
function:

library(shiny)

monthApp <- function(...) {
 stones <- vroom::vroom("birthstones.csv")
 months <- c(
 "January", "February", "March", "April", "May", "June",
 "July", "August", "September", "October", "November", "December"
)

 ui <- navbarPage(
 "Sample app",
 tabPanel("Pick a month",

Converting an Existing App | 291

 selectInput("month", "What's your favourite month?", choices = months)
),
 tabPanel("Feedback", monthFeedbackUI("tab1")),
 tabPanel("Birthstone", birthstoneUI("tab2"))
)
 server <- function(input, output, session) {
 monthFeedbackServer("tab1", reactive(input$month))
 birthstoneServer("tab2", reactive(input$month))
 }
 shinyApp(ui, server, ...)
}

As an optional extra, I converted birthstones.csv to a package dataset by running use
this::use_data("birthstones"). This creates data/birthstones.rda, which will be
loaded automatically when I load the package. I can now delete birthstones.csv and
remove the line that reads it in: stones <- vroom::vroom("birthstones.csv").

You can see the final product on GitHub.

Benefits
Why bother doing all this work? The most important benefit is a new workflow that
makes it easier to accurately reload all app code and relaunch the app. But it also
makes it easier to share code between apps and share your app with others.

Workflow
Putting your app code into the package structure unlocks a new workflow:

• Reload all code in the app with Cmd/Ctrl+Shift+L. This calls dev

tools::load_all(), which automatically saves all open files, source()s every
file in R/, loads all datasets in data/, then puts your cursor in the console.

• Rerun the app with myApp().

As your app grows bigger, it’s also worth knowing about the two most important code
navigation keyboard shortcuts:

• Ctrl/Cmd+. (period) will open the “fuzzy file and function finder.” Type a few let‐
ters at the start of the file or function that you want to navigate to, select it with
the arrow keys, and then press Enter. This allows you to quickly jump around
your app without taking your hands off the keyboard.

• When your cursor is on the name of the function, F2 will jump to the function
definition.

If you do a lot of package development, you might want to automatically load use
this, so you can type (for example) use_description() instead of use

292 | Chapter 20: Packages

https://github.com/hadley/monthApp

this::use_description(). You can do so by adding the following lines to
your .Rprofile. This file contains R code that’s run whenever you start R, so it’s a great
way to customize your interactive development environment:

if (interactive()) {
 require(usethis, quietly = TRUE)
}

The easiest way to edit this file is to call usethis::edit_r_profile().

Sharing
Since your app is now wrapped up in a function, it’s easy to include multiple apps in
the same package. And because you have multiple apps in the same place, it’s now
much easier to share code and data across apps. That’s a huge benefit if you have a
bunch of apps for related tasks.

Packages are also a great way to share apps. shinyapps.io and RStudio Connect are
useful for sharing apps with folks who aren’t familiar with R. But sometimes you want
to share apps with your colleagues who do use R. Maybe instead of allowing the user
to upload a dataset, you want to provide them with a function that they call with a
data frame. For example, the following very simple app allows the R user to supply
their own data frame for interactive summaries:

dataSummaryApp <- function(df) {
 ui <- fluidPage(
 selectInput("var", "Variable", choices = names(df)),
 verbatimTextOutput("summary")
)

 server <- function(input, output, session) {
 output$summary <- renderPrint({
 summary(df[[input$var]])
 })
 }

 shinyApp(ui, server)
}

RStudio Gadgets build on this idea: they are Shiny apps that let you add a new user
interface to the RStudio IDE. It’s even possible to write gadgets that generate code, so
you can perform some task that’s easy to do interactively, and the gadget generates the
corresponding code and saves back into the open file.

Extra Steps
There are two common extra steps you might take beyond the basics: making it easy
to deploy your app-package and turning it into a “real” package.

Extra Steps | 293

https://www.shinyapps.io
https://rstudio.com/products/connect
https://oreil.ly/XhwV9

1 I’d expect most other ways of deploying Shiny apps would also work since app.R is the most common way of
structuring apps.

Deploying Your App-Package
If you want to deploy your app to RStudio Connect or Shiny,1 you’ll need two extra
steps:

• You’ll need an app.R that tells the deployment server how to run your app. The
easiest way is to load the code with pkgload:

pkgload::load_all(".")
myApp()

You can see other techniques in Chapter 13 of Engineering Shiny.
• Normally when you deploy an app, the rsconnect package automatically figures

out all of the packages your code uses. But now that you have a DESCRIPTION file,
it requires you to explicitly specify them. The easiest way to do this is to call use
this::use_package(). You’ll need to start with shiny and pkgload:

usethis::use_package("shiny")
usethis::use_package("pkgload")

This is a little more work, but the payoff is a having an explicit list of every pack‐
age that your app needs in one place.

Now you can run rsconnect::deployApp() whenever you’re ready to share an upda‐
ted version of your app with your users.

R CMD check
A minimal package contains an R/ directory, a DESCRIPTION file, and a function to
run your app. As you’ve seen, this is already useful because it unlocks some work‐
flows to speed up app development. But what makes a “real” app? To me, it’s making a
serious effort to get R CMD check passing. R CMD check is R’s automated system that
checks your package for common problems. In RStudio, you can run R CMD check by
pressing Cmd/Ctrl+Shift+E.

I don’t recommend that you do this the first time, the second time, or even the third
time you try out the package structure. Instead, I recommend that you get familiar
with the basic structure and workflow before you take the next step to make a fully
compliant package. It’s also something I’d generally reserve for important apps, par‐
ticularly any app that will be deployed elsewhere. It can be a lot of work to get R CMD
check passing, and there’s little payoff in the short term. But in the long term this will
protect you against a number of potential problems, and because it ensures your app

294 | Chapter 20: Packages

https://engineering-shiny.org/deploy.html

2 The distinction between Imports and Suggests is not generally important for app packages. If you do want to
make a distinction, the most useful method is to use Imports for packages that need to be present on the
deployment machine (in order for the app to work) and Suggests for packages that need to be present on the
development machine (in order to develop the app).

adheres to standards that R developers are familiar with, it makes it easier for others
to contribute to your app.

Before you make your first full app-package, you should read “The Whole Game”
chapter of R Packages: it will give you a fuller sense of the package structure and
introduce you to other useful workflows. Then use the following hints to get R CMD
check passing cleanly:

• Remove any calls to library() or require() and instead replace them with a
declaration in your DESCRIPTION. Use usethis::use_package("name") to add
the required package to the DESCRIPTION.2 You’ll then need to decide whether
you want to refer to each function explicitly with :: or use @importFrom package
Name functionName to declare the import in one place.
At a minimum, you’ll need usethis::use_package("shiny"), and for Shiny
apps, I recommend using @import shiny to make all the functions in the Shiny
package easily available. (Using @import is not generally considered best practice,
but it makes sense here.)

• Pick a license and then use the appropriate use_license_ function to put it in
the right place. For proprietary code, you can use usethis::use_propriet
ary_license(). See Chapter 9 of R Packages for more details.

• Add app.R to .Rbuildignore with usethis::use_build_ignore("app.R") or
similar.

• If your app contains small reference datasets, put them in data or inst/extdata.
We discussed usethis::use_data() previously; alternatively, you can put raw
data in inst/ext and load it with read.csv(system.file("exdata",

"mydata.csv", package = "myApp")) or similar.
• You can also change your app.R to use the package. This requires that your pack‐

age is available somewhere that your deployment machine can install from. For
public work, this means a CRAN or GitHub package; for private work, this may
mean using a tool like RStudio Package Manager or drat:

myApp::myApp()

Extra Steps | 295

https://r-pkgs.org/whole-game.html
https://r-pkgs.org/license.html
https://oreil.ly/mOIVP
https://oreil.ly/binbF

Summary
In this chapter, you’ve dipped your toes into the water of package development. This
might seem overwhelming if you think of packages like ggplot2 and shiny, but pack‐
ages can be very, very simple. In fact, all a project needs to be a package is a directory
of R files and a DESCRIPTION file. A package is just a lightweight set of conventions
that unlock useful tools and workflows. In this chapter, you learned how to turn an
app into a package and some of the reasons why you might want to. In the next chap‐
ter, you’ll learn about the most important reason to turn your app into a package: to
make it easier to test.

296 | Chapter 20: Packages

CHAPTER 21

Testing

For simple apps, it’s easy enough to remember how the app is supposed to work so
that when you make changes to add new features, you don’t accidentally break exist‐
ing capabilities. However, as your app gets more complicated, it becomes impossible
to hold it all in your head simultaneously. Testing is a way to capture desired behavior
of your code in such a way that you can automatically verify that it keeps working the
way you expect. Turning your existing informal tests into code is painful when you
first do it, because you need to carefully turn every key press and mouse click into a
line of code, but once done, it’s tremendously faster to rerun your tests.

We’ll perform automated testing with the testthat package. testthat requires turning
your app into a package, but as discussed in Chapter 20, this is not too much work,
and I think it pays off for other reasons.

A testthat test looks like this:

test_that("as.vector() strips names", {
 x <- c(a = 1, b = 2)
 expect_equal(as.vector(x), c(1, 2))
})

We’ll come back to the details very soon, but note that a test starts by declaring the
intent (“as.vector() strips names”), then uses regular R code to generate some test
data. The test data is then compared to the expected result using an expectation, a
function that starts with expect_. The first argument is some code to run, and the
second argument describes the expected result: here we verify that the output of
as.vector(x) equals c(1, 2).

We’ll work through four levels of testing in this chapter:

297

http://testthat.r-lib.org

• We’ll start by testing nonreactive functions. This will help you learn the basic
testing workflow and allow you to verify the behavior of code that you’ve
extracted out of the server function or UI. This is exactly the same type of testing
you’d do if you were writing a package, so you can find more details in the testing
chapter of R Packages.

• Next you’ll learn how to test the flow of reactivity within your server function.
You’ll set the value of inputs and then verify that reactives and outputs have the
values you expect.

• Then we’ll test parts of Shiny that use JavaScript (e.g., the update* functions) by
running the app in a background web browser. This is a high-fidelity simulation
because it runs a real browser, but on the downside, the tests are slower to run,
and you can no longer so easily peek inside the app.

• Finally, we’ll test app visuals by saving screenshots of selected elements. This is
necessary for testing app layout, CSS, plots, and HTML widgets, but it’s fragile
because screenshots can easily change for many reasons. This means that human
intervention is required to confirm whether each change is OK or not, making
this the most labor-intensive form of testing.

These levels of testing form a natural hierarchy because each technique provides a
fuller simulation of the user experience of an app. The downside of the better simula‐
tions is that each level is slower because it has to do more, and it’s more fragile
because more external forces come into play. You should always strive to work at the
lowest possible level so your tests are as fast and robust as possible. Over time this
will also influence the way you write code: knowing what sort of code is easier to test
will naturally push you toward simpler designs. Interleaved between the different lev‐
els of testing, I’ll also provide advice about testing workflow and more general testing
philosophy. Let’s begin:

library(shiny)
library(testthat) # >= 3.0.0
library(shinytest)

Testing Functions
The easiest part of your app to test is the part that has the least to do with Shiny: the
functions extracted out of your UI and server code as described in Chapter 18. We’ll
start by discussing how to test these nonreactive functions, showing you the basic
structure of unit testing with testthat.

Basic Structure
Tests are organized into three levels:

298 | Chapter 21: Testing

https://r-pkgs.org/tests.html
https://r-pkgs.org/tests.html

1 If you don’t use RStudio, you’ll need to give use_test() the name of the file, like use
this::use_test("load").

File
All test files live in tests/testthat, and each test file should correspond to a code
file in R/. For example, the code in R/module.R should be tested by the code in
tests/testthat/test-module.R. Fortunately, you don’t have to remember that con‐
vention: just use usethis::use_test() to automatically create or locate the test
file corresponding to the currently open R file.

Test
Each file is broken down into tests, that is, a call to test_that(). A test should
generally check a single property of a function. It’s hard to describe exactly what
this means, but a good heuristic is that you can easily describe the test in the first
argument to test_that().

Expectation
Each test contains one or more expectations, with functions that start with
expect_. These define exactly what you expect code to do, whether it’s returning
a specific value, throwing an error, or something else. In this chapter, I’ll discuss
the most important expectations for Shiny apps, but you can see the full list on
the testthat website.

The art of testing is figuring out how to write tests that clearly define the expected
behavior of your function, without depending on incidental details that might change
in the future.

Basic Workflow
Now that you understand the basic structure, let’s dive into some examples. I’m going
to start with a simple example from “Reading Uploaded Data” on page 255. Here I’ve
extracted out some code from my server function and called it load_file():

load_file <- function(name, path) {
 ext <- tools::file_ext(name)
 switch(ext,
 csv = vroom::vroom(path, delim = ",", col_types = list()),
 tsv = vroom::vroom(path, delim = "\t", col_types = list()),
 validate("Invalid file; Please upload a .csv or .tsv file")
)
}

For the sake of this example, I’m going to pretend this code lives in R/load.R, so my
tests for it need to live in tests/testthat/test-load.R. The easiest way to create that file is
to run usethis::use_test() with load.R.1

Testing Functions | 299

https://oreil.ly/Ibt5O

2 Like usethis::use_test(), this only works if you’re using RStudio.

There are three main things that I want to test for this function: can it load a CSV file,
can it load a TSV file, and does it give an error message for other types? To test those
three things, I’ll need some sample files, which I save in the session temp directory so
they’re automatically cleaned up after my tests are run. Then I write three expecta‐
tions, two checking that the loaded file equals the original data, and one checking that
I get an error:

test_that("load_file() handles all input types", {
 # Create sample data
 df <- tibble::tibble(x = 1, y = 2)
 path_csv <- tempfile()
 path_tsv <- tempfile()
 write.csv(df, path_csv, row.names = FALSE)
 write.table(df, path_tsv, sep = "\t", row.names = FALSE)

 expect_equal(load_file("test.csv", path_csv), df)
 expect_equal(load_file("test.tsv", path_tsv), df)
 expect_error(load_file("blah", path_csv), "Invalid file")
})

#> Test passed

There are four ways to run this test:

• As I’m developing it, I run each line interactively at the console. When an expect‐
ation fails, it turns into an error, which I then fix.

• Once I’ve finished developing it, I run the whole test block. If the test passes, I get
a message like Test passed . If it fails, I get the details of what went wrong.

• As I develop more tests, I run all of the tests for the current file2 with dev
tools::test_file(). Because I do this so often, I have a special keyboard short‐
cut set up to make it as easy as possible. I’ll show you how to set that up yourself
very shortly.

• Every now and then I run all of the tests for the whole package with dev
tools::test(). This ensures that I haven’t accidentally broken anything outside
of the current file.

Key Expectations
There are two expectations that you’ll use a lot of the time when testing functions:
expect_equal() and expect_error(). Like all expectation functions, the first argu‐
ment is the code to check, and the second argument is the expected outcome: an
expected value in the case of expect_equal(), and an expected error text in the case
of expect_error().

300 | Chapter 21: Testing

To get a sense for how these functions work, it’s useful to call them directly, outside of
tests.

When using expect_equal(), remember that you don’t have to test that whole object:
generally it’s better to test just the component that you’re interested in:

complicated_object <- list(
 x = list(mtcars, iris),
 y = 10
)
expect_equal(complicated_object$y, 10)

There are a few expectations for special cases of expect_equal() that can save you a
little typing:

• expect_true(x) and expect_false(x) are equivalent to expect_equal(x,

FALSE) and expect_equal(x, TRUE).
• expect_null(x) is equivalent to expect_equal(x, NULL).
• expect_named(x, c("a", "b", "c")) is equivalent to
expect_equal(names(x), c("a", "b", "c")) but has the options
ignore.order and ignore.case.

• expect_length(x, 10) is equivalent to expect_equal(length(x), 10).

There are also functions that implement relaxed versions of expect_equal() for
vectors:

• expect_setequal(x, y) tests that every value in x occurs in y and every value in
y occurs in x.

• expect_mapequal(x, y) tests that x and y have the same names and that
x[names(y)] equals y.

It’s often important to test that code generates an error, for which you can use
expect_error():

expect_error("Hi!")
#> Error: "Hi!" did not throw the expected error.
expect_error(stop("Bye"))

Note that the second argument to expect_error() is a regular expression—the goal
is to find a short fragment of text that matches the error you expect and is unlikely to
match errors that you don’t expect:

f <- function() {
 stop("Calculation failed [location 1]")
}

expect_error(f(), "Calculation failed [location 1]")

Testing Functions | 301

3 Snapshot tests require the third edition of testthat. New packages will automatically use the testthat 3e, but
you’ll need to manually update older packages.

#> Error in f(): Calculation failed [location 1]
expect_error(f(), "Calculation failed \\[location 1\\]")

But it’s better still to just pick a small fragment to match:

expect_error(f(), "Calculation failed")

Or use expect_snapshot(), which we’ll discuss shortly. expect_error() also comes
with variants expect_warning() and expect_message() for testing for warnings and
messages in the same way as errors. These are rarely needed for testing Shiny apps
but are very useful for testing packages.

User Interface Functions
You can use the same basic idea to test functions that you’ve extracted out of your UI
code. But these require a new expectation, because manually typing out all the HTML
would be tedious, so instead we use a snapshot test.3 A snapshot expectation differs
from other expectations primarily in that the expected result is stored in a separate
snapshot file rather than in the code itself. Snapshot tests are most useful when you
are designing complex user interface design systems, which is outside of the scope of
most apps. So here I’ll briefly show you the key ideas and then point you to additional
resources to learn more.

Take this UI function we defined earlier:
sliderInput01 <- function(id) {
 sliderInput(id, label = id, min = 0, max = 1, value = 0.5, step = 0.1)
}

cat(as.character(sliderInput01("x")))
#> <div class="form-group shiny-input-container">
#> <label class="control-label" id="x-label" for="x">x</label>
#> <input class="js-range-slider" id="x" data-skin="shiny" data-min="0"
#> data-max="1" data-from="0.5" data-step="0.1" data-grid="true"
#> data-grid-num="10" data-grid-snap="false" data-prettify-separator=","
#> data-prettify-enabled="true" data-keyboard="true" data-data-type="number"/>
#> </div>

How would we test that this output is as we expect? We could use expect_equal():
test_that("shinyInput01() creates expected HTML", {
 expect_equal(
 as.character(sliderInput01("x")),
 "<div class=\"form-group shiny-input-container\">\n
 <label class=\"control-label\" id=\"x-label\" for=\"x\">x</label>\n
 <input class=\"js-range-slider\" id=\"x\" data-skin=\"shiny\" data-min=\"0\"
 data-max=\"1\" data-from=\"0.5\" data-step=\"0.1\" data-grid=\"true\"
 data-grid-num=\"10\" data-grid-snap=\"false\" data-prettify-separator=\",\"

302 | Chapter 21: Testing

https://testthat.r-lib.org/articles/third-edition.html

 data-prettify-enabled=\"true\" data-keyboard=\"true\"
 data-data-type=\"number\"/>\n
 </div>"
)
})

#> Test passed

But the presence of quotes and newlines requires a lot of escaping in the string—that
makes it hard to see exactly what we expect and, if the output changes, makes it hard
to see exactly what’s happened.

The key idea of snapshot tests is to store the expected results in a separate file: that
keeps bulky data out of your test code and means that you don’t need to worry about
escaping special values in a string. Here we use expect_snapshot() to capture the
output displayed on the console:

test_that("shinyInput01() creates expected HTML", {
 expect_snapshot(sliderInput01("x"))
})

The main difference with other expectations is that there’s no second argument that
describes what you expect to see. Instead, that data is saved in a separate .md file. If
your code is in R/slider.R and your test is in tests/testthat/test-slider.R, then snapshot
will be saved in tests/testhat/_snaps/slider.md. The first time you run the test,
expect_snapshot() will automatically create the reference output, which will look
like this:

shinyInput01() creates expected HTML

Code
 sliderInput01("x")
Output
 <div class="form-group shiny-input-container">
 <label class="control-label" id="x-label" for="x">x</label>
 <input class="js-range-slider" id="x" data-skin="shiny" data-min="0"
 data-max="1" data-from="0.5" data-step="0.1" data-grid="true"
 data-grid-num="10" data-grid-snap="false" data-prettify-separator=","
 data-prettify-enabled="true" data-keyboard="true" data-data-type="number"/>
 </div>

If the output later changes, the test will fail. You either need to fix the bug that causes
it to fail or, if it’s a deliberate change, update the snapshot by running test
that::snapshot_accept().

It’s worth contemplating the output here before committing to this as a test. What are
you really testing here? If you look at how the inputs become the outputs, you’ll
notice that most of the output is generated by Shiny and only a very small amount is
the result of your code. That suggests this test isn’t particularly useful: if this output
changes, it’s much more likely to be the result of a change to Shiny than the result of a

Testing Functions | 303

change to your code. This makes the test fragile; if it fails, it’s unlikely to be your fault,
and fixing the failure is unlikely to be within your control.

You can learn more about snapshot tests in the “Snapshot tests” testthat vignette.

Workflow
Before we talk about testing functions that use reactivity or JavaScript, we’ll take a
brief digression to work on your workflow.

Code Coverage
It’s very useful to verify that your tests test what you think they’re testing. A great way
to do this is with “code coverage,” which runs your tests and tracks every line of code
that is run. You can then look at the results to see which lines of your code are never
touched by a test, and this gives you the opportunity to reflect on if you’ve tested the
most important, highest-risk, or hardest-to-program parts of your code. It’s not a
substitute for thinking about your code—you can have 100% test coverage and still
have bugs. But it’s a fun and a useful tool to help you think about what’s important,
particularly when you have complex nested code.

I won’t cover it in detail here, but I highly recommend trying it out with dev
tools::test_coverage() or devtools::test_coverage_file(). The main thing to
notice is that green lines are tested, while red lines are not.

Code coverage supports a slightly different workflow:

1. Use test_coverage() or test_coverage_file() to see which lines of code are
tested.

2. Look at untested lines and design tests specifically to test them.
3. Repeat until all important lines of code are tested. (Getting to 100% test coverage

often isn’t worth it, but you should check that you are hitting the most critical
parts of your app.)

Code coverage also works with the tools for testing reactivity and (to some extent)
JavaScript, so it’s a useful foundational skill.

Keyboard Shortcuts
If you followed the advice in “Benefits” on page 292, then you can already run tests
just by typing test() or test_file() at the console. But tests are something that
you’ll do so often it’s worth having a keyboard shortcut at your fingertips. RStudio
has one useful shortcut built in: Cmd/Ctrl+Shift+T runs devtools::test(). I recom‐
mend that you add three to complete the set:

304 | Chapter 21: Testing

https://oreil.ly/GpHlU

• Bind Cmd/Ctrl+T to devtools::test_file()
• Bind Cmd/Ctrl+Shift+R to devtools::test_coverage()
• Bind Cmd/Ctrl+R to devtools::test_coverage_file()

You’re of course free to choose whatever shortcut makes sense to you, but these share
some underlying structure. Keyboard shortcuts using Shift apply to the whole pack‐
age, and shortcuts without Shift apply to the current file.

Figure 21-1 shows what my keyboard shortcuts look like on a Mac.

Figure 21-1. My keyboard shortcut for a Mac.

Workflow Summary
Here’s a summary of all the techniques I’ve talked about so far:

• From the R file, use usethis::use_test() to create the test file (the first time it’s
run) or navigate to the test file (if it already exists).

• Write code/write tests. Press Cmd/Ctrl+T to run the tests and review the results
in the console. Iterate as needed.

• If you encounter a new bug, start by capturing the bad behavior in a test. In the
course of making the minimal code, you’ll often get a better understanding of
where the bug lies, and having the test will ensure that you can’t fool yourself into
thinking that you’ve fixed the bug when you haven’t.

• Press Cmd/Ctrl+R to check that you’re testing what you think you’re testing.
• Press Cmd/Ctrl+Shift+T to make sure you haven’t accidentally broken anything

else.

Testing Reactivity
Now that you understand how to test regular nonreactive code, it’s time to move on
to challenges specific to Shiny. The first challenge is testing reactivity. As you’ve
already seen, you can’t run reactive code interactively:

x <- reactive(input$y + input$z)
x()
#> Error: Operation not allowed without an active reactive context.
#> * You tried to do something that can only be done from inside a reactive
#> consumer.

Testing Reactivity | 305

You might wonder about using reactiveConsole() like we did in Chapter 15.
Unfortunately, its simulation of reactivity depends fundamentally on an interactive
console, so it won’t work in tests.

Not only does the reactive error when we attempt to evaluate it, even if it did work,
input$y and input$z wouldn’t be defined. To see how it works, let’s start with a sim‐
ple app that has three inputs, one output, and three reactives:

ui <- fluidPage(
 numericInput("x", "x", 0),
 numericInput("y", "y", 1),
 numericInput("z", "z", 2),
 textOutput("out")
)
server <- function(input, output, session) {
 xy <- reactive(input$x - input$y)
 yz <- reactive(input$z + input$y)
 xyz <- reactive(xy() * yz())
 output$out <- renderText(paste0("Result: ", xyz()))
}

To test this code we’ll use the testServer(). This function takes two arguments: a
server function and some code to run. The code is run in a special environment,
inside the server function, so you can access outputs, reactives, and a special session
object that allows you to simulate user interaction. The main time you’ll use this is for
session$setInputs(), which allows you to set the value of input controls, as if you
were a user interacting with the app in a browser:

testServer(server, {
 session$setInputs(x = 1, y = 1, z = 1)
 print(xy())
 print(output$out)
})
#> [1] 0
#> [1] "Result: 0"

(You can abuse testServer() to get in an interactive environment that does support
reactivity: testServer(myApp(), browser()).)

Note that we’re only testing the server function; the ui component of the app is com‐
pletely ignored. You can see this most clearly by inspecting the inputs: unlike a real
Shiny app, all inputs start as NULL, because the initial value is recorded in the ui. We’ll
come back to UI testing in “Testing JavaScript” on page 309.

testServer(server, {
 print(input$x)
})
#> NULL

306 | Chapter 21: Testing

Now that you have a way to run code in a reactive environment, you can combine it
with what you already know about testing code to create something like this:

test_that("reactives and output updates", {
 testServer(server, {
 session$setInputs(x = 1, y = 1, z = 1)
 expect_equal(xy(), 0)
 expect_equal(yz(), 2)
 expect_equal(output$out, "Result: 0")
 })
})

#> Test passed

Once you’ve mastered the use of testServer(), then testing reactive code becomes
almost as easy as testing nonreactive code. The main challenge is debugging failing
tests: you can’t step through them line by line like a regular test, so you’ll need to add
a browser() inside of testServer() so that you can interactively experiment to diag‐
nose the problem.

Modules
You can test a module in a way that’s similar to testing an app function, but here it’s a
little more clear that you’re only testing the server side of the module. Let’s start with
a simple module that uses three outputs to display a brief summary of a variable:

summaryUI <- function(id) {
 tagList(
 outputText(ns(id, "min")),
 outputText(ns(id, "mean")),
 outputText(ns(id, "max")),
)
}
summaryServer <- function(id, var) {
 stopifnot(is.reactive(var))

 moduleServer(id, function(input, output, session) {
 range_val <- reactive(range(var(), na.rm = TRUE))
 output$min <- renderText(range_val()[[1]])
 output$max <- renderText(range_val()[[2]])
 output$mean <- renderText(mean(var()))
 })
}

We’ll use testServer() as we did previously, but the call is a little different. As
before, the first argument is the server function (now the module server), but now we
also need to supply additional arguments in a list called args. This takes a list of argu‐
ments to the module server (the id argument is optional; testServer() will fill it in
automatically if omitted). Then we finish up with the code to run:

Testing Reactivity | 307

x <- reactiveVal(1:10)
testServer(summaryServer, args = list(var = x), {
 print(range_val())
 print(output$min)
})
#> [1] 1 10
#> [1] "1"

Again, we can turn this into an automated test by putting it inside test_that() and
calling some expect_ functions. Here I wrap it all up into a test that checks that the
module responds correctly as the reactive input changes:

test_that("output updates when reactive input changes", {
 x <- reactiveVal()
 testServer(summaryServer, args = list(var = x), {
 x(1:10)
 session$flushReact()
 expect_equal(range_val(), c(1, 10))
 expect_equal(output$mean, "5.5")

 x(10:20)
 session$flushReact()
 expect_equal(range_val(), c(10, 20))
 expect_equal(output$min, "10")
 })
})

#> Test passed

There’s one important trick here: because x is created outside of testServer(),
changing x does not automatically update the reactive graph, so we have to do so
manually by calling session$flushReact().

If your module has a return value (a reactive or list of reactives), you can capture it
with session$getReturned(). Then you can check the value of that reactive, just like
any other reactive:

datasetServer <- function(id) {
 moduleServer(id, function(input, output, session) {
 reactive(get(input$dataset, "package:datasets"))
 })
}

test_that("can find dataset", {
 testServer(datasetServer, {
 dataset <- session$getReturned()

 session$setInputs(dataset = "mtcars")
 expect_equal(dataset(), mtcars)

 session$setInputs(dataset = "iris")
 expect_equal(dataset(), iris)
 })

308 | Chapter 21: Testing

})

#> Test passed

Do we need to test what happens if input$dataset isn’t a dataset? In this case, we
don’t because we know that the module UI restricts the options to valid choices.
That’s not obvious from inspection of the server function alone.

Limitations
testServer() is a simulation of your app. The simulation is useful because it lets you
quickly test reactive code, but it is not complete.

• Unlike the real world, time does not advance automatically. So if you want to test
code that relies on reactiveTimer() or invalidateLater(), you’ll need to man‐
ually advance time by calling session$elapse(millis = 300).

• testServer() ignores UI. That means inputs don’t get default values, and no
JavaScript works. Most importantly this means that you can’t test the update*
functions, because they work by sending JavaScript to the browser to simulate
user interactions. You’ll require the next technique to test such code.

Testing JavaScript
testServer() is only a limited simulation of the full Shiny app, so any code that relies
on a “real” browser running will not work. Most importantly, this means that no Java‐
Script will be run. This might not seem important because we haven’t talked about
JavaScript in this book, but there are a number of important Shiny functions that use
it behind the scenes:

• All update*() functions: “Updating Inputs” on page 153.
• showNotification()/removeNotification(): “Notifications” on page 126.
• showModal()/hideModal(): “Explicit Confirmation” on page 136.
• insertUI()/removeUI()/appendTab()/insertTab()/removeTab(): we’ll cover

this later in the book.

To test these functions, you need to run the Shiny app in a real browser. You could, of
course, do this yourself using runApp() and clicking around, but we want to auto‐
mate that process so that you run your tests frequently. We’ll do this with an off-label
use of the shinytest package. You can use shinytest as the website recommends, auto‐
matically generating test code using an app, but since you’re already familiar with
testthat, we’ll take a different approach, constructing tests by hand.

We’ll work with one R6 object from the shinytest package: ShinyDriver. Creating a
new ShinyDriver instance starts a new R process that runs your Shiny app and a

Testing JavaScript | 309

https://rstudio.github.io/shinytest

headless browser. A headless browser works just like a usual browser, but it doesn’t
have a window that you can interact with; the sole means of interaction is via code.
The primary downsides of this technique is that it’s slower than the other approaches
(it takes at least a second for even the simplest apps), and you can only test the out‐
side of the app (i.e., it’s harder to see the values of reactive variables).

Basic Operation
To demonstrate the basic operation, I’ll create a very simple app that greets you by
name and provides a reset button:

ui <- fluidPage(
 textInput("name", "What's your name"),
 textOutput("greeting"),
 actionButton("reset", "Reset")
)
server <- function(input, output, session) {
 output$greeting <- renderText({
 req(input$name)
 paste0("Hi ", input$name)
 })
 observeEvent(input$reset, updateTextInput(session, "name", value = ""))
}

To use shinytest, you start an app with app <- ShinyDriver$new(), interact with it
using app$setInputs() and friends, then get values returned by app$getValue():

app <- shinytest::ShinyDriver$new(shinyApp(ui, server))
app$setInputs(name = "Hadley")
app$getValue("greeting")
#> [1] "Hi Hadley"
app$click("reset")
app$getValue("greeting")
#> [1] ""

Every use of shinytest begins by creating a ShinyDriver object with ShinyDriver
$new(), which takes a Shiny app object or a path to a Shiny app. It returns an R6
object that you interact with much like the session object you encountered previously,
using app$setInputs(): it takes a set of name-value pairs, updates the controls in the
browser, and then waits until all reactive updates are complete.

The first difference is that you’ll need to explicitly retrieve values using app$get
Value(name). Unlike with testServer(), you can’t access the values of reactives
using ShinyDriver because it can only see what a user of the app can see. But there’s a
special Shiny function called exportTestValues() that creates a special output that
shinytest can see but a human cannot.

There are two other methods that allow you to simulate other actions:

310 | Chapter 21: Testing

• app$click(name) clicks a button called name.
• app$sendKeys(name, keys) sends key presses to an input control called name.
keys will normally be a string like app$sendKeys(id, "Hi!"). But you can also
send special keys using webdriver::key, à la app$sendKeys(id, c(web

driver::key$control, "x")). Note that any modifier keys will be applied to all
subsequent key presses, so you’ll need multiple calls if you want some key presses
with modifiers and some without.

See ?ShinyDriver for more details and a list of more esoteric methods.

As before, once you’ve figured out the appropriate sequence of actions interactively,
you can turn it into a test by wrapping in test_that() and calling expectations:

test_that("can set and reset name", {
 app <- shinytest::ShinyDriver$new(shinyApp(ui, server))
 app$setInputs(name = "Hadley")
 expect_equal(app$getValue("greeting"), "Hi Hadley")

 app$click("reset")
 expect_equal(app$getValue("greeting"), "")
})

The background Shiny app and web browser are automatically shut down when the
app object is deleted and collected by the garbage collector. If you’re not familiar with
what that means, you might find the section “Unbinding and the Garbage Collector”
from Advanced R helpful.

Case Study
We’ll finish up with a case study exploring how you might test a more realistic exam‐
ple, combining both testServer() and shinytest. We’ll use a radio-button control
that also provides a free-text “other” option. This might look familiar, as we used it
before as a motivation for developing a module in “Limited Selection and Other” on
page 275:

ui <- fluidPage(
 radioButtons("fruit", "What's your favourite fruit?",
 choiceNames = list(
 "apple",
 "pear",
 textInput("other", label = NULL, placeholder = "Other")
),
 choiceValues = c("apple", "pear", "other")
),
 textOutput("value")
)

server <- function(input, output, session) {

Testing JavaScript | 311

https://oreil.ly/zXYN9
https://oreil.ly/zXYN9

 observeEvent(input$other, ignoreInit = TRUE, {
 updateRadioButtons(session, "fruit", selected = "other")
 })

 output$value <- renderText({
 if (input$fruit == "other") {
 req(input$other)
 input$other
 } else {
 input$fruit
 }
 })
}

The actual computation is quite simple. We could consider pulling the renderText()
expression out into its own function:

other_value <- function(fruit, other) {
 if (fruit == "other") {
 other
 } else {
 fruit
 }
}

But I don’t think it’s worth it because the logic here is very simple and not generaliza‐
ble to other situations. I think the net effect of pulling this code out of the app into a
separate file would make the code harder to read.

So we’ll start by testing the basic flow of reactivity: do we get the correct value after
setting fruit to an existing option? And do we get the correct value after setting
fruit to other and adding some free text?

test_that("returns other value when primary is other", {
 testServer(server, {
 session$setInputs(fruit = "apple")
 expect_equal(output$value, "apple")

 session$setInputs(fruit = "other", other = "orange")
 expect_equal(output$value, "orange")
 })
})

#> Test passed

That doesn’t check that other is automatically selected when we start typing in the
other box. Unfortunately, we can’t test that using testServer() because it relies on
updateRadioButtons():

test_that("returns other value when primary is other", {
 testServer(server, {
 session$setInputs(fruit = "apple", other = "orange")
 expect_equal(output$value, "orange")

312 | Chapter 21: Testing

 })
})
#> ── Failure (<text>:2:3): returns other value when primary is other ───────────
#> output$value (`actual`) not equal to "orange" (`expected`).
#>
#> `actual`: "apple"
#> `expected`: "orange"
#> Backtrace:
#> 1. shiny::testServer(...)
#> 22. testthat::expect_equal(output$value, "orange")

So now we need to use ShinyDriver:

test_that("automatically switches to other", {
 app <- ShinyDriver$new(shinyApp(ui, server))
 app$setInputs(other = "orange")
 expect_equal(app$getValue("fruit"), "other")
 expect_equal(app$getValue("value"), "orange")
})

Generally, you are best off using testServer() as much as possible and only using
ShinyDriver for the bits that need a real browser.

Testing Visuals
What about components like plots or HTML widgets where it’s difficult to describe
the correct appearance using code? You can use the final, richest, and most fragile
testing technique: save a screenshot of the affected component. This combines
screenshotting from shinytest with whole-file snapshotting from testthat. It works
similarly to the snapshotting described in “User Interface Functions” on page 302, but
instead of saving text into an .md file, it creates a .png file. This also means that there’s
no way to see the differences on the console, so you’ll instead be prompted to run
testthat::snapshot_review(), which uses a Shiny app to visualize the differences.

The primary downside of testing using screenshots is that even the tiniest of changes
requires a human to confirm that it’s OK. This is a problem because it’s hard to get
different computers to generate pixel-reproducible screenshots. Differences in oper‐
ating system, browser version, and even font versions can lead to screenshots that
look the same to a human but are very slightly different. This generally means that
visual tests are best run by one person on their local computer, and it’s generally not
worthwhile to run them in a continuous integration tool. It is possible to work
around these issues, but it’s a considerable challenge and beyond the scope of this
book.

Screenshotting individual elements in shinytest and whole-file snapshotting in test‐
that are both very new features, and it’s still not clear to us what the ideal interface is.
So for now, you’ll need to string the pieces together yourself, using code like this:

Testing Visuals | 313

path <- tempfile()
app <- ShinyDriver$new(shinyApp(ui, server))

Save screenshot to temporary file
app$takeScreenshot(path, "plot")
#
expect_snapshot_file(path, "plot-init.png")

app$setValue(x = 2)
app$takeScreenshot(path, "plot")
expect_snapshot_file(path, "plot-update.png")

The second argument to expect_snapshot_file() gives the filename that the image
will be saved in a file snapshot directory. If these tests are in a file called test-app.R,
then these two file snapshots will be saved in tests/testthat/_snaps/app/plot-init.png
and tests/testthat/_snaps/app/plot-update.png. You want to keep the names of these
files short but evocative enough to remind you what you’re testing if something goes
wrong.

Philosophy
This chapter has focused mostly on the mechanics of testing, which are most impor‐
tant when you get started with testing. But you’ll soon get the mechanics under your
belt, and your questions will become more structural and philosophical.

I think it’s useful to think about false positives and false negatives: it’s possible to write
tests that don’t fail when they should and do fail when they shouldn’t. I think when
you start testing, your biggest struggles are with false positives: how do you make sure
your tests are actually catching bad behavior? But I think you move past this fairly
quickly.

When Should You Write Tests?
When should you write tests? There are three basic options:

Before you write the code
This is a style of code called test-driven development, and if you know exactly
how a function should behave, it makes sense to capture that knowledge as code
before you start writing the implementation.

After you write the code
While writing code, you’ll often build up a mental to-do list of worries about
your code. After you’ve written the function, turn these into tests so that you can
be confident that the function works the way that you expect.

314 | Chapter 21: Testing

When you start writing tests, beware writing them too soon. If your function is
still actively evolving, keeping your tests up to date with all the changes is going
to feel frustrating. That may indicate you need to wait a little longer.

When you find a bug
Whenever you find a bug, it’s good practice to turn it into an automated test case.
This has two advantages. First, to make a good test case, you’ll need to relent‐
lessly simplify the problem until you have a very minimal reprex that you can
include in a test. Second, you’ll make sure that the bug never comes back again!

Summary
This chapter has shown you how to organize your app into a package so that you can
take advantage of the powerful tools provided by the testthat package. If you’ve never
made a package before, this can seem overwhelming, but as you’ve seen, a package is
just a simple set of conventions that you can readily adapt for a Shiny app. This
requires a little up-front work but unlocks a big payoff: the ability to automate tests
radically increases your ability to write complex apps.

In the next chapter, you’ll learn out how to figure out what’s making your apps slow
and some techniques for making them faster.

Summary | 315

1 If you can’t assume that, you have bigger problems! That said, some companies do have a “zero-trust” model,
so you should double-check with your IT team.

CHAPTER 22

Security

Most Shiny apps are deployed within a company firewall, and since you can generally
assume that your colleagues aren’t going to try and hack your app,1 you don’t need to
think about security. If, however, your app contains data that only some of your col‐
leagues should be able to access, or you want to expose your app to the public, you
will need to spend some time on security. When securing your app, there are two
main things to protect:

• Your data: you want to make sure an attacker can’t access any sensitive data.
• Your compute resources: you want to make sure an attacker can’t mine bitcoin or

use your server as part of a spam farm.

Fortunately your job is made a little easier because security is a team sport. Whoever
deploys your app is responsible for security between apps, ensuring that app A can’t
access the code or data in app B, and can’t steal all the memory and compute power
on the server. Your responsibility is the security within your app, making sure that an
attacker can’t abuse your app to achieve their ends. This chapter will give the basics of
securing your Shiny, broken down into securing your data and securing your com‐
pute resources.

If you’re interested in learning a little more about security and R in general, I highly
recommend “R and Security”, Colin Gillespie’s entertaining and educational useR!
2019 talk. Let’s begin by loading shiny:

library(shiny)

317

https://oreil.ly/BM159

2 If your app does work these types of data, it’s imperative that you partner with a software engineer with secu‐
rity expertise.

Data
The most sensitive data is stuff like personally identifying information (PII), regula‐
ted data, credit card data, health data, or anything else that would be a legal night‐
mare for your company if it was made public. Fortunately, most Shiny apps don’t deal
with those types of data,2 but there is an important type of data you do need to worry
about: passwords. You should never include passwords in the source code of your
app. Instead, either put them in environment variables or, if you have many, use the
config package. Either way, make sure that they are never included in your source
code control by adding the appropriate files to .gitignore. I also recommend docu‐
menting how a new developer can get the appropriate credentials.

Alternatively, you may have data that is user-specific. If you need to authenticate users
(i.e., identify them through a user name and password), never attempt to roll a solu‐
tion yourself. There are just too many things that might go wrong. Instead, you’ll
need to work with your IT team to design a secure access mechanism. You can see
some best practices in the “Kerberos with RStudio Pro Products” and “Securing
Deployed Content” RStudio documentation. Note that code within server() is iso‐
lated, so there’s no way for one user session to see data from another. The only excep‐
tion is if you use caching—see “Cache Scope” on page 337 for details.

Finally, note that Shiny inputs use client-side validation—that is, the checks for valid
input are performed by JavaScript in the browser, not by R. This means it’s possible
for a knowledgeable attacker to send values that you don’t expect. For example, take
this simple app:

secrets <- list(
 a = "my name",
 b = "my birthday",
 c = "my social security number",
 d = "my credit card"
)

allowed <- c("a", "b")
ui <- fluidPage(
 selectInput("x", "x", choices = allowed),
 textOutput("secret")
)
server <- function(input, output, session) {
 output$secret <- renderText({
 secrets[[input$x]]
 })
}

318 | Chapter 22: Security

https://github.com/rstudio/config
https://oreil.ly/zixmG
https://oreil.ly/tsrAJ
https://oreil.ly/tsrAJ

3 The only exception is if they don’t involve user-supplied data in any way.

You might expect that a user could access my name and birthday but not my social
security number or credit card details. But a knowledgeable attacker can open up a
JavaScript console in their browser and run Shiny.setInputValue("x", "c") to see
my SSN. So to be safe, you need to check all user inputs from your R code:

server <- function(input, output, session) {
 output$y <- renderText({
 req(secrets$x %in% allowed)
 secrets$y[[secrets$x == input$x]]
 })
}

I deliberately didn’t create a user-friendly error message—the only time you’d see it
would be if you’re trying to break the app, and we don’t need to help out an attacker.

Compute Resources
It’s hopefully obvious that the following app is very dangerous, because it allows the
user to run any R code they want. They could delete important files, modify data, or
send confidential data back to the user of the app:

ui <- fluidPage(
 textInput("code", "Enter code here"),
 textOutput("results")
)
server <- function(input, output, session) {
 output$results <- renderText({
 eval(parse(text = input$code))
 })
}

In general, the combination of parse() and eval() is a big warning sign for any
Shiny app:3 they instantly make your app vulnerable. Similarly, you should never
source() an uploaded .R file or rmarkdown::render() an uploaded .Rmd. But these
cases are pretty obvious and are unlikely to be the source of real problems.

The bigger challenge arises because there are a number of functions that parse(),
eval(), or both in a way that you’re not aware of. Here are the most common:

Compute Resources | 319

Model formulas
It’s possible to construct a model that executes arbitrary R code:

df <- data.frame(x = 1:5, y = runif(5))
mod <- lm(y ~ {print("Hi!"); x}, data = df)
#> [1] "Hi!"

This makes it difficult to safely allow a user to define their own models.

Glue labels
The glue package provides a powerful way to create strings from data:

title <- "foo"
number <- 1
glue::glue("{title}-{number}")
#> foo-1

But glue() evaluates anything inside of {}:

glue::glue("{title}-{print('Hi'); number}")
#> [1] "Hi"
#> foo-1

If you want to allow a user to supply a glue string to generate a label, instead use
glue::glue_safe(), which only looks up variable names and doesn’t evaluate
code:

glue::glue_safe("{title}-{number}")
#> foo-1
glue::glue_safe("{title}-{print('Hi'); number}")
#> Error in .transformer(expr, env): object 'print('Hi'); number' not found

Variable transformation
There’s no way to safely allow a user to provide code snippets to transform a vari‐
able for dplyr or ggplot2. You might expect they’ll write log10(x), but they could
write {print("Hi"); log10(x)}.

This also means that you should never use the older ggplot2::aes_string()
with user supplied input. Instead, stick with the techniques in Chapter 12.

The same problem can occur with SQL. For example, if you construct SQL with
paste(), for example:

find_student <- function(name) {
 paste0("SELECT * FROM Students WHERE name = ('", name, "');")
}
find_student("Hadley")
#> [1] "SELECT * FROM Students WHERE name = ('Hadley');"

320 | Chapter 22: Security

4 This example was inspired by Little Bobby Tables.

an attacker can provide a malicious username:4

find_student("Robert'); DROP TABLE Students; --")
#> [1] "SELECT * FROM Students WHERE name = ('Robert'); DROP TABLE Students; --');"

This looks a bit odd, but it’s a valid SQL query in three parts:

• SELECT * FROM Students WHERE name = ('Robert'); finds a student with the
name Robert.

• DROP TABLE Students; deletes the Students table (!!).
• --' is a comment needed to prevent the extra ' from turning into a syntax error.

To avoid this problem, never generate SQL strings with paste, and instead use a sys‐
tem that automatically escapes user input (like dbplyr), or use glue::glue_sql():

con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
find_student <- function(name) {
 glue::glue_sql("SELECT * FROM Students WHERE name = ({name});", .con = con)
}
find_student("Robert'); DROP TABLE Students; --")
#> <SQL> SELECT * FROM Students WHERE name = ('Robert''); DROP TABLE Students; --');

It’s a little hard to tell at first glance, but this is safe, because SQL’s equivalent of \' is
'', so the query returns all rows of the Students table where the name is literally
“Robert’); DROP TABLE Students; –”.

Compute Resources | 321

https://xkcd.com/327
https://dbplyr.tidyverse.org

CHAPTER 23

Performance

A Shiny app can support thousands or tens of thousands of users, if developed the
right way. But most Shiny apps are quickly thrown together to solve a pressing ana‐
lytic need and typically begin life with poor performance. This is a feature of Shiny:
its allows you to quickly prototype a proof of concept that works for you, before fig‐
uring out how to make it fast so many people can use it simultaneously. Fortunately,
it’s generally straightforward to get 10–100x performance with a few simple tweaks.
This chapter will show you how.

We’ll begin with a metaphor: thinking about a Shiny app like a restaurant. Next, you’ll
learn how to benchmark your app, using the shinyloadtest package to simulate many
people using your app at the same time. This is the place to start, because it lets you
figure out you have a problem and helps measure the impact of any changes that you
make.

Then you’ll learn how to profile your app using the profvis package to identify slow
parts of your R code. Profiling lets you see exactly where your code is spending its
time, so you can focus your efforts where they’re most impactful.

Finally, you’ll learn a handful of useful techniques to optimize your code, improving
the performance where needed. You’ll learn how to cache reactives, how to move data
prep code out of your app, and how to use a little applied psychology to help your app
feel as fast as possible.

I recommend watching Joe Cheng’s rstudio::conf(2019) keynote “Shiny in Produc‐
tion: Principles, Practices, and Tools” for a demo of the whole process of benchmark‐
ing, profiling, and optimizing. In that talk (and accompanying case study), Joe walks
through the complete process with a realistic app.

library(shiny)

323

https://oreil.ly/Yv3NA
https://oreil.ly/Yv3NA
https://oreil.ly/C6d1e

1 Thanks to Sean Lopp for this analogy from his rstudio::conf(2018) talk “Scaling Shiny: 10,000 User App”. I
highly recommend watching it if you have any doubt that Shiny apps can handle thousands of users.

2 Again, this depends on exactly how your app is deployed, but typically you can dynamically control the num‐
ber of processes based on the number of users. See “Scaling and Performance Tuning in RStudio Connect” for
advice on RStudio’s deployment offerings.

3 Or vertical scaling.
4 Or horizontal scaling.

Special thanks to my RStudio colleagues Joe Cheng, Sean Lopp, and Alan Dipert,
whose RStudio::conf() talks were particularly helpful when writing this chapter.

Dining at Restaurant Shiny
When considering performance, it’s useful to think of a Shiny app as a restaurant.1

Each customer (user) comes into the restaurant (the server) and makes an order (a
request), which is then prepared by a chef (the R process). This metaphor is useful
because, like a restaurant, one R process can serve multiple users at the same time,
and there are similar ways to deal with increasing demand.

To begin, you might investigate ways to make your current chef more efficient (opti‐
mize your R code). To do so, you’d first spend some time watching your chef work to
find the bottlenecks in their method (profiling) and then brainstorming ways to help
them work faster (optimizing). For example, maybe you could hire a prep cook who
can come in before the first customer and chop some vegetables (preparing the data),
or you could invest in a time-saving gadget (a faster R package).

Or you might think about adding more chefs (processes) to the restaurant (server).
Fortunately, it’s much easier to add more processes2 than it is to hire trained chefs. If
you keep hiring more chefs, eventually the kitchen (server) will get too full, and you’ll
need to add more equipment (memory of cores). Adding more resources to allow a
server to run more processes is called scaling up.3

At some point, you’ll have crammed as many chefs into your restaurant as you possi‐
bly can, and it’s still not enough to meet demand. At that point, you’ll need to build
more restaurants. This is called scaling out,4 and for Shiny it means using multiple
servers. Scaling out allows you to handle any number of customers, as long as you can
pay the infrastructure costs. I won’t talk more about scaling out in this chapter,
because while the details are straightforward, they depend entirely on your deploy‐
ment infrastructure.

There’s one major place where the metaphor breaks down: a normal chef can make
multiple dishes at the same time, carefully interweaving the steps to take advantage of
downtime in one recipe to work on another. R, however, is single-threaded, which
means that it can’t do multiple things at the same time. This is fine if all of the meals

324 | Chapter 23: Performance

https://oreil.ly/0Ncsg
https://oreil.ly/c4CGT

5 The easiest way to do this with RStudio is to open another RStudio instance. Alternatively, open a terminal
and type R.

are fast to cook, but if someone requests a 24-hour sous vide pork belly, all later cus‐
tomers will have to wait 24 hours before the chef can start on their meal. Fortunately,
you can work around this limitation using async programming, a complex topic that
is beyond the scope of this book.

Benchmark
You almost always start by developing an app for yourself: your app is a personal chef
who only ever has to serve one customer at a time (you!). While you might be happy
with their performance right now, you might also worry that they won’t be able to
handle the 10 folks who need to use your app at the same time. Benchmarking lets
you check the performance of your app with multiple users, without actually expos‐
ing real people to a potentially slow app. Or if you want to serve hundreds or thou‐
sands of users, benchmarking will help you figure out just how many users each
process can handle and hence how many servers you’ll need to use.

The benchmarking process is supported by the shinyloadtest package and has three
basic steps:

1. Use shinyloadtest::record_session() to record a script simulating a typical
user.

2. Replay the script with multiple simultaneous users with the shinycannon
command-line tool.

3. Call shinyloadtest::report() to analyze the results.

Here I’ll give an overview of how each of the steps work; if you need more details,
check out shinyloadtest’s documentation and vignettes.

Recording
If you’re benchmarking on your laptop, you’ll need to use two different R processes—
one for Shiny and one for shinyloadtest.5

• In the first process, start your app and copy the URL that it gives you:
runApp("myapp.R")
#> Listening on http://127.0.0.1:7716

• In the second process, paste the URL into a record_session() call:
shinyloadtest::record_session("http://127.0.0.1:7716")

Benchmark | 325

https://rstudio.github.io/promises
https://rstudio.github.io/shinyloadtest

record_session() will open a new window containing a version of your app that
records everything you do with it. Now you need to interact with the app to simulate
a “typical” user. I recommend starting with a written script to guide your actions—
this will make it easier to repeat in the future, if you discover there’s some important
piece missing. Your benchmarking will only be as good as your simulation, so you’ll
need to spend some time thinking about how to simulate a realistic interaction with
the app. For example, don’t forget to add pauses to reflect the thinking time that a real
user would need.

Once you’re done, close the app, and shinyloadtest will save recording.log to your
working directory. This records every action in a way that can easily be replayed.
Keep a hold of it as you’ll need it for the next step.

(While benchmarking works great on your laptop, you likely want to simulate the
eventual deployment as closely as possible in order to get the most accurate results.
So if your company has a special way of serving Shiny apps, talk to your IT folks
about setting up an environment that you can use for load testing.)

Replay
Now you have a script that represents the actions of a single user, and we’ll next use it
to simulate many people using a special tool called shinycannon. shinycannon is a bit
of extra work to install because it’s not an R package. It’s written in Java because the
Java language is particularly well suited to the problem of performing tens or hun‐
dreds of web requests in parallel, using as few computational resources as possible.
This makes it possible for your laptop to both run the app and simulate many users.
So start by installing shinycannon, following these instructions on RStudio.

Then run shinycannon from the terminal with a command like this:

shinycannon recording.log http://127.0.0.1:7911 \
 --workers 10 \
 --loaded-duration-minutes 5 \
 --output-dir run1

There are six arguments to shinycannon:

• The first argument is a path to the recording that you created in the previous
step.

• The second argument is the URL to your Shiny app (which you copied and pas‐
ted in the previous step).

• --workers sets the number of parallel users to simulate. The previous command
will simulate the performance of your app as if 10 people were using it
simultaneously.

326 | Chapter 23: Performance

https://oreil.ly/NkKZ2

• --loaded-duration-minutes determines how long to run the test for. If this is
longer than your script takes, shinycannon will start the script again from the
beginning.

• --output-dir gives the name of the directory to save the output. You’re likely to
run the load test multiple times as you experiment with performance improve‐
ments, so strive to give informative names to these directories.

When load testing for the first time, it’s a good idea to start with a small number of
workers and a short duration in order to quickly spot any major problems.

Analysis
Now that you’ve simulated your app with multiple users, it’s time to look at the
results. First, load the data into R using load_runs():

library(shinyloadtest)
df <- load_runs("scaling-testing/run1")

This produces a tidy tibble that you can analyze by hand if you want. But typically
you’ll create the standard shinyloadtest report. This is an HTML report that contains
the graphical summaries that the Shiny team has found to be most useful:

shinyloadtest_report(df, "report.html")

I’m not going to discuss all the pages in the report here. Instead I’ll focus on what I
think is the most important plot: the session duration. To learn more about the other
pages, I highly recommend reading the Analyzing Load Test Logs article.

Benchmark | 327

https://oreil.ly/VYyxh

The session duration plot displays each simulated user session as a row. Each event is a
rectangle with width proportional to time taken, colored by the event type. The red
line shows the time that the original recording took.

When looking at this plot, consider the following questions:

• Does the app perform equivalently under load as it does for a single user? If so,
congratulations! Your app is already fast enough, and you can stop reading this
chapter . Is the slowness in the “Homepage”? If so, you’re probably using a ui
function, and you’re accidentally doing too much work there.

• Is “Start session” slow? That suggests the execution of your server function is
slow. Generally, running the server function should be fast because all you’re
doing is defining the reactive graph (which is run in the next step). If it’s slow,
move expensive code either outside of server() (so it’s run once on app startup)
or into a reactive (so it’s run on demand).
Otherwise, and most typically, the slowness will be in “Calculate,” which indicates
that some computation in your reactive is slow, and you’ll need to use the techni‐
ques in the rest of the chapter to find and fix the bottlenecks.

Profiling
If your app is spending a lot of time calculating, you next need to figure out which
calculation is slow—that is, you need to profile your code to find the bottleneck. We’re
going to do profiling with the profvis package, which provides an interactive visuali‐
zation of the profiling data collected by utils::Rprof(). I’ll start by introducing the
flame graph, the visualization used for profiling, then show you how to use profvis to
profile R code and Shiny apps.

The Flame Graph
Across programming languages, the most common tool used to visualize profiling
data is the flame graph. To help you understand it, I’m going to start by revisiting the
basics of code execution, then build up progressively to the final visualization.

To make the process concrete, we’ll work with the following code, where I use
pause() (more on that shortly) to indicate work being done:

library(profvis)

f <- function() {
 pause(0.2)
 g()
 h()
 10
}

328 | Chapter 23: Performance

https://rstudio.github.io/profvis

g <- function() {
 pause(0.1)
 h()
}
h <- function() {
 pause(0.3)
}

If I asked you to mentally run f() then explain what functions were called, you might
say something like this:

• We start with f().
• Then f() calls g().
• Then g() calls h().
• Then f() calls h().

This is a bit hard to follow because we can’t see exactly how the calls are nested, so
instead you might adopt a more conceptual description:

• f
• f > g
• f > g > h
• f > h

Here we’ve recorded a list of call stacks, which you might remember from “Reading
Tracebacks” on page 71, when we talked about debugging. The call stack is just the
complete sequence of calls leading up to a function.

We could convert that list to a diagram by drawing a rectangle around each function
name:

I think it’s most natural to think about time flowing downward, from top to bottom,
in the same way you usually think about code running. But by convention, flame
graphs are drawn with time flowing from left to right, so we rotate our diagram by 90
degrees:

Profiling | 329

We can make this diagram more informative by making the width of each call pro‐
portional to the amount of time it takes. I also added some grid lines in the back‐
ground to make it easier to check my work:

Finally, we can clean it up a little by combining adjacent calls to the same function:

This is a flame graph! It’s easy to see both how long f() takes to run and why it takes
that long (i.e., where its time is spent).

You might wonder why it’s a called a flame graph. Most flame graphs in the wild are
randomly colored with “warm” colors, meant to evoke the idea of the computer run‐
ning “hot.” However, since those colors don’t add any additional information, we usu‐
ally omit them and stick to black and white. You can learn more about this color
scheme, alternatives, and the history of flame graphs in “The Flame Graph”.

330 | Chapter 23: Performance

https://oreil.ly/AKXNP

Profiling R Code
Now that you understand the flame graph, let’s apply it to real code with the profvis
package. It’s easy to use: just wrap the code you want to profile in profvis::prof
vis():

profvis::profvis(f())

After the code has completed, profvis will pop up an interactive visualization, as
shown in Figure 23-1. You’ll notice that it looks very similar to the graphs that I drew
by hand, but the timings aren’t exactly the same. That’s because R’s profiler works by
stopping execution every 10 ms and recording the call stack. Unfortunately, we can’t
always stop at exactly the time we want because R might be in the middle of some‐
thing that can’t be interrupted. This means that the results are subject to a small
amount of random variation; if you reprofiled this code, you’d get another slightly
different result.

Figure 23-1. Results of profiling f() with profvis. X-axis shows elapsed time in ms, and
y-axis shows depth of call stack.

As well as a flame graph, profvis also does its best to find and display the underlying
source code so that you can click on a function in the flame graph to see exactly
what’s run.

Profiling a Shiny App
Not much changes when profiling a Shiny app. To see the difference, I’ll make a very
simple app that wraps around f():

ui <- fluidPage(
 actionButton("x", "Push me"),
 textOutput("y")
)
server <- function(input, output, session) {
 output$y <- eventReactive(input$x, f())
}

Note the explicit call to runApp() here: this is important
as otherwise the app won't actually run.
profvis::profvis(runApp(shinyApp(ui, server)))

The results are shown in Figure 23-2.

Profiling | 331

Figure 23-2. Results of profiling a Shiny app that uses f(). Note that the call stack is
deeper and we have a couple of tall towers.

The output looks very similar to the last run. There are a couple of differences:

• f() is no longer at the bottom of the call stack. It’s now on the fourth level
because it’s called by eventReactiveHandler() (the internal function that powers
eventReactive()), which is triggered by output$y, which is wrapped inside run
App().

• There are two very tall towers. Generally, these can be ignored because they don’t
take up much time and will vary from run to run because of the stochastic nature
of the sampler. If you do want to learn more about them, you can hover to find
out the function calls. In this case, the short tower on the left is the setup of the
eventReactive() call, and the tall tower on the right is R’s byte code compiler
being triggered.

For more details, I recommend the profvis documentation, particularly its FAQs.

Limitations
The most important limitation of profiling is due to the way it works: R has to stop
the process and inspect what R functions are currently run. That means that R has to
be in control. There are a few places where this doesn’t happen:

332 | Chapter 23: Performance

https://rstudio.github.io/profvis/faq.html

• Certain C functions don’t regularly check for user interruptions. These are the
same C functions you can’t use Esc/Ctrl+C to cancel. That’s generally not a good
programming practice, but they do exist in the wild.

• Sys.sleep() asks the operating system to “park” the process for some amount of
time, so R is not actually running. This is why we had to use profvis::pause()
previously.

• Downloading data from the internet is usually done in a different process, so it
won’t be tracked by R.

Improve Performance
The most efficient way to improve performance is to find the slowest thing in the
profile and try to speed it up. Once you’ve isolated a slow part, make sure it’s wrapped
in a standalone function (Chapter 18). Then make a minimal snippet of code that re-
creates the slowness, reprofiling it to check that you captured it correctly. You’ll rerun
this snippet multiple times as you try out possible improvements. I also recommend
writing a few tests (Chapter 21), because in my experience the easiest way to make
code faster is to make it incorrect .

Shiny code is just R code, so most techniques for improving performance are general.
Two good places to start are the “Improving Performance” section of Advanced R and
Efficient R Programming by Colin Gillespie and Robin Lovelace. I’m not going to
repeat their advice here: instead, I’ll focus on the techniques that are most likely to
affect your Shiny app. I also highly recommend Alan Dipert’s rstudio::conf(2018) talk
“Make Shiny Fast by Doing as Little Work as Possible”.

Begin by resolving any issues where existing code is run more often than you expect.
Make sure you’re not repeating the same work in multiple reactives and that the reac‐
tive graph isn’t updating more often than you expect (“The Reactlog Package” on
page 220).

Next, I’ll discuss the easiest way to improve the performance of your app, using cach‐
ing to remember and replay slow calculations. I’ll finish up with two other techniques
that can help many Shiny apps: pulling out expensive preprocessing into a separate
step and carefully managing user expectations

Caching
Caching is a very powerful technique for improving code performance. The basic
idea is to record the inputs to and outputs from every call to a function. When the
cache function is called with a set of inputs that it’s already seen, it can replay the
recorded output without recomputing. Packages like memoise provide tools for cach‐
ing regular R functions.

Improve Performance | 333

https://oreil.ly/JKsXC
https://oreil.ly/LBGxs
https://oreil.ly/8wknl
https://memoise.r-lib.org

6 This function was introduced in Shiny 1.6.0, generalizing the older renderCachedPlot(), which only worked
for plots.

Caching is particularly effective for Shiny apps, because the cache can be shared
across users. That means when many people are using the same app, only the first
user needs to wait for the results to be computed, then everyone else gets a speedy
result from the cache.

Shiny provides a general tool for caching any reactive expression or render function:
bindCache().6 As you know, reactive expressions already cache the most recently
computed value; bindCache() allows you to cache any number of values and to share
those values across users. I’ll introduce you to the basics of bindCache(), show you a
couple of practical examples, and then talk through some of the details of the cache
“key” and scope. I recommend starting with “Using Caching in Shiny to Maximize
Performance” and “Using bindCache() to Speed Up an App” if you want to learn
more.

Basics
bindCache() is easy to use. Simply pipe either the reactive() or render* function
that you want to cache into bindCache():

r <- reactive(slow_function(input$x, input$y)) %>%
 bindCache(input$x, input$y)

output$text <- renderText(slow_function2(input$z)) %>%
 bindCache(input$z)

The additional arguments are the cache keys: these are the values that are used to
determine if a computation has been seen before. We’ll discuss the cache keys in more
details after showing a couple of practical uses.

Caching a Reactive
A common place to use caching is in conjunction with a web API: even if the API is
very quick, you still have to send the request, wait for the server to respond, and then
parse the result. So caching API results often yields a big performance improvement.
Let’s illustrate that with a simple example using the gh package that talks to GitHub’s
API.

Imagine you want to design an app that shows what people have been working on
lately. Here I’ve written a little function that gets the data from GitHub’s event API
and does some simple rectangling to turn it into a tibble:

library(purrr)

334 | Chapter 23: Performance

https://oreil.ly/qLHab
https://oreil.ly/qLHab
https://oreil.ly/guiyx
https://gh.r-lib.org
https://oreil.ly/iPTxi

latest_events <- function(username) {
 json <- gh::gh("/users/{username}/events/public", username = username)
 tibble::tibble(
 repo = json %>% map_chr(c("repo", "name")),
 type = json %>% map_chr("type"),
)
}

system.time(hadley <- latest_events("hadley"))
#> user system elapsed
#> 0.138 0.033 0.743
head(hadley)
#> # A tibble: 6 x 2
#> repo type
#> <chr> <chr>
#> 1 hadley/r4ds IssuesEvent
#> 2 hadley/mastering-shiny IssuesEvent
#> 3 hadley/mastering-shiny IssueCommentEvent
#> 4 hadley/mastering-shiny IssuesEvent
#> 5 hadley/mastering-shiny IssueCommentEvent
#> 6 hadley/mastering-shiny IssuesEvent

And I can turn that into a very simple app:

ui <- fluidPage(
 textInput("username", "GitHub user name"),
 tableOutput("events")
)
server <- function(input, output, session) {
 events <- reactive({
 req(input$username)
 latest_events(input$username)
 })
 output$events <- renderTable(events())
}

This app is going to feel a little sluggish because every time you type in a username,
it’s going to have to re-request the data, even if you just asked for it 15 seconds ago.
We can dramatically improve performance by using bindCache():

server <- function(input, output, session) {
 events <- reactive({
 req(input$username)
 latest_events(input$username)
 }) %>% bindCache(input$username)
 output$events <- renderTable(events())
}

You might have spotted a problem with this approach—what happens if you come
back to it tomorrow and request data for the same user? You’ll get today’s data, even
though there might have been new activity. There’s an implicit dependency on time

Caching | 335

that you need to make explicit. You can do that by adding Sys.Date() to the cache
key so that the cache effectively only lasts for a single day:

server <- function(input, output, session) {
 events <- reactive({
 req(input$username)
 latest_events(input$username)
 }) %>% bindCache(input$username, Sys.Date())
 output$events <- renderTable(events())
}

You might worry that the cache will steadily accumulate data from past days that
you’ll never look at again, but fortunately the cache has a fixed total size and is smart
enough to automatically remove the least-recently-used data when it needs more
space.

Caching Plots
Most of the time you’ll cache reactives, but you can also use bindCache() with render
functions. Most render functions are pretty speedy, but there’s one that can be slow if
you have complex graphics: renderPlot().

For example, take the following app. If you run it yourself, you’ll notice that the first
time you show each plot, it takes a noticeable fraction of a second to render because it
has to draw ~50,000 points. But the next time you draw each plot, it appears instantly
because it’s retrieved from the cache:

library(ggplot2)

ui <- fluidPage(
 selectInput("x", "X", choices = names(diamonds), selected = "carat"),
 selectInput("y", "Y", choices = names(diamonds), selected = "price"),
 plotOutput("diamonds")
)

server <- function(input, output, session) {
 output$diamonds <- renderPlot({
 ggplot(diamonds, aes(.data[[input$x]], .data[[input$y]])) +
 geom_point()
 }) %>% bindCache(input$x, input$y)
}

(If the .data syntax is unfamiliar to you, see Chapter 12 for details.)

There’s one special consideration when it comes to caching plots: each plot is drawn
in a variety of sizes, because the default plot occupies 100% of the available width,
which varies as you resize the browser. That flexibility doesn’t work very well for
caching, because even a single pixel difference in the size would mean that the plot
couldn’t be retrieved from the cache. To avoid this problem, bindCache() caches
plots with fixed sizes. The defaults are carefully chosen to “just work” in most cases,

336 | Chapter 23: Performance

but if needed you can control with the sizePolicy argument and learn more in the ?
sizeGrowthRatio.

Cache Key
It’s worth talking briefly about the cache key: the set of values used to figure out
whether or not the computation has been previously performed. These values are also
used to determine the reactive dependencies, much like the first argument of observ
eEvent() or eventReactive(). That means if you use the wrong cache key, you can
get very confusing results. For example, imagine that I have this cached reactive:

r <- reactive(input$x + input$y) %>% bindCache(input$x)

If input$y changes, r() will not recompute. And if the result is retrieved from the
cache, it will be the sum of the current value of x and whatever value y happened to
have when the value was cached.

So the cache key should always include all of the reactive inputs in the expression. But
you may also want to include additional values that are not used in the reactive. The
most useful example of this is adding the current day, or some rounded current time,
so that cached values are only used for a fixed amount of time.

As well as inputs, you can use other reactive()s as cache keys, but you’ll need to
keep them as a simple as possible (i.e., atomic vectors or simple lists of atomic vec‐
tors). Don’t use large datasets because it is expensive to figure out if a large data frame
has already been seen, and that will reduce the benefit you see from caching.

Cache Scope
By default, the plot cache is stored in memory, is never bigger than 200 MB, is shared
across all users in a single process, and is lost when the app restarts. You can change
this default for individual reactives or for the whole session:

• bindCache(…, cache = "session") will use a separate cache for each user ses‐
sion. This ensures that private data is not potentially shared between users, but it
also reduces the benefit of caching.

• Use shinyOptions(cache = cachem::cache_mem()) or shinyOptions(cache =
cachem::cache_disk()) to change the default cache across the whole app. You
can use them to make sure a cache is shared across multiple processes and lasts
across app restarts. See ?bindCache for more details.

It’s also possible to chain multiple caches together or write your own custom storage
backend. You can learn more about these options in the documentation for cachem,
the caching package that powers bindCache().

Caching | 337

https://cachem.r-lib.org

7 See this Ursa Labs blog post for some benchmarks.

Other Optimizations
There are two other optimizations that crop up in many apps: performing data
import and manipulation on a schedule and carefully managing user expectations.

Schedule Data Munging
Imagine that your Shiny app uses a dataset that requires a little initial data cleaning.
The data prep is relatively complicated and takes a nontrivial amount of time. You’ve
discovered that it’s a bottleneck for your app and want to do better.

Let’s pretend that you’ve already extracted the code out into a function, and it looks
something like this:

my_data_prep <- function() {
 df <- read.csv("path/to/file.csv")
 df %>%
 filter(!not_important) %>%
 group_by(my_variable) %>%
 some_slow_function()
}

And currently you call it in your server function:

server <- function(input, output, session) {
 df <- my_data_prep()
 # Lots more code
}

The server function is called every time a new session starts, but the data is always the
same, so you can immediately make your app faster (and use less memory) by mov‐
ing the data processing out of server():

df <- my_data_prep()
server <- function(input, output, session) {
 # Lots more code
}

Since you’re paying attention to this code, it’s also worth checking that you’re using
the most efficient way to load your data:

• If you have a flat file, try data.table::fread() or vroom::vroom() instead of
read.csv() or read.table().

• If you have a data frame, try saving with arrow::write_feather() and reading
with arrow::read_feather(). Feather is a binary file format that can be consid‐
erably faster7 to read and write.

338 | Chapter 23: Performance

https://oreil.ly/Xtr73

• If you have objects that aren’t data frames, try using qs::qread()/qs::qsave()
instead of readRDS()/saveRDS().

If these changes aren’t enough to resolve the bottleneck, you might consider using a
separate cron job or scheduled RMarkdown report to call my_data_prep() and save
the results. Then your app can load the pre-prepared data and get to work. This is like
hiring a prep chef who comes in at three a.m. (when there are no customers) so that
during the lunch rush your chefs can be as efficient as possible.

Manage User Expectations
Finally, there are a few tweaks you can make to your app design to make it feel faster
and improve the overall user experience of your app. Here are four tips that can be
used in many apps:

• Split your app up into tabs, using tabsetPanel(). Only outputs on the current
tab are recomputed, so you can use this to focus computation on what the user is
currently looking at.

• Require a button press to start a long-running operation. Once the operation
starts, let the user know what’s happening using the techniques of “Notifications”
on page 126. If possible, display an incremental progress bar (“Progress Bars” on
page 129) because there’s good evidence that progress bars make operations feel
faster.

• If the app requires significant work to happen on startup (and you can’t reduce it
with preprocessing), make sure to design your app so that the UI can still appear
and you can let the user know that they’ll need to wait.

• Finally, if you want to keep the app responsive while some expensive operation
happens in the background, it’s time to learn about async programming.

Summary
This chapter has given you the tools to precisely measure and improve the perfor‐
mance of any Shiny app. You learned about shinyloadtest to measure the performance
and using shinycannon to simulate multiple users working with your app at the same
time. Then you learned how to use profvis to find the single-most expensive opera‐
tion and a grab bag of techniques that you can use to improve it.

This is the last chapter in Mastering Shiny—thank you for making it all the way to the
end! I hope you have found the book useful and that the skills I have given you help
you produce many compelling Shiny apps. I’d love to hear if you’ve found the book
useful or if there’s anything that you think could be improved in the future. The best

Summary | 339

https://oreil.ly/MG0G8
https://oreil.ly/MG0G8
https://rstudio.github.io/promises/index.html

way to get in touch is on Twitter, @hadleywickham, or on GitHub. Thanks again for
reading, and best wishes for your future Shiny apps!

340 | Chapter 23: Performance

https://twitter.com/hadleywickham
https://github.com/hadley/mastering-shiny

Index

Symbols
%<-% operator, 273
<- (assignment operator), 7, 267

A
action buttons

dialog box considerations, 136
on click events, 46
Other button, 275
paired start and stop buttons, 239
paired with observeEvent(), 20
tweaking text of, 155

actionLink(), 20
Angular, 206
animations, pausing, 239
any_of(), 195
app.R, 3
assignment operator (<-), 7, 267
asynchronous programming, 325, 339
authentication, 318
automated bookmarking, 183

B
background color, 99
benchmarking, 325-328
best practices (see also module system; perfor‐

mance improvement; testing)
code extraction, 251-257
packages, 287-295
security, 317-321
software engineering, 245-250

bindCache(), 334
bookmarkButton(), 180
bookmarking, 179-184

Bootstrap framework, 97
browser(), 109
brush events, 105, 109
brushedPoints(), 109, 113
brushOpts(), 111
bslib package, 98-101

C
cache key, 337
caching, 333-337
case studies

accidental injuries investigation
accessing narratives from dataset, 63
data exploration, 53
dataset, 51
practice exercises, 64
prototype app, 57
rate versus count, 61
table aesthetics, 60

debugging, 75-79
file transfer, 149
histograms, 271
JavaScript testing, 311
module system

dynamic UI, 282-284
overview of, 275
wizard interface, 278-281

reactive graphs, 237
reprexes (reproducible examples), 83
selecting numeric variables, 268

cheat sheet, 10
checkboxGroupInput(), 19
circular references, 160
class argument, 21

341

click argument, 25, 105
client-side validation, 318
code (see also best practices)

creating UIs with, 166-177
extracting imperative, 37
extracting into independent apps, 251-257
isolating, 228
organizing, 246
reducing duplicated, 8, 42
sharing across apps, 293
source code management, 248

code coverage, 304
code examples, obtaining and using, xvii
code reviews, 249
column layout, 91
column(), 38, 93
comments and questions, xviii
compute resources, 319
conditions, 123
config package, 248, 318
confirming and undoing

explicit confirmation, 136
trash, 139
undoing actions, 137

continuous integration/deployment (CI/CD),
249

CSS frameworks, 97, 101
.csv (comma-separated values), 145
curly braces ({}), 23

D
data munging, 338
data-masking

base R code, 194
example: dplyr, 191
example: ggplot2, 189
tidy-selection and, 196
user-supplied data, 193
uses for, 187

data-variable, 186
datasets

converting apps into packages, 288
downloading, 145
limiting to data frames or matrices, 267
reloading uploaded data, 255
uploading, 143

dataTableOutput(), 24
dateInput(), 18, 253
dateRangeInput(), 18

dblclick argument, 25, 105
debouncing, 31
debugging

case study, 75-79
interactive debugger, 73
main cases of problems, 70
reading tracebacks, 71
reprexes, 80-87
tracebacks in Shiny, 72
unexpected reactive firing, 79

declarative programming, 31
dependency management, 247
deploying app-packages, 294
development workflow

app creation, 68
controlling the view, 70
seeing your changes, 69

devtools::load_all(), 292
devtools::test_file(), 300
dialog boxes, 136, 175
distinct(), 196
downloadButton(), 25, 144
downloadHandler(), 144
downloadLink(), 25, 144
dplyr, 191
drop-down menus, 97
dynamic user interfaces (dynamic UI) (see also

inputs; outputs)
creating UI with code, 166-177

dialog boxes, 175
dynamic filtering, 171-175
isolate(), 167
multiple controls, 168
practice exercises, 176
uiOutput() and renderUI(), 166

dynamic visibility, 162-166
conditional UI, 163
practice exercises, 166
tabsetPanel(), 162
wizard interface, 165

module system, 282-284
techniques for creating, 153
updating inputs, 153-162

circular references, 160
freezing reactive inputs, 158
hierarchical select boxes, 156
interrelated inputs, 160
practice exercises, 161
simple uses, 155

342 | Index

update functions, 153
dynamism, 218

E
eagerness, 226
Ember, 206
env-variable, 186
error handling, 225
error messages, 120
eval(), 197, 319
evaluation, controlling timing of, 44-48 (see

also tidy evaluation)
event-driven programming, 203
eventExpr argument, 49
eventReactive(), 48-49, 131, 229
execution order, 34
exercises

accidental injuries investigation, 64
app creation, 10
bookmarking, 184
creating UI with code, 176
downloads, 26
dynamic visibility, 166
file transfer, 151
inputs, 21
isolating code, 230
module system, 265, 274
page layouts, 94
reactive expressions, 226
reactive graphs, 217, 240
reactive programming, 35
reactive values, 224
themes, 101
timed invalidation, 233
updating inputs, 161

expectations, 297
expect_equal(), 300
expect_error(), 300
explicit confirmation, 136

F
false positive/negative tests, 314
feedback(), 120
file transfer

case study, 149
downloads, 25, 144-148
practice exercises, 151
uploads, 20, 141-144

fileInput(), 20, 122, 141

fill, 111
fillPage(), 90
find_vars(), 270
fixedPage(), 90
flame graphs, 328
fluidPage(), 6, 90, 93
fluidRow(), 38, 93, 254
fonts, 99
foreground color, 99
FRAN (functional reactive animation), 206
freezeReactiveValue(), 159
frequency polygons, 36
functional programming, 254
Functional Reactive Programming, 206
functions

data-masking, 187-195
feedback functions, 120
internal functions, 256
layout functions, 89-97
versus reactive programming, 202
render functions, 7, 22, 29
roles of in Shiny apps, 251
server functions, 255
UI functions, 252-255
update functions, 153

G
gender identification, 277
generating a bookmark, 181
getting help, 80
ggplot2, 189
gh package, 334
Git/GitHub, 248
glue package, 320
graphics

dynamic height and width, 115
images, 116
interactivity, 105-115

H
handlerExpr argument, 49
headless browsers, 309
height, dynamic, 115
hierarchical select boxes, 156
holding cells, 139
hover argument, 25, 105
HTML conventions, 97, 101

Index | 343

I
images, 116
imperative programming, 31
incProgress(), 130
indirection problem, 185
infectious eagerness, 226
input argument, 28
inputId, 16
inputs

accumulating, 238
basic UI

action buttons, 20
common structure, 16
dates, 18
file uploads, 20
free text, 16
limited choices, 18, 275
numeric inputs, 17

input controls, 6
module system, 266-275
one output and multiple inputs, 237
page layouts, 89-97
in reactive graphs, 213, 215-218
security issues for user inputs, 320
transferring files, 141-144
updating for dynamic UIs, 153-162
validating, 120

interactive debugger, 73
interactivity

brushing, 109
clicking, 107
limitations of, 115
modifying plots, 111-114
mouse events, 105
multiple interaction types, 109
plotOutput(), 105

internal functions, 256
invalidateLater(), 230, 239, 309
isolate(), 167, 228, 239

J
JavaScript

Shiny functions using, 309
testing, 309-313

K
keyboard shortcuts, 304
Knockout, 206

L
label parameter, 16
layouts

layout functions, 6
multipage, 94-97
practice exercises, 94
single-page, 89-94
themes, 98-101

load_all(), 288
long-running computation, 231

M
mainPanel(), 91
make_ui(), 282
memoise, 333
menus, drop-down, 97
message argument, 131
message(), 79
Meteor, 206
MobX, 206
modalDialog(), 136, 175
modal_confirm, 137
model formulas, 320
module system

basics of, 261-266
benefits of, 259
inputs and outputs, 266-275
modules inside of modules, 270
reactive graphs and, 42
role in app construction, 259
single object modules, 284
testing, 307

moduleServer(), 285
mouse events, 105
multipage layouts, 94-97
multirow layout, 93

N
namespacing, 264
naming conventions, 265
navbarMenu(), 96
navbarPage(), 96-97
navlistPanel(), 96
nearPoints(), 107
notifications

progressive, 129
removing on completion, 128
showNotification(), 126

344 | Index

transient, 127
NS(), 283
numeric variables, 268
numericInput(), 15, 17, 169

O
observe(), 227, 237
observeEvent()

automatically switching controls with, 164
capturing and saving results, 138
combined with reactiveValues(), 237
debugging with, 49
versus eventReactive(), 229
versus observe(), 227
paired with action links and buttons, 20
updates on mouse clicks, 111
updating inputs with, 154-156

observers, 226
on.exit(), 225
onBookmark(), 184
onRestore(), 184
"Other" button, 275
output argument, 29
output$plot, 22
outputs

basic UI
downloads, 25, 144
placeholders created by, 22
plots, 25
tables, 24
text, 22

module system, 266-275
multiple outputs, 272
versus observers, 226
one output and multiple inputs, 237
output controls, 6
page layouts, 89-97
in reactive graphs, 214-215

P
packages

additional resources, 287
benefits of using, 292
converting existing apps, 288-292
core idea of, 287
deploying app-packages, 294
R CMD check, 294
structure overview, 287

page functions, 90

page layouts (see layouts)
parameterized RMarkdown documents, 146
parse(), 197, 319
passwords, 16, 318
performance improvement

additional resources, 333
approach to, 333
benchmarking, 325-328
caching, 333-337
data munging, 338
demo video, 323
managing user expectations, 339
overview of, 323
profiling, 328-333
restaurant analogy, 324

personally identifying information (PII), 318
photos, 116
plot themes, 100
plotly package, 115
plotOutput(), 25, 105
polling, 231
print debugging, 79
producers, 36
profiling, 328-333
profvis package, 328
progress bars

challenges of, 130
Shiny, 130
spinners, 133
waiter package, 132

prototyping, 57
purrr::map(), 283
purrr::pmap(), 254

Q
questions and comments, xviii

R
R CMD check, 294
R packages

additional resources, 295
installing, xvi

radioButtons(), 18, 275
React, 206
reactive contexts, 29
reactive dependencies, 33
reactive expressions

creating, 9, 41
error handling, 225

Index | 345

need for, 43
versus observers and outputs, 226
overview of, 33
in reactive graphs, 212-213
reducing duplication with, 8
role in app construction

comparing datasets, 36
dual activity of, 36
exploring multiple simulations, 38
reactive graphs, 40
simplifying reactive graphs, 41

reactive graphs
automated bookmarking, 183
escaping constraints of

antipatterns, 240
benefits and drawbacks of, 235
case studies, 237-240
input invalidation, 235

overview of, 33
role in app construction

drawing reactive graphs, 40
simplifying reactive graphs, 41

step-by-step tour of
dynamism, 218
input changes, 215-218
reactlog package, 220
sample app, 209
session flow, 211-215

reactive programming
benefits and drawbacks of, 235
brief history of, 206
building blocks of

controlling timing of evaluation, 44-48
isolating code, 228
observers and outputs, 49, 226
reactive expressions, 225
reactive values, 223

debugging, 79
definition of term, 206
essence of reactivity, 8, 202
introduction to

execution order, 34
imperative versus declarative program‐

ming, 31
key idea of reactive programming, 27
lazy updates, 32
practice exercises, 35
reactive expressions, 33, 36-44
reactive graphs, 33

server functions, 27-30
simple example, 30

need for, 202-205
reactive(), 41
reactiveConsole(), 306
reactivePoll(), 231
reactiveTimer(), 45, 309
reactiveVal(), 111, 223
reactiveValues(), 223, 237
ReactiveX, 206
reactlog package, 220
rectangling, 334
removeModal(), 137
removeNotification(), 128
render functions, 7, 22, 29
renderDataTable(), 24
renderImage(), 116
renderPlot(), 25, 115, 336
renderPrint(), 7, 23
renderTable(), 7, 24
renderText(), 23
renderUI(), 167, 168, 175
renv, 247
reports, downloading, 146
reprexes (reproducible examples)

benefits of, 80
case study, 83
creating smallest possible, 82
making, 81
simple example of, 81

req(), 107, 121-124, 143
RMarkdown, 146
rsconnect package, 294
RStudio

installing, xvi
interactive debugger, 73
keyboard shortcuts, 304

RStudio Community site, 80
RStudio Connect, 293
RStudio Gadgets, 293
rule of three, 42
Run App button, 4
rxtools, 235

S
screenshots, 313
security

additional resources, 317
authentication, 318

346 | Index

compute resources, 319
data, 318
main items to protect, 317
passwords, 16, 318
responsibilities for, 317

select boxes, 156
selectInput(), 6, 15, 18, 121
selection tools, 105
separate(), 195
server functions

handling long reactives, 255
output$plot, 22
overview of, 7, 27-30

server-side bookmarking, 183
session duration, 328
session$elapse(), 309
session$flushReact(), 308
session$getReturned(), 308
session$setInputs(), 306
setBookmarkExclude(), 183
sharing apps, 293
sharing code across apps, 293
Shiny

approach to learning, xiv
basic reactivity (see also reactive program‐

ming)
controlling timing of evaluation, 44-48
key idea of reactive programming, 27
observers, 49
reactive expressions, 36-44
reactive programming, 30-35
server functions, 27-30

basic UI
extension packages, 15
file transfer, 141
inputs, 15-22
outputs, 22-25
practice exercises, 21, 26

benefits of, xiii, 201, 235
installing, 3
introduction to

adding behavior to apps, 7
adding UI controls to apps, 6
app development process, 6, 67-70

(see also workflow)
creating app directories and files, 3
operation cheat sheet, 10
practice exercises, 10
reducing duplicated code, 8

running and stopping apps, 4
prerequisites to learning, xv
target audience, xiv
use cases, xiii (see also case studies)

shinyapps.io, 293
shinycannon, 326
shinycssloaders package, 135
shinyFeedback package, 120
shinyloadtest package, 325
shinySignals, 235
shinytest package, 309
showModal(), 137
showNotification(), 126
sidebarLayout(), 91, 93
sidebarPanel(), 91
single object modules, 284
single-page layouts, 89-94
sliderInput(), 15, 17
snapshot tests, 302, 313
software engineering (see also best practices)

code organization, 246
code reviews, 249
continuous integration/deployment, 249
dependency management, 247
recommendations for improvement, 245
source code management, 248
testing, 247

source(), 288, 319
special conditions, 123
spinners, 133
spreadsheets, 206
stroke, 111

T
tableOutput(), 6, 24
tabPanel(), 94
tabsetPanel(), 94-97, 183
testing

best practices, 247
false positives and false negatives, 314
of functions, 298-304
hierarchy of, 298
levels of, 297
of JavaScript, 309-313
overview of, 297
purpose of, 297
of reactivity, 305-309
snapshot tests, 302
timing of, 314

Index | 347

of visuals, 313
workflow for, 304

testServer(), 306-309
testthat package, 297
testthat::snapshot_accept(), 303
testthat::snapshot_review(), 313
textAreaInput(), 16
textInput(), 15-17, 121, 124, 153
textOutput(), 22, 169
themes, 98-101
tidy evaluation

benefits and drawbacks of, 185
data-masking, 187-195
indirection problem, 185
parse() and eval(), 197
tidy-selection, 195-197

timed invalidation, 45, 230-233
timer accuracy, 232
timestamps, 233
titlePanel(), 91
tracebacks, 71-73
transformations, variable, 320
trash, 139
tReactive(), 20
.tsv (tab-separated value), 145
two-column layout, 91

U
UI functions, 252-255
uiOutput(), 167, 169
undoing actions, 137
update functions, 153
updateSelectInput(), 159
updateSliderInput(), 153, 155
updateTextInput(), 238
uploads, 20, 141-144
user bookmark command, 182
user expectations, 339
user feedback

confirming and undoing, 136-139
notification, 126-129
progress bars, 129-135

validation, 119-126
useShinyFeedback(), 120
usethis, 292
usethis::use_data(mydataset), 288
usethis::use_description(), 288, 291, 292
usethis::use_package(), 294
usethis::use_rstudio(), 288
use_waitress(), 132

V
validation

canceling execution, 121
ensuring text properties with, 17
importance of in app construction, 119
req() and, 124
shinyFeedback package, 120
validate(), 125

variable transformation, 320
variables, 202, 268
verbatimTextOutput(), 6, 22
version-control systems, 248
visibility, dynamic, 162-166
VisiCalc, 206
visuals, testing, 313
Vue.js, 206

W
waiter package, 132, 135
width, dynamic, 115
withProgress(), 130
wizard interface, 165, 278-281
workflow

debugging, 70-80
development, 67-70
reprexes, 80-87
testing, 304
when using packages, 292

Z
zeallot, 273

348 | Index

About the Author
Hadley Wickham is chief scientist at RStudio, a winner of the 2019 COPSS Presi‐
dents’ Award, and a member of the R Foundation. He builds computational and cog‐
nitive tools to make data science easier, faster, and more fun. His work includes
packages for data science (like the tidyverse, which includes ggplot2, dplyr, and tidyr)
and principled software development (roxygen2, testthat, and pkgdown). He’s also a
writer, educator, and speaker, promoting the use of R for data science. Learn more on
his website.

Colophon
The animal on the cover of Mastering Shiny is a kererū (Hemiphaga novaeseelandiae),
also known as the New Zealand pigeon, as it is the only pigeon species native to the
New Zealand mainland.

The kererū’s feathers are bronze-tinted and its head and body are a lustrous purple-
green. This pigeon’s underbelly is white and the bill red, matching its eyes. They emit
soft coos, and make a distinctive wing-beating sound when landing or taking off. Typ‐
ically slender and active, the kererū gains body mass during fruit and mating seasons.

Because they are one of the few native birds large enough to swallow fruit whole, ker‐
erū play a vital role in dispersing native seeds throughout New Zealand. This pigeon
has acquired a reputation for being the drunkest bird in New Zealand—plump kererū
have been known to fall from trees after consuming fermented fruit.

Kererū are culturally significant to the Māori people. For example, in Māori lore, it is
said that when the trickster Māui searched the underworld for his parents, he took
the form of a kererū. Though Māori would traditionally use the bird’s meat, bones,
and feathers, current preservation regulations put restrictions on hunting kererū.

Due to invasive species, hunting, and habitat deterioration, the New Zealand pigeon
is listed as Near Threatened by the IUCN. Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

Color illustration by Karen Montgomery, based on a black and white engraving from
British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

http://hadley.nz

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	What Is Shiny?
	Who Should Read This Book?
	What Will You Learn?
	What Won’t You Learn?
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	How This Book Was Built

	Part I. Getting Started
	Chapter 1. Your First Shiny App
	Introduction
	Create App Directory and File
	Running and Stopping
	Adding UI Controls
	Adding Behavior
	Reducing Duplication with Reactive Expressions
	Summary
	Exercises

	Chapter 2. Basic UI
	Introduction
	Inputs
	Common Structure
	Free Text
	Numeric Inputs
	Dates
	Limited Choices
	File Uploads
	Action Buttons
	Exercises

	Outputs
	Text
	Tables
	Plots
	Downloads
	Exercises

	Summary

	Chapter 3. Basic Reactivity
	Introduction
	The Server Function
	Input
	Output

	Reactive Programming
	Imperative Versus Declarative Programming
	Laziness
	The Reactive Graph
	Reactive Expressions
	Execution Order
	Exercises

	Reactive Expressions
	The Motivation
	The App
	The Reactive Graph
	Simplifying the Graph
	Why Do We Need Reactive Expressions?

	Controlling Timing of Evaluation
	Timed Invalidation
	On Click

	Observers
	Summary

	Chapter 4. Case Study: ER Injuries
	Introduction
	The Data
	Exploration
	Prototype
	Polish Tables
	Rate Versus Count
	Narrative
	Exercises
	Summary

	Part II. Shiny in Action
	Chapter 5. Workflow
	Development Workflow
	Creating the App
	Seeing Your Changes
	Controlling the View

	Debugging
	Reading Tracebacks
	Tracebacks in Shiny
	The Interactive Debugger
	Case Study
	Debugging Reactivity

	Getting Help
	Reprex Basics
	Making a Reprex
	Making a Minimal Reprex
	Case Study

	Summary

	Chapter 6. Layout, Themes, HTML
	Introduction
	Single-Page Layouts
	Page Functions
	Page with Sidebar
	Multirow
	Exercises

	Multipage Layouts
	Tabsets
	Navlists and Navbars

	Bootstrap
	Themes
	Getting Started
	Shiny Themes
	Plot Themes
	Exercises

	Under the Hood
	Summary

	Chapter 7. Graphics
	Interactivity
	Basics
	Clicking
	Other Point Events
	Brushing
	Modifying the Plot
	Interactivity Limitations

	Dynamic Height and Width
	Images
	Summary

	Chapter 8. User Feedback
	Validation
	Validating Input
	Canceling Execution with req()
	req() and Validation
	Validate Output

	Notifications
	Transient Notification
	Removing on Completion
	Progressive Updates

	Progress Bars
	Shiny
	Waiter
	Spinners

	Confirming and Undoing
	Explicit Confirmation
	Undoing an Action
	Trash

	Summary

	Chapter 9. Uploads and Downloads
	Upload
	UI
	Server
	Uploading Data

	Download
	Basics
	Downloading Data
	Downloading Reports

	Case Study
	Exercises
	Summary

	Chapter 10. Dynamic UI
	Updating Inputs
	Simple Uses
	Hierarchical Select Boxes
	Freezing Reactive Inputs
	Circular References
	Interrelated Inputs
	Exercises

	Dynamic Visibility
	Conditional UI
	Wizard Interface
	Exercises

	Creating UI with Code
	Getting Started
	Multiple Controls
	Dynamic Filtering
	Dialog Boxes
	Exercises

	Summary

	Chapter 11. Bookmarking
	Basic Idea
	Updating the URL
	Storing Richer State

	Bookmarking Challenges
	Exercises
	Summary

	Chapter 12. Tidy Evaluation
	Motivation
	Data-Masking
	Getting Started
	Example: ggplot2
	Example: dplyr
	User-Supplied Data
	Why Not Use Base R?

	Tidy-Selection
	Indirection
	Tidy-Selection and Data-Masking

	parse() and eval()
	Summary

	Part III. Mastering Reactivity
	Chapter 13. Why Reactivity?
	Introduction
	Why Do We Need Reactive Programming?
	Why Can’t You Use Variables?
	What About Functions?
	Event-Driven Programming
	Reactive Programming

	A Brief History of Reactive Programming
	Summary

	Chapter 14. The Reactive Graph
	Introduction
	A Step-by-Step Tour of Reactive Execution
	A Session Begins
	Execution Begins
	Reading a Reactive Expression
	Reading an Input
	Reactive Expression Completes
	Output Completes
	The Next Output Executes
	Execution Completes, Outputs Flushed

	An Input Changes
	Invalidating the Inputs
	Notifying Dependencies
	Removing Relationships
	Re-execution
	Exercises

	Dynamism
	The Reactlog Package
	Summary

	Chapter 15. Reactive Building Blocks
	Reactive Values
	Exercises

	Reactive Expressions
	Errors
	on.exit()
	Exercises

	Observers and Outputs
	Isolating Code
	isolate()
	observeEvent() and eventReactive()
	Exercises

	Timed Invalidation
	Polling
	Long-Running Reactives
	Timer Accuracy
	Exercises

	Summary

	Chapter 16. Escaping the Graph
	Introduction
	What Doesn’t the Reactive Graph Capture?
	Case Studies
	One Output Modified by Multiple Inputs
	Accumulating Inputs
	Pausing Animations
	Exercises

	Antipatterns
	Summary

	Part IV. Best Practices
	Chapter 17. General Guidelines
	Introduction
	Code Organization
	Testing
	Dependency Management
	Source Code Management
	Continuous Integration/Deployment
	Code Reviews
	Summary

	Chapter 18. Functions
	File Organization
	UI Functions
	Other Applications
	Functional Programming
	UI as Data

	Server Functions
	Reading Uploaded Data
	Internal Functions

	Summary

	Chapter 19. Shiny Modules
	Motivation
	Module Basics
	Module UI
	Module Server
	Updated App
	Namespacing
	Naming Conventions
	Exercises

	Inputs and Outputs
	Getting Started: UI Input and Server Output
	Case Study: Selecting a Numeric Variable
	Server Inputs
	Modules Inside of Modules
	Case Study: Histogram
	Multiple Outputs
	Exercises

	Case Studies
	Limited Selection and Other
	Wizard
	Dynamic UI

	Single Object Modules
	Summary

	Chapter 20. Packages
	Converting an Existing App
	Single File
	Module Files
	A Package

	Benefits
	Workflow
	Sharing

	Extra Steps
	Deploying Your App-Package
	R CMD check

	Summary

	Chapter 21. Testing
	Testing Functions
	Basic Structure
	Basic Workflow
	Key Expectations
	User Interface Functions

	Workflow
	Code Coverage
	Keyboard Shortcuts
	Workflow Summary

	Testing Reactivity
	Modules
	Limitations

	Testing JavaScript
	Basic Operation
	Case Study

	Testing Visuals
	Philosophy
	When Should You Write Tests?

	Summary

	Chapter 22. Security
	Data
	Compute Resources

	Chapter 23. Performance
	Dining at Restaurant Shiny
	Benchmark
	Recording
	Replay
	Analysis

	Profiling
	The Flame Graph
	Profiling R Code
	Profiling a Shiny App
	Limitations

	Improve Performance
	Caching
	Basics
	Caching a Reactive
	Caching Plots
	Cache Key
	Cache Scope

	Other Optimizations
	Schedule Data Munging
	Manage User Expectations

	Summary

	Index
	About the Author
	Colophon

