

CONTENTS

COPYRIGHT
INTRODUCTION
DOWNLOADING DATASETS AND INSTALLING THE SQL SERVER

WHAT ARE SQL JOINS, AND HOW DOES IT HELP?
CROSS JOIN
INNER JOIN
OUTER JOINS
CALCULATED COLUMN IN THE QUERIES WITH JOINS!
HANDS ON EXERCISES
ANSWERS
BIBLIOGRAPHY

COPYRIGHT
All rights reserved.

No part or section of this book is allowed to be reproduced or used in any way without the documented consent and permission of
the copyright owner except for the use of references in a book review.

This is an intellectual work by author Dane Wade and dataceps.com to help people learn SQL programming language.

Book Cover And Content Plan Designed By Dane Wade.

For more information, Email the author at :danewade@dataceps.com.

Copyright © 2023 by dataceps.com
www.dataceps.com

T

INTRODUCTION

he data management industry is at its peak at this moment. You and I are so are witnessing
one of the biggest revolutions in the history of mankind. Data, which is also considered as oil

of the present time, is more valuable than ever.

New high-paying jobs are being created, and the data management industry is at its all-time
high!!
When I began my career, I never knew that I would end up learning about DBMS or SQL.
During my college years, the one subject that I hated the most was database management; I never
liked that subject as it seemed like a subject with numbers all over the place. And I have always
hated numbers since my childhood.

I consider myself a creative person, and for me, numbers were never my thing.
But my bad relationship with DBMS didn’t end in my college.

When I joined my first company, I was onboarded on a project that required SQL, DWH, and
DBMS concepts and skills.
For me, it was a nightmare. I always believed that the problem was with me. Especially when I
saw queries that other developers created. It overwhelmed me.

Those queries were using JOINS with multiple tables, and it never made sense to me.

I read thousands of articles on JOINS and saw hundreds of videos. But nothing was helping me
to understand this concept.

When I saw other senior developers who were working on queries with multiple JOINS and
analysing data fast using JOINS in their queries, I thought that the problem was with me.

But later, I realized that It was not completely my fault.

I never had a step-by-step plan that helped me to practice these concepts and make some good
progress on this. As a result, whenever I had to build queries that required JOINS.I found myself
doing everything to avoid that task .

But later on, I realized that this would not work for long, and In order for me to grow in my
career and in life, I have to understand and master this concept

I found out that I am not the only person who is facing this problem. There are many people who
are also facing the same issue.

In my Facebook community, I asked people to comment on the concept they are struggling the
most with. And the most common answer was SQL JOINS!!!

Although I have also mentioned this concept in detail in my book Simple SQL: Beginner’s
Guide To Master SQL And Boost Career (Zero To Hero)

But I wanted to create a resource that is dedicated to this concept only with hands-on exercises.
That can also act as a quick study refresher guide.

◆ ◆ ◆

https://www.amazon.com/Simple-SQL-Beginners-Master-Career/dp/B0B2V3W7DG

DOWNLOADING DATASETS AND
INSTALLING THE SQL SERVER

To take a much more practice-based approach, First I would recommend you to install the SQL
Server version as per your Operating System.

Follow the steps mentioned in the below webpages and carefully follow the steps for a smooth
hassle free installation.

1.For Windows Users : If you have windows operating system . Please follow the steps
mentioned in the below link carefully to install SQL Server on your system smoothly.

https://dataceps.com/the-definitive-guide-sql-server-express-edition-installation-on-windows-10-
step-by-step/

2. For Macbook Users : If you have Mac operating system . Please follow the steps mentioned
in the below link carefully to install SQL Server on your system smoothly.

https://dataceps.com/the-definitive-guide-sql-server-express-edition-installation-on-mac/

DATASET INSTALLATION:

Once you have successfully installed SQL Server in your machine successfully. Then please
download the FREE dataset Installation guide. Visit the below mentioned link to grab this
dataset.

https://dataceps.com/the-definitive-guide-sql-server-express-edition-installation-on-windows-10-step-by-step/
https://dataceps.com/the-definitive-guide-sql-server-express-edition-installation-on-mac/

https://dataceps.com/dataset-download-sql-joins/

This Mastering SQL book is of no use, if you don’t download this dataset and practice the
hands-on practice questions mentioned in this book.

https://dataceps.com/dataset-download-sql-joins/

I

WHAT ARE SQL JOINS, AND HOW
DOES IT HELP?

n this chapter, you will learn about the basics of SQL joins, the significance of using SQL
Joins, and how it helps in data management.

In my opinion, understanding the basics before mastering any skill is what one should aim for.

We are in the data management industry, dealing with huge amounts of data. The ultimate
purpose of this whole industry is to collect, manage, and extract useful meaning and insights
from the raw data.

Raw data in itself is of no use; it can’t help anyone.

And in order to extract meaning, relationships, and insights from the data. We require a
combination of different datasets.

For example :

An e-commerce company wants to open a new warehouse in 5 different cities. At this moment,
they only have a limited amount of funds to open these 5 warehouses.

Wouldn’t it be better if they opened the warehouses in the cities from where most of their
customers order? Not only will this move decrease the shipping time, but it will also motivate
other new customers to shop more from this e-commerce company.

To take this big step of opening 5 high investment warehouses, the company requires meaningful
insight. This insight or information is very valuable for this e-commerce company.
And in order to get this information, we must have access to 3 types of information.

1) Customer data
2) Order data

3) customer’s location data

Also, the relationship between these three entities can help the business in extracting the correct
insight. These datasets independently are of no use to the organization. However, if we compare
and combine these datasets, We can extract this valuable insight easily.
JOINS in SQL is basically used to accomplish this purpose only. It helps in combining and
contrasting different datasets and helps us in extracting high-quality, meaningful insights from
the data.
As you might be familiar already, about SQL that is used in Relational Databases. And SQL is
completely based on Relational Algebra concepts.
Basically, this relational algebra serves as a theoretical basis for the relational database and SQL.
In simple terms, the concepts of relational algebra were used in order to create SQL concepts that
we see and use today.

So if you understand the underlying relational algebra concepts, you will be in a much better
position to understand the SQL JOIN concept.

If I talk about JOINS, the concept that a SQL JOIN is based on the basis relational algebra
concept– Cartesian Product.

CARTESIAN PRODUCT:
In relational algebra, a cartesian product or cross product is actually a combination of every

record present in the first table with every record present in the second table.

Let me explain this with an example :

Suppose we have 2 tables, table 1: Students and table 2: Subjects.
(See the below tables for reference)

 Figure 3.1 Students and Subjects tables

Now the cartesian product of these two tables/datasets can also be represented as (Students X
Subjects), and the output of the cartesian or cross product will look something like this:

Figure 3.2 Cartesian product of tables students and subjects

If you look closely, you will observe that each record that is present in Table 1 (Students) is
combined with each record present in Table 2 (Subjects).

This is the core concept that is working behind the scenes when we are combing datasets.
Now if you understand this concept, then understanding other joins will be much easier for you.

There are different types of Joins out there, But I will be discussing the most common ones in
this short guide. These JOINS are:

1) CROSS JOIN
2) INNER JOIN
3) LEFT JOIN
4) RIGHT JOIN
5) FULL JOIN

I will discuss about all these joins one by one in upcoming chapters.

◆ ◆ ◆

I

CROSS JOIN
n the last chapter, I explained how the cross-product concept of relational algebra serves as the
foundation for the JOINS concept in SQL. If you understand the Cross Product concept, then

understanding the concept is a cakewalk for you.
But in case, If there is even a single doubt in your mind about the concept of Cross Product, then
I would recommend you revisit the concept once again in the previous chapter and start with the
concept of JOINS.

 Now, let us get back to the main topic –CROSS JOIN.
CROSS JOIN is a type of SQL JOIN that simply does a CROSS PRODUCT of records from
Table 1 and Table 2. (Considering we have CROSS JOIN applied on two tables –table 1 and
table 2).
 So, If there are 3 records present in Table 1 and there are 4 records present in table 2.
Then the final dataset after implementing the CROSS JOIN will have 3 X 4 records, i.e., 12 total
combinations of records.

This is because each record present in Table 1 will create a combination with each record present
in Table 2.
The Key Idea or purpose of this CROSS JOIN is to present ALL POSSIBLE COMBINATIONS
of datasets on which the JOIN is implemented.
Let me explain this with a simple example:

Suppose we have 2 tables: Animal and Food.
The 1st table is Animal has 2 records :

Figure 4.1 Animal table

And table 2 is Food :

 Figure 4.2 Food table

The output of the CROSS JOIN will be:

Figure 4.3 Cross join of animal and food table

As you can see in the figure 4.3 the result of the CROSS JOIN is “ALL POSSIBLE
COMBINATIONS of datasets” of the records present in both tables.
Although on the surface, it seems that the practical implementation of the CROSS JOIN concept
might not be much useful. And I agree developers use other JOIN types much more than this
one, but still, this CROSS JOIN concept is sometimes used to analyze data.

It's like a tool in your pocket that you can use when required.
I think at this point, you might have understood the concept of CROSS JOIN and Cartesian
Product. The reason I am saying this is because the following chapters on the other types of
JOINS are dependent on this concept.

But before that, I would recommend you go through all the questions mentioned in this chapter.
This will help you to LEVEL UP before you start the next concept.

◆ ◆ ◆

PRACTICE QUESTIONS FOR CROSS JOIN

Practice Question #1:

1. Loans_Master Table :

2. Dataceps_Customers Table:

Implement CROSS JOIN on the above dataset.

◆ ◆ ◆

Practice Question #2:
1. Dataceps_Performance_Review table :

 2. Dataceps_Employees table:

Implement CROSS JOIN on the above dataset.

◆ ◆ ◆

Practice Question #3:

1. Advertisers_Master table :

2. Campaigns_Master table :

Implement CROSS JOIN on the above

◆ ◆ ◆

INNER JOIN
Before we dive into this chapter, I hope you have practiced the questions in the last chapter. Understanding the CROSS JOIN
concept is quite essential before we begin this chapter.
I know you're a person with lots of dedication and willingness to succeed. But as an author, It's my duty to take you on this
Learning journey step-by-step so that you make the most of it.

Now, let's get back to the INNER JOIN concept.

Technically, "INNER JOIN is used to select records that have matching records present in both the tables".

Let me explain it in a simple way, suppose we have two different tables/datasets, and we want to extract records that are present
in both datasets.

In such cases, INNER JOIN helps to extract only the matching records.

INNER JOIN requires a specific condition—Both the tables used in INNER JOIN should have a common column. This
common column (present in both tables) should have matching data types and similar values.

And the matching of records will happen on the basis of this column only.

So whenever you’re JOINING two different tables, make sure to identify the column ON which this INNER JOIN will happen.

The syntax of INNER JOIN looks something like this:

SELECT ColumnNames
FROM [Table1]
INNER JOIN [Table2]
ON Table1.ColumnA=Table2.ColumnA;

Where you can see that the JOIN is happening ON the columnA from table1 and ColumnA from table2.
The illustration for such a JOIN is usually represented like this:

Figure 5.1 Table 1 INNER JOIN Table 2

As you can see in this illustration that in, the final OUTCOME is marked in “Black” here. That
is the dataset that is COMMON and MATCHING in both of these tables.
Hence, the INNER JOIN should return only this dataset.

Let me explain this with an example:

Dataceps_Student Table :

Food_Choices table :

To implement the INNER JOIN between these above two tables or datasets. The first thing to do here is to identify the column
ON which the INNER join condition needs to be implemented.

In this particular example, the common column here is Student_Id From the table “Student” and Student_Id From the table
“Food_Choices”.

The query to extract the data from these two tables using INNER JOIN will look something like this :

SELECT *
FROM Student S
INNER JOIN Food_Choices FC
ON S .Student_Id =FC.Student_Id;

And the final outcome will look something like this:

 Figure 5.4 INNER JOIN on Student and Food_Choices table

Now let me explain what happened behind the curtains.

how we reached to this outcome? How all of this happened internally in the system? And how the concept of cartesian product is
implemented here.

The result of cartesian product of these two tables is :

Figure 5.5 Cartesian Product of Student and Food_Choices table

The total count of the records after doing the cartesian product is 3X 4, i.e., 12 records. But as you know that in the INNER JOIN,
we have a special condition ON the column that is common in both tables.
This condition is on the column Student_Id from the table Student and column Student_Id from the table Food_Choices.
Now, this condition used in INNER JOIN, will allow only records that have MATCHING Student_ID present in both the tables
involved here.
Let me explain this with an illustration :

Figure 5.6 Cartesian Product results highlighted based onINNER JOIN concept

As you can see in the above illustration, the records with matching Student_ID are highlighted in the outcome of the Cartesian
product.

This is why, eventually, in the final outcome after implementing the INNER JOIN, we see the final results something like this:

Figure 5.7 INNER JOIN Join Student and Food_Choices table

I hope, at this point, you understand the concept of INNER JOIN.

INNER JOIN is the most used JOIN that is used. As you just observed, it helps in finding the
MATCHING records present in both the table on which the INNER JOIN is implemented.

Whether you want to combine data from multiple datasets or you’re doing some data analysis,
you can take advantage of this JOIN type.

Before you move on to the next chapter, Please go through all the questions mentioned after this
chapter. Reading these concepts will not help you out until you practice them on your own
system.

◆ ◆ ◆

PRACTICE QUESTIONS INNER JOIN
Practice Question #1:

1. Loans_Master Table

2. Dataceps_Customers Table:

Implement INNER JOIN on the above dataset.

◆ ◆ ◆

Practice Question #2:

1. Dataceps_Employee table :

2. Dataceps_Performance_Review Table:

Implement INNER JOIN on the above dataset.

◆ ◆ ◆

Practice Question #3:

1. Advertisers_Master table :

2. Campagins_Master table :

◆ ◆ ◆

OUTER JOINS
JOINS are not only used to combine datasets to extract only the matching records. As I explained in the last chapter, INNER
JOIN in SQL is used to display the records that match / present in both the tables on which the INNER JOIN is implemented.
In this chapter, I will introduce another type of JOIN where the final output can have UNMATCHED records. These types of
JOINS are called OUTER JOINS.
There are 3 different types of OUTER JOINS in SQL, but the main concept of all 3 of them is the same – The result of OUTER
JOIN will have unmatched records.

These 3 different types of OUTER JOINS are:

1) LEFT OUTER JOIN or LEFT JOIN
2) RIGHT OUTER JOIN or RIGHT JOIN
3) FULL OUTER JOIN or FULL JOIN

Let me explain each JOIN type...

LEFT OUTER JOIN

LEFT OUTER JOIN displays ALL the records present in the LEFT table and ONLY the
MATCHING records present in the RIGHT Table.

Please read the above sentence again!

This JOIN From the “OUTER JOIN family” also requires a common column to establish the
JOIN condition. Else it will be difficult to find what’s matching or what’s not matching. Right?

The criterion for selecting this common column is the same as we discussed in the previous
chapter. This common column (present in both tables) should have matching data types and

similar values.

The syntax of LEFT JOIN looks something like this:

SELECT ColumnNames
FROM [Table1]
LEFT JOIN [Table2]
ON Table1.ColumnA=Table2.ColumnA;

Where you can see that the JOIN is happening ON the ColumnA from Table1 and ColumnA from table2.

Below is a figure that clearly illustrates the concept of LEFT JOIN:

 Figure 6.1 LEFT JOIN on Table 1 and Table 2

Now let me explain this concept with an example.

I am taking the same tables that I used in INNER JOIN chapter, However, I have added a couple
more records to make this concept easier to understand. And the final dataset is :

DataCeps_Students table:

Figure 6.2 Dataceps_Student table

Food_Choices table:

Figure 6.3 Food_Choices table

Let’s first see what will be Cartesian Product output of the above two tables will be :

Figure 6.4 Cartesian Product Of Dataceps_Student andFood_Choices table with highlighted
records based on LEFT JOIN concept

Now if we go by the rules of LEFT JOIN, We should SELECT all records that are present in the
LEFT table and ONLY the matching records present in the RIGHT table.

As you can see, All the g highlighted records that have a MATCHING record present in the
RIGHT TABLE will be in the final Output of the LEFT JOIN. In addition to this, the record with
Student_ID =3 (highlighted in grey color) is not in the Right table (Food_Choices).

Therefore, To satisfy the condition of LEFT JOIN – include ALL records present in LEFT
TABLE to be present in the FINAL Output. We need to represent the values in the RIGHT
column with NULL values. Basically, this tells us that the particular record doesn’t have a

matching value in the RIGHT table.

Hence the FINAL Output of the LEFT JOIN query will be :

Figure 6.5 Results of LEFT JOIN on Dataceps_Student and Food_Choices table
I hope you understand this concept of LEFT OUTER JOIN or LEFT JOIN clearly now.
Please go through the practice questions mentioned just after this section, to understand this concept on a much deeper level.

PRACTICE QUESTION FOR LEFT OUTER JOIN
Practice Question #1:

1. Loans_Master table :

2. Dataceps_Customer table:

Implement LEFT JOIN on the above dataset.

◆ ◆ ◆

Practice Question #2:

1. Dataceps_Performance_Review table:

2. Dataceps_Employee table :

Implement LEFT JOIN on the above dataset.

Practice Question #3:

1. Advertisers_Master table:

2. Campaigns_Master table:

Implement LEFT JOIN on the above dataset.

RIGHT OUTER JOIN OR RIGHT JOIN
Alright, now you have progressed a lot. I am sure that you understood the last section on the
LEFT OUTER JOIN and practiced the questions diligently. This section is all about the RIGHT
OUTER JOIN and how it works.

Technically, The RIGHT OUTER JOIN selects ALL the records that are in the RIGHT table and
then ONLY the matching records present in the LEFT table.

This JOIN From the “OUTER JOIN family” also requires a common column to establish the
JOIN condition. Else it will be difficult to find what's matching or what's not matching.

Right?
The syntax of RIGHT JOIN looks something like this:

SELECT ColumnNames
FROM [Table1]
RIGHT JOIN [Table2]
ON Table1.ColumnA=Table2.ColumnA;

Here you can see that the JOIN is happening ON the ColumnA from Table1 and ColumnA from Table2.

Below is a figure that clearly illustrates the concept of RIGHT JOIN:

Figure 6.6 Illustration for RIGHT JOIN

This JOIN is also part of the OUTER JOIN family. Therefore, it also requires a common column

on which the condition is implemented.

The criterion for selecting this common column is the same as we discussed in the previous
section on Left Join. This common column (present in both tables) should have matching data
types and similar values.

Now let me explain this concept with an example.

Let's consider the same tables DataCeps_Students and Food_Choices table again.

Dataceps_Students table:

Figure 6.7 DataCeps_Students table

Food_Choices table:

Figure 6.8 Food_Choices table

The cartesian product of the table will look something like this:

Figure 6.9 Cartesian Product Of Dataceps_Student andFood_Choices table with highlighted
records based onRIGHT JOIN concept

Now if we go by the rules of RIGHT JOIN, We should SELECT all records that are present in
the RIGHT table and ONLY the matching records present in the LEFT table.
As you can see in the above figure, I have highlighted the records that are present in the RIGHT
table and have MATCHING values present in the LEFT table.

Also, you can see that the values that are only present in the RIGHT table and are not in the
LEFT table will be populating NULL values in the final dataset against such records.

In addition to this, You can see that the record with NULL student_Id value is not matching with
any value in the LEFT table. But as per the RIGHT JOIN concept, that record will appear in the
final result even if it doesn’t have a matching value in the LEFT table.

Hence, the final output after implementing the rules of RIGHT JOIN will be:

Figure 6.10 Dataceps_Students RIGHT JOIN Food_Choices table

I hope you understand this concept of RIGHT OUTER JOIN or RIGHT JOIN clearly now.

Please go through the practice questions mentioned just after this section to understand this
concept on a much deeper level.

PRACTICE QUESTIONS FOR RIGHT OUTER JOIN
Practice Question #1:

1. Loans_Master Table:

2. Dataceps_Customers Table.

Implement RIGHT JOIN on the above dataset.

◆ ◆ ◆

Practice Question #2:

1. Dataceps_Performance_Review Table:

2. Dataceps_Employees Table:

Implement RIGHT JOIN on the above dataset.

◆ ◆ ◆

Practice Question #3:

1. Advertisers_Master Table:

2. Campaigns_Master Table:

Implement RIGHT JOIN on the above dataset.

◆ ◆ ◆

FULL OUTER JOIN

Let's now talk about the final member of the OUTER JOIN family – FULL OUTER JOIN.

FULL OUTER JOIN or FULL JOIN is a type of JOIN that displays ALL the records present in
both tables irrespective of the fact whether the records are MATCHING or NOT-MATCHING
based on the common column present in both tables.

In other words, FULL OUTER JOIN reflects the data that is present in both LEFT and RIGHT
join.

The syntax of FULL OUTER JOIN looks something like this:

SELECT ColumnNames
FROM [Table1]
FULL OUTER JOIN [Table2]
ON Table1.ColumnA=Table2.ColumnA;

In the above syntax, you can see that the JOIN is happening ON ColumnA from Table1 and
ColumnA from Table2.

Below is a figure that clearly illustrates the concept ofFULL OUTER JOIN :

Figure 6.11 Table1 FULL OUTER JOIN Table2

Let’s understand this concept with our datasets: Dataceps_Students and Food_Choices tables.

Figure 6.12 Dataceps_Students Table

Figure 6.13 Food_Choices Table

The cartesian product of these two tables is :

Figure 6.14 Cartesian Product Of Dataceps_Studentand Food_Choices table with highlighted
records basedon FULL JOIN concept

As per the FULL JOIN rules, The final output must have MATCHED and UNMATCHED
records based on the common column Student_Id (ON which the JOIN is implemented).

As you can see in the above figure 6.14 , I have highlighted the matching Student_Id with a
different colour. The idea is to find the matching student_Id in the other table, and then that
record will be eligible as an output for the FULL OUTER JOIN.
Let me now explain the process to find out the NOT MATCHING records. To get the non-
matching records, we need to examine both tables. As you can see, in this example. The record

with student_Id doesn’t have any MATCHING record present in the other table (Food_Choices)
table.
And the record with a NULL value also doesn’t have any MATCHING record present in the
Dataceps_Students table.

Hence, The core idea for the records where we don’t have any MATCHING values present in
either of the tables. The final output will have NULL values assigned for the values that originate
from the other table.

The final output of the FULL OUTER join will be:

Figure 6.15 FULL JOIN on Dataceps_Student and Food_Choices table.

As you can see in the figure 6.15, For the record with Student_Id =3 Of Dataceps_Student table.
The column values Food_Id, Food_Name, and Student_Id from the other table have NULL
values. And the 6th record with NULL student_Id from the table Food_Choices. The column
values Student_Id and Student_Name are coming as NULL.
I hope you understand this concept clearly now. Please go through the practice questions after
this section to make this concept more concrete now.

The next section is completely dedicated to hands-on exercises on this JOINS concept. Practice
as much as you can master SQL Joins.

PRACTICE QUESTIONS FOR FULL OUTER JOIN
Practice Question #1:

1. Loans_Master Table.

2. Dataceps_Customers Table.

Implement FULL OUTER JOIN on the above dataset.

◆ ◆ ◆

Practice Question #2:

1. Dataceps_Performance_Review Table.

2. Dataceps_Employees Table.

Implement FULL OUTER JOIN on the above dataset.

◆ ◆ ◆

Practice Question #3:

1. Advertisers_Master Table.

2. Campaigns_Master Table.

Implement FULL OUTER JOIN on the above dataset.

◆ ◆ ◆

W

CALCULATED COLUMN IN THE
QUERIES WITH JOINS!

elcome to the magical world of Calculated Columns!
In this chapter, you’ll explore how to transform, clean, enrich, manipulate, and refine the

data in the columns of SQL queries where SQL JOIN is implemented. These calculations on the
columns can be done with the help of aggregate functions, conditional statements, string
functions, etc.

The raw data is of no use if it’s just sitting on tables. Right?
Unless we are not able to JOIN tables and pull out the correct information in a meaningful way,
then what’s the purpose of storing data in a database?
When we transform or clean the data, it starts to make sense.

Suppose I can see the marks of each every student after combining them with another table
using SQL Joins. Then calculating the overall percentage of those students will bring meaningful
insight.
However, Calculating percentages is totally a mathematical operation that uses a mathematical
formula:

Percentage= Marks Obtained/Total Marks * 100

We can use this formula in a simple SQL query that has JOINS or even without JOINS.
Similarly, we can combine the First_Name, Middle_Name, and Last_Name to give us a
Full_Name of a student.

We can compute these values dynamically based on our custom requirements. These columns are
actually created virtually with the help of other columns in the SELECT statements. That means
we are not storing them physically anywhere.

These dynamically created columns help in data enrichment, data cleaning, and data
transformation.

This concept of calculated columns actually assists in data analysis, data transformations for data
warehouse, creating reports and dashboards for business, and the list is endless.

HOW TO CREATE AND UTILIZE CALCULATED
COLUMNS IN SQL JOIN QUERIES

In this section of this chapter, You will explore how to actually implement these calculated
columns on queries where SQL Joins are implemented.
To create a calculated column or derived column, the first thing we need is to have is expression.

An expression is completely based on the requirement or desired transformation.

This expression is calculated for each record present in the dataset, creating the derived column
for each record dynamically. Then in order to give a name to the newly created derived column
in the dataset, we can apply an alias to the column.

Let me explain this concept with an example.

Let's take two tables to understand this – Dataceps_Performance_Review and
Dataceps_Employee.

Figure 7.1 Dataceps_Performance_Review Table

Figure 7.2 Dataceps_Employees Table

Now, let's suppose the requirement is to display the employee rating with the final comments
along with their name. However, the name should be a Combination of First Name and Last
Name Separated by a blank and Should appear as Employee_Name in the final dataset.

SELECT CONCAT(DE.First_Name,' ',DE.Last_Name) AS
Employee_Full_Name,DPR.Final_Rating,DPR.Final_Comments
FROM [Mastering_SQL].[dbo].[Dataceps_Employees] DE
INNER JOIN
[Mastering_SQL].[dbo].[Dataceps_Performance_Review] DPR
ON DE.[Employee_ID]=DPR.[Employee_ID]

In the above query, you can see that the table Dataceps_Employee is aliased as DE, and
Dataceps_Performance_Review is aliased as DPR.

And the transformation is the concatenation of First_Name and Last_Name separated by a
blank. To create this concatenation, I used a string function CONCAT here.

Creating derived columns or calculated columns in a query with JOINS is quite similar to a
query where there is NO JOIN.
The only thing that needs to be considered while creating these expressions using different
operators, functions, or conditional statements is to mention the correct column name with the
relevant table aliases.

As you can see in the above example, I am pulling the First_Name and Last_Name from DE
that is table Dataceps_Employee. And then the rest of the fields from the DPR table alias.

There are many ways this expression is created to create calculated columns. We can utilize the
different SQL System defined functions in order to create these expressions that eventually help
us in transforming data.

I will be explaining only a few relevant examples for each function in this section due to the
limited scope of the book if you want to learn in-depth about these different types of functions in
detail. Then I would recommend learning it in my book Simple SQL: Beginner’s Guide To
Master SQL And Boost Career (Zero To Hero).

I have a dedicated chapter on different types of SQL Functions in detail, with examples and
practice questions as well.

SQL System defined functions that help in creating calculated functions are mentioned below:

1) Mathematical Functions: Mathematical functions allow to create expressions to carry out
mathematical operations. Some of these operations are –addition, subtraction, division,
multiplication, etc.

For Example: If I want to display the First_Name, Last_Name, and the salary of an employee
incremented by 20%, who has a final rating of 4.

To create this new derived column, I need to create a mathematical expression.
This expression calculates 20% of the salary of those employees and add them up to the current

https://www.amazon.com/Simple-SQL-Beginners-Master-Career/dp/B0B2V3W7DG

salary, and then displays it in the final results in a new column.

So the formula is :

New Salary = (0.2 X Current_Salary)+ Current_Salary

Where (0.2 X Current_Salary) calculates the 20% of the current salary.

SQL code for this will be:

SELECT DE.First_Name,DE.Last_Name,((0.2)*DE.Emp_Salary+DE.Emp_Salary) AS
Incremented_Salary

FROM [Mastering_SQL].[dbo].[Dataceps_Employees] DE
INNER JOIN [Mastering_SQL].[dbo].[Dataceps_Performance_Review] DPR
ON DE.[Employee_ID]=DPR.[Employee_ID]
WHERE DPR.Final_Rating=4

As you can see in the above query, I used mathematical functions present in SQL to translate this
expression into SQL code.

2) String Functions: String functions helps in carrying out the transformation and manipulation
of text data. Some of these operations are changing cases of string values, trimming extra
characters, matching patterns, and concatenation of string values.

For Example: Display the names of employees in the upper case along with their Final
Performance review comments.

SQL code for this will be:

SELECT UPPER(DE.First_Name) AS Emp_First_Name,UPPER(DE.Last_Name)
AS Emp_Last_Name,DPR.Final_Comments
FROM [Mastering_SQL].[dbo].[Dataceps_Employees] DE
INNER JOIN [Mastering_SQL].[dbo].[Dataceps_Performance_Review] DPR
ON DE.[Employee_ID]=DPR.[Employee_ID]

As you can see in the above query, the First_Name and Last_Name in uppercase are derived
from the First_Name and Last_Name columns from the table alias DE. And the Final_Comments
column is derived from the table DPR.

3) Date And Time Functions: In SQL, Date And Time functions allow to perform operations
and manipulations on the date and time column values. Some of these date and time functions

are – DATEPART, DATEDIFF, DATEDIFF, etc.

For example: Write a SQL query to retrieve the first name of the employees along with the
extracted month from the review date. The extracted month should be displayed as a month name
instead of a numeric value. That means 1 represents January, 2 represents February, and so on.

SQL code for this will be:

SELECT Emp.First_Name AS Employee_Name, DPR.Final_Rating, DATENAME(MONTH,
DPR.Review_Date) AS Review_Month
FROM Dataceps_Performance_Review DPR
INNER JOIN Dataceps_Employees Emp
ON DPR.Employee_ID = Emp.Employee_ID;

4) Conditional Statements: Conditional Statements in SQL helps in performing different
operations and actions based on the different custom conditions. These custom conditions are
created on the basis of desired output or requirements.

The most common conditional function that is used in SELECT is CASE Statements.

CASE statements: CASE statements in SQL helps in performing conditional logic within the
SELECT part of the query. CASE statements allow to have multiple conditions, and when a
value satisfies any particular condition, then the result related to it is displayed.

For Example:

Display the first name, last name, final ratings, and rating status of all the employees. To
calculate the rating status based on the final rating value, use below logic:

1. When the final rating is 4 or above, the rating status should be "Top Rating".
2. When the final rating is between 2 and 4 , the rating status is "Average Rating".
3. When the final rating is 2 or below, the rating status is "Low Rating".
4. When there is no rating provided, the rating status is "No Rating Provided".

Use CASE STATEMENT to create the Final rating calculated column.

SQL code for this will be:

SELECT DE.First_Name,DE.Last_Name,DPR.Final_Rating,
CASE
WHEN DPR.Final_Rating>=4 THEN 'Top Rating'
WHEN DPR.Final_Rating>2 AND DPR.Final_Rating<4 THEN 'Average Rating'
WHEN DPR.Final_Rating<=2 THEN 'Low Rating' ELSE 'No Rating Provided' END AS
Rating_Status

FROM [Mastering_SQL].[dbo].[Dataceps_Employees] DE
INNER JOIN [Mastering_SQL].[dbo].[Dataceps_Performance_Review] DPR
ON DE.[Employee_ID]=DPR.[Employee_ID]

5) SQL Conversion Functions: In SQL, Conversion functions help in converting one datatype
to another datatype. This helps in data cleaning and transformation requirements.
Some common conversion functions are – CAST, CONVERT, TRY_CAST, TRY_CONVERT,
etc.

For Example: Display the first_name, Final Rating, and Review date in the output. The review
date should be in datetime format instead of date format.

SQL code for this will be:

SELECT
DE.first_name,
DPR.Final_Rating,
CONVERT(datetime, DPR.Review_Date) AS Review_Date
FROM
Dataceps_Employees DE
INNER JOIN
Dataceps_Performance_Review DPR
ON DE.Employee_ID = DPR.Employee_ID;

6) Aggregate Functions: Aggregate functions in SQL helps in performing an operation on
multiple rows or group of rows of a particular column and returns a single value. Aggregate
functions are usually used with a GROUP BY clause to perform the desired operation.
The different types of aggregate functions are COUNT, SUM, AVG, MIN, and MAX.

For Example: Display the average rating of employees for each department along with
department_Id.

SQL code for this will be:

SELECT e.Department_ID, AVG(pr.Final_Rating) AS Average_Rating
FROM Dataceps_Performance_Review pr
INNER JOIN Dataceps_Employees e
ON pr.Employee_ID = e.Employee_ID
GROUP BY e.Department_ID

Calculated columns in SQL queries play an essential role in data transformation and cleaning.
This plays an important role in data analysis, extracting meaningful insights, data management,
and much more.

T

HANDS ON EXERCISES
his chapter is totally dedicated for the SQL practice questions, In the intial set of practice
questions there are some problems where you have to simply follow the instructions and

practice SQL joins. Basically the level of difficulty is EASY to MEDIUM
In the next set of questions, in this chapter, the questions will be evolved to a level where you
have to understand a question written in simple English that requires a certain outcome/result.
And in order to get that result, you need to implement the correct JOIN.

You can find all the tables mentioned in the below questions in the dataset that you configured
earlier.

SET I HANDS ON QUESTIONS

Practice Question #1 :

Select the product name and ProductNumber from the product table and the unit price from the
SalesOrderDetail table after implementing the CROSS JOIN.

Practice Question #2 :

Select the product name from the product table and the unit price from the SalesOrderDetail table
after implementing the INNER JOIN on the column Product_Id.

Practice Question #3 :
Select the product name from the product table, and the unit price from the SalesOrderDetail
table after implementing the LEFT JOIN on the column ProductId.

Practice Question #4:

Select the product name from the product table and the unit price from the SalesOrderDetail
table after implementing the RIGHT JOIN from salesorderDetail table to product table on the
column ProductId.

SET II HANDS ON QUESTIONS

When we work on a project, The requirements are not given in technical languages usually. The
requirements are provided in plain English, and then we have to convert those requirements into
technical logic and then eventually convert it into SQL code.

Below are some practice problems that will help you in brushing up on that skill:

Practice Question #5:
Retrieve the first name and last name of a customer and the order date for all those customers
from the table "Customer" and "SalesOrderHeader" tables.

Practice Question #6:

Find the SalesOrderId, ProductId, ProductName, ProductName, and ProductNumber for all the
products present in the [SalesOrderDetail] and [Product] tables.

Practice Question #7:
Find all the Product_Id, ProductName, ProductNumber, SalesOrderId, And OrderQuantity from
the [Product] and [SalesOrderDetail] tables, even if the [SalesOrderDetail] doesn’t have any data
related to the corresponding product.

Practice Question #8:
Find all the AddressID, AddressLine1, CountryRegion, and CustomerID data from the tables
CustomerAddress and [Address] tables, even if it doesn’t have any related customer_id in the
customer_address table.

Practice Question #9:

Display the Customer’s First_Name, Last_Name, Company_Name, Address and
Country_Region of all the customers present in the customer table. The other related information
can be pulled from [CustomerAddress] and [Address] table.

Practice Question #10:
Display the Customer’s First_Name, Last_Name, Company_Name, Address and
Country_Region of all the customers present in the customer table even if they don’t have any
address related information in [CustomerAddress] and [Address] table.

Practice Question #11:
Display the name, colour, and list price of products where the product category name is
Accessories by joining the tables [Product] and [ProductCategory]

Practice Question #12:
Find all the names, productnumber, color, and description from the tables product and
ProductAndDescription where the description contains the word “off-road.”

Practice Question #13:
Find the ProductModels and their total count where the description contains the word
“aluminum” and the color of the product is ‘Black’

Practice Question #14:
Find Country with most shipped order quantities where Status=5 from sales order header table
means shipped

Practice Question #15:
Find and display the customerId, FirstName, LastName, EmailAddress and Company Name of
customers who never made an order.

Practice Question #16:
Find the TOP 10 Company Names With the Highest Order values (Line Total Values) DESC,
Consolidate the sum of all orders for each company

Practice Question #17:
Find Company Names With the Lowest Order Values Order By Order Values ASC, consolidate
the orders value for each company.

Practice Question #18:

Find the top 5 customers with the highest total order values across all countries, along with their
respective country and total order values.

Practice Question #19:

SELECT the product models along with their total count where the color is ‘Red’ and the
description of the product has the word aluminium in it and the total count is greater than 250.

Practice Question #20:
SELECT the product names along with their total count where the color is neither red ‘Red’ nor
‘Black’ and the description of the product category is not ‘Bikes’.

Practice Question #21:
Find the name, ListPrice, OrderQuantity, SalesPerson, and the customer name that is
concatenated using the customer’s first name and last name where the Salesperson field contains
the string ‘jae0’ from the tables SalesOrderDetail, Customer and Product and order by DESC.

Practice Question #22:
Display the Customer_Id, Customer_Name (after concatenating First Name and Last Name)
their shipping address as Customer_Shipping_Address(After concatenating Address line 1 and
address line 2) and replace null with blank space And Country region-that have a shipping
address in the United states region and TaxAmount greater than 500.

Practice Question #23:
Find the Names of the 5 highest selling products based on their total order quantities sold till
date.

Practice Question #24:
Display the Product name, Total Order quantities for every product sold, along with Sales Status.
When the order quantity <=10, then the Sales status should be 'Low Sales'; when the order
quantity <= 20, the Sales status should be 'Medium Sales'. When the order quantity <= 30, the
Sales status should be 'High Sales', For other cases display 'Not Sufficient Data'. When the order
quantity > 30, the Sales status should be 'Super High Sales', And the order should be based on
TotalOrderQuantity in Descending order.

HINT :
Do a GROUP BY based on the Column 'Name' based on the table Product
Tables Involved : SalesOrderDetail,Product

Practice Question #25:

Display the names of customers who have the highest order value within each country (based on
shipping address), along with their order quantity. Add the total sum of orders and find the
highest order value customer for each country

Practice Question #26:

Find the 2nd highest selling product in each country.

Practice Question #27:
Find the products that have never been sold.

ANSWERS

Practice Question #1 :

SELECT P.[Name],P.ProductNumber,SO.UnitPrice
FROM [dbo].[SalesOrderDetail] SO
CROSS JOIN [dbo].[Product] P

◆ ◆ ◆

Practice Question #2 :
SELECT P.[Name],SO.UnitPrice
FROM [dbo].[SalesOrderDetail] SO
INNER JOIN [dbo].[Product] P
ON SO.ProductID=P.ProductID

◆ ◆ ◆

Practice Question #3 :
SELECT P.[Name],SO.UnitPrice
FROM [dbo].[SalesOrderDetail] SO
LEFT JOIN [dbo].[Product] P
ON SO.ProductID=P.ProductID

◆ ◆ ◆

Practice Question #4:
SELECT P.[Name],SO.UnitPrice

FROM [dbo].[SalesOrderDetail] SO
RIGHT JOIN [dbo].[Product] P
ON SO.ProductID=P.ProductID

◆ ◆ ◆

Practice Question #6:

SELECT C.FirstName,C.LastName,SOH.OrderDate
FROM [dbo].[SalesOrderHeader] SOH
INNER JOIN [dbo].[Customer] C
ON C.CustomerID=SOH.CustomerID

◆ ◆ ◆

Practice Question #7:

SELECT SOD.SalesOrderID,P.ProductID,P.ProductNumber,P.[Name]
FROM [dbo].[SalesOrderDetail] SOD
INNER JOIN [dbo].[Product] P
ON SOD.ProductID=P.ProductID

◆ ◆ ◆

Practice Question #8:
SELECT P.ProductID,P.ProductNumber,P.[Name],SOD.SalesOrderID,SOD.OrderQty
FROM [dbo].[Product] P
LEFT JOIN [dbo].[SalesOrderDetail] SOD
ON SOD.ProductID=P.ProductID

◆ ◆ ◆

Practice Question #9:
SELECT A.AddressID,A.AddressLine1,A.CountryRegion,CA.CustomerID
FROM CustomerAddress CA
LEFT JOIN
[Address] A
ON CA.AddressID=A.AddressID

◆ ◆ ◆

Practice Question #9:

SELECT C.FirstName,C.LastName,C.CompanyName,A.AddressLine1,A.CountryRegion
FROM [dbo].[Customer] C
INNER JOIN CustomerAddress CA
ON C.CustomerID=CA.CustomerID

INNER JOIN [Address] A
ON CA.AddressID=A.AddressID

◆ ◆ ◆

Practice Question #10:
SELECT C.FirstName,C.LastName,C.CompanyName,A.AddressLine1,A.CountryRegion
FROM [dbo].[Customer] C
LEFT JOIN CustomerAddress CA
ON C.CustomerID=CA.CustomerID
LEFT JOIN [Address] A
ON CA.AddressID=A.AddressID

◆ ◆ ◆

Practice Question #11:

SELECT P.[Name],P.[Color],P.[ListPrice]
FROM [dbo].[Product] P
INNER JOIN [dbo].[ProductCategory] PC
ON P.ProductID=P.ProductID
WHERE PC.[Name] LIKE '%Accessories%'

◆ ◆ ◆

Practice Question #12:
SELECT P.[Name],P.ProductNumber,P.Color,PAD.[Description]
FROM [dbo].[Product] P
INNER JOIN [dbo].[ProductAndDescription] PAD
ON P.ProductID=PAD.ProductID
WHERE PAD.[Description] LIKE '%off-road%'

◆ ◆ ◆

Practice Question #13:

SELECT ProductModel,COUNT(1) AS TotalCount
FROM [dbo].[ProductAndDescription] PAD
INNER JOIN [dbo].[Product] P
ON P.ProductID=PAD.ProductID
WHERE [Description] LIKE '%aluminum%' AND P.Color='Black'

GROUP BY ProductModel

◆ ◆ ◆

Practice Question #14:

SELECT TOP 1 CountryRegion,SUM(SOD.OrderQty) AS Shipped_Order_Qty
FROM
[dbo].[SalesOrderHeader] SOH
INNER JOIN [dbo].[Address] A
ON SOH.ShipToAddressID=A.AddressID
INNER JOIN dbo.SalesOrderDetail SOD
ON SOH.SalesOrderID=SOD.SalesOrderID
GROUP BY CountryRegion
ORDER BY Shipped_Order_Qty DESC

◆ ◆ ◆

Practice Question #15:

SELECT C.CustomerID,C.FirstName,C.LastName,C.EmailAddress,C.CompanyName
FROM [dbo].[Customer] C
LEFT JOIN [dbo].[SalesOrderHeader] SOH
ON C.CustomerID=SOH.CustomerID
WHERE SOH.CustomerID IS NULL

◆ ◆ ◆

Practice Question #16:

SELECT TOP 10 C.CompanyName,SUM(SOD.LineTotal) AS Total_Order_Value
FROM [dbo].[SalesOrderHeader] SOH
INNER JOIN [dbo].[Customer] C
ON SOH.CustomerID=C.CustomerID
INNER JOIN [dbo].[SalesOrderDetail] SOD
ON SOH.SalesOrderID=SOD.SalesOrderID
GROUP BY C.CompanyName
ORDER BY 2 DESC

◆ ◆ ◆

Practice Question #17:
SELECT TOP 5 C.CompanyName,SUM(SOD.LineTotal) AS Total_Order_Value
FROM [dbo].[SalesOrderHeader] SOH
INNER JOIN [dbo].[Customer] C
ON SOH.CustomerID=C.CustomerID
INNER JOIN [dbo].[SalesOrderDetail] SOD
ON SOH.SalesOrderID=SOD.SalesOrderID
GROUP BY C.CompanyName
ORDER BY 2 ASC

◆ ◆ ◆

Practice Question #18:
SELECT TOP 5 C.FirstName,C.LastName,A.CountryRegion , SUM(SOD.LineTotal) AS
Order_Value
FROM [dbo].[SalesOrderDetail] SOD
INNER JOIN [dbo].[SalesOrderHeader] SOH
ON SOD.SalesOrderID=SOH.SalesOrderID
INNER JOIN dbo.[Address] A
ON SOH.ShipToAddressID=A.AddressID
INNER JOIN dbo.Customer C
ON SOH.CustomerID=C.CustomerID
GROUP BY A.CountryRegion,C.FirstName,C.LastName
ORDER BY Order_Value DESC

Practice Question #19:
SELECT ProductModel,COUNT(1) AS Total_Count
FROM [dbo].[Product] P
INNER JOIN [dbo].[ProductAndDescription] PAD
ON P.ProductID=P.ProductID
WHERE P.Color='Red'
AND PAD.[Description] LIKE '%aluminium%'
GROUP BY ProductModel
HAVING COUNT(1)>250

◆ ◆ ◆

Practice Question #20:

SELECT P.[Name] , COUNT(1) AS Total_Count
FROM [dbo].[Product] P
INNER JOIN [dbo].[ProductCategory] PC
ON P.ProductCategoryID =P.ProductCategoryID
WHERE P.Color not IN ('%Black%' ,'%Red%') AND PC.[Name] NOT LIKE '%Bikes%'
GROUP BY P.[Name]
ORDER BY P.[Name] DESC

◆ ◆ ◆

Practice Question #21:
SELECT P.[Name],P.ListPrice,SOD.OrderQty,CONCAT (C.FirstName,' ',C.LastName) AS
Customer_Name,C.SalesPerson
FROM [dbo].[SalesOrderDetail] SOD
INNER JOIN [dbo].[SalesOrderHeader] SOH
ON SOD.SalesOrderID=SOH.SalesOrderID

INNER JOIN Customer C
ON C.CustomerID=SOH.CustomerID
AND C.SalesPerson LIKE '%jae0%'
INNER JOIN Product P
ON SOD.ProductID=P.ProductID
ORDER BY OrderQty DESC

◆ ◆ ◆

Practice Question #22:
SELECT SOH.CustomerID,CONCAT (C.FirstName,' ',C.LastName) AS Customer_Name ,
CONCAT(A.AddressLine1,'',NULLIF(A.AddressLine2,'')) AS
Customer_Shipping_Address,A.CountryRegion
FROM
[dbo].[SalesOrderHeader] SOH
INNER JOIN dbo.Customer C
ON SOH.CustomerID=C.CustomerID
INNER JOIN [dbo].[Address] A
ON A.AddressID=SOH.ShipToAddressID
WHERE SOH.TaxAmt>500
AND A.CountryRegion='United States'

◆ ◆ ◆

Practice Question #23:

SELECT TOP 5 P.Name AS ProductName, SUM(SOD.OrderQty) AS TotalOrderQuantity
FROM Product P
INNER JOIN SalesOrderDetail SOD
ON P.ProductID = SOD.ProductID
GROUP BY P.Name
ORDER BY SUM(SOD.OrderQty) DESC;

◆ ◆ ◆

Practice Question #24:

SELECT P.[Name] AS ProductName,SUM(SOD.OrderQty) AS TotalOrderQuantity,
CASE
WHEN SUM(SOD.OrderQty) <= 10 THEN 'Low Sales'
WHEN SUM(SOD.OrderQty) <= 20 THEN 'Medium Sales'
WHEN SUM(SOD.OrderQty) <= 30 THEN 'High Sales'
WHEN SUM(SOD.OrderQty) > 30 THEN 'Super High Sales'
ELSE 'Not Sufficient Data'
END AS SalesStatus
FROM Product P
INNER JOIN SalesOrderDetail SOD

ON P.ProductID = SOD.ProductID
GROUP BY P.Name
ORDER BY TotalOrderQuantity DESC;

◆ ◆ ◆

Practice Question #25:
WITH CustomerTotalOrderValue
AS(
SELECT C.CustomerID,ShipToAddressID,SUM(SOD.LineTotal) AS Total_Order_Value
FROM [dbo].[SalesOrderHeader] SOH
INNER JOIN dbo.Customer C
ON SOH.CustomerID=C.CustomerID
INNER JOIN dbo.SalesOrderDetail SOD
ON SOH.SalesOrderID=SOD.SalesOrderID
GROUP BY C.CustomerID,SOH.ShipToAddressID
)

,
FindRank AS
(
SELECT C.FirstName,C.LastName,A.CountryRegion, RANK() OVER(PARTITION BY
A.CountryRegion ORDER BY CTOV.Total_Order_Value DESC) AS RNK,
CTOV.Total_Order_Value
FROM CustomerTotalOrderValue CTOV
INNER JOIN dbo.Customer C
ON CTOV.CustomerID=C.CustomerID
INNER JOIN dbo.[Address] A
ON CTOV.ShipToAddressID=A.AddressID
)

SELECT * FROM FindRank WHERE RNK=

◆ ◆ ◆

Practice Question #26:

WITH Product_Rank AS
(
SELECT SOD.ProductID,SOD.OrderQty,A.CountryRegion,
DENSE_RANK() OVER(PARTITION BY A.CountryRegion ORDER BY SOD.OrderQty
DESC) AS RNK,
SOH.ShipToAddressID
FROM [dbo].[SalesOrderHeader] SOH

INNER JOIN [dbo].[SalesOrderDetail] SOD
ON SOD.SalesOrderID=SOH.SalesOrderID
INNER JOIN dbo.[Address] A
ON A.AddressID=SOH.ShipToAddressID

)

SELECT DISTINCT P.[Name],PR.CountryRegion
FROM Product P
INNER JOIN Product_Rank PR
ON P.ProductID=PR.ProductID
WHERE PR.RNK=2

◆ ◆ ◆

Practice Question #27:
SELECT P.ProductID FROM [dbo].[Product] P
LEFT JOIN [dbo].[SalesOrderDetail] SOD
ON P.ProductID=SOD.ProductID
WHERE SOD.ProductID IS NULL

◆ ◆ ◆

BIBLIOGRAPHY

Simple SQL: Beginner’s Guide To Master SQL And BoostCareer (Zero To Hero): Wade, Dane:
9798833376164:Amazon.com: Books. (2022, June 3). Simple SQL:Beginner’s Guide to Master
SQL and Boost Career (Zero toHero): Wade, Dane: 9798833376164: Amazon.com:
Books.https://www.amazon.com/Simple-SQL-Beginners-Master-Career/dp/B0B2V3W7DG

Drkusic, E., & posts by Emil Drkusic →, V. A. (2020,February 21). Learn SQL: Set Theory.
SQL Shack - ArticlesAbout Database Auditing, Server Performance, DataRecovery, and More.
https://www.sqlshack.com/learn-sql-set-theory/

How to Restore a .bak File using Azure Data Studio. (n.d.).How to Restore a .Bak File Using
Azure Data
Studio.https://www.quackit.com/sql_server/mac/how_to_restore_a_bak_file_using_azure_data_studio.cfm

◆ ◆ ◆

	Contents
	COPYRIGHT
	INTRODUCTION
	DOWNLOADING DATASETS AND INSTALLING THE SQL SERVER
	WHAT ARE SQL JOINS, AND HOW DOES IT HELP?
	CROSS JOIN
	INNER JOIN
	OUTER JOINS
	CALCULATED COLUMN IN THE QUERIES WITH JOINS!
	HANDS ON EXERCISES
	ANSWERS
	BIBLIOGRAPHY

